Report from Dagstuhl Seminar 19301

Secure Composition for Hardware Systems

Edited by

Divya Aroral, Ilia Polian?, Francesco Regazzoni®, and
Patrick Schaumont*

Intel — Santa Clara, US, divya.arora@intel.com

Universitdt Stuttgart, DE, ilia.polian@informatik.uni-stuttgart.de
University of Lugano, CH, regazzoni®@alari.ch

Virginia Polytechnic Institute — Blacksburg, US, schaum@vt.edu

W N =

—— Abstract

The goal of the Dagstuhl Seminar 19301 “Secure Composition for Hardware Systems” was to
establish a common understanding of principles and techniques that can facilitate composition
and integration of hardware systems to achieve specified security guarantees.

Theoretical foundations of secure composition have been laid out in the past, but they are
limited to software systems. New and unique security challenges arise when a real system com-
posed of a range of hardware components, including application-specific blocks, programmable

microcontrollers, and reconfigurable fabrics, are put together. For example, these components
may have different owners, different trust assumptions and may not even have a common lan-
guage to describe their security properties to each other. Physical and side-channel attacks that
take advantage of various physical properties to undermine a system’s security objectives add
another level of complexity to the secure composition problem. Moreover, practical hardware
systems include software of tremendous size and complexity, and hardware-software interaction
can create new security challenges.

The seminar considered secure composition both from a pure hardware perspective, where
multiple hardware blocks are composed in, e.g., a system on chip (SoC), and from a hardware-
software perspective where hardware is integrated within a system that includes software. The
seminar brought together researchers and industry practitioners from fields that have to deal with
secure composition: Secure hardware architectures, hardware-oriented security, applied crypto-
graphy, test and verification of security properties. By involving industrial participants, we were
able to get insights on real-world challenges, heuristics, and methodologies employed to address
them and initiate a discussion towards new solutions.

Seminar July 21-26, 2019 — http://www.dagstuhl.de/19301

2012 ACM Subject Classification Hardware — Methodologies for EDA, Hardware — Integrated
circuits, Security and privacy — Formal security models

Keywords and phrases Hardware, Secure composition, Security, Software

Digital Object Identifier 10.4230/DagRep.9.7.94

Edited in cooperation with Elif Bilge Kavun, The University of Sheffield, UK,
e.kavun@sheffield.ac.uk

Except where otherwise noted, content of this report is licensed
o

under a Creative Commons BY 3.0 Unported license
Secure Composition for Hardware Systems, Dagstuhl Reports, Vol. 9, Issue 7, pp. 94-116
Editors: Divya Arora, Ilia Polian, Francesco Regazzoni, and Patrick Schaumont

\\v pagstunL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/19301
http://dx.doi.org/10.4230/DagRep.9.7.94
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont

1 Executive Summary

Ilia Polian (Universitat Stuttgart, DE)

Divya Arora (Intel — Santa Clara, US)

Francesco Regazzoni (University of Lugano, CH)

Patrick Schaumont (Virginia Polytechnic Institute — Blacksburg, US)

License @@ Creative Commons BY 3.0 Unported license
© Ilia Polian, Divya Arora, Francesco Regazzoni, and Patrick Schaumont

Today’s electronic systems consist of mixtures of programmable, reconfigurable and appli-
cation-specific hardware components, tied together by tremendously complex software. At
the same time, systems are increasingly integrated such that a system that was traditionally
regarded “harmless” (e.g., an entertainment system in a car) finds itself tightly coupled
with safety-critical driving-assistance systems and security-sensitive online payment systems.
Moreover, a system’s hardware components are now often directly accessible to the users,
making the system vulnerable to physical attacks via its hardware which becomes the system’s
“Achille’s heel”. This necessitates a new look on system security from hardware perspective.

The Dagstuhl seminar “Secure Composition for Hardware Systems”, which took place
on July 21-26, 2019, focused on secure composition of systems which contain hardware
blocks. This is a practically important but a theoretically challenging problem where several
foundational questions still lack an adequate answer.

Several formats were used during the seminar. The first phase of the seminar, which
focused on prior findings, started with presentations by five pre-selected experts giving their
view on secure composition from different perspectives: theory, design automation, trusted
execution environments and attacks countermeasures. Then, small-group discussions of
relevant state of the art were held, focusing on questions such as “What does it mean to
securely compose two elements?” or “What is the role of models in secure composition?”
The findings of the small groups were intensively discussed in plenary sessions.

The second phase of the seminar was devoted to discussing research questions. Some of
the questions were prepared by the seminar organizers (e.g., “Which protocol-level secure
composition methods are applicable in hardware domain?” or “How to counter possible loss
of security due to abstraction of hardware components?”) and some additional questions
were proposed by the participants (e.g., “How to bootstrap trust in a distributed hardware
system?”). The questions were discussed again in small groups, intertwined by individual
presentations in plenum (for instance, an in-depth study on the applicability of Universal
Composability (UC) in the hardware domain).

Two immediate outcomes grew out of the seminar. First, some participants are organizing
a special session on secure compositions in one of the leading scientific conferences; a respective
proposal was recently accepted by the “Design, Automation, and Test in Europe Conference”
(DATE). Second, there is an ambitious plan to prepare a manuscript on the full variety of
aspects in secure composition of electronic systems and submit it as a “Systematization of
Knowledge” (SoK) paper to the IEEE Symposium on Security and Privacy (S&P); this effort
is ongoing at the time of writing this report.

Overall, we believe that this seminar has provided entirely new insights to most of the
participants and has opened new avenues for research on the intersection of security and
hardware systems. It brought together researchers from communities who rarely interacted
with each other in the past. The seminar helped define new research challenges, and activities
are underway to put the topic of secure composition higher on the agenda of the respective
communities.

95

19301

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

96

19301 — Secure Composition for Hardware Systems

The organizers are thankful to the Dagstuhl team (and in particular to Dr. Andreas
Dolzmann who handled the scientific part and Mrs. Heike Clemens who was of invaluable
help in organizing the social event and masterly handled all practical issues); to Dr. Elif Bilge
Kavun who did a great job in collecting and organizing the documents from participants and
in preparing the summarizing texts; and to all the participants for making this seminar a
success.

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont 97

2 Table of Contents

Executive Summary
Ilia Polian, Divya Arora, Francesco Regazzoni, and Patrick Schaumont 95
Overview of Pre-selected Talks

Commercial Trusted Execution Environments (TEEs) — An Overview
Divya Arora e 99

Introduction to Universal Composability
Ran Canetti o o e e 99

State-of-the-art Implementation Attacks
FElke De Mulder e e e e e e 100

Cryptographic Hardware Design — Challenges and Remarks
Tim Erhan GUneysu o 0 i i 100

State-of-the-art in EDA Security
Francesco Regazzoni e 101
Overview of Individual Presentations

Composability of Machine-Learning Resistant PUFs — When Yao Fails -or- Can we
build secure composite PUFs?

