
30th International Symposium
on Algorithms and Computation

ISAAC 2019, December 8–11, 2019, Shanghai University of
Finance and Economics, Shanghai, China

Edited by

Pinyan Lu
Guochuan Zhang

LIPIcs – Vo l . 149 – ISAAC 2019 www.dagstuh l .de/ l ip i c s

Editors

Pinyan Lu
Shanghai University of Finance and Economics, China
lu.pinyan@mail.shufe.edu.cn

Guochuan Zhang
Zhejiang University, China
zgc@zju.edu.cn

ACM Classification 2012
Theory of computation; Theory of computation → Models of computation; Theory of computation →
Computational complexity and cryptography; Theory of computation → Randomness, geometry and
discrete structures; Theory of computation → Theory and algorithms for application domains; Theory of
computation → Design and analysis of algorithms

ISBN 978-3-95977-130-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-130-6.

Publication date
December, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ISAAC.2019.0

ISBN 978-3-95977-130-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:lu.pinyan@mail.shufe.edu.cn
mailto:zgc@zju.edu.cn
https://www.dagstuhl.de/dagpub/978-3-95977-130-6
https://www.dagstuhl.de/dagpub/978-3-95977-130-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.ISAAC.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-130-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ISAAC 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Pinyan Lu and Guochuan Zhang . 0:ix

Symposium Organization
. 0:xi–0:xv

Graph Searches and Their End Vertices
Yixin Cao, Zhifeng Wang, Guozhen Rong, and Jianxin Wang . 1:1–1:18

Lower Bound for Non-Adaptive Estimation of the Number of Defective Items
Nader H. Bshouty . 2:1–2:9

A Polynomial-Delay Algorithm for Enumerating Connectors Under Various
Connectivity Conditions

Kazuya Haraguchi and Hiroshi Nagamochi . 3:1–3:15

Top Tree Compression of Tries
Philip Bille, Paweł Gawrychowski, Inge Li Gørtz, Gad M. Landau, and
Oren Weimann . 4:1–4:18

Two Phase Transitions in Two-Way Bootstrap Percolation
Ahad N. Zehmakan . 5:1–5:21

Sliding Window Property Testing for Regular Languages
Moses Ganardi, Danny Hucke, Markus Lohrey, and Tatiana Starikovskaya 6:1–6:13

On the Hardness of Set Disjointness and Set Intersection with Bounded Universe
Isaac Goldstein, Moshe Lewenstein, and Ely Porat . 7:1–7:22

Gathering and Election by Mobile Robots in a Continuous Cycle
Paola Flocchini, Ryan Killick, Evangelos Kranakis, Nicola Santoro, and Masafumi
Yamashita . 8:1–8:19

Strategy-Proof Approximation Algorithms for the Stable Marriage Problem with
Ties and Incomplete Lists

Koki Hamada, Shuichi Miyazaki, and Hiroki Yanagisawa . 9:1–9:14

Online Multidimensional Packing Problems in the Random-Order Model
David Naori and Danny Raz . 10:1–10:15

Approximate Euclidean Shortest Paths in Polygonal Domains
R. Inkulu and Sanjiv Kapoor . 11:1–11:17

Reachability in High Treewidth Graphs
Rahul Jain and Raghunath Tewari . 12:1–12:14

Approximate Pricing in Networks: How to Boost the Betweenness and Revenue
of a Node

Ruben Brokkelkamp, Sven Polak, Guido Schäfer, and Yllka Velaj 13:1–13:15

Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics
Marcin Bienkowski, Łukasz Jeż, and Paweł Schmidt . 14:1–14:14

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Measure and Conquer for Max Hamming Distance XSAT
Gordon Hoi and Frank Stephan . 15:1–15:19

Cyclability in Graph Classes
Christophe Crespelle, Carl Feghali, and Petr A. Golovach . 16:1–16:13

Complexity of Linear Operators
Alexander S. Kulikov, Ivan Mikhailin, Andrey Mokhov, and Vladimir Podolskii . . . 17:1–17:12

New Results for the k-Secretary Problem
Susanne Albers and Leon Ladewig . 18:1–18:19

Triangle Estimation Using Tripartite Independent Set Queries
Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra 19:1–19:17

Step-By-Step Community Detection in Volume-Regular Graphs
Luca Becchetti, Emilio Cruciani, Francesco Pasquale, and Sara Rizzo 20:1–20:23

Blocking Dominating Sets for H-Free Graphs via Edge Contractions
Esther Galby, Paloma T. Lima, and Bernard Ries . 21:1–21:14

Internal Dictionary Matching
Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed,
Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń . 22:1–22:17

Approximating the Geometric Edit Distance
Kyle Fox and Xinyi Li . 23:1–23:16

On Adaptivity Gaps of Influence Maximization Under the Independent Cascade
Model with Full-Adoption Feedback

Wei Chen and Binghui Peng . 24:1–24:19

Minimum-Width Double-Strip and Parallelogram Annulus
Sang Won Bae . 25:1–25:14

Small Candidate Set for Translational Pattern Search
Ziyun Huang, Qilong Feng, Jianxin Wang, and Jinhui Xu . 26:1–26:17

The Weighted k-Center Problem in Trees for Fixed k

Binay Bhattacharya, Sandip Das, and Subhadeep Ranjan Dev . 27:1–27:11

Online Knapsack Problems with a Resource Buffer
Xin Han, Yasushi Kawase, Kazuhisa Makino, and Haruki Yokomaku 28:1–28:14

Local Cliques in ER-Perturbed Random Geometric Graphs
Matthew Kahle, Minghao Tian, and Yusu Wang . 29:1–29:22

Local Routing in Sparse and Lightweight Geometric Graphs
Vikrant Ashvinkumar, Joachim Gudmundsson, Christos Levcopoulos,
Bengt J. Nilsson, and André van Renssen . 30:1–30:13

Searching for Cryptogenography Upper Bounds via Sum of Square Programming
Dominik Scheder, Shuyang Tang, and Jiaheng Zhang . 31:1–31:12

On the Complexity of Lattice Puzzles
Yasuaki Kobayashi, Koki Suetsugu, Hideki Tsuiki, and Ryuhei Uehara 32:1–32:12

Contents 0:vii

The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication
Lorenzo De Stefani . 33:1–33:16

Accurate MapReduce Algorithms for k-Median and k-Means in General Metric
Spaces

Alessio Mazzetto, Andrea Pietracaprina, and Geppino Pucci . 34:1–34:16

On Optimal Balance in B-Trees: What Does It Cost to Stay in Perfect Shape?
Rolf Fagerberg, David Hammer, and Ulrich Meyer . 35:1–35:16

How Does Object Fatness Impact the Complexity of Packing in d Dimensions?
Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der Zanden 36:1–36:18

On One-Round Discrete Voronoi Games
Mark de Berg, Sándor Kisfaludi-Bak, and Mehran Mehr . 37:1–37:17

On Explicit Branching Programs for the Rectangular Determinant and
Permanent Polynomials

V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay 38:1–38:13

A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing
Kim Thắng Nguyễn . 39:1–39:12

An Improved Data Structure for Left-Right Maximal Generic Words Problem
Yuta Fujishige, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda . 40:1–40:12

Parameterized Complexity Classification of Deletion to List Matrix-Partition for
Low-Order Matrices

Akanksha Agrawal, Sudeshna Kolay, Jayakrishnan Madathil, and Saket Saurabh . . 41:1–41:14

The Generalized Microscopic Image Reconstruction Problem
Amotz Bar-Noy, Toni Böhnlein, Zvi Lotker, David Peleg, and Dror Rawitz 42:1–42:15

Stabilization Time in Minority Processes
Pál András Papp and Roger Wattenhofer . 43:1–43:19

Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists
Through the Lens of Graph Parameters

Robert Bredereck, Klaus Heeger, Dušan Knop, and Rolf Niedermeier 44:1–44:14

Path and Ancestor Queries over Trees with Multidimensional Weight Vectors
Meng He and Serikzhan Kazi . 45:1–45:17

A 21
16 -Approximation for the Minimum 3-Path Partition Problem
Yong Chen, Randy Goebel, Bing Su, Weitian Tong, Yao Xu, and An Zhang 46:1–46:20

Efficiently Realizing Interval Sequences
Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz 47:1–47:15

Efficient Interactive Proofs for Linear Algebra
Graham Cormode and Chris Hickey . 48:1–48:19

When Maximum Stable Set Can Be Solved in FPT Time
Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant 49:1–49:22

ISAAC 2019

0:viii Contents

The k-Fréchet Distance: How to Walk Your Dog While Teleporting
Hugo Alves Akitaya, Maike Buchin, Leonie Ryvkin, and Jérôme Urhausen 50:1–50:15

New Applications of Nearest-Neighbor Chains: Euclidean TSP and Motorcycle
Graphs

Nil Mamano, Alon Efrat, David Eppstein, Daniel Frishberg, Michael T. Goodrich,
Stephen Kobourov, Pedro Matias, and Valentin Polishchuk . 51:1–51:21

Efficient Circuit Simulation in MapReduce
Fabian Frei and Koichi Wada . 52:1–52:21

Concurrent Distributed Serving with Mobile Servers
Abdolhamid Ghodselahi, Fabian Kuhn, and Volker Turau . 53:1–53:18

Tracking Paths in Planar Graphs
David Eppstein, Michael T. Goodrich, James A. Liu, and Pedro Matias 54:1–54:17

Distance Measures for Embedded Graphs
Hugo A. Akitaya, Maike Buchin, Bernhard Kilgus, Stef Sijben, and Carola Wenk . 55:1–55:15

Online Algorithms for Warehouse Management
Philip Dasler and David M. Mount . 56:1–56:21

On Approximate Range Mode and Range Selection
Hicham El-Zein, Meng He, J. Ian Munro, Yakov Nekrich, and Bryce Sandlund . . . 57:1–57:14

External Memory Planar Point Location with Fast Updates
John Iacono, Ben Karsin, and Grigorios Koumoutsos . 58:1–58:18

Minimizing and Computing the Inverse Geodesic Length on Trees
Serge Gaspers and Joshua Lau . 59:1–59:19

Result-Sensitive Binary Search with Noisy Information
Narthana S. Epa, Junhao Gan, and Anthony Wirth . 60:1–60:15

Improved Algorithms for Clustering with Outliers
Qilong Feng, Zhen Zhang, Ziyun Huang, Jinhui Xu, and Jianxin Wang 61:1–61:12

Unbounded Regions of High-Order Voronoi Diagrams of Lines and Segments in
Higher Dimensions

Gill Barequet, Evanthia Papadopoulou, and Martin Suderland . 62:1–62:15

Neighborhood Inclusions for Minimal Dominating Sets Enumeration: Linear and
Polynomial Delay Algorithms in P7-Free and P8-Free Chordal Graphs

Oscar Defrain and Lhouari Nourine . 63:1–63:16

Dual-Mode Greedy Algorithms Can Save Energy
Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, Paolo Penna, and
Guido Proietti . 64:1–64:18

Preface

This volume contains the papers presented at ISAAC 2019: The 30th International Symposium
on Algorithms and Computation, held during December 8-11, 2019 at Shanghai University
of Finance and Economics, in Shanghai, P. R. China. The symposium provides a forum for
researchers working in algorithms and theory of computation, and brings together experts at
the research frontiers in these areas to exchange ideas and to present significant new results.

The program committee, consisting of 38 professional researchers from the field, reviewed
177 submissions and decided to accept 64 among many good papers. Each paper had 3
reviews, with additional reviews solicited as needed. The review process was conducted
entirely electronically via Easychair. We are grateful to Easychair for allowing us to handle
the submissions and the review process and to the program committee for their insightful
reviews and discussions, which made our work more smoothly.

The committee selected the following two papers as the recipients of the ISAAC 2019
Best Paper Award and Best Student Paper respectively:

Best Paper. Mark de Berg, Sándor Kisfaludi-Bak and Mehran Mehr: On One-Round
Discrete Voronoi Games
Best Student Paper. Ahad N. Zehmakan: Two Phase Transitions in Two-way Boot-
strap Percolation

Besides the regular talks, the program also included three invited talks by Wei Chen
(Microsoft Research Asia, China), Xi Chen (Columbia University, USA), and Leslie Ann
Goldberg (University of Oxford, UK).

We are very grateful to all the people who made this meeting possible: The authors for
submitting their papers, the program committee members and external reviewers for their
excellent work, and the three invited speakers. In particular, we would like to thank the
Institute for Theoretical Computer science (ITCS) at Shanghai University of Finance and
Economics for hosting the conference and providing organizational supports.

Oct 10, 2019
Shanghai

Pinyan Lu and Guochuan Zhang

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Symposium Organization

Program Chair

Pinyan Lu Shanghai University of Finance and Economics
Guochuan Zhang Zhejiang University

Program Committee

Georgios Barmpalias Chinese Academy of Sciences
Xiaohui Bei Nanyang Technological University
Andrej Bogdanov The Chinese University of Hong Kong
Ho-Lin Chen National Taiwan University
Lin Chen Texas Tech University
Yijia Chen Fudan University
Marek Chrobak University of California, Riverside
Ran Duan Tsinghua University
Leah Epstein University of Haifa
Thomas Erlebach University of Leicester
Zhiyi Huang The University of Hong Kong
Klaus Jansen University of Kiel
Bundit Laekhanukit Shanghai University of Finance and Economics
Ron Lavi Technion – Israel Institute of Technology
Shi Li University at Buffalo
Guohui Lin University of Alberta
Jiamou Liu The University of Auckland
Kuldeep S. Meel National University of Singapore
Nicole Megow Universität Bremen
Benjamin Moseley Carnegie Mellon University
Periklis Papakonstantinou Rutgers University
Georgios Piliouras Singapore University of Technology and Design
Venkatesh Raman The Institute of Mathematical Sciences, Chennai
David Richerby University of Oxford
Kunihiko Sadakane The University of Tokyo
Frits Spieksma Eindhoven University of Technology
Piyush Srivastava TIFR
Xiaoming Sun Institute of Computing Technology, Chinese Academy of Sciences
Zhihao Gavin Tang Shanghai University of Finance and Economics
Marc Uetz University of Twente
Mingji Xia Institute of Software, Chinese Academy of Sciences
Yuichi Yoshida National Institute of Informatics
Chihao Zhang Shanghai Jiao Tong University
Jialin Zhang Institute of Computing Technology, Chinese Academy of Sciences
Qin Zhang Indiana University Bloomington
Stanislav Živný University of Oxford

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Symposium Organization

Advisory Committee

Siu Wing Cheng The Hong Kong University of Science and Technology
Ding-Zhu Du The University of Dallas
Seok-Hee Hong The University of Sydney
Tsan-Sheng Hsu Academia Sinica
Chung-Shou Liao National Tsinghua University
Kazuhisa Makino Kyoto University
Yoshio Okamoto The University of Electro-Communications
Kunsoo Park Seoul National University
Takeshi Tokuyama Tohoku University
Guochuan Zhang Zhejiang University

Organizing Committee

Huili Liang Shanghai University of Finance and Economics
Pinyan Lu Shanghai University of Finance and Economics
Zhihao Gavin Tang Shanghai University of Finance and Economics
Zihe Wang Shanghai University of Finance and Economics

Additional Reviewers

A
Ahmed, Shareef
Akshay, S.
Alman, Josh
Antoniadis, Antonios
Asif, Hafiz
Aurenhammer, Franz
B
Bailey, James P.
Balazs, Peter
Banik, Aritra
Bansal, Suguman
Barrus, Michael
Baste, Julien
Basu, Riddhipratim
Becker, Ruben
Belmonte, Rémy
Berndt, Sebastian
Bhargava, Vishwas
Bodwin, Greg
Bringmann, Karl
Broersma, Hajo
Buchheim, Christoph
Buchin, Kevin
C
Cabello, Sergio
Cai, Zhipeng

Capelli, Florent
Chakraborty, Sankardeep
Chalopin, Jérémie
Chang, Yi-Jun
Chau, Vincent
Chen, Hsueh-Ping
Chen, Jiecao
Chen, Shiteng
Chen, Yong
Chen, Yu
Cheng, Siu-Wing
Choudhari, Jayesh
Coester, Christian
Cohen, Alon
Conte, Alessio
Courcelle, Bruno
Cseh, Ágnes
D
Das, Syamantak
Dawar, Anuj
Deppert, Max
Dinneen, Michael
Disser, Yann
Diwan, Ajit
Doerr, Benjamin
Dulio, Paolo

Symposium Organization 0:xiii

E
Eberle, Franziska
Elbassioni, Khaled
Eppstein, David
F
Fan, Chenglin
Fernau, Henning
Fleming, Noah
Fomin, Fedor
Fox, Kyle
Francis, Mathew
Fulla, Peter
G
Galanis, Andreas
Gijswijt, Dion
Goaoc, Xavier
Golovach, Petr
Grage, Kilian
Guo, Xiangyu
Gupta, Siddharth
H
Hatano, Daisuke
Haviv, Ishay
He, Kun
He, Meng
Hellmuth, Marc
Hill, Darryl
Hobbs, Nathaniel
Huang, Jia
Huang, Zengfeng
Husfeldt, Thore
Hübschle-Schneider, Lorenz
I
Igarashi, Ayumi
Ikeda, Masahiro
Iwama, Kazuo
Iwamasa, Yuni
Iwamoto, Chuzo
J
Jacob, Ashwin
Jeż, Artur
Jiang, Shaofeng
Jin, Kai
Jin, Yaonan
Johnson, Matthew
K
Kakimura, Naonori
Karpov, Nikolai

Karthik C. S.,
Kawase, Yasushi
Kern, Walter
Kiefer, Sandra
Kim, Eunjung
Klein, Kim-Manuel
Kleist, Linda
Kolay, Sudeshna
Kowalczyk, Daniel
Kratsch, Stefan
Kumar, Gunjan
Kuszmaul, William
Köhler, Ekki
Künnemann, Marvin
L
Lam, Chi-Kit
Lapinskas, John
Lassota, Alexandra
Le Gall, Francois
Lecroq, Thierry
Leucci, Stefano
Levi, Amit
Lewis-Pye, Andrew
Li, Qian
Li, Shuai
Li, Yi
Liao, Chao
Lin, Bingkai
Lin, Guohui
Lin, Jiabao
Liu, Quanquan
Liu, Shengxin
Lokshtanov, Daniel
Lu, Xinhang
Luo, Kelin
Luo, Wenchang
M
M. Sridharan, Ramanujan
Maack, Marten
Machado, Raphael
Maehara, Takanori
Majumdar, Diptapriyo
Mande, Nikhil
Manoussakis, George
Manthey, Bodo
Manurangsi, Pasin
Mao, Yuchen
Marcinkowski, Jan

ISAAC 2019

0:xiv Symposium Organization

Meeks, Kitty
Mei, Lili
Melissaris, Nikolas
Miltzow, Till
Misra, Neeldhara
Mizuki, Takaaki
Mnich, Matthias
Moses, William
Muller, Haiko
Myrisiotis, Dimitrios
N
Nakanishi, Masaki
Nakano, Shin-Ichi
Narayanaswamy, N.S.
Naves, Guyslain
Nederlof, Jesper
Nehama, Ilan
Nekrich, Yakov
Neogi, Rian
Neuen, Daniel
Nicholson, Patrick K.
Nissim, Roy
Nutov, Zeev
O
Ordyniak, Sebastian
P
Pandey, Arti
Panolan, Fahad
Pavan, A
Pferschy, Ulrich
Q
Qiao, Youming
Qiu, Guoliang
R
Raghvendra, Sharath
Rau, Malin
Rawitz, Dror
Rohwedder, Lars
Romero Orth, Miguel
S
S, Krishna
Sahlot, Vibha
Salavatipour, Mohammad
Satti, Srinivasa Rao
Saurabh, Saket
Scarlett, Jonathan
Schewior, Kevin
Schlöter, Miriam

Schmid, Andreas
Schwiegelshohn, Chris
Scquizzato, Michele
Shan, Xiaohan
Sharma, Vikram
Sherif, Suhail
Shi, Yangguang
Shih, Cheng-Yu
Shimizu, Nobutaka
Shrotri, Aditya A.
Simon, Bertrand
Sinha, Makrand
Sintos, Stavros
Skopalik, Alexander
Solis-Oba, Roberto
Souza, Uéverton
Stephan, Frank
Strozecki, Yann
Suksompong, Warut
Sun, Yuan
T
Takaoka, Asahi
Tan, Zihan
Tao, Biaoshuai
Tao, Chao
Telikepalli, Kavitha
Thaler, Justin
Tian, Guojing
Tokuyama, Takeshi
U
Uniyal, Sumedha
V
van Stee, Rob
Variyam, Vinod
Vaz, Daniel
Verdugo, Victor
Vigneron, Antoine
Végh, László
W
Wahlström, Magnus
Wang, Fu-Hsing
Wang, Hao
Wang, Kangning
Wang, Xiao
Ward, Justin
Wasa, Kunihiro
Wiese, Andreas
Wrochna, Marcin

Symposium Organization 0:xv

Wu, Bujiao
Wu, Xiaowei
X
Xia, Zhiyu
Xiao, Mingyu
Xu, Chenyang
Y
Ye, Deshi
Ye, Junjie
You, Jie
Yu, Huacheng
Yu, Yu
Yuan, Pei

Z
Zeman, Peter
Zhang, Haoyu
Zhang, Jia
Zhang, Jingru
Zhang, Peng
Zhang, Tianyi
Zhang, Yuhao
Zhang, Zhijie
Zhao, Dengji
Zhou, Samson
Zhu, Shenglong
Zhu, Xue

ISAAC 2019

Graph Searches and Their End Vertices
Yixin Cao
Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
yixin.cao@polyu.edu.hk

Zhifeng Wang
School of Computer Science and Engineering, Central South University, Changsha, China

Guozhen Rong
School of Computer Science and Engineering, Central South University, Changsha, China

Jianxin Wang
School of Computer Science and Engineering, Central South University, Changsha, China

Abstract
Graph search, the process of visiting vertices in a graph in a specific order, has demonstrated magical
powers in many important algorithms. But a systematic study was only initiated by Corneil et al. a
decade ago, and only by then we started to realize how little we understand it. Even the apparently
naïve question “which vertex can be the last visited by a graph search algorithm,” known as the end
vertex problem, turns out to be quite elusive. We give a full picture of all maximum cardinality
searches on chordal graphs, which implies a polynomial-time algorithm for the end vertex problem
of maximum cardinality search. It is complemented by a proof of NP-completeness of the same
problem on weakly chordal graphs. We also show linear-time algorithms for deciding end vertices
of breadth-first searches on interval graphs, and end vertices of lexicographic depth-first searches
on chordal graphs. Finally, we present 2n · nO(1)-time algorithms for deciding the end vertices of
breadth-first searches, depth-first searches, and maximum cardinality searches on general graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases maximum cardinality search, (lexicographic) breadth-first search, (lexico-
graphic) depth-first search, chordal graph, weighted clique graph, end vertex

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.1

Related Version A full version of the paper is available at https://arxiv.org/abs/1905.09505.

Funding Supported by the RGC grants 15201317 and 15226116, and the NSFC grant 61972330.

1 Introduction

Breadth-first search (bfs) and depth-first search (dfs) are the most fundamental graph
algorithms, and the standard opening of a course on this subject. Their use can be found,
sometimes implicitly, in most graph algorithms. In general, a graph search is a systematic
exploration of a graph, and its core lies on the strategy of how to choose the next vertex
to visit. Mostly greedy, graph searches are very simple but sometimes have magical powers.
Dfs has played a significant role in Tarjan’s award-winning work, in testing planarity [19]
and in finding strongly connected components [25].

Two other search algorithms, lexicographic breadth-first search (lbfs) [21] and maximum
cardinality search (mcs) [26], were invented for the purpose of recognizing chordal graphs,
i.e., graphs not containing any induced cycle on four or more vertices. On a chordal graph,
both lbfs and mcs produce perfect elimination orderings (see definition in the next section)
of the graph, which exist if and only if the graph is chordal. Albeit relatively less well known
compared to bfs and dfs, lbfs and mcs did find important applications. Lbfs is used in
scheduling [22], and is the base of the recent linear-time algorithm for computing modular
decomposition of a graph [27]. Mcs is used in testing acyclic hypergraphs and in computing
minimum cuts of a graph and find forest decompositions.

© Yixin Cao, Zhifeng Wang, Guozhen Rong, and Jianxin Wang;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 1; pp. 1:1–1:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6927-438X
mailto:yixin.cao@polyu.edu.hk
https://doi.org/10.4230/LIPIcs.ISAAC.2019.1
https://arxiv.org/abs/1905.09505
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Graph Searches and Their End Vertices

Simon [24] proposed an interesting way of using lbfs. It conducts lbfs more than once,
and each new run uses previous runs in breaking ties; in particular, except the first, each run
starts from the last vertex of the previous run. This generic approach turns out to be very
useful, e.g., the extremely simple recognition algorithm for unit interval graphs [7]. See the
survey of Corneil [8] for more algorithms using multiple runs of lbfs. Some of these results
have a flavor of “ad-hoc”: We do not fully understand the execution process of lbfs.

The outputs of bfs and dfs are usually rooted spanning forests of the graph, while lbfs
and mcs produce orderings of its vertices. To have a unified view of them, Corneil et al. [11]
focused on the ordering of the vertices being first visited and conducted a systematic study of
them. This study motivates them to propose the lexicographic version of dfs, lexicographic
depth-first search (ldfs), another very powerful graph search [9], and a very general search
paradigm, maximum neighborhood search (mns). They showed that all the aforementioned
graph searches can be characterized by variants of the so-called four-vertex condition. These
nice characterizations are however not sufficient to allow us to answer the ostentatiously
naïve question: Which vertex can be the last of such an ordering? Corneil et al. [10] defined
the end vertex problem and studied it from both combinatorial and algorithmic perspectives.
Apart from a natural starting point of understanding the graph searches in general, end
vertices of graph searches are of their own interest. Behind the original use of lbfs and mcs,
in the recognition of chordal graphs, is nothing but the properties of their end vertices, which
are always simplicial on a chordal graph [21, 26, 23, 4]. Moreover, the success of multiple-run
lbfs crucially hinges on the end vertices; e.g., an end vertex of a (unit) interval graph
can always be assigned an extreme (i.e., leftmost or rightmost) interval [7, 13]. Important
properties and use of end vertices of other graph searches can be found in [9, 17, 12].

One may find it surprising, but the end vertex problem is NP-hard for all the six mentioned
graph search algorithms [11, 6, 1]. The study has thus been focused on chordal graphs and
its closely related superclasses and subclasses. After all, lbfs and mcs were invented for
recognition of chordal graphs, and their properties on chordal graphs have been intensively
studied. (This renders the stagnation on chordal graphs a little more embarrassing.) Moreover,
most applications of lbfs and ldfs are on related graph classes. The most natural superclass
of chordal graphs is arguably the weakly chordal graphs, and two important subclasses are
interval graphs and split graphs. It has been known that on weakly chordal graphs, the end
vertex problems for all but mcs are NP-complete, while only dfs end vertex is NP-complete
on chordal graphs [11, 6, 1]. There are other polynomial-time algorithms for interval graphs
and split graphs, most of which actually run in linear time. We complete the pictures for,
in terms of graph searches, mcs and ldfs, and, in terms of graph classes, weakly chordal
graphs and interval graphs. A summary of known results is given in Fig. 1.

Blair and Peyton [5] and Galinier et al. [16] have shown that mcs of a chordal graph are
closely related to its maximal cliques. Let G be a chordal graph. An mcs visits all vertices in
a maximal clique of G before proceeding to another, and the next maximal clique is always
chosen to have the largest intersection with a visited one. Therefore, for a minimum separator
S of G, there is an mcs visiting the components of G−S one by one, with S visited together
with the first component. If we turn to any component C of G− S, and consider its closed
neighborhood, (which contains C and S,) then we have a similar statement. In other words,
this property on minimum separators holds in a recursive way. For an mcs end vertex z,
which is necessarily simplicial, we can find a sequence of increasing separators such that the
first is a minimum separator of G and the last comprises all the non-simplicial vertices in
N(z). An mcs ended with z has to “cross” these separators in order, and for each of them,
visit the component containing z in the last. We have thus a full understanding of all mcs
orderings of a chordal graph. As it turns out, this result is easier to be presented in the

Y. Cao, Z. Wang, G. Rong, and J. Wang 1:3

WEAKLY CHORDAL

CHORDAL

SPLITINTERVALall [10, 1]

mns [1], mcs, ldfs dfs

all others [6, 1] dfs [6]

all [10, 6, 1]P

NPC

Figure 1 A summary of the known complexity of the end vertex problem for the six graph search
algorithms. For each graph class, the end vertex problem of graph searches listed to the left of it can
be solved in polynomial time on this class, while those to the right are NP-hard. The complexity of
the bfs end vertex and lbfs end vertex problems on chordal graphs are still open.

so-called weighted clique graph of G [5, 16]. It enables us to show that if we run mcs twice,
first starting from z, and the second starting from the end vertex of the first run and using
the first ordering to break ties, then the second run ends with z if and only if z is an mcs
end vertex. As usual, n denotes the number of vertices in the input graph.

I Theorem 1. The mcs end vertex problem can be solved in O(n2) time on chordal graphs.

We complement this result by showing that the mcs end vertex problem becomes NP-
complete on weakly chordal graphs; the proof is inspired by and adapted from [1].

I Theorem 2. The mcs end vertex problem is NP-complete on weakly chordal graphs.

We then turn to ldfs on chordal graphs. Surprisingly, the characterization of Berry et
al. [3] for end vertices of mns on chordal graphs is also true for ldfs: A simplicial vertex z
of a chordal graph G is an ldfs end vertex if and only if the minimal separators of G in
N(z) are totally ordered by inclusion. We also show a simple algorithm for solving the bfs
end vertex problem on interval graphs.

I Theorem 3. There are linear-time algorithms for solving the ldfs end vertex problem on
chordal graphs and for solving the bfs end vertex problem on interval graphs.

We have to, nevertheless, leave open the bfs and lbfs end vertex problems on chordal
graphs. Since both can be solved in linear time on split graphs, we conjecture that they can
be solved in polynomial time on chordal graphs. It is extremely rare that a problem is hard
on chordal graphs but easy on split graphs.

We also consider algorithms for solving the end vertex problems on general graphs. By
enumerating all possible orderings, a trivial algorithm can find all end vertices of any graph
search in n! · nO(1) time. On the other hand, with the only exception of bfs, the reductions
used in proving NP-hardness of the end vertex problems are linear reductions from (3-)sat.
As a result, these problems cannot be solved in subexponential time, unless the exponential
time hypothesis fails [20]. A natural question is thus which of them can be solved in 2O(n)

time. If we put them under closer scrutiny, we will see that these graph searches are somewhat
different: When selecting the next vertex, mcs only needs to know which vertices have been
visited, while the order of visiting them is immaterial. In contrast, the other graph searches
are not oblivious and need to keep track of the whole visiting history. It is straightforward to
use dynamic programming to solve the mcs end vertex problem in 2n · n2 time. Interestingly,
a similar approach actually works for the bfs and dfs end vertex problems.

I Theorem 4. There are 2n · nO(1)-time algorithms that solve the end vertex problems of
the following graph searches: mcs, bfs, and dfs.

ISAAC 2019

1:4 Graph Searches and Their End Vertices

2 Preliminaries

All graphs discussed in this paper are undirected and simple. The vertex set and edge set
of a graph G are denoted by, respectively, V (G) and E(G), and we use n = |V (G)| and
m = |E(G)| to denote their cardinalities. For a subset X ⊆ V (G), denote by G[X] the
subgraph of G induced by X, and by G −X the subgraph G[V (G) \X]. The degree of a
vertex v is the number of neighbors it has, i.e., d(v) = |N(v)|. A vertex v is simplicial if
N [v] induces a complete graph. Two distinct vertices u and v are true twins if N [u] = N [v],
and false twins if N(u) = N(v); note that true twins are adjacent while false twins are not.

A vertex set S is a u-v separator if u and v are not in S and they are not connected in
G− S, and a u-v separator is minimal if no proper subset of S is a u-v separator. We call S
a (minimal) separator if it is a (minimal) u-v separator for some pair of u and v, and it is a
minimum separator of G if it has the smallest cardinality among all separators of G.

An ordering σ of the vertices of G is a bijection from V (G)→ {1, . . . , n}. For two vertices
u and v, we use u <σ v to denote σ(u) < σ(v). The end vertex of σ is the vertex z with
σ(z) = n. Given a graph G and a vertex z ∈ V (G), the end vertex problem for graph search
S is to determine whether there is an S-ordering of G of which z is the end vertex.

A graph is chordal if it contains no induced cycle on four or more vertices. A graph
is chordal if and only if it can be made empty by removing simplicial vertices from the
remaining graph one by one; the order of the vertices removed is called a perfect elimination
ordering [15]. The greedy strategy of mcs is to choose an unvisited vertex with the maximum
number of visited neighbors. On a chordal graph G, the last vertex of any mcs is simplicial,
and thus the reversal of an mcs ordering is always a perfect elimination ordering [26].

To avoid unnecessary digressions, we consider only connected graphs.

3 Maximum cardinality search on chordal graphs

Another important characterization of chordal graphs is through its maximal cliques. A
graph G is chordal if and only if we can arrange its maximal cliques as a tree such that for
each vertex v ∈ V (G), maximal cliques containing v induce a subtree; such a tree is called a
clique tree of G [14]. A chordal graph G has at most n maximal cliques [14], and for any pair
of adjacent Ki and Kj on the clique tree, intersection Ki ∩Kj is a minimal separator of G.

Out of a chordal graph G, we can define a weighted clique graph C(G) as follows. It has
` vertices, where ` is the number of maximal cliques of G, and each vertex is labeled by a
distinct maximal clique of G. To simplify the presentation, we will refer to vertices of C(G)
as cliques; note that we are not going to use cliques of the graph C(G) in this paper. There
is an edge between maximal cliques Ki and Kj , 1 ≤ i, j ≤ `, if and only if Ki ∩ Kj is a
minimal x-y separator for all x ∈ Ki \Kj and y ∈ Kj \Ki. We label this edge with Ki ∩Kj ,
and set its weight to be |Ki ∩Kj |. It is known that a tree on the maximal cliques of G is
a clique tree of G if and only if it is a maximum spanning tree of C(G) [2, 5, 16], i.e., a
spanning tree of C(G) with the maximum total edge weights.

I Proposition 5. Let G be a chordal graph and C(G) the weighted clique graph of G. A set
S ⊆ V (G) is a minimal separator of G if and only if it is the label for some edge of C(G).

One can use Prim’s algorithm to find a maximum spanning tree of G. (Although proposed
for finding a minimum spanning tree, Prim’s algorithm can be easily modified to find a
maximum one.) Starting from an arbitrary clique, it grows the tree by including one edge
and one clique at a time, while the edge is chosen to have the largest weight among those

Y. Cao, Z. Wang, G. Rong, and J. Wang 1:5

crossing the partial tree that has been built, i.e., with one end in the current tree and the
other not. In the same spirit of graph search orderings, we can define a Prim ordering to be
the order maximal cliques of G being included by Prim’s algorithm, applied to C(G).

Let π be an ordering of the maximal cliques of G. We say that an ordering σ of V (G) is
generated by π if Ku <π Kv implies u <σ v, where Ku and Kv are the first maximal cliques
in π containing u, and respectively, v. If π = 〈K1,K2, . . . ,K`〉 and ci = |Ki \

⋃i−1
j=1 Kj | for

1 ≤ i ≤ `, then σ can be represented as

σ−1(1), . . . , σ−1(c1)︸ ︷︷ ︸
K1

, σ−1(c1 + 1), . . . , σ−1(c1 + c2)︸ ︷︷ ︸
K2\K1

, . . . , σ−1(n− c` + 1), . . . , σ−1(n)︸ ︷︷ ︸
K`\
⋃`−1

j=1
Kj

.

The following has been essentially observed by Blair and Peyton [5], who however only stated
explicitly one direction. For the sake of completeness, we give a proof here.

I Lemma 6. Let G be a chordal graph. An ordering σ of V (G) is an mcs ordering of G if
and only if it is generated by some Prim ordering π of C(G).

Proof. The only if direction has been proved by Blair and Peyton [5, Lemma 4.8 and Theorem
4.10]. Here we show the if direction. Suppose that σ is generated by π. We may renumber
the vertices in G such that σ = 〈v1, v2, . . ., vn〉, and renumber the maximal cliques such that
π = 〈K1, K2, . . ., K`〉. Let K ′i = Ki \

⋃i−1
j=1 Kj for 1 ≤ i ≤ `; note that {K ′1, K ′2, . . ., K ′`} is

a partition of V (G). We show by induction that for each 1 ≤ i ≤ n, there is an mcs ordering
of G of which the first i vertices are v1, . . . , vi; in other words, among vertices vi, . . ., vn,
vertex vi has the maximum number of neighbors in the first i− 1 vertices. It is vacuously
true for i = 1. Now suppose that it is true for vp, we show that it is also true for vp+1.

When vp+1 ∈ K ′1 = K1, it is adjacent to all previous vertices and we are done. In the
rest vp+1 ∈ K ′t for some t > 1. Let A =

⋃t−1
j=1 Kj ; note that vp+1 6∈ A. For any q > p, let

Gq denote the subgraph of G induced by v1, v2, . . . , vp, and vq. By the induction hypothesis,
〈v1, v2, . . . , vp, vq〉 is an mcs ordering of Gq. Since Gq is chordal, vq is simplicial in it.
Therefore, N(vq) ∩A is a clique for all q > p; denote it by Xq. We argue by contradiction
that there must be 1 ≤ s < t such that Xq ⊆ Ks. We find an i with 1 ≤ i < t such that
Ki ∩Xq is maximal. If Xq 6⊆ Ki, then there is a vertex x ∈ Xq \Ki; let Kj , where 1 ≤ j < t,
contain x. By the maximality of Ki ∩Xq, there exists y ∈ (Xq ∩Ki) \Kj . Of the first t− 1
maximal cliques, those containing Ki ∩Xq and those containing Xq \Ki are disjoint. Prim’s
algorithm always maintains a tree of visited cliques, and this tree is a subtree of a clique tree
of G. Therefore, there is an x-y separator. But this is impossible because x and y are both
in Xq, hence adjacent.

For each q > p, there is some maximal clique K of G that contains (N(vq)∩A)∪{vq}. It
cannot be one of K1, . . ., Kt−1 because vq 6∈ A. Since K1, . . . ,K` is a Prim ordering of C(G),
we have |N(vp+1) ∩A| ≥ |N(vq) ∩A| for all q > p. On the other hand, vp+1 is adjacent to
all vertices in Kt. We can thus conclude that vp+1 has the maximum number of neighbors in
{v1, . . . , vp}, and this completes the proof. J

By Lemma 6, mcs orderings of a chordal graph G can be fully characterized by Prim
orderings of its weighted clique graph C(G). In particular, the mcs end vertices are the
private vertices of the cliques last visited by Prim’s algorithm. Note that a vertex v is
simplicial if and only if it belongs to precisely one maximal clique, namely, N [v], and a set of
true twins can be visited in any order.

I Corollary 7. Let z be a simplicial vertex in a chordal graph G. There is an mcs ordering
of G ended with z if and only if there exists a Prim ordering of C(G) ended with N [z].

ISAAC 2019

1:6 Graph Searches and Their End Vertices

Let S be a separator of G. We abuse notation to use C(G)− S to denote the subgraph
of C(G) obtained by deleting all edges whose labels are subsets of S. The component of
C(G)− S containing N [z] is called the z-component of C(G)− S. It is worth noting that
C(G)− S cannot be mapped back to G. In Fig. 2, for example, C(G)− {v5, v6} does not
have edges among K2, . . ., K5, while edges K7K8,K7K9,K8K9,K9K10 will be removed in
C(G)− {v12, v13}.

v1

v2

v3

v4

v5

v6

v7 v8

v9

v10

v11

v12

v13

v14

v15

v16v17 v18

K1 K2

K3 K4

K5 K6 K7 K8

K9 K10

3 1
1

1

1

Figure 2 On the top is a chordal graph G on 18 vertices, and below the weighted clique graph of G,
where all the omitted edge weights are 2. There are 10 maximal cliques K1 = {v1, v2, v3, v4},K2 =
{v2, . . . , v6},K3 = {v5, v6, v7},K4 = {v5, v6, v8},K5 = {v5, v6, v9, v10},K6 = {v9, v10, v11},K7 =
{v11, v12, v13},K8 = {v12, . . . , v15},K9 = {v13, v16, v17},K10 = {v13, v15, v18}. There are 7 simplicial
vertices v1, v7, v8, v14, v16, v17, v18, of which v14 and v18 are not mcs end vertices.

I Proposition 8. Let S be a separator of a chordal graph G. For any vertex v 6∈ S, maximal
cliques containing v remain connected in C(G)− S. For any two distinct vertices u, v 6∈ S,
maximal cliques containing u and v are not connected in C(G)− S iff S is a u-v separator.

Proof. By definition, the maximal cliques containing v are connected in any clique tree of
G. Since a clique tree of G is a subgraph of C(G), these cliques also induce a connected
subgraph in C(G). For any edge in this subgraph, its label contains v, hence not a subset of
S. Therefore, these cliques induce the same connected subgraph in C(G)− S as in C(G).

For the second assertion, we may assume uv 6∈ E(G): Both sides are trivially false when
uv ∈ E(G). Suppose to the contradiction of the if direction that there is a path K0, . . . ,Kp

in C(G)− S such that u ∈ K0 and v ∈ Kp while u, v 6∈ Ki for 0 < i < p. For each 1 ≤ i ≤ p,
we can find a vertex xi ∈ (Ki−1 ∩Ki) \ S. (These p vertices may or may not be distinct.)
Then ux1, xpv ∈ E(G), while xi and xi+1 are either the same or adjacent for all 1 ≤ i < p.
We have thus a u-v path in G avoiding S, contradiction that S is a u-v separator.

We now consider the only if direction. Let u = x0, x1, . . . , xp = v be any u-v path in G.
Note that for each 0 ≤ i ≤ p, maximal cliques containing xi induce a connected subgraph,
while for each 1 ≤ j ≤ p, there is a maximal clique containing both xj−1 and xj . We can
find a path in C(G) of which one end contains u and the other contains v. For each edge on
this path, its label contains one of xi, 0 < i < p. Since maximal cliques containing u and
v are not connected in C(G)− S, the label of at least one edge on this path is a subset of
S. By the first assertion, at least one of x1, . . . xp−1 is in S. In other words, every u-v path
intersects S. Therefore, S is a u-v separator. This concludes the proof. J

Y. Cao, Z. Wang, G. Rong, and J. Wang 1:7

We say that a minimum-weight edge e of C(G) – by Proposition 5, its label is a minimum
separator of G, – is a critical edge for maximal clique K if one end of e is in the same
component as K after all minimum-weight edges, including e, are removed from C(G). In
other words, there is a path connecting K and e on which every edge has weight larger than
e. In Fig. 2, e.g., K6K7 is a critical edge for all cliques but K9, while K8K9 and K10K9 are
critical edges for K8 and K10 respectively. The following fact explains “critical” in the name.

I Proposition 9. Let z be a simplicial vertex of a connected chordal graph G, and let S1,
. . ., Sk be the labels of all critical edges for N [z]. In any Prim ordering of C(G), cliques in
the z-component of C(G)− S1 − · · · − Sk appear consecutively. Moreover, if S1 = · · · = Sk,
then the z-component of C(G)− S1 can be visited in the end.

Proof. Note that C(G) is connected since G is connected. Let T denote the z-component of
C(G)− S1 − · · · − Sk. Being minimum separators of G, all of S1, . . ., Sk have the same size;
let it be t. Note that the weight of every edge in T is strictly larger than t; otherwise, we
can find a path from N [z] to such an edge in T , and identify another critical edge for N [z]
on this path.

Let π be any Prim ordering of C(G). We consider the first maximal clique K in T visited
by π. If π(K) 6= 1, the edge leading to K has weight t. By Prim’s algorithm, when K

is visited, for each clique K ′ with K ′ <π K, all the edges between K ′ and its unvisited
neighbors have weight t. All edges between T and other components have weight t as well,
while all edges inside T have weight > t. Therefore, the maximal cliques in T must be
finished before a clique out of T is visited. This concludes the first assertion.

For the second assertion, suppose that S = S1 = · · · = Sk. We give a Prim ordering that
visits cliques in T in the end. It starts from a clique not in T , and it suffices to show that all
cliques out of T have been visited before the first in T . By the definition of C(G), in each
component of C(G)−S, there is a maximal clique containing S. Therefore, by Proposition 8,
there is an edge with label S between any two components of C(G)− S. In other words, the
cliques not in T are connected in C(G). Since the edges connecting T and other components
of C(G) − S have weight t, the minimum in C(G), Prim’s algorithm can always choose
another edge. Therefore, we can finish them before entering T . J

Whether a simplicial vertex z can be an mcs end vertex turns out to be closely related to
the critical edges for N [z]. We first present a necessary condition, which is not satisfied by
v14 and v18 in Fig. 2; we leave it to the reader to verify that they cannot be mcs end vertices.

I Lemma 10. Let z be a simplicial vertex of a connected chordal graph G. If N [z] is the
end clique of a Prim ordering of C(G), then all critical edges for N [z] have the same label.

Proof. Suppose for contradiction that there are two critical edges e1 and e2 for N [z] with
different labels. For i = 1, 2, let Si be the label of ei, and let Ci denote the set of components
of C(G) − Si not containing N [z]. We argue that for any U1 ∈ C1 and U2 ∈ C2, they are
different and there is no edge between them.

For i = 1, 2, by the definition of critical edges, there is a path from N [z] to ei; let Ki

denote the end of ei that is closer to N [z] on this path. There must be some clique K ′i in Ui
containing S1. Note that Ki ∩K ′i = Si because K ′i and Ki are in different components of
C(G)− Si. Hence, KiK

′
i is also a critical edge with label Si for N [z]. There is a N [z]-K ′2

path in C(G)− S1, and hence K ′2 and N [z] are connected in C(G)− S1. Likewise, K ′1 and
N [z] are connected in C(G)− S2.

Since S1 6= S2 and they have the same cardinality, we can find v2 ∈ S2 \ S1 ⊂ K ′2. By
Proposition 8, S1 is not a z-v2 separator. Thus, no maximal clique in U1 contains v2. It
follows that U1 remains connected in C(G)− S2 (note that S2 is a minimum separator). For

ISAAC 2019

1:8 Graph Searches and Their End Vertices

the same reason, U2 remains connected in C(G)−S1. If there exists an edge between U1 and
U2, then this edge remains in at least one of C(G)− S1 and C(G)− S2: It cannot have both
labels S1 and S2. But then U1 and U2 are connected in C(G)− S1 or C(G)− S2, neither of
which is possible. We can thus conclude that components in C1 ∪ C2 are disjoint and there is
no edge among them.

Let π be a Prim ordering of C(G) ended with N [z]. Assume without loss of generality
that the first visited clique in these components is from U1 ∈ C1, then we show that N [z]
is visited before all components U2 ∈ C2. Since there is no edge between U1 and U2, before
visiting U2, it must visit a clique from the z-component of C(G)− S1. After that, however,
it will not visit any edge of label S2 before finishing this component. Therefore N [z] cannot
be the end clique, a contradiction. This concludes the proof. J

In other words, if z is an mcs end vertex, then there is a unique minimum separator of G
that is “closest to z” in a sense. This, although not sufficient, can be extended to a sufficient
condition for mcs end vertices as follows. To decide whether a simplicial vertex z is an mcs
end vertex, we can find the minimum separator S in Proposition 9 and focus on how the
z-component of C(G)− S is explored. We have to start from a maximal clique not in it, and
after that visit all maximal cliques in other components of C(G)−S before the z-component.
In this juncture we may view the z-component as a separate graph and find all critical edges
for N [z] with respect to this component. They also need to have the same label; suppose it
is S′, which is strictly larger than S. But this is not sufficient because we need to make sure
that when S is crossed, it can reach a maximal clique not in the z-component of C(G)− S′.
In Fig. 2, if we delete vertices v16 and v17, (hence K9,) then K6K7 is the only critical edge
for K8. The condition of Lemma 10 is satisfied, but v14 is still not an mcs end vertex.

Repeating this step recursively, we should obtain a sequence of separators with increasing
cardinalities. Note that we only need to keep track of how these separators are crossed,
while the ordering in each layer is irrelevant. This observation leads us to the following
characterization, which subsumes Theorem 13 of Beisegel et al. [1]. For example, the sequence
of critical edges for N [v1] in Fig. 2 are K6K7, K2K5, and K1K2, which correspond to minimal
separators {v11}, {v5, v6}, and {v2, v3, v4}, respectively.

I Theorem 11. Let z be a simplicial vertex of a connected chordal graph G. The clique N [z]
is a Prim end clique if and only if there is a sequence of edges e1, e2, . . ., ek in C(G), where
the label of ei is Si, on a path ended with N [z] such that
(i) S1 is the label of critical edges for N [z] and Sk is the set of non-simplicial vertices in

N [z]; and
(ii) for 1 ≤ i < k, in the z-component of C(G)− Si, all the critical edges for N [z] have the

same lable, which is Si+1.
Moreover, every clique not in the z-component of C(G)− S1 can be the start clique.

Proof. We first show the if direction. We may denote the two ends of ei by Ki and K ′i, where
K ′i is in the z-component of C(G)− Si. (It is possible that K ′i = Ki+1 for some 1 ≤ i < k.)
For each 1 ≤ i ≤ k, we visit all the other components of C(G) − Si before using the edge
KiK

′
i to enter the z-component, visiting K ′i. This is possible because of Proposition 9, and

as such we produce a Prim ordering of C(G) that ends with N [z].
Now consider the only if direction, for which we construct the stated path by induction:

We find the edges e1, e2, . . ., ek in order, and show that for each 1 ≤ i ≤ k, the first i edges
can be extended to a path that ends with N [z] and satisfies both conditions. The first edge
e1 can be any critical edge for N [z], and it is on a path ended with N [z] because C(G) is
connected. Now suppose that the first i edges, namely, e1, . . ., ei, have been selected, and we
find ei+1 as follows. For each 1 ≤ j ≤ i, let Tj denote the z-component of Tj−1 − Sj , where
T0 = C(G). If Ti comprises the only maximal clique N [z], we are done.

Y. Cao, Z. Wang, G. Rong, and J. Wang 1:9

Containing N [z], cliques in Ti are last visited by Proposition 9. It is also a Prim ordering
of the component itself. Therefore, Lemma 10 applies, and all the critical edges for N [z] in
Ti have the same label. Let Si+1 be this label, and let Ti+1 be the z-component of Ti − Si+1.
We argue that there must be a maximal clique K in Ti − Ti+1 containing Si; otherwise, the
first component visited in Ti − Si+1 would be the z-component, and then N [z] cannot be
the last visited clique. We can use edge KiK to replace ei, – note that they have the same
label, – and choose any edge between K and N [z] with label Si+1 as ei+1. This concludes
the inductive step and the proof. J

The proof of the only if direction of Theorem 11 can be directly translated into an
algorithm to decide Prim end cliques, implying a polynomial-time algorithm for the mcs end
vertex problem on chordal graphs. This algorithm however has to take Ω(n2) time because
the size of C(G). We show a very simple algorithm below, which itself best reveals the spirit
of graph searches. As long as we cross the separators in the order specified in Theorem 11,
and make sure we finish other components before visiting the z-component, then it is the
Prim ordering we need. On the other hand, a run of Prim’s algorithm started from N [z] will
cross the separators in the reversed order, and before crossing the ith separator Si, it has to
exhaust the whole z-component C(G)− Si.

Algorithm 1 Algorithm for deciding whether a vertex z is an mcs end vertex of a chordal graph.

Input: A graph G and an mcs ordering σ of G started with z.
Output: Whether z can be an mcs end vertex of G.

1. for i← 1 to n do
1.1. D ← the set of unvisited vertices with the maximum number of visited neighbors;
1.2. visit the vertex arg maxv∈D σ(v);
2. if the last visited vertex is z then return “yes”;

else return “no.”

Proof of Theorem 1. Let G be a connected chordal graph. We find an mcs ordering σ of G
started with z, and then use Algorithm 1. We first show its correctness: Vertex z is an mcs
end-vertex of G if and only if z is the last visited vertex. The if direction is correct because
the algorithm conducts mcs, and Hence we focus on the only if direction. Let S1, . . ., Sk
be the set of separators specified in Theorem 11, and let σ+ denote the ordering returned
by Algorithm 1. We show by induction that for each 1 ≤ i ≤ k, vertices in all the other
components of G− Si are visited before those in the same component with z.

Let T ′1 be the component of G − S1 containing z. By Proposition 9 and Corollary 7,
vertices in T1 are at the beginning of σ. In each component of G − S1, there is a vertex
adjacent to all vertices in S1. When the first vertex in T ′1 is being visited, it has precisely
|S1| visited neighbors, i.e., S1. By the selection of vertices in step 1, all other components
have been finished. Thus, T ′1 is the last visited component of G− S1.

For the inductive step, suppose that the induction hypothesis is true for all p with
1 ≤ i ≤ p < k, we show it is also true for p+ 1. For 1 < i ≤ k, let T ′i be the component of
Ti−1 − Si containing z, and let Ti be the subgraph induced by V (T ′i) ∪ Si. Let v ∈ Tp+1 be
the vertex satisfying v <σ+ u for all u ∈ Tp+1 \ {v}. Then Sp+1 ⊆ N(v) and x <σ+ v for all
x ∈ Sp+1. Since Sp+1 is a minimum separator of Tp, any other component of Tp−Sp+1 has a
vertex adjacent to all of Sp+1. Such a vertex x would satisfy v <σ x because of Proposition 9
and Corollary 7, and then be chosen by step 1 before v. Now that all the vertices in G−N [z]
and the non-simplicial vertices in N [z] have been visited, the only remaining vertices are
true twins of z. Since σ(z) = 1, it has to be the last visited. We have proved the correctness.

ISAAC 2019

1:10 Graph Searches and Their End Vertices

We now analyze the running time. The only difference between the algorithm and the
original mcs algorithm is step 1.2. We need to compare the σ-numbers of vertices in D. It
needs to be done n times, and each time takes O(n) time, and hence the extra time is O(n2).
Together with the time for mcs itself, the total running time is O(n2 +m) = O(n2). J

4 Maximum cardinality search on weakly chordal graphs

A graph G is weakly chordal if neither G nor its complement contains an induced cycle
on five or more vertices. It is well known that all chordal graphs are weakly chordal. To
prove NP-completeness of the mcs end vertex problem on weakly chordal graphs, we use a
reduction from the 3-satisfiability problem (3-sat), in which each clause comprises precisely
three literals.

Given an instance I of 3-sat with p variables and q literals, we construct a graph G as
follows (see Fig. 3 for an example). Let the variables and clauses of I be denoted by x1,
x2, . . ., xp and c1, c2, . . ., cq, respectively. For each literal, (including those that do not
occur in any clause,) we introduce a vertex; let L denote this set of 2p literal vertices. For
each literal vertex, we add edges between it and other vertices in L, with the only exception
of its negation. We also introduce a set C of q clause vertices, each for a different clause;
they forms an independent set. For each ` ∈ L and c ∈ C, we add an edge `c if the literal
` does not occur in the clause c. Therefore, each clause vertex has 2p − 3 neighbors in L.
Finally, we add seven extra vertices a1, a2, u1, u2, b, y, z and edges a1a2, u1u2, yz, {b, z} × L
and {a2, u1, u2, y} × (L ∪ C).

a2a1 u1 u2

x1 x2 x3 x4

x1 x2 x3 x4

b

z

y

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x4 x2 ∨ x3 ∨ x4

Figure 3 Construction for NP-completeness proof of the mcs end vertex problem on weakly
chordal graphs. The 3-sat instance has four variables and three clauses, (x1∨x2∨x3), (x1∨x2∨x4),
(x2 ∨ x3 ∨ x4), i.e., p = 4 and q = 3. The 2p literal vertices are shown in the small gray box, and the
q clause vertices are in the big box. In the boxes, two vertices are nonadjacent if there is a dashed
line between them, and adjacent otherwise. Vertices b and z are adjacent to all literal vertices,
while vertices a2, u1, u2, and y are adjacent to all literal vertices and all clause vertices. The mcs
ordering 〈a1, a2, x1, x2, x3, x4, b, x1, x2, x3, x4, u1, u2, y, c1, c2, c3, z〉 of G corresponds to the satisfying
assignment in which all variables but x2 are set to be true.

Y. Cao, Z. Wang, G. Rong, and J. Wang 1:11

I Proposition 12. The graph G constructed above is a weakly chordal graph.

Proof. We need to show that neither G nor G contains an induced cycle on five or more
vertices. We proceed as follows: We identify a vertex v ∈ V (G) such that G contains an
induced cycle on five or more vertices if and only if G− v contains an induced cycle on five
or more vertices, and then consider G− v. The following properties are straightforward:

(i) A vertex on any induced cycle on five or more vertices has degree at least two.
(ii) A simplicial vertex is not on any induced cycle on five or more vertices.
(iii) An induced cycle on five or more vertices cannot contain a pair of true twins or false

twins, and when it contains one of them, this vertex can be replaced by the other.
(iv) If a vertex is on an induced cycle on five or more vertices, then it has at least two

non-neighbors, and there is at least one edge among these non-neighbors.

We can reduce G to G− {a1} because d(a1) = 1 and (i); then to G− {a1, u2} because
u1 and u2 are true twins and (iii); to G− {a1, u1, u2} because u1 and a2 are false twins in
G−{a1, u2} and (iii); to G−{a1, u1, u2, y} because the only two remaining non-neighbors of
y, namely, a2 and b, are not adjacent to each other and (iv); to G− {a1, u1, u2, y, a2} for the
same reason; to G−{a1, u1, u2, y, a2, b} because z and b are false twins in G−{a1, u1, u2, y, a2}
and (iii); and finally to G−{a1, u1, u2, y, a2, b, z} because the only non-neighbors of z, namely,
C, are independent and (iv). The remaining graph is G[L ∪ C]. Suppose that there is an
induced cycle H on five or more vertices. It must intersect both L and C, since each vertex
in L has only one non-neighbor in it, and since C is independent. Let v ∈ C be a vertex on
this cycle. Its two neighbors on H have to be from L; and since they are nonadjacent to each
other, they have to be x and x̄ for some variable x. Since both x and x̄ are adjacent to all
other vertices in L, the other ≥ 2 vertices on H have to be from C. But this is impossible
because C is independent.

Now we consider G. It can be reduced to G−{a1} because a1 has only one non-neighbor
and (iv); then to G−{a1, u2} because u1 and u2 are false twins and (iii); to G−{a1, u1, u2}
because u1 and a2 are true twins in G− {a1, u2} and (iii); to G− {a1, u1, u2, y} because y is
simplicial in G− {a1, u1, u2} and (ii); to G− {a1, u1, u2, y, b} because z and b are true twins
in G− {a1, u1, u2, y} and (iii); to G− {a1, u1, u2, y, b, a2} because the degree of a2 is one in
G− {a1, u1, u2, y, b} and (i); and finally to G− {a1, u1, u2, y, a2, b, z} because z is simplicial
in G− {a1, u1, u2, y, b, a2} and (ii). The remaining graph is G[L ∪ C]. Suppose that there is
an induced cycle H on five or more vertices. Since C is a clique, H contains at most two
vertices from C. In other words, at least 3 vertices on H are from L, but this is impossible
because each vertex in L has only one neighbor in L. Thus, G is weakly chordal. J

Proof of Theorem 2. It is clear that the mcs end vertex problem is in NP, and we now show
that it is NP-hard. Let I be an instance of 3-sat, and let G be the graph constructed from
I. We show that z is an mcs end-vertex of G if and only if I has a satisfying assignment.

For the if direction, suppose that I is satisfiable, and we give an mcs ordering σ as
follows. Let us fix a satisfying assignment of I, and let T be the set of variables that are
set to be true. The starting vertex is a1, which is followed by a2; visited after them are
{x | x ∈ T} ∪ {x̄ | x 6∈ T}, (i.e., the literal vertices corresponding to true literals,) in any
order. After these p + 2 vertices, each of y, z, u1, u2, b, and each of the unvisited literal
vertices has p visited neighbors. On the other hand, each clause vertex has at most p visited
neighbors: Each clause contains a true literal, and hence each clause vertex has at least one
non-neighbor in the visited literal vertices.

ISAAC 2019

1:12 Graph Searches and Their End Vertices

Then σ(b) = (p+ 3). Since b is adjacent to only literal vertices, the next vertex is one of
them. On the other hand, since vertices L \ T form a clique, they have to be visited between
p+ 4 and 2p+ 3, i.e., before others.

The remaining vertices are u1, u2, y, z, and clause vertices. Each of u1, u2, y, and z

has 2p visited neighbors, while each clause vertex has only 2p − 2, because each clause is
nonadjacent to three literal vertices. Let u1, u2, and y be visited next. After that, all the
remaining vertices (z and all clause vertices) have the same number of visited neighbors,
2p+ 1. There is no edge among these vertices, so they an be visited in any order. We have
thus obtained an mcs ordering of G ended with z.

We now prove the only if direction. Suppose that σ is an mcs ordering of G with σ(z) = n.
Since N(z) = N(b) ∪ {y}, visiting y before b would force z to be visited before b; therefore,
b <σ y <σ z. Likewise, N(b) = L ⊂ L ∪ C ⊂ N(y) and b <σ y demand

b <σ c for all c ∈ C. (?)

Since d(a1) = 1, it is easy to verify that {σ(a1), σ(a2)} = {1, 2}; otherwise, σ must end with
a1. The third vertex of σ has to be from N(a2), i.e., L ∪ C. It cannot be from C because
of (?). Therefore, X = {` | 3 ≤ σ(`) ≤ p+ 2} ⊂ L: (1) For each variable, one literal vertex
has more visited neighbors than b, z, y, u1, u2; (2) clause vertices cannot be visited before
b. There cannot be any variable x such that both x, x̄ ∈ X, because xx̄ 6∈ E(G). We claim
that assigning a variable x to be true if and only if x ∈ X is a satisfying assignment for
I. Suppose for contradiction that some clause c is not satisfied by this assignment. By
the construction of G, the clause vertex c is adjacent to all vertices of X. After visiting
the first p+ 2 vertices, c has p+ 1 visited neighbors, ({a2} ∪X,) while any other unvisited
vertex in V (G) \C has at most p visited neighbors. But then σ(c) = k+ 3, contradicting (?).
Therefore, all clauses are satisfied, and this completes the proof. J

5 Lexicographic depth-first search on chordal graphs

Berry et al. [3, Characterization 8.1] have given a full characterization of mns end vertices
on chordal graphs: A vertex z is an mns end vertex if and only if it is simplicial and the
minimal separators of G in N(z) are totally ordered by inclusion. Since ldfs is a special
case of mns, its end vertices also have this property. We show that this condition is also
sufficient for a vertex to be an ldfs end vertex.

Similar as dfs, ldfs visits a neighbor of the most recent vertex, or backtracks if all its
neighbors have been visited. The difference lies on the choice when the vertex has more than
one unvisited neighbors. Each unvisited vertex has a label, which is all its visited neighbors.
When there are ties, it chooses a vertex with the lexicographically largest label. The following
is actually a simple property of dfs.

I Proposition 13. Let X ⊆ V (G) such that G[X] is connected. If an ldfs visits all vertices
in N(X) before the first vertex in X, then it visits vertices in X consecutively.

I Lemma 14. A vertex z of a chordal graph G is an ldfs end vertex if and only if it is
simplicial and the minimal separators of G in N(z) are totally ordered by inclusion.

Proof. The only if direction follows from that all ldfs orderings are mns orderings [11] and
the result of Berry et al. [3]. For the if direction, suppose that S1, . . ., Sk are the minimal
separators in N(z) and S1 ⊂ · · · ⊂ Sk. It is easy to see that for all 1 ≤ i ≤ k, each component

Y. Cao, Z. Wang, G. Rong, and J. Wang 1:13

of G− Si not containing z is a component of G− Sk; let C denote these components. We
show an ldfs ordering σ of G as follows. It starts from visiting all vertices in S1, followed by
components C ∈ C with N(C) = S1, visited one by one. In the same manner, it deals with
S2. . . . Sk in order. After that the only unvisited vertex are z and its true twins, of which it
chooses z the last. We now verify that this is indeed a valid ldfs ordering. It is clear for S1.
Since vertices in each component C ∈ C are visited after N(C), By Proposition 13, it suffices
to show the correctness when it visits a vertex in N(z) and when it visits the first vertex of
a new component C ∈ C. When such a decision is made, the label of an unvisited vertex
is either ∅ or all visited vertices in N(z), i.e., the most recently visited separator. So it is
always correct to select a vertex from N(z). When a vertex v in a component C is selected,
the visited vertices in N(z) are precisely N(C), hence v does have the largest label. J

6 Breadth-first search on interval graphs

Interval graphs are intersection graphs of intervals on the real line. An interval graph is
always chordal, and in particular, it has a clique tree that is a path [15]. Corneil et al. [10]
gave a very simple linear-time algorithm for deciding whether a vertex z is an lbfs end
vertex of an interval graph, which is very similar to Algorithm 1. They conducted an lbfs
started from z, and then another lbfs that uses the first run to break ties. They proved that
z is an lbfs end vertex if and only if it is the last of the second run. As shown in Fig. 4,
however, this algorithm cannot be directly adapted to the bfs end vertex problem.

z
u s w

Figure 4 A bfs started from z may end with s or w, but a bfs started from w has to end with u.
(Note that a bfs started from s may end with z.)

If a graph has one and only one universal vertex, then each of the other vertices is a BFS
end-vertex, but not itself. If it has two or more universal vertices, then every vertex can be
a BFS end-vertex. Therefore, we may focus on graphs with no universal vertex. Such an
interval graph has at least three maximal cliques.

I Proposition 15 ([13]). Let G be a connected interval graph, and let K1, . . . ,Kp be a clique
path of G. Let u ∈ K1 and w ∈ Kp be two simplicial vertices.
(i) Both u and w are lbfs end vertices.
(ii) For any vertex v ∈ V (G), one of u and w has the largest distance to v.

It is known that a vertex z of an interval graph G can be an lbfs end vertex if and only
if it is simplicial and N [z] can be one of the two ends of a clique path of G [13]. However,
a bfs may satisfy neither of the two conditions. In Fig. 4, for example, vertex z is not
simplicial but can be a bfs end vertex. When z is not in an end clique, it should be close
to one. Actually, it should be at distance at most two to one of the u and w as specified in
Proposition 15. However, a bfs end vertex might be at distance two to both u and w.

For a fixed clique path K1, . . . ,Kp of an interval graph G, we let lp(v) and rp(v) denote,
respectively, the smallest and the largest number i such that v ∈ Ki. We use dist(u, v) to
denote the distance between u and v.

I Lemma 16. The bfs end vertex problem can be solved in O(n + m) time on interval
graphs.

ISAAC 2019

1:14 Graph Searches and Their End Vertices

Algorithm 2 Main procedure for bfs end vertex on interval graphs.

Input: A connected interval graph G, a clique path K1, . . . ,Kp of G,
simplicial vertices u ∈ K1 and w ∈ Kp, and z ∈ V (G).

Output: Whether there exists a bfs ordering σ of G with σ(z) = n and u <σ w.

1. if z = w then return “yes”;
2. if there exists a universal vertex in V (G) \ {z} then return “yes”;
3. X ← {x ∈ V (G) : dist(x, z) = dist(x,w) ≥ dist(x, u)};
4. if X = ∅ then return “no”;
5. s← any vertex in arg minv∈X lp(v);
6. if rp(z) < lp(s) then return “no”;
7. if s = u then return “yes”;
8. for each vertex v ∈ N(s) at distance dist(s, u)− 1 to u do

if dist(v, z) > dist(v, u) then return “yes”;
9. return “no.”

Proof. Let G be an interval graph; we may assume without loss of generality that G is
connected. We use the algorithm of Corneil et al. [13] to build a clique path for G, and
take simplicial vertices v1, v2 from the first and last cliques of the clique path. We call the
procedure described in Algorithm 2 twice, first with u = v1, w = v2; in the second call, we
reverse the clique path, and use u = v2, w = v1. Suppose that the procedure is correct, then
vertex z is a bfs end vertex if and only if at least one of the two calls returns yes. In the
rest we prove the correctness of the procedure and analyze its running time.

We start from characterizing the first vertex s of a bfs ordering σ with σ(z) = n and
u <σ w, if one exists. Since u <σ w <σ z, we must have dist(s, u) ≤ dist(s, w) ≤ dist(s, z).
On the other hand, Proposition 15 implies dist(s, z) ≤ max{dist(s, u),dist(s, w)} = dist(s, w).
Therefore, a desired bfs ordering σ, if it exists, must start from a vertex s satisfying

dist(s, z) = dist(s, w) ≥ dist(s, u). (†)

We argue that at least one of the following is true for z:
on any shortest s-u path, z is adjacent to the 2nd to last vertex but no vertex before it.
on any shortest s-w path, z is adjacent to the 2nd to last vertex but no vertex before it.

Let Pu be any s-u path and Pw any s-w path. Since they together form a u-w path that
visits all the maximal cliques of G, vertex z is adjacent to at least one of these two paths. If z
is adjacent to a vertex on Pu, then it has to be the last two; otherwise dist(s, z) < dist(s, u).
Since u is simplicial, z is adjacent to its neighbor on the path if zu ∈ E(G). Therefore, z is
always adjacent to the second to last vertex on this path. The same argument applies if z is
adjacent to Pw.

The correctness of step 1 follows from Proposition 15. For step 2, note that if v 6= z is a
universal vertex, then 〈v, u, w, . . . , z〉 is such a bfs ordering. Steps 3 and 4 are justified by
(†). When the algorithm reaches step 5, X is not empty, and hence s is well defined. Let
q = dist(s, z) = dist(s, w). Note that q ≥ 2 because s is not universal. Hence, z, w 6∈ N(s).

We show the correctness of step 6 by contradiction. Suppose that rp(z) < lp(s) but there
exists a bfs ordering σ with σ(z) = n and u <σ w. Let s′ be the first vertex of σ. Since
s′ ∈ X, the selection of s implies lp(s) ≤ lp(s′). Then rp(u) = 1 ≤ rp(z) < lp(s) ≤ lp(s′),
therefore, dist(s′, u) ≥ 2. In this case, on any shortest s′-u path, z is adjacent to the second
to last vertex but no vertex before it. Hence, dist(s′, z) = dist(s′, u) = dist(s′, w); let it
be q′. Since u <σ w, there must be some neighbor u′′ of u at distance q′ − 1 to s′ visited
before neighbors of w. The vertex u′′ cannot be universal, hence nonadjacent to w. But u′′

Y. Cao, Z. Wang, G. Rong, and J. Wang 1:15

is adjacent to z, which implies z <σ w, a contradiction. Therefore, step 6 is correct, which
means rp(s) < lp(z) because s and z are not adjacent. Let s = w0, w1, . . . , wq−1, wq = w be
a shortest s-w path. Note that wq−1 ∈ N(z).

For step 7, it suffices to give the following bfs ordering, which starts with s = u. Of all
vertices at distance i to s, 1 ≤ i ≤ q, the first visited vertex is wi. Note that every vertex is
adjacent to w1, . . . , wq−1. From rp(wq−1) = p it can be inferred that all vertices at distance
q to s are adjacent to wq−1. Since wq−1 is the first visited vertex at level q − 1, vertices at
distance q to s can be visited in any order. Therefore, we can have a bfs ordering σ of G
with u <σ w and σ(z) = n .

We now consider step 8, for which we show that there exists a bfs ordering σ with
σ(s) = 1, σ(v) = 2, σ(z) = n, and u <σ w. Note that dist(w1, z) = dist(w1, w) = q − 1.
Therefore v 6= w1; otherwise step 5 should have chosen v because lp(v) < lp(s). For
1 ≤ i ≤ q−1, vertex wi is always visited in the earliest possible time; in particular, σ(w1) = 3.
Since v is on a shortest s-u path, u is a descendant of v in the bfs tree generated by σ. On
the other hand, since both dist(v, z) and dist(v, w) are larger than dist(v, u), either vertices
z and w are not descendants of v, or they are at a lower level than u. In either case, we have
u <σ w. When wq is visited, all the unvisited vertices are at distance q to s and adjacent to
wq−1. Thus, we can have σ(z) = n.

We are now at the last step. Note that the algorithm can reach here only when dist(s, z) =
dist(s, w) = dist(s, u): The condition of step 8 must be true if dist(s, u) < q. Suppose for
contradiction that there exists a bfs ordering σ with σ(z) = n and u <σ w but no vertex
satisfies the condition in step 8. Let s′ be the starting vertex of σ. Since s′ ∈ X and by the
selection of s, we have lp(s′) ≥ lp(s), which implies dist(s′, u) ≥ dist(s, u). Note that s′ is
adjacent to any s-w path, and hence its distance to w is at most q + 1. In summary,

q = dist(s, u) ≤ dist(s′, u) ≤ dist(s′, w) ≤ q + 1.

Let Y denote all vertices at distance q − 1 to u, and let Z denote all vertices at distance
q − 1 to w. Note that Y is disjoint from Z: A vertex in v ∈ Y ∩ Z would be adjacent to s,
and have the same distance to u,w, and z, but then it contradicts the selection of s because
lp(v) < lp(s). Since no vertex in Y satisfies the condition of step 8, dist(v, z) = dist(v, u)
for all v ∈ Y ∩N(s).

If dist(s′, u) = dist(s′, z) = dist(s′, w) = q, then to have u <σ w, one vertex in Y ∩N(s)
must be visited before Z. But this would force z to be visited before w, because z is at
distance q − 1 to all vertices in Y ∩ N(s). Now that dist(s′, w) = q + 1, if dist(s′, u) = q,
then at least one vertex v ∈ Y is adjacent to s′; it is in N(s) because lp(s) ≤ lp(s′). But
then dist(s′, z) ≤ 1 + dist(v, z) = 1 + q− 1 = q < dist(s′, w). Therefore, dist(s′, u) = q+ 1 as
well. Each vertex in Y ∪ Z has distance at least two to s′. Of vertices at distance two to s′,
one vertex in Y ∩N(s) must be visited before Z, but then we have the same contradiction
as in the first case of this paragraph. Therefore, step 9 is also correct and this concludes the
proof of correctness.

We now analyze the running of the algorithm. Steps 1 and 2 can be easily checked in
O(n+m) time. For step 3, it suffices to calculate the distances between z, w, u and all other
vertices; this can be done by visiting the maximal cliques one by one. Steps 4–7 can be done
in O(n) time. Step 8 can be checked in O(n) time: We have already calculated the distance
between z and v. Therefore, the total running time is O(n+m). J

ISAAC 2019

1:16 Graph Searches and Their End Vertices

7 Graph searches on general graphs

We now describe an algorithm for deciding whether a vertex z of a general graph is an mcs
end vertex. For each subset X ⊆ V (G)\{z}, we define f(X) to be true if there exists an mcs
visiting X before others, and false otherwise. The question whether z can be an end vertex is
then simply the value of f(V (G) \ {z}). For a set X with f(X) is true and v 6∈ X, let g(X, v)
indicate whether there exists a search ordering that visits v after X and before others. We
have f(X) =

∨
v∈X

(
f(X \ {v})∧ g(X \ {v}, v)

)
. For mcs, g(X, v) can be calculated in linear

time, and thus we have a simple O(2nnO(1))-time algorithm similar to the classic Held–Karp
algorithm [18].

Let us consider then bfs. We may fix the starting vertex s, which can be found by
enumerating all the other n − 1 vertices. Let ` = maxv∈V (G) dist(s, v), and for 1 ≤ i ≤ `,
let Li denote the set of vertices at distance i to s. Suppose that there is a bfs ordering
σ started with s and ended with z, then z ∈ L`. Clearly, vertices in L`−1 are visited after
those in L`−2 and before L`. Let u be the first visited vertex in L`−1 that is adjacent to z,
and let X be those vertices in L`−1 visited before u. Since z is the last vertex, all vertices in
L` \N(X) must be adjacent to u. We do not need any constraint on the order of vertices in
L`−1 \ (X ∪ {u}) being visited. Therefore, the information we need at level ` − 1 are the
set X and the vertex u. We can generalize this observation to give a recursive formula for
the bfs end vertex problem. For lack of space, the proofs in this section are left for the full
version of the paper.

I Lemma 17. There is a 2n · nO(1)-time algorithm for solving the bfs end vertex problem.

In the last we consider dfs. Recall that a dfs sets two timestamps for a vertex v, first
when it is visited, and second when it is finished, i.e., when all its neighbors have been
examined and the search backtracks to the vertex that discovered v (or terminates when v is
the source vertex). Note that when a vertex is finished, all its neighbors have been visited,
and all but one of them have been finished. In particular, when the last vertex is visited, no
vertex in its neighborhood has been finished. At any moment, the set of vertices that have
been visited but not finished form a path in the depth-first tree. Suppose that z is the end
vertex of a dfs ordering σ of G. If v is the earliest visited neighbor of z, then all the vertices
after v are descendants of v in the depth-first tree.

The following simple property of dfs is stronger than Proposition 13. In a dfs ordering
σ, if the set of vertices after v, i.e., {u : v <σ u}, and v induce a connected subgraph, then
their visiting order is irrelevant to vertices visited before v.

I Proposition 18. Let σ be a dfs ordering of a graph G, and let X be the set of last visited
|X| vertices in σ. The sub-ordering σ|X is a dfs ordering of G[X]. Moreover, if G[X] is
connected, then σ remains a dfs ordering of G after replacing σ|X with any dfs ordering of
G[X] that starts with arg minv∈X σ(v).

I Lemma 19. There is a 2n · nO(1)-time algorithm for solving the dfs end vertex problem.

References
1 Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaz Krnc, Nevena Pivac, Robert Scheffler,

and Martin Strehler. On the End-Vertex Problem of Graph Searches. Discrete Mathematics &
Theoretical Computer Science, 21(1), 2019. URL: http://dmtcs.episciences.org/5572.

2 Philip A. Bernstein and Nathan Goodman. Power of Natural Semijoins. SIAM Journal on
Computing, 10(4):751–771, 1981. doi:10.1137/0210059.

http://dmtcs.episciences.org/5572
https://doi.org/10.1137/0210059

Y. Cao, Z. Wang, G. Rong, and J. Wang 1:17

3 Anne Berry, Jean R. S. Blair, Jean Paul Bordat, and Geneviève Simonet. Graph Extremities
Defined by Search Algorithms. Algorithms, 3(2):100–124, 2010. doi:10.3390/a3020100.

4 Anne Berry and Jean Paul Bordat. Separability Generalizes Dirac’s Theorem. Discrete Applied
Mathematics, 84(1-3):43–53, 1998. doi:10.1016/S0166-218X(98)00005-5.

5 Jean R. S. Blair and Barry W. Peyton. An introduction to chordal graphs and clique trees.
In J. A. George, J. R. Gilbert, and J. W.-H. Liu, editors, Graph Theory and Sparse Matrix
Computation, volume 56 of IMA, pages 1–29. Springer-Verlag, 1993.

6 Pierre Charbit, Michel Habib, and Antoine Mamcarz. Influence of the tie-break rule on the
end-vertex problem. Discrete Mathematics & Theoretical Computer Science, 16(2):57–72, 2014.
URL: http://dmtcs.episciences.org/2081.

7 Derek G. Corneil. A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs.
Discrete Applied Mathematics, 138(3):371–379, 2004. doi:10.1016/j.dam.2003.07.001.

8 Derek G. Corneil. Lexicographic Breadth First Search - A Survey. In Juraj Hromkovic, Manfred
Nagl, and Bernhard Westfechtel, editors, Graph-Theoretic Concepts in Computer Science (WG),
volume 3353 of LNCS, pages 1–19. Springer, 2004. doi:10.1007/978-3-540-30559-0_1.

9 Derek G. Corneil, Barnaby Dalton, and Michel Habib. LDFS-based certifying algorithm for
the minimum path cover problem on cocomparability graphs. SIAM Journal on Computing,
42(3):792–807, 2013. doi:10.1137/11083856X.

10 Derek G. Corneil, Ekkehard Köhler, and Jean-Marc Lanlignel. On end-vertices of Lexicographic
Breadth First Searches. Discrete Applied Mathematics, 158(5):434–443, 2010. doi:10.1016/j.
dam.2009.10.001.

11 Derek G. Corneil and Richard Krueger. A Unified View of Graph Searching. SIAM Journal
on Discrete Mathematics, 22(4):1259–1276, 2008. doi:10.1137/050623498.

12 Derek G. Corneil, Stephan Olariu, and Lorna Stewart. Linear Time Algorithms for Dominating
Pairs in Asteroidal Triple-free Graphs. SIAM Journal on Computing, 28(4):1284–1297, 1999.
A preliminary version appeared in ICALP 1995. doi:10.1137/S0097539795282377.

13 Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The LBFS Structure and Recognition
of Interval Graphs. SIAM Journal on Discrete Mathematics, 23(4):1905–1953, 2009. doi:
10.1137/S0895480100373455.

14 Gabriel A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar
der Universität Hamburg, 25(1):71–76, 1961. doi:10.1007/BF02992776.

15 Delbert R. Fulkerson and Oliver A. Gross. Incidence matrices and interval graphs. Pacific
Journal of Mathematics, 15(3):835–855, 1965. doi:10.2140/pjm.1965.15.835.

16 Philippe Galinier, Michel Habib, and Christophe Paul. Chordal Graphs and Their Clique
Graphs. In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science (WG),
volume 1017 of LNCS, pages 358–371. Springer, 1995. doi:10.1007/3-540-60618-1_88.

17 Michel Habib, Ross M. McConnell, Christophe Paul, and Laurent Viennot. Lex-BFS and
partition refinement, with applications to transitive orientation, interval graph recognition
and consecutive ones testing. Theoretical Computer Science, 234(1-2):59–84, 2000. doi:
10.1016/S0304-3975(97)00241-7.

18 Michael Held and Richard M. Karp. A Dynamic Programming Approach to Sequencing
Problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.
doi:10.1137/0110015.

19 John E. Hopcroft and Robert Endre Tarjan. Efficient Planarity Testing. Journal of the ACM,
21(4):549–568, 1974. doi:10.1145/321850.321852.

20 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. A preliminary version appeared in CCC
1999. doi:10.1006/jcss.2000.1727.

21 Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic Aspects of Vertex
Elimination on Graphs. SIAM Journal on Computing, 5(2):266–283, 1976. A preliminary
version appeared in STOC 1975. doi:10.1137/0205021.

ISAAC 2019

https://doi.org/10.3390/a3020100
https://doi.org/10.1016/S0166-218X(98)00005-5
http://dmtcs.episciences.org/2081
https://doi.org/10.1016/j.dam.2003.07.001
https://doi.org/10.1007/978-3-540-30559-0_1
https://doi.org/10.1137/11083856X
https://doi.org/10.1016/j.dam.2009.10.001
https://doi.org/10.1016/j.dam.2009.10.001
https://doi.org/10.1137/050623498
https://doi.org/10.1137/S0097539795282377
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1007/BF02992776
https://doi.org/10.2140/pjm.1965.15.835
https://doi.org/10.1007/3-540-60618-1_88
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1137/0110015
https://doi.org/10.1145/321850.321852
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/0205021

1:18 Graph Searches and Their End Vertices

22 Ravi Sethi. Scheduling Graphs on Two Processors. SIAM Journal on Computing, 5(1):73–82,
1976. doi:10.1137/0205005.

23 Douglas R. Shier. Some aspects of perfect elimination orderings in chordal graphs. Discrete
Applied Mathematics, 7(3):325–331, 1984. doi:10.1016/0166-218X(84)90008-8.

24 Klaus Simon. A New Simple Linear Algorithm to Recognize Interval Graphs. In Computational
Geometry - Methods, Algorithms and Applications, International Workshop on Computational
Geometry CG’91, Bern, Switzerland, March 21-22, 1991, pages 289–308, 1991. doi:10.1007/
3-540-54891-2_22.

25 Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972. A preliminary version appeared in SWAT (FOCS) 1971.
doi:10.1137/0201010.

26 Robert Endre Tarjan and Mihalis Yannakakis. Simple Linear-Time Algorithms to Test Chordal-
ity of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs.
SIAM Journal on Computing, 13(3):566–579, 1984. With Addendum in the same journal,
14(1):254-255, 1985. doi:10.1137/0213035.

27 Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. Simpler linear-time
modular decomposition via recursive factorizing permutations. In Automata, Languages
and Programming (ICALP), volume 5125 of LNCS, pages 634–645. Springer-Verlag, 2008.
doi:10.1007/978-3-540-70575-8_52.

https://doi.org/10.1137/0205005
https://doi.org/10.1016/0166-218X(84)90008-8
https://doi.org/10.1007/3-540-54891-2_22
https://doi.org/10.1007/3-540-54891-2_22
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0213035
https://doi.org/10.1007/978-3-540-70575-8_52

Lower Bound for Non-Adaptive Estimation of the
Number of Defective Items
Nader H. Bshouty
Department of Computer Science, Technion, Haifa, Israel
bshouty@cs.technion.ac.il

Abstract
We prove that to estimate within a constant factor the number of defective items in a non-adaptive
randomized group testing algorithm we need at least Ω̃(logn) tests. This solves the open problem
posed by Damaschke and Sheikh Muhammad in [6, 7].

2012 ACM Subject Classification Mathematics of computing; Mathematics of computing→ Discrete
mathematics; Mathematics of computing → Probabilistic algorithms; Theory of computation →
Probabilistic computation

Keywords and phrases Group Testing, Estimation, Defective Items

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.2

Related Version https://eccc.weizmann.ac.il/report/2018/053/

1 Introduction

Let X be a set of items that contains defective items I ⊆ X. In Group testing, we test
(query) a subset Q ⊂ X of items and the answer to the query is 1 if Q contains at least one
defective item, i.e., Q ∩ I 6= ∅, and 0 otherwise. Group testing was originally introduced as a
potential approach to the economical mass blood testing, [8]. However it has been proven
to be applicable in a variety of problems, including DNA library screening, [18], quality
control in product testing, [21], searching files in storage systems, [14], sequential screening of
experimental variables, [16], efficient contention resolution algorithms for multiple-access com-
munication, [14, 25], data compression, [12], and computation in the data stream model, [5].
See a brief history and other applications in [4, 9, 10, 13, 17, 18] and references therein.

Estimating the number of defective items to within a constant factor λ is the problem
of finding an integer D that satisfies1 |I| ≤ D ≤ λ|I|. This problem is extensively used in
biological and medical applications [2, 22]. It is used to estimate the proportion of organisms
capable of transmitting the aster-yellows virus in a natural population of leafhoppers [23],
estimating the infection rate of yellow-fever virus in a mosquito population [24] and estimating
the prevalence of a rare disease using grouped samples to preserve individual anonymity [15].

In adaptive algorithms, the queries can depend on the answers to the previous ones. In
the non-adaptive algorithms they are independent of the previous one and; therefore, one can
ask all the queries in one parallel step. In many applications in group testing non-adaptive
algorithms are most desirable.

Estimating the number of defective items to within a constant factor with an adaptive
deterministic, Las Vegas and Monte Carlo algorithms is studied in [1, 3, 6, 7, 11, 20]. For
|X| = n items and |I| = d defective items the bounds are Θ(d log(n/d)) queries for Las
Vegas and Deterministic algorithms and Θ(log log d + log(1/δ)) queries for Monte Carlo
algorithm [1, 11]. There are also polynomial time algorithms that achieve such bounds [1, 11].

1 In all the applications in group testing the estimation λ′|I| ≤ D ≤ λ|I| in not interesting.

© Nader H. Bshouty;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 2; pp. 2:1–2:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bshouty@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2019.2
https://eccc.weizmann.ac.il/report/2018/053/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Estimation of the Number of Defective Items

In this paper we study this problem in the non-adaptive setting. We first show that
any deterministic and Las Vegas algorithm must ask at least Ω(n) queries. For randomized
algorithm with any constant failure probability δ, Damaschke and Sheikh Muhammad give
in [7] a non-adaptive randomized algorithm that asks O(logn) queries and with probability
at least 1 − δ returns an integer D such that D ≥ d and E[D] = O(d). In this paper we
give a polynomial time Monte Carlo algorithm that asks O(log(1/δ) logn) queries and with
probability at least 1− δ estimates the number of defective items to within a constant factor.
They then prove in [6] the lower bound Ω(logn) queries, but only for algorithms that choose
each item in each query randomly and independently with some fixed probability. They
conjecture that Ω(logn) queries are needed for any randomized algorithm with constant
failure probability. In this paper we prove this conjecture (up to log logn factor). We show
that for any non-adaptive randomized algorithm that with probability at least 3/4 estimates
the number of defective items to within a constant factor must ask at least

s = Ω
(

logn
log logn

)
= Ω̃ (logn)

queries.
This paper is organised as follows: In Section 2 we give some preliminary results. In

Section 3 we give the proof of the above lower bound. The lower bounds will be for an
estimation within the factor of 1.5 and confidence 3/4, but it will be clear from the proof that
this can be replaced by any constant factor λ and any constant confidence δ. In Section 4 we
give the lower bound Ω(n) for any deterministic algorithm. In Section 5 we give the upper
bound. The technique for the upper bound is standard and implicitly follows from [7, 11]. It
is given for completeness.

2 Preliminary Results

In this section we give some definitions and then prove some preliminary results.
We will consider the set of items X = [n] = {1, 2, . . . , n} and the set of defective items

I ⊆ X. The algorithm knows n and has an access to an oracle OI . The algorithm can ask
the oracle OI a query Q ⊂ X and the oracle answers OI(Q) := 1 if Q∩ I 6= ∅ and OI(Q) := 0
otherwise. We say that algorithm A λ-estimates the number of defective items if for every
I ⊆ X it runs in polynomial time in n, asks queries to the oracle OI and returns an integer
D such that |I| ≤ D ≤ λ|I|. If λ is constant then we say that the algorithm estimates the
number of defective items to within a constant factor . Our goal is to find such an algorithm
that asks a minimum number of queries in the worst case.

For an algorithm A that asks queries we denote by A(I) the output of A when it runs
with the oracle OI . When the algorithm is randomized then we write A(σ, I) where σ is the
random seed of the algorithm.

We now prove two results that will be used for the lower bound:

I Lemma 1. Let k be any real number. Let N ′ be a finite set of elements and s be an
integer. Let S be a probability space of s-tuples W = (w1, w2, . . . , ws) ∈ N ′s. Let N ⊆ N ′

and N = N1 ∪N2 ∪ · · · ∪Nr be a partition of N to r disjoint sets. There is i0 such that for
a random W ∈ S, the probability that at least k of the elements (coordinates) of W are in
Ni0 , is at most s/(kr).

Equivalently, there is i0 such that, with probability at least 1 − s/(kr), the number of
elements in W that are in Ni0 is less than k.

N.H. Bshouty 2:3

Proof. Define the random variables Xi, i = 1, . . . , r, where Xi(W) = 1 if at least k of the
elements of W are in Ni and 0 otherwise. Obviously, k(X1 + . . .+Xr) ≤ s and therefore

E[X1] + · · ·+ E[Xr] = E[X1 + · · ·+Xr] ≤ s

k
.

Therefore there is i0 such that Pr[Xi0 = 1] = E[Xi0] ≤ s/(kr). J

I Lemma 2. Let X ′ ⊆ X = [n]. Let D be the probability space of random uniform subsets
I ⊂ X ′ of size d and D′ be the probability space of random uniform and independent d chosen
elements I = {x1, . . . , xd} ⊆ X ′ with replacement. Let A be any event and B be the event
that I ∈ D′ has size d, i.e., x1, . . . , xd are distinct. Then

PrD′ [A] + PrD′ [B̄] ≥ PrD[A] ≥ PrD′ [A]−PrD′ [B̄].

Proof. Since

PrD′ [A] = PrD′ [A|B]PrD′ [B] + PrD′ [A|B̄]PrD′ [B̄]
≤ PrD′ [A|B] + PrD′ [B̄] = PrD[A] + PrD′ [B̄],

we have PrD[A] ≥ PrD′ [A]−PrD′ [B̄]. In the same way we have PrD[Ā] ≥ PrD′ [Ā]−PrD′ [B̄]
which implies the left-hand side inequality. J

3 Lower Bound for Randomized Algorithms

In this section we prove the lower bound for the number of queries in any non-adaptive
randomized algorithm that λ-estimates the number of defective items. We give the proof for
λ = 1.5 and confidence δ = 1/4. The proof for any other constants λ and δ is similar.

The idea of the proof is the following. Suppose there is a randomized algorithm A that
asks logn/(c log ∆) queries where ∆ = logn and c is a large constant. We partition the
interval [0, n] of all the possible sizes |Q| of the queries Q into Θ(logn/ log ∆) disjoint sets
Ni = [n/∆4i+4, n/∆4i] for integers i. We then show, by Lemma 2, that with high probability,
there is an interval Ni0 such that no query Q asked by the algorithm satisfies |Q| ∈ Ni0 . That
is, with high probability, there is no query with a size that falls in Ni0 = [n/∆4i0+4, n/∆4i0].
We then show that if we choose a random uniform set of defective items I of size d′ := ∆4i0+2

or 2d′ = 2∆4i0+2 then, with high probability, all the queries of sizes more than n/∆4i0 will
have answer 1 and all the queries of sizes less than n/∆4i0+4 will have answer 0. So the
only useful queries are those that fall in Ni0 that, by Lemma 1, with high probability, there
are none. Therefore, with high probability, the algorithm fails to distinguish between sets
of defective sets of size d′ and of size 2d′. This implies that algorithm A cannot estimate,
with high probability, the size of the defective sets within a factor of 1.5. Therefore any
randomized algorithm that, with high probability, estimates the size of the defective sets
within a factor of 1.5 must ask at least logn/(c log ∆) = Ω(logn/ log logn) queries.

We now give the proof.

I Theorem 3. Any non-adaptive Monte Carlo randomized algorithm that with probability at
least 3/4, 1.5-estimates the number of defective items must ask at least

s = Ω
(

logn
log logn

)
queries.

ISAAC 2019

2:4 Estimation of the Number of Defective Items

Proof. Let c be a large enough constant. Suppose, for the contrary, there is a non-adaptive
Monte Carlo algorithm A(σ, I) that chooses a random sequence of queriesM := Q1, . . . , Qs ⊆
X = [n] from some probability space where s = ∆/(c log ∆) and ∆ = logn, asks queries to
OI and with probability at least 3/4, 1.5-estimates the number of defective items |I|. Let
r = ∆/(16 log ∆) and let

Ni = [n/∆4i+4, n/∆4i] := {x | n/∆4i+4 < x ≤ n/∆4i},

i = 0, 1, . . . , r− 1, be a partition of N = [n3/4, n]. By Lemma 1, for k = 1/16 and the s-tuple
W := (|Q1|, . . . , |Qs|), there is i0 such that, with probability at least

1− s

kr
= 1− 256

c
≥ 15

16

the number of queries Q in M that satisfy |Q| ∈ Ni0 is at most k. Therefore, with probability
at least 15/16 there are no queries Q in M of size |Q| ∈ Ni0 . Let C be the event that there
is no query Q in M of size |Q| ∈ Ni0 . Then

Pr[C̄] ≤ 1
16 .

Let d′ = ∆4i0+2. For a random uniform set I ⊂ X of size d = d′, with probability at least
3/4, A(σ, I) returns an integer in the interval [d′, 1.5d′]. For a random uniform set I ⊂ X of
size d = 2d′, with probability at least 3/4, A(σ, I) returns an integer in the interval [2d′, 3d′].
Since both intervals are disjoint, algorithm A, with success probability at least 3/4, can
distinguish between defective sets of size d′ and 2d′. We have constructed an algorithm, call
it A′, that distinguishes, with success probability 3/4, between defective sets of size d′ and
defective sets of size 2d′. The probability that A′ fails is at most 1/4.

Let D, D′ and {x1, . . . , xd} be as in Lemma 2. Here d ∈ {d′, 2d′}. Let B be the event
that x1, . . . , xd are distinct. Since i0 ≤ r we have

d ≤ 2d′ = 2∆4i0+2 ≤ 2∆4r+2 = 2n1/4 log2 n

and therefore, for large enough n,

PrD′ [B̄] = 1−
d−1∏
i=1

(
1− i

n

)
≤ d(d− 1)

2n ≤ 2 log4 n

n1/2 ≤ 1
16 .

Now partition the queries in M to three sets of queries M1 ∪M2 ∪M3 where M1 are
the queries that contain at most n/∆4i0+4 items, M2 are the queries that contains at least
n/∆4i0 items and M3 = M\(M1 ∪M2), i.e., M3 are the queries Q that satisfies |Q| ∈ Ni0 .
Let A1(I) be the event that for I ⊆ X all the queries in M1 give answer 0. Then

PrD′ [Ā1] = Pr[(∃Q ∈M1)Q ∩ I 6= ∅]
≤ sPr[Q ∩ I 6= ∅|Q ∈M1] (1)
= s(1−Pr[Q ∩ I = ∅|Q ∈M1])

≤ s

(
1−

(
1− 1

∆4i0+4

)d
)

≤ sd

∆4i0+4 = 2
c∆ log ∆ ≤

1
16 .

N.H. Bshouty 2:5

Then by Lemma 2, PrD[Ā1] ≤ 2/16. Let A2(I) be the event that for I ⊆ X all the queries
in M2 give answer 1. Then

PrD′ [Ā2] = Pr[(∃Q ∈M2)Q ∩ I = ∅]
≤ sPr[Q ∩ I = ∅|Q ∈M2]

≤ s

(
1− 1

∆4i0

)d

≤ se
− d

∆4i0 = ∆
ce∆2 log ∆

≤ 1
16 .

Thus, by Lemma 2, PrD[Ā2] ≤ 2/16.
Now

Pr[A′ fails] ≥ Pr[A1 ∧A2 ∧ C]
= 1−Pr[Ā1 ∨ Ā2 ∨ C̄]
≥ 1−Pr[Ā1]−Pr[Ā2]−Pr[C̄]

≥ 1
2 .

We got Pr[A′ fails] ≥ 1/2 which gives a contradiction. J

In the proof of Theorem 3, one cannot take smaller intervals for Ni (for example
[n/24i+4, n/24i]). This is because, with the multiplicand s for the union bound in (1),
the probability of Ā1 cannot then be bounded by 1/16.

The proof is also true for estimating the number of defective items to within a factor
λ = Θ(logn). In fact, for such λ the lower bound is tight.

4 Lower Bound for Deterministic Algorithms

In this section we prove

I Theorem 4. Let c > 1 be any constant. Any non-adaptive deterministic algorithm that
c-estimates the number of defective items must ask at least Ω(n) queries.

Proof. Let A be a non-adaptive deterministic algorithm that c-estimates the number of
defective items. Let Q1, . . . , Qs be the queries that A asks. Let d = n/2c. For possible
answers a1, . . . , as ∈ {0, 1} to the queries we define S(a1,...,as), the set of all defective sets of
size d that give the answers a1, . . . , as to the queries Q1, . . . , Qs, respectively. That is, for
every I ∈ S(a1,...,as) we have |I| = d and for every i = 1, . . . , s we have Qi ∩ I 6= ∅ if ai = 1
and Qi ∩ I = ∅ if ai = 0. For a = (a1, . . . , as) ∈ {0, 1}s let Ia = ∪I∈SaI. We now prove
two claims:

B Claim 5. If the defective set is Ia then the algorithm gets the answers a to the queries.

Proof. If Qi∩Ia 6= ∅ then there is I ∈ Sa such that Qi∩I 6= ∅ and then ai = 1. If Qi∩Ia = ∅
then for every I ∈ Sa we have Qi ∩ I = ∅ and then ai = 0. C

B Claim 6. |Ia| ≤ cd.

Proof. If |Ia| > cd then the algorithm returns a value in [cd+ 1, c2d] and then for the sets in
Sa, that are of size d, this answer is not a c-estimation. A contradiction. C

ISAAC 2019

2:6 Estimation of the Number of Defective Items

Since each I ∈ Sa is of size d and is a subset of Ia we have

|Sa| ≤
(
cd

d

)
.

Since there are
(

n
d

)
sets of size d we get(

n

d

)
=

∑
a∈{0,1}s

|Sa| ≤ 2s

(
cd

d

)
.

Since d = n/(2c),

s ≥ log
(
n
n
2c

)
− log

(n
2
n
2c

)
= Ω(n). J

5 Upper Bounds

In this section is written for completeness. We use techniques similar to the ones in [7, 11]
to prove

I Theorem 7. Let c be any constant. There is a non-adaptive Monte Carlo randomized
algorithm that asks

s = O

(
log 1

δ
logn

)
queries and with probability at least 1− δ, c-estimates the number of defective items.

We recall the Chernoff Bound.

I Lemma 8 (Chernoff Bound). Let X1, . . . , Xt be independent random variables that takes
values in {0, 1}. Let X = (X1 + · · ·+Xt)/t and E[X] ≤ µ. Then for any ∆ ≥ µ

Pr[X ≥ ∆] ≤
(
e1− µ

∆µ

∆

)∆t

(2)

≤
(eµ

∆

)∆t

. (3)

We will assume that d ≥ 6. Otherwise, d can be estimated exactly in O(logn) more
queries. Just run the algorithm that finds the defective items that asks O(logn) queries [19].
Here we give a 2-estimation algorithm. This can be extended in a straightforward manner to
c-estimation for any constant c.

A p-query is a query Q that contains each item i ∈ [n] randomly and independently with
probability p. In the algorithm, OI(Q) = 1 if Q ∩ I 6= ∅ and 0 otherwise.

Consider the following algorithm We now prove

I Lemma 9. Let |I| = d ≥ 6. If u ≤ d ≤ w then with probability at least 1− δ, d ≤ D ≤ 2d.
The algorithm asks O(log(1/δ) log(w/u)) queries.

In particular, for u = 1 and w = n, the algorithm asks

O

(
log 1

δ
logn

)
queries.

N.H. Bshouty 2:7

Algorithm 1 Estimate (u,w, δ).
Input: u and w such that u ≤ d ≤ w and a failure probability δ

Output: D such that w.p. at least 1− δ, d ≤ D ≤ 2d.

1. For each pi = 1/(u · 2i/4), i = 0, 1, 2, 3, · · · , 8 log(w/u),
2. For t = O(log(1/δ)) independent pi-queries Qi,1, . . . , Qi,t do:
3. qi = (OI(Qi,1) + · · ·+OI(Qi,t))/t.
4. Choose the first i0 such that qi0 < 0.83.
5. If no such i0 exists then output(“d > w”).
6. Otherwise output(D := 2/pi0).

Proof. Let i1 be such that pi1−1 > 2/d and pi1 ≤ 2/d. Then for j = 0, 1, · · · ,

2j/4/d < pi1+3−j ≤ 2(j+1)/4/d.

For every i, j we have

µi := E[qi] = E[OI(Qi,j)] = Pr[I ∩Qi,j 6= ∅] = 1− (1− pi)d.

Since d ≥ 6 we have E[qi1+3] = µi1+3 ≤ 1− (1− 21/4/d)d ≤ 0.74 and

Pr[D > 2d] = Pr[pi0 < 1/d] = Pr[i0 > i1 + 3]
≤ Pr[qi1+3 ≥ 0.83] ≤ δ/2. (4)

The first inequality in (4) follows from the fact that if i0 > i1 + 3 then qi1+3 ≥ 0.83. The
second inequality follows from Chernoff bound (2) with µ = 0.74 and ∆ = 0.83.

Now, since

E[1− qi1+3−j] = 1− µi1+3−j = (1− pi1+3−j)d

≤ e−pi1+3−jd < e−2j/4
,

we have E[1− qi1−2] ≤ E[1− qi1−1] ≤ 0.136 and

Pr[D < d] = Pr[pi0 > 2/d] = Pr[i0 ≤ i1 − 1]

=
i1−1∑
i=0

Pr[i0 = i] ≤
i1−1∑
i=0

Pr[qi < 0.83]

=
i1−3∑
i=0

Pr[1− qi > 0.17] +
i1−1∑

i=i1−2
Pr[1− qi > 0.17]

≤
i1−3∑
i=0

(
e · e−2(i1−i+3)/4

0.17

)0.17·t

+ δ

4 (5)

≤
∞∑

k=0

(
0.95 · e−2k/4

)0.17·t
+ δ

4 ≤
δ

4 + δ

4 = δ

2 .

In the first summand of (5) we use Chernoff bound (3). In the second summand we use
Chernoff bound (2) for µ = 0.136 and ∆ = 0.17. J

ISAAC 2019

2:8 Estimation of the Number of Defective Items

References
1 Nader H. Bshouty, Vivian E. Bshouty-Hurani, George Haddad, Thomas Hashem, Fadi Khoury,

and Omar Sharafy. Adaptive Group Testing Algorithms to Estimate the Number of Defectives.
ALT, 2017. arXiv:1712.00615.

2 Chao L. Chen and William H. Swallow. Using Group Testing to Estimate a Proportion, and
to Test the Binomial Model. Biometrics., 46(4):1035–1046, 1990.

3 Yongxi Cheng and Yinfeng Xu. An efficient FPRAS type group testing procedure to
approximate the number of defectives. J. Comb. Optim., 27(2):302–314, 2014. doi:
10.1007/s10878-012-9516-5.

4 Ferdinando Cicalese. Fault-Tolerant Search Algorithms - Reliable Computation with Unreliable
Information. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2013.
doi:10.1007/978-3-642-17327-1.

5 Graham Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most frequent
items dynamically. ACM Trans. Database Syst., 30(1):249–278, 2005. doi:10.1145/1061318.
1061325.

6 Peter Damaschke and Azam Sheikh Muhammad. Bounds for Nonadaptive Group Tests to
Estimate the Amount of Defectives. In Combinatorial Optimization and Applications - 4th
International Conference, COCOA 2010, Kailua-Kona, HI, USA, December 18-20, 2010,
Proceedings, Part II, pages 117–130, 2010. doi:10.1007/978-3-642-17461-2_10.

7 Peter Damaschke and Azam Sheikh Muhammad. Competitive Group Testing and Learning
Hidden Vertex Covers with Minimum Adaptivity. Discrete Math., Alg. and Appl., 2(3):291–312,
2010. doi:10.1142/S179383091000067X.

8 R. Dorfman. The detection of defective members of large populations. Ann. Math. Statist.,
pages 436–440, 1943.

9 D. Du and F. K Hwang. Combinatorial group testing and its applications. World Scientific
Publishing Company., 2000.

10 D. Du and F. K Hwang. Pooling design and nonadaptive group testing: important tools for
DNA sequencing. World Scientific Publishing Company., 2006.

11 Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj Pichapati, and
Ananda Theertha Suresh. Estimating the number of defectives with group testing. In
IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain, July
10-15, 2016, pages 1376–1380, 2016. doi:10.1109/ISIT.2016.7541524.

12 Edwin S. Hong and Richard E. Ladner. Group testing for image compression. IEEE Trans.
Image Processing, 11(8):901–911, 2002. doi:10.1109/TIP.2002.801124.

13 F. K. Hwang. A method for detecting all defective members in a population by group testing.
Journal of the American Statistical Association, 67:605—-608, 1972.

14 William H. Kautz and Richard C. Singleton. Nonrandom binary superimposed codes. IEEE
Trans. Information Theory, 10(4):363–377, 1964. doi:10.1109/TIT.1964.1053689.

15 Joseph L.Gastwirth and Patricia A.Hammick. Estimation of the prevalence of a rare disease,
preserving the anonymity of the subjects by group testing: application to estimating the
prevalence of aids antibodies in blood donors. Journal of Statistical Planning and Inference.,
22(1):15–27, 1989.

16 C. H. Li. A sequential method for screening experimental variables. J. Amer. Statist. Assoc.,
57:455–477, 1962.

17 Anthony J. Macula and Leonard J. Popyack. A group testing method for finding patterns in data.
Discrete Applied Mathematics, 144(1-2):149–157, 2004. doi:10.1016/j.dam.2003.07.009.

18 Hung Q. Ngo and Ding-Zhu Du. A survey on combinatorial group testing algorithms with
applications to DNA Library Screening. In Discrete Mathematical Problems with Medical
Applications, Proceedings of a DIMACS Workshop, December 8-10, 1999, pages 171–182, 1999.
doi:10.1090/dimacs/055/13.

19 Ely Porat and Amir Rothschild. Explicit Nonadaptive Combinatorial Group Testing Schemes.
IEEE Trans. Information Theory, 57(12):7982–7989, 2011. doi:10.1109/TIT.2011.2163296.

http://arxiv.org/abs/1712.00615
https://doi.org/10.1007/s10878-012-9516-5
https://doi.org/10.1007/s10878-012-9516-5
https://doi.org/10.1007/978-3-642-17327-1
https://doi.org/10.1145/1061318.1061325
https://doi.org/10.1145/1061318.1061325
https://doi.org/10.1007/978-3-642-17461-2_10
https://doi.org/10.1142/S179383091000067X
https://doi.org/10.1109/ISIT.2016.7541524
https://doi.org/10.1109/TIP.2002.801124
https://doi.org/10.1109/TIT.1964.1053689
https://doi.org/10.1016/j.dam.2003.07.009
https://doi.org/10.1090/dimacs/055/13
https://doi.org/10.1109/TIT.2011.2163296

N.H. Bshouty 2:9

20 Dana Ron and Gilad Tsur. The Power of an Example: Hidden Set Size Approximation Using
Group Queries and Conditional Sampling. CoRR, abs/1404.5568, 2014. arXiv:1404.5568.

21 M. Sobel and P. A. Groll. Group testing to eliminate efficiently all defectives in a binomial
sample. Bell System Tech. J., 38:1179–1252, 1959.

22 William H. Swallow. Group Testing for Estimating Infection Rates and Probabilities of Disease
Transmission. Phytopathology, 1985.

23 Keith H. Thompson. Estimation of the Proportion of Vectors in a Natural Population of
Insects. Biometrics, 18(4):568–578, 1962.

24 S. D. Walter, S. W. Hildreth, and B. J. Beaty. Estimation of infection rates in population of
organisms using pools of variable size. Am J Epidemiol., 112(1):124–128, 1980.

25 Jack K. Wolf. Born again group testing: Multiaccess communications. IEEE Trans. Information
Theory, 31(2):185–191, 1985. doi:10.1109/TIT.1985.1057026.

ISAAC 2019

http://arxiv.org/abs/1404.5568
https://doi.org/10.1109/TIT.1985.1057026

A Polynomial-Delay Algorithm for Enumerating
Connectors Under Various Connectivity Conditions
Kazuya Haraguchi1

Otaru University of Commerce, Midori 3-5-21, Otaru, Hokkaido 047-8501, Japan
haraguchi@res.otaru-uc.ac.jp

Hiroshi Nagamochi
Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku,
Kyoto 606-8501, Japan
nag@amp.i.kyoto-u.ac.jp

Abstract
We are given an instance (G, I, σ) with a graph G = (V,E), a set I of items, and a function
σ : V → 2I . For a subset X of V , let G[X] denote the subgraph induced from G by X, and Iσ(X)
denote the common item set over X. A subset X of V such that G[X] is connected is called a
connector if, for any vertex v ∈ V \X, G[X ∪ {v}] is not connected or Iσ(X ∪ {v}) is a proper subset
of Iσ(X).

In this paper, we present the first polynomial-delay algorithm for enumerating all connectors.
For this, we first extend the problem of enumerating connectors to a general setting so that the
connectivity condition on X in G can be specified in a more flexible way. We next design a new
algorithm for enumerating all solutions in the general setting, which leads to a polynomial-delay
algorithm for enumerating all connectors for several connectivity conditions on X in G, such as the
biconnectivity of G[X] or the k-edge-connectivity among vertices in X in G.

2012 ACM Subject Classification Mathematics of computing → Graph enumeration

Keywords and phrases Graph with itemsets, Enumeration, Polynomial-delay algorithms, Connectors

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.3

Related Version The preprint appeared as Technical Report 2019-002, Department of Applied
Mathematics and Physics, Kyoto University (http://www.amp.i.kyoto-u.ac.jp/tecrep/).

1 Introduction

In this paper, we consider enumeration of subgraphs in a given attributed graph, that is, a
graph in which vertices are given items. The subgraphs should be connected, and at the
same time, be maximal with respect to the common item set.

Formally, we are given an instance (G, I, σ) with a graph G = (V,E), a set I of items, and
a function σ : V → 2I . For a subset X ⊆ V , let G[X] denote the subgraph induced from G

by X, and Iσ(X) denote the common item set
⋂
u∈X σ(u). A subset X ⊆ V such that G[X]

is connected is called a connector, if for any vertex v ∈ V \X, G[X ∪{v}] is not connected or
Iσ(X ∪ {v}) (Iσ(X); i.e., there is no proper superset Y of X such that G[Y] is connected
and Iσ(Y) = Iσ(X). We show a brief example of an instance in Figure 1(a). Note that we
admit a connector whose common item set is empty. In the figure, it is {v1, v2, v3, v4}. If
such a connector exists, then it is a connected component of the graph, but the converse
does not necessarily hold.

1 Corresponding author

© Kazuya Haraguchi and Hiroshi Nagamochi;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haraguchi@res.otaru-uc.ac.jp
mailto:nag@amp.i.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2019.3
http://www.amp.i.kyoto-u.ac.jp/tecrep/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Enumeration of Connectors

v11,2,3 v2 1,3

v32,3 v4 1

v1, v2, v3, v4

v1, v2, v3 v1, v3, v4 v2, v3, v4

v1, v2 v1, v3 v2, v3 v3, v4

v1 v2 v3 v4

(a) (b)

Figure 1 (a) An instance that has connectors {v1}, {v4}, {v1, v2}, {v1, v3}, {v1, v2, v3}, and
{v1, v2, v3, v4}, where an item is represented by an integer; (b) Hasse diagram of the transitive
system (V, CG) of the instance in (a), where solutions are indicated by shade.

We consider the problem of enumerating connectors. The problem is a generalization of
the frequent item set mining problem, a well-known problem in data mining, such that G is a
clique and a vertex corresponds to a transaction.

Let us introduce an application example of the problem from [11]. Suppose a biological
network such that a vertex corresponds to a gene and an edge represents a protein-protein
interaction between genes. A gene produces RNAs under a certain condition, and the
phenomenon is called gene expression. A condition at which gene expression occurs is given
to a vertex as an item. A biologist is particularly interested in a large-sized connector with
a large common item set, that is, a large connected set of genes that make expressions
simultaneously under common (possibly complex) conditions. Enumeration of connectors is
a basic problem for discovering such meaningful gene sets.

Let us review related studies. For a usual graph (i.e., a non-attributed graph), there
are some studies on enumeration of connected subgraphs. Avis and Fukuda [3] showed
that all connected induced subgraphs are enumerable in output-polynomial time and in
polynomial space, by means of reverse search. Nutov [7] showed that minimal undirected
Steiner networks, and minimal k-connected and k-outconnected spanning subgraphs are
enumerable in incremental polynomial time.

For an attributed graph, the frequent subgraph mining problem [5] is among significant
graph mining issues. This problem asks to enumerate all subgraphs that appear in a given set
of attributed graphs frequently, where the graph isomorphism is defined by taking into account
the items. For the problem, gSpan [15] should be one of the most successful algorithms.

When it comes to the connector enumeration problem, Sese et al. [12] proposed the first
algorithm, named COPINE, which explores the search space by utilizing the similar search
tree as gSpan. Okuno et al. [9, 10] and Okuno [8] studied the parallelization of COPINE.
Haraguchi et al. [4] proposed the first output-polynomial algorithm, named COOMA, which
enumerates connectors by means of dynamic programming rather than a search tree.

In this paper, we present the first polynomial-delay algorithm for enumerating all con-
nectors. For this, we first extend the problem of enumerating connectors to a general setting
so that the connectivity condition on a vertex subset X in G can be specified in a more
flexible way. Concretely, we introduce a new notion of a family of sets, called a “transitive
system,” which is a generalization of the family of all vertex subsets that induce connected

K. Haraguchi and H. Nagamochi 3:3

subgraphs. The notion of connector is also extended to the transitive system and it will
be called a solution. We then design a new algorithm for enumerating all solutions in the
transitive system, which leads to a polynomial-delay algorithm for enumerating all connectors
for several connectivity conditions on X in G, such as the biconnectivity of G[X] or the
k-edge-connectivity among vertices in X in G. The proposed algorithm enumerates the
solutions by traversing a family tree. Traversal of a family tree is a frequently used technique
in various enumeration algorithms (e.g., [6]).

The paper is organized as follows. After we make preparations in Section 2, we explain
the structure of the family tree in Section 3. Then in Section 4, we provide an algorithm that
enumerates all the solutions by traversing the family tree, which yields a polynomial-delay
algorithm for the connector enumeration problem. In Section 5, we explain how we deal with
various notions of edge- and vertex-connectivity in the enumeration algorithm, followed by
concluding remarks in Section 6. For some proofs, details are included in the appendix.

2 Preliminaries

For two integers a and b, let [a, b] denote the set of integers i with a ≤ i ≤ b. For two
subsets J = {j1, j2, . . . , j|J|} and K = {k1, k2, . . . , k|K|} of a set A with a total order, where
j1 < j2 < · · · < j|J| and k1 < k2 < · · · < k|K|, we denote by J ≺ K if J = {ki | 1 ≤ i ≤ j} for
some j < |K| or the sequence (j1, j2, . . . , j|J|) is lexicographically smaller than the sequence
(k1, k2, . . . , k|K|). We denote J � K if J ≺ K or J = K.

A system (V, C) consists of a finite set V and a family C ⊆ 2V , where an element in V is
called a vertex, and a set in C is called a component. A system (V, C) (or C) is called transitive
if any tuple of Z,X, Y ∈ C with Z ⊆ X ∩ Y implies X ∪ Y ∈ C. For a subset X ⊆ V , a
component Z ∈ C with Z ⊆ X is called X-maximal if no other component W ∈ C satisfies
Z (W ⊆ X. Let Cmax(X) denote the family of all X-maximal components.

For example, any Sperner family [13], a family of subsets such that none is contained
in another subset, is a transitive system. Also the family CG of vertex subsets X ∈ 2V in a
graph G = (V,E) such that G[X] is connected is transitive, where G[X] with |X| = 1 (resp.,
X = ∅) is connected (resp., disconnected). We illustrate the Hasse diagram of a transitive
system CG in Figure 1(b).

We define an instance to be a tuple (V, C, I, σ) of a set V of n ≥ 1 vertices, a family
C ⊆ 2V , a set I of q ≥ 1 items and a function σ : V → 2I . For each subset X ⊆ V , let
Iσ(X) ⊆ I denote the common item set over σ(v), v ∈ X; i.e., Iσ(X) =

⋂
v∈X σ(v). A

solution is defined to be a component X ∈ C such that any component Y ∈ C with Y) X

satisfies Iσ(Y) (Iσ(X). Let S denote the family of all solutions to the instance. Our aim
is to design an algorithm for enumerating all solutions in S when C is transitive. When an
instance (V, C, I, σ) is given, we assume that C is implicitly given as two oracles L1 and L2
such that

given non-empty subsets X ⊆ Y ⊆ V , L1(X,Y) returns a component Z ∈ Cmax(Y) with
X ⊆ Z (or ∅ if no such Z exists) in θ1,t time and θ1,s space; and
given a non-empty subset Y ⊆ V , L2(Y) returns Cmax(Y) in θ2,t time and θ2,s space.

We also denote by δ(Y) an upper bound on |Cmax(Y)|, where we assume that δ is a non-
decreasing function in the sense that δ(X) ≤ δ(Y) if X ⊆ Y . For the example of family CG
of vertex subsets X such that G[X] is connected in a graph G with n vertices and m edges,
we see that θi,t = O(n+m), i = 1, 2, θi,s = O(n+m), i = 1, 2, and δ(Y) = O(|Y |). We will
show that the time delay of our algorithm is polynomial with respect to the input size, θ1,t,
θ2,t and δ(V).

ISAAC 2019

3:4 Enumeration of Connectors

To facilitate our aim, we introduce a total order over the items in I by representing I as
a set [1, q] = {1, 2, . . . , q} of integers. For each subset X ⊆ V , let min Iσ(X) ∈ [0, q] denote
the minimum item in Iσ(X), where min Iσ(X) , 0 for Iσ(X) = ∅. For each i ∈ [0, q], define
Si , {X ∈ S | min Iσ(X) = i}, where we see that S is a disjoint union of Si, i ∈ [0, q]. We
design an algorithm that enumerates all solutions in Sk for any specified k ∈ [0, q].

We observe an important property on a transitive family of components.

I Lemma 1. Let (V, C) be a transitive system. For a component X ∈ C and a superset
Y ⊇ X, there is exactly one component C ∈ Cmax(Y) that contains X.

Proof. Since X ⊆ Y , Cmax(Y) contains a Y -maximal component C that contains X. For any
componentW ∈ C withW 6= C and X ⊆W ⊆ Y , the transitivity of C and X ⊆ C∩W imply
C ∪W ∈ C, where C ∪W = C must hold by the Y -maximality of C. Hence C is unique. J

For a component X ∈ C and a superset Y ⊇ X, we denote by C(X;Y) the component
C ∈ Cmax(Y) that contains X.

3 Defining Family Tree

To generate all solutions in S efficiently, we use the idea of family tree. Our tasks to establish
an enumeration algorithm are as follows:

Define the roots, called “bases,” over all solutions in S (Section 3.1);
Define the “parent” π(S) ∈ S of each non-base solution S ∈ S, where S is called a “child”
of T = π(S) (Section 3.2);
Design an algorithm A that, given S ∈ S, returns π(S) (Algorithm 1 in Section 3.2); and
Design an algorithm B that, given a solution T ∈ S, generates a set X of components
X ∈ C such that X contains all children of T (Algorithm 2 in Section 3.3). For each
component X ∈ X , we construct π(X) by algorithm A to see if X is a child of T (i.e.,
π(X) is equal to T).

Starting from each base, we recursively generate the children of a solution. The complexity
of delay-time of the entire algorithm is the time complexity of algorithms A and B, where
|X | is bounded from above by the time complexity of algorithm B.

3.1 Defining Base
Let (V, C, I = [1, q], σ) be an instance on a transitive system. We define V〈0〉 , V and
V〈i〉 , {v ∈ V | i ∈ σ(v)}, i ∈ I. For each non-empty subset J ⊆ I, define V〈J〉 ,

⋂
i∈J V〈i〉.

For J = ∅, define V〈J〉 , V . Define Bi , {X ∈ Cmax(V〈i〉) | min Iσ(X) = i} for each i ∈ [0, q],
and B ,

⋃
i∈[0,q] Bi. We call a component in B a base.

I Lemma 2. Let (V, C, I = [1, q], σ) be an instance on a transitive system.
(i) For each non-empty set J ⊆ [1, q] or J = {0}, it holds that Cmax(V〈J〉) ⊆ S;
(ii) For each i ∈ [0, q], a solution S ∈ Si is contained in a base in Bi; and
(iii) S0 = B0 and Sq = Bq.

Proof.
(i) Let X be a component in Cmax(V〈J〉), where J ⊆ Iσ(X). When J = {0} (i.e., V〈J〉 = V),

no proper superset of X is a component, and X is a solution. Consider the case of
∅ 6= J ⊆ [1, q]. To derive a contradiction, assume that X is not a solution; i.e., there is
a proper superset Y of X such that Iσ(Y) = Iσ(X). Since ∅ 6= J ⊆ Iσ(X) = Iσ(Y), we
see that V〈J〉 ⊇ Y . This, however, contradicts the V〈J〉-maximality of X. This proves
that X is a solution.

K. Haraguchi and H. Nagamochi 3:5

Algorithm 1 Parent(S): Finding the lex-min solution of a solution S.

Input :An instance (V, C, I = [1, q], σ) on a transitive system, an item
k ∈ [1, q − 1], and a non-base solution S ∈ Sk \ Bk, where k = min Iσ(S)

Output :The lex-min solution T ∈ Sk of S
1 Let {k, i1, i2, . . . , ip} := Iσ(S), where k < i1 < i2 < · · · < ip;
2 J := {k}; /* C(S; k)) S by S 6∈ Bk */
3 for j = 1, 2, . . . , p do
4 if C(S; J ∪ {ij}) 6= S then J := J ∪ {ij} /* J = Iσ(T) holds */

5 Return T := C(S; J)

(ii) We prove that each solution S ∈ Si is contained in a base in Bi, where i = min Iσ(S).
By Lemma 1, S is a subset of the component C(S;V〈i〉) ∈ Cmax(V〈i〉), where Iσ(S) ⊇
Iσ(C(S;V〈i〉)). Since i ∈ Iσ(C(S;V〈i〉)) for i ≥ 1 (resp., Iσ(C(S;V〈i〉)) = ∅ for i = 0), we
see that min Iσ(S) = i = min Iσ(C(S;V〈i〉)). This proves that C(S;V〈i〉) is a base in Bi.

(iii) Let k ∈ {0, q}. We see from (i) that Cmax(V〈k〉) ⊆ S, which implies that Bk = {X ∈
Cmax(V〈k〉) | min Iσ(X) = k} ⊆ {X ∈ S | min Iσ(X) = k} = Sk. We prove that any
solution S ∈ Sk is a base in Bk. By (ii), there is a base X ∈ Bk such that S ⊆ X, which
implies that Iσ(S) ⊇ Iσ(X), min Iσ(S) ≤ min Iσ(X). We see that Iσ(S) = Iσ(X), since
∅ = Iσ(S) ⊇ Iσ(X) for k = 0, and q = min Iσ(S) ≤ min Iσ(X) ≤ q for k = q. Hence
S (X would contradict that S is a solution. Therefore S = X ∈ Bk, as required. J

By Lemma 2(iii), we can find all solutions in S0 ∪ Sq by calling oracle L2(Y) for Y =
V〈0〉 = V and Y = V〈q〉. In the following, we consider how to generate all solutions in Sk
with 1 ≤ k ≤ q − 1.

For a notational convenience, we denote by C(X; i) the component C(X;V〈i〉) with
i ∈ Iσ(X) and by C(X; J) the component C(X;V〈J〉) with J ⊆ Iσ(X).

I Lemma 3. Let (V, C, I = [1, q], σ) be an instance on a transitive system. Let S, T ∈ S be
solutions such that S ⊆ T . It holds that T = C(S; Iσ(T)).

We omit the proof (Appendix A).

3.2 Defining Parent
This subsection defines the “parent” of a non-base solution. For two solutions S, T ∈ S,
we say that T is a superset solution of S if T) S and S, T ∈ Si for some i ∈ [1, q − 1]. A
superset solution T of S is called minimal if no proper subset Z (T is a superset solution of
S. Let S be a non-base solution in Sk \Bk, k ∈ [1, q− 1]. We call a minimal superset solution
T of S the lex-min solution of S if Iσ(T) � Iσ(T ′) for all minimal superset solutions T ′ of S.
For example, in Figure 1(b), {v1, v2}, {v1, v3}, {v1, v2, v3} and {v1, v2, v3, v4} are superset
solutions of {v1}, whereas {v4} has no superset solution. The solution {v1} has two minimal
superset solutions, that is {v1, v2} and {v1, v3}, where {v1, v2} is its lex-min solution.

I Lemma 4. Let (V, C, I = [1, q], σ) be an instance on a transitive system. For a non-base
solution S ∈ Sk \ Bk with k ∈ [1, q − 1], let Iσ(S) = {k, i1, i2, . . . , ip}, where k < i1 < i2 <

· · · < ip, and let T denote the lex-min solution of S.
(i) For an integer j ∈ [1, p], let J = Iσ(T) ∩ {k, i1, i2, . . . , ij−1}. Then ij ∈ Iσ(T) if and

only if C(S; J ∪ {ij})) S; and
(ii) Given S, algorithm Parent(S) in Algorithm 1 correctly delivers the lex-min solution

of S in O(q(n+ θ1,t)) time and O(q + n+ θ1,s) space.

ISAAC 2019

3:6 Enumeration of Connectors

Proof.
(i) By Lemma 2(i) and min Iσ(S) = k, we see that C(S; J ∪ {ij}) ∈ Sk.

Case 1. C(S; J ∪ {ij}) = S: For any set J ′ ⊆ {ij+1, ij+2, . . . , ip}, the component
C(S; J ∪ {ij} ∪ J ′) is equal to S and cannot be a minimal superset solution of S. This
implies that ij 6∈ Iσ(T).
Case 2. C(S; J ∪ {ij})) S: Then C = C(S; J ∪ {ij}) is a solution by Lemma 2(i).
Observe that k ∈ J ∪ {ij} ⊆ Iσ(C) ⊆ Iσ(S) and min Iσ(C) = k, implying that
C ∈ Sk is a superset solution of S. Then C contains a minimal superset solution
T ∗ ∈ Sk of S, where Iσ(T ∗) ∩ [1, ij−1] = Iσ(T ∗) ∩ {k, i1, i2, . . . , ij−1} ⊇ J = Iσ(T) ∩
{k, i1, i2, . . . , ij−1} = Iσ(T) ∩ [1, ij−1] and ij ∈ Iσ(T ∗). If Iσ(T ∗) ∩ [1, ij−1]) J or
ij 6∈ Iσ(T), then Iσ(T ∗) ≺ Iσ(T) would hold, contradicting that T is the lex-min
solution of S. Hence Iσ(T) ∩ [1, ij−1] = J = Iσ(T ∗) ∩ [1, ij−1] and ij ∈ Iσ(T).

(ii) Based on (i), we can obtain the solution T as follows. First we find the item set Iσ(T) by
applying (i) to each j ∈ [1, p], where we construct subsets J0 ⊆ J1 ⊆ · · · ⊆ Jp ⊆ Iσ(S)
such that J0 = {k} and

Jj =
{
Jj−1 ∪ {ij} if C(S; Jj−1 ∪ {ij})) S,

Jj−1 otherwise.

Each Jj can be obtained from Jj−1 by testing whether C(S; Jj−1 ∪ {ij})) S holds or
not, where C(S; Jj−1 ∪ {ij}) is computable by calling the oracle L1. By (i), we have
Jj = Iσ(T) ∩ {k, i1, . . . , ij}, and in particular, Jp = Iσ(T) holds. Next we compute
C(S; Jp) by calling the oracle L1(S, V〈Jp〉), where C(S; Jp) is equal to the solution T by
Lemma 3. The above algorithm is described as algorithm Parent(S) in Algorithm 1.
We omit the complexity analysis (Appendix B). J

For each non-base solution in Sk \ Bk, k ∈ [1, q− 1], the parent π(S) of S is defined to be
the lex-min solution of S. For a solution T ∈ Sk, each non-base solution S ∈ Sk \ Bk such
that π(S) = T is called a child of T .

3.3 Generating Children
This subsection shows how to construct a family X of components so that all children of a
solution T are included in X .

I Lemma 5. Let (V, C, I = [1, q], σ) be an instance on a transitive system. For an item
k ∈ [1, q − 1], let T ∈ Sk be a solution.
(i) For each child S ∈ Sk \ Bk of T , it holds that [k + 1, q] ∩ (Iσ(S) \ Iσ(T)) 6= ∅ and

S ∈ Cmax(T ∩ V〈j〉) for any j ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T)).
(ii) The set of all children of T can be constructed in O

(
qθ2,t + q2(n+ θ1,t)δ(T)

)
time and

O(q + n+ θ1,s + θ2,s) space.

Proof.
(i) Note that [0, k] ∩ Iσ(S) = [0, k] ∩ Iσ(T) = {k} since S, T ∈ Sk. Since S ⊆ T are

both solutions, Iσ(S)) Iσ(T). Hence [k + 1, q] ∩ (Iσ(S) \ Iσ(T)) 6= ∅. Let j ∈
[k+ 1, q]∩ (Iσ(S) \ Iσ(T)). Since S ⊆ T ∩V〈j〉, there is a (T ∩V〈j〉)-maximal component
C ∈ Cmax(T ∩ V〈j〉) with S ⊆ C, where S ⊆ C ⊆ T and Iσ(S) ⊇ Iσ(C) ⊇ Iσ(T). Then
k = min Iσ(S) = min Iσ(T) implies min Iσ(C) = k.
We show that C ∈ S, which implies C ∈ Sk. Note that j ∈ Iσ(C) \ Iσ(T), and C (T .
Assume that C is not a solution; i.e., there is a solution C∗ ∈ S such that C (C∗ and
Iσ(C) = Iσ(C∗), where j ∈ Iσ(C) = Iσ(C∗) means that C∗ ⊆ V〈j〉. Hence C∗ \ T 6= ∅

K. Haraguchi and H. Nagamochi 3:7

Algorithm 2 Children(T, k): Generating all children.

Input :An instance (V, C, I, σ), k ∈ [1, q − 1] and a solution T ∈ Sk
Output :All children of T , each of which is output whenever it is generated

1 for each j ∈ [k + 1, q] \ Iσ(T) do
2 Compute Cmax(T ∩ V〈j〉);
3 for each S ∈ Cmax(T ∩ V〈j〉) do
4 if k = min Iσ(S) and j = min{i | i ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T))} then
5 if T =Parent(S) (i.e., S is a child of T) then
6 Output S as one of the children of T

by the (T ∩ V〈j〉)-maximality of C. Since C,C∗, T ∈ C and C ⊆ C∗ ∩ T , we have
C∗ ∪ T ∈ C by the transitivity. We also see that Iσ(C∗ ∪ T) = Iσ(C∗) ∩ Iσ(T) =
Iσ(C) ∩ Iσ(T) = Iσ(T). This, however, contradicts that T is a solution, proving that
C ∈ Sk. If S (C, then S (C (T would hold for S,C, T ∈ Sk, contradicting that T
is a minimal superset solution of S. Therefore S = C.

(ii) By (i), the union of families Cmax(T ∩V〈j〉) with j ∈ [k+1, q]\Iσ(T) contains all children
of T . Whether a set S is a child of T or not can be tested by checking if Parent(S) is
equal to T or not. However, for two items j, j′ ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T)), the same
child S can be generated from the different families Cmax(T ∩ V〈j〉) and Cmax(T ∩ V〈j′〉).
To avoid this, we output a child S of T when S ∈ Cmax(T ∩ V〈j〉) for the minimum
item j in the item set [k + 1, q] ∩ (Iσ(S) \ Iσ(T)). In other words, we discard any set
S ∈ Cmax(T∩V〈j〉) if j is not the minimum item in [k+1, q]∩(Iσ(S)\Iσ(T)). Algorithm 2
formally describes this procedure. We omit the complexity analysis (Appendix C). J

4 Traversing Family Tree

We are ready to describe an entire algorithm for enumerating solutions in Sk for a given
k ∈ [0, q]. We first compute Cmax(V〈k〉). We next compute the set Bk (⊆ Cmax(V〈k〉)) of bases
by testing whether k = min Iσ(T) or not, where Bk ⊆ Sk. When k = 0 or q, we are done with
Bk = Sk by Lemma 2(iii). Let k ∈ [1, q − 1]. Suppose that we are given a solution T ∈ Sk,
we find all the children of T by Children(T, k) in Algorithm 2. By applying Algorithm 2 to
a newly found child recursively, we can find all solutions in Sk.

When no child is found to a given solution T ∈ Sk, we may need to go up to an ancestor
by traversing recursive calls O(n) times before we generate the next solution. This would
result in O(nα) time delay, where α denotes the time complexity required for a single run of
Children(T, k). To improve the delay to O(α), we employ the alternative output method [14],
where we output the children of T after (resp., before) generating all descendants when the
depth of the recursive call to T is an even (resp., odd) integer.

The entire enumeration algorithm is described in Algorithms 3 and 4. The following
theorem summarizes the complexity of the enumeration algorithm. We omit the proof
(Appendix D).

I Theorem 6. Let (V, C, I = [1, q], σ) be an instance on a transitive system. For each
k ∈ [0, q], the set Sk of solutions can be enumerated in O

(
qθ2,t + q2(n+ θ1,t)δ(V〈k〉)

)
time

delay and in O
(
(q + n+ θ1,s + θ2,s)n

)
space.

ISAAC 2019

3:8 Enumeration of Connectors

Algorithm 3 An algorithm to enumerate solutions in Sk for a given k ∈ [0, q].

Input :An instance (V, C, I = [1, q], σ) on a transitive system, and an item k ∈ [0, q]
Output :The set Sk of solutions to (V, C, I, σ)

1 Compute Cmax(V〈k〉); d := 1;
2 for each T ∈ Cmax(V〈k〉) do
3 if k = min Iσ(T) (i.e., T ∈ Bk) then
4 Output T ;
5 if k ∈ [1, q − 1] then Descendants(T, k, d+ 1)

Algorithm 4 Descendants(T, k, d): Generating all descendants.

Input :An instance (V, C, I, σ), k ∈ [1, q − 1], a solution T ∈ Sk, and the current
depth d of recursive call of Descendants

Output :All descendants of T in Sk
1 for each j ∈ [k + 1, q] \ Iσ(T) do
2 Compute Cmax(T ∩ V〈j〉);
3 for each S ∈ Cmax(T ∩ V〈j〉) do
4 if k = min Iσ(S) and j = min{i | i ∈ [k + 1, q] ∩ (Iσ(S) \ Iσ(T))} then
5 if T =Parent(S) (i.e., S is a child of T) then
6 if d is odd then
7 Output S
8 Descendants(S, k, d+ 1);
9 if d is even then

10 Output S

It is worthwhile to mention that the enumeration task can be parallelized by running the
algorithm for each item k ∈ I independently.

For the connector enumeration problem, it is natural to assume that the item set σ(v) is
given as a list for each v ∈ V , and that every i ∈ I appears in at least one list. Then the
input size is Ω(n+m+ q). Theorem 6 yields a strongly polynomial-delay algorithm for the
connector enumeration problem as follows.

I Theorem 7. Given an instance (G = (V,E), I, σ), we can enumerate all connectors in
O(q2(n+m)n) time delay and in O((q+n+m)n) space, where n = |V |, m = |E| and q = |I|.

Proof. The connector enumeration problem for (G, I, σ) is solved by enumerating all solutions
for the instance (V, CG, I, σ), where CG denotes the family of connected components that
was introduced in Section 2. For the transitive system (V, CG), we see that θi,t = O(n+m),
i = 1, 2, θi,s = O(n + m), i = 1, 2, and δ(Y) = O(|Y |) = O(n). By Theorem 6, we can
enumerate all solutions in S in O(q2(n+m)n) time delay and in O((q+ n+m)n) space. J

5 Connectors under Various Connectivity Conditions

We consider enumerating connectors under various connectivity conditions such as the edge-
or vertex-connectivity. To treat this issue universally, we present a general method of
constructing a transitive system from a graph and a weight function on elements in the graph.
We assume that a given graph is undirected, but all the discussons can be extended to a
mixed graph (i.e., a graph containing directed edges as well as undirected edges).

K. Haraguchi and H. Nagamochi 3:9

5.1 Transitive System Based on k-Connectivity
Let R+ denote the set of non-negative reals. For a function f : A→ R+ and a subset B ⊆ A,
we let f(B) denote

∑
a∈B f(a).

We assume that the graph G = (V,E) may have multiple edges but no self-loops. For two
vertices u, v ∈ V , let E(u, v) denote the set of edges between u and v. For two non-empty
subsets X,Y ⊆ V , let E(X;Y) ,

⋃
u∈X,v∈Y E(u, v). For two vertices s, t ∈ V , an s, t-cut

C is defined to be an ordered pair (S, T) of disjoint subsets S, T ⊆ V such that s ∈ S and
t ∈ T , and the element set ε(C) of C (ε(S, T) of (S, T)) is defined to be a union F ∪ R of
the edge subset F = E(S, T) and the vertex subset R = V \ (S ∪ T), where R = ∅ is allowed.

We define a meta-weight function on G to be ω : 2V × (V ∪ E) → R+. For each
subset X ∈ 2V , we denote w(X, a), a ∈ V ∪ E as a function ωX : V ∪ E → R+ such that
ωX(a) = ω(X, a) for each a ∈ V ∪ E. We call ω monotone if, for any subsets X ⊆ Y ⊆ V ,
ωY (a) ≥ ωX(a) holds for any a ∈ V ∪ E.

For two vertices s, t ∈ V and a subset X ⊆ V , define µ(s, t;X) , min{ωX(ε(C)) |
s, t-cuts C = (S, T) in G}. We call a vertex subset X ⊆ V k-connected if |X| = 1 or
µ(u, v;X) ≥ k for each pair of vertices u, v ∈ X.

I Lemma 8. Let (G,ω) be an undirected mixed graph with a monotone meta-weight function,
and k ≥ 0. For two k-connected subsets X,Y ⊆ V such that ωX∩Y (X ∩ Y) ≥ k, the subset
X ∪ Y is k-connected.

Proof. To derive a contradiction, assume that X ∪ Y is not k-connected; i.e., |X ∪ Y | ≥ 2
and some vertices s, t ∈ X ∪ Y admits an s, t-cut C = (S, T) with ωX∪Y (ε(C)) < k. By
the monotonicity of ω, it holds that ωX∪Y (a) ≥ ωX(a), ωY (a) for any element a ∈ V ∪ E.
Hence ωX∪Y (ε(C)) < k implies ωX(ε(C)) < k and ωY (ε(C)) < k. Since each of X and Y is
k-connected, we see that neither of s, t ∈ X and s, t ∈ Y occurs. Without loss of generality
assume that s ∈ X \ Y and t ∈ Y \ X. If a vertex v ∈ X ∩ Y belongs to T (resp., S),
then C would be an s, v-cut with s, v ∈ X (resp., v, t-cut with v, t ∈ Y), contradicting the
k-connectivity of X (resp., Y). Hence for the set R = V \(S∪T), it holds X∩Y ⊆ R. By the
assumption of X ∩ Y , we have k ≤ ωX∩Y (X ∩ Y) ≤ ωX∩Y (R) ≤ ωX∪Y (R) ≤ ωX∪Y (ε(C)).
This, however, contradicts ωX∪Y (ε(C)) < k. J

For a graph (G,ω) with a meta-weight function and a real k ≥ 0, let C(G,ω, k) ⊆ 2V
denote the family of k-connected subsets X ⊆ V with ωX(X) ≥ k.

I Lemma 9. For an undirected graph (G,ω) with a monotone meta-weight function and a
real k ≥ 0, let C = C(G,ω, k). Then C is transitive.

Proof. Let Z,X, Y ∈ C such that Z ⊆ X∩Y , where ωX∪Y (X∪Y) ≥ ωX∪Y (Z) ≥ ωZ(Z) ≥ k.
By ωZ(Z) ≥ k and Lemma 8, X ∪ Y is k-connected. Since ωX∪Y (X ∪ Y) ≥ k, it holds that
X ∪ Y ∈ C. Therefore C is transitive. J

5.2 Construction of Monotone Meta-weight Functions
For a graph G = (V,E), let w : V ∪ E → R+ be a weight function. We define a coefficient
function to be γ = (α, β) that consists of functions α : E → R+ and β : V ∪ E → R+. We
call γ monotone if 1 ≥ α(e) ≥ β(e) for each edge e ∈ E and 1 ≥ β(v) for each vertex v ∈ V .
We call a tuple (G,w, γ) a system, and define a meta-weight function ω : 2V × (V ∪E)→ R+
to the system so that, for each subset X ⊆ V , ωX : V ∪ E → R+ is given by

ISAAC 2019

3:10 Enumeration of Connectors

ωX(v) =
{

w(v) if v ∈ X,
β(v)w(v) if v ∈ V \X, ωX(e) =

w(e) if e ∈ E(X;X),

α(e)w(e) if e ∈ E(X;V \X),
β(e)w(e) if e ∈ E(V \X;V \X).

We call a system (G,w, γ) monotone if γ is monotone.

I Lemma 10. For a monotone system (G,w, γ), the corresponding meta-weight function
ω : 2V × (V ∪ E)→ R+ is monotone.

We omit the proof (Appendix E).
For a system (G,w, γ) on a graph G with n vertices and m edges and a real k ≥ 0, let

τ(n,m, k) and σ(n,m, k) denote the time and space complexities for testing if µ(u, v;X) < k

holds or not for two vertices u, v ∈ V and a subset X ⊆ V .

I Lemma 11. For a monotone tuple (G,w, γ), let ω be the corresponding monotone meta-
weight function.
(i) τ(n,m, k) = O(mn logn) and σ(n,m, k) = O(n+m); and
(ii) Let X ⊆ Y ⊆ V be non-empty subsets such that ωX(X) ≥ k and µ(u, u′;Y) ≥ k for all

vertices u, u′ ∈ X. Given a vertex t ∈ Y \X, whether there is a vertex u ∈ X such that
µ(u, t;Y) < k or not can be tested in τ(n,m, k) time and σ(n,m, k) space.

We omit the proof (Appendix F).
We denote by C(G,w, γ, k) the family of k-connected sets X with ωX(X) ≥ k in a system

(G,w, γ). We consider how to construct oracles L1 and L2 to the system. For two non-empty
subsets X ⊆ Y ⊆ V , let Cmax(Y) denote the family of maximal subsets Z ∈ C(G,w, γ, k)
such that Z ⊆ Y , and let Ck(X;Y) denote a maximal set X∗ ∈ Cmax(Y) such that X ⊆ X∗;
and Ck(X;Y) , ∅ if no such set X∗ exists.

I Lemma 12. For a monotone system (G,w, γ), let ω denote the corresponding monotone
meta-weight function. Let X ⊆ Y ⊆ V be non-empty subsets such that ωX(X) ≥ k. Then
(i) Ck(X;Y) is uniquely determined;
(ii) If there are vertices u ∈ X and v ∈ Y such that µ(u, v;Y) < k, then v 6∈ X∗;
(iii) Assume that µ(u, v;Y) ≥ k for all vertices u ∈ X and v ∈ Y \X. Then Ck(X;Y) = Y

if µ(u, u′;Y) ≥ k for all vertices u, u′ ∈ X; and Ck(X;Y) = ∅ otherwise; and
(iv) Finding Ck(X;Y) can be done in O(|Y |2τ(n,m, k)) time and O(σ(n,m, k) + |Y |) space.

Proof. We omit the proofs for (i) to (iii) (Appendix G). For (iv), we can find Ck(X;Y)
as follows. Based on (ii), we first remove the set Z of all vertices v ∈ Y \ X such that
µ(u, v;Y) < k for some vertex u ∈ X so that Ck(X;Y) = Ck(X;Y ′) for Y ′ = Y \ Z. For a
fixed vertex t ∈ Y \X, we can test if there is a vertex u ∈ X such that µ(u, t;Y) < k or
not in O(τ(n,m, k)) time and O(σ(n,m, k)) space by Lemma 11(ii). Hence finding such a
set Z takes O(|Y \X|τ(n,m, k)) time and O(σ(n,m, k) + |Z|) space. We repeat the above
procedure until there is no pair of vertices u ∈ X and v ∈ Y ′ \X after executing at most
|Y \X| repetitions taking O(|Y \X|2τ(n,m, k)) time and O(σ(n,m, k) + |Y \X|) space.

Based on (iii), we finally conclude that Ck(X;Y) = Y ′ (Ck(X;Y) = ∅) if there is no pair of
vertices u, u′ ∈ X such that µ(u, u′;Y ′) < k (resp., otherwise), which takes O(|X|2τ(n,m, k))
time and O(σ(n,m, k)) space by Lemma 11(i).

An entire algorithm is described in Algorithm 5. The time and space complexities are
then O(|Y |2τ(n,m, k)) time and O(σ(n,m, k) + |Y |), respectively. J

K. Haraguchi and H. Nagamochi 3:11

Algorithm 5 Maximal(X;Y): Finding the maximal set in C(G,w, γ, k) that contains a
specified set.

Input :A monotone system (G,w, γ), a real k ≥ 0, and non-empty subsets
X ⊆ Y ⊆ V such that ωX(X) ≥ k

Output :Ck(X;Y)
1 Y ′ := Y ;
2 while there are vertices u ∈ X and t ∈ Y ′ \X such that µ(u, t;Y ′) < k do
3 Z := {t ∈ Y ′ \X | µ(u, t;Y ′) < k for some u ∈ X};
4 Y ′ := Y ′ \ Z
5 if µ(u, u′;Y ′) ≥ k for all vertices u, u′ ∈ X then
6 Output Y ′ as Ck(X;Y)
7 else
8 Output ∅ as Ck(X;Y)

By the lemma, oracle L1(X;Y) to a monotone system (G,w, γ) runs in θ1,t = O(|Y |2τ(n,
m, k)) time and θ1,s = O(σ(n,m, k) + |Y |) space.

For a system (G,w, γ), we define a k-core of a subset Y ⊆ V to be a subset Z of Y such
that ωZ(Z) ≥ k and any proper subset Z ′ of Z satisfies ωZ′(Z ′) < k.

I Lemma 13. Let (G,w, γ) be a monotone system, and Y be a subset of V . For the
family K of all k-cores of Y , it holds that Cmax(Y) =

⋃
Z∈K{Ck(Z;Y)} and |Cmax(Y)| ≤

|K|. Given K, Cmax(Y) can be obtained in O(|K|(|Y |2τ(n,m, k) + |Y | log |K|)) time and
O(σ(n,m, k) + |K| · |Y |) space.

Proof. Clearly each set X ∈ Cmax(Y) satisfies ωX(X) ≥ k and contains a k-core Z ∈ K,
where Ck(Z;Y) 6= ∅ and Ck(Z;Y) = X holds by the uniqueness in Lemma 12(i). Therefore
Cmax(Y) =

⋃
Z∈K{Ck(Z;Y)}, from which |Cmax(Y)| ≤ |K| follows. Given K, we compute

Ck(Z;Y) for each set Z ∈ K taking O(|Y |2τ(n,m, k)) time and O(σ(n,m, k) + |Y |) space
by Lemma 12(iv). We can test if the same set X ∈ Cmax(Y) has been generated or
not in O(|Y | log |K|) time and O(|K| · |Y |) space. Therefore X can be constructed in
O(|K|(|Y |2τ(n,m, k) + |Y | log |K|)) time and O(σ(n,m, k) + |K| · |Y |) space. J

By the lemma, oracle L2(Y) to a monotone system (G,w, γ) runs in θ2,t = O(|K|(|Y |2τ(n,
m, k) + |Y | log |K|)) time and θ2,s = O(σ(n,m, k) + |K| · |Y |) space, where we assume that
the family K of k-cores of Y is given as input.

For s, t ∈ V , we denote by λ(s, t;G) denote the minimum size |F | of a subset F ⊆ E

so that the graph G− F obtained from G by removing edges in F has no path between s
and t. A graph G is called k-edge-connected if |V (G)| ≥ 1 and λ(u, v;G) ≥ k for any two
vertices u, v ∈ X. Below we describe how we enumerate connnectors X such that G[X] is
k-edge-connected. We can apply our framework to enumeration of connectors under other
connectivity conditions (e.g., k-vertex-connectivity) in the same way.

I Theorem 14. Let (G, I, σ) be an instance and k ≥ 0 be an integer, where G = (V,E) is
either a digraph or an undirected graph, n = |V |, m = |E|, and q = |I|. We can enumerate all
connectors such that the induced subgraphs are k-edge-connected in O(min{k + 1, n}q2n3m)
time delay and in O(qn+ n3) space.

ISAAC 2019

3:12 Enumeration of Connectors

Proof. Let (G,w, γ, k) be a system that consists of a graph G, a weight function w and a
coefficient function γ = (α, β) such that α(e) := 0, e ∈ E(G), and β(a) := 0, a ∈ V (G)∪E(G).
We see that γ is monotone and the family C(G,w, γ, k) is transitive by Lemmas 9 and 10.
Set w so that w(e) := 1, e ∈ E(G) and w(v) := k, v ∈ V (G). Then we see that C(G,w, γ, k)
is identical to the family of connectors X such that G[X] is k-edge-connected.

Whether µ(s, t;X) ≥ k or not can be tested in O(min{k, n}m) time [1, 2]. By
Lemma 12(iv), L1(X;Y) runs in O(|Y |2 min{k + 1, n}m) time and O(n2) space. The family
K of k-cores Z ⊆ Y is {{v} | v ∈ Y }. By Lemma 13, |Cmax(Y)| ≤ |K| ≤ |Y | and L2(Y) runs
in O(|Y |3 min{k + 1, n}m) time and O(n2) space.

By Lemma 12(iv) and Lemma 13, we have θ1,t = O(min{k+ 1, n}n2m), θ2,t = O(min{k+
1, n}n3m), and θ1,s = θ2,s = O(n2), where we can set δ(Y) = n for any Y ⊆ V . The time
delay and space complexity follow by Theorem 6. J

6 Concluding Remarks

In this paper, we proposed a polynomial delay algorithm for the connector enumeration
problem. We treated the problem on what we call a transitive system and proposed an
algorithm for enumerating all solutions in the system (Algorithms 3 and 4 in Section 4). We
also presented how to treat connectors that satisfy various connectivity conditions.

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Optimization, volume 1 of

Handbooks in Management Science and Operations Research, chapter Network Flows (IV),
pages 211–369. North-Holland, 1989.

2 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1993.

3 David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied Mathematics,
65(1):21–46, 1996.

4 Kazuya Haraguchi, Yusuke Momoi, Aleksandar Shurbevski, and Hiroshi Nagamochi. COOMA:
a components overlaid mining algorithm for enumerating connected subgraphs with common
itemsets. Journal of Graph Algorithms and Applications, 23(2):434–458, 2019. doi:10.7155/
jgaa.00497.

5 Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An Apriori-Based Algorithm for
Mining Frequent Substructures from Graph Data. In Djamel A. Zighed, Jan Komorowski, and
Jan Żytkow, editors, Principles of Data Mining and Knowledge Discovery, pages 13–23, 2000.
doi:10.1007/3-540-45372-5_2.

6 Shin-ichi Nakano and Takeaki Uno. Efficient Generation of Rooted Trees. Technical Report
NII-2003-005E, National Institute of Informatics, July 2003.

7 Zeev Nutov. Listing minimal edge-covers of intersecting families with applications to con-
nectivity problems. Discrete Applied Mathamatics, 157(1):112–117, 2009. doi:10.1016/j.dam.
2008.04.026.

8 Shingo Okuno. Parallelization of Graph Mining using Backtrack Search Algorithm. PhD thesis,
Kyoto University, 2017. doi:10.14989/doctor.k20518.

9 Shingo Okuno, Tasuku Hiraishi, Hiroshi Nakashima, Masahiro Yasugi, and Jun Sese. Parallel-
ization of Extracting Connected Subgraphs with Common Itemsets. Information and Media
Technologies, 9(3):233–250, 2014. doi:10.11185/imt.9.233.

10 Shingo Okuno, Tasuku Hiraishi, Hiroshi Nakashima, Masahiro Yasugi, and Jun Sese. Reducing
Redundant Search in Parallel Graph Mining Using Exceptions. In 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 328–337, 2016.
doi:10.1109/IPDPSW.2016.136.

https://doi.org/10.7155/jgaa.00497
https://doi.org/10.7155/jgaa.00497
https://doi.org/10.1007/3-540-45372-5_2
https://doi.org/10.1016/j.dam.2008.04.026
https://doi.org/10.1016/j.dam.2008.04.026
https://doi.org/10.14989/doctor.k20518
https://doi.org/10.11185/imt.9.233
https://doi.org/10.1109/IPDPSW.2016.136

K. Haraguchi and H. Nagamochi 3:13

11 Mio Seki and Jun Sese. Identification of active biological networks and common expression
conditions. In 2008 8th IEEE International Conference on BioInformatics and BioEngineering,
pages 1–6, 2008.

12 Jun Sese, Mio Seki, and Mutsumi Fukuzaki. Mining Networks with Shared Items. In Proceedings
of the 19th ACM International Conference on Information and Knowledge Management (CIKM
’10), pages 1681–1684, 2010.

13 Emanuel Sperner. Ein Satz über Untermengen einer endlichen Menge. Mathematische
Zeitschrift, 27(1):544–548, 1928. doi:10.1007/BF01171114.

14 Takeaki Uno. Two general methods to reduce delay and change of enumeration algorithms.
Technical Report NII-2003-004E, National Institute of Informatics, April 2003.

15 Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern mining. In Proceedings
of 2002 IEEE International Conference on Data Mining (ICDM ’02), pages 721–724, 2002.

A Proof of Lemma 3

Proof. Let T ′ = C(S; Iσ(T)) ∈ Cmax(V〈Iσ(T)〉), where S ⊆ T ⊆ V〈Iσ(T)〉. The uniqueness
of maximal component T ′ = C(S; Iσ(T)) by Lemma 1 indicates T ⊆ T ′. To derive a
contradiction, assume that T (T ′. By Lemma 2(i), T ′ ∈ Cmax(V〈Iσ(T)〉) is a solution. Since
T and T ′ are solutions with T (T ′, it must hold that Iσ(T)) Iσ(T ′), implying that
V〈Iσ(T)〉 6⊇ T ′, a contradiction. Therefore we have T = T ′. J

B Complexity Analysis of Lemma 4 (ii)

Proof. Let us mention critical parts in terms of time complexity analysis. In line 1, it takes
O(qn) time to compute Iσ(S). The for-loop from line 3 to 4 is repeated O(q) times. In
line 4, the oracle L1(S, V〈J∪{ij}〉) is called to obtain a component Z = C(S; J ∪ {ij}) and
whether S = Z or not is tested. This takes O(θ1,t + n) time. The overall running time is
O(q(n+ θ1,t)). It takes O(q) space to store Iσ(S) and J , and O(n) space to store S and Z.
An additional O(θ1,s) space is needed for the oracle L1. J

C Complexity Analysis of Lemma 5 (ii)

Proof. Now we analyze the time and space complexities of the algorithm. Note that T
may have no children. The outer for-loop is repeated O(q) times. Computing C(T ∩ V〈j〉)
in line 2 takes θ2,t time by calling the oracle L2. The inner for-loop is repeated at most
δ(T ∩ V〈j〉) times for each j, and the most time-consuming part of the inner for-loop is
algorithm Parent(S) in line 5, which takes O(q(n + θ1,t)) time by Lemma 4(ii). Recall
that δ is a non-decreasing function. Then the running time of algorithm Children(T, k) is
evaluated by

O
(
qθ2,t + q(n+ θ1,t)

∑
j∈[k+1,q]\Iσ(T)

δ(T ∩ V〈j〉)
)

= O
(
qθ2,t + q2(n+ θ1,t)δ(T)

)
.

For the space complexity, we do not need to share the space between iterations of the
outer for-loop. In each iteration, we use the oracle L2 and algorithm Parent(S), whose
space complexity is O(q + n+ θ1,s) by Lemma 4(ii). Then algorithm Children(T, k) uses
O(q + n+ θ1,s + θ2,s) space. J

ISAAC 2019

https://doi.org/10.1007/BF01171114

3:14 Enumeration of Connectors

D Proof of Theorem 6

Proof. First we analyze the time delay. Let α denote the time complexity required for a single
run of Children(T, k). By Lemma 5(ii) and δ(T) ≤ δ(V〈k〉), we have α = O

(
qθ2,t + q2(n+

θ1,t)δ(V〈k〉)
)
. Hence we see that the time complexity of Algorithm 3 and Descendants

without including recursive calls is O(α).
From Algorithm 3 and Descendants, we observe:

(i) When d is odd, the solution S for any call Descendants(S, k, d+ 1) is output immedi-
ately before Descendants(S, k, d+ 1) is executed; and

(ii) When d is even, the solution S for any call Descendants(S, k, d + 1) is output
immediately after Descendants(S, k, d+ 1) is executed.

Letm denote the number of all calls of Descendants during a whole execution of Algorithm 3.
Let d1 = 1, d2, . . . , dm denote the sequence of depths d in each Descendants(S, k, d + 1)
of the m calls. Note that d = di satisfies (i) when di+1 is odd and di+1 = di + 1, whereas
d = di satisfies (ii) when di+1 is even and di+1 = di − 1. Therefore we easily see that during
three consecutive calls with depth di, di+1 and di+2, at least one solution will be output.
This implies that the time delay for outputting a solution is O(α).

We analyze the space complexity. Observe that the number of calls Descendants
whose executions are not finished during an execution of Algorithm 3 is the depth d of the
current call Descendants(S, k, d+ 1). In Algorithm 4, |T |+ d ≤ n+ 1 holds initially, and
Descendants(S, k, d+ 1) is called for a nonempty subset S (T , where |S| < |T |. Hence
|S|+ d ≤ n+ 1 holds when Descendants(S, k, d+ 1) is called. Then Algorithm 3 can be
implemented to run in O(nβ) space, where β denotes the space required for a single run of
Children(T, k). We have β = O(q+ n+ θ1,s + θ2,s) by Lemma 5(ii). Then the overall space
complexity is O

(
(q + n+ θ1,s + θ2,s)n

)
. J

E Proof of Lemma 10

Proof. Let X ⊆ Y ⊆ V . To prove ωY (A) ≥ ωX(A) for any set A ⊆ V ∪ E, it suffices to
show that ωY (a) ≥ ωX(a) for any element a ∈ V ∪ E. For each vertex v ∈ V , we see that
ωY (v) = ωX(v) + |{v} ∩ (Y \X)|(1− β(v))w(v) ≥ ωX(v). For each edge e ∈ E, we see that
ωY (e) = ωX(e) + ∆|V (e) ∩ (Y \X)|w(e) ≥ ωX(e), where ∆ is one of 1− α(e), α(e)− β(e),
and (1− β(e))/2. J

F Proof of Lemma 11

Proof.
(i) The problem of computing µ(u, v;X) can be formulated as a problem of finding a

maximum flow in a graph (G,ωX) with an edge-capacity ωX(e), e ∈ E and a vertex-
capacity ωX(v), v ∈ V , and µ(u, v;X) can be computed in O(mn logn) time and
O(n + m) space by using the maximum flow algorithm [1, 2]. Hence τ(n,m, k) =
O(mn logn) and σ(n,m, k) = O(n+m).

(ii) Let t ∈ Y \X. To find a vertex u ∈ X with µ(u, t;Y) < k if any by using (i) only once,
we augment the weighted graph (G,ωY) into (G∗, ωY) with a new vertex s∗ and |X|
new directed edges eu = (s∗, u), u ∈ X such that ωY (eu) := k. We denote by V (G)
and V (G∗) the vertex sets of G and G∗, respectively. We claim that µ(s∗, t;Y) ≥ k if
and only if µ(u, t;Y) ≥ k, ∀u ∈ X.

K. Haraguchi and H. Nagamochi 3:15

First consider the case of µ(s∗, t;Y) < k in (G∗, ωY); i.e., (G∗, ωY) has an s∗, t-cut
C∗ = (S, T) with ωY (ε(C∗)) < k, where s∗ ∈ S and t ∈ T . Let R = V (G∗) \ (S ∪ T),
where R = V (G) \ (S ∪ T). Note that X ⊆ S ∪ R, since otherwise u ∈ T ∩ X
would mean that eu = (s∗, u) ∈ E(S, T) and ωY (ε(C∗)) ≥ ωY (eu) = k, contradicting
that ωY (ε(C∗)) < k. Also S ∩ X 6= ∅, since otherwise X ⊆ R would mean that
ωY (ε(C∗)) ≥ ωY (R) ≥ ωX(X) ≥ k, contradicting that ωY (ε(C∗)) < k. Let u ∈ S ∩X.
Then C = (S \ {s∗}, T) is a u, t-cut in (G,ωY) with ωY (ε(C)) ≤ ωY (ε(C∗)) < k. This
means that µ(u, t;Y) < k.
Next consider the case of µ(s∗, t;Y) ≥ k in (G∗, ωY). In this case, we show that
µ(u, t;Y) ≥ k for all u ∈ X. To derive a contradiction, assume that µ(u, t;Y) < k for
some vertex u ∈ X; i.e., (G,ωY) has a u, t-cut C = (S, T) with ωY (ε(C)) < k. Note
that T ∩ X = ∅, since otherwise u′ ∈ T ∩ X would contradict the assumption that
µ(u, u′;Y) ≥ k holds for u, u′ ∈ X. Then C ′ = (S′ = S ∪ {s∗}, T) is an s∗, t-cut in
(G∗, ωY), and satisfies ωY (ε(C ′)) = ωY (ε(C)) < k since T ∩ X = ∅. This, however,
contradicts that µ(s∗, t;Y) ≥ k holds in (G∗, ωY).
By the claim, it suffices to test if µ(s∗, t;Y) ≥ k or not in τ(n,m, k) time and
σ(n,m, k) space. J

G Proof of Lemma 12

Proof.
(i) To derive a contradiction, assume that there are two maximal sets X1, X2 ∈ Cmax(Y)

such that X ⊆ X1∩X2. From this and the monotonicity of ω, it holds that ωX1∪X2(X1∪
X2) ≥ ωX1∩X2(X1 ∩ X2) ≥ ωX(X) ≥ k. From this and Lemma 8, X1 ∪ X2 is also
k-connected and X1 ∪ X2 ∈ Cmax(Y), contradicting the maximality of X1 and X2.
Therefore Ck(X;Y) is unique.

(ii) When Ck(X;Y) = ∅, v 6∈ Ck(X;Y) is trivial. Assume that Ck(X;Y) = X∗ ∈ Cmax(Y).
By the monotonicity of ω and X∗ ⊆ Y , it holds that µ(u, v;X∗) ≤ µ(u, v;Y) < k.
Hence u, v ∈ X∗ would contradict the k-connectivity of X∗. Since u ∈ X∗, we have
v 6∈ X∗.

(iii) Obviously if µ(u, u′;Y) < k for some vertices u, u′ ∈ X, then no subset Y ′ of Y with
X ⊆ Y ′ can be k-connected, and Ck(X;Y) = ∅. Assume that µ(u, u′;Y) ≥ k for all
vertices u, u′ ∈ X. By the monotonicity of ω and X ⊆ Y , it holds that ωY (Y) ≥
ωX(X) ≥ k. To prove that Ck(X;Y) = Y , it suffices to show that µ(u, v;Y) ≥ k for
all pairs of vertices u, v ∈ Y . By assumption, µ(u, v;Y) ≥ k for all vertices u ∈ X and
v ∈ Y . To derive a contradiction, assume that there is a pair of vertices s, t ∈ Y \X
with µ(s, t;Y) < k; i.e., there is an s, t-cut C = (S, T) with ωY (ε(C)) < k. Let
R = V \ (S ∪ T). We observe that X ⊆ R, since u ∈ X ∩ S (resp., u ∈ X ∩ T)
would imply that C is a u, t-cut (resp., s, u-cut), contradicting that µ(u, v;Y) ≥ k

for all vertices v ∈ Y \X. By the monotonicity of ω and X ⊆ R, it would hold that
k ≤ ωX(X) ≤ ωY (R) ≤ ωY (ε(C)) < k, a contradiction. J

ISAAC 2019

Top Tree Compression of Tries
Philip Bille
Technical University of Denmark, DTU Compute, Denmark
phbi@dtu.dk

Paweł Gawrychowski
University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Inge Li Gørtz
Technical University of Denmark, DTU Compute, Denmark
inge@dtu.dk

Gad M. Landau
University of Haifa, Israel
landau@cs.haifa.ac.il

Oren Weimann
University of Haifa, Israel
oren@cs.haifa.ac.il

Abstract
We present a compressed representation of tries based on top tree compression [ICALP 2013] that
works on a standard, comparison-based, pointer machine model of computation and supports efficient
prefix search queries. Namely, we show how to preprocess a set of strings of total length n over
an alphabet of size σ into a compressed data structure of worst-case optimal size O(n/ logσ n)
that given a pattern string P of length m determines if P is a prefix of one of the strings in time
O(min(m log σ,m+ logn)). We show that this query time is in fact optimal regardless of the size of
the data structure.

Existing solutions either use Ω(n) space or rely on word RAM techniques, such as tabulation,
hashing, address arithmetic, or word-level parallelism, and hence do not work on a pointer machine.
Our result is the first solution on a pointer machine that achieves worst-case o(n) space. Along
the way, we develop several interesting data structures that work on a pointer machine and are of
independent interest. These include an optimal data structures for random access to a grammar-
compressed string and an optimal data structure for a variant of the level ancestor problem.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases pattern matching, tree compression, top trees, pointer machine

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.4

Related Version Draft of full version available at https://arxiv.org/abs/1902.02187.

Funding Philip Bille: Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-
00178).
Inge Li Gørtz: Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178).
Oren Weimann: Supported by the Israel Science Foundation grant 592/17.

1 Introduction

A string dictionary compactly represents a set of strings S = S1, . . . , Sk to support efficient
prefix queries, that is, given a pattern string P determine if P is a prefix of some string in S.
Designing efficient string dictionaries is a fundamental data structural problem dating back
to the 1960’s. String dictionaries are a key component in a wide range of applications in
areas such as computational biology, data compression, data mining, information retrieval,
natural language processing, and pattern matching.

© Philip Bille, Paweł Gawrychowski, Inge Li Gørtz, Gad M. Landau, and Oren Weimann;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 4; pp. 4:1–4:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1120-5154
mailto:phbi@dtu.dk
https://orcid.org/0000-0002-6993-5440
mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-8322-4952
mailto:inge@dtu.dk
https://orcid.org/0000-0002-5684-0629
mailto:landau@cs.haifa.ac.il
https://orcid.org/0000-0002-4510-7552
mailto:oren@cs.haifa.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2019.4
https://arxiv.org/abs/1902.02187
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Top Tree Compression of Tries

A key challenge and the focus of most of the recent work is to design efficient compressed
string dictionaries, that take advantage of repetitions in the strings to minimize space,
while still supporting efficient queries. While many efficient solutions are known, they all
rely on powerful word-RAM techniques, such as tabulation, address arithmetic, word-level
parallelism, hashing, etc., to achieve efficient bounds. A natural question is whether or
not such techniques are necessary for obtaining efficient compressed string dictionaries or if
simpler and more basic computational primitives such as pointer-based data structures and
character comparison suffice.

In this paper, we answer this question to the affirmative by introducing a new compressed
string dictionary based on top tree compression that works on a standard comparison-based,
pointer machine model of computation. We achieve the following bounds: let n =

∑k
i=1 |Si|

be the total length of the strings in S, let σ be the size of the alphabet, and m be the
length of a query string P . Our compressed string dictionary uses O(n/ logσ n) space (space
is measured as the number of words and not bits, see discussion below) and supports
queries in O(min(m log σ,m + logn)) time. The space matches the information-theoretic
worst-case space lower bound, and we further show that the query time is optimal for any
comparison-based query algorithm regardless of the space. Compared to previous work our
string dictionary is the first o(n) space solution in this model of computation.

1.1 Computational Models
We consider three computational models. In the comparison-based model algorithms only
interact with the input by comparing elements. Hence they cannot exploit the internal
representation of input elements, e.g., for hashing or word-level parallelism. The comparison-
based model is a fundamental and well-studied computational model, e.g., in textbook
results for sorting [44], string matching [43], and computational geometry [53]. Modern
programming languages and libraries, such as the C++ standard template library, implement
comparison-based algorithms by supporting abstract and user-specified comparison functions
as function arguments. In our context, we say that a string dictionary is comparison-based if
the query algorithm can only access the input string P via single character comparisons of
the form P [i] ≤ c, where c is a character.

In the pointer machine model, a data structure is a directed graph with bounded out-
degree. Each node contains a constant number of data fields or pointer to other nodes
and algorithms must access the data structure by traversing the graph. Hence, a pointer
machine algorithm cannot implement random access structures such as arrays or perform
address arithmetic. The pointer machine captures linked data structures such as linked-
lists and search trees. The pointer machine model is a classic and well-studied model, see
e.g. [1, 20,21,36,59].

Finally, in the word RAM model of computation [35] the memory is an array of memory
words, that each contain a logarithmic number of bits. Memory words can be operated on
in unit-time using a standard set of arithmetic operations, boolean operations, and shifts.
The word RAM model is strictly more powerful than the comparison-based model and the
pointer-machine model and supports random access, hashing, address arithmetic, word-level
parallelism, etc. (these are not possible in the other models).

The space of a data structure in the word RAM model is the number of memory words
used and the space in the pointer machine model is the total number of nodes. To compare
the space of the models, we assume that each field in a node in the pointer machine stores
a logarithmic number of bits. Hence, the total number of bits we can represent in a given
space in both models is within a constant factor of each other.

P. Bille, P. Gawrychowski, I. L. Gørtz, G.M. Landau, and O. Weimann 4:3

1.2 Previous work

The classic textbook string dictionary solution, due to Fredkin [30] from 1960, is to store
the trie T of the strings in S and to answer prefix queries using a top-down traversal of T ,
where at each step we match a single character from P to the labels of the outgoing edges of
a node. If we manage to match all characters of P then P is a prefix of a string in S and
otherwise it is not.

Depending on the representation of the trie and the model of computation we can obtain
several combinations of space and time complexity. On a comparison-based, pointer machine
model of computation, we can store the outgoing edges of each in a biased search tree [14],
leading to an O(n) space solution with query time O(min(m log σ,m+ logn)).

We can compress this solution by merging maximal identical complete subtrees of T [27],
thus replacing T by a directed acyclic graph (DAG) D that represents T . This leads to a
solution with the same query time as above but using only O(d) space, where d is the size of
the smallest DAG D representing T . The size of D can be exponentially smaller than n, but
may not compress at all. Consider for instance the case where T is a single path of length n
where all edges have the same label (i.e., corresponding to a single string of the same letter).
Even though T is highly compressible (we can represent it by the label and the length of the
path) it does not contain any identical subtrees and hence its smallest DAG has size Ω(n).

Using the power of the word RAM model improved representations are possible. Benoit et
al. [13] and Raman et al. [54] gave succinct representations of tries that achieve O(n/ logσ n)
space and O(m) query time, thus simultaneously achieving optimal query time and matching
the worst-case information theoretic space lower bounds. These results rely on powerful
word RAM techniques to obtain the bounds, such as tabulation and hashing. Numerous trie
representations are known, see e.g., [4, 5, 6, 7, 8, 17,25, 33, 39,40, 52, 58,60, 61, 62], but these all
use word RAM techniques to achieve near optimal combinations of time and space.

Another approach is to compress the strings according to various measures of repetitiveness,
such as the empirical k-th order entropy [34,45,49,55], the size of the Lempel-Ziv parse [9,
15, 22, 31, 32, 41, 51], the size of the smallest grammar [23, 24, 31], the run-length encoded
Burrows-Wheeler transform, [46, 47, 48, 56], and others [5, 10, 11, 29, 50, 57]. The above
solutions are designed to support more general queries on the strings, but as noted by Ars
and Fischer [5] they are straightforward to adapt to prefix queries. For example, if z is size
of the Lempel-Ziv parse of the concatenation of the strings in S, the result of Christiansen
and Etienne [22] implies a string dictionary of size O(z log(n/z)) that supports queries in
time O(m+ logε n). Since z can be exponentially smaller than n, the space is significantly
improved on highly-compressible strings. Since z = O(n/ logσ n) in the worst-case, the space
is always O(n

logσ n
log(n

n/ logσ n
)) = O(n log logσ n

logσ n
) and thus almost optimal compared to the

information theoretic lower bound. Similar bounds are known for the other measures of
repetitiveness. As in the case of succinct representations of tries, all of these solutions use
word RAM techniques.

1.3 Our results

We propose a new compressed string dictionary that achieves the following bounds:

I Theorem 1. Let S be a set of strings of total length n over an alphabet of size σ. On a
comparison-based, pointer machine model of computation, we can construct a compressed
string dictionary that uses O(n/ logσ n) space and answer queries in O(min(m log σ,m+logn))
time.

ISAAC 2019

4:4 Top Tree Compression of Tries

Note that the space bound for Theorem 1 matches the information theoretic lower bound and
the time bound matches the classic linear space implementation of tries with biased search
trees. The result is the first o(n) space solution in this model of computation. Furthermore,
we show that this time bound is optimal.

I Theorem 2. For any n, m ≤ n, and σ ≥ 2, there exists a set S of strings of total length
n over an alphabet of size σ such that any comparison-based algorithm that checks if a given
pattern P of length m belongs to S needs to perform Ω(min(m log σ,m+ logn)) comparisons
in the worst case.

Note that Theorem 2 holds regardless of the space used, holds even for weaker membership
queries, and only assumes that the algorithm is a comparison-based algorithm. We note that
the upper bound holds on a pointer machine with comparisons and additions as arithmetic
operations, while the lower bound only assumes comparisons.

1.4 Techniques

In top tree compression [18] one transforms a labeled tree T into another tree T (called a
top tree) that is of height O(logn) and represents a hierarchical decomposition of T into
connected subgraphs (called clusters). Each cluster overlaps with other clusters in at most
two nodes. Every leaf in T corresponds to a cluster consisting of a single edge in T and
every internal node in T corresponds to a merge of two clusters. The top tree T is then
compressed using the classical DAG compression resulting in the top DAG TD. The top DAG
supports basic navigational queries on T in O(logn) time, has size O(n/ logσ n), can compress
exponentially better than DAG compression, and is never worse than DAG compression by
more than a O(logn) factor [16,18,28,38].

Our main technical contribution is implementing prefix search optimally on the top DAG.
To this end, we develop several optimal pointer machine data structures of independent
interest:

A data structure for the path extraction problem, that asks to compactly represent an
edge-labeled tree T such that given a node v we can efficiently return the labels on the
root-to-v path in T . While an optimal solution for this problem can be obtained by
plugging in known tools, more specifically a fully persistent queue [37], we believe that
our self-contained solution is simpler and elegant.
A data structure for the weighted level ancestor problem, that asks to compactly represent
an edge-weighted tree T such that given a node v and a positive number x we can
efficiently return the rootmost ancestor of v whose distance from the root is at least x.
An immediate implication of our weighted level ancestor data structure is an optimal data
structure for the random access problem on grammar compressed strings. This improves
a SODA’11 result [19] that required word RAM bit tricks.
A data structure for the spine path extraction problem, that asks to compactly represent
a top-tree compression TD such that given a cluster C we can efficiently return the
characters of the unique path between the two boundary nodes of C.
For the lower bound, we show that any algorithm that given a string P [1,m] checks if∑m
i=1 P [i] = 0 (mod 2) needs to perform Ω(m log σ) comparisons in the worst case. We

then show that when n ≥ mσm this implies the Ω(m log σ) bound for our problem and
when n < mσm it implies the Ω(m+ logn) bound for our problem.

P. Bille, P. Gawrychowski, I. L. Gørtz, G.M. Landau, and O. Weimann 4:5

1.5 Roadmap
In Section 2 we recall top trees and how a top tree of a tree T is obtained by merging
(either vertically or a horizontally) the top trees of two subtrees of T that overlap on a single
node. In Section 3 we present a simple randomized Monte-Carlo word RAM solution to the
compressed string indexing problem that is the basis of our deterministic pointer machine
solutions in the following sections. The solution is based on top trees and efficiently handles
horizontal merges (deterministically) and vertical merges (randomized Monte-Carlo). In
Section 4 we show how to handle vertical merges deterministically on a pointer machine, and
in Section 5 we show that this suffices to achieve the O(m+ logn) query time in Theorem 1.
We show a different way to handle vertical merges in Section 6 and horizontal merges in
Section 7. In Section 8 we show that these suffice to achieve the O(m log σ) query time in
Theorem 1. Due to space constraints we defer the details of the lower bound and all proofs
to the full version of the paper.

2 Preliminaries

In this section we briefly review Karp-Rabin fingerprints [42], top trees [3], and top tree
compression [18].

2.1 Karp-Rabin Fingerprints
The Karp-Rabin fingerprint [42] of a string x is defined as φ(x) =

∑|x|
i=1 x[i] · ci mod p,

where c is a randomly chosen positive integer, and 2N c+4 ≤ p ≤ 4N c+4 is a prime. Karp-
Rabin fingerprints guarantee that given two strings x and y, if x = y then φ(x) = φ(y).
Furthermore, if x 6= y, then with high probability φ(x) 6= φ(y). Fingerprints can be composed
and subtracted as follows.

I Lemma 3. Let x = yz be a string decomposable into a prefix y and suffix z. Given any two
of the Karp-Rabin fingerprints φ(x), φ(y) and φ(z), it is possible to calculate the remaining
fingerprint in constant time.

2.2 Clustering
Let v be a node in T with children v1, . . . , vk in left-to-right order. Define T (v) to be the
subtree induced by v and all proper descendants of v. Define F (v) to be the forest induced by
all proper descendants of v. For 1 ≤ s ≤ r ≤ k let T (v, vs, vr) be the connected component
induced by the nodes {v} ∪ T (vs) ∪ T (vs+1) ∪ · · · ∪ T (vr).

A cluster with top boundary node v is a connected component of the form T (v, vs, vr),
1 ≤ s ≤ r ≤ k. A cluster with top boundary node v and bottom boundary node u is a
connected component of the form T (v, vs, vr) \ F (u), 1 ≤ s ≤ r ≤ k, where u is a node in
T (vs)∪ · · ·∪T (vr). We denote the top boundary node of a cluster C by top(C). Clusters can
therefore have either one or two boundary nodes. For example, let p(v) denote the parent
of v then a single edge (v, p(v)) of T is a cluster where p(v) is the top boundary node. If v
is a leaf then there is no bottom boundary node, otherwise v is a bottom boundary node.
Nodes that are not boundary nodes are called internal nodes. The path between the top and
bottom boundary nodes in a cluster C is called the cluster’s spine, and the string obtained
by concatenating the labels on the spine from top to bottom is denoted spine(C).

Two edge disjoint clusters A and B whose vertices overlap on a single boundary node can
be merged if their union C = A ∪B is also a cluster. There are five ways of merging clusters
(see Figure 1). Merges of type (a) and (b) are called vertical merges (C is then a vertical

ISAAC 2019

4:6 Top Tree Compression of Tries

(a) (b)

(c) (e)(d)

Figure 1 Five ways of merging clusters. The • nodes are boundary nodes that remain boundary
nodes in the merged cluster. The ◦ nodes are boundary nodes that become internal (non-boundary)
nodes in the merged cluster. Note that in the last four merges at least one of the merged clusters
has a top boundary node but no bottom boundary node.

cluster) and can be done only if the common boundary node is not a boundary node of any
other cluster except A and B. Merges of type (c),(d), and (e) are called horizontal merges
(C is then a horizontal cluster) and can be done only if at least one of A or B does not have
a bottom boundary node.

2.3 Top Trees
A top tree T of T is a hierarchical decomposition of T into clusters. It is an ordered, rooted,
labeled, and binary tree defined as follows (see Figure 2(a)–(c)).

The nodes of T correspond to clusters of T .
The root of T corresponds to the cluster T itself. The top boundary node of the root of
T is the root of T .
The leaves of T correspond to the edges of T . The label of each leaf is the label of the
corresponding edge (u, v) in T .
Each internal node of T corresponds to the merged cluster of its two children. The label
of each internal node is the type of merge it represents (out of the five merging options).
The children are ordered so that the left child is the child cluster visited first in a preorder
traversal of T .

I Lemma 4 (Alstrup et al. [3]). Given a tree T of size nT , we can construct in O(nT) time
a top tree T of T that is of size O(nT) and height O(lognT).

2.4 Top Dags
Every labeled tree can be represented with a directed acyclic graph (DAG) by identifying
identical rooted subtrees and replacing them with a single copy. The top DAG of T , denoted
TD, is the minimal DAG representation of the top tree T of T . We can compute it in
O(nT) time from T [27]1. Top DAGs have important properties for compression and
computation [16,18,28,38]. We need the following optimal worst-case compression bound.

I Lemma 5 (Dudek and Gawrychowski [28]). Given an ordered tree with nT nodes over
an alphabet of size σ, we can construct a top DAG TD in O(nT) time of size nTD =
O(nT / logσ nT).

1 Here we use edge labels instead of nodes label. The two definitions are equivalent and edge labels are
more natural for tries.

P. Bille, P. Gawrychowski, I. L. Gørtz, G.M. Landau, and O. Weimann 4:7

(c)
<latexit sha1_base64="vZCAZ+pJxKG9QblqDBepXZNFbU8=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q7HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4bhjTw=</latexit><latexit sha1_base64="vZCAZ+pJxKG9QblqDBepXZNFbU8=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q7HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4bhjTw=</latexit><latexit sha1_base64="vZCAZ+pJxKG9QblqDBepXZNFbU8=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q7HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4bhjTw=</latexit><latexit sha1_base64="vZCAZ+pJxKG9QblqDBepXZNFbU8=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q7HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4bhjTw=</latexit>

(d)
<latexit sha1_base64="kAB7LveGU8jfRCmkTCpxS3KP4ew=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbDbt0s0m7E6EUvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78wapFAZd99spbGxube8Ud0t7+weHR+Xjk7ZJMs14iyUy0d2AGi6F4i0UKHk31ZzGgeSdYHw7r3eeuDYiUY84Sbkf06ESkWAUrfVQDS8H5Ypbcxci6+DlUIFczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7FhWNufGni1Vn5MI6IYkSbZ9CsnB/T0xpbMwkDmxnTHFkVmtz879aL8Poxp8KlWbIFVt+FGWSYELmd5NQaM5QTixQpoXdlbAR1ZShTadkQ/BWT16Hdr3mWb6vVxpXeRxFOINzqIIH19CAO2hCCxgM4Rle4c2Rzovz7nwsWwtOPnMKf+R8/gCIZo09</latexit><latexit sha1_base64="kAB7LveGU8jfRCmkTCpxS3KP4ew=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbDbt0s0m7E6EUvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78wapFAZd99spbGxube8Ud0t7+weHR+Xjk7ZJMs14iyUy0d2AGi6F4i0UKHk31ZzGgeSdYHw7r3eeuDYiUY84Sbkf06ESkWAUrfVQDS8H5Ypbcxci6+DlUIFczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7FhWNufGni1Vn5MI6IYkSbZ9CsnB/T0xpbMwkDmxnTHFkVmtz879aL8Poxp8KlWbIFVt+FGWSYELmd5NQaM5QTixQpoXdlbAR1ZShTadkQ/BWT16Hdr3mWb6vVxpXeRxFOINzqIIH19CAO2hCCxgM4Rle4c2Rzovz7nwsWwtOPnMKf+R8/gCIZo09</latexit><latexit sha1_base64="kAB7LveGU8jfRCmkTCpxS3KP4ew=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbDbt0s0m7E6EUvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78wapFAZd99spbGxube8Ud0t7+weHR+Xjk7ZJMs14iyUy0d2AGi6F4i0UKHk31ZzGgeSdYHw7r3eeuDYiUY84Sbkf06ESkWAUrfVQDS8H5Ypbcxci6+DlUIFczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7FhWNufGni1Vn5MI6IYkSbZ9CsnB/T0xpbMwkDmxnTHFkVmtz879aL8Poxp8KlWbIFVt+FGWSYELmd5NQaM5QTixQpoXdlbAR1ZShTadkQ/BWT16Hdr3mWb6vVxpXeRxFOINzqIIH19CAO2hCCxgM4Rle4c2Rzovz7nwsWwtOPnMKf+R8/gCIZo09</latexit><latexit sha1_base64="kAB7LveGU8jfRCmkTCpxS3KP4ew=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbDbt0s0m7E6EUvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78wapFAZd99spbGxube8Ud0t7+weHR+Xjk7ZJMs14iyUy0d2AGi6F4i0UKHk31ZzGgeSdYHw7r3eeuDYiUY84Sbkf06ESkWAUrfVQDS8H5Ypbcxci6+DlUIFczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7FhWNufGni1Vn5MI6IYkSbZ9CsnB/T0xpbMwkDmxnTHFkVmtz879aL8Poxp8KlWbIFVt+FGWSYELmd5NQaM5QTixQpoXdlbAR1ZShTadkQ/BWT16Hdr3mWb6vVxpXeRxFOINzqIIH19CAO2hCCxgM4Rle4c2Rzovz7nwsWwtOPnMKf+R8/gCIZo09</latexit>

(b)
<latexit sha1_base64="/IZxkdWWXhp/Wt2hgTFqXWy1ERc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6qweWgXHFr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du17zLN/XK42rPI4inME5VMGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3I+fwCFXI07</latexit><latexit sha1_base64="/IZxkdWWXhp/Wt2hgTFqXWy1ERc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6qweWgXHFr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du17zLN/XK42rPI4inME5VMGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3I+fwCFXI07</latexit><latexit sha1_base64="/IZxkdWWXhp/Wt2hgTFqXWy1ERc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6qweWgXHFr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du17zLN/XK42rPI4inME5VMGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3I+fwCFXI07</latexit><latexit sha1_base64="/IZxkdWWXhp/Wt2hgTFqXWy1ERc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6qweWgXHFr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du17zLN/XK42rPI4inME5VMGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3I+fwCFXI07</latexit>

a1
<latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit>

b2
<latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit>

b3
<latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit>

a4
<latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit>

C1
<latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit><latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit><latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit><latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit>

C2
<latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit><latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit><latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit><latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit>

a5
<latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit>

C3
<latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit><latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit><latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit><latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit>

b6
<latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit>

C6
<latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit><latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit><latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit><latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit>

a7
<latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit>

b8
<latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit>

c9
<latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit>

d10
<latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit>

C4
<latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit><latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit><latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit><latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit>

C5
<latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit><latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit><latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit><latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit>

C7
<latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit><latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit><latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit><latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit>

C8
<latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit><latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit><latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit><latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit>

C9
<latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit><latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit><latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit><latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit>

(a)
<latexit sha1_base64="RaKubww8bHA7bv0Y71M1/0w+EPc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q9HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4PXjTo=</latexit><latexit sha1_base64="RaKubww8bHA7bv0Y71M1/0w+EPc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q9HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4PXjTo=</latexit><latexit sha1_base64="RaKubww8bHA7bv0Y71M1/0w+EPc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q9HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4PXjTo=</latexit><latexit sha1_base64="RaKubww8bHA7bv0Y71M1/0w+EPc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q9HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4PXjTo=</latexit> a1

<latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit>

b2
<latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit>

b3
<latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit>

a4
<latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit>

a5
<latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit>

b6
<latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit>

a7
<latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit>

b8
<latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit>

c9
<latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit>

d10
<latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit>

a1
<latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit>

b2
<latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit>

b3
<latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit>

a4
<latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit>

a5
<latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit>

b6
<latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit>

a7
<latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit>

b8
<latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit>

c9
<latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit>

d10
<latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit>

C1
<latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit><latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit><latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit><latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit>

C2
<latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit><latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit><latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit><latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit>

C3
<latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit><latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit><latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit><latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit>

C4
<latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit><latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit><latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit><latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit>

C5
<latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit><latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit><latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit><latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit>

C6
<latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit><latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit><latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit><latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit>

C7
<latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit><latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit><latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit><latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit>

C8
<latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit><latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit><latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit><latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit>

C9
<latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit><latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit><latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit><latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit>

a
<latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit><latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit><latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit><latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit> b<latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit><latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit><latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit><latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit>

c
<latexit sha1_base64="kD4Sw6elG9W7UxMK/BVw5G+hwL8=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi02LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/Bl4zX</latexit><latexit sha1_base64="kD4Sw6elG9W7UxMK/BVw5G+hwL8=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi02LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/Bl4zX</latexit><latexit sha1_base64="kD4Sw6elG9W7UxMK/BVw5G+hwL8=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi02LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/Bl4zX</latexit><latexit sha1_base64="kD4Sw6elG9W7UxMK/BVw5G+hwL8=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi02LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/Bl4zX</latexit> d<latexit sha1_base64="LMRKkiGgSyIHGwBU+V8UchHv94g=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC7YV2lA2m0m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEquDau++2UNja3tnfKu5W9/YPDo+rxSVcnmWLYYYlI1ENANQousWO4EfiQKqRxILAXTG7n9d4TKs0TeW+mKfoxHUkecUaNtdrhsFpz6+5CZB28AmpQqDWsfg3ChGUxSsME1brvuanxc6oMZwJnlUGmMaVsQkfYtyhpjNrPF4vOyIV1QhIlyj5pyML9PZHTWOtpHNjOmJqxXq3Nzf9q/cxEN37OZZoZlGz5UZQJYhIyv5qEXCEzYmqBMsXtroSNqaLM2GwqNgRv9eR16DbqnuX2Va3ZKOIowxmcwyV4cA1NuIMWdIABwjO8wpvz6Lw4787HsrXkFDOn8EfO5w/DG4zY</latexit><latexit sha1_base64="LMRKkiGgSyIHGwBU+V8UchHv94g=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC7YV2lA2m0m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEquDau++2UNja3tnfKu5W9/YPDo+rxSVcnmWLYYYlI1ENANQousWO4EfiQKqRxILAXTG7n9d4TKs0TeW+mKfoxHUkecUaNtdrhsFpz6+5CZB28AmpQqDWsfg3ChGUxSsME1brvuanxc6oMZwJnlUGmMaVsQkfYtyhpjNrPF4vOyIV1QhIlyj5pyML9PZHTWOtpHNjOmJqxXq3Nzf9q/cxEN37OZZoZlGz5UZQJYhIyv5qEXCEzYmqBMsXtroSNqaLM2GwqNgRv9eR16DbqnuX2Va3ZKOIowxmcwyV4cA1NuIMWdIABwjO8wpvz6Lw4787HsrXkFDOn8EfO5w/DG4zY</latexit><latexit sha1_base64="LMRKkiGgSyIHGwBU+V8UchHv94g=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC7YV2lA2m0m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEquDau++2UNja3tnfKu5W9/YPDo+rxSVcnmWLYYYlI1ENANQousWO4EfiQKqRxILAXTG7n9d4TKs0TeW+mKfoxHUkecUaNtdrhsFpz6+5CZB28AmpQqDWsfg3ChGUxSsME1brvuanxc6oMZwJnlUGmMaVsQkfYtyhpjNrPF4vOyIV1QhIlyj5pyML9PZHTWOtpHNjOmJqxXq3Nzf9q/cxEN37OZZoZlGz5UZQJYhIyv5qEXCEzYmqBMsXtroSNqaLM2GwqNgRv9eR16DbqnuX2Va3ZKOIowxmcwyV4cA1NuIMWdIABwjO8wpvz6Lw4787HsrXkFDOn8EfO5w/DG4zY</latexit><latexit sha1_base64="LMRKkiGgSyIHGwBU+V8UchHv94g=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC7YV2lA2m0m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEquDau++2UNja3tnfKu5W9/YPDo+rxSVcnmWLYYYlI1ENANQousWO4EfiQKqRxILAXTG7n9d4TKs0TeW+mKfoxHUkecUaNtdrhsFpz6+5CZB28AmpQqDWsfg3ChGUxSsME1brvuanxc6oMZwJnlUGmMaVsQkfYtyhpjNrPF4vOyIV1QhIlyj5pyML9PZHTWOtpHNjOmJqxXq3Nzf9q/cxEN37OZZoZlGz5UZQJYhIyv5qEXCEzYmqBMsXtroSNqaLM2GwqNgRv9eR16DbqnuX2Va3ZKOIowxmcwyV4cA1NuIMWdIABwjO8wpvz6Lw4787HsrXkFDOn8EfO5w/DG4zY</latexit>

Figure 2 (a) A trie. Each edge label has a subscript to identify the corresponding leaf in the top
tree in (c). (b) A hierarchical clustering of (a). (c) The top tree corresponding to (a). Blue nodes
are vertical clusters and red nodes are horizontal clusters. (d) The top DAG of (c).

3 A Simple Index

We first present a simple randomized Monte-Carlo word RAM string index, that will be the
starting point for our deterministic, comparison-based pointer machine solution in the later
sections.

3.1 Data Structure
Let T be the trie of the strings S = S1, . . . , Sk and let TD be the corresponding top DAG of
T . Our data structure augments TD with additional information. For each cluster C in TD
we store the following information.

If C is a leaf cluster representing an edge e, we store the label of e.
If C is an internal cluster with left and right child A and B, we store the label of the
edge to the rightmost child of the top boundary node, the fingerprint φ(spine(C)), and
the length |spine(C)|.

This requires constant space for each cluster and hence O(nTD) space in total.

3.2 Searching
Given a pattern P of length m, we denote the unique node in T whose path from the root
matches the longest prefix of P , the

Given a pattern P of length m we find the longest matching prefix of P in T , i.e., the
unique node locusT (P) in T whose path from the root matches the longest prefix of P , as
follows. First, compute and store all fingerprints of prefixes of P in O(m) time and space.
By Lemma 3, we can then compute the fingerprint of any substring of P in O(1) time.

Next, we traverse TD top-down while matching P . Initially, we search for P [1,m] starting
at the root of TD. Suppose we have reached cluster C and have matched P [1, i]. If i = m

we return m. Otherwise (i < m) there are three cases:

ISAAC 2019

4:8 Top Tree Compression of Tries

Case 1: C is a leaf cluster. Let e be the edge stored in C. We compare P [i+ 1] with the
label of e. We return i+ 1 if they match and otherwise i.

Case 2: C is a horizontal cluster. Let A and B be the left and right child of C, respectively.
We compare P [i+1] with the label α of the edge to the rightmost child of A. If P [i+1] ≤ α,
we continue the search in A for P [i+ 1 . . .m]. Otherwise, we continue the search in B for
P [i+ 1 . . .m].

Case 3: C is vertical cluster. Let A and B be the left and right child of C, respectively. If
|spine(A)| > m− i we continue the search in A for P [i+ 1 . . .m]. Otherwise, we compare
the fingerprint φ(spine(A)) with φ(P [i + 1 . . . i + 1 + |spine(A)|]). If they match, we
continue the search in B for P [i+ 1 + |spine(A)| . . .m]. Otherwise, we continue the search
in A for P [i+ 1 . . .m].

I Lemma 6. The algorithm correctly computes the longest matching prefix of P in T .

Next consider the running time. We compute all fingerprints of P in O(m) time. Each
step of top-down traversal requires constant time and since the depth of TD is O(logn) the
total time is O(m+ logn). In summary, we have the following theorem.

I Theorem 7. Let S = S1, . . . , Sk be a set of strings of total length n, and let TD be the
corresponding top DAG for the trie of S. On a word RAM model of computation, we can solve
the compressed string indexing problem in O(nTD) = O(n/ logσ n) space and O(m+ logn)
time for any pattern of length m. The solution is randomized Monte-Carlo.

In the next sections we show how to convert the above algorithm from a randomized
algorithm on a word RAM machine into a deterministic algorithm on a pointer machine.
We note that Theorem 7 and our subsequent solutions can be extended to other variants of
prefix queries, such as counting queries, that return the number of occurrences of P . To do
so, we store the size of each cluster in TD and use the above top-down search modified to
also record the highest cluster E whose top boundary is locusT (P). Since the size of E is
the number of occurrences of P , we obtain a solution that also supports counting within the
same complexities. From E we can also support reporting queries, that return the strings in
S with prefix P , by simply decompressing E incurring additional linear time in the lengths
of the strings with matching prefix.

4 Spine Extraction

We first consider how to handle vertical clusters (Case 3) deterministically on a pointer
machine. The key challenge is to efficiently extract the characters on the spine path of a
vertical cluster from top to bottom without decompressing the whole cluster. We will use
this to efficiently compute longest common prefixes between spine paths and substrings of P
in order to achieve total O(m+ logn) time.

Given the top DAG TD, the spine path extraction problem is to compactly represent TD
such that given any vertical cluster C we can return the characters of spine(C). We require
that the characters are reported online and from top-to-bottom, that is, the characters must
be reported in sequence and we can stop extraction at any point in time. The goal is to
obtain a solution that is efficient in the length of the reported prefix. In the following sections
we show how to solve the problem in O(nTD) space and O(m + logn) total time over all
spine path extractions.

We present a new data structure derived from the top DAG called the vertical top DAG
and show how to use this to extract characters from a spine path. We then use this to
compute the longest common prefixes between a spine path and any string and plug this in
to the top down traversal in the simple solution from Section 3 to obtain Theorem 1.

P. Bille, P. Gawrychowski, I. L. Gørtz, G.M. Landau, and O. Weimann 4:9

a1
<latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit>

b3
<latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit><latexit sha1_base64="iZgPCNJdoo2rVj13tFWXjtDhDiM=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSWtBjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg6tBueJW3YXIOng5VCBXc1D+6g9jlkZcIZPUmJ7nJuhnVKNgks9K/dTwhLIJHfGeRUUjbvxsseqMXFhnSMJY26eQLNzfExmNjJlGge2MKI7Nam1u/lfrpRje+JlQSYpcseVHYSoJxmR+NxkKzRnKqQXKtLC7EjammjK06ZRsCN7qyevQrlU9y/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+hXjXw=</latexit>

a4
<latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit><latexit sha1_base64="4g8HicLF5ARGnAzZ9CtVNqUrwEo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUqjHghePFe0HtKFMtpt26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU0VZm8YiVr0ANRNcsrbhRrBeohhGgWDdYHq7qHefmNI8lo9mljA/wrHkIadorPWAw/qwXHGr7lJkE7wcKpCrNSx/DUYxTSMmDRWodd9zE+NnqAyngs1Lg1SzBOkUx6xvUWLEtJ8tV52TK+uMSBgr+6QhS/f3RIaR1rMosJ0Rmolery3M/2r91IQ3fsZlkhom6eqjMBXExGRxNxlxxagRMwtIFbe7EjpBhdTYdEo2BG/95E3o1Kqe5ft6pVnL4yjCBVzCNXjQgCbcQQvaQGEMz/AKb45wXpx352PVWnDymXP4I+fzB+hVjXw=</latexit>

a5
<latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit>

C2
<latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit><latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit><latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit><latexit sha1_base64="Necvnzo0t6tocaWtP8CYjXG/Gow=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h7VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7eZjVw=</latexit>

C6
<latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit><latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit><latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit><latexit sha1_base64="8yQs+h/XD++aSSbSAlDxEGKpC30=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuqx0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP72pjWA=</latexit>

C8
<latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit><latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit><latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit><latexit sha1_base64="ssgYBNEh9qYTHDg3FpsA1oK0234=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIthjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IR1P+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/DgFhpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH8CxjWI=</latexit>

C9
<latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit><latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit><latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit><latexit sha1_base64="qPbjZAl6Pdu29jKiQAs2eZKY50s=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIqi3Qi8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTBrzeucJleaxfDTTBP2IjiQPOaPGWg+Nwe2gXHGr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du1b1LN9fVeq1PI4inME5XIIH11CHO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+R8/gDCNY1j</latexit>

a
<latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit><latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit><latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit><latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit> b<latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit><latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit><latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit><latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit>

a1
<latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit><latexit sha1_base64="A3h6jb20Zv1DJrhRcinDu3FdguI=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEquDau++2UNja3tnfKu5W9/YPDo+rxSVsnmWLos0QkqhtSjYJL9A03ArupQhqHAjvh5HZe7zyh0jyRj2aaYhDTkeQRZ9RY64EOvEG15tbdhcg6eAXUoFBrUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc+ipDHqIF+sOiMX1hmSKFH2SUMW7u+JnMZaT+PQdsbUjPVqbW7+V+tlJroJci7TzKBky4+iTBCTkPndZMgVMiOmFihT3O5K2JgqyoxNp2JD8FZPXod2o+5Zvr+qNRtFHGU4g3O4BA+uoQl30AIfGIzgGV7hzRHOi/PufCxbS04xcwp/5Hz+AOPJjXk=</latexit>

b2
<latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit><latexit sha1_base64="PJkh+0x1tT4lgTvX7Qu5cWNlwLE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjRdMW2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvGEqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ7fzeueJayMS9YjTlAcxHSkRCUbRWg/hoDGo1ty6uxBZB6+AGhRqDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zqGjMTZAvVp2RC+sMSZRo+xSShft7IqexMdM4tJ0xxbFZrc3N/2q9DKObIBcqzZArtvwoyiTBhMzvJkOhOUM5tUCZFnZXwsZUU4Y2nYoNwVs9eR3ajbpn+f6q1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A+bTjXs=</latexit>

a5
<latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit><latexit sha1_base64="MF6Ho95LzIRUtuCbdF1GMRWZaZE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSYtFjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3QQX1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYY3fiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD+nZjX0=</latexit>

b6
<latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit><latexit sha1_base64="hceR4GK2OiifmhkI6/LBBdV0gRU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItVjwYvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0Eg/qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugxv/EyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPH+zjjX8=</latexit>

a7
<latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit><latexit sha1_base64="Ld8CyZ4j+K/E4jimw180YpKR9Ps=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1nqgw/qwXHGr7lJkE7wcKpCrNSx/DUYxSyOukElqTN9zE/QzqlEwyeelQWp4QtmUjnnfoqIRN362XHVOrqwzImGs7VNIlu7viYxGxsyiwHZGFCdmvbYw/6v1UwwbfiZUkiJXbPVRmEqCMVncTUZCc4ZyZoEyLeyuhE2opgxtOiUbgrd+8iZ0alXP8v1NpVnL4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4I+fzB+zhjX8=</latexit>

b8
<latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit><latexit sha1_base64="+jb3BY2lGE//EA9yceJHtmkxgno=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIrTHghePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuML1d1LtPXBsRq0ecJdyP6FiJUDCK1noIho1hueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxg2/EyoJEWu2OqjMJUEY7K4m4yE5gzlzAJlWthdCZtQTRnadEo2BG/95E3o1Kqe5fubSrOWx1GEC7iEa/CgDk24gxa0gcEYnuEV3hzpvDjvzseqteDkM+fwR87nD+/rjYE=</latexit>

c9
<latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit><latexit sha1_base64="Zi/6UPxL/WvUtvKP+P7VTwhvjXs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSIlRvBS8eK9oPaEPZbDft0s0m7E6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI7r3eeuDYiVo84Tbgf0ZESoWAUrfXABjeDcsWtuguRdfByqECu5qD81R/GLI24QiapMT3PTdDPqEbBJJ+V+qnhCWUTOuI9i4pG3PjZYtUZubDOkISxtk8hWbi/JzIaGTONAtsZURyb1drc/K/WSzG89jOhkhS5YsuPwlQSjMn8bjIUmjOUUwuUaWF3JWxMNWVo0ynZELzVk9ehXat6lu+vKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzmfP/L1jYM=</latexit>

d10
<latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit><latexit sha1_base64="BkLQmmkAUvQkWY3SdJiEQW1gADE=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZIuiy4MZlBXuBdiiZTKaNzSRDkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0wFN9bzvlFpY3Nre6e8W9nbPzg8qh6fdIzKNGVtqoTSvZAYJrhkbcutYL1UM5KEgnXDye283n1i2nAlH+w0ZUFCRpLHnBLrrE40zH1vNqzWvLq3EF4Hv4AaFGoNq1+DSNEsYdJSQYzp+15qg5xoy6lgs8ogMywldEJGrO9QkoSZIF9sO8MXzolwrLR70uKF+3siJ4kx0yR0nQmxY7Nam5v/1fqZjW+CnMs0s0zS5UdxJrBVeH46jrhm1IqpA0I1d7tiOiaaUOsCqrgQ/NWT16HTqPuO769qzUYRRxnO4BwuwYdraMIdtKANFB7hGV7hDSn0gt7Rx7K1hIqZU/gj9PkDHDKOwg==</latexit>

C1
<latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit><latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit><latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit><latexit sha1_base64="7wGcRf7xMLiGxl4WEC2EdQ7oDbA=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfm0BuWK27VXYpsgpdDBXK1huWvwShmaYTSMEG17ntuYvyMKsOZwHlpkGpMKJvSMfYtShqh9rPlqnNyZZ0RCWNlnzRk6f6eyGik9SwKbGdEzUSv1xbmf7V+asJbP+MySQ1KtvooTAUxMVncTUZcITNiZoEyxe2uhE2ooszYdEo2BG/95E3o1Kqe5fubSqOWx1GEC7iEa/CgDg24gxa0gcEYnuEV3hzhvDjvzseqteDkM+fwR87nD7YVjVs=</latexit>

C3
<latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit><latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit><latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit><latexit sha1_base64="XwT7vC7eXZ/Tb64lpwGk8KW5ses=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSKuix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcDUoV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/fXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7kdjV0=</latexit>

C4
<latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit><latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit><latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit><latexit sha1_base64="ib2s5QkdFTkLZd/tcMNa4hS3Qws=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjoRePFe0HtKFstpt26WYTdidCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNECoOu++0UtrZ3dveK+6WDw6Pjk/LpWcfEqWa8zWIZ615ADZdC8TYKlLyXaE6jQPJuMG0u6t0nro2I1SPOEu5HdKxEKBhFaz00h/VhueJW3aXIJng5VCBXa1j+GoxilkZcIZPUmL7nJuhnVKNgks9Lg9TwhLIpHfO+RUUjbvxsueqcXFlnRMJY26eQLN3fExmNjJlFge2MKE7Mem1h/lfrpxje+plQSYpcsdVHYSoJxmRxNxkJzRnKmQXKtLC7EjahmjK06ZRsCN76yZvQqVU9y/f1SqOWx1GEC7iEa/DgBhpwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hj5zPH7qhjV4=</latexit>

C5
<latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit><latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit><latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit><latexit sha1_base64="AoHTY7aRaGxagUwbpC0aOrzj5wE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSouix0IvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH800QT+iI8lDzqix1kNjcD0oV9yquxBZBy+HCuRqDspf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZlDRC7WeLVWfkwjpDEsbKPmnIwv09kdFI62kU2M6ImrFerc3N/2q91IS3fsZlkhqUbPlRmApiYjK/mwy5QmbE1AJlittdCRtTRZmx6ZRsCN7qyevQrlU9y/dXlXotj6MIZ3AOl+DBDdThDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP7wljV8=</latexit>

C7
<latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit><latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit><latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit><latexit sha1_base64="rlDSomXhWQhP5z+evNJdnyzIQXc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjoRePFe0HtKFstpN26WYTdjdCCf0JXjwo4tVf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNps1FvfuESvNYPppZgn5Ex5KHnFFjrYfmsD4sV9yquxTZBC+HCuRqDctfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xblDRC7WfLVefkyjojEsbKPmnI0v09kdFI61kU2M6Imolery3M/2r91IS3fsZlkhqUbPVRmApiYrK4m4y4QmbEzAJlittdCZtQRZmx6ZRsCN76yZvQqVU9y/c3lUYtj6MIF3AJ1+BBHRpwBy1oA4MxPMMrvDnCeXHenY9Va8HJZ87hj5zPH78tjWE=</latexit>

a
<latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit><latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit><latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit><latexit sha1_base64="xCYow5BVFq3CiJo01XnPJUWogoA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi06LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w++j4zV</latexit> b<latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit><latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit><latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit><latexit sha1_base64="OV7Ydi5Qr7HqyJux9Lw5aK1l+Nk=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq1gWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oVOrepZbN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx/AE4zW</latexit>

c
<latexit sha1_base64="kD4Sw6elG9W7UxMK/BVw5G+hwL8=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi02LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/Bl4zX</latexit><latexit sha1_base64="kD4Sw6elG9W7UxMK/BVw5G+hwL8=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi02LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/Bl4zX</latexit><latexit sha1_base64="kD4Sw6elG9W7UxMK/BVw5G+hwL8=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi02LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/Bl4zX</latexit><latexit sha1_base64="kD4Sw6elG9W7UxMK/BVw5G+hwL8=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi02LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEt37GZZIalGz1UZgKYmKyuJqMuEJmxMwCZYrbXQmbUEWZsdmUbAje+smb0KlVPcutm0qjlsdRhAu4hGvwoA4NuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/Bl4zX</latexit> d<latexit sha1_base64="LMRKkiGgSyIHGwBU+V8UchHv94g=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC7YV2lA2m0m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEquDau++2UNja3tnfKu5W9/YPDo+rxSVcnmWLYYYlI1ENANQousWO4EfiQKqRxILAXTG7n9d4TKs0TeW+mKfoxHUkecUaNtdrhsFpz6+5CZB28AmpQqDWsfg3ChGUxSsME1brvuanxc6oMZwJnlUGmMaVsQkfYtyhpjNrPF4vOyIV1QhIlyj5pyML9PZHTWOtpHNjOmJqxXq3Nzf9q/cxEN37OZZoZlGz5UZQJYhIyv5qEXCEzYmqBMsXtroSNqaLM2GwqNgRv9eR16DbqnuX2Va3ZKOIowxmcwyV4cA1NuIMWdIABwjO8wpvz6Lw4787HsrXkFDOn8EfO5w/DG4zY</latexit><latexit sha1_base64="LMRKkiGgSyIHGwBU+V8UchHv94g=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC7YV2lA2m0m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEquDau++2UNja3tnfKu5W9/YPDo+rxSVcnmWLYYYlI1ENANQousWO4EfiQKqRxILAXTG7n9d4TKs0TeW+mKfoxHUkecUaNtdrhsFpz6+5CZB28AmpQqDWsfg3ChGUxSsME1brvuanxc6oMZwJnlUGmMaVsQkfYtyhpjNrPF4vOyIV1QhIlyj5pyML9PZHTWOtpHNjOmJqxXq3Nzf9q/cxEN37OZZoZlGz5UZQJYhIyv5qEXCEzYmqBMsXtroSNqaLM2GwqNgRv9eR16DbqnuX2Va3ZKOIowxmcwyV4cA1NuIMWdIABwjO8wpvz6Lw4787HsrXkFDOn8EfO5w/DG4zY</latexit><latexit sha1_base64="LMRKkiGgSyIHGwBU+V8UchHv94g=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC7YV2lA2m0m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEquDau++2UNja3tnfKu5W9/YPDo+rxSVcnmWLYYYlI1ENANQousWO4EfiQKqRxILAXTG7n9d4TKs0TeW+mKfoxHUkecUaNtdrhsFpz6+5CZB28AmpQqDWsfg3ChGUxSsME1brvuanxc6oMZwJnlUGmMaVsQkfYtyhpjNrPF4vOyIV1QhIlyj5pyML9PZHTWOtpHNjOmJqxXq3Nzf9q/cxEN37OZZoZlGz5UZQJYhIyv5qEXCEzYmqBMsXtroSNqaLM2GwqNgRv9eR16DbqnuX2Va3ZKOIowxmcwyV4cA1NuIMWdIABwjO8wpvz6Lw4787HsrXkFDOn8EfO5w/DG4zY</latexit><latexit sha1_base64="LMRKkiGgSyIHGwBU+V8UchHv94g=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC7YV2lA2m0m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEquDau++2UNja3tnfKu5W9/YPDo+rxSVcnmWLYYYlI1ENANQousWO4EfiQKqRxILAXTG7n9d4TKs0TeW+mKfoxHUkecUaNtdrhsFpz6+5CZB28AmpQqDWsfg3ChGUxSsME1brvuanxc6oMZwJnlUGmMaVsQkfYtyhpjNrPF4vOyIV1QhIlyj5pyML9PZHTWOtpHNjOmJqxXq3Nzf9q/cxEN37OZZoZlGz5UZQJYhIyv5qEXCEzYmqBMsXtroSNqaLM2GwqNgRv9eR16DbqnuX2Va3ZKOIowxmcwyV4cA1NuIMWdIABwjO8wpvz6Lw4787HsrXkFDOn8EfO5w/DG4zY</latexit>

(a)
<latexit sha1_base64="RaKubww8bHA7bv0Y71M1/0w+EPc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q9HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4PXjTo=</latexit><latexit sha1_base64="RaKubww8bHA7bv0Y71M1/0w+EPc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q9HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4PXjTo=</latexit><latexit sha1_base64="RaKubww8bHA7bv0Y71M1/0w+EPc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q9HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4PXjTo=</latexit><latexit sha1_base64="RaKubww8bHA7bv0Y71M1/0w+EPc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q9HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4PXjTo=</latexit>

(b)
<latexit sha1_base64="/IZxkdWWXhp/Wt2hgTFqXWy1ERc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6qweWgXHFr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du17zLN/XK42rPI4inME5VMGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3I+fwCFXI07</latexit><latexit sha1_base64="/IZxkdWWXhp/Wt2hgTFqXWy1ERc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6qweWgXHFr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du17zLN/XK42rPI4inME5VMGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3I+fwCFXI07</latexit><latexit sha1_base64="/IZxkdWWXhp/Wt2hgTFqXWy1ERc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6qweWgXHFr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du17zLN/XK42rPI4inME5VMGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3I+fwCFXI07</latexit><latexit sha1_base64="/IZxkdWWXhp/Wt2hgTFqXWy1ERc=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6qweWgXHFr7kJkHbwcKpCrOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnUdIItZ8tVp2RC+sMSRgr+6QhC/f3REYjradRYDsjasZ6tTY3/6v1UhPe+BmXSWpQsuVHYSqIicn8bjLkCpkRUwuUKW53JWxMFWXGplOyIXirJ69Du17zLN/XK42rPI4inME5VMGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3I+fwCFXI07</latexit>

(c)
<latexit sha1_base64="vZCAZ+pJxKG9QblqDBepXZNFbU8=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q7HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4bhjTw=</latexit><latexit sha1_base64="vZCAZ+pJxKG9QblqDBepXZNFbU8=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q7HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4bhjTw=</latexit><latexit sha1_base64="vZCAZ+pJxKG9QblqDBepXZNFbU8=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q7HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4bhjTw=</latexit><latexit sha1_base64="vZCAZ+pJxKG9QblqDBepXZNFbU8=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbCft0s0m7G6EEvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78waJ4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ20dp4phi8UiVt2AahRcYstwI7CbKKRRILATTG7n9c4TKs1j+WimCfoRHUkeckaNtR6q7HJQrrg1dyGyDl4OFcjVHJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izKGmE2s8Wq87IhXWGJIyVfdKQhft7IqOR1tMosJ0RNWO9Wpub/9V6qQlv/IzLJDUo2fKjMBXExGR+NxlyhcyIqQXKFLe7EjamijJj0ynZELzVk9ehXa95lu/rlcZVHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzmfP4bhjTw=</latexit>

(d)
<latexit sha1_base64="kAB7LveGU8jfRCmkTCpxS3KP4ew=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbDbt0s0m7E6EUvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78wapFAZd99spbGxube8Ud0t7+weHR+Xjk7ZJMs14iyUy0d2AGi6F4i0UKHk31ZzGgeSdYHw7r3eeuDYiUY84Sbkf06ESkWAUrfVQDS8H5Ypbcxci6+DlUIFczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7FhWNufGni1Vn5MI6IYkSbZ9CsnB/T0xpbMwkDmxnTHFkVmtz879aL8Poxp8KlWbIFVt+FGWSYELmd5NQaM5QTixQpoXdlbAR1ZShTadkQ/BWT16Hdr3mWb6vVxpXeRxFOINzqIIH19CAO2hCCxgM4Rle4c2Rzovz7nwsWwtOPnMKf+R8/gCIZo09</latexit><latexit sha1_base64="kAB7LveGU8jfRCmkTCpxS3KP4ew=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbDbt0s0m7E6EUvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78wapFAZd99spbGxube8Ud0t7+weHR+Xjk7ZJMs14iyUy0d2AGi6F4i0UKHk31ZzGgeSdYHw7r3eeuDYiUY84Sbkf06ESkWAUrfVQDS8H5Ypbcxci6+DlUIFczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7FhWNufGni1Vn5MI6IYkSbZ9CsnB/T0xpbMwkDmxnTHFkVmtz879aL8Poxp8KlWbIFVt+FGWSYELmd5NQaM5QTixQpoXdlbAR1ZShTadkQ/BWT16Hdr3mWb6vVxpXeRxFOINzqIIH19CAO2hCCxgM4Rle4c2Rzovz7nwsWwtOPnMKf+R8/gCIZo09</latexit><latexit sha1_base64="kAB7LveGU8jfRCmkTCpxS3KP4ew=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbDbt0s0m7E6EUvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78wapFAZd99spbGxube8Ud0t7+weHR+Xjk7ZJMs14iyUy0d2AGi6F4i0UKHk31ZzGgeSdYHw7r3eeuDYiUY84Sbkf06ESkWAUrfVQDS8H5Ypbcxci6+DlUIFczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7FhWNufGni1Vn5MI6IYkSbZ9CsnB/T0xpbMwkDmxnTHFkVmtz879aL8Poxp8KlWbIFVt+FGWSYELmd5NQaM5QTixQpoXdlbAR1ZShTadkQ/BWT16Hdr3mWb6vVxpXeRxFOINzqIIH19CAO2hCCxgM4Rle4c2Rzovz7nwsWwtOPnMKf+R8/gCIZo09</latexit><latexit sha1_base64="kAB7LveGU8jfRCmkTCpxS3KP4ew=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tFqJeSFEGPBS8eK9oPaEPZbDbt0s0m7E6EUvoTvHhQxKu/yJv/xm2bg7a+sPDwzgw78wapFAZd99spbGxube8Ud0t7+weHR+Xjk7ZJMs14iyUy0d2AGi6F4i0UKHk31ZzGgeSdYHw7r3eeuDYiUY84Sbkf06ESkWAUrfVQDS8H5Ypbcxci6+DlUIFczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7FhWNufGni1Vn5MI6IYkSbZ9CsnB/T0xpbMwkDmxnTHFkVmtz879aL8Poxp8KlWbIFVt+FGWSYELmd5NQaM5QTixQpoXdlbAR1ZShTadkQ/BWT16Hdr3mWb6vVxpXeRxFOINzqIIH19CAO2hCCxgM4Rle4c2Rzovz7nwsWwtOPnMKf+R8/gCIZo09</latexit>

Figure 3 (a) The vertical top forest of the top tree from Figure 2(c). (b) The vertical top DAG
of (a). (c) The horizontal top forest of Figure 2(a). (d) The horizontal top DAG of (a).

4.1 Vertical Top Forest and Vertical Top DAG

The vertical top forest V of T is a forest of ordered, rooted, and labeled binary trees. The
nodes in V are all the vertical clusters of T and the leaf clusters of T that correspond to
edges of a spine path of some cluster in T . The edges of V are defined as follows. A cluster C
of type (a) with children A and B in T has two children in V . The left and right children are
the unique vertical or leaf descendants of C in T whose spine path is spine(A) and spine(B),
respectively. A cluster C of type (b) with children A and B in T has a single child in V,
which is the unique vertical or leaf descendant of C in T whose spine path is spine(A). See
Figure 3(a). We have the following correspondence between spine paths and subtrees in V.

I Lemma 8. Let C be a vertical merge in V and L be the leaves of V(C). Then, L are
the edges on spine(C) and |V(C)| = O(|L|). Furthermore, the left-to-right ordering of L
corresponds to the top-down ordering of the edges on spine(C).

For instance in Figure 3(a), the descendant leaves of C6 are b3, a4, a5 in left-to-right
ordering corresponding to the edges in the spine of C6 in Figure 2(b).

The vertical top DAG VD is the DAG obtained by merging identical subtrees of V
according to the DAG compression of TD. See Figure 3(b).

4.2 Spine Extraction

We now show how to solve spine path extraction using the vertical top DAG VD. The key
idea is to simulate a depth-first left-to-right order traversal of V(C) using a recursive traversal
of VD. In order to use spine path extraction to search for a pattern we also need to be able
to continue the search in some horizontal cluster of the top DAG after extracting characters
on the spine. We will therefore define what we call a vertical exit cluster, from which we can
quickly find the cluster to continue the search from.

Define the vertical exit cluster, vexit(C, `), for C at position `, 1 < ` ≤ |spine(C)| to be
the lowest common ancestor of leaves `− 1 and ` in V(C). Intuitively, if we have extracted
the first ` characters of spine(C), then vexit(C, `) is the cluster such that all leaves in the
left subtree have been extracted and only one leaf in the right subtree (corresponding to
the `th character) has been extracted. Our goal is to implement spine path extraction in
time O(`+ height(C)− height(vexit(C, `))). This will yield a telescoping sum when doing
multiple extractions.

ISAAC 2019

4:10 Top Tree Compression of Tries

Our data structure consists of the vertical top DAG VD. We augment each internal
cluster by the label of the first edge on its spine path and each leaf cluster by the label of
the stored edge. This uses O(nVD) space.

Given a cluster C we implement spine path extraction by simulating a depth-first left-
to-right order traversal of V(C) using a recursive traversal of VD. To extract the first
character we return the stored label at C. Suppose we have extracted ` − 1 characters,
1 < ` ≤ |spine(C)|. To extract the next character continue the simulated depth-first search
until we reach a cluster D in V(C) whose leftmost leaf is the `th leaf of V(C). Return the
character stored at D and the parent of D in V(C) as vexit(C, `). (Note the parent of D is
the cluster visited right before D in the simulated depth-first search.)

By Lemma 8, the algorithm correctly solves spine path extraction and the total time to
extract ` characters is O(`+ height(C)− height(vexit(C, `))). We need a stack to keep track
of the current search path in the traversal using O(height(V(C))) = O(lognT) = O(nTD)
space. In summary, we have the following lemma.

I Lemma 9. Let VD be the vertical top DAG. We can represent VD in O(nVD) space such
that given a vertical cluster C, we can support spine path extraction on C in O(`+height(C)−
height(vexit(C, `))) time, where ` is the length of the extracted prefix of spine(C).

Note that we can use Lemma 9 to compute the longest common prefix of spine(C) and any
string by reporting the characters on the spine path from top-to-bottom and comparing them
with the string until we get a mismatch. This uses O(`+1+height(C)−height(vexit(C, `+1)))
time, where ` is the length of the longest common prefix.

5 An O(m+ logn) Time Solution

We now plug in our spine path extraction algorithm from Section 4 into the simple algorithm
from Section 3.

Define the horizontal entry cluster for a vertical cluster C, denoted hentry(C), to be
the highest horizontal cluster or leaf cluster in T (C) that contains all edges from top(C) to
children within C. For a horizontal cluster or a leaf the horizontal exit cluster is the cluster
itself. Note hentry(C) is the highest horizontal cluster or leaf cluster on the path from C to
the leftmost leaf of C.

Our data structure consists of the data structures from Section 3 without fingerprints and
Section 4. This uses O(nTD) space. To search for a string P of length m, we use the same
algorithm as in Section 3, but with the following new implementation of the vertical merges.
Case 3: C is vertical cluster. Recall we have reached a vertical cluster C and have matched

prefix P [1, i]. We check if the first character on spine(C) matches P [i + 1]. If it does
not, we continue the algorithm from hentry(C). If it does, we extract characters from
spine(C) in order to compute the length ` of the longest common prefix of spine(C) and
P [i+ 1,m] and the corresponding vertical exit cluster E = vexit(C, `+ 1). Let B be the
right child of E in TD. We traverse the leftmost path from B to find hentry(B) and
continue the search for P [i+ `+ 1,m] from there.

I Lemma 10. The algorithm correctly computes the longest matching prefix of P in T .

Consider the time used in a vertical step from a cluster C . The time to compute the
longest common prefix computation extracting ` characters and walking to the corresponding
horizontal entry cluster hentry(vexit(C, `)) is O(`+ h(C)− h(vexit(C, `) + h(vexit(C, `))−
h(hentry(vexit(C, `))) = O(`+h(C)−h(hentry(vexit(C, `))). Hence, if we have z vertical steps
from clusters C1, . . . , Cz extracting `1, . . . , `z characters ending in Ei = hentry(vexit(Ci, `i)),
respectively, we use time

P. Bille, P. Gawrychowski, I. L. Gørtz, G.M. Landau, and O. Weimann 4:11

z∑
i=1

O(`i + h(Ci)− h(Ei)) = O

(
z∑
i=1

`i + h(C1)− h(Ez)
)

= O(m+ lognT) .

This follows from the fact that C1, . . . , Cz and E1, . . . , Ez all lie on the same root-to-leaf path
in T and that h(Ei) ≥ h(Ci+1). As in Section 3, the total time used at horizontal merges is
O(lognT), as E1, . . . , Ez all lie on the same root-to-leaf path in T and we only walk down in
the tree during the horizontal merges. This concludes the proof of the O(m+ logn) query
time in Theorem 1.

6 Spine Path Extraction with Constant Overhead

Next, we show how to achieve the O(m log σ) query time in Theorem 1. Our current solutions
for horizontal merges (Case 2) from Section 3 and vertical merges (Case 3) from Section 5
both require Ω(m+ logn) and hence we need new techniques for both cases to achieve the
O(m log σ) time bound. We consider vertical merges in this section and horizontal merges in
the next section.

In this section, we improve the total time used on spine extraction to optimal O(m) time.
To do so we first introduce and present a novel solution to a new path extraction problem on
trees in Section 6.1 and then show how to use this to extract characters from the spine in
Section 6.2.

6.1 Path Extraction in Trees
Given a tree T with n nodes, the path extraction problem is to compactly represent T such
that given a node v we can return the nodes on the path from the root of T to v in constant
time per node. We require that the nodes are reported online and from top-to-bottom, that
is, the nodes must be reported in sequence and we can stop the extraction at any point
in time. The ordering of the nodes from top to bottom is essential. The other direction
(from v to the root) is trivial since we can simply store parent pointers and traverse that
path using linear space and constant time per node. If we allow word RAM tricks then we
can easily solve the problem in the same bounds by using an existing level ancestor data
structure [2, 12, 26]. We present an optimal solution that does not use word RAM tricks
and works on a pointer machine. As mentioned in the introduction, an optimal solution
can be also obtained by plugging in known tools, but we believe that our method is simpler
and elegant.

Let depth(v) and height(v) be the distance from v to the root and to deepest leaf in v’s
subtree, respectively. Decompose T into a top part Ttop consisting of nodes v, such that
depth(v) ≤ height(v), and a bottom part Tbot consisting of the remaining nodes. For each
leaf u in Ttop we store the path from the root of Ttop to u explicitly in a linked list sorted by
increasing depth. (see Figure 4). Note that multiple copies of the same node may be stored
across different lists. Each such path to a leaf u uses O(depth(u)) space, and hence the total
space for all paths in Ttop is∑

u a leaf in Ttop

depth(u) ≤
∑

u a leaf in Ttop

height(u) = O(n) ,

where the first equality follows by definition of the decomposition and the second follows
since the longest paths from a descendant leaf in T (u) to a leaf u in Ttop are disjoint for all
the leaves u in Ttop. For all internal nodes in Ttop we store a pointer to a leaf below it. For

ISAAC 2019

4:12 Top Tree Compression of Tries

Figure 4 The tree decomposition for path extraction. The black nodes are the nodes in Ttop and
the white nodes are the nodes in Tbot. The three root-to-leaf paths are stored as three linked lists
sorted by increasing depth. The total size of the lists is 2 + 3 + 2 = 7.

all nodes v in Tbot we store a pointer to the unique ancestor v that is a leaf in Ttop. We
answer a path extraction query for a node v as follows. If v is in Ttop we follow the leaf
pointer and output the path stored in this leaf from the root until we reach v. If v is in Tbot
we jump to the unique ancestor leaf u of v in Ttop. We extract the path from the root to u,
while simultaneously following parent pointers from v until we reach u storing these nodes
on a stack. That is, each time we extract a node from the root-to-u path we follow a parent
pointer and put the next node on the stack. We stop pushing nodes to the stack when we
reach u. When we have output all nodes from the root to the leaf in Ttop we output the
nodes from the stack. Since depth(u) ≤ height(u) the path from the root to u is at least as
long as the path from v to u plus 1. Therefore, the whole path is extracted. We spend O(1)
time per node and hence we have the following result.

I Lemma 11. Given a tree T with n nodes, we can solve the path extraction problem in
linear space and preprocessing and constant time per reported node.

6.2 Optimal Spine Path Extraction
We plug the path extraction solution into our depth-first search traversal of the vertical top
DAG VD to speed up spine extraction and longest common prefix computation. Recall that
given a vertical cluster C, our goal is to simulate a depth-first left-to-right order traversal of
the subtree V(C) using the vertical top DAG VD.

We construct the left-path suffix forest L of VD as follows. The nodes of L are the nodes
of VD. If C has a left child A in VD then A is the parent of C in L. Hence, any leftmost
path in VD corresponds to a path from a node to an ancestor of the node in L. We now store
L with the path extraction data structure from Lemma 11. We implement the depth-first
traversal as before except that whenever the traversal reaches an unexplored cluster C ′ in
V(C) we begin path extraction for that cluster corresponding to the path from C ′ to the
leftmost descendant leaf Ĉ. We extract the leaf Ĉ and then continue the depth-first traversal
from there. Hence, the current search path of the depth-first traversal is partitioned into an
alternating sequence of leftmost paths and right edges. Whenever we need to go up on a left
edge in the traversal we extract the next node for the corresponding path extraction instance.

To extract the topmost ` characters of spine(C) we now use constant time to find the
leftmost descendant leaf of V(C) and then O(`) time to traverse the first ` leaves. Hence, we
improve the time from O(height(V(C)) + `) to O(`). At any point during the traversal we

P. Bille, P. Gawrychowski, I. L. Gørtz, G.M. Landau, and O. Weimann 4:13

maintain ongoing path extractions instances along the current search path. The stacks each
of these need are of size at most linear in the length of their corresponding subpath of the
search path and hence this requires at most O(lognVD) extra space.

I Lemma 12. We can represent the vertical top DAG VD in O(nVD) space such that given
a vertical cluster C, we can support spine path extraction on C in O(`) time, where ` is the
length of the extracted prefix of spine(C).

7 Horizontal Access

We now show how to efficiently handle horizontal merges (Case 2). In the simple algorithm
from Section 3 we use constant time at each horizontal merge leading to an O(lognT) total
time solution. Since we cannot afford O(lognT) time we instead show how to handle all
horizontal merges in O(m log σ) time. The key idea is to convert the problem into a variant
of the random access problem for grammar compressed strings, and then design a linear-
space logarithmic-query solution to the random access problem. We describe the random
access problem in Section 7.1 and present our solution to it in Section 7.2, we introduce the
horizontal top DAG in Section 7.3, and define and solve the horizontal access problem in
Section 7.4.

7.1 Grammars and Random Access

Grammar compression replaces a long string S by a small context-free grammar (CFG) G.
We view a grammar G as a DAG, where each node is a grammar symbol and each rule
defines directed ordered edges from the righthand side to the lefthand side. Given a node C
in G, we define T (C) to be the parse tree rooted at C and S(C) to be the string consisting
of the leaves of T (C) in left-to-right order. Note that given a rule C → C1C2 . . . Ck we
have that S(C) = S(C1) · S(C2) · · ·S(Ck), where · denotes concatenation. Given a grammar
G representing a string S, the random access problem is to compactly represent G while
supporting fast access queries, that is, given an index i in S report S[i]. Bille et al. [19]
showed how to do random access in O(log |S|) time using O(nG ·αk(nG)) space2 on a pointer
machine model. Furthermore, given a node C in G, access queries can be supported on the
string S(C) in time O(log |S(C)|).

For our purposes, we need to slightly extend this result to gapped grammars. A
gapped grammar is a grammar except that each internal rule is now of the form C →
C1g1C2 . . . gk−1Ck, where gi is a non-negative integer called the gap. The string gen-
erated by G is now S(C) = S(C1)0g1S(C2) · · ·S(Ck−1)0gk−1S(Ck) and hence the result-
ing string generated is as before except for the inserted gaps of runs of 0’s. Note that
|S(C)| = |S(C1)|+ g1 + |S(C2)|+ · · ·+ gk−1 + |S(Ck|. The above random access result is
straightforward to generalize to gapped grammars:

I Lemma 13 (Bille et al. [19]). Let S be a string compressed into a gapped grammar S of size
nS . Given a node v in S, we can support random access queries in S(v) in O(log(|S(v)|)) time
using O(nS · αk(nS)) space. The solution works on a pointer machine model of computation.

2 Here αk(n) for any constant k denotes the inverse of the kth row of Ackermann’s function, defined as
αk(n) = 1 + αk(αk−1(n)) so that α1(n) = n/2, α2(n) = logn, α3(n) = log∗ n, and so on.

ISAAC 2019

4:14 Top Tree Compression of Tries

7.2 Horizontal Access in Linear Space

Bille et al. [19] further showed that the inverse-Ackermann factor in the space complexity of
Lemma 13 can be removed if we assume a word RAM model of computation. In this section
we show that this can also be achieved on a pointer machine. To this end, we need to replace
a single component in the solution of Bille et al., their weighted level ancestor structure. In
the weighted level ancestor problem, we are given a tree T on n nodes with positive weights
on the edges. For every node u ∈ T , let d(u) be its distance to the root, and let parent(u) be
its parent. Then, the goal is to preprocess T to answer the following weighted level ancestor
queries: given a non-root node u ∈ T and a positive number x ≤ d(u), find an ancestor v
such that d(v) ≥ x but d(parent(v)) < x.

Without getting into the proof of Lemma 13, it suffices to say that (1) performing a
random access query boils down to performing O(log(|S(v)|)) weighted level ancestor queries,
and (2) in order for all these O(log(|S(v)|)) queries to be done in total O(log(|S(v)|)) time,
the time for each weighted level ancestor query should be proportional to log d(u)

d(v)−d(parent(v)) .
Intuitively, we seek a position on an edge at distance x from the root, and the longer the
found edge is the smaller the query time should be. We next show how to achieve such
query time using linear space on a pointer machine, implying an inverse-Ackermann factor
improvement to Lemma 13.

I Lemma 14. A tree T on n nodes can be preprocessed in O(n) space to answer a weighted
level ancestor query for a node u ∈ T and a number x in O(1 + log d(u)

d(v)−d(parent(v))) time,
where v is the found ancestor of u.

I Corollary 15. Let S be a string compressed into a gapped grammar S of size nS . Given a
node v in S, we can support random access queries in S(v) in log(|S(v)|) time using O(nS)
space. The solution works on a pointer machine model of computation.

7.3 Horizontal Top Tree and Horizontal Top DAGs

Similar to the vertical top forest we define the horizontal top forest H of T as a forest of
ordered and rooted trees that consists of all horizontal clusters of T and leaves of T whose
top boundary is shared with a horizontal cluster. We define the edges in of C in H as follows.
Let C be a horizontal cluster C with children A and B in T . If A is a horizontal cluster or
a leaf then the left child of C is A, and if A is a vertical cluster then the left child of C is
hentry(A). Similarly, the right child of C is either B or hentry(B). See Figure 3. We have
the following property of H.

I Lemma 16. Let C be a horizontal merge in H. Then, the leaves of H(C) are the edges to
children of the top boundary node of C and the left-to-right ordering of the leaves correspond
to the left-to-right ordering of the children of C in T . All nodes in H(C) has top(C) as top
boundary node.

For instance in Figure 3(c) the descendant leaves of C7 are a7, b8, c9, and d10 in left to right
ordering corresponding to the edges to the children of top(C7). Given the horizontal top
forest we define the horizontal top DAG HD as the DAG obtained by merging the subtrees
of H according to the DAG compression of T into TD.

P. Bille, P. Gawrychowski, I. L. Gørtz, G.M. Landau, and O. Weimann 4:15

7.4 Gapped Grammars and Horizontal Access

Let C be an internal cluster in H. The spine child of C is the unique child of C that contains
the first edge of spine(C). A descendant cluster D of C is a spine descendant of C if all
clusters on the path from C to D are spine children of their parent. Define the horizontal
exit cluster for a horizontal cluster C and character α, denoted hexit(C,α), to be the highest
cluster in H(C) that has the unique leaf in H(C) labeled α as a spine descendant.

Given the horizontal top DAGHD, the horizontal access problem, is to compactly represent
HD such that given a horizontal merge C and a character α ∈ Σ, we can efficiently determine
if top(C) has an edge to a child labeled α within C and if so return the horizontal exit cluster
hexit(C,α). In this section, we show how to solve the horizontal access problem in O(nHD)
space and O(log σ) time.

The characteristic vector of a cluster C is a binary string encoding the labels of edges
to children of top(C). More precisely, given a character α ∈ Σ define rank(α) ∈ {1, . . . , σ}
as the rank of α in the sorted order of characters of Σ. Also, given a cluster C in H
define rank(C) to be the set of ranks of leaf labels in H(C). We define the characteristic
vector S(C) recursively as follows. If C is a leaf cluster S(C) = 1 and if C is an internal
cluster with children C1, . . . , Ck, then S(C) = S(C1)0g1S(C2) · · ·S(Ck−1)0gk−1S(Ck), where
gi = min(rank(Ci+1))−max(rank(Ci)) + 1. Note that |S(C)| ≤ σ for any cluster C. From
the definition we have the following correspondence between the characteristic vector and
the leaf labels of a cluster.

I Lemma 17. Given a cluster C in H and a character α ∈ Σ, α is a leaf label in H(C) iff
S(C)[rank(α)−min(rank(C))] = 1.

Let R1, . . . , Rz be the root clusters of the trees in H and note that if we add a virtual
root cluster R as the parent of R1, . . . , Rz, H is a gapped parse tree for the string S =
S(R1) · · ·S(Rz). Hence, the horizontal top DAG HD is a gapped grammar for the same string.
By Lemma 17 we can determine if there is an edge labeled α out of top(C) in C using a random
access query on the corresponding gapped grammar using time O(log |S(C)|) = O(log σ).
If this edge exists, we can also find hexit(C,α) in the same time using similar ideas. More
precisely, we have the following result.

I Lemma 18. Given a cluster C in H and a character α ∈ Σ we can solve the horizontal
acces problem in O(nHD) space and O(log σ) time.

8 An O(m logσ) Solution

We can now plug in the spine extraction from Section 6.2 and the horizontal access from
Section 7 into the simple algorithm from Section 3. Define the vertical entry cluster for a
horizontal cluster C, denoted ventry(C), to be the highest vertical cluster or leaf cluster in
T (C) that contains the first edge on spine(C).

Our data structure consists of the data structure from Section 6.2 for spine path extraction
and the data structure from Section 7.3 for horizontal access. Furthermore, we store for each
vertical cluster in TD a pointer to its horizontal entry cluster and for each horizontal cluster
a pointer to its vertical entry cluster. In total this uses O(nTD) space.

To search we alternate between horizontal accesses using Lemma 18 and spine path
extractions using Lemma 12. Instead of traversals to find entry clusters we jump directly
using the new pointers. Specifically, we have the following modified algorithm:

ISAAC 2019

4:16 Top Tree Compression of Tries

Initially, we search for P [1,m] starting at the root of TD. Suppose we have reached
cluster C and have matched P [1, i]. If i = m we return m. Otherwise (i < m) there are
three cases:
Case 1: C is a leaf cluster. Let e be the edge stored in C. We compare P [i+ 1] with the

label of e. We return i+ 1 if they match and otherwise i.
Case 2: C is a horizontal cluster. Compute E = hexit(C,P [i + 1]). If P [i + 1] does not

match return i. Otherwise, continue the search for P [i+ 1,m] from ventry(E).
Case 3: C is vertical cluster. We check if the first character on spine(C) matches P [i+ 1].

If it does not we continue the algorithm from hentry(C). Otherwise, we extract characters
from spine(C) in order to compute the length ` of the longest common prefix of spine(C)
and P [i+ 1,m] and the corresponding vertical exit cluster E = vexit(C, `+ 1). Continue
the search for P [`+ 1,m] from hentry(E).

I Lemma 19. The algorithm correctly computes the longest matching prefix of P in T .

Consider the alternating sequence of horizontal accesses and spine extractions. Each time
we go from a horizontal access to a spine extraction the current character of P must match
the first character on the spine. Hence, each horizontal access is on a distinct character
of P and the total number of horizontal accesses is at most m. By Lemma 18 it follows
that the total time for horizontal accesses is O(m log σ). Since the sequence is alternating
the number of spine extractions is at most m+ 1. Hence, by Lemma 12 the total time for
spine extractions is at most O(m). This concludes the proof of the O(m log σ) query time
in Theorem 1.

References
1 Peyman Afshani, Lars Arge, and Kasper Green Larsen. Higher-dimensional orthogonal range

reporting and rectangle stabbing in the pointer machine model. In Proc. 28th SoCG, pages
323–332, 2012.

2 Stephen Alstrup and Jacob Holm. Improved algorithms for finding level ancestors in dynamic
trees. In Proc. 27th ICALP, pages 73–84, 2000.

3 Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining
Information in Fully Dynamic Trees with Top Trees. ACM Trans. Algorithms, 1(2):243–264,
2005.

4 J-I Aoe. An efficient digital search algorithm by using a double-array structure. IEEE Trans.
Soft. Eng., 15(9):1066–1077, 1989.

5 Julian Arz and Johannes Fischer. LZ-compressed string dictionaries. In Proc. 24th DCC,
pages 322–331, 2014.

6 Julian Arz and Johannes Fischer. Lempel–Ziv-78 Compressed String Dictionaries. Algorithmica,
pages 1–36, 2018.

7 Nikolas Askitis and Ranjan Sinha. Engineering scalable, cache and space efficient tries for
strings. The VLDB Journal, 19(5):633–660, 2010.

8 Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. Dynamic z-fast tries. In Proc. 17th
SPIRE, pages 159–172, 2010.

9 Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot. Com-
posite repetition-aware data structures. In Proc. 26th CPM, pages 26–39, 2015.

10 Djamal Belazzougui, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Alberto Ordónez,
Simon J Puglisi, and Yasuo Tabei. Queries on LZ-bounded encodings. In Proc. 25th DCC,
pages 83–92, 2015.

11 Djamal Belazzougui, Travis Gagie, Simon Gog, Giovanni Manzini, and Jouni Sirén. Relative
FM-indexes. In Proc. 21st SPIRE, pages 52–64, 2014.

P. Bille, P. Gawrychowski, I. L. Gørtz, G.M. Landau, and O. Weimann 4:17

12 Michael A. Bender and Martin Farach-Colton. The Level Ancestor Problem simplified. Theoret.
Comput. Sci., 321(1):5–12, 2004.

13 David Benoit, Erik D Demaine, J Ian Munro, Rajeev Raman, Venkatesh Raman, and S Srinivasa
Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292, 2005.

14 Samuel W. Bent, Daniel D. Sleator, and Robert E. Tarjan. Biased Search Trees. SIAM J.
Comput., 14(3):545–568, 1985.

15 Philip Bille, Mikko B. Ettienne, Inge Li Gørtz, and Hjalte W. Vildhøj. Time-space trade-offs
for Lempel-Ziv compressed indexing. Theor. Comput. Sci., 713:66–77, 2018.

16 Philip Bille, Finn Fernstrøm, and Inge Li Gørtz. Tight Bounds for Top Tree Compression. In
Proc. 24th SPIRE, pages 97–102, 2017.

17 Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Deterministic Indexing for Packed
Strings. In Proc. 28th CPM, 2017.

18 Philip Bille, Inge Li Gørtz, Oren Weimann, and Gad M. Landau. Tree compression with top
trees. Inf. Comput., 243:166–177, 2015. Announced at ICALP 2013.

19 Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and
Oren Weimann. Random Access to Grammar-Compressed Strings and Trees. SIAM J. Comput.,
44(3):513–539, 2015. Announced at SODA 2011.

20 Barnard Chazelle. Lower bounds for orthogonal range searching: I. The reporting case. J.
ACM, 37(2):200–212, 1990.

21 Bernard Chazelle and Burton Rosenberg. Simplex range reporting on a pointer machine.
Comput. Geom., 5(5):237–247, 1996.

22 Anders R. Christiansen and Mikko B. Ettienne. Compressed Indexing with Signature Grammars.
In Proc. 13th LATIN, pages 331–345, 2018.

23 Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Fundamenta
Informaticae, 111(3):313–337, 2011.

24 Francisco Claude and Gonzalo Navarro. Improved grammar-based compressed indexes. In
Proc. 19th SPIRE, pages 180–192, 2012.

25 John J Darragh, John G Cleary, and Ian H Witten. Bonsai: a compact representation of trees.
Softw. Pract. Exper., 23(3):277–291, 1993.

26 Paul F. Dietz. Finding level-ancestors in dynamic trees. In Proc. 2nd WADS, pages 32–40,
1991.

27 Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the common subexpression
problem. J. ACM, 27(4):758–771, 1980.

28 Bartlomiej Dudek and Paweł Gawrychowski. Slowing Down Top Trees for Better Worst-Case
Compression. In Proc. 29th CPM, pages 16:1–16:8, 2018.

29 Andrea Farruggia, Travis Gagie, Gonzalo Navarro, Simon J Puglisi, and Jouni Sirén. Relative
suffix trees. Comput. J., 61(5):773–788, 2017.

30 Edward Fredkin. Trie Memory. Commun. ACM, 3(9):490–499, 1960.
31 Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.

A Faster Grammar-Based Self-index. In Proc. 6th LATA, pages 240–251, 2012.
32 Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.

LZ77-based self-indexing with faster pattern matching. In Proc. 11th LATIN, pages 731–742,
2014.

33 Roberto Grossi and Giuseppe Ottaviano. Fast compressed tries through path decompositions.
ACM J. Exp. Alg., 19:3–4, 2015.

34 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.

35 Torben Hagerup. Sorting and Searching on the Word RAM. In Proc. 15th STACS, pages
366–398, 1998.

36 Meng He, J. Ian Munro, and Gelin Zhou. Data Structures for Path Queries. ACM Trans.
Algorithms, 12(4):53:1–53:32, 2016.

37 Robert Hood and Robert Melville. Real-Time Queue Operation in Pure LISP. Inf. Process.
Lett., 13(2):50–54, 1981.

ISAAC 2019

4:18 Top Tree Compression of Tries

38 Lorenz Hübschle-Schneider and Rajeev Raman. Tree compression with top trees revisited. In
Proc. 14th SEA, pages 15–27, 2015.

39 Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. Compressed double-array tries for
string dictionaries supporting fast lookup. Knowl. Inf. Syst., 51(3):1023–1042, 2017.

40 Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. Practical implementation of space-
efficient dynamic keyword dictionaries. In Proc. 24th SPIRE, pages 221–233, 2017.

41 Juha Kärkkäinen and Esko Ukkonen. Lempel-Ziv parsing and sublinear-size index structures
for string matching. In Proc. 3rd WSP, pages 141–155, 1996.

42 Richard M. Karp and Michael O. Rabin. Efficient Randomized Pattern-Matching Algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

43 Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM J. Comput., 6(2):323–350, 1977.

44 Donald Erwin Knuth. The Art of Computer Programming, Volume 1. Addison Wesley, 1969.
45 Veli Mäkinen. Compact suffix array—a space-efficient full-text index. Fundamenta Informaticae,

56(1-2):191–210, 2003.
46 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding.

Nordic J. Comput., 12(1):40–66, 2005.
47 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of

individual genomes. In Proc. 13th RECOMB, pages 121–137, 2009.
48 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of

highly repetitive sequence collections. J. Comp.Bio., 17(3):281–308, 2010.
49 Gonzalo Navarro and Veli Mäkinen. Compressed Full-text Indexes. ACM Comput. Surv.,

39(1), 2007.
50 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theor. Comput.

Sci., 762:41–50, 2019.
51 Takaaki Nishimoto, I Tomohiro, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.

Dynamic index and LZ factorization in compressed space. Disc. App. Math., 2019.
52 Andreas Poyias and Rajeev Raman. Improved practical compact dynamic tries. In Proc. 22nd

SPIRE, pages 324–336, 2015.
53 Franco P Preparata and Se June Hong. Convex hulls of finite sets of points in two and three

dimensions. Communications of the ACM, 20(2):87–93, 1977.
54 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries

with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43, 2007.

55 Kunihiko Sadakane. Compressed text databases with efficient query algorithms based on the
compressed suffix array. In Proc. 11th ISAAC, pages 410–421, 2000.

56 Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-length compressed
indexes are superior for highly repetitive sequence collections. In Proc. 15th SPIRE, pages
164–175, 2008.

57 Takuya Takagi, Keisuke Goto, Yuta Fujishige, Shunsuke Inenaga, and Hiroki Arimura. Linear-
size CDAWG: new repetition-aware indexing and grammar compression. In Proc. 24th SPIRE,
pages 304–316, 2017.

58 Takuya Takagi, Shunsuke Inenaga, Kunihiko Sadakane, and Hiroki Arimura. Packed compact
tries: A fast and efficient data structure for online string processing. IEICE Trans. on Fund.
Elect., Comm. and Comp. Sci., 100(9):1785–1793, 2017.

59 Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. Journal of Computer and System Sciences, 18(2):110–127, April 1979.

60 Kazuya Tsuruta, Dominik Köppl, Shunsuke Kanda, Yuto Nakashima, Shunsuke Inenaga, Hideo
Bannai, and Masayuki Takeda. Dynamic Packed Compact Tries Revisited. arXiv preprint,
2019. arXiv:1904.07467.

61 Susumu Yata. Dictionary compression by nesting prefix/patricia tries. In Proc. 17th Meeting
of the Association for Natural Language, 2011.

62 Naoki Yoshinaga and Masaru Kitsuregawa. A self-adaptive classifier for efficient text-stream
processing. In Proc. 25th COLING, pages 1091–1102, 2014.

http://arxiv.org/abs/1904.07467

Two Phase Transitions in Two-Way Bootstrap
Percolation
Ahad N. Zehmakan
ETH Zurich, Switzerland
abdolahad.noori@inf.ethz.ch

Abstract
Consider a graph G and an initial random configuration, where each node is black with probability
p and white otherwise, independently. In discrete-time rounds, each node becomes black if it has at
least r black neighbors and white otherwise. We prove that this basic process exhibits a threshold
behavior with two phase transitions when the underlying graph is a d-dimensional torus and identify
the threshold values.

2012 ACM Subject Classification Theory of computation

Keywords and phrases bootstrap percolation, cellular automata, phase transition, d-dimensional
torus, r-threshold model, biased majority

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.5

Acknowledgements The author likes to thank Raphael Cerf, Bernd Gärtner, and Roberto H.
Schonmann for several stimulating discussions.

1 Introduction

Consider a graph G = (V,E) and an initial random configuration, where each node is
independently black with some probability p and white otherwise. In r-bootstrap percolation
(or shortly r-BP) for some positive integer r, in each discrete-time round white nodes with
at least r black neighbors become black and black nodes stay unchanged. This basic process
is meant to model different progressive dynamics such as rumor spreading in a society, fire
propagation in a forest, and infection spreading among cells, where a black/white node
corresponds to an individual who is informed/uninformed of a rumor, a tree which is or not
on fire, or an infected/uninfected cell.

In the above examples if a node becomes black, it remains black forever. For instance,
an individual who is informed of a rumor remains informed. However, there exist many
real-world examples where nodes might keep switching between black and white. For example,
two service providers might be competing to get people adopting their services, and thus
users may switch among two services back and forth. Another example is opinion forming
regarding an election in a community, where an individual might adopt the positive opinion
if a certain number/fraction of its connections are positive, and become negative otherwise.
To study this kind of non-progressive processes the following model has been introduced. For
a graph G and an initial random configuration, in two-way r-bootstrap percolation in each
round a node becomes black if it has at least r black neighbors and white otherwise.

The behavior of these two basic models have been extensively studied by researchers from
a wide spectrum of fields, like statistical physics [2, 43], distributed computing [41, 19, 21],
mathematics [3, 33], and even sociology [26] due to their various applications, such as
distributed fault-local mending [41], modeling biological interactions [35], viral marketing [34],
and modeling disordered magnetic systems [6].

The first natural question arises: How long does it take for the above processes to
stabilize? Both of these processes are induced by deterministic updating rules and for a
graph G = (V,E) there are 2|V | possible colorings (configurations). Therefore, by starting

© Ahad N. Zehmakan;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abdolahad.noori@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.ISAAC.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Two Phase Transitions in Two-Way Bootstrap Percolation

from any initial configuration the process must reach a cycle of configurations eventually.
The length of this cycle and the number of rounds the process needs to reach the cycle are
respectively called the period and the consensus time of the process. In r-BP, the periodicity
is always one and the consensus time is bounded by |V | − 1, which is tight (for instance
consider a path Pn and 1-BP, where initially all nodes are white except one of the leaves).
In two-way r-BP, 2|V | is a trivial upper bound on both period and consensus time. However,
interestingly Goles and Olivos [25] proved that the period is always one or two and Fogelman,
Goles, and Weisbuch [20] showed that the consensus time is bounded by O (|E|), which is
tight (consider a cycle Cn which is fully white except two adjacent black nodes for r = 1).

Arguably, the most well-studied question concerning the behavior of these models is:
What is the minimum p for which black color takes over with probability approaching one?
We say black/white color takes over if the whole graph becomes black/white. This question
has been investigated on different classes of graphs such as hypercube [5], the binomial
random graph [31, 15, 38], random regular graphs [9, 24, 37], infinite trees [33], and many
others. A substantial amount of attention has been devoted to address this question on the
d-dimensional torus, due to the study of certain interacting particle systems like fluid flow in
rocks [1], dynamics of glasses [22], and biological interactions [35]. The d−dimensional torus
TdL is the graph with node set [L]d := {1, · · · , L}d, where two nodes are adjacent if and only
if they differ by 1 or L− 1 in exactly one coordinate. Notice we always assume that d is a
constant while let L tend to infinity.

The aforementioned question regarding r-BP on the d-dimensional torus TdL first was
considered by Aizenman and Lebowitz [2], who proved that for r = d = 2 the process exhibits
a weak threshold behavior at P1 := (log(r−1) L)−(d−r+1) where log(r) L := log log(r−1) L for
r ≥ 1 and log0 L = L. That is, black color takes over for p = ω (P1) and it does not for
p = o (P1) asymptotically almost surely 1. Cerf and Cirillo [13] made one step further by
proving that the process exhibits a similar weak threshold behavior at P1 for d = r = 3.
Finally, Cerf and Manzo [14] extended this result to all values of 1 ≤ r ≤ d, building on
the work by Schonmann [43]. Later on, it was proven, by Holroyd [29], that for d = r = 2
the process actually exhibits a sharp threshold behavior ; that is, a.a.s. black color takes
over if p ≥ (1 + ε)λP1 and it does not if p ≤ (1− ε)λP1 for any constant ε > 0, where
λ (d, r) > 0 is a constant. This sharp threshold behavior was proven for the case of d = r = 3
by Balogh, Bollobas, and Morris [7] and finally for all values of 1 < r ≤ d by Balogh, Bollobas,
Duminil-Copin, and Morris [6]. Along the way, as an intermediate step the behavior of a
similar process was also studied. In modified r-bootstrap percolation on TdL, by starting from
a random initial configuration in every round each white node becomes black if it has black
neighbor(s) in at least r distinct dimensions and black nodes remain unchanged. See [28, 29]
by Holroyd regarding the sharp threshold behavior of modified r-BP for r = d.

For two-way r-BP on TdL, Schonmann [42], by applying the results from [2], proved that
for d = r = 2 black color takes over if p = ω

(
1/
√

logL
)
and it does not if p = o

(
1/
√

logL
)

a.a.s., i.e., it exhibits a weak threshold behavior. What about the higher dimensions? Despite
several attempts [16, 35, 3, 42] over the last three decades, this question has remained open.
Intuitively speaking, the inherent difficulty of analyzing two-way r-BP comes from the fact
that unlike r-BP, in two-way r-BP a node may switch between two colors back and forth.

By providing several new techniques, using some ideas inspired from [42, 23] (where the
special case of r = d = 2 is handled), and applying some prior results regarding (modified)
r-BP [14, 6, 28], we extend the above threshold behavior in two-way r-BP to all dimensions.

1 For a graph G = (V, E) we say an event happens asymptotically almost surely (a.a.s.) if it happens
with probability 1− o (1) as |V | tends to infinity.

A.N. Zehmakan 5:3

One might relax the above question and ask what is the minimum p for which black color
survives (but does not make the whole graph black necessarily). In r-BP on TdL as will be
discussed, it is straightforward to show that black color survives forever if p = ω (P2) and it
does not if p = o (P2) a.a.s. for P2 := L−d. The answer to this question for two-way r-BP
is somewhat more involved. We prove a similar threshold behavior in the two-way setting,
which leads into some interesting insights regarding the behavior of the process.

All in all, we prove two-way r-BP on the d-dimensional torus TdL exhibits two phase
transitions. More precisely, asymptotically almost surely

white color takes over if p = o(P1/2r−1

2): Phase 1
both colors survive if p = ω(P1/2r−1

2) and p = o(P1/2r−1

1): Phase 2
black color takes over if p = ω(P1/2r−1

1): Phase 3.

Figure 1 Two phase transitions in two-way r-BP on Td
L.

Note that for r = 1, we have L−
d

2r−1 = (log(r−1) L)−
d−r+1
2r−1 = L−d, which implies that the

process basically goes through one phase transition. In general, it is an easy exercise to prove
that for both 1-BP and two-way 1-BP on an n-node graph, black color (resp. white color)
takes over a.a.s. if p = ω(n−1) (resp. p = o(n−1)). Therefore, in the rest of the paper we
assume that r ≥ 2, otherwise we point out explicitly.

It is worth to mention that the threshold behavior of many other similar models have
been extensively studied, cf. [18, 11, 40, 12, 30, 10, 39]. The main difference between these
models and ours is that they assume that the nodes update their color sequentially, in a
deterministic or random fashion.

Outline. After setting up some basic definitions in Section 1.1, we provide some insights
and the main ideas behind our proof techniques in Section 1.2. Finally in Section 2, our
main results regarding two phase transitions of two-way r-BP on the d-dimensional torus
are provided.

1.1 Definitions and Preliminaries
Let for a graph G = (V,E) and a node v ∈ V , the neighborhood of v be N (v) := {u ∈
V : {v, u} ∈ E}. For a set S ⊆ V we have NS (v) := N (v) ∩ S and N (S) :=

⋃
v∈S N (v).

Furthermore, for two nodes v, u ∈ V we define the distance d (v, u) to be the length of a
shortest path between v and u, in terms of the number of edges. Let G2 be the second power
of graph G, where two nodes are adjacent if their distance in G is at most 2. Then, we say
there is a semi-connected path between v and u in G if there is a path between them in G2.

Formally, a configuration is a function C : V → {b, w}, where b,w stand for black and
white. For a configuration C, node v ∈ V , and color c ∈ {b, w}, we define NCc (v) := {u ∈
N (v) : C (u) = c} which is the set of neighbors of v having color c in configuration C. Finally,
for a color c ∈ {b, w} and a set S ⊆ V , we write C|S = c if ∀v ∈ S, C (v) = c.

ISAAC 2019

5:4 Two Phase Transitions in Two-Way Bootstrap Percolation

Let us define (two-way) r-BP formally. Consider a graph G = (V,E) and an initial
random configuration C0. In two-way r-BP, Ct (v) = b if |NCt−1

b (v) | ≥ r and Ct (v) = w

otherwise for t ≥ 1, where Ct is the t-th configuration. In r-BP, Ct (v) = b if |NCt−1
b (v) | ≥ r

or Ct−1 (v) = b and Ct (v) = w otherwise.
For a graph G and two configurations C and C′ we write C ≤ C′ if all black nodes in C

are also black in C′. A model M1 is stronger than model M2 if for any graph G and any
configuration C, we have M2 (C) ≤M1 (C) where M1 (C) and M2 (C) denote the configuration
obtained from C after one round of M1 and M2. For instance, r-BP is stronger than two-way
r-BP. Furthermore, M is a monotone model if for any graph G and any two configurations
C1 ≤ C2, we have C′1 ≤ C′2 where C′1 and C′2 are the configurations obtained respectively from
C1 and C2 after one round of M . All models introduced in this paper are monotone.

For any model M and a graph G = (V,E), a set S ⊆ V is called a c-robust set for
c ∈ {b, w} whenever the following holds: if all nodes in S share color c in some configuration
during the process, then they will all keep it in all upcoming configurations. Furthermore, a
set S ⊆ V is c-eternal for c ∈ {b, w} means if all nodes in S have color c in some configuration,
then color c survives, that is for any upcoming configuration there is a node which has color
c. Clearly, a c-robust set is also a c-eternal set, but not necessarily the other way around.
Furthermore, we say a node set D is a c-dynamo for c ∈ {b, w} if color c takes over once
all nodes in D have color c. For example in any connected graph and two-way 1-BP, any
two adjacent nodes are a b-dynamo. Notice one node might not suffice, for instance in an
even cycle.

For some graph G and an integer r ≥ 1, we say a node set S is (r, c)-robust (analogously,
(r, c)-eternal, (r, c)-dynamo) if it is c-robust (resp. c-eternal, c-dynamo) in two-way r-BP on
G. Observe that in an (r, b)-robust set (analogously (r, w)-robust set) for each node v ∈ S,
|NS (v) | ≥ r (resp. |NV \S (v) | < r).

The d-dimensional torus TdL is the graph with the node set V = {(i1, · · · , id) : 1 ≤
i1, · · · , id ≤ L} and the edge set E = {{i, i′} : |ij− i′j | = 1, L−1 for some j and ik = i′k ∀k 6=
j}. Notice each node in TdL has 2d neighbors, two neighbors in each dimension. For a node
v = (i1, · · · , id) and 1 ≤ j ≤ d, we call (i1, · · · , ij + 1, · · · , id) and (i1, · · · , ij − 1, · · · , id) the
neighbors of v in the j-th dimension. (For the above definition to make sense when ij is
equal to 1 or L, we need to apply the modulo L operation. However to lighten the notation,
we skip that whenever it is clear from the context.)

The hyper-rectangle of size l1 × · · · × ld starting from node (i1, · · · , id) is the node set
{(i′1, · · · , i′d) : ij ≤ i′j ≤ ij + lj ∀1 ≤ j ≤ d}. An r-dimensional hyper-square HS starting at
node i is a hyper-rectangle starting at i with exactly r of ljs being equal to 1 and the rest
0, where we define JHS := {j : lj 6= 0}. We denote the odd-part (analogously even-part) of
HS by HS(1) (resp. HS(2)), which are the nodes that differ in odd (resp. even) number of
coordinates with i. As a warm-up let us prove the following simple, however crucial, lemma.

I Lemma 1. For an r-dimensional hyper-square HS in TdL = (V,E), HS(1) and HS(2) are
(r, b)-eternal sets.

Proof. It suffices to show each node in HS(1) has exactly r neighbors in HS(2) and vice versa
because it implies that if Ct|HS(1) = b, we will have Ct+2t′+1|HS(2) = b and Ct+2t′ |HS(1) = b

for any t′ ≥ 0 (a similar argument for Ct|HS(2) = b). Let i′ be a node in HS(1) and assume
HS starts at node i. There is an odd-size subset J ⊆ JHS of coordinates in which i′ is larger
than i by one. Now, by decrementing any coordinate in J or incrementing any coordinate
in JHS \ J , we reach a node in HS(2) which is a neighbor of i′. Thus, i′ has r neighbors in
HS(2). The proof of the other direction is analogous. See Figure 2 for an example. J

A.N. Zehmakan 5:5

Figure 2 (left) A (2, b)-eternal set (right) a (3, b)-eternal set.

Notice the even/odd-part of an r-dimensional hyper-square is of size 2r−1 which implies that
there exists an (r, b)-eternal set of size 2r−1. Furthermore, we always assume 1 ≤ r ≤ d. The
setting of d+ 1 ≤ r ≤ 2d is the same as 1 ≤ r ≤ d if we swap black and white.

In the r-dimensional torus TrL, the set of r-dimensional hyper-squares whose starting node
is in {(2i1 − 1, · · · , 2ir − 1) : 1 ≤ i1, · · · , ir ≤ bL/2c} divide the node set (except the nodes
with value L in one of their coordinates if L is odd) into bL/2cr pair-wise disjoint hyper-
squares. Furthermore, if we divide the nodes in the d-dimensional torus TdL into Ld−r pair-wise
disjoint subsets according to their last d− r coordinates, the induced subgraph by each of
these subsets is an r-dimensional torus. Now, if we partition the node set of each of these
r-dimensional tori into bL/2cr hyper-squares as above, we will have Ld−rbL/2cr = Θ

(
Ld
)

pair-wise disjoint r-dimensional hyper-squares. We call this procedure the tiling of TdL into
r-dimensional hyper-squares.

1.2 Proof Techniques and Some Insights
Phase transition. Intuitively speaking, one might expect any monotone model to exhibit
some sort of threshold behavior with two phase transitions on any graph. Assume that
the initial probability p is very close to zero, then black nodes probably disappear in a few
number of rounds. However, if we gradually increase the initial probability, at some point it
would suffice to guarantee the survival of black color, however perhaps it is not high enough
to result in a fully black configuration. Finally, if we keep increasing the initial probability,
suddenly it should be sufficient to guarantee not only the survival of black color but also the
disappearance of white color. Another way of seeing these two phase transitions is in terms
of b-eternal set and b-dynamo. One might think of the first threshold as the threshold value
for having a fully black b-eternal set and the second one as the threshold for having a fully
black b-dynamo since black color survives if and only if there is a black b-eternal set initially
and it will take over if and only if there is a black b-dynamo in the initial configuration.
Notice the first and the second threshold values might match, which means the process goes
actually through one phase transition; for instance, in 1-BP the existence of a black node is
the necessary condition for survival of black color and at the same time sufficient condition to
take over; i.e., any b-eternal set is also a b-dynamo. Although this threshold behavior might
seem conceptually simple, identifying the exact threshold values is usually a very non-trivial
task. As we discussed even for the very special case of r-BP on TdL the answer was known
after a large series of papers over more than three decades.

As discussed, r-BP on the d-dimensional torus TdL goes through two phase transitions,
which matches our intuitive argument from above. More precisely, the torus becomes fully
white if p = o (P2), both color coexist if p = ω (P2) and p = o (P1), and it will become
fully white if p = ω (P1) a.a.s. where P1 = (log(r−1) L)−(d−r+1) and P2 = L−d. The first
transition has not been considered before, but it is very easy to handle. For p = o (P2), by a
simple union bound the probability that there exists a black node in the initial configuration
is upper-bounded by Ld · o (P2) = o (1), which implies a.a.s. the initial configuration is fully

ISAAC 2019

5:6 Two Phase Transitions in Two-Way Bootstrap Percolation

white. For p = ω (P2), the expected number of black nodes in the initial configuration is
equal to Ld · ω (P2) = ω (1); applying the Chernoff bound [17] yields that a.a.s. there exists
a black node initially, which guarantees the survival of black color.

We prove that two-way r-BP on TdL exhibits a similar threshold behavior at threshold
values P

1/2r−1

1 and P
1/2r−1

2 . As mentioned, Balogh, Bollobas, Duminil-Copin, and Morris [6]
proved that r-BP actually exhibits a sharp threshold behavior in the second transition. Can
we expect a sharp threshold behavior in the first transition of r-BP or any of the two
transitions of two-way r-BP? We believe that it might be the case in the second phase
transition of two-way r-BP, but proving such a statement probably requires novel ideas
beyond the known techniques in the literature. On the other hand, the claimed weak threshold
behavior is the best possible for the first phase transition in both r-BP and two-way r-BP.
(See the appendix, Section A.1, for a simple proof of this claim.)

A more general statement. Recall in Lemma 1 we proved that in two-way r-BP on TdL
there is an (r, b)-eternal set of size 2r−1. In Lemma 3 we will show that actually there
is no smaller (r, b)-eternal set. Therefore, by switching from r-BP to two-way r-BP, the
minimum size of a b-eternal set increases from 1 to 2r−1. Thus, the threshold values in
both r-BP and two-way r-BP are equal to P

1/s
1 and P

1/s
2 , where s is the minimum size

of a b-eternal set. We believe that there exists a large class of monotone models M such
that each model M ∈ M on TdL goes through two phase transitions at threshold values
P

1/s
1 and P

1/s
2 , where s is the minimum size of a b-eternal set. We do not prove such a

statement, but in Section 3 we illustrate how our proof techniques can possibly be applied
to provide such results. For now, let us discuss an interesting example which falls under
the umbrella of the above argument. As an intermediate step from the analysis of r-BP to
the analysis of two-way r-BP, Coker and Gunderson [16] studied the following variant of
bootstrap percolation on T2

L, which is called 2-BP with recovery. In this model, a white node
becomes black if it has at least two black neighbors, and a black node remains unchanged,
except if all its four neighbors are white. Coker and Gunderson [16] proved that this process
exhibits two phase transitions at P

1/2
1 and P

1/2
2 . Notice this is consistent with the above

claim because in 2-BP with recovery the minimum size of a b-eternal set is 2. Clearly, one
black node disappears in one round but two adjacent black nodes survive forever.

Proof techniques. Now, we discuss the high-level ideas of the proof techniques applied.
In phase one, we want to show that if p = o(P1/2r−1

2) then black color disappears a.a.s.
We exploit a technique which we call clustering; roughly speaking, we show p is so small
that a.a.s. one can partition all black nodes in small clusters which are far from each other.
This distance lets us treat each cluster independently since there is no interaction among
them. Furthermore, the number of black nodes in each cluster is less than 2r−1, that is the
minimum size of an (r, b)-eternal set, which then results in the disappearance of black color.

For the second phase, we must show both colors survive a.a.s. For black color, since there
are Θ

(
Ld
)
pair-wise disjoint (r, b)-eternal sets of size 2r−1 (namely the even-part of Θ

(
Ld
)

pair-wise disjoint r-dimensional hyper-squares), applying the Chernoff bound implies that
there is a black (r, b)-eternal set initially a.a.s. This guarantees the survival of black color.
We also need to show for p = o(P1/2r−1

1) white color survives a.a.s. For that, we rely on the
threshold behavior of r-BP. More precisely, applying the fact that the minimum size of a
b-eternal set is equal to 2r−1, we show the probability that an arbitrary node is black after T
rounds, for some constant T (d, r), is o (P1). Since the stronger model of r-BP results in the
survival of white color a.a.s. in this case, so does two-way r-BP. (Some details are omitted.)

A.N. Zehmakan 5:7

In phase 3, our goal is to prove if p = ω(P1/2r−1

1), a.a.s. black color takes over. We utilize
a method, which we call scaling. The idea is to tile the torus TdL into r-dimensional hyper-
squares and treat each of the hyper-squares as a single node. We say two hyper-squares are
neighbors if there is at least one edge between them; then, each hyper-square has 2d neighbors,
two in each dimension. Furthermore, we say a hyper-square is occupied in configuration
Ct for even t (analogously odd t) if its even-part (resp. odd-part) is black. We prove if in
some configuration, a hyper-square has occupied neighbors in r distinct dimensions, then it
becomes occupied in constantly many rounds. Furthermore, each hyper-square is occupied
initially with probability p2r−1 = ω (P1). Hence, the process scaled to the hyper-squares
is at least as strong as modified r-BP, where initially each hyper-square is occupied with
probability ω (P1). We know modified r-BP with initial probability ω (P1) results in a fully
black configuration a.a.s. This implies that two-way r-BP on TdL reaches a configuration
where the even-part of each of the hyper-squares is black a.a.s. We can do the same argument
by switching the terms of odd and even in the definition of occupation. Then, by a union
bound, a.a.s. black color takes over.

Tie-breaking rule. Let us finish this section, by mentioning an interesting observation.
Another well-studied model in this literature is the majority model, where by starting from an
initial random configuration in each round all nodes update their color to the most frequent
color in their neighborhood, and in case of a tie, a node keeps its current color. Two-way
r-BP on TdL for r = d is sometimes called the biased majority model because each node
selects the most frequent color in its neighborhood and in case of a tie, it chooses black
(notice each node has degree 2d). Therefore, the majority model on TdL is the same as the
biased variant except in tie-breaking rule. We claim in the majority model if p ≤ 1− δ for
any arbitrary constant δ > 0, then black color does not take over a.a.s. For a simple proof
see the appendix, Section A.2. On the other hand as we discussed, in the biased model
p = ω(P1/2d−1

1), consequently p ≥ δ for an arbitrarily small constant δ > 0, results in a fully
black configuration a.a.s. Putting these two propositions in parallel, we observe that in the
majority model p should be very close to 1 to have a high chance of final complete occupancy
by black, but by just changing the tie-breaking rule in favor of black, the process ends up in
a fully black configuration a.a.s. even for initial probability very close to 0. This comparison
illustrates how small alternations in local behavior can result in considerable changes in the
global behavior.

2 Two Phase Transitions

2.1 Phase 1
The idea of the proof is to show that if p = o(P1/2r−1

2), then a.a.s. black nodes in C0 are
contained in a group of hyper-rectangles which are sufficiently far from each other and each
hyper-rectangle includes less than 2r−1 black nodes. Since the hyper-rectangles are far from
each other, the nodes out of the hyper-rectangles, which are all white initially, stay white
forever (i.e., create a white (r, w)-robust set). Furthermore, the black nodes inside each
hyper-rectangle die out after some rounds because they are less than the minimum size of
an (r, b)-eternal set. We prove our claim in Theorem 4, building on Lemma 3. To prove
Lemma 3, we first need to provide Lemma 2.

I Lemma 2. In TdL = (V,E), a non-empty (r, b)-robust set intersects at least 2r−1 pair-wise
disjoint (r, w)-robust sets.

ISAAC 2019

5:8 Two Phase Transitions in Two-Way Bootstrap Percolation

Proof. We do induction on r. As the base case we show that a (2, b)-robust set S in TdL
intersects at least 22−1 = 2 disjoint (2, w)-robust sets W1 and W2. There exists some
coordinate j so that there are two nodes i(1) = (i(1)

1 , · · · , i(2)
d) and i(2) = (i(2)

1 , · · · , i(2)
d) in

S with i(1)
j < i

(2)
j (otherwise S includes only one node, which cannot be a (2, b)-robust set).

Let W1 = {(i1, · · · , id) ∈ V : ij = i
(1)
j ∨ ij = i

(1)
j − 1} and W2 = V \W1. Notice that W1

includes i(1) and W2 includes i(2), except if i(1)
j = 1 and i(2)

j = L, but in this case we simply
use i(1)

j + 1 instead of i(1)
j − 1 in W1. For any node i ∈ W1 (similarly in W2), 2d − 2 of

neighbors which differ with i only in some coordinate j′ 6= j are all in W1 (resp. W2) and
among the two neighbors which differ in the j-th coordinate at least one of them is in W1
(resp. W2) by construction. Thus, each node has at least 2d− 1 of its 2d neighbors in W1
(resp. W2), which implies it is a (2, w)-robust set.

Now, as the induction hypothesis assume that the statement is true for some r ≥ 2,
we show it holds also for r + 1. Let set S be an (r + 1, b)-robust set. There exists some
coordinate j so that there are two nodes in S which differ in the j-th coordinate, otherwise it
includes only one node. Let level Lk be the nodes whose j-th coordinate is k for 1 ≤ k ≤ L.
In other words, level Lk is the node set of the (d− 1)-dimensional torus attained by fixing
the j-th coordinate to be k. Based on above, we know there are at least two levels which
intersect S. Assume there are 1 ≤ k1, k2 ≤ L such that Lk1 and Lk2 intersect S but Lk1+1
and Lk2−1 do not and (Lk1 ∪ Lk1+1) ∩ (Lk2−1 ∪ Lk2) = ∅. In other words, there are two
disjoint pairs and each pair includes two adjacent levels, where one level intersects S and the
other one does not. If such pairs do not exist then there are Θ (L) levels which intersect S.
Furthermore, each set L2k−1∪L2k for 1 ≤ k ≤ bL/2c is an (r + 1, w)-robust set because each
node in L2k−1 ∪ L2k has exactly 2d− 1 neighbors in it. Based on the last two statements
if there do not exist such disjoint pairs of levels, we have Θ (L) ≥ 2(r+1)−1 = 2r pair-wise
disjoint (r + 1, w)-robust sets which intersect S, which then we are done. Therefore, assume
such disjoint pairs of levels Lk1 ∪ Lk1+1 and Lk2−1 ∪ Lk2 exist.

We define S1 := S∩Lk1 and S2 := S∩Lk2 ; let (d− 1)-dimensional torus T1 (similarly T2)
be the induced subgraph on node set Lk1 (resp. Lk2). We claim each node in S1 (similarly
S2) has at least r neighbors in S1 (resp. S2), which means S1 (resp. S2) is an (r, b)-robust set
with respect to T1 (resp. T2). We prove the claim for S1, and the proof for S2 is analogous.
Each node in Lk1 has all its neighbors in Lk1 except one in Lk1−1 and one in Lk1+1, but the
one in Lk1+1 is not in S because Lk1+1∩S = ∅ by our assumption. Furthermore, each node in
S has at least r+1 neighbors in S, which implies that each node in S1 has at least r neighbors
in S1. Since S1 is an (r, b)-robust set with respect to the (d− 1)-dimensional torus T1, it
intersects at least 2r−1 pair-wise disjoint (r, w)-robust sets in T1 by the induction hypothesis.
The same argument applies to S2 with respect to T2. Therefore, there are pair-wise disjoint
sets W (1)

1 , · · · ,W (1)
2r−1 ⊂ Lk1 (analogously W (1)

2r−1+1, · · · ,W
(1)
2r ⊂ Lk2) such that a node v in

W
(1)
` for 1 ≤ ` ≤ 2r−1 (resp. 2r−1 + 1 ≤ ` ≤ 2r) has at least 2 (d− 1)− r + 1 neighbors in

W
(1)
` , based on the definition of an (r, w)-robust set in a (d− 1)-dimensional torus. Now,

let set W (2)
` for 1 ≤ ` ≤ 2r−1 (similarly 2r−1 + 1 ≤ ` ≤ 2r) be the mapping of set W (1)

` into
Lk1+1 (resp. Lk2−1); that is, we change the j-th coordinate from k1 (resp. k2) to k1 + 1
(resp. k2 − 1) for each node in W (1)

` to obtain W (2)
` . Now, we claim W` := W

(1)
` ∪W (2)

` for
1 ≤ ` ≤ 2r are 2r pair-wise disjoint (r + 1, w)-robust sets in TdL which all intersect S. Firstly,
each node inW (1)

` (similarlyW (2)
`) has at least 2 (d− 1)−r+1 = 2d−r−1 neighbors inW (1)

`

(resp. W (2)
`) and one neighbor in W (2)

` (resp. W (1)
`), which is overall 2d− r = 2d− (r + 1) + 1

neighbors in W`; this implies that it is an (r + 1, w)-robust set in TdL. Furthermore, they are
all disjoint because based on our construction (Lk1 ∪ Lk1+1) ∩ (Lk2−1 ∪ Lk2) = ∅. Finally,
S intersects each W` for 1 ≤ ` ≤ 2r because it intersects W (1)

` based on the induction
hypothesis. J

A.N. Zehmakan 5:9

I Lemma 3. In two-way r-BP on TdL, a configuration with less than 2r−1 black nodes becomes
fully white in T rounds for some constant T (d, r).

Proof. Consider an initial configuration C0 which includes less than 2r−1 black nodes and
denote the set of black nodes in C0 with B. Define the distance between two hyper-rectangles
HR and HR′ to be d (HR,HR′) = minv∈HR,u∈HR′ d (v, u). Let HR1, · · · , HRk be constant-
size hyper-rectangles whose pair-wise distance is at least three and include all black nodes.
Notice such a set of hyper-rectangles exists since |B| is a constant. All nodes which are
not in the hyper-rectangles are white and remain white forever; that is, they are a white
(r, w)-robust set. This is true because a node which is not in the hyper-rectangles is adjacent
to at most one hyper-rectangle (otherwise it violates the aforementioned distance property),
which implies at most one of its 2d neighbors is black. Therefore, only nodes in the hyper-
rectangles can switch their color. Since the hyper-rectangles are of constant size, the number
of configurations that the process can possibly reach from C0 is upper-bounded by some
constant T (d, r). That is, the process reaches a cycle of configurations in at most T rounds.
Based on the results by Goles and Olivos [25], we know the length of the cycle is one or two.

Let B′ be the union of black nodes in the configuration(s) in the cycle; we claim B′ is
an (r, b)-robust set. Therefore, if B′ is non-empty it must intersect at least 2r−1 pairwise
disjoint (r, w)-robust sets based on Lemma 2. However, initially there are at most 2r−1 − 1
black nodes, which can intersect at most 2r−1 − 1 pair-wise disjoint (r, w)-robust sets. Thus,
there is at least one (r, w)-robust set which is initially fully white, but at the end includes a
black node, which is a contradiction with its (r, w)-robustness. Thus, B′ is actually empty.

It only remains to show that B′ is (r, b)-robust. If the process reaches a cycle of length
one, a fixed configuration, trivially the set of black nodes is an (r, b)-robust set. If it reaches a
cycle of length two and switches between two configurations C1 and C2, we define B′1 and B′2
to be the set of black nodes in C1 and C2, respectively. The set B′ = B′1 ∪B′2 is (r, b)-robust
since each node in B′1 (similarly B′2) has at least r neighbors in B′2 (resp. B′1), otherwise it
cannot be black in C1 (resp. C2). Therefore, each node in B′ has at least r neighbors in B′,
which implies that it is an (r, b)-robust set. J

I Theorem 4. In two-way r-BP on TdL, white color takes over a.a.s. if p = o(L−d/2r−1).

Proof. Recall that the distance between two hyper-rectangles HR and HR′ is equal to
d (HR,HR′) = minv∈HR,u∈HR′ d (v, u). We show that for the initial configuration a.a.s.
there is a set of hyper-rectangles which are pair-wise in distance at least three from each other
and any black node belongs to one of these hyper-rectangles and the number of black nodes in
each hyper-rectangle is less than 2r−1. Each node which is not in any of the hyper-rectangles
is adjacent to at most one of them (otherwise, there are two hyper-rectangles whose distance
is less than three). Thus, each of these nodes has at least 2d − 1 white neighbors which
implies they all stay white forever. Furthermore, in each of these “isolated” hyper-rectangles
there are less than 2r−1 black nodes which disappear after at most T rounds by Lemma 3.

It remains to prove that a.a.s. such a set of hyper-rectangles exist. For each black
connected component in C0, consider the smallest hyper-rectangle which includes all its
node. Let A0 be the set of these (not necessarily disjoint) hyper-rectangles. There is no
black connected component of size 2r−1 or larger in C0 a.a.s. Let X denote the number
of black connected subgraphs of size 2r−1 in C0. The number of connected subgraphs
of size 2r−1 which include an arbitrary node v is a constant (notice d, thus also r, is
fixed); then, the number of connected subgraphs of size 2r−1 is of order Θ

(
Ld
)
. Thus,

E[X] = Θ(Ld) p2r−1 = Θ(Ld) o(L−d) = o(1). By Markov’s inequality [17] a.a.s. there is
no black connected subgraph of size 2r−1, which implies that there is no black connected
component of this size or larger. Therefore, for any hyper-rectangle of size l1 × · · · × ld in
A0, lj < 2r−1 for all 1 ≤ j ≤ d a.a.s.

ISAAC 2019

5:10 Two Phase Transitions in Two-Way Bootstrap Percolation

Consider the following procedure. By starting from A = A0, in each iteration if all
hyper-rectangles in A are pair-wise in distance at least three from each other, the procedure
is over, otherwise there are two hyper-rectangles HR1, HR2 ∈ A such that d (HR1, HR2) ≤ 2.
In this case, we set A = A\{HR1, HR2}∪ {HR}, where HR is the smallest hyper-rectangle
which includes all black nodes in both HR1 and HR2. See Figure 3 (a) and (b) for an
example, where the boundaries of the smallest hyper-rectangles are distinguished by green.
The process definitely terminates, because in each round |A| decreases. Moreover, when the
process is over, the hyper-rectangles in A satisfy our desired distance property. We still
have to show that each of them contains less than 2r−1 black nodes. Let us make the three
following observations.

Figure 3 (a) the smallest hyper-rectangles (b) after two iterations (c) the inner and outer
neighbors.

(a) Let HR of size l1×· · ·× ld be the smallest hyper-rectangle which contains all black nodes
in both HR1 and HR2 respectively of size l(1)

1 ×· · ·× l
(1)
d and l(2)

1 ×· · ·× l
(2)
d in the above

procedure, we have lj ≤ 3 maxi∈{1,2} l
(i)
j for all 1 ≤ j ≤ d because d (HR1, HR2) ≤ 2.

(b) Assume that a hyper-rectangle HR of size l1 × · · · × ld starting in (i1, · · · , id) is in
A at some iteration in the above procedure, then it contains at least max1≤j≤d lj/2
black nodes. Intuitively, this should be obvious since in each iteration we combine two
hyper-rectangles whose distance is at most two. For a formal proof, let us first show that
for any two black nodes v, u in a hyper-rectangle HR in A, there is a semi-connected path
between v and u along the black nodes in HR. We apply proof by induction; initially,
this is trivially true since each hyper-rectangle includes a black connected component.
Assume in k-th iteration we combine HR1 and HR2 because there is node v′ in HR1
and node u′ in HR2 such that d (v′, u′) ≤ 2. In the new hyper-rectangle HR, every
two black nodes originally from HR1 (similarly from HR2) are semi-connected by the
induction hypothesis. Two black nodes v and u respectively from HR1 and HR2 are
also semi-connected along a semi-connected path from v to v′, from v′ to u′, and finally
from u′ to u. Assume lj′ = max1≤j≤d lj ; since HR is the smallest hyper-rectangle, there
is a black node whose j′-th coordinate is ij′ and a black node whose j′-th coordinate
is ij′ + lj′ . Consider the semi-connected path between these two nodes which clearly
includes at least lj′/2 black nodes.

(c) In C0 a.a.s. there is no hyper-rectangle HR of size l1×· · ·× ld which includes at least 2r−1

black nodes and lj < 6 ·2r−1 for all 1 ≤ j ≤ d. Let random variable Y denote the number
of such hyper-rectangles. The number of hyper-rectangles of the aforementioned sizes
starting from a fixed node i is bounded by constant K = (6 · 2r−1)d, which implies there
are at most KLd hyper-rectangles of such sizes. Thus, E[Y] ≤ KLd

(
K

2r−1

)
p2r−1 = o (1)

for p = o(L−
d

2r−1), which implies Y = 0 a.a.s. by applying Markov’s inequality.

A.N. Zehmakan 5:11

At the beginning of the proof we showed that all the sides of any hyper-rectangle in
A0 are smaller than 2r−1 a.a.s. Putting this fact in parallel with (a), we conclude if the
process does not terminate while all the sides of any hyper-rectangle in A are smaller than
or equal to 2 · 2r−1, then it has to generate a hyper-rectangle HR′ of size l′1 × · · · × l′d such
that ∀ 1 ≤ j ≤ d, l′j ≤ 6 · 2r−1 and there exists 1 ≤ j′ ≤ d such that 2 · 2r−1 < l′j′ . Based
on (b), HR′ must include at least l′j′/2 ≥ 2r−1 black nodes; however, based on (c) such an
HR′ does not exist a.a.s. Therefore, a.a.s. the process terminates while all the sides of any
hyper-rectangle in A are upper-bounded by 2 · 2r−1. By applying (c) another time, none of
the hyper-rectangles includes 2r−1 or more black nodes a.a.s. J

2.2 Phase 2
In this section, we prove that in two-way r-BP on TdL = (V,E), if p = ω(L−

d

2r−1) and
p = o((log(r−1) L)−

d−r+1
2r−1), then both colors coexist a.a.s.

Black Color Survives. Let us first show that black color a.a.s. will survive for p = ω(L−
d

2r−1).
As discussed, in TdL there are Ld/γ pair-wise disjoint r-dimensional hyper-squares, for a
constant γ ' 2r. Consider an arbitrary labeling from 1 to Ld/γ on these hyper-squares
and define Bernoulli random variable xk for 1 ≤ k ≤ Ld/γ to be 1 if the even-part of k-th
hyper-square is fully black in C0 and let X :=

∑Ld/γ
k=1 xk. We show X 6= 0 a.a.s., which implies

that there is a hyper-square whose even-part is fully black initially. Since the even-part of an
r-dimensional hyper-square is an (r, b)-eternal set (see Lemma 1), it guarantees the survival
of black color. We have E[X] =

(
Ld/γ

)
p2r−1 =

(
Ld/γ

)
ω
(
1/Ld

)
= ω (1), where we used

that the even-part of an r-dimensional hyper-square is of size 2r−1. Since X is the sum of
independent Bernoulli random variables, we have Pr[X = 0] ≤ exp (−ω (1)) = o (1) by the
Chernoff bound.

White Color Survives. It remains to prove that white color survives a.a.s. if p = o(P1/2r−1

1).
Based on Lemma 3, there is a constant T so that by starting from an initial configuration
with less than 2r−1 black nodes, we have no black nodes after T rounds. We claim this
implies that for an arbitrary node v to be black in round T , it needs at least 2r−1 black nodes
in its T -neighborhood (i.e., nodes in distance at most T from v) in the initial configuration.
For the sake of contradiction, assume that there is an initial configuration C0 in which v has
less than 2r−1 black nodes in its T -neighborhood and it is black in the T -th round. Then,
we consider the initial configuration C′0 in which all nodes in v’s T -neighborhood have the
same color as C0 and all others are white. Configuration C′0 has less than 2r−1 black nodes.
Furthermore, v must be black after T rounds by starting from C′0 because the color of v in
round T is only a function of the initial color of nodes in its T -neighborhood (this is easy to
see; however, for a formal proof one can simply apply induction) and the color of all nodes in
the T -neighborhood of v is the same as C0. However, this is in contradiction with Lemma 3.

So far, we know that for a node v to be black in round T , it needs at least 2r−1 black
nodes in its T -neighborhood initially. This immediately implies that for an arbitrary node,
the probability of being black in round T is upper-bounded by Kp2r−1 = o (P1), where
constant K is an upper-bound on the number of possibilities of choosing 2r−1 nodes in the
T -neighborhood of an arbitrary node in TdL; notice that since d and T both are constant, the
number of nodes in T -neighborhood of a node is bounded by a constant. Therefore, in round
T each node is black with probability o (P1). It is known (see Theorem 5) that the stronger
model of r-BP results in the survival of white color from such a configuration a.a.s., so does

ISAAC 2019

5:12 Two Phase Transitions in Two-Way Bootstrap Percolation

two-way r-BP. The first part of the last statement is not fully correct since in r-BP each
node is black independently, but here clearly the color of a node is not independent from the
color of nodes in its 2T -neighborhood. In the appendix, Section A.3, we show that the proof
of Theorem 5 is robust enough to tolerate this level of local dependency.

I Theorem 5 (Theorem 3.1 in [14]). In r-BP on TdL if p = o (P1), white color survives a.a.s.

2.3 Phase 3
In this section, we prove that in two-way r-BP on TdL, if p = ω(P1/2r−1

1) then a.a.s. black
color takes over, where P1 = (log(r−1) L)−(d−r+1). For the sake of simplicity, assume L is
even (we discus at the end, how our argument easily carries on the odd case). Recall that
the tiling procedure (from Section 1.1) partitions the node set of TdL into Ld/2r pair-wise
disjoint r-dimensional hyper-squares. We say two hyper-squares are neighbors if their distance
is equal to one, i.e., there is an edge between them. More precisely, the neighbors of an
r-dimensional hyper-square HS starting from i = (i1, · · · , id) are divided into two groups.
First, 2r hyper-squares whose starting nodes differ with i only in one of the first r coordinates
and exactly by two, which are called the inner neighbors. The second group are 2 (d− r)
hyper-squares whose starting nodes differ with i in only one of the last d− r coordinates and
exactly by one, which are called the outer neighbors. The two hyper-squares whose starting
nodes differ with i in the j-th coordinate are called the neighbors in the j-th dimension. See
Figure 3 (c) for an example of the inner (red) and outer (green) neighbors of a 2-dimensional
hyper-square in T3

L. Furthermore, let us define the parity of HS to be the parity of the sum
of the last d− r coordinates of i. Clearly, the inner neighbors have the same parity as HS
but the outer neighbors have different parity.

From now on, we only look at the even rounds; i.e., we only consider Ct for even t. For
an r-dimensional hyper-square of even parity (similarly odd parity), we say it is occupied in
Ct if its even-part (resp. odd-part) is black. Based on Lemma 1, an occupied hyper-square
remains occupied forever. In Lemma 6, we state that if in some configuration in two-way
r-BP on TdL, an r-dimensional hyper-square has occupied neighbor in at least r distinct
dimensions then it becomes occupied in constantly many rounds. The proof is technical and
is presented in the appendix, Section A.4. The idea is to apply induction on r. See Figure 4,
for two examples on how a 2-dimensional hyper-square becomes occupied with occupied
neighbors in two distinct dimensions (regarding the selection of black nodes, recall that the
parity of a hyper-square is the same as its inner neighbors but different with outer ones).

Figure 4 (top) two inner occupied neighbors (bottom) one inner and one outer occupied neighbor.

I Lemma 6. In two-way r-BP on TdL, if an r-dimensional hyper-square has occupied neighbor
in at least r distinct dimensions, it becomes occupied in t′ rounds for some even constant t′.

A.N. Zehmakan 5:13

For our proof, we also need that modified r-BP on TdL with initial probability ω (P1) results
in a fully black configuration a.a.s. However, this is known only for d = r by Holroyd [28].
He showed that the process exhibits a sharp threshold behavior at λ′P1 for some constant
λ′(d) > 0. We require a much weaker statement; that is, the initial probability ω (P1) a.a.s.
results in a fully black configuration, but for all values of r ≤ d. The good news is that the
upper bound proof by Cerf and Manzo [14] regarding r-BP can be easily adapted to prove
our desired upper bound for modified r-BP. Actually, exactly the same proof works because
wherever they apply r-BP rule, modified r-BP suffices. However, it is interesting by its own
sake to study the sharp threshold behavior of modified r-BP also for r 6= d, in future work.

I Theorem 7 (derived from Theorem 3.1 in [14]). In modified r-BP on TdL for r ≤ d, if
p = ω (P1), then black color takes over.

Now, it is time to put the aforementioned claims together to finish the proof. If we tile TdL
into hyper-squares as above, in two-way r-BP with p = ω(P1/2r−1

1) each hyper-square is
occupied initially with probability ω(P1). Furthermore, based on Lemma 6 if a hyper-square
has occupied neighbor in at least r distinct dimensions, it becomes occupied, which implies
the occupation process among the hyper-squares is at least as strong as modified r-BP. Based
on Theorem 7, we know that modified r-BP with initial probability ω (P1) becomes fully
black a.a.s. Thus, all the hyper-squares become occupied in our process a.a.s. We can do the
same argument by just switching the terms of even and odd in the definition of occupation.
Then, by a union bound, a.a.s. for two-way r-BP on TdL with p = ω(P1/2r−1

1) eventually
both the even-part and odd-part of all the hyper-squares are black, which implies that black
color takes over.

We assumed at the beginning that L is even. Theorem 7 also works for the d-dimensional
lattice [L]d. Therefore, for odd L we can do the same argument for the lattice, attained by
skipping the nodes with at least one coordinate equal to L, and also the lattice, attained by
skipping the nodes with at least one coordinate equal to one. Then, again a union bound
finishes the proof.

3 Future Work

We proved that two-way r-BP on TdL exhibits a threshold behavior with two phase transitions
at P

1/s
1 and P

1/s
2 where s is the minimum size of a b-eternal set. The question, then, arises:

Can one prove such results for a larger class of models? We introduce a sub-class of monotone
models on the d-dimensional torus and then explain how one can possibly employ our proof
techniques to prove the desired threshold behavior in this more general framework.

In (r, r′)-BP on TdL and for 0 ≤ r′ ≤ r ≤ d, by starting from an initial random configuration
in discrete-time rounds each white node becomes black if and only if it has at least r black
neighbors and each black node remains black if and only if it has at least r′ black neighbors.
This includes

∑d
r=0

∑r′=r
r′=0 1 = (d+ 1) (d+ 2) /2 different models on TdL. For instance, (r, 0)-

BP, (r, r)-BP, and (r, 1)-BP are respectively the same as r-BP, two-way r-BP, and r-BP
with recovery. It is an interesting exercise to check that (r, r′)-BP for 0 ≤ r′ ≤ r includes all
monotone models where each node updates its color in each round based on its own color
and the cardinality of black/white nodes in its neighborhood. We add the constraint r ≤ d
to make sure that the model includes a constant-size b-eternal set (and no constant-size
w-eternal set). Note that monotonicity of the model and constant-size b-eternal set are
inseparable parts of our proof techniques.

ISAAC 2019

5:14 Two Phase Transitions in Two-Way Bootstrap Percolation

Now, we illustrate by applying our proof techniques, some prior results, and some novel
ideas one can possibly prove that (r, r′)-BP on TdL goes through two phase transitions at P

1/s
1

and P
1/s
2 , for s being the minimum size of a b-eternal set. Notice that for 0 ≤ r′ ≤ r ≤ d,

an r′-dimensional hyper-square is a b-eternal set, which implies that s is a constant smaller
than 2r′ . We assume that r ≥ 2.

Phase 1: We can show that white color takes over if p = o(P1/s
2) = o(L−d/s), by replacing

2r−1 with s in the proof of Theorem 4, where the clustering technique is applied.
Phase 2: There are Θ

(
Ld
)
pair-wise disjoint r′-dimensional hyper-squares and each of

them includes a b-eternal set of size s. For p = ω(L−d/s) = ω(P1/s
2), in expectation

Θ
(
Ld
)
ps = ω (1) of these b-eternal sets are fully black in the initial configuration.

Therefore, by applying the Chernoff bound a.a.s. there is a fully black b-eternal set in
the initial configuration. For p = o(P1/s

1), employing our argument from Section 2.2
implies that after a constant number of rounds, each node is black with probability
Θ (ps) = o (P1). We know that the stronger model of r-BP results in the survival of
white color from such a configuration a.a.s., so does (r, r′)-BP. (Again, we clearly have
the dependency issue, which can be handled similarly.)
Phase 3: We can apply the scaling technique by tiling the torus into r′-dimensional
hyper-squares. However, to “reduce” this scaled process to modified r-BP, we need some
knowledge about the structure of the b-eternal sets in addition to the value of s. We
believe that one can extract sufficient structural properties such as symmetry from the
definition of (r, r′)-BP, but this is left for future work.

In the present paper, we studied the random setting, but from an extremal point of view it
is natural to ask: What is the minimum number of nodes which must be black initially to
make the whole graph black? This question has been studied extensively for both r-BP and
two-way r-BP on TdL, see e.g. [8, 19, 3, 36, 27, 32], and some lower and upper bounds are
known. Can our proof techniques be used to improve on these bounds?

It is also interesting to study the expected consensus time of the process, which is the
expected number of rounds the process needs to reach a cycle of configurations for an initial
random configuration. We are not aware of any result for two-way r-BP on TdL, and for r-BP,
the answer is known only for d = 2, by Balister, Bollobas, and Smith [4].

References
1 Joan Adler and Amnon Aharony. Diffusion percolation. I. Infinite time limit and bootstrap

percolation. Journal of Physics A: Mathematical and General, 21(6):1387, 1988.
2 Michael Aizenman and Joel L Lebowitz. Metastability effects in bootstrap percolation. Journal

of Physics A: Mathematical and General, 21(19):3801, 1988.
3 Paul Balister, Béla Bollobás, J Robert Johnson, and Mark Walters. Random majority

percolation. Random Structures & Algorithms, 36(3):315–340, 2010.
4 Paul Balister, Béla Bollobás, and Paul Smith. The time of bootstrap percolation in two

dimensions. Probability Theory and Related Fields, 166(1-2):321–364, 2016.
5 József Balogh and Béla Bollobás. Bootstrap percolation on the hypercube. Probability Theory

and Related Fields, 134(4):624–648, 2006.
6 József Balogh, Béla Bollobás, Hugo Duminil-Copin, and Robert Morris. The sharp threshold

for bootstrap percolation in all dimensions. Transactions of the American Mathematical
Society, 364(5):2667–2701, 2012.

7 József Balogh, Béla Bollobás, and Robert Morris. Bootstrap percolation in three dimensions.
The Annals of Probability, pages 1329–1380, 2009.

8 József Balogh and Gábor Pete. Random disease on the square grid. Random Structures and
Algorithms, 13(3-4):409–422, 1998.

A.N. Zehmakan 5:15

9 József Balogh and Boris G Pittel. Bootstrap percolation on the random regular graph. Random
Structures & Algorithms, 30(1-2):257–286, 2007.

10 George Barmpalias, Richard Elwes, and Andrew Lewis-Pye. Unperturbed Schelling segregation
in two or three dimensions. Journal of Statistical Physics, 164(6):1460–1487, 2016.

11 George Barmpalias, Richard Elwes, and Andy Lewis-Pye. Tipping points in 1-dimensional
Schelling models with switching agents. Journal of Statistical Physics, 158(4):806–852, 2015.

12 Christina Brandt, Nicole Immorlica, Gautam Kamath, and Robert Kleinberg. An analysis
of one-dimensional Schelling segregation. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, pages 789–804. ACM, 2012.

13 Raphaël Cerf and Emilio NM Cirillo. Finite size scaling in three-dimensional bootstrap
percolation. Annals of probability, pages 1837–1850, 1999.

14 Raphaël Cerf and Francesco Manzo. The threshold regime of finite volume bootstrap percolation.
Stochastic Processes and their Applications, 101(1):69–82, 2002.

15 Ching-Lueh Chang and Yuh-Dauh Lyuu. Bounding the sizes of dynamic monopolies and
convergent sets for threshold-based cascades. Theoretical Computer Science, 468:37–49, 2013.

16 Tom Coker and Karen Gunderson. A sharp threshold for a modified bootstrap percolation
with recovery. Journal of Statistical Physics, 157(3):531–570, 2014.

17 Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

18 Richard Durrett, Jeffrey E Steif, et al. Fixation results for threshold voter systems. The
Annals of Probability, 21(1):232–247, 1993.

19 Paola Flocchini, Elena Lodi, Fabrizio Luccio, Linda Pagli, and Nicola ro. Dynamic monopolies
in tori. Discrete applied mathematics, 137(2):197–212, 2004.

20 F Fogelman, Eric Goles, and Gérard Weisbuch. Transient length in sequential iteration of
threshold functions. Discrete Applied Mathematics, 6(1):95–98, 1983.

21 Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Convergence in (social) influence
networks. In International Symposium on Distributed Computing, pages 433–446. Springer,
2013.

22 Juan P Garrahan, Peter Sollich, and Cristina Toninelli. Kinetically constrained models.
Dynamical heterogeneities in glasses, colloids, and granular media, 150:111–137, 2011.

23 Bernd Gärtner and Ahad N Zehmakan. (Biased) Majority Rule Cellular Automata. arXiv
preprint, 2017. arXiv:1711.10920.

24 Bernd Gärtner and Ahad N Zehmakan. Majority Model on Random Regular Graphs. Latin
American Symposium on Theoretical Informatics, pages 572–583, 2018.

25 Eric Goles and Jorge Olivos. Periodic behaviour of generalized threshold functions. Discrete
mathematics, 30(2):187–189, 1980.

26 Mark Granovetter. Threshold models of collective behavior. American journal of sociology,
83(6):1420–1443, 1978.

27 Lianna Hambardzumyan, Hamed Hatami, and Yingjie Qian. Polynomial method and graph
bootstrap percolation. arXiv preprint, 2017. arXiv:1708.04640.

28 Alexander Holroyd et al. The metastability threshold for modified bootstrap percolation in d

dimensions. Electronic Journal of Probability, 11:418–433, 2006.
29 Alexander E Holroyd. Sharp metastability threshold for two-dimensional bootstrap percolation.

Probability Theory and Related Fields, 125(2):195–224, 2003.
30 Nicole Immorlica, Robert Kleinbergt, Brendan Lucier, and Morteza Zadomighaddam. Ex-

ponential segregation in a two-dimensional schelling model with tolerant individuals. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 984–993. SIAM, 2017.

31 Svante Janson, Tomasz Łuczak, Tatyana Turova, Thomas Vallier, et al. Bootstrap percolation
on the random graph G_{n, p}. The Annals of Applied Probability, 22(5):1989–2047, 2012.

32 Clemens Jeger and Ahad N Zehmakan. Dynamic monopolies in two-way bootstrap percolation.
Discrete Applied Mathematics, 2019.

ISAAC 2019

http://arxiv.org/abs/1711.10920
http://arxiv.org/abs/1708.04640

5:16 Two Phase Transitions in Two-Way Bootstrap Percolation

33 Yashodhan Kanoria, Andrea Montanari, et al. Majority dynamics on trees and the dynamic
cavity method. The Annals of Applied Probability, 21(5):1694–1748, 2011.

34 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146. ACM, 2003.

35 Jane Molofsky, Richard Durrett, Jonathan Dushoff, David Griffeath, and Simon Levin. Local
frequency dependence and global coexistence. Theoretical population biology, 55(3):270–282,
1999.

36 Natasha Morrison and Jonathan A Noel. Extremal bounds for bootstrap percolation in the
hypercube. Journal of Combinatorial Theory, Series A, 156:61–84, 2018.

37 Elchanan Mossel, Joe Neeman, and Omer Tamuz. Majority dynamics and aggregation of
information in social networks. Autonomous Agents and Multi-Agent Systems, 28(3):408–429,
2014.

38 Ahad N Zehmakan. Opinion Forming in Erdös-Rényi Random Graph and Expanders. In 29th
International Symposium on Algorithms and Computation (ISAAC 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

39 Hamed Omidvar and Massimo Franceschetti. Self-organized Segregation on the Grid. Journal
of Statistical Physics, 170(4):748–783, 2018.

40 Hamed Omidvar and Massimo Franceschetti. Shape of diffusion and size of monochromatic
region of a two-dimensional spin system. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 100–113. ACM, 2018.

41 David Peleg. Local majority voting, small coalitions and controlling monopolies in graphs: A
review. In Proc. of 3rd Colloquium on Structural Information and Communication Complexity,
pages 152–169, 1997.

42 Roberto H Schonmann. Finite size scaling behavior of a biased majority rule cellular automaton.
Physica A: Statistical Mechanics and its Applications, 167(3):619–627, 1990.

43 Roberto H Schonmann. On the behavior of some cellular automata related to bootstrap
percolation. The Annals of Probability, pages 174–193, 1992.

A Appendix

A.1 No Sharp Threshold in First Transition
In r-BP on TdL, the process exhibits a sharp threshold behavior in the second phase transition;
that is, if p ≥ (1 + ε)λP1 (analogously p ≤ (1− ε)λP1) for some fixed constant λ (d, r) > 0
black color takes over (resp. does not) a.a.s. for any constant ε > 0. We claim that one cannot
expect such a behavior in the first transition. We show that if p = µP2 for any constant µ,
then black color survives with some non-zero constant probability (which implies that there
is no constant µ′ such that p ≤ (1− ε)µ′P2 results in a fully white configuration a.a.s. for
any constant ε > 0). The probability that all nodes are white initially is equal to (1− p)L

d

which is smaller than exp
(
−pLd

)
= exp (−µ) for p = µP2, where we used the estimate

1− x ≤ exp (−x). Thus, there is a black node initially with a non-zero constant probability.
Now by applying a similar argument, we show that one cannot also expect a sharp

threshold behavior in the first phase transition of two-way r-BP on TdL. We prove that if
p = µP

1/2r−1

2 for any constant µ > 0, then black color has a constant non-zero probability
to survive. There are Ld/γ pair-wise-disjoint r-dimensional hyper-squares in TdL for some
constant γ > 0 and based on Lemma 1 the even-part of an r-dimensional hyper-square is
an (r, b)-eternal set. The probability that the even-part of at least one of these disjoint
hyper-square is black initially is equal to 1 − (1 − p2r−1)Ld/γ . Again by applying the
estimate 1− x ≤ exp (−x), this probability is lower-bounded by 1− exp(−µ

2r−1

γ), which is a
non-zero constant.

A.N. Zehmakan 5:17

A.2 Majority Model
I Theorem 8. In the majority model on TdL if p ≤ 1− δ for any constant δ > 0, then white
color survives a.a.s.

Proof. There are Ld/γ pair-wise disjoint d-dimensional hyper-squares in TdL for some constant
γ ' 2d as discussed at the end of Section 1.1. Let us label them from 1 to Ld/γ and define
Bernoulli random variable xk to be one if the k-th hyper-square is fully white in the initial
configuration for 1 ≤ k ≤ Ld/γ. Let X :=

∑Ld/γ
k=1 xk. Since each hyper-square has 2d nodes,

E[X] = Ld

γ (1− p)2d

= Ω
(
Ld
)
for p ≤ 1 − δ. Since xks are independent, by applying the

Chernoff bound a.a.s. there is a fully white d-dimensional hyper-square initially, which is a
w-eternal set in the majority model. This is true because as we argued in Lemma 1 each
node in a d-dimensional hyper-square HS has exactly d neighbors in HS. J

A.3 Locally Dependent r-BP

We want to prove that in two-way r-BP on TdL if p = o(P1/2r−1

1) then a.a.s. white color
survives forever. In Section 2.2, using Lemma 3 we showed that there is a constant T (d, r)
such that for each node to be black in the T -th round, it needs to have at least 2r−1 black
nodes in its T -neighborhood initially. Let us introduce a new process on TdL. Assume that
the initial configuration is obtained in the following way: first we make each node black
independently with probability p1/2r−1 , and then each node will be assigned black color if
it has at least 2r−1 black nodes in its T -neighborhood and white otherwise. Starting from
such initial configuration, in each round a white node becomes black if it has at least r black
neighbors and black nodes remain unchanged. We call this process locally dependent r-BP.
Clearly, if we prove that in locally dependent r-BP on TdL for p = o (P1), a.a.s. white color
survives, then we are done due to the monotonicity of two-way r-BP. To prove this statement,
we rely on the results by Cerf and Manzo [14] who showed that in r-BP on TdL, white color
will survive forever a.a.s. if p = o (P1). We show that a careful treatment of their proof
results in the same statement for locally dependent r-BP. Note that the setting of r-BP with
p = o (P1) is the same as locally dependent r-BP with p = o (P1). Firstly, they follow the
same updating rule. Secondly, each node is black initially with probability o (P1). This
is trivial in r-BP and it is true in locally dependent r-BP since the number of possibilities
of choosing 2r−1 nodes in the T -neighborhood of an arbitrary node in TdL is bounded by a
constant, where we use that r, d, and T are constants. The only difference is that in r-BP
each node is black independently from all other nodes, but in locally dependent r-BP each
node is black independently from all nodes which are not in its 2T -neighborhood. (Two
nodes which are in distance 2T or smaller are not independent since their T -neighborhood
overlaps.)

I Theorem 9 (derived from Theorem 3.1 in [14]). In locally dependent r-BP on TdL, white
color will survive forever a.a.s. if p = o (P1).

Cerf and Manzo [14] proved the statement of Theorem 9 for r-BP. However, basically the
same proof with some small changes can be applied to prove Theorem 9. The main ingredients
of their proof are two lemmata, Lemma 5.1 and Lemma 5.2 in their paper. The proof of
Lemma 5.2 (originally proved by Aizenman and Lebowitz [2]) and how to combine these
two lemmata to prove the final statement is quite straightforward and does not use the
independence in the initial configuration. Thus it remains to show that the statement of
Lemma 5.2 is also true for locally dependent r-BP, which we present in Lemma 10.

ISAAC 2019

5:18 Two Phase Transitions in Two-Way Bootstrap Percolation

For (locally dependent) r-BP on the d-dimensional torus TdL = (V,E) and two nodes v, u ∈
V , let Pr[v p,r←→ u in TdL] be the probability that there is a path between v and u along the
black nodes in the final configuration. We define m− (d, r, p) := exp(r−2)

(
β (d, r) p−

1
d−r+1

)
,

where exp(r) (x) = exp
(
exp(r−1) (x)

)
and exp(0) (x) = x.

I Lemma 10 (derived from Lemma 5.2 in [14]). In locally dependent r-BP for 3 ≤ r ≤ d:
there exist β (d, r) > 0, γ (d, r) > 0, p (d, r) > 0 such that ∀p < p (d, r) and ∀m ≤ m− (d, r, p),
we have Pr[v p,r←→ u in Tdm] ≤ pγ‖v−u‖∞ , where ‖.‖∞ denotes the infinity norm and v, u are
two nodes in Tdm.

Since the proof of Lemma 5.2 in [14] is quite long, we do not reproduce the whole proof here.
Instead, we point out how it should be changed in certain parts, where the independence in
the initial configuration is used.

Consider (locally dependent) r-BP on Tdm = (V,E), where V = {v1, · · · , vmd}. Define
Bernoulli random variable xk for 1 ≤ k ≤ md to be 1 if and only if node vk is white in the
initial configuration. Since a single black node in the initial configuration suffices to make
the whole torus black for r = 1, we have

Pr[v p,1←→ u in Tdm] = 1− Pr[
md∧
k=1

xk = 1].

In r-BP, this probability is equal to 1− (1− p)m
d

because each node is white independently
with probability 1− p. Since locally dependent r-BP does not enjoy the independence in the
initial configuration, we cannot apply the same argument. However, we have

Pr[v p,1←→ u in Tdm] = 1− Pr[
md∧
k=1

xk = 1] = 1−
md∏
k=1

Pr[xk = 1|
k−1∧
k′=1

xk′ = 1].

We know that the whiteness of different nodes are positively correlated; that is, the probability
of a node v being white in the initial configuration does not decrease if we know that some
other nodes are white in the initial configuration. Therefore, Pr[xk = 1|

∧k−1
k′=1 xk′ = 1] ≥

Pr[xk = 1]. Since each node is black initially with probability p, we get Pr[v p,1←→ u in Tdm] ≤
1− (1− p)m

d

. As we will see later, this upper bound is all we need.
Then, they consider the case of r = 2. They prove that in r-BP there exist β (d, 2) > 0,

C > 0 and p (d, 2) > 0 such that ∀p < p (d, 2) and ∀m < m− (d, 2, p) the probability
Pr[v p,2←→ u in Tdm] is at most

(
C‖v − u‖d−1

∞ p
)‖v−u‖∞/2. The idea of the proof is as follows.

Consider an integer m ≤ m− (d, 2, p) = β (d, 2) p−
1

d−1 . Let v be a d-dimensional vector;
we denote by v its first d − 1 coordinates and by v the last one and write v = (v, v). By
symmetry, one can assume that (v, v) and (u, u) are such that u− v = ‖ (v, v)− (u, u) ‖∞.
Consider the slices

Ti := {(v, v) ∈ Tdm : v ∈ {2i, 2i+ 1}} for i ∈ Z.

Suppose that there is a path along black nodes from v to u in the final configuration. Let C

be the maximal connected set of black nodes in the final configuration which include v and u.
Let a and b be the first and the last indices of the slices intersecting C . In all the slices Ti for
i ∈ [a, b] there exists at least one black node (w,w) such that ‖v − w‖∞ ≤ ‖v − u||∞. The
probability of this to happen in one fixed slice in r-BP is less than 1− (1− q)(2‖v−u‖∞+1)d−1

where q = 2p − p2. (Here, the estimate is similar to the r = 1 estimate from above.)
Furthermore, the slices being independent, one gets

Pr[v p,1←→ u in Tdm] ≤ d
(

1− (1− p)2(2‖v−u‖∞+1)d−1)‖v−u‖∞/2
(1)

A.N. Zehmakan 5:19

where the factor d comes from the possible directions where ‖v − u‖∞ is realized and we
used 1− q = 1− 2p+ p2 = (1− p)2. (Let us mention that the probability q is not necessarily
equal to 2p− p2 in locally dependent r-BP, but it is bounded by p and 2p; we will use this
fact later.)

In locally dependent r-BP by applying our argument from above for r = 1, we have that the
probability that there exists at least one black node (w,w) such that ‖v−w‖∞ ≤ ‖v−u||∞ in
one fixed slice is less than 1−(1− p)2(2‖v−u‖∞+1)d−1

. In contrast to r-BP, locally independent
r-BP does not enjoy the independence of the slices, but we can consider ‖v − u‖∞/α1 slices
which are independent for some constant α1 > 0. Therefore, in locally dependent r-BP,
we get

Pr[v p,1←→ u in Tdm] ≤ d
(

1− (1− p)2(2‖v−u‖∞+1)d−1)‖v−u‖∞/α1
. (2)

Cerf and Manzo show that the right hand side of Equation (1) can be upper-bounded by(
C‖v − u‖d−1

∞ p
)‖v−u‖∞/2 for some constant C > 0. Applying basically the same calculations

on the right hand side of Equation (2) yields a similar upper bound in locally dependent
r-BP. Using the estimate 1− exp (x) ≤ −x implies that

Pr[v p,1←→ u in Tdm] ≤ d
(
−2 (2‖v − u‖∞ + 1)d−1 ln (1− p)

)‖v−u‖∞/α1
.

For p small, ln (1− p) ≥ −2p and hence we have

Pr[v p,2←→ u in Tdm] ≤
(
C‖v − u‖d−1

∞ p
)‖v−u‖∞/α1

.

Therefore, in locally dependent r-BP we get the same upper bound as r-BP except that 2 is
replaced by α1. We will see that this is all we need to prove our statement.

For r ≥ 3, they apply an induction on the dimension d and on the parameter r. First,
they modify the initial configuration by adding some black nodes and they assume that
some nodes become black if they have at least r − 1 black neighbors instead of r. Such
assumptions can be made due to the monotonicity of the process. They decompose the event
{v p,r←→ u in Tdm}. This upper-bounds the probability Pr[v p,r←→ u in Tdm] by the sum of the
probability of some events of the following form: a particular set of slices must be fully black
but not the slices in between, and the fully black slices are connected by some paths along
black nodes. To compute the probability of such events, they utilize the independence of
the slices. In locally dependent r-BP the slices are not independent, but we can consider
a constant fraction of the slices which must be fully black such that they are independent,
i.e., they are in distance at least 2T from each other. This is still problematic since for three
selected slices Ti, Ti′ , and Ti′′ the event that there is a black path connecting Ti to Ti′ and
the event that there is a black path connecting Ti′ and Ti′′ are not independent. To deal
with this issue, we only consider the events for the connecting black paths one by one. This
changes the exponent of our desired probability by a constant factor, similar to the case of
r = 2. By following their calculations, one can see that the effect of these constant factors
appears in the choice of constant γ in the satement of Lemma 10. That is, the inequality
Pr[v p,r←→ u in Tdm] ≤ pγ‖v−u‖∞ holds for a smaller value of γ.

Due to several lengthy calculations, we do not reproduce the whole proof. Basically,
there are two small changes which one has to do to make the proof work for the locally
dependent variant.

ISAAC 2019

5:20 Two Phase Transitions in Two-Way Bootstrap Percolation

Firstly, at the end of page 80 they apply the result for r = 2 which we discussed above,
see Equation (1). By some simplifications, they reach an upper bound of form C2q, where
C2 > 0 is a constant and q = p2 − 2p. By applying Equation (2) instead of Equation (1)
and using the fact that q is in the same magnitude as p, we get an upper bound of form
C ′2p. (One needs to split the sum at the end of page 80 from an integer larger than 9.)
As we discussed above, to get rid of the dependency among the slices, we choose a constant
fraction of them. Therefore, in the calculations at the end of page 81, instead of k we
have k/α2 for some constant α2 > 0.

Both aforementioned constant factors can be hidden in constant γ in the last line of calcula-
tions in page 81.

A.4 Proof of Lemma 6
Let us first set up some definitions. For an r-dimensional hyper-square HS starting from
i = (i1, · · · , id), the set of nodes in HS whose j-th coordinate is equal to ij (similarly ij + 1)
induce an (r − 1)-dimensional hyper-square, which is called a face of HS; specifically the
(r − 1)-dimensional hyper-squares attained by fixing the r-th coordinate to be ir and ir + 1
are respectively called the upper face and lower face. Furthermore, the two outer neighbors
of HS in the j-th coordinate, where by definition j is among the last d− r coordinates, are
simply attained by increasing or decreasing the j-th coordinate of all nodes in HS by one.
This implies that if the even-part (odd-part) of one of the outer neighbors of HS, say HS′,
is black in some configuration, then each node in the even-part (resp. odd-part) of HS has a
black neighbor in HS′ in that configuration. In other words, if HS′ is occupied, then the
upper face (similarly lower face) of HS has an occupied neighbor in the j-th dimension.
Similarly, if an inner neighbor of HS in the j-th dimension for 1 ≤ j < r, say HS′′, is
occupied, then the upper face of HS (similarly lower face) has one occupied neighbor, namely
the upper face (resp. lower face) of HS′′. However, this is not the case for j = r. One of
the inner neighbors in the r-th dimension has its upper face adjacent to the lower face of
HS (which implies if this neighbor is occupied, then the lower face of HS has an occupied
neighbor in the r-th dimension) and the other one has its lower face adjacent to the upper
face of HS (which provides an occupied neighbor in the r-th dimension for the upper face of
HS if it is occupied).

We prove our claim by induction on r. As the base case, we prove that for r = 2 the
statement is correct. Recall that we look at only the even rounds, otherwise we mention
explicitly. Now, let HS be a two-dimensional hyper-square starting from node i with even
parity (the odd case is analogous), then to become occupied it needs its even-part to become
fully black. We want to show if HS has occupied neighbors in two distinct dimensions in
some configuration Ct, it will be occupied in Ct+t′ for some even constant t′. It has 4 inner
neighbors and 2d− 4 outer neighbors. If two of the outer neighbors are occupied in Ct, their
odd-part must be black because their parity is different with HS. Thus, each node in the
odd-part of HS has two black neighbors, which implies that the odd-part becomes fully black
in Ct+1 and thus the even-part becomes black in Ct+2, i.e., HS is occupied. For the case that
HS has two occupied inner neighbors or one inner and one outer neighbor, see Figure 4.

Assume as the induction hypothesis that the claim is correct for r − 1 ≥ 2, we prove
it is true also for r. Suppose that the r-dimensional hyper-square HS starting from i has
occupied neighbors in r distinct dimensions in some configuration Ct. Furthermore, assume
the parity of HS is even (the odd case is handled analogously). The lower face or upper
face of HS must have r occupied neighbors as we discussed above; let it be the lower face.

A.N. Zehmakan 5:21

We claim one of the neighbors provides for each node in the even-part (similarly each node
in the odd-part) of the lower face in every odd round (resp. even round) a black neighbor.
To show that let us distinguish two cases. If one of the neighbors of HS is outer, say the
hyper-square HS′, then the lower face of HS′, which is a neighbor of the lower face of HS,
satisfies our requirement. If there is no outer neighbor, then HS has at least one occupied
neighbor in each of the first r dimensions. The neighbor in the r-th dimension which has
its upper face adjacent to the lower face of HS must be occupied (we assumed the lower
face has r occupied neighbors), which is then our required neighbor. Note that to occupy
the lower face only making even nodes (the nodes in the even-part) black in even rounds or
odd nodes (the nodes in the odd-part) black in odd rounds help because if for example the
odd-part of the lower face is fully black in an even round, it does not have any impact on its
occupation. By applying the induction hypothesis and the fact that one of the neighbors
provides for each even node (similarly odd node) in each odd round (resp. even round) a
black neighbor, we can conclude that the lower face must become occupied in a constant and
even number of rounds. This is true because the remaining r − 1 neighbors must make the
lower face occupied under two-way (r − 1)-BP and the extra neighbor needed by r-BP is
always provided. Now, we can apply the same argument on the upper face by setting the
lower face as the neighbor which provides for each even node (similarly odd node) in the
upper face in each even round (resp. odd round) a black neighbor.

ISAAC 2019

Sliding Window Property Testing for Regular
Languages
Moses Ganardi
Universität Siegen, Germany
ganardi@eti.uni-siegen.de

Danny Hucke
Universität Siegen, Germany
hucke@eti.uni-siegen.de

Markus Lohrey
Universität Siegen, Germany
lohrey@eti.uni-siegen.de

Tatiana Starikovskaya
DI/ENS, PSL Research University, Paris, France
tat.starikovskaya@gmail.com

Abstract
We study the problem of recognizing regular languages in a variant of the streaming model of
computation, called the sliding window model. In this model, we are given a size of the sliding
window n and a stream of symbols. At each time instant, we must decide whether the suffix of
length n of the current stream (“the active window”) belongs to a given regular language.

Recent works [14, 15] showed that the space complexity of an optimal deterministic sliding window
algorithm for this problem is either constant, logarithmic or linear in the window size n and provided
natural language theoretic characterizations of the space complexity classes. Subsequently, [16]
extended this result to randomized algorithms to show that any such algorithm admits either
constant, double logarithmic, logarithmic or linear space complexity.

In this work, we make an important step forward and combine the sliding window model with
the property testing setting, which results in ultra-efficient algorithms for all regular languages.
Informally, a sliding window property tester must accept the active window if it belongs to the
language and reject it if it is far from the language. We show that for every regular language, there
is a deterministic sliding window property tester that uses logarithmic space and a randomized
sliding window property tester with two-sided error that uses constant space.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Streaming algorithms, approximation algorithms, regular languages

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.6

Related Version A full version of this paper is available at https://arxiv.org/abs/1909.10261.

Funding Moses Ganardi: Funded by DFG project LO 748/13-1.
Markus Lohrey: Funded by DFG project LO 748/13-1.

1 Introduction

Regular expression search constitutes an important part of many search engines for biological
data or code, such as, for example, Elasticsearch Service1. In this paper, we consider the
following formalization of this problem. We assume to be given an integer n, a regular

1 https://www.elastic.co

© Moses Ganardi, Danny Hucke, Markus Lohrey, and Tatiana Starikovskaya;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ganardi@eti.uni-siegen.de
mailto:hucke@eti.uni-siegen.de
mailto:lohrey@eti.uni-siegen.de
mailto:tat.starikovskaya@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2019.6
https://arxiv.org/abs/1909.10261
https://www.elastic.co
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Sliding Window Property Testing for Regular Languages

language L, and a stream of symbols that we receive one symbol at a time. At each time
instant, we have direct access only to the last arrived symbol, and must decide whether the
suffix of length n of the current stream (“the active window”) belongs to L.