Fatemeh Gangi e 101
Attacks Through Externally-amplified Couplings

Ttamar Levi o e e 102
CAD for Physical Attacks — A Fault Attack Perspective

Debdeep Mukhopadhyay o 103
Securing Cyber-physical Control Systems — A Formal Perspective

Dey Soumyafit 103
Challenges in Secure Composition from a Practical Perspective

Marc Stottinger« oL e 104
Definition of “Root of Trust (RoT)”

Ingrid Verbauwhede 104

Discussions on State-of-the-art Questions

Working Group Al
Divya Arora, Gaetan Cassiers, Johann Heyszl, Itamar Levi, Debdeep Mukhopadhyay,

Kazuo Sakiyama, and Dey Soumyajit 105
Working Group A2
Georg T. Becker, Yaacov Belenky, Shivam Bhasin, and Shahin Tajik 106

Working Group A3
Lucas Davi, Fatemeh Ganji, Tim Erhan Gineysu, Ahmad-Reza Sadeghi, and
Fareena Saqib 107

Working Group Bl
Ran Canetti, Jean-Luc Danger, Elif Bilge Kavun, Osnat Keren, Johannes Mittmann,
and Ilia Polian e 107

19301

98

19301 — Secure Composition for Hardware Systems

Working Group B2
Elke De Mulder, Elena Dubrova, Yunsi Fei, Paolo Palmieri, and Milos Prvulovic .
Working Group B3

Annelie Heuser, Michail Maniatakos, Wenjing Rao, Patrick Schaumont, Werner
Schindler, and Marc Stottinger

Discussions on Research Questions

Research Questions:

“What models and description languages are useful for formalization of security

properties?”

“Which protocol-level secure composition methods are applicable in hardware do-

main?”

Patrick Schaumont, Shivam Bhasin, Debdeep Mukhopadhyay, Francesco Regazzoni,

Kazuo Sakiyama, Dey Soumyajit, and Ingrid Verbauwhede

Research Questions:

“Can trust start in software, or are hardware roots and anchors of trust indispens-

able?”

“How to bootstrap trust in a distributed hardware system?”

Johann Heyszl, Ran Canetti, Fatemeh Gangji, Michail Maniatakos, Marcel Medwed,

Shahin Tajik, and Marten Van Dijk

Research Question:

“Under what circumstances is security additive, and how can this be proven and

validated?”

Jean-Luc Danger, Yaacov Belenky, Elke De Mulder, Elena Dubrova, Osnat Keren,

Johannes Mittmann, and Werner Schindler

Research Questions:

“How can existing hardware fulfill expectations and idealistic assumptions of proto-

cols?”

“How to counter possible loss of security due to abstraction of hardware compon-

ents?”

Elif Bilge Kavun, Anupam Chattopadhyay, Annelie Heuser, Johann Knechtel, and

Ttamar Levi e e e e e e e e

Participants

108

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont

3 Overview of Pre-selected Talks

3.1 Commercial Trusted Execution Environments (TEEs) — An
Overview

Divya Arora (Intel — Santa Clara, US)

License @ Creative Commons BY 3.0 Unported license
© Divya Arora

A Trusted Execution Environment (TEE) is a hardware/software/firmware framework to
allow isolated execution of security-sensitive code and its aim is to reduce Trusted Computing
Base (TCB) of sensitive code. Isolated execution, secure storage, remote attestation, secure
provisioning, and trusted input output are general properties of a TEE. Today, many
commercial TEE solutions are available and different approaches exist for reducing application
TCB; however, not all TEEs support all of the listed TEE properties.

This talk provided an overview of commercially available TEEs like
ARM® TrustZone® (TZ), Microsoft Virtualization Based Security (VBS), AMD Secure
Encrypted Virtualization (SEV), and Intel® Software Guard Extensions (SGX) and asked the
question “How do we reason about security of TEEs including hardware/firmware/software?”.
Also, a comparison of the supported properties in the commercial TEEs is also provided
in the talk: For example, ARM®TZ and Microsoft VBS do not support remote attestation
property and Intel®SGX does not support trusted input output. Finally, some examples of
challenges that many TEEs face in terms of ecosystem deployment are listed:

Not all TEEs are available to regular users (e.g., selected usages deployed as part of VTL1

in VBS)

There may still be a large software attack surface in some cases (e.g., integer overflow in

TZ Secure OS)

Memory integrity & anti-replay are very hard on performance/area

Many TEEs rely on hardware sharing to amortize the cost of creating a separate environ-

ment which may lead to side-channels

Some TEEs require partitioning of existing applications or “enlightenment” of existing

virtual machines which is harder to deploy in the ecosystem

3.2 Introduction to Universal Composability
Ran Canetti (Tel Aviv University, IL)

License @ Creative Commons BY 3.0 Unported license
© Ran Canetti

In this talk, a general universal composability framework for describing cryptographic
protocols and analyzing their security is presented. The framework allows specifying the
security requirements of practically any cryptographic task in a unified and systematic way.
Furthermore, in this framework the security of protocols is preserved under a general protocol
composition operation, called universal composition.

The proposed framework with its security-preserving composition operation allows for
modular design and analysis of complex cryptographic protocols from simpler building blocks.
Moreover, within this framework, protocols are guaranteed to maintain their security in any
context, even in the presence of an unbounded number of arbitrary protocol instances that

99

19301

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

100

19301 — Secure Composition for Hardware Systems

run concurrently in an adversarially controlled manner. This is a useful guarantee, which
allows arguing about the security of cryptographic protocols in complex and unpredictable
environments such as modern communication networks.

3.3 State-of-the-art Implementation Attacks
Elke De Mulder (Rambus — Sunnyvale, US)

License @ Creative Commons BY 3.0 Unported license
© Elke De Mulder

This talk focused on the state-of-the-art in side-channel leakage analysis and mitigation from
the point-of-view of compositional security.

Three large research directions are discussed. The first is the non-completeness of our
understanding of the physical leakage of devices, whether it is a pure hardware implementation
or a software implementation running on an embedded processor or larger system on chip.
The second one is the use of formal proofs to guarantee security properties of implementations
where composability plays a role for combining smaller provable secure components to create
a larger implementations and for combining countermeasures for different types of attack. Are
the security properties still valid? The last research direction discussed in this talk is testing.
With a growing arsenal of attacks, how can one practically test whether an implementation
resist all of part of them in a reasonable amount of time?

3.4 Cryptographic Hardware Design — Challenges and Remarks
Tim Erhan Gineysu (Ruhr-Universitat Bochum, DE)

License) Creative Commons BY 3.0 Unported license
© Tim Erhan Giineysu

As a result of digital evolution, today’s systems consist of more software than hardware. In
contrast, security demand of hardware systems does not decrease due to physical exposure,
enhanced security requirements, and advanced networking and connectivity.

This talk focused on challenges in cryptographic hardware design in the presence of attacks
and protection measures. Secure hardware elements have to provide security guarantees
according to defined attacker model while keeping a trade-off between security, efficiency and
cost. Security guarantees often (implicitly) bound to technical/physical device limitations
which is important for composability.

It is possible to divide the challenges in cryptographic hardware into two groups: Crypto-
level and system-level. On the crypto side, new computing paradigms (e.g., quantum
computers makes existing public-key cryptography obsolete) and new/changed requirements
(e.g., fault tolerance and verifiable & delegated computation) cause challenges. On the system
side, static nature of hardware, non-trivial upgrade/migration, and security validation &
testing are the main problems. Some solutions to crypto-level and system-level challenges are
also presented in the talk (together with example applications): Hardware implementations
of post-quantum cryptography (crypto-level) and integration of cryptographic hardware
(system-level).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont

As a final remark, existing challenges are listed:

Imperfections of hardware within abstract models and requirements in higher layers
Composition and multiplicity of (low) confidence from practical security element evaluation
Lack of a realistic simulator for complex systems

Long term security, efficiency & cost

3.5 State-of-the-art in EDA Security
Francesco Regazzoni (University of Lugano, CH)

License @@ Creative Commons BY 3.0 Unported license
© Francesco Regazzoni

Security is one of the most important properties that should be provided by a system.
Unfortunately, due to physical attacks, the presence of cryptographic primitives is not
sufficient to fulfill this requirement.

In recent years, researchers invested significant efforts implementing optimized security
primitives. These blocks are generally produced by expert designers and they are integrated
manually into the whole system. This approach however is not optimal, since manual
integration is a time consuming and error prone process. Furthermore, this approach is
particularly dangerous when used for implementing side-channel resistant designs.

A more effective way to implement secure cryptographic algorithms would enable the
automatic application of side-channel countermeasures and would support the verification of
their correct application.

This talk revised and summarized the research efforts in this important research direction,
starting from the first works implementing hardware design flow for security to the initial
steps of automatically driving design tools using security variables and highlights future
research direction in design automation for security.

4 Overview of Individual Presentations

4.1 Composability of Machine-Learning Resistant PUFs — When Yao
Fails -or- Can we build secure composite PUFs?

Fatemeh Ganji (University of Florida — Gainesville, US)

License @ Creative Commons BY 3.0 Unported license
© Fatemeh Ganji

When it comes to composability in the context of cryptography, Yao’s lemma [1] plays an
important role. This lemma states that if several instances of a somewhat-hard function are
XORed together, the resulting function is harder to compute. Moreover, in cryptography
and machine learning (ML) theory, it is well-known how to make a connection between
the security and provable ML. Here we quote from the seminal work of Rivest, published
in 1991 [2]: “In cryptography, the major goal is to ‘prove’ security under the broadest
possible definition of security, [...]. [...], in the typical paradigm, it is shown that there is no
polynomial-time [learning] algorithm that can ‘break’ the security of the [secure] system.”
From these two principles, we can conclude that a physical primitive can become more robust
against ML attack if we combine some instances of that by applying the XOR function.

101

19301

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

102

19301 — Secure Composition for Hardware Systems

In this talk, we show that this is, unfortunately, not the case. In particular, although
the above approach makes physical primitives more resilient to ML attacks, it still requires
drastic practical measures to be taken to achieve the ultimate level of security, where the
attacker cannot learn the functionality of the respective primitive. We elaborate on this in
the context of physically unclonable functions.

References

1 A.C. Yao Theory and Application of Trapdoor Functions. In 23rd Annual Symposium on
Foundations of Computer Science (sfcs 1982) (pp. 80-91), IEEE, 1982, November

2 R.L. Rivest Cryptography and Machine Learning. In International Conference on the
Theory and Application of Cryptology (pp. 427-439), Springer, Berlin, Heidelberg, 1991,
November

4.2 Attacks Through Externally-amplified Couplings
Itamar Levi (University of Louvain, BE)

License @ Creative Commons BY 3.0 Unported license

© Itamar Levi
Joint work of Itamar Levi, Davide Bellizia, Francois-Xavier Standaert
Main reference Itamar Levi, Davide Bellizia, Frangois-Xavier Standaert: “Reducing a Masked Implementation’s
Effective Security Order with Setup Manipulations And an Explanation Based on
Externally-Amplified Couplings”, IACR Trans. Cryptogr. Hardw. Embed. Syst., Vol. 2019(2),
pp. 293-317, 2019.
URL https://doi.org/10.13154/tches.v2019.i2.293-317

Couplings are a type of physical default that can violate the independence assumption needed
for the secure implementation of the masking countermeasure. Recent works put forward
qualitatively that couplings can cause information leakages of lower order than theoretically
expected. However, the (quantitative) amplitude of these lower-order leakages (e.g., measured
as the amplitude of a detection metric such as Welch’s T statistic) was usually lower than
the one of the (theoretically expected) d** order leakages. So, the actual security level of
these implementations remained unaffected. In addition, the couplings had to be internally
amplified in order to make them visible (e.g., by tweaking the placement and routing or
iterating linear operations on the shares).

In this talk, firstly, how the amplitude of low-order leakages in masked implementations
can be externally amplified by tweaking side-channel measurement setups in a way that
they are under control of a power analysis adversary is explained. The experiments put
forward that the “effective security order” of both hardware (Field Programmable Gate
Array — FPGA) and software (ARM-32) implementations can be reduced, leading to concrete
reductions of their security level. For this purpose, instead of the detection-based analyses of
previous works, attack-based evaluations are performed in order to allow the confirmation of
the exploitability of the amplified lower-order leakages. In the talk, a tentative explanation
for the effects based on couplings is provided and a model that can be used to predict
them in function of the measurement setup’s external resistor and implementation’s supply
voltage is described. In conclusion, the effective security orders observed are mainly due to
“externally-amplified couplings” that can be systematically exploited by actual adversaries.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.13154/tches.v2019.i2.293-317
https://doi.org/10.13154/tches.v2019.i2.293-317
https://doi.org/10.13154/tches.v2019.i2.293-317
https://doi.org/10.13154/tches.v2019.i2.293-317
https://doi.org/10.13154/tches.v2019.i2.293-317

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont 103

4.3 CAD for Physical Attacks — A Fault Attack Perspective
Debdeep Mukhopadhyay (Indian Institute of Technology — Kharagpur, IN)

License @ Creative Commons BY 3.0 Unported license
© Debdeep Mukhopadhyay
Joint work of Sayandeep Saha, S. Nishok Kumar, Sikhar Patranabis, Debdeep Mukhopadhyay, Pallab Dasgupta

Main reference Sayandeep Saha, S. Nishok Kumar, Sikhar Patranabis, Debdeep Mukhopadhyay, Pallab Dasgupta:
“ALAFA: Automatic Leakage Assessment for Fault Attack Countermeasures”, in Proc. of the 56th
Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06, 2019,
p. 136, ACM, 2019.

URL https://doi.org/10.1145/3316781.3317763

The talk presents an overview on automation for fault analysis attacks on cryptosystems.
Fault attacks have emerged as a strong attack vector for crypto-implementations and thus
need to be properly mitigated using suitable countermeasures. Test and analysis of these
countermeasures, particularly in the black-box setting is thus of demand. The talk outlines
two approaches: first a prototype tool called ExpFault to analyze differential fault analysis
of ciphers at the algorithm level. Secondly, ALAFA, an automated leakage assessment
framework was presented which derives its root from classical non-interference theorem and
uses t-test based identification of leakage. The tool can be promising for security evaluation
for protected crypto-designs and hardware security modules. More details can be found in
1, 2].