The model described above is a variant of the streaming model and was introduced by
Datar et al. [10], where the authors proved that the number of 1’s in a 0/1-sliding window of
size n can be maintained in space O(1

ε · log2 n) if one allows a multiplicative error of 1± ε.
The motivation for this model of computation is that in many streaming applications, data
items are outdated after a certain time, and the sliding window setting is a simple way to
model this. In general, we aim to avoid storing the window content explicitly, and, instead,
to work in considerably smaller space, e.g. polylogarithmic space with respect to the window
length. For more details on the sliding window model see [1, Chapter 8].

The study of recognizing regular languages in the sliding window model was commenced
in [14, 15]. In [15], Ganardi et al. showed that for every regular language L the optimal
space bound for a deterministic sliding window algorithm is either constant, logarithmic or
linear in the window size n. In [14], Ganardi et al. gave characterizations for these space
classes. More formally, they showed that a regular language has a deterministic sliding
window algorithm with space O(logn) (resp., O(1)) if and only if it is a Boolean combination
of so-called regular left-ideals and regular length languages (resp., suffix-testable languages
and regular length languages). A subsequent work [16] studied the space complexity of
randomized sliding window algorithms for regular languages. It was shown that for every
regular language L the optimal space bound of randomized sliding window algorithm is O(1),
O(log logn), O(logn), or O(n). Moreover, complete characterizations of these space classes
were provided.

1.1 Our results
Previous study implies that even simple languages require linear space in the sliding window
model, which gives the motivation to seek for novel approaches in order to achieve efficient
algorithms for all regular languages. We take our inspiration from the property testing model
introduced by Goldreich et. al [22]. In this model, the task is to decide whether the input has
a particular property P , or is “far” from any input satisfying it. For a function γ : N→ R≥0,
we say that a word w of length n is γ-far from satisfying P , if the Hamming distance between
w and any word w′ satisfying P is at least γ(n). We will call the function γ(n) the Hamming
gap of the tester. We must make the decision by inspecting as few symbols of the input as
possible, and the time complexity of the algorithm is defined to be equal to the number of
inspected symbols. The motivation is that when working with large-scale data, accessing
a data item is a very time-expensive operation. The membership problem for a regular
language in the property testing model was studied by Alon et al. [2] who showed that for
every regular language L and every constant ε > 0, there is a property tester with Hamming
gap γ(n) = εn for deciding membership in L that can make the decision by inspecting a
random constant-size sample of symbols of the input word.

In this work, we introduce a class of algorithms called sliding window property testers.
Informally, at each time moment, a sliding window property tester must accept if the active
window has the property P and reject if it is far from satisfying P . The space complexity of a
sliding window property tester is defined to be all the space used, including the space we need
to store information about the input. We consider deterministic sliding window property
testers and randomized sliding window property testers with one-sided and two-sided errors
(for a formal definition, see Section 2). A similar but simpler model of streaming property
testers, where the whole stream is considered, was introduced by Feigenbaum et al. [11].

M. Ganardi, D. Hucke, M. Lohrey, and T. Starikovskaya 6:3

François et al. [12] continued the study of this model in the context of language membership
problems and came up with a streaming property tester for visibly pushdown languages that
uses polylogarithmic space. Note that deciding membership in a regular languages becomes
trivial in this model (where the active window is the whole stream): one can simply simulate
a deterministic finite automaton on the stream. What makes the sliding window model more
difficult is the fact that the oldest symbol in the active window expires in the next step.

While at first sight the only connection between property testers and sliding window
property testers is that we must accept the input if it satisfies P and reject if it is far from
satisfying P , there is, in fact, a deeper link. In particular, the above mentioned result of Alon
et al. [2] combined with an optimal sampling algorithm for sliding windows [4], immediately
yields a O(logn)-space, two-sided error sliding window property tester with Hamming gap
γ(n) = εn for every regular language. We will improve on this observation. Our main
contribution are tight complexity bounds for each of the following classes of sliding window
property testers for regular languages: deterministic sliding window property testers and
randomized sliding window property testers with one-sided and two-sided error.

Deterministic sliding window property testers. We call a language L trivial, if for some
constant c > 0 the following holds: For every word w ∈ Σ∗ such that L contains a word of
length |w|, the Hamming distance from w to L is at most c. Every trivial regular language has
a constant-space deterministic sliding window property tester with constant Hamming gap
(Theorem 4). For generic regular languages, we show a deterministic sliding window property
tester with constant Hamming gap that uses O(logn) space. This is particularly surprising,
because for Hamming gap zero (i.e., the exact case) [16] showed a space lower bound of Ω(n)
for generic regular languages. In other words, a constant Hamming gap allows an exponential
space improvement. We also show that for non-trivial regular languages, O(logn) space is
the best one can hope to achieve, even for Hamming gap γ(n) = εn (Theorem 6).

Randomized sliding window property testers with two-sided error. Next, we show that for
every regular language, there is a randomized sliding window property tester with Hamming
gap γ(n) = εn and two-sided error that uses constant space (Theorem 7). This is an optimal
bound and a considerable improvement compared to the tester that can be obtained by
combining the property tester of Alon et al. [2] and an optimal sampling algorithm for sliding
windows [4]. Our constant space tester makes use of a probabilistic counter from [16].

Randomized sliding window property testers with one-sided error. While our randomized
sliding window property tester with two-sided error is optimal, we believe that a two-sided
error is a very strong relaxation that has to be avoided in some applications. To this end, we
study the one-sided error randomized setting. The general landscape for this setting is the
most complex: In Theorems 8 and 9, we show that for every regular language L, the space
complexity of an optimal randomized sliding window property tester with one-sided error is
either O(1), O(log logn), or O(logn), and we provide language theoretic characterizations of
these space classes.

In order to show our upper bound results, we demonstrate novel combinatorial properties of
automata and regular languages and develop new streaming techniques, such as probabilistic
counters, which can be of interest on their own. To show the lower bound results, we
introduce a new methodology, which could potentially simplify further establishments of
lower bounds in string processing tasks in the streaming setting: namely, we view the testers
as nondeterministic automata, and study their behaviour.

ISAAC 2019

6:4 Sliding Window Property Testing for Regular Languages

1.2 Related work
The results above assume that the regular language admits a constant-space description
and we will follow the same assumption in this work. Currently, there are few studies
on the dependency of the complexity of sliding window algorithms on the size of the
language description. On the negative side, Ganardi et al. [14] showed that there are
regular languages such that any sliding window algorithm that achieves logarithmic space
(in the window size) depends exponentially on the automata size. On the positive side,
there is an extensive study of the pattern matching problem and its variants that gives
sub-exponential upper bounds for a class of (very simple) regular languages. In this problem,
we are given a pattern and a streaming text T , and at each moment we must decide if the
active window is equal to the pattern. This problem and its generalisations have been studied
in [5, 6, 7, 8, 9, 19, 20, 21, 28, 30].

Similar to regular languages, we can ask whether the current active window belongs to a
given context-free language. This question was studied in [3, 24, 25, 26] for the model where
the active window is the complete stream and in [13, 18] for the sliding-window model.

2 Sliding window property tester

We fix a finite alphabet Σ for the rest of the paper. We denote by Σ∗ the set of all words
over Σ and by Σn the set of words over Σ of length n. The empty word is denoted by λ. Let
w be a word. We say that v is a prefix (suffix) of w if w = xv (w = vx) for some word x. We
say that v is a factor of w if w = xvy for some words x, y. The Hamming distance between
two words u = a1 · · · an and v = b1 · · · bn of equal length is the number of positions where
u and v differ, i.e. dist(u, v) = |{i : ai 6= bi}|. The distance of a word u to a language L is
defined as dist(u, L) = inf{dist(u, v) : v ∈ L} ∈ N ∪ {∞}.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, q0, δ, F) where Q is a finite
set of states, Σ is the input alphabet, q0 is the initial state, δ : Q× Σ→ Q is the transition
mapping and F ⊆ Q is the set of final states. We extend δ to a mapping δ : Q× Σ∗ → Q

inductively in the usual way: δ(q, λ) = q and δ(q, aw) = δ(δ(q, a), w). The language accepted
by A is L(A) = {w ∈ Σ∗ : δ(q0, w) ∈ F}. A language is regular if it is accepted by a DFA.
For more background in automata theory see [23].

A stream is a word a1a2 · · · am over Σ. A sliding window algorithm is a familyA = (An)n≥0
of streaming algorithms. Given a window size n ∈ N and an input stream a1a2 · · · am ∈ Σ∗
the algorithm An reads the stream symbol by symbol from left to right and thereby updates
its memory content. After reading a prefix a1 · · · at (0 ≤ t ≤ m) the algorithm is required to
compute an output value that depends on the active window lastn(a1 · · · at) = at−n+1 · · · at
at time t. For convenience, for i < 0 we define ai = � where � ∈ Σ is an arbitrary fixed
symbol. In other words, we assume an initial window �n that is active at time t = 0. We
consider deterministic sliding window algorithms (where every An can be viewed as a DFA)
and randomized sliding window algorithms (where every An can be viewed as a probabilistic
finite automaton in the sense of Rabin [29]). In the latter case, An updates in each step its
memory content according to a probability distribution that depends on the current memory
content and the current input symbol. Let γ : N→ R≥0 be a function such that γ(n) ≤ n
for all n ∈ N, let α, β be probabilities, and let L ⊆ Σ∗ be a language.

I Definition 1. A deterministic sliding window (property) tester for L with Hamming gap
γ(n) is a deterministic sliding window algorithm A = (An)n≥0 such that for every input
stream w ∈ Σ∗ and every window size n the following properties hold:

if lastn(w) ∈ L, then An accepts;
if dist(lastn(w), L) > γ(n), then An rejects.

M. Ganardi, D. Hucke, M. Lohrey, and T. Starikovskaya 6:5

I Definition 2. A randomized sliding window (property) tester for L with Hamming gap
γ(n) and error (α, β) is a randomized sliding window algorithm A = (An)n≥0 such that for
every input stream w ∈ Σ∗ and every window size n the following properties hold:

if lastn(w) ∈ L, then An accepts with probability at least 1− α;
if dist(lastn(w), L) > γ(n), then An rejects with probability at least 1− β.

We say that A has one-sided error if A has error (0, 1/2) and two-sided error if A has error
(1/3, 1/3).

Notice that our definition is non-uniform since we allow an arbitrary algorithm An for each
window size n. If the window size is not specified, then it is implicitly universally quantified.
The space consumption of A is the mapping s(n), where s(n) is the space consumption of
An, i.e., the maximal number of bits stored by An while reading any input stream. We can
assume that s(n) ∈ O(n) since An can store the active window in O(n) bits. The goal is
to devise algorithms which only use o(n) space. Using probability amplification (similar to
[16]) one can replace the error probability 1/3 in the two-sided error setting (resp. 1/2 in
the one-sided error setting) by any probability p < 1/2 (resp. p < 1). This influences the
space complexity only by a constant factor. The case of Hamming gap γ(n) = 0 corresponds
to exact membership testing to L which was studied in [14, 15, 16]. In this paper, we focus
on the two cases γ(n) = c for some constant c > 0 and γ(n) = εn for some ε > 0.

Before we come to the main results of the paper we state two simple facts about the
sliding window testers.

I Lemma 3. Assume that L =
⋃k
i=1 Li and that for every 1 ≤ i ≤ k there exists a randomized

sliding window tester for Li with Hamming gap γ(n) and error (α, β) that uses space si(n).
Then there exists a sliding window tester for L with Hamming gap γ(n) and error (α, β) that
uses space O(

∑k
i=1 si(n)).

The second fact concerns so-called trivial languages. Let γ : N→ R≥0 be a mapping with
γ(n) ≤ n for all n ≥ 0. A language is L ⊆ Σ∗ is γ-trivial if there exists n0 ∈ N such that for
all n ≥ n0 with L ∩ Σn 6= ∅ and all w ∈ Σn we have dist(w,L) ≤ γ(n). If γ(n) ∈ O(1), we
say that L is trivial. Note that Alon et al. [2] call a language L trivial if L is (εn)-trivial for
all ε > 0 according to our definition. In the long version [17] we show that both definitions
coincide for regular languages, but we will not make use of this fact.

I Theorem 4. For every trivial (but not necessarily regular) language there is a deterministic
sliding window tester with constant Hamming gap that uses constant space. The converse is
also true: If for a language L there is a deterministic constant-space sliding window tester
with Hamming gap γ(n), then there exists a constant c such that L is (γ + c)-trivial.

3 Main results

Our first main contribution is a deterministic logspace sliding window tester for every regular
language, together with a matching lower bound for so-called nontrivial regular languages
(defined above).

I Theorem 5. For every regular language L, there exists a deterministic sliding window
tester for L with constant Hamming gap which uses O(logn) space.

I Theorem 6. For every non-trivial regular language L, there exist ε > 0 and infinitely
many window sizes n ∈ N on which every deterministic sliding window tester for L with
Hamming gap εn uses space Ω(logn).

ISAAC 2019

6:6 Sliding Window Property Testing for Regular Languages

Our second main contribution is a constant-space randomized sliding window property tester
with two-sided error for any regular language:

I Theorem 7. For every regular language L and every ε > 0, there exists a randomized
sliding window tester for L with two-sided error and Hamming gap γ(n) = εn that uses space
O(1/ε).

While the randomized setting with two-sided error allows ultra-efficient testers, we find
that allowing a two-sided error is a very strong relaxation. To this end, we study the
randomized setting with one-sided error. In this setting, only a small class of regular
languages admits sliding window testers working in space o(logn). A language L ⊆ Σ∗ is
suffix-free if xy ∈ L and x 6= λ imply y /∈ L.

I Theorem 8. If L is a finite union of trivial regular languages and suffix-free regular
languages, then there exists a randomized sliding window tester for L with one-sided error
and constant Hamming gap which uses O(log logn) space.

I Theorem 9. Let L be a regular language.
If L is not a finite union of trivial regular languages and suffix-free regular languages,
there exist ε > 0 and infinitely many window sizes n on which every randomized sliding
window tester for L with one-sided error and Hamming gap εn uses space Ω(logn).
If L is non-trivial, then there exist ε > 0 and infinitely many window sizes n on which
every sliding window tester for L with one-sided error and Hamming gap εn uses space
Ω(log logn).

We sketch the proofs of Theorem 5, 7, and 8 in Sections 4.1, 4.2, and 4.3, respectively.
The proofs of the lower bounds (Theorems 6 and 9) can be found in the long version [17]. We
would like to emphasize that the lower bounds shown in [17] are stronger than those stated
in Theorems 6 and 9. More precisely, we show space lower bounds for nondeterministic and
co-nondeterministic sliding window testers; see [17] for definitions.

4 Proofs of the upper bounds

In this section we sketch proofs of Theorems 5, 7, and 8 that give upper bounds for determin-
istic and (one-sided and two-sided error) randomized sliding window testers. All algorithms in
this section satisfy the stronger property that words with large prefix distance are rejected by
the algorithm with high probability (probability one in the deterministic setting). The prefix
distance between words u = a1 · · · an and v = b1 · · · bn is pdist(u, v) = min{i ∈ {0, . . . , n} :
ai+1 · · · an = bi+1 · · · bn}. Clearly, we have dist(u, v) ≤ pdist(u, v). We extend the definition
to languages: for a language L, let pdist(u, L) = min{pdist(u, v) : v ∈ L}. The prefix distance
between two runs π = (q0, a1, . . . , qn−1, , an, qn) and ρ = (p0, b1, . . . , pn−1, bn, pn) is defined as
pdist(π, ρ) = min{i ∈ {0, . . . , n} : (qi, ai+1, . . . , qn−1, an, qn) = (pi, bi+1, . . . , pn−1, bn, pn)}.

For our upper bound proofs it is convenient to work with DFAs which read the input
word from right to left. A right-deterministic finite automaton (rDFA) is a tuple B =
(Q,Σ, F, δ, q0), where Q, Σ, q0 and F are as in a DFA, and δ : Σ×Q→ Q is the transition
function. We extend δ to a mapping δ : Q × Σ∗ → Q analogously to DFAs: δ(q, λ) = q

and δ(q, wa) = δ(δ(q, a), w). The regular language recognized by the rDFA B is L(B) =
{w ∈ Σ∗ : δ(w, q0) ∈ F}. A run from p0 ∈ Q to pn ∈ Q on a word x = an · · · a2a1 ∈ Σ∗ is a
sequence π = (pn, an, pn−1, . . . , p2, a2, p1, a1, p0) such that pi = δ(ai, pi−1) for all 1 ≤ i ≤ n.
The length of π is |π| = n. We visualize π in the form

π : pn
an←−− pn−1

an−1←−−− · · · a2←− p1
a1←− p0.

M. Ganardi, D. Hucke, M. Lohrey, and T. Starikovskaya 6:7

If pn ∈ F , then π is an accepting run. A run of length 1 is a transition. If π is a run from p

to q on a word v, and ρ is a run from q to r on a word u, then ρπ denotes the unique run
from p to r on uv. We denote by πw,q the unique run on w from q.

Strongly connected graphs. With a DFA A = (Q,Σ, q0, δ, F) we associate the directed
graph (Q,E) with edge set E = {(p, δ(p, a)) | p ∈ Q, a ∈ Σ}. Similarly, with an rDFA
A = (Q,Σ, F, δ, q0) we associate the directed graph (Q,E) with edge set E = {(p, δ(a, p)) |
p ∈ Q, a ∈ Σ}. Let A be a DFA or an rDFA. Two states p, q in A are strongly connected if
there exists a path in (Q,E) from p to q, and vice versa. The strongly connected components
(SCCs) of A with state set Q are the maximal subsets C ⊆ Q in which all states p, q ∈ C are
strongly connected. A state q ∈ Q is transient if there exists no nonempty path from q to q.
An SCC C is transient if it only contains a single transient state. There is a natural partial
order on the SCCs, called the SCC-ordering, where the SCC C1 is smaller than the SCC C2
if there exists a path in (Q,E) from a state in C1 to a state in C2.

The following combinatorial result from [2] will be used in this paper. Consider a directed
graph G = (V,E). The period of G is the greatest common divisor of all cycle lengths in G.
If G is acyclic we define the period to be ∞.

I Lemma 10 (cf. [2]). Let G = (V,E) be a strongly connected directed graph with E 6= ∅ and
finite period g. Then there exist a partition V =

⋃g−1
i=0 Vi and a constant m(G) ≤ 3|V |2 with

the following properties:
For every 0 ≤ i, j ≤ g − 1 and for every u ∈ Vi, v ∈ Vj the length of every directed path
from u to v in G is congruent to j − i modulo g.
For every 0 ≤ i, j ≤ g − 1, for every u ∈ Vi, v ∈ Vj and every integer r ≥ m(G), if r is
congruent to j− i modulo g, then there exists a directed path from u to v in G of length r.

If G = (V,E) is strongly connected with E 6= ∅ and finite period g, and V0, . . . , Vg−1
satisfy the properties from Lemma 10, then we define the shift from u ∈ Vi to v ∈ Vj by

shift(u, v) = j − i (mod g) ∈ {0, . . . , g − 1}. (1)

Notice that this definition is independent of the partition
⋃g−1
i=0 Vi since any path from u to v

has length ` ≡ shift(u, v) (mod g) by Lemma 10. Also note that shift(u, v) + shift(v, u) ≡ 0
(mod g). In the following let g(C) denote the period of the SCC C.

I Lemma 11. For every regular language L there exists an rDFA A for L and a number g
such that every non-transient SCC C in A has period g(C) = g.

Path summaries. We start by recalling the notion of a path summary from [14], where it
was used in order to prove a logspace upper bound for regular left-ideals (in the exact setting
where the Hamming gap is zero). For the rest of Section 4 we fix a regular language L ⊆ Σ∗
and an rDFA B = (Q,Σ, F, δ, q0) which recognizes L. By Lemma 11, we can assume that
every non-transient SCC C of B has period g(C) = g. Consider a run π = (pn, an, . . . , a1, p0)
on x = an · · · a1. If all states pn, . . . , p0 are contained in a single SCC we call π internal.
We can decompose π = πmτm−1πm−1 · · · τ1π1, where each πi is a possibly empty internal
run and each τi is a single transition connecting two distinct SCCs. We call this unique
factorization the SCC-factorization of π, which is illustrated in Figure 1. The path summary
of π is

ps(π) = (|πm|, qm)(|τm−1πm−1|, qm−1) · · · (|τ2π2|, q2)(|τ1π1|, q1),

where qi is the first state in πi (1 ≤ i ≤ m). Note that m is bounded by the constant number
of states of B. Hence, a path summary can be stored with O(log |π|) bits.

ISAAC 2019

6:8 Sliding Window Property Testing for Regular Languages

q1q2q3qm

π1τ1π2τ2τm−1πm

Figure 1 The SCC-factorization of a run.

Periodic acceptance sets. For a ∈ N and X ⊆ N we use the standard notation X + a =
{a+ x : x ∈ X}. For a state q ∈ Q we define Acc(q) = {n ∈ N : ∃w ∈ Σn : δ(w, q) ∈ F}. A
set X ⊆ N is eventually d-periodic, where d ≥ 1 is an integer, if there exists a threshold t ∈ N
such that for all x ≥ t we have x ∈ X if and only if x+ d ∈ X. If X is eventually d-periodic
for some d ≥ 1, then X is eventually periodic.

I Lemma 12. For every q ∈ Q the set Acc(q) is eventually g-periodic.

Two sets X,Y ⊆ N are equal up to a threshold t ∈ N, in symbol X =t Y , if for all x ≥ t:
x ∈ X iff x ∈ Y . Sets X,Y ⊆ N are almost equal if X =t Y for some threshold t ∈ N.

I Lemma 13. Let C be a non-transient SCC in B, p, q ∈ C and s = shift(p, q). Then Acc(p)
and Acc(q) + s are almost equal.

I Corollary 14. There exists a threshold t ∈ N such that
1. Acc(q) =t Acc(q) + g for all q ∈ Q, and
2. Acc(p) =t Acc(q) + shift(p, q) for all non-transient SCCs C and all p, q ∈ C.

We fix the threshold t from Corollary 14 for the rest of Section 4. The following lemma is
the main tool to prove the correctness of our sliding window testers. It states that if a word
of length n is accepted from p and ρ is any internal run from p of length at most n, then, up
to a bounded length prefix, ρ can be extended to an accepting run of length n. Formally, a
run π k-simulates a run ρ if one can factorize ρ = ρ1ρ2 and π = π′ρ2 where |ρ1| ≤ k.

I Lemma 15. If ρ is an internal run starting from p of length at most n and n ∈ Acc(p),
then there exists an accepting run π from p of length n which t-simulates ρ.

4.1 Deterministic logspace tester
Proof of Theorem 5. Let n ∈ N such that n ≥ |Q| (for n < |Q| we use a trivial streaming
algorithm which stores the window explicitly). The algorithm maintains the set {ps(πw,q) |
q ∈ Q} where w ∈ Σn is the active window. Initially this set is {ps(πw,q) | q ∈ Q} for
w = �n. Now suppose w = av for some a ∈ Σ and the next symbol of the stream is b ∈ Σ,
i.e. the new active window is vb. For each transition q b←− p in B we can compute ps(πvb,p)
from ps(πav,q) as follows. Suppose that ps(πav,q) = (`m, qm) · · · (`1, q1) where q = q1.

If p and q belong to the same SCC, then we increment `1 by one, else we append a new
pair (1, p).
If `m > 0 we decrement `m by one. If `m = 0 we remove the pair (`m, qm) and we
decrement `m−1 by one (in this case we must have m > 1 and `m−1 > 0).

The obtained path summary is ps(πvb,p). This data structure can be stored with O(logn)
bits since it contains |Q| path summaries, each of which can be stored in O(logn) bits.

It remains to define a proper acceptance condition. Consider the run π = πw,q0 , its
SCC-factorization πmτm−1πm−1 · · · τ1π1 and its path summary (`m, qm) · · · (`1, q1). The
algorithm accepts if and only if `m = |πm| ∈ Acc(qm). If w ∈ L, then clearly |πm| ∈ Acc(qm).
If |πm| ∈ Acc(qm), then the internal run πm can be t-simulated by an accepting run π′m of
equal length by Lemma 15. The run π′mτm−1πm−1 · · · τ1π1 is accepting and witnesses that
pdist(w,L) ≤ t. J

M. Ganardi, D. Hucke, M. Lohrey, and T. Starikovskaya 6:9

qi−1qiqi+1 q1qm

πi−1τi−1πiτi

ci and ri (mod g)

Figure 2 A compact summary of a run π.

4.2 Randomized constant-space tester with two-sided error
Let us first define a probabilistic counter, similar to the approximate counter by Morris [27],
which uses O(log logn) bits. For our purposes it suffices to distinguish high and low counters
states. Consider a probabilistic data structure Z representing a counter. Its operations are
incrementing the counter (using random coins) and querying whether the state of the counter
is low or high. Initially Z is in a low state. The random state reached after k increments is
denoted by Z(k). Given numbers 0 ≤ ` < h (they will depend on our window size n) we say
that Z is an (h, `)-counter with error probability δ < 1

2 if for all k ∈ N we have:
If k ≤ `, then Prob[Z(k) is high] ≤ δ.
If k ≥ h, then Prob[Z(k) is low] ≤ δ.

I Lemma 16. For all h, `, ξ > 0 with ` ≤ (1− ε)h+O(1) there exists an (h, `)-counter Z
with error probability 1/3|Q| which internally stores O(log(1/ε)) bits.

Fix a parameter 0 < ε < 1 and a window length n ∈ N. Based on the previous concepts,
we are now able to describe a randomized sliding window tester for a regular language L
with Hamming gap εn that uses O(log(1/ε)) bits. Let Z be the (h, `)-counter with error
probability 1/(3|Q|) from Lemma 16 where h = n− t and ` = (1− ε)n+ t+ 1. The counter
is used to define so-called compact summaries of runs.

IDefinition 17. A compact summary cs = (qm, rm, cm) · · · (q2, r2, c2)(q1, r1, c1) is a sequence
of triples, where each triple (qi, ri, ci) consists of a state qi ∈ Q, a remainder 0 ≤ ri ≤ g − 1,
and a state ci of the (h, `)-counter Z. The state c1 must be low and r1 = 0.

A compact summary (qm, rm, cm) · · · (q1, r1, c1) represents a run π if the SCC-factorization
of π has the form πmτm−1πm−1 · · · τ1π1, and the following properties hold:
1. for all 1 ≤ i ≤ m, πi starts in qi;
2. for all 2 ≤ i ≤ m, if |τi−1πi−1 · · · τ1π1| ≤ (1− ε)n+ t+ 1, then ci is the low state; and if
|τi−1πi−1 · · · τ1π1| ≥ n− t, then ci is the high state;

3. for all 2 ≤ i ≤ m, ri = |τi−1πi−1 · · · τ1π1| (mod g).

The idea of a compact summary is visualized in Figure 2. If m > |Q| then the above
compact summary cannot represent a run. Therefore, we can assume that m ≤ |Q|. For
every triple (qi, ri, ci), the entries qi and ri only depend on the rDFA B, and hence can be
stored with O(1) bits. Every state ci of the probabilistic counter needs O(log(1/ε)) bits.
Hence, a compact summary can be stored in O(log(1/ε)) bits. In contrast to Theorem 5, we
maintain a set of compact summaries which represent all runs of B on the complete stream
read so far (not only on the active window) with high probability.

I Lemma 18. For a given input stream w ∈ Σ∗, we can maintain a set of compact summaries
S containing for each q ∈ Q a compact summary csq ∈ S starting in q such that csq represents
the unique run πw,q with probability at least 2/3.

ISAAC 2019

6:10 Sliding Window Property Testing for Regular Languages

It remains to define an acceptance condition on compact summaries. For every q ∈ Q
we define Accmod(q) = {` (mod g) : ` ∈ Acc(q) and ` ≥ t}, which is intuitively speaking
the set of accepting remainders. Let cs = (qm, rm, cm) · · · (q1, r1, c1) be a compact summary.
Since c1 is the low initial state of the probabilistic counter, there exists a maximal index
i ∈ {1, . . . ,m} such that ci is low. We say that cs is accepting if n− ri (mod g) ∈ Accmod(qi).

I Proposition 19. Assume that εn ≥ t. Let w ∈ Σ∗ with |w| ≥ n and let cs be a compact
summary which represents πw,q0 .
1. If lastn(w) ∈ L, then cs is accepting.
2. If cs is accepting, then pdist(lastn(w), L) ≤ εn.

Proof of Theorem 7. Assume that εn ≥ t, otherwise we use a trivial streaming algorithm
that stores the window explicitly with O(1/ε) bits. We use the algorithm from Proposition 18
for each incoming symbol from the stream. To initialize, we run the algorithm on �n. The
algorithm accepts if the computed compact summary starting in q0 is accepting. From
Proposition 18 and 19 we get:

If pdist(lastn(w), L) > εn, then the algorithm rejects with probability at least 2/3.
If lastn(w) ∈ L, then the algorithm accepts with probability at least 2/3.

This concludes the proof of the theorem. J

Comparing Theorems 5 and 7 leads to the question whether one can replace the Hamming
gap γ(n) = εn in Theorem 7 by γ(n) = o(n) while retaining constant space at the same time.
We show that this is not the case:

I Lemma 20. Every randomized sliding window tester with two-sided error for a∗ ⊆ {a, b}∗
with Hamming gap γ(n) needs space Ω(logn− log γ(n)) for infinitely many n.

4.3 Randomized loglogspace tester with one-sided error
Let L be a finite union of trivial regular languages and suffix-free regular languages. In
this section, we present a randomized sliding window tester for L with one-sided error and
Hamming gap γ(n) = εn that uses space O(log logn). By Lemma 3 and Theorem 4, it
suffices to consider the case when L is a suffix-free regular language. As in Section 4 we fix an
rDFA B = (Q,Σ, F, δ, q0) for L such that g(C) = g for all SCCs of A. Since L is suffix-free,
B has the property that no final state can be reached from a final state by a non-empty run.
We decompose B into a finite union of partial automata, similar to [14].

I Definition 21. A sequence (qk, ak, pk−1), Ck−1, . . . , (q2, a2, p1), C1, (q1, a1, p0), C0, q0 is a
path description if Ck−1, . . . , C0 is a chain (read from right to left) in the SCC-ordering of
B, pi, qi ∈ Ci, qi+1

ai+1←−−− pi is a transition in B for all 0 ≤ i ≤ k − 1, and qk ∈ F .

Each path description defines a partial rDFA BP = (QP ,Σ, {qk}, δP , q0) by restricting B
to the state set QP =

⋃k−1
i=0 Ci ∪ {qk}, restricting the transitions of B to internal transitions

from the SCCs Ci and the transitions qi+1
ai+1←−−− pi, and declaring qk to be the only final state.

The rDFA is partial since for every state pi and every symbol a ∈ Σ there exists at most one
transition q a←− pi. Since the number of path descriptions P is finite and L(B) =

⋃
P L(BP),

it suffices to provide a sliding window tester for L(BP) (we again use Lemma 3 here).
From now on, we fix a path description P from Definition 21 and the partial automaton

BP = (QP ,Σ, {qk}, δP , q0) corresponding to it. The acceptance sets Acc(q) are defined
with respect to BP . If all Ci are transient, then L(BP) is a singleton and we can use a
trivial sliding window tester with space complexity O(1). Now assume the contrary and let
0 ≤ e ≤ k − 1 be maximal such that Ce is nontransient.

M. Ganardi, D. Hucke, M. Lohrey, and T. Starikovskaya 6:11

I Lemma 22. There exist r0, . . . , rk−1, s0, . . . , se ∈ N such that the following holds:
1. For all e+ 1 ≤ i ≤ k, the set Acc(qi) is a singleton.
2. Every run from qi to qi+1 has length ri (mod g).
3. For all 0 ≤ i ≤ e, Acc(qi) =si

∑k−1
j=i rj + gN.

Let s = max{k,
∑k−1
j=0 rj , s0, . . . , se} and for a word w ∈ Σ∗ define the function `w : Q →

N ∪ {∞} where `w(q) = inf{` ∈ N | δP (last`(w), q) = qk} (we set inf ∅ =∞).
Let p be a random prime with Θ(log logn) bits. We now define an acceptance condition

on `w(q). If n /∈ Acc(q0), we always reject. Otherwise, we accept w iff `w(q0) ≡ n modulo
our randomly chosen prime p.

I Lemma 23. Let n ∈ Acc(q0) be a window size with n ≥ s+ |QP | and w ∈ Σ∗ with |w| ≥ n.
There exists a constant c > 0 such that:
1. if lastn(w) ∈ L(BP), then w is accepted with probability 1;
2. if pdist(lastn(w), L(BP)) > c, then w is rejected with probability at least 2/3.

Proof of Theorem 8. Let n ∈ N be the window size. From the discussion above, it suffices
to show a tester for a fixed partial automaton BP . Assume n ≥ s+ |Q|, otherwise a trivial
tester can be used. If n /∈ Acc(q0), the tester always rejects. Otherwise, the tester picks a
random prime p with Θ(log logn) bits and maintains `w(q) (mod p) for all q ∈ QP , where w
is the stream read so far, which requires O(log logn) bits. When a symbol a ∈ Σ is read,
we can update `wa using `w: If q = qk, then `wa(q) = 0, otherwise `wa(q) = 1 + `w(δP (a, q))
(mod p) where 1 +∞ =∞. The tester accepts if `w(q0) ≡ n (mod p). Lemma 23 guarantees
correctness of the tester in the one-sided error setting. J

5 Further research

We gave a complete characterization of the space complexity of sliding window testers for
regular languages. A natural open research problem is, whether similar results can be shown
for context-free languages:

Does every context-free language L have a deterministic sliding window tester with
Hamming gap εn (or even O(1)) that uses space O(logn) (or at least space o(n))?
Does every context-free language L have a randomized sliding window tester with Ham-
ming gap εn (or even O(1)) that uses space O(1) (or at least space o(n))?

If the answers to these questions turn out be negative, then one might look at deterministic
context-free languages or visibly pushdown languages.

References
1 Charu C. Aggarwal. Data Streams – Models and Algorithms. Springer, 2007.
2 Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular Languages are

Testable with a Constant Number of Queries. SIAM Journal on Computing, 30(6):1842–1862,
2000. doi:10.1137/S0097539700366528.

3 Ajesh Babu, Nutan Limaye, Jaikumar Radhakrishnan, and Girish Varma. Streaming algorithms
for language recognition problems. Theoretical Computer Science, 494:13–23, 2013.

4 Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding
windows. Journal of Computer and System Sciences, 78(1):260–272, 2012.

5 Dany Breslauer and Zvi Galil. Real-Time Streaming String-Matching. ACM Transactions on
Algorithms, 10(4):22:1–22:12, 2014. doi:10.1145/2635814.

6 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya.
Dictionary Matching in a Stream. In Proceedings of ESA 2015, volume 9294 of Lecture Notes
in Computer Science, pages 361–372. Springer, 2015. doi:10.1007/978-3-662-48350-3_31.

ISAAC 2019

https://doi.org/10.1137/S0097539700366528
https://doi.org/10.1145/2635814
https://doi.org/10.1007/978-3-662-48350-3_31

6:12 Sliding Window Property Testing for Regular Languages

7 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya. The
k-mismatch problem revisited. In Proceedings of SODA 2016, pages 2039–2052. SIAM, 2016.
doi:10.1137/1.9781611974331.ch142.

8 Raphaël Clifford, Tomasz Kociumaka, and Ely Porat. The streaming k-mismatch problem. In
Proceedings of SODA 2019, pages 1106–1125. SIAM, 2019. doi:10.1137/1.9781611975482.68.

9 Raphaël Clifford and Tatiana Starikovskaya. Approximate Hamming Distance in a Stream.
In Proceedings of ICALP 2016, volume 55 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.20.

10 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining Stream
Statistics over Sliding Windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

11 Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. Test-
ing and Spot-Checking of Data Streams. Algorithmica, 34(1):67–80, 2002. doi:10.1007/
s00453-002-0959-4.

12 Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre. Streaming
Property Testing of Visibly Pushdown Languages. In Proceedings of ESA 2016, volume 57 of
LIPIcs, pages 43:1–43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

13 Moses Ganardi. Visibly Pushdown Languages over Sliding Windows. In Proceedings of
STACS 2019, volume 126 of LIPIcs, pages 29:1–29:17. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.29.

14 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. In Proceedings of STACS 2018, volume 96 of LIPIcs,
pages 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

15 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying Regular Languages over Sliding
Windows. In Proceedings of FSTTCS 2016, volume 65 of LIPIcs, pages 18:1–18:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

16 Moses Ganardi, Danny Hucke, and Markus Lohrey. Randomized Sliding Window Algorithms for
Regular Languages. In Proceedings of ICALP 2018, volume 107 of LIPIcs, pages 127:1–127:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

17 Moses Ganardi, Danny Hucke, Markus Lohrey, and Tatiana Starikovskaya. Sliding window
property testing for regular languages. Technical report, arXiv.org, 2020. arXiv:1909.10261.

18 Moses Ganardi, Artur Jeż, and Markus Lohrey. Sliding Windows over Context-Free Languages.
In Proceedings of MFCS 2018, volume 117 of LIPIcs, pages 15:1–15:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

19 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Streaming Pattern Matching with d Wildcards.
In Proceedings of ESA 2016, volume 57 of LIPIcs, pages 44:1–44:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.44.

20 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Towards Optimal Approximate Streaming
Pattern Matching by Matching Multiple Patterns in Multiple Streams. In Proceedings of
ICALP 2018, volume 107 of LIPIcs, pages 65:1–65:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.65.

21 Shay Golan and Ely Porat. Real-Time Streaming Multi-Pattern Search for Constant Alphabet.
In Proceedings of ESA 2017, volume 87 of LIPIcs, pages 41:1–41:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.41.

22 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property Testing and its Connection
to Learning and Approximation. Journal of the ACM, 45(4):653–750, 1998. doi:10.1145/
285055.285060.

23 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison–Wesley, Reading, MA, 1979.

24 Rahul Jain and Ashwin Nayak. The Space Complexity of Recognizing Well-Parenthesized
Expressions in the Streaming Model: The Index Function Revisited. IEEE Transactions on
Information Theory, 60(10):6646–6668, October 2014. doi:10.1109/TIT.2014.2339859.

https://doi.org/10.1137/1.9781611974331.ch142
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.4230/LIPIcs.ICALP.2016.20
https://doi.org/10.1007/s00453-002-0959-4
https://doi.org/10.1007/s00453-002-0959-4
https://doi.org/10.4230/LIPIcs.STACS.2019.29
http://arxiv.org/abs/1909.10261
https://doi.org/10.4230/LIPIcs.ESA.2016.44
https://doi.org/10.4230/LIPIcs.ICALP.2018.65
https://doi.org/10.4230/LIPIcs.ESA.2017.41
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/285055.285060
https://doi.org/10.1109/TIT.2014.2339859

M. Ganardi, D. Hucke, M. Lohrey, and T. Starikovskaya 6:13

25 Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. Streaming Algorithms for Recognizing
Nearly Well-Parenthesized Expressions. In Proceedings of MFCS 2011, volume 6907 of Lecture
Notes in Computer Science, pages 412–423. Springer, 2011.

26 Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing Well-Parenthesized
Expressions in the Streaming Model. SIAM Journal on Computing, 43(6):1880–1905, 2014.

27 Robert H. Morris. Counting Large Numbers of Events in Small Registers. Communications of
the ACM, 21(10):840–842, 1978. doi:10.1145/359619.359627.

28 Benny Porat and Ely Porat. Exact and Approximate Pattern Matching in the Streaming
Model. In Proceedings of FOCS 2009, pages 315–323. IEEE Computer Society, 2009. doi:
10.1109/FOCS.2009.11.

29 Michael O. Rabin. Probabilistic Automata. Information and Control, 6(3):230–245, 1963.
30 Tatiana Starikovskaya. Communication and Streaming Complexity of Approximate Pattern

Matching. In Proceedings of CPM 2017, volume 78 of LIPIcs, pages 13:1–13:11. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.13.

ISAAC 2019

https://doi.org/10.1145/359619.359627
https://doi.org/10.1109/FOCS.2009.11
https://doi.org/10.1109/FOCS.2009.11
https://doi.org/10.4230/LIPIcs.CPM.2017.13

On the Hardness of Set Disjointness and Set
Intersection with Bounded Universe
Isaac Goldstein
Bar-Ilan University, Ramat Gan, Israel
goldshi@cs.biu.ac.il

Moshe Lewenstein
Bar-Ilan University, Ramat Gan, Israel
moshe@cs.biu.ac.il

Ely Porat
Bar-Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

Abstract
In the SetDisjointness problem, a collection of m sets S1, S2, ..., Sm from some universe U is
preprocessed in order to answer queries on the emptiness of the intersection of some two query
sets from the collection. In the SetIntersection variant, all the elements in the intersection of the
query sets are required to be reported. These are two fundamental problems that were considered in
several papers from both the upper bound and lower bound perspective.

Several conditional lower bounds for these problems were proven for the tradeoff between
preprocessing and query time or the tradeoff between space and query time. Moreover, there are
several unconditional hardness results for these problems in some specific computational models.
The fundamental nature of the SetDisjointness and SetIntersection problems makes them useful for
proving the conditional hardness of other problems from various areas. However, the universe of the
elements in the sets may be very large, which may cause the reduction to some other problems to be
inefficient and therefore it is not useful for proving their conditional hardness.

In this paper, we prove the conditional hardness of SetDisjointness and SetIntersection with
bounded universe. This conditional hardness is shown for both the interplay between preprocessing
and query time and the interplay between space and query time. Moreover, we present several
applications of these new conditional lower bounds. These applications demonstrates the strength of
our new conditional lower bounds as they exploit the limited universe size. We believe that this new
framework of conditional lower bounds with bounded universe can be useful for further significant
applications.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases set disjointness, set intersection, 3SUM, space-time tradeoff, conditional
lower bounds

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.7

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.00831.

Funding Isaac Goldstein: This research is supported by the Adams Foundation of the Israel Academy
of Sciences and Humanities.
Moshe Lewenstein: This work was partially supported by ISF grant #1278/16.
Ely Porat: This work was partially supported by ISF grant #1278/16 and ERC grant MPM - 683064.

1 Introduction

The emerging field of fine-grained complexity receives much attention in the last years. One of
the most notable pillars of this field is the celebrated 3SUM conjecture. In the 3SUM problem,
given a set of n numbers we are required to decide if there are 3 numbers in this set that

© Isaac Goldstein, Moshe Lewenstein, and Ely Porat;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 7; pp. 7:1–7:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:goldshi@cs.biu.ac.il
mailto:moshe@cs.biu.ac.il
mailto:porately@cs.biu.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2019.7
https://arxiv.org/abs/1910.00831
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

sum up to zero. It is conjectured that no truly subquadratic solution to this problem exists.
This conjecture was extensively used to prove the conditional hardness of other problems
in a variety of research areas, see e.g. [9, 10, 1, 2, 3, 4, 11, 20, 19, 24, 27, 33]. The 3SUM
problem is closely related to the fundamental SetDisjointness problem. In the SetDisjointness
problem we are given m sets S1, S2, ..., Sm from some universe U for preprocessing. After
the preprocessing phase, given a query pair of indices (i, j) we are required to decide if the
intersection Si ∩ Sj is empty or not. In the SetIntersection variant, all the elements within
the intersection Si ∩ Sj are required to be reported.

Cohen and Porat [15] investigated the upper bound of both problems. Specifically, they
showed that SetDisjointness can be solved almost trivially in linear space and O(

√
N) query

time, where N is the total number of elements in all sets. This solution can be generalized
to a full tradeoff between the space S and the query time T such that S · T 2 = O(N2). For
the SetIntersection problem, Cohen and Porat demonstrated a linear space solution with
O(N

√
N) preprocessing time and O(

√
N
√
out+ out) query time, where out is the output

size. This was further generalized by Cohen [14] to a solution that uses O(N2−2t) space with
O(N2−t) preprocessing time and O(N tout1−t + out) query time for 0 ≤ t ≤ 1/2.

From the lower bound prespective, Pǎtraşcu [27] proved the conditional time hardness of
the multiphase problem, which is a dynamic version of the SetDisjointness problem, based on
the 3SUM conjecture. He also proved a connection between 3SUM and reporting triangles in a
graph which is closely related to the SetIntersection problem. His conditional hardness results
were improved by Kopelowitz et al. [24] that considered the preprocessing and query time
tradeoff of both SetDisjointness and SetInteresection. Specifically, they proved, based on the
3SUM conjecture, that SetDisjointness has the following lower bound on the tradeoff between
preprocessing time Tp and query time Tq for any 0 < γ < 1: Tp +N

1+γ
2−γ Tq = Ω(N

2
2−γ−o(1)).

Moreover, based on the 3SUM conjecture they also proved that SetIntersection has the
following lower bound on the tradeoff between preprocessing, query and reporting (per output
element) time for any 0 ≤ γ < 1, δ > 0: Tp + N

2(1+γ)
3+δ−γ Tq + N

2(2+δ)
3+δ−γ Tr = Ω(N

4
3+δ−γ−o(1)).

Kopelowitz et al. [23] also proved the conditional time hardness of the dynamic versions of
SetDisjointness and SetInteresection.

The lower bound on the space-query time tradeoff for solving SetDisjointness was con-
sidered by Cohen and Porat [16] and Pǎtraşcu and Roditty [28]. They have the following
conjecture regarding the hardness of SetDisjointness (this is the formulation of Cohen and
Porat. Pǎtraşcu and Roditty use slightly different formulation):

I Conjecture 1 (SetDisjointness Conjecture). Any data structure for the SetDisjointness
problem with constant query time must use Ω̃(N2) space.

Recently, Goldstein et al. [21] considered space conditional hardness in a broader sense
and demonstrated the conditional hardness of SetDisjointness and SetInteresection with
regard to their space-query time tradeoff. They had a generalized form of Conjecture 1 that
claims that the whole (simple) space-time tradeoff upper-bound for SetDisjointness is tight:

I Conjecture 2 (Strong SetDisjointness Conjecture). Any data structure for the SetDisjoint-
ness problem that answers queries in T time must use S = Ω̃(N

2

T 2) space.

Moreover, they also presented a conjecture regarding the space-time tradeoff for SetInter-
section:

I Conjecture 3 (Strong SetIntersection Conjecture). Any data structure for the SetIntersection
problem that answers queries in O(T + out) time, where out is the size of the output of the
query, must use S = Ω̃(N

2

T) space.

I. Goldstein, M. Lewenstein, and E. Porat 7:3

Goldstein et al. [21] showed connections between these conjectures and other problems
like 3SUM-Indexing (a data structure variant of 3SUM), k-Reachability and boolean matrix
multiplication. Unconditional lower bounds for the space-time tradeoff of SetDisjointness
and SetIntersection were proven by Dietz et al. [18] and Afshani and Nielsen [5] for specific
models of computation. The results of Dietz et al. [18] implies that Conjecture 2 is true in the
semi-group model. Afshani and Nielsen [5] proved Conjecture 3 in the pointer-machine model.

The fundamental nature of SetDisjointness and SetIntersection makes them useful for
proving conditional lower bounds especially when considering their connection to the 3SUM
problem. Indeed, several conditional lower bounds where proven using these problems
(see [16, 17, 20, 24, 28, 29]). One major problem with this approach is that the universe of
the elements in the sets of the SetDisjointness and SetIntersection problems can be large.
This may cause the reduction from these problems to other problems, which we wish to
prove their conditional hardness, to be inefficient. Therefore, it is of utmost interest to
obtain a conditional lower bound on the hardness of SetDisjointness and SetIntersection with
bounded universe, which in turn will be fruitful for achieving conditional lower bounds for
other applications.

Our Results. In this paper we prove several conditional lower bounds for SetDisjointness
and SetIntersection with bounded universe. We obtain the following results regarding the
interplay between space and query time for solving these problems: (1) Based on the Strong
SetDisjointness Conjecture, we prove that SetDisjointness with m sets from universe [u]
must either use Ω(m2−o(1)) space or have Ω(u1/2−o(1)) query time. (2) Based on the Strong
SetDisjointness Conjecture, we prove that SetIntersection with m sets from universe [u]
must either use Ω(m2−o(1)) space or have Ω̃(uα−o(1) + out) query time, for any 1/2 ≤ α ≤ 1
and any output size out such that out = Ω(u2α−1−δ) and δ > 0 (3) Based on the Strong
SetIntersection Conjecture, we prove that SetIntersection with m sets from universe [u] must
either use Ω((m2uα)1−o(1)) space or have Ω̃(uα−o(1) + out) query time for any 1/2 ≤ α ≤ 1
and any output size out such that out = Ω(u2α−1−δ) and δ > 0.

Regarding the interplay of preprocessing and query time we demonstrate a reduction from
3SUM to SetDisjointness and SetIntersection. Using this reduction we prove the following
results based on the 3SUM conjecture: (i) Any solution to SetDisjointness with m sets from
universe [u] must either have Ω(m2−o(1)) preprocessing time or have Ω(u1/2−o(1)) query time.
(ii) Any solution to SetIntersection with m sets from universe [u] must either have Ω(m2−o(1))
preprocessing time or have Ω(u1−o(1)) query time.

These new conditional lower bounds are useful in proving conditional lower bounds for
other problems that exploit the small universe size as explained before. We give some
examples of such applications.

(1) Range Mode. The Range Mode problem is a classic problem that was studied in several
papers (see e.g. [12, 26]). In this problem, an array A with n elements is given for
preprocessing. Then, we are required to answer range mode queries. That is, given a
range [i, j] we have to find the mode element (the most frequent element) in the range
[i, j] in A. The best known upper bound for the space-query time tradeoff of this problem
is S · T 2 = Õ(n2), where S is the space usage and T is the query time ([12, 26]). We
prove using our new lower bound for SetDisjointess with bounded universe the following
lower bound on the tradeoff between space and query time: S · T 4 = Ω(n2−o(1)). We
note that if the query time in the lower bound on SetDisjointness (in Theorem 4, see (1)
above) was Ω̃(u1−o(1)) then the lower and upper bounds were tight.

(2) Distance oracle is a data structure for computing the shortest path between any two
vertices in a graph. We say that a distance oracle has a stretch t if for any two vertices
in the graph the distance it returns is no more than t times the true distance between

ISAAC 2019

7:4 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

these vertices. Approximate distance oracles were investigated in many papers (see for
example [7, 6, 13, 28, 29, 30]). Agrawal [6] showed a (5

3)-stretch distance oracle for a
graph G = (V,E) that uses Õ(|E| + |V |2

α) space and has O(α |E||V |) query time for any
1 ≤ α ≤ (|V |

2

|E|) 1
3 . We prove that this tradeoff is the best that can be achieved for any

stretch-less-than-2 distance oracles based on our new lower bound on SetDisjointness
with bounded universe (see a more detailed discussion in Section 4).

(3) 3SUM-Indexing is a data structure variant of 3SUM. In this problem, two arrays A and
B with n numbers in each of them are preprocessed. Then, given a query number z we
are required to decide if there are x ∈ A and y ∈ B such that x + y = z. Goldstein et
al. [21] conjecture that there is no Õ(1) query time solution to 3SUM-Indexing using truly
subquadratic space. In a stronger form of this conjecture they claim that there is no truly
sublinear query time solution to 3SUM-Indexing using truly subquadratic space. Recently,
it was proven that the strong 3SUM-Indexing conjecture is false [22, 25]. However, the
exact interplay between time and space for solving 3SUM-Indexing is unclear and it
still seems that there might be some strong variant of the 3SUM-Indexing conjecture
that is true. Goldstein et al. [21] proved some connections between 3SUM-Indexing,
SetDisjointness and SetIntersection. In this paper we strengthen their results using
our new lower bounds for SetDisjointness and SetIntersection with bounded universe.
Specifically, we prove based on our new lower bound on SetDisjointness with bounded
universe that any solution to 3SUM-Indexing where the universe of the numbers within
arrays A and B is [n2+ε] for any ε > 0 has this lower bound on the tradeoff between space
(S) and query time (T): S ·T 2 = Ω(n2−o(1)). Moreover, we prove the same lower bound on
the tradeoff between preprocessing (Tp) and query time (Tq): Tp · T 2

q = Ω̃(n2−o(1)). The
latter is proven based on the 3SUM conjecture following our reduction to SetDisjointness
with bounded universe.
In the 3SUM conjecture the universe of the numbers in the given instance is assumed to
be [n3] (see [27]) or even [n4] (see [32]). It is known that 3SUM can be easily solved in
O(u log u) time if the universe is [u] by using FFT. Therefore, 3SUM with numbers from
universe [n2−ε] for any ε > 0 can be solved in truly subquadratic time. Consequently,
assuming that no truly subquadratic solution to 3SUM with universe [n2] seems to be
much stronger conjecture (it was used once in [9]). Solving 3SUM-Indexing can be done
easily with Õ(n2) preprocessing time, O(n2) space and Õ(1) query time. Our results
demonstrate that this is tight even if the universe of the numbers in A and B and the query
numbers is [n2+ε] for any ε > 0. This is a very strong lower bound, as 3SUM-Indexing
with numbers from universe [u] can be solved with Õ(u) preprocessing time, O(u) space
and Õ(1) query time. This is done in a similar way to solving 3SUM with numbers from
universe [u]. Consequently, for any ε > 0, 3SUM-Indexing with numbers from universe
[n2−ε] can be solved by a data structure that has constant query, while the preprocessing
time and space are subquadratic. Our new conditional lower bound demonstrates that
having such a data structure for a slightly larger universe seems to be impossible.

2 Hardness of Space-Time Tradeoff for SD and SI with Bounded
Universe

We prove the hardness of SetDisjointness with bounded universe in the following theorem:

I Theorem 4. Any solution to SetDisjointness with sets S1, S2, ..., Sm ⊆ [u] for any value
of u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either use Ω(m2−o(1)) space or

have Ω̃(u1/2−o(1)) query time, unless the Strong SetDisjointness Conjecture is false.

I. Goldstein, M. Lewenstein, and E. Porat 7:5

Proof. Let us assume to the contradiction that the Strong SetDisjointness Conjecture is
true, but there is an algorithm A that solves SetDisjointness on m sets from a universe
[u] and creates a data structure D, such that the space complexity of the data structure
D is O(m2−ε1) for some ε1 > 0 and the query time of algorithm A is O(u1/2−ε2) for some
0 < ε2 ≤ 1/2. We define ε = min(ε1, ε2).

Now, given an instance of SetDisjointness with sets S′1, S′2, ..., S′m′ , we denote by N ′ the
total number of elements in all sets, that is N ′ =

∑m
i=1 |S′i|. We rename the elements of all

the sets such that each element ei is mapped to some integer xi ∈ [N ′].
We distinguish between 3 types of sets:

(a) Large sets are all the sets with more than
√
u elements. Denote by d the number of

large sets. Let Sp1 , Sp2 , ..., Spd be some ordering of the large sets. Let p be a function
such that p(i) = pj if Si is the set Spj in the ordering of the large sets.

(b) Small sets are all the sets with O(u1/2−ε) elements.
(c) Medium sets are all the sets that are neither large nor small. Denote by e the number

of medium sets. Let Sq1 , Sq2 , ..., Sqe be some ordering of the medium sets. Let q be a
function such that q(i) = qj if Si is the set Sqj in the ordering of the medium sets.

Now, we can solve SetDisjointness in the following way.

Preprocessing:
(1) For any set Si use static hashing to save all elements of the set in a table Ti, such that

we can check if some element exists in the set in O(1) time and the size of Ti is O(|Si|).
(2) Maintain a d × (d + e) matrix M . The `th row in this matrix represents the set Sp` .

For 1 ≤ ` ≤ d, the `th column represents Sp` and for d+ 1 ≤ ` ≤ d+ e, the `th column
represents Sq`−d .

(3) For all pairs of sets Si and Sj such that Si is a large set and Sj is a large or medium set,
save an explicit answer to the emptiness of the intersection of Si and Sj in M [p(i), p(j)]
and M [p(j), p(i)] if Sj is a large set and in M [p(i), d+ q(j)] if Sj is a medium set.

(4) Pick logn hash functions hi : N → [8u], for 1 ≤ i ≤ logn. Apply each hi to all elements
in all medium sets. Denote by hi(Sj) the set Sj after hi has been applied to its elements.

(5) For every i, j ∈ [e], if Sqi ∩ Sqj = ∅ do the following: Check if for all k ∈ [logn] there are
x ∈ Sqi and x′ ∈ Sqj such that x 6= x′ but hk(x) = hk(x′). If so, go back to step (4).

(6) For every k ∈ [logn]:
(6.1) Apply hk to all the elements of all the medium sets.
(6.2) Use algorithm A to create a data structure Dk that solves the set disjointness

problem on the medium sets Sq1 , Sq2 , ..., Sqe after hk has been applied to their
elements.

Query: Given a pair of indices i and j, we need to determine if Si ∩ Sj is empty or not.
Without loss of generality we assume that |Si| < |Sj | and do the following:

(1) If Si is a small set:
(1.1) For each element x ∈ Si: Check if x ∈ Sj using table Tj . If so, return 0.
(1.2) Return 1.

(2) If Sj is a large set:
(2.1) If Si is a large set: Return M [p(i), p(j)].
(2.2) If Si is a medium set: Return and M [p(j), d+ q(i)].

ISAAC 2019

7:6 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

(3) Else (if both Si and Sj are medium sets):
For every k ∈ [logn], check by using algorithm A and the data structure Dk if Si and
Sj are disjoint.
If there is at least one value of k for which these sets are disjoint, return 1.
Otherwise, return 0.

Correctness. If at least one of the query sets is small then we can check if any of its elements
is in the other query set using the hash tables that have been created in step (1) of the
preprocessing phase. This is done in step (1) of the query algorithm. If at least one of the
sets is large we can find the answer immediately by looking at the right position of matrix
M that has been created in steps (2)-(3) of the preprocessing phase. The last option is that
both query sets are medium. If this is the case we use the data structures that have been
created in step (6) of the preprocessing phase. In steps (4) and (5) of the preprocessing phase
we look for logn hash functions such that if any pair of sets are disjoint then they must be
disjoint when applying the hash functions to their elements by at least one of the logn hash
functions. Therefore, if any of the data structures that have been created in step (6) of the
preprocessing phase reports that a pair of sets are disjoint they must be disjoint. Moreover,
if a pair of sets are disjoint then there must be at least one data structure that reports that
they are disjoint. This is checked in the step (3) of the query algorithm.

The last thing that needs to be justified is the existence of logn hash function such that
for every pair of sets Si and Sj that are disjoint they are also disjoint after applying the
hash functions by at least one of the logn hash functions. The range of the hash function is
[8u]. The number of elements in the medium sets is no more than

√
u. Therefore, for any

two medium sets Si and Sj and a hash function hk : N → [8u] we have by the union-bound
that Pr[∃x1 ∈ Si, x2 ∈ Sj : x1 6= x2 ∧ hk(x1) = hk(x2)] ≤

√
u·
√
u

8u = 1/8. Consequently, the
probability that a pair of disjoint medium sets Si and Sj are not disjoint when applying hk
for all k ∈ [logn] is no more than (1/8)logn = 1/n3. Therefore, the probability that any pair
of disjoint medium sets are not disjoint when applying hk for all k ∈ [logn] is no more than
n2/n3 = 1/n by the union-bound. Using the probabilistic method we get that there must be
logn hash functions such that for every pair of sets Si and Sj that are disjoint they are also
disjoint after applying the hash functions by at least one of the logn hash functions.

Complexity analysis

Space complexity. The space for the tables in step (1) of the preprocessing is clearly
O(N) - linear in the total number of elements. The total number of large sets d is at most
O(N/u1/2). The total number of medium sets e is at most O(N/u1/2−ε). Therefore, the
size of the matrix M is at most O(N/u1/2 · (N/u1/2 + N/u1/2−ε)) = O(N2/u1−ε). There
are logn data structures that are created in step (6). Each data structure uses at most
O((N/u1/2−ε)2−ε) = O(N2−ε/u1−5ε/2+ε2) space. Consequently, the total space complexity
is S = Õ(N2/u1−ε +N2−ε/u1−5ε/2+ε2).

Query time complexity. Step (1) of the query algorithm can be done in O(u1/2−ε) as this
is the size of the largest small set. Step (2) is done in constant time by looking at the right
position in M . In step (3) we do logn queries using algorithm A and the data structures Dk.
The query time for each query is O(u1/2−ε) as the universe of the sets after applying any
hash function hk is [8u]. Therefore, the total query time is T = O(u1/2−ε).

I. Goldstein, M. Lewenstein, and E. Porat 7:7

Following our analysis we have that S ·T 2 = Õ((N2/u1−ε+N2−ε/u1−5ε/2+ε2)·(u1/2−ε)2) =
Õ(N2u−ε+N2−εuε/2−ε2) = Õ(N2u−ε+N2u−ε

2) (the last equality follows from the fact that
u ≤ N).This contradicts the Strong SetDisjointness Conjecture and therefore our assumption
is false. J

From the proof of the above theorem we get a specific range for the value of m for hard
instances of SetDisjointness. Bounding the value of m for hard instances may be useful
for some specific applications. Therefore, we state the following corollary of the proof of
Theorem 4:

I Corollary 5. For any ε > 0, any solution to set disjointness with sets S1, S2, ..., Sm ⊆ [u]
for any value of u ∈ [Nδ, N], such that N =

∑m
i=1 |Si|, δ > 0 and the solution works for any

value of m in the range [N
u1/2 ,

N
u1/2−ε], must either use Ω(m2−o(1)) space or have Ω(u1/2−o(1))

query time, unless the Strong SetDisjointness Conjecture is false.

We also prove conditional lower bounds on SetIntersection with bounded universe based
on the Strong SetDisjointness Conjecture and the Strong SetIntersection Conjecture by
generalizing the ideas from the previous proof. These results appear in Appendix A.

3 Hardness of Preprocessing-Query Time Tradeoff for SD and SI
with Bounded Universe

We combine the ideas of Goldstein et al. [20] and Kopelowitz et al. [24] to get conditional
lower bounds on the complexity of SetDisjointness with bounded universe. To achieve these
bounds we prove the following lemma:

I Lemma 6. Let X be any integer in [nδ, n] for any δ > 0. For any ε > 0, an instance of
3SUM-Indexing that contains 2 arrays with n integers can be reduced to 2ε logX instances
of SetDisjointness SD1, SD2, ..., SD2ε logX . For any 1 ≤ i ≤ 2ε logX, instance SDi have
Ni = n

√
ui elements from universe [ui] and m = n

√
X
ui

sets that each one of them is of size
O(√ui), where ui = X1+ε/2i−1. The time and space complexity of the reduction is truly
subquadratic in n. Each query to the 3SUM-Indexing instance can be answered by at most
O(n/

√
X) queries to each instance SDi plus some additional time that is truly sublinear in n.

Proof. We begin with an instance of 3SUM indexing with arrays A and B and do the
following construction in order to reduce this 3SUM indexing instance to 2ε logn instances of
SetDisjointness. The construction uses almost-linear and almost-balanced hash functions that
serve as a useful tool in many reductions from 3SUM. We briefly define this notion here (see full
details in [24, 31]). LetH be a family of hash functions from [u]→ [m]. H is called linear if for
any h ∈ H and any x, x′ ∈ [u], we have h(x) +h(x′) ≡ h(x+x′) (modm). H is called almost-
linear if for any h ∈ H and any x, x′ ∈ [u], we have either h(x)+h(x′) ≡ h(x+x′)+ch (modm),
or h(x) +h(x′) ≡ h(x+x′) + ch+ 1 (modm), where ch is an integer that depends only on the
choice of h. For a function h : [u]→ [m] and a set S ⊂ [u] where |S| = n, we say that i ∈ [m]
is an overflowed value of h if |{x ∈ S : h(x) = i}| > 3n/m. H is called almost-balanced if
for a random h ∈ H and any set S ⊂ [u] where |S| = n, the expected number of elements
from S that are mapped to overflowed values is O(m). For simplicity of presentation, we
treat the almost-linear hash functions as linear and this only affects some constant factors in
our analysis.

ISAAC 2019

7:8 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

Construction

Initial Construction. We use an almost-linear almost-balanced hash function h1 : U → [R]
to map the elements of A to R buckets A1, A2, ..., AR such that Ai = {x ∈ A : h1(x) = i}
and the elements of B to R buckets B1, B2, ..., BR such that Bi = {x ∈ B : h1(x) = i}. As
h1 is almost-balanced the expected size of each bucket is O(n/R). Moreover, buckets with
more than 3n/R elements, called overflowed buckets, have no more than O(R) elements in
total. We save these O(R) elements in lists LA and LB (we put elements from overflowed
buckets of A in LA and elements from overflowed buckets of B in LB). We also sort A and
B and save lookup tables for both A and B.

We pick another almost-linear almost-balanced hash function h2 : U → [n]. For each
bucket Ai, we create an n-length characteristic vector vAi such that vAi [j] = 1 if there is
x ∈ Ai such that h2(x) = j and vAi [j] = 0 if there is no x ∈ Ai such that h2(x) = j. In the
same way we create an n-length characteristic vector vBj for each bucket Bj .

Quad Trees Construction. We create a search quad tree for each pair of buckets Ai and
Bj following the idea of Goldstein et al. [20]. The construction involves calculating the
convolution of many pairs of vectors. The convolution of two vectors u, v ∈ {R+ ∪ {0}}n is a
vector c, such that c[k] =

∑k
i=0 u[i]v[k − i] for 0 ≤ k ≤ 2n− 2. Constructing the quad tree

is done as follows:
Quad-Tree-Construction(vAi ,vBj ,X).
(1) For the bottom level of the quad tree:

(1.1) Partition the characteristic vector vAi into dn/Xe sub-vectors vAi1 , ..., vAidn/Xe
each of them of length X.

(1.2) Pad the last sub-vector with zeroes if needed.
(1.3) Let i1, i2, ..., iY be the indices of the ones in some sub-vector vAik . If Y > X/R

(1.3.1) Duplicate vAik t = dY/(X/R)e times.
(1.3.2) For every p ∈ [t]: Save in the pth copy of vAik just the ones in the indices

i(p−1)·(X/R)+1, ..., ip·(X/R)−1. Replace all other ones by zeroes.
(1.4) Denote the sequence of sub-vectors of vAi and their duplicates by

PAi = v1
Ai
, v2
Ai
, ..., v

cn/X
Ai

for some constant c ≥ 1. Order the sub-vectors in PAi by
the locations of the ones. That is, sub-vector w occurs before u in PAi if the ones
in w appear before the ones of u in vAi . A sub-vector w that contains only zeroes
and therefore represents a sub-vector vAik for some 1 < k ≤ dn/Xe without any
duplicates appears before all sub-vectors vAik′ for k

′ > k and their duplicates.
(1.5) Repeat steps (1.1)-(1.4) for vBj and create a sequence of sub-vectors

PBj = v1
Bj
, v2
Bj
, ..., v

c′n/X
Bj

for some constant c′ ≥ 1.
(1.6) Without loss of generality let us assume that c ≥ c′. Add to the end of the sequence

PBj the vectors v
c′n/X+1
Bj

, ..., v
cn/X
Bj

, such that each of these vectors contains exactly
X zeroes.

(1.7) For each pair of sub-vectors vkAi and v
`
Bj

:
(1.7.1) Create a node ck,`i,j in the quad tree.
(1.7.2) Calculate the convolution of vkAi and v

`
Bj

and save the result in ck,`i,j .
(2) For the next level of the quad tree upward:

(2.1) Create a sequence of sub-vectors v′1Ai , v
′2
Ai , ..., v

′cn/2X
Ai

such that v′kAi is the concat-
enation of v2k−1

Ai
and v2k

Ai
from the previous level.

I. Goldstein, M. Lewenstein, and E. Porat 7:9

(2.2) For every v′kAi if there are overlapping locations in v2k−1
Ai

and v2k
Ai

- merge them.
That is, if there are elements in both sub-vectors that represent the same interval
of vAi , merge all of them in v′kAi by setting each overlapping location to 1 if any of
the two overlapping elements in this location is 1, and setting each overlapping
location to 0 otherwise.

(2.3) Repeat steps (2.1) and (2.2) for vBj and create a sequence v′1Bj , v
′2
Bj , ..., v

′cn/2X
Bj

.
(2.4) For each pair of sub-vectors v′kAi and v

′`
Bj create a node c′k,`i,j in the quad tree.

(2.5) Make the node c′k,`i,j the parent of 4 nodes from the previous level:
c2k−1,`−1
i,j , c2k−1,`

i,j , c2k,`−1
i,j , c2k,2`

i,j .
(2.6) Calculate the convolution of v′kAi and v′

`
Bj and save the result in c′

k,`
i,j . The

convolution of v′kAi and v
′`
Bj can be easily calculated using the convolution results

that are saved in c2k−1,`−1
i,j , c2k−1,`

i,j , c2k,`−1
i,j , c2k,2`

i,j from the previous level.
(3) Repeat step (2) for all the levels up to the root. Notice that in the root we have the

complete vectors vAi and vBj and we calculate and save their convolution within the
root node.

We emphasize that in the bottom level of the quad tree the number of sub-vectors of vAi
including all duplicates is no more than cn/X for some constant c ≥ 1, as the total number
of ones in vAi is O(n/R). Therefore, the size of the sequence in step (1.4) is cn/X.

We call a quad tree such that the length of the sub-vectors in its bottom level is X
X-quad-tree. We denote the level of the quad tree with sub-vectors of length Z by `Z . We
emphasize that we consider the length of the sub-vectors for the last notation by their length
if we do no merging in any level of the quad tree.

Convolution by SetDisjointness. The convolution c of two X-length vectors v and u can
be calculated using SetDisjointness in the following way: Let us denote by vi (for any
0 ≤ i ≤ X − 1) a (2X − 1)-length vector, such that vi[j + i] = v[j] for every 0 ≤ j ≤ X − 1
and all other elements of vi are zeroes. It is clear that vi is the vector v that its elements
where shifted by i locations and the empty locations are filled with zeroes. Therefore, we call
the vector vi an i-shift of v. We define ui in a similar way. Let us denote by vR the vector v
in reverse order of elements. It is straightforward to observe that c[j] (the jth element in the
convolution result of v and u) equals to the inner product of vRj (we note that the reverse
operation is done before the shift operation) and uX−1. Informally, the complete convolution
of v and u can be calculated by the inner product of (padded) u and the reversed version of
(padded) v in X − 1 different shifts. We can reduce the number of shifts to v by shifting both
v and u. Specifically, the value of c[j] can be obtained by the inner product of vR

j mod
√
X

and uX−1−b j√
X
c·
√
X . Therefore, the convolution of v and u can be calculated by the inner

product of O(
√
X) shifted versions of both v and u.

Each of the (2X − 1)-length boolean vectors can be represented by a set corresponding
to the ones in the vector. Formally, for a vector w we construct a set Sw such that Sw =
{j|w[j] = 1}. Instead of calculating the inner product of vR

j mod
√
X

and uX−1−b j√
X
c·
√
X ,

we can calculate |SvR
j mod

√
X

∩ Su
X−1−b j√

X
c·
√
X
| and get the same result. In our query

process through the quad tree we just need to know in each node if the value in some
position of the convolution within that node is zero or not. Thus, instead of calculating
|SvR

j mod
√
X

∩ Su
X−1−b j√

X
c·
√
X
| we just need to determine if SvR

j mod
√
X

∩ Su
X−1−b j√

X
c·
√
X

= ∅

or not. All in all, the convolution of two X-length vectors v and u can be determined by a

ISAAC 2019

7:10 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

SetDisjointness instance that contains O(
√
X) sets such that their size equals to the number

of ones in either v or u. Consequently, instead of saving explicitly the convolution result in
each node in some level of the quad tree that represents sub-vectors of length X, we can
create an instance of SetDisjointness that can be used to determine if a specific position in a
convolution result is zero or not.

Hybrid Quad Tree Construction. Using the idea from the previous paragraph we modify
the quad tree construction in the following way: We construct in the regular way, that
is explained in detail above, each of the quad trees until level `X1−ε . From level `X1−ε to
level `X1+ε we do not save the convolution results explicitly in the quad tree for each level,
but rather we create a SetDisjointness instance that can be used to answer if a specific
position in a convolution result is zero or not. This is an hybrid construction in which we
create an (X1+ε)-quad-tree that the bottom X2ε levels are not saved explicitly. Instead, the
information for these bottom levels is determined by the SetDisjointness instances we create.
These levels are called the implicit levels of the hybrid quad tree while the levels in which we
save the convolution results explicitly are called the explicit levels of the hybrid quad tree.

Query. Given a query integer number z, we search for a pair of integers x ∈ A and y ∈ B
such that x+ y = z. First of all, we check for each element x ∈ LA if there is y ∈ B such that
x+ y = z and we also check for each element y ∈ LB if there is x ∈ A such that x+ y = z.
This can be done easily in Õ(R) time using the sorted versions of A and B. Then, if x
is in bucket Ai then by the (almost) linearity property of h1 we expect y to be in bucket
Bj such that j = i − h1(z). In order to find out if there is x ∈ Ai and y ∈ Bj such that
x+ y = z we can calculate the convolution of vAi and vBj . Denote the vector that contains
their convolution result by Ci,j . If Ci,j [h2(z)] = 0 then there are no x ∈ Ai and y ∈ Bj such
that x+ y = z. However, if Ci,j [h2(z)] 6= 0 then there may be x ∈ Ai and y ∈ Bj such that
x+ y = z, but it may also be the case that h2(x) + h2(y) = h2(z) while x+ y 6= z. Therefore,
in order to verify if there are x ∈ Ai and y ∈ Bj such that x + y = z, we need to find all
pairs of x′ ∈ Ai and y′ ∈ Bj such that h2(x′) +h2(y′) = h2(z) and check if indeed x′+ y′ = z.
There are exactly Ci,j [h2(z)] such pairs, which are also called witnesses.

In order to efficiently find the witnesses of Ci,j [h2(z)], we use the hybrid quad tree we
have constructed for buckets Ai and Bj in the following way: We start at the root of the
hybrid quad tree if the convolution result in the root is non-zero at location h2(z), we look at
the children of the root node and continue the search at each child that contains a non-zero
value in the convolution result it saves in the index that corresponds to index h2(z) of the
convolution in the root. This way we continue downward all the way to the leaves. In the
levels of the hybrid quad tree that the convolution results are not saved explicitly we query
the SetDisjointness instances in order to get an indication for the existence of a witness in
the search path from the root.

If we reach a leaf of the quad tree and the convolution result within this leaf is non-zero
in the location that corresponds to the index h2(z) of the convolution in the root, then we
do a “2SUM-like” search within this leaf.

The “2SUM-like” search is done as follows: Let us assume that the leaf represents 2
sub-vectors vkAi and v

`
Bj

. We recover the original elements that these sub-vectors represent.
Let the array Aki contain all x ∈ Ai such that there is one in vkAi that corresponds to h2(x).
In the same way we construct array B`j . We sort both Aki and B`j . Let d be the size of Aki .
Then, if Aki [d− 1] +B`j [0] = z we are done. Otherwise, if the sum is greater than z we check
if Aki [d− 2] +B`j [0] = z and if it is smaller than z we check if Aki [d− 1] +B`j [1] = z. This
way we continue until we get to the end of one of the arrays or find a pair of elements that
its sum equals z.

I. Goldstein, M. Lewenstein, and E. Porat 7:11

Analysis. There are R2 possible pairs of buckets Ai and Bj . Therefore, we construct R2

quad trees. In order to save the convolution results in all the nodes in an explicit level `Z of
some hybrid quad tree, the space we need to use is O(n2/Z) (for each pair Ai and Bj , there
are O(n2/Z2) pairs of sub-vectors one from vAi and the other from vBj . The size of the
convolution of the two sub-vectors is O(Z)). Therefore, the total space for constructing the
explicit levels of the hybrid quad trees is Õ(n2/X1+ε ·R2) (a level that is closer to the root
requires less space than a level that is farther away from the root. There are at most logn
levels in each quad tree. The bottom explicit level is `X1+ε). This is also the preprocessing
time for constructing these levels of the hybrid quad trees as the convolution of two n-length
vector can be calculated in Õ(n) time.

From level `X1−ε to level `X1+ε we do not save the convolution results explicitly in the quad
tree for each level, but rather we create a SetDisjointness instance that can be used to answer
if a specific position in a convolution result is zero or not, as explained in detail previously. Let
us analyse the cost of the SetDisjointness instance for some implicit level `Z . We have O(R)
buckets. Each bucket is represented by a characteristic vector that is partitioned into O(n/Z)
parts of length Z, such that each part contains O(Z/R) ones. For each sub-vector we create
O(
√
Z) sets that represent O(

√
Z) shifts of the sub-vector as explained previously. Therefore,

the total number of sets we have is O(R ·n/Z ·
√
Z) = O(nR/

√
Z). Each set contains O(Z/R)

elements, so the total number of elements in all sets is O(R · n/
√
Z · Z/R) = O(n

√
Z). The

universe of all the elements in the sets is Z.
For a query integer z we have O(R) pairs of buckets Ai and Bj in which we may have two

elements, one from each array, that sum up to z (as j = i− h1(z)). For a pair of buckets Ai
and Bj , we search for all the witnesses of Ci,j [h2(z)] in the quad tree of Ai and Bj . Searching
for a witness from the root to a leaf of the quad tree can be done in O(logn) time in the levels
we save the convolution explicitly and a constant number of queries for each SetDisjointness
instance. Within a leaf we do a “2SUM-like” search on 2 arrays that contain O(X1−ε/R)
elements. Therefore, the total search time per witness is at most Õ(X1−ε/R). A false witness
is a witness pair of elements (x, y) such that x + y 6= z, but h2(x) + h2(y) = h2(z). The
probability that a pair of numbers (x, y) is a false witness is 1/n (because the range of h2 is
[n]). Therefore, the expected number of false witnesses within a specific pair of buckets is at
most O((n/R)2 · 1/n) = O(n/R2) by the union-bound (notice that the number of elements
in each bucket is O(n/R)). Consequently, the total expected number of false witnesses is
at most O(Rn/R2) = O(n/R). As explained before, the total search time per witness is at
most Õ(X1−ε/R). Thus, the total query time is Õ(nX1−ε/R2).

All in all, the total space and preprocessing time that is required by the explicit levels of
the O(R2) hybrid quad trees is Õ(n2/X1+ε ·R2) which is truly subquadratic in n if we set
R =

√
X. Moreover, the total query time is Õ(nX1−ε/R2) which is truly sublinear in n if

we set R =
√
X. Therefore, by setting R =

√
X we have that the space and preprocessing

time of the reduction is truly subquadratic in n. Additionally, a query can be answer by at
most O(n/

√
X) queries to each SetDisjointness instance plus some additional time that is

truly sublinear in n. J

I Theorem 7. Any solution to SetDisjointness with sets S1, S2, ..., Sm ⊆ [u] for any value of
u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either have Ω(m2−o(1)) preprocessing

time or have Ω(u1/2−o(1)) query time, unless the 3SUM Conjecture is false.

Proof. Given an instance of the 3SUM problem that contains 3 arrays A,B and C with
n numbers in each of them, we can solve this instance simply by creating a 3SUM in-
dexing instance with arrays A and B and n queries - one for each number in C. Thus,

ISAAC 2019

7:12 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

using the previous lemma the given 3SUM instance can be reduced for any integer value
of X in [nδ, n] (for any δ > 0) and for any ε > 0 to 2ε logX instances of SetDisjointness
SD1, SD2, ..., SD2ε logX . For any 1 ≤ i ≤ 2ε logX, instance SDi have N = n

√
ui elements

from universe [ui] and m = n
√

X
ui

sets that each one of them is of size O(√ui), where
ui = X1+ε/2i−1. The total time for this reduction is O(n2−ε1) for some ε1 > 0, and the total
number of queries is Õ(n2/

√
X). Consequently, if we assume to the contradiction that there

is an algorithm that solves SetDisjointness on m sets from a universe [u] with O(m2−ε2)
preprocessing time for some ε2 > 0 and O(u1/2−ε3) query time for some 0 < ε3 ≤ 1/2,
then we have a solution to 3SUM with O(n2−ε1) +

∑2ε logX
i=1 O((n

√
X
ui

)2−ε2 + n2
√
X
u

1/2−ε3
i)

time. We have that for any i, ui ≤ X1+ε and
√

X
ui
≤

√
X

X1−ε = Xε/2. Therefore,∑2ε logX
i=1 O((n

√
X
ui

)2−ε2 + n2
√
X
u

1/2−ε3
i)) = Õ(n(1+ε/2)(2−ε2) + n2

√
X
X(1+ε)(1/2−ε3)). Thus, by

setting ε = min(ε2, ε3) we have a total running time that is truly subquadratic in n. This
contradicts the 3SUM Conjecture. J

Another implication of our reduction in Lemma 6 is a similar reduction from 3SUM to
SetIntersection. This reduction leads to a similar conditional lower bound on the preprocessing
and query time tradeoff of SetIntersection with bounded universe. This is done in Appendix A.

4 Applications

In this section we present several applications of our lower bounds on SetDisjointness and
SetIntersection with bounded universe. Several hardness results on the reporting variants of
the problems in this section appear in Appendix B

4.1 Range Mode
As mentioned in the introduction, the range mode problem can be solved using S space and
T query time such that: S · T 2 = Õ(n2) [12, 26]. In the following Theorem we prove that
S · T 4 = Ω̃(n2). This lower bound is proved based on the Strong SetDisjointness Conjecture
using Theorem 4. We note that if the lower bound on the query time in Theorem 4 was
Ω(u1−o(1)) instead of Ω(u1/2−o(1)) then the lower bound and upper bound were tight.

I Theorem 8. Any data structure that answers Range Mode Queries in T time on a string
of length n must use S = Ω̃(n2/T 4) space, unless the Strong SetDisjointness Conjecture
is false.

Proof. We use the idea of Chan et al. [12] and apply our theorem on the hardness of
SetDisjointness with bounded universe. We begin with an instance of SetIntersection with
sets S1, S2, ..., Sm ⊆ [u] such that u ∈ [Nδ, N], N =

∑m
i=1 |Si| and δ > 0. We create a string

STR that is the concatenation of two string T1 and T2 of equal length. The string T1 is the
concatenation of the strings T11, T12, ..., T1m. For each i the string T1i is of length u and
each character in it is a different number in [u]. The prefix of T1i contains all the numbers in
[u] \ Si in a sorted order. This prefix is followed by all the numbers in Si in a sorted order.
This is called the suffix of T1i. T2 is constructed very similar to T1 but with a change in the
order of the suffix and prefix. Specifically, the string T2 is given by the concatenation of the
strings T21, T22, ..., T2m. For each i the string T2i is of length u and each character in it is a
different number in [u]. The prefix of T2i contains all the numbers in Si in a sorted order.

I. Goldstein, M. Lewenstein, and E. Porat 7:13

This prefix is followed by all the numbers in [u] \ Si in a sorted order. This is called the
suffix of T2i. For every 1 ≤ i ≤ m, let us denote by ai the index where the prefix of T1i ends
and by bi the index where the prefix of T2i ends.

The string STR is preprocessed for range mode queries. Then, given a query pair (i, j) for
SetDisjointness, we need to decide if Si ∩ Sj = ∅ or not. This is done by a range mode query
for the range [ai + 1, bj]. For every p ∈ [2] and q ∈ [m], the string Tpq contains characters
that represent all the numbers in [u], such that each of these numbers occurs exactly once in
the string. Between T1i and T2j we have m− i+ j − 1 substrings that each of them contains
all the characters from [u]. Therefore, each character occurs m− i+ j − 1 times between T1i
and T2j . The suffix of T1i starting at index ai + 1 contains all the characters that represent
the elements of Si, while the prefix of T2j ending at index bj contains all the characters that
represent the elements of Sj . Consequently, if there is an intersection between Si and Sj we
will have at least one character that occurs in both the suffix of T1i and the prefix of T2j .
Thus, the mode of the range [ai + 1, bj] will be m− i+ j + 1 if Si ∩ Sj 6= ∅, and less than
m− i+ j + 1 if the Si ∩ Sj = ∅. Therefore, if we get from the range mode query a character
c that occurs m− i+ j + 1 times in the query range we know that the intersection is not
empty, and if not we know that the intersection is empty. Even if the range mode query
does not return the frequency of the mode within the query range, but rather just the mode
element itself, we can save a hash table for every input set and use this tables to check in
constant time if the returned element occurs in both Si and Sj .

Consequently, an instance of SetDisjointness with m sets from universe [u] (such that
u ∈ [Nδ, N], N =

∑m
i=1 |Si| and δ > 0), can be reduced to an instance of the range mode

problem with a string of length n = 2mu, such that every query to the SetDisjointness
instance can be answered by a query to the range mode instance. Let us assume to the
contrary that the range mode problem can be solved by a data structure that answers queries
in Õ(T) time per query using Õ(S) space such that S · T 4 = Õ(n2−ε). Let T = Õ(u1/2−ε/4),
we have that S = Õ(n2ε/T 4) = Õ((mu)2−ε/u4(1/2−ε/4)) = Õ(m2−εu2−ε/u2−ε)) = Õ(m2−ε).
Therefore, we have a solution to SetDisjointness with m sets from universe [u] with query
time Õ(u1/2−ε/4) and space Õ(mu+m2−ε) (we add mu to the space usage, as we must at
least save the string ST). According to Corollary 5 the reduction from general SetDisjointness
to SetDisjointness with bounded universe holds for N/

√
u ≤ m. Therefore, for any value

of u ≤ N2/3−ε we have that
√
u ≤ N1/3−ε/2. Thus, the following holds:

√
u ≤ N1/3−ε/2 ⇒

1
N1/3−ε/2 ≤ 1√

u
⇒ N

N1/3−ε/2 ≤ N√
u
⇒ N2/3+ε/2 ≤ N√

u
≤ m ⇒ N2/3+ε/2− 2

3 ε−
ε2
2 ≤ m1−ε.

Consequently, we have that u ≤ N2/3−ε < N2/3−ε/6−ε/2 ≤ N2/3−ε/6−ε2/2 ≤ m. All in all, for
any u ≤ N2/3−ε the reduction holds and mu = Õ(m2−ε). Consequently, the total space for
solving SetDisjointness with bounded universe using our reduction to the range mode problem
is Õ(m2−ε) and the query time is Õ(u1/2−ε/4). This contradicts the Strong SetDisjointness
Conjecture according to Corollary 5. J

Using Theorem 7 and the same idea from the proof of Theorem 8, we obtain the following
result regarding the preprocessing and query time tradeoff for solving the range mode
problem:

I Corollary 9. Any data structure that answers Range Mode Queries in T time on a string
of length n must have P = Ω̃(n2/T 4) preprocessing time, unless the 3SUM Conjecture is
false.

ISAAC 2019

7:14 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

4.2 Distance Oracles
Agarwal [6] presented space-time tradeoffs for distance oracles for undirected graph G = (V,E)
with average degree µ (that is, µ = 2|E|

|V |): (i) (1 + 1
k)-stretch distance oracles that use

Õ(|E| + |V |2
α) space and have O((αµ)k) query time, for any 1 ≤ α ≤ |V | (ii) (1+ 1

k+0.5)-
stretch distance oracles that use Õ(|E|+ |V |

2

α) space and have O(α(αµ)k) query time, for any
1 ≤ α ≤ |V |. (iii) (1 + 2

3)-stretch distance oracle that uses Õ(|E|+ |V |
2

α) space and has O(αµ)
query time for any 1 ≤ α ≤ (|V |

2

|E|) 1
3 . In the last result ((iii)) Agarwal managed to shave an α

factor of the query time in (ii) (for k = 1). Therefore, both 5
3 -stretch distance oracle and

2-stretch distance oracle (by setting k = 1 in (i)) have the same space-time tradeoff. It is
known that 3-stretch distance oracle has a better tradeoff (see [8]). Moreover, by (i) and (ii)
the tradeoff for stretch less than 5/3 gets worse as the stretch guarantee is better. Thus, it
seems natural to expect a better tradeoff for stretch more than 5/3 and less-than-equal to 2.

In the following theorem we prove that improving the tradeoff of Agarwal [6] is impossible
for any stretch t ∈ [2

3 , 2), unless the Strong SetDisjointness Conjecture is false:

I Theorem 10. Any distance oracle for undirected graph G = (V,E) with stretch less than
2 must either use Ω(|V |2−o(1)) space or have Ω(µ1−o(1)) query time, where µ is the average
degree of a vertex in G, unless Strong SetDisjointness Conjecture is false.

Proof. We use the idea of Cohen and Porat [16] with our hardness results for SetDisjointness
with bounded universe. Given an instance of SetDisjointness with sets S1, S2, ..., Sm ⊆ [u]
such that u ∈ [Nδ, N], N =

∑m
i=1 |Si| and δ > 0, we construct a bipartite graph G = (V,E)

as follows: In one side, we create a vertex vi for each set Si. In the other side, we create
a vertex uj for each element j ∈ [u]. For each element x in some set Si we create an edge
(vi, ux). Formally, V = {vi|1 ≤ i ≤ m} ∪ {uj |j ∈ [u]} and E = {(vi, ux)|x ∈ Si}. For any
i, j ∈ [m], if Si ∩ Sj 6= ∅ then it is clear that the distance between vi and vj is exactly 2.
Otherwise, the distance is at least 4. A stretch less-than 2 distance oracle can distinguish
between these two possibilities and therefore a SetDisjointness query can be answered by one
query to a stretch less-than 2 distance oracle for G.

It is clear that |V | = m + u and |E| = N . We assume to the contradiction that
there is a stretch less than two distance oracle that uses Õ(|V |2−ε1) space and answers
queries in Õ(µ1−ε2) = Õ((|E||V |)

1−ε2) time, for some ε1, ε2 > 0. Therefore, SetDisjointness
with bounded universe can be solved using Õ((m + u)2−ε1) space and queries can be
answered using Õ((N

m+u)1−ε2) time. According to Corollary 5 the reduction from general
SetDisjointness to SetDisjointness with bounded universe holds for N/

√
u ≤ m. Therefore,

for any value of u ≤ N2/3 we have that the reduction holds and u ≤ m (see the full
details in the proof of Theorem 8). Moreover, we have that N/(m + u) ≤ N/m ≤

√
u.

Consequently, for any u ≤ N2/3 we have a solution to SetDisjointness with bounded
universe that uses Õ((m+ u)2−ε1) = Õ(m2−ε1) space and answers queries in Õ(N

m+u
1−ε2) =

Õ((
√
u)1−ε2) = Õ(u1/2−ε2/2) time. This contradicts Strong SetDisjointness Conjecture

according to Corollary 5. J

The previous theorem can be stated in a different way that makes it clear that the
space-time tradeoff of Agarwal [6] is tight for distance oracles with stretch t such that
5/3 ≤ t < 2.

I Corollary 11. There is no stretch less-than-2 distance oracle for undirected graph G = (V,E)
that uses Õ(|V |

2

α) space and have Õ(α1−εµ) query time for any |V |δ ≤ α and any δ, ε > 0,
unless conjecture 1 is false.

I. Goldstein, M. Lewenstein, and E. Porat 7:15

Using Theorem 7 and the same idea from the proof of Theorem 10, we obtain the following
result regarding the preprocessing and query time tradeoff for distance oracles with stretch
less-than-2:

I Theorem 12. Any distance oracle for undirected graph G = (V,E) with stretch less than 2
must either be constructed in Ω(|V |2−o(1)) preprocessing time or have Ω(µ1−o(1)) query time,
where µ is the average degree of a vertex in G, unless the 3SUM Conjecture is false.

4.3 3SUM-Indexing with Small Universe
In the following theorem we prove a conditional lower bound on the space-time tradeoff for
solving 3SUM-Indexing with universe size that is [n2+ε] for any ε > 0 (n is the size of the
input arrays).

I Theorem 13. For any ε > 0 and 0 < δ ≤ 1, any solution to 3SUM-Indexing with arrays
A = a1, a2, ..., an and B = b1, b2, ..., bn such that for every i ∈ [n] ai, bi ∈ [n2+ε] must
either use Ω(n2−δ−o(1)) space or have Ω(n δ2−o(1)) query time, unless Strong SetDisjointness
Conjecture is false.

Proof. We use the idea of Goldstein et al. [21] with our hardness for SetDisjointness with
bounded universe. We begin with an instance of SetDisjointness with sets S1, S2, ..., Sm ⊆ [u]
such that u = Nδ, m ∈ [N

u1/2 ,
N

u1/2−ε′], N =
∑m
i=1 |Si|, ε′ = ε/2 and δ > 0.

For every element x in some set Si we create two numbers x1,i and x2,i. The number x1,i
consists of 3 blocks of bits (ordered from the least significant bit toward the most significant
bit): (i) A block of logm bits that contains the value of the index i. (ii) A block of logm
padding zero bits. (iii) A block of log u bits that contains the value of x−1. The number x2,i
consists of 3 blocks of bits (ordered from the least significant bit toward the most significant
bit): (i) A block of logm padding zero bits. (ii) A block of logm bits that contains the
value of the index i. (iii) A block of log u bits that contains the value of u − x. We place
the number x1,i in array A and the number x2,i in array B. The number of elements in
each of these arrays is N , as we add a number to each array for every element in the input
sets. These two arrays form an instance of 3SUM-Indexing which is preprocessed in order to
answer queries.

Given a query asking whether Si ∩ Sj = ∅ or not, we can answer it by creating a query
number z to the 3SUM-Indexing instance as follows: The number z consists of 3 blocks of
bits (ordered from the least significant bit toward the most significant bit): (i) A block of
logm bits that contain the value of the index i. (ii) A block of logm that contain the value
of the index j. (iii) A block of log u bits that contains the value of u− 1. It straightforward
to see that we get a positive answer to the query number z iff Si ∩ Sj 6= ∅: (i) If we have
x1,k1 ∈ A and y2,k2 ∈ B such that x1,k1 + y2,k2 = z, then we must have that: (1) k1 = i

which means that x is in Si. (2) k2 = j which means that y is in Sj . (3) x− 1 +u− y = u− 1
which means that x = y. (ii) If Si ∩ Sj 6= ∅ then there is an element x such that x ∈ Si and
x ∈ Sj . From our construction it is clear that indeed x1,i + x2,j = z.

Thus, we have reduced our SetDisjointness instance to an instance of 3SUM-Indexing such
that each query to the SetDisjointness instance can be answered by a query to the 3SUM-
Indexing instance. The size of each array in the 3SUM-Indexing instance isN . All the numbers
in these arrays have 2 logm + log u bits. Let u = Nδ and m ∈ [N

u1/2 ,
N

u1/2−ε′], for ε′ ≤ ε
2 ,

then the number of bits in each number of A and B is bounded by 2 log N
u1/2−ε′ + logNδ =

2 logN1−δ/2+ε′δ + logNδ = 2(1− δ/2 + ε′δ) logN + δ logN = (2 + 2ε′δ) logN ≤ (2 + ε) logN .
By setting n = N we have that both A and B have n elements and all the numbers
are in [n2+ε].

ISAAC 2019

7:16 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

We assume to the contradiction that 3SUM-Indexing with universe [n2+ε] can be solved
using Õ(n2−δ−γ1) space, while answering queries in Õ(n δ2−γ2) time, for some γ1, γ2 > 0.
Following our reduction this means that we can solve SetDisjointness with m from universe
[u] using S = Õ(n2−δ−γ1) space, while answering queries in T = Õ(n δ2−γ2) time. We
have that u = nδ, so n = u1/δ. Moreover, m ≥ n1−δ/2, so n ≤ m1/(1−δ/2). Therefore,
S = Õ(m(2−δ−γ1)/(1−δ/2)) = Õ(m

2− γ1
1− δ2) and T = Õ(u(δ2−γ2)/δ) = Õ(u1/2−γ2/δ). This

contradicts Corollary 5. J

Using Theorem 7 and the same idea from the proof of Theorem 13, we obtain the following
result regarding the preprocessing and query time tradeoff for distance oracles with stretch
less-than-2:

I Theorem 14. For any ε > 0 and 0 < δ ≤ 1, any solution to 3SUM-Indexing with arrays
A = a1, a2, ..., an and B = b1, b2, ..., bn such that for every i ∈ [n] ai, bi ∈ [n2+ε] must
either have Ω(n2−δ−o(1)) preprocessing time or have Ω(n δ2−o(1)) query time, unless the 3SUM
Conjecture is false.

References
1 Amir Abboud and Kevin Lewi. Exact Weight Subgraphs and the k-Sum Conjecture. In

International Colloquium on Automata, Languages and Programming, ICALP 2013, pages
1–12, 2013.

2 Amir Abboud and Virginia Vassilevska Williams. Popular Conjectures Imply Strong Lower
Bounds for Dynamic Problems. In Foundations of Computer Science, FOCS 2014, pages
434–443, 2014.

3 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of Faster
Alignment of Sequences. In International Colloquium on Automata, Languages and Program-
ming, ICALP 2014, pages 39–51, 2014.

4 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching Triangles and
Basing Hardness on an Extremely Popular Conjecture. In Symposium on Theory of Computing,
STOC 2015, pages 41–50, 2015.

5 Peyman Afshani and Jesper Sindahl Nielsen. Data Structure Lower Bounds for Document
Indexing Problems. In International Colloquium on Automata, Languages, and Programming,
ICALP 2016, pages 93:1–93:15, 2016.

6 Rachit Agarwal. The Space-Stretch-Time Tradeoff in Distance Oracles. In Algorithms - ESA
2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings,
pages 49–60, 2014.

7 Rachit Agarwal and Philip Brighten Godfrey. Distance Oracles for Stretch Less Than 2. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 526–538, 2013.

8 Rachit Agarwal, Philip Brighten Godfrey, and Sariel Har-Peled. Approximate distance queries
and compact routing in sparse graphs. In INFOCOM 2011. 30th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Computer and Communications
Societies, 10-15 April 2011, Shanghai, China, pages 1754–1762, 2011.

9 Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On Hardness of
Jumbled Indexing. In International Colloquium on Automata, Languages and Programming,
ICALP 2014, pages 114–125, 2014.

10 Amihood Amir, Tsvi Kopelowitz, Avivit Levy, Seth Pettie, Ely Porat, and B. Riva Shalom.
Mind the Gap: Essentially Optimal Algorithms for Online Dictionary Matching with One Gap.
In International Symposium on Algorithms and Computation, ISAAC 2016, pages 12:1–12:12,
2016.

I. Goldstein, M. Lewenstein, and E. Porat 7:17

11 Gill Barequet and Sariel Har-Peled. Polygon-containment and Translational min-Hausdorff-
Distance between segment Sets are 3SUM-hard. In Symposium on Discrete Algorithms, SODA
1999, pages 862–863, 1999.

12 Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T.
Wilkinson. Linear-Space Data Structures for Range Mode Query in Arrays. Theory Comput.
Syst., 55(4):719–741, 2014.

13 Shiri Chechik. Approximate distance oracles with constant query time. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
654–663, 2014.

14 Hagai Cohen. Fast Set Intersection and Two-Patterns Matching. Master’s thesis, Bar-Ilan
University, Ramat-Gan, Israel, 2010.

15 Hagai Cohen and Ely Porat. Fast set intersection and two-patterns matching. Theor. Comput.
Sci., 411(40-42):3795–3800, 2010.

16 Hagai Cohen and Ely Porat. On the hardness of distance oracle for sparse graph. CoRR,
abs/1006.1117, 2010. arXiv:1006.1117.

17 Pooya Davoodi, Michiel H. M. Smid, and Freek van Walderveen. Two-Dimensional Range
Diameter Queries. In LATIN 2012: Theoretical Informatics - 10th Latin American Symposium,
Arequipa, Peru, April 16-20, 2012. Proceedings, pages 219–230, 2012.

18 Paul F. Dietz, Kurt Mehlhorn, Rajeev Raman, and Christian Uhrig. Lower Bounds for Set
Intersection Queries. Algorithmica, 14(2):154–168, 1995.

19 Anka Gajentaan and Mark H. Overmars. On a Class of O(n2) Problems in Computational
Geometry. Comput. Geom., 5:165–185, 1995.

20 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. How Hard is it to Find
(Honest) Witnesses? In European Symposium on Algorithms, ESA 2016, pages 45:1–45:16,
2016.

21 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional Lower
Bounds for Space/Time Tradeoffs. In Algorithms and Data Structures Symposium, WADS
2017, pages 421–436, 2017.

22 Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park, and Vinod Vaikuntanathan.
3SUM with Preprocessing: Algorithms, Lower Bounds and Cryptographic Applications. arXiv,
2019. arXiv:1907.08355.

23 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Dynamic Set Intersection. In Algorithms and
Data Structures - 14th International Symposium, WADS 2015, Victoria, BC, Canada, August
5-7, 2015. Proceedings, pages 470–481, 2015.

24 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher Lower Bounds from the 3SUM Conjecture.
In Symposium on Discrete Algorithms, SODA 2016, pages 1272–1287, 2016.

25 Tsvi Kopelowitz and Ely Porat. The Strong 3SUM-INDEXING Conjecture is False. arXiv,
2019. arXiv:1907.11206.

26 Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range Mode and Range Median Queries
on Lists and Trees. Nord. J. Comput., 12(1):1–17, 2005.

27 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Symposium on
Theory of Computing, STOC 2010, pages 603–610, 2010.

28 Mihai Patrascu and Liam Roditty. Distance Oracles beyond the Thorup-Zwick Bound. SIAM
J. Comput., 43(1):300–311, 2014.

29 Mihai Patrascu, Liam Roditty, and Mikkel Thorup. A New Infinity of Distance Oracles for
Sparse Graphs. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 738–747, 2012.

30 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.
31 Joshua R. Wang. Space-Efficient Randomized Algorithms for K-SUM. In European Symposium

on Algorithms, ESA 2014, pages 810–829, 2014.
32 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.

In International Congress of Mathematicians, ICM 2018, 2018.
33 Virginia Vassilevska Williams and Ryan Williams. Finding, Minimizing, and Counting

Weighted Subgraphs. SIAM J. Comput., 42(3):831–854, 2013.

ISAAC 2019

http://arxiv.org/abs/1006.1117
http://arxiv.org/abs/1907.08355
http://arxiv.org/abs/1907.11206

7:18 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

A Conditional Lower Bounds for SetIntersection

In the following theorem we prove a conditional lower bound on SetIntersection with bounded
universe based on the Strong SetDisjointness Conjecture by generalizing the ideas from
Theorem 4. Specifically, we demonstrate that for SetIntersection we either have the same
space lower bound as for SetDisjointness or we have a Ω̃(u1−o(1) + out) bound on the query
time. The query time bound is stronger than the Ω(u1/2−o(1)) bound that we have for
SetDisjointness. However, we argue that this lower bound for SetIntersection holds only
when the output is large. If we have an upper bound on the size of the output we still have
a lower bound on the query time, but this lower bound gets closer to Ω̃(u1/2−o(1) + out) as
the size of the output gets smaller. Eventually, this coincides with the lower bound we have
for SetDisjointness (notice that in order to answer SetDisjointness queries we just need to
output a single element from the intersection if there is any).

I Theorem 15. Any solution to SetIntersection with sets S1, S2, ..., Sm ⊆ [u] for any value
of u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either use Ω(m2−o(1)) space or

have Ω̃(uα−o(1) + out) query time, for any 1/2 ≤ α ≤ 1 and any output size out such that
out = Ω(u2α−1−δ) and δ > 0 ,unless Strong SetDisjointness Conjecture is false.

Proof. We use the same idea as in the proof of Theorem 4. Let us assume to the contradiction
that Strong SetDisjointness Conjecture is true but there is an algorithm A′ that solves
SetIntersection on m sets from a universe [u] and creates a data structure D, such that the
space complexity of the data structure D is O(m2−ε1) for some ε1 > 0 and the query time of
algorithm A′ is O(uα−ε2) for some 0 < ε2 ≤ 1/2. We define ε = min(ε1, ε2).

In the proof, we call those sets with at least uα−3/4ε elements large sets and those sets
with at most O(uα−ε) elements small sets. All other sets are called medium sets.

SetIntersection (for general universe) can be solved in the following way:
The preprocessing phase is similar to the one that is done in the proof of Theorem 4 with

the following changes: 1. In step (5) we check for each pair of medium sets Si and Sj such
that Si ∩ Sj = ∅ that the size of hk(Si) ∩ hk(Sj) is no more than u2α−1−3/2ε for at least
one hk : U → [8u] that we pick in step (4). This is done instead of just checking for the
emptiness of hk(Si) ∩ hk(Sj). 2. In step (6.2) we use algorithm A′ to create a data structure
Dk that solves the SetIntersection problem instead of the SetDisjointness problem.

The query phase is also very similar to the one from Theorem 4 with the following change:
In step (3), for each k, we get one by one the elements in the intersection of hk(Si) and
hk(Sj) by querying the data structure Dk. For each element e in that intersection we verify
that it is contained in both Si and Sj using the tables Ti and Tj . If this is the case, then
we return that the sets are not disjoint. Otherwise, we add one to a counter of the number
of elements in (hk(Si) ∩ hk(Sj)) \ (Si ∩ Sj). If this counter exceeds u2α−1−3/2ε we stop the
query immediately and continue to the next value of k.

The correctness of this reduction follows from the same arguments as in the proof of
Theorem 4. The difference is in analysing the hash functions and their properties. For any
two unequal elements x1 ∈ Si and x2 ∈ Sj , where both Si and Sj are medium sets, and for
any hash function hk : N → [8u] we have that Pr[hk(x1) = hk(x2)] ≤ 1/(8u). We call two
unequal elements x1 ∈ Si and x2 ∈ Sj such that hk(x1) = hk(x2) a false-positive of hk. The
number of elements in the medium sets is no more than uα−3/4ε. Consequently, the expected
number of false-positives in hk(Si) ∩ hk(Sj) is no more than (uα−3/4ε)2/8u = u2α−1−3/2ε/8.
By Markov inequality the probability that the number of false-positives for a specific hk is
more than u2α−1−3/2ε is no more than 1/8. Therefore, the probability that a pair of medium
sets Si and Sj has more than u2α−1−3/2ε false-positives when applying hk for all k ∈ [logn]

I. Goldstein, M. Lewenstein, and E. Porat 7:19

is no more than (1/8)logn = 1/n3. Thus, the probability that the number of false-positives
for any pair of medium sets is more than u2α−1−3/2ε when applying hk for all k ∈ [logn] is
no more than n2/n3 = 1/n by the union-bound. Using the probability method we get that
there must be logn hash functions such that for every pair of medium sets Si and Sj the
number of false-positives is no more than u2α−1−3/2ε after applying the hash functions by at
least one of the logn hash functions.

Complexity analysis

Space complexity. The space for the tables in step (1) of the preprocessing is clearly
O(N) - linear in the total number of elements. The total number of large sets d is at
most O(N/uα−3/4ε). The total number of medium sets e is at most O(N/uα−ε). Therefore,
the size of the matrix M is at most O(N/uα−3/4ε · N/uα−ε) = O(N2/u2α−7/4ε). There
are logn data structures that are created in step (6). Each data structure uses at most
O((N/uα−ε)2−ε) = O(N2−ε/u2α−(2+α)ε+ε2) space. Consequently, the total space complexity
is S = Õ(N2/u2α−7/4ε +N2−ε/u2α−(2+α)ε+ε2).

Query time complexity. Step (1) of the query algorithm can be done in O(uα−ε) as this is
the size of the largest small set. Step (2) is done in constant time by looking at the right
position in M . In step (3) we do logn queries using algorithm A′ and the data structures
Dk. the universe of the sets after applying any hash function hk is [8u], so the query time
for each query is O(uα−ε + out) (out is the size of the output we get from the query). We do
not allow the query to output more than u2α−1−3/2ε < uα−ε elements. Therefore, the total
query time is T = O(uα−ε).

Following our analysis we have that S · T 2 = Õ((N2/u2α−7/4ε +N2−ε/u2α−(2+α)ε+ε2) ·
(uα−ε)2) = Õ(N2u−1/4ε + N2−εuαε−ε

2). As α ≤ 1 and u ≤ N , we have that uαε ≤ N ε.
Therefore, S · T 2 = Õ(N2u−1/4ε + N2u−ε

2). This contradicts the Strong SetDisjointness
Conjecture and therefore our assumption is false. J

A better lower bound on the space complexity for solving SetIntersection can be obtained
based on the Strong SetIntersection Conjecture. This is demonstrated by the following
theorem:

I Theorem 16. Any solution to SetIntersection with sets S1, S2, ..., Sm ⊆ [u] for any value
of u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either use Ω((m2uα)1−o(1)) space

or have Ω̃(uα−o(1) + out) query time for any 1/2 ≤ α ≤ 1 and any output size out such that
out = Ω(u2α−1−δ) and δ > 0, unless Strong SetIntersection Conjecture is false.

Proof. The proof is very similar to the proof of Theorem 4. Let us assume to the contradiction
that the Strong SetIntersection Conjecture is true but there is an algorithm A′ that solves
SetIntersection on m sets from a universe [u] and creates a data structure D, such that the
space complexity of the data structure D is O(m2uα)1−ε1) for some ε1 > 0 and the query
time of algorithm A′ is O(uα−ε2) for some 0 < ε2 ≤ 1/2. We define ε = min(ε1, ε2).

In order to solve SetIntersection for general universe we use almost the same preprocessing
and query procedures as in the the proof of Theorem 4 except for the following changes:
1. In the preprocessing phase, we do not save in matrix M in the entries M [p(i), p(j)] or
M [p(i), d+ q(j)] just the answer to the emptiness of the intersection of Si and Sj , but rather
we save in this location a list of all the elements within the intersection of Si and Sj . 2. In
the query phase, in step (2) we return a list of elements and not just a single bit. 3. In the
query phase, in step (3) for each k we get the intersection of hk(Si) and hk(Sj) by querying

ISAAC 2019

7:20 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

the data structure Dk. For each element e in that intersection we return it after verifying
that it is contained in both Si and Sj using the tables Ti and Tj . Moreover, we count the
number of elements in (hk(Si)∩hk(Sj)) \ (Si ∩Sj) as we get them from the query and if they
exceed u2α−1−3/2ε we stop the query immediately and continue with the next value of k.

The correctness of the above solution to set intersection follows from the same arguments
as in the proof of Theorem 15.

Complexity analysis

Space complexity. The space for the tables in step (1) of the preprocessing is clearly
O(N). Matrix M in this solution contains in each entry the complete list of elements
in the intersection of some pair of sets. The total number of large sets d is at most
O(N/uα−3/4ε). The total number of medium sets e is at most O(N/uα−ε). The total
number of elements in all sets is N . Therefore, the size of the matrix M is at most
O(N/uα−3/4ε ·N/uα−ε ·uα−ε) = O(N2/uα−3/4ε) (see the full details in the full version of this
paper). There are logn data structures that are created in step (6). Each data structure use
at most O(((N/uα−ε)2uα)1−ε) = O(N2−2ε/uα−(2+α)ε+2ε2) space. Consequently, the total
space complexity is S = Õ(N2/uα−3/4ε +N2−2ε/uα−(2+α)ε+2ε2).

Query time complexity. Step (1) of the query algorithm can be done in O(uα−ε) as this
is the size of the largest small set. Step (2) is done in constant time plus the output size
by looking at the right position in M . In step (3) we do logn queries using algorithm A′

and the data structures Dk. The universe of the sets after applying any hash function hk
is [u], so the query time for each query is O(uα−ε + out) (out is the size of the output we
get from the query). We do not allow the query to output more than u2α−1−3/2ε < uα−ε

false-positive elements. Therefore, the total query time is O(T + out), where T = O(uα−ε).
Following our analysis we have that S · T = Õ((N2/uα−3/4ε + N2−2ε/uα−(2+α)ε+2ε2) ·

(uα−ε)) = Õ(N2u−1/4ε +N2−2εu(1+α)ε−2ε2). As α ≤ 1 and u ≤ N , we have that u(1+α)ε ≤
N2ε. Therefore, S ·T = Õ(N2u−1/4ε+N2u−2ε2). This contradicts the Strong SetIntersection
Conjecture and therefore our assumption is false. J

The construction in the proof of Lemma 6 can be modified in order to obtain the following
reduction from 3SUM-Indexing to SetIntersection:

I Lemma 17. For any 0 < γ < δ ≤ 1, an instance of 3SUM-Indexing that contains 2 arrays
with n integers can be reduced to an instance SI of SetIntersection. The instance SI have
N = n

√
u elements from universe [u] and m = n1+γ−δ/2 sets that each one of them is of

size O(
√
u), where u = nδ and 0 < 2γ < δ ≤ 1. The time and space complexity of the

reduction is Õ(n2+2γ−δ). Each query to the 3SUM-Indexing instance can be answered by at
most O(n1+γ−δ) queries to SI plus some additional O(logn) time.

Proof. We follow the construction from the proof of Lemma 6. In each quad tree we construct
for some two buckets Ai and Bj , we save the convolution results of the corresponding sub-
vectors until the bottom level in which the size of each subvector is X. In this level, for each
pair of sub-vectors we create O(

√
X) sets (representing different shifts) in the same way we

construct the sets for the SetDisjointness instances in the proof of Lemma 6. These sets
form a SetIntersection instance that contains O(R · n/X ·

√
X) = O(nR/

√
X) sets. In the

query phase, whenever we search a quad tree and get to a leaf node we can immediately
report all pairs of elements that are witnesses for Ci,j [h2(z)]. This is easily done by a single
SetIntersection query. The number of sub-vectors in the bottom level is O(n/X) for both

I. Goldstein, M. Lewenstein, and E. Porat 7:21

vAi and vBj . For every sub-vector of vAi there are at most O(1) sub-vectors of vBj that
their convolution with vAi may contain a witness pair for Ci,j [h2(z)]. Consequently, we do
at most O(n/X) intersection queries within each quad tree.

Therefore, the total space for constructing the quad trees’ levels with explicit convolution
results is Õ(n2/X · R2) (see the full analysis in the proof of Lemma 6). This is also the
preprocessing time for constructing these quad trees as the convolution of two n-length
vectors can be calculated in Õ(n) time. It is clear that the space and preprocessing time
are truly subquadratic in n for any δ > 2γ > 0. Moreover, the query time overhead is no
more than O(logn) for every query (a search through a path from the root to a leaf in some
quad tree). J

I Theorem 18. Any solution to SetIntersection with sets S1, S2, ..., Sm ⊆ [u] for any value of
u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either have Ω(m2−o(1)) preprocessing

time or have Ω̃(u1−o(1) + out) query time, unless the 3SUM Conjecture is false.

Proof. Given an instance of the 3SUM problem that contains 3 arrays A,B and C with n
numbers in each of them, we can solve this instance simply by creating a 3SUM indexing
instance with arrays A and B and n queries - one for each number in C. Thus, using the
previous lemma the given 3SUM instance can be reduced to an instance of SetIntersection
with m = n1+γ−δ/2 sets from universe [u] using O(n2+2γ−δ) time for preprocessing, where
the total number of queries to these instances is O(n2+γ−δ).

We assume to the contradiction that there is an algorithm that solves SetIntersection onm
sets from a universe [u] with O(m2−ε1) preprocessing time for some ε1 > 0 and O(u1−ε2 +out)
query time for some 0 < ε2 ≤ 1. If we choose the value of δ such that δ > max 2, 1

ε2
, then we

have a solution to 3SUM with truly subquadratic running time. This contradicts the 3SUM
Conjecture. J

B Hardness of Reporting Problems

B.1 Range Mode Reporting
In the reporting variant of the Range Mode problem we are required to report all elements
in the query range that are the mode of this range. We have stronger lower bounds for this
variant using the same construction as in the proof of Theorem 8 with the conditional lower
bounds for SetIntersection with bounded universe. The results refer to both the interplay
between space and query time and the interplay between preprocessing and query time.

I Theorem 19. Any data structure that answers Range Mode Reporting in O(T + out) time
on a string of length n, where out is the output size, must use S = Ω̃(n2/T 2) space, unless
the Strong SetIntersection Conjecture is false.

I Theorem 20. Any data structure that answers Range Mode Reporting in O(T + out)
time on a string of length n, where out is the output size, must must have P = Ω̃(n2/T 2)
preprocessing time, unless the 3SUM Conjecture is false.

B.2 3SUM-Indexing Reporting
In the reporting variant of 3SUM-Indexing we are required to report all pairs of numbers
a ∈ A and b ∈ B such that their sum equals the query number. Using our hardness results
for SetIntersection with bounded universe we prove the following conditional lower bounds
on 3SUM-Indexing reporting. These results are obtained by applying the same techniques as
in the proof of Theorem 13.

ISAAC 2019

7:22 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

I Theorem 21. For any ε > 0 and 0 < δ ≤ 1, any solution to 3SUM-Indexing reporting with
arrays A = a1, a2, ..., an and B = b1, b2, ..., bn such that for every i ∈ [n] ai, bi ∈ [n2+ε−δ]
must either use Ω(n2−δ−o(1)) space or have Ω̃(nδ−o(1) + out) query time, where out is the
output size, unless Strong SetIntersection Conjecture is false.

I Theorem 22. For any ε > 0 and 0 < δ ≤ 1, any solution to 3SUM-Indexing reporting with
arrays A = a1, a2, ..., an and B = b1, b2, ..., bn such that for every i ∈ [n] ai, bi ∈ [n2+ε−δ]
must either have Ω(n2−δ−o(1)) preprocessing time or have Ω̃(nδ−o(1) + out) query time, where
out is the output size, unless the 3SUM Conjecture is false.

Gathering and Election by Mobile Robots in a
Continuous Cycle
Paola Flocchini
School of Electrical Eng. and Comp. Sci., University of Ottawa, Ottawa, ON, K1N 6N5, Canada

Ryan Killick
School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada

Evangelos Kranakis
School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada

Nicola Santoro
School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada

Masafumi Yamashita
Dept. of Comp. Sci. and Comm. Eng., Kyushu University, Motooka, Fukuoka, 819-0395, Japan

Abstract
Consider a set of n mobile computational entities, called robots, located and operating on a continuous
cycle C (e.g., the perimeter of a closed region of R2) of arbitrary length `. The robots are identical,
can only see their current location, have no location awareness, and cannot communicate at a
distance. In this weak setting, we study the classical problems of gathering (GATHER), requiring
all robots to meet at a same location; and election (ELECT), requiring all robots to agree on a
single one as the “leader”. We investigate how to solve the problems depending on the amount of
knowledge (exact, upper bound, none) the robots have about their number n and about the length
of the cycle `. Cost of the algorithms is analyzed with respect to time and number of random bits.
We establish a variety of new results specific to the continuous cycle – a geometric domain never
explored before for GATHER and ELECT in a mobile robot setting; compare Monte Carlo and Las
Vegas algorithms; and obtain several optimal bounds.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Cycle, Election, Gathering, Las Vegas, Monte Carlo, Randomized Algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.8

Funding Paola Flocchini, Evangelos Kranakis, Nicola Santoro: Research supported in part by
NSERC Discovery grant.
Paola Flocchini: University Research Chair.
Ryan Killick: Research supported by the NSERC Canada Graduate Scholarship.

1 Introduction

1.1 The Framework
Consider a distributed system composed of a set R of autonomous mobile computational
entities, called robots, located and operating in an Euclidean space U . The robots are
identical: without identifiers or distinguishing features, they have the same capabilities and
execute the same algorithm. Although autonomous, their goal is to collectively perform some
assigned system task or to solve a given problem. Among the important tasks and problems
are: gathering (GATHER), requiring all robots to meet at a same location; and election
(ELECT), requiring all robots to agree on a single one as the “leader”. Indeed, GATHER is
one of the fundamental problems in theoretical mobile robotics, while ELECT is typically
solved as an intermediate step in the resolution of many important problems, in particular

© Paola Flocchini, Ryan Killick, Evangelos Kranakis, Nicola Santoro, and Masafumi Yamashita;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Gathering and Election by Mobile Robots in a Continuous Cycle

pattern formations. Both GATHER and ELECT have been extensively investigated under
a variety of assumptions on the capabilities of the robots (e.g., memory, communication,
visibility, orientation, speed), on the space in which they operate, and on the power of the
adversary. From the point of view of the behaviour of the robots, the two main models are
Look-Compute-Move (LCM) and Continuous Time (CT). In LCM the robots operate by
cycling through three separate processes: observing the space (Look), executing the algorithm
to determine a destination (Compute), and moving towards it (Move). In CT the robots are
permanently active and continuosly performing all three processes. For a recent overview see
[15] and the chapters therein.

In all investigations, in both models, the theoretical concern is to identify the weakest
possible conditions that make the problems solvable.

In this paper, we consider GATHER and ELECT by identical robots when the space U
is a continuous cycle C (e.g., the perimeter of a closed region of R2). This spatial setting
has been investigated in the LCM model with respect to the scattering problem, requiring
identical robots to place themselves at uniform distance along the cycle [13]. In the CT
model, a continuous cycle has been studied in the context of solving patrolling when the
robots are identical [9] and when they have different motorial capabilities [7]; gathering has
also been investigated, but only with robots having different motorial capabilities [22].

We study GATHER and ELECT in the CT model in a very weak computational setting:
the identical robots can only see their current location and have no location awareness;
furthemore they cannot communicate at a distance (i.e., communication is possible only
between robots located at the same point at the same time).

It is immediate to observe that, in our setting, both problems are deterministically
unsolvable: there is no deterministic algorithm that, in all possible executions of the algorithm
by the robots and regardless of the initial position of the robots in the cycle, will always
correctly solve the problem within finite time. This is obvious in the case of ELECT because,
to render a single robot uniquely different from all others it requires the existence of some
asymmetry in the system (e.g., in the initial placement of the robots, in shape of the Euclidean
space) if no difference is present among the robots (e.g., distinct ids, different speeds). In
our setting the impossibility holds also for GATHER, which does not have such a stringent
requirement, and can sometimes be deterministically solved in absence of asymmetries and
differences among the robots (e.g. [5]). Further observe that, since visibility is limited to the
current robot’s location, in our setting both problems are deterministically unsolvable even if
the initial configuration is asymmetric, and the robots are aware of this fact. Summarizing,
the only possible solution algorithms are randomized ones.

1.2 Main Contributions
In this paper we start the investigation of solving GATHER and ELECT by the set of robots
R deployed in a continuous cycle C. Since GATHER is of easy resolution once a leader has
been elected, we primarily focus on ELECT.

We propose both Las Vegas and Monte Carlo decentralized election protocols where: a
Las Vegas algorithm correctly teminates with probability one in an unpredictable amount of
time; a Monte Carlo algorithm has a fixed termination time but pays for this determinism
with a positive – yet bounded – probability that it has terminated incorrectly. In other words,
a Las Vegas algorithm “gambles with resources” and a Monte Carlo algorithm “gambles with
correctness”.

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 8:3

We evaluate the complexity of the proposed algorithms with respect to two cost measures:
the time until the algorithm terminates, and the total number of random bits (coin flips)
required by the algorithm. The costs depend not only on the length ` of the cycle and the
number n of mobile robots (note that n can be arbitrarily larger than `), but also and more
importantly on the knowledge (none, exact, upper bound) the robots have on ` and/or n.

We estabish several results. In particular, we prove that, with knowledge of `, a leader
can be elected with probability one in optimal time with an optimal number of random bits,
even without any knowledge of (an upper bound on) n. If only an upper bound L = O (`) is
known, then a leader can be elected with high probability in optimal time with an optimal
number of random bits, even without any knowledge of (an upper bound on) n.

The results of the paper are summarized in Tables 1 and 2. As we are analyzing
randomized algorithms, the cost measures are often random variables; when this is the case,
we give both the value achieved in the average and that with high probability.

Table 1 Results according to the knowledge of the robots (“Ex.” = exact, “-” = no knowledge,
“UB” = upper bound). Texp (resp. BexP) represents the expected time (resp. random-bit) complexity.
The column “Type” gives the type of randomized algorithm (LV = Las Vegas, MC = Monte Carlo).
The last column gives the corresponding algorithm label in the text. When an upper bound on
` (resp. n) is known it is represented by L (resp. N); and the constructed upper bound on n is
N̂ = Ln

`
.

n ` Texp Bexp Type Algo.
Ex. UB O (L) O (n) LV A1
Ex. - O (n + `) O (n + n log d`/ne) LV A1 + A7
- Ex. O (`) O (n) LV A1 + A6

UB UB O (L) O (n) MC A3
UB - O (N + N · `/n) O (n + n log d`/ne) MC A3 + A7
- UB O (L) O (n) MC A3+A8

Table 2 Same as Table 1 for time and bit complexities with high probability.

n ` Twhp Bwhp Type Algo.
Ex. UB O (L log n) O (n log n) LV A1
Ex. - O (n + ` log n) O (n log n + n log d`/ne) LV A1 + A7
- Ex. O (` log n) O (n log n) LV A1 + A6

UB UB O (L log N) O (n log N) MC A3
UB - O (N + N · `/n · log N) O (n log n + n log d`/ne) MC A3 + A7
- UB O

(
L log N̂

)
O
(
n log N̂

)
MC A3+A8

The paper is organized as follows. We first consider the case when the robots have some
level of knowledge (exact or upper bound) of both parameters (Section 3). We prove that,
when the robots possess knowledge of n, the knowledge of an upper bound L = O (`) allows
for a LV solution which is optimal with respect to both complexity measures. In case the
robots know only upper bounds on both n and `, we give a Monte Carlo algorithm. In
Section 4 we consider the cases when the robots have no knowledge (exact nor upper bound)
of one of the two parameters. In these cases we provide Las Vegas algorithms by which the
robots can obtain knowledge of the unknown parameter efficiently, and subsequently elect a
leader using the algorithms of Section 3. In Section 5 we demonstrate that unless the robots
know n and/or ` exactly, a Las Vegas algorithm cannot exist that solves ELECT. Extensions,
including the solutions for GATHER using the results for ELECT, and open questions are
discussed in Section 6.

ISAAC 2019

8:4 Gathering and Election by Mobile Robots in a Continuous Cycle

1.3 Related work
There exists an extensive literature on problem solving by n identical mobile robots in
continuous spaces, both within the distributed computing and the control communities;
e.g., see the books [4, 14, 15]. In distributed computing, the problem of gathering identical
robots has been the focus of intensive investigations under a variety of assumptions on
the computational power and communication capabilities of the robots (e.g., [5, 6, 16, 27]).
Similarly, the problem of electing a leader and its relationship to asymmetry has been
observed, investigated and discussed when studying solvability of a variety of problems by
autonomous mobile robots, in particular pattern formations (e.g., [10, 17, 19]). Indeed,
a great deal of research has been devoted to the link between degree of symmetries and
deterministic problem solving; see [15] and chapters therein for a recent account, in particular
[30]. Almost all of this work is on deterministic solutions, with few exceptions (e.g., [20]).

Robots operating specifically in a continuous cycle have been studied in the context of
rendezvous and gathering, but only with robots having different motorial capabilities [11, 22].
Other investigated problems in a continuous cycle are: patrolling, studied both when the
robots are identical and when they have different motorial capabilities (e.g. see [7, 8, 9]);
and scattering, where the robots must place themselves at uniform distance on the cycle [13].

The geometric continuous settings in which the mobile entities can move freely are
in general more suitable than discrete settings for distributed computing applications in
robotics [4]. This is further enforced by the fact that after a system shut-down in a robot
application the participating robots cannot be guaranteed to occupy the vertices of a graph
but rather might be placed at arbitrary locations in the underlying geometric domain.

Settings of identical mobile entities operating in discrete spaces (i.e., in graphs) are
extremely important as they naturally describe a wide variety of computational environments,
including networked systems supporting mobile software agents, and ad-hoc wireless networks.
In these settings, the analogue of a set of mobile robots in a continuous cycle is a set of
identical mobile agents in a ring of identical nodes. Interestingly, this discrete setting has been
extensively studied, especially for rendezvous and gathering; e.g., see the monograph [26]. In
absence of distinct features of the agents and of the nodes (e.g., ids, markers, tokens), solutions
are necessarily randomized, and their development has been the object of several investigations.
In particular Ooshita et al. studied the gathering problem in anonymous unidirectional ring
networks for multiple (mobile) agents with limited knowledge and characterized the relation
between probabilistic solvability and termination detection [29]. Izumi et al. investigated
the feasibility of polynomial-expected-round randomized gathering for n robots and show
that any randomized algorithm has Ω(exp(n)) expected-round lower bound [24].

In the computational universe of static (or stationary) entities connected via a commu-
nication network (i.e. the traditional message-passing universe in distributed computing),
the computational entities coincide with the network nodes (i.e., the nodes are the active
agents). Note that, in this universe, the problem GATHER does not exist; on the other hand,
ELECT is a fundamental problem. When the entities are identical, the system is known as
an anonymous network, and several researchers have focused on computing in an anonymous
ring (e.g., [1, 2, 12]). The problem of electing a leader in an anonymous network, known
also as symmetry breaking and for which clearly only probabilistic solutions exist, has been
investigated in an anonymous ring network (e.g., [3, 18, 23]). In particular, Itai and Rodeh
proposed probabilistic algorithms for both the synchronous and asynchronous case; they
considered both cases when the size of the ring may be either known or unknown to the
nodes and studied its impact on termination with a nonzero probability [23].

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 8:5

Interestingly, of all the related work, the one closest in spirit to our investigation is that
of symmetry breaking in an anonymous ring, in spite of the fact that the computational
universes are completely different: static entities and discrete space in one while mobile
entities and continuous space in ours.

2 Model

Let R be a set of n ≥ 2 autonomous mobile computational entities, called robots, located in
a continuous cycle C (e.g., the perimeter of a closed region of R2) of real length ` in arbitrary
and pairwise distinct positions.

The robots are identical: without identifiers or distinguishing features, they have the same
(computational, motorial and communication) capabilities and execute the same algorithm.
We assume that all robots move at speed one. Each robot r ∈ R has a local memory
composed of a finite set of registers, including a special register state(r) which stores the
current state of r; initially, the content of the memory of every robot is the same. Each robot
is in possession of a fair coin which outputs H or T each with probability 1/2. At any time
a robot may flip its coin and base a decision on the outcome of that flip. For a robot r we
will use the notation b(r) to represent a special register which always contains the outcome
of its most recent coin-flip. We will use the notation b(r)← flip() to represent the action of
flipping a coin and assigning the outcome to b(r).

The robots can only see their current location and have no location awareness. Furthermore
they cannot communicate at a distance; that is, communication is possible only between
robots located at the same point at the same time (face-to-face). A robot may move along
C in either the cw (clockwise) or ccw (counter-clockwise) direction and may stop and/or
reverse its direction of movement at any time. For simplicity, we will assume that the robots
have consistent orientations and argue in Section 6 why this assumption is not necessary.

The robots are permanently active and continuously performing three processes: executing
the algorithm (which might require flipping a coin), moving in a given direction or not at
all (if so prescribed by the algorithm), and communicating with co-located robots. A robot
can distinguish among its co-located robots and is able to instantaneously exchange any
amount of information with each of them. When two robots moving in opposite directions
meet, or a moving robot meets a stopped robot, the two robots become co-located; we call
this an encounter. During an encounter, one of the robots can decide to merge with the
other, thereby comitting itself to following all actions of the robot it has merged with. As a
result of this process, robots will form robot stacks with the head of the stack the only robot
actively participating in an algorithm (the stack acts as a single robot). A robot r will keep
track of the number of robots present in its stack in a special register denoted by cnr(r).

We assume a fully synchronous system in the following sense. Each robot possesses an
identical copy of the same clock and each robot can use their respective clocks to measure
arbitrarily small intervals with respect to the same unit of time (which we may take to be 1
without loss of generality). All robots will begin an algorithm at the same moment and all
robots move with the same speed (which we may also take to be 1 without loss of generality).
This implies that robots can fix a unit length as the distance traveled in one unit of time.

We study how such robots can solve ELECT and GATHER, and at what cost. The election
problem, ELECT, requires the robots to transition from an initial configuration where each
robot is in an identical state, to one where a single robot can be uniquely distinguished
from the others. When solving this problem, we will assume the robots can be found in
one of the three states CANDIDATE, FOLLOWER, or LEADER. The gathering problem,

ISAAC 2019

8:6 Gathering and Election by Mobile Robots in a Continuous Cycle

GATHER, requires the robots to transition from an initial configuration where each robot is
in an identical state, to one where all robots are co-located and will no longer move. Since
GATHER is of easy resolution once a leader has been elected, we primarily focus on ELECT.

We distinguish between two types of randomized algorithms: those of the Las Vegas type
and those of the Monte Carlo type [28, 21]. An algorithm is of the Las Vegas type, if, for
any problem instance, it is correct when it terminates and it terminates with probability 1.
In contrast, an algorithm is of the Monte Carlo type if, for any problem instance, it always
terminates and it is correct with a probability p which is bounded away from zero.

The costs of a solution algorithm are evaluated with respect to two measures: 1) time
complexity – the time until the algorithm terminates; and 2) random-bit complexity – the
total number of random bits/coin flips used by the algorithm. The costs depend not only on
the system parameters, the length ` of the cycle and the number n of mobile robots, but also
and more importantly on the type of knowledge available to the robots about the values of
those parameters. As we are analyzing randomized algorithms, these complexity measures
will often be random variables. When this is the case, we will give the value achieved in the
average and with high probability.

3 Election with knowledge of both n and `

In this section we consider ELECT when the robots possess knowledge of both n and ` (either
exact or upper bounds). We begin with the case that the robots have exact knowledge.
Pseudocode for all algorithms can be found in the appendix.

3.1 Exact knowledge of n and `

I Theorem 1. Let n and ` be known to the robots. There is a Las Vegas algorithm solving
ELECT which terminates in time O (`) on average and in time O (` logn) with high probability;
and requires O (n) random bits on average and O (n logn) with high probability.

The proof is based on the algorithm ElectLV(n, `). This algorithm is formally described
as Algorithm 1 and takes as inputs the number of robots n and the length of the cycle `.
Initially all robots begin in the same CANDIDATE state and each robot r has cnr(r) set
to 1. The algorithm proceeds in a series of rounds beginning with the round t = 0. In each
round the CANDIDATE robots will run the procedure ElectionRound(D) with input
Dt = min{ `

2 ,
`
n (4/3)t}, the result of which is that a subset of the robots merge and enter the

FOLLOWER state. This will continue on until only a single CANDIDATE robot remains
with a stack containing all n robots. As the robots know the value of n, this last remaining
robot will know it is the last and will thus enter the LEADER state.

The procedure ElectionRound(D) is formally described as Algorithm 2. The idea of
this procedure is as follows. Each robot begins by flipping a coin. Those that flip T will
remain stationary for a time 4Dt. Those that flip H will: move ccw a distance Dt; return
to their initial positions; move cw a distance Dt; and again return to their initial positions.
If ever it occurs that a robot r who flipped H encounters a robot s who flipped T then s will
merge with r and r will update the value of cnr(r) to reflect this.

We begin our analysis by determining how effective the procedure ElectionRound(D)
is at reducing the number of candidates. This will be the subject of the next two lemmas.

I Lemma 2. Let n and n′ respectively represent the number of CANDIDATE robots before
and after ElectionRound(D) is run with input D > 0. Then E[n′] ≤ n

2 + 1
2
⌈

`
2D

⌉
.

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 8:7

Proof. Partition the cycle into m =
⌈

`
2D

⌉
disjoint intervals such that each interval has length

`
m ≤ 2D. For each i ∈ [1,m] let ni and n′i respectively represent the number of CANDIDATE
robots contained in the ith interval at the beginning and end of ElectionRound(D). Then
it is clear that n =

∑m
i=1 ni and n′ =

∑m
i=1 n

′
i. This latter expression allows us to write the

expectation of n′ as follows:

E[n′] =
m∑

i=1
E[n′i] =

m∑
i=1

ni∑
x=1

xPr[n′i = x]. (1)

To determine the probability Pr[n′i = x] consider the ith interval which initially contains
ni > 0 CANDIDATE robots. If at least one of these ni robots flipped H then the number of
them that will remain CANDIDATE is exactly the number of them that flipped H. Thus, if
we let ki represent the random variable which counts the number of CANDIDATE robots
that flipped H in an interval i then we can conclude that Pr[n′i = x|ki ≥ 1] = 1 if x = ki and 0
otherwise. For x ∈ [1, ni] this implies that Pr[n′i = x] =

∑ni

j=0 Pr[n′i = x|ki = j] Pr[ki = j] or
Pr[n′i = x] = Pr[ki = x] + Pr[n′i = x|ki = 0] Pr[ki = 0]. Using this expression for Pr[n′i = x]
we find that E[n′i] =

∑ni

x=0 xPr[ki = x] +
∑ni

x=0 xPr[n′i = x|ki = 0] Pr[ki = 0].
It is not hard to see that ki is binomially distributed with parameters ni and p =

1/2 implying that
∑ni

x=0 xPr[ki = x] = ni/2, and that Pr[ki = 0] = (1/2)ni . The sum∑ni

x=0 xPr[n′i = x|ki = 0] represents the expected number of CANDIDATE robots surviving
in an interval i given that they all flipped T. Clearly this expectation is bounded by ni and
we can thus conclude that E[n′i] ≤ ni

2 + ni

(1
2
)ni ≤ ni

2 + 1
2 .

To bound the expectation of n′ we can substitute this inequality into (1) to get E[n′] =∑m
i=1 E[n′i] ≤

∑m
i=1
(

ni

2 + 1
2
)

= n
2 + m

2 where we have used the fact that n =
∑m

i=1 ni in the
last step. Since m =

⌈
`

2D

⌉
the lemma follows. J

I Lemma 3. Let nt count the number of CANDIDATE robots remaining in round t ≥ 0 of
ElectLV(n, `). Then E[nt] ≤

⌈(3
4
)t
n
⌉
.

Proof. The proof is by induction on t. The base case t = 0 is clearly true. We assume that
the claim holds up to t = k. Using the induction hypothesis and Lemma 2 we can write
E[nk+1] ≤ 1

2

⌈(3
4
)k
n
⌉

+ 1
2

⌈
`

2Dk

⌉
where Dt = min

{
`
2 ,

`
n

(4
3
)t
}
. The lemma clearly holds

if Dk ≥ `
2 . If this is not the case then Dk = `

n

(4
3
)k and again it is easy to see that the

lemma holds. J

In the next three lemmas (Lemma 4, Lemma 5, and Lemma 6) we bound the number of
rounds, time, and random-bits required until only a single candidate robot remains. In order
to do so we will employ a useful theorem by Karp [25] concerning the solutions of stochastic
recurrence relations. This theorem is described in the appendix as Theorem 22.

I Lemma 4. Let T be the first round of ElectLV(n, `) in which only a single CAN-
DIDATE robot remains. Then E[T] ≤

⌊
log4/3(n)

⌋
+ 1 and, for any positive integer w,

Pr
[
T ≥

⌊
log4/3(n)

⌋
+ 1 + w

]
≤
(3

4
)w n

(4/3)blog4/3(n)c .

Proof. Observe that T = T (n) satisfies the stochastic recurrence relation T (n) = 1 +T (h(n))
with base condition T (1) = 0 and where the expectation of h(n) is bounded using Lemma 3,
i.e., E[h(n)] ≤

⌈ 3
4n
⌉
. With this observation the lemma follows easily from Theorem 22. J

ISAAC 2019

8:8 Gathering and Election by Mobile Robots in a Continuous Cycle

I Lemma 5. Let τ be the time required until only a single CANDIDATE robot remains
in ElectLV(n, `). Then E[τ] ≤ 8L and, for any positive integer w, Pr[T ≥ 2L(4 + w)] ≤(3

4
)w n

(4/3)blog4/3(n)c .

Proof. Set tL as the first round which satisfies L/n(4/3)t ≥ L/2, i.e. tL =
⌈
log4/3(n/2)

⌉
.

Assume that it takes T > tL rounds until only one CANDIDATE robot remains. The time
τ required to complete these T rounds is τ = 4 L

n

∑tL−1
t=0 (4/3)t + 2

∑T
t=tL

L ≤ 12 L
n (4/3)tL +

2(T − tL)L ≤ 8L+ 2(T − tL). The lemma now follows from Lemma 4. J

I Lemma 6. Let B be the random variable which counts the number of coin-flips used in
ElectLV(n, `). Then E[B] ≤ 4n and, for any positive integer w, Pr[T ≥ (4 +w)n] ≤

(3
4
)w.

Proof. Similarly to the proof of Lemma 4 we observe B = B(n) satisfies the stochastic
recurrence relation B(n) = n + B(h(n)) with base condition B(1) = 0 and where h(n)
has expectation E[h(n)] ≤

⌈ 3
4n
⌉
. With this observation the lemma follows easily from

Theorem 22. J

The proof of Theorem 1 now follows immediately from Lemmas 5, and 6.

3.2 Inexact knowledge of n and/or `

We now consider the cases that the robots are provided with inexact knowledge (upper
bounds) of at least one of n or `. We begin with the case that the robots know n and an
upper bound on `.

Observe that nowhere in the proof of Theorem 1 did we require the robots to know
exactly the value of `. In particular, if the robots were to instead use an upper bound L on `
then the only change we need to make is to replace ` with L in the time complexity. This
observation thus easily leads to the following corollary of Theorem 1:

I Corollary 7. Let n and an upper bound L ≥ ` be known to the robots. There is a Las
Vegas algorithm solving this problem which terminates in time O (L) on average and in time
O (L logn) with high probability; and requires O (n) random bits on average and O (n logn)
with high probability.

The same argument does not work if the robots know ` and an upper bound N ≥ n since
ElectLV requires the exact value of n in order to terminate. We will see in the next section
that exact knowledge of ` however allows the robots to determine n and we will therefore
postpone a discussion of this case until then.

If the robots only possess upper bounds on both n and ` then a Las Vegas algorithm does
not exist (see Section 5). We thus provide a Monte Carlo algorithm (Algorithm 3) to solve
the problem.

I Theorem 8. Let upper bounds N ≥ n and L ≥ ` be known to the robots. Then, for any
positive integer w there is a Monte Carlo algorithm solving ELECT with error probability
O ((3/4)w). This algorithm terminates in time O (wL) and requires O (wn) random bits.

Proof. The proof is based on the algorithm ElectMC(N,L,w) which takes as inputs the
upper bounds N and L, and a positive integer w which controls the runtime. This algorithm
is formally described as Algorithm 3. This algorithm is identical to ElectLV(N,L) except
that it deterministically terminates on the round t∞ =

⌈
log4/3(N)

⌉
+ w. We may therefore

reuse many of our previously derived results. In particular, the time τ until termination

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 8:9

follows from the proof of Lemma 5 and is given by τ = 8L + 2(w + 1)L. The random-bit
complexity follows from Lemma 6. The error probability of the algorithm is also easy
to derive. In particular, if we let T be the number of rounds required until only a single
CANDIDATE remains then the probability that the algorithm terminates incorrectly is simply
the probability Pr[T > t∞] = Pr

[
T >

⌈
log4/3(N)

⌉
+ w

]
= Pr

[
T ≥

⌈
log4/3(N)

⌉
+ 1 + w

]
and this probability is given by Lemma 4. J

4 Election with knowledge of either n or `

In this section we investigate ELECT when the robots are provided with knowledge of only
one of n or ` (exact or upper bounds). In all cases we use the same strategy to solve the
problem: we develop algorithms by which the robots gain knowledge of the unknown of n or
` and then use the algorithms of the previous section to solve ELECT. Pseudocode for all
algorithms presented can be found in the appendix.

4.1 Exact knowledge of n or `

I Theorem 9. Let either n or ` be known to the robots. Then there are Las Vegas algorithms
solving ELECT. If ` is known the algorithm terminates in time O (`) on average and in time
O (` logn) with high probability; and requires O (n) random bits on average and O (n logn)
with high probability. If n is known the algorithm terminates in time O (n+ `) on average
and in time O (n+ ` logn) with high probability; and requires O

(
n+ n log

⌈
`
n

⌉)
random bits

on average and O
(
n log(n) + n log

⌈
`
n

⌉)
with high probability.

As previously stated, our proof strategy is to first develop algorithms by which the robots
can gain knowledge of the unknown of n or `. More specifically, the goal of this section is to
constructively demonstrate the validity of the following two lemmas from which Theorem 9
will easily follow.

I Lemma 10. Consider n robots on a cycle of length ` and assume the robots know only
the value of `. Then there exists a Las Vegas algorithm by which the robots can determine
the value of n. This algorithm terminates in time O (`) on average and with high probability;
and requires O (n) random bits on average and with high probability.

I Lemma 11. Consider n robots on a cycle of length ` and assume the robots know only
the value of n. Then there exists a Las Vegas algorithm by which the robots can determine
an O (`) upper bound L on `. This algorithm terminates in time O (n+ `) on average and
with high probability; and requires O

(
n+ n log

⌈
`
n

⌉)
random bits on average and with high

probability.

We will begin by introducing two procedures which will be used throughout the remainder
of the section. The first procedure will be used by the robots to count coin flips, and the
second is a minimum finding procedure.

A procedure to count coin flips. The procedure CountFlips(D) is formally described as
Algorithm 4 and takes as input a distance D. For simplicity in the following description
we will assume that D = `. The procedure presumes that each robot r has flipped a coin
and stored the result in b(r). It will result in each robot either knowing the total number of
robots or that all robots have flipped the same thing.

At the beginning the robots that flip H will move cw a distance ` around the cycle and
count each robot they encounter which flipped T. The robots that flipped T will likewise
wait for a time ` and count each robot they encounter that flipped H. Since each moving

ISAAC 2019

8:10 Gathering and Election by Mobile Robots in a Continuous Cycle

robot makes a full traversal of the cycle they are guaranteed to see all stationary robots.
Thus, after the first ` time units, each robot will determine the number of robots which
flipped opposite to themselves. In the last ` time units of the algorithm the robots which
initially flipped H (resp. T) will move ccw a distance ` around the cycle (resp. wait for `
time units). In either case, a robot will determine the total number of robots that flipped the
same as themselves from the first robot they encounter which flipped opposite to themselves.
Thus, after 2` time units each robot will have determined both the total number of robots
which flipped H and the number that flipped T and from this they can compute n. If all
robots flipped the same thing then the robots will know this since each will have determined
that NH(r) = NT(r) = 0. From this description it is easy to establish the following lemma:

I Lemma 12. Assume that all robots have flipped a coin. Then in exactly 2` time units the
procedure CountFlips(`) will result in either each robot knowing n or that all robots have
flipped the same thing.

When an input D > ` is used in the procedure we claim the following:

I Lemma 13. Assume that all robots have flipped a coin and that D ≥ `. Then in exactly
2D time units the procedure CountFlips(D) will result in either each robot r computing an
upper bound N(r) ≥ n or that all robots have flipped the same thing.

Proof. Clearly, if all robots flip the same then each robot will compute NH(r) +NT(r) = 0.
Thus, assume that at least two robots flip differently. Let nT and nH represent the actual
number of robots that flipped T and H respectively, i.e. nT + nH = n. Since each robot
that flipped H traverses the cycle at least once each such robot is guaranteed to encounter
all robots that flipped T. Likewise, each robot that flipped T is guaranteed to encounter
each robot that flipped H. It is therefore not possible for a robot r to compute a value of
NH(r) < nH or NT(r) < nT and thus it is ensured that NT(r) +NH(r) ≥ n for all robots. J

Finally, if an input D < ` is used in the procedure then we claim the following:

I Lemma 14. Assume that all robots have flipped a coin and that D < `. Then in exactly 2D
time units the procedure CountFlips(D) will result in each robot r computing a lower-bound
N(r) ≤ n.

Proof. The only thing we need to demonstrate is that all robots will compute a value
N(r) ≤ n. Clearly, in order for this not to be true, at least one of the robots must double
count another robot. This, however, is not possible unless a robot traverses the cycle more
than once and this will clearly not be the case if D < `. J

A minimum finding procedure. The minimum finding procedure FindMin(L,N0) is for-
mally described as Algorithm 5 and takes as input an upper bound L ≥ ` on the cycle
length, and a value N0 (which is specific to each robot). The algorithm results in each robot
computing the minimum of the inputs N0. It assumes that all robots have flipped a coin and
that at least two robots have flipped differently.

Each robot that flipped H will initially move cw a distance L ≥ ` around the cycle and is
guaranteed to encounter every robot that flipped T. Likewise every robot that flipped T will
encounter every robot that flipped H. Thus, after the first L time units, every robot that
flipped H (resp. T) will know the minimum value of every robot that flipped T (resp. H). In
the second L time units the robots that flipped H will move ccw a distance L and will again
encounter every robot that had flipped T. They can thus determine the minimum value of

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 8:11

all robots that flipped H from the first robot they encounter that flipped T. Likewise, each
robot that flipped T will determine the minimum value of all robots that flipped T from the
first robot they encounter that flipped H. The algorithm clearly terminates after 2L time
units. We can thus claim the following without proof:

I Lemma 15. Assume that all robots have flipped a coin, at least two have flipped differently,
and that L ≥ `. Then in exactly 2L times units the procedure FindMin(L,N0(r)) will result
in each robot r computing the minimum of all inputs N0(r).

Computing n using `. We will now tackle the proof of Lemma 10 which is based off of the
algorithm CountRobots(`). This algorithm is formally described as Algorithm 6 and takes
as input the length of the cycle. The idea is to repeatedly flip coins and run the procedure
CountFlips(`) until the first round in which at least two robots flip differently. When this
occurs each robot will compute the total number of robots that flipped T and the total
number that flipped H and will thus determine n to be the sum of these values.

Proof. (Lemma 10) The correctness of CountRobots(`) is obvious. The algorithm will
terminate on the first round during which at least two robots flip differently. The probability
that all robots flip the same is 21−n and therefore the algorithm terminates after an expected

1
1−21−n ≤ 2 rounds. The probability that the algorithm terminates after T rounds is
2(T−1)(1−n)(1− 21−n). From this it is clear that the algorithm terminates after O (1) rounds
with high probability. The time and random-bit complexities follow from the fact that each
round lasts time at most 2` and in each round all n robots flip their coins. J

Computing a O (`) upper bound on ` using n. The proof of Lemma 11 is based off of
the algorithm BoundCycle(n). This algorithm is formally described as Algorithm 7 and
takes as input the number of robots on the cycle. In each round t ≥ 0 the robots will employ
the procedure CountFlips in an attempt to determine a strict upper bound on the number
of robots using an estimate Lt = n · 2t for an upper bound on `. This will result in each
robot r computing a value N(r). If Lt < ` then, by Lemma 14, the robots will each compute
N(r) ≤ n and the algorithm will proceed to the next round. If Lt ≥ ` then the robots
will each compute N(r) ≥ n and, after performing FindMin, they will all agree on the
computed value of N(r). Let t∗ be the first round in which all robots compute N(r) > n.
The corresponding value of Lt in the round t∗ will then be an upper bound on `. We reduce
Lt∗ by a factor 1

2

⌊
N(r)

n

⌋
to ensure that the returned upper bound is O (`).

Proof. (Lemma 11) To determine the running time we let t0 be the first round for which
Lt > 2`. Then t0 =

⌈
log 2`

n

⌉
if n < 2` and t0 = 0 if n ≥ 2`. The algorithm will certainly

terminate in the first round t∗ > t0 in which at least two robots flip differently. Since the
probability that all robots flip the same is 21−n we will have t∗ = t0 + O (1) with high
probability. The algorithm will therefore take at most

⌈
log 2`

n

⌉
+ O (1) rounds. Since the

procedures CountFlips(Lt) and FindMin(Lt) each take time 2Lt to complete, each round
of the algorithm lasts time 4Lt = n · 2t+2. The total time required is thus

∑t∗
t=0 n · 2t+2 =

4n(2t∗+1 − 1). If n > 2` then the above is clearly O (n). If n ≤ 2` then we have that
4n(2t∗+1 − 1) = 4n

(
2dlog 2`

n e+O(1) − 1
)

= O (`).
Thus, we can conclude that the algorithm terminates in time O (n+ `) on average and

with high probability. In each round of the algorithm all robots flip a coin and thus the
algorithm requires O (n) random bits if n > 2` and otherwise O

(
n log

⌈ 2`
n

⌉)
when n ≤ 2`. J

ISAAC 2019

8:12 Gathering and Election by Mobile Robots in a Continuous Cycle

4.2 Inexact knowledge of n or `

We now consider the cases that the robots are only provided with an upper bound on n or
only an upper bound on `. The main result follows:

I Theorem 16. Let only an upper bound L ≥ ` or an upper bound N ≥ n be known to the
robots. Then, for any positive integer w there are Monte Carlo algorithms solving ELECT
with error probability O ((3/4)w). If the robots know L ≥ ` then the algorithm terminates in
time O (wL) and requires O (wn) random bits. If the robots know N ≥ n then the algorithm
terminates in time O

(
N + wN

n `
)
and requires O

(
wn+ n log

⌈
`
n

⌉)
random bits.

Our goal is again to develop algorithms by which the robots will gain knowledge of the
unknown of n or ` and then employ the algorithm ElectMC to solve ELECT. We therefore
want to demonstrate the following two lemmas:

I Lemma 17. Consider n robots on a cycle of length ` and assume the robots know an upper
bound L ≥ `. Then there exists a Las Vegas algorithm by which the robots can determine an
upper bound N = O

(
L
` n
)
on n. This algorithm terminates in time O (L) on average and

with high probability; and requires O (n) random bits on average and with high probability.

I Lemma 18. Consider n robots on a cycle of length ` and assume the robots know only
an upper bound on the value of n. Then there exists a Las Vegas algorithm by which the
robots can determine an O

(
N
n `
)
upper bound L on `. This algorithm terminates in time

O
(
N + N

n `
)
on average and with high probability; and requires O

(
n+ n log

⌈
`
n

⌉)
random

bits on average and with high probability.

Clearly Theorem 16 will directly follow from the above two lemmas as well as Theorem 8.
We begin with the case that the robots know L ≥ `.

Computing an upper bound on n from an upper bound on `. Here we will use an
algorithm essentially identical to CountRobots(`) except with the addition of a FindMin
procedure. The robots will repeatedly flip coins and run the procedure CountFlips(L)
until at least two robots flip differently. At this point each robot r will know an upper bound
N(r) ≥ n. They will then run the procedure FindMin(L,N(r)) in order to determine the
same upper bound. The correctness of the algorithm follows easily from Lemmas 13 and
15. The fact that the robots compute a O

(
L
` n
)
upper bound follows from the fact that the

robots will traverse the cycle L
` times. The asymptotic running time of the algorithm is

identical to that of CountRobots with ` replaced with L. The random-bit complexity does
not change. Lemma 17 follows without proof from this discussion.

Computing an upper bound on ` from an upper bound on n. Here we simply use the
algorithm BoundCycle with the input N ≥ n instead of n.

Proof. The proof is nearly identical to that of Lemma 11 except we replace n with N and
require at least t0 rounds where t0 is the first round in which Lt = N · 2t ≥ 2

⌈
N
n

⌉
`, i.e.

t0 =
⌈
log
(⌈

N
n

⌉ 2`
N

)⌉
= O

(
log
⌈

`
n

⌉)
. J

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 8:13

Figure 1 Left: The instance I with two robots r1 and r2 on a cycle of length `. Right: The
instance I ′ with four robots r1, r2, r′1, and r′2 on a cycle of length 2`.

5 Impossibility results

In the previous sections we have developed Las Vegas algorithms which solve ELECT when
one of n or ` is known exactly to the robots. We have also developed Monte Carlo algorithms
when only upper-bounds on n and/or ` are known. In the sequel we demonstrate that, unless
the robots know at least one of n or ` exactly, there does not exist a Las Vegas algorithm
which solves ELECT.

I Theorem 19. Assume that the robots do not know ` nor n exactly. Then there is no Las
Vegas type algorithm which solves ELECT.

To demonstrate this we first prove the weaker statement that a Las Vegas algorithm cannot
exist if the robots know nothing of n nor `.

I Lemma 20. If neither n nor ` is available then there is no Las Vegas type algorithm which
solves ELECT.

Proof. To derive a contradiction suppose that there is a Las Vegas type algorithm A which
solves the problem. Consider an instance I in which there are two robots r1 and r2 at
antipodal positions on a cycle with circumference `. Since A solves the problem it terminates
with probability 1 in a finite, though unpredictable, amount of time T . Let O1 and O2 be
the sequence of outcomes of coin flips of r1 and r2.

Consider another instance I ′ in which there are four robots r1, r2, r′1, and r′2 at equally
spaced locations of a cycle with circumference 2` such that r1 and r′1 (resp. r2 and r′2) are
antipodal (see Figure 1). Assume that the pair r1 and r′1 (resp. r2 and r′2) each have the
same orientation and each receives the outcome of coin flips O1 (resp. O2). Call an encounter
between a pair of robots r1 and r2 a left encounter (resp. a right encounter) if r1 and r2
encounter each other while either r1 is moving ccw and r2 is stationary, r2 is moving cw and
r1 is stationary, or r1 is moving ccw and r2 is moving cw (resp. while either r1 is moving
cw and r2 is stationary, r2 is moving ccw and r1 is stationary, or r1 is moving cw and r2
is moving ccw). Then for every left encounter of r1 and r2 in I there is a corresponding
identical left encounter between r1 and r2 in I ′ and between r′1 and r′2 in I ′. Likewise, for
every right encounter of r1 and r2 in I there are corresponding identical right encounters
between r1 and r′2 in I and between r2 and r′1 in I ′. Thus, at time T , each of r1 and r′1
(resp. r2 and r′2) in I ′ must come to the same conclusion as r1 (resp. r2) in I. However, this
implies that at the end of the execution of A in I ′ we will have elected two leaders. Since
there is a positive probability that r1 and r′1 (resp. r2 and r′2) both get the outcome of coin
flips O1 (resp. O2) then there is a positive probability that A incorrectly terminates in time
T . This contradicts our assumption that A correctly terminates with probability one. J

ISAAC 2019

8:14 Gathering and Election by Mobile Robots in a Continuous Cycle

It is not hard to extend this to the situation that the robots know only an upper bound on n:

I Corollary 21. Suppose that the robots only know an upper bound N on n. Then there is
no Las Vegas type algorithm which solves ELECT.

Proof. To derive a contradiction suppose that there is a Las Vegas type algorithm A for
ELECT. We use the instances I and I ′ given in the proof of Theorem 19. Provided that
N = 5 is given, consider the execution of A for I. Then in time T , A terminates in which O1
and O2 are the sequences of outcomes of the coin flips of r1 and r2.

Then A terminates incorrectly in time T , when it is executed for I ′ with N = 5, as argued
in the proof of Lemma 20, which is a contradiction. J

Proof. (Theorem 19) Assume that a Las Vegas algorithm A exists by which the robots can
solve ELECT if they know upper bounds N and L on n and ` respectively. Now consider an
instance of the problem when only an upper bound N on n is known. Then by Lemma 18
there exists a Las Vegas algorithm by which the robots can determine L. Once the robots
know L they run algorithm A to elect a leader. This implies that there exists a Las Vegas
algorithm by which the robots can elect a leader when they only know an upper bound N on
n. This contradicts the previous result of Corollary 21 which states that such an algorithm
cannot exist. We may therefore conclude that a Las Vegas algorithm does not exist if the
robots know both upper bounds N and L. This further implies that a Las Vegas algorithm
does not exist when the robots know only L. J

6 Extensions and Open Questions

Here we discuss why the consistent orientation assumption is unnecessary; the extension of
our election algorithms to the GATHER problem; and other extensions/open problems.

Orientation. In the previous sections we have assumed that the robots have consistent
orientations. Here we will argue why this assumption is not required.

First, observe that with the consistent orientation assumption it will never occur that
two moving robots encounter each other. By removing this assumption we will have to deal
with the extra encounters involving two robots which move in opposite directions. For most
of these encounters the solution is simple – the two moving robots will simply ignore each
other. A more problematic encounter occurs if two moving robots encounter a stationary
robot from opposite directions at the same time. Fortunately, this is also easily remedied –
we simply have the stationary robot choose to “process” the moving robot arriving from its,
say, cw direction first. We can thus conclude that all of our results still hold if we remove
the consistent orientation assumption.

Gathering. In the previous sections our primary goal has been on how to solve ELECT.
However, it is easy to see that our algorithms also solve GATHER at no extra cost. Indeed,
consider Algorithm 1 where, during the election process, robots only enter a FOLLOWER state
when they merge with a remaining CANDIDATE robot. When only a single CANDIDATE
remains all other robots will be part of its stack. This is also the case for Algorithm 3,
however, since this is a Monte Carlo algorithm, there is a bounded probability that more
than one stack remains when the algorithm terminates. Thus, by construction, Algorithm 1
is a Las Vegas algorithm which solves GATHER and Algorithm 3 is a Monte Carlo algorithm
which solves GATHER. Clearly, the complexities of these algorithms remain the same when
applied to either the ELECT or GATHER problems.

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 8:15

6.1 Discussions and Open Problems
In this paper we have studied the ELECT and GATHER problems for n identical robots in the
CT model on a continuous cycle of length `. We have established several results including
optimal algorithms with respect to time and random bits when the robots know `, or an
upper bound L = O (`) (in the latter case with high probability).

There are a number of open questions remaining. Firstly, we have not considered the
possibility (or lack thereof) of a Monte Carlo algorithm when the robots do not possess any
knowledge of n or `. In addition, we have only considered a fully synchronous time model
and a natural extension is therefore to study ELECT and GATHER when this assumption is
removed. In particular one can consider a model where the robots do not begin an algorithm
simultaneously but otherwise their respective clocks tick at the same rate, or a model where
even the robots’ clocks are not synchronized.

References
1 Hagit Attiya and Yishay Mansour. Language complexity on the synchronous anonymous ring.

Theoretical Computer Science, 53(2-3):169–185, 1987.
2 Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing on an Anonymous Ring. J.

ACM, 35(4):845–875, 1988.
3 Rena Bakhshi, Wan Fokkink, Jun Pang, and Jaco van de Pol. Leader Election in Anonymous

Rings: Franklin Goes Probabilistic. In 5th IFIP International Conference On Theoretical
Computer Science (TCS), pages 57–72, 2008.

4 Francesco Bullo, Jorge Cortes, and Sonia Martinez. Distributed Control of Robotic Networks.
Princeton University Press, 2009.

5 Mark Cielibak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing
by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829–879, 2012.

6 Reuven Cohen and David Peleg. Convergence Properties of the Gravitational Algorithm in
Asynchronous Robot Systems. SIAM Journal on Computing, 34(6):1516–1528, 2005.

7 Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, and Evangelos Kranakis. Boundary
Patrolling by Mobile Agents with Distinct Maximal Speeds. In 19th Annual European
Symposium on Algorithms, ESA, pages 701–712, 2011.

8 Jurek Czyzowicz, Kostantinos Georgiou, and Evangelos Kranakis. Patrolling. In P. Flocchini,
G. Prencipe, and N. Santoro, editors, Distributed Computing by Mobile Entities, chapter 15,
pages 371–400. Springer, 2019.

9 Jurek Czyzowicz, Evangelos Kranakis, Dominik Pajak, and Najmeh Taleb. Patrolling by
Robots Equipped with Visibility. In 21st International Colloquium on Structural Information
and Communication Complexity, SIROCCO, pages 224–234, 2014.

10 Yoann Dieudonné, Franck Petit, and Vincent Franck. Leader election problem versus pattern
formation problem. In 24th International Symposium on Distributed Computing (DISC), pages
267–281, 2010.

11 Ofer Feinerman, Amos Korman, Shay Kutten, and Yoav Rodeh. Fast rendezvous on a cycle
by agents with different speeds. In 5th International Conference on Distributed Computing
and Networking, ICDCN, pages 1–13, 2014.

12 Paola Flocchini, Evangelos Kranakis, Danny Krizanc, Flaminia L. Luccio, and Nicola Santoro.
Sorting and election in anonymous asynchronous rings. Journal of Parallel and Distributed
Computing, 64(2):254–265, 2004.

13 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Self-deployment of mobile sensors on
a ring. Theoretical Computer Science, 402(1):67–80, 2008.

14 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool, 2012.

ISAAC 2019

8:16 Gathering and Election by Mobile Robots in a Continuous Cycle

15 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Mobile
Entities. Springer, 2019.

16 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of
asynchronous mobile robots with limited visibility. Theoretical Computer Science, 337(1-
3):147–168, 2006.

17 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Arbitrary pattern
formation by asynchronous, anonymous, oblivious robots. Theoretical Computer Science,
407(1-3):412–447, 2008.

18 Greg N. Frederickson and Nicola Santoro. Breaking Symmetry in Synchronous Networks. In
1st Aegean Workshop on Computing (now SPAA), pages 26–33, 1986.

19 Nao Fujinaga, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Asynchronous
pattern formation by anonymous oblivious mobile robots. SIAM Journal on Computing,
44(3):740–785, 2015.

20 Noam Gordon, Israel A. Wagner, and Alfred M. Bruckstein. A randomized gathering algorithm
for multiple robots with limited sensing capabilities. In International Workshop on Multi-Agent
Robotic Systems, 2005.

21 Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar. On Randomization in Sequential and
Distributed Algorithms. ACM Comput. Surv., 26(1):7–86, 1994.

22 Evan Huus and Evangelos Kranakis. Rendezvous of many agents with different speeds in a
cycle. In 14th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW,
pages 195–209, 2015.

23 Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. Information and
Computation, 88(1):60–87, 1990.

24 Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and Fukuhito Ooshita. Randomized gathering of
mobile robots with local-multiplicity detection. In 11th International Symposium on Stabilizing,
Safety, and Security of Distributed Systems, SSS, pages 384–398, 2009.

25 Richard M. Karp. Probabilistic Recurrence Relations. J. ACM, 41(6):1136–1150, 1994.
26 Evangelos Kranakis, Danny Krizanc, and Euripides Markou. The Mobile Agent Rendezvous

Problem in the Ring. Morgan & Claypool, 2010.
27 Ji Lin, A. Stephen Morse, and Brian D.O. Anderson. The Multi-Agent Rendezvous Problem.

Parts 1 and 2. SIAM Journal on Control and Optimization, 46(6):2096–2147, 2007.
28 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
29 Fukuhito Ooshita, Shinji Kawai, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Randomized

gathering of mobile agents in anonymous unidirectional ring networks. IEEE Transactions on
Parallel and Distributed Systems, 25(5):1289–1296, 2014.

30 Yukiko Yamauchi. Symmetry of Anonymous Robots. In P. Flocchini, G. Prencipe, and
N. Santoro, editors, Distributed Computing by Mobile Entities, chapter 6, pages 109–133.
Springer, 2019.

A Description of Karp’s theorem

Consider the stochastic recurrence relation

T (n) = a(n) + T (h(n)) (2)

which describes a process in which we start with an input of size n and after investing some
amount of resources (represented by a(n)) we are left with a smaller problem of size h(n)
upon which we recurse. As it applies here, n represents the number of candidate robots, a(n)
will represent the number of rounds/time/random-bits, and h(n) the expected number of
robots remaining after one iteration of a leader election algorithm.

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 8:17

Formally, n is a nonnegative integer variable; a(n) a nonnegative real-valued function
of n; h(n) a random variable with support [0, n] and expectation bounded by m(n); and
m(n) is a nonnegative real-valued function of n. The equation τ(n) = a(n) + τ(m(n)) is the
deterministic analogue of (2) and, when it exists, has the unique least nonnegative solution
u(n) given by

u(n) =
∞∑

k=0
a(m[k](n)) (3)

with m[k](n) inductively defined by m[0](n) = n and m[k](n) = m(m(k−1)(n)), k ≥ 1. Karp
proved the following:

I Theorem 22 (Karp [25], Theorems 1.1 and 1.2). Consider the stochastic recurrence (2), a
continuous function m(n) with m(n)/n non-decreasing, and let u(n) be given by (3).
1. Suppose there is a constant d such that a(n) = 0, n < d; and a(n) = 1, n ≥ d. Let

ck = min{n|u(n) ≥ k}. Then, for every positive integer n and every positive integer w,
Pr[T (n) ≥ u(n) + w] ≤

(
m(n)

n

)w−1
m(n)
cu(n)

.
2. Suppose that a(n) is strictly increasing on {n|a(n) > 0}. Then, for every positive integer

n and every positive integer w, Pr[T (n) > u(n) + wa(n)] ≤
(

m(n)
n

)w

.

B Pseudocode for algorithms of Section 3.1

Algorithm 1 ElectLV(n, `).

Input: n > 0 (integer); ` > 0 (real); . The number of robots and the length of the cycle.
Initialize: state(r)← CANDIDATE; cnr(r)← 1; t← 0;
Begin:
1: repeat
2: D ← min

{
`
2 ,

`
n

(4
3
)t
}
;

3: ElectionRound(D); t← t+ 1; . Run one election round.
4: if cnr(r) = n then state(r)← LEADER; . Stack contains n robots, terminate.
5: until state(r) = FOLLOWER or LEADER

:End

Algorithm 2 ElectionRound(D).

Input: D > 0 (real);
Begin: b(r)← flip();
1: if b(r) = H then . H was flipped
2: Move ccw a distance D; cw a distance 2D; ccw a distance D;
3: if a robot s with b(s) = T is encountered while moving then
4: cnr(r)← cnr(r) + cnr(s); . Update cnr(r) since s will merge with r.
5: else . T was flipped
6: Remain stationary for time 4D:
7: if a robot s with b(s) = H is encountered while waiting then
8: state(r) = FOLLOWER;
9: Merge with robot s;

:End

ISAAC 2019

8:18 Gathering and Election by Mobile Robots in a Continuous Cycle

C Pseudocode for algorithms of Section 3.2

Algorithm 3 ElectMC(N, L, w).

Input: N > 0 (integer); L > 0 (real); w ≥ 0 (integer); . upper bounds on n and `; termination
parameter w.

Initialize: state(r)← CANDIDATE; t← 0; t∞ ←
⌈
log4/3(n)

⌉
+ w; . t∞ = termination round.

Begin:
1: repeat
2: Dt ← min

{
L
2 , L

N

(
4
3

)t
}
;

3: ElectionRound(Dt); t← t + 1; . Run one election round.
4: until state(r) = FOLLOWER or t = t∞
5: if state(r) = CANDIDATE then state(r)← LEADER;

:End

D Pseudocode for algorithms of Section 4.1

Algorithm 4 CountFlips(D).

Input: D > 0 (real); . An estimate of the length of the cycle.
Initialize: NH(r)← 0; NT(r)← 0; . To count the robots flipping H and T.
Begin:
1: if b(r) = H then . H was outcome of last coin flip
2: Move cw a distance D;
3: if a robot s with b(s) = T is encountered while moving then NT(r)← NT(r) + 1;
4: Move ccw a distance D;
5: if NH(r) = 0 and a robot s with b(s) = T is encountered while moving then
6: NH(r)← NH(s); . Determine NH.
7: else . T was outcome of last coin flip
8: Wait for time D;
9: if a robot s with b(s) = H is encountered while waiting then NH(r)← NH(r) + 1;
10: Wait for time D;
11: if NT(r) = 0 and a robot s with b(s) = H is encountered while waiting then
12: NT(r)← NT(s); . Determine NT.
13: return NH(r) + NT(r); . Returns 0 if all robots flipped the same.
:End

Algorithm 5 FindMin(L, N0).

Input: L > 0 (real); N0 (real); . upper bound cycle length; quantity to find the minimum of.
Initialize: N(r)← N0; . Will contain the minimum of the inputs N0.
Begin:
1: if b(r) = H then . H was outcome of last coin-flip
2: Move cw a distance L and then move ccw a distance L;
3: if robot s with b(s) = T is encountered then N(r)← min{N(r), N(s)};
4: else . T was outcome of last coin-flip
5: Wait for time 2L;
6: if robot s with b(s) = H is encountered then N(r)← min{N(r), N(s)};
7: return N(r);

:End

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 8:19

Algorithm 6 CountRobots(`).

Input: ` > 0 (real); . The length of the cycle.
Initialize: N(r); . Will contain the computed value of n.
Begin:
1: repeat
2: b(r)← flip(); N(r)← CountFlips(`);
3: until N(r) > 0
4: return N(r);

:End

Algorithm 7 BoundCycle(n).

Input: n > 0 (integer); . The number of robots.
Initialize: N(r); t← −1;
Begin:
1: repeat
2: t← t + 1;
3: Lt = n · 2t−1;
4: b(r)← flip();
5: N(r)← CountFlips(Lt);
6: N(r)← FindMin(Lt, N(r));
7: until N(r) > n

8: return 2Lt
bN(r)/nc ;

:End

E Pseudocode for algorithms of Section 4.2

Algorithm 8 BoundRobots(L).

Input: L > 0, real . upper bound on the length of the cycle.
Initialize: N(r); . Will contain the computed upper bound on n.
Begin:
1: repeat
2: b(r)← flip(); N(r)← CountFlips(L);
3: until N(r) > 0
4: N(r)← FindMin(L, N(r));
5: return N(r);

:End

ISAAC 2019

Strategy-Proof Approximation Algorithms for the
Stable Marriage Problem with Ties and
Incomplete Lists
Koki Hamada
NTT Corporation, 3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585, Japan
Graduate School of Informatics, Kyoto University, Yoshida-Honmachi,
Sakyo-ku Kyoto 606-8501, Japan
koki.hamada.rb@hco.ntt.co.jp

Shuichi Miyazaki
Academic Center for Computing and Media Studies, Kyoto University, Yoshida-Honmachi,
Sakyo-ku, Kyoto 606-8501, Japan
shuichi@media.kyoto-u.ac.jp

Hiroki Yanagisawa
IBM Research – Tokyo, 19-21, Hakozaki-cho, Nihombashi, Chuoh-ku, Tokyo 103-8510, Japan
yanagis@jp.ibm.com

Abstract
In the stable marriage problem (SM), a mechanism that always outputs a stable matching is called
a stable mechanism. One of the well-known stable mechanisms is the man-oriented Gale-Shapley
algorithm (MGS). MGS has a good property that it is strategy-proof to the men’s side, i.e., no man
can obtain a better outcome by falsifying a preference list. We call such a mechanism a man-strategy-
proof mechanism. Unfortunately, MGS is not a woman-strategy-proof mechanism. (Of course, if
we flip the roles of men and women, we can see that the woman-oriented Gale-Shapley algorithm
(WGS) is a woman-strategy-proof but not a man-strategy-proof mechanism.) Roth has shown that
there is no stable mechanism that is simultaneously man-strategy-proof and woman-strategy-proof,
which is known as Roth’s impossibility theorem.

In this paper, we extend these results to the stable marriage problem with ties and incomplete
lists (SMTI). Since SMTI is an extension of SM, Roth’s impossibility theorem takes over to SMTI.
Therefore, we focus on the one-sided-strategy-proofness. In SMTI, one instance can have stable
matchings of different sizes, and it is natural to consider the problem of finding a largest stable
matching, known as MAX SMTI. Thus we incorporate the notion of approximation ratios used in
the theory of approximation algorithms. We say that a stable-mechanism is a c-approximate-stable
mechanism if it always returns a stable matching of size at least 1/c of a largest one. We also
consider a restricted variant of MAX SMTI, which we call MAX SMTI-1TM, where only men’s lists
can contain ties (and women’s lists must be strictly ordered).

Our results are summarized as follows: (i) MAX SMTI admits both a man-strategy-proof
2-approximate-stable mechanism and a woman-strategy-proof 2-approximate-stable mechanism. (ii)
MAX SMTI-1TM admits a woman-strategy-proof 2-approximate-stable mechanism. (iii) MAX
SMTI-1TM admits a man-strategy-proof 1.5-approximate-stable mechanism. All these results
are tight in terms of approximation ratios. Also, all these results apply for strategy-proofness
against coalitions.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Algorithmic game theory

Keywords and phrases Stable marriage problem, strategy-proofness, approximation algorithm, ties,
incomplete lists

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.9

Funding Shuichi Miyazaki: Supported by JSPS KAKENHI Grant Number JP16K00017.

Acknowledgements We would like to thank the anonymous reviewers for their helpful comments.

© Koki Hamada, Shuichi Miyazaki, and Hiroki Yanagisawa;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8863-6809
mailto:koki.hamada.rb@hco.ntt.co.jp
https://orcid.org/0000-0003-0369-1970
mailto:shuichi@media.kyoto-u.ac.jp
https://orcid.org/0000-0002-3421-5240
mailto:yanagis@jp.ibm.com
https://doi.org/10.4230/LIPIcs.ISAAC.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Strategy-Proof Approximation Algorithms for the Stable Marriage Problem

1 Introduction

An instance of the stable marriage problem (SM) [5] consists of n men m1,m2, . . . ,mn, n
women w1, w2, . . . , wn, and each person’s preference list, which is a total order of all the
members of the opposite gender. If a person qi precedes a person qj in a person p’s preference
list, then we write qi �p qj and interpret it as “p prefers qi to qj”. In this paper, we denote a
preference list in the following form:

m2 : w3 w1 w4 w2,

which means that m2 prefers w3 best, w1 second, w4 third, and w2 last (this example is for
n = 4).

A matching is a set of n (man, woman)-pairs in which no person appears more than once.
For a matching M , M(p) denotes the partner of a person p in M . If, for a man m and a
woman w, both w �m M(m) and m �w M(w) hold, then we say that (m,w) is a blocking
pair for M or (m,w) blocks M . Note that both m and w have incentive to be matched with
each other ignoring the given partner, so it can be thought of as a threat for the current
matching M . A matching with no blocking pair is a stable matching. It is known that any
instance admits at least one stable matching, and one can be found by the Gale-Shapley
algorithm (or GS algorithm for short) in O(n2) time [5]. There have been a plenty of research
results on this problem from viewpoints of Economics, Computer Science, Mathematics, etc
(see [7, 21, 14] e.g.).

1.1 Strategy-Proofness

The stable marriage problem can be seen as a game among participants, who have true
preferences in mind, but may submit a falsified preference list hoping to obtain a better
partner than the one assigned when true preference lists are used. Formally, let S be a
mechanism, that is, a mapping from instances to matchings, and we denote S(I) the matching
output by S for an instance I. We say that S is a stable mechanism if, for any instance I,
S(I) is a stable matching for I. For a mechanism S, let I be an instance, M be a matching
such that M = S(I), and p be a person. We say that p has a successful strategy in I if there
is an instance I ′ in which people except for p have the same preference lists in I and I ′, and
p prefers M ′ to M (i.e., M ′(p) �p M(p) with respect to p’s preference list in I), where M ′ is
a matching such that M ′ = S(I ′). This situation is interpreted as follows: I is the set of true
preference lists, and by submitting a falsified preference list (which changes the set of lists
to I ′), p can obtain a better partner M ′(p). We say that S is a strategy-proof mechanism
if, when S is used, no person has a successful strategy in any instance. Also we say that S
is a man-strategy-proof mechanism if, when S is used, no man has a successful strategy in
any instance. A woman-strategy-proof mechanism is defined analogously. A mechanism is
a one-sided-strategy-proof mechanism if it is either a man-strategy-proof mechanism or a
woman-strategy-proof mechanism.

It is known that there is no strategy-proof stable mechanism for SM [18], which is known
as Roth’s impossibility theorem. By contrast, the man-oriented GS algorithm, MGS for short,
(in which men send and women receive proposals; see Appendix A) is a man-strategy-proof
stable mechanism for SM [18, 2]. Of course, by the symmetry of men and women, the
woman-oriented GS algorithm (WGS) is a woman-strategy-proof stable mechanism.

K. Hamada, S. Miyazaki, and H. Yanagisawa 9:3

1.2 Ties and Incomplete Lists
One of the most natural extensions of SM is the Stable Marriage with Ties and Incomplete
lists, denoted SMTI. An instance of SMTI consists of n men, n women, and each person’s
preference list. A preference list may include ties, which represent indifference between two
or more persons, and may be incomplete, meaning that a preference list may contain only a
subset of people in the opposite gender. Such a preference list may be of the following form:

m2 : w3 (w1 w4),

which represents that m2 prefers w3 best, w1 and w4 second with equal preference, but does
not want to be matched with w2. If a person q is included in p’s preference list, we say
that q is acceptable to p. A matching is a set of mutually acceptable (man, woman)-pairs
in which no person appears more than once. The size of a matching M , denoted |M |, is
the number of pairs in M . For a matching M , (m,w) is a blocking pair if (i) m and w are
acceptable to each other, (ii) m is single in M or w �m M(m), and (iii) w is single in M
or m �w M(w). A matching without blocking pairs is a stable matching. (When ties come
into consideration, there are three definitions for stability, super, strong, and weak stabilities.
Here we are considering weak stability which is the most natural notion among the three.
In the case of super and strong stabilities, there exist instances that do not admit a stable
matching. See [7, 14] for more details.)

Note that in the case of SM, the size of a matching is always n by definition, but it may
be less than n in the case of SMTI. In fact, there is an SMTI-instance that admits stable
matchings of different sizes, and the problem of finding a stable matching of the maximum
size, called MAX SMTI, is NP-hard [10, 15]. There are a plenty of approximability and
inapproximability results for MAX SMTI. The current best upper bound on the approximation
ratio is 1.5 [16, 17, 11] and lower bounds are 33/29 ' 1.1379 assuming P6=NP and 4/3 ' 1.3333
assuming the Unique Games Conjecture (UGC) [22]. There are several attempts to obtain
better algorithms (e.g., polynomial-time exact algorithms or polynomial-time approximation
algorithms with better approximation ratio) for restricted instances; one of the most natural
restrictions is to admit ties in preference lists of only one gender, which we call SMTI-1T.
MAX SMTI-1T (i.e., the problem of finding a maximum cardinality stable matching in
SMTI-1T) remains NP-hard, and as for the approximation ratio, the current best upper
bound is 1 + 1/e ' 1.368 [13] and lower bounds are 21/19 ' 1.1052 assuming P6=NP and
5/4 = 1.25 assuming UGC [8, 22].

1.3 Our Contributions
In this paper, we consider the strategy-proofness in MAX SMTI, and investigate the trade-off
between strategy-proofness and approximability. In the case of incomplete preference lists,
there may be unmatched (i.e., single) persons. Thus, we have to extend the definition of
a person preferring one matching to another. We say that a person p prefers M ′ to M if
either M ′(p) �p M(p) holds or p is single in M but is matched in M ′ with some acceptable
woman. Then the definition of strategy-proofness for SM naturally takes over to SMTI.

Let I be a MAX SMTI instance and Mopt be a maximum size stable matching for
I. A stable matching M for I is called an r-approximate solution for I if |Mopt|

|M | ≤ r. A
stable mechanism S is called an r-approximate-stable mechanism if S(I) is an r-approximate
solution for any MAX SMTI instance I.

Firstly, since SMTI is a generalization of SM, Roth’s impossibility theorem for SM [18]
holds also for MAX SMTI (regardless of approximability):

ISAAC 2019

9:4 Strategy-Proof Approximation Algorithms for the Stable Marriage Problem

I Proposition 1. There is no strategy-proof stable mechanism for MAX SMTI.

Therefore, we focus on one-sided-strategy-proofness. We show that there is a 2-approxi-
mate-stable mechanism, which is achieved by a simple extension of the GS algorithm. We
also show that this result is tight:

I Theorem 2. MAX SMTI admits both a man-strategy-proof 2-approximate-stable mechan-
ism and a woman-strategy-proof 2-approximate-stable mechanism. On the other hand, for
any positive ε, MAX SMTI admits neither a man-strategy-proof (2− ε)-approximate-stable
mechanism nor a woman-strategy-proof (2− ε)-approximate-stable mechanism.

We next consider a restricted version, MAX SMTI-1T. Throughout the paper, we assume
that ties appear in men’s lists only (and women’s lists must be strict). In the following, we
use the name MAX SMTI-1TM to stress that only men’s preference lists may contain ties.
As for woman-strategy-proofness, we obtain the same result as for MAX SMTI, which is a
direct consequence of Theorem 2:

I Corollary 3. MAX SMTI-1TM admits a woman-strategy-proof 2-approximate-stable mech-
anism, but no woman-strategy-proof (2− ε)-approximate-stable mechanism for any positive ε.

For man-strategy-proofness, we can reduce the approximation ratio to 1.5, which is the
main result of this paper.

I Theorem 4. MAX SMTI-1TM admits a man-strategy-proof 1.5-approximate-stable mech-
anism, but no man-strategy-proof (1.5− ε)-approximate-stable mechanism for any positive ε.

We remark that no assumptions on running times are made for our negative results,
while algorithms in our positive results run in linear time. Note also that the current best
polynomial-time approximation algorithms for MAX SMTI and MAX SMTI-1TM have the
approximation ratios better than those in our negative results (Theorems 2 and 4). Hence our
results provide gaps between polynomial-time computation and strategy-proof computation.

Coalition. In the above discussion, man-strategy-proofness (woman-strategy-proofness) is
defined in terms of a manipulation of a preference list by one man (woman). We can extend
this notion to a coalition of men (or women) as follows; a coalition C of men has a successful
strategy if there is a way of falsifying preference lists of members of C which improves the
outcome of every member of C. It is known that MGS is strategy-proof against a coalition
of men in this sense (Theorem 1.7.1 of [7]), and this strategy-proofness holds also in the
stable marriage with incomplete lists (SMI) (page 57 of [7]). Since all our strategy-proofness
results (Lemmas 5 and 11) are attributed to strategy-proofness of MGS in SMI, we can easily
modify the proofs so that Theorem 2, Corollary 3, and Theorem 4 hold for strategy-proofness
against coalitions.

Many-to-One Setting. Clearly, the negative parts of Theorem 2, Corollary 3, and Theorem
4 hold for a many-to-one extension of MAX SMTI, denoted MAX HRT. Also, we can show
that man-strategy-proofness in Theorems 2 and 4 carry over to resident-strategy-proofness in
MAX HRT by cloning hospitals (see e.g., page 283 of [9] for cloning). By contrast, woman-
strategy-proofness in Theorem 2 and Corollary 3 do not hold for hospital-strategy-proofness
in MAX HRT; there is no hospital-strategy-proof stable mechanism even without ties (see
Sec. 1.7.3 of [7]).

K. Hamada, S. Miyazaki, and H. Yanagisawa 9:5

Overview of Techniques. Since MGS is a man-strategy-proof stable mechanism for SM,
such types of algorithms are good candidates for proving the positive part of Theorem 4.
Existing 1.5-approximation algorithms for MAX SMTI for one-sided ties are of GS-type, but
in these algorithms, proposals are made from the side with no ties (women, in our case),
so we cannot use them for our purpose. As mentioned above, there are 1.5-approximation
algorithms for the general MAX SMTI [16, 17, 11], which are fortunately of GS-type and can
handle proposals from the side with ties (men, in our case). Hence one may expect that these
algorithms will work. However, it is not the case. The main reason is as follows: Suppose
that some man m is going to propose to a woman, and the head of m’s current list is a tie,
which is a mixture of unmatched and matched women. In this case, m’s proposal will be sent
to an unmatched woman, say w. Suppose that, just one step before, another man m′ has
proposed to w′. Then if m′ moves w to the position just before w′, he can make w already
matched when m is about to propose to her, and as a result of this, m does not propose to
w but to another unmatched woman. In this way, a man can change another man’s proposal
order, which destroys the strategy-proofness (see Appendix B for more details). To overcome
it, we modify Király’s 1.5-approximation algorithm [11] (or more precisely, the algorithm
M-KNA given in Appendix B) to be robust in the sense that a man’s proposal order is not
affected by other men’s preference lists.

Ties or Incomplete Lists. When only ties are present (SMT) or only incomplete lists are
present (SMI), all the stable matchings of one instance have the same cardinality. The former
is due to the fact that any stable matching is a perfect matching, and the latter is due to
the Rural Hospitals theorem [6, 19, 20]. Hence approximability is not an important issue in
these cases. As for strategy-proofness, since SMT and SMI are generalizations of SM, Roth’s
impossibility theorem holds and no strategy-proof stable mechanism exists. Existence of
one-sided strategy-proofness for SMI is already known as we have mentioned in “Coalition”
part above, and that for SMT follows directly from Theorem 2.

1.4 Related Work

There are some literature studying trade-offs between approximability and strategy-proofness.
Krysta et al. [12] consider to approximate the size of a Pareto optimal matching in the House
Allocation problem, where preference lists may include ties. They give upper and lower
bounds on the approximation ratio of randomized strategy-proof mechanisms for computing
a Pareto optimal matching. Dughmi and Ghosh [3] study the generalized assignment problem
(GAP) and its variants. Their objective is to maximize the sum of the values of the assigned
jobs. They present a strategy-proof O(logn)-approximate mechanism for the GAP, where n
represents the number of jobs.

The following papers discuss strategy-proofness in the stable matching problem with
indifference. Erdil and Ergin [4] consider the Hospitals/Residents problem where only
hospitals’ preference lists may have ties. They consider the algorithm that first breaks ties
according to a tie-breaking rule τ and then applies the resident-oriented GS algorithm (let us
call this algorithm GSτ). They give an instance and a tie-breaking rule τ such that GSτ does
not produce a resident-optimal stable matching. They also show that seeking for a resident-
optimal stable matching loses strategy-proofness, that is, no deterministic resident-optimal
stable mechanism can be resident-strategy-proof. Abdulkadiroğlu et al. [1] give an evidence
to support GSτ . They show that for any tie-breaking rule τ , no resident-strategy-proof
mechanism dominates GSτ (with respect to residents).

ISAAC 2019

9:6 Strategy-Proof Approximation Algorithms for the Stable Marriage Problem

2 Results for MAX SMTI

In this section, we give a proof of Theorem 2. We start with the positive part:

I Lemma 5. MAX SMTI admits both a man-strategy-proof 2-approximate-stable mechanism
and a woman-strategy-proof 2-approximate-stable mechanism.

Proof. Consider a mechanism S∗ that is described by the following algorithm. Given a MAX
SMTI instance I, S∗ first breaks each tie so that persons in a tie are ordered increasingly
in their indices, that is, if qi and qj are in the same tie of p’s list, then after the tie break
qi �p qj holds if and only if i < j. Let I ′ be the resulting instance. Its preference lists
are incomplete but do not include ties; such an instance is called an SMI instance. It then
applies MGS modified for SMI [7] to I ′ and obtains a stable matching M for I ′. It is easy to
see that M is stable for I. Also it is well-known that in MAX SMTI, any stable matching is
a 2-approximate solution [15]. Hence S∗ is a 2-approximate-stable mechanism.

We then show that S∗ is a man-strategy-proof mechanism. Suppose not. Then there is a
MAX SMTI instance I and a man m who has a successful strategy in I. Let J be a MAX
SMTI instance in which only m’s preference list differs from I, and by using it m obtains a
better outcome. Let MI and MJ be the outputs of S∗ on I and J , respectively. Then m
prefers MJ to MI , that is, either (i) MJ (m) �m MI(m) with respect to m’s true preference
list in I, or (ii) m is single in MI and matched in MJ , and MJ(m) is acceptable to m in I.
Let I ′ and J ′, respectively, be the SMI-instances constructed from I and J by breaking ties
in the above mentioned manner. Then MI and MJ are, respectively, the results of MGS
applied to I ′ and J ′. Since I ′ is the result of tie-breaking of I and m prefers MJ to MI in
I, m prefers MJ to MI in I ′. Note that, due to the tie-breaking rule, the preference lists
of people except for m are same in I ′ and J ′. This means that when MGS is used in SMI,
m can have a successful strategy in I ′ (i.e., to change his list to that of J ′), contradicting
man-strategy-proofness of MGS for SMI (page 57 of [7]).

If we exchange the roles of men and women in S∗, we obtain a woman-strategy-proof
2-approximate-stable mechanism. J

We then show the negative part. We remark that ε is not necessarily a constant.

I Lemma 6. (1) For any positive ε, there is no man-strategy-proof (2− ε)-approximate-stable
mechanism for MAX SMTI, even if ties appear in only women’s preference lists. (2) For any
positive ε, there is no woman-strategy-proof (2− ε)-approximate-stable mechanism for MAX
SMTI, even if ties appear in only men’s preference lists.

Proof. (1) Consider the instance I1 given in Fig. 1, where m3’s preference list is empty. It is
straightforward to verify that I1 has two stable matchings M1 = {(m1, w1), (m2, w2)} and
M2 = {(m1, w2), (m2, w3)}, both of which are of maximum size.

m1: w2 w1 w1: m1

m2: w2 w3 w2: (m1 m2)
m3: w3: m2

Figure 1 A MAX SMTI instance I1.

Let S be an arbitrary (2− ε)-approximate-stable mechanism for MAX SMTI. Since S is a
stable mechanism, it must output either M1 or M2 on I1. First suppose that it outputs M1.
Let I ′1 be the instance obtained from I1 by deleting w1 from m1’s preference list. Then since

K. Hamada, S. Miyazaki, and H. Yanagisawa 9:7

M2 is still a stable matching for I ′1 and S is a (2− ε)-approximate-stable mechanism, S must
output a stable matching of size 2. But since M2 is now the only stable matching of size 2, S
outputs M2 on I ′1. Thus m1 can obtain a better partner by manipulating his preference list.
On the other hand, suppose that S outputs M2 on I1. Then let I ′′1 be the instance obtained
from I1 by deleting w3 from m2’s preference list. By a similar argument, S must output M1
on I ′′1 and hence m2 can obtain a better partner by manipulation. We have shown that, for
any (2− ε)-approximate-stable mechanism S, some man has a successful strategy in I1 and
hence S is not a man-strategy-proof mechanism.

(2) We use the instance I2 given in Fig. 2, which is symmetric to I1. By the same
argument as above, we can show that for any (2− ε)-approximate-stable mechanism S, some
woman has a successful strategy in I2 and hence S is not a woman-strategy-proof mechanism.

m1: w1 w1: m2 m1

m2: (w1 w2) w2: m2 m3

m3: w2 w3:

Figure 2 A MAX SMTI instance I2. J

3 Results for MAX SMTI-1TM

Recall that MAX SMTI-1TM is a restriction of MAX SMTI where ties can appear in men’s
preference lists only. Then Corollary 3 is immediate from Lemma 5 and Lemma 6(2).

We then move to man-strategy-proofness and give a proof for Theorem 4. We start with
the negative part:

I Lemma 7. For any positive ε, there is no man-strategy-proof (1.5− ε)-approximate-stable
mechanism for MAX SMTI-1TM.

Proof. The proof goes like that of Lemma 6. Consider the instance I3 in Fig. 3. I3 has
four matchings of size 3, namely, M3 = {(m1, w1), (m2, w2), (m3, w3)}, M4 = {(m1, w1),
(m2, w2), (m3, w4)}, M5 = {(m1, w1), (m2, w3), (m3, w4)}, and M6 = {(m1, w2), (m2,

w3), (m3, w4)}. Among them, M3 and M6 are stable (M4 is blocked by (m3, w3) and
M5 is blocked by (m1, w2)). Hence any (1.5 − ε)-approximate-stable mechanism outputs
either M3 or M6, since a stable matching of size 2 is not a (1.5− ε)-approximate solution.

m1: w2 w1 w1: m1

m2: (w2 w3) w2: m2 m1

m3: w3 w4 w3: m2 m3

m4: w4: m3

Figure 3 A MAX SMTI-1TM instance I3.

Consider an arbitrary (1.5− ε)-approximate-stable mechanism S for MAX SMTI-1TM,
and suppose that S outputs M3 on I3. Then if m1 deletes w1 from the list, M6 is the unique
maximum stable matching (of size 3); hence S must output M6 and so m1 can obtain a
better partner w2. Similarly, if S outputs M6 on I3, m3 can force S to output M3 by deleting
w4 from the list. In either case, some man has a successful strategy in I3 and hence S is not
a man-strategy-proof mechanism. J

Finally, we give a proof for the positive part, which is the main result of this paper.

ISAAC 2019

9:8 Strategy-Proof Approximation Algorithms for the Stable Marriage Problem

I Lemma 8. There exists a man-strategy-proof 1.5-approximate-stable mechanism for MAX
SMTI-1TM.

Proof. We give Algorithm 1 and show that it is a man-strategy-proof 1.5-approximate-stable
mechanism by three subsequent lemmas (Lemmas 9–11). Algorithm 1 first translates an
SMTI-1TM instance I to an SMI instance I ′ using Algorithm 2, then applies MGS to I ′ and
obtains a matching M ′, and finally constructs a matching M of I from M ′. The new instance
I ′ contains 2n men ai and bj (1 ≤ i ≤ n, 1 ≤ j ≤ n) and 2n women sj and tj (1 ≤ j ≤ n)
(lines 2 and 3 of Algorithm 2). It is important to note that a man ai corresponds to a man
mi of I, while a man bj and two women sj and tj correspond to a woman wj of I. As will
be seen later, bj is definitely matched with sj or tj in M ′, and the other woman (i.e., either
sj or tj who is not matched with bj) plays a role of woman wj of I: If she is single in M ′,
then wj is single in M . If she is matched with ai in M ′, then wj is matched with mi in M .

Algorithm 1 An algorithm for MAX SMTI-1TM.

Input: An instance I for MAX SMTI-1TM.
Output: A matching M for I.
1: Construct an SMI instance I ′ from I using Algorithm 2.
2: Apply MGS to I ′ and obtain a matching M ′.
3: Let M := {(mi, wj) | (ai, sj) ∈M ′ ∨ (ai, tj) ∈M ′} and output M .

Algorithm 2 Translating instances.

Input: An instance I for MAX SMTI-1TM.
Output: An instance I ′ for SMI.
1: Let X and Y be the sets of men and women of I, respectively.
2: Let X ′ := {ai | mi ∈ X} ∪ {bj | wj ∈ Y } be the set of men of I ′.
3: Let Y ′ := {sj | wj ∈ Y } ∪ {tj | wj ∈ Y } be the set of women of I ′.
4: Each ai’s list is constructed as follows: Consider a tie (wj1 wj2 · · · wjk

) in mi’s list in
I. We assume without loss of generality that j1 < j2 < · · · < jk. (If not, just arrange
the order, which does not change the instance.) Replace each tie (wj1 wj2 · · · wjk

) by a
strict order of 2k women tj1 tj2 · · · tjk

sj1 sj2 · · · sjk
. A woman who is not included in

a tie is considered as a tie of length one.
5: Each bj ’s list is defined as “bj : sj tj”.
6: For each j, let P (wj) be the list of wj in I, and Q(wj) be the list obtained from P (wj)

by replacing each man mi by ai. Then sj and tj ’s lists are defined as follows:

sj : Q(wj) bj

tj : bj Q(wj)

We briefly give a high-level idea behind Algorithm 1. Consider an application of MGS
to I ′ at line 2. Since men’s proposal order does not affect the outcome, it is convenient to
first let bj propose to his first choice woman sj for each j. At this moment, there are n pairs
(bj , sj) (1 ≤ j ≤ n). We regard this as an initial state, and as long as (bj , sj) is a pair, tj acts
as wj . At some point, if sj receives a proposal from some man ai for the first time, sj rejects
bj and bj then proposes to his second choice woman tj , which is accepted. We regard this
as a change of the state, and the role of wj is taken over to sj . Once this happens, (bj , tj)
remains a pair till the end of the algorithm. Recall that at line 4 of Algorithm 2, each man
makes two copies of each tie. This is regarded as allowing a man to propose to woman wj
twice, first to tj and second to sj .

K. Hamada, S. Miyazaki, and H. Yanagisawa 9:9

With these observations in mind, we can see that MGS for I ′ simulates the following
GS-type algorithm for the original MAX SMTI instance I.

Each free man proposes to a woman from the top of the list. When he encounters a tie
T , he proposes to the women in T in a predetermined order (i.e., smaller index first). If
he is rejected by all of them, he starts the second sequence of proposals to the women in
T in the same order. If he is rejected by all the women in T again, then he proceeds to
the next tie.
Each woman’s acceptance/rejection policy is as follows: If two proposals are first proposals,
she respects her preference list. Similarly, if both are second proposals, she respects her
preference list. If one is a first proposal and the other is a second proposal, she always
chooses the second proposal (regardless of her list). Hence, once a woman receives a
second proposal of some man, she never accepts a first proposal thereafter.

This algorithm achieves an approximation ratio of 1.5 for MAX SMTI, although we do
not prove it here. A beneficial point of this algorithm is that a man’s proposal order is
predetermined and is not affected by other persons’ states. As we explained in Sec. 1.3,
absence of this property prevented existing algorithms from being man-strategy-proof.

The reason why we do not use this algorithm directly but translate it to an algorithm
using MGS for SMI is to make the proof of man-strategy-proofness simpler; this translation
allows us to attribute man-strategy-proofness of Algorithm 1 to that of MGS for SMI, as we
did in the proof of Lemma 5.

Now we start formal proofs for the correctness.

I Lemma 9. Algorithm 1 always outputs a stable matching.

Proof. Let M be the output of Algorithm 1 and M ′ be the matching obtained at line 2 of
Algorithm 1. We first show that M is a matching. Since M ′ is a matching, ai appears at
most once in M ′, so mi appears at most once in M . Observe that bj is matched in M ′, as
otherwise (bj , tj) blocks M ′, contradicting the stability of M ′ in I ′. Hence at most one of sj
and tj can be matched with ai for some i, which implies that wj appears at most once in M .
Thus M is a matching.

We then show the stability of M . Since M ′ is the output of MGS, it is stable in I ′. Now
suppose that M is unstable in I and there is a blocking pair (mi, wj) for M . There are
four cases:
Case (i): both mi and wj are single. Since mi is single inM , line 3 of Algorithm 1 implies

that ai is single in M ′. Since wj is single in M , sj is not matched in M ′ with anyone in
Q(wj), i.e., sj is single or matched with bj . Note that (ai, sj) is a mutually acceptable
pair because (mi, wj) is a blocking pair, and ai �sj

bj in I ′ by construction. Thus (ai, sj)
blocks M ′, a contradiction.

Case (ii): wj �mi M(mi) and wj is single. Let M(mi) = wk. Then, by construction of
M , M ′(ai) is either sk or tk. By construction of I ′, wj �mi wk implies both sj �ai sk
and sj �ai

tk, and in either case we have that sj �ai
M ′(ai) in I ′. Since wj is single

in M , by the same argument as Case (i), sj is either single or matched with bj in M ′.
Hence (ai, sj) blocks M ′.

Case (iii): mi is single and mi �wj M(wj). Since mi is single in M , ai is single in M ′
by the same argument as Case (i). Let M(wj) = mk. Then, by construction of M , either
sj or tj is matched with ak, and the other is matched with bj since bj can never be
single as we have seen in an earlier stage of this proof. In particular, M ′(sj) is either
ak or bj . Note that mi �wj

mk in P (wj) implies ai �sj
ak in Q(wj), so in either case

ai �sj
M ′(sj) in I ′ due to the construction of sj ’s list. Therefore (ai, sj) blocks M ′.

ISAAC 2019

9:10 Strategy-Proof Approximation Algorithms for the Stable Marriage Problem

Case (iv): wj �mi M(mi) and mi �wj M(wj). By the same argument as Case (ii), we
have that sj �ai

M ′(ai) in I ′. By the same argument as Case (iii), we have that
ai �sj

M ′(sj) in I ′. Hence (ai, sj) blocks M ′. J

I Lemma 10. Algorithm 1 always outputs a 1.5-approximate solution.

Proof. Let I be an input, Mopt be a maximum stable matching for I, and M be the output
of Algorithm 1. We show that |Mopt|

|M | ≤ 1.5. Let G = (X ∪ Y,E) be a bipartite (multi-)graph
with vertex bipartition X and Y , where X corresponds to men and Y corresponds to women
of I. The edge set E is a union of M and Mopt, that is, (mi, wj) ∈ E if and only if (mi, wj)
is a pair in M or Mopt. If (mi, wj) is a pair in both M and Mopt, then E contains two edges
(mi, wj), which constitute a “cycle” of length two. An edge in E corresponding to M (resp.
Mopt) is called an M -edge (resp. Mopt-edge). Since the degree of each vertex of G is at most
2, each connected component of G is an isolated vertex, a cycle, or a path.

It is easy to see that G does not contain a single Mopt-edge as a connected component,
since if such an edge (mi, wj) exists, then (mi, wj) is a blocking pair for M , contradicting the
stability of M . In the following, we show that G does not contain, as a connected component,
a path of length three mi − wj −mk − w` such that (mi, wj) and (mk, w`) are Mopt-edges
and (mk, wj) is an M -edge. If this is true, then for any connected component C of G, the
number of M -edges in C is at least two-thirds of the number of Mopt-edges in C, implying
|Mopt|
|M | ≤ 1.5.
Suppose that such a path exists. Note that mi and w` are single in M . If mi �wj

mk,
then (mi, wj) blocks M . Since women’s preference lists do not contain ties, we have that
mk �wj

mi. If w` �mk
wj , then (mk, w`) blocks M . If wj �mk

w`, then (mk, wj) blocks
Mopt. Hence wj and w` are tied in mk’s list. Then by construction of I ′, (i) t` �ak

sj .
(Hereafter, referring to Fig. 4 would be helpful. Here, the order of tj and t` in ak’s list is
uncertain, i.e., it may be the opposite, but this order is not important in the rest of the
proof.) Since w` is single in M , either s` or t` is single in M ′. If s` is single in M ′, then
(b`, s`) blocks M ′, a contradiction. Hence (ii) t` is single in M ′. Since M(mk) = wj , either
M ′(ak) = sj or M ′(ak) = tj holds. In the former case, (i) and (ii) above imply that (ak, t`)
blocks M ′, so assume the latter, i.e., M ′(ak) = tj . Recall from the proof of Lemma 9 that
either sj or tj is matched with bj in M ′, so M ′(sj) = bj . Since (mi, wj) is an acceptable pair
in I, we have that ai �sj bj due to the construction of sj ’s list. Since mi is single in M , ai
is single in M ′. Hence (ai, sj) blocks M ′, a contradiction. J

ai: · · · sj · · · sj : · · · ai · · · bj

bi: si ti tj : bj · · · ak · · ·

ak: · · · tj · · · t` · · · sj · · · s`: · · · b`

bk: sk tk t`: b` · · ·

a`: · · ·
b`: s` t`

Figure 4 A part of the preference lists of I ′.

I Lemma 11. Algorithm 1 is a man-strategy-proof mechanism.

Proof. The proof is similar to that of Lemma 5. Suppose that Algorithm 1 is not a man-
strategy-proof mechanism. Then there are MAX SMTI-1TM instances I and J and a man
mi having the following properties: I and J differ in only mi’s preference list, and mi prefers

K. Hamada, S. Miyazaki, and H. Yanagisawa 9:11

MJ to MI , where MI and MJ are the outputs of Algorithm 1 for I and J , respectively. Then
either (i) MJ (mi) �mi

MI(mi) in I, or (ii) mi is single in MI and MJ (mi) is acceptable to
mi in I.

Let I ′ and J ′ be the SMI-instances constructed by Algorithm 2. Since I and J differ
in only mi’s preference list, I ′ and J ′ differ in only ai’s preference list. Let MI′ and MJ′ ,
respectively, be the outputs of MGS applied to I ′ and J ′. In case of (i), we have that
MJ′(ai) �ai MI′(ai) in I ′, due to line 4 of Algorithm 2 and line 3 of Algorithm 1. In case
of (ii), ai is single in MI′ because mi is single in MI , and MJ′(ai) is acceptable to ai in I ′
because MJ(mi) is acceptable to mi in I. This implies that ai has a successful strategy in
I ′, contradicting man-strategy-proofness of MGS for SMI [7]. J

By Lemmas 9, 10, and 11, we can conclude that Algorithm 1 is a man-strategy-proof
1.5-approximate-stable mechanism for MAX SMTI-1TM. J

References
1 Atila Abdulkadiroğlu, Parag A. Pathak, and Alvin E. Roth. Strategy-proofness versus efficiency

in matching with indifferences: Redesigning the NYC high school match. American Economic
Review, 99(5):1954–1978, 2009. doi:10.1257/aer.99.5.1954.

2 L. E. Dubins and D. A. Freedman. Machiavelli and the Gale-Shapley Algorithm. The American
Mathematical Monthly, 88(7):485–494, 1981. doi:10.1080/00029890.1981.11995301.

3 Shaddin Dughmi and Arpita Ghosh. Truthful assignment without money. In Proceedings 11th
ACM Conference on Electronic Commerce (EC-2010), Cambridge, Massachusetts, USA, June
7-11, 2010, pages 325–334, 2010. doi:10.1145/1807342.1807394.

4 Aytek Erdil and Haluk Ergin. What’s the matter with tie-breaking? Improving efficiency in
school choice. American Economic Review, 98(3):669–689, 2008. doi:10.1257/aer.98.3.669.

5 David Gale and Lloyd S. Shapley. College Admissions and the Stability of Marriage. The
American Mathematical Monthly, 69(1):9–15, 1962. doi:10.2307/2312726.

6 David Gale and Marilda Sotomayor. Some remarks on the stable matching problem. Discrete
Applied Mathematics, 11(3):223–232, 1985. doi:10.1016/0166-218X(85)90074-5.

7 Dan Gusfield and Robert W. Irving. The Stable marriage problem - structure and algorithms.
Foundations of computing series. MIT Press, 1989.

8 Magnús M. Halldórsson, Kazuo Iwama, Shuichi Miyazaki, and Hiroki Yanagisawa. Improved
approximation results for the stable marriage problem. ACM Transactions on Algorithms,
3(3):30, 2007. doi:10.1145/1273340.1273346.

9 Robert W. Irving and David F. Manlove. Approximation algorithms for hard variants of the
stable marriage and hospitals/residents problems. Journal of Combinatorial Optimization,
16(3):279–292, 2008. doi:10.1007/s10878-007-9133-x.

10 Kazuo Iwama, David F. Manlove, Shuichi Miyazaki, and Yasufumi Morita. Stable Marriage
with Incomplete Lists and Ties. In Automata, Languages and Programming, 26th International
Colloquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, pages 443–452,
1999. doi:10.1007/3-540-48523-6_41.

11 Zoltán Király. Linear Time Local Approximation Algorithm for Maximum Stable Marriage.
Algorithms, 6(3):471–484, 2013. doi:10.3390/a6030471.

12 Piotr Krysta, David F. Manlove, Baharak Rastegari, and Jinshan Zhang. Size Versus
Truthfulness in the House Allocation Problem. Algorithmica, 81(9):3422–3463, 2019. doi:
10.1007/s00453-019-00584-7.

13 Chi-Kit Lam and C. Gregory Plaxton. A (1 + 1/e)-Approximation Algorithm for Maximum
Stable Matching with One-Sided Ties and Incomplete Lists. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 2823–2840, 2019. doi:10.1137/1.9781611975482.175.

ISAAC 2019

https://doi.org/10.1257/aer.99.5.1954
https://doi.org/10.1080/00029890.1981.11995301
https://doi.org/10.1145/1807342.1807394
https://doi.org/10.1257/aer.98.3.669
https://doi.org/10.2307/2312726
https://doi.org/10.1016/0166-218X(85)90074-5
https://doi.org/10.1145/1273340.1273346
https://doi.org/10.1007/s10878-007-9133-x
https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.3390/a6030471
https://doi.org/10.1007/s00453-019-00584-7
https://doi.org/10.1007/s00453-019-00584-7
https://doi.org/10.1137/1.9781611975482.175

9:12 Strategy-Proof Approximation Algorithms for the Stable Marriage Problem

14 David F. Manlove. Algorithmics of Matching Under Preferences, volume 2 of Series on
Theoretical Computer Science. WorldScientific, 2013. doi:10.1142/8591.

15 David F. Manlove, Robert W. Irving, Kazuo Iwama, Shuichi Miyazaki, and Yasufumi Morita.
Hard variants of stable marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.
doi:10.1016/S0304-3975(01)00206-7.

16 Eric McDermid. A 3/2-Approximation Algorithm for General Stable Marriage. In Automata,
Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece,
July 5-12, 2009, Proceedings, Part I, pages 689–700, 2009. doi:10.1007/978-3-642-02927-1_
57.

17 Katarzyna E. Paluch. Faster and Simpler Approximation of Stable Matchings. Algorithms,
7(2):189–202, 2014. doi:10.3390/a7020189.

18 Alvin E. Roth. The Economics of Matching: Stability and Incentives. Mathematics of
Operations Research, 7(4):617–628, November 1982. doi:10.1287/moor.7.4.617.

19 Alvin E. Roth. The Evolution of the Labor Market for Medical Interns and Residents: A
Case Study in Game Theory. Journal of Political Economy, 92(6):991–1016, 1984. doi:
10.1086/261272.

20 Alvin E. Roth. On the Allocation of Residents to Rural Hospitals: A General Property of
Two-Sided Matching Markets. Econometrica, 54(2):425–27, 1986. doi:10.2307/1913160.

21 Alvin E. Roth and Marilda Sotomayor. Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Cambridge University Press, New York, 1990.

22 Hiroki Yanagisawa. Approximation algorithms for stable marriage problems. PhD thesis,
Kyoto University, Graduate School of Informatics, 2007.

A The Man-Oriented Gale-Shapley Algorithm

During the course of the algorithm, each person takes one of two states “free” and “engaged”.
At the beginning, everyone is free and the matching M is initialized to the empty set. At
one step of the algorithm, an arbitrary free man m proposes to the top woman w in his
current list. If w is free, then m and w are provisionally matched and (m,w) is added to M .
If w is engaged and matched with m′, then w compares m and m′, takes the preferred one,
and rejects the other. The rejected man deletes w from the list and becomes (or remains)
free. When there is no free man, the matching M is output. The pseudo-code is given in
Algorithm 3.

B Non-Strategy-Proofness of Existing 1.5-approximation Algorithms
for MAX SMTI-1TM

Király [11] presented a 1.5-approximation algorithm for general MAX SMTI (i.e., ties can
appear on both sides), which is named “New Algorithm”. We modify it in the following
two respects.
1. Men’s proposals do not get into the second round.
2. When there is arbitrarity, the person with the smallest index is prioritized.
Ideas behind these modifications are as follows: For item 1, since there is no ties in women’s
preference lists, executing the second round does not change the result. The role of item 2
is to make the algorithm deterministic, so that the output is a function of an input (as we
did in the proof of Lemma 5). For completeness, we give a pseudo-code of the algorithm,
denoted M-KNA to stand for “Modified Király’s New Algorithm”, in Algorithm 4.

Each person takes one of three states, “free”, “engaged”, and “semi-engaged”. Initially,
all the persons are free. At lines 5, 10, and 14, man m proposes to woman w. Basically, the
procedure is exactly the same as that of MGS. If w is free, then we let M := M ∪ {(m,w)}

https://doi.org/10.1142/8591
https://doi.org/10.1016/S0304-3975(01)00206-7
https://doi.org/10.1007/978-3-642-02927-1_57
https://doi.org/10.1007/978-3-642-02927-1_57
https://doi.org/10.3390/a7020189
https://doi.org/10.1287/moor.7.4.617
https://doi.org/10.1086/261272
https://doi.org/10.1086/261272
https://doi.org/10.2307/1913160

K. Hamada, S. Miyazaki, and H. Yanagisawa 9:13

Algorithm 3 The man-oriented Gale-Shapley algorithm.

1: Let M := ∅ and all people be free.
2: while there is a free man whose preference list is non-empty do
3: Let m be any free man.
4: Let w be the woman at the top of m’s current list.
5: if w is free then
6: Let M := M ∪ {(m,w)}, and m and w be engaged.
7: end if
8: if w is engaged then
9: Let m′ be w’s partner.
10: if w prefers m′ to m then
11: Delete w from m’s list.
12: else
13: Let M := M ∪ {(m,w)} \ {(m′, w)}.
14: Let m′ be free and m be engaged.
15: Delete w from m′’s list.
16: end if
17: end if
18: end while
19: Output M .

and both m and w be engaged (we say w accepts m). If w is engaged to m′ (i.e., (m′, w) ∈M)
and if m �w m′, then we let M := M ∪ {(m,w)} \ {(m′, w)}, m be engaged, and m′ be
free. We also delete w from m′’s preference list (we say w accepts m and rejects m′). If w is
engaged to m′ and m′ �w m, then we delete w from m’s preference list (we say w rejects m).

There is an exception in the acceptance/rejection rule of a woman, when she receives the
first and second proposals. This is actually the key for guaranteeing 1.5-approximation, but
this rule is not used in the subsequent counter-example so we omit it here. Readers may
consult to the original paper [11] for the full description of the algorithm.

It is already proved that the (original) Király’s algorithm always outputs a stable matching
which is a 1.5-approximate solution, and it is not hard to see that the same results hold for
the above M-KNA for MAX SMTI-1TM. However, as the example in Figures 5 and 6 shows,
it is not a man-strategy-proof mechanism.

m1: w2 w1 w1: m2 m4 m1

m2: (w1 w3) w2: m4 m1

m3: w3 w3: m2 m3

m4: w1 w2 w4:

Figure 5 A counter-example (true lists).

m1: w1 w2 w1: m2 m4 m1

m2: (w1 w3) w2: m4 m1

m3: w3 w3: m2 m3

m4: w1 w2 w4:

Figure 6 A counter-example (manipulated by m1).

ISAAC 2019

9:14 Strategy-Proof Approximation Algorithms for the Stable Marriage Problem

Algorithm 4 Modified Király’s New Algorithm (M-KNA) [11].

1: Let M := ∅ and all people be free.
2: while there is a free man whose preference list is non-empty do
3: Among those men, let m be the one with the smallest index.
4: if the top of m’s current preference list consists of only one woman w then
5: Let m propose to w.
6: end if
7: if the top of m’s current preference list is a tie then
8: if all the women in the tie are engaged then
9: Among those women, let w be the one with the smallest index.

10: Let m propose to w.
11: end if
12: if there is a free woman in the tie then
13: Among those free women, let w be the one with the smallest index.
14: Let m propose to w.
15: end if
16: end if
17: end while
18: Output M .

If M-KNA is applied to the true preference lists in Figure 5, the obtained matching is
{(m2, w1), (m3, w3), (m4, w2)}. Suppose that m1 flips the order of w1 and w2 (Figure 6).
This time, M-KNA outputs {(m1, w2), (m2, w3), (m4, w1)} and m1 successfully obtains a
partner w2. By proposing to w1 first, m1 is able to let m2 propose to w3. This allows m4 to
obtain w1, which prevents m4 from proposing to w2. This eventually makes it possible for
m1 to obtain w2.

We finally remark that the same example shows that the other two 1.5-approximation
algorithms [16, 17] (with the tie-breaking rule 2 above) are not man-strategy-proof mechanisms
either.

Online Multidimensional Packing Problems in the
Random-Order Model
David Naori
Computer Science Department, Technion, 32000 Haifa, Israel
dnaori@cs.technion.ac.il

Danny Raz
Computer Science Department, Technion, 32000 Haifa, Israel
danny@cs.technion.ac.il

Abstract
We study online multidimensional variants of the generalized assignment problem which are used to
model prominent real-world applications, such as the assignment of virtual machines with multiple
resource requirements to physical infrastructure in cloud computing. These problems can be seen
as an extension of the well known secretary problem and thus the standard online worst-case
model cannot provide any performance guarantee. The prevailing model in this case is the random-
order model, which provides a useful realistic and robust alternative. Using this model, we study
the d-dimensional generalized assignment problem, where we introduce a novel technique that
achieves an O(d)-competitive algorithms and prove a matching lower bound of Ω(d). Furthermore,
our algorithm improves upon the best-known competitive-ratio for the online (one-dimensional)
generalized assignment problem and the online knapsack problem.

2012 ACM Subject Classification Theory of computation→ Packing and covering problems; Theory
of computation → Online algorithms

Keywords and phrases Random Order, Generalized Assignment Problem, Knapsack Problem,
Multidimensional Packing, Secretary Problem

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.10

1 Introduction

Online multidimensional packing problems appear in a wide verity of real-world applica-
tions [8]. A recent relevant example is the assignment of virtual elements to the physical
infrastructure in Network Function Virtualization (NFV) and cloud computing (see [20, 21]
for example). Typically, in these problems, we are given a set of bins, each with a certain
capacity profile, then, items arrive one-by-one in an online fashion, each with a certain
size and profit. Upon each arrival, one has to decide immediately and irrevocably whether
and where to pack the current item. The goal is to find an assignment that maximizes the
total profit without exceeding the capacity of any bin. These problems can be viewed as
generalizations of the well-known secretary problem, in which we have a single bin, and
every secretary consumes the capacity of the whole bin (see [6] for a formal definition of the
secretary problem).

The common way of analyzing online algorithms is to use the worst-case model, where an
adversary picks an instance along with the order in which items are revealed to the online
algorithm. Despite its prevalence in the analysis of online algorithms, this setting is too
pessimistic for the problem at hand. Indeed, no online algorithm can achieve any non-trivial
worst-case competitive-ratio, even for the simple case of the secretary problem, as shown
by Aggarwal et al. [1]. A more realistic model is the random-order model in which the
power of choosing the arrival order of items is taken away from the adversary, instead, the

© David Naori and Danny Raz;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dnaori@cs.technion.ac.il
mailto:danny@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Online Multidimensional Packing Problems in the Random-Order Model

arrival order is chosen uniformly at random. In this model, we say that an algorithm ALG is
c-competitive if for every input instance I it holds that, c ·E[ALG(I)] ≥ OPT(I), where the
expectation is taken over the random arrival orders and the randomness of the algorithm.1

Kesselheim et al. [13, 14] generalized the known optimal algorithm for the secretary
problem to various packing problems in the random-order model. The outline of the generic
algorithmic framework is as follows: it starts with a sampling phase in which the algorithm
only observes the arriving items. Then, at every subsequent online round, the algorithm
computes a local solution for the sub-instance consisting of all the items that arrived so far.
If the bin in which the current item is packed in this local solution has enough free capacity
(i.e., an assignment of the current item in this bin is feasible) the algorithm carries it out,
otherwise, it leaves the item unpacked. Using this framework, Kesselheim et al. [14] presented
an algorithm for the online generalized assignment problem (GAP) with the best-known
competitive-ratio (prior to this work).

In GAP we have a set of bins and a set of items. Each bin has a certain non-negative
capacity and each item has several packing options, one for each bin. Each packing option
is associated with a certain consumption from the capacity of the bin and a certain profit
it provides. The goal is to pack the items in the bins where each item can be packed at
most once, maximizing the total profit without exceeding the capacity of any bin. A major
challenge in online packing problems, and online GAP in particular, is to handle both items
with high consumption of resources compared to a bin capacity, as well as items with low
consumption. Kesselheim et al. handle this challenge by partitioning a GAP instance into
two sub-instances: the first contains all “heavy” packing options of items, that is, packing
options that occupy more than half of a bin capacity, the second is the complementary
sub-instance that contains all “light” packing options. Their algorithm makes an initial
random choice to operate on one of the sub-instances exclusively. Although it achieves the
best-known results, this behaviour is undesirable for most applications, since it always leaves
one type of items unpacked.

We use a similar algorithmic framework to design an online algorithm for the d-dimensional
generalization of online GAP, or online Vector Generalized Assignment Problem (VGAP), in
which the capacity profile of each bin, as well as the consumption of items from each bin,
is described by a d-dimensional vector. The goal remains to maximize the profit, while the
capacity of each bin must not be exceeded in any of its d dimensions. To the best of our
knowledge, this is the first time the online version of this problem is studied. Our algorithm
offers a preferable behaviour and improves upon the best-known competitive-ratio for online
GAP. To achieve this, we take a different approach to overcome the challenge: instead of
limiting the algorithm to either “heavy” or “light” packing options, our algorithm considers
them both. It operates in three phases: a sampling phase, a phase for “heavy” packing
options, and a phase for “light” packing options. To compute the tentative assignments, our
algorithm in the second phase uses maximum-weight bipartite matching, and in the third
phase, it uses an optimal fractional solution for the LP-relaxation of the local problem, and
randomized rounding.

We also apply our technique to the {0, 1}-VGAP in which every packing option of an
item in every dimension must consume either the whole capacity of the bin or non of it. In
one-dimension this problem is identical to weighted bipartite matching. For {0, 1}-VGAP
we partition the instance by a different criterion: the number of non-zero entries in the
consumption vector of a packing option.

1 We follow the definition used in [4, 5, 13] although it is also common to refer to such algorithm as
1/c-competitive.

D. Naori and D. Raz 10:3

Another interesting special case of VGAP is the Vector Multiple Knapsack Problem
(VMKP), in which all bins are identical, and the packing options of each item are identical
for all bins. That is, regardless of the bin’s identity, the item consumes the same amount
of capacity and raises the same profit. For instances of VMKP with at least two bins, we
describe a simpler algorithm that avoids partitioning the instance. Here, our algorithm uses a
fractional solution for the LP-relaxation of the local problem only to make a binary decision
whether to pack the current item or not. For the actual packing, it exploits the fact that all
packing options are identical and uses greedy First Fit approach, typically used for the Bin
Packing problem.

Finally, we prove a lower bound for the online vector knapsack problem in the random-
order model, which also applies to VMKP and VGAP, and indicates that our algorithms are
asymptotically optimal. This lower bound is inspired by the work of Babaioff et al. [5] on
the matroid secretary problem, which is based solely on the inherent uncertainty due to the
online nature of the problem without any complexity assumptions.

Our main contributions are:

1. We describe an algorithm for online VGAP with a competitive-ratio of 4
√
e (4d+ 2) ≈

5.14d+ 2.57, where d is the dimension. For the VMKP with at least two bins we describe
a (4d+ 2)-competitive algorithm. To the best of our knowledge, these problems are
studied for the first time.

2. We prove a matching lower bound of Ω(d) which is valid both for VGAP and VMKP.
3. Our method improves upon the best-known competitive-ratio for (one-dimensional) GAP

from 8.1 to 6.99 (which is also the best-known competitive-ratio for online knapsack).

2 Related Work

Online packing problems in the random-order model have been studied extensively in recent
years, most of them are generalizations of the secretary problem which has an optimal e-
competitive algorithm [10, 17]. An immediate generalization is the multiple-choice secretary
problem, in which one is allowed to pick up to k secretaries. It was studied by Kleinberg [15],
where he presented an asymptotically optimal

√
k√
k−5 -competitive algorithm. Another related

problem is the weighted-matching problem which has an optimal e-competitive algorithm by
Kesselheim et al. [13].

The online knapsack problem, which generalizes the multiple-secretary problem, was
studied by Babaioff et al. [4] who presented an 10e-competitive algorithm. It was later
improved by the work of Kesselheim et al. [14] on online GAP, which generalizes all of the
above problems. They presented an 8.1-competitive algorithm which is the best-known
competitive-ratio for online GAP and the online knapsack problem. Our result for VGAP
improves on that.

In their work, Kesselheim et al. also studied the online packing LPs problem with column
sparsity d. The general online packing LPs problem was studied before by [2, 11, 19]. In this
problem, there is a set of resources and a set of requests. Each request has several options
to be served and each option is associated with a profit and a certain demand from each
resource. For column sparsity d, each request may have a demand from at most d of the
resources. This problem generalizes VGAP studied in this paper, however, to the best of our
knowledge, the only known competitive online algorithms for this problem are for the special
case of B ≥ 2, where B is the capacity ratio, i.e., the minimal ratio between the capacity
of a resource and the maximum demand for this resource. For this case they presented an
O
(
d1/(B−1))-competitive algorithm which in case B = Ω

(
log d/ε2

)
is (1 + ε)-competitive.

ISAAC 2019

10:4 Online Multidimensional Packing Problems in the Random-Order Model

Dean et al. [9] showed that under the assumption of NP 6= ZPP, the packing integer
programs problem (PIP, also known as vector knapsack) which is a special case of VMKP,
cannot be approximated in polynomial time to within d1−ε for any ε > 0 even in the offline
settings. Under the same assumptions, Chekuri et al. [7] showed that the {0, 1}-case cannot
be approximated to within d1/2−ε for any ε > 0. Their results are also applicable for the
offline VMKP, VGAP and the {0, 1}-VGAP. By using the results of Zuckerman [22], the
same hardness result can be proved under the weaker assumption of P 6= NP instead. As
opposed to these results, our lower bound holds with no complexity assumptions, and applies
even for algorithms with unbounded computational power.

Some related problems have competitive algorithms in the worst-case model too. One
example is the AdWords problem which is a special case of GAP in which the profit of each
item is equal to its size. Under the assumption that items are small compared to the capacity
of the bins, Metha et al. [18] presented an optimal e

e−1 -competitive algorithm. Without this
assumption, the best known competitive-ratio is 2 [16]. Another example is the online vector
bin packing problem, in which items arrive one-by-one, and the goal is to pack them all in
the minimum number of unit sized d-dimensional bins. This problem was studied by Garey
et al. [12] who showed that the First Fit algorithm has a worst-case competitive-ratio of
(d+ 0.7). More recently, Azar et al. [3] showed that this algorithm is asymptotically optimal
by proving a lower bound of Ω

(
d1−ε).

3 Vector Generalized Assignment Problem

In the d-dimensional Generalized Assignment Problem (VGAP), we have a set of m d-
dimensional bins and a set of n d-dimensional items that may be packed in the bins. Each
bin j has a capacity bj =

(
b1
j , . . . , b

d
j

)
∈ Rd≥0. Packing item i in bin j consumes an amount

of wi,j =
(
w1
i,j , . . . , w

d
i,j

)
∈ Rd≥0 from bin’s j capacity and provides a profit of pi,j ≥ 0. Each

item may be packed in at most one of the bins and the capacity of each bin must not be
exceeded in any of its d dimensions. The goal is to find a feasible packing that maximizes
the total profit. We use the following LP-formulation:

max
∑

i∈[n],j∈[m]

pi,jxi,j

s.t.
∑
i∈[n]

wti,jxi,j ≤ btj , j ∈ [m] , t ∈ [d]

∑
j∈[m]

xi,j ≤ 1, i ∈ [n]

xi,j ∈ {0, 1}, i ∈ [n] , j ∈ [m] .

We consider the online version of the problem in which the set of bins and their capacities
are initially known, as well as the total number of items n. The items, however, arrive
one by one in a random order. When item i arrives, we learn its packing options, i.e.,
its consumption on every bin wi,1, . . . ,wi,m (which we also call the weight vectors of i)
along with the corresponding profits pi,1, . . . , pi,m. After every arrival, an immediate and
irrevocable decision must be made: Assign the item to one of the available bins or leave the
item unpacked.

Our algorithm is based on the technique presented by the authors of [14] with several
critical improvements (see Algorithm 1). We call the packing option of item i in bin j light
if wti,j ≤ btj/2, ∀t ∈ [d], otherwise, we call it heavy. Given a GAP instance I we partition it

D. Naori and D. Raz 10:5

into two sub-instances Iheavy and Ilight, both consist of the original items and bins, however,
Iheavy consists only of the heavy packing options of every item, while Ilight consists only of
the light ones. In contrast to the algorithm presented in [14] that makes a random choice
whether to operate on Iheavy or Ilight exclusively, our algorithm considers them both. It is
based on the intuition that heavy options may need a chance to be packed first, since any
other packing decision might prevent them from being packed, while light options are more
likely to fit in. Our algorithm operates in three phases: the sampling phase in which it only
observes the arriving items, the heavy phase in which it considers only heavy options, and
the light phase in which it considers only light options. In the heavy phase, our algorithm
uses a matching in a weighted bipartite graph to make packing decisions, to this end, given
an instance I we define a weighted bipartite graph G (I) = (L,R,E), where L is the set of
items of I, R is the set of bins of I, and there exists an edge (i, j) ∈ E of weight pi,j if item
i can be packed in bin j (i.e., wti,j ≤ btj , ∀t ∈ [d]). Each phase takes place in a continuous
fraction of the online rounds. To partition the rounds into phases, we use two parameters
q1 and q2 that will be defined thereafter. For convenience of presentation and analysis, we
represent a packing by a set P ⊆ [n]× [m] such that P = {(i, j) : i is packed in bin j}. We
also define pi,0 = 0, ∀i ∈ [n]. For an instance I and a subset S of its items, we denote by
I|S the sub-instance that consists only of the items in S.

Algorithm 1 Online VGAP.

S0 ← ∅, P0 ← ∅;
for each item i` that arrives at round ` do

S` ← S`−1 ∪ {i`};
if ` ≤ q1n then /* sampling phase */

continue to the next round;
else if q1n+ 1 ≤ ` ≤ q2n then /* heavy phase */

Let x(`) be a maximum-weight matching in G (Iheavy|S`);
// compute a tentative assignment (i`, j`)
if i` is matched in x(`) then

Let j` be the bin to which i` is matched;
else

j` ← 0
if j` 6= 0 and j` is empty in P`−1 then

P` ← P`−1 ∪ {(i`, j`)};

else // (` ≥ q2n+ 1) /* light phase */
Let x(`) be an optimal fractional solution for the LP-relaxation of Ilight|S` ;
// compute a tentative assignment (i`, j`) by randomized rounding

Choose bin j` randomly where Pr [j` = j] = x
(`)
i`,j

and
Pr [j` = 0] = 1−

∑
j∈[m]

x
(`)
i`,j

;

if j` 6= 0 and P`−1 ∪ {(i`, j`)} is feasible then
P` ← P`−1 ∪ {(i`, j`)};

return Pn

We now analyze the performance of Algorithm 1. Let OPT (I) and ALG (I) denote
the overall profit of the optimal packing and the overall profit of the packing produced by
Algorithm 1 on instance I respectively. Let R` denote the profit raised by the algorithm

ISAAC 2019

10:6 Online Multidimensional Packing Problems in the Random-Order Model

at round `. In Lemma 1 and Lemma 2 below, we bound the expected profit raised at each
round of the heavy phase and the light phase respectively. Similar claims are presented
in [13] and [14].

I Lemma 1. For q1n+ 1 ≤ ` ≤ q2n, we have E [R`] ≥ q1
`−1 ·

1
dOPT (Iheavy) .

Proof. Let x∗ be an optimal solution for Iheavy, hence, pTx∗ = OPT (Iheavy), and let x∗|S`
denote the projection of x∗ onto the set of items S`, i.e., (x∗|S`)i,j = x∗i,j if i ∈ S` and
(x∗|S`)i,j = 0 otherwise. Observe (by the definition of heavy) that in x∗|S` every bin holds
at most d items. Let x∗` be the solution obtained from x∗|S` by leaving only the most
profitable item in each bin. We get pTx∗` ≥ 1

d · p
T (x∗|S`). Also, since x∗` is a feasible

matching in G (Iheavy|S`), we have pTx(`) ≥ pTx∗` ≥ 1
d · p

T (x∗|S`). Now since S` ⊆ [n] is
a uniformly random subset of size `, we have E

[
pT (x∗|S`)

]
= `

n · OPT (Iheavy). Also, i`
can be viewed as a uniformly random item of S`, and since x(`) is a matching we have
E [pi`,j`] = E

[∑
j∈[m] x

(`)
i`,j
pi`,j

]
= 1

`E
[
pTx(`)]. Combining the results together, we get

E [pi`,j`] = 1
`
E
[
pTx(`)

]
≥ 1
`
E
[

1
d
· pT (x∗|S`)

]
= 1
n · d

OPT (Iheavy) .

The above expectation is taken only over the random choice of the subset S` ⊆ [n] and the
random choice of i` ∈ S`, while the arrival order of items in previous rounds is irrelevant. We
now bound the probability of successful assignment over the random arrival order of previous
items. The assignment is successful if no item is packed in j` in rounds q1n, . . . , `− 1. At
round `− 1 the algorithm uses a maximum-weight matching in G

(
Iheavy|S`−1

)
to compute a

tentative assignment (i`−1, j`−1). In that matching at most one item is matched to j`. Since
i`−1 is a uniformly random item of S`−1, the probability that i`−1 is matched to j` is at most
1/ (`− 1) regardless of the arrival order of the items in rounds 1, . . . , `−2, hence, we can treat
subsequent events as independent and repeat the argument inductively from `− 1 to q1n+ 1
to get that the probability of successful assignment is at least

∏`−1
k=q1n+1

(
1− 1

k

)
= q1n

`−1 .
By combining the expected profit with the probability of successful assignment, we get
the lemma. J

I Lemma 2. For ` ≥ q2n+ 1, we have E [R`] ≥ q1
q2

(
1− 2d

∑`−1
k=q2n+1

1
k

)
1
nOPT (Ilight) .

Proof. Let x∗ be an optimal solution for Ilight. At round ` ≥ q2n + 1 the algorithm
uses randomized rounding to determine the tentative assignment of i` from the fractional
LP-solution x(`), therefore, E [pi`,j`] = E

[∑
j∈[m] x

(`)
i`,j
pi`,j

]
. Using this observation, we

can now follow a similar argument to that in the proof of Lemma 1 and get that for
` ≥ q2n+ 1, we have E [pi`,j`] = 1

`E
[
pTx(`)] ≥ 1

`E
[
pT (x∗|S`)

]
= 1

nOPT (Ilight) , where the
expectation is taken only over the random choice of the subset S` ⊆ [n], the random choice
of i` ∈ S` and the internal randomness of the algorithm at round `. Here too, we bound the
probability of successful assignment over the random arrival order of previous items and
the internal randomness of the algorithm in previous rounds. Let us denote by c (j, t, `) the
total consumption of tentative assignments to bin j in dimension t during the light phase
and before round `. At round `, the algorithm considers only light options, therefore, the
assignment of i` to j` must be successful if the following conditions hold: (1) no item was
packed in j` during the heavy phase, and (2) for every dimension t ∈ [d], c (j`, t, `) ≤ btj`/2.
Let us denote event (1) by H`, and the events described in (2) by Lt` for every dimension
t ∈ [d]. We now bound E [c (j`, t, `)] for every t ∈ [d]. Fix t ∈ [d], at round k < ` of the
light phase, the algorithm computes a tentative assignment based on a fractional optimal

D. Naori and D. Raz 10:7

solution for the LP-relaxation of Ilight|Sk . In that solution, the total consumption of bin j`
in dimension t is at most btj` . Since ik can be viewed as a uniformly random item of Sk, the
expected consumption of ik from j` in dimension t is at most btj`/k, where the expectation
is taken over the choice of ik ∈ Sk and the internal randomness of the algorithm at round
k. Therefore, it is independent of the arrival order of items in rounds 1, . . . , k − 1, and the
internal randomness used in those rounds. Hence, E [c (j`, t, `)] ≤

∑`−1
k=q2n+1 b

t
j`
/k. We have

Pr
[
d∧
t=1

Lt`

]
= 1− Pr

[
d∨
t=1
¬Lt`

]
≥ 1−

d∑
t=1

Pr
[
¬Lt`

]
≥ 1−

d∑
t=1

∑`−1
k=q2n+1 b

t
j`
/k

btj`/2
≥ 1− 2d

`−1∑
k=q2n+1

1
k
.

The first inequality is due to a union bound, and the second is due to Markov’s inequality.
Since this event is independent of the arrival order of items in the heavy phase, we can follow
the argument from the proof of the previous lemma and get that the probability of succesful
assignment is at least

Pr
[
H` ∧

d∧
t=1

Lt`

]
≥

q2n∏
k=q1n+1

(
1− 1

k

)1− 2d
`−1∑

k=q2n+1

1
k

 = q1

q2

1− 2d
`−1∑

k=q2n+1

1
k

 .

We can now combine the results of the expected profit and the success probability to get
the lemma. J

I Theorem 3. For q2 = 2d/ (2d+ 1) and q1 = q2/ 4
√
e, Algorithm 1 is 4

√
e(4d+2)-competitive.

Proof. The overall profit of the algorithm can be written as E [ALG] =
∑n
`=1 E [R`]. We

sum over the profit raised in each phase separately. For the heavy phase we have

q2n∑
`=q1n+1

E [R`] ≥
q2n∑

`=q1n+1

q1

`− 1 ·
1
d
OPT (Iheavy)

= OPT (Iheavy) q1

d

q2n−1∑
`=q1n

1
`
≥ OPT (Iheavy) q1

d
ln
(
q2

q1

)
.

The first inequality follows from Lemma 1 and the second inequality is due to the fact that∑q2n−1
`=q1n

1
` ≥

∫ q2n

q1n
1
xdx = ln

(
q2
q1

)
. For the light phase we have

n∑
`=q2n+1

E [R`] ≥
n∑

`=q2n+1

q1

q2

1− 2d
`−1∑

k=q2n+1

1
k

 1
n
OPT (Ilight)

= 1
n
OPT (Ilight)

q1

q2

(1− q2)n− 2d
n∑

k=q2n+1

(n
k
− 1
)

≥ OPT (Ilight)
q1

q2

(
(2d+ 1) (1− q2)− 2d ln

(
1
q2

))
.

ISAAC 2019

10:8 Online Multidimensional Packing Problems in the Random-Order Model

The first inequality is due to Lemma 2 and the second inequality follows from the fact that∑n
k=q2n+1

1
k ≤

∫ n
q2n

1
xdx = ln

(
1
q2

)
. Overall we get

E [ALG] ≥ OPT (Iheavy) q1

d
ln
(
q2

q1

)
+ OPT (Ilight)

q1

q2

(
(2d+ 1) (1− q2)− 2d ln

(
1
q2

))
. (1)

For the parameters q2 = 2d/ (2d+ 1), q1 = q2/ 4
√
e, we have

q1

d
ln
(
q2

q1

)
= 1

4 4
√
e

2
2d+ 1 = 1

4
√
e(4d+ 2)

.

Using the fact that for x ≥ 0, ln (1 + x) ≤ x− 1
2x

2 + 1
3x

3, we have

q1

q2

(
(2d+ 1) (1− q2)− 2d ln

(
1
q2

))
= 1

4
√
e

(
1− 2d ln

(
1 + 1

2d

))
≥ 1

4
√
e

(
1
4d −

1
12d2

)
.

It can be easily verified that
(
1/4d− 1/12d2) ≥ 1/(4d+2) for d ≥ 1. Now since OPT (Iheavy)+

OPT (Ilight) ≥ OPT (I), we get

E [ALG] ≥ 1
4
√
e(4d+ 2)

(OPT (Iheavy) + OPT (Ilight)) ≥
1

4
√
e(4d+ 2)

OPT. J

It is important to note that for d = 1, the competitive-ratio can be improved by choosing
q1 = 0.5256 and q2 = 0.69. Setting these parameters in (1) shows that Algorithm 1 is
6.99-competitive for the (one-dimensional) generalized assignment problem, which improves
upon the best-known competitive-ratio of 8.1 achieved by Kesselheim et al. [14].

I Remark 4. Algorithm 1 can easily be extended to the case where each item has K ≥ 1
different packing options in each bin in a similar way to the algorithm of Kesselheim et
al. [14]. Therefore, the general online packing LPs problem with n requests and m resources
can be viewed as a special case of VGAP with one m-dimensional bin and n items.

3.1 The {0,1}-VGAP
The {0, 1}-VGAP is a special case of VGAP in which the consumption of item i from bin j
in dimension t is either 0 or the whole capacity of bin j in dimension t. By scaling, we can
assume without loss of generality that bj = 1 for all j ∈ [m], and wi,j ∈ {0, 1}d, ∀i ∈ [n],
∀j ∈ [m].2 Note that for d = 1 the problem is identical to weighted bipartite matching.

As for the general VGAP, given an instance I we partition it into two sub-instances,
however, we make the partition according to the density of the weight vectors: we call the
packing option of item i in bin j dense if |supp (wi,j)| ≥

√
d,otherwise, we call it sparse.3

We denote by Idense the sub-instance that consists only of the dense packing options of
every item, and by Isparse the complementary sub-instance that consists only of the sparse
packing options.

Our algorithm for this case, which we call Algorithm 3, is based on the simple observation
that in Idense at most

√
d items can be packed in every bin, therefore, a maximum weight

matching in G(Idense) has a weight of at least OPT(Idense)/
√
d. Algorithm 3 is almost

2 1 denotes the all 1’s vector.
3 supp(·) denotes the set of indices of non-zero entries of a vector.

D. Naori and D. Raz 10:9

identical to Algorithm 1, the only difference is that Iheavy and Ilight are replaced with Idense
and Isparse respectively (for a full description see Appendix A.1). The parameters q1 and q2
are defined in the analysis. Due to lack of space, we only state the result of our analysis in
Theorem 5 and give the full proof in Appendix A.2.

I Theorem 5. For q2 =
√
d/
(√

d+ 1
)
and q1 = q2/

√
e, Algorithm 3 is 2

√
e
(√

d+ 2
)
-

competitive.

4 Vector Multiple Knapsack Problem

The Vector Multiple Knapsack Problem (VMKP) is a special case of VGAP in which all bins
have a capacity of 1, every packing option of item i consumes the same amount of capacity
wi ∈ [0, 1]d and provides the same profit pi ≥ 0, i.e., wi,j = wi, pi,j = pi, ∀i ∈ [n], ∀j ∈ [m].
We study the case where there are at least two bins, i.e., m ≥ 2. For this special case we
present an online algorithm that improves upon the competitive-ratio of Algorithm 1.

Algorithm 2 Online VMKP.

S0 ← ∅, P0 ← ∅;
for each item i` that arrives at round ` do

S` ← S`−1 ∪ {i`};
if ` ≤ qn then /* sampling phase */

continue to the next round;
else // ` ≥ qn+ 1 /* packing phase */

Let x(`) be an optimal fractional solution for the LP-relaxation of I|S` ;
Choose j` randomly where Pr [j` = j] = x

(`)
i`,j

and Pr [j` = 0] = 1−
∑
j∈[m]

x
(`)
i`,j

;

// First Fit
Let B` = {j ∈ [m] : P` ∪ {(i`, j)} is feasible};
if j` 6= 0 and B` 6= ∅ then

P` ← P`−1 ∪ {(i`,minB`)};

return Pn

Algorithm 2 consists of two phases: a sampling phase and a packing phase. The packing
phase is similar to the light phase of Algorithm 1, however, instead of using the LP-solution
to compute a tentative assignment, it uses it only to make a binary decision whether to pack
the current item or not. Still, we keep a randomized rounding step similar to Algorithm 1 in
order to use observations made in Section 3. For the actual packing, Algorithm 2 exploits
the fact that all packing options are identical and uses the First Fit algorithm [12].

We now analyze the performance of Algorithm 2. First we prove a simple observation
due to the nature of First Fit.

I Lemma 6. For ` ≥ qn + 1 and m ≥ 2, if i` cannot be packed in any bin, then∑
(i,j)∈P`−1

∑d
t=1 w

t
i ≥ m/2.

Proof. Let u (j, t, `) denote the total consumption of bin j in dimension t before round
`. Since i` cannot be packed in any bin, there is at least one item packed in each bin.
Consider any two bins j′ > j, and let ik be the first item that was packed in j′. ik could
not be packed in bin j, therefore, for some t′ ∈ [d] we have u (j, t′, k) + wt

′

ik
> 1. Since

ISAAC 2019

10:10 Online Multidimensional Packing Problems in the Random-Order Model

the consumption is non-decreasing and u (j′, t′, `) ≥ wt′ik we have u (j, t′, `) + u (j′, t′, `) > 1,
therefore,

∑d
t=1 u (j, t, `) + u (j′, t, `) > 1. By summing the last inequality for all consecutive

pairs of bins (j + 1, j) as well as (m, 1) we get 2
∑m
j=1

∑d
t=1 u (j, t, `) > m and hence the

lemma. J

Next, we follow the method of the previous section to bound the expected profit of the
algorithm at each round.

I Lemma 7. For ` ≥ qn+ 1 and m ≥ 2, we have E [R`] ≥
(

1− 2d
∑`−1
k=qn+1

1
k

)
1
nOPT.

Proof. By following a similar argument to that in Lemma 1, we get E [pi`,j`] ≥ 1
nOPT for

` ≥ qn+ 1. We now bound the probability that
∑

(i,j)∈P`−1

∑d
t=1 w

t
i < m/2, by Lemma 6,

this is a sufficient condition for the assignment of i` to be successful. At round k < ` the
algorithm computes a tentative assignment based on an optimal fractional solution x(k) for
the LP-relaxation of I|Sk , therefore, we have

∑
i∈Sk

∑d
t=1
∑m
j=1 x

(k)
i,j w

t
i ≤ dm. Since ik is a

uniformly random item of Sk, we have E
[∑d

t=1
∑m
j=1 x

(k)
ik,j

wtik

]
≤ dm/k, hence,

E

 ∑
(i,j)∈P`−1

d∑
t=1

wti

 ≤ E

 `−1∑
k=qn+1

d∑
t=1

wtik

m∑
j=1

x
(k)
ik,j

=

`−1∑
k=qn+1

E

 d∑
t=1

m∑
j=1

x
(k)
ik,j

wtik

 ≤ `−1∑
k=qn+1

dm

k
.

As before, we can now use Markov’s inequality to bound the probability of successful
assignment and get the lemma. J

I Theorem 8. For q = 2d/(2d+ 1), Algorithm 2 is (4d+ 2)-competitive.

Proof. By Lemma 7, the overall profit of the algorithm is bounded by

E [ALG] ≥
n∑

`=qn+1

1− 2d
`−1∑

k=qn+1

1
k

 1
n
OPT ≥

(
(2d+ 1) (1− q)− 2d ln

(
1
q

))
OPT.

This bound is maximized for q = 2d/ (2d+ 1), and for this choice of parameter, using similar
arguments as in the proof of Theorem 3, we get

E [ALG] ≥
(

1− 2d ln
(

1 + 1
2d

))
OPT (2)

≥
(

1
4d + 1

12d2

)
OPT ≥

(
1

4d+ 2

)
OPT. J

Note that by setting d = 1 in (2) we get that Algorithm 2 is 5.29-competitive for the
(one-dimensional) multiple knapsack problem with at least two bins.
I Remark 9. For the special case of d = 1, Algorithm 2 can be implemented in a more
efficient way: instead of solving an LP-relaxation at every round of the packing phase, we
can obtain an optimal fractional solution by using a simple greedy algorithm.
I Remark 10. Algorithm 2 can be extended to the case of variable-sized squared bins, that it,
to the case where bj = 1 · bj , ∀j ∈ [m], under the assumption that every item fits into every
bin, i.e., wti ≤ bj ∀i ∈ [n] ,∀j ∈ [m] ,∀t ∈ [d], through sorting the bins by their capacity in a
non-increasing order.

D. Naori and D. Raz 10:11

5 Lower bound

We now prove a lower bound of Ω(d) for the vector knapsack problem (VMKP with a
single bin). Since it is a special case of VGAP, it shows our O(d)-competitive algorithm for
VGAP from Section 3 is asymptotically optimal. Note that our lower bound holds without
any complexity assumptions. In particular, it also applies to algorithms with unbounded
computational power. The proof is inspired by the work of Babaioff et al. [5].

We construct an instance for the d-dimensional knapsack problem consisting of one bin
of capacity 1 and n = δd(δ+1)d+1 items, where δ ∈ N+. The weight vectors of the items are
the columns of the following d× d matrices:

Aj =
(
1− εjdj

)
· I + εjdj−1 ·

(
11T − I

)
, ∀j ∈ [δd(δ+1)d].

Where I is the d × d identity matrix, and ε < 1/ (2ndn). By the choice of ε it holds that
εjdj < 1/2, ∀j ∈ [δd(δ+1)d].

Observe that for every matrix Aj , all the items that correspond to its columns fit together
in the bin, that is, Aj ·1 ≤ 1. Also, every two columns of different matrices cannot be packed
together. This is true because for any two matrices Ai, Aj where i > j, and any two columns
k, ` ∈ [d], we have

(Aj)k,k + (Ai)k,` ≥
(
1− εjdj

)
+ εidi−1 ≥ 1− εjdj + ε (j + 1) dj > 1.

The first inequality follows from the fact that εidi−1 <
(
1− εidi

)
, and the second inequality

follows from the fact that i ≥ j + 1. Every item is independently assigned a profit of 1 with
probability 1/dδ+1 and 0 with probability 1− 1/dδ+1.

I Theorem 11. Any online algorithm produces a packing with expected profit of at most(
1 + 1

dδ

)
, while OPT = d with probability of at least

(
1− 1

eδ

)
.

Proof. Let us observe the first item that the online algorithm packs. It corresponds to a
column of one matrix Aj . All items that correspond to columns of different matrices cannot
be packed along with it. The only items that can be added to the packing are the remaining
columns of Aj . There are less than d such items left, each has an expected profit of 1/dδ+1.
Since the first item has a profit of at most 1, the expected profit of the packing produced by
the algorithm is at most 1 + 1/dδ.

With regard to the optimal packing, for a given matrix A`, the probability that all items
are of profit 1 is 1/d(δ+1)d, therefore, the probability that all matrices are of weight less than
d is

(
1− 1/d(δ+1)d)d(δ+1)dδ ≤ 1/eδ. J

Note that Theorem 11 can be easily modified to apply to the case of two identical bins, thus,
it shows that Algorithm 2 for VMKP with at least two bins is also asymptotically optimal.

6 Conclusions

In this paper, we presented simple, asymptotically optimal, online algorithms for multidi-
mensional variants of the generalized assignment problem in the random-order model, which
has vast implications for real-world applications, like resource allocation in cloud computing.

Our bounds for VGAP are translated to a matching lower and upper bounds of Ω(m)
and O(m) for the general online packing LPs problem (as mentioned in Remark 4, where m
is the number of resources).

ISAAC 2019

10:12 Online Multidimensional Packing Problems in the Random-Order Model

For the one-dimensional case, the best lower bound for the online GAP is derived from
the lower bound for the secretary problem of e [6]. An interesting open question is to close
the gap between e and the upper bound of 6.99 presented in this paper. It is also very
interesting to understand whether the new theoretical algorithm provides practical value for
cloud resource allocation, where the value of d is a small constant (2 or 3).

References
1 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online Vertex-

Weighted Bipartite Matching and Single-bid Budgeted Allocations. In SODA, pages 1253–1264.
SIAM, 2011.

2 Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A Dynamic Near-Optimal Algorithm for Online
Linear Programming. Operations Research, 62(4):876–890, 2014.

3 Yossi Azar, Ilan Reuven Cohen, Seny Kamara, and F. Bruce Shepherd. Tight bounds for
online vector bin packing. In STOC, pages 961–970. ACM, 2013.

4 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A Knapsack Secretary
Problem with Applications. In APPROX-RANDOM, volume 4627 of Lecture Notes in Computer
Science, pages 16–28. Springer, 2007.

5 Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and
online mechanisms. In SODA, pages 434–443. SIAM, 2007.

6 Niv Buchbinder, Kamal Jain, and Mohit Singh. Secretary Problems via Linear Programming.
Math. Oper. Res., 39(1):190–206, 2014.

7 Chandra Chekuri and Sanjeev Khanna. On Multi-Dimensional Packing Problems. In SODA,
pages 185–194. ACM/SIAM, 1999.

8 Henrik I Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017.

9 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Adaptivity and approximation for
stochastic packing problems. In SODA, pages 395–404. SIAM, 2005.

10 Eugene B Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet
Mathematics, 4:627–629, 1963.

11 Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S. Mirrokni, and Clifford Stein. Online
Stochastic Packing Applied to Display Ad Allocation. In ESA (1), volume 6346 of Lecture
Notes in Computer Science, pages 182–194. Springer, 2010.

12 Michael R Garey, Ronald L Graham, David S Johnson, and Andrew Chi-Chih Yao. Resource
constrained scheduling as generalized bin packing. Journal of Combinatorial Theory, Series A,
21(3):257–298, 1976.

13 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An Optimal Online
Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial Auctions. In
ESA, volume 8125 of Lecture Notes in Computer Science, pages 589–600. Springer, 2013.

14 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. Primal Beats Dual
on Online Packing LPs in the Random-Order Model. SIAM J. Comput., 47(5):1939–1964,
2018.

15 Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.
In SODA, pages 630–631. SIAM, 2005.

16 Benny Lehmann, Daniel J. Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006.

17 Denis V Lindley. Dynamic programming and decision theory. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 10(1):39–51, 1961.

18 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. AdWords and
generalized online matching. J. ACM, 54(5):22, 2007.

19 Marco Molinaro and R. Ravi. Geometry of Online Packing Linear Programs. In ICALP (1),
volume 7391 of Lecture Notes in Computer Science, pages 701–713. Springer, 2012.

D. Naori and D. Raz 10:13

20 Danny Raz, Itai Segall, and Maayan Goldstein. Multidimensional resource allocation in
practice. In Proceedings of the 10th ACM International Systems and Storage Conference,
page 1. ACM, 2017.

21 Lei Shi, Bernard Butler, Dmitri Botvich, and Brendan Jennings. Provisioning of requests
for virtual machine sets with placement constraints in IaaS clouds. In 2013 IFIP/IEEE
International Symposium on Integrated Network Management (IM 2013), pages 499–505. IEEE,
2013.

22 David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3(1):103–128, 2007.

A Omitted Details

A.1 Description of Algorithm 3

Algorithm 3 Online {0, 1}-VGAP.

S0 ← ∅, P0 ← ∅;
for each item i` that arrives at round ` do

S` ← S`−1 ∪ {i`};
if ` ≤ q1n then /* sampling phase */

continue to the next round;
else if q1n+ 1 ≤ ` ≤ q2n then /* dense phase */

Let x(`) be a maximum-weight matching in G (Idense|S`);
// compute a tentative assignment (i`, j`)
if i` is matched in x(`) then

Let j` be the bin to which i` is matched;
else

j` ← 0
if j` 6= 0 and j` is empty in P`−1 then

P` ← P`−1 ∪ {(i`, j`)};

else // (` ≥ q2n+ 1) /* sparse phase */
Let x(`) be an optimal fractional solution for the LP-relaxation of Isparse|S` ;
// compute a tentative assignment (i`, j`) by randomized rounding

Choose bin j` randomly where Pr [j` = j] = x
(`)
i`,j

and
Pr [j` = 0] = 1−

∑
j∈[m]

x
(`)
i`,j

;

if j` 6= 0 and P`−1 ∪ {(i`, j`)} is feasible then
P` ← P`−1 ∪ {(i`, j`)};

return Pn

A.2 Proof of Theorem 5

Proof. To prove the competitive-ratio of Algorithm 3, we bound the expected profit pf the
algorithm in round separately. In Lemma 12 below, we bound the expected profit in each
round of the dense phase, and in Lemma 13, we bound the expected profit in each round
of the sparse phase. Then we sum over the expected profit in both phases to get the total
profit of the algorithm.

ISAAC 2019

10:14 Online Multidimensional Packing Problems in the Random-Order Model

I Lemma 12. For q1n+ 1 ≤ ` ≤ q2n, we have E[R`] ≥ q1
`−1 ·

1√
d
OPT(Idense).

The proof is similar to the proof of Lemma 1 by using the observation that in Idense at most√
d items can be packed in every bin, therefore, a maximum weight matching in G(Idense)

has a weight of at least OPT(Idense)/
√
d. .

I Lemma 13. For q1n+ 1 ≤ ` ≤ q2n, we have

E [R`] ≥
q1

q2

1−
√
d

`−1∑
k=q2n+1

1
k

 1
n
OPT (Isparse) .

Proof. As in Lemma 2, we have E [pi`,j`] = 1
nOPT (Isparse) where the expectation is taken

only over the random choice of the subset S` ⊆ [n], the random choice of i` ∈ S` and the
internal randomness of the algorithm at round `. Once again we bound the probability
of successful assignment over the random arrival order of previous items and the internal
randomness of the algorithm in previous rounds. The assignment of i` to j` must be successful
if the following conditions hold: (1) no item was packed in j` during the dense phase, and
(2) no tentative assignments from previous rounds of the sparse phase occupy the entries
in supp (wi`,j`) of j`. Let us denote event (1) by H` and the event described in (2) by
L`. At round q2n ≤ k ≤ ` the algorithm uses an optimal fractional solution x(k) for the
LP-relaxation on I|Sk to compute a tentative assignment (ik, jk). In that solution we have∑
i∈Sk x

(k)
i,j`
wti,j` ≤ 1, ∀t ∈ [d]. Observe that by the randomized rounding at round k and the

fact that wtik,j` ∈ {0, 1}, the probability that the tentative assignment of ik uses dimension t
in j` is given by

∑
i∈Sk Pr[jk = j` ∧ wti,jk = 1|ik = i] · Pr[ik = i] = 1

k

∑
i∈Sk x

(k)
i,j`
wti,j` ≤

1
k .

Using a union bound, since |supp (wi`,j`)| ≤
√
d, the probability that ik blocks i` from being

packed is at most
√
d/k. Applying a union bound once again over all previous rounds of the

sparse phase, we get Pr[L`] ≥ 1 −
∑`−1
k=q2n+1

√
d/k. From here on we can follow a similar

argument as in the proof of Lemma 2 and get that the probability of successful assignment
is at least

Pr [H` ∧ L`] ≥
q2n∏

k=q1n+1

(
1− 1

k

)1−
`−1∑

k=q2n+1

√
d

k

 = q1

q2

1−
√
d

`−1∑
k=q2n+1

1
k

 .

Overall, we get the lemma. J

By using Lemma 12 and Lemma 13 to sum over the profit raised in each phase, we get

E [ALG] ≥ OPT (Idense)
q1√
d

ln
(
q2

q1

)
+ OPT (Isparse)

q1

q2

((√
d+ 1

)
(1− q2)−

√
d ln

(
1
q2

))
.

Setting q2 =
√
d√
d+1 , q1 = q2/

√
e, we get

E [ALG] ≥ OPT (Idense)
1

2
√
e
(√

d+ 1
)

+ OPT (Isparse)
1√
e

(
1−
√
d ln

(
1 + 1√

d

))
. (3)

D. Naori and D. Raz 10:15

To bound the second term we use the fact that for x ≥ 0, ln(1 + x) ≤ x− 1
2x

2 + 1
3x

3 and get

1√
e

(
1−
√
d ln

(
1 + 1√

d

))
≥ 1√

e

(
1

2
√
d
− 1

3d

)
≥ 1

2
√
e
(√

d+ 1
) . (4)

The second inequality can be easily verified to holds for d ≥ 1. By substituting (4) in
Equation (3) and using the fact that OPT (Idense) + OPT (Isparse) ≥ OPT (I), we get
the theorem. J

ISAAC 2019

Approximate Euclidean Shortest Paths in
Polygonal Domains
R. Inkulu
Department of Computer Science & Engineering, IIT Guwahati, India
http://www.iitg.ac.in/rinkulu/
rinkulu@iitg.ac.in

Sanjiv Kapoor
Department of Computer Science & Engineering, IIT Chicago, USA
http://www.cs.iit.edu/~kapoor/
kapoor@iit.edu

Abstract
Given a set P of h pairwise disjoint simple polygonal obstacles in R2 defined with n vertices, we
compute a sketch Ω of P whose size is independent of n, depending only on h and the input
parameter ε. We utilize Ω to compute a (1 + ε)-approximate geodesic shortest path between the
two given points in O(n+ h((lgn) + (lg h)1+δ + (1

ε
lg h

ε
))) time. Here, ε is a user parameter, and δ

is a small positive constant (resulting from the time for triangulating the free space of P using
the algorithm in [3]). Moreover, we devise a (2 + ε)-approximation algorithm to answer two-point
Euclidean distance queries for the case of convex polygonal obstacles.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational Geometry, Geometric Shortest Paths, Approximation Al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.11

Related Version A full version of the paper is available at https://arxiv.org/abs/1506.01769.

Funding R. Inkulu: This research is supported in part by SERB MATRICS grant MTR/2017/000474.

1 Introduction

For any set Q of pairwise-disjoint simple polygonal obstacles in R2, the free space F(Q) is
the closure of R2 without the union of the interior of all the polygons in Q. Given a set
P = {P1, P2, . . . , Ph} of pairwise-disjoint simple polygonal obstacles in R2 and two points
s and t in F(P), the Euclidean shortest path finding problem seeks to compute a shortest
path between s and t that lies in F(P). This problem is well-known in the computational
geometry community. Mitchell [10, 27] provides an extensive survey of research accomplished
in determining shortest paths in polygonal and polyhedral domains. The problem of finding
shortest paths in graphs is quite popular and considered to be fundamental. Especially,
several algorithms for efficiently computing single-source shortest paths and all-pairs shortest
paths are presented in Cormen et al. [9] and Kleinberg and Tardos [25]) texts. And, the
algorithms for approximate shortest paths are surveyed in [28]. In the following, we assume
that n vertices together define the h polygonal obstacles of P.

Given a polygonal domain P as input, the following are three well-known variants of the
Euclidean shortest path finding problem: (i) both s and t are given as input with P, (ii)
only s is provided as input with P, and (iii) neither s nor t is given as input. The type (i)
problem is a single-shot problem and involves no preprocessing. The preprocessing phase of
the algorithm for a type (ii) problem constructs a shortest path map with s as the source so
that a shortest path between s and any given query point t can be found efficiently. In the

© R. Inkulu and Sanjiv Kapoor;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.iitg.ac.in/rinkulu/
mailto:rinkulu@iitg.ac.in
http://www.cs.iit.edu/~kapoor/
mailto:kapoor@iit.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.11
https://arxiv.org/abs/1506.01769
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Approximate Euclidean Shortest Paths

third variation, which is known as a two-point shortest path query problem, the polygonal
domain P is preprocessed to construct data structures that facilitate in answering shortest
path queries between any given pair of query points s and t.

In solving a type (i) or type (ii) problem, there are two fundamentally different approaches:
the visibility graph method (see Ghosh [14] for both the survey and details of various visibility
algorithms) and the continuous Dijkstra (wavefront propagation) method. The visibility
graph method [5, 21, 22, 29] is based on constructing a graph G, termed visibility graph,
whose nodes are the vertices of the obstacles (together with s and t) and edges are the pairs
of mutually visible vertices. Once the visibility graph G is available, a shortest path between
s and t in G is found using Dijkstra’s algorithm. As the number of edges in the visibility
graph is O(n2), this method has worst-case quadratic time complexity. In the continuous
Dijkstra approach [17, 18, 19, 26], a wavefront is expanded from s till it reaches t. In specific,
for the case of polygonal obstacles in plane, Hershberger and Suri devised an algorithm in [17]
which computes a shortest path in O(n lgn) time and the algorithm in [18] (which extends
the algorithm by Kapoor [19]) by Inkulu, Kapoor, and Maheshwari computes a shortest path
in O(n+ h((lg h)δ + (lgn)(lg h))) time. Here, δ is a small positive constant (resulting from
the time for triangulating the F(P) using the algorithm in [3]). The continuous Dijkstra
method typically constructs a shortest path map with respect to s so that for any query
point t, a shortest path from s to t can be found efficiently.

The two-point shortest path query problem within a given simple polygon was addressed
by Guibas and Hershberger [15]. It preprocessed the simple polygon in O(n) time and
constructed a data structure of size O(n) and answers two-point shortest distance queries in
O(lgn) time. Exact two-point shortest path queries in the polygonal domain were explored
by Chiang and Mitchell [7]. One of the algorithms in [7] constructs data structures of size
O(n5) and answers the query for any two-point distance in O(h+ lgn) worst-case time. And,
another algorithm in [7] builds data structures of size O(n+ h5) and outputs any two-point
distance query in O(h lgn) time. In both of these algorithms, a shortest path itself is found
in additional time O(k), where k is the number of edges in the output path. Guo et al. [16]
preprocessed F(P) in O(n2 lgn) time to compute data structures of size O(n2) for answering
two-point distance queries for any given pair of query points in O(h lgn) time.

Because of the difficulty of exact two-point queries in polygonal domains, various approxim-
ation algorithms were devised. Clarkson first made such an attempt in [8]. Chen [4] used the
techniques from [8] in constructing data structures of size O(n lgn+ n

ε) in o(n3/2) +O(nε lgn)
time to support (6 + ε)-approximate two-point distance queries in O(1

ε lgn+ 1
ε2) time, and a

shortest path in additional O(L) time, where L is the number of edges of the output path.
Arikati et al. [2] devised a family of algorithms to answer two-point approximate shortest
path queries. Their first algorithm outputs a (

√
2 + ε)-approximate distance; depending on

a parameter 1 ≤ r ≤ n, in the worst-case, either the preprocessed data structures of this
algorithm take O(n2) space or the query time is O(

√
n). Their second algorithm takes O(n)

query time to report the distance. The stretch of the third and fourth algorithms proposed in
[2] are respectively (2

√
2+ε) and (3

√
2+ε). Agarwal et al. [1] computes a (1+ε)-approximate

geodesic shortest path in O(n+ h√
ε

lg(hε)) time when the obstacles are convex.
Throughout this paper, to distinguish graph vertices from the vertices of the polygonal

domain, we refer to vertices of a graph as nodes. The Euclidean distance between any two
points p and q is denoted with ‖pq‖. The obstacle-avoiding geodesic Euclidean shortest path
distance between any two points p, q amid a set Q of obstacles is denoted with distQ(p, q).
The (shortest) distance between two nodes s and t in a graph G is denoted with distG(s, t).
Unless specified otherwise, distance is measured in Euclidean metric. We denote both the

R. Inkulu and S. Kapoor 11:3

convex hull of a set R of points and the convex hull of a simple polygon R with CH(R). Let
r′ and r′′ be two rays with origin at p. Let −→v1 and −→v2 be the unit vectors along the rays r′
and r′′ respectively. A cone Cp(r′, r′′) is the set of points defined by rays r′ and r′′ such
that a point q ∈ Cp(r′, r′′) if and only if q can be expressed as a convex combination of the
vectors −→v1 and −→v2 with positive coefficients. When the rays are evident from the context, we
denote the cone with Cp. The counterclockwise angle from the positive x-axis to the line
that bisects the cone angle of Cp is termed as the orientation of the cone Cp.

Our contributions
First, we describe the algorithm for the case in which P comprises convex polygonal obstacles.
We compute a sketch Ω from the polygonal domain P. Essentially, each convex polygonal
obstacle Pi in P is approximated with another convex polygonal obstacle whose complexity
depends only on the input parameter ε; significantly, the size of the approximated polygon
is independent of the size of Pi. In specific, when P is comprised of h convex polygonal
obstacles, the sketch Ω is comprised of h convex polygonal obstacles: for each 1 ≤ i ≤ h,
the convex polygon Pi ∈ P is approximated with another convex polygon Qi ∈ Ω. For each
Pi ∈ P , we identify a coreset Si of vertices of Pi and form the core-polygon Qi ∈ Ω using Si.
When Pi is convex, the corresponding core-polygon Qi obtained through this procedure is
convex; and, Qi ⊆ Pi. Like in [1], the combinatorial complexity of Ω is independent of n;
it depends only on h and the input parameter ε. For two points s, t ∈ F(P), we compute
an approximate Euclidean shortest path between s and t in F(Ω) using an algorithm that
is a variant of [8]. From this path, we compute a path R in F(P) and show that R is a
(1 + ε)-approximate Euclidean shortest path between s and t amid polygonal obstacles in
P. When the obstacles in P are not necessarily convex, we compute the sketch of P using
the convex chains (that bound the obstacles) as well as the corridor paths that result from
the hourglass decomposition [19, 20, 22] of F(P). The main contributions and the major
advantages in our approach are described in the following:

When P is comprised of disjoint simple polygonal obstacles, we compute a (1 + ε)-
approximate geodesic Euclidean shortest path between the two given points belonging to
F(P) in O(n+ h((lgn) + (lg h)1+δ + 1

ε lg h
ε)) time. Here, δ is a small positive constant

resulting from the triangulation of the free space using the algorithm from [3]. (Refer to
Theorem 9.) Agarwal et al. [1] compute a (1 + ε)-approximate geodesic shortest path in
O(n+ h√

ε
lg(hε)) time when the obstacles are convex. In computing approximate shortest

paths, our algorithm extends the notion of coresets in [1] to simple polygons. However, our
approach is computing coresets, and an approximate shortest path using these coresets is
quite different from [1]. Our algorithm to construct the sketch of P is simpler.
As part of devising the above algorithm, when P is comprised of convex polygonal
obstacles, our algorithm computes a (1 + ε)-approximate geodesic Euclidean distance
between the two given points in O(n+ h

ε lg h
ε) time. Further, our algorithm computes a

(1 + ε)-approximate shortest path in additional O(h lgn) time. (Refer to Theorem 7.)
When P is comprised of disjoint convex polygonal obstacles, we preprocess these polygons
in O(n+ h

ε2 (lg h
ε) + h

ε (lg h
ε)2) time to construct data structures of size O(hε) for answering

any two-point (2 + ε)-approximate geodesic distance (length) query in O(1
ε6 (lg h

ε)2) time.
(Refer to Theorem 12.) To compute an optimal geodesic shortest path amid simple
polygonal obstacles, Chen and Wang [5] takes O(n + h lg h + k) time, where k is a
parameter sensitive to the geometric structures of the input and is upper bounded by
O(h2). Our algorithm to answer approximate two-point distance queries amid convex
polygonal obstacles takes space close to linear in n whereas the preprocessed data

ISAAC 2019

11:4 Approximate Euclidean Shortest Paths

structures of algorithms proposed in [7] occupy Ω(n5) space in the worst-case. Also, our
algorithm for two-point distance queries improves the stretch factor of [4] from (6 + ε) to
(2 + ε) in case of convex polygonal obstacles.
Furthermore, our algorithm to compute the coreset of simple polygons to obtain a sketch
Ω of P as well as the algorithm to compute an approximate geodesic Euclidean shortest
path in P using the sketch Ω may be of independent interest.

Section 2 describes an algorithm for computing a single-shot approximate shortest path
when obstacles in P are convex polygons. Section 3 extends this algorithm to compute an
approximate Euclidean shortest path amid simple polygonal obstacles. The algorithm to
answer two-point approximate Euclidean distance queries amid convex polygonal obstacles is
described in Section 4. A table comparing earlier algorithms to ours is given in the Appendix.

2 Approximate shortest path amid convex polygons

In this section, we consider the case in which every simple polygon in P is convex. We use
the following notation from Yao [30]. Let κ ≥ 2, and define θ = 2π/κ. Consider the set
of κ rays: for 0 ≤ iκ, the ray ri passes through the origin and makes an angle iθ with the
positive x-axis. Each pair of successive rays defines a cone whose apex is at the origin. This
collection of κ cones is denoted by C. It is clear that the cones of C partition the plane. Also,
the two bounding rays of any cone of C make an angle θ. In our algorithm, the value of κ is
chosen as a function of ε (refer to Subsection 2.2). When a cone C ∈ C is translated to have
the apex at a point p, the translated cone is denoted with Cp. Each cone that we refer in
this paper is a translated copy of some cone in C. For each polygon P in P, we choose a
subset of O(1√

αε
) vertices from the vertices of P . At each such vertex p, we introduce a set

of cones at p.In the algorithm to compute a single-shot s-t geodesic shortest path, the value
of α is set to ε

2 . The algorithm for two-point approximate distance queries sets the value
of α to ε

12 . The proof of Theorem 7 details the reasons for setting these specific values. As
detailed below, these vertices and cones help in computing a spanner that approximates a
Euclidean shortest path between the two given points in F(P).

2.1 Sketch of P
In this subsection, we define and characterise the sketch of P. For any Pi ∈ P and any two
points p′ and p′′ on the boundary of Pi, the section of boundary of Pi that occurs while
traversing from p′ to p′′ in counterclockwise order is termed a patch of Pi. In specific, we
partition the boundary of each Pi ∈ P into a collection of patches Γi such that for any two
points p′, p′′ belonging to any patch γ ∈ Γi, the angle between the outward (w.r.t. the centre
of Pi) normals to respective edges at p′ and p′′ is upper bounded by

√
αε
2 . The maximum

angle between the outward normals to any two edges that belong to a patch γ constructed in
our algorithm is the angle subtended by γ. To facilitate in computing patches of any obstacle
Pi, we partition the unit circle S2 centred at the origin into a minimum number of segments
such that each circular segment is of length at most

√
αε
2 . For every such segment s of S2, a

patch (corresponding to s) comprises of the maximal set of the contiguous sequence of edges
of Pi whose outward normals intersect s, when each of these normals is translated to the
origin. (To avoid degeneracies, we assume each normal intersects a single segment.) Let Γi
be a partition of the boundary of a convex polygon Pi into a collection of O(1√

αε
) patches.

The lemma below shows that the geodesic distance between any two points belonging to any
patch γ ∈ Γi is a (1 + αε)-approximation to the Euclidean distance between them.

R. Inkulu and S. Kapoor 11:5

I Lemma 1. For any two points p and q that belong to any patch γ ∈ Γj, the geodesic
distance between p and q along γ is upper bounded by (1 + αε)‖pq‖ for αε < 1.

Proof. Let e′ be the edge on which p lies and let e′′ be the edge on which q lies. Let c
be the point of intersection of normal to e′ at p and the normal to e′′ at q. Since p and

p

q

r
r′

π −
√
αε
2

e′′

e′

c
√
αε
2

Figure 1 Illustrating the construction in proving the upper bound on the patch length.

q belong to the same patch, the angle between cp and cq is upper bounded by
√
αε
2 , when

the value of αε is small. Let l′ and l′′ be the lines that respectively pass through e′ and
e′′. Also, let r be the point at which lines l′ and l′′ intersect. (Refer to Fig. 1.) For
the small values of

√
αε and due to triangle inequality, the geodesic length of the patch

between p and q is upper bounded by ‖pr‖ + ‖qr‖. Let r′ be the point of projection of r
on to line segment pq. Suppose ∠qrr′ = ∠prr′. (Analysis of other cases is similar.) Then
‖pr‖+ ‖qr‖ ≤ ‖pr′‖

sin(π2−
√
αε
4)

+ ‖r′q‖
sin(π2−

√
αε
4)

= ‖pq‖
cos

√
αε
4
≤ (1 +αε)‖pq‖. The last inequality is valid

when αε < 1. J

For each obstacle Pi, the coreset Si of Pi is comprised of two vertices chosen from each
patch in Γi. In particular, for each patch γ ∈ Γi, the first and last vertices of γ that occur
while traversing the boundary of Pi are chosen to be in the coreset Si of Pi. The coreset S
of P is then simply

⋃
i Si.

I Observation 1. The size of the coreset S of P is O(h√
αε

).

For every 1 ≤ i ≤ h, our algorithm uses core-polygon Qi = CH(Si) in place of Pi. For
any single point obstacle Pi in P, the core-polygon of Pi is that point itself. The patch
construction procedure guarantees that each polygonal obstacle in P is partitioned into
patches such that the core-polygon that correspond to every obstacle in P is valid. Let Ω
be the set comprising of core-polygons corresponding to each of the polygons in P. The set
Ω is called the sketch of P. The following lemmas show that Ω facilitates in computing a
(1 + αε)-approximation of the geodesic distance between any two given points in F(P).

I Lemma 2. Let v′, v′′ be any two vertices of obstacles in Ω. Then, distP(v′, v′′) is upper
bounded by (1 + αε)distΩ(v′, v′′).

Proof. Let v1, v2 be any two successive vertices along a shortest path between v′ and v′′
in F(Ω). Let O ⊆ P be the set of obstacles intersected by the line segment v1v2. Let v1
and v2 be respectively belonging to obstacles Pj and Pk. Also, let Γj (resp. Γk) be the set
comprising the partition of boundary of Pj (resp. Pk) into patches. And, let Sj (resp. Sk)
be the coreset of Pj (resp. Pk). Since the line segment v1v2 does not intersect the interior
of the CH(Sj) or CH(Sk), it intersects at most one patch belonging to set Γj and at most
one patch belonging to set Γk. Let v1 and r be the points of intersection of line segment
v1v2 with a patch γ ∈ Γj . (These points might as well be the endpoints of γ.) Then from
Lemma 1, the geodesic distance between v1 and r along γ is upper bounded by (1 +αε)‖v1r‖.
(Refer Fig. 2.) Analogously, let v2 and r′ be the points of intersection of line segment v1v2

ISAAC 2019

11:6 Approximate Euclidean Shortest Paths

with a patch γ′ ∈ Γk. Then the geodesic distance between v2 and r′ is upper bounded by
(1 + αε)‖v2r

′‖. For any convex polygonal obstacle Pl in O distinct from Pj and Pk, let p′, p′′
be the points of intersection of v1v2 with the boundary of Pl. Since the line segment v1v2
does not intersect the interior of the convex hull of coreset corresponding to Pl, both p′ and
p′′ belong to the same patch, say γ′′ ∈ Γl. Then again from Lemma 1, the geodesic distance
between p′ and p′′ along patch γ′′ is upper bounded by (1 + αε)‖p′p′′‖. We modify v1v2 as
follows: For every maximal subsection, say p′ip′′i , of the line segment v1v2 that is interior to a
polygonal obstacle of P, we replace that subsection with a geodesic Euclidean shortest path
in F(P) between p′i and p′′i .

v1

r p′
p′′

v2

r′

γ

γ′′

γ′

Figure 2 A line segment v1v2 of a shortest path amid Ω intersecting three patches belonging to
obstacles in P.

Let γ1, γ2, . . . , γk be the set Γ of patches intersected by the line segment v1v2. Also, for
every 1 ≤ i ≤ k, let p′i, p′′i be the points of intersections of v1v2 with patch γi ∈ Γ with
p′i closer to v1 than v2 along the line segment v1v2. Then

∑k
i=1 distP(p′i, p′′i) added with∑k−1

i=1 ‖p′′i p′i+1‖ is upper bounded by (1 + αε)‖v1v2‖. Let v1, . . . , vl be the vertices of P that
occur in that order along a Euclidean shortest path in F(Ω) between vertices v′, v′′ ∈ P.
Then distP(v1, vl) =

∑l−1
i=1 distP(vi, vi+1) ≤ (1 + αε)

∑l−1
i=1 distΩ(vi, vi+1). Note that we do

this transformation for each line segment of the shortest path that intersects any patch. J

Since F(P) ⊆ F(Ω), every path that avoids convex polygonal obstacles in P is also a
path that avoids convex polygonal obstacles in Ω. This observation leads to the following:

I Lemma 3. For any two vertices v′, v′′ of P, distΩ(v′, v′′) ≤ distP(v′, v′′).

Considering the given two points s, t ∈ F(P) as degenerate obstacles, a (1 + αε)-
approximation of the shortest distance between s and t amid polygonal obstacles in P
is computed.

I Lemma 4. For a set P of h pairwise disjoint convex polygons in R2 and two points
s, t ∈ F(P), the sketch S of P with cardinality O(h√

αε
) suffices to compute a (1 + αε)-

approximate shortest path between s and t in F(P).

Proof. Immediate from Observation 1, Lemma 2, and Lemma 3. J

Our approach in computing coresets and an approximate shortest path using these
coresets is quite different from [1]. As will be shown in Section 3, our sketch construction
is extended to compute shortest paths even when P comprises of polygon obstacles which
are not necessarily convex. How our algorithm differs from [1] for the convex polygonal
case is detailed herewith. Let P be the polygonal domain defined with convex polygons
P1, P2, . . . , Ph. In this algorithm as well as in [1], Pi is approximated with Qi, for every
1 ≤ i ≤ h. However, for every 1 ≤ i ≤ h, in our algorithm Qi ⊆ Pi whereas in [1], Pi ⊆ Qi.
Let the new polygonal domain Ω be defined with simple polygons Q1, Q2, . . . , Qh. Unlike [1],
in computing Ω, our algorithm does not require using plane sweep algorithm to find pairwise
vertically visible simple polygons of P. As described above, our algorithm partitions the
boundary of each convex polygon P into a set of patches.

R. Inkulu and S. Kapoor 11:7

v′

v′′ C ′′

C ′

Cv

v

Figure 3 Illustrating an admissible cone Cv incident to a coreset vertex v of an obstacle.

2.2 Computing an approximate geodesic shortest path in F(P) using
the sketch Ω of P

Since we intend to compute an approximate shortest path, to keep our algorithm simpler, we
do not want to use the algorithm from [17] to compute a shortest path amid convex polygonal
obstacles in Ω, Instead, we use a spanner constructed with the conic Voronoi diagrams
(CV Ds) [8]. Further, in our algorithm, for any maximal line segment with endpoints r′, r′′
along the computed (approximate) shortest path amid obstacles in Ω, if the line segment
r′r′′ lies in F(Q)−F(P), we replace line segment r′r′′ with the geodesic Euclidean shortest
path between r′ and r′′ in F(P).

Since our algorithm relies on [8], we give a brief overview of that algorithm first. The
algorithm in [8] constructs a spanner G(V,E) for polygonal domain P. Noting that the
endpoints of line segments of a shortest path in F(P) are a subset of vertices of polygonal
obstacles in P, the node set V is defined as the vertex set of P. Let C′ be the set of O(1

ε)
cones with apex at the origin of the coordinate system together partitioning R2. (The cone
angle of each cone in C′ except for one is set to ε and that one cone has 2π−b 2π

ε cε as the cone
angle.) Let C ∈ C′ be a cone with orientation θ and let C ′ ∈ C′ be the cone with orientation
−θ. For each cone C ∈ C′ and a set K of points, the set of cones resultant from introducing
a cone Cp for every point p ∈ K, is the conic Voronoi diagram CV D(C,K). (Note that as
mentioned earlier, Cp is the cone resulted from translating cone C to have the apex at the
point p.) For a given cone Cv, among all the points on the boundaries of polygons in P that
are visible from v, a point p whose projection onto the bisector of Cv is closest to v is said to
be a closest point in Cv to v. If more than one point is closest in Cv to v, then we arbitrarily
pick one of those points. For every vertex v of P and for every cone Cv, if a closest point p
in Cv − {v} to v is not a vertex of P , then the algorithm includes p as a node in V . Further,
for every vertex v of P and for every cone Cv, an edge e joining v and a closest point p in
Cv − {v} to v is introduced in E with its weight equal to the Euclidean distance between v
and p. For every node v in G that corresponds to a point p on the boundary of P ∈ P, if
p is not a vertex of P, then for every neighbor p′ of p on the boundary of P which has a
corresponding node v′ in V , we introduce an edge e′ between v and p′ into E and set the
weight of e′ equal to the Euclidean distance between v and p′. These are the only edges
included in E. The Theorem 2.5 in [8] proves that if d is the obstacle-avoiding geodesic
Euclidean shortest path distance between any two vertices, say v′ and v′′, of P, then the
distance between the corresponding nodes v′ and v′′ in G is upper bounded by (1 + ε)d. The
CV D(C,K) is computed using the plane sweep in O(|K| lg |K|) time; and, the well-known
planar point location data structure is used to locate the region in CV D(C,K) to which a
given query point belongs to.

ISAAC 2019

11:8 Approximate Euclidean Shortest Paths

As detailed below, apart from computing a sketch Ω of P, as compared with [8], the
number of cones per obstacle that participate in computing CV Ds amid F(Ω) is further
optimized by exploiting the convexity of obstacles together with the properties of shortest
paths amid convex obstacles. By limiting the number of vertices of P at which the cones
are initiated to coreset S of vertices, our algorithm improves the space complexity of the
algorithm in [8]. Further, by exploiting the convexity of obstacles, we introduce O(1√

αε
) cones

per obstacle, each with cone angle O(
√
αε), and show that these are sufficient to achieve the

claimed approximation factor.
Let v be a vertex of P that belongs to coreset Si of convex polygon Pi. Let v′, v, v′′ be

the vertices that respectively occur while traversing the boundary of Pi in counterclockwise
order. Also, let C ′ be the cone defined by the pair of rays (

−→
vv′,−

−→
vv′′) and let C ′′ be the cone

defined by the pair of rays (
−→
vv′′,−

−→
vv′). For a coreset vertex v ∈ S, a cone C ∈ C is said to be

admissible at v whenever Cv ∩C ′ or Cv ∩C ′′ is non-empty. (See Fig. 3.) Let p and q be two
points in F(P) such that p and q are not visible to each other due to polygonal obstacles in
P . Let v be a vertex of Pi through which a shortest path between p and q passes. Since any
shortest path is convex at v with respect to Pi, there exists a shortest path between p and q
where one of its line segment lies in C ′, and another line segment of that path lies in C ′′.
Hence, in computing a Euclidean shortest path amid P, it suffices to consider admissible
cones at the vertices of P.

Note that whenever two points s and t between which we intend to find a shortest path are
visible to each other, the line segment st needs to be computed. To facilitate this, for every
degenerate point obstacle p, every cone C with apex p is considered to be an admissible cone.

The same properties carry over to the polygonal domain Ω as well. For any two points p1
and p2 in F(Ω), suppose that p1 and p2 are not visible to each other. Consider any shortest
path τ between p1 and p2. For any line segment ab in τ , ab is either an edge of a polygon in
Ω or it is a tangent to an obstacle O ∈ Ω. In the latter case, ab belongs to an admissible
cone of O. When the polygonal domain is Ω, the following Lemma upper bounds the number
of cones at the vertices of convex polygons in Ω.

I Lemma 5. The number of cones introduced at all the obstacles of Ω is O(h√
αε

).

Proof. Let O be the origin of the coordinate system. Let −→r be a ray with origin at O. (See
Fig. 4.) For any two distinct vertices v′ and v′′ of a convex polygon P , let −→rv′ be the ray
parallel to −→r with origin at v′ and pointing in the same direction as −→r and let −→rv′′ be the ray
parallel to −→r with origin at v′′ and point in the same direction as −→r . Also, let v′1 precede v′
(resp. v′′1 precede v′′) and v′2 succeed v′ (resp. v′′2 succeed v′′) while traversing the boundary
of P in counterclockwise order. Since P is a convex polygon, if every point of −→rv′ belongs to
the cone defined by

−−→
v′1v
′ and

−−→
v′v′2 then it is guaranteed that not every point of −→rv′′ belongs

to the cone defined by
−−→
v′′v′′2 and

−−→
v′′1 v
′′. Extending this argument, if a cone Cv′ is admissible

−→r

v′

v′′

v′′1

v′′2

v′1

v′2

−→rv′−→rv′′

Figure 4 Illustrating that a ray parallel to r can exist in only one admissible cone per obstacle.

R. Inkulu and S. Kapoor 11:9

v

p

Figure 5 Illustrating an edge of the spanner.

at v′ then the cone Cv′′ cannot be admissible at v′′. Since the number of coreset vertices per
obstacle is O(1√

αε
), the number of cones introduced per obstacle is O(1√

αε
). Further, since

there are h convex polygonal obstacles, number of cones at all the obstacle vertices together
is O(h√

αε
). J

Next, we describe the algorithm to compute the spanner G(V = S ∪ S′, E). The set S
comprises of nodes corresponding to coreset S. The set S′ is a set of Steiner points, as follows.
For every v ∈ S and every admissible cone Cv, let V ′ be the set of points on the boundaries of
obstacles of Ω that are visible from v and belong to cone Cv. (See Fig. 5.) The point p in V ′
that is closest to v, termed the closest Steiner point in Cv to v, is determined and p is added
to S′. An edge e between v and p is introduced in E while the Euclidean distance between
v and p is set as the weight of e in G. Let p be located on a convex polygonal obstacle P .
Further, for every Steiner point p, let v′ (resp. v′′) be the coreset vertex or Steiner point that
lies on the boundary of P and occurs before (resp. after) p while traversing the boundary
of P in counterclockwise order. Then an edge e′ (resp. e′′) between p and v′ (resp. p and
v′′) is introduced in E while the geodesic distance between p and v′ (resp. p and v′′) along
the boundary of P is set as the weight of e′ (resp. e′′) in G. Note that both |V | and |E| are
O(h√

αε
). For any two points s, t ∈ F(Ω), the following Lemma upper bounds the distG(s, t)

in terms of distΩ(s, t).

I Lemma 6. Let G be the spanner constructed from Ω. Let distG(p′, p′′) be the distance
between p′ and p′′ in G. Then for any two points s, t ∈ F(Ω), distΩ(s, t) ≤ distG(s, t) ≤
(1 +

√
αε)distΩ(s, t).

Proof. Theorem 2.5 of [8] concludes that to achieve (1 + αε)-approximation, sinψ − cosψ ≤
−1

1+αε . Expanding sine and cosine functions for the first few terms yield −1 +ψ+ ψ2

2! ≤
−1

1+αε .
Solving the quadratic equation in ψ yields ψ ≤ αε. Since we are using cones with cone angle√
αε in our algorithm, a (1 +

√
αε)-approximation is achieved.

We claim that introducing a subset of cones (admissible cones) rather than all the cones
as used in [8] does not affect the correctness. Let p and q be the vertices of two convex
polygons Pi and Pj respectively. Suppose that pq is a line segment belonging to a shortest
path R between vertices s and t of the spanner computed in [8]. Further, suppose that p
occurs before q when R is traversed from s to t. If the line along pq supports Pi (resp. Pj) at
p (resp. q), then the line segment pq belongs to an admissible cone at p (resp. q). Otherwise,
there exists a line segment in the admissible cone with apex either at a vertex of Pi or at
a vertex of Pj which would yield a shorter path from source s to q without using the line
segment pq. J

Once we find a shortest path SPΩ between s and t amid convex polygonal obstacles in
Ω using the spanner G, following the proof of Lemma 3, we transform SPΩ to a path amid
obstacles in P. Since there are O(h) obstacles in Ω, SPΩ contains O(h) tangents between
obstacles. Let this set of tangents be T . We need to find points of intersection of convex
polygons in P with the line segments in T . For any l ∈ T and Pi ∈ P , by using the algorithm
from Dobkin et al. [12], we compute the possible intersection between l and Pi. Whenever

ISAAC 2019

11:10 Approximate Euclidean Shortest Paths

a line segment l ∈ T and a convex polygon Pi ∈ P intersect, say at points p′ and p′′, we
replace the line segment between p′ and p′′ with the geodesic shortest path between p′ and
p′′ along the boundary of Pi. Analogously, for every line segment l ∈ SPΩ − T belonging to
an obstacle Pj ∈ Ω, we replace l with the corresponding geodesic path along the boundary of
Pj . We use the plane sweep technique [11] to determine whichever line segments in T could
intersect with the convex obstacles in P . Essentially, the event handling procedures of plane
sweep algorithm replace every line segment in SPΩ that intersects with any obstacle Pj ∈ P
with the shortest geodesic shortest path along the boundary of Pj , so that the resulting
shortest path SPP after all such replacements belongs to F(P).

As part of the plane sweep, a vertical line is swept from left-to-right in the plane. Let L
(resp. R) be the set of leftmost (resp. rightmost) vertices of convex polygons in P. Initially,
points in L and R together with the two endpoints of every line segment in T are inserted into
the priority queue Q. The event points are scheduled from Q using their respective distances
from the initial sweep line position. As the events occur, the event points corresponding
to L,R, and the endpoints of line segments in T are handled and are deleted from Q. The
algorithm terminates whenever Q is empty. As described below, the intersection points
between the line segments in T and the convex polygons in P are added to Q with the
traversal of the sweep line. The sweep line status is maintained as a balanced binary search
tree B. We insert (resp. delete) a pointer to a line segment in T or a pointer to a convex
polygon in P to B whenever leftmost (resp. rightmost) endpoint of it is popped from Q. We
note that before a line segment l ∈ T and P ∈ P intersect, it is guaranteed that l and P
occur adjacent along the sweep line. Hence, whenever l and P are adjacent in the sweep line
status, we update the event-point schedule with the point of intersection between l and P
that occurs first among all such points of intersection in traversing the sweep line from left to
right. By using the algorithm from Dobkin et al. [12], we compute the possible intersection
between l and P . If they do intersect, we push the leftmost point of their intersection to Q
with the distance from the initial sweep line as the priority of that event point. Further, we
store the rightmost intersection point between l and P with the leftmost point of intersection
as satellite data. If the leftmost intersection point between l and P pops from Q, we compute
the geodesic shortest path along the boundary of P between the leftmost intersection point
and the corresponding rightmost intersection point. Further, whenever l and P become
non-adjacent along the sweep line, we delete their leftmost point of intersection from Q.

I Theorem 7. Given a set P of pairwise disjoint convex polygons, two points s, t ∈ F(P),
and ε ∈ (0, 0.6], computing a (1 + ε)-approximate geodesic distance between s and t takes
O(n + h

ε lg h
ε) time. Further, within an additional O(h lgn) time, a (1 + ε)-approximate

shortest path is computed.

Proof. From Lemma 4, we know that distΩ(s, t) ≤ distP(s, t) ≤ (1 + αε)distΩ(s, t). Let
G be the spanner constructed. From Lemma 6, we know that distΩ(s, t) ≤ distG(s, t) ≤
(1 +

√
αε)distΩ(s, t). As detailed in Lemma 2, algorithm transforms a shortest path between

s and t in G to a path p in F(P). Let distpP(s, t) be the distance along p. From Lemma 2,
distpP(s, t) ≤ (1 + αε)distG(s, t). Hence, distpP(s, t) ≤ (1 + αε)distG(s, t) ≤ (1 + αε)(1 +√
αε)distΩ(s, t) ≤ (1 + αε)(1 +

√
αε)distP(s, t). Since p is a path in F(P), it is immediate

to note that distP(s, t) ≤ distpP(s, t). Therefore, distP(s, t) ≤ distpP(s, t) ≤ (1 + αε)(1 +√
αε)distP(s, t). To achieve (1 + ε)-approximation, (1 + αε)(1 +

√
αε) needs to be less than

or equal to (1 + ε). For small values of ε (ε ∈ (0, 0.6]), choosing α = ε
2 satisfies this inequality.

From here on, we denote αε with ε′. Finding the coreset S of vertices from the convex
polygons in P, and computing the set Ω of core-polygons together takes O(n) time. The
number of coreset vertices is O(h√

ε′). The number of cones per obstacle is O(1√
ε′). Therefore,

R. Inkulu and S. Kapoor 11:11

the total number of cones is O(h√
ε′). For any cone C ∈ C and for any core-polygon O ∈ Ω,

at most a constant number of vertices of O are apexes to cones that have the orientation of
C. Considering a sweep line in the orientation of C, the sweep line algorithm to find the
closest Steiner point to the apex of each cone C (whenever an obstacle intersects with C)
takes O(h lg h) time. Hence, computing the set of closest Steiner points corresponding to all
the cone orientations in C together take O(h√

ε′ lg h).
The number of nodes in the spanner G is O(h√

ε′). These nodes include coreset vertices
and at most one closest Steiner point per cone. As each cone introduces at most one edge
into G, the number of edges in G is O(h√

ε′). Using the Fredman-Tarjan algorithm [13],
finding a shortest path between s and t in G takes O(h√

ε′ lg h√
ε′) time. Hence, computing

the (1 + ε)-approximate distance between s and t takes O(n+ h√
ε′ lg h√

ε′) time. For α = ε
2 ,

the value of ε′ is O(ε2). Hence, the result stated in the theorem statement.
For the plane sweep, leftmost and rightmost extreme vertices of convex polygons in P are

found in O(n) time. There are O(h) line segments in T , cardinality of Ω is O(h), and O(h)
line segment-obstacle pairs (respectively from T and P) that intersect. The number of event
points due to the endpoints in sets L,R, and the endpoints of line segments in T is O(h). If
l and P become non-adjacent along the sweep line, deleting their point of intersection from
Q is charged to the event that caused them non-adjacent. The sweep line status is updated
if any of these O(h) number of event points occur. Analogous to the analysis provided for
line segment intersection [11], our plane sweep algorithm takes O(n+ h lg h) time.

Due to Dobkin et al. [12], determining whether a line segment l in SPΩ intersects with an
obstacle P takes O(lgn) time, The preprocessing structures corresponding to [12] take O(n)
space and they are constructed in O(n) time. Further, replacing every line segment between
points of intersection with their respective geodesic shortest paths along the boundaries of
obstacles together take O(n) time. J

Note that the proof of the above theorem requires us to set the value of α to ε
2 .

3 Approximate shortest path amid simple polygons

In this section, we extend the approximation method from previous sections to the case of
simple (not necessarily convex) polygons. This is accomplished by first decomposing F(P)
into a set of corridors, funnels, hourglasses, and junctions [19, 20, 22]. In the following, we
describe these geometric structures, and then we detail our algorithm.

For convenience, we assume a bounding box encloses the polygonal domain P. In the
following, we describe a coarser decomposition of F(P) as compared to the triangulation
of F(P). In specific, this decomposition is used in our algorithm to achieve efficiency. Let
Tri(F) denote a triangulation of F(P). The line segments of Tri(F) that are not the edges
of obstacles in P are referred to as diagonals. Let G(F) denote the dual graph of Tri(F), i.e.,
each node of G(F) corresponds to a triangle of Tri(F) and each edge connects two nodes
corresponding to two triangles sharing a diagonal of Tri(F). Based on G(F), we compute a
planar 3-regular graph, denoted by G3 (the degree of every node in G3 is three), possibly
with loops and multi-edges, as follows. First, we remove each degree-one node from G(F)
along with its incident edge; repeat this process until no degree-one node remains in the
graph. Second, remove every degree-two node from G(F) and replace its two incident edges
by a single edge; repeat this process until no degree-two node remains. The resultant graph
G3 is planar, which has O(h) faces, nodes, and edges. Every node of G3 corresponds to a
triangle in Tri(F), called a junction triangle. The removal of all junction triangles results in

ISAAC 2019

11:12 Approximate Euclidean Shortest Paths

a f

e
b

Pi

Pj
Pi

Pj

a

f

e
b

x
y

Figure 6 Illustrating an open hourglass (left) and a closed hourglass (right) with a corridor path
connecting the apexes x and y of the two funnels. The dashed segments are diagonals.

O(h) corridors. The points s and t between which a shortest path needs to be computed
are placed in their own degenerate single point corridors. The boundary of each corridor C
consists of four parts (see Fig. 6): (1) A boundary portion of an obstacle Pi ∈ P, from a
point a to a point b; (2) a diagonal of a junction triangle from b to a point e on an obstacle
Pj ∈ P (Pi = Pj is possible); (3) a boundary portion of the obstacle Pj from e to a point
f ; (4) a diagonal of a junction triangle from f to a. The corridor C is a simple polygon.
Let τ(a, b) (resp., τ(e, f)) be the Euclidean shortest path from a to b (resp., e to f) in C.
The region HC bounded by τ(a, b), τ(e, f), be, and fa is called an hourglass, which is open if
τ(a, b)∩τ(e, f) = ∅ and closed otherwise. (Refer Fig. 6.) If HC is open, then both τ(a, b) and
τ(e, f) are convex polygonal chains and are called the sides of HC ; otherwise, HC consists
of two funnels and a path τC = τ(a, b) ∩ τ(e, f) joining the two apexes of the two funnels,
and τC is called the corridor path of C. Let x and y be the endpoints of πC . Also, let x
be at a shorter distance from b as compared to y. The paths τ(b, x), τ(e, x), τ(a, y), and
τ(f, y) are termed sides of funnels of hourglass HC . We note that these paths are indeed
convex polygonal chains. The apieces x and y together is termed a apex pair of hourglass
HC . Further, the shortest path between x and y along the boundary of HC is the corridor
path between apexes of HC .

We first give an overview of our algorithm for simple polygonal obstacles. A sketch
of P comprising of a sequence of convex polygonal (core-)chains is computed. Each such
core-chain either corresponds to an approximation of a side of an open hourglass or a side of
a funnel. If a simple polygon does not participate in any closed corridor, these polygonal
chains together form a core-polygon. Similar to the convex polygon case, each such polygonal
chain is partitioned into patches. Using these chains, we compute a spanner G. In addition,
the following set of edges are included in G: for every closed hourglass HC and for each
obstacle P that participates in HC , an edge representing the unique shortest path between
the two apieces of HC (as detailed below). After we compute a shortest path p between s
and t in the spanner, for every edge e(r′, r′′) ∈ p, if e is an edge that corresponds to the
closed corridor path then we replace e with a shortest path (sequence of edges) between r′
and r′′ in F(P). The resultant path is the output of our algorithm. The scheme designed in
Agarwal et al. [1] does not appear to extend easily to the case of simple polygons as they
use the critical step of computing partitioning planes between pairs of convex polygonal
obstacles from P.

For every obstacle Pj ∈ P, let Rj be the union of the following: (i) the set comprising
of open hourglass sides whose endpoints are incident to Pj , and (ii) the set comprising of
sections of funnel sides whose non-apex endpoints incident to Pi. Note that the elements
of sets in (i) and (ii) are polygonal convex chains. For every R ∈ Rj , similar to the case
of convex polygonal obstacles, we partition R into patches and the set comprising of the
endpoints of these patches is the coreset of R. (For details, refer to Section 2.) For every

R. Inkulu and S. Kapoor 11:13

R ∈ Rj , the core-chain of R is obtained by joining every two successive vertices that belong
to the coreset of R with a line segment while traversing the boundary of R. We construct
a spanner G(V,E) that correspond to core-chains of P using CV Ds. For every admissible
cone Cp at every vertex p of every core-chain, we consider Cp only if Cp has an intersection
with F(P). While noting that Clarkson’s method extends to core-chains defined as above,
the shortest path determination algorithm for simple polygons is the same as for the convex
polygons described in the previous section except for the following. For each apex pair v′-v′′,
an edge e is introduced into G between the vertices of G that correspond to v′ and v′′ with
the weight of e equal to the geodesic distance between v′ and v′′ in the closed hourglass. For
a shortest path p between any two nodes of G, for every edge e ∈ p if both the endpoints of
e correspond to an apex pair a′-a′′ then we replace p with the shortest path between a′ and
a′′ so that that path contains the corridor path of that closed hourglass; otherwise, as in
Lemma 2, we replace the line segment l correspond to e with the sections of l together with
the geodesic paths along the boundaries of patches that l intersects. Thus a shortest path
between s and t in the spanner G is transformed to a path in the F(P). In addition, since
the distance along the path that contains the corridor path between every pair of apexes
is made as the weight of its corresponding edge in the spanner, and due to Lemma 6, the
distance along the transformed path is a (1 + αε)-approximation to the distance between s
and t amid obstacles in P.

I Lemma 8. For a set P of h pairwise disjoint simple polygons in R2 and two points
s, t ∈ F(P), the sketch of P with cardinality O(h√

αε
) suffices to compute a (1+αε)-approximate

shortest path between s and t in F(P).

Computing hourglasses of F(P) using [19, 20, 22] and determining the core-chains together
takes O(n+ h(lg h)1+δ + h lgn) time (where δ is a small positive constant resulting from the
triangulation of F(P) using the algorithm from [3]). Extending the proof of Theorem 7 leads
to the following.

I Theorem 9. Given a set P of pairwise disjoint simple polygonal obstacles, two points
s, t ∈ F(P), and ε ∈ (0, 0.6], a (1 + ε)-approximate geodesic shortest path between s and t is
computed in O(n+ h((lgn) + (lg h)1+δ + (1

ε lg h
ε))) time. Here, δ is a small positive constant

(resulting from the time involved in triangulating F(P) using [3]).

Same as in Theorem 7, the proof of this theorem also needs the value of α to be equal to ε
2 .

4 Two-point approximate distance queries amid convex polygons

We preprocess the given set P of convex polygons to output the approximate distance between
any two query points located in F(P). Like in the previous section, our preprocessing
algorithm relies on [8] and constructs a spanner G. Our query algorithm constructs an
auxiliary graph from G. We compute the approximate distance between the two query points
using a shortest path finding algorithm in the auxiliary graph.

4.1 Preprocessing
The graph G constructed as part of preprocessing in Section 2.2 is useful in finding an
approximate Euclidean shortest path in F(P) between any two vertices in P. Instead of
finding a shortest path between two query nodes in G, to improve the query time complexity,
we compute a planar graph Gpl(V,Epl) from G(V,E) using the result from Chew [6]. Chew’s

ISAAC 2019

11:14 Approximate Euclidean Shortest Paths

algorithm finds a set Epl ⊆ E in O(|V | lg |V |) time so that the distance between any two
nodes of Gpl is a 2-approximation of the distance between the corresponding nodes in G. We
use the algorithm from Kawarabayashi et al. [23] to efficiently answer (1 + ε)-approximate
distance (length) queries in Gpl. More specifically, [23] takes O(|V |(lg |V |)2) time to construct
a data structure of size O(|V |) so that any distance query is answered in O((lg |V |

ε)2) time.

I Lemma 10. Let G be the spanner computed for the polygonal domain Ω using the algorithm
mentioned in Subsection 2.2. Let s and t be two points in F(P). Let Gpl be the planar graph
constructed from G using [6]. Further, let distK(s, t) be the distance between s and t in Gpl
computed using the algorithm from [23]. By choosing α = ε

12 , distP(s, t) ≤ distK(s, t) ≤
(2 + ε)distP(s, t).

Proof. From Lemma 4, we know that distΩ(s, t) ≤ distP(s, t) ≤ (1 + αε)distΩ(s, t). From
Lemma 6, we know that distΩ(s, t) ≤ distG(s, t) ≤ (1 +

√
αε)distΩ(s, t). Let distGpl(s, t)

be the distance in Gpl between nodes s and t of Gpl. From [6], distG(s, t) ≤ distGpl(s, t) ≤
2distG(s, t). Further, as mentioned above, distGpl(s, t) ≤ distK(s, t) ≤ (1 + αε)distGpl(s, t).
As detailed in Lemma 2, algorithm transforms a shortest path between s and t in K to
a path p in F(P). Let distpP(s, t) be the distance along p. From Lemma 2, distpP(s, t) ≤
(1 + αε)distK(s, t). Hence, distpP(s, t) ≤ (1 + αε)distK(s, t) ≤ (1 + αε)2distGpl(s, t) ≤
2(1 + αε)2distG(s, t) ≤ 2(1 + αε)2(1 +

√
αε)distΩ(s, t) ≤ 2(1 + αε)2(1 +

√
αε)distP(s, t).

Since p is a path in F(P), it is immediate to note that distP(s, t) ≤ distpP(s, t). Therefore,
distP(s, t) ≤ distpP(s, t) ≤ 2(1 + αε)2(1 +

√
αε)distP(s, t). To achieve (2 + ε)-approximation,

(2)(1 + αε)2(1 +
√
αε) needs to be less than or equal to (2 + ε). For small values of ε

(ε ∈ (0, 0.7]), choosing α = ε
12 satisfies this inequality. J

We note that αε is O(ε2). We suppose that there are O(1
ε) cones in C, each cone with a

cone angle O(ε). It remains to describe data structures that need to be constructed during
the preprocessing phase for obtaining the closest vertex of the query point s (resp. t) in a
given cone Cs (resp. Ct). To efficiently determine all these O(1

ε) neighbors to s and t during
query time, we construct a set of O(1

ε) CV Ds: for every C ∈ C, one CV D that corresponds
to C. The CV Ds are constructed similarly to the algorithm given in Subsection 2.2.

I Lemma 11. The preprocessing phase takes O(n + h
ε2 (lg h

ε) + h
ε (lg h

ε)2) time. The space
complexity of the data structures constructed by the end of the preprocessing phase is O(hε).

Proof. Computing the sketch Ω from the given P takes O(n + h
ε) time. The number of

cones in all the CV Ds together is O(hε). It takes O(1
ε
h
ε lg h

ε′′) time to compute G which
include computing CV Ds. Due to [6], computing planar graph Gpl with O(hε) nodes takes
O(hε lg h

ε) time. Computing space-efficient data structures using [23] takes O(hε′′ (lg h
ε)2)

time. Hence, the preprocessing phase takes O(n+ h
ε′′ lg h

ε + h
ε ((lg h

ε)2) time. Further, data
structures constructed using [23] by the end of preprocessing phase occupy O(hε) space. The
Kirkpatrick’s point location [24] data structures for planar point location take O(hε) space. J

4.2 Shortest distance query processing
The query algorithm finds the obstacle-avoiding Euclidean shortest path distance between
any two given points s, t ∈ F(P). We construct a graph Gst from Gpl. (The graph Gpl is as
defined in Subsection 4.1.) For every C ∈ C, if the point s is located in the cell of a point
p of CV D corresponding to C, then we introduce a node corresponding to p into a set Vs.
(Essentially, p is the closest visible point in cone −Cs to point s.) Analogously, we define
the set Vt of nodes for t in Gst. The node set of Gst comprises of nodes in Vs ∪ Vt ∪ {s, t}.

R. Inkulu and S. Kapoor 11:15

The edges of this graph are of three kinds: {s} × Vs, Vs × Vt and {t} × Vt. Since there are
O(1

ε) CVDs, the number of nodes and edges of Gst are respectively O(1
ε) and O(1

ε2). For
every edge (s, s′) (resp. (t, t′)) with s′ ∈ Vs (resp. t′ ∈ Vt), the weight of edge (s, s′) (resp.
(t, t′)) is the Euclidean distance between s and s′ (resp. t and t′). For every edge (s′, t′)
with s′ ∈ Vs and t′ ∈ Vt, the weight of (s′, t′) is the (2 + ε)-approximate distance between s′
and t′. These weights are obtained from the data structures maintained as in [23]. We use
Fredman-Tarjan algorithm [13] to find a shortest path between s and t in Gst. From the
above, this distance is a (2 + ε)-approximate distance from s to t amid convex polygons in P .

I Theorem 12. Given a set P of h pairwise disjoint convex polygonal obstacles in plane
defined with n vertices and ε ∈ (0, 0.6], the polygons in P are preprocessed in O(n +
h
ε2 (lg h

ε) + h
ε (lg h

ε)2) time to construct data structures of size O(hε) for answering two point
(2 + ε)-approximate distance query between any two given points belonging to F(P) in
O(1

ε6 (lg h
ε)2) time.

References
1 P. K. Agarwal, R. Sharathkumar, and H. Yu. Approximate Euclidean shortest paths amid

convex obstacles. In Proceedings of Symposium on Discrete Algorithms, pages 283–292, 2009.
2 S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. H. M. Smid, and C. D. Zaroliagis. Planar

spanners and approximate shortest path queries among obstacles in the plane. In Proceedings
of European Symposium on Algorithms, pages 514–528, 1996.

3 R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. International Journal
of Computational Geometry & Applications, 4(4):475–481, 1994.

4 D. Z. Chen. On the all-pairs Euclidean short path problem. In Proceedings of Symposium on
Discrete Algorithms, pages 292–301, 1995.

5 D. Z. Chen and H. Wang. Computing shortest paths among curved obstacles in the plane.
ACM Transactions on Algorithms, 11(4):26:1–26:46, 2015.

6 L. P. Chew. There are planar graphs almost as good as the complete graph. Journal of
Computer and System Sciences, 39(2):205–219, 1989.

7 Y.-J. Chiang and J. S. B. Mitchell. Two-point Euclidean shortest path queries in the plane.
In Proceedings of Symposium on Discrete Algorithms, pages 215–224, 1999.

8 K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Proceedings
of Symposium on Theory of Computing, pages 56–65, 1987.

9 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 2009.

10 Toth C. D., O’Rourke J., and Goodman J. E. Handbook of discrete and computational geometry.
CRC Press, 3rd ed. edition, 2017.

11 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
algorithms and applications. Springer-Verlag, 3rd ed. edition, 2008.

12 D. P. Dobkin and David G. Kirkpatrick. Fast detection of polyhedral intersection. Theoretical
Computer Science, 27:241–253, 1983.

13 M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of ACM, 34(3):596–615, 1987.

14 S. K. Ghosh. Visibility algorithms in the plane. Cambridge University Press, New York, USA,
2007.

15 L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. Journal
of Computer and System Sciences, 39(2):126–152, 1989.

16 H. Guo, A. Maheshwari, and J-R. Sack. Shortest path queries in polygonal domains. In
Proceedings of Algorithmic Aspects in Information and Management, pages 200–211, 2008.

17 J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.
SIAM Journal on Computing, 28(6):2215–2256, 1999.

ISAAC 2019

11:16 Approximate Euclidean Shortest Paths

18 R. Inkulu, S. Kapoor, and S. N. Maheshwari. A near optimal algorithm for finding Euclidean
shortest path in polygonal domain. CoRR, abs/1011.6481, 2010. arXiv:1011.6481.

19 S. Kapoor. Efficient computation of geodesic shortest paths. In Proceedings of Symposium on
Theory of Computing, pages 770–779, 1999.

20 S. Kapoor and S. N. Maheshwari. Efficent algorithms for Euclidean shortest path and visibility
problems with polygonal obstacles. In Proceedings of Symposium on Computational Geometry,
pages 172–182, 1988.

21 S. Kapoor and S. N. Maheshwari. Efficiently constructing the visibility graph of a simple
polygon with obstacles. SIAM Jounral on Computing, 30(3):847–871, 2000.

22 S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell. An efficient algorithm for Euclidean
shortest paths among polygonal obstacles in the plane. Discrete & Computational Geometry,
18(4):377–383, 1997.

23 K. Kawarabayashi, P. N. Klein, and C. Sommer. Linear-space approximate distance oracles
for planar, bounded-genus and minor-free graphs. In Proceedings of Colloquium on Automata,
Languages and Programming, pages 135–146, 2011.

24 D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983.

25 J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc.,
2005.

26 J. S. B. Mitchell. Shortest paths among obstacles in the plane. International Journal of
Computational Geometry & Applications, 6(3):309–332, 1996.

27 J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 633–701. North-Holland,
2000.

28 S. Sen. Approximating shortest paths in graphs. In Proceedings of Workshop on Algorithms
and Computation, pages 32–43, 2009.

29 E. Welzl. Constructing the visibility graph for n-line segments in O(n2) time. Information
Processing Letters, 20(4):167–171, 1985.

30 A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related
problems. SIAM Journal on Computing, 11(4):721–736, 1982.

A Appendix

Comparison with previous results is depicted in Table 1.
In Chiang and Mitchell [7], hs (resp. ht) is the number of vertices visible from s (resp.

t). Both the Chen [4] and Arikati et al. [2] output a shortest path in additional O(L) time,
where L is the number of edges of the output path. The r in Arikati et al. [2] is an arbitrary
integer such that 1 ≤ r ≤ n.

http://arxiv.org/abs/1011.6481

R. Inkulu and S. Kapoor 11:17

Ta
bl
e
1
C
om

pa
ris

on
w
ith

pr
ev
io
us

re
su
lts

.

P
re
pr
oc
es
si
ng

tim
e

Sp
ac
e

Q
ue

ry
tim

e
T
im

e
St
re
tc
h

C
om

m
en
t

O
ur

re
su
lts

-
-

-
O

(n
+
h

((
lg
n

)+
(lg

h
)1+

δ
+

1 ε
lg

h ε
))

1
+
ε

no
n-
co
nv

ex
-

-
-

O
(n

+
h ε

lg
h ε

)
1

+
ε

co
nv

ex
O

(n
+

h ε
2
(lg

h ε
)+

h ε
(lg

h ε
)2

)
O

(h ε
)

O
(

1 ε
6
(lg

h ε
)2

)
-

2
+
ε

co
nv

ex
A
ga
rw

al
et

al
.[
1]

-
-

-
O

(n
+

h √
ε

lg
(h ε

))
1

+
ε

co
nv

ex
C
hi
an

g
&

M
itc

he
ll
[7
]

-
O

(n
5+
ε
)

o(
n

)
-

op
tim

al
no

n-
co
nv

ex
-

O
(n

5+
10
δ

+
ε
)

O
(n

1−
δ

lg
n

)
-

op
tim

al
no

n-
co
nv

ex
-

O
(n

10
lg
n

)
O

((
lg
n

)2
)

-
op

tim
al

no
n-
co
nv

ex
-

O
(n

11
)

O
(lg

n
)

-
op

tim
al

no
n-
co
nv

ex
-

O
(n

5
)

O
(lg

n
+

m
in
h
s
,h
t
)

-
op

tim
al

no
n-
co
nv

ex
-

O
(n

+
h

5
)

O
(h

lg
n

)
-

op
tim

al
no

n-
co
nv

ex
C
he

n
[4
]

-
O

(n
lg
n

+
n ε

)
O

(lg
n ε

+
1 ε
2
)

-
6

+
ε

no
n-
co
nv

ex
A
rik

at
ie

t
al
.[
2]

O
(n

2
√
r
)

O
(n

2
√
r
)

O
(lg

n
+

√
r)

-
√

2
+
ε

no
n-
co
nv

ex
O

(n
lg
n

)
O

(n
)

O
(n

)
-

√
2

+
ε

no
n-
co
nv

ex
O

(n
3/

2
)

O
(n

3/
2
)

O
(lg

n
)

-
2√

2
+
ε

no
n-
co
nv

ex
O

(
n

3/
2

√
lg
n

)
O

(n
lg
n

)
O

(lg
n

)
-

3√
2

+
ε

no
n-
co
nv

ex

ISAAC 2019

Reachability in High Treewidth Graphs
Rahul Jain
Indian Institute of Technology Kanpur, India
jain@iitk.ac.in

Raghunath Tewari
Indian Institute of Technology Kanpur, India
rtewari@iitk.ac.in

Abstract
Reachability is the problem of deciding whether there is a path from one vertex to the other in
the graph. Standard graph traversal algorithms such as DFS and BFS take linear time to decide
reachability; however, their space complexity is also linear. On the other hand, Savitch’s algorithm
takes quasipolynomial time although the space bound is O(log2 n). Here, we study space efficient
algorithms for deciding reachability that run in polynomial time.

In this paper, we show that given an n vertex directed graph of treewidth w along with its tree
decomposition, there exists an algorithm running in polynomial time and O(w log n) space that
solves the reachability problem.

2012 ACM Subject Classification Theory of computation

Keywords and phrases graph reachability, simultaneous time-space upper bound, tree decomposition

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.12

Funding Rahul Jain: Ministry of Human Resource Development, Government of India
Raghunath Tewari: DST Inspire Faculty Grant, Visvesvaraya Young Faculty Fellowship

1 Introduction

Given a graph G and two vertices u and v in G, the reachability problem is to decide if
there exists a path from u to v in G. This problem is NL-complete for directed graphs and
L-complete for undirected graphs [17]. Hence its study gives important insight into space
bounded computations. We will henceforth refer to the problem of directed graph reachability
as Reach. The famous open question L ?= NL essentially asks if there is a deterministic
logspace algorithm for Reach or not. Reach can be solved in Θ(n logn) space and optimal
time using standard graph traversal algorithms such as DFS and BFS. We also know, due
to Savitch, that it can be solved in Θ(log2 n) space [18]. However, Savitch’s algorithm
requires nΘ(logn) time. Wigderson surveyed reachability problems in which he asked if there
is an algorithm for Reach that runs simultaneously in O(n1−ε) space (for any ε > 0) and
polynomial time [19]. Here, we make some partial progress towards answering this question.

In 1998 Barnes et al. made progress in answering Wigderson’s question for general graphs
by presenting an algorithm for Reach that runs simultaneously in n/2Θ(

√
logn) space and

polynomial time [6]. For several other topologically restricted classes of graphs, there has been
significant progress in giving polynomial time algorithms for Reach that run simultaneously
in sublinear space. For grid graphs a space bound of O(n1/2+ε) was first achieved [4]. The
same space bound was then extended to all planar graphs by Imai et al. [14]. Later for planar
graphs, the space bound was improved to Õ(n1/2) space by Asano et al. [5]. For graphs of
higher genus, Chakraborty et al. gave an Õ(n2/3g1/3) space algorithm which additionally
requires, as an input, an embedding of the graph on a surface of genus g [8]. They also gave
an Õ(n2/3) space algorithm for H minor-free graphs which requires tree decomposition of

© Rahul Jain and Raghunath Tewari;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8567-9475
mailto:jain@iitk.ac.in
mailto:rtewari@iitk.ac.in
https://doi.org/10.4230/LIPIcs.ISAAC.2019.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Reachability in High Treewidth Graphs

the graph as an input and O(n1/2+ε) space algorithm for K3,3-free and K5-free graphs. For
layered planar graphs, Chakraborty and Tewari showed that for every ε > 0 there is an O(nε)
space algorithm [9].

Treewidth is a well-studied property of graphs. The value of treewidth can range from 1
(for a tree) to n− 1 (for a complete graph on n vertices). The computational complexity of
many difficult problems becomes easy for bounded treewidth graphs. We can solve classical
problems such as the Hamiltonian circuit, vertex cover, Steiner tree, and vertex coloring in
linear time for bounded treewidth [3]. The weighted independent set problem can be solved
in O(2wn) time [7]. It is NP-complete to find on given input 〈G, k〉 if G has treewidth k [2].
However, an O(

√
logn)-factor approximation algorithm is known [12]. Series-parallel graphs

are equivalent to graphs of treewidth 2. For them, Jakoby and Tantau showed a logspace
algorithm for Reach [15]. Das et al. extended the logspace bound to bounded treewidth
graphs when the input contains the tree decomposition [10]. Elberfeld et al. showed a
logspace algorithm for any monadic second order property of a logical structure of bounded
treewidth [11].

1.1 Our Result
In this paper, we present a polynomial time algorithm with improved space bound for deciding
reachability in directed graphs of treewidth w. In particular, we show the following result.

I Theorem 1. Given a directed graph G, a tree decomposition T of G of treewidth w, and
two vertices u and v in G, there is an O(w logn) space and polynomial time algorithm that
decides if there is a path from u to v in G.

Das et al. presented a logspace algorithm to solve reachability in constant treewidth
graph given a tree decomposition as input [10]. Although they do not explicitly analyze the
space and time bounds of their algorithm to show how it is dependent on the treewidth w of
the graph, a naive analysis would show that their algorithm requires Ω(w2 logn) space and
nΩ(w logw) time.

The graph reachability problem can also be expressed by a constant-size MSO formula.
Hence the result by Elberfeld et al. [11] solves for a more general problem and implies
a logspace algorithm for reachability in constant treewidth graphs. However, the space
required by their algorithm is Ω(p(w) logn) and time required is Ω(nq(w)) where p and q are
super-linear polynomials.

It is worth noting here that both the algorithms of Elberfeld et al. [11] and Das et al.
[10] cease to be polynomial time algorithms for classes of graphs whose treewidth w is not
constant. These include a large number of interesting classes of graphs mentioned in the
introduction. Our algorithm requires O(w logn) space and O(poly(n,w)) time and therefore
has a better time and space complexity for solving the reachability problem when compared
to the results of [11] and [10].

The notion of treewidth is intimately connected with a well-studied notion of vertex-
separators in a graph. It is known that if a graph has treewidth w, then the graph contains
vertex separators of size w + 1. To prove Theorem 1, we proceed in the following way:

We first show that, using the input tree decomposition, vertex separators of size w + 1 of
input graph can be constructed in O(w logn) space and polynomial time.
Using the algorithm for vertex separator as a subroutine, we construct a new binary
balanced tree decomposition of G having O(w) treewidth and logarithmic depth.
We use the new tree decomposition to solve the reachability problem.

R. Jain and R. Tewari 12:3

To solve the reachability problem in the last step, we use the universal sequences of Asano
et al. [5] to determine an appropriate order to process the vertices of the input graph.

Note that we use the input tree decomposition only to compute vertex separators in
the graph. Hence, the method presented here gives a slightly stronger result when dealing
with classes of graph where an O(w logn) space and polynomial time algorithm for finding a
vertex separator of size O(w) is known. For such graphs, we can waive the requirement of
additional tree decomposition in the input and still get similar space and time complexity.
We state this more formally in Theorem 2.
I Theorem 2. Let G be a class of graphs and w : N × N → N be a function such that for
every graph G ∈ G with n vertices and m edges, treewidth of G is atmost w(n,m). If there
exist an O(w(n,m) logn) space and polynomial time algorithm, that given a graph G ∈ G
and a set U of V (G), outputs a separator of U in G of size O(w(n,m)), then there exists an
algorithm to decide reachability in G that uses O(w(n,m) logn) space and polynomial time.
For constant treewidth graphs, the result of Elberfeld et al. [11] is equipped with a logspace
algorithm to construct a binary balanced tree decomposition of O(w) treewidth whose depth
is O(w logn). Since vertex separators can be constructed in logspace for constant treewidth
graphs, our technique can be used to construct a binary balanced tree decomposition of
O(w) treewidth with O(logn) depth in logspace. The depth of our tree decomposition is
independent of w.

1.2 Consequences of our Result
For graphs of treewidth n1−ε, for any ε > 0, our algorithm gives an O(n1−δ) space and
polynomial time algorithm (for some δ). For graphs of polylog treewidth, we show that
reachability can be solved in polynomial time and polylog space.

Graphs which have genus g have treewidth O((gn)1/2); hence our algorithm gives a
O((gn)1/2 logn) space and polynomial time algorithm for it.

For planar graphs, our approach gives a O(n1/2 logn) space and polynomial time algorithm.
Note that for planar graphs, a careful analysis of the separator construction algorithm of Imai
et al. shows that one can construct a separator for planar graphs in polynomial time and
O(n1/2 logn) space [14]. We can use this separator construction and waive the requirement
of having the tree decomposition as input for planar graphs. As a result, we get the best
known simultaneous time space bound for reachability in planar graphs.

Let H be a graph on h vertices. An H minor-free graph is also, by definition, Kh minor
free where Kh is a complete graph on h vertices. Graphs which exclude a fixed minor Kh,
have a treewidth of atmost hn1/2 [1][16]. Hence, for constant h, our approach results in
O(n1/2 logn) space and polynomial time algorithm for H minor-free graphs.

A chordal graph on n vertices with m edges have a separator of size O(m1/2)[13]. The
proof of existence of such a separator in [13] directly leads to a O(m1/2 logn) space and
polynomial time algorithm of constructing it. We can use this separator and obtain an
O(m1/2 logn) space and polynomial time algorithm to solve the reachability problem in
chordal graphs without the input tree decomposition.

1.3 Organization of the Paper
In Section 2 we give the definitions, notations and previously known results that we use in
this paper. In Section 3 we show how to efficiently compute a logarithmic depth binary tree
decomposition of G having a similar width from the input tree decomposition. In Section 4
we give the reachability algorithm and prove its correctness and complexity bounds.

ISAAC 2019

12:4 Reachability in High Treewidth Graphs

2 Preliminaries

For a graph G on n vertices, we denote its vertex and edge sets as V (G) and E(G) respectively.
Let W be a subset of V (G). We denote the subgraph of G induced by the vertices in W by
G[W]. Let [n] denote the set {1, 2, . . . , n} for n ≥ 1. We assume that the vertices of an n
vertex graph are indexed by integers from 1 to n.

We next define the terminology and notations related to tree decomposition that we use
in this paper. For tree decomposition, we will treat the graph as an undirected graph by
ignoring the direction of its edges.