References

1 Sayandeep Saha, S. Nishok Kumar, Sikhar Patranabis, Debdeep Mukhopadhyay, Pallab
Dasgupta: ALAFA: Automatic Leakage Assessment for Fault Attack Countermeasures.
DAC 2019: 136

2 Sayandeep Saha, Debdeep Mukhopadhyay, Pallab Dasgupta: ExpFault: An Automated
Framework for Exploitable Fault Characterization in Block Ciphers. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018(2): 242-276 (2018)

4.4 Securing Cyber-physical Control Systems — A Formal Perspective
Dey Soumyagjit (Indian Institute of Technology — Kharagpur, IN)

License @@ Creative Commons BY 3.0 Unported license
© Dey Soumyajit
Joint work of Saurav K. Ghosh, Dey Soumyayjit

Given the widespread deployment of cyber-physical systems and their safety-critical nature,
reliability and security guarantees offered by such systems are of paramount importance.
While security of such systems against sensor attacks have garnered significant attention from
researchers in recent times, improving the reliability of a control software implementation
against transient environmental disturbances need to be investigated further. Scalable
formal methods for verification of actual control performance guarantee offered by software
implementations of control laws in the face of sensory faults have been explored in recent works.
However, the formal verification of the improvement of system reliability by incorporating
sensor fault mitigation techniques like Kalman Filtering and Sensor Fusion remains to be
explored. Moreover, system designers are bound to face complex trade-off choices for deciding
upon the usage of fault and attack mitigation techniques and scheduling them on available
system resources as they incur extra computation load.

19301

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1145/3316781.3317763
https://doi.org/10.1145/3316781.3317763
https://doi.org/10.1145/3316781.3317763
https://doi.org/10.1145/3316781.3317763
https://doi.org/10.1145/3316781.3317763
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

104 19301 — Secure Composition for Hardware Systems

In this talk, recent contributions for securing cyber-physical control systems are explained.
These are threefold:

Formally analyzing the actual performance guarantee of control software implementations
enabled with additional fault mitigation techniques

Considering task-level models of such implementations enabled with security and fault
tolerance primitives and constructing a time-automata based model which checks for
schedulability on heterogeneous multi-core platforms

Leveraging these methodologies in the context of a novel Design-Space-Exploration (DSE)
framework that considers target reliability and security guarantees for a control system,
and computes schedulable design options while considering well-known platform level
security improvement and fault mitigation techniques

The contributions are validated over several case studies from the automotive domain.

4.5 Challenges in Secure Composition from a Practical Perspective
Marc Stottinger (Continental AG — Frankfurt, DE)

License @ Creative Commons BY 3.0 Unported license
© Marc Stottinger

Nowadays systems require security controls and countermeasures became system of systems
with certain level of complexity due to composition of multiple software and hardware
components. In this talk, practical challenges of putting security in composed systems
were discussed on two examples. The first example demonstrates how an isolation layer for
separation (established by two individual electrical components) is overcome by exploitations
in the software domain. The second example discusses multiple exploitations on the example
of an authentic communication and data exchange between a sensor node and a processing
unit. The major issue in this example is the distributed development of both system
components with too relaxed requirements.

4.6 Definition of “Root of Trust (RoT)”
Ingrid Verbauwhede (KU Leuven, BE)

License) Creative Commons BY 3.0 Unported license
© Ingrid Verbauwhede

This was an impromptu presentation of four slides to introduce Ingrid Verbauwhede’s
definition of a “root of trust.”

First there is a clear distinction between what can be ‘trusted” and what is ‘trustworthy’.
Trusted cannot be verified and if the trust is broken, the system can fail. In the context of
hardware design, we want to minimize what needs to be trusted. This is mapped on the
design pyramid. So, “a root of trust is a component at a lower abstraction layer, upon which
the system relies for its security.”

Some feedback received from the audience on the presentation:

A component at a lower abstraction layer should be refined to “a component with an

associated behavior or usage” for higher abstraction layers.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont

A level below PUFs and TRNGs should be added to also include security problems at
processing and technology levels (e.g., to protect against Trojan circuits).

This approach allows for reasoning on ‘defense in depth’. If a security violation is detected
at some interface, the consequences can be systematically evaluated.

Discussions on State-of-the-art Questions

5.1 Working Group Al

Divya Arora (Intel — Santa Clara, US), Gaetan Cassiers (University of Louvain, BE), Johann
Heyszl (Fraunhofer AISEC — Miinchen, DE), Itamar Levi (University of Louvain, BE),
Debdeep Mukhopadhyay (Indian Institute of Technology — Kharagpur, IN), Kazuo Sakiyama
(The University of Electro-Communications — Tokyo, JP), and Dey Soumyajit (Indian
Institute of Technology — Kharagpur, IN)

License @@ Creative Commons BY 3.0 Unported license
© Divya Arora, Gaetan Cassiers, Johann Heyszl, Itamar Levi, Debdeep Mukhopadhyay, Kazuo
Sakiyama, and Dey Soumyajit

Group Al summarized their answers to below questions as follows.

AN

How would you handle composability?

What does it mean to securely compose two elements?

Can you give an example of a security failure due to insecure composition?
What is the foundation of composition?

How do you verify remote identity of a connected device?

Horizontal and vertical composition:

The composition of elements can be of two general forms which are different in terms of
their interaction possibility. In a horizontal composition, the elements are independent
from each other in the sense of running different execution environments (CPU or e.g. a
state machine). Examples for this are embedded system’s printed circuit boards containing
multiple chips. Another example are SoCs including CPUs and peripherals. Interaction
is achieved through dedicated interfaces.

In a vertical composition, layers directly depend, respectively run on each other. They
would typically share an execution flow. Examples are software layers conceptually
running on top of each other (hardware, hypervisor, OS for a running system or hardware,
bootloader and OS for the startup process). With vertical compositions, the interactions
between elements (software layers) are usually much more complex.

Example for a system failure due to insecure composition:

In an example for a composed system, the CPU is fetching code from an external ROM
and verifying its content before executing it from internal memory (cache). In a sense
this can be seen as that the code is included into a trust bubble created by a RoT in the
CPU for the purpose of system security. This code is part of the TCB for the system in

the sense that the running system can jump into the code’s routines for security purposes.

The issue is that the code might be flushed from internal memory (cache) during runtime
meaning that it leaves the trust bubble. In the example, the code is then simply fetched
from external ROM again but without a repeated verification. The example shows how
the composition of the system lead to a critical time of check — time of use issue.

105

19301

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

106

19301 — Secure Composition for Hardware Systems

Solutions:

State of the art threat modelling helps to assess the security of composed systems.

On top of this, it seems like modelling and formulization are required, if composed systems
are designed. This could result in a set of assertion-based checks which ensure security
throughout the design flow. The drawback is that this assumes situations where the
entire system is designed from scratch using this approach.

Runtime filters, possible configured using the above derived assertions, seem as a valid
countermeasure to prevent such situations.

5.2 Working Group A2

Georg T. Becker (ESMT — Berlin, DE), Yaacov Belenky (Intel Israel — Haifa, IL), Shivam
Bhasin (Nanyang TU - Singapore, SG), and Shahin Tajik (University of Florida — Gainesville,
US)

License) Creative Commons BY 3.0 Unported license
© Georg T. Becker, Yaacov Belenky, Shivam Bhasin, and Shahin Tajik

How would you handle composability?

By formalization of threat models and security feature for a composable system and
developing frameworks to verify these properties at different levels (e.g., netlist generation,
route & placement, etc.)

What does it mean to securely compose two elements?

1- Preserving the functionalities of secure elements A and B according to the security
guarantees of A and B: e.g., shared resources on FPGAs leading to side-channel sources
and fault injections

2- Combining secure elements A and B as secure element C to achieve new security feature
and functionalities.

Can you give an example of a security failure due to insecure composition?
Secure Element A is plugged to some non-security element B:

- Meltdown/Spectre (Memory protection + Speculative execution)

- Error Messages (Error reveals information and leaks sensitive information; e.g., IEEE
P1735 » Padding Oracle Attack on CBC mode)

What is the foundation of composition?

A possible foundation is a common language/specification in different levels of design
and fabrication to assure the coherency between different blocks and assure the security
(e.g., constraints for CAD tools, Design Rule Checks (DRC)). However, first, one should
overcome the challenge of describing the threat model for the composition.

How do you verify remote identity of a connected device?

This verification depends on threat model: There should at least be some secrets and this
secret should be bounded to the identity (e.g., identity-based cryptography, public-key
infrastructure, device DNA, PUFs, etc.)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont 107

5.3 Working Group A3

Lucas Davi (Universitit Duisburg-Essen, DE), Fatemeh Ganji (University of Florida —
Gainesville, US), Tim Erhan Gineysu (Ruhr-Universitat Bochum, DE), Ahmad-Reza Sadeghi
(TU Darmstadt, DE), and Fareena Saqib (University of North Carolina — Charlotte, US)

License @ Creative Commons BY 3.0 Unported license
© Lucas Davi, Fatemeh Ganji, Tim Erhan Giineysu, Ahmad-Reza Sadeghi, and Fareena Saqib

How would you handle composability?
In an ideal world, systematic security integration, analysis models, and penetration testing
tools for whole system emulation are the ways to handle composability.
However, as there are integration issues in real world, a unified threat model with realistic
assumptions together with divide and conquer approach considering security requirements
can be the ways to handle composability.
What does it mean to securely compose two elements?
In supply chain: Security features on chip and the design house/foundry
At microarchitectural level (Rowhammer attack): DRAM and access control & integrity
checks on DRAM using software
In cryptographic designs: Mathematically strong algorithms and secure interfaces &
implementation
At system level (CANBus): Abstract isolation and standard security measures
Can you give an example of a security failure due to insecure composition?
Examples lie at different levels of abstraction. For example, there are supply chain threats
and piracy. Other examples are microarchitecture level failures (Rowhammer bugs) and
cryptographic algorithm failures due to implementation errors (memory corruption).
What is the foundation of composition?
Clear requirements and assumptions that fit reality,
Security metrics and confidence of metrics,
Formal construction flow of integrating countermeasures (side effects of the protection
countermeasures needs to be modeled),
New opportunities for attack (for example, self healing logic can be exploited),
Formal methods to measure and verify the security assumptions,
Stress testing in order to test all the corner cases for full coverage and assurance.
How do you verify remote identity of a connected device?
This can be verified via mutual authentication, remote attestation, hardware fingerprints,
and secure hardware protocols.

5.4 Working Group Bl

Ran Canetti (Tel Aviv University, IL), Jean-Luc Danger (Telecom ParisTech, FR), Elif
Bilge Kavun (University of Sheffield, GB), Osnat Keren (Bar-Ilan University, IL), Johannes
Mittmann (BSI — Bonn, DE), and Ilia Polian (Universitit Stuttgart, DE)

License @ Creative Commons BY 3.0 Unported license

© Ran Canetti, Jean-Luc Danger, Elif Bilge Kavun, Osnat Keren, Johannes Mittmann, and Ilia
Polian

How can we verify that mathematically proven properties are correctly im-
plemented?

In the current certification practice, highest level (EALT) includes requirements on formal
techniques being used. On top of this, security properties can be checked at run time via

19301

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

108

19301 — Secure Composition for Hardware Systems

monitoring security properties of the entire system, making sure that secret key never
appears on an SoC’s bus, and detecting local attacks via sensors. Also, separation of
system into small components may help as security then would be considered individually
and future attacks would be contained to one component. Finally, techniques like modular
redundancy that are used in safety context can be used to verify correct implementation.
What is the starting point of trust?

Here, the answer depends on the precise definition of “trust”.

We can converge towards root of trust through clarity, so the root of trust can be defined
as the “clear” design. However, one has to trust vendor and the whole supply-chain where
clarity is not possible (e.g., design details kept secret due to certification).

Does time play a role in composition?

Time does play a role in composition; for example, timing of the composed system (order
of events) is a side-channel. Delays also play a role in security solutions like blockchains.
Can security (strictly) increase, decrease or stay constant as a result of com-
position?

All three cases are possible — the point of concepts like Universal Composition is to
prevent bad cases. Using composition to increase security sometimes looks obvious but
in reality is difficult to prove rigorously. Security is often determined by weakest link of
the system (composition may lead to security decrease). Sometimes, a system composed
of imperfectly secure components becomes more secure due to composition (e.g., hybrid
key exchange via two mechanisms + XOR of the results), or secure components yield an
insecure composition.

What is the role of models in secure composition?

A solution depends on how the problem is modeled. For example, in our context, security
analysis will be based on (explicit or implicit) model of the attacker. However, while
defining the models, we have to make sure that the unimportant details are omitted from
the models and models on different levels of abstraction must be connected with each
other.

5.5 Working Group B2

FElke De Mulder (Rambus — Sunnyvale, US), Elena Dubrova (KTH Royal Institute of Techno-
logy — Stockholm, SE), Yunsi Fei (Northeastern University — Boston, US), Paolo Palmieri
(University College Cork, IE), and Milos Proulovic (Georgia Institute of Technology — Atlanta,
US)

License @ Creative Commons BY 3.0 Unported license
© FElke De Mulder, Elena Dubrova, Yunsi Fei, Paolo Palmieri, and Milos Prvulovic

Group B2 answered below questions along with an identification of similarities and differences
between them.
Common aspects of questions:
All of the questions have multiple interpretations in the context of secure composition,
which makes them excellent from the perspective of identifying research problems and
seeing the big picture rather than focusing on a particular set of solutions.
The group found that all the questions related to models of various aspects of security
and models of security-relevant aspects of hardware/software systems. In particular,
all the questions related to how assumptions built into the hardware designers’ models

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont 109

of their designs, and into models of potential attacks on those designs, are broken by
successful attacks, and how composition tends to make these models’ assumptions more
problematic.

Differences between questions:

As the questions are highly inter-related, the group found it difficult to discuss the
questions separately unless the problem space is significantly more constrained. However,
the group also found that some of the questions, specifically questions 6 and 7, are
about problems that are difficult even without composition, i.e., the questions are about
problems that exist (and are difficult to address) even in single-component systems.

How can we verify that mathematically proven properties are correctly im-
plemented?

The group does not believe that it can be done for an arbitrary implementation, they
believe that there should be a restriction so that the properties can be proven/verified.

In order to verify the correctness of the implementation or properties, one needs to control
the entire flow including not only the design itself, but also the supply chain.

What is the starting point of trust?

The group answers this question by asking if there is a need for a root of trust. Ideally,
they would design a secure system without a RoT; however, in practice, it is not possible
to avoid it. In that case, the group believes that the design, supply chain, and the user
all need to be trusted.