For a graph G, a tree decomposition is a labeled tree T where the labeling function
B : V (T)→ {X | X ⊆ V (G)} has the following property: (i)

⋃
t∈V (T)B(t) = V (G), (ii) for

every edge {v, w} in E(G), there exists t in V (T) such that v and w are in B(t), and (iii)
if t3 is on the path from t1 to t2 in T , then B(t1) ∩B(t2) ⊆ B(t3). The treewidth of a tree
decomposition T is maxt∈V (T)(B(t)− 1). Finally the treewidth of a graph G is the minimum
treewidth over all tree decompositions of G. We refer to an element t of V (T) as a node and
the set B(t) to be the bag corresponding to t.

We assume that in a binary tree, every node has zero or two children. Moreover in a
balanced tree, all paths from the root to leaves have the same length.

The next tool that we would be using is that of separators in graphs. For a subset W of
V (G), a vertex separator of W in G, is a subset S of V (G) such that every component of
the graph G[V (G) \ S] has at most |W |/2 vertices of W .

We state in Lemma 3 the commonly known result about vertex separators in the form
that we would be using it.

I Lemma 3. Let G be a graph and T be a tree decomposition of G. For every subset U of
V (G), there exists a node t in V (T) such that the bag B(t) is a vertex separator of U in G.

Proof. We root the tree arbitrarily. For a node t in V (T), we denote its parent by parent(t).
Let C(t) = B(t) ∩ U . We define weights on the nodes of T , such that each vertex of U is
counted in exactly one of the weights. α(t) = |C(t)\C(parent(t))|. Thus,

∑
t∈V (T) α(t) = |U |.

In a weighted tree, there exists a node whose removal divides the tree into components whose
weights are at most half the total weight of the tree. Let this node be t∗ for the weight
function α. We claim that B(t∗) is the vertex separator for U in G. To prove this, we will
prove that for a connected component H of G[V (G) \B(t∗)], H is a subset of (∪t∈TiB(t))
for some subtree Ti of T \ {t∗}. Since the total weight of this subtree is at most half the
total weight on T , it would follow that the number of vertices of U \B(t∗) contained in this
set would be at most half, thus proving the lemma.

We will now prove that H ⊆ (∪t∈Ti
B(t)). We first observe that a vertex v ∈ V (G) \B(t∗)

can be in the bag of only one of the subtree, since otherwise, it would belong to B(t∗) as
well, due to the third property of tree decomposition. Now, let us assume that there are two
vertices of H which belong to the bags of two different subtrees, say Ti and Tj . Since they
are in a connected component, there will exist a path between them. In this path, there will
exist an edge, whose endpoints v1 and v2 would belong to different subtrees. We thus get a
contradiction to the second property of tree decomposition. J

We use a multitape Turing machine model to discuss the space-bounded polynomial time
algorithms. A multitape Turing machine consists of a read-only input tape, a write-only
output tape, and a constant number of work tapes. We measure the space complexity of a
multitape Turing machine by the total number of bits used in the worktapes.

R. Jain and R. Tewari 12:5

If we compose two polynomial time algorithms A1 and A2, requiring space S1(n) and
S2(n) respectively, such that the output of A1 is used as an input to A2, then the total space
used in composing A1 and A2 is S(n) = O(S1(n) + S2(n)). To see this note that whenever
A2 queries for an input bit, we simulate A1 until it yields the desired bit, and then resume
the simulation of A2. The total time would remain polynomial as it would be a product of
two polynomials.

3 Finding a Tree Decomposition of Small Depth

In this section, we show how to compute a binary balanced tree decomposition (say T ′) with
logarithmic depth and treewidth O(w). We require such a tree decomposition because our
main algorithm for reachability (Algorithm 4) might potentially store reachability information
for all vertices corresponding to the bags of treenodes in a path from the root to a leaf. Once
the depth is reduced to O(logn) with bag size being O(w), the algorithm will only need to
store reachability information of O(w logn) vertices.

Thus, we prove the following theorem.

I Theorem 4. Given as input 〈G,T 〉 where G is a graph and T is a tree decomposition of
G with treewidth w, there exists an algorithm working simultaneously in O(w logn) space
and polynomial time which outputs a binary tree decomposition T ′ of G which has treewidth
6w + 6 and depth O(logn).

We will now develop a framework that will help us to prove Theorem 4.
First, we show how to compute a vertex separator of a given set U in G in polynomial

time and O(w logn) space. We cycle through every node in the tree T and store the set of
vertices in B(t). Doing this requires O(w logn) space. Then using Reingold’s undirected
reachability algorithm [17], we count the number of vertices of U in each of the components
of G[V (G) \B(t)]. By Lemma 3, at least one of these sets B(t) would be a separator of U in
G. Its size will be the size of B(t) for some treenode t. Hence it can be at most w + 1. We
summarise this procedure in Lemma 5.

I Lemma 5. Given as input 〈G,T, U〉 where G is a graph, T is a tree decomposition of G
with treewidth w, and U is a subset of V (G), there exists an O(w logn) space and polynomial
time algorithm that computes a vertex separator of U in G of size atmost w + 1.

When G and T are clear from the context, we will refer to the vertex separator of U in G
that is returned by the algorithm of Lemma 5 as sep(U).

3.1 Constructing a Recursive Decomposition
As an intermediate step, we construct a recursive decomposition of the graph which is a tree
whose nodes represent a subgraph of G. The root node represents the entire G. We then
remove a separator from it. We assume inductively that each of the connected components
has its recursive decomposition and connect the root node to the roots of these recursive
decompositions of connected components. We select a separator such that a small number of
bits can encode each node. This recursive decomposition acts as an intermediate to our tree
decomposition. Once we have a recursive decomposition of the graph, we add labels to each
node such that it satisfies the properties of tree decomposition.

I Definition 6. Let Z ⊆ V (G) and a vertex r ∈ (V (G)\Z). Define G〈Z,r〉 to be the subgraph
of G induced by the set of vertices in the connected component of G[V (G) \Z] which contains
r. Define the tree rdtree(Z, r) which we call recursive decomposition as follows:

ISAAC 2019

12:6 Reachability in High Treewidth Graphs

The root of rdtree(Z, r) is 〈Z, r〉.
Let Z ′ = Z ∪ sep(Z) ∪ sep(V (G〈Z,r〉)) and let r1, . . . , rk be the lowest indexed vertices in
each of the connected components of G[(V (G〈Z,r〉) \Z ′]. The children of the root are roots
of the recursive decompositions rdtree(Z ′i, ri) for each i ∈ {1, . . . , k}, where Z ′i is the set
of vertices in Z ′ that are adjacent to at least one vertex of V (G〈Z′,ri〉) in G.

Observe that for the graph G the recursive decomposition tree structure has logarithmic
depth, and we can encode a node 〈Z, r〉 using O(|Z| logn) bits.

I Lemma 7. Let v0 be a vertex in G. Then the depth of the recursive decomposition
rdtree(∅, v0) is at most logn. Moreover, for a node 〈Z, r〉 in rdtree(∅, v0), we have |Z| ≤ 4w+4.

Proof. We prove a more general result that for any set of vertices Z ⊆ V (G) and a vertex
r ∈ (V (G) \ Z), the depth of rdtree(Z, r) is at most logn. Let Z ′ be as in Definition 6. By
Definition 6, the set sep(V (G〈Z,r〉)) is a subset of Z ′. Hence removal of Z ′ divides the graph
G〈Z,r〉 into components each of which is of size at most half that of the size of G〈Z,r〉. Since
r1, . . . , rk are chosen from these components, it follows that the size of G〈Z′,ri〉 is at most
half of G〈Z,r〉. Additionally, in Definition 6 the sets Z ′i are chosen in such a manner that the
graphs G〈Z′

i
,ri〉 and G〈Z′,ri〉 are equivalent. This proves that the size of the graph G〈Z,r〉

halves at each level of the recursive decomposition. Hence rdtree(Z, r) would have at most
logn depth.

We prove the second part of the lemma by induction on the depth of the node 〈Z, r〉
in rdtree(∅, v0). This is trivially true for the root. Now let 〈Z ′i, ri〉 be a child of 〈Z, r〉. Let
Zi be the set of vertices of Z \ sep(Z) which are adjacent to at least one of the vertices
of V (G〈Z′,ri〉) in G, and let Ci be the unique connected component of G[V (G) \ sep(Z)]
whose intersection with G〈Z′,ri〉 is not empty. Since sep(Z) is a separator of Z in G, Ci
will contain at most |Z|/2 vertices of Z. This shows that |Zi| ≤ |Z|/2. By Definition 6, we
know that |Z ′i| ≤ |Zi|+ |sep(Z)|+ |sep(V (G〈Z,r〉))|. The size of sep(V (G〈Z,r〉)) ≤ w + 1 and
sep(Z) ≤ w + 1 by Lemma 5. Lastly by induction |Z|/2 ≤ (4w + 4)/2. Hence it follows that
|Z ′i| ≤ 4w + 4. J

We now show that the recursive decomposition tree corresponding to G can be computed
efficiently as well. To prove this, we give procedures that, given a node in the recursive
decomposition tree, can compute its parent and children efficiently.

Algorithm 1 Computes the children of the node 〈Z, r〉 in rdtree(∅, v0).

Input: 〈G,T, v0, Z, r〉
Output: Children of the node 〈Z, r〉 in rdtree(∅, v0)

1 Compute sep(Z) using Lemma 5
2 Compute sep(V (G〈Z,r〉)) using Lemma 5
3 Let Z ′ := Z ∪ sep(Z) ∪ sep(V (G〈Z,r〉))
4 for v ∈ V (G) do
5 if v ∈ V (G〈Z,r〉) and v is smallest indexed vertex in G〈Z′,v〉 then
6 Let Ẑ := {u ∈ Z ′ | u is adjacent to V (G〈Z′,v〉) in G}
7 Output 〈Ẑ, v〉
8 endif
9 endfor

Algorithm 1 outputs the children of 〈Z, r〉 in rdtree(∅, v0). Note that we don’t explicitly
store V (G〈Z,r〉) but compute it whenever required. That is, whenever we need to check if a
vertex belongs to V (G〈Z,r〉), we check if it is connected to r in the underlying undirected graph

R. Jain and R. Tewari 12:7

of G \ Z using Reingold’s algorithm. The separators in line 1 and 2 both have cardinality at
most w+ 1 and can be computed in O(w logn) space and polynomial time by Lemma 5. The
cardinality of Z is at most 4w+ 4 by Lemma 7. Therefore |Z ′| is at most 6w+ 6. The size of
Ẑ computed is 4w + 4 by Lemma 7. Thus the space required by Algorithm 1 is O(w logn).

Algorithm 2 Computes the parent of the node 〈Z, r〉 in rdtree(∅, v0).

Input: 〈G,T, v0, Z, r〉
Output: parent of the node 〈Z, r〉 in rdtree(∅, v0)

1 Set current := 〈∅, v0〉
2 while 〈Z, r〉 is not a child of current do
3 Let 〈Z ′, r′〉 be the child of current such that G〈Z′,r′〉 contains r
4 Set current := 〈Z ′, r′〉
5 end
6 Output current

Algorithm 2 outputs the parent of 〈Z, r〉 in rdtree(∅, v0). It uses Algorithm 1 as a
subroutine to get the children of a node in rdtree(∅, v0). Hence we can traverse the tree
rdtree(∅, v0) in O(w logn) space and polynomial time. We summarize the above in Lemma 8.

I Lemma 8. Let G be a graph, T be a tree decomposition of G with treewidth w and v0 be a
vertex in G. Given 〈G,T, v0〉 and the node 〈Z, r〉 in rdtree(∅, v0), there exist algorithms that
use O(w logn) space and polynomial time, and output the children and parent of 〈Z, r〉 re-
spectively. As a consequence rdtree(∅, v0) can be traversed in O(w logn) space and polynomial
time as well.

3.2 Constructing a New Tree Decomposition
We now construct a new tree decomposition of G from the recursive decomposition defined
earlier. The new tree decomposition will have the same tree structure as that of the recursive
decomposition. However, we will assign it a labeling function. The subgraph that a node of
the recursive decomposition represents is a connected component obtained after removing a
set of separators from G. The corresponding label for this node in the new tree decomposition
is simply the set of separator vertices in the boundary of this subgraph together with the
separator required to subdivide this subgraph further. We formalize this in Definition 9.

I Definition 9. Let T̂ be the tree corresponding to the recursive decomposition rdtree(∅, v0).
For a node 〈Z, r〉 in rdtree(∅, v0), we define the function B̂(〈Z, r〉) as, B̂(〈Z, r〉) := Z ∪
((sep(V (G〈Z,r〉)) ∪ sep(Z)) ∩ V (G〈Z,r〉)).

We first show that T̂ is a tree decomposition of G as well, with labeling function B̂.

I Lemma 10. The tree T̂ defined in Definition 9 along with the labeling function B̂, is a
tree decomposition of G of width 6w + 6. Moreover, the depth of T̂ is at most logn.

Proof. We claim that for a node v in G〈Z,r〉, there exists a vertex 〈Z ′, r′〉 in rdtree(Z, r)
such that B̂(〈Z ′, r′〉) contains v. We prove this by induction on the depth of the recursive
decomposition rdtree(Z, r). If rdtree(Z, r) is just a single node, then v is in sep(V (G〈Z,r〉)) by
construction. Otherwise v is either in (sep(Z) ∪ sep(V (G〈Z,r〉))) or in one of the connected
components of G[V (G〈Z,r〉) \ (sep(Z) ∪ sep(V (G〈Z,r〉)))]. If v is in (sep(Z) ∪ sep(V (G〈Z,r〉))),
then v is in B̂(〈Z, r〉) and we are done. Otherwise one of the children of 〈Z, r〉 will be

ISAAC 2019

12:8 Reachability in High Treewidth Graphs

〈Z̃, r̃〉 such that v is in G〈Z̃,r̃〉. Now by induction hypothesis, there exists a vertex 〈Z ′, r′〉
in rdtree(Z̃, r̃) such that B̂(〈Z ′, r′〉) contains v. It follows that every vertex v of V (G) is
contained in the label of at least one of the vertices of T̂ , satisfying the first property of tree
decomposition.

We claim that for any edge (u, v) in G such that {u, v} ⊆ V (G〈Z,r〉)∪Z, either both u and
v are in B̂(〈Z, r〉) or there exists a child 〈Z ′i, ri〉 of 〈Z, r〉 such that {u, v} ⊆ V (G〈Z′

i
,ri〉)∪Z ′i.

Since u and v are connected by an edge, there cannot exist any set of vertices Ẑ such that u and
v are in different connected components of G[V (G)\Ẑ]. Let Z ′ = Z∪sep(Z)∪sep(V (G〈Z,r〉)).
If both u and v are in Z ′, then they are in B̂(〈Z, r〉). Otherwise, let ri be the lowest indexed
vertex in the connected component of G[(V (G〈Z,r〉) \Z ′] which contains either of u or v. Let
Z ′i is the set of vertices in Z ′ that are adjacent to at least one of the vertices of V (G〈Z′,ri〉)
in G. Now, if both u and v are not in V (G〈Z′

i
,ri〉), then one of them have to be in Z ′i. Hence

in all cases, u and v are contained in V (G〈Z′
i
,ri〉) ∪ Z ′i. Hence by induction on the depth of

the tree decomposition T̂ we have that there exists a treenode in T̂ whose bag contains both
u and v, satisfying the second property of tree decomposition.

To establish the third property of tree decomposition we first show that if v is not in
Z ∪ V (G〈Z,r〉), then for no descendant 〈Z̃, r̃〉 of 〈Z, r〉 will B̂(〈Z̃, r̃〉) contain v. We show
this by induction on the depth of the recursive decomposition. If there is only one node
in rdtree(Z, r), then B̂(〈Z, r〉) does not contain v by definition. Otherwise, no connected
component of G[V (G〈Z,r〉) \ Z ′] contains v. Also Z ′i for any of its children will not contain v
as claimed.

Now let 〈Z, r〉 be a treenode in T̂ . We claim that for any child 〈Z ′i, ri〉 of 〈Z, r〉 if a
vertex v is in B̂(〈Z, r〉), then either v is also in B̂(〈Z ′i, ri〉) or no descendant of 〈Z ′i, ri〉 has a
bag corresponding to it which contains v. Since any connected component of G[V (G〈Z,r〉) \
B̂(〈Z, r〉)] cannot contain v, v is not in V (G〈Z′

i
,ri〉) for any child 〈Z ′i, ri〉 of 〈Z, r〉. Now if v

is not in B̂(〈Z ′i, ri〉), then it implies that v is not in Z ′i ∪ V (G〈Z′
i
,ri〉) as well. Hence the third

property of tree decomposition is satisfied as well.
For a vertex 〈Z, r〉 in rdtree(∅, v0), we have |Z| ≤ 4w + 4, sep(Z) ≤ w + 1 and

sep((V (G〈Z,r〉)) ≤ w + 1 as well. Hence B̂(〈Z, r〉) ≤ 6w + 6.
Since the tree T̂ and rdtree(∅, v0) have the same structure, the bounds on their depths

are the same. J

Next, we observe that given 〈Z, r〉, we can compute B̂(〈Z, r〉) in O(w logn) space and
polynomial time. Hence we have the following Lemma.

I Lemma 11. Given a graph G and a tree decomposition T of G with treewidth w, there is
an algorithm that can compute a new tree decomposition T̂ of G having treewidth at most
6w + 6 and depth at most logn, using O(w logn) space and polynomial time. Moreover, the
tree T̂ can be traversed in O(w logn) space and polynomial time as well.

Note that the tree T̂ might not be a binary tree since a separator might disconnect the
graph into more than two components. However, to decide reachability in the later part of
this paper, we require the tree decomposition to have bounded degree as well. We achieve this
by using the following lemma from Elberfeld et al. to get the required tree decomposition T ′.

I Lemma 12 ([11]). There is a logspace algorithm that on the input of any logarithmic
depth tree decomposition of a graph G outputs a logarithmic depth, binary balanced tree
decomposition of G having the same treewidth.

R. Jain and R. Tewari 12:9

Now combining Lemma 11 and Lemma 12 we get the proof of Theorem 4.
We observe here that the input tree decomposition T is used only to compute a vertex

separator in G.
The requirement of input tree decomposition can be waived for those classes of graphs

where vertex separators can be constructed in a space efficient manner. For example, in
planar graphs [14] and chordal graphs [13], we can use their respective separator algorithms
as subroutines instead of the algorithm of Lemma 5 in lines 1 and 2 of the Algorithm 1.

4 Deciding Reachability using a Binary Balanced Tree Decomposition

In this section, we show that given a graph G along with a binary balanced tree decomposition
T whose depth is O(logn); there exists an efficient algorithm to decide reachability in G in
O(w logn) space and polynomial time. In particular, we show the following theorem.

I Theorem 13. Given 〈G,T, u, v〉 as input, where G is a graph on n vertices, u and v are
two vertices of G, and T is a binary balanced tree decomposition of G having depth h and
treewidth w, there exists an O(wh+ logn) space and O(poly(2h, w, n)) time algorithm that
solves reachability in G.

We first state the notation required to prove Theorem 13. This notation is commonly
used to describe dynamic programming algorithms which use tree decomposition. Let T
be a rooted binary tree. We denote root(T) to be the root of T and for a node t ∈ T ,
we denote left(t) and right(t) to be the left and right child of t respectively (the value is
NULL if a child does not exist). For two nodes t and t′ in T , if t′ lies in the path from
root(T) to t, then we say that t′ is an ancestor of t and t is a descendent of t′. For a
treenode t, let Be(t) denote the set of edges of G whose both endpoints are in B(t). We
define a subgraph of G with respect to the treenode t consisting of the ancestor vertices
of t. Formally, the vertex set is V anc

t =
⋃
{t′ is an ancestor of t}B(t′), and the edge set is

Eanc
t =

⋃
{t′ is an ancestor of t}Be(t′) and the graph Ganc

t = (V anc
t , Eanc

t). Now, we define a
subgraph of G with respect to the treenode t consisting of the ancestor as well as descendent
vertices of t. Formally, the vertex set is Vt =

⋃
{t′ is an ancestor or descendent of t}B(t′), the edge

set is Et =
⋃
{t′ is an ancestor or descendent of t}Be(t′) and the graph Gt = (Vt, Et).

We assume that the vertices u and v are in root(T), for otherwise, we can add them in
all of the bags of the given tree decomposition. Also, we assume that n is a power of 2.

We now explain our reachability algorithm. For a node t in the tree decomposition T
consider the graph Gt. Let P be a path of length d from a vertex of V anc

t to another (assume
without loss of generality that d a power of 2). We define a sequence of leaves SEQt,d of T
(see Section 4.1). Each leaf f in this sequence corresponds to a set of at most wh vertices Vf .
Now subdivide the path P into subpaths P1, P2, . . . , Pk such that each Pi completely lies
either in Gleft(t) or in Gright(t). We now use the sequence SEQt,d to give an iterative procedure
to combine the results of the subpaths Pi’s to determine the path P . In Algorithm 4 we
show how to use the sequence SEQt,d to simulate the described method. We show in Lemma
18 that processing SEQt,d is sufficient to determine a path of length at most d between two
vertices in the graph Gt.

4.1 Constructing the Sequence SEQt,d

We will be using universal sequences and the following lemma about it from Asano et al.
to construct the sequence of leaves.

ISAAC 2019

12:10 Reachability in High Treewidth Graphs

For every integer s ≥ 0, a universal sequence σs of length 2s+1 − 1 is defined as follows:

σs =
{
〈1〉 s = 0
σs−1 � 〈2s〉 � σs−1 s > 0

where � is the concatenation operation.

I Lemma 14 ([5]). The universal sequence σs satisfies the following properties:
- Let σs = 〈c1, . . . , c2s+1−1〉. Then for any positive integer sequence 〈d1, . . . , dx〉 such that

Σdi ≤ 2s, there exists a subsequence 〈ci1 , . . . , cix〉 such that dj ≤ cij for all j ∈ [x].
- The sequence σs contains exactly 2s−i appearances of the integer 2i and nothing else.
- The sequence σs is computable in O(2s) time and O(s) space.

IDefinition 15. Let T be a binary balanced tree. Let t be a node in T and d be a positive power
of 2. We define a sequence SEQt,d consisting of leaves of T in the following way: If t is not a
leaf then SEQt,d = SEQleft(t),c1 �SEQright(t),c1 �SEQleft(t),c2 �SEQright(t),c2 � · · · �SEQright(t),c2d−1

where ci is the i-th integer in σlog d. Otherwise, if t is a leaf, SEQt,d is 〈t〉 concatenated with
itself d times. We also define SEQt,d(r) to be the leaf at the index r in the sequence SEQt,d.
The length of SEQt,d is the number of leaves in SEQt,d.

We show in Algorithm 3 how to construct the sequence SEQroot(T),d in O(h+ log d) space.
In Lemma 16 we give a closed form expression for the length of the sequence.

Algorithm to Compute SEQt,d

Algorithm 3 Computes the r-th element of the sequence SEQt,d.

Input: 〈t, d, r〉
1 while t is not a leaf do
2 Let m be the depth of the subtree of T rooted at t
3 Let i∗ be the smallest integer such that (r − 2

∑i∗

i=1 L(m/2, ci)) ≤ 0 where ci is
the i’th integer in the sequence σlog d

4 if r − 2
∑i∗−1
i=1 L(m/2, ci)− L(m/2, ci∗) ≤ 0 then

5 r ← r − 2
∑i∗−1
i=1 L(m/2, ci)

6 t← left(t)
7 else
8 r ← r − 2

∑i∗−1
i=1 L(m/2, ci)− L(m/2, ci∗)

9 t← right(t)
10 endif
11 d← ci∗

12 end
13 return t

I Lemma 16. Let T be a binary balanced tree. Let t be a node in T , d be a positive power
of 2 and h be the depth of subtree of T rooted at t. Then, the length of sequence SEQt,d is
2hd
(
h+log d

log d
)
.

Proof. Let L(h, d) be the length of the sequence SEQt,d. By definition of SEQt,d, we have

L(h, d) =
{

2
∑
c∈σlog d

L(h− 1, c) h > 0
d h = 0

R. Jain and R. Tewari 12:11

From lemma 14, we get that σlog d contains exactly d
2i occurrences of the integer 2i. Thus we

have:

L(h, d) =
{∑log d

i=0
d

2i−1L(h− 1, 2i) h > 0
d h = 0

We claim that L(h, d) = 2hd
(
h+log d

log d
)
and we prove this by induction on h. For h = 0, we

see that

2hd
(
h+ log d

log d

)
= d

(
log d
log d

)
= d

Now, we assume the statement to be true for smaller values of h. We see that:

L(h, d) =
log d∑
i=0

d

2i−1L(h− 1, 2i)

L(h, d) =
log d∑
i=0

d

2i−1 2h−12i
(
h+ i− 1

i

)

L(h, d) = 2hd
log d∑
i=0

(
h+ i− 1

i

)
using

(
a
r

)
=
(
a+1
r

)
−
(
a
r−1
)

L(h, d) = 2hd
log d∑
i=0

(
(
h+ i

i

)
−
(
h+ i− 1
i− 1

)
)

L(h, d) = 2hd
(
h+ log d

log d

)
J

I Lemma 17. Let T be a binary balanced tree of depth at most h. Let t be a node of T and
d be a power of 2. The sequence SEQt,d can be constructed in space O(h+ log d).

Proof. We see that L(m, d) is bounded by a polynomial in m and d. For a given integer
r, let i∗ be the smallest integer such that r − 2

∑i∗

i=1 L(m/2, ci) ≤ 0. By the definition,
SEQt,d(r) = SEQleft(t),ci∗ (r−2

∑i∗−1
i=1 L(m/2, ci)) if r−2

∑i∗−1
i=1 L(m/2, ci)−L(m/2, ci∗) ≤ 0

and SEQt,d(r) = SEQright(t),ci∗ (r − 2
∑i∗−1
i=1 L(m/2, ci)− L(m/2, ci∗)) otherwise.

The length of the sequence SEQt,d is at most 2hd
(
h+log d

log d
)
. Hence the number of bits

required to store any index of the sequence is at most log(2hd
(
h+log d

log d
)
) = O(h+ log d). This

gives the space bound of Algorithm 3. J

4.2 Algorithm to Solve Reachability
For a leaf t of T and a vertex v of G we use post(v) for the position of v in an arbitrarily
fixed ordering of the vertices of Gt.

I Lemma 18. Let G be a graph and T be a binary tree decomposition of G of width w and
depth h. Let t be a node of T and d be a power of 2. For each vertex y ∈ V anc

t , y is marked
after the execution of iterations in lines 4 to 13 of Algorithm 4 with values of f in SEQt,d if
there is a marked vertex x in V anc

t and a path from x to y in Gt of length at most d.

ISAAC 2019

12:12 Reachability in High Treewidth Graphs

Algorithm 4 Reach(G, T , u, v).

Input: 〈G,T, v, u〉
1 Let R0 be and R1 be two wh bit-vectors
2 Initialize t0 and t1 by two arbitrary leaves of T
3 Initialize all the bits of R0 with 0 and mark u (by setting the bit at position post0(u)

to 1)
4 for every leaf f in SEQroot(T),n in order do
5 Let i be the iteration number
6 Reset all the bits of Ri mod 2 to 0
7 Let ti mod 2 ← f

8 for all x marked in R(i−1) mod 2 and all y in Vf do
9 if (x, y) is an edge in G OR x = y then

10 Mark y in Ri mod 2 (by setting the bit at position posti mod 2
(y) to 1)

11 endif
12 endfor
13 endfor
14 If v is marked return 1; otherwise return 0.

Proof. We prove this by induction on the depth of subtree rooted at t. The base case is
trivial. Let p be the path of length at most d from x to y such that x is marked and x, y is in
V anc
t . We see that the edges of path p will belong to either Eleft(t) or Eright(t) (or both). We

label an edge of p as 0 if it belongs to Eleft(t), else label it as 1. Break down p into subpaths
p1, . . . , pk such that the edges in pi all have same label and label of edges in pi+1 is different
form label of pi. The endpoints yi of these subpaths will belong to V anc

t , for otherwise yi will
not be in B(t) but since yi has edges of both labels incident on it, it will be in bags of both
subtrees rooted at left(t) and right(t) contradicting the third property of tree decomposition.
Let li be the length of path pi. Since l1 + l2 + · · · + lk ≤ d, by Lemma 14, there exists a
subsequence 〈ci1 , ci2 , . . . , cik〉 of σlog d such that lj ≤ cij .

Consider the subsequence SEQleft(t),ci1
� SEQright(t),ci1

� SEQleft(t),ci2
� SEQright(t),ci2

�
SEQleft(t),ci3

� SEQright(t),ci3
� · · · � SEQleft(t),cik

� SEQright(t),cik
of SEQt,d. We claim that

yj is marked after the iterations with the value of f in SEQleft(t),cij
� SEQright(t),cij

. Since
yj−1 is marked before the iterations and the path pj is either the subgraph Gleft(t) or Gright(t)
having length at most cij , yj will be marked by induction hypothesis. We see that any vertex
present in V anct is present in Gt′ for all leaves t′ that is present in SEQt,d. Therefore, once
such a vertex is marked, it remains marked for the rest of these iterations. Hence, yj is
marked before the iterations with the value of f in SEQleft(t),cij+1

� SEQright(t),cij+1
J

I Lemma 19. On input of a graph G with n vertices and its tree decomposition T with
treewidth w and depth h; Algorithm 4 solves reachability in G and requires O(wh + logn)
space and time polynomial in 2h, n and w.

Proof. Algorithm 4 marks a vertex only if it is reachable from u. The proof of correctness
of the algorithm follows from Lemma 18 and the fact that u and v are both present in
B(root(T)) and u is marked before the first iteration of the for-loop in line 4.

We first analyze the space required. The size of bit-vectors R0 and R1 is wh. t0 and t1
are indices of nodes of T . The space required to store index of a vertex of T is O(h). Space
required to store a vertex of G is O(logn), and post(x) for a node t and a vertex x can be
found in O(logn+ h) space. Hence the total space required is O(wh+ logn).

R. Jain and R. Tewari 12:13

We now analyze the time bound. By Lemma 16, the size of SEQt,d is polynomial in 2h
and d, the number of iterations in the for-loop of line 4 is thus a polynomial. The other lines
do trivial stuff, and hence, the total running time of the algorithm is polynomial. J

Theorem 13 follows from Lemma 19. Combining Theorem 13 and Theorem 4 we get the
proof of Theorem 1. Theorem 2 follows in a similar way. We use the separator algorithm
which exists due to the hypothesis of Theorem 2 as subroutines instead of the algorithm of
Lemma 5 in lines 1 and 2 of the Algorithm 1. The rest of the analysis is similar.

References
1 Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar graphs.

Journal of the American Mathematical Society, 3(4):801–808, 1990.
2 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of Finding Embed-

dings in a k-Tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.
3 Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems

restricted to partial k-trees. Discrete applied mathematics, 23(1):11–24, 1989.
4 Tetsuo Asano and Benjamin Doerr. Memory-Constrained Algorithms for Shortest Path

Problem. In Proceedings of the 23rd Annual Canadian Conference on Computational Geometry
(CCCG 2011), 2011.

5 Tetsuo Asano, David Kirkpatrick, Kotaro Nakagawa, and Osamu Watanabe. Õ(
√

n)-Space
and Polynomial-Time Algorithm for Planar Directed Graph Reachability. In Proceedings of
the 39th International Symposium on Mathematical Foundations of Computer Science (MFCS
2014), pages 45–56, 2014.

6 Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A Sublinear Space,
Polynomial Time Algorithm for Directed s-t Connectivity. SIAM Journal on Computing,
27(5):1273–1282, 1998.

7 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial Optimization on Graphs of
Bounded Treewidth. The Computer Journal, 51(3):255–269, 2008.

8 Diptarka Chakraborty, Aduri Pavan, Raghunath Tewari, N. V. Vinodchandran, and Lin F.
Yang. New Time-Space Upperbounds for Directed Reachability in High-genus and H-minor-free
Graphs. In Proceedings of the 34th Annual Conference on Foundation of Software Technology
and Theoretical Computer Science (FSTTCS 2014), pages 585–595, 2014.

9 Diptarka Chakraborty and Raghunath Tewari. An O(nε) Space and Polynomial Time Al-
gorithm for Reachability in Directed Layered Planar Graphs. ACM Transactions on Computa-
tion Theory (TOCT), 9(4):19:1–19:11, 2017.

10 Bireswar Das, Samir Datta, and Prajakta Nimbhorkar. Log-Space Algorithms for Paths and
Matchings in k-Trees. Theory of Computing Systems, 53(4):669–689, 2013.

11 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace Versions of the Theorems of
Bodlaender and Courcelle. In Proceedings of the 51st Annual Symposium on Foundations of
Computer Science (FOCS 2010), pages 143–152. IEEE Computer Society, 2010.

12 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved Approximation
Algorithms for Minimum Weight Vertex Separators. SIAM Journal on Computing, 38(2):629–
657, 2008.

13 J. Gilbert, D. Rose, and A. Edenbrandt. A Separator Theorem for Chordal Graphs. SIAM
Journal on Algebraic Discrete Methods, 5(3):306–313, 1984.

14 Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, N. V. Vinodchandran, and Osamu Watanabe.
An O(n 1

2 +ε)-Space and Polynomial-Time Algorithm for Directed Planar Reachability. In
Proceedings of the 28th Conference on Computational Complexity, CCC 2013, pages 277–286,
2013.

15 Andreas Jakoby and Till Tantau. Logspace Algorithms for Computing Shortest and Longest
Paths in Series-Parallel Graphs. In Proceedings of the 27th Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2007), pages 216–227,
2007.

ISAAC 2019

12:14 Reachability in High Treewidth Graphs

16 Ken-ichi Kawarabayashi and Bruce Reed. A separator theorem in minor-closed classes. In
Proceedings of the 51st Annual Symposium on Foundations of Computer Science (FOCS 2010),
pages 153–162. IEEE, 2010.

17 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):17,
2008.

18 Walter J Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970.

19 Avi Wigderson. The complexity of graph connectivity. In Proceedings of the 17th International
Symposium on Mathematical Foundations of Computer Science (MFCS 1992), pages 112–132.
Springer, 1992.

Approximate Pricing in Networks: How to Boost
the Betweenness and Revenue of a Node
Ruben Brokkelkamp
Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
Ruben.Brokkelkamp@cwi.nl

Sven Polak
Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Netherlands
sven_polak@hotmail.com

Guido Schäfer
Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
Vrije Universiteit Amsterdam, Netherlands
g.schaefer@cwi.nl

Yllka Velaj
ISI Foundation, Turin, Italy
yllka.velaj@isi.it

Abstract
We introduce and study two new pricing problems in networks: Suppose we are given a directed graph
G = (V,E) with non-negative edge costs (ce)e∈E , k commodities (si, ti, wi)i∈[k] and a designated
node u ∈ V . Each commodity i ∈ [k] is represented by a source-target pair (si, ti) ∈ V × V and a
demand wi > 0, specifying that wi units of flow are sent from si to ti along shortest si, ti-paths
(with respect to (ce)e∈E). The demand of each commodity is split evenly over all shortest paths.
Assume we can change the edge costs of some of the outgoing edges of u, while the costs of all other
edges remain fixed; we also say that we price (or tax) the edges of u.

We study the problem of pricing the edges of u with respect to the following two natural
objectives: (i) max-flow: maximize the total flow passing through u, and (ii) max-revenue: maximize
the total revenue (flow times tax) through u. Both variants have various applications in practice.
For example, the max flow objective is equivalent to maximizing the betweenness centrality of u,
which is one of the most popular measures for the influence of a node in a (social) network. We
prove that (except for some special cases) both problems are NP-hard and inapproximable in general
and therefore resort to approximation algorithms. We derive approximation algorithms for both
variants and show that the derived approximation guarantees are best possible.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Graph algorithms analysis; Theory of computation → Shortest paths;
Theory of computation → Network flows

Keywords and phrases Network pricing, Stackelberg network pricing, betweenness centrality, revenue
maximization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.13

Funding Part of this research was funded by the NWO Gravitation Project NETWORKS, Grant
Number 024.002.003.

1 Introduction

Background and motivation. Nowadays, complex networks are used to model many differ-
ent real-world scenarios and the analysis of these networks has become an extremely active
research area. One of the main issues in complex network analysis is to identify the most
“important” nodes in a network. To this aim, researchers have defined several centrality

© Ruben Brokkelkamp, Sven Polak, Guido Schäfer, and Yllka Velaj;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 13; pp. 13:1–13:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1223-4616
mailto:Ruben.Brokkelkamp@cwi.nl
https://orcid.org/0000-0002-4287-6479
mailto:sven_polak@hotmail.com
mailto:g.schaefer@cwi.nl
mailto:yllka.velaj@isi.it
https://doi.org/10.4230/LIPIcs.ISAAC.2019.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Approximate Pricing in Networks

measures to capture different notions of importance. One of the most popular measures is
betweenness centrality, which ranks the nodes according to their frequency of occurrence on
shortest paths between all possible pairs of nodes.

In several scenarios, having a high centrality can have a positive impact on the node itself.
For example, in the context of social networks, Mahmoody et al. [22] show experimentally
that nodes with high betweenness are also nodes that are highly influential when spreading
information to other nodes in a social network. Valente and Fujimoto [33] claim that users with
a high betweenness centrality (also called “brokers” or “bridging individuals”) “may be more
effective at changing others, more open to change themselves, and intrinsically interesting
to identify”. Moreover, in the field of transportation network analysis Malighetti et al. [23]
analyze a network of 57 European airports and find that the betweenness centrality seems to
be positively correlated to the efficiency of an airport. Also, increasing the betweenness of an
airport would mean more traffic flowing through it and possibly attracting more customers
for its shops.

The betweenness centrality notion can also be used to investigate problems arising in
economics. For example, in the Netherlands it is an active debate whether the country is
a tax haven for multinational enterprises. News articles headlined “The Netherlands is a
tax haven for many multinationals” [14], “The Netherlands is an attractive tax country” [1],
“Dutch masters of tax avoidance” [32] seem to lend support to the claim that this is indeed the
case. To further investigate this question, the CPB (Netherlands Bureau for Economic Policy
Analysis) has recently conducted some network analysis to identify important countries
(using betweenness centrality) in the international tax treaty network [35, 36]; see also [30].
Among others, they conclude that companies mainly use the Netherlands as an intermediary
country to send money through on a route from one country to another one. In this sense,
the Netherlands is not a tax haven, i.e., a destination country where the money is stored
(like the Bahamas or Bermuda), but a conduit country, i.e., an intermediary country on a
route via which companies send their money.

In light of the above insight, a natural question that arises is how a country could
maximize the amount of money that is sent through it. As a result, this would attract more
jobs in the financial sector, or incentivize foreign companies to establish their businesses in
the country (if only in the form of a letterbox). Another conceivable objective of a country
might be to maximize the total amount of taxes that it obtains from the money transfers
through it. These two questions constitute the main motivation for the network pricing
problems studied in this paper.

Our contributions. In this paper, we introduce and study the following Network Pricing
Problem (NPP): We are given a directed graph G = (V,E) with non-negative edge costs
(ce)e∈E , k commodities (si, ti, wi)i∈[k], a designated node u ∈ V and a number κ ≥ 1. Each
commodity i ∈ [k] is represented by a source-target pair (si, ti) ∈ V × V and a demand
wi > 0, specifying that wi units of flow are sent from si to ti along shortest si, ti-paths
(with respect to (ce)e∈E). The demand of each commodity i is split evenly over all shortest
si, ti-paths. Suppose we can change the costs of κ ≤ ∆(u) outgoing edges of u, where ∆(u)
is the outdegree of u, while the costs of all other edges remain fixed; we also say that we
price (or tax) the edges of u. Our goal is to optimally price at most κ edges of u such that
(i) the total flow passing through u is maximized (FLOW-NPP), or (ii) the total revenue
(i.e., flow times tax) through u is maximized (REV-NPP).

As it turns out, the problems behave rather differently in terms of hardness and ap-
proximability, depending on the objective under consideration and the parameter κ. More
specifically, our main findings in this paper are as follows:

R. Brokkelkamp, S. Polak, G. Schäfer, and Y. Velaj 13:3

1. We show that FLOW-NPP can be solved in polynomial time when a constant number of
edges or almost all edges of u can be priced.

2. In contrast, we prove that FLOW-NPP is NP-hard and (1− 1/e)-inapproximable (even
for the special case of unit demands) if κ is part of the input. Further, we show that a
natural greedy algorithm achieves an approximation guarantee of (1− 1/e) (which is best
possible).

3. We show that REV-NPP can be solved in polynomial time when only one edge can be
priced. On the other hand, REV-NPP becomes NP-hard and (1− 1/e)-inapproximable if
κ is part of the input. We also show that the greedy algorithm might perform arbitrarily
bad in this case.

4. We prove that REV-NPP is highly (meaning 1/∆(u)ε) inapproximable if all outgoing
edges of u can be priced. We therefore focus on special cases of this problem.

First, we show that the single-commodity case is polynomial time solvable. This result
also constitutes an important building block for our uniform pricing algorithms (i.e.,
all edges are priced the same).
Then, we focus on the unit demand setting and derive a (tight) Hk-approximate
uniform pricing algorithm. We complement this result by showing that this problem is
1/ logε(k)-inapproximable.

5. Finally, we show that our uniform pricing algorithm extends to the general setting and
provides a max{1/k, 1/∆(u)}-approximation algorithm for REV-NPP (which is essentially
best possible).

Our results for FLOW-NPP mostly follow by using standard arguments for submodular
function maximization. In contrast, we need to establish several new ideas and exploit
structural insights to derive our results for REV-NPP (which constitutes the main technical
contributions of this work).

We conclude with some (preliminary) experimental findings on an international tax
treaty network based on real data. Our experiments indicate that our uniform pricing
algorithm computes tax rates that would significantly increase the current tax revenue of
the Netherlands (by a factor 68) and is at least within 51% of the optimal revenue (which is
much better than the worst-case approximation guarantee suggests).

Related work. The problem of increasing the centrality of a node in a network has been
widely investigated for different centrality measures. For example, boosting the popularity of
web pages by increasing their page rank has been studied intensively [2, 26] with a particular
focus on “fooling” search engines (e.g., through link farming [37]). The problem has also been
considered for other centrality measures such as closeness centrality [11, 12], betweenness
centrality [4], coverage centrality [13], eccentricity [15, 29], average distance [24] and some
measures related to the number of paths passing through a given node [20]. Below, we give a
few representative references only; most of these works focus on edge additions to increase
the centrality.

Meyerson and Tegiku [24] give a constant factor approximation algorithm for the problem
of minimizing the average shortest-path distance between all pairs of nodes by adding shortcut
edges. Several algorithms are proposed in [27, 28] and experimentally shown to perform well
in practice. Bauer et al. [3] study the problem of minimizing the average number of hops in
shortest paths. They prove that the problem cannot be approximated within a logarithmic
factor and provide respective approximation algorithms. Bilò et al. [5] and Demaine and
Zadimoghaddam [15] consider the problem of minimizing the diameter of a graph and provide
constant factor approximation algorithms.

ISAAC 2019

13:4 Approximate Pricing in Networks

The problem of maximizing revenue by pricing the edges of a graph has been studied
in several works. These problems are known under different names such as the network (or
highway) pricing problem [21, 9], but also as Stackelberg network pricing games [31, 8].

Labbe et al. [21] use a bilevel optimization model for taxing a given subset of the edges in
a network to maximize the revenue that the leader receives from the followers. Among other
results, they prove that the problem is NP-hard for single-commodity instances, exploiting
negative edge costs and lower bound restrictions on the taxes. In a subsequent work, Roch
et al. [31] improve upon this result and show NP-hardness for non-negative edge costs and
without lower bound restrictions. They also provide an approximation algorithm for the
single-commodity case.

Briest et al. [8] consider the following Stackelberg setting: There are several buyers who
are interested in buying certain (pre-determined) subgraphs of the network and a seller
(network owner) who can price a given subset of the edges. Once the seller fixes the prices,
the buyers purchase the cheapest subgraph they are interested in. The goal is to maximize
the total revenue obtained from the buyers. The authors show that a uniform price for all
edges guarantees the seller a revenue within logarithmic factor of the optimal revenue. A
more specific problem was considered by Briest et al. [7], where each buyer i is interested
in purchasing a subgraph that contains a shortest si, ti-path. Other special cases were
considered in [18, 17, 19].

In general, there is a vast literature on the problem of pricing multiple items so as to
maximize the revenue obtained from (possibly budget-constrained) buyers. There is a close
connection between our problem and the problem of determining envy-free prices [19], because
envy-freeness naturally corresponds to choosing the cheapest available option. Especially, we
exploit known hardness results for the special cases of the unit-demand pricing problem and
the single-minded pricing problem (see [19, 6, 10]) to establish the inapproximability results
of our (more restrictive) network pricing problem.

We emphasize that our problem differs from the ones mentioned above because (i) the
seller corresponds to a given node u who can set the prices of its outgoing edges only, and
(ii) the revenue that u obtains depends on the proportion of the demand of each commodity
routed along shortest paths through u.

2 Preliminaries

We formally define the Network Pricing Problems considered in this paper: Suppose we
are given a directed graph G = (V,E) with non-negative edge costs (ce)e∈E , k commodities
(si, ti, wi)i∈[k]

1, and a designated node u ∈ V . Each commodity i ∈ [k] is specified by a
source-target pair (si, ti) ∈ V × V with si 6= ti and a non-negative demand (or weight)
wi > 0. The interpretation here is that each commodity i ∈ [k] sends a total of wi units of
flow from the source node si to the target node ti. The demand wi is split evenly along all
(simple2) shortest si, ti-paths with respect to the edge costs (ce)e∈E (formal definitions are
given below). We assume that for each commodity i ∈ [k], si, ti 6= u and there is at least one
si, ti-path that passes through u. This assumption is without loss of generality as otherwise
the commodity is irrelevant (as will become clear below) and can be removed.

1 Given an integer k ≥ 1, we define [k] = {1, . . . , k}.
2 Recall that a path is said to be simple if it does not contain any cycles. Throughout the paper, whenever
we refer to a shortest path we implicitly mean a simple shortest path.

R. Brokkelkamp, S. Polak, G. Schäfer, and Y. Velaj 13:5

We introduce some more notation. Let n and m be the the number of nodes and edges of
G, respectively. We use the standard notation δ+(u) to refer to the set of all outgoing edges
of u, i.e., δ+(u) = {(u, v) ∈ E}, and define ∆(u) = |δ+(u)| as the outdegree of u. Given
a pair of nodes (x, y) ∈ V × V with x 6= y, we denote by π(x, y) the number of shortest
x, y-paths with respect to (ce)e∈E . Similarly, we use d(x, y) to refer to the total cost of a
shortest x, y-path; we also say that d(x, y) is the distance between x and y. For a set A ⊆ E,
we denote by dE\A(x, y) the distance between x and y in the graph G = (V,E \A), where
the edges in A are removed. Below, we often omit the explicit reference to the respective
edge costs if they are clear from the context.

For ease of notation, for every commodity i ∈ [k], we use πi = π(si, ti) to refer to the
number of shortest si, ti-paths. Further, we define πiu as the number of shortest si, ti-paths
that pass through node u ∈ V , where si, ti 6= u. Given an outgoing edge e = (u, v) ∈ E of
u, we denote by πie the number of shortest si, ti-paths that pass through e. Observe that
πiu =

∑
e∈δ+(u) π

i
e.

We can now define the flow that passes through the outgoing edges of u: Recall that
the demand wi of each commodity i ∈ [k] is assumed to be split evenly over all shortest
si, ti-paths. Formally, the flow f ie of an outgoing edge e = (u, v) of commodity i is defined as
f ie = wi · πie/πi. The total flow passing through node u with respect to commodity i is then

f iu =
∑

e∈δ+(u)

f ie =
∑

e∈δ+(u)

wi ·
πie
πi

= wi ·
πiu
πi
.

Further, we define fe =
∑
i∈[k] f

i
e as the total flow on edge e. The total flow of node u is

then defined as

fu =
∑

e∈δ+(u)

fe =
∑
i∈[k]

∑
e∈δ+(u)

f ie =
∑
i∈[k]

wi ·
πiu
πi

=
∑
i∈[k]

f iu.

Another notion that is of interest in this paper is the following one: The total revenue of
node u is defined as

ru =
∑

e∈δ+(u)

fe · ce =
∑
i∈[k]

∑
e∈δ+(u)

f ie · ce =
∑
i∈[k]

∑
e∈δ+(u)

wi ·
πie
πi
· ce.

Suppose we can change the costs of κ ∈ [∆(u)] outgoing edges of u. How would we set
the edge costs such that the total flow (or revenue, respectively) of u is maximized? More
precisely, our goal is to determine a set S ⊆ δ+(u) with |S| ≤ κ and non-negative costs
c̄S = (c̄e)e∈S for the edges in S such that fu (or ru, respectively) with respect to the combined
edge costs (c̄S , c−S) is maximized, where we use c−S = (ce)e∈E\S to refer to the (original)
costs of the edges in E \ S that remain unchanged. For convenience, we write c̄e = c̄{e}, we
also write pS when we set the cost of all edges in S to p ∈ R ∪ {∞}. We use fu(c̄S) and
ru(c̄S) to refer to the total flow and revenue of u, respectively, with respect to (c̄S , c−S).

This gives rise to the following two optimization problems:

NETWORK PRICING PROBLEM (NPP)
Given: A directed graph G = (V,E) with non-negative edge costs (ce)e∈E , k commodities

(si, ti, wi)i∈[k], a designated node u ∈ V and a number κ ∈ [∆(u)].
Goal: Determine a set S ⊆ δ+(u) with |S| ≤ κ and edge costs c̄S = (c̄e)e∈S such that fu(c̄S)

is maximized (FLOW-NPP), or ru(c̄S) is maximized (REV-NPP)

ISAAC 2019

13:6 Approximate Pricing in Networks

Note that if the commodities correspond to all possible node pairs of the graph (not
involving u as a source or target node), then the flow through u is precisely the betweenness
centrality of u (as introduced above). In particular, in this case FLOW-NPP can be
interpreted as the problem of maximizing the betweenness centrality of u.

In our discussion below, we distinguish the following three cases:
(C1) κ = 1: We are allowed to change the cost of only one outgoing edge of u.
(C2) 1 < κ < ∆(u): We are allowed to change the cost of κ outgoing edges of u.
(C3) κ = ∆(u): We are allowed to change the cost of all the outgoing edges of u.

We continue with some basic observations. A pathological case we want to avoid in
REV-NPP is that we can charge arbitrarily high costs.

I Assumption 2.1. For every commodity i ∈ [k] there is at least one si, ti-path that does
not pass through u.

s u t
1

2

?

Figure 1 Example graph.

Throughout the paper, we assume that the edge costs are non-negative integers (as they
may correspond to monetary units, percentages of a fixed precision, etc.).3 The following
example shows that this assumption is needed if one wants to be able to determine edge costs
that realize the optimal revenue. Consider the instance depicted in Figure 1 and assume
that there is a unit demand to be sent from s to t. Suppose we can impose an arbitrary
non-negative rational cost ce ∈ Q≥0 on the edge e = (u, t). If we set ce = 1, then the revenue
of u becomes 1

2 . Otherwise, if we set ce = 1− ε for a small rational ε > 0, then the revenue
of u is 1− ε. It follows that REV-NPP does not admit an optimal solution.

Finally, we need to be able to efficiently compute how the flow splits. If there are zero
cost cycles this may become infeasible [34]. We thus make the following assumption:

I Assumption 2.2. The edge costs (ce)e∈E are non-negative integers and the graph does
not contain any zero cost cycles, even if all outgoing edges of u are set to zero.

Using Assumption 2.2, it is possible to compute all relevant flows (as defined above) in
polynomial time.4 Throughout the paper we use this fact without stating it explicitly.

Due to space restrictions, some proofs are omitted from this extended abstract and can
be found in the full version of the paper.

3 Flow Maximization Problem

In this section, we consider the problem FLOW-NPP. We first prove the following intuitive
monotonicity property for the flow fu through u: If the cost of a single outgoing edge of u
decreases, then the flow through u does not decrease.

3 All our results continue to hold if the edge costs are of the form p · Z≥0 for some real number p > 0.
In particular, this covers most practically relevant scenarios where one is bound to a finite number of
decimals.

4 This can be done by running for every commodity i ∈ [k] an adapted version of Dijkstra’s shortest path
algorithm [16] which also counts the number of shortest paths passing through the edges.

R. Brokkelkamp, S. Polak, G. Schäfer, and Y. Velaj 13:7

I Lemma 1. Consider an edge e = (u, v) ∈ δ+(u) and assume that the edge cost ce is
decreased to c̄e < ce. Then fu(c̄e) ≥ fu(ce).

Using Lemma 1, it is clear what we should do if we can price a subset S ⊆ δ+(u) of edges:
Simply set the cost of each edge e ∈ S to zero to maximize the flow through u.

I Corollary 2. Suppose we can change the costs of the edges in S ⊆ δ+(u). Then setting
c̄e = 0 for every e ∈ S maximizes the flow fu of u.

Note that this takes away the difficulty of determining optimal costs for the edges in
S. What remains is how to find the right subset of edges S to be priced. This is easy
in cases (C1) and (C3): It is not hard to see that by using complete enumeration over
all possible subsets and Corollary 2, FLOW-NPP can be solved efficiently if κ = O(1) or
κ = ∆(u)−O(1).

I Theorem 3. FLOW-NPP can be solved optimally in polynomial time for κ = O(1) and
κ = ∆(u)−O(1).

We consider the cases of (C2) which are not captured by Theorem 3. Then the approach
above fails. In fact, we show that FLOW-NPP is NP-hard to approximate within a factor
1− 1/e, even in the unit demand setting (i.e., wi = 1 for all i ∈ [k]).

I Theorem 4. Assuming P 6= NP, there is no α-approximation algorithm with α > 1− 1/e
for FLOW-NPP with O(1) < κ < ∆(u)−O(1), even in the unit demand setting.

We derive a (1− 1/e)-approximation algorithm for FLOW-NPP, which is best possible
by Theorem 4. We use a well-known result due to Nemhauser et al. [25] for the following
submodular function maximization problem: Given a finite set N , a function z : 2N → R
and an integer k′, find a set S ⊆ N such that |S| ≤ k′ and z(S) is maximum. If z is
non-negative, monotone and submodular5, then the following natural greedy algorithm
exhibits an approximation ratio of 1− 1/e [25]: Start with the empty set and repeatedly add
an element that gives the maximal marginal gain, i.e., if S is a partial solution, choose the
element j ∈ N \ S that maximizes z(S ∪ {j})− z(S).

We show that fu(c̄S) (if considered as a set function) is non-negative, monotone and
submodular.

I Lemma 5. Define z(S) = fu(0S) for every S ⊆ δ+(u). The function z is non-negative,
monotone and submodular.

Algorithm 1 Greedy algorithm for FLOW-NPP.

1 S = ∅
2 for i = 1, . . . , κ do
3 emax = arg max{fu(0S∪{e}) : e ∈ δ+(u) \ S}
4 S = S ∪ {emax}
5 return S

Applied to our setting, the greedy algorithm proceeds as described in Algorithm 1.

I Theorem 6. The greedy algorithm provides a (1− 1/e)-approximation for FLOW-NPP.

5 Let N be a finite set and let z : 2N → R be a function. Then z is (i) non-negative if z(S) ≥ 0 for
every S ⊆ N , (ii) monotone if z(S) ≤ z(T) for every S ⊆ T ⊆ N , and (iii) submodular if for all sets
S ⊆ T ⊆ N and every element e ∈ N \ T , z(S ∪ {e})− z(S) ≥ z(T ∪ {e})− z(T).

ISAAC 2019

13:8 Approximate Pricing in Networks

4 Revenue Maximization Problem

We turn to the problem REV-NPP. As it turns out, this problem is much more challenging
than FLOW-NPP. In fact, even if we can change the costs of all outgoing edges of u it
remains non-trivial to find good approximation algorithms (see Section 4.3).

4.1 Changing the cost of one edge
We consider case (C1) of REV-NPP, i.e., we can change the cost of one outgoing edge. We
first show that we can efficiently compute the optimal cost if the edge is given.

I Lemma 7. Fix an outgoing edge e = (u, v) of u. We can then determine the cost c̄e of e
maximizing the revenue ru(c̄e) of u in polynomial time.

Proof. Let c̄∗e be some optimal cost which maximizes ru(c̄∗e). We first claim that there exists
some optimal cost c̄e with c̄e ∈ T , where

T =

 ⋃
i∈[k]

{Ti − 1, Ti}

 ∪ {∞} and Ti := dE\{e}(si, ti)− d(si, u)− d(v, ti) ∀i ∈ [k].

If c̄∗e > max{Ti : i ∈ [k]} there is no flow passing through e. We obtain the same by setting
c̄e = ∞ ∈ T and thus ru(c̄e) = ru(c̄∗e), which is optimal. Suppose now that c̄∗e ≤ max{Ti :
i ∈ [k]} and c̄∗e /∈ T . Let L = {i ∈ [k] : Ti < c̄∗e} and U = {i ∈ [k] : Ti − 1 > c̄∗e}. For the
commodities in L there is no flow passing through e, while for the commodities in U the
entire flow passes through e. By setting c̄e = min{Ti − 1 : i ∈ U} the flows do not change
while c̄e > c̄∗e. Because U 6= ∅ we have ru(c̄e) > ru(c̄∗e), contradicting the optimality of c̄∗e.
Hence there is an optimal cost c̄e in T .

Determining T takes at most 3k shortest path calculations. If all costs are fixed, we can
compute the revenue by k shortest path calculations. Exploiting that |T | ≤ 2k + 1, we can
thus simply try all values in T and choose c̄e as the cost that gives the largest revenue. J

By iterating over all edges e = (u, v) of u and using Lemma 7 to determine the maximum
revenue ru(c̄e), we can determine the optimal cost among all these edges. We obtain:

I Theorem 8. REV-NPP(C1) can be solved optimally in polynomial time.

4.2 Changing the costs of κ edges
We turn to case (C2) of REV-NPP. As we show, this problem is hard to approximate:

I Theorem 9. Assuming P 6= NP, there is no α-approximation algorithm with α > 1− 1/e
for REV-NPP(C2) with 1 < κ < ∆(u), even in the unit demand setting.

One could hope that a greedy approach similar to the one used for FLOW-NPP(C2)
would work here as well. Unfortunately, this is not the case. In fact, the greedy algorithm
can perform arbitrarily bad. Further, the objective function is not submodular (even if the
original costs are assumed to be cδ+(u) =∞δ+(u)).

4.3 Changing the costs of all edges
We come to case (C3) of REV-NPP, where we are allowed to change the costs of all outgoing
edges of u, i.e., κ = ∆(u). We start by proving some inapproximability results, both for the
general and the unit demand setting, and then turn to our approximation algorithms.

R. Brokkelkamp, S. Polak, G. Schäfer, and Y. Velaj 13:9

s u

e1

e2

eκ

S1

S2

Sk

0

2 ·B1 + 1 0

0

Figure 2 Illustration of the instance used in the proof of Theorem 10.

Inapproximability. Under reasonable hardness assumptions, case REV-NPP(C3) is hard
to approximate within a factor of Ω(1/ logε(k)) when considering unit demands and of
Ω(1/∆(u)ε) when considering arbitrary demands.

I Theorem 10. REV-NPP(C3) is Ω(1/logε(k))-inapproximable for some ε > 0 in the unit
demand setting, assuming that no polynomial-time algorithm can approximate constant-
degree Balanced Bipartite Independent Set6 to within arbitrarily small constant factors.
REV-NPP(C3) is Ω(1/∆(u)ε)-inapproximable for some ε > 0 for arbitrary demands, assum-
ing NP (∩δ>0BPTIME(2O(nδ)).

We use a reduction from the Unit-Demand Min-Buying Pricing Problem (UDPmin) [6]:
We are given a set of N items I = {e1, . . . , eN} and a set of k consumers C = {c1, . . . , ck}.
Every consumer ci ∈ C has some budget Bi ∈ Z≥0 and a set Si ⊆ I of items she is interested
in. Given prices p : I → Z≥0 for the items, consumer ci will buy an item e ∈ Si with
p(e) minimum, but only if p(e) ≤ Bi. The goal is to find prices that maximize the total
revenue, i.e.,∑

ci∈C
min{p(e) : e ∈ Si ∧ p(e) ≤ Bi},

where we define the minimum of an empty set to be zero. In the so-called economist’s
version of UDPmin (EUDPmin) we are additionally given a (discrete) probability distribution
P : C → [0, 1] over the consumers which is then incorporated in the objective function by
multiplying the revenue gained from a consumer with her probability. Note that we can
think of this probability distribution as having weights on the consumers.

Proof of Theorem 10. We give a reduction from EUDPmin to REV-NPP with arbitrary
demands. The same reduction also provides the hardness result for uniform demands because
we can see UDPmin as a special case of EUDPmin, where all consumers have equal probabilities,
and in what follows UDPmin is then reduced to REV-NPP with uniform demands.

We reduce an instance I of EUDPmin to an instance I ′ of REV-NPP such that any solution
of I ′ can be converted into a solution of I losing at most a factor 2 in objective value. As a con-
sequence, an α-approximation algorithm for REV-NPP with α = Ω(1/∆(u)ε) (respectively,

6 In this problem, we are given a bipartite graph G = (V,W,E) and we want to find maximum cardinality
subsets of vertices V ′ ⊂ V,W ′ ⊂W with |V ′| = |W ′|, such that {v, w} /∈ E for all v ∈ V ′, w ∈W ′; see
[6] for more details.

ISAAC 2019

13:10 Approximate Pricing in Networks

α = Ω(1/logε(k))) provides an α/2-approximation algorithm for EUDPmin(respectively,
UDPmin). Briest [6] showed that the latter is not possible (under the assumptions stated
in Theorem 10).7

Let (I, C, (Sc)c∈C , (Bc)c∈C ,P) be an instance of EUDPmin. We construct an instance
I ′ = (G, (ce)e∈E , (si, ti, wi)i∈[k], u, κ) of REV-NPP as follows: Let the set of vertices of G
be V = {s, u, S1, . . . , Sk, e1, . . . , eN}, where each Si, i ∈ [k], and ej ∈ I correspond to their
counterpart in I. The set of edges E and the respective edge costs (ce)e∈E are defined as
follows (see Figure 2 for an illustration): There is an edge (s, u) of cost 0. For every Sj ,
j ∈ [k], there is an edge which needs to be priced. For every ei ∈ I and Sj , j ∈ [k], such
that ei ∈ Sj there is an edge (ei, Sj) of cost 0. For every Sj , j ∈ [k], there is an edge (s, Sj)
of cost 2 · Bj + 1. Finally, we have k commodities (s, Sj , wj) with demand wj = P(cj) for
every j ∈ [k]. Note that ∆(u) = N . Clearly, this reduction can be done in polynomial time.

First note that OPT(I ′) ≥ 2OPT(I) since taking the optimal prices p in I and using the
prices c̄(u,ei) = 2p(ei) for all i ∈ [N] in I ′ will give a revenue of 2OPT(I) for I ′.

Consider a solution c̄ for I ′ with some revenue Z ′. We will convert this into a solution
Z for I with value at least Z ′/4. Note that we may assume that Bj ≥ 1 for all j ∈ [k] and
therefore that Z ′ ≥

∑
i∈[k] wi ·2 minj∈[k]{Bj} ≥ 2

∑
i∈[k] wi which is the revenue we would get

by setting all prices to 2 minj∈[k]{Bj}. Now, modify c̄ by subtracting 1 from c̄e for all e ∈ E
if c̄e is odd. This will cost us at most

∑
i∈[k] wi revenue. Thus we have Z ′−

∑
i∈[k] wi ≥ Z ′/2

revenue remaining. Observe that all prices are even and that f iu/wi ∈ {0, 1} for all i ∈ [k].
Using prices p(ei) = c̄(u,ei)/2 for i ∈ [k] in I yields a revenue of at least Z ′/4.

To conclude, if Z ′ ≥ αOPT(I ′) then 4Z ≥ Z ′ ≥ αOPT(I ′) ≥ 2αOPT(I) implying
Z ≥ α/2OPT(I) which proves the theorem. J

Special case: single commodity. We next consider the problem of REV-NPP(C3) for a
single commodity only, i.e., k = 1. In this case, we can assume without loss of generality
that w1 = 1. Our goal is thus to determine c̄δ+(u) = (c̄e)e∈δ+(u) to maximize the revenue

ru(c̄δ+(u)) =
∑

e∈δ+(u)

f1
e · c̄e = w1

∑
e∈δ+(u)

π1
e

π1
· c̄e =

∑
e∈δ+(u)

π1
e

π1
· c̄e.

I Theorem 11. REV-NPP(C3) with a single commodity only (i.e., k = 1) can be solved
optimally in polynomial time.

Proof. For every edge (u, v) ∈ δ+(u), we compute the value h(v) := dE\δ+(u)(s1, t1) −
d(s1, u)− d(v, t1). Let T = max(u,v)∈δ+(u) h(v). If T ≤ 0, then no revenue can be obtained
and we stop. If T > 0, we compute the revenue obtained by setting all costs uniformly to
either T − 1 or T :

ru((T − 1)δ+(u)) = T − 1
ru(Tδ+(u)) = T ·

(∑
e=(u,v)∈δ+(u):h(v)=T π

1
e

)
/π1.

7 In fact, Briest [6] established the corresponding inapproximability results, where the prices and budgets
are assumed to be reals. However, it is not hard to see that multiplying all budgets in the proof of
Theorem 2 in [6] by a factor 2k results in integer budgets. Then we can still assume that the prices are
powers of 2, but now these powers are positive making also the prices integer. That is, the results in [6]
also go through for integer values and budgets. We use this for our reduction here. Based on different
assumptions, Chalermsook et al. [10] provide a stronger inapproximability result for the unit demand
setting. If the same trick can be applied to the reduction presented in [10], our proof shows that the
unit demand setting is log1−ε(k)-inapproximable for every ε > 0.

R. Brokkelkamp, S. Polak, G. Schäfer, and Y. Velaj 13:11

Algorithm 2 Uniform Price Algorithm.

1 C = ∅
2 foreach commodity i ∈ [k] do
3 Compute prices Ti − 1 and Ti as in Theorem 11 (considering only commodity i)
4 Let T ∗i ∈ {Ti − 1, Ti} be the price achieving higher revenue
5 C = C ∪ {T ∗i }
6 return arg max{ru(pδ+(u)) : p ∈ C}

We argue that the maximum of the two is the optimal revenue. When c̄e > T for some
e ∈ δ+(u) it holds that fe = 0, so we can assume that there is an optimum where c̄e ≤ T

for all e ∈ δ+(u). If there is an optimum for which c̄e ≤ T − 1 for all e ∈ δ+(u) then the
maximum revenue we can get is T − 1 which is actually attained by setting all c̄e to T − 1.
Suppose the optimum is larger than T − 1 then there must be some e′ ∈ δ+(u) with c̄e′ = T

and strictly positive flow. If there is some other edge for which c̄e < T which gets flow then
this contradicts c̄e′ getting flow, thus it cannot have flow in which case we could also set it
to T . Thus then there must also be an optimum where c̄e = T for all e ∈ δ+(u). So, the
maximum of ru(Tδ+(u)) and ru((T − 1)δ+(u)) is indeed the optimum. The values of h(v) and
ru(Tδ+(u)) and ru((T − 1)δ+(u)) can all be computed in polynomial time. J

Uniform pricing. We exploit the fact that for a single commodity we are able to find
optimal uniform costs in polynomial time. Consider the uniform price algorithm described
in Algorithm 2. First, we consider the case where all demands are uniform.

I Theorem 12. Algorithm 2 is a 1/Hk-approximation algorithm for REV-NPP(C3) when
all demands are uniform and this is tight.

Proof. We can assume without loss of generality that all demands are 1. Let T ∗i be the
optimal price for commodity i ∈ [k] as determined in the proof of Theorem 11 and let f i∗u be
the flow of commodity i going through u when using prices c̄δ+(u) = (T ∗i)δ+(u).

Assume that the commodities are ordered such that T ∗1 ≥ T ∗2 ≥ . . . ≥ T ∗k and if i < j

and T ∗i = T ∗j then f i∗u ≥ f j∗u . So, first we order on T ∗i and if the T ∗i are equal then we order
on f i∗u . Let s be the number of unique values among the T ∗i . Let i1 = 1 and define ij for
2 ≤ j ≤ s recursively as the first entry that is strictly smaller than T ∗ij−1

. For convenience let
is+1 = k + 1.

Let P be the output of Algorithm 2. The algorithm tries prices T ∗i and because we have
unit demands and by the ordering of the commodities we know that for i ∈ {ij , . . . , ij+1− 1},
it holds that

P ≥ T ∗i ·
(

(ij − 1) +
ij+1−1∑
`=ij

f `∗u

)
, which implies T ∗i ≤

P

(ij − 1) +
∑ij+1−1
`=ij f `∗u

. (1)

Let OPT be the maximum attainable revenue. If we single out the income from one commodity
we cannot expect to do better than when we just consider that commodity. Hence,

ISAAC 2019

13:12 Approximate Pricing in Networks

OPT ≤
k∑
i=1

T ∗i f
i∗
u =

s∑
j=1

ij+1−1∑
i=ij

T ∗i f
i∗
u ≤

s∑
j=1

ij+1−1∑
i=ij

P · f i∗u
(ij − 1) +

∑ij+1−1
`=ij f `∗u

(2)

≤
s∑
j=1

ij+1−1∑
i=ij

P

(ij − 1) + (i− (ij − 1)) =
s∑
j=1

ij+1−1∑
i=ij

P

i
=

k∑
i=1

P

i
= Hk · P

The second inequality follows from (1). For the third inequality we make use of the fact that
f i∗u ≤ 1 and that we sorted the commodities in such a way that if i < j and T ∗i = T ∗j we
have f i∗u ≥ f j∗u . Thus there are at least i− (ij − 1) terms for which the T ∗-value is equal but
the f -value is at least as large. J

We turn to the general demand case. We modify Algorithm 2 by replacing line 5 with
C = C ∪ {Ti − 1, Ti}.

I Theorem 13. The modified version of Algorithm 2 is a max{1/k, 1/∆(u)}-approximation
algorithm for REV-NPP(C3) and this is tight.

Proof. To show that it is a 1/k-approximation algorithm we only need to consider the prices
used in the original version of Algorithm 2. We follow the same reasoning as in Theorem 12.
Let T ∗i and f i∗u , i ∈ [k], be as in the proof of Theorem 12. We note that P ≥ T ∗i

∑i
`=1 f

`∗
u ,

which implies that T ∗i ≤ P/
∑i
`=1 f

`∗
u . Thus,

OPT ≤
k∑
i=1

T ∗i · f i∗u ≤
k∑
i=1

P · f i∗u∑i
`=1 f

`∗
u

≤
k∑
i=1

P = k · P. (3)

Next we show that the modified version of Algorithm 2 is also a 1/∆(u)-approximation
algorithm. Let c̄∗ be the optimal prices giving a revenue of OPT. If we consider the revenue
that is contributed by each e ∈ δ+(u), there is at least one e∗ ∈ δ+(u) which contributed
at least OPT/∆(u), i.e., fe∗ · c̄∗e∗ ≥ OPT/∆(u). Consider c̄e = c̄∗e∗ for all e ∈ δ+(u). The
flow fe∗ will not go down because of e ∈ δ+(u) such that c̄∗e < c̄∗e∗ . Some of fe∗ may go to
e ∈ δ+(u) such that c̄∗e ≥ c̄∗e∗ but if this happens we will still earn at least c̄∗e∗ on it. Hence
the revenue for c̄e is at least fe∗ · c̄∗e∗ ≥ OPT/∆(u).

Fix c̄e = c̄∗e∗ for all e ∈ δ+(u). Let F = {i ∈ [k] : f iu > 0}, i.e., all commodities that
have some positive flow going through u and so we earn some revenue on them. Let Ti be
the T corresponding to commodity i as in Theorem 11. Note that c̄∗e ≤ min{Ti : i ∈ F}.
If c̄∗e ≥ min{Ti − 1 : i ∈ F} then we are done because then the approximation algorithm
will try a price which yields at least OPT/∆(u) revenue. Suppose c̄∗e < min{Ti − 1 : i ∈ F}.
Then f iu/wi = 1 for all i ∈ F and when raising c̄e to min{Ti − 1 : i ∈ F} for all e ∈ ∆(u)
the flows for commodities i ∈ F will not change while the revenue increases. Hence the
approximation algorithm tries a price which yields a revenue of at least OPT/∆(u). We
conclude that Algorithm 2 is a 1/∆(u)-approximation algorithm. J

5 Conclusion

A motivating scenario for this research was figuring out how a country should change its tax
rates in order to maximize its revenue. Computing the optimum is an intractable problem,
but we can use our results to compute an optimal uniform tax. We used tax data from [35, 36],
which also provides estimates of the volumes that are sent from one country to another (based

R. Brokkelkamp, S. Polak, G. Schäfer, and Y. Velaj 13:13

ALB

DZA

AGO

ARG

ABW

AUS

AUT

AZE

BHS
BHR

BRB

BLR

BMU

BWA

BRA

BRN

BGR

CAN

CYM

CHL

CHN

COL

CRI CUR

CYP

CZE

DNK

DOM

ECU

EGY

GNQ

EST

FIN

FRA

GAB

DEU

GRC

GRN

HKG

ISL

IND

IDN

IRL
IMN

ISR

ITA

JAM

JPN

JRY

JOR

KAZ

KOR

KWT

LVA

LBN

LBY

LIE

LTU

LUX

MAC

MYS

MLT

MUS

MEX

MNG

NAM

NLD
BEL

NZL

NGA

NOR

OMN

PAK

PAN

PER

PHL

POL

PRT

PRI

QAT

ROM

RUS

SAU

YUG

SYC

SGP

SVK

SVN
HUN

HRV

ZAF

ESP

SUR

SWE

CHE

TWN

THA

TTO

TUN

TUR

UKR

ARE

GBR

USA

URY

VEN

VIR

VGB

(a) Worldmap

Revenue
Original 0.0246140

Uniform Pricing 1.6748451
Optimum (UB) 3.2994390

Optimal Uniform Tax 6.70%

×68
×0.51

(b) Results

Figure 3 Outcome of experiments.

on the sizes of their economies). The data contains 108 countries (nodes), 8777 tax treaties
(edges) and 11342 commodities. In this scenario, we need to find “money-transfer” paths such
that the total tax paid by the companies is as low as possible. We run our experiments with
“The Netherlands” as node u. The results are summarized in Figure 3. If the Netherlands
would change its outgoing tax rate to 6.7% for all treaties, it would potentially increase its
revenue by a factor 68. Further, the optimal uniform tax revenue is even within 51% of the
optimum (upper bound as in (3)) and thus much better as suggested by Theorem 13.

We settle most cases of FLOW-NPP and REV-NPP in this paper but a case which is not
completely settled is REV-NPP(C2). Although we show that it is inapproximable within a
factor 1− 1/e, case (C3) seems to suggest that it may even be harder.

An interesting way to look at our problem is from a game theory perspective. Now that
we know what one node will do (approximately), what will happen if the nodes correspond
to strategic players? Will they settle in a stable scenario where everybody gets some revenue,
or will it end in a “price war” where the revenue of each player becomes zero?

References
1 Nederland is een aantrekkelijk belastingland. NOS, Nov. 6, 2014.
2 Konstantin Avrachenkov and Nelly Litvak. The Effect of New Links on Google Pagerank. Stoc.

Models, 2006.
3 Reinhard Bauer, Gianlorenzo D’Angelo, Daniel Delling, Andrea Schumm, and Dorothea

Wagner. The Shortcut Problem - Complexity and Algorithms. J. Graph Algorithms Appl.,
16(2):447–481, 2012.

4 Elisabetta Bergamini, Pierluigi Crescenzi, Gianlorenzo D’Angelo, Henning Meyerhenke,
Lorenzo Severini, and Yllka Velaj. Improving the Betweenness Centrality of a Node by
Adding Links. ACM J. of Experimental Algorithmics, 23, 2018.

5 Davide Bilò, Luciano Gualà, and Guido Proietti. Improved approximability and non-
approximability results for graph diameter decreasing problems. Theor. Comput. Sci., 417:12–
22, 2012.

6 Patrick Briest. Uniform Budgets and the Envy-Free Pricing Problem. In ICALP, pages
808–819, 2008.

7 Patrick Briest, Parinya Chalermsook, Sanjeev Khanna, Bundit Laekhanukit, and Danupon
Nanongkai. Improved Hardness of Approximation for Stackelberg Shortest-Path Pricing. In
Internet and Network Economics, 2010.

8 Patrick Briest, Martin Hoefer, and Piotr Krysta. Stackelberg Network Pricing Games. Al-
gorithmica, 62(3), 2012.

9 Luce Brotcorne, F. Cirinei, Patrice Marcotte, and Gilles Savard. An exact algorithm for the
network pricing problem. Discrete Optimization, 8(2):246–258, 2011.

10 Parinya Chalermsook, Julia Chuzhoy, Sampath Kannan, and Sanjeev Khanna. Improved
Hardness Results for Profit Maximization Pricing Problems with Unlimited Supply. In
APPROX-RANDOM, pages 73–84, 2012.

ISAAC 2019

13:14 Approximate Pricing in Networks

11 Pierluigi Crescenzi, Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Greedily
improving our own centrality in a network. In SEA 2015, volume 9125 of Lecture Notes in
Computer Science, pages 43–55, 2015.

12 Pierluigi Crescenzi, Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Greedily
Improving Our Own Closeness Centrality in a Network. ACM Trans. Knowl. Discov. Data,
11(1):9:1–9:32, 2016.

13 Gianlorenzo D’Angelo, Martin Olsen, and Lorenzo Severini. Coverage Centrality Maximization
in Undirected Networks. CoRR, abs/1811.04331, 2019. arXiv:1811.04331.

14 P. de Waard. Nederland belastingparadijs voor veel multinationals. De Volkskrant, Oct. 14,
2011.

15 Erik D. Demaine and Morteza Zadimoghaddam. Minimizing the Diameter of a Network Using
Shortcut Edges. In SWAT, volume 6139 of Lecture Notes in Computer Science, pages 420–431,
2010.

16 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numer. Math.,
1(1):269–271, 1959.

17 Iftah Gamzu and Danny Segev. A Sublogarithmic Approximation for Highway and Tollbooth
Pricing. In Proc. 37th International Colloquium Conference on Automata, Languages and
Programming, ICALP’10, pages 582–593, 2010.

18 Fabrizio Grandoni and Thomas Rothvoss. Pricing on Paths: A PTAS for the Highway Problem.
SIAM J. Comput., 45(2):216–231, 2016.

19 Venkatesan Guruswami, Jason D. Hartline, Anna R. Karlin, David Kempe, Claire Kenyon,
and Frank McSherry. On Profit-maximizing Envy-free Pricing. In SODA, pages 1164–1173,
2005.

20 Vatche Ishakian, Dóra Erdös, Evimaria Terzi, and Azer Bestavros. A Framework for the
Evaluation and Management of Network Centrality. In Proc. 12th SIAM Int. Conf. on Data
Mining (SDM), pages 427–438, 2012.

21 Martine Labbe, Patrice Marcotte, and Gilles Savard. A Bilevel Model of Taxation and Its
Application to Optimal Highway Pricing. Management Science, 44(12):1608–1622, December
1998.

22 Ahmad Mahmoody, Charalampos E. Tsourakakis, and Eli Upfal. Scalable Betweenness
Centrality Maximization via Sampling. In Proc. 22nd ACM SIGKDD Int. Conf. on KDD,
pages 1765–1773, 2016.

23 Paolo Malighetti, Gianmaria Martini, Stefano Paleari, and Renato Redondi. The Impacts of
Airport Centrality in the EU Network and Inter-Airport Competition on Airport Efficiency.
Technical Report MPRA-7673, University Library of Munich, Germany, 2009.

24 Adam Meyerson and Brian Tagiku. Minimizing Average Shortest Path Distances via Shortcut
Edge Addition. In APPROX, volume 5687, 2009.

25 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions–I. Math. Program., 14(1):265–294,
1978.

26 Martin Olsen and Anastasios Viglas. On the approximability of the link building problem.
TCS, 518:96–116, 2014.

27 Manos Papagelis, Francesco Bonchi, and Aristides Gionis. Suggesting Ghost Edges for a
Smaller World. In Proc. 20th ACM Int. Conf. on Information and Knowledge Management,
CIKM ’11, pages 2305–2308. ACM, 2011.

28 Nikos Parotsidis, Evaggelia Pitoura, and Panayiotis Tsaparas. Selecting Shortcuts for a Smaller
World. In Proc. SIAM Int. Conf. on Data Mining, pages 28–36. SIAM, 2015.

29 Senni Perumal, Prithwish Basu, and Ziyu Guan. Minimizing Eccentricity in Composite
Networks via Constrained Edge Additions. In Military Communications Conference, MILCOM
2013 - 2013 IEEE, pages 1894–1899, 2013.

30 Sven C. Polak. Algorithms for the Network Analysis of Bilateral Tax Treaties. MSc. thesis,
University of Amsterdam, The Netherlands, 2014.

http://arxiv.org/abs/1811.04331

R. Brokkelkamp, S. Polak, G. Schäfer, and Y. Velaj 13:15

31 Sébastien Roch, Gilles Savard, and Patrice Marcotte. An approximation algorithm for
Stackelberg network pricing. Networks, 46(1):57–67, 2005.

32 D. Milmo S. Goodley. Dutch masters of tax avoidance. The Guardian, Oct. 19, 2011.
33 Thomas W. Valente and Kayo Fujimoto. Bridging: Locating critical connectors in a network.

Soc. Netw., 32(3):212–220, 2010.
34 Leslie Valiant. The Complexity of Enumeration and Reliability Problems. SICOMP, 8(3):410–

421, 1979.
35 Maarten van ‘t Riet and Arjan M. Lejour. Ranking the Stars: Network Analysis of Bilateral

Tax Treaties. CPB Discussion Paper, 2014.
36 Maarten van ‘t Riet and Arjan M. Lejour. Optimal tax routing: network analysis of FDI

diversion. International Tax and Public Finance, 25(5):1321–1371, 2018.
37 Baoning Wu and Brian D. Davison. Identifying link farm spam pages. In Proc. 14th Int. Conf.

on World Wide Web, WWW 2005, pages 820–829, 2005.

ISAAC 2019

Slaying Hydrae: Improved Bounds for Generalized
k-Server in Uniform Metrics
Marcin Bienkowski
Institute of Computer Science, University of Wrocław, Poland
marcin.bienkowski@cs.uni.wroc.pl

Łukasz Jeż
Institute of Computer Science, University of Wrocław, Poland
lukasz.jez@cs.uni.wroc.pl

Paweł Schmidt
Institute of Computer Science, University of Wrocław, Poland
pawel.schmidt@cs.uni.wroc.pl

Abstract
The generalized k-server problem is an extension of the weighted k-server problem, which in turn
extends the classic k-server problem. In the generalized k-server problem, each of k servers s1, . . . , sk

remains in its own metric space Mi. A request is a tuple (r1, . . . , rk), where ri ∈Mi, and to service
it, an algorithm needs to move at least one server si to the point ri. The objective is to minimize
the total distance traveled by all servers.

In this paper, we focus on the generalized k-server problem for the case where all Mi are uniform
metrics. We show an O(k2 · log k)-competitive randomized algorithm improving over a recent result
by Bansal et al. [SODA 2018], who gave an O(k3 · log k)-competitive algorithm. To this end, we
define an abstract online problem, called Hydra game, and we show that a randomized solution of
low cost to this game implies a randomized algorithm to the generalized k-server problem with low
competitive ratio.

We also show that no randomized algorithm can achieve competitive ratio lower than Ω(k), thus
improving the lower bound of Ω(k/ log2 k) by Bansal et al.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases k-server, generalized k-server, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.14

Funding Supported by Polish National Science Centre grant 2016/22/E/ST6/00499.

1 Introduction

The k-server problem, introduced by Manasse et al. [18], is one of the most well-studied
and influential cornerstones of online analysis. The problem definition is deceivingly simple:
There are k servers, starting at a fixed set of k points of a metric space M . An input is
a sequence of requests (points of M) and to service a request, an algorithm needs to move
servers, so that at least one server ends at the request position. As typical for online problems,
the k-server problem is sequential in nature: an online algorithm Alg learns a new request
only after it services the current one. The cost of Alg, defined as the total distance traveled
by all its servers, is then compared to the cost of an offline solution Opt; the ratio between
them, called competitive ratio, is subject to minimization.

In a natural extension of the k-server problem, called the generalized k-server problem [16,
20], each server si remains in its own metric space Mi. The request is a k-tuple (r1, . . . , rk),
where ri ∈ Mi, and to service it, an algorithm needs to move servers, so that at least one
server si ends at the request position ri. The original k-server problem corresponds to the

© Marcin Bienkowski, Łukasz Jeż, and Paweł Schmidt;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2453-7772
mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-7375-0641
mailto:lukasz.jez@cs.uni.wroc.pl
mailto:pawel.schmidt@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.ISAAC.2019.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

case where all metric spaces Mi are identical and each request is of the form (r, . . . , r). The
generalized k-server problem contains many known online problems, such as the weighted
k-server problem [1, 7, 11, 12] or the CNN problem [8, 16, 19, 20] as special cases.

So far, the existence of an f(k)-competitive algorithm for the generalized k-server problem
in arbitrary metric spaces remains open. Furthermore, even for specific spaces, such as the
line [16] or uniform metrics [1, 2, 16], the generalized k-server problem requires techniques
substantially different from those used to tackle the classic k-server problems. For these
reasons, studying this problem could lead to new techniques for designing online algorithms.

1.1 Previous Work
After almost three decades of extensive research counted in dozens of publications (see, e.g.,
a slightly dated survey by Koutsoupias [14]), we are closer to understanding the nature of
the classic k-server problem. The competitive ratio achievable by deterministic algorithms is
between k [18] and 2k − 1 [15] with k-competitive algorithms known for special cases, such
as uniform metrics [21], lines and trees [9, 10], or metrics of k + 1 points [18]. Less is known
about competitive ratios for randomized algorithms: the best known lower bound holding
for an arbitrary metric space is Ω(log k/ log log k) [4] and the currently best upper bound
of O(log6 k) has been recently obtained in a breakthrough result [6, 17].

In comparison, little is known about the generalized k-server problem. In particular,
algorithms attaining competitive ratios that are functions of k exist only in a few special
cases. The case of k = 2 has been solved by Sitters and Stougie [20, 19], who gave constant
competitive algorithms for this setting. Results for k ≥ 3 are known only for simpler metric
spaces, as described below.

A uniform metric case describes a scenario where all metrics Mi are uniform with pairwise
distances between different points equal to 1. For this case, Bansal et al. [2] recently
presented an O(k ·2k)-competitive deterministic algorithm and an O(k3 ·log k)-competitive
randomized one. The deterministic competitive ratio is at least 2k − 1 already when
metrics Mi have two points [16]. Furthermore, using a straightforward reduction to the
metrical task system (MTS) problem [5], they show that the randomized competitive
ratio is at least Ω(k/ log k) [2].1

A weighted uniform metric case describes a scenario where each metric Mi is uniform, but
they have different scales, i.e., the pairwise distances between points of Mi are equal
to some values wi > 0. For this setting, Bansal et al. [2] gave an 22O(k)-competitive
deterministic algorithm extending an 22O(k)-competitive algorithm for the weighted k-
server problem in uniform metrics [12]. (The latter problem corresponds to the case
where all requests are of the form (r, . . . , r).) This matches a lower bound of 22Ω(k) [1]
(which also holds already for the weighted k-server problem).

1.2 Our Results and Paper Organization
In this paper, we study the uniform metric case of the generalized k-server problem. We give
a randomized O(k2 · log k)-competitive algorithm improving over the O(k3 · log k) bound by
Bansal et al. [2].

1 In fact, for the generalized k-server problem in uniform metrics, the paper by Bansal et al. [2] claims
only the randomized lower bound of Ω(k/ log2 k). To obtain it, they reduce the problem to the n-state
metrical task system (MTS) problem and apply a lower bound of Ω(log n/(log log n)2) for MTS [3]. By
using their reduction and a stronger lower bound of Ω(log n/ log log n) for n-state MTS [4], one could
immediately obtain a lower bound of Ω(k/ log k) for the generalized k-server problem.

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:3

To this end, we first define an elegant abstract online problem: a Hydra game played by
an online algorithm against an adversary on an unweighted tree. We present the problem along
with a randomized, low-cost online algorithm Herc in Section 2. We defer a formal definition
of the generalized k-server problem to Section 3.1. Later, in Section 3.2 and Section 3.3, we
briefly sketch the structural claims concerning the generalized k-server problem given by
Bansal et al. [2]. Using this structural information, in Section 3.4, we link the generalized
k-server problem to the Hydra game: we show that a (randomized) algorithm of total
cost R for the Hydra game on a specific tree (called factorial tree) implies a (randomized)
(R + 1)-competitive solution for the generalized k-server problem. This, along with the
performance guarantees of Herc given in Section 2, yields the desired competitiveness bound.
We remark that while the explicit definition of the Hydra game is new, the algorithm of
Bansal et al. [2] easily extends to its framework.

Finally, in Section 4, we give an explicit lower bound construction for the generalized
k-server problem, which does not use a reduction to the metrical task system problem, hereby
improving the bound from Ω(k/ log k) to Ω(k).

2 Hydra Game

The Hydra game2 is played between an online algorithm and an adversary on a fixed
unweighted tree T , known to the algorithm in advance. The nodes of T have states which
change throughout the game: Each node can be either asleep, alive or dead. Initially, the
root rT is alive and all other nodes are asleep. At all times, the following invariant is
preserved: all ancestors of alive nodes are dead and all their descendants are asleep. In
a single step, the adversary picks a single alive node w, kills it (changes its state to dead)
and makes all its (asleep) children alive. Note that such adversarial move preserves the
invariant above.

An algorithm must remain at some alive node (initially, it is at the root rT). If an algorithm
is at a node w that has just been killed, it has to move to any still alive node w′ of its choice.
For such movement it pays dist(w,w′), the length of the shortest path between w and w′ in
the tree T . The game ends when all nodes except one (due to the invariant, it has to be
an alive leaf) are dead. Unlike many online problems, here our sole goal is to minimize the
total (movement) cost of an online algorithm (i.e., without comparing it to the cost of the
offline optimum).

This game is not particularly interesting in the deterministic setting: As an adversary
can always kill the node where a deterministic algorithm resides, the algorithm has to visit
all but one nodes of tree T , thus paying Ω(|T |). On the other hand, a trivial DFS traversal
of tree T has the cost of O(|T |). Therefore, we focus on randomized algorithms and assume
that the adversary is oblivious: it knows an online algorithm, but not the random choices
made by it thus far.

2.1 Randomized Algorithm Definition
It is convenient to describe our randomized algorithm Herc as maintaining a probability
distribution η over set of nodes, where for any node u, η(u) denotes the probability that
Herc is at u. We require that η(u) = 0 for any non-alive node u. Whenever Herc decreases

2 This is a work of science. Any resemblance of the process to the decapitation of a mythical many-headed
serpent-shaped monster is purely coincidental.

ISAAC 2019

14:4 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

the probability at a given node u by p and increases it at another node w by the same
amount, we charge cost p · dist(u,w) to Herc. By a straightforward argument, one can
convert such description into a more standard, “behavioral” one, which describes randomized
actions conditioned on the current state of an algorithm, and show that the costs of both
descriptions coincide. We present the argument in Appendix A for completeness.

At any time during the game, for any node u from tree T , rank(u) denotes the number of
non-dead (i.e., alive or asleep) leaves in the subtree rooted at u. As Herc knows tree T in
advance, it knows node ranks as well. Algorithm Herc maintains η that is distributed over
all alive nodes proportionally to their ranks. As all ancestors of an alive node are dead and
all its descendants are asleep, we have η(u) = rank(u)/rank(rT) if u is alive and η(u) = 0
otherwise. In particular, at the beginning η is 1 at the root and 0 everywhere else.

While this already defines the algorithm, we still discuss its behavior when an alive
node u is killed by the adversary. By Herc definition, we can think of the new probability
distribution η′ as obtained from η in the following way. First, Herc sets η′(u) = 0. Next,
the probability distribution at other nodes is modified as follows.
Case 1. Node u is not a leaf. Herc distributes the probability of u among all (now alive)

children of u proportionally to their ranks, i.e., sets η′(w) = (rank(w)/rank(u)) · η(u) for
each child w of u.

Case 2. Node u is a leaf. Note that there were some other non-dead leaves, as otherwise the
game would have ended before this step, and therefore η(u) ≤ 1/2. Herc distributes η(u)
among all other nodes, scaling the probabilities of the remaining nodes up by a factor of
1/(1− η(u)). That is, it sets η′(w) = η(w)/(1− η(u)) for any node w.

Note that in either case, η′ is a valid probability distribution, i.e., all probabilities are
non-negative and sum to 1. Moreover, η′ is distributed over alive nodes proportionally to
their new ranks, and is equal to zero at non-alive nodes.

I Observation 1. At any time, the probability of an alive leaf u is exactly η(u) = 1/rank(rT).

2.2 Analysis
For the analysis, we need a few more definitions. We denote the height and the number of
the leaves of tree T by hT and LT , respectively. Let level(u) denote the height of the subtree
rooted at u, where leaves are at level 0. Note that hT = level(rT).

To bound the cost of Herc, we define a potential Φ, which is a function of the current
state of all nodes of T and the current probability distribution η of Herc. We show that
Φ is initially O(hT · (1 + logLT)), is always non-negative, and the cost of each Herc’s action
can be covered by the decrease of Φ. This will show that the total cost of Herc is at most
the initial value of Φ, i.e., O(hT · (1 + logLT)).

Recall that η(w) = 0 for any non-alive node w and that rank(u) is the number of non-dead
leaves in the subtree rooted at u. Specifically, rank(rT) is the total number of non-dead
leaves in T . The potential is defined as

Φ = 4 · hT ·H(rank(rT)) +
∑
w∈T

η(w) · level(w) , (1)

where H(n) =
∑n

i=1 1/i is the n-th harmonic number.

I Lemma 2. At any time, Φ = O(hT · (1 + logLT)).

Proof. Since rank(rT) ≤ LT at all times, the first summand of Φ is O(hT · logLT). The
second summand of Φ is a convex combination of node levels, which range from 0 to hT , and
is thus bounded by hT . J

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:5

I Lemma 3. Fix any step in which an adversary kills a node u and in result Herc changes
the probability distribution from η to η′. Let ∆Herc be the cost incurred in this step by
Herc and let ∆Φ be the resulting change in the potential Φ. Then, ∆Φ ≤ −∆Herc.

Proof. We denote the ranks before and after the adversarial event by rank and rank′,
respectively. We consider two cases depending on the type of u.

Case 1. The killed node u is an internal node. In this case, ∆Herc = η(u) as Herc simply
moves the total probability of η(u) along a distance of one (from u to its children). As
rank′(rT) = rank(rT), the first summand of Φ remains unchanged. Let C(u) be the set of
children of u. Then,

∆Φ =
∑
w∈T

(η′(w)− η(w)) · level(w) = −η(u) · level(u) +
∑

w∈C(u)

η′(w) · level(w)

≤ −η(u) · level(u) +
∑

w∈C(u)

η′(w) · (level(u)− 1)

= −η(u) · level(u) + η(u) · (level(u)− 1) = −∆Herc ,

where the inequality holds as level of a node is smaller than the level of its parent and
the penultimate equality follows as the whole probability mass at u is distributed to its
children.

Case 2. The killed node u is a leaf. It is not the last alive node, as in such case the game
would have ended before, i.e., it holds that rank(rT) ≥ 2. Herc moves the probability
of η(u) = 1/rank(rT) (cf. Observation 1) along a distance of at most 2 · hT , and thus
∆Herc ≤ 2 · hT /rank(rT).
Furthermore, for any w 6= u, η′(w) = η(w)/(1− η(u)). Using η(u) = 1/rank(rT), we infer
that the probability at a node w 6= u increases by

η′(w)− η(w) =
(

1
1− η(u) − 1

)
· η(w) = η(u)

1− η(u) · η(w)

= 1
rank(rT)− 1 · η(w) ≤ 2

rank(rT) · η(w) , (2)

where the last inequality follows as rank(rT) ≥ 2.
Using (2) and the relation rank′(rT) = rank(rT) − 1 (the number of non-dead leaves
decreases by 1), we compute the change of the potential:

∆Φ = 4 · hT ·
(
H(rank′(rT))−H(rank(rT))

)
+
∑
w∈T

(η′(w)− η(w)) · level(w)

= − 4 · hT

rank(rT) + (η′(u)− η(u)) · level(u) +
∑
w 6=u

(η′(w)− η(w)) · level(w)

≤ − 4 · hT

rank(rT) +
∑
w 6=u

2
rank(rT) · η(w) · hT ≤ −

2 · hT

rank(rT) ≤ −∆Herc .

In the first inequality, we used that level(u) = 0 and level(w) ≤ hT for any w.
Summing up, we showed that ∆Φ ≤ −∆Herc in both cases. J

I Theorem 4. For the Hydra game played on any tree T of height hT and LT leaves, the
total cost of Herc is at most O(hT · (1 + logLT)).

ISAAC 2019

14:6 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

Proof. Let ΦB denote the initial value of Φ. By non-negativity of Φ and Lemma 3, it holds
that the total cost of Herc is at most ΦB. The latter amount is at most O(hT · (1 + logLT))
by Lemma 2. J

Although Herc and Theorem 4 may seem simple, when applied to appropriate trees, they
yield improved bounds for the generalized k-server problem in uniform metrics, as shown in
the next section.

3 Improved Algorithm for Generalized k-Server Problem

In this part, we show how any solution for the Hydra game on a specific tree (defined
later) implies a solution to the generalized k-server problem in uniform metrics. This will
yield an O(k2 log k)-competitive randomized algorithm for the generalized k-server problem,
improving the previous bound of O(k3 · log k) [2]. We note that this reduction is implicit
in the paper of Bansal et al. [2], so our contribution is in formalizing the Hydra game and
solving it more efficiently.

3.1 Preliminaries
The generalized k-server problem in uniform metrics is formally defined as follows. The
offline part of the input comprises k uniform metric spaces M1, . . . ,Mk. The metric Mi

has ni ≥ 2 points, the distance between each pair of its points is 1. There are k servers
denoted s1, . . . , sk, the server si starts at some fixed point in Mi and always remains at some
point of Mi.

The online part of the input is a sequence of requests, each request being a k-tuple
(r1, . . . , rk) ∈

∏k
i=1 Mi. To service a request, an algorithm needs to move its servers, so

that at least one server si ends at the request position ri. Only after the current request is
serviced, an online algorithm is given the next one.

The cost of an algorithm Alg on input I, denoted Alg(I), is the total distance traveled
by all its k servers. We say that a randomized online algorithm Alg is β-competitive if there
exists a constant γ, such that for any input I, it holds that E[Alg(I)] ≤ β ·Opt(I) + γ,
where the expected value is taken over all random choices of Alg, and where Opt(I) denotes
the cost of an optimal offline solution for input I. The constant γ may be a function of k,
but it cannot depend on an online part of the input.

3.2 Phase-Based Approach
We start by showing how to split the sequence of requests into phases. To this end, we need
a few more definitions. A (server) configuration is a k-tuple c = (c1, . . . , ck) ∈

∏k
i=1 Mi,

denoting positions of respective servers. For a request r = (r1, . . . , rk) ∈
∏k

i=1 Mi, we define
the set of compatible configurations comp(r) = {(c1, . . . , ck) : ∃i ci = ri}, i.e., the set of all
configurations that can service the request r without moving a server. Other configurations
we call incompatible with r.

An input is split into phases, with the first phase starting with the beginning of an input.
The phase division process described below is constructed to ensure that Opt pays at least 1
in any phase, perhaps except the last one. At the beginning of a phase, all configurations
are phase-feasible. Within a phase, upon a request r, all configurations incompatible with r
become phase-infeasible. The phase ends once all configurations are phase-infeasible; if this
is not the end of the input, the next phase starts immediately, i.e., all configurations are

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:7

restored to the phase-feasible state before the next request. Note that the description above
is merely a way of splitting an input into phases and marking configurations as phase-feasible
and phase-infeasible. The actual description of an online algorithm will be given later.

Fix any finished phase and any configuration c and consider an algorithm that starts the
phase with its servers at configuration c. When configuration c becomes phase-infeasible,
such algorithm is forced to move and pay at least 1. As each configuration eventually becomes
phase-infeasible in a finished phase, any algorithm (even Opt) must pay at least 1 in any
finished phase. Hence, if the cost of a phase-based algorithm for servicing requests of a single
phase can be bounded by f(k), the competitive ratio of this algorithm is then at most f(k).

3.3 Configuration Spaces

Phase-based algorithms that we construct will not only track the set of phase-feasible
configurations, but they will also group these configurations in certain sets, called configuration
spaces.

To this end, we introduce a special wildcard character ?. Following [2], for any k-tuple
q = (q1, . . . , qk) ∈

∏k
i=1(Mi ∪ {?}), we define a (configuration) space S[q] = {(c1, . . . , ck) ∈∏k

i=1 Mi : ∀i ci = qi ∨ qi = ?}. A coordinate with qi = ? is called free for the configuration
space S[q]. That is, S[q] contains all configurations that agree with q on all non-free
coordinates.

The number of free coordinates in q defines the dimension of S[q] denoted dim(S[q]).
Observe that the k-dimensional space S[(?, . . . , ?)] contains all configurations. If tuple q
has no ? at any position, then S[q] is 0-dimensional and contains only (configuration) q.
The following lemma, proven by Bansal et al. [2], follows immediately from the definition of
configuration spaces.

I Lemma 5 (Lemma 3.1 of [2]). Let S[q] be a d-dimensional configuration space (for
some d ≥ 0) whose all configurations are phase-feasible. Fix a request r. If there exists
a configuration in S[q] that is not compatible with r, then there exist d (not necessarily disjoint)
subspaces S[q1], . . . , S[qd], each of dimension d − 1, such that

⋃
i S[qi] = S[q] ∩ comp(r).

Furthermore, for all i, the k-tuples qi and q differ exactly at one position.

Using the lemma above, we may describe a way for an online algorithm to keep track
of all phase-feasible configurations. To this end, it maintains a set A of (not necessarily
disjoint) configuration spaces, such that their union is exactly the set of all phase-feasible
configurations. We call spaces from A alive.

At the beginning, A = {S[(?, . . . , ?)]}. Assume now that a request r makes some
configurations from a d-dimensional space S[q] ∈ A phase-infeasible. (A request may affect
many spaces from A; we apply the described operations to each of them sequentially in
an arbitrary order.) In such case, S[q] stops to be alive, it is removed from A and till
the end of the phase it will be called dead. Next, we apply Lemma 5 to S[q], obtaining
d configuration spaces S[q1], . . . , S[qd], such that their union is S[q]∩comp(r), i.e., contains all
those configurations from S[q] that remain phase-feasible. We make all spaces S[q1], . . . , S[qd]
alive and we insert them into A. (Note that when d = 0, set S[q] is removed from A, but no
space is added to it.) This way we ensure that the union of spaces from A remains equal to
the set of all phase-feasible configurations. Note that when a phase ends, A becomes empty.
We emphasize that the evolution of set A within a phase depends only on the sequence of
requests and not on the particular behavior of an online algorithm.

ISAAC 2019

14:8 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

3.4 Factorial Trees: From Hydra Game to Generalized k-Server
Given the framework above, an online algorithm may keep track of the set of alive spaces A,
and at all times try to be in a configuration from some alive space. If this space becomes
dead, an algorithm changes its configuration to any configuration from some other alive
space from A.

The crux is to choose an appropriate next alive space. To this end, our algorithm for
the generalized k-server problem will internally run an instance of the Hydra game (a new
instance for each phase) on a special tree, and maintain a mapping from alive and dead
spaces to alive and dead nodes in the tree. Moreover, spaces that are created during the
algorithm runtime, as described in Section 3.3, have to be dynamically mapped to tree nodes
that were so far asleep.

In our reduction, we use a k-factorial tree. It has height k (the root is on level k and
leaves on level 0). Any node on level d has exactly d children, i.e., the subtree rooted at
a d-level node has d! leaves, hence the tree name. On the k-factorial tree, the total cost
of Herc is O(k · (1 + log k!)) = O(k2 · log k). We now show that this implies an improved
algorithm for the generalized k-server problem.

I Theorem 6. If there exists a (randomized) online algorithm H for the Hydra game on the
k-factorial tree of total (expected) cost R, then there exists a (randomized) (R+1)-competitive
online algorithm G for the generalized k-server problem in uniform metrics.

Proof. Let I be an input for the generalized k-server problem in uniform metric spaces.
G splits I into phases as described in Section 3.2 and, in each phase, it tracks the phase-
feasible nodes using set A of alive spaces as described in Section 3.3. For each phase, G runs
a new instance IH of the Hydra game on a k-factorial tree T , translates requests from I

to adversarial actions in IH , and reads the answers of H executed on IH . At all times,
G maintains a (bijective) mapping from alive (respectively, dead) d-dimensional configuration
spaces to alive (respectively, dead) nodes on the d-th level of the tree T . In particular, at the
beginning, the only alive space is the k-dimensional space S[(?, . . . , ?)], which corresponds to
the tree root (on level k). The configuration of G will always be an element of the space
corresponding to the tree node containing H. More precisely, within each phase, a request r
is processed in the following way by G.

Suppose that request r does not make any configuration phase-infeasible. In this case,
G services r from its current configuration and no changes are made to A. Also no
adversarial actions are executed in the Hydra game.
Suppose that request r makes some (but not all) configurations phase-infeasible. We
assume that this kills only one d-dimensional configuration space S[q]. (If r causes multiple
configuration spaces to become dead, G processes each such killing event separately, in
an arbitrary order.)
By the description given in Section 3.3, S[q] is then removed from A and d new (d− 1)-
dimensional spaces S[q1], . . . , S[qd] are added to A. G executes appropriate adversarial
actions in the Hydra game: a node v corresponding to S[q] is killed and its d children on
level d− 1 change state from asleep to alive. G modifies the mapping to track the change
of A: (new and now alive) spaces S[q1], . . . , S[qd] become mapped to (formerly asleep
and now alive) d children of v. Afterwards, G observes the answer of algorithm H on the
factorial tree and replays it. Suppose H moves from (now dead) node v to an alive node v′,
whose corresponding space is S[q′] ∈ A. In this case, G changes its configuration to the
closest configuration (requiring minimal number of server moves) from S[q′]. It remains to
relate its cost to the cost of H. By Lemma 5 (applied to spaces corresponding to all nodes

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:9

on the tree path from v to v′), the corresponding k-tuples q, q′ differ on at most dist(v, v′)
positions. Therefore, adjusting the configuration of G, so that it becomes an element
of S[q′], requires at most dist(v, v′) server moves, which is exactly the cost of H.
Finally, note that when G processes all killing events, it ends in a configuration of an alive
space, and hence it can service the request r from its new configuration.
Suppose that request r makes all remaining configurations phase-infeasible. In such case,
G moves an arbitrary server to service this request, which incurs a cost of 1. In this
case, the current phase ends, a new one begins, and G initializes a new instance of the
Hydra game.

Let f ≥ 1 be the number of all phases for input I (the last one may be not finished).
The cost of Opt in a single finished phase is at least 1. By the reasoning above, the
(expected) cost of G in a single phase is at most R+ 1. Therefore, E[G(I)] ≤ (R+ 1) · f ≤
(R+ 1) ·Opt(I) + (R+ 1), which completes the proof. J

Using our algorithm Herc for the Hydra game along with the reduction given by
Theorem 6 immediately implies the following result.

I Corollary 7. There exists a randomized O(k2 · log k)-competitive online algorithm for the
generalized k-server problem in uniform metrics.

4 Lower bound

Next, we show that that competitive ratio of any (even randomized) online algorithm for
the generalized k-server problem in uniform metrics is at least Ω(k), as long as each metric
space Mi contains at least two points. For each Mi, we choose two distinct points, the initial
position of the i-th server, which we denote 0 and any other point, which we denote 1. The
adversary is going to issue only requests satisfying ri ∈ {0, 1} for all i, hence without loss of
generality any algorithm will restrict its server’s position in each Mi to 0 and 1. (To see this,
assume without loss of generality that the algorithm is lazy, i.e., it is only allowed to move
when a request is not covered by any of its server, and is then allowed only to move a single
server to cover that request.) For this reason, from now on we assume that Mi = {0, 1} for
all i, ignoring superfluous points of the metrics.

The configuration of any algorithm can be then encoded using a binary word of length k.
It is convenient to view all these 2k words (configurations) as nodes of the k-dimensional
hypercube: two words are connected by a hypercube edge if they differ at exactly one
position. Observe that a cost of changing configuration c to c′, denoted dist(c, c′) is exactly
the distance between c and c′ in the hypercube, equal to the number of positions on which
the corresponding binary strings differ.

In our construction, we compare the cost of an online algorithm to the cost of an algorithm
provided by the adversary. Since Opt’s cost can be only lower than the latter, such approach
yields a lower bound on the performance of the online algorithm.

For each word w, there is exactly one word at distance k, which we call its antipode
and denote w̄. Clearly, w̄i = 1− wi for all i. Whenever we say that an adversary penalizes
configuration c, it issues a request at c̄. An algorithm that has servers at configuration c needs
to move at least one of them. On the other hand, any algorithm with servers at configuration
c′ 6= c need not move its servers; this property will be heavily used by an adversary’s
algorithm.

ISAAC 2019

14:10 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

4.1 A Warm-Up: Deterministic Algorithms
To illustrate our general framework, we start with a description of an Ω(2k/k) lower bound
that holds for any deterministic algorithm Det [2]. (A more refined analysis yields a better
lower bound of 2k − 1 [16].) The adversarial strategy consists of a sequence of independent
identical phases. Whenever Det is in some configuration, the adversary penalizes this
configuration. The phase ends when 2k − 1 different configurations have been penalized.
This means that Det was forced to move at least 2k − 1 times, at a total cost of at least
2k − 1. In the same phase, the adversary’s algorithm makes only a single move (of cost at
most k) at the very beginning of the phase: it moves to the only configuration that is not
going to be penalized in the current phase. This shows that the Det-to-Opt ratio in each
phase is at least (2k − 1)/k.

4.2 Extension to Randomized Algorithms
Adopting the idea above to a randomized algorithm Rand is not straightforward. Again,
we focus on a single phase and the adversary wants to leave (at least) one configuration
non-penalized in this phase. However, now the adversary only knows Rand’s probability
distribution µ over configurations and not its actual configuration. (At any time, for any
configuration c, µ(c) is the probability that Rand’s configuration is equal to c.) We focus
on a greedy adversarial strategy that always penalizes the configuration with maximum
probability. However, arguing that Rand incurs a significant cost is not as easy as for Det.

First, the support of µ can also include configurations that have been already penalized
by the adversary in the current phase. This is but a nuisance, easily overcome by penalizing
such configurations repeatedly if Rand keeps using them, until their probability becomes
negligible. Therefore, in this informal discussion, we assume that once a configuration c is
penalized in a given phase, µ(c) remains equal to zero.

Second, a straightforward analysis of the greedy adversarial strategy fails to give a non-
trivial lower bound. Assume that i ∈ {0, . . . , 2k − 2} configurations have already been
penalized in a given phase, and the support of µ contains the remaining 2k − i configurations.
The maximum probability assigned to one of these configurations is at least 1/(2k− i). When
such configuration is penalized, Rand needs to move at least one server with probability at
least 1/(2k − i). With such bounds, we would then prove that the algorithm’s expected cost
is at least

∑2k−2
i=0 1/(2k − i) = Ω(log 2k) = Ω(k). Since we bounded the adversary’s cost per

phase by k, this gives only a constant lower bound.
What we failed to account is that the actual distance traveled by Rand in a single step

is either larger than 1 or Rand would not be able to maintain a uniform distribution over
non-penalized configurations. However, actually exploiting this property seems quite complex,
and therefore we modify the adversarial strategy instead.

The crux of our actual construction is choosing a subset Q of the configurations, such that
Q is sufficiently large (we still have log(|Q|) = Ω(k)), but the minimum distance between any
two points of Q is Ω(k). Initially, the adversary forces the support of µ to be contained in Q.
Afterwards, the adversarial strategy is almost as described above, but reduced to set Q only.
This way, in each step the support of µ is a set S ⊆ Q, and the adversary forces Rand to
move with probability at least 1/|S| over a distance at least Ω(k), which is the extra Θ(k)
factor. We begin by proving the existence of such a set Q for sufficiently large k. The proof
is standard (see, e.g., Chapter 17 of [13]); we give it below for completeness.

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:11

I Lemma 8. For any k ≥ 16, there exists a set Q ⊆ {0, 1}k of binary words of length k,
satisfying the following two properties:
size property: |Q| ≥ 2k/2/k,
distance property: dist(v, w) ≥ k/16 for any v, w ∈ Q.

Proof. Let ` = bk/16c ≥ k/32. For any word q, we define its `-neighborhood B`(q) = {w :
dist(q, w) ≤ `}.

We construct set Q greedily. We maintain set Q and set Γ(Q) =
⋃

q∈Q B`(q). We start
with Q = ∅ (and thus with Γ(Q) = ∅). In each step, we extend Q with an arbitrary word
w ∈ {0, 1}k \ Γ(Q) and update Γ(Q) accordingly. We proceed until set Γ(Q) contains all
possible length-k words. Clearly, the resulting set Q satisfies the distance property.

It remains to show that |Q| ≥ 2k/2/k. For a word q, the size of B`(q) is

|B`(q)| =
bk/16c∑

i=0

(
k

i

)
< k ·

(
k

bk/16c

)
≤ k ·

(
k · e
bk/16c

)bk/16c

≤ k ·
(
k · e
k/32

)k/16
= k ·

(
(32 · e)1/8

)k/2
< k · 2k/2 .

That is, in a single step, Γ(Q) increases by at most k · 2k/2 elements. Therefore, the process
continues for at least 2k/(k ·2k/2) = 2k/2/k steps, and thus the size of Q is at least 2k/2/k. J

I Theorem 9. The competitive ratio of every (randomized) online algorithm solving the
generalized k-server problem in uniform metrics is at least Ω(k).

Proof. In the following we assume that k ≥ 16, otherwise the theorem follows trivially. We
fix any randomized online algorithm Rand. The lower bound strategy consists of a sequence
of independent phases. Requests of each phase can be (optimally) serviced with cost at
most k and we show that Rand’s expected cost for a single phase is Ω(k2), i.e., the ratio
between these costs is Ω(k). As the adversary may present an arbitrary number of phases to
the algorithm, this shows that the competitive ratio of Rand is Ω(k), i.e., by making the
cost of Rand arbitrarily high, the additive constant in the definition of the competitive ratio
(cf. Section 3.1) becomes negligible.

As in our informal introduction, µ(c) denotes the probability that Rand has its servers
in configuration c (at time specified in the context). We extend the notion µ to sets, i.e.,
µ(X) =

∑
c∈X µ(x) where X is a set of configurations. We denote the complement of X (to∏k

i=1 Mi) by XC . We use ε = 2−(2k+2) throughout the proof.
To make the description concise, we define an auxiliary routine Confine(X) for the

adversary (for some configuration set X). In this routine, the adversary repeatedly checks
whether there exists a configuration c 6∈ X, such that µ(x) > ε. In such case, it penalizes c;
if no such configuration exists, the routine terminates. We may assume that the procedure
always terminates after finite number of steps, as otherwise Rand’s competitive ratio would
be unbounded. (Rand pays at least ε in each step of the routine while an adversary’s
algorithm may move its servers to any configuration from set X, and from that time service
all requests of Confine(X) with no cost.)

The adversarial strategy for a single phase is as follows. First, it constructsQ1 as the config-
uration set fulfilling the properties of Lemma 8; letm denote its cardinality. The phase consists
then of m executions of Confine routine: Confine(Q1),Confine(Q2), . . . ,Confine(Qm).
For i ∈ {2, . . . ,m}, set Qi is defined in the following way. The adversary observes Rand’s
distribution µ right after routine Confine(Qi−1) terminates; at this point this distribution
is denoted µi−1. Then, the adversary picks configuration ci−1 to be the element of Qi−1 that
maximizes the probability µi−1, and sets Qi = Qi−1 \ {ci−1}.

ISAAC 2019

14:12 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

We begin by describing the way that the adversary services the requests. Observe that set
Qm contains a single configuration, henceforth denoted c∗. The configuration c∗ is contained
in all sets Q1, . . . , Qm, and thus c∗ is never penalized in the current phase. Hence, by moving
to c∗ at the beginning of the phase, which costs at most k, and remaining there till the phase
ends, the adversary’s algorithm services all phase requests at no further cost.

It remains to lower-bound the cost of Rand. Confine(Q1) may incur no cost; its sole
goal is to confine the support of µ to Q1. Now, we fix any i ∈ {2, . . . ,m} and estimate
the cost incurred by Confine(Qi). Recall that the probability distribution right before
Confine(Qi) starts (and right after Confine(Qi−1) terminates) is denoted µi−1 and the
distribution right after Confine(Qi) terminates is denoted µi.

During Confine(Qi) a probability mass µi−1(ci−1), is moved from ci−1 to nodes of
set Qi (recall that Qi] {ci−1} = Qi−1). Some negligible amounts (at most µi(QC

i)) of
this probability may however remain outside of Qi after Confine(Qi) terminates. That is,
Rand moves at least the probability mass of µi−1(ci−1)− µi(QC

i) from configuration ci−1
to configurations from Qi (i.e., along a distance of at least dist(ci−1, Qi)), Therefore, its
expected cost due to Confine(Qi) is at least (µi−1(ci−1)− µi(QC

i)) · dist(ci−1, Qi).
First, using the properties of Confine(Qi−1) and the definition of ci−1, we obtain

µi−1(ci−1) ≥ µi−1(Qi−1)
|Qi−1|

=
1− µi−1(QC

i−1)
|Qi−1|

≥
1− |QC

i−1| · ε
|Qi−1|

>
1− 2−(k+2)

|Qi−1|
. (3)

Second, using the properties of Confine(Qi) yields

µi(QC
i) ≤ |QC

i | · ε < 2−(k+2) = 2−2

2k
<

2−2

|Qi−1|
. (4)

Using (3) and (4), we bound the expected cost of Rand due to routine Confine(Qi) as

E[Rand(Confine(Qi))] ≥
(
µi−1(ci−1)− µi(QC

i)
)
· dist(ci−1, Qi)

≥
(

1− 2−(k+2)

|Qi|
− 2−2

|Qi|

)
· k16 ≥

1
2 · |Qi|

· k16
= k/(32 · (m− i+ 1)) (5)

The second inequality above follows as all configurations from {ci−1}] Qi are distinct
elements of Q1, and hence their mutual distance is at least k/16 by the distance property
of Q1 (cf. Lemma 8). By summing (5) over i ∈ {2, . . . ,m}, we obtain that the total cost of
Rand in a single phase is E[Rand] ≥

∑m
i=2 E[Rand(Confine(Qi))] ≥ k

32 ·
∑m

i=2
1

m−i+1 =
Ω(k · logm) = Ω(k2). The last equality holds as m ≥ 2k/2/k by the size property of Q1.
(cf. Lemma 8). J

5 Final remarks

In this paper, we presented an abstract Hydra game whose solution we applied to create
an algorithm for the generalized k-server problem. Any improvement of our Herc strategy for
the Hydra game would yield an improvement for the generalized k-server problem. However,
we may show that on a wide class of trees (that includes factorial trees used in our reduction),
Herc is optimal up to a constant factor. Thus, further improving our upper bound of
O(k2 log k) for the generalized k-server problem will require another approach.

A lower bound for the cost of any randomized strategy for the Hydra game is essentially
the same as our single-phase construction from Section 4.2 for the generalized k-server
problem. That is, the adversary fixes a subset Q of tree leaves, makes only nodes of Q alive

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:13

(this forces the algorithm to be inside set Q), and then iteratively kills nodes of Q where the
algorithm is most likely to be. As in the proof from Section 4.2, such adversarial strategy
incurs the cost of Ω(mindist(Q) · log |Q|), where mindist(Q) = minu6=v∈Q dist(u, v).

The construction of appropriate Q for a tree T of depth k = hT (be either the k-factorial
tree or the complete k-ary tree) is as follows. Let Z be the set of all nodes of T at level bk/2c;
for such trees, log |Z| = Ω(logLT). Let Q consist of |Z| leaves of the tree, one per node
of Z chosen arbitrarily from its subtree. Then, mindist(Q) = Ω(hT) and log |Q| = Ω(logLT),
and thus the resulting lower bound Ω(hT · logLT) on the cost asymptotically matches the
performance of Herc from Theorem 4.

References
1 Nikhil Bansal, Marek Eliás, and Grigorios Koumoutsos. Weighted k-Server Bounds via

Combinatorial Dichotomies. In Proc. 58th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 493–504. IEEE Computer Society, 2017.

2 Nikhil Bansal, Marek Eliás, Grigorios Koumoutsos, and Jesper Nederlof. Competitive Al-
gorithms for Generalized k-Server in Uniform Metrics. In Proc. 29th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 992–1001, 2018.

3 Yair Bartal, Béla Bollobás, and Manor Mendel. Ramsey-type theorems for metric spaces with
applications to online problems. J. Comput. Syst. Sci., 72(5):890–921, 2006.

4 Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric Ramsey-type phenom-
ena. In Proc. 35th ACM Symp. on Theory of Computing (STOC), pages 463–472, 2003.

5 Alan Borodin, Nati Linial, and Michael E. Saks. An optimal on-line algorithm for metrical
task system. Journal of the ACM, 39(4):745–763, 1992.

6 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
k-server via multiscale entropic regularization. In Proc. 50th ACM Symp. on Theory of
Computing (STOC), pages 3–16. ACM, 2018.

7 Ashish Chiplunkar and Sundar Vishwanathan. On Randomized Memoryless Algorithms for
the Weighted K-Server Problem. In Proc. 54th IEEE Symp. on Foundations of Computer
Science (FOCS), pages 11–19, 2013.

8 Marek Chrobak. SIGACT news online algorithms col. 1. SIGACT News, 34(4):68–77, 2003.
9 Marek Chrobak, Howard J. Karloff, Thomas H. Payne, and Sundar Vishwanathan. New

Results on Server Problems. SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.
10 Marek Chrobak and Lawrence L. Larmore. An Optimal On-Line Algorithm for k-Servers on

Trees. SIAM Journal on Computing, 20(1):144–148, 1991.
11 Marek Chrobak and Jirí Sgall. The weighted 2-server problem. Theoretical Computer Science,

324(2-3):289–312, 2004.
12 Amos Fiat and Moty Ricklin. Competitive Algorithms for the Weighted Server Problem.

Theoretical Computer Science, 130(1):85–99, 1994.
13 Stasys Jukna. Extremal Combinatorics. Springer, 2011.
14 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.
15 Elias Koutsoupias and Christos H. Papadimitriou. On the k-Server Conjecture. Journal of the

ACM, 42(5):971–983, 1995.
16 Elias Koutsoupias and David Scot Taylor. The CNN problem and other k-server variants.

Theoretical Computer Science, 324(2-3):347–359, 2004.
17 James R. Lee. Fusible HSTs and the Randomized k-Server Conjecture. In Proc. 59th IEEE

Symp. on Foundations of Computer Science (FOCS), pages 438–449, 2018.
18 Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms for server

problems. Journal of the ACM, 11(2):208–230, 1990.
19 René Sitters. The Generalized Work Function Algorithm Is Competitive for the Generalized

2-Server Problem. SIAM Journal on Computing, 43(1):96–125, 2014.

ISAAC 2019

14:14 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

20 René A. Sitters and Leen Stougie. The generalized two-server problem. Journal of the ACM,
53(3):437–458, 2006.

21 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

A Probability Distribution and Algorithms

When we described our algorithm Herc for the Hydra game, we assumed that its current
position in the tree is a random node with probability distribution given by η. In a single step,
Herc decreases probability at some node u from η(u) to zero and increases the probabilities
of some other nodes w1, . . . , w` by a total amount of η(u). Such change can be split into
` elementary changes, each decreasing the probability at node u by pi and increasing it at
node wi by the same amount. Each elementary change can be executed and analyzed as
shown in the following lemma.

I Lemma 10. Let η be a probability distribution describing the position of Alg in the tree.
Fix two tree nodes, u and w. Suppose η′ is a probability distribution obtained from η by
decreasing η(u) by p and increasing η(w) by p. Then, Alg can change its random position,
so that it will be described by η′, and the expected cost of such change is p · dist(u,w).

Proof. We define Alg’s action as follows: if Alg is at node u, then with probability p/η(u)
it moves to node w. If Alg is at some other node it does not change its position.

We observe that the new distribution of Alg is exactly η′. Indeed, the probability of
being at node u decreases by η(u) · p/η(u) = p, while the probability of being at node w
increases by the same amount. The probabilities for all nodes different than u or w remain
unchanged.

Furthermore, the probability that Alg moves is η(u) · (p/η(u)) = p and the traveled
distance is dist(u,w). The expected cost of the move is then p · dist(u,w), as desired. J

Measure and Conquer for Max Hamming Distance
XSAT
Gordon Hoi
School of Computing, National University of Singapore,
13 Computing Drive, Block COM1, Singapore 117417, Republic of Singapore
e0013185@u.nus.edu

Frank Stephan
Department of Mathematics, National University of Singapore,
10 Lower Kent Ridge Road, Block S17, Singapore 119076, Republic of Singapore
School of Computing, National University of Singapore,
13 Computing Drive, Block COM1, Singapore 117417, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract
XSAT is defined as the following: Given a propositional formula in conjunctive normal form, can
one find an assignment to variables such that there is exactly only 1 literal that is true in every
clause, while the other literals are false. The decision problem XSAT is known to be NP-complete.
Crescenzi and Rossi [12] introduced the variant where one searches for a pair of two solutions of
an X3SAT instance with maximal Hamming Distance among them, that is, one wants to identify
the largest number k such that there are two solutions of the instance with Hamming Distance k.
Dahllöf [15, 16] provided an algorithm using branch and bound method for Max Hamming Distance
XSAT in O(1.8348n); Fu, Zhou and Yin [8] worked on a more specific problem, the Max Hamming
Distance X3SAT, and found for this problem an algorithm with runtime O(1.6760n). In this paper,
we propose an exact exponential algorithm to solve the Max Hamming Distance XSAT problem in
O(1.4983n) time. Like all of them, we will use the branch and bound technique alongside a newly
defined measure to improve the analysis of the algorithm.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases XSAT, Measure and Conquer, DPLL, Exponential Time Algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.15

Funding Frank Stephan: supported in part in part by the Singapore Ministry of Education Academic
Research Fund Tier 2 grant MOE2016-T2-1-019 / R146-000-234-112.

Acknowledgements The authors would like to thank the anonymous referees of ISAAC 2019 for
useful suggestions. Furthermore, the authors would like to thank internet companies for putting
services like Wolfram Alpha Equation Solver, Firefox Scratchpad and Google Scholar for free onto
the internet.

1 Introduction

The Satisfiability problem has been an important part of complexity theory and continues
to be to this age. Given a Boolean formula ϕ in conjunctive normal form (CNF) , can we
find an assignment to the variables such that there are at least 1 literal in each clause that
evaluates to “True”. There are many variants of the satisfiability problem to date and many
are shown to be at least as hard as it. One variant that we will consider in this paper is
the exact satisfiability problem (XSAT). Given a boolean formula ϕ in CNF, can we find
a satisfying assignment such that exactly 1 literal in each clause is true while all the other
literals are false. If we restrict the number of literals that can appear in any clause, then the
problem comes as XkSAT, where k is the maximum number of literals that appear in any
clause. Both XSAT and X3SAT are known to be NP-complete.

© Gordon Hoi and Frank Stephan;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 15; pp. 15:1–15:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e0013185@u.nus.edu
mailto:fstephan@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.ISAAC.2019.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Measure and Conquer for Max Hamming Distance XSAT

There are no exact polynomial time solution for these problems unless P = NP. As such,
one has to resort to designing exponential time algorithms to solve these problems in the
exact manner. One common way of designing exact algorithms is to build DPLL [10, 9] style
algorithms. The idea behind is to branch over a selected variable in order to decompose
the problem into smaller subproblems and then solve them recursively. Every branching
algorithm contains two kinds of rules: simplification and branching rules. Simplification rules
are used to simplify the problem or to terminate the algorithm. Branching rules, on the
other hand, are used to recursively break the problem down into smaller subproblems. For
more on this topic, we refer the reader to chapter 2 of the textbook of Fomin and Kratsch [4].

The overall runtime to decide XSAT has been well-explored. Dahllöf, Jonsson and Beigel
[17] gave an algorithm in O(1.1907n), improving the current state of the art from O(1.2299n);
later Byskov, Maden and Skjernaa [7] improved it to O(1.1749n). The algorithms mentioned
here gives a solution to a particular XSAT instance. However, there are times when we want
to consider many solutions and we want to see how “different” are these from one another.
For example, consider the UNIQUE SAT problem [1], where there must be only 1 solution to
this problem. On the other hand, for the usual satisfiability problem, the number of solutions
for that formula can vary and the solutions can be very “different” from one another.

To make precise this notion of “different” solution, the definition of the hamming distance
problem captures this combinatorial aspect naturally. The Max Hamming Distance problem
asks, given a formula ϕ in CNF, what is the maximum number of variables that can differ
between any two solutions to ϕ? In this paper, we’ll study the Max Hamming Distance
XSAT problem where all solutions must satisfy a given XSAT instance. In fact, one may
note that a solution to the Max Hamming Distance XSAT problem can even yield a solution
to solve the XSAT decision problem. It closely resembles a counting problem and since it is
more complex than a XSAT decision problem, a larger overall runtime than O(1.1749n) may
be expected.

Dahllöf [15] first gave an algorithm for Max Hamming Distance XSAT in O∗(2n) and
an improved version in O∗(1.8348n), where the notation O∗(.) denotes the suppression of
the polynomial terms. The first algorithm enumerates all possible subset of all sizes while
checking that they meet certain condition. The second algorithm uses techniques found in
DPLL algorithms. Fu, Zhou and Yin [8] worked on the X3SAT problem instead and gave an
algorithm to determine the Max Hamming Distance of two solutions of an X3SAT instance
in time O∗(1.6760n).

In this paper, we will propose an algorithm to solve the Max Hamming Distance XSAT
in O(1.4983n). Since X3SAT is a more specific version of an XSAT instance, our algorithm
practically solves both problems in a shorter overall runtime. Like the above authors, our
algorithm is also a DPLL algorithm which consists of branching and simplification rules.
The novelty in this paper is the designing of branching cases used in combination with a
nonstandard measure. If we were to use the standard measure, the algorithm takes O(1.5761n)
(τ(7, 1)2 = 1.5761), while the use of a nonstandard measure brings the same bottleneck down
to O(1.4983n). This on the other hand meant that we have to pay special attention to some
cases. We’ll explain them in greater detail in the next section. In addition, our algorithm
does a little more than just outputting the number to compute the Max Hamming Distance
XSAT. It outputs a polynomial p =

∑
k aku

k such that the coefficient ak is the number of
pairs of solutions with Hamming distance k of the given XSAT instance. In other words, we
form for each pair of solutions the polynomial uk where k is the Hamming distance of these
solutions and then p is the sum over all the so obtained polynomials in the formal variable u.

G. Hoi and F. Stephan 15:3

2 Preliminaries

In order to analyse the time complexity of DPLL algorithms, one can consider search trees
to help us illustrate the branching rules. One can consider the root of the search tree as
the whole problem, and the successive child nodes as smaller instances of the problem when
applying the branching algorithm. Using the search tree generated by the DPLL algorithm,
if we can bound the number of leaves in the tree, then we will know the worst case runtime
of this algorithm.

Kullmann [11] is one of the authors describing a technique to analyse DPLL algorithms;
furthermore, Eppstein [2, 3] dealt with this technique in algorithms on graph colouring
and more generally backtracking algorithms using the method of quasiconvex analysis of
algorithms. The technique is to analyze each branching rule of an DPLL algorithm as
follows: Let T (n) denote the time needed for n variables, or more precisely the number
of leaves of the search tree. Then the runtime of that branching rule is given by T (n) =
T (n− a1) + T (n− a2) + . . .+ T (n− ar), where r denote the number of branches (or child
nodes), r ≥ 2, generated from that node and each branch i removes ai many variables.
This can then be formulated as a linear recurrence xn = xn−a1 + xn−a2 + . . .+ xn−ar and
τ(a1, a2, . . . , ar) = min{x ≥ 1 : x−a1 +x−a2 +. . .+x−ar ≤ 1} is then the solution to the linear
recurrence and T (n) = τ(a1, a2, . . . , an)n. This τ(a1, a2, ..., ar) is known as the branching
factor. Note that a1 > a′1, then τ(a1, a2, ..., ar) < τ(a′1, a2, ..., ar) and τ(i+ ε, j − ε) < τ(i, j),
for all i, j, ε with 0 < i < j and 0 < ε < j−i

2 .
A more sophisticated technique of analysing the runtime of branching algorithms is

measure and conquer; a typical reference to this are by Fomin, Grandoni and Kratsch [5].
See also the textbooks of Downey and Fellows [13] and of Fomin and Kratsch [4]. It focuses
on designing a new measure instead of changing the algorithm and a measure is a weight
assigned to a variable in our case. Typically, a measure should observe 3 properties:

A measure should be at least 0;
The measure of an instance of a subproblem obtained after branching should be smaller
than the measure of the instance before branching;
The measure of an instance should be bounded above by some function on the parameter
of the problem.

In simple measure, every variable is given a weight of 1 and eliminated variables are given
a weight 0. When measure and conquer is used, usually one designs a new nonstandard
measure in the hope of bringing down the analysis of algorithm further without changing the
algorithm. One may then again apply Kullmann’s technique to solve the linear recurrence
under the new measure to obtain the running time of the branching rule.

3 High-level description of algorithm

We give a high level description of the algorithm here before giving the whole algorithm.
To know the Max Hamming Distance of a given XSAT instance, we consider each pair of
solution and the number of variables that each pair differs. Therefore, to achieve this, we
will take in two identical instances of ϕ, we call it ϕ1 and ϕ2 such that ϕ1 = ϕ2 and branch
them individually. Through the course of branching, ϕ1 and ϕ2 will differ later on.

The idea here is to branch whenever cases arise that match our branching cases. Our aim
is to break connected components of clauses together into smaller isolated sets of clauses;
this is done by first breaking chains of length 6 or more and second by branching variables
that have 8 or more neighbours. Once they are small enough, we can brute force the Max
Hamming Distance from the remaining sets of small isolated cliques. Note that the Hamming

ISAAC 2019

15:4 Measure and Conquer for Max Hamming Distance XSAT

Distance can only be computed once the same variable on both ϕ1 and ϕ2 have been branched.
Suppose that the branched i-th variable x1,i and x2,i have the same value, then they will have
Hamming distance 0 and represent this value as u0 = 1. Otherwise, they have different values
and they will have Hamming Distance 1 and we represent this as u1 = u. As we build the
search tree, and we traverse a path from the root to the leaf, we multiply all the polynomials
along each edge of the path. Finally, we form the sum all the multiplied polynomials along
each path up.

We use polynomials to represent our Hamming Distance. The degree k of the polynomial
denotes the Hamming Distance k and the coefficients of degree k denote the number of
pairs of solution having Hamming Distance k. The notion of polynomials allow us to add
and multiply together which makes it easier to understand. The reader might also consult
Example 11 below for a better understanding of the algorithm.

4 A new measure

Here, we define the measure that we will be using throughout the entire algorithm. Given
any variable xi, we give the following formulas for weight wi of variable xi and measure µ as

wi =
{

1, if xi has at least 3 neighbours;
0.905813, otherwise;

µ =
∑

i=1,...,n
wi ≤ n.

Here a neighbour is defined as a variable that appears alongside with it in the same clause, see
Definition 1 below. So most cases of weight 0.905813 are variables occurring in exactly one
clause and this has 3 literals. So if the formula consists of clauses (a, b, c, d), (c, d, e, f), (f, g, h)
the weight of a, b, c, d, e, f is 1 each and the weight of g, h is 0.905813 each; for example, a
has the neighbours b, c, d, c has the neighbours a, b, d, e, f and g has the neighbours f, h.

The idea of choosing the reduced weight for variables with two or less neighbours is
that creating such variables, by branching a node in a 4-clause, should give some savings
in anticipation of the further savings done by handling 3-clauses. Furthermore, the value
0.905813 is chosen by a computer program optimising the runtime and mainly satisfies that
31/(3·0.905813) and τ(1 + 4 · 0.094187, 7)2 are both bounded by 1.4983, which are the estimate
of the basis of the exponentiation in Case 2 and the bottleneck of Case 1, respectively. Here
note that 0.094187 = 1− 0.905813.

5 The algorithm in detail

We give a few definition that will be needed throughout the algorithm.

I Definition 1. A variable x occurs in a clause iff the clause contains at least one of the
literals x and ¬x. Two variables are neighbours iff they are different and occur jointly in at
least one clause; two clauses are neighbours iff there is at least one variable occurring in both
of them.

For example, if there are clauses (a, b, c), (c, d, e), (e, f, g) then the neighbours of the variable
c are a, b, d, e; the clause (c, d, e) is a neighbour of the clause (a, b, c), but (e, f, g) is not a
neighbour of (a, b, c).

I Definition 2. We say that a clause c is isolated if for every variable xi in the clause c
does not appear in any other clauses. We say that a variable is a singleton if it appears, as
negated or an unnegated literal, in exactly one clause.

G. Hoi and F. Stephan 15:5

I Definition 3. We say that two variables x and y are linked together if there are up to 3
clauses which allow together to derive that either x = y or x = ¬y. If two variables are
linked, we can remove one variable, say y, by replacing all occurrences of y by respectively
x or ¬x. We write x ∼ y. If there are two clauses overlapping with each other, we call the
non-overlapping variables that appear in the two clauses as outside variables.

I Definition 4. A chain is a sequence C1, C2, . . . , Ck of clauses such that Ci, Cj share at
least one variable iff |i− j| ≤ 1 and k is the length of the chain.

For example, the chain (α, b), (b, d, a), (a, e, c), (c, β) in Figure 12 is a chain of at least length
4 and (a, b, c), (c, d, e) is a chain of length 2. Figure 5 is not a chain, as all three members
have the joint variable a.

Algorithm MHXSAT (Max Hamming Distance XSAT).
Input: ϕ1 and ϕ2, where ϕ1 = ϕ2 and both are instances are XSAT; A set of polynomials
pi,bi,j,bj

(u) for each possible pair (xi, bi, yj , bj) of variables xi in ϕ1 and yj in ϕ2 including
specific variables x0, y0 which only occur with value b0 = 0 and c0 = 0.
Initial Recursive Call: Call algorithm with ϕ1, ϕ2 both being the initial formula and
the polynomials pi,b,j,b′ be defined for all i, j, b, b′ such that (i is index of xi and b ∈ {0, 1}
or i = 0 ∧ b = 0) and (j is index of yj and b′ ∈ {0, 1} or j = 0 ∧ b′ = 0); the initial value
pi,b,j,b′ is as follows: if i = j and b 6= b′ then pi,b,j,b′(u) = u else pi,b,j,b′(u) = 1.
Output: a formal polynomial p(u) =

∑
k aku

k where for each k are ak pairs of satisfying
assignments where the two assignments have Hamming distance k.
Label Start.
Simplification for ϕ1.

If there is a clause α where, whatever values one chooses for the variables, the sum of
the literals is not 1 Then Return with the polynomial p(u) = 0.
If there are clauses α, β with a literal using xi occurring at least in α and a value bi
which is the only value from 0, 1 for xi such that α, β can be made true Then Begin
replace xi by the constant bi everywhere, update p0,0,j,b′ = p0,0,j,b′ ·pi,bi,j,b′ and remove
xi from the set of possible variables and i from the possible indices of polynomials on
the ϕ1-side and Goto Start; End.
If there is a clause α mentioning exactly two variables xi, xj in the literals such that
one can deduce either xi = xj or xi = ¬xj for all possible assignments making α true
and there is at least one clause which contains exactly one of xi, xj and also a further
variable in some literal Then Begin replace xi everywhere by xj or ¬xj , respectively,
and update pj,b,k,b′ = pj,b,k,b′ · pi,b,k,b′ or pj,b,k,b′ = pj,b,k,b′ · pi,1−b,k,b′ in the respective
case for all b, b′ ∈ {0, 1} and indices k on the ϕ2-side and remove xi, i from the list
of possible variables and indices of ϕ1 /* this is called linking */ Goto Start; End.
/* Note that the only case where one cannot link the variables is the one where one
variable occurs in two literals in the clause, say xi and ¬xi or two times xi; this case
is already caught by the previous case, as either xi,¬xi both occur and the literal
containing xj must be 0 or xi occurs twice and xi must be 0. */
If there are clauses of form xi ∨ α and ¬xi ∨ β in ϕ1 and xi does not have 10 or
more neighbours of weight 0.905813 Then Begin update for all xk occurring in
α with bk = 1 if xk is the literal in α and bk = 0 if ¬xi is the literal in α the
polynomials as pk,bk,j,b′ = pk,bk,j,b′ · pi,0,j,b′ and for all xk occurring in β with bk = 1
if xk is the literal in β and with bk = 0 if ¬xk is the literal in β the polynomials as
pk,bk,j,b′ = pk,bk,j,b′ · pi,1,j,b′ for all variables yj on the ϕ2-side and all b′ = 0, 1 and

ISAAC 2019

15:6 Measure and Conquer for Max Hamming Distance XSAT

replace all clauses of the form xi ∨ γ by β ∨ γ and all clauses of the form ¬xi ∨ δ by
α ∨ δ and remove xi, i from the list of possible variables and indices of ϕ1 /* this is
called making a cut or also called resolving xi */ Goto Start; End.

Simplication for ϕ2. Do the actions analogue to those for ϕ1 given above and go back
to Start whenever any of these actions has been performed.
Branching for ϕ1.

If there is a clause of form α ∨ β of ϕ1 such that branching α = 1 versus α = 0 has
branching factor at most 1.4983 as indicated in Proposition 5 or List 1 (= Proposition 6)
or List 2 (= Proposition 7), in this order of priority, and the subclauses α, β both contain
at least one literal then compute p = MHXSAT(ϕ1 ∧ α,ϕ2, pols) +MHXSAT(ϕ1 ∧
β, ϕ2, pols) and go out with Return(p) End. /* This is called branching α = 1 versus
α = 0; for doing the branching, the only requirement is that there is a clause in ϕ1 of
the form α ∨ β where both α, β have at least one literal. After doing all choices by
Proposition 5, one can w.l.o.g. assume by cut, branching and renaming that all clauses
in ϕ1 contain only positive literals; after doing all choices of List 1, there are except for
isolated components of size up to six, no clauses in ϕ1 with a multiple overlap; after
doing all choices of List 2, there are no proper chains of length 6 or more in ϕ1 and no
variables with more than 7 neighbours. */

Branching for ϕ2. Do the actions analogue to those for ϕ1 given above.
Now none of the above cases applies. Note that no variable has more than 7
neighbours (unless it is in an isolated component of size 9 by List 2 item 3) and no proper
chain is longer than 5 clauses; thus both formulas are split into isolated components
which by Proposition 8 contain at most 1364 variables and by a more involved argument
with a slightly modified algorithm in Proposition 14 in the appendix at most 67 variables.
Measure ϕ1 and ϕ2 and do the following with the smaller task, say with ϕ1.

Compute an explicit list of satisfying assignments for ϕ1 only using the surviving
variables xi obtaining a list of vectors with entries bi for each i 6= 0;
Compute for each assignment (bi) an updated list of polynomials pols obtained by
updating the previous polynomials to p0,0,j,b′ = p0,0,j,b′ ·Πi6=0pi,bi,j,b′ ;
For each (bi), pols Do Begin
∗ For each component of variables and clauses C in ϕ2 compute all possible

assignments (bj) of the yj ∈ C and update

p0,0,0,0 = p0,0,0,0 · (
∑

assignment (bj) of C

∏
xj occurring in C

p0,0,j,bj
).End

Let p be the sum of all the p0,0,0,0 calculated for the above list of (bi), pols and
Return(p).

6 The Simplifications and the Branchings from List 1 and List 2

I Proposition 5. If a,¬a appear both in clauses then either one can do a cut without
increasing the weight or one can branch a with branching-factor below 1.31719.

Proof. For the simplifications, as they remove variables, one should not expect problems.
However, there is one case, namely making the cut. In the case of a cut eliminating variable
d, one replaces clauses d∨α and ¬d∨β by α∨β and this increases the number of neighbours
of the variables in the disjunctions α and β and might therefore increase the weights of some
variables from 0.905813 to 1. If there are at most 9 such variables, the saving of removing
d is at least 0.905813 while the weights going up are at most 9 · 0.094187 < 0.905813 and

G. Hoi and F. Stephan 15:7

there is no problem; here note that 1− 0.905813 = 0.094187. If there are at least 10 such
variables, one can see that for both cases d = 0 and d = 1, some additional literals are
set to 0 and therefore variables are eliminated, thus one can branch d instead of making a
cut and the worst case is that the eliminated variables are distributed 2 on one side and
all others on the other side, hence one has τ(1 + 2 · 0.905813, 1 + 8 · 0.905813)2 ≤ 1.31719.
For that reason, one can assume when reaching the branching case, that all variables are
non-negated – if a variable d is negated everywhere, one replace ¬d by d everywhere and
adjusts the polynomials accordingly. J

Now, we begin to analyse the time needed for each rule in the algorithm. We will omit the
simplification rules and instead only analyze the branching rules since the simplification
rules do not increase the number of leaves of the search tree. Before we go on to analyze
the runtime complexity, we give an example of the different branching cases below in List 1
and List 2. List 1 contains all the different cases that we handle when there are two or more
variables that appear between two clauses. List 2 contains all the different branching cases
where there is only a common variable between two clauses.

List 1.

d α′ α′′ β′ β′′

Figure 1 List 1 Item 1.

β′ β′′ α′ α′′ b c

Figure 2 List 1 Item 2.

β′ β′′ α′ α′′ α′′′ γ′ γ′′

Figure 3 List 1 Item 4 with 7 vars.

β′ β′′ α′ α′′ γ′ γ′′ γ′′′

Figure 4 List 1 Item 4 with 7 vars.

β′ β′′ a d γ′ γ′′

b

δ′

Figure 5 List 1 Item 3.

β′ β′′ β′′′ α′ α′′ γ′ γ′′ γ′′′

Figure 6 List 1 Item 4 with 8 vars.

This list gives how to handle overlaps between of two or more variables between two clauses.
Furthermore, the variables are in each clause listed nonredundantly, so if a clause is (α, β),
the two lists of variables α and β are disjoint. Lower case single letters always refer to single
variables. Note that the case that an isolated component with up to six variables is not
covered, where isolated means that no other clause has some but not all variables from this
component. Such components are treated in Case 2. In the figures above, primed Greek
letters like α′, α′′ denote the variables in the corresponding list of variables like α in this case.
Furthermore, we indicate only those clauses which are relevant; additional clauses might
connect to those given in the figures or case distinction, unless explicitly said otherwise.
1. (d, α), (α, β) where α, β are lists of literals not containing d and α has at least two variables.

Now one can see that d = β and by adding ¬d on both sides, one gets 1 = ¬d + β.
Thus one has the formulas (d, α), (¬d, β) and these allow a cut, as in the last item of the

ISAAC 2019

15:8 Measure and Conquer for Max Hamming Distance XSAT

Simplification part of the algorithm. In the case that making the cut would cause more
than 10 variables to be upgraded from weight 0.905813 to 1 and therefore the measure
would go up, one does not make the cut but instead branches the variable d. In the case
of a branching, note that there is at least one variable in β and furthermore d has weight
1; furthermore, the literals with weight 0.905813 are except a perhaps single one in β all
connected to d, as ¬d was just introduced and the variables in α have weight 1. This
gives the branching factor τ(1 + 0.905813, 3 + 10 · 0.905813)2 ≤ 1.2900. For example in
Figure 1, |α| = 2, there are 3 outside variables.

2. (β, α), (α, b, c), (c, δ) with δ containing some variable d not in (α, b, c) and α, β have both
at least two variables.
If δ = b ∨ d then the situation of Item 1 applies after some renaming, as the clauses
(d, c, b), (c, b, α) exist. Thus this case is already handled.
If δ contains at least three variables including b then d has weight 1 and will in the case
α = 0 be set to 0 again and the branching factor is at most τ(3, 4)2 ≤ 1.4903.
If δ does not contain b then the case α = 0 allows to link b to c and removes the variables
in α and b which all have weight 1 and α = 0 allows to remove those in β, b, c which all
have weight 1 and so the branching factor is again at most τ(3, 4)2 ≤ 1.4903.
For example in Figure 2, we have two 4-clauses with overlapping part α consisting of two
variables.

3. (β, a, d), (a, d, γ), (a, b, δ) or (β, a, d), (a, d, γ), (a, b, d, δ) and Items 1,2 do not apply and
|β| = |γ| = 2. Now every subclause containing variables of β is a subclause of (β, a, d)
and every subclause containing variables of γ is a subclause of (γ, a, d) and b does not
occur in a, d, β, γ.
One branches a+ d = 0 versus a+ d = 1. If a+ d = 0 then the weight of all the variables
in β, γ is reduced from 1 to 0.905813. If a+ d = 1 all variables in β, γ are set to 0 and
either a can be linked to d or b can be set to 0, depending on what the third clause is. So
the branching factor is at most τ(2 + 4 · 0.094187, 4 + 0.905813)2 ≤ 1.4888.
For example in Figure 5, we have the variables a, d as the overlapping variables and we
have |δ| = 1.

4. Not Items 1,2,3 and |α| + |β| + |γ| ≥ 7. This in particular means that α, β, γ have at
least two variables. As Item 2 does not apply, if β has two exactly two variables then all
clauses containing variables from β are subclauses of (α, β), similarly for γ. One branches
α = 0 versus α = 1.
Now consider the case where α has two variables and β, γ have together exactly five
variables, so one of them, say β, has exactly two variables. Now consider the subcase
that one or both variables from α are in a further clause containing a b not occurring
in α, β, γ. Now α = 1 makes the variables in β, γ all 0 and further allows to either link
the variables in α or makes b = 0; furthermore, α = 0 makes the variable in β have a
weight 0.905813 while before they had weight 1. Thus the branching factor is at most
τ(2 + 2 · 0.094187, 5 + 0.905813)2 ≤ 1.4498. In the other subcase that α has exactly two
variables and they do not occur in clauses with variables outside α, β, γ, one takes into
account that choosing α = 1 reduces the weight of the variables of α from 1 to 0.905813.
So the branching factor is at most τ(2 + 2 · 0.094187, 5 + 2 · 0.094187)2 ≤ 1.4917.
If |α| = 2 and |β|+ |γ| ≥ 6 then the branching factor is at most τ(2, 6)2 ≤ 1.4656 without
any further assumptions. If |α| ≥ 3 then the branching factor is at most τ(3, 4)2 ≤ 1.4903.
In Figure 3, we have that |α| = 3 and we have 4 outside variables where |β|+ |γ| = 4;
Figures 4 and 6 represent typical cases where |α| = 2 and |β|+ |γ| ≥ 5.

G. Hoi and F. Stephan 15:9

This case distinction shows that one can get rid of all multiple overlaps which are in
components larger than six variables, if a component contains only (α, β), (β, γ) with α, β, γ
having each two variables and perhaps further clauses only using these variables. This
situation allows no simplification, but one can let it stand, as the component is already
sufficiently small and deal with the other components in ϕ1 and ϕ2 until those are also
broken down.

To see the completeness of the above case-distinction in List 1, note that Item 1 deals
with the case that one of the neighbours of α is only a single variables d; in all other cases it
is assumed that the basic situation is (β, α), (α, γ) with α, β and γ each having at least two
variables. Item 2 considers the case that α has a neighbour b ∨ c where the variable c occurs
in a further clause with at least one variable different from those in α, b, c. Item 3 considers
the case where both neighbours of α have two variables and the condition from Item 2 does
not apply to these neighbours, but that at least one variable a of α occurs in a clause where
not all variables are from α, β, γ. Item 4 considers the case where |α|+ |β|+ |γ| ≥ 7 and the
above cases do not apply.

List 2. In this list, if a variable is branched, it is called a. Furthermore, b, c are variables in
the chain which link the clauses considered to further members and these contain exactly one
of b, c each. One does the first case in this list which applies. Again note that the case of one
variable a in four clauses of size 3 without any further variables in the isolated component
except for a and its eight neighbours does not need any further treatment. Thus in item 1 of
the following list, one can assume that there is either one neighbour with weight 1 or at least
10 neighbours with weight 0.905813.

· · · · · · a d b

Figure 7 List 2 Item 1.

b d e a f g c

Figure 8 List 2 Item 4.

b d e a · · · f

Figure 9 List 2 Item 5.

cdaα′′′α′′α′

Figure 10 List 2 Item 2.

cdaα′′′′α′′′α′′α′

Figure 11 List 2 Item 2.

b d a e c

Figure 12 List 2 Item 3.

· · · b e d c · · ·

Figure 13 List 2 Item 6, subsequence of 6-chain.

1. One variable a with at least eight neighbours. One branches a. If there are eight
neighbours and at least two of them have weight 1 or if there are at least nine neighbours
then the branching factor is at most τ(1, 6 · 0.905813 + 3)2 ≤ 1.4967. If there are exactly

ISAAC 2019

15:10 Measure and Conquer for Max Hamming Distance XSAT

eight neighbours and exactly one of them has weight 1 then the neighbours are in four
3-clauses and only one of these has a variable b shared with another clause, let d denote
the other variable in this clause. If a = 0, b and d will be linked, if a = 1 all neighbours
are 0. This gives τ(1 + 0.905813, 7 · 0.905813 + 2)2 ≤ 1.3775.

2. (α, a), (a, d, c) where α has at least three variables. One branches a. Note that a
has at least five neighbours out of which only d can have measure 0.905813. This gives
τ(1+0.905813, 5+0.905813)2 ≤ 1.4824. For example in Figure 10, we have the overlapping
variable as a, c appears as part of a larger chain and |α| = 3 here. We have 5 outside
variables in this case.

3. (b, d, a), (a, e, c). One branches a. If a = 0 then one can link both d to b and e to c else
all five variables are determined. Thus τ(1 + 2 · 0.905813, 3 + 2 · 0.905813)2 ≤ 1.4518. This
is exactly the case as given in Figure 12 where a is our overlapping variable and we have
4 outside variables in this case.

4. (b, d, e, a), (a, f, g, c) with each of d, e, f, g being singleton variables and b, c being in
further clauses. Now one branches a and gets τ(1 + 4 · 0.094187, 7)2 ≤ 1.4983, as d, e, f, g
will change their measure by the branching in the case that a = 0. This is exactly the case
as given in Figure 8 where a is the overlapping variable and we have 6 outside variables
in this case.

5. (b, d, e, a), (a, . . . , f) and d is a singleton variable and the clause (a, . . . , f) having at least
5 variables. Now one branches a and has τ(1 + 0.094187, 8)2 ≤ 1.4983. We see this
example in Figure 9 where a is our overlapping variable and we have 7 outside variables
in this case.

6. (b, d, e, c) and b, c are only in inner clauses of some chain and d is in a further clause. By
the cases with the 3-clauses above being done first, the clauses on the other side of b and
c contain at least four literals. Thus b, c have both at least six neighbours. If one of them,
say b, would have further neighbours which have weight 0.905813, these would have to be
in a further 3 clause and so b would have eight neighbours, so that List 2 Item 1 above
applies, thus this case does not happen. Now one distinguishes b+ c = 0 versus b+ c = 1.
In the case that b+ c = 0, one can link d, e and eliminate three variables. In the case that
b+ c = 1, d, e are 0 and one can make a cut exploiting that b = ¬c and that neither b nor
c have neighbours which have weight 0.905813. So no weight-compensation is needed and
4 variables are eliminated. This gives τ(3, 4)2 ≤ 1.4903. Note that we needed the fact
that the neighbours at b, c are connected to further clauses in the chain only to guarantee
that these clauses have at least four variables; therefore we apply this branching rule also
when a 4-clause with three neighbours satisfies that two of them are disjoint and have
four variables each. An example of this can be found in Figure 13.

Assume now by way of contradiction that after all actions in List 2 are done there would be
a chain of length 6. Note that no variable a in the chain can have exactly eight neighbours
with all having weight 0.905813, as then every variable in the chain is either a or a neighbour
of a and thus the chain has at most length 2. None of the second, third, fourth and fifth
member of this chain can be 3-clauses, as these are eliminated as above. The third and fourth
both cannot be two 4-clauses containing two singletons. Neither the third nor the fourth can
be a 4-clause with at most one singleton variable, as such clauses are also eliminated. The
third and the fourth clause cannot be a 4-clause plus a clause of five or more variables, as in
such situation again the connecting variable is branched. The third plus the fourth clause
cannot together have 9 or more variables, as then the connecting variable a has at least eight
neighbours and can be branched. Thus there is no chain of length 6 or more.

G. Hoi and F. Stephan 15:11

7 Analysis of Algorithm

For the verification, we divide our algorithm into two portions: Case 1 on the different
simplification and branching cases and Case 2 on the brute forcing of the independent cliques
of clauses. We will be using our defined measure in this analysis as given in Section 4. In
addition, note that we are branching on both formulas ϕ1 and ϕ2. This means that we
have 2n many variables in this case. All branchings in this proof are kept to the standard
branching of a variable taking on values either 1 or 0 unless explicitly mentioned. We pay
more attention to 3-literal and 4-literal clauses due to our nonstandard measure. In addition,
we exploit the fact these clauses which we branch belong to a larger chain. We analyze the
worst runtime needed for the first part below.

I Proposition 6. Let k ≥ 2. If there are k overlapping variables between two clauses, then
the worst case time complexity for branching these overlapping variables in the two clauses is
O(1.4917n).

Proof. First we note that by the simplifications in the algorithm and Proposition 5, we can
assume without loss of generality, that all literals are positive, that is, not negated. If only
¬a occurs for some variable a, we just simply replace ¬a everywhere by a and adjust the
polynomials accordingly.

In the following we say that the outside variables in a pair of clauses (β, α), (α, γ) are in
|β|− |γ| orientation. List 1, Item 1 tells us how to handle outside variables in 1-m orientation,
where m ≥ 2. Thus we only have to deal with m-m′ orientations where m ≥ 2 and m′ ≥ 2.

When k = 2 and if there are 4 outside variables, then it must be in the 2-2 orientation
(Figure 2). In this case, we exploit that these clauses are part of a larger chain. If not, then
they are an isolated component and will be handled by Case 2 of our algorithm. Therefore,
one of the variables in one of the orientation must be connected to a clause somewhere. Let
α′, α′′ be our overlapping variables and let c be our variable that is connected to a different
clause and b be a variable appearing in the clause (α′ ∨ α′′ ∨ b ∨ c). We branch (α′ ∨ α′′) = 1
and α′ = α′′ = 0. Branching (α′ ∨ α′′) = 1 will allow us to remove all 4 outside variables and
branching α′ = α′′ = 0 will allow us to remove both α′, α′′, and further link up the variables b
and c. Therefore, we have at most T (µ) = T (µ− 4) + T (µ− 3) = O(1.22082µ) = O(1.4903n).
On the other hand, suppose that the we are not allowed to link b and c together, then it
must be that c appears in another clause containing b as well. This other clause that c
appears in must be at least 4-literal in length else List 1 Item 1 would have handled it for us.
There must be a new variable d that is different from the overlapping variables and outside
variables. Then branching (α′ ∨ α′′) = 1 will allow us to remove all 4 outside variables and
branching α′ = α′′ = 0 will allow us to remove both α′ and α′′ and at least another variable
d. This gives us T (µ) = T (µ− 4) + T (µ− 3) = O(1.22082µ) = O(1.4903n). This completes
the case for 4 outside variables.

If there are 5 outside variables as shown in Figure 4, then we must have them in the
2-3 orientation. Let β′ and β′′ be the two variables in the “2” orientation, while γ′,γ′′
and γ′′′ be the three variables in the “3” orientation. We consider 4 different cases here.
The first case is that one of the β′ or β′′ is connected to a larger chain and one of α′ or
α′′ or both variables are in a further clause containing a new variable b that is different
from the outside variables and the overlapping variables. Then branching (α′ ∨ α′′) = 1
will allow us to remove all 5 outside variables and link α′ = α′′ or remove b. Branching
α′ = α′′ = 0 will allow us to remove 2 overlapping variables and link β′ to β′′. This gives
us T (µ) = T (µ − 5.905813) + T (µ − 3) = O(1.17572µ) = O(1.3822n). The second case is
that one of the β′ or β′′ is connected to a larger chain and α′ and α′′ do not appear in
further clauses. Then branching (α′ ∨ α′′) = 1 will allow us to remove all 5 outside variables

ISAAC 2019

15:12 Measure and Conquer for Max Hamming Distance XSAT

and we can also factor in the change in measure for α′ and α′′. Branching α′ = α′′ = 0
will allow us to remove both overlapping variables and link β′ to β′′. This will give us
T (µ) = T (µ− 5− 2 · 0.094187) + T (µ− 3) = O(1.18972µ) = O(1.4154n). The third case is
that both β′ and β′′ are not connected to a larger chain and one of α′ or α′′ or both variables
are in a further clause containing a variable b that is different from the outside variables and
overlapping variables. Then branching (α′ ∨ α′′) = 1 will allow us to remove all 5 outside
variables and link up α′ = α′′ or remove b. Branching α′ = α′′ = 0 will allow us to remove
both overlapping variables and also factor in the change of measure for β′ and β′′. This
gives us T (µ) = T (µ − 5.905813) + T (µ − 2 − 2 · 0.094187) = O(1.20412µ) = O(1.4498n).
Finally, the last case is that both β′ and β′′ are not connected to a larger chain and α′

and α′′ do not appear in a different clause. Then branching (α′ ∨ α′′) = 1 will allow
us to remove all 5 outside variables and allow us to factor in the change of measure for
α′ and α′′. On the other hand, branching α′ = α′′ = 0 will allow us to remove both
overlapping variables and factor in the change in measure for both β′ and β′′. This will give
us T (µ) = T (µ − 5 − 2 · 0.094187) + T (µ − 2 − 2 · 0.094187) = O(1.22142µ) = O(1.4917n).
This completes the case for 5 outside variables.

Now, for the number of outside variables j, with j ≥ 6, regardless of the orientation of
the outside variables, we have that applying the branching technique as above, we will arrive
at T (µ) = T (µ − 6) + T (µ − 2) = O(1.21062µ) = O(1.4657n) regardless if they appear as
part of a larger chain. Now we have that τ(j, 2)2 ≤ τ(6, 2)2 < 1.4657. The case for k = 2 is
therefore complete.

For k = 3, we consider the case that we have 4 outside variables as shown in Figure 3.
Let our overlapping variables be α′, α′′, α′′′ and we will branch (α′ ∨ α′′ ∨ α′′′) = 1 and
α′ = α′′ = α′′′ = 0 and this gives us T (µ) = T (µ−3) +T (µ−4) = O(1.22072µ) = O(1.4903n)
regardless if they appear in a larger chain. Now for j ≥ 4 outside variables, our branching
factor must be at most τ(3, j)2 ≤ τ(4, 3)2 = 1.4903. The case for k = 3 is therefore complete.

For k > 3 overlapping variables and for j ≥ 4 outside variables, our branching factor must
be bounded above by 1.4903. This can see from the fact that τ(k, j)2 < τ(4, 3)2 = 1.4903.
Therefore, the case for all k ≥ 2 has been covered and will take at most O(1.4903n) time. J

I Proposition 7. The worst-case runtime complexity of the branching cases when there is
exactly 1 overlapping variable between two clauses is O(1.4983n).

Proof. Let j be the number of outside variables that the overlapping variable has. Note that
j ≥ 4. For j = 4, we have that it must be in a 2-2 orientation as shown in Figure 12. Now,
we branch the overlapped variable and this gives us T (µ) = T (µ− 3− 2 · 0.905813) + T (µ−
1− 2 · 0.905813). Therefore, we have T (µ) = O(1.20492µ) = O(1.4518n). Note that this is
the worst case when we have exactly two singleton in two of the outside variable.