Does time play a role in composition?

If time is understood as how much time an attacker has; yes, it does matter because time
is a way of measuring security.

Can security (strictly) increase, decrease or stay constant as a result of com-
position?

The question is whether there are systematic ways of composing that maintain or improve
security. This probably requires models with proofs and possibly prevents combinatorial
explosion by finding which properties are provable for individual components.

What is the role of models in secure composition?

It is not really possible to have secure composition without models (there would be no
systematic security without models). However, composition makes building models much
more difficult. In order to deal with this, a hierarchy of models would be necessary.
Also, problem-specific models are needed and countermeasures should be designed with
respect to problems/models. However, there are still open questions like “Do multiple
countermeasures work well together?”

19301

110

19301 — Secure Composition for Hardware Systems

5.6 Working Group B3

Annelie Heuser (IRISA — Rennes, FR), Michail Maniatakos (New York University — Abu
Dhabi, AE), Wengjing Rao (University of Illinois — Chicago, US), Patrick Schaumont (Virginia
Polytechnic Institute — Blacksburg, US), Werner Schindler (BSI — Bonn, DE), and Marc
Stottinger (Continental AG — Frankfurt, DE)

License) Creative Commons BY 3.0 Unported license
© Annelie Heuser, Michail Maniatakos, Wenjing Rao, Patrick Schaumont, Werner Schindler, and
Marc Stottinger

How can we verify that mathematically proven properties are correctly im-
plemented?

More precisely, one usually tries to confirm model assumptions but not the conclusions of
the mathematical model. The answer to the modified question depends on the particular
feature or functionality. The correctness of implemented functions (e.g., cryptographic
algorithms) may be verified by known-answer tests. A known answer test constitutes a
special case of a tests for particular properties, which itself is part of the implementation
(see FIPS140-2). Another verification path could be the application of formally verified
construction methods (see Common Criteria EAL6 or higher). The resistance against
implementation attacks (side-channel attacks, fault attacks, etc.) may be confirmed by
empirical analysis and experimental evaluation although this certainly is not a verification
in a strict (mathematical) sense.

Moreover, we identified several open problems, which should be discussed. One question
concerns the quantitative impact on the security of the system if some model assumptions
are at least to some degree invalid. Another problem is how the completeness of the
model assumptions can be/should be verified. Finally, it is not obvious at which stage
one should check whether the implementation fulfils the model assumptions.

What is the starting point of trust?

There can be potentially several different starting points of trust, depending on the
threat model, the amount of resources available, and the solution cost. During the
phase of statement collection, many different opinions on the starting point of trust were
discussed: No trust, Mathematical theorem and properties, Hardcoded reference value,
RTL, hardware, secure tamper proof storage, TPM, smart card, bootloader routine, and
BIOS. Some of them (e.g., hardware, TPM) are currently used in practice as starting
points of trust. The question, however, is what the optimal starting point of trust is.
Approaching the question from the philosophical side, the starting point of trust can be
defined as an entity that cannot be divided into smaller entities without affecting the
trust assumption of the mathematical model. Or, the starting point of trust is an entity
that is believed to guarantee central mathematical security assumptions; depending on
the model assumptions it may be advantageous if its complexity is low. Following the
complexity discussion, the starting point of trust should be as simple as possible to the
extent that it does not need to be verified.

Does time play a role in composition?

This question was ranked at the bottom of the list for the group discussion, according to
a vote at the initial phase in the interests of prioritizing the questions. The main issue
seems to be that there is not a clearly understood foundation for this question, perhaps
due to the general nature of “time” — what exactly does “time” mean, in the specific
context of this question (about composition)? It would have been more helpful if this
question had been narrowed down in the context of security composition, or with some
examples.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont 111

Can security (strictly) increase, decrease or stay constant as a result of com-
position?

Security can either decrease or increase because of composition. First, the security
properties of components may not scale up to the composition of the components because
the security properties may not be transferable to the composition. An example of that
phenomenon can be seen in the composition of individual PUF using an XOR. operation
into a so-called XOR-PUF. The XOR-PUF construction was proposed to harden the
PUF against model-building attempts for the individual PUF. For example, while the
arbiter PUF is susceptible to model building, the XOR-composition of arbiter PUF
was thought to prevent model-building of the components. However, recent progress in
machine learning attacks on XOR-PUF has shown this assumption to be incorrect. The
problem is that the XOR operation is linear, and machine learning tools can still classify
individual components under such a linear composition. Hence, in this case, one can
argue that security decreases as the result of the composition. It decreases because the
XOR-PUF offers the illusion of hardening against model-building. The composition is
ineffective.

Second, the security properties of components may combine and strengthen the overall
composition. An example can be seen in the composition of a better random number
generator out of two biases random number generator using an XOR, operation. In this
case, the XOR result will generally show less bias and better overall distribution. The
XOR is able to combine the entropy of each individual random number generator.
These two examples show that an identical operation (XOR) can be detrimental or
beneficial to the security properties of the composition. Therefore, the composition of
secure elements must be analyzed as well, even when the security properties of individual
secure elements is well understood.

What is the role of models in secure composition?

Models are a key point in secure composition. Models make the analysis of a system
with several components feasible and they are the starting point in many scenarios.
They are a means for communication between different parties to achieve a common
understanding of properties, threats, vulnerabilities, or interfaces. Having precise models
make complex problems manageable, but also impose risks to overlook side-effects if an
invalid or imprecise model is used. This is a particular risk the field of secure composition
as even though individual layers may have been modeled precisely, their composition may
include additional unexpected side-effects.

19301

112 19301 — Secure Composition for Hardware Systems

6 Discussions on Research Questions

6.1 Research Questions:

“What models and description languages are useful for formalization of
security properties?”

“Which protocol-level secure composition methods are applicable in
hardware domain?”

Patrick Schaumont (Virginia Polytechnic Institute — Blacksburg, US), Shivam Bhasin (Nan-
yang TU — Singapore, SG), Debdeep Mukhopadhyay (Indian Institute of Technology — Kharag-
pur, IN), Francesco Regazzoni (University of Lugano, CH), Kazuo Sakiyama (The University
of Electro-Communications — Tokyo, JP), Dey Soumyajit (Indian Institute of Technology —
Kharagpur, IN), and Ingrid Verbauwhede (KU Leuven, BE)

License @ Creative Commons BY 3.0 Unported license
© Patrick Schaumont, Shivam Bhasin, Debdeep Mukhopadhyay, Francesco Regazzoni, Kazuo
Sakiyama, Dey Soumyajit, and Ingrid Verbauwhede

The group discussed these research questions and built the following “Layered Approach to
Secure Composition of Electronic Systems” flow in Fig. 1 as a visual answer.

Attacker Design Level £ g Design Activity
Replay Protocol https O Harden
Out-of-Sequence A | 'Constraints”
Tearing, .. | v
Bz = Ideal Primitive Algorithm Ecc O Harden
Timing (s)

4 v

I
Spy Process 0S, VM, .. | uClinux O Harden

Privilege Escalation

Timing (relative) 1‘ *

Debug Port MicroProc | RISCV O Harden
Process Image Spying A

Timing (cycles) | ¢
Side-channel Physical 130nm O Harden
Fault

Timing (ns) o

Figure 1 Layered Approach to Secure Composition of Electronic Systems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont 113

6.2 Research Questions:

“Can trust start in software, or are hardware roots and anchors of trust
indispensable?”