If j = 5, then we can only have them in the 2-3 orientation like in Figure 10. Therefore,
we branch the overlapping variable a and we have T (µ) = T (µ− 5− 0.905813) + T (µ− 1−
0.905813+2 · (0.905813−1)) = O(1.20832µ) = O(1.4600n). In this case, we assume that there
are 3 singletons out of the 5 outside variable. If we have 2 singletons out of the 5 variables
spread out in a 1-1 fashion, then we have T (µ) = T (µ− 5− 0.905813) +T (µ− 1− 0.905813−
(1− 0.905813)) = O(1.21282µ) = O(1.4709n). On the other hand, if both singletons are now
on the 4-literal clause, then we have T (µ) = T (µ−6)+T (µ−2) = O(1.21072µ) = O(1.4658n).
If we have 1 singleton out of the 5 variable, then we consider the fact that this singleton
can be at the 4-literal or the 3-literal clause. If it appears on the 3-literal clause, then
we have T (µ) = T (µ − 5 − 0.905813) + T (µ − 1 − 0.905813) = O(1.21762µ) = O(1.4826n).

G. Hoi and F. Stephan 15:13

If it appears on the 4-literal clause, then we have T (µ) = T (µ − 6) + T (µ − 2 − (1 −
0.905813)) = O(1.20622µ) = O(1.4550n). Finally, if there are no singletons, then we have
T (µ) = T (µ − 6) + T (µ − 2) = O(1.21062µ) = O(1.4656n). This completes the case for 5
outside variables.

If j = 6, then we can have it either in the 2-4 orientation or the 3-3 orientation, as shown
in Figure 11 and 8 respectively. If it is the 2-4 orientation, then we branch the overlapping
variable and we have T (µ) = T (µ− 6− 0.905813) + T (µ− 1− 0.905813) = O(1.196552µ) =
O(1.4318n). For the 5-literal clause, we do not need to consider the case if there are singleton
variables or not as the presence or absence of it will not change the measure. Therefore, we
will only need to consider the case where there are no singletons on the 3-literal clause. We
have T (µ) = T (µ−7)+T (µ−2) = O(1.19082µ) = O(1.4181n). If the outside variables appear
in the 3-3 orientation, then again, we branch the overlapping variable. We will therefore have
T (µ) = T (µ−7)+T (µ−1−4 · (1−0.905813)) = O(1.224032µ) = O(1.224032n) = O(1.4983n).
In this case, we assume that all 4 out of the 6 outside variables are singletons. We also need to
handle the case that there are less than 4 singletons in this case. Suppose that there exist at
least one of the variables such that it is not a singleton, as shown in Figure 13, then we have
to change our approach in branching this problem because of the change in measure. Instead
of looking at the overlapping variable, we instead look at the 4-literal clause containing the
non-singleton variable. Let the variables b and c be connected to a larger chain, d be that
non-singleton variable and the last variable be e. Now both b and c cannot be connected to
3-literal clauses as the earlier cases would already have handled it. In addition, if b and c
appear at least 3 times, else we can branch them immediately to get a branching factor of at
most T (µ) = T (µ− 7− 2 · 0.905813) +T (µ− 1) = O(1.21652µ) = O(1.4798n). Therefore both
b and c must appear exactly twice. Now we branch (b ∨ c) = 1 and b = c = 0. If b = c = 0,
then we can eliminate 3 variables by linking up d and e and if (b ∨ c) = 1, we can remove
all 4 variables. Therefore, T (µ) = T (µ− 3) + T (µ− 4) = O(1.22072µ) = O(1.4903n). This
completes the case for j = 6 outside variables.

If j = 7, then we can have it either in the 3-4 orientation (Figure 9) or the 2-5 orientation.
Now suppose that we have the 3-4 orientation. Then we will have T (µ) = T (µ− 8) + T (µ−
1− 2 · (1− 0.905813)) = O(1.21692µ) = O(1.4809n). In this case, we assume that 2 of the 7
outside variables in the 4-literal clause are singletons.

If this case does not happen, then again we have to look at the other neighbours of the
4-literal. Now, the neighbours of this 4-literal clause cannot be 3-literal or 4-literal, as they
would have been handled by the earlier cases. Therefore, the neighbours of this 4-literal
clause must be a 5-literal clause.

We first choose any two variables b and c that are non-singletons. If variables b and c
appear at least 3 times , then we’ll branch them immediately to get a branching factor of at
most T (µ) = T (µ−8−2·0.905813)+T (µ−1) = O(1.20032µ) = O(1.4406n). If not, then these
variables appear exactly twice and and we branch them as (b ∨ c) = 1 or b = c = 0. Then we
will have a branching factor of T (µ) = T (µ− 3) + T (µ− 4) = O(1.22082µ) = O(1.4904n). If
we have it in the 2-5 orientation, then we have T (µ) = T (µ− 7.905813) + T (µ− 1.905813) =
O(1.17992µ) = O(1.3922n). Now, if there are no singletons on the 3-literal clause, then we
will have T (µ) = T (µ− 8) + T (µ− 2) = O(1.17502µ) = O(1.3807n). This completes the case
for 7 outside variables.

If j = 8, for example in Figure 7, branching the overlapping variable will give us a
branching factor τ(j, i)2 ≤ τ(9, 1)2 < 1.4718 regardless of the orientation of the outside
variables. In addition for j > 9, we have that τ(j, 1)2 < τ(9, 1)2 < 1.4718. Note that this case
applies to a 9-literal clause. We can just branch any variable appearing in a 9-literal clause to

ISAAC 2019

15:14 Measure and Conquer for Max Hamming Distance XSAT

have a branching factor of τ(9, 1)2 = 1.4718. If there are 8 neighbours with two of them having
at least weight 1, then we have a branching factor of at most τ(1, 6 · 0.905813 + 3)2 = 1.4967.
If there are exactly 8 neighbours and one of them having weight 1, then we have a case of
an overlapping variable appearing in four 3-literal clauses. Branching the common variable
will give us a branching factor of at most τ(1 + 0.905813, 7 · 0.90513 + 2)2 = 1.3775. This
completes the case for all overlapping variables of exactly 1 variable.

The upper bound of these branching rules is the branching rules that has the worst case
time bound. Since the branching rule of the common variable between two 4-literal clause
has the worst case timebound, therefore the worst case time bound is O(1.4983n). J

After all the above branching rules have been applied and we come to a point where no
branching rules can be further applied, we come to the second part of the algorithm where
both ϕ1 and ϕ2 consists of small isolated components. See also Figure 14 in the appendix.
The following gives a rough estimate of the size of the isolated components; a better one is
found in the appendix.

I Proposition 8. After all actions in Case 1 is done, ϕ1 and ϕ2 consist of disjoint components
each having at most 1364 variables.

Proof. Note that by doing the actions in List 1, every two clauses in the component intersect
by at most one variable, unless the component exist of exactly two clauses of the form
(a, b, c, d), (c, d, e, f). By doing the actions in List 2, every chain has at most length 5 and
every chain of four members has in the interior a clause of size 4 and perhaps also a clause of
size 5. So one chooses a clause C1 of size 4. Now when starting from C1, one gives an upper
bound on all nodes which are in the last clause of chains of form C1 or C1, C2 or C1, C2, C3
or C1, C2, C3, C4 or C1, C2, C3, C4, C5. Here one uses that each variable in an inner Ck has at
least four and at most five members and thus each a ∈ Ck has at most four new neighbours
which are not covered by chains of the form C1, C2, . . . , Ck. So one gets the overall number
of variables estimated by 4 · (1 + 4 + 16 + 64 + 256) = 5 · 341 = 1364. The appendix gives
an improved bound of 80 with a much more involved argument which also needs a slight
generalisation of the cases in List 2. J

Let µ be the measure for ϕ1 and ν for ϕ2 at this point. Now we will apply branch and bound
to the formula ϕk, where k ∈ {1, 2} with min{µ, ν} and then brute force the Hamming
Distance from the other formula. For the brute forcing portion, we know that the size of
each component is bounded above by some constant c. Therefore, the only thing we need
to ensure is that the branch and bound of the formula measure is still well within the time
bound of O(1.4983n).

I Proposition 9. The branch and bound of the formula with lower measure has worst case
run time of O(1.4983n).

Proof. Note that when we are in this case, we no longer have 2n variables but only n

variables from one of the formula. In addition, we can safely assume that we will not have
a variable with 8 other neighbours as it will be handled by the branching case above. We
consider all possible cases here.

First we consider standalone clauses with length < 9. Suppose that we have a clause of
length 2. Then we branch the entire clause by the values (1, 0) and (0, 1). This will incur
T (µ) = T (µ−2 ·0.905813)+T (µ−2 ·0.905813) = O(1.4662n). Suppose that we have a length
of length 3, then again we branch the clause with values (1, 0, 0), (0, 1, 0) and (0, 0, 1). This

G. Hoi and F. Stephan 15:15

will incur T (µ) = 3T (µ− 3 · 0.905813) = O(1.4983n). Now let n ∈ N. We know that n(1
n) is

decreasing for n ≥ 3 and hence for any length of any standalone clauses with 3 < j < 9, we
have that the branching factor with j branches and removal of j variables for each branch,
τ(j, j, ..., j) < τ(3 · 0.905813, 3 · 0.905813, 3 · 0.905813) < 1.4983. This completes the case for
all standalone clauses.

We next consider clauses with at exactly 1 overlapping variable with < 8 neighbours.
Now the worst case that we can have is an overlapping variable with 4 outside variables in
a 2-2 orientation. In this case, we will have T (µ) = T (µ − 1 − 4 · 0.905813) + T (µ − 1) =
O(1.3433n). Again, let j be the number of neighbours in this case with 4 < j < 8. Then
τ(1 + j · 0.905813, 1) < 1.3433. This completes the case for all clauses with exactly 1
overlapping variable. For two or more overlapping variables, we can treat it as a similar case
by just branching only 1 of the overlapping variable. This completes the case for all clauses
with overlapping variables. J

I Theorem 10. The algorithm takes O(1.4983n) time.

Proof. To know the worst case runtime of our algorithm, we have to consider the branching
rule which generates the most number of leaves. For branching rules in Case 1, we have that
the runtime is bounded above by O(1.4983n) as given by Proposition 7 and 6. For Case 2, as
shown in Proposition 9, the runtime is again bounded above by O(1.4983n). So the overall
complexity is O(1.4983n). J

I Example 11. Consider ϕ1, ϕ2 to contain the following clauses : x1 ∨ x2 ∨ x3, x1 ∨ x4 ∨ x5,
x1 ∨ x6 ∨ x7, x2 ∨ x8 ∨ x9 ∨ x10. For variable xk, the initial values of the polynomials are
pk,a,k,b = u in the case that a 6= b and 1 in the case that a = b; furthermore, all polynomials
involving mixed variables are 1 and also the polynomials with k = 0 on either side are 1.

Now the algorithm branches x1, first in ϕ1. Now let x1 take the value a1 in ϕ1. If a1 = 1
then the variables xh with h = 2, 3, 4, 5, 6, 7 take the value ah = 0. Furthermore, we update
the polynomials as follows: p0,0,k,b =

∏
h=1,...,7 ph,ah,k,b for all k, b and after that we let

ph,a,k,b = 0 for h = 1, 2, . . . , 7 and all a, b, k. The remaining formula in ϕ1 is x8 ∨ x9 ∨ x10.
If a1 = 0 then one can conclude that x2 = ¬x3, x4 = ¬x5 and x6 = ¬x7. However, only the
first of these 3 possible equalities will be realised, as x2 appears also in a further clause. So
we do the update x3 = ¬x2 in ϕ1 and p3,a,k,b = p3,a,k,b · p2,1−a,k,b for all a, b, k and after that
p2,a,k,b = 0 for all a, b, k. The remaining formulas for ϕ1 are in this case x4 ∨ x5, x6 ∨ x7,
x2 ∨ x8 ∨ x9 ∨ x10.

After that, one does the analogous updates in ϕ2.
The descent will result in 4 subcases where one has on each side either 3 variables and

one clause or 8 variables distributed over 3 disjoint and unconnected clauses.
Now consider the example case where ϕ1 has one clause (so one has branched x1 = 1

previously for ϕ1) and ϕ2 has 3 clauses. Now one considers the 3 cases of (x8, x9, x10) taking
the values (0, 0, 1), (0, 1, 0) and (1, 0, 0) in ϕ1 and one subbranches into these cases which
will set the remaining variables accordingly. Then only the polynomials p0,0,k,b are non-zero
and we will process the 3 components of variables (x2, x8, x9, x10), (x4, x5) and (x6, x7) for
ϕ2 accordingly.

So for each (b, b′, b′′) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, we do separate computations where
each of them starts with the same version of the polynomials and first updates for all applicable
k and all a ∈ {0, 1} the polynomials p0,0,k,a = p0,0,k,a · p8,b,k,a · p9,b′,k,a · p10,b′′,k,a and once,
this is done, one updates the polynomial p0,0,0,0 3 times as follows: First for 4 possible
vectors in U = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0,), (1, 0, 0, 0)} of (x2, x8, x9, x10), we update
p0,0,0,0 = p0,0,0,0 · (

∑
(c,c′,c′′,c′′′)∈U p0,0,2,c · p0,0,8,c′ · p0,0,9,c′′ · p0,0,10,c′′′) and then we deal with

the two solutions for x4∨x5 = 1 by updating p0,0,0,0 = p0,0,0,0 ·(p0,0,4,1 ·p0,0,5,0+p0,0,4,0 ·p0,0,5,1)

ISAAC 2019

15:16 Measure and Conquer for Max Hamming Distance XSAT

and afterwards we do the same for x6∨x7 = 1 by updating p0,0,0,0 = p0,0,0,0 · (p0,0,6,1 ·p0,0,7,0 +
p0,0,6,0 · p0,0,7,1) and we receive for each of the 3 starting vectors (b, b′, b′′) a sum polynomial
and these 3 sum polynomials are added up to the return value of this branch. The other 3
cases arising from different branchings of x1 in either formula are handled analogously.

8 Conclusion

In this paper, we introduced the concept of finding the most number of variables that can
differ between a pair of solution and called it the Max Hamming Distance problem and we
focused on the Max Hamming Distance XSAT problem. We introduced a DPLL algorithm
with a nonstandard measure to bring the complexity down to O(1.4983n), and therefore
beating both Dahllöf’s state of the art algorithm to solve Max Hamming Distance XSAT
and Fu, Zhou and Yin’s algorithm to compute the Max Hamming Distance X3SAT.

Here is a possible direction where interested readers can take our work further. Our
current nonstandard measure gave us a huge improvement in performance from O(1.5761n)
if we were to use the standard measure. Can a more creative and cleverly designed measure
bring the complexity of the algorithm down further?

An anonymous referee also pointed out that the large constant of Proposition 8 is large
and that this constant goes in exponentiated form into the runtime; thus the algorithm is
only of theoretical nature and not implementable in practice. Proposition 14 in the appendix
gives a better value, but there is still room for improvement.

One might ask whether there are heuristics using known methods which might beat our
algorithm. One such approach would be to enumerate all solutions of ϕ1 at the beginning
and then to solve for each of this solution ϕ2. In the general case, we note that the number
of solutions of ϕ1 is a badly conditioned function. Say if there are n = 3m + 1 variables
consisting on m clauses with 4 variables where always the first variable is the same and the
other 3 are uniquely to the clause, then the number of solutions is 1 + 3m which is least
Ω(1.4422n). For each of these solutions, though not in this specific case, one has to solve on
the other side a variable-weighted maximum XSAT formula which actually takes longer than
solving XSAT; Porschen [14] solved this in O(20.244n) which is O(1.184n). So combining
known algorithm might give only O(1.7075n), as 1.184 · 1.4422 ≥ 1.7075. Thus even if the
first bound can be improved, as the current bound requires an easy structure, we do not
expect this method to give our bounds.

Hoi, Jain and Stephan [6] provide a better algorithm for computing the maximum
hamming distance of X3SAT; however, this better bound exploits several properties of
X3SAT which do not hold in general XSAT and this method does not generalise here. It is a
often observed phenomenon that algorithms for X3SAT have a better time performance than
their counterparts for the more general XSAT problem.

References
1 Andreas Blass and Yuri Gurevich. On the unique satisfiability problem. Information and

Control, 55(1–3):80–88, 1982.
2 David Eppstein. Small maximal independent sets and faster exact graph coloring. Proceedings

of the Seventh Workshop on Algorithms and Data Structures, Springer Lecture Notes in
Computer Science, 2125:462–470, 2001.

3 David Eppstein. Quasiconvex analysis of multivariate recurrence equations for backtracking
algorithms. ACM Transactions on Algorithms, 2(4):492–509, 2006.

4 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science, EATCS, Springer, Berlin, Heidelberg, 2010.

G. Hoi and F. Stephan 15:17

5 Fedor V. Fomin, Fabrizio Grandoni and Dieter Kratsch. A measure and conquer approach for
the analysis of exact algorithms. Journal of the ACM, 56(5):25, 2009.

6 Gordon Hoi, Sanjay Jain and Frank Stephan. A fast exponential time algorithm for Max
Hamming X3SAT. Foundations of Software Technology and Theoretical Computer Science,
FSTTCS, 2019.

7 Jesper Makholm Byskov, Bolette Amitzbøll Madsen and Bolette Skjernaa. New algorithms
for exact satisfiability. Theoretical Computer Science, 332(1-3):515–541, 2005.

8 Linlu Fu, Junping Zhou and Minghao Yin. Worst case upper bound for the maximum
Hamming distance X3SAT problem. Journal of Frontiers of Computer Science and Technology,
6(7):664–671, 2012.

9 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

10 Martin Davis, George Logemann and Donald W. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, 1962.

11 Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical
Computer Science, 223(1–2):1–72, 1999.

12 Pierluigi Crescenzi and Gianluca Rossi. On the Hamming distance of constraint satisfaction
problems. Theoretical Computer Science, 288(1):85–100, 2002.

13 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, Berlin, Heidelberg, 2013.

14 Stefan Porschen. On variable-weighted exact satisfiability problems. Annals of Mathematics
and Artificial Intelligence, 51(1):27–54, 2007.

15 Vilhelm Dahllöf. Algorithms for Max Hamming Exact Satisfiability. International Symposium
on Algorithms and Computation, ISAAC 2005, Springer Lecture Notes in Computer Science,
3827:829–383, 2005.

16 Vilhelm Dahllöf. Exact Algorithms for Exact Satisfiability Problems. PhD thesis, Department
of Computer and Information Science, Linköping University, 2006.

17 Vilhelm Dahllöf, Peter Jonsson and Richard Beigel. Algorithms for four variants of the exact
satisfiability problem. Theoretical Computer Science, 320(2–3):373–394, 2004.

A Appendix

Figure 14 shows an example of case 2. Each circle in both ϕ1 and ϕ2 represents an isolated
group of clauses.

ϕ1 :

ϕ2 :

Figure 14 Case 2.

An anonymous referee pointed out to the authors, that the size of the components after Case
1 is critical to the performance of the algorithm when implemented, as it is multiplicative
constant in the runtime which is exponentiated, so the overall runtime multiplies with
approximately 2m/2 · Poly(n) which is an estimate to count all the weighted number of
solutions of an component of size m with the weights being polynomials in u of degree n.
One can go for this through all possible solutions by descent. Due to the exponentiation of
m, it is important that one gets a bound on m to be as small as possible. Though a large

ISAAC 2019

15:18 Measure and Conquer for Max Hamming Distance XSAT

m does not influence the theoretical analysis of the algorithm in terms of its asymptotic
complexity, it still makes the algorithm useless for practical implementations. The following
relaxation from chains to pseudochains is critical for the improved bound on m.

I Definition 12. A pseudochain is a sequence of clauses C1, C2, . . . , Ck such that two
neighbouring clauses Ch, Ch+1 overlap by exactly one variable and for two subsequent pairs
of neighbouring clauses Ch, Ch+1 and Ch+1, Ch+2, the variables in the overlaps are different.

In this definition, the second condition implies that there are no pseudochains with a
subsequence Ch, Ch+1, Ch, so that one cannot go back and forth between two clauses. Now
for the following, the conditions in List 2 will be slightly generalised, in the sense that they
can also apply to pseudochains and not only proper chains. So in Item 2, it is allowed that
the neighbouring clause of c has a joint variable with the first clause, but this needs to be
different from c. In Item 3, b, c are in further clauses and there are no constraint on what
these further clauses are, they could even be the same clause; however, b 6= c is required. In
Items 4 and 5, it is not required that b, c are in further clauses and if they are, there are no
constraints on what they are. In Item 6, it is only required that the two additional clauses
where b and c are in have at least four variables, no further requirement is there. The two
clauses have to be different, but they can have a joint variable. Note that b and c are then
exactly in two clauses, as they have already six neighbours and as they cannot have eight
neighbours out of which six have weight 1 by Item 1 to be done first when it applies. These
relaxations do not influence the branching factors.

I Proposition 13. Every component of the formulas after Case 1 with the more modified
conditions in List 2 as above does not contain pseudochains of length six or more; furthermore,
it contains no circular pseudochains like C1, C2, C3, C1.

Proof. Note that Item 1 enforces that no variable a in a component has eight or more
neighbours, except in the case that the whole isolated component of the consists the variable
a and eight neighbours which are all in clauses (a, ., .) consisting of a and two further variables.
Furthermore the Simplification Rules enforce that there are no clauses of 1 or 2 variables,
except the case of an isolated component consisting of a single 2-variable-clause. Thus no
member of a pseudochain has more than six variables, as its neighbour must have at least
three variables. Items 2 and 3 in a pseudochain enforce that no inner member of a pseudochain
has three variables except in the case of a pseudochain C1, C2, C3 where all three clauses
have exactly three variables. If now a pseudochain is of the form C1, C2, C3, C4, C5, C6, the
clauses C2, C3, C4, C5 have all at least four variables and it cannot be that both C3, C4 have
both four variables, as then either Item 4 applies or one of them has a variable connecting to
a further clause and Item 6 applies, causing a further reduction of the variables. Furthermore,
it cannot be that one of C3, C4 has four variables and the other one five or more variables,
as then either Item 5 or Item 6 applies. Furthermore, it cannot be that both C3, C4 have
at least five variables, as then the connecting variable can be branched by Item 1. Thus
pseudochains of six or more clauses do not survive until all branchings or cuts which can
apply by List 2 are done.

Note that for a circular pseudochain C1, C2, . . . , Ck, C1, it is required that C2 and Ck
connect to C1 by different variables, as the writing should not depend on where one breaks
the circle. Thus one can also view it as a long pseudochain C1, C2, . . . , Ck, C1, C2, . . . , Ck and,
as k ≥ 3, this psuedochain has at least six members and does not exist after all branchings
of the modified List 2 are done. J

G. Hoi and F. Stephan 15:19

I Proposition 14. Every component of the formulas after Case 1 with the more modified
conditions in List 2 as above has at most 80 variables.

Proof. As seen in the preceding proposition, there are no circular pseudochains and no
pseudochains of length six or more. So let C1, C2, . . . , Ck be a pseudochain of maximal
length, therefore k is at most five.

Now consider the case k = 5. Let a be the common variable of C2, C3 and b be the
common variable of C3, C4. If there is a clause of distance 3 from C3, it is connected by
clauses C3, C6, C7, C8. Either C6 does not connect to C3 through a or does not connect to C3
through b, say the first. Now C1, C2, C3, C6, C7, C8 is a pseudochain of length six which does
not exist. Thus all clauses are either neighbours of C3 or neighbours of neighbours of C3. So
assume that C6 is a neighbour of C3 with common variable c which has a further neighbour
C7 which is not a neighbour of C3. Then C6 has at least four and at most five variables. Thus
c can only be in the clauses C3, C6 as these have together already at least seven variables and
being in a further clause would cause c to have eight or more neighbours. So there are either
three or four variables in C6 other than c and these have each at most 8− |C6| neighbours
which are not in C6. So if C6 has four variables these are 3 neighbours of c outside C3 plus
3 · 4 neighbours of neighbours; if C6 has five variables these are 4 neighbours of c outside
C3 plus 4 · 3 neighbours of neighbours; in total c contributes to at most 16 neighbours and
neighbours of neighbours. Note that 16 will only be reached, if C6 has five variables and
therefore C3 four. So one has at most max{4 · (1 + 16), 5 · (1 + 15)} = 80 variables in the
isolated component.

If k = 4 then every clause would have at most distance two from C2 which can be seen
as follows: If there would be a clause of distance three then it would be a pseudochain
C2, C5, C6, C7 which can be either extended to C1, C2, C5, C6, C7 or C3, C2, C5, C6, C7 and
does not exist. Similarly, any clause has distance at most three from C3. If now a clause
C7 is of distance 2 from both C2, C3 then this is witnessed by C2, C5, C7 and C3, C6, C7
and C5, C6 do not connect to C2, C3, respectively, through the common variable a of C2
and C3. Thus C7, C5, C2, C6, C7 would be pseudochain of length five with does not exist by
assumption. Thus, every clause other than C2 and C3 is a neighbour of exactly one of these
two clauses, but not of both. At most one of C2, C3 is of size five and both have at least size
four. Thus a has up to 15 neighbours and neighbours of neighbours from one side and up to
16 from the other side, so the overall number of variables is at most 16 + 15 + 1 = 32.

If k = 3 then every clause is a neighbour of C2. Each variable in C2 has at most 8− |C2|
neighbours which are not in C2 and so the overall number of nodes is variables in the
connected component is bounded by |C2| + |C2| · (8 − |C2|) = |C2| · (9 − |C2|) which is
maximised at |C2| ∈ {4, 5} and is 20.

If k = 2 then every clause contains the connecting variable of C1 and C2 so that the
overall number of variables is at most 9. If k = 1 then the clause has at most size 8 and
there are no neighbouring clauses. J

It might be worth to mention that when dealing in a brute-force way with a component of
size 80, one can break it down by taking, in the case of k = 5, first the central clause C3 and
branch into the subcases according to which of the variables in it is 1, each of these branches
splits the component into subcomponents of size at most 16 which are easy to handle, as all
variables of C3 are set to constants. This would then make the case of dealing with isolated
components to become more treatable from an implementation perspective. In the case
of k = 4, one can branch the variable connecting C2 and C3 and get a similar breakdown
of the component into two smaller, isolated components of up to 16 variables. The cases
k = 3, k = 2, k = 1 have already very small components.

ISAAC 2019

Cyclability in Graph Classes
Christophe Crespelle
Department of Informatics, University of Bergen, Norway
Christophe.Crespelle@uib.no

Carl Feghali
Department of Informatics, University of Bergen, Norway
Carl.Feghali@uib.no

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
Petr.Golovach@uib.no

Abstract
A subset T ⊆ V (G) of vertices of a graph G is said to be cyclable if G has a cycle C containing
every vertex of T , and for a positive integer k, a graph G is k-cyclable if every subset of vertices of
G of size at most k is cyclable. The Terminal Cyclability problem asks, given a graph G and a
set T of vertices, whether T is cyclable, and the k-Cyclability problem asks, given a graph G and
a positive integer k, whether G is k-cyclable. These problems are generalizations of the classical
Hamiltonian Cycle problem. We initiate the study of these problems for graph classes that admit
polynomial algorithms for Hamiltonian Cycle. We show that Terminal Cyclability can be
solved in linear time for interval graphs, bipartite permutation graphs and cographs. Moreover, we
construct certifying algorithms that either produce a solution, that is, a cycle, or output a graph
separator that certifies a no-answer. We use these results to show that k-Cyclability can be solved
in polynomial time when restricted to the aforementioned graph classes.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases Cyclability, interval graphs, bipartite permutation graphs, cographs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.16

Funding The research leading to these results has received funding from the Research Council of
Norway via the projects “CLASSIS” and “MULTIVAL”, and from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No
749022.

1 Introduction

A subset T ⊆ V (G) of vertices of a graph G is said to be cyclable if G has a cycle C containing
every vertex of T . In this case, C is said to cover T . We assume that a single element set is
cyclable. For a positive integer k, a graph G is k-cyclable if every set T of size at most k is
cyclable. The cyclablity of G, denoted cyc(G), is the maximum k such that G is k-cyclable.
We consider the following generalizations of the classical Hamiltonian Cycle problem.

Input: A graph G and a nonempty set T ⊆ V (G) of terminals.
Task: Decide whether T is cyclable.

Terminal Cyclability

Input: A graph G and a positive integer k.
Task: Decide whether G is k-cyclable.

k-Cyclability

© Christophe Crespelle, Carl Feghali, and Petr A. Golovach;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 16; pp. 16:1–16:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Christophe.Crespelle@uib.no
mailto:Carl.Feghali@uib.no
mailto:Petr.Golovach@uib.no
https://doi.org/10.4230/LIPIcs.ISAAC.2019.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Cyclability in Graph Classes

The investigation of Terminal Cyclability and k-Cyclability started in the 1960s with
the pioneer work of Dirac [18] who proved that, for each k ≥ 2, every k-connected graph
is k-cyclable. Since then, a number of related results have been obtained and the majority
of them follow the line of research of Dirac [18]: to give sufficient conditions for a graph G
to be k-cyclable or for a given subset T ⊆ V (G) to be cyclable; we refer the reader to the
survey paper of Gould [22] for results of this type.

From the computational complexity viewpoint, both Terminal Cyclability and k-
Cyclability are at least as hard as the Hamiltonian Cycle problem, which is well-known
to be NP-complete [19]. Positive results can be found in the Parameterized Complexity
framework (we refer to the recent book of Cygan et al. [12] for an introduction to the
field). For instance, by the celebrated results of Robertson and Seymour [29] about the
Disjoint Paths problem, Terminal Cyclability is fixed-parameter tractable (FPT)
when parameterized by |T |. So far, the best known FPT (randomized) algorithm is due to
Björklund, Husfeldt and Taslaman [3]. Golovach et. al. [20] also proved that deciding if G is
k-cyclable is co-W[1]-hard for split graphs and that k-Cyclability is FPT on planar graphs
when parameterized by k.

There is also a long history of research on Hamiltonian Cycle and related problems
for the classes of cographs, bipartite permutation graphs, interval graphs and some of their
superclasses (see [5, 7, 8, 11, 13, 14, 15, 16, 23, 24, 26, 28] and the bibliography therein).

A lot of this research is connected with the conjecture of Chvátal [9]; see the survey
of Bauer, Broersma and Schmeichel [2] for the statement, history and details around the
conjecture. Let c(G) denote the number of connected components of a graph G, Chvátal [9]
observed that if there exists a vertex separator S of a graph G such that c(G − S) > |S|,
then G has no Hamiltonian cycle. Hence, the condition that c(G− S) ≤ |S| holds for every
separator of a graph G is a necessary Hamiltonicity condition. For interval graphs, bipartite
permutation graphs and cographs that are connected and have at least three vertices, this
condition turns out to be also be sufficient [11, 13, 15]. Motivated by this necessary condition,
Jung [25] defined the scattering number of a noncomplete graph G as

sc(G) = max{c(G− S)− |S| | S is a separator of G}, (1)

and the set S∗ for which the maximum in (1) is achieved is called a scattering set. For a
complete graph G, sc(G) = −∞. For the class of cocomparability graphs G with at least three
vertices (that is a superclass of the classes of interval graphs and permutation graphs), the
following two dualities were established in [15]. Firstly, it is shown that G has a Hamiltonian
cycle if and only if sc(G) ≤ 0 and, secondly, that the set of vertices of G can be covered by
at most k vertex-disjoint paths if and only if sc(G) ≤ k.

From these equivalences, one can construct certifying polynomial time algorithms for
Hamiltonian Path and Hamiltonian Cycle problems. Note that a certifying algorithm
outputs, together with a solution, a certificate that demonstrates the correctness of the
solution that can be verified independently. Typically, the size of a certificate should be
small with respect to the input size and the verification algorithm should be simple. The
main advantage of certifying algorithms over standard ones is that their implementations
are a great deal more reliable and can be used without knowing the code; see the survey
papers [1, 27] for an introduction to certifying algorithms. The certifying algorithms for
Hamiltonian Path and Hamiltonian Cycle either output a Hamiltonian path or a
Hamiltonian cycle, or produce a separator that certifies a no-answer [10, 15, 11, 7].

We continue the study of Terminal Cyclability and k-Cyclability from a complexity
viewpoint by first showing that analogous dualities hold for these problems on interval graphs,
bipartite permutation graphs and cographs (see Section 2 for the formal definitions of these

C. Crespelle, C. Feghali, and P. A. Golovach 16:3

graph classes). We will then show how to construct, from these dualities, polynomial time
algorithms for Terminal Cyclability and k-Cyclability on these graph classes, which
are also certifying algorithms in the case of Terminal Cyclability. In fact, for Terminal
Cyclability we will consider a slightly more general problem. To be more precise, let G
be a graph and let T ⊆ V (G) such that T is not a clique. Let cT (G) denote the number of
connected components of G containing some vertex of T and say that a subset S ⊆ V (G) is
a T -separator of G if cT (G− S) ≥ 2. The T -scattering number of G is given by

scT (G) = max{cT (G− S)− |S| | S is a T -separator}, (2)

and the set S∗ for which the maximum in (2) is achieved is called a T -scattering set. A cycle
or a family of vertex-disjoint paths containing the vertices of T is said to be a T -cycle-segment
cover. The size of a T -cycle-segment cover is defined to be zero if it is a cycle and to be
the number of paths in the family otherwise. The T -cycle-segment cover number, denoted
segG(T), is the minimum size of a T -cycle-segment cover.

As one of our main contributions, we will show that if G is an interval graph, a bipartite
permutation graph or a cograph and T is not a clique, then segG(T) ≤ r if and only if
scT (G) ≤ r. This, in turn, will allow us to solve in polynomial (linear) time the following
decision problem that generalizes Hamiltonian Cycle and Path Cover.

Input: A graph G, a nonempty set T ⊆ V (G) of terminals and a nonnegative
integer r.

Task: Decide whether segG(T) ≤ r.

Cycle Segment Cover

Moreover, our algorithms for each graph class either produce a solution, that is, a T -cycle-
segment cover, or return a T -separator S∗ such that cT (G− S∗)− |S∗| > r that certifies a
no-answer (unless T is a 2-clique and is not cyclable in G, which is the only case when there
exists no T -separator S∗ that certifies a no-answer – in this case, it suffices to check whether
T induces a bridge in G). More formally, we will establish the following theorem.

I Theorem 1. There is an algorithm that, given an instance (G,T, r) of Cycle Segment
Cover, where G is an interval graph, a bipartite permutation graph or a cograph and T is
not a 2-clique, either finds a T -cycle segment cover of size at most r or a T -separator with
cT (G− S∗)− |S∗| > r that certifies a no-answer in O(|V (G)|+ |E(G)|) time.

In fact, for cographs we have a slightly better result: the algorithm runs in time O(|V (G)|)
if the cotree of G is given (see Section 5 for the definition). We then use these results to
solve k-Cyclability for interval graphs, bipartite permutation graphs and cographs.

I Theorem 2. For a graph G that is an interval graph, a bipartite permutation graph or a
cograph, k-Cyclability can be solved in time O(|V (G)|3).

In proving Theorem 2, the following definition will be essential. For a positive integer k,
we define the k-scattering number of a graph G as

sck(G) = max{c(G− S)− |S| | S is a separator of G s.t. |S| ≤ k − 1}, (3)

and sck(G) = −∞ if it has no separator of size at most k − 1 (we assume that the empty set
is a separator of a disconnected graph).

ISAAC 2019

16:4 Cyclability in Graph Classes

To prove Theorem 2, we first show that if G is an interval graph, a bipartite permutation
graph or a cograph and k is a positive integer, then G is k-cyclable if and only if sck(G) ≤ 0.
Our approach for solving k-Cyclability for interval graphs and cographs then consists of
constructing polynomial time algorithms that compute the k-scattering number for these
graph classes for all k ∈ {1, . . . , |V (G)|} in cubic time. For bipartite permutation graphs, we
use a different approach that gives a better running time.

The extended abstract is organized as follows. In Section 3, we sketch our algorithm for
Cycle Segment Cover for interval graphs and describe how to solve k-Cyclability for
interval graphs. In Sections 4 and 5, we very briefly discuss our afore-mentioned results for,
respectively, bipartite permutation graphs and cographs. We conclude the paper in Section 6
with some open problems. Due to space constraints, the details of most proofs are omitted.

2 Preliminaries

We consider only finite undirected simple graphs and follow the standard graph theoretic
notation and terminology (see, e.g., [17]). We use n to denote the number of vertices and m
the number of edges of the considered graphs unless it creates confusion. We say that a graph
G is an interval graph if there is a family I of closed intervals of the line (called interval
model or representation) such that G is isomorphic to the intersection graph of I. A graph
G is a permutation graph if there is an ordering v1, . . . , vn of its vertices and a permutation
π : {1, . . . , n} → {1, . . . , n} such that for 1 ≤ i < j ≤ n, vi and vj are adjacent in G if and
only of π(i) > π(j). A graph is a bipartite permutation graph if it is both a bipartite graph
and a permutation graph. A graph is a cograph if it has no induced subgraph isomorphic to
the path on four vertices. We refer to [6, 21] for detailed introductions to these graph classes.

It is convenient to dispense with easy instances of our problems. An instance (G,T, r)
of Cycle Segment Cover, where T is a clique, is a yes-instance, unless |T | = 2, r = 0
and T induces a bridge in G. Similarly, an instance (G, k) of k-Cyclability, where G is a
complete graph, is a yes-instance unless |V (G)| = 2 and k = 2.
I Remark 3. In the sequel, we assume that G is not complete and T is not a clique.

3 Interval graphs

In this section, we prove Theorems 1 and 2 for interval graphs. Our algorithms use a specific
interval representation of the input graph. A clique path of a graph G is a sequence of cliques
C1, . . . , Cs of G such that
(i) C1 ∪ . . . ∪ Cs = V (G),
(ii) for all uv ∈ E(G), there is i ∈ {1, . . . , s} such that u, v ∈ Ci,
(iii) for all v ∈ V (G), if v ∈ Ci∩Cj for some 1 ≤ i < j ≤ s, then v ∈ Ch for all h ∈ {i, . . . , j}.

It is usually assumed in the definition of a clique path (see, e.g., [6, 21]) that C1, . . . , Cs

are maximal cliques of G. Here, we relax the standard definition and do not require the
cliques to be inclusion-wise maximal so that some cliques may be identical or empty. It is
well-known [6, 21] that a graph is an interval graph if and only if it has a clique path. The
classical recognition algorithm for interval graphs of Booth and Lueker [4] constructs a clique
path in time O(n+m). As we intend to design an O(n+m)-time algorithm, we can assume
from now on that the input graph is given with its clique path.

For a vertex v ∈ V (G), we let `v = min{i ∈ {1, . . . , s} | v ∈ Ci} and rv = max{i ∈
{1, . . . , s} | v ∈ Ci}. We say that `v and rv are the left bound and right bound of v respectively.
Notice that the intervals [`v, rv] of the real line for v ∈ V (G) form an interval representation
of G. For 1 ≤ i ≤ j ≤ s, we denote Ci,j = ∪j

h=iCh.

C. Crespelle, C. Feghali, and P. A. Golovach 16:5

We use the following well-known observation about separators of interval graphs that
results from the definition of a clique path (see, e.g., [6, 21]).

I Observation 4. Let G be a connected interval graph with a clique path C1, . . . , Cs. If
X = C1,i \ Ci+1 6= ∅ and Y = Ci+1,s \ Ci 6= ∅ for some i ∈ {1, . . . , s− 1}, then Ci ∩ Ci+1 is
a separator of G such that X and Y are in distinct components of G− (Ci ∩ Ci+1).

In Subsection 3.1 we solve Cycle Segment Cover for interval graphs. In Subsection 3.2,
we show how to compute the k-scattering number for interval graphs and use this result to
solve k-Cyclability.

3.1 Algorithm for Terminal Cyclability and Cycle Segment Cover
In this subsection, we describe our algorithms for Terminal Cyclability and Cycle
Segment Cover. More formally, we prove the following theorem.

I Theorem 5. There is an algorithm that, given an instance (G,T) of Terminal Cyc-
lability where G is an interval graph and T is not a 2-clique, finds either a cycle of G
covering T or a T -separator S∗ with cT (G−S∗)− |S∗| > 0 that certifies a no-answer in time
O(n+m).

The next part of the subsection contains a sketch of the proof of Theorem 5. We construct
an algorithm that tries to find a cycle of a graph G that covers T . If it fails, we use the
information obtained by the algorithm to construct a T -separator. The algorithm is inspired
by the algorithm for finding a Hamiltonian cycle in interval graphs of Keil [26]. For us, it
is more convenient to use a tailored variant of the algorithm from [7] for a more general
problem as this allows us to use some results of [7] as black boxes. For this, we need some
auxiliary results.

Let G be an interval graph given together with its clique path C1, . . . , Cs, and let
T ⊆ V (G) such that T is not a clique (see Remark 3). If G has at least two distinct connected
components containing vertices of T , then G has no cycle covering T and the algorithm
returns S∗ = ∅. We can thus assume that the vertices of T are in the same connected
component, so we can discard the other components if they exist. Clearly, all this can be
done in linear time. So we can safely assume, from now on, that G is connected.

Our algorithm (Algorithm 1 below) scans the clique path of G from the leftmost clique to
the rightmost and selects vertices from these cliques depending on their bounds. In order to
break ties between a subset of vertices having the same right bound (Lines 4 and 9) or the
same left bound (Line 14), we use a pre-decided arbitrary total order π on the vertices of G
and always select the leftmost vertex in the subset with respect to π. Let p = min{rv | v ∈ T}
and q = max{`v | v ∈ T}. Let wb be the minimum vertex of T with respect to π such that
rwb

= p. Analogously, let we be the maximum vertex of T with respect to π such that
`we = q. Since T is not a clique, it follows that p < q, wb 6= we and wbwe 6∈ E(G).

Algorithm 1 tries to construct two (wb, we)-paths P1 and P2 that are internally vertex-
disjoint such that T ⊆ V (P1) ∪ V (P2). If the algorithm succeeds, then the concatenation of
P1 and P2 is a cycle covering T . Initially, P1 = P2 = wb. Afterwards, the algorithm attaches
new vertices to one of the end-vertex of the two paths, which we call the extremity of the
path. For each Pi, the initial extremity of Pi is wb and whenever we append a new vertex to
the path, this vertex becomes the new extremity. It is easy to prove the following property.

I Lemma 6. If Algorithm 1 returns P1 and P2, then P1 and P2 are internally vertex-disjoint
(wb, we)-paths that contain all the vertices of T .

ISAAC 2019

16:6 Cyclability in Graph Classes

Algorithm 1 An algorithm for interval graphs that finds two internally vertex-disjoint
(wb, we)-paths P1 and P2 such that T ⊆ V (P1) ∪ V (P2).

1 begin
2 let P1 = P2 = wb;
3 for t = p to q − 1 do
4 choose Pi ∈ {P1, P2} such that the extremity of Pi has the leftmost right

bound;
5 attach the vertices x ∈ T \ (V (P1) ∪ V (P2)) s.t. rx = t to Pi;
6 for i = 1, 2 do
7 if the extremity of Pi has right bound at most t then
8 if the subset of vertices y ∈ (Ct ∩Ct+1) \ (V (P1)∪ V (P2)) is not empty
9 then extend Pi by attaching such a y having the leftmost right

bound;
10 else report that T is not cyclable and quit;
11 end
12 end
13 end
14 attach the vertices x ∈ T \ {we} s.t. lx = q to P1, then attach we to P1 and P2;
15 return P1 and P2;
16 end

Our next aim is to show that if Algorithm 1 reports that T is not cyclable, then there
is a T -separator S∗ such that cT (G− S∗) > |S∗|. The main observation that we shall use
to construct the set S∗ is that for T = V (G), Algorithm 1 is precisely an algorithm for
finding a Hamiltonian cycle in an interval graph. Our algorithm can be interpreted, to a
large extent, as a variant of Keil’s algorithm [26] or of Algorithm 1 of Broersma et al. [7]
(the main difference between our algorithm and theirs is that our algorithm does not try to
include, in the constructed paths, all vertices that it encounters). In particular, in [7] an
explicit construction is given of a separator S of G such that c(G − S) > |S| for the case
when G has no Hamiltonian cycle. We adapt their approach by first altering our graph so as
to allow the use of some of their results. The rest of our arguments are related to the ones in
[7] but have their own features and are more than just a variation.

Assume that Algorithm 1 stops at Line 10 for t = t∗. Note that from the range of
variation of t in the main loop (Line 3), we have t∗ < q. Denote by P ∗1 and P ∗2 the paths
constructed by the algorithm before it quits. We require some additional notations from [7].

For real numbers a ≤ b, [a, b] = {x ∈ R | a ≤ x ≤ b}, [a, b) = {x ∈ R | a ≤ x < b}, and
(a, b) = {x ∈ R | a < x < b}. If vertex u has been processed by the algorithm and attached
to a path at some step t of the for loop at Lines 3–13, we say that u has been activated at
time au = t. We define awb

= p. If u is activated and a vertex v has been attached to u at
some step t′ ≥ t of the for loop, we say that u has been deactivated at time du = t′. Thus,
`u ≤ au ≤ du ≤ ru and u is said to be free, active or depleted on, respectively, the intervals
[`u, au), [au, du) and [du, ru]. Note that some of these intervals may be empty. Whenever we
say that u is free (respectively, active or depleted) on an interval I of the real line, this means
that I ⊆ [`u, au) (respectively, I ⊆ [au, du) or I ⊆ [du, ru]). We also say that v ∈ V (P ∗i) for
i ∈ {1, 2} is a descendant of u ∈ V (P ∗i) if v was attached to P ∗i after u and that v is the last
descendant on an interval I if v is the last vertex attached to P ∗i at steps t ∈ I of the for
loop at Lines 3–13. A vertex v is said to be renounced if it is missed by the algorithm, that
is, `v ≤ t∗ and v /∈ V (P ∗1) ∪ V (P ∗2). The set of renounced vertices is denoted by R.

C. Crespelle, C. Feghali, and P. A. Golovach 16:7

Let G∗ = G−R, and let T ∗ = V (G) \R. For i ∈ {1, . . . , s}, denote C∗i = Ci \R. Clearly,
C∗1 , . . . , C

∗
s is a clique path of G∗. Recall that for 1 ≤ i ≤ j ≤ s, C∗i,j =

⋃j
h=i C

∗
h.

The description of Algorithm 1, with tie-breaking order π, implies the following property.

I Lemma 7. Algorithm 1 for the instance (G∗, T ∗) of Terminal Cyclability, with
tie-breaking order π, quits at Line 10 and constructs the paths P ∗1 and P ∗2 .

As mentioned above, the fact that our Algorithm 1 for (G∗, T ∗) works along the same
lines as Algorithm 1 of [7] will allow us to use the following Lemma 2.2 of [7].

I Lemma 8 ([7]). Let t ∈ {p, . . . , q − 1} such that Algorithm 1 with input (G∗, T ∗) either
finishes iteration t of the for loop at Lines 3–13 or terminates at Line 10 within iteration t.
If there is at least one depleted vertex on the interval (t, t+ 1), then there exists an integer t′
such that p ≤ t′ < t with the following properties:
(i) (C∗t′+1,t \ (C∗t′ ∪ C∗t+1)) 6= ∅,
(ii) there exists a unique vertex u ∈ C∗t′ ∩ C∗t+1 such that u is active on (t′, t′ + 1) and u is

depleted on (t, t+ 1),
(iii) all vertices that are active on (t, t+1) are also active on (t′, t′+1), with the only possible

exception of the last descendant v of u on (t′, t+ 1) which may be free on (t′, t′ + 1),
(iv) all vertices that are depleted on (t, t+ 1) are also depleted on (t′, t′ + 1), except u which

is active on (t′, t′ + 1),
(v) all vertices that are active on (t′, t′ + 1) are also active on (t, t+ 1), except u which is

depleted on (t, t+ 1), and
(vi) all vertices that are free on (t′, t′ + 1) are also free on (t, t+ 1), with the only possible

exception of v if it is active on (t, t+ 1).

For our purposes, we need one additional property (vii), stated by Lemma 9 below, which
can be proved to be satisfied by the minimum t′ satisfying properties (i)-(vi) of Lemma 8.

I Lemma 9. Let t ∈ {p, . . . , q− 1} such that Algorithm 1 with input (G∗, T ∗) either finishes
iteration t of the for loop at Lines 3–13 or terminates at Line 10 within iteration t. If there
is at least one depleted vertex on the interval (t, t+ 1), then there exists an integer t′ < t that
satisfies the conditions (i)–(vi) and the following property:
(vii) there is x ∈ V (G∗) such that ax = t′ and x is active during (t′, t′ + 1).

We now use Lemma 9 to construct the following decreasing sequence t1, t2, . . . of positive
integers. We set t1 = t∗. Then we construct ti+1 from the already constructed ti as follows.
If, for t = ti, there is at least one depleted vertex on (t, t + 1), then find t′ < t such that
the conditions (i)–(vii) of Lemmas 8 and 9 are satisfied and set ti+1 = t′. We stop the
construction if there is no depleted vertex on (t, t+ 1) for t = ti. Clearly, the constructed
sequence is finite and we denote it by t1, . . . , tk, with k being its number of elements.

For i ∈ {1, . . . , k}, we define Si = C∗ti
∩C∗ti+1 and S∗ = ∪k

i=1Si. We require the following
crucial property of S∗ that was shown in the proof of Theorem 2.1 of [7].

I Lemma 10 ([7]). The set S∗ is a separator of G∗ and c(G∗ − S∗) ≥ k + 1 > |S∗|.

From Lemma 10, we establish an essential result for the proof of Theorem 5.

I Lemma 11. The set S∗ is a T -separator in G and cT (G− S∗) > |S∗|.

Mindful of Lemma 10, Lemma 11 intuitively states that the set R of renounced vertices of
G does not play an important role in finding a T -separator of G whose removal “maximises”
the number of resulting components containing some member of T .

ISAAC 2019

16:8 Cyclability in Graph Classes

Proof. We use the second inequality of Lemma 10 (k + 1 > |S∗|) and we prove in addition
that cT (G−S∗) ≥ k+1. To this purpose, we define subsets Xi with 0 ≤ i ≤ k (see below) for
which we show that each Xi has a non-empty intersection with T (Claim 12) and the sets Xi

are separated by S∗ in G (Claim 13). Let Xk = C∗1,tk
\C∗tk+1, Xj = C∗tj+1+1,tj

\(C∗tj+1
∪C∗tj+1)

for j ∈ {1, . . . , k − 1} and X0 = C∗t1+1,s \ C∗t1
. We have two claims.

B Claim 12. For all i such that 0 ≤ i ≤ k, Xi ∩ T 6= ∅.

Let us first argue that wb ∈ Xk and we ∈ X0. As the main loop of Algorithm 1 (Lines 3–
13) starts iterating with t = p, there is no depleted vertex on (t, t + 1) for t < p. Hence
tk ≥ p and given that wb ∈ Cp \ Cp+1 it follows that wb ∈ C∗p \ C∗p+1. In other words,
wb ∈ C∗1,p \C∗p+1 and so wb ∈ Xk. Similarly, we ∈ Cq \Cq−1 = C∗q \C∗q−1 since t∗ < q, which
implies that we ∈ C∗q,s \ C∗q−1 and so we ∈ X0.

Now fix some i ∈ {1, . . . , k− 1}. By construction of the sequence t1, . . . , tk the conditions
(i)–(vii) of Lemmas 9 are satisfied with t = ti and t′ = ti+1. By (ii), there is a vertex
u ∈ C∗ti+1

∩ C∗ti+1 that is active on (ti+1, ti+1 + 1) and depleted on (ti, ti + 1). This means
that ti+1 + 1 ≤ du ≤ ti and ru ≥ ti + 1. From these bounds, some vertex x must have been
attached to the path with extremity u at time t = du in Line 5 of Algorithm 1 and so, again
by the algorithm, must be a member of T with rx = du < ti + 1.

If we can show that x ∈ Xi = C∗ti+1+1,ti
\ (C∗ti+1

∪ C∗ti+1), then the claim follows. Since
rx < ti + 1, x is not the last descendant of u on (ti+1, ti + 1) and is not free on (ti, ti + 1).
Hence, by (vi), x is also not free on (ti+1, ti+1 + 1). Therefore, ti+1 < `x ≤ rx < ti + 1 and
hence x /∈ C∗ti+1

∪ C∗ti+1. This means that x ∈ Xi and the claim is proved.

B Claim 13. For all distinct i, j ∈ {0, . . . , k} and every x ∈ Xi and y ∈ Xj , x and y are in
distinct components of G− S∗.

It suffices to show that for every z ∈ R there is i ∈ {0, . . . , k} such that ti+1 + 1 ≤
`z ≤ rz ≤ ti, where we assume that t0 = s and tk+1 = 0. Indeed, this implies that for all
i ∈ {1, . . . , k}, Cti

∩ Cti+1 ⊆ S∗ and the claim then follows from Observation 4.
Suppose, towards a contradiction, that there is some z ∈ R and some i ∈ {1, . . . , k} with

the property that `z ≤ ti < rz, and assume without loss of generality that i is minimum
with respect to these conditions. We first show that i > 1. Indeed, if i = 1 then `z ≤ t1 = t∗

and rz > t∗. But as z is a member of R, it follows that z ∈ (Ct∗ ∩Ct∗+1) \ (V (P1) ∪ V (P2)),
which is empty since the condition at Line 8 failed at time t = t∗ and Algorithm 1 quit at
Line 10, a contradiction.

Therefore i > 1. Recall in this case that ti was constructed from t = ti−1 by choosing
ti < t such that for t′ = ti the conditions (i)–(vii) of Lemmas 8 and 9 hold. To finish off the
proof of the claim, we will show that `z ≤ ti ≤ ti−1 < rz, giving the final contradiction since,
by the minimality of i, there is no z ∈ R with `z ≤ ti−1 < rz.

We already know that `z ≤ ti ≤ ti−1. By (vii), there is x ∈ V (G∗) such that ax = ti and
x is active on (ti, ti + 1). By (ii) and (v), x is either active or depleted on (ti−1, ti−1 + 1). In
either case, rx ≥ ti−1 + 1 > ti. Given that ax = ti (that is, x was attached to some path at
the ti-th iteration of the for loop of Algorithm 1 at Lines 3–13) and rx > ti, it follows that
x was attached to some path at Line 9 of Algorithm 1. Hence, the right bound of x is less
than or equal to that of z, which implies rz ≥ ti−1 + 1 and the claim is proved.

From Claims 12 and 13, it follows that cT (G−S∗) ≥ k+1 and consequently cT (G−S∗) ≥
|S∗| from the second inequality of Lemma 10. J

We are now ready to complete the sketch of the proof of Theorem 5.

C. Crespelle, C. Feghali, and P. A. Golovach 16:9

Proof sketch of Theorem 5. As mentioned earlier, we can assume that G is connected. We
can also assume that we can compute in O(n+m) time a clique path C1, . . . , Cs of G, where
each clique is inclusion maximal (by the algorithm of Booth and Lueker [4]), so s ≤ n. We
also compute the left bound and right bound `v and rv of each vertex v ∈ V (G), which
allows us to find the vertices wb and we in time O(n). Also in time O(n), we construct the
list L consisting of the right bounds of the elements of T \ {wb, we} in increasing order.

Next, we run Algorithm 1. At each iteration t of the for loop, Algorithm 1 only needs to
decide whether the path under consideration should be extended (at Line 5 and/or Line 9),
after which we also need to determine which vertex of G is to be attached to the extremity
of this path. Now, given that a path is extended only if the right bound of its extremity
(condition at Line 7) or of some vertex of T (condition at Line 5) is precisely t, the first
computation takes constant time with the list L at hand and hence O(n) time in total.
Moreover, whenever a path is to be extended, we scan the vertices of Ct ⊆ NG(v). As
we never extend more than once a path with the same extremity, this takes in total time
O(

∑
v∈V dG(v)) = O(m). Thus, Algorithm 1 runs in O(n+m) time. Now, if Algorithm 1

finishes at Line 15 and outputs two paths P1 and P2, then we are done by Lemma 6.
Otherwise, Algorithm 1 finishes at Line 10, so we work backwards through the algorithm in
order to construct the sequence t1, . . . , tk and the set S∗ =

⋃k
i=1 Si that certifies a negative

answer. With a careful implementation, this can be done in O(n+m) time as well. J

I Remark 14. To avoid any misunderstanding, the assumption that the cliques of the clique
path of G in the proof of Theorem 5 are maximal is crucial for the running time analysis.
But it is also necessary to prove Lemmas 6–11 without this maximality assumption, since the
cliques C∗1 , . . . , C∗s of the graph G∗ (obtained from G by the removal of the set of renounced
vertices) are not necessarily maximal. In other words, it is essential to start off with an
input graph whose clique path consists of maximal cliques but to also prove statements that
concern interval graphs whose clique path may contain non-maximal cliques.

To solve Cycle Segment Cover, we require a folklore observation (see, e.g., [13]).

I Observation 15. Let G be a graph, T ⊆ V (G) and k be a positive integer. If G′ is obtained
from G by adding k universal vertices to G, then scT (G) ≤ k if and only if scT (G′) ≤ 0.

Combining this observation with a careful analysis of the running time of the previous
algorithm applied to G′ instead of G, we obtain the following result.

I Theorem 16. There is an algorithm that, given an instance (G,T, r) of Cycle Segment
Cover, where G is an interval graph and T is not a 2-clique, finds either a cycle or a family
of at most r paths that cover T or a T -separator S∗ with cT (G− S∗)− |S∗| > r that certifies
a no-answer in time O(n+m).

3.2 k-Cyclability for interval graphs
In this subsection we prove Theorem 2 for interval graphs. From Theorem 5 and from the
definition of sck(G), an interval graph G with at least three vertices is k-cyclable if and only
if sck(G) ≤ 0. So to solve k-Cyclability on interval graphs, it is sufficient to construct a
polynomial algorithm that computes the k-scattering number of G for any k ≤ n− 1. The
only remaining task will consist in finding the largest integer k such that sck(G) ≤ 0. We
use the following lemma.

ISAAC 2019

16:10 Cyclability in Graph Classes

I Lemma 17. Let G be an interval graph, let C1, . . . , Cs be a clique path of G, where
C1, . . . , Cs are pairwise-distinct maximal cliques of G, and let S be a separator of G. Then,

there exist 1 ≤ t1 < . . . < tr < s such that S′ =
r⋃

i=1
(Cti
∩ Cti+1) (4)

and S′ ⊆ S and S′ is a separator of G such that c(G− S′) ≥ c(G− S).

Informally, the above lemma states that, in computing the k-scattering number, one can
restrict their attention to a subset of separators, namely these separators that satisfy (4),
which we call canonical separators. Thus, Lemma 17 implies that, for an interval graph G,
sck(G) can be equivalently defined as

sck(G) = max{c(G− S)− |S| | S is a canonical separator of G s.t. |S| ≤ k − 1}. (5)

To solve k-Cyclability, our algorithm computes canonical separators via a dynamic
programming scheme on the given clique path C1, . . . , Cs of a non-complete interval graph.

I Theorem 18. For a non-complete interval graph G, one can solve k-Cyclability and
compute the scattering numbers sck(G) for all k ∈ {1, . . . , n− 1} in time O(n3).

4 Bipartite permutation graphs

In this section we briefly sketch our results for Cycle Segment Cover and k-Cyclability
on bipartite permutation graphs. Let G = (V1, V2, E) a bipartite graph. Let σ1 = 〈u1, . . . , up〉
and σ2 = 〈v1, . . . , vq〉 be orderings of, respectively, V1 and V2. It is said that (σ1, σ2) is a
strong ordering of G if for every 1 ≤ i < i′ ≤ p and 1 ≤ j′ < j ≤ q, if uivj , ui′vj′ ∈ E(G),
then uivj′ , ui′vj ∈ E(G). Spinrad, Brandstädt and Stewart [30] showed that (1) a bipartite
graph is a permutation graph if and only if it has a strong ordering and that (2) in any such
ordering, for every v ∈ V (G), the vertices of NG(v) are consecutive either in σ1 or in σ2.
Using this and other results from [30], we prove the following theorem.

I Theorem 19. There is an algorithm that, given an instance (G,T, r) of Cycle Segment
Cover, where G is a bipartite permutation graph and T is not a 2-clique, finds either a cycle
or a family of at most r paths that cover T or a T -separator S∗ with cT (G− S∗)− |S∗| > r

that certifies a no-answer in time O(n+m).

To prove Theorem 19, we first establish the stronger fact that in a connected bipartite
permutation graph G, if T ⊆ V (G) is not cyclable (and not a 2-clique) then there is a T -
separator S∗ with the property cT (G− S∗)− |S∗| > 0 such that S∗ is formed by consecutive
vertices with respect to the strong ordering of either V1 or V2. We use this fact to construct a
certifying algorithm for Terminal Cyclability and then, finally, generalize this algorithm
to Cycle Segment Cover. Note that, unlike for interval graphs, we cannot use an analogue
of Observation 15 for bipartite permutation graphs because the class of bipartite permutation
graphs is not closed under adding a universal vertex.

For k-Cyclability, we first show that a connected bipartite permutation graph G =
(V1, V2, E) with at least three vertices is k-cyclable if and only if all the subsets T satisfying
the following property are cyclable: T ⊆ Vi for some i ∈ {1, 2}, the vertices of T are
consecutive in σi and |T | = min{|Vi|, k}. Using this equivalence, we test the k-cyclability
of G by running the T -cyclability algorithm for each subset T of terminals satisfying the
aforementioned property. As the number of such subsets T is O(n), we obtain the following
theorem, which implies Theorem 2 for bipartite permutation graphs (notice the slightly
better running time, namely O(nm) instead of O(n3)).

C. Crespelle, C. Feghali, and P. A. Golovach 16:11

I Theorem 20. k-Cyclability can be solved in time O(nm) on bipartite permutation
graphs.

Notice that, unlike our approach for solving k-Cyclability on interval graphs, we solve
k-Cyclability on bipartite permutation graphs G without determining sck(G).

5 Cographs

In this section, we briefly sketch our results for Cycle Segment Cover and k-Cyclability
on cographs.

Let G1 and G2 be two vertex-disjoint graphs. The union operation creates the disjoint
union G1 +G2 of G1 and G2, that is, the graph with vertex set V (G1) ∪ V (G2) and edge
set E(G1) ∪E(G2). The join operation adds an edge between every vertex of G1 and every
vertex of G2. Cographs can be characterized as those graphs that can be generated from
K1 by a sequence of join and union operations. This gives each cograph G a nice tree
representation, called the cotree of G, whose leaves are the vertices of G and whose internal
nodes represent the join and union operations used in the construction of G.

Our algorithm for Cycle Segment Cover of a cograph G is built using dynamic
programming bottom-up along the cotree of G.

I Theorem 21. There is an algorithm that, given an instance (G,T, r) of Cycle Segment
Cover where G is a cograph given by its cotree and T is not a 2-clique, finds either a T -cycle
segment cover of size at most r or a T -separator with cT (G− S∗)− |S∗| > r that certifies a
no-answer in O(n) time.

We solve k-Cyclability for cographs just as we did for interval graphs by determining
all the scattering numbers sck(G) for k ∈ {1, . . . , n}, again using a bottom-up dynamic
programming scheme along the cotree of G.

I Theorem 22. For a non-complete cograph G, the scattering numbers sck(G) for all
k ∈ {1, . . . , n} can be computed and k-Cyclability can be solved in time O(n3).

6 Conclusion

In summary, we design certifying linear-time algorithms to solve Cycle Segment Cover,
which is a generalization of Hamiltonian Cycle, for interval graphs, bipartite permutation
graphs and cographs. We also use these results to show that k-Cyclability as well can be
solved in polynomial time when restricted to these graph classes.

A natural open question is to consider the aforementioned problems for other graph
classes. In particular, what can be said about the class of cocomparability graphs (see [6, 21]
for the formal definition and properties of this class)? For instance, it is proved by Deogun,
Kratsch and Steiner [15] that a cocomparability graph G with at least three vertices has a
Hamiltonian cycle if and only if sc(G) ≤ 0. They also proved that the set of vertices of G
can be covered by at most k vertex-disjoint paths if and only if sc(G) ≤ k. This indicates
that the class of cocomparability graphs is a natural candidate for Cycle Segment Cover
and k-Cyclability. Still, we do not see how to extend the results of [15] to our settings.

Another interesting question is about the complexity of Terminal Cyclability. It is
easy to see that the problem is in ΠP

2 . Golovach et al. conjectured in [20] that Terminal
Cyclability is ΠP

2 -complete. The conjecture is still open.

ISAAC 2019

16:12 Cyclability in Graph Classes

References
1 Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, and Christine Rizkallah. A Framework for

the Verification of Certifying Computations. J. Autom. Reasoning, 52(3):241–273, 2014.
doi:10.1007/s10817-013-9289-2.

2 Douglas Bauer, Hajo Broersma, and Edward F. Schmeichel. Toughness in Graphs - A Survey.
Graphs and Combinatorics, 22(1):1–35, 2006. doi:10.1007/s00373-006-0649-0.

3 Andreas Björklund, Thore Husfeldt, and Nina Taslaman. Shortest cycle through specified ele-
ments. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1747–1753. SIAM,
2012. URL: http://portal.acm.org/citation.cfm?id=2095255&CFID=63838676&CFTOKEN=
79617016, doi:10.1137/1.9781611973099.139.

4 Kellogg S. Booth and George S. Lueker. Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-Tree Algorithms. J. Comput. Syst. Sci., 13(3):335–379,
1976. doi:10.1016/S0022-0000(76)80045-1.

5 Andreas Brandstädt and Dieter Kratsch. On the restriction of some NP-complete graph
problems to permutation graphs. In Fundamentals of Computation Theory, FCT ’85, Cottbus,
GDR, September 9-13, 1985, volume 199 of Lecture Notes in Computer Science, pages 53–62.
Springer, 1985. doi:10.1007/BFb0028791.

6 Andreas Brandstadt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey. SIAM
Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1999. doi:10.1137/1.9780898719796.

7 Hajo Broersma, Jirí Fiala, Petr A. Golovach, Tomás Kaiser, Daniël Paulusma, and Andrzej
Proskurowski. Linear-Time Algorithms for Scattering Number and Hamilton-Connectivity of
Interval Graphs. Journal of Graph Theory, 79(4):282–299, 2015. doi:10.1002/jgt.21832.

8 Maw-Shang Chang, Sheng-Lung Peng, and Jenn-Liang Liaw. Deferred-query: An efficient
approach for some problems on interval graphs. Networks, 34(1):1–10, 1999. doi:10.1002/
(SICI)1097-0037(199908)34:1<1::AID-NET1>3.0.CO;2-C.

9 Vasek Chvátal. Tough graphs and hamiltonian circuits. Discrete Mathematics, 5(3):215–228,
1973. doi:10.1016/0012-365X(73)90138-6.

10 Derek G. Corneil, Barnaby Dalton, and Michel Habib. LDFS-Based Certifying Algorithm
for the Minimum Path Cover Problem on Cocomparability Graphs. SIAM J. Comput.,
42(3):792–807, 2013. doi:10.1137/11083856X.

11 Derek G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible graphs.
Discrete Applied Mathematics, 3(3):163–174, 1981. doi:10.1016/0166-218X(81)90013-5.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Peter Damaschke. Paths in interval graphs and circular arc graphs. Discrete Mathematics,
112(1-3):49–64, 1993. doi:10.1016/0012-365X(93)90223-G.

14 Peter Damaschke, Jitender S. Deogun, Dieter Kratsch, and George Steiner. Finding Hamilto-
nian paths in cocomparability graphs using the bump number algorithm. Order, 8(4):383–391,
1991. doi:10.1007/BF00571188.

15 Jitender S. Deogun, Dieter Kratsch, and George Steiner. 1-Tough cocomparability graphs
are hamiltonian. Discrete Mathematics, 170(1-3):99–106, 1997. doi:10.1016/0012-365X(95)
00359-5.

16 Jitender S. Deogun and George Steiner. Polynomial Algorithms for Hamiltonian Cycle
in Cocomparability Graphs. SIAM J. Comput., 23(3):520–552, 1994. doi:10.1137/
S0097539791200375.

17 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

18 Gabriel Andrew Dirac. In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre
Unterteilungen. Math. Nachr., 22:61–85, 1960. doi:10.1002/mana.19600220107.

https://doi.org/10.1007/s10817-013-9289-2
https://doi.org/10.1007/s00373-006-0649-0
http://portal.acm.org/citation.cfm?id=2095255&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095255&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1137/1.9781611973099.139
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1007/BFb0028791
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1002/jgt.21832
https://doi.org/10.1002/(SICI)1097-0037(199908)34:1<1::AID-NET1>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-0037(199908)34:1<1::AID-NET1>3.0.CO;2-C
https://doi.org/10.1016/0012-365X(73)90138-6
https://doi.org/10.1137/11083856X
https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/0012-365X(93)90223-G
https://doi.org/10.1007/BF00571188
https://doi.org/10.1016/0012-365X(95)00359-5
https://doi.org/10.1016/0012-365X(95)00359-5
https://doi.org/10.1137/S0097539791200375
https://doi.org/10.1137/S0097539791200375
https://doi.org/10.1002/mana.19600220107

C. Crespelle, C. Feghali, and P. A. Golovach 16:13

19 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

20 Petr A. Golovach, Marcin Kaminski, Spyridon Maniatis, and Dimitrios M. Thilikos. The
Parameterized Complexity of Graph Cyclability. SIAM J. Discrete Math., 31(1):511–541,
2017. doi:10.1137/141000014.

21 M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier, 2004.
22 Ronald J. Gould. A look at cycles containing specified elements of a graph. Discrete

Mathematics, 309(21):6299–6311, 2009. doi:10.1016/j.disc.2008.04.017.
23 Ruo-Wei Hung and Maw-Shang Chang. Linear-time algorithms for the Hamiltonian problems

on distance-hereditary graphs, . Theor. Comput. Sci., 341(1-3):411–440, 2005. doi:10.1016/
j.tcs.2005.04.009.

24 Ruo-Wei Hung and Maw-Shang Chang. Linear-time certifying algorithms for the path cover
and Hamiltonian cycle problems on interval graphs. Appl. Math. Lett., 24(5):648–652, 2011.
doi:10.1016/j.aml.2010.11.030.

25 H. A. Jung. On a class of posets and the corresponding comparability graphs. J. Comb.
Theory, Ser. B, 24(2):125–133, 1978. doi:10.1016/0095-8956(78)90013-8.

26 J. Mark Keil. Finding Hamiltonian Circuits in Interval Graphs. Inf. Process. Lett., 20(4):201–
206, 1985. doi:10.1016/0020-0190(85)90050-X.

27 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-
gorithms. Computer Science Review, 5(2):119–161, 2011. doi:10.1016/j.cosrev.2010.09.
009.

28 Haiko Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156(1-
3):291–298, 1996. doi:10.1016/0012-365X(95)00057-4.

29 Neil Robertson and Paul D. Seymour. Graph Minors .XIII. The Disjoint Paths Problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

30 Jeremy P. Spinrad, Andreas Brandstädt, and Lorna Stewart. Bipartite permutation graphs.
Discrete Applied Mathematics, 18(3):279–292, 1987. doi:10.1016/S0166-218X(87)80003-3.

ISAAC 2019

https://doi.org/10.1137/141000014
https://doi.org/10.1016/j.disc.2008.04.017
https://doi.org/10.1016/j.tcs.2005.04.009
https://doi.org/10.1016/j.tcs.2005.04.009
https://doi.org/10.1016/j.aml.2010.11.030
https://doi.org/10.1016/0095-8956(78)90013-8
https://doi.org/10.1016/0020-0190(85)90050-X
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1016/0012-365X(95)00057-4
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/S0166-218X(87)80003-3

Complexity of Linear Operators
Alexander S. Kulikov
Steklov Mathematical Institute at St. Petersburg, Russian Academy of Sciences,
St. Petersburg State University, Russia
https://logic.pdmi.ras.ru/~kulikov/
kulikov@logic.pdmi.ras.ru

Ivan Mikhailin
University of California, San Diego, CA, USA
imikhail@eng.ucsd.edu

Andrey Mokhov
School of Engineering, Newcastle University, UK
andrey.mokhov@ncl.ac.uk

Vladimir Podolskii
Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
http://www.mi-ras.ru/~podolskii/
podolskii@mi-ras.ru

Abstract
Let A ∈ {0, 1}n×n be a matrix with z zeroes and u ones and x be an n-dimensional vector of formal
variables over a semigroup (S, ◦). How many semigroup operations are required to compute the
linear operator Ax?

As we observe in this paper, this problem contains as a special case the well-known range
queries problem and has a rich variety of applications in such areas as graph algorithms, functional
programming, circuit complexity, and others. It is easy to compute Ax using O(u) semigroup
operations. The main question studied in this paper is: can Ax be computed using O(z) semigroup
operations? We prove that in general this is not possible: there exists a matrix A ∈ {0, 1}n×n

with exactly two zeroes in every row (hence z = 2n) whose complexity is Θ(nα(n)) where α(n)
is the inverse Ackermann function. However, for the case when the semigroup is commutative,
we give a constructive proof of an O(z) upper bound. This implies that in commutative settings,
complements of sparse matrices can be processed as efficiently as sparse matrices (though the
corresponding algorithms are more involved). Note that this covers the cases of Boolean and tropical
semirings that have numerous applications, e.g., in graph theory.

As a simple application of the presented linear-size construction, we show how to multiply two
n × n matrices over an arbitrary semiring in O(n2) time if one of these matrices is a 0/1-matrix
with O(n) zeroes (i.e., a complement of a sparse matrix).

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases algorithms, linear operators, commutativity, range queries, circuit complexity,
lower bounds, upper bounds

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.17

Related Version The full version of the paper (containing all omitted proofs) is [9] available at
https://eccc.weizmann.ac.il/report/2019/002/.

Funding Alexander S. Kulikov: The results presented in Section 3 are supported by Russian Science
Foundation (18-71-10042).
Vladimir Podolskii: The results presented in Section 4 are supported by Russian Science Foundation
(16-11-10252).

Acknowledgements We thank Paweł Gawrychowski for pointing us out to the paper [3]. We thank
Alexey Talambutsa for fruitful discussions on the theory of semigroups.

© Alexander S. Kulikov, Ivan Mikhailin, Andrey Mokhov, and Vladimir Podolskii;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5656-0336
https://logic.pdmi.ras.ru/~kulikov/
mailto:kulikov@logic.pdmi.ras.ru
mailto:imikhail@eng.ucsd.edu
mailto:andrey.mokhov@ncl.ac.uk
https://orcid.org/0000-0001-7154-138X
http://www.mi-ras.ru/~podolskii/
mailto:podolskii@mi-ras.ru
https://doi.org/10.4230/LIPIcs.ISAAC.2019.17
https://eccc.weizmann.ac.il/report/2019/002/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Complexity of Linear Operators

1 Introduction

1.1 Problem Statement and New Results
Let A ∈ {0, 1}n×n be a matrix with z zeroes and u ones, and x = (x1, . . . , xn) be an n-
dimensional vector of formal variables over a semigroup (S, ◦). In this paper, we study the
complexity of the linear operator Ax, i.e., how many semigroup operations are required to
compute a vector whose i-th element is∑

1≤j≤n
∧

Aij=1

xj

where the summation is over the semigroup operation ◦.1 More specifically, we are interested
in lower and upper bounds involving z and u. Matrices with u = O(n) are usually called sparse,
whereas matrices with z = O(n) are called complements of sparse matrices. Computing all
n outputs of Ax directly (i.e. using the above definition) takes O(u) semigroup operations.
The main question studied in this paper is: can Ax be computed using O(z) semigroup
operations? Note that it is easy to achieve O(z) complexity if ◦ has an inverse. Indeed, in
this case Ax can be computed via subtraction: Ax = (U − A)x = Ux − Ax, where U is
the all-ones matrix whose linear operator can be computed trivially using O(n) semigroup
operations, and A is the complement of A and therefore has only z = O(n) ones.

1.1.1 Commutative Case
Our first main result shows that in the commutative case, complements of sparse matrices
can be processed as efficiently as sparse matrices. Specifically, we prove that if the semigroup
is commutative, Ax can be computed in O(z) semigroup operations; or, more formally, there
exists a circuit of size O(z) that uses x = (x1, . . . , xn) as an input and computes Ax by only
applying the semigroup operation ◦ (we provide the formal definition of the computational
model in Section 2.3). Moreover, the constructed circuits are uniform in the sense that they
can be generated by an efficient algorithm. Hence, our circuits correspond to an elementary
algorithm that uses no tricks like examining the values xj , i.e., the semigroup operation ◦ is
applied in a (carefully chosen) order that is independent of the specific input x.

I Theorem 1. Let (S, ◦) be a commutative semigroup, and A ∈ {0, 1}n×n be a matrix
with z = Ω(n) zeroes. There exists a circuit of size O(z) that uses a vector x = (x1, . . . , xn)
of formal variables as an input, uses only the semigroup operation ◦ at internal gates, and
outputs Ax. Moreover, there exists a randomized algorithm that takes the positions of z zeroes
of A as an input and outputs such a circuit in time O(z) with probability at least 1− O(log5 n)

n .
There also exists a deterministic algorithm with running time O(z + n log4 n).

We state the result for square matrices to simplify the presentation. Theorem 1 generalizes
easily to show that Ax for a matrix A ∈ {0, 1}m×n with z = Ω(n) zeroes can be computed
using O(m+ z) semigroup operations. Also, we assume that z = Ω(n) to be able to state an
upper bound O(z) instead of O(z + n). Note that when z < n, the matrix A is forced to
contain all-one rows that can be computed trivially.

1 Note that the result of summation is undefined in case of an all-zero row, because semigroups have
no neutral element in general. One can trivially sidestep this technical issue by adding an all-one
column n+ 1 to the matrix A, as well as the neutral element xn+1 into the vector. Alternatively, we
could switch from semigroups to monoids, but we choose not to do that, since we have no use for the
neutral element and associated laws in the rest of the paper.

A. S. Kulikov, I. Mikhailin, A. Mokhov, and V. Podolskii 17:3

The following corollary generalizes Theorem 1 from vectors to matrices.

I Corollary 2. Let (S, ◦) be a commutative semigroup. There exists a deterministic algorithm
that takes a matrix A ∈ {0, 1}n×n with z = O(n) zeroes and a matrix B ∈ Sn×n and computes
the product AB in time O(n2).

1.1.2 Non-commutative Case
As our second main result, we show that commutativity is essential: for a faithful non-
commutative semigroup S (the notion of faithful non-commutative semigroup is made formal
later in the text), the minimum number of semigroup operations required to compute Ax
for a matrix A ∈ {0, 1}n×n with z = O(n) zeroes is Θ(nα(n)), where α(n) is the inverse
Ackermann function.

I Theorem 3. Let (S, ◦) be a faithful non-commutative semigroup, x = (x1, . . . , xn) be
a vector of formal variables, and A ∈ {0, 1}n×n be a matrix with O(n) zeroes. Then Ax

is computable using O(nα(n)) semigroup operations, where α(n) is the inverse Ackermann
function. Moreover, there exists a matrix A ∈ {0, 1}n×n with exactly two zeroes in every row
such that the minimum number of semigroup operations required to compute Ax is Ω(nα(n)).

1.2 Motivation
The complexity of linear operators is interesting for many reasons.
Range queries. In the range queries problem, one is given a vector x = (x1, . . . , xn) over

a semigroup (S, ◦) and multiple queries of the form (l, r), and is required to output the
result xl ◦ xl+1 ◦ · · · ◦ xr for each query. It is a classical problem in data structures and
algorithms with applications in many fields, such as bioinformatics and string algorithms,
computational geometry, image analysis, real-time systems, and others. We review some
of the less straightforward applications as well as a rich variety of algorithmic techniques
for the problem in the full version of the paper [9].
The linear operator problem is a natural generalization of the range queries problem:
each row of the matrix A defines a subset of the elements of x that need to be summed up
and this subset is not required to be a contiguous range. The algorithms (Theorem 1 and
Corollary 2) and hardness results (Theorem 3) for the linear operator problem presented in
this paper are indeed inspired by some of the known results for the range queries problem.

Graph algorithms. Various graph path/reachability problems can be reduced naturally to
matrix multiplication. Two classic examples are: (i) the all-pairs shortest path problem
(APSP) is reducible to min-plus matrix multiplication, and (ii) the number of triangles in
an undirected graph can be found by computing the third power of its adjacency matrix.
It is natural to ask what happens if a graph has O(n) edges or O(n) anti-edges (as usual,
by n we denote the number of nodes). In many cases, an efficient algorithm for sparse
graphs (O(n) edges) is straightforward whereas an algorithm with the same efficiency for
complements of sparse graphs (O(n) anti-edges) is not. For example, it is easy to solve
APSP and triangle counting on sparse graphs in time O(n2), but achieving the same
time complexity for complements of sparse graphs is more complicated. Theorem 1 and
Corollary 2 give a black-box way to solve these two problems on complements of sparse
graphs in time O(n2).

Matrix multiplication over semirings. Fast matrix multiplication methods rely essentially
on the ring structure of the underlying set of elements. The first such algorithm was
given by Strassen, the current record upper bound is O(n2.373) [13, 4]. The removal of
the inverse operation often drastically increases the complexity of algorithmic problems

ISAAC 2019

17:4 Complexity of Linear Operators

over algebraic structures, and even the complexity of standard computational tasks are
not well understood over tropical and Boolean semirings (see, e.g. [12, 6]). For various
important semirings, we still do not know an n3−ε (for a constant ε > 0) upper bound
for matrix multiplication, e.g., the strongest known upper bound for min-plus matrix
multiplication is n3/ exp(

√
logn) [12].

The interest in computations over such algebraic structures has recently grew substantially
throughout the Computer Science community with the cases of Boolean and tropical
semirings being of the main interest (see, for example, [8, 12, 2]). From this perspective,
the computation complexity over sparse and complements of sparse matrices is one of the
most basic questions. Theorem 1 and Corollary 2 therefore characterise natural special
cases when efficient computations are possible.

Functional programming. Algebraic data structures for graphs developed in the functional
programming community [10] can be used for representing and processing densely-
connected graphs in linear (in the number of vertices) time and memory. As we discuss in
the full version of the paper [9], Theorem 1 yields an algorithm for deriving a linear-size
algebraic graph representation for complements of sparse graphs.

Circuit complexity. Computing linear operators over a Boolean semiring ({0, 1},∨) is a well-
studied problem in circuit complexity. The corresponding computational model is known
as rectifier networks. An overview of known lower and upper bounds for such circuits is
given by Jukna [7, Section 13.6]. Theorem 1 states that very dense linear operators have
linear rectifier network complexity.

1.3 Organization
The remaining part of the paper is organized as follows. In Section 2 we introduce necessary
definitions. In Section 3 we present the results on commutative case. In Section 4 we present
the results on the non-commutative case. Due to the space constraints many proofs are
omitted. They can be found in the full version of the paper [9].

2 Background

2.1 Semigroups and Semirings
A semigroup (S, ◦) is an algebraic structure, where the operation ◦ is closed, i.e., ◦ : S×S → S,
and associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, and z in S. Commutative (or abelian)
semigroups introduce one extra requirement: x ◦ y = y ◦ x for all x and y in S.

A commutative semigroup (S, ◦) can often be extended to a semiring (S, ◦, •) by intro-
ducing another associative (but not necessarily commutative) operation • that distributes
over ◦, that is

x • (y ◦ z) = (x • y) ◦ (x • z)

(x ◦ y) • z = (x • z) ◦ (y • z)

hold for all x, y, and z in S. Since ◦ and • behave similarly to numeric addition and
multiplication, it is common to give • a higher precedence to avoid unnecessary parentheses,
and even omit • from formulas altogether, replacing it by juxtaposition. This gives a terser
and more convenient notation, e.g., the left distributivity law becomes: x(y ◦ z) = xy ◦ xz.
We will use this notation, insofar as this does not lead to ambiguity. See the full version of
the paper [9] for an overview of commonly used semigroups and semirings.

A. S. Kulikov, I. Mikhailin, A. Mokhov, and V. Podolskii 17:5

2.2 Range Queries Problem and Linear Operator Problem
In the range queries problem, one is given a sequence x1, x2, . . . , xn of elements of a fixed
semigroup (S, ◦). Then, a range query is specified by a pair of indices (l, r), such that
1 ≤ l ≤ r ≤ n. The answer to such a query is the result of applying the semigroup operation
to the corresponding range, i.e., xl ◦ xl+1 ◦ · · · ◦ xr. The range queries problem is then to
simply answer all given range queries. There are two regimes: online and offline. In the
online regime, one is given a sequence of values x1 = v1, x2 = v2, . . . , xn = vn and is asked to
preprocess it so that to answer efficiently any subsequent query. By “efficiently” one usually
means in time independent of the length of the range (i.e., r − l + 1, the time of a naive
algorithm), say, in time O(logn) or O(1). In this paper, we focus on the offline version, where
one is given a sequence together with all the queries, and are interested in the minimum
number of semigroup operations needed to answer all the queries. Moreover, we study a more
general problem: we assume that x1, . . . , xn are formal variables rather than actual semigroup
values. That is, we study the circuit size of the corresponding computational problem.

The linear operator problem generalizes the range queries problem: now, instead of
contiguous ranges one wants to compute sums over arbitrary subsets. These subsets are
given as rows of a 0/1-matrix A.

2.3 Circuits
We assume that the input consists of n formal variables {x1, . . . , xn}. We are interested in the
minimum number of semigroup operations needed to compute all given words {w1, . . . , wm}
(e.g., for the range queries problem, each word has a form xl ◦ xl+1 ◦ · · · ◦ xr). We use the
following natural circuit model. A circuit computing all these queries is a directed acyclic
graph. There are exactly n nodes of zero in-degree. They are labelled with {1, . . . , n} and
are called input gates. All other nodes have positive in-degree and are called gates. Finally,
some m gates have out-degree 0 and are labelled with {1, . . . ,m}; they are called output
gates. The size of a circuit is its number of edges (also called wires). Each gate of a circuit
computes a word defined in a natural way: input gates compute just {x1, . . . , xn}; any other
gate of in-degree r computes a word f1 ◦ f2 ◦ · · · ◦ fr where {f1, . . . , fr} are words computed
at its predecessors (therefore, we assume that there is an underlying order on the incoming
wires for each gate). We say that the circuit computes the words {w1, . . . , wm} if the words
computed at the output gates are equivalent to {w1, . . . , wm} over the considered semigroup.

For example, the following circuit computes range queries (l1, r1) = (1, 4), (l2, r2) = (2, 5),
and (l3, r3) = (4, 5) over inputs {x1, . . . , x5} or, equivalently, the linear operator Ax where
the matrix A is given below.

1 2 3 4 5

1 2 3
A =

1 1 1 1 0
0 1 1 1 1
0 0 0 1 1

For a 0/1-matrix A, by C(A) we denote the minimum size of a circuit computing the

linear operator Ax.
A binary circuit is a circuit having no gates of fan-in more than two. It is not difficult to

see that any circuit can be converted into a binary circuit of size at most twice the size of
the original circuit. For this, one just replaces every gate of fan-in k, for k > 2, by a binary
tree with 2k − 2 wires (such a tree contains k leaves hence k − 1 inner nodes and 2k − 2
edges). In the binary circuit the number of gates does not exceed its size (i.e., the number
of wires). And the number of gates in a binary circuit is exactly the minimum number of
semigroup operations needed to compute the corresponding function.

ISAAC 2019

17:6 Complexity of Linear Operators

We call a circuit C computing A regular if for every pair (i, j) such that Aij = 1, there
exists exactly one path from the input j to the output i. A convenient property of regular
circuits is the following observation.

I Observation 1. Let C be a regular circuit computing a 0/1-matrix A over a commutative
semigroup. Then, by reversing all the wires in C one gets a circuit computing AT .

Instead of giving a formal proof, we provide an example of a reversed circuit from the example
given above. It is because of this observation that we require circuit outputs to be gates of
out-degree zero (so that when reversing all the wires the inputs and the outputs exchange
places).

1 2 3 4 5

1 2 3
AT =

1 0 0
1 1 0
1 1 0
1 1 1
0 1 1

3 Commutative Case

This section is devoted to the proofs of Theorem 1 and Corollary 2. We start by proving two
simpler statements to show how commutativity is important.

I Lemma 4. Let S be a semigroup (not necessarily commutative) and let A ∈ {0, 1}n×n

contain at most one zero in every row. Then C(A) = O(n).

Proof. To compute the linear operator Ax, we first precompute all prefixes and suffixes of
x = (x1, . . . , xn). Concretely, let pi = x1 ◦x2 ◦ · · · ◦xi. All pi’s can be computed using (n− 1)
binary gates as follows:

p1 = x1, p2 = p1 ◦ x2, p3 = p2 ◦ x3, . . . , pi = pi−1 ◦ xi, . . . , pn = pn−1 ◦ xn.

Similarly, we compute all suffixes sj = xj ◦ xj+1 · · · ◦ xn using (n− 1) binary gates. From
these prefixes and suffixes all outputs can be computed as follows: if a row of A contains no
zeroes, the corresponding output is pn; otherwise if a row contains a zero at position i, the
output is pi−1 ◦ si+1 (for i = 1 and i = n, we omit the redundant term). J

In the rest of the section, we assume that the underlying semigroup is commutative.
Allowing at most two zeroes per row already leads to a non-trivial problem. We give only
a sketch of the solution below, since we will further prove a more general result. It is interesting
to compare the following lemma with Theorem 3 that states that in the non-commutative
setting matrices with two zeroes per row are already hard.

I Lemma 5. Let A ∈ {0, 1}n×n contain at most two zeroes in every row. Then C(A) = O(n).

Proof sketch. Consider the following undirected graph: the set of nodes is {1, 2, . . . , n}; two
nodes i and j are joined by an edge if there is a row having zeroes in columns i and j. In
the worst case (all rows are different and contain exactly two zeroes), the graph has exactly
n edges and hence it contains a cut (L,R) of size at least n/2. This cut splits the columns of
the matrix into two parts (L and R). Now let us also split the rows into two parts: the top
part T contains all columns that have exactly one zero in each L and R; the bottom part B

A. S. Kulikov, I. Mikhailin, A. Mokhov, and V. Podolskii 17:7

contains all the remaining rows. What is nice about the top part of the matrix (T × (L∪R))
is that it can be computed by O(n) gates (using Lemma 4). For the bottom part, let us cut
all-1 columns out of it and make a recursive call (note that this requires the commutativity).
The corresponding recurrence relation is T (n) ≤ cn+ T (n/2) for a fixed constant c, implying
T (n) = O(n), and hence C(A) = O(n). J

We now state a few auxiliary lemmas that will be used as building blocks in the proof of
Theorem 1.

I Lemma 6. There exists a binary regular circuit of size O(n logn) such that any range
can be computed in a single additional binary gate using two gates of the circuit. It can be
generated in time O(n logn).

I Lemma 7. There exists a binary regular circuit of size O(n) such that any range of length
at least logn can be computed in two binary additional gates from the gates of the circuit. It
can be generated by an algorithm in time O(n).

I Lemma 8. Let m ≤ n and A ∈ {0, 1}m×n be a matrix with z = Ω(n) zeroes and at most
logn zeroes in every row. There exists a circuit of size O(z) computing Ax. Moreover,
there exists a randomized O(z) time algorithm that takes as input the positions of z zeros
and outputs a circuit computing Ax with probability at least 1− O(log5 n)

n . There also exists
a deterministic algorithm with running time O(n log4 n).

Proof of Theorem 1. Denote the set of rows and the set of columns of A by R and C,
respectively. Let R0 ⊆ R be all the rows having at least logn zeroes and R1 = R \R0. Every
row of A can be decomposed into (maximal) contiguous ranges of ones. We will call them
simply ranges of A. We will compute all of them. From these ranges, it takes O(z) additional
binary gates to compute all the outputs.

We compute the matrices R0 × C and R1 × C separately. The main idea is that R0 × C
is easy to compute because it has a small number of rows (at most z/ logn), while R1 ×C is
easy to compute because it has a small number of zeroes in every row (at most logn).

The matrix R1 × C can be computed using Lemma 8. To compute R0 × C, it suffices to
compute C × R0 by a regular circuit, thanks to the Observation 1. Let |R0| = t. Clearly,
t ≤ z/ logn. Using Lemma 6, one can compute all ranges of C ×R0 by a circuit of size

O(t log t+ z) = O

(
z

logn · log z + z

)
= O(z + n) = O(z) ,

since z = O(n2).
The algorithm for generating the circuit is just a combination of the algorithms from

Lemmas 6 and 8. J

Proof of Lemma 6. We adopt the divide-and-conquer construction by Alon and Schieber [1].
Split the input range (1, n) into two half-ranges of length n/2: (1, n/2) and (n/2 + 1, n).
Compute all suffixes of the left half and all prefixes of the right half. Using these precomputed
suffixes and prefixes one can answer any query (l, r) such that l ≤ n/2 ≤ r in a single additional
gate. It remains to be able to answer queries that lie entirely in one of the halves. We do
this by constructing recursively circuits for both halves. The resulting recurrence relation
T (n) ≤ 2T (n/2) +O(n) implies that the resulting circuit has size at most O(n logn). J

ISAAC 2019

17:8 Complexity of Linear Operators

Proof of Lemma 7. We use the block decomposition technique for constructing the required
circuit. Partition the input range (1, n) into n/ logn ranges of length logn and call them
blocks. Compute the range corresponding to each block (in total size O(n)). Build a circuit
from Lemma 6 on top of these blocks. The size of this circuit is O(n) since the number
of blocks is n/ logn. Compute all prefixes and all suffixes of every block. Since the blocks
partition the input range (1, n), this also can be done with an O(n) size circuit.

Consider any range of length at least logn. Note that it cannot lie entirely inside the
block. Hence, any such range can be decomposed into three subranges: a suffix of a block,
a range of blocks, and a prefix of a block (where any of the three components may be empty).
For example, for n = 16, a range (3, 13) is decomposed into a suffix (3, 4) of the first block,
a range (2, 3) of blocks (B1, B2, B3, B4), and a prefix (13, 13) of the last block:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B1 B2 B3 B4

It remains to note that all these three components are already precomputed. J

Proof of Lemma 8. All the z zeroes of A break its rows into ranges. Let us call a range
short is its length is at most logn. We will show that it is possible to permute the columns
of A so that the total length of all short ranges is at most O(n

log n). Then, all such short
ranges can be computed by a circuit of size O(log n

n · n) = O(n) = O(z). All the remaining
ranges can be computed by a circuit of size O(n) using Lemma 7.

It is easy to construct the required permutation randomly. For this, one just estimates
the expected total length of all short ranges in a random permutation. It is then possible to
derandomize this approach using a greedy algorithm. We provide all formal details the full
version of the paper [9]. J

Proof of Corollary 2. One deterministically generates a circuit for A of size O(n) in time
O(n log4 n) = O(n2) by Theorem 1. This circuit can be used to multiply A by any column
of B in time O(n). For this, one constructs a topological ordering of the gates of the
circuits and computes the values of all gates in this order. Hence, AB can be computed in
time O(n2). J

4 Non-commutative Case

In the previous section, we have shown that for commutative semigroups dense linear
operators can be computed by linear size circuits. A closer look at the circuit constructions
reveals that we use commutativity crucially: it is important that we may reorder the columns
of the matrix (we do this in the proof of Lemma 8). In this section, we show that this trick
is unavoidable: for non-commutative semigroups, it is not possible to construct linear size
circuits for dense linear operators. Namely, we prove Theorem 3.

I Theorem 3. Let (S, ◦) be a faithful non-commutative semigroup, x = (x1, . . . , xn) be
a vector of formal variables, and A ∈ {0, 1}n×n be a matrix with O(n) zeroes. Then Ax

is computable using O(nα(n)) semigroup operations, where α(n) is the inverse Ackermann
function. Moreover, there exists a matrix A ∈ {0, 1}n×n with exactly two zeroes in every row
such that the minimum number of semigroup operations required to compute Ax is Ω(nα(n)).

A. S. Kulikov, I. Mikhailin, A. Mokhov, and V. Podolskii 17:9

4.1 Faithful semigroups
We consider computations over general semigroups that are not necessarily commutative.
In particular, we will establish lower bounds for a large class of semigroups and our lower
bound does not hold for commutative semigroups. This requires a formal definition that
captures semigroups with rich enough structure and in particular requires that a semigroup
is substantially non-commutative.

Previously lower bounds in the circuit model for a large class of semigroups were known for
the Range Queries problem [14, 3]. These result are proven for a large class of commutative
semigroups that are called faithful (we provide a formal definition below). Since we are
dealing with non-commutative case we need to generalize the notion of faithfulness to
non-commutative semigroups.

To provide formal definition of faithfulness it is convenient to introduce the following
notation. Suppose (S, ◦) is a semigroup. LetXS,n be a semigroup with generators {x1, . . . , xn}
and with the equivalence relation consisting of identities in variables {x1, . . . , xn} over (S, ◦).
That is, for two wordsW andW ′ in the alphabet {x1, . . . , xn} we haveW ∼W ′ in XS,n iff no
matter which elements of the semigroup S we substitute for {x1, . . . , xn} we obtain a correct
equation over S. In particular, note that if S is commutative (respectively, idempotent),
then XS,n is also commutative (respectively, idempotent). The semigroup XS,n is studied
in algebra under the name of relatively free semigroup of rank n of a variety generated by
semigroup S [11]. We will often omit the subscript n and write simply XS since the number
of generators will be clear from the context.

Below we will use the following notation. Let W be a word in the alphabet {x1, . . . , xn}.
Denote by Var(W) the set of letters that are present in W .

We are now ready to introduce the definition of a commutative faithful semigroup.

I Definition 9 ([14, 3]). A commutative semigroup (S, ◦) is faithful commutative if for any
equivalence W ∼W ′ in XS we have Var(W) = Var(W ′).

Note that this definition does not pose any restrictions on the cardinality of each letter
in W and W ′. This allows to capture in this definition important cases of idempotent
semigroups. For example, semigroups ({0, 1},∨) and (Z,min) are commutative faithful.

We need to study the non-commutative case, and moreover, our results establish the
difference between commutative and non-commutative cases. Thus, we need to extend the
notion of faithfulness to non-commutative semigroups to capture their non-commutativity
in the whole power. At the same time we would like to keep the case of idempotency. We
introduce the notion of faithfulness for the non-commutative case inspired by the properties
of free idempotent semigroups [5]. To introduce this notion we need several definitions.

The initial mark of W is the letter that is present in W such that its first appearance
is farthest to the right. Let U be the prefix of W consisting of letters preceding the initial
mark. That is, U is the maximal prefix of W with a smaller number of generators. We call
U the initial of W . Analogously we define the terminal mark of W and the terminal of W .

I Definition 10. We say that a semigroup X with generators {x1, . . . , xn} is strongly non-
commutative if for any wordsW andW ′ in the alphabet {x1, . . . , xn} the equivalenceW ∼W ′
holds in X only if the initial marks of W and W ′ are the same, terminal marks are the
same, the equivalence U ∼ U ′ holds in X, where U and U ′ are the initials of W and W ′,
respectively, and the equivalence V ∼ V ′ holds in X, where V and V ′ are the terminals of W
and W ′, respectively.

ISAAC 2019

17:10 Complexity of Linear Operators

In other words, this definition states that the first and the last occurrences of generators
in the equivalence separates the parts of the equivalence that cannot be affected by the rest of
the generators and must therefore be equivalent themselves. We also note that this definition
exactly captures the idempotent case: for a free idempotent semigroup the condition in this
definition is “if and only if”[5].

I Definition 11. A semigroup (S, ◦) is faithful non-commutative if XS is strongly non-
commutative.

We note that this notion of faithfulness is relatively general and is true for semigroups
(S, ◦) with considerable degree of non-commutativity in their structure. It clearly captures
free semigroups with at least two generators. It is also easy to see that the requirements
in Definition 11 are satisfied for the free idempotent semigroup with n generators (if S is
idempotent, then XS,n is also clearly idempotent and no other relations are holding in XS,n

since we can substitute generators of S for x1, . . . , xn).
Next we observe some properties of strongly non-commutative semigroups that we need

in our constructions.

I Lemma 12. Suppose X is strongly non-commutative. Suppose the equivalence W ∼W ′
holds in X and |Var(W)| = |Var(W ′)| = k. Suppose U and U ′ are minimal (maximal)
prefixes of W and W ′ such that |Var(U)| = |Var(U ′)| = l ≤ k. Then the equivalence U ∼ U ′
holds in X. The same is true for suffixes.

Proof. The proof is by induction on the decreasing l. Consider the maximal prefixes first.
For l = k and maximal prefixes we just have U = W and U ′ = W ′. Suppose the statement is
true for some l, and denote the corresponding prefixes by U and U ′, respectively. Then note
that the maximal prefixes with l − 1 variables are initials of U and U ′. And the statement
follows by Definition 10.

The proof of the statement for minimal prefixes is completely analogous. Note that on the
step of induction the prefixes differ from the previous case by one letter that are initial marks
of the corresponding prefixes. So these additional letters are also equal by the Definition 10.

The case of suffixes is completely analogous. J

The next lemma is a simple corollary of Lemma 12.

I Lemma 13. Suppose X is strongly non-commutative. Suppose W ∼W ′ holds in X. Let us
write down the letters of W in the order in which they appear first time in W when we read
it from left to right. Let’s do the same for W ′. Then we obtain exactly the same sequences
of letters. The same is true if we read the words from right to left.

4.2 Proof Strategy
We now proceed to the proof of Theorem 3. The upper bound follows easily by a naive
algorithm: split all rows of A into ranges, compute all ranges by a circuit of size O(nα(n))
using Yao’s construction [14], then combine ranges into rows of A using O(n) gates.

Thus, we focus on lower bounds. We will view the computation of the circuit as a
computation in a strongly non-commutative semigroup X = XS .

We will use the following proof strategy. First we observe that it is enough to prove the
lower bound for the case of idempotent strongly non-commutative semigroups X. Indeed,
if X is not idempotent, we can factorize it by idempotency relations and obtain a strongly
non-commutative idempotent semigroup Xid. A lower bound for the case of Xid implies
lower bound for the case of X. We provide a detailed explanation in the full version of
the paper [9].

A. S. Kulikov, I. Mikhailin, A. Mokhov, and V. Podolskii 17:11

Hence, from this point we can assume thatX is idempotent and strongly non-commutative.
Next for idempotent case we show that our problem is equivalent to the commutative version
of the range query problem.

For a semigroup X with generators {x1, . . . , xn} denote by Xsym its factorization under
commutativity relations xixj ∼ xjxi for all i, j. Note that if X is idempotent and strongly
non-commutative, then Xsym is just the semigroup in which W ∼W ′ iff Var(W) = Var(W ′)
(this is free idempotent commutative semigroup).

I Theorem 14. For an idempotent strongly non-commutative X and for any s = Ω(n)
we have that (commutative) range queries problem over Xsym has size O(s) circuits iff
(non-commutative) dense linear operator problem over X has size O(s) circuits.

Using this theorem, it is straightforward to finish the proof of Theorem 3. Indeed, by
Theorem 14 if non-commutative dense linear operator problem has size s circuit, then the
commutative range queries problem also does. However, for the latter problem it is proved
by Chazelle and Rosenberg [3] that s = Ω(nα(n)). Moreover, in our construction for the
proof of Theorem 14 it is enough to consider dense linear operators with exactly two zeroes
in every row. From this the second part of Theroem 3 follows.

Note that for the proof of Theorem 3 only one direction of Theorem 14 is needed. However,
we think that the equivalence in Theorem 14 might be of independent interest, so we provide
the proof for both directions.

Thus, it remains to prove Theorem 14. We do this by showing the following equivalences
for any s = Ω(n).

(commutative) range
queries problem over
Xsym has O(s) size
circuits

(non-commutative)
range queries problem
over X has O(s) size
circuits

(non-commutative)
dense linear operator
problem over X has
O(s) size circuits

Lemma 16

special case

straightforward

Lemma 15

Note that two of the reductions on this diagram are trivial. The other two are formulated
in the following lemmas.

I Lemma 15. If the (non-commutative) dense linear operator problem over X has size s
circuit then the (non-commutative) range queries problem over X has size O(s) circuit.

I Lemma 16. If the (commutative) version of the range queries problem over Xsym has size
s circuits then the (non-commutative) version over X also does.

5 Open Problems

There are two natural problems left open.
1. Design a deterministic O(z) time algorithm for generating a circuit in the commutative

case. For this, it suffices to design an O(n) deterministic algorithm for the following
problem: given a list of positions of n zeroes of an n× n 0/1-matrix with at most logn
zeroes in every row, permute its columns so that the total length of all segments of length
at most O(logn) is O(n

log n).
2. Determine the asymptotic complexity of the linear operator in terms of the number of

zeroes in the non-commutative case.

ISAAC 2019

17:12 Complexity of Linear Operators

References
1 Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries.

Technical report, Tel Aviv University, 1987.
2 Peter Butkovič. Max-linear Systems: Theory and Algorithms. Springer, 2010.
3 Bernard Chazelle and Burton Rosenberg. The complexity of computing partial sums off-line.

Int. J. Comput. Geometry Appl., 1(1):33–45, 1991. doi:10.1142/S0218195991000049.
4 François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima,

Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages
296–303. ACM, 2014. doi:10.1145/2608628.2608664.

5 J. A. Green and D. Rees. On semi-groups in which xr = x. Mathematical Proceedings of the
Cambridge Philosophical Society, 48(1):35–40, 1952. doi:10.1017/S0305004100027341.

6 Dima Grigoriev and Vladimir V. Podolskii. Complexity of Tropical and Min-plus Linear Pre-
varieties. Computational Complexity, 24(1):31–64, 2015. doi:10.1007/s00037-013-0077-5.

7 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

8 Stasys Jukna. Tropical Complexity, Sidon Sets, and Dynamic Programming. SIAM J. Discrete
Math., 30(4):2064–2085, 2016. doi:10.1137/16M1064738.

9 Alexander S. Kulikov, Ivan Mikhailin, Andrey Mokhov, and Vladimir V. Podolskii. Complexity
of Linear Operators. Electronic Colloquium on Computational Complexity (ECCC), 26:2, 2019.
URL: https://eccc.weizmann.ac.il/report/2019/002.

10 Andrey Mokhov. Algebraic graphs with class (functional pearl). In Proceedings of the 10th
ACM SIGPLAN International Symposium on Haskell, pages 2–13. ACM, 2017.

11 H. Neumann. Varieties of Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge.
Springer Berlin Heidelberg, 2012. URL: https://books.google.ru/books?id=VaMjCQAAQBAJ.

12 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 664–673,
2014. doi:10.1145/2591796.2591811.

13 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith–Winograd. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
887–898. ACM, 2012. doi:10.1145/2213977.2214056.

14 Andrew Chi-Chih Yao. Space-Time Tradeoff for Answering Range Queries (Extended Abstract).
In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber,
editors, Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7,
1982, San Francisco, California, USA, pages 128–136. ACM, 1982. doi:10.1145/800070.
802185.

https://doi.org/10.1142/S0218195991000049
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1017/S0305004100027341
https://doi.org/10.1007/s00037-013-0077-5
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1137/16M1064738
https://eccc.weizmann.ac.il/report/2019/002
https://books.google.ru/books?id=VaMjCQAAQBAJ
https://doi.org/10.1145/2591796.2591811
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/800070.802185
https://doi.org/10.1145/800070.802185

New Results for the k-Secretary Problem
Susanne Albers
Department of Informatics, Technical University of Munich, Germany
albers@in.tum.de

Leon Ladewig
Department of Informatics, Technical University of Munich, Germany
ladewig@in.tum.de

Abstract
Suppose that n numbers arrive online in random order and the goal is to select k of them such that
the expected sum of the selected items is maximized. The decision for any item is irrevocable and
must be made on arrival without knowing future items. This problem is known as the k-secretary
problem, which includes the classical secretary problem with the special case k = 1. It is well-known
that the latter problem can be solved by a simple algorithm of competitive ratio 1/e which is
asymptotically optimal. When k is small, only for k = 2 does there exist an algorithm beating the
threshold of 1/e [Chan et al. SODA 2015]. The algorithm relies on an involved selection policy.
Moreover, there exist results when k is large [Kleinberg SODA 2005].

In this paper we present results for the k-secretary problem, considering the interesting and
relevant case that k is small. We focus on simple selection algorithms, accompanied by combinatorial
analyses. As a main contribution we propose a natural deterministic algorithm designed to have
competitive ratios strictly greater than 1/e for small k ≥ 2. This algorithm is hardly more complex
than the elegant strategy for the classical secretary problem, optimal for k = 1, and works for all
k ≥ 1. We explicitly compute its competitive ratios for 2 ≤ k ≤ 100, ranging from 0.41 for k = 2 to
0.75 for k = 100. Moreover, we show that an algorithm proposed by Babaioff et al. [APPROX 2007]
has a competitive ratio of 0.4168 for k = 2, implying that the previous analysis was not tight. Our
analysis reveals a surprising combinatorial property of this algorithm, which might be helpful for a
tight analysis of this algorithm for general k.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, secretary problem, random order model

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.18

Funding Work supported by the European Research Council, Grant Agreement No. 691672.

1 Introduction

The secretary problem is a well-known problem in the field of optimal stopping theory and is
defined as follows: Given a sequence of n numbers which arrive online and in random order,
select the maximum number. Thereby, upon arrival of an item, the decision to accept or
reject it must be made immediately and irrevocably, especially without knowing future items.
The statement of the problem dates back to the 1960s and its solution is due to Lindley [23]
and Dynkin [10]. For discussions on the origin of the problem, we refer to the survey [13].

In the past years, generalizations of the secretary problem involving selection of multiple
items have become very popular. We consider one of the most canonical generalizations
known as the k-secretary problem: The algorithm is allowed to choose k elements and the
goal is to maximize the expected sum of accepted elements. Other objective functions,
such as maximizing the probability of accepting the k best [2, 14] or general submodular
functions [20], have been studied as well. Maximizing the sum of accepted items is closely
related to the knapsack secretary problem [3, 19]. If all items have unit weight and thus
the knapsack capacity is a cardinality bound, the k-secretary problem arises. The matroid

© Susanne Albers and Leon Ladewig;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 18; pp. 18:1–18:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:albers@in.tum.de
mailto:ladewig@in.tum.de
https://doi.org/10.4230/LIPIcs.ISAAC.2019.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 New Results for the k-Secretary Problem

secretary problem, introduced by Babaioff et al. [6], is a generalization where an algorithm
must maintain a set of accepted items that form an independent set of a given matroid.
We refer the reader to [11, 12, 22] for recent work. If the matroid is k-uniform, again, the
k-secretary problem occurs. Another closely related problem was introduced by Buchbinder,
Jain, and Singh [8]. In the (J,K)-secretary problem, an algorithm has J choices and the
objective is to maximize the number of selected items among the K best. Assuming the
ordinal model [17] and a monotonicity property of the algorithm, any c-competitive algorithm
for the (k, k)-secretary problem is c-competitive for the k-secretary problem, and vice versa [8].
In the ordinal model [17], an algorithm decides based on the total order of items only, rather
than on their numeric values. In fact, most known and elegant algorithms for the k-secretary
problem assume the ordinal model [3, 10,21,23].

The large interest in generalizations of the classical secretary problem is motivated mainly
by numerous applications in online market design [4,6,21]. Apart from these applications, the
secretary problem is the prototype of an online problem analyzed in the random order model:
An adversarial input order often rules out (good) competitive ratios when considering online
optimization problems without further constraints. By contrast, the assumption that the
input is ordered randomly improves the competitive ratios in many optimization problems.
This includes packing problems [18, 19], scheduling problems [15], and graph problems [7, 24].
Therefore, developing new techniques for secretary problems may, more generally, yield
relevant insights for the analysis of online problems in randomized input models as well.

1.1 Previous Work
The k-secretary problem was introduced by Kleinberg [21] in 2005. He presents a randomized
algorithm attaining a competitive ratio of 1−5/

√
k, which approaches 1 for k →∞. Moreover,

Kleinberg gives in [21] a hardness result stating that any algorithm has a competitive ratio
of 1− Ω(

√
1/k). Therefore, from an asymptotic point of view, the k-secretary problem is

solved by Kleinberg’s result. However, the main drawback can be seen in the fact that the
competitive ratio is not defined if k ≤ 24 and breaks the barrier of 1/e only if k ≥ 63 (see
Figure 2, p. 11).

In 2007 the problem was revisited by Babaioff et al.[3]. The authors propose two algorithms
called virtual and optimistic and prove that both algorithms have a competitive ratio of
at least 1/e for any k. While the analysis of virtual is simple and tight, it takes much more
effort to analyze optimistic [3, 4]. The authors believe that their analysis for optimistic is
not tight for k ≥ 2.

Buchbinder, Jain, and Singh [8] developed a framework to analyze secretary problems
and their optimal algorithms using linear programming techniques. By numerical simulations
for the (k, k)-secretary problem with n = 100, Buchbinder et al. obtained competitive ratios
of 0.474, 0.565, and 0.612, for k = 2, 3, and 4, respectively. However, obtaining an algorithm
from their framework requires a formal analysis of the corresponding LP in the limit of
n→∞, which is not provided in the article [8, p. 192].

Chan, Chen, and Jiang [9] revisited the (J,K)-secretary problem and obtained several
fundamental results. Notably, they showed that optimal algorithms for the k-secretary
problem require access to the numeric values of the items, which complements the previous
line of research in the ordinal model. Chan et al. demonstrate this by providing a 0.4920-
competitive algorithm for the 2-secretary problem which is based on a 0.4886-competitive
algorithm for the (2, 2)-secretary problem. Still, an analysis for the general (J,K)-case is not
known, even for J = K. Moreover, the resulting algorithms seem overly involved. This dims
the prospect of elegant k-secretary algorithms for k ≥ 3 obtained from this approach.

S. Albers and L. Ladewig 18:3

Table 1 Competitive ratios α of single-ref for k ∈ [1..20].

k 1 2 3 4 5 6 7 8 9 10

α 1/e 0.4119 0.4449 0.4785 0.4999 0.5148 0.5308 0.5453 0.5567 0.5660

k 11 12 13 14 15 16 17 18 19 20

α 0.5740 0.5834 0.5914 0.5983 0.6043 0.6096 0.6155 0.6211 0.6261 0.6306

1.2 Our Contribution

We study the k-secretary problem, the most natural and immediate generalization of the
classical secretary problem. While the extreme cases k = 1 and k → ∞ are well studied,
hardly any results for small values of k ≥ 2 exist. We believe that simple selection algorithms,
performing well for small k, are interesting both from a theoretical point of view and for
practical settings. Moreover, the hope is that existing algorithms for related problems based
on k-secretary algorithms can be improved this way [8, p. 191]. We study algorithms designed
for the ordinal model, which guarantees robustness and plainer decision rules.

For this purpose, we propose a simple deterministic algorithm single-ref. This algorithm
uses a single value as threshold for accepting items. Although similar approaches based on
this natural idea have been used to solve related problems [1], to the best of our knowledge,
this algorithm has not been explored for the k-secretary problem so far. As a strength of
our algorithm we see its simplicity: It is of plain combinatorial nature and can be fine-tuned
using only two parameters. In contrast, the optimal algorithms which follow theoretically
from the (J,K)-secretary approach [9] would involve k2 parameters and the same number of
different decision rules.

An important insight for the analysis of single-ref is that items can be partitioned into
two classes, which we will call dominating and non-dominating. Both have certain properties
on which we base our fully parameterized analysis. In Table 1, we list the competitive ratios
of single-ref for k ≤ 20. While the competitive ratio for k = 1 is optimal, we obtain a
value significantly greater than 1/e already for k = 2. Furthermore, the competitive ratios
are monotonically increasing in the interval k ∈ [1..20], already breaking the threshold of 0.5
at k = 6. Numerical computations suggest that this monotonicity holds for general k. See
Figure 2 (p. 11) for the competitive ratios up to k = 100 and a comparison with Kleinberg’s
algorithm [21]. Providing a closed formula for the competitive ratio for any value of k is one
direction of future work (see Section 5).

Moreover, we investigate the optimistic algorithm by Babaioff et al. [3] for the case
k = 2. Although Chan et al. [9] provide the optimal algorithm for k = 2, we think studying
this elegant algorithm is interesting for two reasons: First, a tight analysis of optimistic
is stated as open problem in [3]. Article [3] does not provide the proof of the (1/e)-bound
and a recent journal publication [5] (evolved from [3] and [6]) does not cover the optimistic
algorithm at all. We make progress in this problem by proving that for k = 2 its competitive
ratio is exactly 0.4168 which significantly breaks the (1/e)-barrier. Second, our proof reveals
an interesting property of this algorithm, which we show in Lemma 4.1: The probability
that optimistic accepts the second best item is exactly the probability that the optimal
algorithm for k = 1 from [10,23] accepts the best item. A similar property might hold for
k ≥ 3, which could be a key insight into the general case.

From a technical point of view, we derive the exact probabilities using basic combinatorial
constructs exclusively. This is in contrast to previous approaches [8, 9] which can only
be analyzed using heavyweight linear programming techniques. In addition, we always

ISAAC 2019

18:4 New Results for the k-Secretary Problem

consider the asymptotic setting of n→∞ items, which gives more meaningful bounds on the
competitive ratio. Throughout the analyses of both algorithms, we associate probabilities
with sets of permutations (see Section 2.2). Hence, probability relations can be shown
equivalently by set relations. This is a simple but powerful technique which may be useful in
the analysis of other optimization problems with random arrival order as well.

2 Preliminaries

Let v1 > v2 > . . . > vn be the elements (also called items) of the input. In the ordinal
model, we can assume w.l.o.g. all items to be distinct. Therefore we say that i is the rank
of element vi. An input sequence is any permutation of the list v1, . . . , vn. We denote the
position of an element v given a specific input sequence π with posπ(v) ∈ {1, . . . , n} and
write pos(v) whenever the input sequence is clear from the context.

Given any input sequence, an algorithm can accept up to k items, where the decision
whether to accept or reject an item must be made immediately upon its arrival. Let ALG
denote the sum of items accepted by the algorithm. The algorithm is α-competitive if
E [ALG] ≥ α ·OPT holds for all item sets. Here the expectation is taken over the uniform
distribution of all n! input sequences and OPT =

∑k
i=1 vi.

Notation. For a, b ∈ N with a ≤ b, we use the notation [a..b] to denote the set of integers
{a, a+ 1, . . . , b} and write [a] for [1..a]. The (half-)open integer intervals (a..b], [a..b), and
(a..b) are defined accordingly. Further, we use the notation nk for the falling factorial n!

(n−k)! .

2.1 Algorithms
In the following, we state the optimistic algorithm proposed by Babaioff et al. (Algorithm 1)
and our proposed algorithm single-ref (Algorithm 2) and compare both strategies.

Algorithm 1 optimistic [3].

Parameters : t ∈ (k..n− k] (sampling threshold)
1 Sampling phase: Reject the first t− 1 items.
2 Let s1 > . . . > sk be the k best items from the sampling phase.
3 Selection phase: As j-th accepted item, choose the first item better than sk−j+1.

Algorithm 2 single-ref.

Parameters : t ∈ (k..n− k] (sampling threshold), r ∈ [k] (reference rank)
1 Sampling phase: Reject the first t− 1 items.
2 Let sr be the r-th best item from the sampling phase.
3 Selection phase: Choose the first k items better than sr.

While both algorithms consist of a sampling phase in which the first t − 1 items are
rejected, the main difference is the policy for accepting items: optimistic uses the k best
items from the sampling as reference elements. Right after the sampling phase, the first
item better than sk (the k-th best from the sampling) will be accepted. The following
accepted items are chosen similarly, but with sk−1, sk−2, . . . , s1 as reference items. Note that
this algorithm always sticks to this order of reference points, even if the first item already
outperforms s1. Hence, it is optimistic in the sense that it always expects that high-value
items occur in the future.

S. Albers and L. Ladewig 18:5

single-ref has a simpler structure since it only uses a single item sr from the sampling
as reference point. Here, each item is compared to sr (the r-th best from sampling), thus the
first k elements better than sr will be selected. Despite its simpler structure, the analysis of
single-ref is involved due to the additional parameter r, as it is not clear how to choose
this parameter optimally.

Note that in the case k = 1, optimistic and single-ref (when setting r = 1) become
the strategy known for the classical secretary problem [10,23]: After rejecting the first t− 1
items, choose the first one better than the best from sampling. A simple argument shows
that this strategy selects the best item with probability t−1

n

∑n
i=t

1
i−1 . If n tends to infinity

and t− 1 ≈ n/e, this term approaches 1/e which is optimal.
The following lemma is used to bound the competitive ratios of both algorithms. It

heavily relies on the monotonicity property of the algorithms, i.e., for any vi > vj , both
algorithms select vi with greater or equal probability than vj .

I Lemma 2.1. Let A be optimistic or single-ref and for each i ∈ [n] let pi be the
probability that A selects item vi. The competitive ratio of A is (1/k)

∑k
i=1 pi.

Proof. First, we will argue that pi ≥ pi+1 for all i ∈ [n− 1], i.e., A selects items of smaller
rank with greater or equal probability. This follows if we can show that the number of
permutations where vi+1 is accepted is not greater than the respective number of permutations
for vi (this concept is described more detailed in Section 2.2).

Consider any input sequence π in which vi+1 is accepted. Let sj < vi+1 be the sampling
item to which vi+1 is compared (in case of single-ref we have j = r). Since vi+1 is accepted,
we have sj 6= vi. By swapping vi with vi+1, we obtain a new permutation π′ with the same
reference element sj . This is obvious if vi is not in the sampling of π. Otherwise, note that
in the ordered sequences of sampling items from π and π′, both vi+1 and vi have the same
position. This implies that sj is the j-th best sampling item in π′. Further, item vi is at the
former position of vi+1 in π′, thus A accepts vi at this position since vi > vi+1 > sj .

Thus, both sequences p1, . . . , pk and v1, . . . , vk are sorted decreasingly. Let OPTk =∑k
i=1 vi and E [A] be the expected sum of the items accepted by A. Chebyshev’s sum

inequality [16] states that if a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn, then
∑n
i=1 aibi ≥

(1/n) (
∑n
i=1 ai) (

∑n
i=1 bi). Applying this inequality yields

E [A] =
n∑
i=1

pivi ≥
k∑
i=1

pivi ≥
1
k

(
k∑
i=1

vi

)(
k∑
i=1

pi

)
=
(

1
k

k∑
i=1

pi

)
OPTk .

Note that the above inequalities are tight: Assuming that the first k items are almost
identical, i.e. vi = 1− iε for i ∈ [1..k] and ε→ 0, and vi = 0 for all remaining items of rank
i ∈ (k..n], the competitive ratio is exactly (1/k)

∑k
i=1 pi. J

The same argument is used in [8] to show the equivalence of the k-secretary and the (k, k)-
secretary problem for ordinal monotone algorithms.

2.2 Random Order Model
To analyze an algorithm given a random permutation, we often fix an order u1, u2, . . . , un of
positions. Then, we draw the element for position u1 uniformly from all n elements, next
the element for position u2 from the remaining n− 1 elements, and so on. It is easy to see
that by this process we obtain a permutation drawn uniformly at random.

Moreover, the uniform distribution allows us to prove probability relations using functions:
Suppose that pi is the probability that item vi is accepted in a random permutation, then
pi = |Pi| /n! where Pi is the set of all input sequences where vi is accepted. Thus, we can

ISAAC 2019

18:6 New Results for the k-Secretary Problem

Table 2 Several identities involving binomial coefficients [16].

Rule Equation Parameters

(R1) Sum of products
l∑

k=0

(
l − k
m

)(
q + k

n

)
=
(
l + q + 1
m+ n+ 1

) l,m, n, q ∈ Z with l,m ≥ 0
and n ≥ q ≥ 0

(R2) Symmetry
(
n

k

)
=
(

n

n− k

)
n, k ∈ Z with n ≥ 0

(R3) Trinomial revision
(
r

m

)(
m

k

)
=
(
r

k

)(
r − k
m− k

)
m, k ∈ Z and r ∈ R

prove pi ≤ pj by finding an injective function f : Pi → Pj and get pi = pj if f is bijective.
For example, this technique turns out to be highly useful in the proof of Lemma 4.1, where
probabilities of different algorithms are related.

2.3 Combinatorics
We often need to analyze probabilities described by the following random experiment.

I Fact 2.2. Suppose there are N balls in an urn from which M are blue and N −M red.
The probability of drawing K blue balls without replacement in a sequence of length K is
h(N,M,K) :=

(
M
K

)
/
(
N
K

)
.

This fact follows from a special case of the hypergeometric distribution.
Furthermore, we make use of several identities involving binomial coefficients throughout

the following sections. These equations, denoted by (R1), (R2), and (R3), are listed in
Table 2.

3 Analysis of SINGLE-REF

In this section we analyze our proposed algorithm single-ref, which we denote by A
throughout this section. Recall that this algorithm uses sr, the r-th best sampling item, as
the threshold for accepting items. As implied by the proof of Lemma 2.1, only the k largest
items v1, . . . , vk contribute to the objective function. One essential idea of our approach is
to separate the set of top-k items into two classes according to the following definition.

I Definition 3.1. We say that item vi is dominating if i ≤ r, and non-dominating if
r + 1 ≤ i ≤ k.

The crucial property of dominating items becomes clear in the following scenario: Assume
that any dominating item v occurs after the sampling phase. Since sr is the r-th best item
from the sampling phase, it follows that v > sr. That is, each dominating item outside the
sampling beats the reference item. Therefore there are only two situations when dominating
items are rejected: Either they appear before position t, or after k accepted items.

3.1 Acceptance of Dominating Items
First we focus on dominating items. As we will show in Lemma 3.2, the algorithm cannot
distinguish between them and thus each dominating item has equal acceptance probability.

S. Albers and L. Ladewig 18:7

t

v

i

s1 sr

︷ ︸︸ ︷ ︷ ︸︸ ︷Rank

Position

z >z <z

. . .

1 r. . .

a1 aj. . .

i−j . . . i−1

≤r︷ ︸︸ ︷<z

Figure 1 Event Ẽj(z, i) considered in the proof of Lemma 3.2.

I Lemma 3.2. Let v be a dominating item and j ∈ [0..k). Let Ej be the event that A selects
v as (j+ 1)-th item. It holds that Pr [Ej] = κτ

n

∑n
i=t+j

(
i−t
j

) 1
(i−1)r+j , where τ = (t− 1)r and

κ = (r − 1 + j)j.

Proof. Let Ej(z, i) be the event that A accepts v as (j + 1)-th item at position i = pos(v)
and sr has rank z (thus sr = vz). Note that there must be elements s1, . . . , sr−1 of rank
smaller than z in the sampling (such that sr is in fact the r-th best sampling element).
Similarly, there must be j elements a1, . . . , aj after the sampling but before v of rank smaller
than z (which are accepted by A).

The proof is in several steps. We first consider a stronger event Ẽj(z, i). Later, we show
how the probability of Ej(z, i) can be obtained from Ẽj(z, i). In the end, the law of total
probability yields Pr [Ej].

Analysis of Ẽj(z, i). Event Ẽj(z, i) is defined as Ej(z, i) with additional position constraints
(see Figure 1): Elements s1, . . . , sr are in this order at the first r positions and elements
a1, . . . , aj are in this order at the j positions immediately before v. Therefore, Ẽj(z, i)
occurs if and only if the following conditions hold:
(i) pos(v) = i, pos(s`) = ` for ` ∈ [r], and pos(am) = i− j +m− 1 for m ∈ [j].
(ii) Elements s1, . . . , sr−1 have rank smaller than z
(iii) Elements a1 . . . , aj have rank smaller than z
(iv) All remaining items at positions r + 1, . . . , i− j − 1 have rank greater than z.
Using the concept described in Section 2.2, we think of sequentially drawing the elements
for the positions 1, . . . , r, i− j, . . . , i and then r + 1, . . . , i− j − 1. The probability for (i)
is
∏j+r
`=0

1
n−` = 1/nj+r+1 =: β, since each item has the same probability to occur at each

remaining position. In (ii), the r− 1 elements can be chosen out of z − 2 remaining items
of rank smaller than z (since v is dominating and was already drawn). Therefore we get
a factor of

(
z−2
r−1
)
. After this step, there remain z − 2− (r − 1) = z − r − 1 elements of

rank smaller than z, so we get factor
(
z−r−1
j

)
for step (iii).

Finally, the probability of (iv) can be formulated using Fact 2.2. Note that at this point,
there remain n− (1 + r + j) items and no item of rank greater than z has been drawn so
far. In terms of the random experiment described in Fact 2.2, we draw K = i− j − r − 1
balls (items) from an urn of size N = n− (1 + r+ j) where M = n− z balls are blue (rank
greater than z). Hence, the probability for (iv) is H := h(n− r− j−1, n− z, i− j− r−1).
Therefore we obtain

Pr
[
Ẽj(z, i)

]
= β ·

(
z − 2
r − 1

)(
z − r − 1

j

)
·H . (1)

This term can be simplified further by applying (R3) and (R2). Let R = z− 2, K = r− 1,
and M = j + r − 1. It holds that(

z−2
r−1

)(
z−r−1

j

)
(R3)=

(
R

M

)(
M

K

)
(R2)=

(
R

M

)(
M

M−K

)
=
(

z−2
j+r−1

)(
j+r−1

j

)
.

Let κ = (j + r − 1)j , then
(
j+r−1
j

)
= κ/j! and we get Pr

[
Ẽj(z, i)

]
= βκ

j! ·
(
z−2
j+r−1

)
·H .

ISAAC 2019

18:8 New Results for the k-Secretary Problem

Relating Ẽj(z, i) to Ej(z, i). In contrast to Ẽj(z, i), in the event Ej(z, i), the elements
s1, . . . , sr can have any positions in [t − 1] and a1 . . . , aj any positions in [t..i). In the
random order model, the probability of an event depends linearly on the number of
permutations for which the event happens. Hence, we can multiply the probability
with corresponding factors (t − 1)r =: τ and (i − t)j =

(
i−t
j

)
j! and get Pr [Ej(z, i)] =(

i−t
j

)
τj! ·Pr

[
Ẽj(z, i)

]
.

Relating Ej(z, i) to Ej . As the final step, we sum over all possible values for i and z to
obtain Pr [Ej]. The position i of item v ranges between t+ j and n, while the reference
rank z is between r+ j+ 1 (there are r−1 sampling elements and j+ 1 accepted elements
of rank less than z) and n. Thus we get:

Pr [Ej] =
n∑

i=t+j

n∑
z=r+j+1

Pr [Ej(z, i)] = τj!
n∑

i=t+j

(
i− t
j

) n∑
z=r+j+1

Pr
[
Ẽj(z, i)

]
= βκτ

n∑
i=t+j

(
i− t
j

) n∑
z=r+j+1

(
z − 2

j + r − 1

)
·H

= βκτ

n∑
i=t+j

(
i− t
j

)
1(

n−r−j−1
i−j−r−1

) n∑
z=r+j+1

(
z − 2

j + r − 1

)(
n− z

i− j − r − 1

)
, (2)

where the last step follows from Fact 2.2. The sum over z in Equation (2) can be resolved
using (R1). Let L = n− r − j − 1, N = Q = r + j − 1, and M = i− j − r − 1. Then we
have

n∑
z=r+j+1

(
z − 2

j + r − 1

)(
n− z

i− j − r − 1

)
=
n−r−j−1∑
z=0

(
r + j − 1 + z

j + r − 1

)(
n− r − j − 1− z
i− j − r − 1

)

=
L∑
z=0

(
Q+ z

N

)(
L− z
M

)
=
(
L+Q+ 1
M +N + 1

)
=
(
n− 1
i− 1

)
. (3)

Note that in order to apply (R1) we need to verify L,M ≥ 0 and N ≥ Q ≥ 0. We can
assume k ≤ n/2, since for k > n/2, there exist a trivial (1/2)-competitive algorithm.
Therefore, we have L = n − r − j − 1 ≥ n − k − (k − 1) − 1 = n − 2k ≥ 0. Further,
i ≥ t+ j, thus i− j ≥ t ≥ k + 1 ≥ r + 1 which implies M ≥ 0. The condition N ≥ Q ≥ 0
holds trivially. By inserting Equation (3) into Equation (2), we obtain the quotient of
binomial coefficients

(
n−1
i−1
)
/
(
n−r−j−1
i−j−r−1

)
. From (R3) we get(

n− 1
i− 1

)/(n− 1− (r + j)
i− 1− (r + j)

)
=
(
n− 1
r + j

)/(i− 1
r + j

)
= (n− 1)r+j

(i− 1)r+j .

Recall β = 1/nj+r+1, thus (n− 1)r+j · β = 1/n. Together with Equation (2) we get

Pr [Ej] = βκτ · (n− 1)r+j
n∑

i=t+j

(
i− t
j

)
1

(i− 1)r+j = κτ

n

n∑
i=t+j

(
i− t
j

)
1

(i− 1)r+j , (4)

which concludes the proof. J

Lemma 3.2 provides the exact probability that a dominating item is accepted as (j+ 1)-th
item. However, it is more meaningful to consider the asymptotic setting where n → ∞.
Here, we assume t − 1 = cn for some constant c ∈ (0, 1). For this setting, we obtain the
following lemma.

S. Albers and L. Ladewig 18:9

I Lemma 3.3. Let Ej be defined as in Lemma 3.2. In the asymptotic setting described above,
(A) For r = 1 it holds that Pr [Ej] = c

(
ln 1

c +
∑j
`=1 β`

c`−1
`

)
, where β` = (−1)`+1(j

`

)
for

` ∈ [j].

(B) For r ≥ 2 it holds that Pr [Ej] = c
r−1 −

cr(1−c)j

r−1
∑j
`=0 α`

(
c

1−c

)`
, where α` =

(
j+r−1
`+r−1

)
for ` ∈ [0..j].

The proof of Lemma 3.3 relies on a sequence of technical lemmas and is given in Appendix A.

I Remark. As described in Section 2.1, single-ref generalizes the optimal strategy for the
secretary problem (k = 1). Note that the combinatorial analysis from Lemma 3.2 as well as
the asymptotic bound from Lemma 3.3 give exactly the respective terms from the secretary
problem. To see this, we set r = 1 and consider the probability that the dominating item v1
is accepted as first item. By Lemma 3.2 (with j = 0), the success probability is t−1

n

∑n
i=t

1
i−1 .

Moreover, Lemma 3.3(A) provides the asymptotic bound of c ln(1/c) for this case.

3.2 Non-Dominating Items
It remains to consider the acceptance probabilities of the non-dominating items vr+1, . . . ,

vk. Fortunately, there exist some interesting connections to the probabilities for dominating
items.

I Lemma 3.4. Let i ∈ [1..k − r] and j ∈ [1..i]. For the non-dominating item vr+i it holds
that Pr [vr+i is j-th accept] = Pr [vr+i is (i+ 1)-th accept].

Proof. First we argue that there are in total at least i + 1 accepts if vr+i is accepted.
Assuming that vr+i is accepted, we have sr < vr+i. Let S be the set of elements which
the algorithm may accept, i.e. S = {v1, . . . , vr+i}. Since sr is the r-th best element in the
sampling, at most r − 1 elements from S can be part of the sampling and thus at least
r + i− (r − 1) = i+ 1 elements from S, including vr+i, are accepted.

As described in Section 2.2, we construct a bijective function f : P → Q where P (resp.
Q) is the set of permutations where vr+i is the j-th (resp. (i+ 1)-th) accept. For each input
sequence π ∈ P , let a1, . . . , ai+1 with aj = vr+i denote the first i+ 1 accepts. The function
f swaps the positions of a1, . . . , ai+1 in a cyclic shift, such that aj = vr+i is at the former
position of ai+1. In other words, the relative order of the first i + 1 accepted elements in
f(π) is changed in a way that vr+i is the (i+ 1)-th accept in f(π). Note that the cyclic shift
can be reversed, thus f is bijective. J

While Lemma 3.4 relates the acceptance probabilities of a single non-dominating item,
the claim of Lemma 3.5 is in a way orthogonal by relating probabilities of non-dominating
items to those for dominating items.

I Lemma 3.5. Let i ∈ [1..k−r] and j ∈ [1..k−i]. For the non-dominating item vr+i and any
dominating item v+ it holds that Pr [vr+i is (i+ j)-th accept] = Pr [v+ is (i+ j)-th accept].

Proof. Let P be the set of permutations where vr+i is the (i+ j)-th accept and let Q contain
those where v+ is the (i+ j)-th accept. We prove the claim by defining a bijective function
f : P → Q. Let f be the function that swaps vr+i with v+ in the input sequence.

Consider any input sequence π ∈ P . As vr+i is accepted, sr < vr+i. We can argue that
in f(π) element sr is still the r-th best element of the sampling: This holds clearly if no
item is moved out of or into the sampling. Otherwise, f moves vr+i into the sampling and
v+ outside. But since sr < vr+i < v+, this does not change the role of sr as the r-th best
sampling element. Thus f is injective.

ISAAC 2019

18:10 New Results for the k-Secretary Problem

To prove that f is surjective, let π′ ∈ Q be any input sequence where v+ is the (i+ j)-th
accept. We next consider the rank z of sr = vz. As there must be sampling elements
s1, . . . , sr−1 and accepted elements a1, . . . , ai+j−1, v

+ of rank smaller than z, we have z >
(r − 1) + (i + j − 1) + 1 ≥ r + i. Hence, sr < vr+i. The inverse function of f consists in
swapping back v+ with vr+i. For the same reason as above, this maintains sr. As sr < vr+i,
element vr+i gets accepted, thus f−1(π′) ∈ P . J

Using the previous results for dominating and non-dominating items we are now ready to
state the main result of this section, namely the competitive ratio of single-ref. Due to
the complex expressions from Lemma 3.3 we give numerical results for small values of k.

I Theorem 3.6. In the asymptotic setting of n → ∞ and assuming that t − 1 = cn for a
constant c ∈ (0, 1), single-ref achieves the competitive ratios given in Table 1.

Proof. For an item vi, let p(j)
i be the probability that vi is the j-th accept (with 1 ≤ j ≤ k).

The total acceptance probability of vi is denoted by pi =
∑k
j=1 p

(j)
i . According to Lemma 3.2,

each dominating item has the same acceptance probability for a fixed acceptance position.
Therefore, in the following we simply write p1 (resp. p(j)

1) for the acceptance probability of
any dominating item.

By Lemma 2.1 the competitive ratio can be obtained by summing over the acceptance
probabilities of all items divided by k. Clearly,

∑r
i=1 pi = rp1. Now consider any non-

dominating item vr+i. According to Lemmas 3.4 and 3.5, pr+i can be related to respective
probabilities p(j)

1 : It holds that p(j)
r+i = p

(z)
1 with z = max{j, i + 1}. Therefore pr+i =∑k

j=1 p
(j)
r+i =

∑i
j=1 p

(i+1)
1 +

∑k
j=i+1 p

(j)
1 = ip

(i+1)
1 +

∑k
j=i+1 p

(j)
1 . Hence, we obtain the

competitive ratio

1
k

k∑
i=1

pi = 1
k

rp1 +
k−r∑
i=1

ip(i+1)
1 +

k∑
j=i+1

p
(j)
1

 (5)

with p(j)
1 = Pr [Ej−1] for the event Ej considered in Lemmas 3.2 and 3.3. To evaluate the

performance of our algorithm, we maximized Equation (5) over the parameters r and c using
a computer algebra system. This yields the competitive ratios shown in Table 1 (p. 3). J

For completeness, we evaluated the competitive ratio of single-ref in the interval
k ∈ [1..100] using the optimization procedure mentioned in the previous proof. Figure 2
shows the performance of single-ref in comparison with Kleinberg’s result [21]; our
algorithm reaches competitive ratios of up to 0.75 and outperforms the algorithm from [21]
on this interval. In Appendix A, we provide the full list of optimal parameters for k ∈ [1..100]
(see Table 3, p. 19).

4 Analysis of OPTIMISTIC for k = 2

In this section we sketch the analysis of optimistic for k = 2. Due to space constraints, for
some proofs we refer to the full version of this paper. Let A2 denote optimistic algorithm
with k = 2 in the following. As implied by Lemma 2.1 the competitive ratio is determined by
p1 and p2, the probabilities that A2 accepts v1 and v2, respectively. To find these probabilities,
we make use of the relation between probabilities and sets (see Section 2.2). Let Pi be the
set of permutations in which A2 accepts vi.

S. Albers and L. Ladewig 18:11

0
0.1
0.2
0.3
1/e
0.5
0.6
0.7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

co
m
pe

tit
iv
e
ra
tio

k

SINGLE-REF Kleinberg

Figure 2 Comparison of our algorithm single-ref and the algorithm by Kleinberg [21], for
k ∈ [1..100]. The parameters r and c for single-ref are chosen optimally.

Probability p2. In the next lemma, we show a surprising relation between optimistic for
k = 2 and the algorithm for the classical (1-)secretary problem (see Section 2.1). The proof of
Lemma 4.1 uses a sophistically tailored bijection between two respective sets of permutations.
We sketch the proof method here and give the entire proof in the full version of this paper.

I Lemma 4.1. Let A1 be the algorithm for the classical secretary problem. Assuming that both
algorithms A1, A2 are parameterized with the same t, we have that p2 = Pr [A2 accepts v2] =
Pr [A1 accepts v1].

Sketch of proof. Equivalently, we prove that the corresponding complementary events hap-
pen with the same probability. For this purpose, we define for each permutation π where
A2 does not accept v2 a unique permutation f(π) where A1 does not accept v1. Different
situations where A2 does not accept v2 lead to a total number of five cases. If v2 is in the
sampling of π, we define f(π) such that the positions of v1 and v2 are swapped. Then, A1
clearly does not accept v1 in f(π). Another case is when v2 comes behind two accepted
elements a1, a2 in π and v1 = a1 is the first accept. Note that since a2 is accepted, a2 > s1.
In this case, f(π) can be defined by swapping the positions of both accepts v1 and a2. Recall
that A1 accepts the first item better than s1 following the sampling phase which is a2 in
f(π), thus v1 is not selected.

In the full proof, we consider all five cases according to π. In each case it is enough to
define f such that the positions of at most three elements are swapped. Finally, we have to
argue that the function f is indeed bijective. J

Probability p1. In this part, we argue that p1 = p2 + δ holds for some δ > 0. To obtain δ,
we again consider cardinalities of sets instead of probabilities. First, we observe that P2 can
be related to a set P ′1 ⊂ P1 such that P2 and P ′1 have equal size.

I Lemma 4.2. Let P ′1 = {π ∈ P1 | posπ(v2) < t ⇒ A2 accepts v1 as first item}. It holds
that |P ′1| = |P2|.

Proof. Let f : P2 → P ′1 be the function that swaps v1 with v2 in the given sequence. We
first have to argue that in fact f : P2 → P ′1, therefore let π ∈ P2 be given. Then, v1 gets
accepted by A2 in f(π) at the position posf(π)(v1) = posπ(v2), as v1 is an item of higher
value. So far we have f(π) ∈ P1. If posf(π)(v2) ≥ t, there is nothing to show. Assuming that
posf(π)(v2) < t, it follows posπ(v1) < t, i.e. v1 was the best element in the sampling of π.
Since no item (particularly not v2) can beat v1, but v2 was accepted by A2 in π, we get that
v2 was the first accept in π. Hence v1 is the first accept in f(π).

ISAAC 2019

18:12 New Results for the k-Secretary Problem

Clearly, f is injective. For surjectivity, let π′ ∈ P ′1 and let π the permutation obtained
from π′ by swapping (back) v1 with v2. If posπ′(v2) < t, by definition of P ′1 we know that v1
is the first accept in π′, implying that no item before posπ′(v1) = posπ(v2) is chosen by A2.
In the case posπ′(v2) ≥ t, since posπ′(v1) ≥ t, the smallest rank in the sampling of π′ is 3 or
greater. Therefore, v2 gets accepted if not more than one item before v2 gets accepted. This
is the case in π, as posπ(v2) = posπ′(v1). J

Since |P1| = |P ′1| + |P1 \ P ′1| = |P2| + |P1 \ P ′1|, we therefore get δ = |P1 \ P ′1| /n!, i.e.,
δ is the probability that a random permutation is in the set |P1 \ P ′1|. This probability is
considered in Lemma 4.3.

I Lemma 4.3. Let δ = Pr [π ∈ P1 \ P ′1] where π is drawn uniformly from the set of all
permutations and P ′1 is defined like in Lemma 4.2. It holds that δ = t−1

n
t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1) .

The proof of Lemma 4.3 relies on a counting argument similar to the proof of Lemma 3.2.
We prove Lemma 4.3 in the full version of this paper.

Competitive ratio. From Lemmas 4.1 and 4.3, we know the exact probabilities p2 and p1.
For particular n, the term (p1 + p2)/2 can be optimized over t to find the optimal sampling
size. In the following theorem we consider the asymptotic setting n→∞. Here, we assume
that the sampling size is a constant fraction of the input size, i.e., t − 1 = cn for some
constant c ∈ (0, 1).

I Theorem 4.4. For k = 2, the algorithm optimistic is 0.4168-competitive in the limit
n→∞ and assuming that the sampling size is t− 1 = cn for c = 0.3521.

Proof. According to Lemma 4.1, p2 is the probability that the classical secretary algorithm
accepts the best item, i.e., p2 = t−1

n

∑n
i=t

1
i−1 . This term approaches c ln(1/c) asymptotically.

From Lemma 4.3 we know p1 = p2 + δ, where δ = t−1
n

t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1) . For n→∞, the

sum
∑n−1
i=t

n−i
(i−2)(i−1) is bounded from above and below by 1

c − ln 1
c − 1. This can be seen by

bounding the sum by two corresponding integrals. Further, limn→∞
t−1
n

t−2
n−1 = c2. Therefore,

δ = c2 (1
c − ln 1

c − 1
)
for large n. According to Lemma 2.1, A2 is α(c)-competitive with

α(c) = 1
2 (p1 + p2) = 1

2 (p2 + δ + p2) = c ln 1
c

+ c2

2

(
1
c
− ln 1

c
− 1
)
.

Setting c = 1/e, we obtain a competitive ratio of α(1/e) = 3e−2
2e2 ≈ 0.4164. However, the

optimal choice for c is around c∗ = 0.3521 < 1/e, improving the competitive ratio slightly to
α(c∗) ≈ 0.4168. J

5 Conclusion and Future Work

We investigated two algorithms for the k-secretary problem with a focus on small values
for k ≥ 2. Aside from a tight analysis of the optimistic algorithm [3] for k = 2, we
introduced and analyzed the algorithm single-ref. For any value of k, the competitive
ratio of single-ref can be obtained by numerical optimization.

We see various directions of future work. For single-ref, it remains to find the right
dependency between the parameters r, c, and k in general and to find a closed formula for the
competitive ratio for any value of k. optimistic seems a promising and elegant algorithm,
however no tight analysis for general k ≥ 3 is known so far. For k = 2, we identified a key
property in Lemma 4.1. Similar properties may hold in the general case. Lastly, to the best
of our knowledge, no hardness results for the k-secretary problem are known (apart from the
cases k ≤ 2).

S. Albers and L. Ladewig 18:13

References
1 S. Agrawal, Z. Wang, and Y. Ye. A Dynamic Near-Optimal Algorithm for Online Linear

Programming. Operations Research, 62(4):876–890, 2014.
2 M. Ajtai, N. Megiddo, and O. Waarts. Improved algorithms and analysis for secretary problems

and generalizations. SIAM Journal on Discrete Mathematics, 14(1):1–27, 2001.
3 M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A Knapsack Secretary Problem

with Applications. In Proc. 10th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems and 11th International Workshop on Randomization
and Computation (APPROX/RANDOM), pages 16–28, 2007.

4 M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Online auctions and generalized
secretary problems. SIGecom Exchanges, 7(2), 2008.

5 M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Matroid Secretary Problems. Journal
of the ACM (JACM), 65(6):35:1–35:26, 2018.

6 M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and online
mechanisms. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 434–443, 2007.

7 B. Bahmani, A. Mehta, and R. Motwani. A 1.43-Competitive Online Graph Edge Coloring
Algorithm in the Random Order Arrival Model. In Proc. 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 31–39, 2010.

8 N. Buchbinder, K. Jain, and M. Singh. Secretary Problems via Linear Programming. Mathe-
matics of Operations Research, 39(1):190–206, 2014.

9 T.-H. H. Chan, F. Chen, and S. H.-C. Jiang. Revealing Optimal Thresholds for Generalized
Secretary Problem via Continuous LP: Impacts on Online K -Item Auction and Bipartite
K -Matching with Random Arrival Order. In Proc. 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1169–1188, 2015.

10 E. B Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet
Mathematics, 4:627–629, 1963.

11 M. Feldman, O. Svensson, and R. Zenklusen. A Simple O(log log(rank))-Competitive Algorithm
for the Matroid Secretary Problem. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1189–1201, 2015.

12 M. Feldman, O. Svensson, and R. Zenklusen. A Framework for the Secretary Problem on the
Intersection of Matroids. In Proc. 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 735–752, 2018.

13 T. S. Ferguson. Who Solved the Secretary Problem? Statistical Science, 4(3):282–289, 1989.
14 P.R. Freeman. The secretary problem and its extensions: A review. International Statistical

Review/Revue Internationale de Statistique, pages 189–206, 1983.
15 O. Göbel, T. Kesselheim, and A. Tönnis. Online Appointment Scheduling in the Random

Order Model. In Proc. 23rd Annual European Symposium on Algorithms (ESA), pages 680–692,
2015.

16 R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics - a foundation for
computer science (2. ed.). Addison-Wesley, 1994.

17 M. Hoefer and B. Kodric. Combinatorial Secretary Problems with Ordinal Information. In
44th International Colloquium on Automata, Languages, and Programming (ICALP), pages
133:1–133:14, 2017.

18 C. Kenyon. Best-Fit Bin-Packing with Random Order. In Proc. 7th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 359–364, 1996.

19 T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. Primal beats dual on online packing LPs
in the random-order model. In Proc. 46th Annual ACM Symposium on Theory of Computing
(STOC), pages 303–312, 2014.

20 T. Kesselheim and A. Tönnis. Submodular Secretary Problems: Cardinality, Matching, and
Linear Constraints. In Proc. 20th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems and 21st International Workshop on Randomization
and Computation (APPROX/RANDOM), pages 16:1–16:22, 2017.

ISAAC 2019

18:14 New Results for the k-Secretary Problem

21 R. D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.
In Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 630–631,
2005.

22 O. Lachish. O(log log Rank) Competitive Ratio for the Matroid Secretary Problem. In Proc.
55th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 326–335,
2014.

23 D. V Lindley. Dynamic programming and decision theory. Applied Statistics, pages 39–51,
1961.

24 M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach based
on strongly factor-revealing LPs. In Proc. 43rd ACM Symposium on Theory of Computing
(STOC), pages 597–606, 2011.

A Technical Proofs for SINGLE-REF

In several lemmas we need to find closed expressions for sums over values of a certain function.
If the function is monotone, such sums can be bounded by corresponding integrals:

I Fact A.1. Let f : R≥0 → R≥0 and a, b ∈ N.
(A) If f is monotonically decreasing, then

∫ b+1
a

f(i) di ≤
∑b
i=a f(i) ≤

∫ b
a−1 f(i) di .

(B) If f is monotonically increasing, then
∫ b
a−1 f(i) di ≤

∑b
i=a f(i) ≤

∫ b+1
a

f(i) di .

In Lemma 3.3 we consider the acceptance probabilities of dominating items in the
asymptotic setting n → ∞ with t − 1 = cn for c ∈ (0, 1). We can assume further that
j, r ≤ k = o(n). In the following, we prove Lemma 3.3 using some technical lemmas, stated
and proven below the main proof.

Proof of Lemma 3.3. We first consider the sum S :=
∑n
i=t+j

(
i−t
j

) 1
(i−1)r+j from Equation (4)

and obtain the following lower bound:

S =
n∑

i=t+j

(
i− t
j

)
1

(i− 1)r+j = 1
j!

n∑
i=t+j

(i− t)j

(i− 1)r+j ≥
1
j!

n∑
i=t+j

(i− t− j + 1)j

(i− 1)r+j

= 1
j!

n−t−j+1∑
i=1

ij

(i+ t+ j − 2)r+j .

Let f(i) = ij/(i+ y)r+j for y = t+ j − 2. Note that y can be seen as a constant independent
from i. Let m = n− t− j + 1, now the above inequality reads as S ≥ (1/j!)

∑m
i=1 f(i). In

the following we investigate the function f .
Unfortunately, f is in general not monotone, hence we can not apply Fact A.1A or

Fact A.1B directly in order to bound the sum by an integral. However, we can split the sum
into two monotone parts. Let d be defined like in Lemma A.2 (following this proof). Now we
can apply Fact A.1 as follows:

m∑
i=1

f(i) =
d∑
i=1

f(i) +
m∑

i=d+1
f(i) ≥

∫ d

0
f(i) di +

∫ m+1

d+1
f(i) di

=
∫ m+1

0
f(i) di −

∫ d+1

d

f(i) di . (6)

S. Albers and L. Ladewig 18:15

Finding the indefinite integral
∫
f(i) di turns out to be a technical task and is therefore

moved to separate lemmas (see Lemmas A.3 and A.4). If F (i) is a function with F ′(i) = f(i),
we have for κ, τ defined like in Equation (4)

Pr [Ej] = κτ

n
S ≥ κτ

nj! (F (m+ 1)− F (0)− F (d+ 1) + F (d)) . (7)

In the remainder of the proof we consider the two cases r = 1 and r ≥ 2 separately.

Case A: r = 1. Let F (i) and β` be defined like in Lemma A.3. In Equation (7), the factor
κτ
nj! resolves to c as κ = (j + r− 1)j = jj = j! and τ = (t− 1)r = (t− 1)1 = t− 1. Further
it holds that

lim
n→∞

F (m+ 1) = lim
n→∞

(
ln((m+ 1) + y) +

j∑
`=1

β`
y`

`((m+ 1) + y)`

)

= lim
n→∞

(
lnn+

j∑
`=1

β`
(t+ j − 2)`

`n`

)
= lim
n→∞

(
lnn+

j∑
`=1

β`
c`

`

)
and moreover

lim
n→∞

F (0) = lim
n→∞

(
ln y +

j∑
`=1

β`
y`

`y`

)
= lim
n→∞

(
ln(t+ j − 2) +

j∑
`=1

β`
1
`

)

= lim
n→∞

(
ln t+

j∑
`=1

β`
1
`

)
.

Hence, lim
n→∞

(F (m+ 1)− F (0)) = ln 1
c +

∑j
`=1 β`

c`−1
` . It remains to consider F (d) −

F (d+ 1) in the limit of n→∞. It holds that

F (d)− F (d+ 1) = ln(d+ y) +
j∑
`=1

β`
y`

`(d+ y)` − ln(d+ 1 + y)−
j∑
`=1

β`
y`

`(d+ 1 + y)`

= ln
(

d+ y

d+ 1 + y

)
+

j∑
`=1

β`
`

((
y

d+ y

)`
−
(

y

d+ 1 + y

)`)

and since y = t+j−2 = Θ(n) and d = (j/r)y = Θ(y), we get that lim
n→∞

(F (d)− F (d+ 1))
= 0.

Case B: r ≥ 2. In this case let F (i) and α` be defined according to Lemma A.4. Further,
let G(i) = −α0(r − 1)F (i). Using Equation (7) we obtain

= κτ

nj!α0(r − 1) (G(0)−G(m+ 1) +G(d+ 1)−G(d))

= τ

n(r − 1) (G(0)−G(m+ 1) +G(d+ 1)−G(d)) , (8)

where the last equality follows from the definition of α0 =
(
j+r−1
r−1

)
= κ/j!. We first notice

lim
n→∞

τ

n(r − 1) = 1
r − 1 lim

n→∞

(t− 1)r

n
= 1
r − 1 lim

n→∞

(t− 1)r

n
= 1
r − 1c

r lim
n→∞

nr−1 .

Further it holds that

G(m+ 1) =
∑j
`=0 α`(m+ 1)j−`(t+ j − 2)`

(m+ 1 + t+ j − 2)r+j−1 =
∑j
`=0 α`(m+ 1)j−`(t+ j − 2)`

nr+j−1 .

ISAAC 2019

18:16 New Results for the k-Secretary Problem

Note that lim
n→∞

(m+ 1) = lim
n→∞

(n− (t− 1)) = lim
n→∞

(n− cn) = lim
n→∞

(1− c)n and similarly
lim
n→∞

(t+ j − 2) = lim
n→∞

(t− 1) = lim
n→∞

cn. Hence we get

lim
n→∞

G(m+ 1) = lim
n→∞

∑j
`=0 α`(1− c)j−`nj−`c`n`

nr+j−1 = lim
n→∞

∑j
`=0 α`(1− c)j−`c`

nr−1 .

For the term G(0) we obtain

G(0) =
∑j
`=0 α`0j−`y`

yr+j−1 = αjy
j

yr+j−1 = 1
yr−1

and thus lim
n→∞

G(0) = lim
n→∞

1
yr−1 = lim

n→∞
1

(t−1)r−1 = 1
cr−1 lim

n→∞
1

nr−1 .
In Equation (8) it remains to consider G(d+ 1)−G(d). Similarly to case A we can show
that this term approaches 0 for n→∞:

G(d+ 1)−G(d) =
∑j
`=0 α`(d+ 1)j−`y`

(d+ 1 + y)r+j−1 −
∑j
`=0 α`d

j−`y`

(d+ y)r+j−1

≤
∑j
`=0 α`y

`
(
(d+ 1)j−` − dj−`

)
(d+ y)r+j−1

where the numerator approaches 0 since d = Θ(y) = Θ(n). Using Equation (8) and all
limits stated above, we get finally

lim
n→∞

Pr [Ej] = lim
n→∞

1
r − 1c

rnr−1

(
1

cr−1
1

nr−1 −
∑j
`=0 α`(1− c)j−`c`

nr−1

)

= 1
r − 1

(
c−

j∑
`=0

α`c
r+`(1− c)j−`

)

= c

r − 1 −
cr(1− c)j

r − 1

j∑
`=0

α`

(
c

1− c

)`
.

This concludes the proof. J

I Lemma A.2. Let f : R→ R with f(i) = ij/(i+ y)r+j and j ≥ 0, r ≥ 1, and y > 0 does
not depend on i. The function f is monotonically increasing for i ≤ d and monotonically
decreasing for i > d where d = (jy)/r.

Proof. Let g(i) = ij and h(i) = (i + y)r+j . We consider the first derivative f ′(i) =
g′(i)h(i)−g(i)h′(i)

h(i)2 . Since h(i)2 is nonnegative, f grows monotonically if

g′(i)h(i) ≥ g(i)h′(i) ⇔ jij−1(i+ y)r+j ≥ ij(r + j)(i+ y)r+j−1 ⇔ j(i+ y) ≥ i(r + j) .

It is easy to see that the last inequality is equivalent to i ≤ jy
r = d. J

I Lemma A.3. Let f : R→ R with f(i) = ij/(i+ y)r+j and r = 1, j ≥ 0, and y > 0 does
not depend on i. The following function F fulfills F ′(i) = f(i):

F (i) = ln(i+ y) +
j∑
`=1

β`
y`

`(i+ y)`

where β` = (−1)`+1(j
`

)
for 1 ≤ ` ≤ j.

S. Albers and L. Ladewig 18:17

Proof. We need to show F ′(i) = f(i) and observe first that

F ′(i) = 1
i+ y

+
j∑
`=1

β`
−`y`

`(i+ y)`+1 = 1
i+ y

+
j∑
`=1

β`y
`−(i+ y)j−`

(i+ y)j+1

= 1
(i+ y)j+1

(
(i+ y)j +

j∑
`=1

β`y
`(−(i+ y)j−`)

)

and since β0 = (−1)0+1(j
0
)

= −1 we get further

F ′(i) = 1
(i+ y)j+1

j∑
`=0

β`y
`(−(i+ y)j−`) = 1

(i+ y)j+1

j∑
`=0

(−1)`+2
(
j

`

)
y`(i+ y)j−` .

Finally, note that (−1)`+2y` = (−y)`, thus by the binomial theorem the last sum evaluates
to ((i+ y) + (−y))j = ij which concludes the proof. J

I Lemma A.4. Let f : R→ R with f(i) = ij/(i+ y)r+j and j ≥ 0, r ≥ 2, and y > 0 does
not depend on i. The following function F fulfills F ′(i) = f(i):

F (i) = −
∑j
`=0 α`i

j−`y`

α0(r − 1)(i+ y)r+j−1 ,

where α` =
(
j+r−1
`+r−1

)
for 0 ≤ ` ≤ j.

Proof. Let G(i) and H(i) be the numerator and denominator of F (i). It holds that G′(i) =
−
∑j
`=0 α`(j − `)ij−`−1y` and H ′(i) = α0(r − 1)(r + j − 1)(i + y)r+j−2 = H(i)r(i) where

r(i) = r+j−1
i+y . In order to prove the claim, we show

G′(i)(i+ y)−G(i)(r + j − 1) = ijα0(r − 1) (9)

since then we have

F ′(i) = G′(i)H(i)−G(i)H ′(i)
H(i)2 = G′(i)−G(i)r(i)

H(i) = G′(i)−G(i)r(i)
α0(r−1)
i+y (i+ y)r+j

= (i+ y)(G′(i)−G(i)r(i))
α0(r − 1)(i+ y)r+j = (i+ y)G′(i)− (r + j − 1)G(i)

α0(r − 1)(i+ y)r+j

With Equation (9), the last term resolves to = ijα0(r−1)
α0(r−1)(i+y)r+j = f(i) . It remains to show

Equation (9):

G′(i)(i+ y)−G(i)(r + j − 1)

= −
(

j∑
`=0

α`(j − `)ij−`−1y`

)
(i+ y) +

(
j∑
`=0

α`i
j−`y`

)
(r + j − 1)

= −
(

j∑
`=0

α`(j − `)ij−`y`
)
−

(
j∑
`=0

α`(j − `)ij−`−1y`+1

)

+
(

j∑
`=0

α`i
j−`y`

)
(r + j − 1)

=
(

j∑
`=0

α`i
j−`y`(r − 1 + `)

)
−

(
j−1∑
`=0

α`(j − `)ij−`−1y`+1

)
.

ISAAC 2019

18:18 New Results for the k-Secretary Problem

Note that the first sum contains all powers of i from i0 to ij , while the latter sum only
powers from i0 to ij−1. Therefore, we can split up the part for ij from the first sum and
group equal powers of i to obtain

α0(r − 1)ij +
j∑
`=1

(α`(r − 1 + `)− α`−1(j − `+ 1)) ij−`y` .

The claim follows if we can show that the last sum evaluates to zero. This is true, since by
definition of α` it holds that

α`(r − 1 + `) =
(
j + r − 1
`+ r − 1

)
(r − 1 + `) = (j + r − 1)!

(`+ r − 1)!(j − `)! (r − 1 + `)

= (j + r − 1)!
(`+ r − 2)!(j − `+ 1)!