“How to bootstrap trust in a distributed hardware system?”

Johann Heyszl (Fraunhofer AISEC — Miinchen, DE), Ran Canetti (Tel Aviv University,
IL), Fatemeh Gangi (University of Florida — Gainesville, US), Michail Maniatakos (New
York University — Abu Dhabi, AE), Marcel Medwed (NXP Semiconductors — Gratkorn, AT),
Shahin Tajik (University of Florida — Gainesville, US), and Marten Van Dijk (University of
Connecticut — Storrs, US)

License @@ Creative Commons BY 3.0 Unported license

© Johann Heyszl, Ran Canetti, Fatemeh Ganji, Michail Maniatakos, Marcel Medwed, Shahin
Tajik, and Marten Van Dijk

1. There is no HW-free root of trust in embedded computing units
A root of trust is the minimal set of required building blocks (hardware and/or software;
keys and/or routines; in all cases immutable) at the lowest possible abstraction layer,
upon which the system’s security properties rely upon. The system’s higher level security
properties (can we trust the system is behaving as intended) are built upon this RoT,
similar like proofs are built upon axioms, by using more software as a TCB (secure boot
helps to establish a TCB from a RoT). In the case of embedded security, the attacker is
powerful and capable of hardware as well as software attacks. The attacker may, e.g.,
replace code memory contents. Under these circumstances, to the best of our knowledge,
there is no way to create such a RoT without the support of the hardware, hence, its
manufacturer. Instead, the executing CPU needs to incorporate a minimal hardware RoT
within the same chip (at least an executed routine optionally including either a fixed hash
or routines for cryptographic verification of MACs and according symmetric or public
key). It seems impossible to bootstrap a RoT on a system purely by supplying a piece of
SW to be executed by the system. In such cases, the attacker is always able to execute
higher-privileged code (e.g., before and after) which is able to manipulate all system’s
behaviour, hence, its security.

2. There is no extension of trust to other executing units without HW based
RoTs
We consider multiple computing units within a system which are interconnected through
(e.g., low-bandwidth) interfaces. To the best of our knowledge, there is no way of
bootstrapping or extending trust from a first one containing a hardware RoT to a second
one which does not contain a hardware based RoT. This is under the assumption that
one unit does not have highest privileged access to the memory of the other unit (and
could hence have complete control over the execution of the other). For example, say
one unit S1 is a secure element providing key storage and cryptographic operations. S1
can only trust a connected S2 based on the notion that this S2 would itself contain an
equivalently trusted RoT. Hence the composed RoT essentially comprises both individual
RoT. Otherwise, an attacker may, e.g., replace the software of S2 to another one providing
all correct answers to S1 during a phase of trust establishment while running manipulated
code before and/or afterwards. Similar examples are TPMs connected to CPUs (TPM
2.0 authenticated connection requires a key stored in the CPU — a RoT).

We discussed whether verifiable computing would help to run a small software RoT on S2
but came to the conclusion that it would be impossible since this software can be, e.g. run
within a hypervisor by a manipulated version of S2. The topic of asking for software-only

19301

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

114

19301 — Secure Composition for Hardware Systems

RoT has a relation to white-box crypto which is essentially the attempt to have a secure
software-based key storage without hardware support. It seems that similar limitations as
with white box crypto would apply (white boxes can be lifted and executed in an emulator,
hence need obfuscated interconnect to the application as much as possible) leading to the fact
that a software-based RoT would only support trust under reduced attacker assumptions.
Also the binding to the hardware, distance bounding in a sense, would be important. PUF
instantiations help as long as the integrity of all relevant functionality of S2 (for the system’s
behaviour) is influencing the PUF response. PUFs used as keys storage can be part of a
hardware RoT. Ideally, the challenge is, however, to devise a RoT without hardware reliance.

In summary, a hardware RoT is required in all system parts which are not fully controlled
by one instance already containing a hardware RoT.

6.3 Research Question:
“Under what circumstances is security additive, and how can this be
proven and validated?”

Jean-Luc Danger (Telecom ParisTech, FR), Yaacov Belenky (Intel Israel — Haifa, IL), Elke
De Mulder (Rambus — Sunnyvale, US), Elena Dubrova (KTH Royal Institute of Technology —
Stockholm, SE), Osnat Keren (Bar-Ilan University, IL), Johannes Mittmann (BSI — Bonn,
DE), and Werner Schindler (BSI — Bonn, DE)

License @ Creative Commons BY 3.0 Unported license
© Jean-Luc Danger, Yaacov Belenky, Elke De Mulder, Elena Dubrova, Osnat Keren, Johannes
Mittmann, and Werner Schindler

A desirable aim is to combine independent security evaluations of component A and of
component B (or of countermeasures against attack type A and attack type B, etc.) as this
would reduce the complexity of the overall evaluation and thereby (hopefully) the probability
of evaluation bugs and finally also the costs.

First, such an approach requires the definition of a suitable evaluation metric that is
applicable to both the components and to the composed system. An evaluation metric might
consider, e.g., the resources required to carry out the most efficient (known) attacks. In
evaluations according to the Common Criteria (CC), for example, numeric values for the
factors “Elapsed Time”, “Expertise”, “Knowledge of the TOE” (TOE = target of evaluation),
“Window of Opportunity”, and “Equipment” are used to derive an attack rating. Moreover,
the components or countermeasures need to be ‘independent’ (to be defined) with regard to
security properties.

Countermeasures against (A) side-channel attacks and (B) fault attacks, for example,
are usually not independent because the latter often use redundancy to detect successfully
induced faults. Redundancy, however, might favour side-channel attacks and thus both sets
of countermeasures should not be evaluated independently but jointly. (A positive example
might be the verification of an RSA-based signature by the exponentiation with the public
exponent to prevent the Bellcore attack.)

Discussions suggested that components should allow such an ‘independence splitting’
more often than countermeasures against different attack types. Independence between
components usually may not be valid in an information theoretical sense. Instead, it might
be the conclusion of a careful ‘best-practice’ evaluation that the components A and B do
not interfere in terms of security in an exploitable way. An example might be hardware
sensors and the implementation of cryptographic algorithms. In a strict sense, an attacker
might gain some local information about the implementation if he is able to identify the

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Divya Arora, llia Polian, Francesco Regazzoni, and Patrick Schaumont

position of hardware sensors. In many scenarios this knowledge yet might not allow to mount
a successful attack. The evaluator often yet may be faced with ‘nested’ scenarios where
the security evaluation may consider the component A first and then component B under
consideration of A.

Finally, we formulate several heuristic criteria, which might justify a ‘practical’ independ-
ence assumption between different components A and B.

The components A and B

are not nested

have no common functionality related to the processing of secrets

do not share resources that are used in the processing of secrets

have no side-channels, which allow to combine information

These criteria are in general neither necessary nor sufficient for ‘practical independence’
of components but should support the decision making process.

6.4 Research Questions:

“How can existing hardware fulfill expectations and idealistic
assumptions of protocols?”

“How to counter possible loss of security due to abstraction of hardware
components?”

Elif Bilge Kavun (University of Sheffield, GB), Anupam Chattopadhyay (Nanyang TU
- Singapore, SG), Annelie Heuser (IRISA — Rennes, FR), Johann Knechtel (New York
University — Abu Dhabi, AE), and Itamar Levi (University of Louvain, BE)

License @ Creative Commons BY 3.0 Unported license
© Elif Bilge Kavun, Anupam Chattopadhyay, Annelie Heuser, Johann Knechtel, and Itamar Levi

Protocol-level solutions require certain assumptions; however, these assumptions may not

always (or even never) be met by hardware. An example to this is the perfect randomness

versus device-level randomness: The expected level of randomness by the algorithm/scheme

may not be provided by the randomness source on device. A solution to such problems could

be:

1. Transfer of requirements to hardware in a way that they are also accessible to system
architects/designers,

2. Finding methodologies so that system architects/designers can verify that the requirements
are met.

Notion of abstraction is crucial in modern chip design. Hardware-related vulnerabilities
are not well-defined in higher abstraction layers. “Secure abstraction” can be a solution —
system design must not introduce vulnerabilities by the fact that some relevant lower-level
details are invisible/encapsulated on higher layers.

115

19301

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

116

19301 — Secure Composition for Hardware Systems

Participants

= Divya Arora
Intel — Santa Clara, US

= Georg T. Becker
ESMT - Berlin, DE

= Yaacov Belenky
Intel Israel — Haifa, IL

= Shivam Bhasin

Nanyang TU — Singapore, SG
= Ran Canetti

Tel Aviv University, IL

= Gaetan Cassiers
University of Louvain, BE

= Anupam Chattopadhyay
Nanyang TU — Singapore, SG
= Jean-Luc Danger

Telecom ParisTech, FR

= Lucas Davi
Universitdt Duisburg-Essen, DE

= Elke De Mulder
Rambus — Sunnyvale, US

= Elena Dubrova
KTH Royal Institute of
Technology — Stockholm, SE

= Yunsi Fei
Northeastern University —
Boston, US

= Fatemeh Ganji
University of Florida —
Gainesville, US

= Tim Erhan Giineysu
Ruhr-Universitdt Bochum, DE

= Annelie Heuser
IRISA — Rennes, FR

= Johann Heyszl
Fraunhofer AISEC —
Minchen, DE

= Elif Bilge Kavun
University of Sheffield, GB

= Osnat Keren
Bar-Ilan University, IL

= Johann Knechtel
New York University —
Abu Dhabi, AE

= Itamar Levi
University of Louvain, BE

= Michail Maniatakos
New York University —
Abu Dhabi, AE

= Marcel Medwed
NXP Semiconductors —
Gratkorn, AT

= Nele Mentens
KU Leuven, BE

- Johannes Mittmann
BSI — Bonn, DE

- Debdeep Mukhopadhyay
Indian Institute of Technology —
Kharagpur, IN

= Paolo Palmieri
University College Cork, IE

= llia Polian
Universitdt Stuttgart, DE

= Milos Prvulovic
Georgia Institute of Technology —
Atlanta, US

= Wenjing Rao
University of Illinois —
Chicago, US

= Francesco Regazzoni
University of Lugano, CH

= Ahmad-Reza Sadeghi
TU Darmstadt, DE

= Kazuo Sakiyama

The University of
Electro-Communications —
Tokyo, JP

- Fareena Saqib

University of North Carolina —
Charlotte, US

= Patrick Schaumont

Virginia Polytechnic Institute —
Blacksburg, US

= Werner Schindler

BSI — Bonn, DE

= Georg Sigl

TU Miinchen, DE

= Dey Soumyajit

Indian Institute of Technology —
Kharagpur, IN

= Marc Stottinger

Continental AG — Frankfurt, DE
= Shahin Tajik

University of Florida —
Gainesville, US

= Marten Van Dijk

University of Connecticut —
Storrs, US

= Ingrid Verbauwhede
KU Leuven, BE

	Executive Summary Ilia Polian, Divya Arora, Francesco Regazzoni, and Patrick Schaumont
	Table of Contents
	Overview of Pre-selected Talks
	Commercial Trusted Execution Environments (TEEs) – An Overview Divya Arora
	Introduction to Universal Composability Ran Canetti
	State-of-the-art Implementation Attacks Elke De Mulder
	Cryptographic Hardware Design – Challenges and Remarks Tim Erhan Güneysu
	State-of-the-art in EDA Security Francesco Regazzoni

	Overview of Individual Presentations
	Composability of Machine-Learning Resistant PUFs – When Yao Fails -or- Can we build secure composite PUFs? Fatemeh Ganji
	Attacks Through Externally-amplified Couplings Itamar Levi
	CAD for Physical Attacks – A Fault Attack Perspective Debdeep Mukhopadhyay
	Securing Cyber-physical Control Systems – A Formal Perspective Dey Soumyajit
	Challenges in Secure Composition from a Practical Perspective Marc Stöttinger
	Definition of ``Root of Trust (RoT)'' Ingrid Verbauwhede

	Discussions on State-of-the-art Questions
	Working Group A1 Divya Arora, Gaetan Cassiers, Johann Heyszl, Itamar Levi, Debdeep Mukhopadhyay, Kazuo Sakiyama, and Dey Soumyajit
	Working Group A2 Georg T. Becker, Yaacov Belenky, Shivam Bhasin, and Shahin Tajik
	Working Group A3 Lucas Davi, Fatemeh Ganji, Tim Erhan Güneysu, Ahmad-Reza Sadeghi, and Fareena Saqib
	Working Group B1 Ran Canetti, Jean-Luc Danger, Elif Bilge Kavun, Osnat Keren, Johannes Mittmann, and Ilia Polian
	Working Group B2 Elke De Mulder, Elena Dubrova, Yunsi Fei, Paolo Palmieri, and Milos Prvulovic
	Working Group B3 Annelie Heuser, Michail Maniatakos, Wenjing Rao, Patrick Schaumont, Werner Schindler, and Marc Stöttinger

	Discussions on Research Questions
	Research Questions: ``What models and description languages are useful for formalization of security properties?'' ``Which protocol-level secure composition methods are applicable in hardware domain?'' Patrick Schaumont, Shivam Bhasin, Debdeep Mukhopadhyay, Francesco Regazzoni, Kazuo Sakiyama, Dey Soumyajit, and Ingrid Verbauwhede
	Research Questions: ``Can trust start in software, or are hardware roots and anchors of trust indispensable?'' ``How to bootstrap trust in a distributed hardware system?'' Johann Heyszl, Ran Canetti, Fatemeh Ganji, Michail Maniatakos, Marcel Medwed, Shahin Tajik, and Marten Van Dijk
	Research Question: ``Under what circumstances is security additive, and how can this be proven and validated?'' Jean-Luc Danger, Yaacov Belenky, Elke De Mulder, Elena Dubrova, Osnat Keren, Johannes Mittmann, and Werner Schindler
	Research Questions: ``How can existing hardware fulfill expectations and idealistic assumptions of protocols?'' ``How to counter possible loss of security due to abstraction of hardware components?'' Elif Bilge Kavun, Anupam Chattopadhyay, Annelie Heuser, Johann Knechtel, and Itamar Levi

	Participants