(j − `+ 1)
(j − `)! =

(
j + r − 1

(`− 1) + r − 1

)
(j−`+1) = α`−1(j−`+1) . J

S. Albers and L. Ladewig 18:19

Table 3 Optimal parameters and corresponding competitive ratios of single-ref for k ∈ [1..100].
For readibility, the numeric values are truncated after the fourth decimal place.

k r c competitive ratio

1 1 0.3678 0.3678
2 1 0.2545 0.4119
3 2 0.3475 0.4449
4 2 0.2928 0.4785
5 2 0.2525 0.4999
6 2 0.2217 0.5148
7 3 0.2800 0.5308
8 3 0.2549 0.5453
9 3 0.2338 0.5567
10 3 0.2159 0.5660
11 4 0.2570 0.5740
12 4 0.2410 0.5834
13 4 0.2267 0.5914
14 4 0.2140 0.5983
15 4 0.2026 0.6043
16 4 0.1924 0.6096
17 5 0.2231 0.6155
18 5 0.2133 0.6211
19 5 0.2042 0.6261
20 5 0.1959 0.6306
21 5 0.1882 0.6347
22 5 0.1811 0.6384
23 6 0.2054 0.6426
24 6 0.1985 0.6465
25 6 0.1919 0.6502
26 6 0.1858 0.6535
27 6 0.1800 0.6566
28 6 0.1746 0.6595
29 7 0.1947 0.6625
30 7 0.1893 0.6655
31 7 0.1842 0.6684
32 7 0.1793 0.6711
33 7 0.1747 0.6736
34 7 0.1703 0.6760
35 7 0.1662 0.6782
36 8 0.1830 0.6805
37 8 0.1788 0.6829
38 8 0.1748 0.6851
39 8 0.1710 0.6873
40 8 0.1673 0.6893
41 8 0.1638 0.6912
42 8 0.1605 0.6930
43 9 0.1750 0.6948
44 9 0.1716 0.6968
45 9 0.1683 0.6986
46 9 0.1651 0.7004
47 9 0.1621 0.7021
48 9 0.1592 0.7037
49 9 0.1563 0.7052
50 9 0.1536 0.7067

k r c competitive ratio

51 10 0.1662 0.7082
52 10 0.1635 0.7098
53 10 0.1608 0.7113
54 10 0.1582 0.7127
55 10 0.1557 0.7141
56 10 0.1532 0.7155
57 10 0.1509 0.7168
58 10 0.1486 0.7180
59 11 0.1597 0.7193
60 11 0.1574 0.7206
61 11 0.1551 0.7219
62 11 0.1529 0.7231
63 11 0.1508 0.7243
64 11 0.1487 0.7255
65 11 0.1467 0.7266
66 11 0.1447 0.7277
67 11 0.1428 0.7287
68 12 0.1527 0.7298
69 12 0.1508 0.7309
70 12 0.1489 0.7320
71 12 0.1470 0.7330
72 12 0.1452 0.7340
73 12 0.1434 0.7350
74 12 0.1417 0.7360
75 12 0.1400 0.7369
76 12 0.1384 0.7378
77 13 0.1473 0.7387
78 13 0.1456 0.7397
79 13 0.1440 0.7406
80 13 0.1424 0.7415
81 13 0.1408 0.7424
82 13 0.1393 0.7433
83 13 0.1378 0.7441
84 13 0.1363 0.7449
85 13 0.1349 0.7457
86 14 0.1429 0.7465
87 14 0.1415 0.7473
88 14 0.1400 0.7482
89 14 0.1386 0.7490
90 14 0.1372 0.7497
91 14 0.1359 0.7505
92 14 0.1346 0.7512
93 14 0.1333 0.7520
94 14 0.1320 0.7527
95 14 0.1307 0.7534
96 15 0.1381 0.7541
97 15 0.1368 0.7548
98 15 0.1356 0.7555
99 15 0.1343 0.7562
100 15 0.1331 0.7569

ISAAC 2019

Triangle Estimation Using Tripartite Independent
Set Queries
Anup Bhattacharya
Indian Statistical Institute, Kolkata, India

Arijit Bishnu
Indian Statistical Institute, Kolkata, India

Arijit Ghosh
Indian Statistical Institute, Kolkata, India

Gopinath Mishra
Indian Statistical Institute, Kolkata, India

Abstract
Estimating the number of triangles in a graph is one of the most fundamental problems in sublinear
algorithms. In this work, we provide an approximate triangle counting algorithm using only
polylogarithmic queries when the number of triangles on any edge in the graph is polylogarithmically
bounded. Our query oracle Tripartite Independent Set (TIS) takes three disjoint sets of vertices
A, B and C as input, and answers whether there exists a triangle having one endpoint in each of
these three sets. Our query model generally belongs to the class of group queries (Ron and Tsur,
ACM ToCT, 2016; Dell and Lapinskas, STOC 2018) and in particular is inspired by the Bipartite
Independent Set (BIS) query oracle of Beame et al. (ITCS 2018). We extend the algorithmic
framework of Beame et al., with TIS replacing BIS, for triangle counting using ideas from color
coding due to Alon et al. (J. ACM, 1995) and a concentration inequality for sums of random
variables with bounded dependency (Janson, Rand. Struct. Alg., 2004).

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Streaming, sublinear and near linear time algorithms; Mathematics of computing →
Probabilistic algorithms

Keywords and phrases Triangle estimation, query complexity, sublinear algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.19

Related Version A full version of the paper is available at https://arxiv.org/abs/1808.00691.

1 Introduction

Counting the number of triangles in a graph is a fundamental algorithmic problem in the
RAM model [4, 10, 22], streaming [1, 2, 5, 11, 13, 24, 25, 26, 27, 28, 33] and the query
model [17, 21]. In this work, we provide the first approximate triangle counting algorithm
using only polylogarithmic queries to a query oracle named Tripartite Independent Set (TIS).

Notations, the query model, the problem and the result
We denote the set {1, . . . , n} by [n]. Let V (G), E(G) and T (G) denote the set of vertices,
edges and triangles in the input graph G, respectively. Let t(G) = |T (G)|. The statement
A,B,C are disjoint, means A,B,C are pairwise disjoint. For three non-empty disjoint sets
A, B, C ⊆ V (G), G(A,B,C), termed as a tripartite subgraph of G, denotes the induced
subgraph of A∪B∪C in G minus the edges having both endpoints in A or B or C. t(A,B,C)
denotes the number of triangles in G(A,B,C). We use the triplet (a, b, c) to denote the
triangle having a, b, c as its vertices. Let ∆u denote the number of triangles having u as
one of its vertices. Let ∆(u,v) be the number of triangles having (u, v) as one of its edges

© Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 19; pp. 19:1–19:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2019.19
https://arxiv.org/abs/1808.00691
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Triangle Estimation Using Tripartite Independent Set Queries

and ∆E = max(u,v)∈E(G) ∆(u,v). For a set U , “U is COLORED with [n]”, means that each
member of U is assigned a color out of [n] colors independently and uniformly at random. Let
E[X] and V[X] denote the expectation and variance of a random variable X. For an event E ,
Ec denotes the complement of E . The statement “a is an 1± ε multiplicative approximation
of b” means |b− a| ≤ ε · b. Next, we describe the query oracle.

Tripartite independent set oracle (TIS). Given three non-empty disjoint subsets V1, V2, V3 ⊆
V (G) of a graph G, TIS query oracle answers “YES” if and only if t(V1, V2, V3) 6= 0.

Notice that the query oracle looks at only those triangles that have vertices in all of these
sets V1, V2, V3. The Triangle-Estimation problem is to report an 1 ± ε multiplicative
approximation of t(G) where the input is V (G), TIS oracle for graph G and ε ∈ (0, 1).

I Theorem 1. Let G be a graph with ∆E ≤ d, |V (G)| = n ≥ 64. For any ε > 0, Triangle-
Estimation can be solved using O

(
ε−12d12 log25 n

)
TIS queries with probability 1−O(n−2).

Note that the query complexity stated in Theorem 1 is poly(logn, 1
ε), even if d is O(logc n),

where c is a positive constant. We reiterate that the only bound we require is on the number
of triangles on an edge; neither do we require any bound on the maximum degree of the
graph, nor do we require any bound on the number of triangles incident on a vertex.

Query models and TIS

Query models for graphs are essentially of two types:

Local Queries: This query model was initiated by Feige [19] and Goldreich and Ron [20] and
used even recently by [17, 18]. The queries on the graphs are (i) degree query: the oracle
reports the degree of a vertex; (ii) neighbor query: the oracle reports the ith neighbor of
v, if it exists; and (iii) edge existence query: the oracle reports whether there exists an
edge between a given pair of vertices.

Group Queries or Subset queries and Subset samples: These queries were implicitly initi-
ated in the works of Stockmeyer [31, 32] and formalized by Ron and Tsur [29]. Group
queries can be viewed as a generalization of membership queries in sets. The essential
idea of the group queries is to estimate the size of an unknown set S ⊆ U by using a
YES/NO answer from the oracle to the existence of an intersection between sets S and
T ⊆ U ; and give a uniformly selected item of S ∩ T , if S ∩ T 6= ∅ in the subset sample
query. Subset sample queries are at least as powerful as group queries. The cut query by
Rubinstein et al. [30], though motivated by submodular function minimization problem,
can also be seen in the light of group queries – we seek the number of edges that intersect
both the vertex sets that form a cut. Choi and Kim [12] used a variation of group queries
for graph reconstruction. Dell and Lapinskas [14] essentially used this class of queries for
estimating the number of edges in a bipartite graph. Bipartite independent set (BIS)
queries for a graph, initiated by Beame et al. [6], can also be seen in the light of group
queries. It provides a YES/NO answer to the existence of an edge in E(G) that intersects
with both V1, V2 ⊂ V (G) of G, where V1 and V2 are disjoint. A subset sample version of
BIS oracle was used in [9].

In TIS, we seek a YES/NO answer about the existence of an intersection between the set
of triangles, that we want to estimate, and three disjoint sets of vertices. Thus TIS belongs
to the class of group queries, as does BIS. A bone of contention for any newly introduced

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 19:3

query oracle is its worth1. Beame et al. [6] had given a subjective justification in favor of
BIS to establish it as a query oracle. It is easy to verify that TIS, being in the same class of
group queries, have the interesting connections to group testing and computational geometry
as BIS. We provide justifications in favor of considering ∆E ≤ d in Appendix A. Intuitively,
TIS is to triangle counting what BIS is to edge estimation.

Prior works
Eden et al. [17] used Õ

(
|V (G)|
t(G)1/3 + min

{
|E(G)|3/2

t(G) , |E(G)|
})

2 local queries to estimate the
number of triangles. Their algorithmic results aided by an almost matching lower bound
have almost closed this line of study. Matching upper and lower bounds on k-clique counting
in G using local query model have also been reported [18]. A precursor to triangle estim-
ation in graphs is edge estimation. The number of edges in a graph can be estimated by
using Õ (n/

√
m) many degree and neighbor queries, and Ω (n/

√
m) queries are necessary to

estimate the number of edges even if we allow all the three local queries [20]. This result
would almost have closed the edge estimation problem but for having a relook at the problem
with stronger query models and hoping for polylogarithmic number of queries. Beame et
al. [6] precisely did that by estimating the number of edges in a graph using O

(
ε−4 log14 n

)
bipartite independent set (BIS) queries. Motivated by this result, we explore whether triangle
estimation can be solved using only polylogarithmic queries to TIS.

Organization of the paper
We give a broad overview of the algorithm in Section 2. Sections 3, 4 and 5 give the details of
sparsification, exact estimation and coarse estimation of the number of triangles, respectively.
The final algorithm is given in Section 6. Appendix A provides justifications in favor of TIS.
Appendix B has the probabilistic results used in this paper.

I Remark 1. Note that the Triangle-Estimation can also be thought of as Hyperedge
Estimation problem in a 3-uniform hypergrah. Very recently, Dell et al. [15] and Bhat-
tacharya et al. [8], independently, showed that the bound on ∆E is not necessary to solve
Triangle-Estimation by using polylogarithmic many TIS queries. Also, both Dell et
al. [15] and Bhattacharya et al. [8], independently, generalized our result to c-uniform
hypergraphs, where c ∈ N is a constant.

2 Overview of the algorithm

Our algorithmic framework is inspired by [6] but the detailed analysis is markedly different
using color coding due to Alon et al. [3] and a relatively new concentration inequality, due to
Janson [23], for handling sums of random variables with bounded dependency. Apart from
Lemmas 5 and 13, all other proofs require different ideas.

We feel that the analysis in [6] does not go through in our case because of a subtle
difference between counting the number of triangles and the number of edges in a graph. An
edge is an explicit structure, whereas, a triangle is an implicit structure – triangles (a, b, x),
(b, c, y) and (a, c, z) in G imply the existence of the triangle (a, b, c) in G.

1 See http://www.wisdom.weizmann.ac.il/~oded/MC/237.html for a comment on BIS.
2 Õ(·) hides a polynomial factor of logn and 1

ε , where ε ∈ (0, 1) is such that (1− ε)t ≤ t̂ ≤ (1 + ε)t; t̂ and
t denote the estimated and actual number of triangles in G, respectively.

ISAAC 2019

http://www.wisdom.weizmann.ac.il/~oded/MC/237.html

19:4 Triangle Estimation Using Tripartite Independent Set Queries

Yes

No

For each tripartite subgraph G(A,B,C)
check whether t(A,B,C) ≤ threshold ;

Compute t(A,B,C) if it is less than
the threshold and remove G(A,B,C).

Is there any tripartite
subgraph left?

No

Yes

Sparsify G such that the sparsified graph G′ is a
union of vertex disjoint tripartite subgraphs and a
proper scaling of t(G′) approximates t(G).

Compute t(A,B,C)

Is t(G) < threshold?

Terminate.

Start.

Compute t(G) exactly.Compute t(G) exactly.

subgraphs present large?
Is the number of tripartite

No

Yes

Sample a bounded number of
subgraphs such that a proper
weighted scaling of the number

is approximately same as that of
the number of triangles in the

of triangles in the subgraphs

original set of subgraphs.

Sample

For each subgraph G(A,B,C), use a coarse estimator

for t(A,B,C) that is correct upto O(log3 n) factor.

coarse estimator

For each subgraph G(A,B,C),

in H, formed formed by sparsification.
Replace G(A,B,C) by the tripartite subgraphs,

such that the sparsified graph H is a union of
vertex disjoint tripartite subgraphs and a proper
scaling of t(H) is t(A,B,C), approximately.

Sparsify G(A,B,C)

Sparsify G

Lemma 3

Lemma 3

Lemma 15

Lemma 7

Lemma 4 and 5

Lemma 2

Lemma 6

Figure 1 Flow chart of the algorithm. The highlighted texts indicate the basic building blocks of
the algorithm. We also indicate the corresponding lemmas that support the building blocks.

In Figure 1, we give a flowchart of the algorithm and show the corresponding lemmas
that support the steps of the algorithm. The main idea of our algorithm is as follows. We
can figure out for a given G, if the number of triangles t(G) is greater than or equal to a
threshold τ (Lemma 3). If t(G) < τ , i.e., G is sparse in triangles, we compute t(G) exactly
(Lemma 3). Otherwise, we sparsify G to get a disjoint union of tripartite subgraphs of
G that maintain t(G) up to a scaling factor (Lemma 2). For each tripartite subgraph, if
the subgraph is sparse (decided by Lemma 4), we count the number of triangles exactly
(Lemma 5). Otherwise, we again sparsify (Lemma 6). This repeated process of sparsification
may create a huge number of tripartite subgraphs. Counting the number of triangles in them
is managed by doing a coarse estimation (Lemma 7) and taking a sample of the subgraph

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 19:5

that maintains the number of triangles approximately. Each time we sparsify, we ensure that
the sum of the number of triangles in the subgraphs generated by sparsification is a constant
fraction of the number of triangles in the graph before sparsification, making the number of
iterations O(logn).

We sparsify G by considering the partition obtained when V (G) is COLORED with
[3k]. This sparsification is done such that: (i) the sparsified graph is a union of a set of
vertex disjoint tripartite subgraphs and (ii) a proper scaling of the number of triangles
in the sparsified graph is a good estimate of t(G) with high probability3. The proof of
the sparsification result stated next uses the method of averaged bounded differences and
Chernoff-Hoeffding type inequality in bounded dependency setting by Janson [23]. The
detailed proof is in Section 3. Recall that ∆E is the maximum number of triangles on a
particular edge.

I Lemma 2 (General Sparsification). Let k, d ∈ N. There exists a constant κ1 such that for
any graph G with ∆E ≤ d, if V1, . . . , V3k is a random partition of V (G) obtained by V (G)
being COLORED with [3k], then

P

(∣∣∣∣∣9k2

2

k∑
i=1

t(Vi, Vk+i, V2k+i)− t(G)

∣∣∣∣∣ > κ1dk
2
√
t(G) logn

)
≤ 2

n4 .

We apply the sparsification corresponding to Lemma 2 only when t(G) is above a threshold4
to ensure that the relative error is bounded. We can decide whether t(G) is less than the
threshold and if it is so, we compute the exact value of t(G), using the following lemma,
whose proof is inspired by color coding ideas [9] and given in Section 4.

I Lemma 3 (Exact Counting). There exists an algorithm that for any graph G and a threshold
parameter τ ∈ N, determines whether t(G) < τ using O(τ6 logn) TIS queries with probability
1− n−10. Moreover, the algorithm finds the exact value of t(G) if t(G) < τ .

Assume that t(G) is large 5 and G has undergone sparsification. We initialize a data structure
with a set of vertex disjoint tripartite graphs that are obtained after the sparsification step.
For each tripartite graph G(A,B,C) in the data structure, we check whether t(A,B,C) is
less than a threshold using the algorithm corresponding to Lemma 4. If it is less than a
threshold, we compute the exact value of t(A,B,C) using Lemma 5 and remove G(A,B,C)
from the data structure. The proofs of Lemma 4 and 5 are given in the full version [7].

I Lemma 4 (Threshold for Tripartite Graph). There exists a deterministic algorithm that
given any disjoint subsets A,B,C ⊂ V (G) of any graph G and a threshold parameter τ ∈ N,
can decide whether t(A,B,C) ≤ τ using O(τ logn) TIS queries.

I Lemma 5 (Exact Counting in Tripartite Graphs). There exists a deterministic algorithm
that given any disjoint subsets A,B,C ⊂ V (G) of any graph G, can determine the exact
value of t(A,B,C) using O(t(A,B,C) logn) TIS queries.

Now we are left with some tripartite graphs such that the number of triangles in each graph
is more than a threshold. If the number of such graphs is not large, then we sparsify each
tripartite graph G(A,B,C) in a fashion almost similar to the earlier sparsification. This

3 High probability means that the probability of success is at least 1− 1
nc for some constant c.

4 The threshold is a fixed polynomial in d, logn and 1
ε .5 Large refers to a fixed polynomial in d, logn and 1

ε

ISAAC 2019

19:6 Triangle Estimation Using Tripartite Independent Set Queries

sparsification result formally stated in the following Lemma, has a proof similar to Lemma 2.
We replace G(A,B,C) by a constant (say, k) 6 many tripartite subgraphs formed after
sparsification.

I Lemma 6 (Sparsification for Tripartite Graphs). Let k, d ∈ N. There exists a constant κ2
such that

P

(∣∣∣∣∣k2
k∑
i=1

t(Ai, Bi, Ci)− t(A,B,C)

∣∣∣∣∣ > κ2dk
2
√
t(G) logn

)
≤ 1
n8

where A, B and C are disjoint subsets of V (G) for any graph G with ∆E ≤ d, and A1, . . . , Ak,
B1, . . . , Bk and C1, . . . , Ck are the partitions of A,B,C formed uniformly at random, respect-
ively.

If we have a large number of vertex disjoint tripartite subgraphs of G and each subgraph
contains a large number of triangles, then we coarsely estimate the number of triangles in
each subgraph which is correct up to O(log3 n) factor by using the algorithm corresponding
to the following Lemma, whose proof is in Section 5. Our Coarse-Estimate algorithm is
similar in structure to the coarse estimation algorithm for edge estimation, but the analysis
involves sophisticated calculations.

I Lemma 7 (Coarse Estimation). There exists an algorithm that given disjoint subsets
A,B,C ⊂ V (G) of any graph G, returns an estimate t̂ satisfying

t(A,B,C)
64 logn ≤ t̂ ≤ 64t(A,B,C) log3 n

with probability 1− n−9. Moreover, the query complexity of the algorithm is O(log4 n).

After estimating the number of triangles in each subgraph coarsely, we generate a bounded
number of samples of the set of subgraphs using a sampling technique given by Beame et
al. [6]. The sampling maintains the triangle count approximately. The Lemma corresponding
to sampling is formally stated in Lemma 13 in Section 6. After getting the sample, we apply
the sparsification algorithm corresponding to Lemma 6 for each subgraph in the sample.

Now again, for each tripartite graph G(A,B,C), we check whether t(A,B,C) is less than
a threshold using the algorithm corresponding to Lemma 4. If yes, then we can compute the
exact value of t(A,B,C) using Lemma 5 and remove G(A,B,C) from the data structure.
Otherwise, we iterate on all the required steps discussed above as shown in Figure 1. Observe
that the query complexity of each iteration is polylogarithmic 7. Now, note that the number
of triangles reduces by a constant factor after each sparsification step. So, the number
of iterations is bounded by O(logn). Hence, the query complexity of our algorithm is
polylogarithmic. This completes the high level description of our algorithm.

6 In our algorithm, k is a constant. However, Lemma 6 holds for any k ∈ N.
7 Polylogarithmic refers to a polynomial in d, logn and 1

ε

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 19:7

3 Sparsification Lemma

In this Section, we prove Lemma 2. The proof of Lemma 6 is similar.

Proof of Lemma 2. V (G) is COLORED with [3k]. Let V1, . . . , V3k be the resulting partition
of V (G). Let Zi be the random variable that denotes the color assigned to the ith vertex. For
i ∈ [3k], π(i) is a set of three colors defined as follows: π(i) = {i, (1 + (i+k−1) mod 3k), (1 +
(i+ 2k − 1) mod 3k)}.

I Definition 8. A triangle (a, b, c) is said to be properly colored if there exists a bijection in
terms of coloring from {a, b, c} to π(i).

Let f(Z1, . . . , Zn) =
∑k
i=1 t(Vi, Vk+i, V2k+i). Note that f is the number of triangles that are

properly colored. The probability that a triangle is properly colored is 2
9k2 . So, E[f] = 2t(G)

9k2 .
Let us focus on the instance when vertices 1, . . . , t − 1 are already colored and we are

going to color vertex t. Let S` (Sr) be the set of triangles in G having t as one of the vertices
and other two vertices are from [t− 1] ([n] \ [t]). S`r be the set of triangles in G such that t
is a vertex and the second and third vertices are from [t− 1] and [n] \ [t], respectively.

Given that the vertex t is colored with color c ∈ [3k], let N c
` , N

c
r , N

c
`r be the random

variables that denote the number of triangles in S`, Sr and S`r that are properly colored,
respectively. Now, we can deduce the following about Etf , the difference in the conditional
expectation of the number of triangles that are properly colored whose tth vertex is (possibly)
differently colored, by considering the vertices in S`, Sr and S`r separately.

Etf = |E [f | Z1, . . . , Zt−1, Zt = at]− E [f | Z1, . . . , Zt−1, Zt = a′t]|

=
∣∣∣Nat

` −N
a′t
` + E

[
Nat
r −N

a′t
r

]
+ E

[
Nat
`r −N

a′t
`r

]∣∣∣
≤

∣∣∣Nat
` −N

a′t
`

∣∣∣+ E
[∣∣∣Nat

r −N
a′t
r

∣∣∣]+ E
[∣∣∣Nat

`r −N
a′t
`r

∣∣∣]
Now, consider the following claim, whose proof can be found in the full version [7].

B Claim 9. (a) P(| Nat
` −N

a′t
` |< 8

√
d∆t logn) ≥ 1− 4n−8;

(b) E[| Nat
r −N

a′t
r |] ≤

√
d∆t/k;

(c) E[| Nat
`r −N

a′t
`r |] < 6d

√
∆t logn. 8

Let ct = 15d
√

∆t logn. From the above claim, we have

Etf < 8
√
d∆t logn+

√
d∆t

k
+ 6d

√
∆t logn ≤ 15d

√
∆t logn = ct

with probability at least 1 − 4
n8 . Let B be the event that there exists t ∈ [n] such that

Etf > ct. By the union bound over all t ∈ [n], P(B) ≤ 4
n7 .

Using the method of averaged bounded difference [16] (See Lemma 15 in Appendix B),
we have

P (|f − E[f]| > δ + t(G)P(B)) ≤ e
−δ2/

n∑
t=1

c2
t

+ P(B).

8 Note that ∆t is the number of triangles having t as one of its vertices and we are not assuming any
bound on ∆t. We assume ∆E , that is number of triangles on any edge, is bounded.

ISAAC 2019

19:8 Triangle Estimation Using Tripartite Independent Set Queries

We set δ = 60d
√
t(G) logn. Observe that

n∑
t=1

c2t = 225d2 logn
n∑
t=1

∆t = 675d2t(G) logn.

Hence,

P
(∣∣∣∣f − 2t(G)

9k2

∣∣∣∣ > 60d
√
t(G) logn+ t(G)P(B)

)
≤ 1
n4 + 1

n7 ,

that is,

P
(∣∣∣∣9k2

2 f − t(G)
∣∣∣∣ > 270dk2

√
t(G) logn+ 9k2

2 · t(G)
n7

)
≤ 1
n4 + 1

n7 .

Since, 9k2

2 ·
t(G)
n7 < dk2

√
t(G) logn, we get

P
(∣∣∣∣9k2

2 f − t(G)
∣∣∣∣ > 271dk2

√
t(G) logn

)
≤ 2
n4 . J

4 Proof of the Lemmas corresponding to exact estimation

In this Section, we prove Lemma 3. The proofs of 4 and 5 can be found in the full version [7].

Proof of Lemma 3. We color V (G) with [100τ2] colors. Let h : V (G) → [100τ2] be the
coloring function and Vi = {v ∈ V (G) : h(v) = i}, i.e., the vertices with color i, where
i ∈ [100τ2]. Note that V1, . . . , V100τ2 forms a partition of V (G). We make TIS queries
with input Vi, Vj , Vk for each 1 ≤ i < j < k ≤ 100τ2. Observe that we make O(τ6) TIS
queries. We construct a 3-uniform hypergraph H, where U(H) = {V1, . . . , V100τ2} 9 and
(Vi, Vj , Vk) ∈ F(H) if and only if TIS oracle answers yes with Vi, Vj , Vk given as input.
We repeat the above procedure γ times, where γ = 50 logn. Let H1, . . . ,Hγ be the set of
corresponding hypergraphs and hi be the coloring function to form the hypergraph Hi, where
i ∈ [γ]. Then we compute A = max{|F(H1)| , . . . , |F(Hγ)|}. If A ≥ τ , we report t(G) ≥ τ .
Otherwise, we report A as t(G). Note that the total number of TIS queries is O(τ6 logn).
Now, we analyze the cases t(G) ≥ τ and t(G) < τ separately.

(i) t(G) ≥ τ : Consider a fixed set T of τ triangles. Let Tv be the set of vertices that is
present in some triangle in T . Observe that |Tv| ≤ 3τ . Let Ei be the event that the
vertices in Tv are uniquely colored by the function hi, i.e., Ei : hi(u) = hi(v) if and only
if u = v, where u, v ∈ Tv. First we prove that P(E) ≥ 9

10 by computing P(Eci).

P (Eci) ≤
∑

u,v∈Tv

P(hi(u) = hi(v)) ≤
∑

u,v∈Tv

1
100τ2 ≤

|Tv|2

100τ2 <
1
10 .

Let Propi be the property that for each triangle z ∈ T , there is a corresponding hyperedge
in F(Hi), where i ∈ [γ]. Specifically, for each triangle (a1, a2, a3) ∈ T there exists a
hyperedge (a′1, a′2, a′3) ∈ F(Hi) such that hi(aj) = hi(a′j) for each j ∈ [3]. Note that,
if Propi holds, then |F(Hi)| ≥ |T | ≥ τ . By the definition of TIS oracle, Propi holds
when the event Ei occurs, i.e., Propi holds with probability at least 9

10 . This implies,
with probability 9

10 , |F(Hi)| ≥ τ . Recall that A = max{|F(H1)| , . . . , |F(Hγ)|} and
γ = 50 logn. So, P(A < τ) =

(
1− 9

10
)50 logn ≤ 1

n10 . Hence, if t(G) ≥ τ , our algorithm
detects it with probability at least 1− 1

n10 .

9 U(H) and F(H) denote the set of vertices and hyperedges in a hypergraph H, respectively.

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 19:9

(ii) t(G) < τ : Let T be the set of all t(G) triangles in G and Tv be the set of vertices that
is present in some triangle in T . Observe that |Tv| ≤ 3 · t(G) < 3τ . Let Ei be the event
that the vertices in Tv are uniquely colored by the function hi, i.e., Ei : hi(u) = hi(v) if
and only if u = v, where u, v ∈ Tv. First we prove that P(Ei) ≥ 9

10 by computing P(Eci).

P (Eci) ≤
∑

u,v∈Tv

P(hi(u) = hi(v)) ≤
∑

u,v∈Tv

1
100τ2 ≤

|Tv|2

100τ2 <
1
10 .

Let Propi be the property that for each triangle z ∈ T , there is a corresponding
hyperedge in F(Hi), where i ∈ [γ]. Specifically, for each triangle (a1, a2, a3) ∈ T there
exists a hyperedge (a′1, a′2, a′3) ∈ F(Hi) such that hi(aj) = hi(a′j) for each j ∈ [3]. Note
that, if Propi holds, then |F(Hi)| = t(G). By the definition of TIS oracle, Propi
holds when the event Ei occurs, i.e., Propi holds with probability at least 9

10 . This
implies, with probability 9

10 , |F(Hi)| = t(G). Recall that A = max{|F(H1), . . . ,F(Hγ)|}
and γ = 50 logn. By the construction of Hi, |F(Hi)| ≤ t(G). So, A ≤ t(G) and
P(A 6= t(G)) = P(A < t(G)) ≤

(
1− 9

10
)50 logn ≤ 1

n10 . Hence, if t(G) < τ , our algorithm
outputs the exact value of t(G) with probability at least 1− 1

n10 . J

5 Proof of the Lemma corresponding to coarse estimation

We now prove Lemma 7. Algorithm 2 corresponds to Lemma 7. Algorithm 1 is a subroutine
in Algorithm 2. Algorithm 1 determines whether a given estimate t̂ is correct upto a O(log3 n)
factor. Lemmas 10 and 11 are intermediate results needed to prove Lemma 7.

Algorithm 1 Verify-Estimate (A,B,C, t̂).

Input: Three pairwise disjoint set A,B,C ⊆ V (G) and t̂.
Output: If t̂ is a good estimate, then Accept. Otherwise, Reject.

1 begin
2 for (i = 2 logn to 0) do
3 for (j = logn to 0) do
4 Find Aij ⊆ A, Bij ⊆ B, Cij ⊆ C by sampling each element of A, B and C,

respectively with probability min{ 2i
t̂
, 1}, min{ 2j

2i logn, 1}, 1
2j ,

respectively.
5 if (t(Aij , Bij , Cij) 6= 0) then
6 Accept
7 Reject

I Lemma 10. If t̂ ≥ 64t(A,B,C) log3 n, P(Verify-Estimate (A,B,C, t̂) accepts) ≤ 1
20 .

Proof. Let T (A,B,C) denote the set of triangles having vertices a ∈ A, b ∈ B and c ∈ C,
where A,B and C are disjoint subsets of V (G). For (a, b, c) ∈ T (A,B,C) such that a ∈ A, b ∈
B, c ∈ C, let Xij

(a,b,c) denote the indicator random variable such that Xij
(a,b,c) = 1 if and only if

(a, b, c) ∈ T (Aij , Bij , Cij) and Xij =
∑

(a,b,c)∈T (A,B,C)
Xij

(a,b,c). Note that t(Aij , Bij , Cij) = Xij .

(a, b, c) is present in T (Aij , Bij , Cij) if a ∈ Aij , b ∈ Bij and c ∈ Cij . So,

P
(
Xij

(a,b,c) = 1
)
≤ 2i

t̂
· 2j

2i logn · 1
2j = logn

t̂
and E [Xij] ≤

t(A,B,C)
t̂

logn.

ISAAC 2019

19:10 Triangle Estimation Using Tripartite Independent Set Queries

As Xij ≥ 0,

P (Xij 6= 0) = P(Xij ≥ 1) ≤ E [Xij] ≤
t(A,B,C)

t̂
logn.

Now using the fact that t̂ ≥ 64t(A,B,C) log3 n, we have P (Xij 6= 0) ≤ 1
64 log2 n

. Observe that
Verify-Estimate accepts if and only if there exists i, j ∈ {0, . . . , logn} such that Xij 6= 0.
Using the union bound, we get

P(Verify-Estimate accepts) ≤
∑

0≤i≤2 logn

∑
0≤j≤logn

P(Xij 6= 0)

≤ (2 logn+ 1)(logn+ 1)
32 log2 n

≤ 1
20 . J

I Lemma 11. If t̂ ≤ t(A,B,C)
32 logn , P(Verify-Estimate (A,B,C, t̂) accepts) ≥ 1

5 .

Proof. For p ∈ {0, . . . , 2 logn}, let Ap ⊆ A be the set of vertices such that for each a ∈ Ap,
the number of triangles of the form (a, b, c) with (b, c) ∈ B×C , lies between 2p and 2p+1− 1.

For a ∈ Ap and q ∈ {0, . . . , logn}, let Bpq(a) ⊆ B is the set of vertices such that for each
b ∈ B, the number of triangles of the form (a, b, c) with c ∈ C lies between 2q and 2q+1 − 1
We need the following Claim to proceed further.

B Claim 12.
(i) There exists p ∈ {0, . . . , 2 logn} such that |Ap| > t(A,B,C)

2p+1(2 logn+1) .
(ii) For each a ∈ Ap, there exists q ∈ {0, . . . , logn} such that |Bpq(a)| > 2p

2q+1(logn+1) .

Proof.
(i) Observe that t(A,B,C) =

∑2 logn
p=0 t(Ap, B,C) as the sum takes into account all incid-

ences of vertices in A. So, there exists p ∈ {0, . . . , 2 logn} such that t(Ap, B,C) ≥
t(A,B,C)
2 logn+1 . From the definition of Ap, t(Ap, B, C) < |Ap| · 2p+1. Hence, there exists
p ∈ {0, . . . , 2 logn} such that

|Ap| > t(Ap, B,C)
2p+1 ≥ t(A,B,C)

2p+1(2 logn+ 1) .

(ii) Observe that
∑logn
q=0 t({a}, Bpq(a), C) = t({a}, B, C). So, there exists q ∈ {0, . . . , logn}

such that t({a}, Bpq(a), C) ≥ t({a},B,C)
logn+1 . From the definition of Bpq(a),

t({a}, Bpq(a), C) < |Bpq(a)| · 2q+1. Hence, there exists q ∈ {0, . . . , logn} such that

|Bpq(a)| > t({a}, Bpq(a), C)
2q+1 ≥ t({a}, B,C)

2q+1(logn+ 1) ≥
2p

2q+1(logn+ 1) . C

We come back to the proof of Lemma 11. We will show that Verify-Estimate accepts with
probability at least 1

5 when loop executes for i = p, where p is such that |Ap| > t(A,B,C)
2p+1(2 logn+1) .

The existence of such a p is evident from (i) of Claim 12.
Recall that Apq ⊆ A,Bpq ⊆ B and Cpq ⊆ C are the samples obtained when the loop

variables i and j in Algorithm 1 attain values p and q, respectively. Observe that

P (Apq ∩Ap = ∅) ≤
(

1− 2p

t̂

)|Ap|
≤ e−

2p
t̂
|Ap| ≤ e−

2p
t̂

t(A,B,C)
2p+1 logn = e

− t(A,B,C)
2t̂(2 logn+1) .

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 19:11

Now using the fact that t̂ ≤ t(A,B,C)
32 logn and n ≥ 64,

P (Apq ∩Ap = ∅) ≤ 1
e6 .

Assume that Apq ∩ Ap 6= ∅ and a ∈ Apq ∩ Ap. By (ii) of Claim 12, there exists
q ∈ {0, . . . , logn}, such that Bpq(a) ≥ 2p

2q+1(logn+1) . Observe that we will be done, if we can
show that Verify-Estimate accepts when loop executes for i = p and j = q. Now,

P (Bpq ∩Bpq(a) = ∅ | Apq ∩Ap 6= ∅) ≤
(

1− 2q

2p logn
)|Bpq(a)|

≤ 1
e3/7 .

Assume that Apq ∩ Ap 6= ∅, Bpq ∩ Bpq(a) 6= ∅ and b ∈ Bpq ∩ Bpq(a). Let S be the set
such that (a, b, s) is a triangle in G for each s ∈ S. Note that |S| ≥ 2q. So,

P (Cpq ∩ S = ∅ | Apq ∩Ap 6= ∅ and Bpq ∩Bpq(a) 6= ∅) ≤
(

1− 1
2q

)2q

≤ 1
e
.

Observe that Verify-Estimate accepts if t(Apq, Bpq, Cpq) 6= 0. Also, t(Apq, Bpq, Cpq) 6= 0
if Apq ∩Ap 6= ∅, Bpq ∩Bpq(a) 6= ∅ and Cpq ∩ S 6= ∅. Hence,

P(Verify-Estimate accepts) ≥ P (Apq ∩Ap 6= ∅, Bpq ∩Bpq(a) 6= ∅ and Cpq ∩ S 6= ∅)
= P (Apq ∩Ap 6= ∅) · P (Bpq ∩Bpq(a) 6= ∅ | Apq ∩Ap 6= ∅)
· P (Cpq ∩ S 6= ∅ | Apq ∩Ap 6= ∅ and Bpq ∩Bpq(a) 6= ∅)

>

(
1− 1

e6

)(
1− 1

e3/7

)(
1− 1

e

)
>

1
5 . J

Algorithm 2 Coarse-Estimate (A,B,C).

Input: Three pairwise disjoint sets A,B,C ⊂ V (G).
Output: An estimate t̂ for t(A,B,C).

1 begin
2 for (t̂ = n3, n3/2, . . . , 1) do
3 Repeat Verify-Estimate (A,B,C, t̂) for Γ = 2000 logn times. If at least Γ

10
many Verify-Estimate accepts, then output t̂.

Proof of Lemma 7. Note that an execution of Coarse-Estimate for a particular t̂, repeats
Verify-Estimate for Γ = 2000 logn times and gives output t̂ if at least Γ

10 many Verify-
Estimate accepts. For a particular t̂, let Xi be the indicator random variable such that
Xi = 1 if and only if the ith execution of Verify-Estimate accepts. Also take X =

∑Γ
i=1Xi.

Coarse-Estimate gives output t̂ if X > Γ
10 .

Consider the execution of Coarse-Estimate for a particular t̂. If t̂ ≥ 32t(A,B,C) log3 n,
we first show that Coarse-Estimate accepts with probability 1− 1

n5 . Recall Lemma 10. If
t̂ ≥ 64t(A,B,C) log3 n, P(Xi = 1) ≤ 1

20 and hence E[X] ≤ Γ
20 . By using Chernoff-Hoeffding’s

inequality (See (i) of Lemma 17 in Appendix B),

P
(
X >

Γ
10

)
= P

(
X >

Γ
20 + Γ

20

)
≤ 1
n10 .

By using the union bound for all t̂, the probability that Coarse-Estimate outputs some
t̂ ≥ 16t(A,B,C) log3 n, is at most 3 logn

n10 .

ISAAC 2019

19:12 Triangle Estimation Using Tripartite Independent Set Queries

Now consider the instance when the for loop in Coarse-Estimate executes for a t̂
such that t̂ ≤ t(A,B,C)

32 logn . In this situation, P(Xi = 1) ≥ 1
5 . So, E[X] ≥ Γ

5 . By using
Chernoff-Hoeffding’s inequality (See (ii) of Lemma 17 in Appendix B),

P
(
X ≤ Γ

10

)
≤ P

(
X <

3Γ
20

)
= P

(
X <

Γ
5 −

Γ
20

)
≤ 1
n10 .

By using the union bound for all t̂, the probability that Coarse-Estimate outputs some
t̂ ≤ t(A,B,C)

16 logn , is at most 3 logn
n10 .

Observe that, Coarse-Estimate gives output t̂ that satisfies either t̂ ≥ 64t(A,B,C) log3 n

or t̂ ≤ t(A,B,C)
32 logn is at most 3 logn

n10 + 3 logn
n10 ≤ 1

n9 .
Putting everything together, Coarse-Estimate gives some t̂ as output with probability

at least 1− 1
n9 satisfying

t(A,B,C)
64 logn ≤ t̂ ≤ 64t(A,B,C) log3 n.

From the description of Verify-Estimate and Coarse-Estimate, the query complexity
of Verify-Estimate is O(log2 n) and Coarse-Estimate calls Verify-Estimate O(log2 n)
times. Hence, Coarse-Estimate makes O(log4 n) many queries. J

6 The final triangle estimation algorithm: Proof of Theorem 1

Now we design our algorithm for 1± ε multiplicative approximation of t(G). If ε ≤ d log2 n
n1/4 ,

we query for t({a}, {b}, {c}) for all distinct a, b, c ∈ V (G) and compute the exact value of
t(G). So, we assume that ε > d log2 n

n1/4 .
We build a data structure such that it maintains two things at any point of time. (i)

An accumulator ψ for the number of triangles. We initialize ψ = 0. (ii) A set of tuples
(A1, B1, C1, w1), . . . , (Aζ , Bζ , Cζ , wζ), where tuple (Ai, Bi, Ci) corresponds to the tripartite
subgraph G(Ai, Bi, Ci) and wi is the weight associated to G(Ai, Bi, Ci). Initially, there is no
tuple in our data structure. The algorithm will proceed as follows.
(1) (Exact Counting) Fix the threshold τ as 36κ2

1d
2 log4 n
ε2 . Decide whether t(G) < τ by

using the result of Lemma 3, where κ1 is the constant mentioned in Lemma 2. If yes, we
terminate by reporting the exact value of t(G). Otherwise, we go to Step-2. The query
complexity of Step-1 is O(τ6 logn) = O

(
d12 log25 n

ε12

)
.

(2) (General Sparsification) V (G) is COLORED with [3k] for k = 1. Let A,B,C be the
partition generated by the coloring of V (G). We initialize the data structure by setting
ψ = 0 and adding the tuple (A,B,C, 9/2) to the data structure. Note that no query is
required in this step. The constant 9/2 is obtained by putting k = 1 in Lemma 2.

(3) We repeat steps 4 to 7 until there is no tuple left in the data structure. We maintain an
invariant that the number of tuples stored in the data structure, is at most 10κ3 log16 n

ε2 ,
where κ3 is a constant to be fixed later.

(4) (Threshold for Tripartite Graph and Exact Counting in Tripartite Graphs)
For each tuple (A,B,C,w) in the data structure, we determine whether t(A,B,C) ≤
36κ2

2d
2 log4 n
ε2 , the threshold, by using the deterministic algorithm coresponding to Lemma 3

with O(d
2 log4 n
ε2 · logn) = O(d

2 log5 n
ε2) many queries, where κ2 is the constant mentioned in

Lemma 6. If yes, we find t(A,B,C) using O(d
2 log5 n
ε2) many queries and add w · t(A,B,C)

to ψ. We remove all (A,B,C)’s for which the algorithm found that t(A,B,C) is below
the threshold. As there are at most O

(
log16 n
ε2

)
many triples at any time, the number of

queries made in each iteration of the algorithm is O
(
d2 log5 n

ε2 · log16 n
ε2

)
= O

(
d2 log21 n

ε4

)
.

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 19:13

(5) Note that each tuple (A,B,C,w) in this step is such that t(A,B,C) > 36κ2
2d

2 log4 n
ε2 . Let

(A1, B1, C1, w1), . . . , (Ar, Br, Cr, wr) be the set of tuples stored at the current instant.
If r > 10κ3 log16 n

ε2 , we go to Step 6. Otherwise, we go to Step 7.
(6) (Coarse Estimation and Sampling) For each tuple (A,B,C,w) in the data structure,

we find an estimate t̂ such that t(A,B,C)
64 log3 n

< t̂ < 64t(A,B,C) log3 n. This can be done
due to Lemma 7 and the number of queries is O

(
log4 n

)
per tuple. As the algorithm

executes the current step, the number of tuples in our data structure is large. We take
a sample from the set of tuples such that the sample maintains the required estimate
approximately by using Lemma 13, that follows from a Lemma by Beame et al. [6]. The
original statement of Beame et al. is given in Lemma 20 in Appendix B.
I Lemma 13 ([6]). Let (A1, B1, C1, w1), . . . , (Ar, Br, Cr, wr) be the tuples present in
the data structure and ei be the corresponding coarse estimation for t(Ai, Bi, Ci), i ∈
[r], such that (i) wi, ei ≥ 1,∀i ∈ [r]; (ii) ei

ρ ≤ t(Ai, Bi, Ci) ≤ eiρ for some ρ >

0 and ∀ i ∈ [r]; and (iii)
∑r
i=1 wi · t(Ai, Bi, Ci) ≤ M . Note that the exact val-

ues t(Ai, Bi, Ci)’s are not known to us. Then there exists an algorithm that finds
(A′1, B′1, C ′1, w′1), . . . , (A′s, B′s, C ′s, w′s) such that all of the above three conditions hold

and
∣∣∣∣ s∑
i=1

w′i · t(A′i, B′i, C ′i)−
r∑
i=1

wi · t(Ai, Bi, Ci)
∣∣∣∣ ≤ λS with probability 1 − δ; where

S =
∑r
i=1 wi · t(Ai, Bi, Ci) and λ, δ > 0. Also, s = O

(
λ−2ρ4 logM

(
log logM + log 1

δ

))
.

We use the algorithm corresponding to Lemma 13 with λ = ε
6 logn , ρ = 64 log3 n

and δ = 1
n10 to find a new set of tuples (A′1, B′1, C ′1, w′1), . . . , (A′s, B′s, C ′s, w′s) such that

|S −
∑s
i=1 w

′
it(A′, B′, C ′)| ≤ λS with probability 1− 1

n10 , where S =
∑r
i=1 wit(Ai, Bi, Ci)

and s = κ3 log16 n
ε2 for some constant κ3 > 0. This κ3 is same as the one mentioned in

Step 3. No query is required to exucute the algorithm of Lemma 13. Recall that the
number of tuples present at any time is O

(
log16 n
ε2

)
. Hence, the number of queries in

this step in each iteration, is O(log16 n
ε2 · log4 n) = O(log20 n

ε2).
(7) (Sparsification for Tripartite Graphs) We partition each of A,B and C into 3 parts

uniformly at random. Let A = U1] U2] U3; V = V1] V2] V3 and W = W1]W2]W3.
We delete (A,B,C,w) from the data structure and add (Ui, Vi,Wi, 9w) for each i ∈ [3]
to our data structure. Note that no query is made in this step.

(8) Report ψ as the estimate for the number of triangles in G, when no tuples are left.

First, we prove that the above algorithm produces a (1± ε) multiplicative approximation
to t(G) for any ε > 0 with high probability. If t(G) ≤ 36κ2

1d
2 log4 n
ε2 , then the algorithm

terminates in Step-1 and reports the exact number of triangles with probability 1− 1
n10 by

Lemma 3. Otherwise, the algorithm proceeds to Step-2. In Step-2, the algorithm colors V (G)
using three colors and incurs a multiplicative error of 1± ε0 to t(G), where ε0 = κ1d logn√

t(G)
. As

t(G) > 36κ2
1d

2 log4 n
ε2 and n ≥ 64, ε0 ≤ λ = ε

6 logn . Note that the algorithm possibly performs
Step-4 to Step-7 multiple times, but not more than O(logn) times, as explained below.

Let (A1, B1, C1, w1), . . . , (Aζ , Bζ , Cζ , wζ) are the set of tuples present in the data structure
currently. We define

∑ζ
i=1 t(Ai, Bi, Ci) as the number of active triangles. Let Activei be

the number of triangles that are active in the ith iteration. Note that Active1 ≤ t(G) ≤ n3.
By Lemma 6 and Step-7, observe that Activei+1 ≤ Activei

2 . So, after 3 logn many iterations
there will be at most constant number of active triangles and then we can compute the exact
number of active triangles and add it to ψ. In each iteration, there can be a multiplicative
error of 1 ± λ in Step-5 and 1 ± ε0 due to Step-4. So, using the fact that ε0 ≤ λ, the
multiplicative approximation factor lies between (1 − λ)3 logn+1 and (1 + λ)3 logn+1. As
λ = ε

6 logn , the required approximation factor is 1± ε.

ISAAC 2019

19:14 Triangle Estimation Using Tripartite Independent Set Queries

The query complexity of Step 1 is O(ε−12d12 log25 n). The query complexity of Steps 4 to
6 is O

(
ε−4 log21 n

)
in each iteration and the total number of iterations is O(logn). Hence,

the total query complexity of the algorithm is O(ε−12d12 log25 n).
Now, we bound the failure probability of the algorithm. The algorithm can fail in Step-1

with probability at most 1
n10 , Step-2 with probability at most 2

n4 , Step-6 with probability
at most 10κ3 log16 n

ε4 · 1
n9 + 1

n10 , and Step-7 with probability at most 10κ3 log16 n
ε4 · 1

n8 . As the
algorithm might execute Steps 4 to 6 for 3 logn times, the total failure probability is bounded
by 1

n10 + 2
n4 + 3 logn

(
10κ3 log16 n

ε4 · 1
n8 + 10κ3 log16 n

ε4 · 1
n9 + 1

n10

)
≤ c

n2 . Note that the above

inequality holds because ε > d log2 n
n1/4 and n ≥ 64.

References

1 Nesreen K Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. Graph sample
and hold: A framework for big-graph analytics. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1446–1455. ACM,
2014.

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners,
and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on
Principles of Database Systems, pages 5–14. ACM, 2012.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
4 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.
5 Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algorithms, with

an application to counting triangles in graphs. In Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 623–632. Society for Industrial and Applied
Mathematics, 2002.

6 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,
and Makrand Sinha. Edge Estimation with Independent Set Oracles. In 9th Innovations in
Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA,
USA, pages 38:1–38:21, 2018. doi:10.4230/LIPIcs.ITCS.2018.38.

7 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Triangle Estimation
using Tripartite Independent Set Queries. CoRR, abs/1808.00691, 2018. arXiv:1808.00691.

8 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Hyperedge Estimation
using Polylogarithmic Subset Queries. arXiv preprint, 2019. arXiv:1908.04196.

9 Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh. Paramet-
erized Query Complexity of Hitting Set Using Stability of Sunflowers. In 29th International
Symposium on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi,
Yilan, Taiwan, pages 25:1–25:12, 2018.

10 Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing
triangles. In International Colloquium on Automata, Languages, and Programming, pages
223–234. Springer, 2014.

11 Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 253–262.
ACM, 2006.

12 Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding graphs.
Artificial Intelligence, 174(9-10):551–569, 2010.

13 Graham Cormode and Hossein Jowhari. A second look at counting triangles in graph streams
(corrected). Theoretical Computer Science, 683:22–30, 2017.

https://doi.org/10.4230/LIPIcs.ITCS.2018.38
http://arxiv.org/abs/1808.00691
http://arxiv.org/abs/1908.04196

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 19:15

14 Holger Dell and John Lapinskas. Fine-grained reductions from approximate counting to decision.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
281–288. ACM, 2018.

15 Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting and sampling small
witnesses using a colourful decision oracle. arXiv preprint, 2019. arXiv:1907.04826.

16 Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

17 Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles in
sublinear time. SIAM Journal on Computing, 46(5):1603–1646, 2017.

18 Talya Eden, Dana Ron, and C Seshadhri. On approximating the number of k-cliques in
sublinear time. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 722–734. ACM, 2018.

19 Uriel Feige. On sums of independent random variables with unbounded variance and estimating
the average degree in a graph. SIAM Journal on Computing, 35(4):964–984, 2006.

20 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random
Structures & Algorithms, 32(4):473–493, 2008.

21 Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small subgraphs in
sublinear-time. SIAM Journal on Discrete Mathematics, 25(3):1365–1411, 2011.

22 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on
Computing, 7(4):413–423, 1978.

23 Svante Janson. Large deviations for sums of partly dependent random variables. Random
Structures & Algorithms, 24(3):234–248, 2004.

24 Madhav Jha, Comandur Seshadhri, and Ali Pinar. A space efficient streaming algorithm
for triangle counting using the birthday paradox. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 589–597. ACM, 2013.

25 Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in
graphs. In International Computing and Combinatorics Conference, pages 710–716. Springer,
2005.

26 John Kallaugher and Eric Price. A hybrid sampling scheme for triangle counting. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1778–1797.
Society for Industrial and Applied Mathematics, 2017.

27 Daniel M Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary subgraphs
in data streams. In International Colloquium on Automata, Languages, and Programming,
pages 598–609. Springer, 2012.

28 A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting and
Sampling Triangles from a Graph Stream. PVLDB, 6(14):1870–1881, 2013.

29 Dana Ron and Gilad Tsur. The power of an example: Hidden set size approximation using
group queries and conditional sampling. ACM Transactions on Computation Theory (TOCT),
8(4):15, 2016.

30 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing Exact Minimum
Cuts Without Knowing the Graph. In 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 39:1–39:16, 2018.

31 Larry Stockmeyer. The complexity of approximate counting. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 118–126. ACM, 1983.

32 Larry Stockmeyer. On approximation algorithms for# P. SIAM Journal on Computing,
14(4):849–861, 1985.

33 Kanat Tangwongsan, Aduri Pavan, and Srikanta Tirthapura. Parallel triangle counting in
massive streaming graphs. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, pages 781–786. ACM, 2013.

ISAAC 2019

http://arxiv.org/abs/1907.04826

19:16 Triangle Estimation Using Tripartite Independent Set Queries

A Scenario where ∆E is bounded

In this Section, we discuss some scenarios where the number of triangles sharing an edge is
bounded. An obvious example for such graphs are graphs with bounded degree. We explore
some other scenarios.
(i) Consider a graph G(P,E) such that the vertex set P corresponds to a subset of R2 and

(u, v) ∈ E if and only if the distance between u and v is exactly 1. The objective is to
compute the number of triples of points from P forming an equilateral triangle having
side length 1, that is, the number of triangles in G. Observe that there can be at most
two triangles sharing an edge in G, that is, ∆E ≤ 2.

(ii) Consider a graph G(P,E) such that the vertex set P corresponds to a set of points
inside an N ×N square in R2 and (u, v) ∈ E if and only if the distance between u and
v is at most 1. The objective is to compute the number of triples of points from P

forming a triangle having each side length at most 1, that is, the number of triangles in
G. For large enough N there can be bounded number of triangles sharing an edge in G
with high probability.

(iii) Consider a graph G(V,E) representing a community sharing information. Each node
has some information and two nodes are connected if and only if there exists an edge
between the nodes. Nodes increase their information by sharing information among
their neighbors in G. Observe that the information of a node is derived by the set of
neighbors. So, if two nodes have large number of common neighbors in G, then there is
no need of an edge between the two nodes. So, the number of triangles on any edge in
the graph is bounded. The objective is to compute the number of triangles in G, that
is, the number of triples of nodes in G such that each pair of vertices are connected.

In (i) and (ii), TIS oracle can be implemented very efficiently. We can report a TIS query
by just running a standard plane sweep algorithm in Computational Geometry that takes
O(n logn) running time.

B Some probability results

I Proposition 14. Let X be a random variable. Then E[X] ≤
√
E[X2].

I Lemma 15 (Theorem 7.1 from [16]). Let f be a function of n random variables X1, . . . , Xn

such that
(i) Each Xi takes values from a set Ai,
(ii) E[f] is bounded, i.e., 0 ≤ E[f] ≤M ,
(iii) B be any event satisfying the following for each i ∈ [n].

|E[f | X1, . . . , Xi−1, Xi = ai,Bc]− E[f | X1, . . . , Xi−1, Xi = a′i,Bc]| ≤ ci.

Then for any δ ≥ 0,

P (|f − E[f]| > δ +MP(B)) ≤ e
−δ2/

n∑
i=1

c2
i

+ P(B).

I Lemma 16 (Hoeffding’s inequality [16]). Let X1, . . . , Xn be n independent random variables
such that Xi ∈ [ai, bi]. Then for X =

n∑
i=1

Xi, the following is true for any δ > 0.

P (|X − E[X]| ≥ δ) ≤ 2 · e
−2δ2/

n∑
i=1

(bi−ai)2

.

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 19:17

I Lemma 17 (Chernoff-Hoeffding bound [16]). Let X1, . . . , Xn be independent random vari-
ables such that Xi ∈ [0, 1]. For X =

n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the followings hold for any

δ > 0.
(i) P (X > µh + δ) ≤ e−2δ2/n.
(ii) P (X < µl − δ) ≤ e−2δ2/n.

I Lemma 18 (Theorem 3.2 from [16]). Let X1, . . . , Xn be random variables such that ai ≤
Xi ≤ bi and X =

n∑
i=1

Xi. Let D be the dependent graph, where V (D) = {X1, . . . , Xn} and

E(D) = {(Xi, Xj) : Xi and Xj are dependent}. Then for any δ > 0,

P(|X − E[X]| ≥ δ) ≤ 2e
−2δ2/χ∗(D)

n∑
i=1

(bi−ai)2

,

where χ∗(D) denotes the fractional chromatic number of D.

The following lemma directly follows from Lemma 18.

I Lemma 19. Let X1, . . . , Xn be indicator random variables such that there are at most d
many Xj’s on which an Xi depends and X =

n∑
i=1

Xi. Then for any δ > 0,

P(|X − E[X]| ≥ δ) ≤ 2e−2δ2/(d+1)n.

I Lemma 20 (Importance sampling [6]). Let (D1, w1, e1), . . . , (Dr, wr, er) are the given
structures and each Di has an associated weight c(Di) satisfying
(i) wi, ei ≥ 1,∀i ∈ [r];
(ii) ei

ρ ≤ c(Di) ≤ eiρ for some ρ > 0 and all i ∈ [r]; and

(iii)
r∑
i=1

wi · c(Di) ≤M .

Note that the exact values c(Di)’s are not known to us. Then there exists an algorithm
that finds (D′1, w′1, e′1), . . . , (D′s, w′s, e′s) such that all of the above three conditions hold and∣∣∣∣ t∑
i=1

w′i · c(D′i)−
r∑
i=1

wi · c(Di)
∣∣∣∣ ≤ λS with probability 1 − δ; where S =

r∑
i=1

wi · c(Di) and

λ, δ > 0. The time complexity of the algorithm is O(r) and s = O
(
ρ4 logM(log logM+log 1

δ)
λ2

)
.

ISAAC 2019

Step-By-Step Community Detection in
Volume-Regular Graphs
Luca Becchetti
Sapienza Università di Roma, Italy
https://www.diag.uniroma1.it/~becchett
becchetti@diag.uniroma1.it

Emilio Cruciani
Gran Sasso Science Institute, L’Aquila, Italy
https://sites.google.com/view/emiliocruciani
emilio.cruciani@gssi.it

Francesco Pasquale
Università di Roma “Tor Vergata”, Italy
https://www.mat.uniroma2.it/~pasquale
pasquale@mat.uniroma2.it

Sara Rizzo
Gran Sasso Science Institute, L’Aquila, Italy
https://sites.google.com/view/sararizzo
sara.rizzo@gssi.it

Abstract
Spectral techniques have proved amongst the most effective approaches to graph clustering. However,
in general they require explicit computation of the main eigenvectors of a suitable matrix (usually
the Laplacian matrix of the graph).

Recent work (e.g., Becchetti et al., SODA 2017) suggests that observing the temporal evolution
of the power method applied to an initial random vector may, at least in some cases, provide enough
information on the space spanned by the first two eigenvectors, so as to allow recovery of a hidden
partition without explicit eigenvector computations. While the results of Becchetti et al. apply
to perfectly balanced partitions and/or graphs that exhibit very strong forms of regularity, we
extend their approach to graphs containing a hidden k partition and characterized by a milder
form of volume-regularity. We show that the class of k-volume regular graphs is the largest class of
undirected (possibly weighted) graphs whose transition matrix admits k “stepwise” eigenvectors (i.e.,
vectors that are constant over each set of the hidden partition). To obtain this result, we highlight a
connection between volume regularity and lumpability of Markov chains. Moreover, we prove that if
the stepwise eigenvectors are those associated to the first k eigenvalues and the gap between the
k-th and the (k+1)-th eigenvalues is sufficiently large, the Averaging dynamics of Becchetti et al.
recovers the underlying community structure of the graph in logarithmic time, with high probability.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Community detection, Distributed algorithms, Dynamics, Markov chains,
Spectral analysis

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.20

Related Version https://arxiv.org/abs/1907.07149

Funding Luca Becchetti: Partially supported by ERC Advanced Grant 788893 AMDROMA “Algo-
rithmic and Mechanism Design Research in Online Markets” and MIUR PRIN project ALGADIMAR
“Algorithms, Games, and Digital Markets”.
Francesco Pasquale: Partially supported by the University of “Tor Vergata” under research program
“Mission: Sustainability” project ISIDE (grant no. E81I18000110005).

© Luca Becchetti, Emilio Cruciani, Francesco Pasquale, and Sara Rizzo;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 20; pp. 20:1–20:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4941-0532
https://www.diag.uniroma1.it/~becchett
mailto:becchetti@diag.uniroma1.it
https://orcid.org/0000-0002-4744-5635
https://sites.google.com/view/emiliocruciani
mailto:emilio.cruciani@gssi.it
https://orcid.org/0000-0003-1595-5291
https://www.mat.uniroma2.it/~pasquale
mailto:pasquale@mat.uniroma2.it
https://orcid.org/0000-0002-5551-8216
https://sites.google.com/view/sararizzo
mailto:sara.rizzo@gssi.it
https://doi.org/10.4230/LIPIcs.ISAAC.2019.20
https://arxiv.org/abs/1907.07149
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Step-By-Step Community Detection in Volume-Regular Graphs

1 Introduction

Clustering a graph in a way that reflects underlying community structure is a very important
mining task [18]. Informally speaking, in the classical setting, we are given a possibly
weighted graph G and an integer k. Our goal is to partition the vertex set of G = (V,E)
into k disjoint subsets, so that the k induced subgraphs have high inner and low outer
expansion. Spectral techniques have proved amongst the most effective approaches to graph
clustering [37, 41, 45]. The general approach to spectral graph clustering [45] normally
implies embedding the vertices of G into the k-dimensional subspace spanned by the main k
eigenvectors of a matrix defined in terms of G’s adjacency matrix, typically its (normalized)
Laplacian. Intuitively, one expects that, for a well-clustered graph with k communities, the
profiles of the first k eigenvectors are correlated with the underlying community structure
of G. Recent work has provided theoretical support to this approach. In particular, [27]
showed that, given the first k orthonormal eigenvectors of the normalized Laplacian, it
is possible to produce a k-partition of the vertex set, corresponding to k suitably-defined
indicator vectors, such that the associated values of the Rayleigh quotient are relatively
small. More recently, [38] proved that, under suitable hypotheses on the spectral gap between
the k-th and (k+1)-th eigenvalue of the normalized Laplacian of G, the span of the first k
eigenvectors largely overlaps with the span of {D 1

2 g1, . . . , D
1
2 gk}, where D is the diagonal

degree matrix of G, while the gi’s are indicator vectors describing a k-way partition {Si}ki=1
of V such that, for every i, the conductance of Si is at most the k-way expansion constant
ρ(k) [27]. Note that, if v is an eigenvector associated to the i-th smallest eigenvalue of the
normalized Laplacian, D− 1

2v is an eigenvector corresponding to the i-th largest eigenvalue of
the random walk’s transition matrix associated to G. Hence, when G is well-clustered, one
might reasonably expect the first k eigenvectors of P to exhibit almost-“stepwise” profiles
reflecting G’s underlying community structure. The aforementioned spectral approaches
require explicit computation of the k main eigenvectors of a (generally symmetric) matrix.

In [6], the authors considered the case k = 2 for which they proposed the following
distributed algorithm (Averaging dynamics, Algorithm 1): “At the outset, every node
picks an initial value, independently and uniformly at random in {−1, 1}; then, in each
synchronous round, every node updates its value to the average of those held by its neighbors.
A node also tags itself blue if the last update increased its value, red otherwise” [6]. The
authors showed that, under a variety of graph models exhibiting sparse balanced cuts,
including the stochastic block model [20], the process resulting from the above simple local
rule converges, in logarithmic time, to a coloring that, depending on the model, exactly or
approximately reflects the underlying cut. They further elaborated on how to extend the
proposed approach to the case of multiple communities, providing an analysis for a strongly
regular version of the stochastic block model with multiple communities. While results like
those presented in [27, 38] provide further theoretical justification for spectral clustering,
the approach proposed in [6] suggests that observing the temporal evolution of the power
method applied to an initial random vector may, at least in some cases, provide equivalent
information, without requiring explicit eigenvector computations.

1.1 Our contributions
The goal of this work is to take a further step in this direction by considering a more general
class of graphs, even if still relatively “regular”, than the one considered in [6]. The analysis
of the Averaging dynamics on this class is considerably harder, but it is likely to provide
insights into the challenges of analyzing the general case, without all the intricacies of the
latter. Our contribution is as follows:

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:3

We define the class of k-volume-regular graphs. This class of edge-weighted graphs
includes those considered in [6] and it is the largest class of undirected, possibly weighted
graphs that admit k “stepwise” eigenvectors (i.e., having constant values over the k
steps that identify the hidden partition). This result uses a connection between volume
regularity and lumpability of Markov chains [22, 44].
If the stepwise eigenvectors are those associated to the first k eigenvalues and the gap
between the k-th and the (k+1)-th eigenvalues is sufficiently large, we show that running
the Averaging dynamics for a suitable number of steps allows recovery of the underlying
community structure of the graph, with high probability.1 To prove this, we provide a
family of mutually orthonormal vectors which, when the graph is volume-regular, span
the eigenspace of the main k eigenvectors of the normalized adjacency matrix of the graph.
It should be noted that the first and second of these vectors are respectively the main
eigenvector and the Fiedler vector [17] associated to the normalized adjacency matrix.
While the results of [6] apply when the underlying communities are of the same size, our
results do not require this assumption and they apply to weighted graphs. It should also
be noted that volume regularity is a weaker notion than regularity of the graph.
We further show that variants of the Averaging dynamics (and/or its labeling rule) can
address different problems (e.g., identifying bipartiteness) and/or other graph classes.

We finally note that the overall algorithm we consider can be viewed as a fully decentralized,
synchronous algorithm that works in anonymous networks,2 with a completely local clustering
criterion, though it cannot be considered a dynamics in the sense of [6] since it requires a
bound on the number of nodes in the underlying network.

1.2 Further related work
We briefly discuss further work that bears some relationship to this paper, either because it
adopts simple and/or decentralized heuristics to uncover community structure, or because it
relies on the use of spectral techniques.

Decentralized heuristics for block reconstruction. Label propagation algorithms [39] are
dynamics based on majority updating rules [3] and have been applied for detecting commu-
nities in complex networks. Several papers present experimental results for such protocols
on specific classes of clustered graphs [4, 29, 39]. The only available rigorous analysis of
a label propagation algorithm on planted partition graphs is the one presented in [24],
where the authors analyze a label propagation algorithm on G2n,p,q graphs in the case of
dense topologies. In particular, their analysis considers the case where p = Ω(1/n 1

4−ε) and
q = O(p2), a parameter range in which very dense clusters of constant diameter separated
by a sparse cut occur w.h.p. In this setting, characterized by a polynomial gap between p
and q, simple combinatorial and concentration arguments show that the protocol converges
in constant expected time. A logarithmic bound for sparser topologies is conjectured in [24].

Following [6], a number of recent papers analyze simple distributed algorithms for
community detection that rely on elementary dynamics. In the Averaging dynamics
considered in this paper, every node communicates in parallel with all its neighbors in each
round. While this might be too expensive in scenarios characterized by dense topologies, it is

1 An event En holds with high probability (w.h.p.) if P (En) = 1−O(n−γ), for some constant γ > 0.
2 Nodes do not possess distinguished identities.

ISAAC 2019

20:4 Step-By-Step Community Detection in Volume-Regular Graphs

simply infeasible in other settings (for instance, when links represent opportunistic meetings
that occur asynchronously). Motivated by similar considerations, a first line of follow-up
work considered “sparsified”, asynchronous variants of the Averaging dynamics [5, 31, 43].

Another interesting direction is the rigorous analysis of well-known (non-linear) dynamics
based on majority rules on graphs that exhibit community structure. In [12], Cruciani et
al. consider the 2-Choices dynamics where, in each round, every node picks two random
neighbors and updates its value to the most frequent among its value and those held by its
sampled neighbors. They show that if the underlying graph has a suitable core-periphery
structure and the process starts in a configuration where nodes in core and periphery have
different states, the system either rapidly converges to the core’s state or reaches a metastable
regime that reflects the underlying graph structure. Similar results have been also obtained
for clustered regular graphs with dense communities in [13], where the 2-Choices dynamics
is proposed as a distributed algorithm for community detection.

Although based on the Averaging dynamics and thus extremely simple and fully
decentralized, the algorithm we consider in this paper is not itself a dynamics in the sense
proposed in [6], since its clustering criterion is applied within a time window, which in turn
requires (at least approximate) knowledge of the network size.

Because of their relevance for the reconstruction problem, we also briefly discuss the class
of belief propagation algorithms, best known as message-passing algorithms for performing
inference in graphical models [30]. Though not a dynamics, belief propagation is still a
simple approach. Moreover, there is non-rigorous, strong supporting evidence that some
belief propagation algorithms might be optimal for the reconstruction problem [14]. A
rigorous analysis is a major challenge; in particular, convergence to the correct value of belief
propagation is far from being fully-understood on graphs which are not trees [34, 46]. As we
discuss in the next subsection, more complex algorithms inspired by belief propagation have
been rigorously shown to perform reconstruction optimally.

General algorithms for block reconstruction. Several algorithms for community detection
are spectral: They typically consider the eigenvector associated to the second largest eigenvalue
of the adjacency matrix A of G, or the eigenvector corresponding to the largest eigenvalue
of the matrix A− d

nJ [7, 10, 11, 32],3 since these are correlated with the hidden partition.
More recently spectral algorithms have been proposed [2, 8, 11, 25, 36, 38] that find a weak
reconstruction even in the sparse, tight regime.

Interestingly, spectral algorithms turn out to be a feasible approach also in distributed
settings. In particular, Kempe and McSherry [23] show that eigenvalue computations can be
performed in a distributed fashion, yielding distributed algorithms for community detection
under various models, including the stochastic block model. However, their algorithm does
not match any simple decentralized computing model. In particular, the algorithm of Kempe
and McSherry as well as any distributed version of the above mentioned centralized algorithms
are neither dynamics, nor do they correspond to the notion of light-weight algorithm of
Hassin and Peleg [19]. Moreover, the mixing time of the simple random walk on the graph is
a bottleneck for the distributed algorithm of Kempe and McSherry and for any algorithm
that performs community detection in a graph G by employing the power method or the
Lanczos method [26] as a subroutine. This is not the case for the Averaging dynamics,
since it removes the component of the state in the span of the main eigenvector.

3 A is the adjacency matrix of G, J is the matrix having all entries equal to 1, d is the average degree,
and n is the number of vertices.

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:5

In general, the reconstruction problem has been studied extensively using a multiplicity of
techniques, which include combinatorial algorithms [15], belief propagation [14] and variants
of it [35], spectral-based techniques [11, 32], Metropolis approaches [21], and semidefinite
programming [1], among others.

1.3 Roadmap

The rest of this paper is organized as follows. In Section 2, we formally define the Averaging
dynamics and briefly recall how it is connected with the transition matrix of a random walk
on the underlying graph. We also define the notion of community-sensitive algorithm and the
class of clustered volume-regular graphs. In Section 3 we show the relation between lumpability
of Markov chains and volume-regular graphs. In Section 4 we state the main result of the
paper (see Theorem 9) on the analysis of the Averaging for clustered volume-regular graphs:
We give the two main technical lemmas and show how the main theorem derives from them.
In Section 5 we show how slightly modified versions of the Averaging dynamics can be used
to identify the hidden partition of other non-clustered volume-regular graphs, e.g., bipartite
graphs. In Section 6 we draw some conclusions and point to some open problems. Full proofs
of technical lemmas are given in the Appendix.

2 Preliminaries

Notation. Consider an undirected edge-weighted graph G = (V,E,w) with nonnegative
weights. For each node u ∈ V , we denote by δ(u) the volume, or weighted degree, of node u,
namely δ(u) =

∑
v:(u,v)∈E w(u, v). D denotes the diagonal matrix, such that Duu = δ(u) for

each u ∈ V . Without loss of generality we assume minu δ(u) = 1, since the behavior of the
Averaging dynamics (and the corresponding analysis) is not affected by a normalization of
the weights. We refer to the maximum volume of a node as ∆ := maxu δ(u).

In the remainder, W denotes the weighted adjacency matrix of G, while P = D−1W is
the transition matrix of a random walk on G, in which a transition from node u to node
v occurs with probability proportional to w(u, v). We call λ1, . . . , λn the eigenvalues of P ,
in non-increasing order, and v1, . . . ,vn a family of eigenvectors of P , such that Pvi = λivi.
We let N = D−

1
2WD−

1
2 = D

1
2PD−

1
2 denote the normalized weighted adjacency matrix of

G. Note that N is symmetric and that its spectrum is the same as that of P . We denote by
w1, . . . ,wn a family of eigenvectors of N , such that Nwi = λiwi. It is important to note
that wi is an eigenvector of N if and only if D− 1

2wi is an eigenvector of P .

2.1 Averaging dynamics

The simple algorithm we consider in this paper, named Averaging dynamics (Algorithm 1)
after [6] in which the algorithm was first proposed, can be seen as an application of the power
method, augmented with a Rademacher initialization and a suitable labeling scheme. In this
form, it is best described as a distributed process, executed by the nodes of an underlying
edge-weighted graph. The Averaging dynamics can be used as a building-block to achieve
“community detection” in some classes of “regular” and “almost regular” graphs. Herein, we
extend its use and analysis to broader graph classes and, in one case, to a different problem.

ISAAC 2019

20:6 Step-By-Step Community Detection in Volume-Regular Graphs

Algorithm 1 Averaging dynamics.
Rademacher initialization: At round t = 0, every node v ∈ V independently samples

its value x(0)(v) from {−1,+1} uniformly at random.
Update rule: At each subsequent round t > 1, every node v ∈ V :

1. Averaging: updates its value x(t)(v) to the weighted average of the values of its
neighbors at the end of the previous round.

2. Labeling: if x(t)(v) > x(t−1)(v) then v sets label(t)(v) = 1; otherwise v sets
label(t)(v) = 0.

Spectral decomposition of the transition matrix. Let x(t) denote the state vector at time
t, i.e., the vector whose u-th entry is the value held by node u at time t. We let x(0) = x

denote the initial state vector. Globally, the averaging update rule of Algorithm 1 corresponds
to one iteration of the power method, in this case an application of the transition matrix P
to the current state vector, i.e., x(t) = Px(t−1). We can write

x(t) = P tx = D−
1
2N tD

1
2x

(a)= D−
1
2

n∑
i=1

λtiwiw
ᵀ
i

n∑
i=1

βiwi =
n∑
i=1

λtiβiD
− 1

2wi,

where in (a) we spectrally decomposed the matrix N t and expressed the vector D 1
2x as a

linear combination of the eigenvectors of N , i.e., D 1
2x =

∑n
i=1 βiwi, with βi = 〈D 1

2x,wi〉.
By explicitly writing the βis and by noting that wi = D

1
2 vi

‖D
1
2 vi‖

we conclude that

x(t) =
n∑
i=1

λti
〈D 1

2x, D
1
2vi〉

‖D 1
2vi‖

D−
1
2
D

1
2vi

‖D 1
2vi‖

=
n∑
i=1

λtiαivi, (1)

where αi := 〈D
1
2 x,D

1
2 vi〉

‖D
1
2 vi‖2

= xᵀDvi

‖D
1
2 vi‖2

.
Note that λ1 = 1 and v1 = 1 (where 1 denotes the vector whose entries are 1), since P is

stochastic and, if G is connected and non bipartite, λi ∈ (−1, 1) for every i > 1. The long
term behavior of the dynamics can be written as

lim
t→∞

x(t) = lim
t→∞

n∑
i=1

λtiαivi = α11, with α1 =
∑
u∈V δ(u)x(u)∑
u∈V δ(u) =

∑
u∈V

δ(u)
vol(V)x(u),

i.e., each node converges to the initial global weighted average of the network.

2.2 Community-sensitive algorithms
We give the following definition of community sensitive algorithm, that closely resembles that
of locality-sensitive hashing (see, e.g., [28]).

I Definition 1 (Community-sensitive algorithm). Let A be a randomized algorithm that takes
in input a (possibly weighted) graph G = (V,E) with a hidden partition V = {V1, . . . , Vk}
and assigns a Boolean value A(G)[v] ∈ {0, 1} to each node v ∈ V . We say A is an (ε, δ)-
Community-sensitive algorithm, for some ε, δ > 0, if the following two conditions hold:
1. For each set Vi of the partition and for each pair of nodes u, v ∈ Vi in that set, the

probability that the algorithm assigns the same Boolean value to u and v is at least 1− ε,

∀i ∈ [k], ∀u, v ∈ Vi, P (A(G)[u] = A(G)[v]) > 1− ε.

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:7

2. For each pair Vi, Vj of distinct sets of the partition and for each pair of nodes u ∈ Vi and
v ∈ Vj, the probability that the algorithm assigns the same value to u and v is at most δ,

∀i, j ∈ [k] with i 6= j, ∀u ∈ Vi,∀v ∈ Vj , P (A(G)[u] = A(G)[v]) 6 δ.

For example, for (ε, δ) = (1/n, 1/2), an algorithm that simply assigns the same value to all
nodes would satisfy the first condition but not the second one, while an algorithm assigning
0 or 1 to each node with probability 1/2, independently of the other nodes, would satisfy the
second condition but not the first one.

Note that Algorithm 1 is a distributed algorithm that, at each round t, assigns one out
of two labels to each node of a graph. In the next section (see Theorem 9) we prove that
a time window [T1, T2] exists, such that for all rounds t ∈ [T1, T2], the assignment of the
Averaging dynamics satisfies both conditions in Definition 1: The first condition with
ε = ε(n) = O(n− 1

2), the second with δ = δ(n) = 1− Ω(1).

Community-sensitive labeling. If we execute ` = Θ(logn) independent runs of an (ε, δ)-
Community-sensitive algorithm A, each node is assigned a signature of ` binary values,
with pairwise Hamming distances probabilistically reflecting community membership of the
nodes. More precisely, let A be an (ε, δ)-Community-sensitive algorithm and let A1, . . . ,A`
be ` = Θ(logn) independent runs of A. For each node u ∈ V , let s(u) = (s1(u), . . . , s`(u))
denote the signature of node u, where si(u) = Ai(G)[u]. For each pair nodes u, v, let
h(u, v) = |{i ∈ [`] : si(u) 6= si(v)}| be the Hamming distance between s(u) and s(v). The
following lemma follows from a straightforward application of Chernoff bounds.

I Lemma 2 (From Community-sensitive algorithm to Community-sensitive labeling). Let A be
an (ε, δ)-Community-sensitive algorithm with ε = o(1) and δ = 1− Ω(1). For large enough
` = Θ(logn), two positive constants α, β exist, with 0 6 α < β 6 1, such that for each pair
of nodes u, v ∈ V it holds that:

If u and v belong to the same community then h(u, v) 6 α`, w.h.p.
If u and v belong to different communities then h(u, v) > β`, w.h.p.

Proof. If u and v belong to the same community, then E [h(u, v)] 6 ε`. If they belong
to different communities, then E [h(u, v)] > (1 − δ)`. The thesis follows by a standard
application of Chernoff bounds, e.g., by choosing α = (1− δ)/4 and β = (1− δ)/2. J

2.3 Volume-regular graphs
Recall that, for an undirected edge-weighted graph G = (V,E,w), we denote by δ(u) the
volume a node u ∈ V , i.e., δ(u) =

∑
v:(u,v)∈E w(u, v). Note that the transition matrix P of

a random walk on G is such that Puv = w (u, v) /δ(u). Given a partition V = {V1, . . . , Vk}
of the set of nodes V , for a node u ∈ V and a partition index i ∈ [k], δi(u) denotes the
overall weight of edges connecting u to nodes in Vi, δi(u) =

∑
v∈Vi :u,v∈E w (u, v) . Hence,

δ(u) =
∑k
i=1 δi(u).

I Definition 3 (Volume-regular graph). Let G = (V,E,w) be an undirected edge-weighted
graph with |V | = n nodes and let V = {V1, . . . , Vk} be a k-partition of the nodes, for some
k ∈ [n]. We say that G is volume-regular with respect to V if, for every pair of partition
indexes i, j ∈ [k] and for every pair of nodes u, v ∈ Vi, δj(u)

δ(u) = δj(v)
δ(v) . We say that G is

k-volume-regular if there exists a k-partition V of the nodes such that G is volume-regular
with respect to V.

ISAAC 2019

20:8 Step-By-Step Community Detection in Volume-Regular Graphs

In other words, G is volume-regular if there exists a partition of the nodes such that the
fraction of a node’s volume toward a set of the partition is constant across nodes of the same
set. Note that all graphs with n nodes are trivially 1- and n-volume-regular.

Let G = (V,E,w) be a k-volume-regular graph and let P be the transition matrix of a
random walk on G. In the next lemma we prove that the span of k linearly independent
eigenvectors of P equals the span of the indicator vectors of the k communities of G. The
proof makes use of the correspondence between random walks on volume-regular graphs and
ordinary lumpable Markov chains [22]; in particular the result follows from Lemma 7 and
Lemma 8 that can be found in Section 3.

I Lemma 4. Let P be the transition matrix of a random walk on a k-volume-regular graph
G = (V,E,w) with k-partition V = {V1, . . . , Vk}. There exists a family {v1, . . . ,vk} of linearly
independent eigenvectors of P such that Span ({v1, . . . ,vk}) = Span ({1V1 , . . . ,1Vk

}) , with
1Vi

the indicator vector of the i-th set of the partition, for i ∈ [k].

In the rest of the paper we call “stepwise” the eigenvectors of P that can be written as
linear combinations of the indicator vectors of the communities. In the next definition, we
formalize the fact that a k-volume-regular graph is clustered if the k linearly independent
stepwise eigenvectors of P , whose existence is guaranteed by the above lemma, are associated
to the k largest eigenvalues of P .

I Definition 5 (Clustered volume-regular graph). Let G = (V,E,w) be a k-volume-regular
graph and let P be the transition matrix of a random walk on G. We say that G is a clustered
k-volume-regular graph if the k stepwise eigenvectors of P are associated to the first k largest
eigenvalues of P .

3 Volume-regular graphs and lumpable Markov chains

The class of volume-regular graphs is deeply connected with the definition of lumpability [22]
of Markov chains. We here first recall the definition of lumpable Markov chain and then
show that a graph G is volume-regular if and only if the associated weighted random walk is
a lumpable Markov chain.

I Definition 6 (Ordinary lumpability of Markov Chains). Let {Xt}t be a finite Markov chain
with state space V and transition matrix P = (Puv)u,v∈V and let V = {V1, . . . , Vk} be a
partition of the state space. Markov chain {Xt}t is ordinary lumpable with respect to V if,
for every pair of partition indexes i, j ∈ [k] and for every pair of nodes in the same set of the
partition u, v ∈ Vi, it holds that∑

w∈Vi

Puw =
∑
w∈Vi

Pvw, ∀ u, v ∈ Vj . (2)

We define the lumped matrix P̂ of the Markov Chain as the matrix such that P̂ij =
∑
w∈Vi

Puw,
for any u ∈ Vj.

We first prove that random walks on volume-regular graphs define exactly the subset of
reversible and ordinary lumpable Markov chains.

I Lemma 7. A reversible Markov chain {Xt}t is ordinary lumpable if and only if it is a
random walk on a volume-regular graph.

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:9

Proof. Assume first that {Xt}t is ordinary lumpable and let P be the corresponding transition
matrix. Consider the weighted graphG = (V,E,w) obtained from P as follows: V corresponds
to the set of states in P , while w(u, v) = π(u)Puv, for every u, v ∈ V , with π the stationary
distribution of P . Note that G is an undirected graph, i.e., w(u, v) = π(u)Puv

(a)= π(v)Pvu =
w(v, u), where (a) holds because P is reversible. Moreover

δ(u) =
∑
z∈V

w(u, z) =
∑
z∈V

π(u)Puz = π(u)
∑
z∈V

Puz
(b)= π(u),

where (b) holds because P is stochastic. Thus G meets Definition 3 because, for any u, v ∈ Vi,

δj(u)
δ(u) = 1

π(u)
∑
z∈Vj

w(u, z) =
∑
z∈Vj

Puz =
∑
z∈Vj

Pvz = 1
π(v)

∑
z∈Vj

w(v, z) = δj(v)
δ(v) .

Next, assume G is k-volume-regular with respect to the partition V = {V1, . . . , Vk}. Let
P be the transition matrix of the corresponding random walk. For every i, j ∈ [k] and for
every u, v ∈ Vi we have:∑

z∈Vj

Puz =
∑
z∈Vj

w(u, z)
δ(u) = δj(u)

δ(u)
(a)= δj(v)

δ(v) =
∑
z∈Vj

w(v, z)
δ(v) =

∑
z∈Vj

Pvz,

where (a) follows from Definition 3. Moreover note that P is reversible with respect to
distribution π, where π(u) = δ(u)

vol(G) . J

Note that infinitely many k-volume-regular graphs have the same k-ordinary lumpable
random walk chain.

We next show that a Markov chain is k-ordinary lumpable if and only if the corresponding
transition matrix P has k stepwise, linearly independent eigenvectors.

I Lemma 8. Let P be the transition matrix of a Markov chain. Then P has k stepwise
linearly independent eigenvectors if and only if P is ordinary lumpable.

Proof. We divide the proof in two parts. First, we assume that P is ordinary lumpable and
show that P has k stepwise linearly independent eigenvectors. Second, we assume that P
has k stepwise linearly independent eigenvectors and show that P is ordinary lumpable.

1. Let P be ordinary lumpable and P̂ its lumped matrix. Let λi, v̂i be the eigenvalues and
eigenvectors of P̂ , for each i ∈ [k]. Let vi ∈ Rn be a stepwise vector defined as

vi = (v̂i(1), . . . , v̂i(1), v̂i(2), . . . , v̂i(2), . . . , v̂i(k), . . . , v̂i(k))ᵀ,

where v̂i(j) indicates the j-th component of v̂i, and then the nj components relative to
Vj are all equal to v̂i(j).
Since the eigenvectors v̂i of P̂ are linearly independent, the vectors vi are also linearly
independent. Moreover, it is easy to see that Pvi = λivi by just verifying the equation
for every i ∈ [k].

2. Assume P has k stepwise linearly independent eigenvectors vi, associated to k eigenvalues
λi, for each i ∈ [k]. Let v̂i ∈ Rk the vector that has as components the k constant values
in the steps of vi. Since the vi are linearly independent, the v̂i also are.
For every eigenvector vi and for every two states x, y ∈ Vl, for every l ∈ [k], we have that
λivi(x) = λivi(y) since vi is stepwise. Then, since Pvi = λivi, we have that

k∑
j=1

∑
z∈Vj

Pxzv̂i(j) = (Pvi)(x) = (Pvi)(y) =
k∑
j=1

∑
z∈Vj

Pyzv̂i(j).

ISAAC 2019

20:10 Step-By-Step Community Detection in Volume-Regular Graphs

Thus
∑k
j=1 v̂i(j)

∑
z∈Vj

(Pxz − Pyz) = 0 and then it follows that

k∑
j=1

v̂i(j)uxy(j) = 〈uxy, v̂i〉 = 0,

where uxy(j) =
∑
z∈Vj

(Pxz − Pyz). Since the v̂i are k linearly independent vectors in a
k-dimensional space, uxy cannot be orthogonal to all of them and then it has to be the
null vector, i.e., uxy(j) = 0 for all j ∈ [k]. This implies that P is ordinary lumpable, i.e.,∑
z∈Vj

Pxz =
∑
z∈Vj

Pyz. It is easy to verify that the eigenvalues and eigenvectors of P̂
are exactly λi, v̂i, with i ∈ [k]. J

4 Averaging dynamics on clustered volume-regular graphs

For a volume-regular graph G = (V,E,w) with n nodes and k-partition V = {V1, . . . , Vk} we
name N = maxi |Vi|

mini |Vi| the ratio between the maximum and minimum sizes of the communities.
In this section we prove the following result for volume-regular graphs.

I Theorem 9. Let G = (V,E,w) be a connected clustered k-volume-regular graph with n
nodes and k-partition V = {V1, . . . , Vk}, with k 6

√
n, maximum weighted degree ∆ 6 poly(n),

and N = O(
√
k/∆). If λk > 1

2 and (1 − λ2) > (λ2 − λk)∆ 3
2n1+c, for an arbitrarily-small

positive constant c, then a time interval [T1, T2] exists, with T1 = O(logn / log(λk/λk+1))
and T2 = Ω(nc/3), such that for each time t ∈ [T1, T2] the Averaging dynamics truncated
at round t is a (O(n− 1

2), 1− Ω(1))-community sensitive algorithm, w.h.p.

In the remainder of this section, we first introduce further notation and then state the
two main technical lemmas (Lemma 10 and Lemma 11), that will be used in the proof of
Theorem 9, which concludes this section.

Let G = (V,E,w) be a clustered k-volume-regular graph and, without loss of generality,
let V1, . . . , Vk be an arbitrary ordering of its communities. We introduce a family of stepwise
vectors that generalize Fiedler vector [17], namely{

χi =
√
m̂i

mi
1Vi −

√
mi

m̂i
1V̂i

: i ∈ [k − 1]
}
,

where 1Vi
is the indicator vector of the set Vi and, for convenience sake, we denoted by mi

the volume of the i-th community, V̂i the set of all nodes in communities i+ 1, . . . , k, and m̂i

the volume of V̂i, i.e., mi =
∑
u∈Vi

δ(u), V̂i =
⋃k
h=i+1 Vh, and m̂i =

∑k
h=i+1mh. Note that

vectors χis are “stepwise” with respect to the communities of G (i.e., for every i ∈ [k − 1],
χi(u) = χi(v) whenever u and v belong to the same community).

Recall from Equation (1) that the initial state vector can be written as x =
∑n
i=1 αivi.

Let z =
∑k
i=1 αivi and note that z = α11 +

∑k−1
i=1 γiχi by applying Lemma 4 and because

Span ({1,χ1, . . . ,χk−1}) = Span ({1V1 , . . . ,1Vk
}). Let us now define the vector y = z−α11

or, equivalently,

y =
k−1∑
i=1

γiχi, where γi = xᵀDχi∥∥D1/2χi
∥∥2 .

Note that the coefficients γis are proportional to the length of the projection of the (inhomoge-
neously) contracted state vector on the (inhomogeneously) contracted, not anymore stepwise,
D

1
2χis and can be computed since the vectors in the family {D 1

2 1} ∪ {D 1
2χi : i ∈ [k − 1]}

are mutually orthogonal.4

4 The mutual orthogonality of the vectors, including D
1
2 1, is also one of the reasons why other “simpler”

families of stepwise vectors, e.g., the indicator vectors of the communities, are not used instead.

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:11

The binary coloring of each node only depends on the difference of its state in two
consecutive rounds (see Algorithm 1). Essentially in Lemma 10 we show that, under suitable
assumptions on the transition matrix of a random walk on G, there exists a time window
where the the difference of the state vector in two consecutive rounds, i.e., x(t) − x(t+1)

can be approximated by the previously defined vector y in a way that the sign of the two
vectors is equal in any component, with high probability. Instead, in Lemma 11 we prove
that with some constant probability (i.e., independent from the number of nodes n) the first
two “steps” of the vector y have different signs, i.e., the sign can be considered as a criterion
to distinguish the first two communities.

I Lemma 10 (Sign of the difference). Let G = (V,E,w) be a clustered k-volume-regular
graph. If λk > 1

2 and (1− λ2) > (λ2 − λk)∆ 3
2n1+c, for an arbitrarily-small positive constant

c, then a time interval [T1, T2] exists, with T1 = O(logn / log(λk/λk+1)) and T2 = Ω(nc/3),
such that for each node u ∈ V it holds that sgn(x(t)(u)− x(t+1)(u)) = sgn(y(u)) for every
round t ∈ [T1, T2] of the execution of the Averaging dynamics, w.h.p.

Proof. Recall from Equation (1) that the state vector at time t, i.e., x(t), can be written as
the sum of the first k stepwise vectors of P and of the remaining ones, namely

x(t) = α11 +
k∑
i=2

λtiαivi +
n∑

i=k+1
λtiαivi = α11 + c(t) + e(t),

where we call c(t) :=
∑k
i=2 λ

t
iαivi the core contribution and e(t) :=

∑n
i=k+1 λ

t
iαivi the

error contribution. If we look at the difference of the state vector between two consecutive
rounds, for each node u ∈ V , the first term cancels out being constant over time and we
get x(t)(u)− x(t+1)(u) = c(t)(u)− c(t+1)(u) + e(t)(u)− e(t+1)(u). Note that the sign of the
difference between two consecutive states of each node u ∈ V is determined by the difference
of the core contributions during the two consecutive rounds, i.e., c(t)(u)−c(t+1)(u), whenever∣∣∣c(t)(u)− c(t+1)(u)

∣∣∣ > ∣∣∣e(t)(u)− e(t+1)(u)
∣∣∣ . (3)

To find the conditions on t that make Equation (3) hold, we give a bound to both the left
and right hand side of the inequality. In detail:
1. We know from Lemma 24 (see Appendix C) that

∣∣c(t)(u)− c(t+1)(u)
∣∣ > 1

2λ
t
k(1−λ2) |y(u)|

for every u ∈ V and for every time t < T2, where T2 = Ω(n c
3), since by hypothesis λk > 1

2
and (1− λ2) > (λ2 − λk)∆ 3

2n1+c.
2. We know from Lemma 25 (see Appendix D) that |e(t)(u)| 6 λtk+1

√
∆n, for every u ∈ V ,

and thus it follows that
∣∣e(t)(u)− e(t+1)(u)

∣∣ 6 ∣∣e(t)(u)
∣∣+
∣∣e(t+1)(u)

∣∣ 6 2λtk+1
√

∆n.
Combining Lemma 24 and Lemma 25, we get that if the following inequality holds, i.e.,

1
2λ

t
k(1− λ2) |y(u)| > 2λtk+1

√
∆n, (4)

then also Equation (3) holds. By moving the terms dependent from t on the left hand side
and by taking the logarithm of both sides, we can finally find the conditions on t such that
Equation (4) is satisfied, i.e., all times t > T1 where

T1 = log
(

4
√

∆n
(1− λ2) |y(u)|

)
· 1

log
(

λk

λk+1

) .

ISAAC 2019

20:12 Step-By-Step Community Detection in Volume-Regular Graphs

Note that T1 = O(logn / log(λk

λk+1
)) and that T1 = O(logn) when λk

λk+1
= Ω(1). In fact:

1. We know by hypothesis that the maximum weighted degree of a node is at most polynomial
in n, i.e., ∆ 6 poly(n).

2. We know from the Cheeger’s inequality for weighted graphs (Theorem 15) the relation
between the spectral gap and the Cheeger’s constant of G, i.e., 1− λ2 > 1

2∆n , given that
1− λ2 > h2

G

2 > 1
2∆n .

3. We know from Lemma 20 (see Appendix B) that the length of the projection of the state
vector on the stepwise vectors is not too small, i.e., |y(u)| > k

∆n , w.h.p.

Since Lemma 24 holds for every time t < T2, we conclude that there exists a time
window [T1, T2] such that, for every time t ∈ [T1, T2] of the Averaging dynamics, it holds
that sgn(x(t)(u) − x(t+1)(u)) = sgn(c(t)(u) − c(t+1)(u)), with high probability. Moreover,
Lemma 24 tells us that sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)), for every u ∈ V and for every
t ∈ [T1, T2]. Thus, sgn(x(t)(u)− x(t+1)(u)) = sgn(y(u)), concluding the proof. J

I Lemma 11 (Different communities, different signs). Let G = (V,E,w) be a clustered k-
volume-regular graph with maximum weighted degree ∆ 6 poly(n) and N = O(

√
k/∆). For

each pair of nodes u ∈ Vi, v ∈ Vj , with i 6= j, it holds that P (sgn(y(u)) 6= sgn(y(v))) = Ω(1).

Proof. Since the ordering of the communities (and consequent definition of the χi’s) is
completely arbitrary, we can without loss of generality assume i = 1 and j = 2. From
Lemma 10 we have that sgn(x(t)(u)−x(t+1)(u)) = sgn(y(u)), for every u ∈ V , during a time
interval [T1, T2], w.h.p. Let us define X(Vi) :=

∑
w∈Vi

δ(w)x(w).
Note that y(u) = γ1χ1(u) and y(v) = γ1χ1(v) + γ2χ2(v), since the other terms of the

χis are equal to 0 on the components relative to u and v. Thus, with some algebra, we get

y(u) = 1
m

[
m̂1

m1
X(V1)−X(V2)−X(V̂2)

]
,

y(v) = 1
m

[
m1m2 +mm̂2

m̂1m2
X(V2)−X(V1)−X(V̂2)

]
.

Note that, by linearity of expectation, E [X(Vi)] = 0. Moreover, since the terms x(w)s are
independent Rademacher random variables, we can write the standard deviation of X(Vi) as

σ(X(Vi)) =
√∑
w∈Vi

σ2(x(w)) =
√∑
w∈Vi

(
E [δ(w)2x(w)2]−E [δ(w)x(w)]2

)
=
√∑
w∈Vi

δ(w)2.

Then we can upper and lower bound the standard deviation σ(X(Vi)) getting mi√
|Vi|

6

σ(X(Vi)) 6 ∆
√
|Vi|, where the lower bound follows from ‖d‖2 > ‖d‖1 /

√
|Vi|, where di is

the vector of weighted degrees of nodes in community Vi, and for the upper bound we used
that δ(w) 6 ∆, for each w ∈ V .

Let us now define the following three events:
1. E1: X(V1) > σ(X(V1)) =⇒ X(V1) > m1√

|V1|
> mini mi√

maxi |Vi|
;

2. E2: X(V2) 6 −σ(X(V2)) =⇒ X(V2) 6 − m2√
|V2|

6 − mini mi√
maxi |Vi|

;

3. E3: 0 6 X(V̂2) 6 εσ(X(V̂2)) =⇒ 0 6 X(V̂2) 6 ε∆
√∑k

i=3 |Vi| 6 ε∆
√
kmaxi |Vi|,

with ε a suitable positive constant. When E1, E2, E3 are true, i.e., with some constant
probability, it holds that y(v) < 0; as for y(u) we have that

m̂1

m1
X(V1)−X(V2)−X(V̂2) > m̂1

m1
σ(X(V1)) + σ(X(V2))− εσ(X(V̂2))

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:13

>
kmini |Vi|√

maxi |Vi|
− ε∆

√
kmaxi |Vi|.

The previous inequality is greater than 0 whenever ε <
√
k

∆N . By hypothesis ∆N = O(
√
k)

and thus
√
k

∆N = Ω(1), i.e., there is an ε = Ω(1) such that y(u) > 0.
By approximating the random variables with Gaussian ones and using Berry-Esseen’s

theorem (Theorem 16), it is possible to show that all three events have probability at least
constant; moreover, being the events independent, also P (E1, E2, E3) is constant. J

Proof of Theorem 9. The proof proceeds by showing that the binary labeling of the nodes
of G produced by the Averaging dynamics during the time window [T1, T2] is such that the
two conditions required by the definition of (ε, δ)-community sensitive algorithm (Definition 1)
are met. The first condition follows directly from Lemma 10 and from the fact that y is
a “stepwise” vector, with ε = O(n− 1

2) (see Lemma 20 for details on the probability). The
second condition follows directly from Lemma 11. J

5 Extensions

In this section, we discuss extensions to bipartite graphs (Section 5.1) and to other non-
clustered graph classes (Section 5.2).

5.1 Bipartite Graphs

Assume G = (V,E,w) is a bipartite 2-volume-regular graph, i.e., V = V1∪V2, E ⊆ V1×V2 and
G is volume-regular w.r.t. the bipartition (V1, V2). In this case, basic properties of random
walks imply that the Averaging dynamics does not converge to the global (weighted)
average of the values, but it periodically oscillates. This follows since the state vector is
mainly affected by the eigenvectors associated to the two eigenvalues of absolute value 1 (for
bipartite graphs, λ1 and λn). As a result, after a number of rounds depending on 1/λ2, the
following happens: in even rounds, all nodes in Vi (i = 1, 2) have a state that is close to some
local average µi; in odd rounds these values are swapped, as shown in Equation (5). In even
rounds (or, equivalently, in odd rounds) however, the states of nodes in V1 would converge
to µ1 and those of nodes in V2 would converge to µ2. Unfortunately, convergence to local
averages does not eventually become monotonic in this case, since the eigenvector associated
to λ2 is no longer stepwise in general.5 However, we can easily modify the labeling scheme of
the Averaging dynamics to perform bipartiteness detection as follows: Nodes apply the
labeling rule every two time steps and they do it between the states of two consecutive rounds,
i.e., each node v ∈ V sets label(2t)(v) = 1 if x(2t)(v) > x(2t−1)(v) and label(2t)(v) = 0
otherwise. We call this new protocol Averaging Bipartite dynamics.

Let G = (V,E,w) be an edge-weighted undirected bipartite volume-regular graph. We
denote with W ∈ Rn×n the weighted adjacency matrix of G. Since G is undirected and
bipartite, the matrix W can be written as

W =
(

0 W1
W2 0

)
=
(

0 W1
W ᵀ

1 0

)
.

5 This in turn follows since lumpable classes are already associated to 1 and χ.

ISAAC 2019

20:14 Step-By-Step Community Detection in Volume-Regular Graphs

Thus, the transition matrix of a simple random walk on G, i.e., P = D−1W where D−1 is a
diagonal matrix and Dii = 1

δ(i) , has the form

P =
(

0 P1
P ᵀ

1 0

)
.

Claim 12 shows that the spectrum of P is symmetric and it gives a relation between the
eigenvectors of symmetric eigenvalues.

B Claim 12. Let G = (V1 ∪ V2, E, w) be an edge-weighted undirected bipartite graph with
bipartition (V1, V2) and such that |Vi| = ni . If v = (v1,v2)ᵀ, with vi ∈ Rni , is an eigenvector
of P with eigenvalue λ, then v′ = (v1,−v2)ᵀ is an eigenvector of P with eigenvalue −λ.

Proof. If Pv = λv then we have that P1v2 = λv1 and P ᵀ
1 v2 = λv2. Using these two equalities

we get that Pv′ = −λv′. In fact,

Pv′ =
(

0 P1
P ᵀ

1 0

)(
v1
−v2

)
=
(
−P1v2
P ᵀ

1 v1

)
= −λ

(
v1
−v2

)
.

C

The transition matrix P is stochastic, thus the vector 1 (i.e., the vector of all ones) is an
eigenvector associated to λ1 = 1, that is the first largest eigenvalue of P . Claim 12 implies
that χ = 1V1 − 1V2 is an eigenvector of P with eigenvalue λn = −1.

As in Section 2, we write the state vector at time t using the spectral decomposition
of P . Let 1 = λ1 > λ2 > . . . > λn = −1 be the eigenvalues of P . We denote by
1 = v1,v2, . . . ,vn = χ a family of n linearly independent eigenvectors of P , where each vi is
the eigenvector associated to λi. Thus, we have that

x(t) = P tx =
n∑
i=1

λtiαivi = α11 + (−1)tαnχ+
n−1∑
i=2

λtiαivi (5)

where αi = 〈D
1
2 x,D

1
2 vi〉

‖D
1
2 vi‖2

. The last equation implies that x(t) = P tx does not converge to
some value as t tends to infinity, but oscillates. In particular, nodes in V1 on even rounds
and nodes in V2 on odd rounds, converge to α1 +αn. Instead in the symmetric case, i.e., odd
rounds for nodes in V1 and even rounds for nodes in V2, the process converges to α1 − αn.
These quantities are proportional to the weighted average of the initial values in the first
and in the second partition, respectively.

Lemma 13 shows that Averaging Bipartite dynamics performs bipartiteness detec-
tion in O(logn / log(1/λ2)) rounds. Note that if log(1/λ2) = Ω(1), then the Averaging
Bipartite dynamics takes logarithmic time to find the bipartition.

I Lemma 13. Let G = (V,E,w) be an edge-weighted bipartite volume-regular graph with
bipartition V1, V2 and maximum weighted degree ∆ 6 poly(n). Then for every time t > T ,
with T = O(logn / log(1/λ2)), the Averaging Bipartite dynamics is a (O(n− 1

2), O(1))-
community sensitive algorithm, w.h.p.

Proof of Lemma 13. We assume that the coloring rule is applied between every even and
every odd round (conversely, the signs of the nodes in the analysis are swapped). Recall
the definition of the error contribution, namely e(t)(u) =

∑n−1
i=2 λ

t
iαivi(u). We compute the

difference between the state vectors of two consecutive steps by using Equation (5), namely

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:15

x(2t) − x(2t+1) = α11 + (−1)2tαnχ+ e(2t) − α11− (−1)2t+1αnχ− e(2t+1)

= 2αnχ+ e(2t) − e(2t+1).

We want to find a time T such that for every t > T the sign of a node u ∈ V depends only on
χ(u). Formally, sgn(x(2t)(u)− x(2t+1)(u)) = sgn(αnχ). The last equation holds whenever

2|αnχ(u)| > |e(2t)(u)− e(2t+1)(u)|

2|αn| > |e(2t)(u)− e(2t+1)(u)|. (6)

We upper bound |e(2t)(u) − e(2t+1)(u)| by using Lemma 25. We get that |e(2t)(u) −
e(2t+1)(u)| 6 2λ2t

2
√

∆n. We get that Equation (6) holds if the following holds:

|αn| > λ2t
2
√

∆n(
1
λ2

)2t
>

√
∆n
|αn|

2t > log
(√

∆n
|αn|

)
1

log(1/λ2) .

In order to find the time t which makes the last inequality hold, we provide a lower bound
on |αn|, showing that it is not too small, with high probability. Recall that αi = 〈D

1
2 x,D

1
2 vi〉

‖D
1
2 vi‖2

and thus

αn = 〈D
1
2x, D

1
2χ〉

‖D 1
2χ‖2

= 1
vol(V)

∑
v∈V

δ(v)x(v)χ(v),

where vol(V) =
∑
v∈V δ(v). We get the lower bound, with high probability, by showing that

P
(
|αn| 6

1
∆n

)
6 P

(
|αn| 6

1
vol(V)

)
= P

(∣∣∣∣∣∑
v∈V

δ(v)x(v)χ(v)

∣∣∣∣∣ 6 1
)

(a)= O
(

1√
n

)
where in (a) we apply Theorem 17. Indeed this last inequality implies that |αn| > 1

∆n
with high probability. The thesis then follows from the above bound on |αn| and from the
hypothesis on ∆ 6 poly(n). J

5.2 Other non-clustered volume-regular graphs
Consider k-volume-regular graphs whose k stepwise eigenvectors are associated to the k
largest eigenvalues, in absolute value. These graphs include many k-partite graphs (e.g.,
regular ones), graphs that are “close” to being k-partite (i.e., ones that would become
k-partite upon removal of a few edges). Differently from the clustered case (Theorem 9)
some of the k eigenvalues can in general be negative.

Consider the following variant of the labeling scheme of the Averaging dynamics, in
which nodes apply their labeling rule only on even rounds, comparing their value with the
one they held at the end of the last even round, i.e., each node v ∈ V sets label(2t)(v) = 1
if x(2t)(v) > x(2t−2)(v) and label(2t)(v) = 0 otherwise.

Since the above protocol amounts to only taking even powers of eigenvalues, the analysis
of this modified protocol proceeds along the same lines as the clustered case, while the results
of Theorem 9 seamlessly extend to this class of graphs.

ISAAC 2019

20:16 Step-By-Step Community Detection in Volume-Regular Graphs

6 Conclusions

The focus of this work is on heuristics that implicitely perform spectral graph clustering,
without explicitely computing the main eigenvectors of a matrix describing connectivity
properties of the underlying network (typically, its Laplacian or a related matrix). In this
perspective, we extended the work of Becchetti et al. [6] in several ways. In particular, for k
communities, [6] considered an extremely regular case, in which the second eigenvalue of the
(normalized) Laplacian has algebraic and geometric multiplicities k−1 and the corresponding
eigenspace is spanned by a basis of indicator vectors. We considered a more general case
in which the first k eigenvalues are in general different, but the span of the corresponding
eigenvectors again admits a base of indicator vectors. We also made a connection between
this stepwise property and lumpability properties of the underlying random walk, which
results in a class of volume-regular graphs, that may not have constant degree, nor exhibit
balanced communities.

Though far from conclusive, we believe our results point to potentially interesting
directions for future research. In general, our analysis sheds further light on the connections
between temporal evolution of the power method and spectral-related clustering properties
of the underlying network. At the same time, we showed that variants of the Averaging
dynamics (and/or its labeling rule) might be useful in addressing different problems and/or
other graph classes, as the examples given in Section 5.1 suggest. On the other hand,
identifying k hidden partitions using the algorithm presented in [6] requires relatively strong
assumptions on the k main eigenvalues and knowledge of an upper bound to the graph
size,6 while the analysis becomes considerably more intricate than the perfectly regular
and completely balanced case addressed in [6]. Some aspects of our analysis (e.g., the
aforementioned presence of a size-dependent time window in which the labeling rule has to
be applied) suggest that more sophisticated variants of the Averaging dynamics might be
needed to express the full power of a spectral method that explicitely computes the k main
eigenvectors of a graph-related matrix. While we believe this goal can be achieved, designing
and analyzing such an algorithm might prove a challenging task.

References
1 Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact Recovery in the Stochastic

Block Model. IEEE Trans. Information Theory, 62(1):471–487, 2016. doi:10.1109/TIT.2015.
2490670.

2 Emmanuel Abbe and Colin Sandon. Detection in the stochastic block model with multiple
clusters: proof of the achievability conjectures, acyclic BP, and the information-computation
gap. CoRR, abs/1512.09080, 2015. arXiv:1512.09080.

3 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87–102, 2008. (Preliminary version
appeared in DISC 2007). doi:10.1007/s00446-008-0059-z.

4 Michael J. Barber and John W. Clark. Detecting network communities by propagating labels
under constraints. Phys. Rev. E, 80:026129, August 2009. doi:10.1103/PhysRevE.80.026129.

5 Luca Becchetti, Andrea E. F. Clementi, Pasin Manurangsi, Emanuele Natale, Francesco
Pasquale, Prasad Raghavendra, and Luca Trevisan. Average Whenever You Meet: Op-
portunistic Protocols for Community Detection. In 26th Annual European Symposium
on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, pages 7:1–7:13, 2018.
doi:10.4230/LIPIcs.ESA.2018.7.

6 As anecdotal experimental evidence suggests, the presence of a time window to perform labeling is not
an artifact of our analysis.

https://doi.org/10.1109/TIT.2015.2490670
https://doi.org/10.1109/TIT.2015.2490670
http://arxiv.org/abs/1512.09080
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1103/PhysRevE.80.026129
https://doi.org/10.4230/LIPIcs.ESA.2018.7

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:17

6 Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, and Luca
Trevisan. Find Your Place: Simple Distributed Algorithms for Community Detection. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 940–959, 2017. doi:
10.1137/1.9781611974782.59.

7 Ravi B. Boppana. Eigenvalues and Graph Bisection: An Average-Case Analysis (Extended
Abstract). In 28th Annual Symposium on Foundations of Computer Science, Los Angeles,
California, USA, 27-29 October 1987, pages 280–285, 1987. doi:10.1109/SFCS.1987.22.

8 Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Nonbacktracking spectrum of
random graphs: Community detection and nonregular Ramanujan graphs. Ann. Probab.,
46(1):1–71, January 2018. doi:10.1214/16-AOP1142.

9 Fan RK Chung. Laplacians of graphs and Cheeger’s inequalities. Combinatorics, Paul Erdos
is Eighty, 2(157-172):13–2, 1996.

10 Amin Coja-Oghlan. Spectral techniques, semidefinite programs, and random graphs. PhD
thesis, Habilitationsschrift, Humboldt Universität zu Berlin, Institut für Informatik, 2005.

11 Amin Coja-Oghlan. Graph Partitioning via Adaptive Spectral Techniques. Comb. Probab.
Comput., 19(2):227–284, March 2010. doi:10.1017/S0963548309990514.

12 Emilio Cruciani, Emanuele Natale, André Nusser, and Giacomo Scornavacca. Phase Transition
of the 2-Choices Dynamics on Core-Periphery Networks. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden,
July 10-15, 2018, pages 777–785, 2018. URL: http://dl.acm.org/citation.cfm?id=3237499.

13 Emilio Cruciani, Emanuele Natale, and Giacomo Scornavacca. Distributed Community
Detection via Metastability of the 2-Choices Dynamics. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.,
pages 6046–6053, 2019. URL: https://aaai.org/ojs/index.php/AAAI/article/view/4560,
doi:10.1609/aaai.v33i01.33016046.

14 Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic
analysis of the stochastic block model for modular networks and its algorithmic applications.
Phys. Rev. E, 84:066106, December 2011. doi:10.1103/PhysRevE.84.066106.

15 M.E Dyer and A.M Frieze. The solution of some random NP-hard problems in polynomial
expected time. Journal of Algorithms, 10(4):451–489, 1989. doi:10.1016/0196-6774(89)
90001-1.

16 P. Erdös. On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc., 51(12):898–902,
December 1945. URL: https://projecteuclid.org:443/euclid.bams/1183507531.

17 Miroslav Fiedler. Laplacian of graphs and algebraic connectivity. Banach Center Publications,
25(1):57–70, 1989. URL: http://eudml.org/doc/267812.

18 Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.
doi:10.1016/j.physrep.2009.11.002.

19 Yehuda Hassin and David Peleg. Distributed Probabilistic Polling and Applications to
Proportionate Agreement. Inf. Comput., 171(2):248–268, 2001. doi:10.1006/inco.2001.3088.

20 Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social Networks, 5(2):109–137, 1983. doi:10.1016/0378-8733(83)90021-7.

21 Mark Jerrum and Gregory B. Sorkin. The Metropolis Algorithm for Graph Bisection. Discrete
Applied Mathematics, 82(1-3):155–175, 1998. doi:10.1016/S0166-218X(97)00133-9.

22 John G. Kemeny and J. Laurie Snell. Finite Markov chains. D. van Nostrand Company, inc.,
Princeton, N.J., 1960.

23 David Kempe and Frank McSherry. A decentralized algorithm for spectral analysis. J.
Comput. Syst. Sci., 74(1):70–83, 2008. (Preliminary version appeared in STOC 2004). doi:
10.1016/j.jcss.2007.04.014.

24 Kishore Kothapalli, Sriram V. Pemmaraju, and Vivek Sardeshmukh. On the Analysis of
a Label Propagation Algorithm for Community Detection. In Distributed Computing and
Networking, 14th International Conference, ICDCN 2013, Mumbai, India, January 3-6, 2013.
Proceedings, pages 255–269, 2013. doi:10.1007/978-3-642-35668-1_18.

ISAAC 2019

https://doi.org/10.1137/1.9781611974782.59
https://doi.org/10.1137/1.9781611974782.59
https://doi.org/10.1109/SFCS.1987.22
https://doi.org/10.1214/16-AOP1142
https://doi.org/10.1017/S0963548309990514
http://dl.acm.org/citation.cfm?id=3237499
https://aaai.org/ojs/index.php/AAAI/article/view/4560
https://doi.org/10.1609/aaai.v33i01.33016046
https://doi.org/10.1103/PhysRevE.84.066106
https://doi.org/10.1016/0196-6774(89)90001-1
https://doi.org/10.1016/0196-6774(89)90001-1
https://projecteuclid.org:443/euclid.bams/1183507531
http://eudml.org/doc/267812
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1006/inco.2001.3088
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/S0166-218X(97)00133-9
https://doi.org/10.1016/j.jcss.2007.04.014
https://doi.org/10.1016/j.jcss.2007.04.014
https://doi.org/10.1007/978-3-642-35668-1_18

20:18 Step-By-Step Community Detection in Volume-Regular Graphs

25 Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly, Lenka Zde-
borová, and Pan Zhang. Spectral redemption in clustering sparse networks. Proceedings of the
National Academy of Sciences, 110(52):20935–20940, 2013. doi:10.1073/pnas.1312486110.

26 Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. Natl. Bur. Stand. B, 45:255–282, 1950. doi:
10.6028/jres.045.026.

27 James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway Spectral Partitioning and
Higher-Order Cheeger Inequalities. J. ACM, 61(6):37:1–37:30, 2014. doi:10.1145/2665063.

28 Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive Datasets, 2nd
Ed. Cambridge University Press, 2014. URL: http://www.mmds.org/.

29 X. Liu and T. Murata. Advanced modularity-specialized label propagation algorithm for
detecting communities in networks. Physica A: Statistical Mechanics and its Applications,
389(7):1493–1500, 2010. doi:10.1016/j.physa.2009.12.019.

30 David J. C. MacKay. Information theory, inference, and learning algorithms. Cambridge
University Press, 2003.

31 Frederik Mallmann-Trenn, Cameron Musco, and Christopher Musco. Eigenvector Computation
and Community Detection in Asynchronous Gossip Models. In 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, pages 159:1–159:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.159.

32 Frank McSherry. Spectral Partitioning of Random Graphs. In 42nd Annual Symposium on
Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA,
pages 529–537, 2001. doi:10.1109/SFCS.2001.959929.

33 S. J. Montgomery-Smith. The Distribution of Rademacher Sums. Proceedings of the American
Mathematical Society, 109(2):517–522, 1990. URL: http://www.jstor.org/stable/2048015.

34 Joris M. Mooij and Hilbert J. Kappen. Sufficient Conditions for Convergence of the
Sum–Product Algorithm. IEEE Transactions on Information Theory, 53(12):4422–4437,
December 2007. doi:10.1109/TIT.2007.909166.

35 Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust reconstruction and
optimal recovery of block models. The Annals of Applied Probability, 26(4):2211–2256, 2016.
(Preliminary version appeared in COLT 2014).

36 Elchanan Mossel, Joe Neeman, and Allan Sly. A Proof of the Block Model Threshold Conjecture.
Combinatorica, 38(3):665–708, 2018. doi:10.1007/s00493-016-3238-8.

37 Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On Spectral Clustering: Analysis and an
algorithm. In Advances in Neural Information Processing Systems 14 [Neural Information
Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver,
British Columbia, Canada], pages 849–856, 2001. URL: http://papers.nips.cc/paper/
2092-on-spectral-clustering-analysis-and-an-algorithm.

38 Richard Peng, He Sun, and Luca Zanetti. Partitioning Well-Clustered Graphs: Spectral
Clustering Works! SIAM J. Comput., 46(2):710–743, 2017. (Preliminary version appeared in
COLT 2015). doi:10.1137/15M1047209.

39 Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to
detect community structures in large-scale networks. Phys. Rev. E, 76:036106, September
2007. doi:10.1103/PhysRevE.76.036106.

40 Irina Shevtsova. On the absolute constants in the Berry-Esseen-type inequalities. Doklady
Mathematics, 89(3):378–381, May 2014. doi:10.1134/S1064562414030338.

41 Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 22(8):888–905, 2000. (Preliminary version appeared in CVPR
1997). doi:10.1109/34.868688.

42 J Michael Steele. The Cauchy-Schwarz master class: an introduction to the art of mathematical
inequalities. Cambridge University Press, 2004.

43 He Sun and Luca Zanetti. Distributed Graph Clustering and Sparsification. CoRR,
abs/1711.01262, 2017. arXiv:1711.01262.

44 Jianjun Paul Tian and D. Kannan. Lumpability and Commutativity of Markov Processes.
Stochastic Analysis and Applications, 24(3):685–702, 2006. doi:10.1080/07362990600632045.

https://doi.org/10.1073/pnas.1312486110
https://doi.org/10.6028/jres.045.026
https://doi.org/10.6028/jres.045.026
https://doi.org/10.1145/2665063
http://www.mmds.org/
https://doi.org/10.1016/j.physa.2009.12.019
https://doi.org/10.4230/LIPIcs.ICALP.2018.159
https://doi.org/10.1109/SFCS.2001.959929
http://www.jstor.org/stable/2048015
https://doi.org/10.1109/TIT.2007.909166
https://doi.org/10.1007/s00493-016-3238-8
http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm
http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm
https://doi.org/10.1137/15M1047209
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1134/S1064562414030338
https://doi.org/10.1109/34.868688
http://arxiv.org/abs/1711.01262
https://doi.org/10.1080/07362990600632045

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:19

45 Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007. doi:10.1007/s11222-007-9033-z.

46 Yair Weiss. Correctness of Local Probability Propagation in Graphical Models with Loops.
Neural Computation, 12(1):1–41, 2000. doi:10.1162/089976600300015880.

A Useful inequalities

I Theorem 14 (Cauchy-Schwarz’s inequality [42]). For all vectors u,v of an inner product
space it holds that |〈u,v〉|2 6 〈u,u〉 · 〈v,v〉, where 〈·, ·〉 is the inner product.

I Theorem 15 (Cheeger’s inequality [9]). Let P be the transition matrix of a connected edge-
weighted graph G = (V,E,w) and let λ2 be its second largest eigenvalue. Let |E(S, V \ S)| =∑

u∈S, v∈V \S w(u, v) and hG = min
S:vol(S)6 vol(V)

2

|E(S,V \S)|
vol(S) . Then 1−λ2

2 6 hG 6
√

2(1− λ2).

I Theorem 16 (Berry-Esseen’s theorem [40]). Let X1, . . . , Xn be independent and identically
distributed random variables with mean µ = 0, variance σ2 > 0, and third absolute moment
ρ <∞. Let Yn = 1

n

∑n
i=1Xi; let Fn be the cumulative distribution function of Yn

√
n

σ ; let Φ
the cumulative distribution function of the standard normal distribution. Then, there exists a
positive constant C < 0.4748 such that, for all x and for all n, |Fn(x)− Φ(x)| 6 Cρ

σ3√n .

I Theorem 17 (Littlewood-Offord’s small ball [16]). Let xi be a Rademacher random variable
(taking values ±1 with probability p = 1

2), let ai be real constants such that |ai| > 1, and let
X =

∑n
i=1 aixi. Then, for any r ∈ R, it holds that P(|X − r| < 1) = O

(
1√
n

)
.

I Theorem 18 (Rademacher concentration bound [33]). Let xi be a Rademacher random
variable (taking values ±1 with probability p = 1

2), let ai be real constants, and let X =∑n
i=1 aixi. Then, it holds that P (|X| > t‖a‖2) 6 2e− t2

2 , where ‖a‖2 is the Euclidean norm
of the vector a = (a1, . . . , an).

B Length of the projection of the state vector

In this section we show that every component of y, i.e., the projection of the contracted initial
state vector D 1

2x on the contracted vectors D 1
2χis, is not too small, w.h.p. (Lemma 20).

This result is used is Appendices C and D.

B Claim 19. Let α(u, v) =
∑k−1
i=1

χi(u)χi(v)
m̂i−1

. For every pair of nodes u, v ∈ V it holds that
minu,v∈V |α(u, v)| > k

∆n .

Proof. Let u ∈ Vl and v ∈ Vh, for some l, h ∈ [k]. We divide the proof in two cases. First,
we assume that l = h, then we handle the case l 6= h. Without loss of generality, we assume
m1 6 . . . 6 mk and consequently m = m̂0 > m̂1 > . . . > m̂k−1 = mk.

Let us suppose l = h. Then

minu,v∈V |α(u, v)| = minu,v∈V
(∑

i<min{h,l}
mi

m̂im̂i−1
+ m̂l

mlm̂l−1

)
> m̂1

m1m̂0
> k

m > k
∆n .

Let us suppose l 6= h. In this case, α(u, v) =
∑
i<min{h,l}

mi

m̂im̂i−1
− 1 < 0. In fact∑

i<min{h,l}
mi

m̂im̂i−1
=
∑
i<min{h,l}

mi(∑k

j=i+1
mj

)(∑k

j=i
mj

)
(a)
6
∑
i<min{h,l}

mi

(k−i)(k−i+1)m2
i

=
∑
i<min{h,l}

1
(k−i)(k−i+1)mi

6
∑
i<min{h,l}

1
(k−i)(k−i+1) 6

∑k
j=1

1
j(j+1) < 1,

ISAAC 2019

https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1162/089976600300015880

20:20 Step-By-Step Community Detection in Volume-Regular Graphs

where in (a) we use the assumption on the ordering of the volumes of the commu-
nities, i.e., mi 6 mj for every i 6 j. Since α(u, v) < 0, we have that |α(u, v)| =
1−

∑
i<min{h,l}

mi

m̂im̂i−1
and thus

minu,v∈V |α(u, v)| = 1−maxu,v∈V
(∑

i<min{h,l}
mi

m̂im̂i−1

)
> 1− (k−2)mk

m2
k

= 1− k−2
mk

.

Note that mk > n
k and, given that k 6

√
n, we get mk > k. Thus 1− k−2

mk
> 2

k > k
∆n .

C

I Lemma 20 (Length of the projection of the state vector). For every u ∈ V , it holds that
P
(
|y(u)| > k

∆n
)
> 1−O

(
1√
n

)
.

Proof. Let us write y(u) =
∑k−1
i=1 γiχi(u) in terms of x. Recall that γi = xᵀDχi

‖D1/2χi‖2 and

that χi =
√

m̂i

mi
1Vi
−
√

mi

m̂i
1V̂i

. Thus, we get
∥∥D1/2χi

∥∥2 = m̂i

mi

∑
v∈Vi

δ(v) + mi

m̂i

∑
v∈V̂i

δ(v) =
m̂i +mi = m̂i−1, where m̂0 := m =

∑
v∈V δ(v). Now, we can rewrite y(u) as

y(u) =
∑k−1
i=1 γiχi(u) =

∑k−1
i=1

xᵀDχi

m̂i−1
χi(u) =

∑k−1
i=1

(∑
v∈V

δ(v)x(v)χi(v)
m̂i−1

)
χi(u)

=
∑
v∈V

(∑k−1
i=1

χi(u)χi(v)
m̂i−1

)
δ(v)x(v) =

∑
v∈V α(u, v)δ(v)x(v),

where α(u, v) :=
∑k−1
i=1

χi(u)χi(v)
m̂i−1

. Note that, for every u ∈ Vl and v ∈ Vh, with l, h ∈ [k],

χi(u)χi(v) =

mi

m̂i
if i < min(l, h),

m̂i

mi
if i = min(l, h) and l = h,

−1 if i = min(l, h) and l 6= h,

0 if i > min(l, h).

Thus α(u, v) =
∑k−1
i=1

χi(u)χi(v)
m̂i−1

=
{ ∑

i<min{h,l}
mi

m̂im̂i−1
+ m̂l

mlm̂l−1
if h = l,∑

i<min{h,l}
mi

m̂im̂i−1
− 1 if h 6= l.

We apply Theorem 17 and Claim 19 to prove that the length of the projection of the
state vector x on {χi : i ∈ [k]} is not too small, w.h.p.

P
(
|y(u)| 6 k

∆n
)

= P
(∣∣∑

v∈V α(u, v)δ(v)x(v)
∣∣ 6 k

∆n
)

= P
(∣∣∣∑v∈V

α(u,v)
minu,v |α(u,v)|δ(v)x(v)

∣∣∣ 6 k
∆nminu,v |α(u,v)|

)
(a)
6 P

(∣∣∣∑v∈V
α(u,v)

minu,v |α(u,v)|δ(v)x(v)
∣∣∣ 6 1

) (b)
6 O

(
1√
n

)
,

where in (a) we use Claim 19 to upper bound with 1 the r.h.s. term in the probability; in (b)
we can apply Theorem 17 given that minv δ(v) = 1 and that

∣∣∣ α(u,v)
minu,v |α(u,v)|

∣∣∣ > 1. J

C Lower bound on the core contribution

In this section we provide a lower bound on the difference of the core contribution of the state
vector between two consecutive time steps; we also show that the sign of a node depends
only on the sign of y (Lemma 24). In order to prove that we: (i) provide upper and lower
bounds on c(t)(u) (Claim 21), and (ii) we bound c(t)(u)− c(t+1)(u) (Claim 22).

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:21

B Claim 21. Let c(t) =
∑k
i=2 λ

t
iαivi. For every u ∈ V it holds that:

c(t)(u) > λtk
∑k
i=2 αivi(u) + tλt−1

2 (λ2 − λk)
∑
i:αivi(u)<0 αivi(u);

c(t)(u) 6 λtk
∑k
i=2 αivi(u) + tλt−1

2 (λ2 − λk)
∑
i:αivi(u)>0 αivi(u).

Proof. Let us start with the lower bound.

c(t)(u) =
∑k
i=2 λ

t
iαivi(u) =

∑
i:αivi(u)>0 λ

t
iαivi(u) +

∑
i:αivi(u)<0 λ

t
iαivi(u)

> λk
∑
i:αivi(u)>0 λ

t−1
i αivi(u) + λ2

∑
i:αivi(u)<0 λ

t−1
i αivi(u)

(a)= λk
∑k
i=2 λ

t−1
i αivi(u) + (λ2 − λk)

∑
i:αivi(u)<0 λ

t−1
i αivi(u)

(b)= λk

[
λk
∑k
i=2 λ

t−2
i αivi(u) + (λ2 − λk)

∑
i:αivi(u)<0 λ

t−2
i αivi(u)

]
+ (λ2 − λk)λt−1

2
∑
i:αivi(u)<0 αivi(u)

= λ2
k

∑k
i=2 λ

t−2
i αivi(u) + λk(λ2 − λk)

∑
i:αivi(u)<0 λ

t−2
i αivi(u)

+ (λ2 − λk)λt−1
2
∑
i:αivi(u)<0 αivi(u)

> λ2
k

∑k
i=2 λ

t−2
i αivi(u) + λkλ

t−2
2 (λ2 − λk)

∑
i:αivi(u)<0 αivi(u)

+ (λ2 − λk)λt−1
2
∑
i:αivi(u)<0 αivi(u)

= λ2
k

∑k
i=2 λ

t−2
i αivi(u) + (λkλt−2

2 + λt−1
2)(λ2 − λk)

∑
i:αivi(u)<0 αivi(u)

> λ2
k

∑k
i=2 λ

t−2
i αivi(u) + 2λt−1

2 (λ2 − λk)
∑
i:αivi(u)<0 αivi(u)

> . . .

> λtk
∑k
i=2 αivi(u) + tλt−1

2 (λ2 − λk)
∑
i:αivi(u)<0 αivi(u),

where in (a) we add and subtract λk
∑
i:αivi(u)<0 λ

t−1
i αivi(u); in (b) we iterate the same

reasoning on the first term only.
The upper bound follows with analogous calculations. C

By using Claim 21 is possible to give upper and lower bounds on the difference between
the core contribution in two consecutive rounds.

B Claim 22. Let c(t) =
∑k
i=2 λ

t
iαivi and let λ2 > λk >

1
2 . For every u ∈ V , it holds that

c(t)(u)− c(t+1)(u) > λtk(1− λ2)
∑k
i=2 αivi(u) + (t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)<0 αivi(u);

c(t)(u)− c(t+1)(u) 6 λtk(1− λ2)
∑k
i=2 αivi(u) + (t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)>0 αivi(u).

The proof of Lemma 24 requires one extra claim about the coefficients βi, i.e., the ones
such that αivi = βiD

1
2wi. This last bound is shown in Claim 23.

B Claim 23. Let x ∈ {−1, 1}n be a Rademacher random vector. Let D ∈ Rn×n be a positive
diagonal matrix with maximum element ∆ = maxiDii and let w ∈ Rn be a vector such that
‖w‖2 = 1. Let β = 〈x, D 1

2w〉. It holds that |β| 6
√

∆ logn, with high probability.

Proof. Note that β is a weighted sum of Rademacher random variables with i-th coefficient
equal to (D 1

2w)(i) and that ‖D 1
2w‖2 =

√∑n
i=1 δ(i)w(i)2 6

√
∆, since by hypothesis

‖w‖2 = 1 and thus ‖D 1
2w‖22 is a convex combination of the diagonal elements of D. Let

t =
√

logn; by applying Theorem 18 we get P
(
|β| >

√
∆ logn

)
6 P

(
|βi| > t‖D 1

2w‖2
)
6

2e−
log n

2 = O
(1
n

)
. Thus |β| 6

√
∆ logn, with high probability. C

We are now ready to state and prove Lemma 24.

ISAAC 2019

20:22 Step-By-Step Community Detection in Volume-Regular Graphs

I Lemma 24 (Lower bound on the core contribution). Let c(t) =
∑k
i=2 λ

t
iαivi. Let λk > 1

2
and 1−λ2

λ2−λk
> ∆ 3

2n1+c, for some positive constant c. For every u ∈ V and for every time
t < T2, such that T2 = Ω(nc/3), the two following conditions hold, w.h.p.:∣∣c(t)(u)− c(t+1)(u)

∣∣ > 1
2λ

t
k(1− λ2) |y(u)|;

sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)).

Proof. We show the lower bound in the time window. To do that, first we suppose that
c(t)(u)−c(t+1)(u) > 0 and show that the claim holds; then we show that the claim also holds
when c(t)(u)− c(t+1)(u) < 0.

Let us suppose c(t)(u)− c(t+1)(u) > 0. If y(u) < 0 the thesis follows directly; then let us
suppose y(u) > 0. From Claim 22 we have that c(t)(u)−c(t+1)(u) > λtk(1−λ2)

∑k
i=2 αivi(u)+

(t + 1)λt2(λ2 − λk)
∑
i:αivi(u)<0 αivi(u). In order to prove the lemma in this first case, we

need to show that

1
2λ

t
k(1− λ2)

∑k
i=2 αivi(u) > −(t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)<0 αivi(u). (7)

We lower bound the left hand side and upper bound the right hand side. For the lower bound
we apply Lemma 4 to get that

∑k
i=2 αivi(u) = y(u) and Lemma 20 to get y(u) > k

∆n , with
high probability. For the upper bound, instead, we rely on Claim 23 and on the fact that
αivi = βiD

1
2wi, for every i ∈ [n]. Indeed

−
∑
i:αivi(u)<0 αivi(u) = −

∑
i: βiwi(u)<0

βi√
δ(u)

wi(u)
(a)
6 k

√
∆ logn,

where in (a) we can apply Claim 23 since ‖wi‖2 = 1 for every i ∈ [k] and βi = 〈D 1
2x,wi〉.

By combining lower and upper bounds, we get

1
2λ

t
k(1− λ2)

∑k
i=2 αivi(u) > −(t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)<0 αivi(u)

1
2λ

t
k(1− λ2) k

∆n > (t+ 1)λt2(λ2 − λk)k
√

∆ logn(
λ2
λk

)t
(t+ 1) < 1

2
1−λ2
λ2−λk

1
∆

3
2 n
√

logn
. (8)

By hypothesis we have that 1−λ2
λ2−λk

> ∆ 3
2n1+c and that λk > 1

2 . Thus, we can derive an
upper bound for λ2

λk
, namely

λ2
λk

= 1 + λ2−λk

λk
6 1 + 1−λ2

λk∆
3
2 n1+c

6 1 + 1
∆

3
2 n1+c

6 1 + 1
n

c
3
. (9)

Moreover, by the hypothesis on 1−λ2
λ2−λk

, we know that

1
2

1−λ2
λ2−λk

1
∆

3
2 n
√

logn
> 1

2n
c
2 . (10)

We apply Equations (9) and (10) to Equation (8) to find a time T2 such that for every t 6 T2

the lemma holds, and get
(

1 + 1
n

c
3

)t
(t+ 1) < 1

2n
c
2 . Let T2 = n

c
3 . Note that

(
1 + 1

n
c
3

)t
6 e

for every time t 6 T2; thus, for every time t < T2, it also holds that e (t + 1) < 1
2n

c
2 . We

conclude that, in this first case, there exists a time T2 = Ω(n c
3) such that, for every t < T2,

c(t)(u)− c(t+1)(u) > 1
2λ

t
k(1− λ2)

∑k−1
i=1 γiχi(u). (11)

L. Becchetti, E. Cruciani, F. Pasquale, and S. Rizzo 20:23

Let us now suppose c(t)(u) − c(t+1)(u) < 0. As before, if y(u) > 0 the thesis directly
follows; then let us suppose y(u) 6 0. From Claim 22 we have that c(t)(u) − c(t+1)(u) 6
λtk(1− λ2)

∑k
i=2 αivi(u) + (t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)>0 αivi(u). Similarly to the previous

case, in order to prove the lemma we need to show that

1
2λ

t
k(1− λ2)

∑k
i=2 αivi(u) 6 −(t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)>0 αivi(u). (12)

Again, we upper bound the left hand side using Lemma 4 and Lemma 20 and getting∑k
i=2 αivi(u) =

∑k−1
i=1 γiχi(u) 6 − k

∆n , with high probability. As for the right hand side
we use Claim 23 and get that −

∑
i:αivi(u)>0 αivi(u) > −k

√
∆ logn. By combining the two

bounds we get − 1
2λ

t
k(1− λ2) k

∆n < −(t+ 1)λt2(λ2 − λk)k
√

∆ logn, which is exactly the same
condition of the previous case. Thus, for every time t < T2 = Ω(n 3

2), we have that

c(t)(u)− c(t+1)(u) 6 1
2λ

t
k(1− λ2)

∑k−1
i=1 γiχi(u). (13)

By combining Equation (11) and Equation (13), we conclude that
∣∣c(t)(u)− c(t+1)(u)

∣∣ >
1
2λ

t
k(1− λ2) |y(u)|.

Now we show that sgn(c(t)(u) − c(t+1)(u)) = sgn(y(u)). In particular, Equations (7)
and (12) imply that −(t+ 1)λt2(λ2 − λk)

∑
i:αivi(u)<0 αivi(u) 6 1

2λ
t
k(1− λ2) |y(u)| and that

(t+ 1)λt2(λ2 − λk)
∑
i:αivi(u)>0 αivi(u) 6 1

2λ
t
k(1− λ2) |y(u)|. Thus, upper and lower bounds

for c(t)(u) − c(t+1)(u) in Claim 22, during for every t < T2, have the same sign of y and
consequently sgn(c(t)(u)− c(t+1)(u)) = sgn(y(u)). J

D Upper bound on the error contribution

In this section we upper bound the error contribution, i.e., the part of the state vector in the
eigenspace of eigenvalues λk+1, . . . , λn (Lemma 25).

I Lemma 25 (Upper bound on the error contribution). Let e(t) :=
∑n
i=k+1 λ

t
iαivi. For every

u ∈ V , it holds that |e(t)(u)| 6 λtk+1
√

∆n.

Proof. To bound all components of vector e(t) we use its `∞ norm, defined for any vector x
as ‖x‖∞ := supi |x(i)|. In particular

‖e(t)‖2∞ 6 ‖e(t)‖2 =
∥∥∑n

i=k+1 λ
t
iαivi

∥∥2 =
∥∥∥∑n

i=k+1 λ
t
iβiD

− 1
2wi

∥∥∥2

(a)
6
∥∥∥D− 1

2

∥∥∥2 ∥∥∑n
i=k+1 λ

t
iβiwi

∥∥2 (b)=
∥∥∥D− 1

2

∥∥∥2∑n
i=k+1 λ

2t
i β

2
i

6
∥∥∥D− 1

2

∥∥∥2
λ2t
k+1

∑n
i=k+1 β

2
i 6

∥∥∥D− 1
2

∥∥∥2
λ2t
k+1

∑n
i=1 β

2
i

=
∥∥∥D− 1

2

∥∥∥2
λ2t
k+1

∥∥∥D 1
2x
∥∥∥2

6
∥∥∥D− 1

2

∥∥∥2
λ2t
k+1

∥∥∥D 1
2

∥∥∥2
‖x‖2

(c)= maxu δ(u)
minu δ(u) λ

2t
k+1 ‖x‖

2 6 λ2t
k+1∆n,

where in (a) we use Cauchy-Schwarz inequality (Theorem 14) and we apply the definition
of spectral norm of an operator, i.e., ‖A‖ := supx:‖x=1‖ ‖Ax‖; in (b) we use that the wis
are orthonormal; in (c) we use that the spectral norm of a diagonal matrix is equal to its
maximum value. Thus, for every u ∈ V it holds that |e(t)(u)| 6

√
‖e(t)‖2∞ 6 λtk+1

√
∆n. J

ISAAC 2019

Blocking Dominating Sets for H-Free Graphs via
Edge Contractions
Esther Galby
Department of Informatics, University of Fribourg, Fribourg, Switzerland
esther.galby@unifr.ch

Paloma T. Lima
Department of Informatics, University of Bergen, Bergen, Norway
paloma.lima@uib.no

Bernard Ries
Department of Informatics, University of Fribourg, Fribourg, Switzerland
bernard.ries@unifr.ch

Abstract
In this paper, we consider the following problem: given a connected graph G, can we reduce the
domination number of G by one by using only one edge contraction? We show that the problem
is NP-hard when restricted to {P6, P4 + P2}-free graphs and that it is coNP-hard when restricted
to subcubic claw-free graphs and 2P3-free graphs. As a consequence, we are able to establish a
complexity dichotomy for the problem on H-free graphs when H is connected.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases domination number, blocker problem, H-free graphs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.21

1 Introduction

A blocker problem asks whether given a graph G, a graph parameter π, a set O of one or
more graph operations and an integer k ≥ 1, G can be transformed into a graph G′ by
using at most k operations from O such that π(G′) ≤ π(G) − d for some threshold d ≥ 0.
Such a designation follows from the fact that the set of vertices or edges involved can be
viewed as ”blocking” the parameter π. Identifying such sets may provide information on the
structure of the input graph; for instance, if π = α, k = d = 1 and O = {vertex deletion},
the problem is equivalent to testing whether the input graph contains a vertex that is in
every maximum independent set (see [18]). Blocker problems have received much attention
in the recent literature (see for instance [1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19])
and have been related to other well-known graph problems such as Hadwiger Number,
Club Contraction and several graph transversal problems (see for instance [7, 17]). The
graph parameters mainly considered in the literature so far include the chromatic number,
the independence number, the clique number, the matching number and the vertex cover
number while the set O is always a singleton consisting of a vertex deletion, edge contraction,
edge deletion or edge addition. In this paper, we focus on the domination number γ, let O
consist of an edge contraction and set the threshold d to one.

Formally, let G = (V,E) be a graph. The contraction of an edge uv ∈ E removes vertices
u and v from G and replaces them by a new vertex that is made adjacent to precisely those
vertices which were adjacent to u or v in G (without introducing self-loops nor multiple edges).
We say that a graph G can be k-contracted into a graph G′, if G can be transformed into G′
by a sequence of at most k edge contractions, for an integer k ≥ 1. The problem we consider
is then the following (note that contracting an edge cannot increase the domination number).

© Esther Galby, Paloma T. Lima, and Bernard Ries;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esther.galby@unifr.ch
mailto:paloma.lima@uib.no
mailto:bernard.ries@unifr.ch
https://doi.org/10.4230/LIPIcs.ISAAC.2019.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Blocking Dominating Sets for H-Free Graphs via Edge Contractions

k-Edge Contraction(γ)
Instance: A connected graph G = (V,E).
Question: Can G be k-contracted into a graph G′ such that γ(G′) ≤ γ(G)− 1?

Reducing the domination number using edge contractions was first considered in [10].
The authors proved that for a connected graph G such that γ(G) ≥ 2, we have ctγ(G) ≤ 3,
where ctγ(G) denotes the minimum number of edge contractions required to transform G

into a graph G′ such that γ(G′) ≤ γ(G)− 1 (note that if γ(G) = 1 then G is a No-instance
for k-Edge Contraction(γ) independently of the value of k). Thus, if G is a connected
graph with γ(G) ≥ 2, then G is always a Yes-instance for k-Edge Contraction(γ) when
k ≥ 3. It was later shown in [9] that k-Edge Contraction(γ) is coNP-hard for k ≤ 2
and so, restrictions on the input graph to some special graph classes were considered. In
particular, the authors in [9] proved that for k = 1, 2, the problem is polynomial-time solvable
for P5-free graphs while for k = 1, it remains NP-hard when restricted to P9-free graphs and
{C3, . . . , C`}-free graphs, for any ` ≥ 3.

In this paper, we continue the systematic study of the computational complexity of 1-Edge
Contraction(γ) initiated in [9]. Ultimately, the aim is to obtain a complete classification
for 1-Edge Contraction(γ) restricted to H-free graphs, for any (not necessarily connected)
graph H, as it has been done for other blocker problems (see for instance [8, 18, 19]). As a
step towards this end, we prove the following three theorems.

I Theorem 1. 1-Edge Contraction(γ) is NP-hard when restricted to {P6, P4 + P2}-free
graphs.

I Theorem 2. 1-Edge Contraction(γ) is coNP-hard when restricted to subcubic claw-free
graphs.

I Theorem 3. 1-Edge Contraction(γ) is coNP-hard when restricted to 2P3-free graphs.

Note that Theorems 1 and 2 lead to a complexity dichotomy for H-free graphs when
H is connected. Indeed, since 1-Edge Contraction(γ) is NP-hard when restricted to
{C3, . . . , C`}-free graphs, for any ` ≥ 3, it follows that 1-Edge Contraction(γ) is NP-hard
for H-free graphs when H contains a cycle. If H is a tree with a vertex of degree at least three,
we conclude by Theorem 2 that 1-Edge Contraction(γ) is coNP-hard for H-free graphs;
and Theorem 1 shows that if H is a path of length at least 6, then 1-Edge Contraction(γ)
is NP-hard for H-free graphs. Finally, since in [9] 1-Edge Contraction(γ) is shown to be
polynomial-time solvable on {P5 + pK1}-free graphs for any p ≥ 0, it follows that 1-Edge
Contraction(γ) is polynomial-time solvable on H-free graphs if H ⊆i P5. We therefore
obtain the following result.

I Corollary 4. Let H be a connected graph. If H ⊆i P5 then 1-Edge Contraction(γ) is
polynomial-time solvable on H-free graphs, otherwise it is NP-hard or coNP-hard.

If the graph H is not required to be connected, we know the following. As previously
mentioned, 1-Edge Contraction(γ) is NP-hard (resp. coNP-hard) on H-free graphs when
H contains a cycle (resp. an induced claw). Thus, there remains to consider the case where H
is a linear forest, that is, a disjoint union of paths. Theorems 1 and 3 show that if H contains
either a P6, a P4 + P2 or a 2P3 as an induced subgraph, then 1-Edge Contraction(γ) is
NP-hard or coNP-hard on H-free graphs. Since it is known that 1-Edge Contraction(γ)
is polynomial-time solvable on H-free graphs if H ⊆i P5 + pK1, there remains to determine
the complexity status of the problem restricted to H-free graphs when H = P3 + qP2 + pK1,
for q ≥ 1 and p ≥ 0.

E. Galby, P. T. Lima, and B. Ries 21:3

2 Preliminaries

Throughout the paper, we only consider finite, undirected and connected graphs that have
no self-loops or multiple edges. We refer the reader to [6] for any terminology and notation
not defined here.

For n ≥ 1, the path and cycle on n vertices are denoted by Pn and Cn respectively. The
claw is the complete bipartite graph with one partition of size one and the other of size three.

Let G be a graph, with vertex set V (G) and edge set E(G), and let u ∈ V (G). We
denote by NG(u), or simply N(u) if it is clear from the context, the set of vertices that are
adjacent to u i.e., the neighbors of u, and let N [u] = N(u) ∪ {u}. The degree of a vertex u,
denoted by dG(u) or simply d(u) if it is clear from the context, is the size of its neighborhood
i.e., d(u) = |N(u)|. The maximum degree in G is denoted by ∆(G) and G is subcubic if
∆(G) ≤ 3.

For a family {H1, . . . ,Hp} of graphs, G is said to be {H1, . . . ,Hp}-free if G has no induced
subgraph isomorphic to a graph in {H1, . . . ,Hp}; if p = 1, we may write H1-free instead of
{H1}-free. For a subset V ′ ⊆ V (G), we let G[V ′] denote the subgraph of G induced by V ′,
which has vertex set V ′ and edge set {uv ∈ E(G) | u, v ∈ V ′}.

A subset S ⊆ V (G) is called an independent set or is said to be independent, if no two
vertices in S are adjacent. A subset D ⊆ V (G) is called a dominating set, if every vertex in
V (G) \D is adjacent to at least one vertex in D; the domination number γ(G) is the number
of vertices in a minimum dominating set. For any v ∈ D and u ∈ N [v], v is said to dominate
u (in particular, v dominates itself). We say that D contains an edge (or more) if the graph
G[D] contains an edge (or more). A dominating set D of G is efficient if for every vertex
v ∈ V , |N [v] ∩D| = 1 that is, v is dominated by exactly one vertex.

In the following, we consider those graphs for which one edge contraction suffices to
decrease their domination number by one. A characterization of this class is given in [10].

I Theorem 5 ([10]). For a connected graph G, ctγ(G) = 1 if and only if there exists a
minimum dominating set in G that is not independent.

In order to prove Theorems 2 and 3, we introduce the following two problems.

All Efficient MD
Instance: A connected graph G = (V,E).
Question: Is every minimum dominating set of G efficient?

All Independent MD
Instance: A connected graph G = (V,E).
Question: Is every minimum dominating set of G independent?

The following is then a straightforward consequence of Theorem 5.

B Fact 1. Given a graph G, G is a Yes-instance for 1-Edge Contraction(γ) if and only
if G is a No-instance for All Independent MD.

3 The proof of Theorem 1

In this section, we show that 1-Edge Contraction(γ) is NP-hard when restricted to
{P6, P4 + P2}-free graphs.

ISAAC 2019

21:4 Blocking Dominating Sets for H-Free Graphs via Edge Contractions

To this end, we give a reduction from Dominating Set. Given an instance (G, `) for
Dominating Set, we construct an instance G′ for 1-Edge Contraction(γ) as follows.
We denote by {v1, . . . , vn} the vertex set of G. The vertex set of the graph G′ is given by
V (G′) = V0 ∪ . . . ∪ V` ∪ {x0, . . . , x`, y}, where each Vi is a copy of the vertex set of G. We
denote the vertices of Vi by vi1, vi2, . . . , vin. The adjacencies in G′ are then defined as follows:

V0 ∪ {x0} is a clique;
yx0 ∈ E(G′);

and for any 1 ≤ i ≤ `,
Vi is an independent set;
xi is adjacent to all the vertices in V0 ∪ Vi;
vij is adjacent to {v0

a | va ∈ NG[vj]} for any 1 ≤ j ≤ n.

V0

x1

V1

x2

V2

. . .x`

V`

x0
y

Figure 1 The graph G′ (thick lines indicate that the vertex xi is adjacent to every vertex in V0

and Vi, for i = 0, . . . , `).

B Claim 1. γ(G′) = min{γ(G) + 1, `+ 1}.

Proof. It is clear that {x0, x1, . . . , x`} is a dominating set of G′; thus, γ(G′) ≤ `+1. If γ(G) ≤
` and {vi1 , . . . , vik} is a minimum dominating set of G, it is easily seen that {v0

i1
, . . . , v0

ik
, x0}

is a dominating set of G′. Thus, γ(G′) ≤ γ(G) + 1 and so, γ(G′) ≤ min{γ(G) + 1, ` + 1}.
Now, suppose to the contrary that γ(G′) < min{γ(G) + 1, `+ 1} and consider a minimum
dominating set D′ of G′. We first make the following simple observation.

B Observation 1. For any dominating set D of G′, D ∩ {y, x0} 6= ∅.

Now, since γ(G′) < ` + 1, there exists 1 ≤ i ≤ ` such that xi 6∈ D′ (otherwise,
{x1, . . . , x`} ⊂ D′ and combined with Observation 1, D′ would be of size at least ` + 1).
But then, D′′ = D′ ∩ V0 must dominate every vertex in Vi, and so |D′′| ≥ γ(G). Since
|D′′| ≤ |D′| − 1 (recall that D′ ∩ {y, x0} 6= ∅), we then have γ(G) ≤ |D′| − 1, a contradiction.
Thus, γ(G′) = min{γ(G) + 1, `+ 1}. C

We now show that (G, `) is a Yes-instance for Dominating Set if and only if G′ is a
Yes-instance for 1-Edge Contraction(γ).

Assume first that γ(G) ≤ `. Then γ(G′) = γ(G) + 1 by the previous claim, and
if {vi1 , . . . , vik} is a minimum dominating set of G, then {v0

i1
, . . . , v0

ik
, x0} is a minimum

dominating set of G′ which is not independent. Hence, by Theorem 5, G′ is a Yes-instance
for 1-Edge Contraction(γ).

Conversely, assume that G′ is a Yes-instance for 1-Edge Contraction(γ) i.e., there
exists a minimum dominating set D′ of G′ which is not independent (see Theorem 5). Then,
Observation 1 implies that there exists 1 ≤ i ≤ ` such that xi 6∈ D′; indeed, if it weren’t the
case, by Claim 1 we would then have γ(G′) = `+ 1 and thus, D′ would consist of x1, . . . , x`

E. Galby, P. T. Lima, and B. Ries 21:5

and either y or x0. In both cases, D′ would be independent, a contradiction. It follows that
D′′ = D′ ∩ V0 must dominate every vertex in Vi and thus, |D′′| ≥ γ(G). But |D′′| ≤ |D′| − 1
(recall that D′ ∩ {y, x0} 6= ∅) and so by Claim 1, γ(G) ≤ |D′| − 1 ≤ (`+ 1)− 1 that is, (G, `)
is a Yes-instance for Dominating Set.

We next show that G′ is a P6-free graph. Let P be an induced path of G′. First observe
that since V0 is a clique, |V (P) ∩ V0| ≤ 2. If |V (P) ∩ V0| = 0, since each Vi is independent
and the same holds for {x0, . . . , x`}, we have that |V (P)| ≤ 3. We now consider the following
two cases.

Case 1. |V (P) ∩ V0| = 2. Let u, v ∈ V0 be the vertices of V (P) ∩ V0. Since P is an
induced path, u and v appear consecutively in P , that is, uv ∈ E(P). Furthermore,
V (P) ∩ {x0, . . . , x`} = ∅ since u and v are adjacent to all the vertices of {x0, . . . , x`}. If
u has another neighbor w ∈ Vi in P , for some i > 0, then since N(w) ⊂ V0 ∪ {xi}, w can
have no neighbor in P other than u, that is, w is an endpoint of the path. Symmetrically,
the same holds for a neighbor of v in P different from u. Hence, we conclude that
|V (P)| ≤ 4.

Case 2. |V (P)∩V0| = 1. Let u ∈ V0 be the vertex of V (P)∩V0. If V (P)∩{x0, . . . , x`} = ∅,
then it is easy to see that |V (P)| ≤ 3, since any neighbor of u in the path must belong
to ∪1≤i≤`Vi and, by the same argument as in Case 1, such a neighbor would have to
be an endpoint of the path. If V (P) ∩ {x0, . . . , x`} 6= ∅, let xi be a vertex that is in P .
Since uxi ∈ E(G′), we necessarily have that uxi ∈ E(P). Suppose that xi has another
neighbor w in P . Then w ∈ Vi since N(xi) = V0 ∪ Vi. By the argument used above, w
must then be an endpoint of the path; and since u can have at most two neighbors in
{x0, . . . , x`}, we conclude that |V (P)| ≤ 5.

Finally, to see that G′ is also a {P4 + P2}-free graph, it suffices to note that any induced P4
of G′ contains at least one vertex of the clique V0. This concludes the proof of Theorem 1.

4 The proof of Theorem 2

In this section, we show that 1-Edge Contraction(γ) is coNP-hard when restricted to
subcubic claw-free graphs. To this end, we first prove the following.

I Lemma 6. All Efficient MD is NP-hard when restricted to subcubic graphs.

Proof. We reduce from Positive Exactly 3-Bounded 1-In-3 3-Sat, where each variable
appears in exactly three clauses and only positively, each clause contains three positive
literals, and we want a truth assignment such that each clause contains exactly one true
literal. This problem is shown to be NP-complete in [14]. Given an instance Φ of this problem,
with variable set X and clause set C, we construct an equivalent instance of All Efficient
MD as follows. For any variable x ∈ X, we introduce a copy of C9, which we denote by Gx,
with three distinguished true vertices T 1

x , T 2
x and T 3

x , and three distinguished false vertices
F 1
x , F 2

x and F 3
x (see Fig. 2a). For any clause c ∈ C containing variables x1, x2 and x3, we

introduce the gadget Gc depicted in Fig. 2b which has one distinguished clause vertex c
and three distinguished variable vertices x1, x2 and x3 (note that Gc is not connected). For
every j ∈ {1, 2, 3}, we then add an edge between xj and F ixj

and between c and T ixj
for some

i ∈ {1, 2, 3} so that F ixj
(resp. T ixj

) is adjacent to exactly one variable vertex (resp. clause
vertex). We denote by GΦ the resulting graph. Note that ∆(GΦ) = 3.

B Observation 1. For any dominating set D of GΦ, |D ∩ V (Gx)| ≥ 3 for any x ∈ X and
|D ∩ V (Gc)| ≥ 1 for any c ∈ C. In particular, γ(GΦ) ≥ 3|X|+ |C|.

ISAAC 2019

21:6 Blocking Dominating Sets for H-Free Graphs via Edge Contractions

F 2
x T 2

x u2
x

F 1
x

T 1
x

u1
xF 3

xT 3
x

u3
x

(a) The variable gadget Gx.

x1

x2

x3

l{x1}

l{x2}

l{x3}

c

Kc

(b) The clause gadget Gc.

Figure 2 Construction of the graph GΦ (the rectangle indicates that the corresponding set of
vertices induces a clique).

Indeed, for any x ∈ X, since u1
x, u2

x and u3
x must be dominated and their neighborhoods

are pairwise disjoint and contained in Gx, it follows that |D ∩ V (Gx)| ≥ 3. For any c ∈ C,
since the vertices of Kc must be dominated and their neighborhoods are contained in Gc,
|D ∩ V (Gc)| ≥ 1. y

B Observation 2. For any x ∈ X, if D is a minimum dominating set of Gx then either
D = {u1

x, u
2
x, u

3
x}, D = {T 1

x , T
2
x , T

3
x} or D = {F 1

x , F
2
x , F

3
x}.

B Claim 1. Φ is satisfiable if and only if γ(GΦ) = 3|X|+ |C|.

Proof. Assume that Φ is satisfiable and consider a truth assignment satisfying Φ. We
construct a dominating set D of GΦ as follows. For any variable x ∈ X, if x is true, add
T 1
x , T 2

x and T 3
x to D; otherwise, add F 1

x , F 2
x and F 3

x to D. For any clause c ∈ C containing
variables x1, x2 and x3, exactly one variable is true, say x1 without loss of generality; we
then add l{x1} to D. Clearly, D is dominating and we conclude by Observation 1 that
γ(GΦ) = 3|X|+ |C|.

Conversely, assume that γ(GΦ) = 3|X|+ |C| and consider a minimum dominating set D
of GΦ. Then by Observation 1, |D ∩ V (Gx)| = 3 for any x ∈ X and |D ∩ V (Gc)| = 1 for any
c ∈ C. Now, for a clause c ∈ C containing variables x1, x2 and x3, if D ∩ {c, x1, x2, x3} 6= ∅
then D ∩ V (Kc) = ∅ and so, at least two vertices from Kc are not dominated; thus,
D ∩ {c, x1, x2, x3} = ∅. It follows that for any x ∈ X, D ∩ V (Gx) is a minimum dominating
set of Gx which by Observation 2 implies either {T 1

x , T
2
x , T

3
x} ⊂ D or D ∩ {T 1

x , T
2
x , T

3
x} = ∅;

and we conclude similarly that either {F 1
x , F

2
x , F

3
x} ⊂ D or D ∩ {F 1

x , F
2
x , F

3
x} = ∅. Now

given a clause c ∈ C containing variables x1, x2 and x3, since D ∩ {c, x1, x2, x3} = ∅,
at least one true vertex adjacent to the clause vertex c must belong to D, say T ix1

for
some i ∈ {1, 2, 3} without loss of generality. It then follows that {T 1

x1
, T 2
x1
, T 3
x1
} ⊂ D and

D ∩ {F 1
x1
, F 2

x1
, F 3

x1
} = ∅ which implies that l{x1} ∈ D (either x1 or a vertex from Kc would

otherwise not be dominated). But then, since xj for j 6= 1, must be dominated, it follows
that {F 1

xj
, F 2

xj
, F 3

xj
} ⊂ D. We thus construct a truth assignment satisfying Φ as follows: for

any variable x ∈ X, if {T 1
x , T

2
x , T

3
x} ⊂ D, set x to true, otherwise set x to false. C

B Claim 2. γ(GΦ) = 3|X| + |C| if and only if every minimum dominating set of GΦ is
efficient.

Proof. Assume that γ(GΦ) = 3|X|+ |C| and consider a minimum dominating set D of GΦ.
Then by Observation 1, |D ∩ V (Gx)| = 3 for any x ∈ X and |D ∩ V (Gc)| = 1 for any c ∈ C.
As shown previously, it follows that for any clause c ∈ C containing variables x1, x2 and x3,
D ∩ {c, x1, x2, x3} = ∅; and for any x ∈ X, either {T 1

x , T
2
x , T

3
x} ⊂ D or D ∩ {T 1

x , T
2
x , T

3
x} = ∅

(we conclude similarly with {F 1
x , F

2
x , F

3
x} and {u1

x, u
2
x, u

3
x}). Thus, for any x ∈ X, every

E. Galby, P. T. Lima, and B. Ries 21:7

vertex in Gx is dominated by exactly one vertex. Now given a clause c ∈ C containing
variables x1, x2 and x3, since the clause vertex c does not belong to D, there exists at
least one true vertex adjacent to c which belongs to D. Suppose to the contrary that c has
strictly more than one neighbor in D, say T ix1

and T jx2
without loss of generality. Then,

{T 1
xk
, T 2
xk
, T 3
xk
} ⊂ D for k = 1, 2 which implies that D ∩ {F 1

x1
, F 2

x1
, F 3

x1
, F 1

x2
, F 2

x2
, F 3

x2
} = ∅

as |D ∩ V (Gxk
)| = 3 for k = 1, 2. It follows that the variable vertices x1 and x2 must be

dominated by some vertices in Gc; but |D∩V (Gc)| = 1 and N [x1]∩N [x2] = ∅ and so, either
x1 or x2 is not dominated. Thus, c has exactly one neighbor in D, say T ix1

without loss of
generality. Then, necessarily D ∩ V (Gc) = {l{x1}} for otherwise either x1 or some vertex in
Kc would not be dominated. But then, it is clear that every vertex in Gc is dominated by
exactly one vertex; thus, D is efficient.

Conversely, assume that every minimum dominating set of GΦ is efficient and consider a
minimum dominating set D of GΦ. If for some x ∈ X, |D ∩ V (Gx)| ≥ 4, then clearly at least
one vertex in Gx is dominated by two vertices in D ∩ V (Gx). Thus, |D ∩ V (Gx)| ≤ 3 for any
x ∈ X and we conclude by Observation 1 that in fact, equality holds. The next observation
immediately follows from the fact that D is efficient.

B Observation 3. For any x ∈ X, if |D ∩ V (Gx)| = 3 then either {u1
x, u

2
x, u

3
x} ⊂ D,

{T 1
x , T

2
x , T

3
x} ⊂ D or {F 1

x , F
2
x , F

3
x} ⊂ D.

Now, consider a clause c ∈ C containing variables x1, x2 and x3 and suppose without loss
of generality that T 1

x1
is adjacent to c (note that then the variable vertex x1 is adjacent to

F 1
x1
). If the clause vertex c belongs to D then, since D is efficient, T 1

x1
/∈ D and u1

x1
, F 1

x1
/∈ D

(T 1
x1

would otherwise be dominated by at least two vertices) which contradicts Observation
3. Thus, no clause vertex belongs to D. Similarly, suppose that there exists i ∈ {1, 2, 3}
such that xi ∈ D, say x1 ∈ D without loss of generality. Then, since D is efficient, F 1

x1
/∈ D

and T 1
x1
, u2
x1
/∈ D (F 1

x1
would otherwise be dominated by at least two vertices) which again

contradicts Observation 3. Thus, no variable vertex belongs to D. Finally, since D is efficient,
|D ∩ V (Kc)| ≤ 1 and so, |D ∩ V (Gc)| = 1 by Observation 1. C

Now by combining Claims 1 and 2, we obtain that Φ is satisfiable if and only if every
minimum dominating set of GΦ is efficient, that is, GΦ is a Yes-instance for All Efficient
MD. J

I Theorem 7. All Independent MD is NP-hard when restricted to subcubic claw-free
graphs.

Proof. We give a reduction from Positive Exactly 3-Bounded 1-In-3 3-Sat, where
each variable appears in exactly three clauses and only positively, each clause contains three
positive literals, and we want a truth assignment such that each clause contains exactly one
true literal. This problem is shown to be NP-complete in [14]. Given an instance Φ of this
problem, with variable set X and clause set C, we construct an equivalent instance of All
Independent MD as follows. Consider the graph GΦ = (V,E) constructed in the proof
of Lemma 6 and let Vi = {v ∈ V : dGΦ(v) = i} for i = 2, 3 (note that no vertex in GΦ has
degree one). Then, for any v ∈ V3, we replace the vertex v by the gadget Gv depicted
in Fig. 3a; and for any v ∈ V2, we replace the vertex v by the gadget Gv depicted in Fig.
3b. We denote by G′Φ the resulting graph. Note that G′Φ is claw-free and ∆(G′Φ) = 3 (also
note that no vertex in G′Φ has degree one). It is shown in the proof of Lemma 6 that Φ is
satisfiable if and only if GΦ is a Yes-instance for All Efficient MD; we here show that
GΦ is a Yes-instance for All Efficient MD if and only if G′Φ is a Yes-instance for All
Independent MD. To this end, we first prove the following.

ISAAC 2019

21:8 Blocking Dominating Sets for H-Free Graphs via Edge Contractions

v2 u2

w2

v3w3

u3

v1

u1 w1

b1
c1

a1

b3
a3

c3

b2a2 c2e2 e3

e1

v

e1

e2 e3

(a) dGΦ(v) = 3.

ve1 e2
v1 u1 a1 b1 c1 u2 v2e1 e2

(b) dGΦ(v) = 2.

Figure 3 The gadget Gv.

B Claim 3. γ(G′Φ) = γ(GΦ) + 5|V3|+ 2|V2|.

Proof. Let D be a minimum dominating set of GΦ. We construct a dominating set D′ of G′Φ
as follows. For any v ∈ D, if v ∈ V3, add v1, v2, v3, b1, b2 and b3 to D′; otherwise, add v1,
v2 and b1 to D′. For any v ∈ V \D, let u ∈ D be a neighbor of v, say e1 = uv without loss
of generality. Then, if v ∈ V3, add a1, c3, w2, u3 and b2 to D′; otherwise, add a1 and u2 to
D′. Clearly, D′ is dominating and |D′| = γ(GΦ) + 5|V3|+ 2|V2| ≥ γ(G′Φ).

B Observation 4. For any dominating set D′ of G′Φ, the following holds.
(i) For any v ∈ V2, |D′ ∩ V (Gv)| ≥ 2. Moreover, if equality holds then D′ ∩ {v1, v2} = ∅

and there exists j ∈ {1, 2} such that uj /∈ D′.
(ii) For any v ∈ V3, |D′ ∩V (Gv)| ≥ 5. Moreover, if equality holds then D′ ∩{v1, v2, v3} = ∅

and there exists j ∈ {1, 2, 3} such that D′ ∩ {uj , vj , wj} = ∅.

(i) Clearly, D′∩{v1, u1, a1} 6= ∅ and D′∩{c1, u2, v2} 6= ∅ as u1 and u2 must be dominated.
Thus, |D′ ∩ V (Gv)| ≥ 2. Now, suppose that D′ ∩ {v1, v2} 6= ∅ say v1 ∈ D′ without loss
of generality. Then D′ ∩ {u1, a1, b1} 6= ∅ as a1 must be dominated which implies that
|D′ ∩ V (Gv)| ≥ 3 (recall that D′ ∩ {c1, u2, v2} 6= ∅). Similarly, if both u1 and u2 belong to
D′, then |D′ ∩ V (Gv)| ≥ 3 as D′ ∩ {a1, b1, c1} 6= ∅ (b1 would otherwise not be dominated).

(ii) Clearly, for any i ∈ {1, 2, 3}, D′ ∩ {ai, bi, ci} 6= ∅ as bi must be dominated. Now,
if there exists j ∈ {1, 2, 3} such that D′ ∩ {uj , vj , wj} = ∅, say j = 1 without loss of
generality, then a1, c3 ∈ D′ (one of u1 and w1 would otherwise not be dominated). But
then, D′ ∩ {b1, c1, w2} 6= ∅ as c1 must be dominated, and D′ ∩ {a3, b3, u3} 6= ∅ as a3 must be
dominated; and so, |D′ ∩ V (Gv)| ≥ 5 (recall that D′ ∩ {a2, b2, c2} 6= ∅). Otherwise, for any
j ∈ {1, 2, 3}, D′ ∩ {uj , vj , wj} 6= ∅ which implies that |D′ ∩ V (Gv)| ≥ 6.

Now suppose that D′ ∩ {v1, v2, v3} 6= ∅, say v1 ∈ D′ without loss of generality. If there
exists j 6= 1 such that D′∩{uj , vj , wj} = ∅, say j = 2 without loss of generality, then c1, a2 ∈
D′ (one of u2 and w2 would otherwise not be dominated). But then, D′ ∩ {a1, b1, u1} 6= ∅
as a1 should be dominated, and D′ ∩ {b2, c2, w3} 6= ∅ as c2 must be dominated. Since
D′ ∩ {a3, b3, c3} 6= ∅, it then follows that |D′ ∩ V (Gv)| ≥ 6. Otherwise, D′ ∩ {uj , vj , wj} 6= ∅
for any j ∈ {1, 2, 3} and so, |D′ ∩ V (Gv)| ≥ 6 (recall that D′ ∩ {ai, bi, ci} 6= ∅ for any
i ∈ {1, 2, 3}). y

B Observation 5. If D′ is a minimum dominating set of G′Φ, then |D′ ∩ V (Gv)| ≤ 3 for any
v ∈ V2 and |D′ ∩ V (Gv)| ≤ 6 for any v ∈ V3.

Indeed, if v ∈ V2 then {v1, b1, v2} is a dominating set of V (Gv); and if v ∈ V3, then
{v1, v2, v3, b1, b2, b3} is a dominating set of V (Gv). y

E. Galby, P. T. Lima, and B. Ries 21:9

Now, consider a minimum dominating set D′ of G′Φ and let D3 = {v ∈ V3 : |D′∩V (Gv)| =
6} and D2 = {v ∈ V2 : |D′ ∩ V (Gv)| = 3}. We claim that D = D3 ∪D2 is a dominating set
of GΦ. Indeed, consider a vertex v ∈ V \D. We distinguish two cases depending on whether
v ∈ V2 of v ∈ V3.

Case 1. v ∈ V2. Then |D′ ∩ V (Gv)| = 2 by construction, which by Observation 4(i) implies
that there exists j ∈ {1, 2} such that D′ ∩ {vj , uj} = ∅ , say j = 1 without loss of
generality. Since v1 must be dominated, v1 must then have a neighbor xi belonging to
D′, for some vertex x adjacent to v in GΦ. But then, it follows from Observation 4 that
|D′ ∩ V (Gx)| > 2 if x ∈ V2, and |D′ ∩ V (Gx)| > 5 if x ∈ V3 (indeed, xi ∈ D′); thus,
x ∈ D.

Case 2. v ∈ V3. Then |D′ ∩ V (Gv)| = 5 by construction, which by Observation 4(ii) implies
that there exists j ∈ {1, 2, 3} such that D′ ∩ {uj , vj , wj} = ∅, say j = 1 without loss
of generality. Since v1 must be dominated, v1 must then have a neighbor xi belonging
to D′, for some vertex x adjacent to v in GΦ. But then, it follows from Observation 4
that |D′ ∩ V (Gx)| > 2 if x ∈ V2, and |D′ ∩ V (Gx)| > 5 if x ∈ V3 (indeed, xi ∈ D′); thus,
x ∈ D.

Hence, D is a dominating set of GΦ. Moreover, it follows from Observations 4 and 5 that
|D′| = 6|D3|+ 5|V3 \D3|+ 3|D2|+ 2|V2 \D2| = |D|+ 5|V3|+ 2|V2|. Thus, γ(G′Φ) = |D′| ≥
γ(GΦ) + 5|V3|+ 2|V2| and so, γ(G′Φ) = γ(GΦ) + 5|V3|+ 2|V2|. Finally note that this implies
that the constructed dominated set D is in fact minimum. C

We next show that GΦ is a Yes-instance for All Efficient MD if and only if G′Φ
is a Yes-instance for All Independent MD. Since Φ is satisfiable if and only if GΦ is
a Yes-instance for All Efficient MD, as shown in the proof of Lemma 6, this would
conclude the proof.

Assume first that GΦ is a Yes-instance for All Efficient MD and suppose to the
contrary that G′Φ is a No-instance for All Independent MD that is, G′Φ has a minimum
dominating set D′ which is not independent. Denote by D the minimum dominating set
of GΦ constructed from D′ according to the proof of Claim 3. Let us show that D is not
efficient. Consider two adjacent vertices a, b ∈ D′. If a and b belong to gadgets Gx and Gv
respectively, for two adjacent vertices x and v in GΦ, that is, a is of the form xi and b is
of the form vj , then by Observation 4 x, v ∈ D and so, D is not efficient. Thus, it must be
that a and b both belong the same gadget Gv, for some v ∈ V2 ∪ V3. We distinguish cases
depending on whether v ∈ V2 or v ∈ V3.

Case 1. v ∈ V2. Suppose that |D′∩V (Gv)| = 2. Then by Observation 4(i), D′∩{v1, v2} = ∅
and there exists j ∈ {1, 2} such that uj /∈ D′, say u1 /∈ D′ without loss of generality.
Then, necessarily a1 ∈ D′ (u1 would otherwise not be dominated) and so, b1 ∈ D′ as
D′ ∩ V (Gv) contains an edge and |D′ ∩ V (Gv)| = 2 by assumption; but then, u2 is not
dominated. Thus, |D′ ∩ V (Gv)| ≥ 3 and we conclude by Observation 5 that in fact,
equality holds. Note that consequently, v ∈ D. We claim that then, |D′ ∩ {v1, v2}| ≤ 1.
Indeed, if both v1 and v2 belong to D′, then b1 ∈ D′ (since |D′ ∩ V (Gv)| = 3, D′ would
otherwise not be dominating) which contradicts that fact that D′ ∩ V (Gv) contains an
edge. Thus, |D′∩{v1, v2}| ≤ 1 and we may assume without loss of generality that v2 /∈ D′.
Let xi 6= u2 be the other neighbor of v2 in G′Φ, where x is a neigbhor of v in GΦ.
Suppose first that x ∈ V2. Then, |D′ ∩ V (Gx)| = 2 for otherwise x would belong to D
and so, D would contain the edge vx. It then follows from Observation 4(i) that there
exists j ∈ {1, 2} such that D′ ∩ {xj , yj} = ∅, where yj is the neighbor of xj in V (Gx).

ISAAC 2019

21:10 Blocking Dominating Sets for H-Free Graphs via Edge Contractions

We claim that j 6= i; indeed, if j = i, since v2, xi, yi /∈ D′, xi would not be dominated.
But then, xj must have a neighbor tk 6= yj , for some vertex t adjacent to x in GΦ, which
belongs to D′; it then follows from Observation 4 and the construction of D that t ∈ D
and so, x has two neighbors in D, namely v and t, a contradiction.
Second, suppose that x ∈ V3. Then, |D′ ∩ V (Gx)| = 5 for otherwise x would belong to D
and so, D would contain the edge vx. It then follows from Observation 4(ii) that there
exists j ∈ {1, 2, 3} such that D′ ∩ {xj , yj , zj} = ∅, where yj and zj are the two neighbors
of xj in V (Gx). We claim that j 6= i; indeed, if j = i, since v2, xi, yi, zi /∈ D′, xi would not
be dominated. But then, xj must have a neighbor tk 6= yj , zj , for some vertex t adjacent
to x in GΦ, which belongs to D′; it then follows from Observation 4 and the construction
of D that t ∈ D and so, x has two neighbors in D, namely v and t, a contradiction.

Case 2. v ∈ V3. Suppose that |D′ ∩ V (Gv)| = 5. Then, by Observation 4(ii), D′ ∩
{v1, v2, v3} = ∅ and there exists j ∈ {1, 2, 3} such that D′ ∩ {uj , vj , wj} = ∅, say
j = 1 without loss of generality. Then, a1, c3 ∈ D′ (one of u1 and w1 would otherwise
not be dominated), D′ ∩ {c1, w2, u2} 6= ∅ (w2 would otherwise not be dominated),
D′ ∩ {a3, u3, w3} 6= ∅ (u3 would otherwise not be dominated) and D′ ∩ {a2, b2, c2} 6= ∅
(b2 would otherwise not be dominated); in particular, b1, b3 /∈ D′ as |D′ ∩ V (Gv)| = 5
by assumption. Since D′ ∩ V (Gv) contains an edge, it follows that either u2, a2 ∈ D′
or c2, w3 ∈ D′; but then, either c1 or a3 is not dominated, a contradiction. Thus,
|D′ ∩ V (Gv)| ≥ 6 and we conclude by Observation 5 that in fact, equality holds. Note
that consequently, v ∈ D. It follows that {v1, v2, v3} 6⊂ D′ for otherwise D′ ∩ V (Gv) =
{v1, v2, v3, b1, b2, b3} and so, D′∩V (Gv) contains no edge. Thus, we may asssume without
loss of generality that v1 /∈ D′. Denoting by xi 6= u1, w1 the third neighbor of v1, where
x is a neighbor of v in GΦ, we then proceed as in the previous case to conclude that x
has two neighbors in D.

Thus, D is not efficient, which contradicts the fact that GΦ is a Yes-instance for All
Efficient MD. Hence, every minimum dominating set of G′Φ is independent i.e., G′Φ is a
Yes-instance for All Independent MD.

Conversely, assume that G′Φ is a Yes-instance for All Independent MD and suppose
to the contrary that GΦ is a No-instance for All Efficient MD that is, GΦ has a minimum
dominating set D which is not efficient. Let us show that D either contains an edge or can be
transformed into a minimum dominating set of GΦ containing an edge. Since any minimum
dominating of G′Φ constructed according to the proof of Claim 3 from a minimum dominating
set of GΦ containing an edge, also contains an edge, this would lead to a contradiction and
thus conclude the proof.

Suppose that D contains no edge. Since D is not efficient, there must then exist a vertex
v ∈ V \D such that v has two neighbors in D. We distinguish cases depending on which
type of vertex v is.

Case 1. v is a variable vertex. Suppose that v = x1 in some clause gadget Gc, where c ∈ C
contains variables x1, x2 and x3, and assume without loss of generality that x1 is adjacent
to F 1

x1
. By assumption, F 1

x1
, l{x1} ∈ D which implies that D ∩ {l{x2}, l{x3}, T

1
x1
, u2
x1
} = ∅

(D would otherwise contain an edge). We may then assume that F ix2
and F jx3

, where
F ix2

x2, F
j
x3
x3 ∈ E(GΦ), belong to D; indeed, since x2 (resp. x3) must be dominated,

D ∩ {F ix2
, x2} 6= ∅ (resp. D ∩ {F jx3

, x3} 6= ∅) and since l{x1} ∈ D, (D \ {x2}) ∪ {F ix2
}

(resp. (D \ {x3}) ∪ {F jx3
}) remains dominating. We may then assume that T ix2

, T jx3
/∈ D

for otherwise D would contain an edge. It follows that c ∈ D (c would otherwise not
be dominated); but then, it suffices to consider (D \ {c}) ∪ {T 1

x1
} to obtain a minimum

dominating set of GΦ containing an edge.

E. Galby, P. T. Lima, and B. Ries 21:11

Case 2. v = uix for some variable x ∈ X and i ∈ {1, 2, 3}. Assume without loss of generality
that i = 1. Then T 1

x , F
3
x ∈ D by assumption, which implies that F 1

x , T
3
x /∈ D (D would

otherwise contain an edge). But then, |D ∩ {u2
x, F

2
x , T

2
x , u

3
x}| ≥ 2 as u2

x and u3
x must be

dominated; and so, (D \ {u3
x, F

2
x , T

2
x , u

2
x}) ∪ {F 2

x , T
2
x} is a dominating set of GΦ of size at

most that of D which contains an edge.
Case 3. v is a clause vertex. Suppose that v = c for some clause c ∈ C containing variables

x1, x2 and x3, and assume without loss of generality that c is adjacent to T 1
xi

for
any i ∈ {1, 2, 3}. By assumption c has two neighbors in D, say T 1

x1
and T 1

x2
without

loss of generality. Since D contains no edge, it follows that F 1
x1
, F 1

x2
/∈ D; but then,

|D ∩ {x1, x2, l{x1}, l{x2}}| ≥ 2 (one of x1 and x2 would otherwise not be dominated) and
so, (D \ {x1, x2, l{x1}, l{x2}}) ∪ {l{x1}, l{x2}} is a dominating set of GΦ of size at most
that of D which contains an edge.

Case 4. v ∈ V (Kc) for some clause c ∈ C. Denote by x1, x2 and x3 the variables contained
in c and assume without loss of generality that v = l{x1}. Since l{x1} has two neighbors in
D and D contains no edge, necessarily x1 ∈ D. Now assume without loss of generality that
x1 is adjacent to F 1

x1
(note that by construction, c is then adjacent to T 1

x1
). Then, F 1

x1
/∈ D

(D would otherwise contain an edge) and T 1
x1
, u2
x1
/∈ D for otherwise (D \ {x1}) ∪ {F 1

x1
}

would be a minimum dominating set of GΦ containing an edge (recall that by assumption,
D ∩ V (Kc) 6= ∅). It follows that T 2

x1
∈ D (u2

x1
would otherwise not be dominated) and so,

F 2
x1
/∈ D as D contains no edge. It follows that |D ∩ {u1

x1
, F 3

x1
, T 3
x1
, u3
x1
}| ≥ 2 as u1

x1
and

u3
x1

must be dominated. Now if c belongs to D, then (D\{u1
x1
, F 3

x1
, T 3
x1
, u3
x1
})∪{F 3

x1
, T 3
x1
}

is a dominating set of GΦ of size at most that of D which contains an edge. Thus, we may
assume that c /∈ D which implies that u1

x1
∈ D (T 1

x1
would otherwise not be dominated)

and that there exists j ∈ {2, 3} such that T ixj
∈ D with cT ixj

∈ E(GΦ) (c would otherwise
not be dominated). Now, since u3

x1
must be dominated and F 2

x1
/∈ D, it follows that

D ∩ {u3
x1
, T 3
x1
} 6= ∅ and we may assume that in fact T 3

x1
∈ D (recall that T 2

x1
∈ D

and so, F 2
x1

is dominated). But then, by considering the minimum dominating set
(D \ {u1

x1
})∪ {T 1

x1
}, we fall back into Case 3 as c is then dominated by both T 1

x1
and T ixj

.
Case 5. v is a true vertex. Assume without loss of generality that v = T 1

x for some variable
x ∈ X. Suppose first that u1

x ∈ D. Then since D contains no edge, F 3
x /∈ D; furthermore,

denoting by t 6= u1
x, T

3
x the variable vertex adjacent to F 3

x , we also have t /∈ D for otherwise
(D \ {u1

x})∪{F 3
x} would be a minimum dominating set containing an edge (recall that T 1

x

has two neighbors in D by assumption). But then, since t must be dominated, it follows
that the second neighbor of t must belong to D; and so, by considering the minimum
dominating set (D \ {u1

x}) ∪ {F 3
x}, we fall back into Case 1 as the variable vertex t is

then dominated by two vertices. Thus, we may assume that u1
x /∈ D which implies that

F 1
x , c ∈ D, where c is the clause vertex adjacent to T 1

x . Now, denote by x1 = x, x2 and
x3 the variables contained in c (note that by construction, x1 is then adjacent to F 1

x1
).

Then, x1 /∈ D (D would otherwise contain the edge F 1
x1
x1) and we may assume that

l{x1} /∈ D (we otherwise fall back into Case 1 as x1 would then have two neighbors in
D). It follows that D ∩ V (Kc) 6= ∅ (l{x1} would otherwise not be dominated) and since
D contains no edge, in fact |D ∩ V (Kc)| = 1, say l{x2} ∈ D without loss of generality.
Then, x2 /∈ D as D contains no edge and we may assume that F jx2

/∈ D, where F jx2
is the

false vertex adjacent to x2, for otherwise we fall back into Case 1. In the following, we
assume without loss of generality that j = 1, that is, x2 is adjacent to F 1

x2
(note that

by construction, c is then adjacent to T 1
x2
). Now, since the clause vertex c belongs to D

by assumption, it follows that T 1
x2
/∈ D (D would otherwise contain the edge cT 1

x2
); and

as shown previously, we may assume that u1
x2

/∈ D (indeed, T 1
x2

would otherwise have
two neighbors in D, namely c and u1

x2
, but this case has already been dealt with). Then,

ISAAC 2019

21:12 Blocking Dominating Sets for H-Free Graphs via Edge Contractions

since u1
x2

and F 1
x2

must be dominated, necessarily F 3
x2

and u2
x2

belong to D (recall that
D ∩ {x2, F

1
x2
, T 1
x2
, u1
x2
} = ∅) which implies that T 3

x2
, T 2
x2
/∈ D (D would otherwise contain

an edge). Now since u3
x2

must be dominated, D ∩ {u3
x2
, F 2

x2
} 6= ∅ and we may assume

without loss of generality that in fact, F 2
x2
∈ D. But then, by considering the minimum

dominating set (D \ {u2
x2
}) ∪ {F 1

x2
}, we fall back into Case 1 as x2 is then dominated by

two vertices.
Case 6. v is a false vertex. Assume without loss of generality that v = F 1

x1
for some variable

x1 ∈ X and let c ∈ C be the clause whose corresponding clause vertex is adjacent to T 1
x1
.

Denote by x2 and x3 the two other variables contained in c. Suppose first that x1 ∈ D.
Then, we may assume that D ∩ V (Kc) = ∅ for otherwise either D contains an edge (if
l{x1} ∈ D) or we fall back into Case 4 (l{x1} would indeed have two neighbors in D).
Since every vertex of Kc must be dominated, it then follows that x2, x3 ∈ D; but then,
by considering the minimum dominating set (D \ {x1})∪ {l{x1}} (recall that F 1

x1
has two

neighbors in D by assumption), we fall back into Case 4 as l{x2} is then dominated by
two vertices. Thus, we may assume that x1 /∈ D which implies that T 1

x1
, u2
x1
∈ D and

T 2
x1
, u1
x1

/∈ D as D contains no edge. Now, denote by c′ the clause vertex adjacent to
T 2
x1
. Then, we may assume that c′ /∈ D for otherwise we fall back into Case 5 (T 2

x1
would

indeed have two neighbors in D); but then, there must exist a true vertex, different from
T 2
x1
, adjacent to c′ and belonging to D (c′ would otherwise not be dominated) and by

considering the minimum dominating set (D \ {u2
x1
})∪{T 2

x1
}, we then fall back into Case

3 (c′ would indeed be dominated by two vertices).

Consequently, GΦ has a minimum dominating set which is not independent which implies
that G′Φ also has a minimum dominating set which is not independent, a contradiction which
concludes the proof. J

Theorem 2 now easily follows from Fact 1 and Theorem 7.

5 The proof of Theorem 3

In this section, we show that 1-Edge Contraction(γ) is coNP-hard when restricted to
2P3-free graphs. To this end, we prove the following.

I Theorem 8. All Independent MD is NP-hard when restricted to 2P3-free graphs.

Proof. We reduce from 3-Sat: given an instance Φ of this problem, with variable set X
and clause set C, we construct an equivalent instance of All Independent MD as follows.
For any variable x ∈ X, we introduce a copy of C3, which we denote by Gx, with one
distinguished positive literal vertex x and one distinguished negative literal vertex x̄; in the
following, we denote by ux the third vertex in Gx. For any clause c ∈ C, we introduce a
clause vertex c; we then add an edge between c and the (positive or negative) literal vertices
whose corresponding literal occurs in c. Finally, we add an edge between any two clause
vertices so that the set of clause vertices induces a clique denoted by K in the following. We
denote by GΦ the resulting graph.

B Observation 1. For any dominating set D of GΦ and any variable x ∈ X, |D∩V (Gx)| ≥ 1.
In particular, γ(GΦ) ≥ |X|.

B Claim 1. Φ is satisfiable if and only if γ(GΦ) = |X|.

E. Galby, P. T. Lima, and B. Ries 21:13

Proof. Assume that Φ is satisfiable and consider a truth assignment satisfying Φ. We
construct a dominating set D of GΦ as follows. For any variable x ∈ X, if x is true, add the
positive literal vertex x to D; otherwise, add the negative variable vertex x̄ to D. Clearly, D
is dominating and we conclude by Observation 1 that γ(GΦ) = |X|.

Conversely, assume that γ(GΦ) = |X| and consider a minimum dominating set D of GΦ.
Then by Observation 1, |D ∩ V (Gx)| = 1 for any x ∈ X. It follows that D ∩K = ∅ and so,
every clause vertex must be adjacent to some (positive or negative) literal vertex belonging
to D. We thus construct a truth assignment satisfying Φ as follows: for any variable x ∈ X,
if the positive literal vertex x belongs to D, set x to true; otherwise, set x to false. C

B Claim 2. γ(GΦ) = |X| if and only if every minimum dominating set of GΦ is independent.

Proof. Assume that γ(GΦ) = |X| and consider a minimum dominating set D of GΦ. Then
by Observation 1, |D ∩ V (Gx)| = 1 for any x ∈ X. It follows that D ∩K = ∅ and since
N [V (Gx)] ∩N [V (Gx′)] ⊂ K for any two x, x′ ∈ X, D is independent.

Conversely, consider a minimum dominating set D of GΦ. Since D is independent,
|D ∩ V (Gx)| ≤ 1 for any x ∈ X and we conclude by Observation 1 that in fact, equality
holds. Now suppose that there exists c ∈ C, containing variables x1, x2 and x3, such that the
corresponding clause vertex c belongs to D (note that since D is independent, |D ∩K| ≤ 1).
Assume without loss of generality that x1 occurs positively in c, that is, c is adjacent to
the positive literal vertex x1. Then, x1 /∈ D since D is independent and so, either ux1 ∈ D
or x̄1 ∈ D. In the first case, we immediately obtain that (D \ {ux1}) ∪ {x1} is a minimum
dominating set of GΦ containing an edge, a contradiction. In the second case, since c ∈ D,
any vertex dominated by x̄1 is also dominated by c; thus, (D \ {x̄1}) ∪ {x1} is a minimum
dominating set of GΦ containing an edge, a contradiction. Consequently, D ∩K = ∅ and so,
γ(GΦ) = |D| = |X|. C

Now by combining Claims 1 and 2, we obtain that Φ is satisfiable if and only if every
minimum dominating set of GΦ is independent, that is, GΦ is a Yes-instance for All
Independent MD. There remains to show that GΦ is 2P3-free. To see this, it suffices
to observe that any induced P3 of GΦ contains at least one vertex in the clique K. This
concludes the proof. J

Theorem 3 now easily follows from Fact 1 and Theorem 8.

6 Conclusion

In this work, we establish a complexity dichotomy for 1-Edge Contraction(γ) on H-free
graphs when H is a connected graph. If we do not require H to be connected, there only
remains to settle the complexity status of 1-Edge Contraction(γ) restricted to H-free
graphs when H = P3 + qP2 + pK1, with q ≥ 1 and p ≥ 0.

References
1 Cristina Bazgan, Sonia Toubaline, and Zsolt Tuza. The most vital nodes with respect to

independent set and vertex cover. Discrete Applied Mathematics, 159:1933–1946, October
2011. doi:10.1016/j.dam.2011.06.023.

2 Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten. Critical edges for the assignment
problem: Complexity and exact resolution. Operations Research Letters, 41:685–689, November
2013. doi:10.1016/j.orl.2013.10.001.

ISAAC 2019

https://doi.org/10.1016/j.dam.2011.06.023
https://doi.org/10.1016/j.orl.2013.10.001

21:14 Blocking Dominating Sets for H-Free Graphs via Edge Contractions

3 Cédric Bentz, Costa Marie-Christine, Dominique de Werra, Christophe Picouleau, and Bernard
Ries. Blockers and Transversals in some subclasses of bipartite graphs: when caterpillars are
dancing on a grid. Discrete Mathematics, 310:132–146, January 2010. doi:10.1016/j.disc.
2009.08.009.

4 Cédric Bentz, Costa Marie-Christine, Dominique de Werra, Christophe Picouleau, and Bernard
Ries. Weighted Transversals and Blockers for Some Optimization Problems in Graphs, pages
203–222. Progress in Combinatorial Optimization. ISTE-WILEY, 2012.

5 Marie-Christine Costa, Dominique de Werra, and Christophe Picouleau. Minimum d-blockers
and d-transversals in graphs. Journal of Combinatorial Optimization, 22(4):857–872, 2011.
doi:10.1007/s10878-010-9334-6.

6 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,
Heidelberg; New York, fourth edition, 2010.

7 Öznur Yaşar Diner, Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Contraction
Blockers for Graphs with Forbidden Induced Paths. In Algorithms and Complexity, pages
194–207. Springer International Publishing, 2015.

8 Öznur Yaşar Diner, Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Contraction
and deletion blockers for perfect graphs and H-free graphs. Theoretical Computer Science,
746:49–72, 2018. doi:10.1016/j.tcs.2018.06.023.

9 Esther Galby, Paloma T. Lima, and Bernard Ries. Reducing the domination number of graphs
via edge contractions. In Mathematical Foundations of Computer Science (MFCS) 2019 (to
appear), 2019.

10 Jia Huang and Jun-Ming Xu. Domination and Total Domination Contraction Numbers of
Graphs. Ars Combinatoria, 94, January 2010.

11 Chaya Keller and Micha A Perles. Blockers for simple Hamiltonian paths in convex geometric
graphs of even order. Discrete & Computational Geometry, 60(1):1–8, 2018.

12 Chaya Keller, Micha A Perles, Eduardo Rivera-Campo, and Virginia Urrutia-Galicia. Blockers
for noncrossing spanning trees in complete geometric graphs. In Thirty Essays on Geometric
Graph Theory, pages 383–397. Springer, 2013.

13 Foad Mahdavi Pajouh, Vladimir Boginski, and Eduardo Pasiliao. Minimum Vertex Blocker
Clique Problem. Networks, 64:48–64, August 2014. doi:10.1002/net.21556.

14 C. Moore and J. M. Robson. Hard Tiling Problems with Simple Tiles. Discrete Computational
Geometry, 26(4):573–590, 2001. doi:10.1007/s00454-001-0047-6.

15 Farzaneh Nasirian, Foad Mahdavi Pajouh, and Josephine Namayanja. Exact algorithms for the
minimum cost vertex blocker clique problem. Computers & Operations Research, 103:296–309,
2019.

16 Foad Mahdavi Pajouh, Jose L. Walteros, Vladimir Boginski, and Eduardo L. Pasiliao. Minimum
edge blocker dominating set problem. European Journal of Operational Research, 247(1):16–26,
2015.

17 Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Reducing the Clique and Chromatic
Number via Edge Contractions and Vertex Deletions. In ISCO 2016, volume 9849 of LNCS,
pages 38–49, 2016. doi:10.1007/978-3-319-45587-7_4.

18 Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Blocking Independent Sets for
H-Free Graphs via Edge Contractions and Vertex Deletions. In TAMC 2017, volume 10185 of
LNCS, pages 470–483, 2017. doi:10.1007/978-3-319-55911-7_34.

19 Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Critical vertices and edges in H-free
graphs. Discrete Applied Mathematics, 257:361–367, 2019. doi:10.1016/j.dam.2018.08.016.

https://doi.org/10.1016/j.disc.2009.08.009
https://doi.org/10.1016/j.disc.2009.08.009
https://doi.org/10.1007/s10878-010-9334-6
https://doi.org/10.1016/j.tcs.2018.06.023
https://doi.org/10.1002/net.21556
https://doi.org/10.1007/s00454-001-0047-6
https://doi.org/10.1007/978-3-319-45587-7_4
https://doi.org/10.1007/978-3-319-55911-7_34
https://doi.org/10.1016/j.dam.2018.08.016

Internal Dictionary Matching
Panagiotis Charalampopoulos
Department of Informatics, King’s College London, London, UK
Institute of Informatics, University of Warsaw, Warsaw, Poland
https://nms.kcl.ac.uk/panagiotis.charalampopoulos/
panagiotis.charalampopoulos@kcl.ac.uk

Tomasz Kociumaka
Institute of Informatics, University of Warsaw, Warsaw, Poland
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
https://www.mimuw.edu.pl/~kociumaka/
kociumaka@mimuw.edu.pl

Manal Mohamed
Department of Informatics, King’s College London, London, UK
manal.mohamed@kcl.ac.uk

Jakub Radoszewski
Institute of Informatics, University of Warsaw, Warsaw, Poland
Samsung R&D Institute, Warsaw, Poland
https://www.mimuw.edu.pl/~jrad
jrad@mimuw.edu.pl

Wojciech Rytter
Institute of Informatics, University of Warsaw, Warsaw, Poland
https://www.mimuw.edu.pl/~rytter
rytter@mimuw.edu.pl

Tomasz Waleń
Institute of Informatics, University of Warsaw, Warsaw, Poland
https://www.mimuw.edu.pl/~walen
walen@mimuw.edu.pl

Abstract
We introduce data structures answering queries concerning the occurrences of patterns from a given
dictionary D in fragments of a given string T of length n. The dictionary is internal in the sense
that each pattern in D is given as a fragment of T . This way, D takes space proportional to the
number of patterns d = |D| rather than their total length, which could be Θ(n · d).

In particular, we consider the following types of queries: reporting and counting all occurrences
of patterns from D in a fragment T [i . . j] (operations Report(i, j) and Count(i, j) below, as well
as operation Exists(i, j) that returns true iff Count(i, j) > 0) and reporting distinct patterns from
D that occur in T [i . . j] (operation ReportDistinct(i, j)). We show how to construct, in O((n +
d) logO(1) n) time, a data structure that answers each of these queries in time O(logO(1) n + |output|)
– see the table below for specific time and space complexities.

Query Preprocessing time Space Query time

Exists(i, j) O(n + d) O(n) O(1)

Report(i, j) O(n + d) O(n + d) O(1 + |output|)

ReportDistinct(i, j) O(n log n + d) O(n + d) O(log n + |output|)

Count(i, j) O(n log n
log log n

+ d log3/2 n) O(n + d log n) O(log2 n
log log n

)

The case of counting patterns is much more involved and needs a combination of a locally
consistent parsing with orthogonal range searching. Reporting distinct patterns, on the other hand,
uses the structure of maximal repetitions in strings. Finally, we provide tight – up to subpolynomial
factors – upper and lower bounds for the case of a dynamic dictionary.

© Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Waleń;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6024-1557
https://nms.kcl.ac.uk/panagiotis.charalampopoulos/
mailto:panagiotis.charalampopoulos@kcl.ac.uk
https://orcid.org/0000-0002-2477-1702
https://www.mimuw.edu.pl/~kociumaka/
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0002-1435-5051
mailto:manal.mohamed@kcl.ac.uk
https://orcid.org/0000-0002-0067-6401
https://www.mimuw.edu.pl/~jrad
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-9162-6724
https://www.mimuw.edu.pl/~rytter
mailto:rytter@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309
https://www.mimuw.edu.pl/~walen
mailto:walen@mimuw.edu.pl
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Internal Dictionary Matching

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases string algorithms, dictionary matching, internal pattern matching

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.22

Related Version A full version of the paper is available at https://arxiv.org/abs/1909.11577.

Funding Panagiotis Charalampopoulos: Supported in part by the ERC grant TOTAL agreement no.
677651.
Tomasz Kociumaka: Supported by ISF grants no. 824/17 and 1278/16 and by an ERC grant MPM
under the EU’s Horizon 2020 Research and Innovation Programme (grant no. 683064).
Jakub Radoszewski: Supported by the Polish National Science Center, grant number 2018/31/D/ST6/03991.
Tomasz Waleń: Supported by the Polish National Science Center, grant number 2018/31/D/ST6/03991.

Acknowledgements Panagiotis Charalampopoulos and Manal Mohamed thank Solon Pissis for
preliminary discussions.

1 Introduction

In the problem of dictionary matching, which has been studied for more than forty years, we
are given a dictionary D, consisting of d patterns, and the goal is to preprocess D so that
presented with a text T we are able to efficiently compute the occurrences of the patterns from
D in T . The Aho–Corasick automaton preprocesses the dictionary in linear time with respect
to its total length and then processes T in time O(|T |+ |output|) [1]. Compressed indexes
for dictionary matching [9], as well as indexes for approximate dictionary matching [10]
have been studied. Dynamic dictionary matching in its more general version consists in the
problem where a dynamic dictionary is maintained, text strings are presented as input and
for each such text all the occurrences of patterns from the dictionary in the text have to be
reported; see [2, 3].

Internal queries in texts have received much attention in recent years. Among them, the
Internal Pattern Matching (IPM) problem consists in preprocessing a text T of length n
so that we can efficiently compute the occurrences of a substring of T in another substring
of T . A nearly-linear sized data structure that allows for sublogarithmic-time IPM queries
was presented in [22], while a linear sized data structure allowing for constant-time IPM
queries in the case that the ratio between the lengths of the two substrings is constant was
presented in [25]. Other types of internal queries include computing the longest common
prefix of two substrings of T , computing the periods of a substring of T , etc. We refer the
interested reader to [23], which contains an overview of the literature.

We introduce the problem of Internal Dictionary Matching (IDM) that consists in
answering the following types of queries for an internal dictionary D consisting of substrings
of text T : given (i, j), report/count all occurrences of patterns from D in T [i . . j] and report
the distinct patterns from D that occur in T [i . . j].

Some interesting internal dictionaries D are the ones comprising of palindromic, square,
or non-primitive substrings of T . In each of these three cases, the total length of patterns
might be quadratic, but the internal dictionary is of linear size and can be constructed in
O(n) time [16, 12, 6]. Our data structure provides a general framework for solving problems
related to the internal structure of the string. The case of palindromes has already been
studied in [30], where authors proposed a data structure of size O(n logn) that returns the
number of all distinct palindromes in T [i . . j] in O(logn) time.

https://doi.org/10.4230/LIPIcs.ISAAC.2019.22
https://arxiv.org/abs/1909.11577

P. Charalampopoulos et al. 22:3

Let us formally define the problem and the types of queries that we consider.

Internal Dictionary Matching
Input: A text T of length n and a dictionary D consisting of d patterns, each given as a
substring T [a . . b] of T .
Queries:
Exists(i, j): Decide whether at least one pattern P ∈ D occurs in T [i . . j].
Report(i, j): Report all occurrences of all the patterns of D in T [i . . j].
ReportDistinct(i, j): Report all patterns P ∈ D that occur in T [i . . j].
Count(i, j): Count the number of all occurrences of all the patterns of D in T [i . . j].

T a

1

d

2

a

3

a

4

a

5

a

6

b

7

a

8

a

9

b

10

b

11

a

12

a

13

c

14
a a a a a a

a b b a c

D

Figure 1 Occurrences of patterns from the dictionary D in the text T .

I Example 1. Let us consider the dictionary D = {aa, aaaa, abba, c} and the text T =
adaaaabaabbaac; see Fig. 1. We then have:

Exists(2, 12) = true
Report(2, 12) = {(aa, 3), (aaaa, 3), (aa, 4), (aa, 5), (aa, 8), (abba, 9)}
Count(2, 12) = 6

ReportDistinct(2, 12) = {aa, aaaa, abba}
Exists(1, 3) = false

Let us consider Report(i, j) queries. One could answer them in time O(j − i+ |output|)
by running T [i . . j] over the Aho–Corasick automaton of D [1] or in time Õ(d+ |output|) 1

by performing internal pattern matching [25] for each element of D individually. None of
these approaches is satisfactory as they can require Ω(n) time in the worst case.

Our results. A natural problem would be to consider a dynamic dictionary, in the sense
that one would perform interleaved IDM queries and updates to D (insertions/deletions of
patterns). We show a conditional lower bound for this problem. In particular, we show
that the product of the time to process an update and the time to answer whether any
pattern from D occurs in T [i . . j] cannot be O(n1−ε) for any constant ε > 0, unless the
Online Boolean Matrix-Vector Multiplication conjecture [18] is false. Interestingly, in our
lower bound construction we only add single-letter patterns to an initially empty dictionary.

We thus focus on the case of a static dictionary, as it was defined above. We propose
an Õ(n + d)-sized data structure, which can be built in time Õ(n + d) and answers all
IDM queries in time Õ(1 + |output|). The exact complexities are shown in the table on the
front page.

1 The Õ(·) notation suppresses logO(1) n factors.

ISAAC 2019

22:4 Internal Dictionary Matching

By building upon our solutions for static dictionaries, we provide algorithms for the case
of a dynamic dictionary, where patterns can be added to or removed from D. We show
how to process updates in Õ(nα) time and answer queries Exists(i, j), Report(i, j) and
ReportDistinct(i, j) in Õ(n1−α + |output|) time for any 0 < α < 1, matching – up to
subpolynomial factors – our conditional lower bound.

Our techniques and a roadmap. First, in Section 3, we present straightforward solutions
for queries Exists(i, j) and Report(i, j). In Section 4 we describe an involved solution
for ReportDistinct(i, j) queries, that heavily relies on the periodic structure of the input
text and on tools that we borrow from computational geometry. In Section 5 we rely on
locally consistent parsing and further computational geometry tools to obtain an efficient
solution for Count(i, j) queries. Finally, in Section 6 we extend our solutions for the case of
a dynamic dictionary and provide a matching conditional lower bound.

2 Preliminaries

We begin with basic definitions and notation generally following [11]. Let T = T [1]T [2] · · ·T [n]
be a string of length |T | = n over a linearly sortable alphabet Σ. The elements of Σ are
called letters. By ε we denote an empty string. For two positions i and j on T , we denote by
T [i . . j] = T [i] · · ·T [j] the fragment (sometimes called substring) of T that starts at position
i and ends at position j (it equals ε if j < i). It is called proper if i > 1 or j < n. A
fragment of T is represented in O(1) space by specifying the indices i and j. A prefix of T is
a fragment that starts at position 1 (T [1 . . j], notation: T (j)) and a suffix is a fragment that
ends at position n (T [i . . n], notation: T(i)). We denote the reverse string of T by TR, i.e.
TR = T [n]T [n− 1] · · ·T [1].

Let U be a string of length m with 0 < m ≤ n. We say that there exists an occurrence of
U in T , or, more simply, that U occurs in T , when U is a fragment of T . We thus say that
U occurs at the starting position i in T when U = T [i . . i+m− 1].

If a string U is both a proper prefix and a proper suffix of a string T of length n, then
U is called a border of T . A positive integer p is called a period of T if T [i] = T [i+ p] for
all i = 1, . . . , n− p. A string T has a period p if and only if it has a border of length n− p.
We refer to the smallest period as the period of the string, and denote it as per(T), and,
analogously, to the longest border as the border of the string. A string is called periodic if its
period is no more than half of its length and aperiodic otherwise.

The elements of the dictionary D are called patterns. Henceforth we assume that ε 6∈ D,
i.e. the length of each P ∈ D is at least 1. If ε was in D, we could trivially treat it individually.
We further assume that each pattern of D is given by the starting and ending positions of its
occurrence in T . Thus, the size of the dictionary d = |D| refers to the number of strings in
D and not their total length.

The suffix tree T (T) of a non-empty string T of length n is a compact trie representing all
suffixes of T . The branching nodes of the trie as well as the terminal nodes, that correspond
to suffixes of T , become explicit nodes of the suffix tree, while the other nodes are implicit.
Each edge of the suffix tree can be viewed as an upward maximal path of implicit nodes
starting with an explicit node. Moreover, each node belongs to a unique path of that kind.
Thus, each node of the trie can be represented in the suffix tree by the edge it belongs to
and an index within the corresponding path. We let L(v) denote the path-label of a node v,
i.e., the concatenation of the edge labels along the path from the root to v. We say that v is
path-labelled L(v). Additionally, δ(v) = |L(v)| is used to denote the string-depth of node v.

P. Charalampopoulos et al. 22:5

A terminal node v such that L(v) = T(i) for some 1 ≤ i ≤ n is also labelled with index i.
Each fragment of T is uniquely represented by either an explicit or an implicit node of T (T),
called its locus. Once T (T) is constructed, it can be traversed in a depth-first manner to
compute the string-depth δ(v) for each explicit node v. The suffix tree of a string of length n,
over an integer ordered alphabet, can be computed in time and space O(n) [13]. In the case
of integer alphabets, in order to access the child of an explicit node by the first letter of
its edge label in O(1) time, perfect hashing [14] can be used. Throughout the paper, when
referring to the suffix tree T (T) of T , we mean the suffix tree of T$, where $ 6∈ Σ is a sentinel
letter that is lexicographically smaller than all the letters in Σ. This ensures that all terminal
nodes are leaves.

We say that a tree is a weighted tree if it is a rooted tree with an integer weight on each
node v, denoted by ω(v), such that the weight of the root is zero and ω(u) < ω(v) if u is
the parent of v. We say that a node v is a weighted ancestor at depth ` of a node u if v is
the highest ancestor of u with weight of at least `. After O(n)-time preprocessing, weighted
ancestor queries for nodes of a weighted tree T of size n can be answered in O(log logn)
time per query [4]. If ω has a property that the difference of weights of a child and its
parent is always equal to 1, then the queries can be answered in O(1) time after O(n)-time
preprocessing [7]; in this special case the values ω are called levels and the queries are called
level ancestor queries. The suffix tree T (T) is a weighted tree with ω = δ. Hence, the locus
of a fragment T [i . . j] in T (T) is the weighted ancestor of the terminal node with path-label
T(i) at string-depth j − i+ 1.

3 Exists(i, j) and Report(i, j) queries

We first present a convenient modification to the suffix tree with respect to a dictionary D;
see Fig. 2.

I Definition 2. A D-modified suffix tree of string T is a tree with terminal nodes corres-
ponding to non-empty suffixes of T$ and branching nodes corresponding to {ε} ∪ D. A node
corresponding to string U is an ancestor of a node corresponding to string V if and only if U
is a prefix of V . Each node stores its level as well as its string-depth (i.e., the length of its
corresponding string).

I Lemma 3. A D-modified suffix tree of T has size O(n + d) and can be constructed in
O(n+ d) time.

Proof. The D-modified suffix tree is obtained from the suffix tree T (T) in two steps.
In the first step, we mark all nodes of T (T) with path-label equal to a pattern P ∈ D: if

any of them are implicit, we first make them explicit; see Fig. 3(a). We can find the loci
of the patterns in T (T) in O(n+ d) time by answering the weighted ancestor queries as a
batch [24], employing a data structure for a special case of Union-Find [15]. (If many implicit
nodes along an edge are to become explicit, we can avoid the local sorting based on depth if
we sort globally in time O(n+ d) using bucket sort and then add the new explicit nodes in
decreasing order with respect to depth.)

In the second step, we recursively contract any edge (u, v), where u is the parent of v if:
1. both u and v are unmarked, or
2. u is marked and v is an unmarked internal node.
The resulting tree is the D-modified suffix tree and has O(n) terminal nodes and O(d)
internal nodes; see Fig. 3(b). J

ISAAC 2019

22:6 Internal Dictionary Matching

14 2

13 1

12

3 4 5 8

6 9

10

7 11

a b
c$
daaaabaabbaac$

a b
c$
daaaabaabbaac$

a b

c$

a
ba
a
bb
a
a
c$

ba
a
bba

a
c$ a

a
bb
a
a
c$ ba

a
c$

aa
bb
aa
c$ ba

a
c$

aa

baac$

bb
aa
c$ c$

ε

6 13 1 7 11 10 2

abba

9
14
c

aa

4 5 8 12

aaaa

3

Figure 2 Example of a D-modified suffix tree for dictionary D = {aa, aaaa, abba, c} and text
T = adaaaabaabbaac from Example 1. Top: the suffix tree of T with the nodes corresponding to
elements of D annotated in red; bottom: the D-modified suffix tree of T .

(a) Seven implicit nodes of T (T) are made explicit. Each marked
node (big circles in blue) represents a pattern P ∈ D.

(b) D-modified suffix tree.

Figure 3 The two-step construction of the D-modified suffix tree.

We state the following simple lemma.

I Lemma 4. With the D-modified suffix tree of T at hand, given positions a, j in T with
a ≤ j, we can compute all P ∈ D that occur at position a and are of length at most j − a+ 1
in time O(1 + |output|).

Proof. We start from the root of the D-modified suffix tree and go down towards the terminal
node with path-label T(a). We report all encountered nodes v as long as δ(v) ≤ j − a+ 1 is
satisfied. We stop when this inequality is not satisfied. J

The D-modified suffix tree enables us to answer Exists(i, j) and Report(i, j) queries.

I Theorem 5.
(a) Exists(i, j) queries can be answered in O(1) time with a data structure of size O(n)

that can be constructed in O(n+ d) time.
(b) Report(i, j) queries can be answered in O(1 + |output|) time with a data structure of

size O(n+ d) that can be constructed in O(n+ d) time.

P. Charalampopoulos et al. 22:7

Proof. (a) Let us define an array B[a] = min{b : T [a . . b] ∈ D}. If there is no pattern from
D starting in T at position a, then B[a] =∞. It can be readily verified that the answer to
query Exists(i, j) is yes if and only if the minimum element in the subarray B[i . . j] is at
most j. Thus, in order to answer Exists(i, j) queries, it suffices to construct the array B and
a data structure that answers range minimum queries (RMQ) on B. Using the D-modified
suffix tree of T , whose construction time is the bottleneck, array B can be populated in O(n)
time as follows. For each terminal node with path-label T(a) and level greater than 1, we set
B[a] to the string-depth of its ancestor at level 1 using a level ancestor query. If the terminal
node is at level 1, then B[a] =∞. A data structure answering range minimum queries in
O(1) time can be built in time O(n) [17, 8].

(b) We first identify all positions a ∈ [i . . j] that are starting positions of occurrences of
some pattern P ∈ D in T [i . . j] using RMQs over array B, which has been defined in the
proof of part (a), as follows. The first RMQ, is over the range [i . . j] and identifies a position
a (if any such position exists). The range is then split into two parts, namely [i, a − 1]
and [a + 1, j]. We recursively, use RMQs to identify the remaining positions in each part.
Once we have found all the positions where at least one pattern from D occurs, we report
all the patterns occurring at each of these positions and being contained in T [i . . j]. The
complexities follow from Lemmas 3 and 4. J

4 ReportDistinct(i, j) queries

Below, we present an algorithm that reports patterns from D occurring in T [i . . j], allowing
for O(1) copies of each pattern on the output. We can then sort these patterns, remove
duplicates, and report distinct ones using an additional global array of counters, one for each
pattern.

Let us first partition D into D0, . . . ,Dblognc such that Dk = {P ∈ D : blog |P |c = k}. We
call Dk a k-dictionary. We now show how to process a single k-dictionary Dk; the query
procedure may clearly assume k ≤ log |T [i . . j]|.

We precompute an array Lk[1 . . n] such that T [a . . Lk[a]] is the longest pattern in Dk is
a prefix of T(a). We can do this in O(n) time by inspecting the parents of terminal nodes
in the Dk-modified suffix tree. Next, we assign to all the patterns of Dk equal to some
T [a . . Lk[a]] integer identifiers id (or colors) in [1 . . n], and construct an array Ik[a] = id(P),
where P = T [a . . Lk[a]]. We then rely on the following theorem.

I Theorem 6 (Colored Range Reporting [28]). Given an array A[1 . . N] of elements from
[1 . . U], we can construct a data structure of size O(N) in O(N + U) time, so that upon
query [i . . j] all distinct elements in A[i . . j] can be reported in O(1 + |output|) time.

We first perform a colored range reporting query on the range [i . . j − 2k+1] of array Ik
and obtain a set of distinct patterns Ck, employing Theorem 6. We observe the following.

I Observation 7. Any pattern of a k-dictionary Dk occurring in T at position p ∈ [i . . j −
2k+1] is a prefix of a pattern P ∈ Ck.

Based on this observation, we will report the remaining patterns using the Dk-modified
suffix tree, following parent pointers and temporarily marking the loci of reported patterns
to avoid double-reporting. We thus now only have to compute the patterns from Dk that
occur in T [t . . j], where t = max{i, j − 2k+1 + 1}.

We further partition Dk for k > 1 to a periodic k-dictionary and an aperiodic k-dictionary:

Dpk = {P ∈ Dk : per(P) ≤ 2k/3} and Dak = {P ∈ Dk : per(P) > 2k/3}.

ISAAC 2019

22:8 Internal Dictionary Matching

Note that we can partition Dk in O(|Dk|) time using the so-called 2-Period Queries
of [25, 5, 23]. Such a query decides whether a given fragment of the text is periodic and, if so,
it also returns its period. It can be answered in O(1) time after an O(n)-time preprocessing
of the text.

4.1 Processing an aperiodic k-dictionary
We make use of the following sparsity property.

I Fact 8 (Sparsity of occurrences). The occurrences of a pattern P of an aperiodic k-dictionary
Dak in T start over 1

6 |P | positions apart.

Proof. If two occurrences of P started d ≤ 2k

3 positions apart, then d would be a period of
P , contradicting P ∈ Dak . Then, since 2k ≤ |P | < 2k+1, we have that 2k/3 ≥ 1

6 |P |. J

I Lemma 9. ReportDistinct(t, j) queries for the aperiodic k-dictionary Dak and j − t ≤
2k+1 can be answered in O(1 + |output|) time with a data structure of size O(n+ |Dak |), that
can be constructed in O(n+ |Dak |) time.

Proof. Since the fragment T [t . . j] is of length at most 2k+1, it may only contain a con-
stant number of occurrences of each pattern in Dak by Fact 8. We can thus simply use a
Report(t, j) query for dictionary Dak and then remove duplicates. The complexities follow
from Theorem 5(b). J

4.2 Processing a periodic k-dictionary
Our solution for periodic patterns relies on the well-studied theory of maximal repetitions
(runs) in strings. A run is a periodic fragment R = T [a . . b] which can be extended neither to
the left nor to the right without increasing the period p = per(R), that is, T [a−1] 6= T [a+p−1]
and T [b− p+ 1] 6= T [b+ 1] provided that the respective letters exist. The number of runs in
a string of length n is O(n) and all the runs can be computed in O(n) time [26, 5].

I Observation 10. Let P be a periodic pattern. If P occurs in T [t . . j], then P is a fragment
of a unique run R such that per(R) = per(P). We say that this run R extends P .

Let R be the set of all runs in T . Following [23], we construct for all k ∈ [0 . . blognc] the
sets of runs Rk = {R ∈ R : per(R) ≤ 2k

3 , |R| ≥ 2k} in O(n) time overall. Note that these
sets are not disjoint; however, |Rk| = O(n2k) (cf. Lemma 11 below) and thus their total size
is O(n). If U is a fragment of T , by Rk(U) ⊆ Rk we denote the set of all runs R ∈ Rk such
that |R ∩ U | ≥ 2k, that is, runs whose overlap with the frgment U is at least 2k.

I Lemma 11 (see [23, Lemma 4.4.7]). |Rk(U)| = O
(1

2k |U |
)
.

Strategy. Given a fragment U = T [t . . j], we will first identify all runs Rk(U) of Rk that
have a sufficient overlap with U . There is a constant number of them by Lemma 11. For
an occurrence of a pattern P ∈ Dpk in U , the unique run R extending this occurrence of P
must be in Rk(U). We will preprocess the runs in order to be able to compute a unique (the
leftmost) occurrence induced by run R for each such pattern P .

I Lemma 12. Let U be a fragment of T of length at most 2k+1. Then Rk(U) can be retrieved
in O(1) time after an O(n)-time preprocessing.

P. Charalampopoulos et al. 22:9

Proof. Periodic Extension Queries [23, Section 5.1], given a fragment V of the text T
as input, return the run R extending V . They can be answered in O(1) time after O(n)-time
preprocessing.

Let us cover U using O(1
2k |U |) fragments of length 2k+1

3 with overlaps of at least 2k

3
and ask a Periodic Extension Query for each fragment V in the cover. For each run
R ∈ Rk(U) with sufficient overlap, R ∩ U must contain a fragment V in the cover and its
periodic extension must be R since |V | ≥ 2 · per(R). J

Preprocessing. We construct an array `k[1 . . n] such that T [i . . `k[i]] is the shortest pattern
P ∈ Dpk that occurs at position i. Note that `k[i] can be retrieved in O(1) time using a
level ancestor query in the Dkp -modified suffix tree (asking for a level-1 ancestor of the leaf
corresponding to T(i), as in the proof of Theorem 5(a)). We then preprocess the array `k for
RMQ queries.

Processing a run at query. Let us begin with a consequence of the fact that the shortest
period is primitive.

I Observation 13. If a pattern P occurs in a text Q and satisfies |P | ≥ per(Q), then P has
exactly one occurrence in the first per(Q) positions of Q.

We use RMQs repeatedly, as in the proof of Theorem 5(b), for the subarray of `k
corresponding to the first per(R) positions of R ∩ U . This way, due to Observation 13, we
compute exactly the positions where a pattern P ∈ Dpk has its leftmost occurrence in R ∩ U .
The number of positions identified for a single run R ∈ Rk(U) is therefore upper bounded
by the number of distinct patterns occurring within R ∩ U . We then report all distinct
patterns occurring within R ∩ U by processing each such starting position using Lemma 4.
There is no double-reporting while processing a single run, by Observation 13 and hence the
time required to process this run is O(1 + |output|) – |output| here refers to the number of
distinct patterns from Dpk occurring within U . Since |Rk(U)| = O(1), we report each pattern
a constant number of times and the overall time required is O(1 + |output|).

The space occupied by our data structure can be reduced to O(n + d); details can be
found in the full version of the paper.

I Theorem 14. ReportDistinct(i, j) queries can be answered in O(logn+ |output|) time
with a data structure of size O(n+ d) that can be constructed in O(n logn+ d) time.

5 Count(i, j) queries

We first solve an auxiliary problem and show how it can be employed to give an unsatisfactory
solution to Count(i, j). We then refine our approach using recompression and obtain the
following.

I Theorem 15. Count(i, j) queries can be answered in O(log2 n/ log logn) time with a data
structure of size O(n + d logn) that can be constructed in O(n logn/ log logn + d log3/2 n)
time.

ISAAC 2019

22:10 Internal Dictionary Matching

5.1 An auxiliary problem
By inter-position i+ 1/2 we refer to a location between positions i and i+ 1 in T . We also
refer to inter-positions 1/2 and n + 1/2. We consider the following auxiliary problem, in
which we are given a set of inter-positions (breakpoints) B of P and upon query we are to
compute all fragments of T [i . . j] that align a specific inter-position (anchor) β of the text
with some inter-position in B.

Breakpoints-Anchor IPM
Input: A length-n text T , its length-m substring P , and a set B of inter-positions
(breakpoints) of P .
Query: Countβ(i, j): the number of fragments T [r . . r +m− 1] of T [i . . j] that match
P such that β − r + 1 ∈ B (β is an anchor).

In the 2D orthogonal range counting problem, one is to preprocess an n×n grid with O(n)
marked points so that upon query [x1, y1]× [x2, y2], the number of points in this rectangle
can be computed efficiently. In the (dual) 2D range stabbing counting problem, one is to
preprocess the grid with O(n) rectangles so that upon query (x, y) the number of (stabbed)
rectangles that contain (x, y) can be retrieved efficiently. The counting version of range
stabbing queries in 2D reduces to two-sided range counting queries in 2D as follows (cf. [29]).
For each rectangle [x1, y1] × [x2, y2] in grid G, we add points (x1, y1) and (x2 + 1, y2 + 1)
with weight 1 and points (x1, y2 + 1) and (x2, y1 + 1) with weight −1 in a grid G′. Then
the number of rectangles stabbed by point (a, b) in G is equal to the sum of weights of
points in (−∞, a] × (−∞, b] in G′. We will use the following result in our solution to
Breakpoints-Anchor IPM (Lemma 18).

I Theorem 16 ([27]). Range counting queries for n points in 2D (rank space) can be answered
in time O(logn/ log logn) with a data structure of size O(n) that can be constructed in time
O(n
√

logn).

Data structure. Let W1 = {P [dbe . .m] : b ∈ B} and consider the set W2 obtained by
adding U$ and U# for each element U of W1 to an initially empty set, where $ is a letter
smaller (resp. # is larger) than all the letters in Σ. Let W be the compact trie for the set of
strings W2. For each internal node v of W that does not have an outgoing edge with label $,
we add such a (leftmost) edge with a leaf attached to its endpoint. W can be constructed
in O(|B|) time after an O(n)-time preprocessing of T , allowing for constant-time longest
common prefix queries; cf. [11]. We also build theW1-modified suffix tree of T and preprocess
it for weighted ancestor queries. We keep two-sided pointers between nodes of W and of the
W1-modified suffix tree of T that have the same path-label. Similarly, let WR be the compact
trie for set Z2 consisting of elements U$ and U# for each U ∈ Z1 = {(P [1 . . bbc])R : b ∈ B}.
We preprocess WR analogously. Each of the tries has at most k = O(|B|) leaves.

Let us now consider a 2D grid of size k × k, whose x-coordinates (resp. y-coordinates)
correspond to the leaves of W (resp. WR). For each b ∈ B we do the following. Let x1 and x2
be the leaves with path-label P [dbe . .m]$ and P [dbe . .m]# in W , respectively. Similarly, let
y1 and y2 be the leaves with path-label (P [1 . . bbc])R$ and (P [1 . . bbc])R# inWR, respectively.
We add the rectangle Rb = [x1, y1]× [x2, y2] in the grid. An illustration is provided in Fig. 4.
We then preprocess the grid for the counting version of 2D range stabbing queries, employing
Theorem 16.

Query. Let the longest prefix of T [dβe . . j] that is a prefix of an element of W1 be U and
its locus in W be u. This can be computed in O(log logn) time using a weighted ancestor
query in the W1-modified suffix tree of T and following the pointer to W . If u is an explicit

P. Charalampopoulos et al. 22:11

node, we follow the edge with label $, while if it is implicit along edge (p, q), we follow the
edge with label $ from p. In either case, we reach a leaf u′. We do the symmetric procedure
with (T [i . . bβc])R in WR and obtain a leaf v′.

I Observation 17. The number of fragments T [r . . t] = P with r, t ∈ [i . . j] and β−r+1 ∈ B
is equal to the number of rectangles stabbed by the point of the grid defined by u′ and v′.

The observation holds because this point is inside rectangle Rb for b ∈ B if and only if
P [dbe . .m] is a prefix of T [dβe . . j] and P [1 . . bbc] is a suffix of T [i . . bβc]. This concludes the
proof of the following result.

I Lemma 18. Breakpoints-Anchor IPM queries can be answered in O(logn/ log logn)
time with a data structure of size O(n + |B|) that can be constructed in time O(n +
|B|
√

log |B|).

For the analogously defined problem Breakpoints-Anchor IDM, we obtain the follow-
ing lemma by building trie W for the union of the sets W2 defined in the above proof for
each pattern (similarly for WR) and adding all rectangles to a single grid.

P = abaabb

a b

ab
b b

aa
bb b

aa
bb b

$ #

$ # $ # $ # $ #

$ #

$ $ #

$

P
R

=
bb
a
a
ba

a

b

aba

ba

a
ba
ab
a

aba

$

#

$

#

$

#

$

#

$

#

$

#

$

#

$

1
2

1 1
2

2 1
2

3 1
2

4 1
2

5 1
2

6 1
2

Figure 4 Example of the construction of rectangles in the proof of Lemma 18 for P = abaabb
and breakpoints i + 1/2 for i = 0, 1, 2, 3, 4, 5, 6. Each rectangle is annotated with its breakpoint.

ISAAC 2019

22:12 Internal Dictionary Matching

I Lemma 19. Breakpoints-Anchor IDM queries can be answered in O(logn/ log logn)
time with a data structure of size O(n+

∑
P∈D |BP |). The data structure can be constructed

in time O(n+
√

logn
∑
P∈D |BP |).

A warm-up solution for Count(i, j). Lemma 19 can be applied somewhat naively to answer
Count(i, j) queries as follows. Let us set BP = {p+ 1/2 : p ∈ [1 . . |P | − 1]} for each pattern
P ∈ D and construct the data structure of Lemma 19. We build a balanced binary tree BT
on top of the text and for each node v in BT define val(v) to be the fragment consisting of
the characters corresponding to the leaves in the subtree of v. Note that if v is a leaf, then
|val(v)| = 1; otherwise, val(v) = val(u`)val(ur), where u` and ur are the children of v. For
each node v in BT, we precompute and store the count for val(v). If v is a leaf, this count
can be determined easily. Otherwise, each occurrence is contained in val(u`), is contained in
val(ur), or spans both val(u`) and val(ur). Hence, we sum the answers for the children u`
and ur of v and add the result of a Breakpoints-Anchor IDM query in val(v) with the
anchor between val(u`) and val(ur).

To answer a query concerning T [i . . j], we recursively count the occurrences in the
intersection of val(v) with T [i . . j], starting from the root r of BT as it satisfies val(r) =
T [1 . . n]. If the intersection is empty, the result is 0, and if val(v) is contained in T [i . . j], we
can use the precomputed count. Otherwise, we recurse on the children u` and ur of v and
sum the resulting counts. It remains to add the number of occurrences spanning across both
val(u`) and val(ur). This value is non-zero only if T [i . . j] spans both these fragments, and it
can be determined from a Breakpoints-Anchor IDM query in the intersection of val(v)
and T [i . . j] with the anchor between val(u`) and val(ur).

The query-time is O(log2 n/ log logn) since non-trivial recursive calls are made only for
nodes on the paths from the root r to the leaves representing T [i] and T [j]. Nevertheless,
the space required for this “solution” can be Ω(nd), which is unacceptable. Below, we refine
this technique using a locally consistent parsing; our goal is to decrease the size of each set
BP from Θ(|P |) to O(logn).

5.2 Recompression
A run-length straight line program (RSLP) is a context-free grammar which generates exactly
one string and contains two kinds of non-terminals: concatenations with production of the
form A→ BC (for symbols B,C) and powers with production of the form A→ Bk (for a
symbol B and an integer k ≥ 2). Every symbol A generates a unique string denoted g(A).

Each symbol A is also associated with its parse tree PT(A) consisting of a root labeled
with A to which zero or more subtrees are attached: if A is a terminal, there are no subtrees;
if A→ BC is a concatenation symbol, then PT(B) and PT(C) are attached; if A→ Bk is a
power symbol, then k copies of PT(B) are attached. Note that if we traverse the leaves of
PT(A) from left to right, spelling out the corresponding non-terminals, then we obtain g(A).
The parse tree PT of the whole RSLP generating T is defined as PT(S) for the starting symbol
S. We define the value val(v) of a node v in PT to be the fragment T [a . . b] corresponding
to the leaves T [a], . . . , T [b] in the subtree of v. Note that val(v) is an occurrence of g(A),
where A is the label of v. A sequence of nodes in PT is a chain if their values are consecutive
fragments in T .

The recompression technique by Jeż [20, 21] consists in the construction of a particular
RSLP generating the input text T . The underlying parse tree PT is of depth O(logn) and
it can be constructed in O(n) time. As observed by I [19], this parse tree PT is locally
consistent in a certain sense. To formalize this property, he introduced the popped sequence
of every fragment T [a . . b], which is a sequence of symbols labelling a certain chain of nodes
whose values constitute T [a . . b].

P. Charalampopoulos et al. 22:13

I Theorem 20 ([19]). If two fragments are equal, then their popped sequences are equal.
Moreover, each popped sequence consists of O(logn) runs (maximal powers of a single symbol)
and can be constructed in O(logn) time. The nodes corresponding to symbols in a run share a
single parent. Furthermore, the popped sequence consists of a single symbol only for fragments
of length 1.

Let F p1
1 · · ·F

pt

t be the run-length encoding of the popped sequence of a substring S of T .
We define

L(S) = {|g(F1)|, |g(F p1
1)|, |g(F p1

1 F p2
2)|, . . . , |g(F p1

1 · · ·F
pt−1
t−1)|, |g(F p1

1 · · ·F
pt−1
t−1 F pt−1

t)|}.

By Theorem 20, the set L(S) can be constructed in O(logn) time given the occurrence
T [a . . b] = S.

I Lemma 21. Let v be a non-leaf node of PT and let T [a . . b] be an occurrence of S contained
in val(v), but not contained in val(u) for any child u of v. If T [a . . c] is the longest prefix
of T [a . . b] contained in val(u) for a child u of v, then |T [a . . c]| ∈ L(S). Symmetrically,
if T [c′ + 1 . . b] is the longest suffix of T [a . . b] contained in val(u) for a child u of v, then
|T [a . . c′]| ∈ L(S).

Proof. Consider a sequence v1, . . . , vp of nodes in the chain corresponding to the popped
sequence of S = T [a . . b]. Each of these nodes is a descendant of a child of v. Note that
T [a . . c] = val(v1) · · · val(vq), where v1, . . . , vq is the longest prefix consisting of descendants
of the same child. If the labels of vq and vq+1 are distinct, then they belong to distinct runs
and |T [a . . c]| ∈ L(S). Otherwise, vq and vq+1 share the same parent: v. Thus, q = 1 and
|T [a . . c]| = |val(v1)| ∈ L(S). The proof of the second claim is symmetric. J

Data Structure. We use recompression to build an RSLP generating T and the underlying
parse tree PT. We also construct the component of Lemma 19 with BP = {i+ 1

2 : i ∈ L(P)}
for each pattern P ∈ D. Moreover, for every symbol A we store the number of occurrences
of patterns from D in g(A). Additionally, if A→ Bk is a power, we also store the number
of occurrences in g(Bi) for i ∈ [1 . . k]. The space consumption is O(n + d logn) since
|BP | = O(logn) for each P ∈ D.

Efficient preprocessing. The RSLP and the parse tree are built in O(n) time, and the sets
BP are determined in O(d logn) time using Theorem 20. The data structure of Lemma 19
is then constructed in O(n+ d log3/2 n) time. Next, we process the RSLP in a bottom-up
fashion. If A is a terminal, its count is easily determined. If A → BC is a concatenation,
we sum the counts for B and C and the number of occurrences spanning both g(B) and
g(C). To determine the latter value, we fix an arbitrary node v with label A and denote
its children u`, ur. By Lemma 21, any occurrence of P intersecting both val(u`) and val(ur)
has a breakpoint aligned to the inter-position between the two fragments. Hence, the third
summand is the result of a Breakpoints-Anchor IDM query in val(v) with the anchor
between val(u`) and val(ur). Finally, if A→ Bk, then to determine the count in g(Bi), we
add the count for B, the count in g(Bi−1), and the number of occurrences in Bi spanning
both the prefix B and the suffix Bi−1. To find the latter value, we fix an arbitrary node v
with label A, denote its children u1, . . . , uk, and make a Breakpoints-Anchor IDM query
in val(u1) · · · val(ui) with the anchor between val(u1) and val(u2). The correctness of this
step follows from Lemma 21. The running time of the last phase is O(n logn/ log logn), so
the overall construction time is O(n logn/ log logn+ d log3/2 n).

ISAAC 2019

22:14 Internal Dictionary Matching

Query. Upon a query Count(i, j), we proceed essentially as in the warm-up solution: we
recursively count the occurrences contained in the intersection of T [i . . j] with val(v) for
nodes v in PT, starting from the root of PT. If the two fragments are disjoint, the result
is 0, and if val(v) is contained in T [i . . j], it is the count precomputed for the label of v.
Otherwise, the label of v is a non-terminal. If it is a concatenation symbol, we recurse on
both children u`, ur of v and sum the obtained counts. If T [i . . j] spans both val(u`) and
val(ur), we also add the result of a Breakpoints-Anchor IDM query in the intersection
of T [i . . j] with val(v) and the anchor between val(u`) and val(ur). If the label is a power
symbol A→ Bk, we determine which of the children u1, . . . , uk of v are spanned by T [i . . j].
We denote these children by u`, . . . , ur and recurse on u` and on ur. If r > `, we also make a
Breakpoints-Anchor IDM query in the intersection of T [i . . j] with val(u`) · · · val(ur) and
anchor between val(u`) and val(u`+1). If r > `+ 1, we further add the precomputed value
for g(Br−`−1) to account for the occurrences contained in val(u`+1) · · · val(ur−1) and make a
Breakpoints-Anchor IDM query in the intersection of T [i . . j] with val(u`+1) · · · val(ur)
and anchor between ur−1 and ur. By Lemma 21, the answer is the sum of the up to five
values computed. The overall query time is O(log2 n/ log logn), since we make O(logn)
non-trivial recursive calls and each of them is processed in O(logn/ log logn) time.

6 Dynamic dictionaries

In the Online Boolean Matrix-Vector Multiplication (OMv) problem, we are given as input
an n× n boolean matrix M . Then, we are given in an online fashion a sequence of n vectors
r1, . . . , rn, each of size n. For each such vector ri, we are required to output Mri before
receiving ri+1.

I Conjecture 22 (OMv Conjecture [18]). For any constant ε > 0, there is no O(n3−ε)-time
algorithm that solves OMv correctly with probability at least 2/3.

We now present a restricted, but sufficient for our purposes, version of [18, Theorem 2.2].

I Theorem 23 ([18]). Conjecture 22 implies that there is no algorithm, for a fixed γ > 0,
that given as input an r1 × r2 matrix M , with r1 = brγ2 c, preprocesses M in time polynomial
in r1 + r2 and, then, presented with a vector v of size r2, computes Mv in time O(r1+γ−ε

2)
for ε > 0, and has error probability of at most 1/3.

We proceed to obtain a conditional lower bound for IDM in the case of a dynamic
dictionary. This lower bound clearly carries over to the other problems we considered.

I Theorem 24. The OMv conjecture implies that there is no algorithm that preprocesses T
and D in time polynomial in n, performs insertions to D in time O(nα), answers Exists(i, j)
queries in time O(nβ), in an online manner, such that α+β = 1− ε for ε > 0, and has error
probability of at most 1/3.

Proof. Let us suppose that there is such an algorithm and set γ = (α + ε/2)/(β + ε/2).
Given an r1× r2 matrix M , satisfying r1 = brγ2 c, we construct a text T of length n = r1r2 as
follows. Let T ′ be a text created by concatenating the rows of M in increasing order. Then
obtain T by assigning to each non-zero element of T ′ the column index of the matrix entry
it originates from. Formally, for i ∈ [1 . . r1r2], let a[i] = b(i− 1)/r2c and b[i] = i− a[i]r2 and
set T [i] = b[i] ·M [a[i] + 1, b[i]].

We compute Mv as follows. We add the indices of its at most r2 non-zero entries
in an initially empty dictionary. We then perform queries Exists(1 + tr2, (t + 1)r2) for
t = 0, . . . , r1−1. The answer to query Exists(1+ tr2, (t+1)r2) is equal to the product of the

P. Charalampopoulos et al. 22:15

tth row ofM with v. We thus obtainMv. In total we perform O(r2) insertions to D and O(r1)
Exists queries. Thus, the total time required is O(r2n

α+r1n
β) = O(nβ+ε/2nα+nα+ε/2nβ) =

O(n1−ε/2) = O(r1+γ−ε′
2) for ε′ > 0. Conjecture 22 would be disproved due to Theorem 23. J

I Example 25. For the matrix

M =

1 0 1 0
0 0 1 1
0 1 0 1

we construct the text T = 1 0 3 0 0 0 3 4 0 2 0 4. For the vector v =

[
1 1 0 0

]T , the
dictionary is D = {1, 2}. The answers to Exists(1, 4), Exists(5, 8), Exists(9, 12) are Yes,
No, Yes, respectively, which corresponds to Mv =

[
1 0 1

]T .
A proof of the following theorem, in which we provide algorithms that essentially match

this lower bound, can be found in the full version of the paper.

I Theorem 26. Exists(i, j), Report(i, j), ReportDistinct(i, j), and Count(i, j) quer-
ies for a dynamic dictionary can be answered in Õ(m+ |output|) time per query and Õ(n/m)
time per update for any parameter m ∈ [1 . . n] using Õ(n+ d) space.

7 Final Remarks

The question of whether queries of the type CountDistinct(i, j), which ask for the number
c of patterns from D that occur in T [i . . j], can be answered in time o(min{c, |j− i|}) or even
Õ(1) with a data structure of size Õ(n+ d) is left open for further investigation. It turns out
that our techniques can be used to efficiently answer such queries O(logn)-approximately;
details are provided in the full version of the paper.

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient String Matching: An Aid to Bibliographic

Search. Communications of the ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.
2 Amihood Amir, Martin Farach, Zvi Galil, Raffaele Giancarlo, and Kunsoo Park. Dynamic

Dictionary Matching. Journal of Computer and System Sciences, 49(2):208–222, 1994. doi:
10.1016/S0022-0000(05)80047-9.

3 Amihood Amir, Martin Farach, Ramana M. Idury, Johannes A. La Poutré, and Alejandro A.
Schäffer. Improved Dynamic Dictionary Matching. Information and Computation, 119(2):258–
282, 1995. doi:10.1006/inco.1995.1090.

4 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static
pattern matching. ACM Transactions on Algorithms, 3(2):19, 2007. doi:10.1145/1240233.
1240242.

5 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “Runs” Theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

6 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing All Distinct Squares in
Linear Time for Integer Alphabets. In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech
Rytter, editors, 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017,
volume 78 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.CPM.2017.22.

7 Michael A. Bender and Martin Farach-Colton. The Level Ancestor Problem simplified.
Theoretical Computer Science, 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.

ISAAC 2019

https://doi.org/10.1145/360825.360855
https://doi.org/10.1016/S0022-0000(05)80047-9
https://doi.org/10.1016/S0022-0000(05)80047-9
https://doi.org/10.1006/inco.1995.1090
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1137/15M1011032
https://doi.org/10.4230/LIPIcs.CPM.2017.22
https://doi.org/10.1016/j.tcs.2003.05.002

22:16 Internal Dictionary Matching

8 Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms,
57(2):75–94, 2005. doi:10.1016/j.jalgor.2005.08.001.

9 Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane. Dynamic dictionary
matching and compressed suffix trees. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2005, pages 13–22. SIAM, 2005. URL: http:
//dl.acm.org/citation.cfm?id=1070432.1070436.

10 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In László Babai, editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, STOC 2004, pages 91–100. ACM, 2004. doi:10.1145/
1007352.1007374.

11 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings.
Cambridge University Press, 2007. doi:10.1017/cbo9780511546853.

12 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Extracting powers and periods in a word from its runs structure.
Theoretical Computer Science, 521:29–41, 2014. doi:10.1016/j.tcs.2013.11.018.

13 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the Sorting-complexity
of Suffix Tree Construction. Journal of the ACM, 47(6):987–1011, November 2000. doi:
10.1145/355541.355547.

14 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a Sparse Table with O(1)
Worst Case Access Time. Journal of the ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

15 Harold N. Gabow and Robert Endre Tarjan. A Linear-Time Algorithm for a Special Case
of Disjoint Set Union. Journal of Computer and System Sciences, 30(2):209–221, 1985.
doi:10.1016/0022-0000(85)90014-5.

16 Richard Groult, Élise Prieur, and Gwénaël Richomme. Counting distinct palindromes in a
word in linear time. Information Processing Letters, 110(20):908–912, 2010. doi:10.1016/j.
ipl.2010.07.018.

17 Dov Harel and Robert Endre Tarjan. Fast Algorithms for Finding Nearest Common Ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984. doi:10.1137/0213024.

18 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector
Multiplication Conjecture. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pages
21–30. ACM, 2015. doi:10.1145/2746539.2746609.

19 Tomohiro I. Longest Common Extensions with Recompression. In Juha Kärkkäinen, Jakub
Radoszewski, and Wojciech Rytter, editors, 28th Annual Symposium on Combinatorial Pattern
Matching, CPM 2017, volume 78 of LIPIcs, pages 18:1–18:15. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.18.

20 Artur Jeż. Faster Fully Compressed Pattern Matching by Recompression. ACM Transactions
on Algorithms, 11(3):20:1–20:43, 2015. doi:10.1145/2631920.

21 Artur Jeż. Recompression: A Simple and Powerful Technique for Word Equations. Journal of
the ACM, 63(1):4:1–4:51, 2016. doi:10.1145/2743014.

22 Orgad Keller, Tsvi Kopelowitz, Shir Landau Feibish, and Moshe Lewenstein. Generalized
substring compression. Theoretical Computer Science, 525:42–54, 2014. doi:10.1016/j.tcs.
2013.10.010.

23 Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis,
University of Warsaw, 2018. URL: https://mimuw.edu.pl/~kociumaka/files/phd.pdf.

24 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
A Linear Time Algorithm for Seeds Computation, 2019. arXiv:1107.2422.

25 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal
Pattern Matching Queries in a Text and Applications. In Piotr Indyk, editor, Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages
532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

https://doi.org/10.1016/j.jalgor.2005.08.001
http://dl.acm.org/citation.cfm?id=1070432.1070436
http://dl.acm.org/citation.cfm?id=1070432.1070436
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1017/cbo9780511546853
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1145/355541.355547
https://doi.org/10.1145/355541.355547
https://doi.org/10.1145/828.1884
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1016/j.ipl.2010.07.018
https://doi.org/10.1016/j.ipl.2010.07.018
https://doi.org/10.1137/0213024
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.4230/LIPIcs.CPM.2017.18
https://doi.org/10.1145/2631920
https://doi.org/10.1145/2743014
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1016/j.tcs.2013.10.010
https://mimuw.edu.pl/~kociumaka/files/phd.pdf
http://arxiv.org/abs/1107.2422
https://doi.org/10.1137/1.9781611973730.36

P. Charalampopoulos et al. 22:17

26 Roman M. Kolpakov and Gregory Kucherov. Finding Maximal Repetitions in a Word in
Linear Time. In 40th Annual Symposium on Foundations of Computer Science, FOCS 1999,
pages 596–604. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814634.

27 J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Fast construction of wavelet trees.
Theoretical Computer Science, 638:91–97, 2016. doi:10.1016/j.tcs.2015.11.011.

28 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In David Eppstein,
editor, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2002, pages 657–666. SIAM, 2002. URL: http://dl.acm.org/citation.cfm?id=
545381.545469.

29 Mihai Pătraşcu. Unifying the Landscape of Cell-Probe Lower Bounds. SIAM Journal on
Computing, 40(3):827–847, 2011. doi:10.1137/09075336X.

30 Mikhail Rubinchik and Arseny M. Shur. Counting Palindromes in Substrings. In Gabriele
Fici, Marinella Sciortino, and Rossano Venturini, editors, String Processing and Information
Retrieval - 24th International Symposium, SPIRE 2017, volume 10508 of Lecture Notes in
Computer Science, pages 290–303. Springer, 2017. doi:10.1007/978-3-319-67428-5_25.

ISAAC 2019

https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1016/j.tcs.2015.11.011
http://dl.acm.org/citation.cfm?id=545381.545469
http://dl.acm.org/citation.cfm?id=545381.545469
https://doi.org/10.1137/09075336X
https://doi.org/10.1007/978-3-319-67428-5_25

Approximating the Geometric Edit Distance
Kyle Fox
The University of Texas at Dallas, USA
kyle.fox@utdallas.edu

Xinyi Li
The University of Texas at Dallas, USA
Xinyi.Li2@utdallas.edu

Abstract
Edit distance is a measurement of similarity between two sequences such as strings, point sequences,
or polygonal curves. Many matching problems from a variety of areas, such as signal analysis,
bioinformatics, etc., need to be solved in a geometric space. Therefore, the geometric edit distance
(GED) has been studied. In this paper, we describe the first strictly sublinear approximate near-linear
time algorithm for computing the GED of two point sequences in constant dimensional Euclidean
space. Specifically, we present a randomized O(n log2 n) time O(

√
n)-approximation algorithm.

Then, we generalize our result to give a randomized α-approximation algorithm for any α ∈ [1,
√
n],

running in time Õ(n2/α2). Both algorithms are Monte Carlo and return approximately optimal
solutions with high probability.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Computational geometry

Keywords and phrases Geometric edit distance, Approximation, Randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.23

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.00773.

Acknowledgements The authors would like to thank Anne Driemel and Benjamin Raichel for helpful
discussions.

1 Introduction

Ordered sequences are frequently studied objects in the context of similarity measurements,
because sequence alignment plays a vital role in trajectory comparison and pattern recognition.
As a consequence, several metrics have been developed to measure the similarity of two
sequences, e.g., Fréchet distance, dynamic time warping, and their variations. Geometric
edit distance, a natural extension of the string metric to geometric space, is the focus of
this paper. This concept is formally introduced by Agarwal et al. [2]; however, a similar
idea (extending string edit distance to a geometric space) has been applied in other ways
during the past decade. Examples include an lp-type edit distance for biological sequence
comparison [19], ERP (Edit distance with Real Penalty) [10], EDR (Edit Distance on Real
sequence) [11], TWED (Time Warping Edit Distance) [16] and a matching framework from
Swaminathan et al. [18] motivated by computing the similarity of time series and trajectories.
See also a survey by Wang et al. [22].

Problem statement

Geometric Edit Distance (GED) is the minimum cost of any matching between two geometric
point sequences that respects order along the sequences. The cost includes a constant penalty
for each unmatched point.

© Kyle Fox and Xinyi Li;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kyle.fox@utdallas.edu
mailto:Xinyi.Li2@utdallas.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.23
https://arxiv.org/abs/1910.00773
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Approximating the Geometric Edit Distance

Formally, let P =< p1, ..., pm > and Q =< q1, ..., qn > be two point sequences in IRd for
some constant d. A monotone matching M is a set of index pairs {(i1, j1), ..., (ik, jk)} such
that for any two elements (i, j) and (i′, j′) inM, i < i′ if j < j′.

We call every unmatched point a gap point. Let Γ(M) be the set of all gap points. The
cost ofM is defined as

δ(M) =
∑

(i,j)∈M

dist(pi, qj) + ρ(Γ(M)) (1)

where dist(p, q) is the distance between points p and q (i.e. the Euclidean norm), and
ρ(Γ(M)) is a function of all gap points, which is known as a gap penalty function. The use
of gap points and the gap penalty function allow us to recognize good matchings even in
the presence of outlier points. The distance is sensitive to scaling, so, we can only match
points pairs that are sufficiently close together based on the current position. For geometric
edit distance, we use a linear gap function. That is to say, ρ((M)) = |Γ(M)| · `, where ` is a
constant parameter called the gap penalty.

I Definition 1. We denote the GED between two sequences P,Q as:

GED(P,Q) = min
M

δ(M) = min
M

 ∑
(i,j)∈M

dist(pi, qj) + |Γ(M)| · `

where the minimum is taken over all monotone matchings. Without loss of generality, we
assume ` = 1 throughout the paper.

Prior work

To simplify the presentation of prior work, we assume n ≥ m. It is trivial to compute
GED(P,Q) in O(mn) time by simply changing the cost of substitution in the original string
edit distance (Levenstein distance) dynamic programming algorithm [21]. Assuming k is the
GED, we can achieve an O(nk) time algorithm by restricting our attention to the middle
k diagonals of the dynamic programming table (see also Ukkonen [20]). There is a slightly
subquadratic O(n2/ logn) time algorithm [17] for the string version, but it appears unlikely
we can apply it to the geometric case. Accordingly, Gold and Sharir [12] proposed a different
algorithm which can compute GED as well as the closely related dynamic time warping
(DTW) distance in O(n2 log log logn/ log logn) time in polyhedral metric spaces. Recent
papers have shown conditional lower bounds for several sequence distance measures even with
some restrictions. In particular, there is no O(n2−δ) time algorithm for any constant δ > 0 for
Fréchet distance [5], DTW over a constant size alphabet [1] or restricted to one-dimensional
curves [6], and string edit distance on the binary alphabet [4, 6].1 The latter of the above
results implies the same lower bound for GED, even assuming the sequences consist entirely
of 0, 1-points in IR.

Due to these limitations and difficulties, many researchers have turned to approximation
algorithms for these distances. Much work has been done to explore approximate algorithms
for Fréchet distance, DTW, and string edit distance [2, 3, 7–9,14]. In particular, Bringmann

1 The (discrete) Fréchet and DTW distances are defined similarly to GED; however, they use one-to-many
correspondences instead of one-to-one matchings, and they disallow the use of gap points. As in GED,
DTW aims to minimize the sum of distances between corresponding points, while discrete Fréchet
distance aims to minimize the maximum distance over corresponding points.

K. Fox and X. Li 23:3

and Mulzer [7] describe an α-approximation algorithm for the discrete Fréchet distance that
runs in time O(n logn+n2/α) for any α ∈ [1, n]. Chan and Rahmati [9] improved this running
time to O(n logn + n2/α2). Very recently, Kuszmaul [14] provided O(α)-approximation
algorithms with O((n2/α) polylogn) running times for edit distance over arbitrary metric
spaces and DTW over well separated tree metrics. Another O(n2/α) time algorithm with
an O(α) approximation factor for string edit distance is to run Ukkonen’s [20] O(nk) time
algorithm letting k be n/α, and unmatch all characters if this algorithm cannot return the
optimal matching. Similarly, we can obtain a different O(α)-approximation algorithm for
GED running in O(n2/α) time by making use of the O(nk) time exact algorithm mentioned
above. There are many other approximation algorithms specialized for the string version
of edit distance. In particular, an O(

√
n)-approximation algorithm can be acquired easily

from an O(n+ k2) time exact algorithm [15]. The current best results include papers with
(logn)O(1/ε) [3] and constant approximation ratios [8] with different running time tradeoffs.

For GED, a simple linear time O(n)-approximation algorithm was observed by Agarwal
et al. [2]. In the same paper, they also offered a subquadratic time (near-linear time in some
scenarios) approximation scheme on several well-behaved families of sequences. Using the
properties of these families, they reduced the search space to find the optimal admissible
path in the dynamic programming graph [2].

Our results

Inspired by the above applications and prior work, we commit to finding a faster approach to
approximating GED between general point sequences while also returning the approximate
best matching. Here, we give the first near-linear time algorithm to compute GED with a
strictly sublinear approximation factor. We then generalize our result to achieve a tradeoff
between the running time and approximation factor. Both of these algorithms are Monte
Carlo algorithms, returning an approximately best matching with high probability2. To
simplify our exposition, we assume the points are located in the plane (i.e., d = 2), and we
assume the input sequences are the same length (i.e., m = n). We can easily extend our
results to the unbalanced case, and our analysis implies that outside the plane, the running
times and approximation ratios increase only by a factor polynomial in d.

I Theorem 2. Given two point sequences P and Q in IR2, each with n points, there exists
an O(n log2 n)-time randomized algorithm that computes an O(

√
n)-approximate monotone

matching for geometric edit distance with high probability.

The intuitive idea behind this algorithm is very simple. We check if the GED is less than
each of several geometrically increasing values g, each of which is less than O(

√
n). For each

g, we transform the geometric sequences into strings using a randomly shifted grid, and run
the O(n+ k2) time exact algorithm for strings [15]. If the GED is less than g, then we get an
O(
√
n) approximate matching. If we never find a matching of cost O(

√
n), we simply leave

all points unmatched as this empty matching is an O(
√
n)-approximation for GED with high

probability. We give the details for this O(
√
n)-approximation algorithm in Section 2.

I Theorem 3. Given two point sequences P and Q in IR2, each with n points, there exists
an O(n log2 n + n2

α2 logn)-time randomized algorithm that computes an O(α)-approximate
monotone matching for geometric edit distance with high probability for any α ∈ [1,

√
n].

2 We say an event occurs with high probability if it occurs with probability at least 1 − 1
nc for some

constant c > 0.

ISAAC 2019

23:4 Approximating the Geometric Edit Distance

The second algorithm uses similar techniques to the former, except we can no longer
use the string edit distance algorithm as a black box. In particular, we cannot achieve our
desired time-approximation tradeoff by just directly altering some parameters in our first
algorithm. We discuss why in Section 3.1. To overcome these difficulties, we develop a
constant-factor approximation algorithm to compute the GED of point sequences obtained by
snapping points of the original input sequences to grid cell corners. Our algorithm for these
snapped points is based on the exact algorithm for string edit distance [15] but necessarily
more complicated to handle geometric distances. So, we first introduce the O(n+ k2) time
algorithm for strings in Section 4.1, and then describe our constant approximation algorithm
for points in Section 4.2. We note that a key component of the string algorithm and our
extension is a fast method for finding maximal length common substrings from a given pair
of starting positions in two strings A and B. A similar procedure was needed in the discrete
Fréchet distance approximation of Chan and Rahmati [9]. In Section 3, we present the
algorithm for Theorem 3 using our approximation algorithm for snapped point sequences as
a black box.

2 O(
√
n)-Approximation for GED

Recall that the main part of our algorithm is a decision procedure to check if the GED is
less than a guess value g. There are two steps in this process:
1. Transform the point sequences into strings. To be specific, we partition nearby points

into common groups and distant points into different groups to simulate the identical
characters and different characters in the string version of edit distance.

2. Run a modification of the exact string edit distance algorithm of Landau et al. [15]. To
better serve us when discussing geometric edit distance, we aim to minimize the number
of insertions and deletions to turn S into T only; we consider substitution to have infinite
cost. Details on this modified algorithm appear in Section 4.1.3

We explain how to transform the point sequences into strings in Section 2.1, and we analyze
the approximation factor and running time in Sections 2.2 and 2.3.

For convenience, we refer to the string edit distance algorithm as SED(S, T, k), where S
and T are two strings with equal length. This algorithm will return a matching in O(n+ k2)
time if the edit distance is at most k. We give an outline of our algorithm as Algorithm 1.
Here, c is a sufficiently large constant, and we use lg to denote the logarithm of base 2.

2.1 Transformation by a random grid
As stated above, the transformation technique should partition nearby points into common
groups and distant points into different groups. We use a randomly shifted grid to realize
this ideal, see [13] for example.

Recall P and Q lie in IR2. We cover the space with a grid. Let the side length of each
grid cell be ∆, and let b be a vector chosen uniformly at random from [0,∆]2. Starting from
an arbitrary position, the grid shifts bi units in each dimension i. For a point p, let id∆,b(p)
denote the cell which contains p in this configuration. We consider two points p1 = (x1, y1),
and p2 = (x2, y2) in this space.

3 Computing this variant of the string edit distance is really us computing the shortest common super-
sequence length of the strings rather than the traditional Levenshtein distance, but we stick with “edit
distance” for simplicity.

K. Fox and X. Li 23:5

Algorithm 1 O(
√
n)-approximation algorithm for GED.

Input: Point sequences P and Q
Output: An approximately optimal matching for GED

1 if
∑n
i=1 dist(pi, qi) ≤ 1 then

2 return matching {(1, 1), ..., (n, n)}
3 else
4 for i := 0 to dlg

√
ne do

5 g := 2i
6 for j := 1 to dc lgne do
7 Transform P , Q to strings S, T using a randomly shifted grid
8 out := SED(S, T, 12

√
n+ 2g)

9 if out 6= false then
10 return out
11 end
12 end
13 end
14 return the empty matching
15 end

I Lemma 4. We have P (id∆,b(p1) 6= id∆,b(p2)) ≤ min{ |x1−x2|+|y1−y2|
∆ , 1}.

We use this observation in our algorithm and set ∆ = g√
n
as each cell’s side length.

2.2 Time complexity
We claim the running time for Algorithm 1 is O(n log2 n). Computing

∑n
i=1 dist(pi, qi) takes

O(n) time. In the inner loop, the transformation operation (line 7) takes O(n) time assuming
use of a hash table. The running time for SED(S, T, 12

√
n + 2g) is O(n) for g = O(

√
n).

Summing over the outer loop and inner loop, the overall running time for Algorithm 1 is

dlg
√
ne∑

i=1

dc lgne∑
j=1

O(n) = O(n log2 n).

2.3 Approximation ratio
In this section, we show that Algorithm 1 returns an O(

√
n)-approximate matching with

high probability.

Notation

For any monotone matching M, we define CS(M) as the cost of the corresponding edit
operations forM in the string case and CG(M) to be δ(M) as defined in (1) for the geometric
case (as stated, there is no substitution operation in our modified string case). LetM∗G be
the optimal matching for geometric edit distance, andM∗S be the optimal matching under
the string configuration during one iteration of the loop. Our final goal is to establish the
relationship between CG(M∗G) and CG(M∗S).

I Lemma 5. If GED(S, T) ≤ g, with a probability at least 1− 1
nc , at least one of the dc lgne

iterations of the inner for loop will return a matchingM∗S where CS(M∗S) ≤ 12
√
n+ 2g.

ISAAC 2019

23:6 Approximating the Geometric Edit Distance

Proof. Let M be a monotone matching, and let UMM be the set of unmatched indices.
There are four subsets of pairs inM:

OCM: In each pair, both indices’ points fall into One cell, and the distance between the
two points is less and equal to g√

n
(Close).

OFM: In each pair, both indices’ points fall into One cell, and the distance between the
two points is larger than g√

n
(Far).

DCM: In each pair, the indices’ points are in Different cells, and the distance between
the two points is less and equal to g√

n
(Close).

DFM: In each pair, the indices’ points are in Different cells and the distance between
the two points is larger than g√

n
(Far).

These sets are disjoint, so

CG(M∗G) =|UMM∗
G
|+

∑
(i,j)∈OCM∗

G

dist(pi, qj) +
∑

(i,j)∈OFM∗
G

dist(pi, qj)

+
∑

(i,j)∈DCM∗
G

dist(pi, qj) +
∑

(i,j)∈DFM∗
G

dist(pi, qj). (2)

Recall that there is no substitution operation in our version of the string case. So to
understand optimal matchings for string edit distance, we must unmatch all the pairs in
DCM∗

G
and DFM∗

G
, forming a new matchingM∗′G . Points in one cell are regarded as identical

characters while those in different cells are different characters. Therefore,

CS(M∗
′

G) = |UMM∗
G
|+ 0 · (|OCM∗

G
|+ |OFM∗

G
|) + 2 · (|DCM∗

G
|+ |DFM∗

G
|)

= |UMM∗
G
|+ 2 · (|DCM∗

G
|+ |DFM∗

G
|).

Observe that there are at most g
g/
√
n

=
√
n pairs in DFM∗

G
if CG(M∗G) ≤ g. Therefore,

CS(M∗S) ≤ CS(M∗
′

G)
= |UMM∗

G
|+ 2|DCM∗

G
|+ 2|DFM∗

G
| ≤ g + 2

√
n+ 2|DCM∗

G
| (3)

For any two points pi, qj , let PD(i, j) be the probability that pi and qj are assigned into
different cells. From Lemma 4, we can infer PD(i, j) ≤ 2dist(pi,qj)

g/
√
n

.
Then,

E(|DCM∗
G
|) ≤

∑
(i,j)∈M∗

G

PD(i, j) ≤
∑

(i,j)∈M∗
G

2dist(pi, qj)
g/
√
n

(4)

≤ 2
√
n.

Therefore,

E(CS(M∗S)) ≤ 6
√
n+ g.

By Markov’s inequality,

P [CS(M∗S) ≥ 12
√
n+ 2g] ≤ 1

2 .

In other words, SED(S, T, 12
√
n+ 2g) will fail with probability at most 1

2 if GED(P,Q) ≤ g.
So, if we test SED(S,D, 12

√
n+ 2g) dc lgne times, at least one iteration will return a value

if GED(P,Q) ≤ g with a probability greater than or equal to

1−
dc lgne∏

1
P [CS(M∗S) ≥ 12

√
n+ 2g] ≥ 1−

dc lgne∏
1

1
2 = 1− 1

nc
.

We conclude the proof of Lemma 5. J

K. Fox and X. Li 23:7

According to Lemma 5, if all test procedures return false, we can say CG(M∗G) > g with
high probability; otherwise, we obtain a matchingM∗S and CS(M∗S) ≤ 12

√
n+ 2g.

We now consider CG(M∗S). Again, UMM is the set of unmatched indices for a matching
M. Observe, for all (i, j) ∈ M∗S , points pi and qj lie in the same grid cell. Therefore,
dist(pi, qj) ≤

√
2g√
n

if (i, j) ∈M∗S . We have:

CG(M∗S) = |UMM∗
S
|+

∑
(i,j)∈M∗

S

dist(pi, qj) (5)

≤ 12
√
n+ 2g + n · (

√
2g√
n

) = 12
√
n+ 2g +

√
2g
√
n

If GED(P,Q) ≤
√
n, then, with high probability, we obtain a matching M∗S during the

iteration where g ≥ GED(P,Q) ≥ 1
2g. The cost of this matching is at most 12

√
n + 2g +√

2g
√
n = O(

√
n)GED(P,Q). The same approximation bound holds if GED(P,Q) >

√
n,

whether or not we find a matching during the outer for loop. We conclude the proof of
Theorem 2.

3 O(α)-Approximation for GED

We now discuss our O(α)-approximation algorithm for any α ∈ [1,
√
n]. A natural approach

for extending our O(
√
n)-approximation is using the same reduction to string edit distance

but let the cell’s side length be a variable depending on the approximation factor α. However,
this method does not appear to work well.

3.1 Flaws in O(
√
n)-algorithm to achieve tradeoff

Let ∆α be the cell’s side length which depends on the approximation factor α. For our
analysis we need CG(M∗S) ≤ g ·O(α).

There can be at most n matched pairs inM∗S . Following (5), we derive n ·∆α ≤ g ·O(α),
implying

∆α ≤ O(gα
n

).

On the other hand, we require CS(M∗S) ≤ g · O(α) in our analysis; in particular, we
need to replace the 2

√
n in (3) with g · O(α). We derived 2

√
n as 2 g

∆α
. We now need

2 g
∆α
≤ g ·O(α), implying

∆α ≥ Ω(1
α

).

This is fine for α =
√
n or for large values of g. But for small α and small g, we cannot

have both inequalities be true. Therefore, we do grid-snapping that let us ignore the second
inequality.

3.2 O(α)-algorithm based on grid-snapping
Grid-snapping

Instead of grouping points into different cells as the O(
√
n)-approximation algorithm, we

snap points to the lower left corners of their respective grid cells. Let P ′ =< p′1, ..., p
′
n >,

Q′ =< q′1, ..., q
′
n > be the sequences after grid-snapping. We immediately obtain the following

observations:

ISAAC 2019

23:8 Approximating the Geometric Edit Distance

I Observation 1. If pi and qj are in the same cell, dist(p′i, q′j) = 0, and dist(pi, qj) ≤√
2∆ < 2

√
2∆.

I Observation 2. If pi and qj are in different cells, ∆ ≤ dist(p′i, q′j) ≤ dist(pi, qj) + 2
√

2∆.

We can then obtain our O(α)-approximation algorithm by altering the bound in the
outer loop and the test procedure of Algorithm 1. See Algorithm 2. Here, AGED(P ′, Q′, k)
attempts to Approximate GED(P ′, Q′) given that P ′ and Q′ have their points on the corners
of the grid cells. If GED(P ′, Q′) ≤ k, then it returns an O(1)-approximate matching for
the edit distance of the point sequences after grid-snapping. Otherwise, it either returns an
O(1)-approximate matching or it returns false.

Algorithm 2 O(α)-approximation algorithm.

Input: Point sequences P and Q
Output: An approximately optimal matching for GED

1 if
∑n
i=1 dist(pi, qi) ≤ 1 then

2 return matching {(1, 1), ..., (n, n)}
3 else
4 for i := 0 to dlg n

αe do
5 g := 2i
6 for j := 1 to dc lgne do
7 Obtain P ′, Q′ by doing grid-snapping to P , Q based on a randomly

shifted grid
8 out := AGED

(
P ′, Q′, (12

√
2 +
√

2)g
)

9 if out 6= false then
10 return out
11 end
12 end
13 end
14 Return the empty matching
15 end

We describe how to implement AGED(P ′, Q′, k) in Section 4.2. The running time of our
implementation is O(n+ k2

∆) where ∆ is the cell side length of the grid. We do grid snapping
in O(n) time. For each g = 2i, we use cells of side length gα

n and set k to
(
12
√

2 + 2
)
g, so

the overall running time of our O(α)-approximation algorithm is

O(n) +
dlg n

α e∑
i=0

dc lgne∑
j=1

O(n+ 2in
α

) =
dlg n

α e∑
i=0

O(n logn+ 2in
α

logn) = O(n log2 n+ n2

α2 logn).

The analysis for the O(α)-approximation algorithm is similar to the first algorithm. The
major difference is that for any g ≥ GED(P,Q), if we compute the cost of the optimal
matching for GED under the new point sequences, it will increase to only

(
12
√

2 + 2
)
g with

constant probability despite our small choice for the grid cell side length. But as argued
above, the small grid cell side length means the optimal matching of the point sequences
after grid-snapping does not increase its cost much when returning the snapped points to
their original positions. See Appendix A for details.

K. Fox and X. Li 23:9

4 Constant Approximation Algorithm AGED(P ′, Q′, k)

Recall that our constant factor approximation algorithm for GED of grid corner points is
based on a known O(n + k2) time exact algorithm for string edit distance [15]. We first
describe this exact algorithm for strings, which we refer as SED(S, T, k), in Section 4.1.
Then in Section 4.2, we modify this string algorithm to obtain an O(1)-approximate matching
for edit distance between point sequences P ′ and Q′ assuming the points lie on the corners
of grid cells and GED(P ′, Q′) ≤ k.

4.1 The exact O(n+ k2) string edit distance algorithm
Dynamic programming matrix and its properties

Let S =< s1, s2, ...sn > and T =< t1, t2, ..., tn > be two strings of length n. Let D
denote a (n + 1) × (n + 1) matrix where D(i, j) is the edit distance between substrings
Si =< s1, s2, .., si > and Tj =< t1, t2, ..., tj >. We give a label h to every diagonal in this
matrix such that for any entry (i, j) in this diagonal, j = i+ h. See Fig. 1 (a).

0 1

1

...

...

i

...

...

n

nj

e

Lh;e

diagonal h = j − idiagonal h− 1

diagonal h+ 1

e− 1

e− 1Lh+1;e−1

Lh−1;e−1

r

Figure 1 (a) The diagonal containing any entry (i, i + h) is diagonal h. (b) The algorithm
slides down the diagonal until finding an entry representing distinct characters. A circle means the
corresponding two characters are the same; a cross means they are different.

Recall, we aim to minimize only the number of insertions and deletions to turn S into T .
There are four important properties in this matrix which are used in the O(n + k2) time
algorithm.

I Property 1. D(i, j) = min

D(i− 1, j) + 1
D(i, j − 1) + 1
D(i− 1, j − 1) + |sitj |

where |sitj | =
{

0, if si = tj

∞, otherwise
.

I Property 2. D(i, 0) = i, and D(0, j) = j.

I Property 3. D(i, i+ h) is even if and only if h is even.

I Property 4. D(i, j)−D(i− 1, j − 1) ∈ {0, 2}.

Property 4 can be easily derived from Property 3 and induction on i + j (see Lemma 3
of [20]). From Property 4, we know all the diagonals are non-decreasing. In particular, all
values on diagonal h are greater than |h| considering Property 2. So, we can just search the
band from diagonal −k to k if the edit distance between S and T is at most k.

ISAAC 2019

23:10 Approximating the Geometric Edit Distance

Algorithm for edit distance at most k

We use a greedy approach to fill the entries along each diagonal. For each value e ∈ {0, . . . , k}
(the outer loop), we locate the elements whose value is e by inspecting diagonals −e to e (the
inner loop). Finally, we return the best matching if D(n, n) is covered by the above search.
Otherwise, the edit distance is greater than k.

The key insight is that we can implicitly find all entries containing e efficiently in each
round. We first define Lh,e as the row index of the farthest e entry in diagonal h.

I Definition 6. Lh,e = max{i|D(i, i+ h) = e}.

Note by Property 3, Lh,e is well-defined only if h ≡ e mod 2. Observe that all values on
diagonal h are at least |h|, which means that we can define our initial values as:

Lh,h−2 =
{
|h| − 1, if h < 0;
−1, otherwise

, where h ∈ [−k, k].

Let r = max{Lh−1,e−1, Lh+1,e−1 + 1}. Then, D(r, r + h) = e by Properties 1 and 4. Also, if
D(r, r + h) = e and sr+1 = tr+1+h, then D(r + 1, r + 1 + h) = e. From these observations,
we can compute Lh,e in each inner loop using Algorithm 3 below.

Algorithm 3 Computing Lh,e in each inner loop.

1 r := max{Lh−1,e−1, Lh+1,e−1 + 1}
2 while r + 1 ≤ n, r + h+ 1 ≤ n, and sr+1 == tr+1+h do
3 r := r + 1 ; /* slide */
4 end
5 if r > n or r + h > n then
6 Lh,e :=∞
7 else
8 Lh,e := r

9 end

We call lines 2 through 4 “the slide”. It is straightforward to recover the optimal matching
by using the Lh,e values to trace backwards through the dynamic programming matrix. Fig.
1 (b) demonstrates this process.

We can perform slides in constant time each after some O(n)-time preprocessing at the
beginning of the algorithm. In short, the length of a slide can be computed using a lowest
common ancestor query in the suffix tree of a string based on S and T [15]. The overall
running time is O(n+ k2).

4.2 O(1)-approximation algorithm by modifying the string version
Notation

Similar to the string algorithm, we have a dynamic programming matrix; D′(i, j) is the edit
distance between subsequence P ′i =< p′1, ..., p

′
i > and Q′j =< q′1, ..., q

′
j >. This matrix also

meets Property 1 stated earlier except that we use dist(p′i, q′j) instead of |sitj |. In addition,
we also have the following property which is a refinement of Property 4.

I Property 5. D′(i, j)−D′(i− 1, j − 1) ∈ [0, 2].

K. Fox and X. Li 23:11

Clearly, the upper bound is 2 (just unmatch pi and qj). The lower bound can be proved by
induction. Because the values in any diagonal are non-decreasing, we need only consider
diagonals −k through k.

(Implicit) label rules

To obtain an approximate matching for the edit distance of snapped point sequences, we
now label each entry in the dynamic programming matrix with an approximately tight lower
bound on its value. Inspired by the string algorithm, we use non-negative integers for our
labels, and the entries of any diagonal h only receive labels e where e ≡ h mod 2. Let
LA(i, j) be the label of entry (i, j) and L′h,e be the row index of the farthest entry whose
label is e in diagonal h.

I Definition 7. L′h,e := max{i|LA(i, i+ h) = e}.

For each e from 0 to k, for each diagonal h where h ≡ e mod 2, we (implicitly) assign labels
e to each entry on diagonal h.
1. If h = −e or e, i.e., this is the first iteration to assign labels to this diagonal, then we

label the very beginning entry in diagonal h as e, i.e., if h = −e, LA(|h|, 0) = e; otherwise,
LA(0, h) = e.

2. We define a start entry (r, r + h) for each diagonal h. If h = −e or e, r is the row index
of the first one entry in diagonal h; otherwise, r = max{L′h−1,e−1, L

′
h+1,e−1 + 1}.

3. We assign the label e to entries (r, r+h) to (r+s, r+h+s) where
∑s
i=r+1 dist(p′i, q′i+h) ≤ 2

and
∑s+1
i=r+1 dist(p′i, q′i+h) > 2. L′h,e = r + s. These entries correspond to a slide in the

string algorithm.
4. Finally, if (r− 1, r + h− 1) is unlabeled, we go backward up the diagonal labeling entries

as e until we meet an entry that has been assigned a label previously. (Again, this step is
implicit. As explained below, the actual algorithm only finds the L′h,e entries.)

Fig. 2 illustrates our rules.

(a) Notations and labels for the boundary
entries.

(b) Label entries following step 3.

Figure 2 Notations and rules for approximating SGED.

Computing an approximately optimal matching

Assume we have set the initial values. Our algorithm only needs to compute each L′h,e as
before. See Algorithm 4. Then, we guarantee the following theorem:

ISAAC 2019

23:12 Approximating the Geometric Edit Distance

I Theorem 8. We can recover a matching M∗′GS using all L′h,e from Algorithm 4. The cost
of M∗′GS for point sequences P ′, Q′ is less and equal to 3GED(P ′, Q′).

In short, we argue each label LA(i, j) ≤ D′(i, j). We then follow a path through the matrix
as suggested by the way we pick labels in Algorithm 4. The final matching has cost at most
3LA(n, n) which is less and equal to 3GED(P ′, Q′). The full proof appears in Appendix B.

Algorithm 4 Computing L′
h,e for the fixed h and e.

1 r := max{(L′h−1,e−1), (L′h+1,e−1 + 1)}
2 sum := 0
3 while r + 1 ≤ n, r + h+ 1 ≤ n, and sum+ dist(p′r+1, q

′
r+h+1) ≤ 2 do

4 r := r + 1
5 sum := sum+ dist(p′r, q′r+h)
6 end
7 if r > n or r + h > n then
8 L′h,e :=∞
9 else

10 L′h,e := r

11 end

We conclude by discussing the time complexity for our algorithm. Using the same
O(n) preprocessing as in [15], we can slide down maximal sequences of consecutive entries
(r, r + h) with dist(p′r, q′r+h) = 0 in constant time per slide. Let ∆ be the cell side length
of the grid whose cell corners contain points of P ′ and Q′. For dist(p′r, q′r+h) 6= 0, we know
dist(p′r, q′r+h) ≥ ∆ from Observations 1 and 2. Therefore, we only need to manually add
distances and restart faster portions of each slide of distances summing to 2 a total of 2

∆
times. Thus, the total running time is

O(n+
k∑
e=0

e∑
h=−e

1
∆) = O(n+ k2

∆).

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results

for LCS and other sequence similarity measures. In Proceedings of the IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 59–78, 2015.

2 Pankaj K Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. Approximating dynamic time
warping and edit distance for a pair of point sequences. In Proceedings of the 32nd International
Symposium on Computational Geometry, pages 6:1–6:16, 2016.

3 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In Proceedings of the IEEE 51st
Annual Symposium on Foundations of Computer Science, pages 377–386, 2010.

4 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the 47th Annual ACM Symposium on Theory
of Computing, pages 51–58, 2015.

5 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquad-
ratic algorithms unless SETH fails. In Proceedings of the IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 661–670, 2014.

K. Fox and X. Li 23:13

6 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of the IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 79–97, 2015.

7 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
JoCG, 7(2):46–76, 2016.

8 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucky, and Michael Saks.
Approximating edit distance within constant factor in truly sub-quadratic time. In Proceedings
of the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 979–990. IEEE, 2018.

9 Timothy M Chan and Zahed Rahmati. An improved approximation algorithm for the discrete
Fréchet distance. Information Processing Letters, pages 72–74, 2018.

10 Lei Chen and Raymond Ng. On the marriage of Lp-norms and edit distance. In Proceedings
of the 30th International Conference on Very Large Databases, pages 792–803, 2004.

11 Lei Chen, M Tamer Özsu, and Vincent Oria. Robust and fast similarity search for moving
object trajectories. In Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, pages 491–502, 2005.

12 Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. ACM Transactions on Algorithms, 14(4):50, 2018.

13 Sariel Har-Peled. Geometric approximation algorithms, chapter 11, Random Partition via
Shifting, pages 151–162. American Mathematical Soc., 2011.

14 William Kuszmaul. Dynamic Time Warping in Strongly Subquadratic Time: Algorithms for the
Low-Distance Regime and Approximate Evaluation. In Proceedings of the 46th International
Colloquium on Automata, Languages and Programming, 2019.

15 Gad M Landau, Eugene W Myers, and Jeanette P Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557–582, 1998.

16 Pierre-François Marteau. Time warp edit distance with stiffness adjustment for time series
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):306–318,
2009.

17 William J Masek and Michael S Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980.

18 Swaminathan Sankararaman, Pankaj K Agarwal, Thomas Mølhave, Jiangwei Pan, and
Arnold P Boedihardjo. Model-driven matching and segmentation of trajectories. In Proceed-
ings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 234–243, 2013.

19 Aleksandar Stojmirovic and Yi-kuo Yu. Geometric aspects of biological sequence comparison.
Journal of Computational Biology, 16(4):579–611, 2009.

20 Esko Ukkonen. Algorithms for approximate string matching. Information and Control,
64(1-3):100–118, 1985.

21 Robert A Wagner and Michael J Fischer. The string-to-string correction problem. Journal of
the ACM, 21(1):168–173, 1974.

22 Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn
Keogh. Experimental comparison of representation methods and distance measures for time
series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013.

A Analysis for O(α)-approximation algorithm

We introduce some additional notations to those used in Section 2.3.
Let CGS(M) be the cost of any monotone matching M using distances between the

grid-snapped points of P ′ and Q′. Let M∗GS be the optimal matching for P ′ and Q′,
i.e., CGS(M∗GS) = GED(P ′, Q′). Let M∗′GS be the matching returned by AGED(P ′, Q′,
(12
√

2 + 2)g).
We have the following lemma.

ISAAC 2019

23:14 Approximating the Geometric Edit Distance

I Lemma 9. If GED(P,Q) ≤ g, with a probability at least 1− 1
nc , at least one of the dc lgne

iterations will return a matchingM∗′GS.
Proof. Similar to (2), and with Observations 1 and 2, we have

CGS(M∗G) = |UMM∗
G
|+ 0 · (|OCM∗

G
|+ |OFM∗

G
|)

+
∑

(i,j)∈DCM∗
G

dist(p′i, q′j) +
∑

(i,j)∈DFM∗
G

dist(p′i, q′j)

≤ |UMM∗
G
|+ 2

√
2∆ · |DCM∗

G
|+

∑
(i,j)∈DFM∗

G

(
dist(pi, qj) + 2

√
2∆
)
.

= |UMM∗
G
|+

∑
(i,j)∈DFM∗

G

dist(pi, qj) + 2
√

2∆
(
|DCM∗

G
|+ |DFM∗

G
|
)

If CG(M∗G) ≤ g, then

CGS(M∗GS) ≤ CGS(M∗G) ≤ g + 2
√

2∆ ·
(
|DCM∗

G
|+ |DFM∗

G
|
)
.

We have the same observation for DFM∗
G
as before, that is there are at most g

∆ pairs in
DFM∗

G
. Using the same algebra as (4), we have E(|DCM∗

G
|) ≤ 2g

∆ . So,

E(CGS(M∗GS)) ≤ g + 2
√

2∆ ·
(
g

∆ + 2g
∆

)
= 6
√

2g + g.

According to Markov’s inequality, we know

P
(
CGS(M∗GS) ≥

(
12
√

2 + 2
)
g
)
≤ 1

2 .

In Section 4.2, we prove that if CGS(M∗GS) = GED(P ′, Q′) ≤ (12
√

2 + 2)g, then AGED(P ′,
Q′, (12

√
2 + 2)g) will return a constant approximate matching M∗′GS . So, if we test

AGED(P ′, Q′,
(12
√

2 + 2)g) dc lgne times (using different grids each time), with a probability at least
1− 1

nc , at least one AGED(P ′, Q′, (12
√

2 + 2)g) will return a matchingM∗′GS . We conclude
the proof of Lemma 9. J

Finally, from Observation 2, for every pair (i, j) inM∗GS , we have dist(pi, qj) ≤ dist(p′i, q′j)+
2
√

2∆. We can now return points to their original positions:

CG(M∗
′
GS) = |UM

M∗′
GS

|+
∑

(i,j)∈DC
M∗′
GS

dist(pi, qj) +
∑

(i,j)∈DF
M∗′
GS

dist(pi, qj)

+
∑

(i,j)∈OC
M∗′
GS

dist(pi, qj) +
∑

(i,j)∈OF
M∗′
GS

dist(pi, qj)

≤ |UM
M∗′
GS

|+
∑

(i,j)∈DC
M∗′
GS

dist(p′i, q
′
j) +

∑
(i,j)∈DF

M∗′
GS

dist(p′i, q
′
j) +

∑
(i,j)∈OC

M∗′
GS

dist(p′i, q
′
j)

+
∑

(i,j)∈OF
M∗′
GS

dist(p′i, q
′
j) + 2

√
2∆
(∣∣∣DCM∗′

GS

∣∣∣+
∣∣∣DFM∗′

GS

∣∣∣+
∣∣∣OCM∗′

GS

∣∣∣+
∣∣∣OFM∗′

GS

∣∣∣)
≤ O(1) · (12

√
2 + 2)g + n · 2

√
2∆.

Recall, ∆ = gα
n . If we obtain a matchingM∗′GS during an iteration where g ≥ CG(M∗G) =

GED(P,Q) ≥ 1
2g, then CG(M∗′GS) ≤ O(gα) = O(α) ·GED(P,Q). Using the same argument

as in Theorem 2, we conclude our proof of Theorem 3.

K. Fox and X. Li 23:15

B Proof of Theorem 8

We have the following properties for our labels and the following lemma.

I Property 6. LA(i, i+ h)− LA(i+ 1, i+ 1 + h) ∈ {0, 2}.

I Property 7. LA(i, i+h)−LA(i−1, i+h) ∈ {−1, 1} and LA(i, i+h)−LA(i, i+h−1) ∈ {−1, 1}.

I Lemma 10. For every entry (i, j), LA(i, j) ≤ D′(i, j).

Note that in particular, LA(n, n) ≤ GED(P ′, Q′).

Proof. From Property 5, we only need to prove e is the lower bound of the first entry whose
label is e in each diagonal h.

We proceed by induction on e.
1. If e = 0, we only label the first entry in diagonal 0 as 0. We have 0 ≤ D′(0, 0) = 0. If

e = 1, then for diagonals 1 and −1, we have 1 ≤ D′(0, 1) = D′(1, 0) = 1.
2. Assume Lemma 10 for labels less than e. For e, we consider the diagonals h = −e to e:

If h = −e or e, we know e ≤ D′(|h|, 0) = e or e ≤ D′(0, h) = e.
Otherwise, let (f, f+h) be the first entry whose label is e. From Property 6, f = L′h,e−2+1.
Fig. 3 shows the notations. From the refined Property 1, we need to discuss three cases:

Figure 3 We compute the lower bound of entries which are labeled as e.

a. D′(f, f + h) = D′(f − 1, f + h) + 1.
From Property 7, we know LA(f − 1, f + h) = e− 1 or e+ 1.

If LA(f − 1, f + h) = e − 1, D′(f − 1, f + h) ≥ e − 1 from our assumption. So,
D′(f, f + h) = D′(f − 1, f + h) + 1 ≥ e− 1 + 1 = e.
If LA(f − 1, f + h) = e+ 1, then we know L′h+1,e−1 is less than f − 1. From non-
decreasing property, e− 1 ≤ D′(L′h+1,e−1, L

′
h+1,e−1 + h+ 1) ≤ D′(f − 1, f + h− 1).

b. D′(f, f + h) = D′(f, f + h− 1) + 1.
This case is similar to the above.

c. D′(f, f + h) = D′(f − 1, f + h− 1) + dist(p′f , q′f+h).
LA(f − 1, f + h− 1) = e− 2, because f − 1 = L′h,e−2. Let r be the row index of the
first entry to slide with label e−2 in diagonal h, i.e., r = max{L′h−1,e−3, L

′
h+1,e−3 + 1}.

See Fig. 3. We define u as the row index of the first entry walking backward from
entry (f, f +h) along the diagonal h where D′(u, u+h) = min{D′(u, u+h−1), D′(u−
1, u+ h− 1)}+ 1.

ISAAC 2019

23:16 Approximating the Geometric Edit Distance

If u > r, like Fig. 3, then u > L′h−1,e−3 and u − 1 > L′h+1,e−3. Combining our
assumption, we have

D′(u, u+ h− 1) ≥ D′(L′h−1,e−3 + 1, L′h−1,e−3 + h) ≥ e− 1

and

D′(u− 1, u+ h) ≥ D′(L′h+1,e−3 + 1, L′h+1,e−3 + h+ 2) ≥ e− 1.

So,

D′(u, u+ h) = min{D′(u, u+ h− 1), D′(u− 1, u+ h− 1)}+ 1 ≥ e− 1 + 1

implying D′(u, u+ h) ≥ e. Recall f ≥ u, so D′(f, f + h) ≥ e.
If u ≤ r, then

D′(f, f + h) = D′(r, r + h) +
f∑

i=r+1
dist(p′i, q′i+h)

> e− 2 + 2 = e.

Examining all cases, we conclude the proof of Lemma 10. J

The bounds for the approximate matching CGS(M∗′

GS)

From Algorithm 4, we note the label increases correspond to not matching a point in Line 1,
and slides correspond to matching points. LetM∗′GS be the resulting matching. So,

CGS(M∗
′

GS) = |UMM∗′
GS
|+

∑
(i,j)∈M∗′

GS

dist(p′i, q′j)

≤ LA(n, n) + 2 · LA(n, n) ≤ 3LA(n, n) ≤ 3GED(P ′, Q′).

We conclude the proof of Theorem 8 and obtain an O(1)-approximation algorithm for
GED(P ′, Q′).

On Adaptivity Gaps of Influence Maximization
Under the Independent Cascade Model with
Full-Adoption Feedback
Wei Chen
Microsoft Research, Beijing, China
weic@microsoft.com

Binghui Peng1

Columbia University, New York, United States
bp2601@columbia.edu

Abstract
In this paper, we study the adaptivity gap of the influence maximization problem under the
independent cascade model when full-adoption feedback is available. Our main results are to
derive upper bounds on several families of well-studied influence graphs, including in-arborescences,
out-arborescences and bipartite graphs. Especially, we prove that the adaptivity gap for the in-
arborescences is between [e

e−1 , 2e
e−1], and for the out-arborescences the gap is between [e

e−1 , 2]. These
are the first constant upper bounds in the full-adoption feedback model. Our analysis provides
several novel ideas to tackle the correlated feedback appearing in adaptive stochastic optimization,
which may be of independent interest.

2012 ACM Subject Classification Theory of computation → Social networks

Keywords and phrases Adaptive influence maximization, adaptivity gap, full-adoption feedback

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.24

1 Introduction

Following the celebrated work of Kempe et al. [19], the influence maximization (IM) problem
has been extensively studied over past decades. Influence maximization is the problem of
selecting at most k seed nodes that maximize the influence spread on a given social network
and diffusion model. Influence maximization has many real world applications such as viral
markets, rumor controls, etc. In the past years, the IM problem has been studied in different
context such as outbreak detection [20], topic-aware influence propagation [5], competitive
and complementary influence maximization [23] etc., and both theoretically and practically
efficient algorithms have been developed [13, 12, 7, 32, 31]. See the recent survey [11, 21] for
more detailed reference.

Meanwhile, stimulated by the real life demand, researchers in recent years begin to consider
this classical problem in the adaptive setting. In the adaptive influence maximization problem,
instead of selecting the full seed set all at once, we are allowed to select seeds one after
another, making future decisions based on the propagation feedback gathered from the
previous seeds selected. Two feedback models are typically considered [15]: myopic feedback,
where only the one-step propagation from the selected seed to its immediate out-neighbors
are included in the feedback, and full-adoption feedback, where the entire cascade from the
seed is included in the feedback. This adaptive decision process can potentially bring huge
benefits but it also brings technical challenges, since adaptive policies are usually hard to

1 Work is mostly done while Binghui was at Tsinghua University and visiting Microsoft Research Asia as
an intern.

© Wei Chen and Binghui Peng;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 24; pp. 24:1–24:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:weic@microsoft.com
mailto:bp2601@columbia.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 On Adaptivity Gaps of Influence Maximization

design and analyze, and the adaptive decision process can be slow in practice. Thus, a
crucial task in this area is to decide whether and how much adaptive policy is really superior
over the non-adaptive policy. The adaptivity gap quantifies to what extent adaptive policy
outperforms a non-adaptive one and it is defined as the supremum ratio between the influence
spread of the optimal adaptive policy and that of the optimal non-adaptive policy. The
above question has been answered recently when only myopic feedback are available [25, 14]
and constant upper bounds on the adaptivity gap have been derived.

In this paper, we consider the influence maximization problem in the independent cascade
(IC) model with full-adoption feedback. Even though the full-adoption feedback under the
IC model satisfies an important property called adaptive submodularity, the analysis of its
adaptivity gap is more challenging because the feedback obtained from different seed nodes are
no longer independent – feedback from one seed contains multiple-step cascade results, and
thus it may overlap with the feedback from other seed nodes. Therefore, results from existing
studies on the adaptivity gap of general classes of stochastic adaptive optimization problems
[3, 16, 17, 8] cannot be applied, since they all rely on the independent feedback assumption.

In this study, we are able to derive nontrivial constant upper bounds on several families
of graphs, including in-arborescences, out-arborescence and bipartite graphs, which have
been the targets of many studies in influence maximization (see Section 1.1 for more details).
Formally, we have (i) when the influence graph is an in-arborescence, the adaptivity gap
is between [e

e−1 ,
2e
e−1] (Section 3 and Section 6), (ii) when the influence graph is an out-

arborescence, the adaptivity gap is between [e
e−1 , 2] (Section 4 and Section 6) and (iii) the

adaptivity gap for the bipartite influence graph is e
e−1 (Section 5). Our upper bounds on

arborescences are the first constant upper bounds in the full-adoption feedback model with
multiple steps of cascades and thus dependent feedback, and our upper bound on bipartite
graphs improves the results in [14, 18].

The main technical contributions in this paper are on the adaptivity gaps for arborescences,
in which the feedback information can be correlated and all previous methods failed. We
adopt two different proof strategies to overcome the difficulty of dependent feedback. For
in-arborescences, we follow the framework in [3] and construct a Poisson process to relate
the influence spread of the optimal adaptive policy and the multilinear extension. The
analyses are non-trivial due to the correlated feedback. We need to delicately decompose
the marginal gain of the Poisson process and give upper bounds on each terms. The key
observation we have for in-arborescences is that the boundary of the active nodes shrinks
during the diffusion process. For out-arborescences, we again relate the influence spread
of the multilinear extension to the optimal policy, but using a completely different proof
strategy. The key observation for out-arborescences is that the predecessors of each node
form a directed line thus proving a stronger results on this line is sufficient. We derive a
family of constraints on the optimal adaptive policy and telescope the marginal gains of the
multilinear extension, combining these two could yield our results.

1.1 Related Work
A number of studies [6, 36, 35, 24, 22] have focused on the influence maximization problem on
arborescences and interesting theoretical results have been found with this special structural
assumption. Bharathi et al. [6] initiate the study on arborescences and derive a polynomial-
time approximation scheme (PTAS) for bidirected trees. Wang et al. [36] convert diffusion
in the IC model in the local region into the diffusion in in-arborescences to design efficient
heuristic algorithms for influence maximization. For in-arborescences, Wang et al. [35] give
a polynomial time algorithm in the linear threshold (LT) model and Lu et al. [24] prove NP
hardness results under the independent cascade model.

W. Chen and B. Peng 24:3

The influence maximization problem on one-directional bipartite graphs has been studied
by [2, 29, 18], and it has applications in advertisement selections. Especially, Hatano et
al. [18] consider the problem in the adaptive setting and derive adaptive algorithms with
theoretical guarantees.

Initiated by the pioneering work of [15], a recent line of work [33, 37, 26, 30, 14, 25]
focus on the adaptive influence maximization problem and develop both theoretical results
and practical methods. Golovn and Krause [15] propose the novel concept of adaptive
submodularity and apply it to the adaptive influence maximization problem. They prove
that with full-adoption feedback in the IC model, the influence spread function satisfies the
adaptive submodularity, thus a simple adaptive greedy algorithm could achieve the (1− 1/e)
approximation ratio. Fujii et al. [14] generalize the notion and propose weakly adaptive
submodularity. They consider the adaptivity gap on both LT and IC models, when the
influence graph is one-directional bipartite, which means that the diffusion is always done
in one step and there is no difference between myopic feedback and full-adoption feedback.
While they prove a tight upper bound of 2 for the LT model, their bound for IC model
depends on the structure of the graph and can be far worse than 1− 1/e. In contrast, in this
paper we provide the tight bound of 1− 1/e with a simple analysis in this case. Recently,
Peng and Chen [25] consider the myopic feedback model and prove an upper bound of 4
for the adaptivity gap in the IC model. Singer and his collaborators have done a series of
studies on adaptive seeding and studied the adaptivity gap in their setting [27, 28, 4], but
their model is a two-step adaptive model with the first step purely for referring to the seed
candidates, and thus their model is very different from adaptive influence maximization of
this paper and other related work above.

From the theoretical side, there are two lines of works [3, 1, 16, 17, 8] on the adaptivity
gap that are most relevant to ours. Asadpour et al. [3] study the stochastic submodular
optimization problem. They use multilinear extensions to transform an adaptive strategy to
a non-adaptive strategy and give a tight upper bound of e

e−1 . Their method inspires our
work but theirs cannot be directly applied to our settings, since the feedback information is
not independent in the full-adoption feedback model. We defer further discussion about this
key difference to Section 3. Another line of work [16, 17, 8] focuses on the stochastic probing
problem. They transform any adaptive policy to a random walk non-adaptive policy and
Bradac et al. [8] finally prove a tight upper bound of 2 for prefix constraints.

2 Preliminaries

In this paper, we focus on the well known independent cascade (IC) model as the diffusion
model. In the IC model, the social network is described by a directed influence graph
G = (V,E, p) (|V | = n), and there is a probability puv associated with each edge (u, v) ∈ E.
The live-edge graph L = (V,L(E)) is a random subgraph of the influence graph G, where
each edge (u, v) ∈ E appears in L(E) independently with probability puv. If the edge appears
in L(E), we say it is live, otherwise we say it is blocked. We use L to denote all possible
live-edge graphs and P to denote the probability distribution over L. The diffusion process
can be described by the following discrete time process. At time t = 0, a seed set S ⊆ V is
activated and a live-edge graph L is sampled from the probability distribution P (i.e., each
edge (u, v) is live with probability puv). At time t = 1, 2, . . ., a node u ∈ V is active if (i) u
is active at time t− 1 or (ii) one of u’s in-neighbor in the live-edge graph L is active at time
t− 1. The diffusion process ends at a step when there are no new nodes activated at this
step. We use Γ(S,L) to denote the set of active nodes at the end of diffusion, or equivalently,

ISAAC 2019

24:4 On Adaptivity Gaps of Influence Maximization

the set of nodes reachable from set S under live-edge graph L. We define the influence reach
function f : {0, 1}V × L → R+ as f(S,L) := |Γ(S,L)|. Then the influence spread of a set S,
denoted as σ(S), is defined as the expected number of active nodes at the end of the diffusion
process, i.e., σ(S) := EL∼P [f(S,L)].

We formally state the (non-adaptive) influence maximization problem as follows.

I Definition 2.1 (Non-adaptive influence maximization). The non-adaptive influence maxim-
ization (IM) problem is the problem of given an influence graph G = (V,E, p) and a budget
k, finding a seed set S? of size at most k that maximizes the influence spread, i.e., finding
S? = argmaxS⊆V,|S|≤kσ(S).

In the adaptive setting, instead of committing the entire seed set all at once, we are
allowed to select the seed node one by one. After we select a seed, we can get some feedback
about the diffusion state from the node. Formally, a realization φ is a function φ : V → O,
mapping a node u to its state, i.e., the feedback we obtain when we select the node u as a
seed. The realization φ determines the status of all edges in the influence graph and it is
one-to-one correspondence to a live-edge graph. Henceforth, in the rest of the paper, we
would use φ to refer to both the realization and the live-edge graph interchangeably. The
feedback information depends on the feedback model and in this paper, we consider the
full-adoption feedback model. In the full-adoption feedback model, after we select a node
u, the feedback φ(u) of u we see is the status of all out-going edges of nodes v that are
reachable from u in the live-edge graph corresponding to φ. In other words, we get to see
the full cascade starting from the node u. At each step of the adaptive seeding process, our
observation so far is represented by a partial realization ψ ⊆ V × O, which is a collection
of nodes and states, (u, φ(u)), we have observed so far. We use dom(ψ) to denote the set
{u : u ∈ V,∃(u, o) ∈ ψ}, that is, all nodes we have selected so far. For two partial realizations
ψ and ψ′, we say ψ is a sub-realization of ψ′ if ψ ⊆ ψ′ when treating ψ and ψ′ as subsets
of V ×O.

An adaptive policy π is a mapping from partial realizations to nodes. Given a partial
realization ψ, we use π(ψ) to represent the next seed selected by π. After selecting node
π(ψ), our observation (partial realization) grows as ψ′ = ψ ∪ (π(ψ), φ(π(ψ))) and the policy
π would pick the next node based on the new partial realization ψ′. Given a realization
φ, we use V (π, φ) to denote the seed set selected by the policy π. The adaptive influence
spread of the policy π is defined as the expected number of active nodes under the policy
π, i.e., σ(π) := EΦ∼P [f(V (π,Φ),Φ)]. We define Π(k) as the set of policies π, such that for
any possible realization φ, |V (π, φ)| ≤ k. For convenience, we treat the adaptive policy π
as deterministic, but our results apply to randomized policies too. The adaptive influence
maximization problem is formally stated as follow.

I Definition 2.2 (Adaptive influence maximization). The adaptive influence maximization
(AIM) problem is the problem of given an influence graph G = (V,E, p) and a budget k,
finding a feasible policy π ∈ Π(k) that maximizes the adaptive influence spread, i.e., finding
π? = argmaxπ∈Π(k)σ(π).

In this paper, we study the adaptivity gap of the influence maximization problem under
the full-adoption feedback model. The adaptivity gap measures the supremacy of the
optimal adaptive policy over the optimal non-adaptive policy. We use OPTN (G, k) (resp.
OPTA(G, k)) to denote the influence spread of the optimal non-adaptive (resp. adaptive)
policy for the IM problem on the influence graph G with a budget k.

W. Chen and B. Peng 24:5

I Definition 2.3 (Adaptivity gap). The adaptivity gap for the IM problem in the IC model
with full-adoption feedback is defined as

sup
G,k

OPTA(G, k)
OPTN (G, k) . (1)

We prove constant upper bounds on the adaptivity gap for several classes of graphs,
including the in-arborescence and the out-arborescence.

I Definition 2.4 (In-arborescence). We say an influence graph G = (V,E, p) is an in-
arborescence when the underlying graph is a directed tree with a root u, such that for any
node v ∈ V , the unique path between nodes u and v is directed from v to u. In other words,
the information propagates from leaves to the root.

I Definition 2.5 (Out-arborescence). We say an influence graph G = (V,E, p) is an out-
arborescence when the underlying graph is a directed tree with a root u, such that for any
node v ∈ V , the unique path between nodes u and v is directed from u to v. In other words,
the information propagates from the root to leaves.

A set function f : V → R+ is said to be submodular if for any set A ⊆ B ⊆ V and any
element u ∈ V \B, ∆f (u|A) := f(A∪ {u})− f(A) ≥ f(B ∪ {u})− f(B) = ∆f (u|B). We call
∆f (u|A) the marginal gain for adding element u to the set A. Moreover, the function f is
said to be monotone if f(B) ≥ f(A). Under the IC model, the influence spread function σ(·)
is proved to be submodular and monotone [19], thus given value oracles for σ(·), the greedy
algorithm is 1− 1/e approximate to the optimal non-adaptive solution.

In the adaptive submodular optimization scenario, a similar notion to the submod-
ularity is called the adaptive submodularity. For a function f and a partial realization
ψ, the conditional marginal gain for an element u /∈ dom(ψ) is defined as ∆f,P(u|ψ) :=
EΦ∼P [f (dom(ψ) ∪ {u})− f (dom(ψ)) |Φ ∼ ψ], where we write Φ ∼ ψ to say that the realiz-
ation Φ is consistent with the partial realization ψ, i.e., Φ(u) = ψ(u) for every u ∈ dom(ψ).
A function f is said to be adaptive submodular with respect to P if for any partial realizations
ψ ⊆ ψ′ and any element u ∈ V \dom(ψ′), ∆f,P(u|ψ) ≥ ∆f,P(u|ψ′). Moreover, the function f
is adaptive monotone with respect to P if ∆f,P(u|ψ) ≥ 0 for any feasible partial realization
ψ with PrΦ∼P{Φ ∼ ψ} > 0. Golovin and Krause [15] show the following important result,
which will be used in our analysis.

I Proposition 2.6 ([15]). The influence reach function f is adaptive submodular and adaptive
monotone with respect to the live-edge graph distribution P under the independent cascade
model with full-adoption feedback.

The following two definitions are very important to our later analysis.

I Definition 2.7 (Multilinear extension). The multilinear extension F : [0, 1]V → R+ of the
influence spread function σ is defined as

F (x1, . . . , xn) =
∑
S⊆V

[(∏
i∈S

xi
∏
i/∈S

(1− xi)
)
σ(S)

]
. (2)

We remark that the multilinear extension F (·) is monotone and DR-submodular [19], when
the original function σ(·) is monotone and submodular. A vector function f is DR-submodular
if for any two vectors (x1, . . . , xn) ≤ (y1, . . . , yn) (coordinate-wise), for any δ > 0, any j ∈ [n],
f(x1, . . . , xj + δ, . . . , xn)− f(x1, . . . , xn) ≥ f(y1, . . . , yj + δ, . . . , yn)− f(y1, . . . , yn). For any
configuration (x1, . . . , xn), we use f+(x1, . . . , xn) to denote the adaptive influence spread of
the optimal adaptive strategy consistent with this configuration. Formally,

ISAAC 2019

24:6 On Adaptivity Gaps of Influence Maximization

I Definition 2.8 (Adaptive influence spread function based on an optimal adaptive policy). We
define f+ : [0, 1]|V | → R+ as:

f+(x1, . . . , xn) = sup
π

{
σ(π) : Pr

Φ∼P
[i ∈ V (π,Φ)] = xi, ∀i ∈ [n]

}
. (3)

3 Adaptivity Gap for In-arborescence

In this section, we give an upper bound on the adaptivity gap when the influence graph is
an in-arborescence, as stated in the following theorem.

I Theorem 3.1. When the underlying influence graph is an in-arborescence, the adaptivity
gap for the IM problem in the IC model with full-adoption feedback is at most 2e

e−1 .

Our approach follows the general framework of [3], i.e., we use the multilinear extension
to transform an adaptive policy to a non-adaptive policy, and construct a Poisson process to
connect the influence spread of the non-adaptive policy to the adaptive policy. Once we have
done this, combining with the rounding procedure in [9, 10], we can derive an upper bound
on the adaptive policy. However, remembering that the main difficulty of our problem comes
from the correlation of the feedback, directly applying the analyses in [3] does not work. Our
methods have several key differences comparing to [3]. To be more specific, we can no longer
directly relate the dynamic marginal gain of the Poisson process to the influence spread of
the adaptive policy. Instead, we need to delicately decompose the marginal gain into two
parts (see Lemma 3.3 and Lemma 3.9). The first part can be related to the optimal adaptive
strategy by telescoping the summation and applying a coupling argument, while the second
part can be related to a (randomized) non-adaptive policy. However, this non-adaptive policy
is not guaranteed to be bounded by OPTN (G, k) (the optimal non-adaptive policy of budget
k), because the size of the seed set is random and can potentially be very large. We utilize the
“weak concavity” of the optimal solution to show that it is enough to consider the expected
size of the (random) seed set, and then we give an upper bound on this expected size for
an in-arborescence. This upper bound relies on a crucial property of the in-arborescence,
i.e., the boundary (see Definition 3.7) size always shrinks during the diffusion process of the
information (see Lemma 3.8). Putting things together, we get a differential inequation that
relates the dynamic marginal gain of the Poision process to both an optimal adaptive policy
and the optimal non-adaptive policy. Solving the differential inequation yields a lower bound
on the multilinear extension and it gives an upper bound on the adaptivity gap. We remark
that one noticeable difference of our bound on the adaptivity gap is that it does not hold
for the matroid constraint (which holds in [3]), even though the multilinear extension was
originally designated to handle matroid constraints.

Following the work [3, 34], for any configuration (x1, . . . , xn), we consider the following
Poisson process, which indirectly relates the multilinear extension F (x1, . . . , xn) to the
optimal adaptive solution f+(x1, . . . , xn).

Poisson Process. There are n independent Poisson clocks C1, . . . , Cn, the clock Ci (i ∈ [n])
sends signals with rate xi. Whenever a clock Ci sends out a signal, we select node i as a
seed and gather feedback φ(i) according to the underlying realization φ. We use Ψ(t) to
denote the partial realization at time t and we start with Ψ(0) as ∅. We note that Ψ(t) is a
random partial realization that contains (a) random time points ti ≤ t at which clock Ci
sends a signal, for i ∈ [n]; and (b) for each ti ≤ t, the feedback φ(i) of seed node i based on

W. Chen and B. Peng 24:7

the live-edge graph corresponding to realization φ. The Poisson process ends at t = 1. Note
that the Poisson process is parameterized by (x1, x2, . . . , xn), but we ignore these parameters
in the notation Ψ(t).

Given a partial realization ψ, we slightly abuse the notation and use Γ(ψ) to denote all
the nodes that seed nodes dom(ψ) activate in the diffusion. Since we are considering the
full-adoption feedback, all nodes activated from dom(ψ) are included in the partial realization
ψ, and thus Γ(ψ) is a fixed node set when ψ is fixed. We define f(ψ) = |Γ(ψ)|. The following
lemma states that at the end of the Poisson process, i.e., when t = 1, the expected influence
spread E[f(Ψ(1))] is no greater than the influence spread of F (x1, . . . , xn), so it links the
Poisson process to the non-adaptive optimal solution.

I Lemma 3.2. E [f (Ψ(1))] = F (1− e−x1 , . . . , 1− e−xn) ≤ F (x1, . . . , xn).

Proof. Notice that in the Poisson process, the selection of seeds are actually independent
of the realization of the influence graph. Moreover, seed nodes are selected independently.
At the end of the process (when t = 1), the node i is selected as a seed with probability
1− e−xi . Thus we have

E [f (Ψ(1))] =
∑
S⊆V

[(∏
i∈S

(1− e−xi)
)∏
i/∈S

(
e−xi

)
σ(S)

]
= F (1− e−x1 , . . . , 1− e−xn) ≤ F (x1, . . . , xn). (4)

The inequality holds due to the monotonicity of the multilinear extension F (·) and the fact
that 1− e−x ≤ x. J

In the following lemma, we give a lower bound on the dynamic marginal gain of the
influence spread in the Poisson process, which links the process to the optimal adaptive
solution f+.

I Lemma 3.3. For any t ∈ [0, 1] and any fixed partial realization ψ, we have

E
[
df (Ψ(t))

dt
| Ψ(t) = ψ

]
≥ f+ (x1, . . . , xn)− σ (Γ(ψ)) . (5)

Before proving the above lemma, we need to first establish a useful and generic result
concerning the marginal influence spread given a partial realization (Lemma 3.6), which is
proved in turn from two basic and intuitive results (Lemmas 3.4 and 3.5). The result of
Lemma 3.6 also provides an alternative and perhaps more intuitive proof of the adaptive
submodularity of the independent cascade model under the full-adoption feedback, and thus
it may be of independent interest.

Given an influence graph G = (V,E, p), we use σG(S) to denote the expected influence
spread of the seed set S on influence graph G. For a node set A ⊆ V , we use G \A to denote
a reduced influence graph from G in which all nodes in A and its incident edges are removed,
and the remaining edges has the same influence probabilities as in G.

I Lemma 3.4. Under the independent cascade model with full-adoption feedback, for any
influence graph G = (V,E, p), partial realization ψ, and any node i 6∈ Γ(ψ), we have

∆f (i|ψ) = σG\Γ(ψ)({i}), (6)

i.e., the marginal influence spread of node i given a partial realization equals to its influence
on the reduced graph where nodes in Γ(ψ) are removed.

ISAAC 2019

24:8 On Adaptivity Gaps of Influence Maximization

Proof. We use E1 to denote all edges that are included in ψ, i.e., all edges that have already
revealed their status. These are the outgoing edges from nodes activated in ψ, i.e. outgoing
edges from Γ(ψ). We use E2 to denote edges in graph G\Γ(ψ) and set E3 = E\(E1 ∪ E2).
Then E2 are the edges in G that are not incident to nodes in Γ(ψ) and E3 are incoming
edges of nodes in Γ(ψ) that come from nodes in V \ Γ(ψ). We use Φi to denote a random
realization of edges in Ei (i = 1, 2, 3), and we know that they are mutually independent in
the IC model. Let S = dom(ψ). Now, we have

∆f (i|ψ) = E
Φ

[f (S ∪ {i},Φ)− f(S,Φ)|Φ ∼ ψ]

= E
Φ1,Φ2,Φ3

[f (S ∪ {i}, (Φ1,Φ2,Φ3))− f (S, (Φ1,Φ2,Φ3)) |(Φ1,Φ2,Φ3) ∼ ψ]

= E
Φ2

[
E
Φ3

[f(S ∪ {i}, (ψ,Φ2,Φ3))− f(S, (ψ,Φ2,Φ3))]
]
. (7)

The second equality comes from the fact that Φ1, Φ2 and Φ3 are independent and the third
equality comes from the fact that Φ1 = ψ, due to the full-adoption feedback model. We also
have

σG\Γ(ψ)({i}) = E
Φ2

[f({i},Φ2)] . (8)

To prove that Eq.(7) is the same as Eq.(8), it is suffice to show that for any fixed φ2, φ3 that
are realizations of edges in E2 and E3 respectively, we have

Γ({i}, φ2) = Γ(S ∪ {i}, (ψ, φ2, φ3))\Γ(S, (ψ, φ2, φ3)). (9)

Recall that we equate a realization with a live-edge graph, and thus in the above notation,
φ2 is considered as a live-edge graph in graph G \ Γ(ψ) and Γ({i}, φ2) means the set of
nodes reachable from i in the live-edge graph of φ2. We first prove that Γ({i}, φ2) ⊆
Γ(S ∪ {i}, (ψ, φ2, φ3))\Γ(S, (ψ, φ2, φ3)). For any node u ∈ Γ({i}, φ2), we know that it can
be reached from node i via a path in graph G\Γ(ψ), the path only contains edges in φ2,
which also means u is in the graph G \ Γ(ψ). Due to the existence of the path, we know that
u ∈ Γ(S∪{i}, (ψ, φ2, φ3)). We claim that u 6∈ Γ(S, (ψ, φ2, φ3)). This is because we are dealing
with the full-adoption feedback model, and thus Γ(S, (ψ, φ2, φ3)) is the nodes reachable from
S = dom(ψ), which means Γ(S, (ψ, φ2, φ3)) = Γ(ψ), and thus u ∈ Γ(S, (ψ, φ2, φ3)) would
conflict with the fact u is in G \Γ(ψ). Therefore, u ∈ Γ(S ∪ {i}, (ψ, φ2, φ3))\Γ(S, (ψ, φ2, φ3)).

On the other side, for any node u ∈ Γ(S ∪ {i}, (ψ, φ2, φ3))\Γ(S, (ψ, φ2, φ3)), the node u
can be reached from the node i via a path in the live-edge graph (ψ, φ2, φ3), but u cannot be
reached in the live-edge graph (ψ, φ2, φ3) from any node v that can be activated by dom(ψ)
in ψ, because otherwise u ∈ Γ(S, (ψ, φ2, φ3)). This implies that the path from i to u must be
in the live-edge graph φ2 in graph G \ Γ(ψ). That is, u ∈ Γ({i}, φ2). Therefore, Eq.(9) holds,
and this completes the proof. J

I Lemma 3.5. Given an influence graph G = (V,E, p). For any two node sets A,B ⊆ V

with A ⊆ B, for any u ∈ V \B, we have σG\B({i}) ≤ σG\A({i}).

Proof (Sketch). The proof is intuitively straightforward, since removing nodes could only
hurt the influence spread. A more rigorous proof could be carried out by arguing for any
random realization Φ1 for edges in G \ B and any random realization Φ2 for edges in
G \A but not in G \B, (a) Φ1 and Φ2 are independent in the IC model; (b) σG\B({i}) =
EΦ1 [|Γ({i},Φ1)|]; (c) σG\A({i}) = EΦ1,Φ2 [|Γ({i},Φ1 ∪Φ2)|]; and (d) Γ({i},Φ1) ⊆ Γ({i},Φ1 ∪
Φ2). J

W. Chen and B. Peng 24:9

I Lemma 3.6. Under the independent cascade model with full-adoption feedback, for any two
partial realizations ψ1 and ψ2, if Γ(ψ1) ⊆ Γ(ψ2), then for any node i 6∈ Γ(ψ1), ∆f (i|ψ2) ≤
∆(i|ψ1).

Proof. First, note that if i ∈ Γ(ψ2) \ Γ(ψ1), then ∆(i|ψ2) = 0, so ∆f (i|ψ2) ≤ ∆(i|ψ1). We
now consider that i 6∈ Γ(ψ2). By Lemma 3.4, ∆f (i|ψ1) = σG\Γ(ψ1)({i}), and ∆f (i|ψ2) =
σG\Γ(ψ2)({i}). Since Γ(ψ1) ⊆ Γ(ψ2), by Lemma 3.5, we have σG\Γ(ψ2)({i}) ≤ σG\Γ(ψ1)({i}).
Thus, the lemma holds. J

We are now ready to prove Lemma 3.3.

Proof Lemma 3.3. First, we consider the left-hand side of Eq. (5). For any t ∈ [0, 1], i ∈ [n]
and small enough amount of time dt, the clock Ci sends out signals with probability xidt
during the time interval [t, t+ dt]. Since signals are sent out independently, the probability
that more than one clock send out signals simultaneously in time interval [t, t+ dt] is of order
O((dt)2), which can be considered negligible comparing to dt. Thus we have

E [f (Ψ(t+ dt))− f (Ψ(t)) |Ψ(t) = ψ] =
∑

i/∈dom(ψ)

xidt ·∆f (i|ψ), (10)

Rewriting the above equation, we derive that

E
[
df (Ψ(t))

dt
|Ψ(t) = ψ

]
=

∑
i/∈dom(ψ)

xi∆f (i|ψ) =
∑
i/∈Γ(ψ)

xi∆f (i|ψ). (11)

The second equality holds because ∆f (i|ψ) = 0 for any node i ∈ Γ(ψ) in the full-adoption
feedback model.

Next, we consider the right-hand side of Eq. (5). We write x = (x1, . . . , xn) and use the
indicator vector IS ∈ {0, 1}n to denote an n-dimensional 0-1 vector such that the coordinate
i is 1 if and only if i ∈ S. By the monotonicity of the function f+(·), we have

f+ (x1, . . . , xn) ≤ f+ (x ∨ IΓ(ψ)
)
. (12)

Consider the optimal adaptive policy π+ of f+(x ∨ IΓ(ψ)) as defined in Definition 2.8. We
can assume π+ selects nodes in Γ(ψ) at the beginning since they will eventually appear in
the seed set regardless of the realization of the live-edge graph. For i /∈ Γ(ψ), π+ would select
node i as a seed with probability xi, according to Definition 2.8. Let Ψi denote the partial
realization just before π+ selects node i, given that π+ first selects nodes in Γ(ψ) and sees
their feedback. Then we have Γ(ψ) ⊆ Γ(Ψi). Conditioned on Ψi, the selection of i provides
a marginal gain of ∆f (i|Ψi) for the influence spread. When we take its expectation over Ψi

and then multiply it with xi, we obtain the overall marginal gain of selecting i as a seed
in policy π+. When summing over all i /∈ Γ(ψ), together with the non-adaptive influence
spread of seed nodes in Γ(ψ), we thus obtain:

f+ (x ∨ IΓ(ψ)
)

=
∑
i/∈Γ(ψ)

xi · E
Ψi

[∆f (i|Ψi)] + σ (Γ(ψ)) . (13)

Combining Eq. (11), (12), (13), it suffices to prove

∆f (i|Ψi) ≤ ∆f (i|ψ) (14)

for any i /∈ Γ(ψ) and any partial realization Ψi such that Γ(ψ) ⊆ Γ(Ψi), but this is exactly
what is shown in Lemma 3.6. This completes our proof. J

ISAAC 2019

24:10 On Adaptivity Gaps of Influence Maximization

A couple of remarks are now in order concerning Lemma 3.3 and its proof. First,
Inequality (14) looks very much like the adaptive submodularity condition, and we could
directly apply adaptive submodularity should we have ψ ⊆ Ψi. However, by our construction,
we only have Γ(ψ) as the initial seed set for Ψi, and the partial realization in Ψi from the
seeds in dom(ψ) may not be exactly the same as ψ, so we do not have ψ ⊆ Ψi. Instead,
we only have Γ(ψ) ⊆ Γ(Ψi). Therefore, we provide a separate proof (Lemmas 3.4, 3.5,
and 3.6) to show that the above condition is enough to prove Inequality (14). Even though
our proof does not directly apply the adaptive submodularity result of the IC model with
the full-adoption feedback, the essence of proof related to Inequality (14) is still due to the
diminishing return behavior of the model in the adaptive setting.

Second, the overall proof structure of Lemma 3.3 roughly follows the proof structure
in [3]. However, because in the full-adoption feedback model the feedback from two different
nodes may be correlated, we cannot exactly follow the proof structure in [3]. In particular,
we have to incorporate Γ(ψ) directly into the seeds of an adaptive strategy π+ to avoid such
correlation to interfere with our analysis. This results in the term σ(Γ(ψ)) in Inequality (5)
of Lemma 3.3 instead of the term |Γ(ψ)| that would be derived should we exactly follow [3],
and eventually the term σ(Γ(ψ)) leads to the extra factor of 2 in the adaptivity gap given in
Theorem 3.1, which does not appear in [3].

Next, we introduce the concept of the boundary of a partial realization. We need to use
the property of the boundary in in-arborescences (Lemma 3.8) to properly bound the extra
term σ(Γ(ψ)) (Lemma 3.9).

I Definition 3.7 (Boundary of a partial realization). In the full-adoption feedback model, for
any partial realization ψ, we use ∂(ψ) to denote the boundary of the partial realization, i.e.,
the set of nodes ∂(ψ) ⊆ Γ(ψ) with minimum cardinality such that there is no directed edges
in the original graph G from Γ(ψ)\∂(ψ) to V \Γ(ψ). We remark that when there are more
than one such sets, we take an arbitrary one.

The main property we rely on the structure of an in-arborescence is that the boundary
of any partial realization can be bounded by the number of seeds that have been selected.
Formally, we have

I Lemma 3.8. When the influence graph is an in-arborescence, for any partial realization
ψ, we have |∂(ψ)| ≤ |dom(ψ)|.

Proof. Consider any partial realization ψ and any node v ∈ dom(ψ). Take the unique
directed path from node v to the root u, let v̄ denote the node on the path which is (i)
contained in Γ(ψ) and (ii) closest to the root u. Then we set S = {v̄ : v ∈ dom(ψ)}. Clearly
there is no directed edge from Γ(ψ)\S to V \Γ(ψ) and we have |∂(ψ)| ≤ |S| ≤ |dom(ψ)|. J

Now, we give an upper bound on the term σ(Γ(ψ)).

I Lemma 3.9. For any partial realization ψ

σ(Γ(ψ)) ≤ |Γ(ψ)|+ σ(∂(ψ)). (15)

Moreover, when the influence graph is an in-arborescence, we have

σ(Γ(ψ)) ≤ |Γ(ψ)|+ OPTN (G, |dom(ψ)|). (16)

Proof. Fix any realization φ ∼ ψ, and then consider any node v in Γ(Γ(ψ), φ)\Γ(∂(ψ), φ).
There must exist a directed path P from Γ(ψ)\∂(ψ) to v, and the path P does not contain
any nodes in ∂(ψ). According to the definition of the boundary set ∂(ψ), there is no

W. Chen and B. Peng 24:11

directed path from Γ(ψ)\∂(ψ) to V \Γ(ψ) , unless it goes through a node in ∂(ψ). Thus we
conclude that v ∈ Γ(ψ)\∂(ψ) and this gives proof for Eq. (15). With Lemma 3.8, we have
σ(∂(ψ)) ≤ OPTN (G, |dom(ψ)|). Therefore, Inequality (16) holds. J

For any fixed influence graph G, we can view OPTN (G, k) as a function of the budget k,
we prove that OPTN (G, k) is “weakly concave” for k, as stated in the following lemma.

I Lemma 3.10. For any fixed influence graph G, let X be a random variable taking value
from {0, 1 . . . , n}, with mean value E[X] = k. Then we have

E [OPTN (G,X)] ≤ e

e− 1OPTN (G,E[X]) = e

e− 1OPTN (G, k). (17)

Proof. Let GreedyN (G, k) denote the non-adaptive greedy solution that selects k seed nodes.
For X ∈ {0, 1, . . . , n}, the greedy solution is 1 − 1/e approximate to the optimal solution,
i.e.,

OPTN (G,X) ≤ e

e− 1GreedyN (G,X). (18)

We note that the greedy solution GreedyN (G,X) is concave in X, due to the submodularity
of the influence spread function. Then taking expectation over both sides of Eq. (18), by
Jensen’s inequality, we have

E [OPTN (G,X)] ≤ e

e− 1 E[GreedyN (G,X)] ≤ e

e− 1GreedyN (G,E[X])

≤ e

e− 1OPTN (G,E[X]) = e

e− 1OPTN (G, k). (19)

This concludes the proof. J

Putting things together, we are able to prove Theorem 3.1 as follows.

Proof of Theorem 3.1. When the influence graph is an in-arborescence, for any configuration
(x1, . . . , xn) satisfying

∑
i xi = k, for any t ∈ [0, 1] and any fixed partial realization ψ, we

have

E
[
df (Ψ(t))

dt
|Ψ(t) = ψ

]
≥ f+ (x1, . . . , xn)− σ (Γ(ψ)) by Lemma 3.3
≥ f+(x1, . . . , xn)− |Γ(ψ)| −OPTN (G, |dom(ψ)|) by Lemma 3.9
= f+(x1, . . . , xn)− f(Ψ(t))−OPTN (G, |dom(Ψ(t))|). (20)

Taking expectation over Ψ(t), we have for any t ∈ [0, 1],

d

dt
E [f (Ψ(t))] = E

[
df (Ψ(t))

dt

]
= E

Ψ(t)
E
[
df (Ψ(t))

dt
| Ψ(t)

]
≥ f+(x1, . . . , xn)− E [f(Ψ(t))]− E [OPTN (G, |dom(Ψ(t))|)]

≥ f+(x1, . . . , xn)− e

e− 1OPTN (G, k)− E [f(Ψ(t))] . (21)

The first equality above is by the linearity of expectation. The second equality above is by
the law of total expectation. The first inequality is by Eq.(20), and the second inequality
holds due to Lemma 3.10 and the fact that

E [|dom(Ψ(t))|] =
∑
i

(1− e−txi) ≤
∑
i

txi ≤ k

ISAAC 2019

24:12 On Adaptivity Gaps of Influence Maximization

for any t ≤ 1. Solving the above differential inequality in Eq.(21), we obtain

E [f(Ψ(t))] ≥ (1− e−t)
[
f+(x1, . . . , xn)− e

e− 1OPTN (G, k)
]
. (22)

In particular, when t = 1, we have

E [f(Ψ(1))] ≥
(

1− 1
e

)[
f+(x1, . . . , xn)− e

e− 1OPTN (G, k)
]
. (23)

Finally, we have

OPTN (G, k) = sup
x1+···+xn=k

F (x1, . . . , xn)

≥ sup
x1+···+xn=k

E [f(Ψ(1))]

≥ sup
x1+···+xn=k

(
1− 1

e

)[
f+(x1, . . . , xn)− e

e− 1OPTN (G, k)
]

≥
(

1− 1
e

)
OPTA(G, k)−OPTN (G, k). (24)

The first equality above comes from the pipage rounding procedure in [9]. The first inequality
above is by Lemma 3.2. The second inequality is by Eq. (23). The last equality is by the
definition of f+ (Definition 2.8). Thus we conclude that the adaptivity gap is at most 2e

e−1
in the case of an in-arborescence. J

4 Adaptivity Gap for Out-arborescence

In this section, we give an upper bound on the adaptivity gap when the influence graph is
an out-arborescence. Formally,

I Theorem 4.1. When the influence graph is an out-arborescence, the adaptivity gap for the
IM problem in the IC model with full-adoption feedback is at most 2.

We first introduce some notations. For any node u ∈ V and any seed set S ⊆ V , we define
σu(S) := PrΦ [u ∈ Γ(S,Φ)], i.e., the probability that the node u is activated when S is the
seed set. Similarly, for any adaptive policy π, we define σu(π) := PrΦ [u ∈ Γ(V (π,Φ),Φ)],
i.e., the probability that the node u is activated under policy π. We will extend the definition
for the multilinear extension (Definition 2.7) and the definition for f+ (Definition 2.8)
correspondingly. To be more specific, we define

Fu(x1, . . . , xn) =
∑
S⊆[n]

[(∏
i∈S

xi
∏
i/∈S

(1− xi)
)
σu(S)

]
, (25)

and

f+
u (x1, . . . , xn) = sup

π

{
σu(π) : Pr

Φ∼P
[i ∈ V (π,Φ)] = xi, ∀i ∈ [n]

}
. (26)

In order to show Theorem 4.1, we again transform an adaptive policy to a non-adaptive policy
and compare their influence spread. Here, we utilize a new approach based on the structure
of out-arborescences and prove a stronger result. That is, we would prove that the probability
for any node u to become active in the multilinear extension (policy) is at least half of the
optimal adaptive policy (Lemma 4.2). This requires us to give a fine-grained bound on the
optimal adaptive policy (Lemma 4.3) and the multilinear extension (Lemma 4.4).

W. Chen and B. Peng 24:13

I Lemma 4.2. When the influence graph is an out-arborescence, for any node u ∈ V and
any configuration (x1, . . . , xn), we have

f+
u (x1, . . . , xn) ≤ 2Fu(x1, . . . , xn). (27)

Once we have the result of Lemma 4.2, we can prove Theorem 4.1 as follows.

Proof of Theorem 4.1. Given Lemma 4.2, we have

OPTN (G, k) = sup
x1+···+xn=k

F (x1, . . . , xn) = sup
x1+···+xn=k

∑
u

Fu(x1, . . . , xn)

≥ 1
2 · sup

x1+···+xn=k

∑
u

f+
u (x1, . . . , xn) ≥ 1

2 · sup
x1+···+xn=k

f+(x1, . . . , xn) ≥ 1
2 ·OPTA(G, k). J

We now show how to prove Lemma 4.2. We note that node u’s predecessors (nodes that
can reach node u in the original graph) form a directed line when the influence graph is an
out-arborescence. We slightly abuse the notation and use node i to indicate the (i− 1)th
predecessor of node u, notice that node u itself is represented as node 1. We ignore all other
nodes since they do not affect either sides of Eq. (27). We use pi to denote the probability
that the node i can reach node 1. The following lemma gives an upper bound on the optimal
adaptive strategy.

I Lemma 4.3. For any i, f+
1 (x1, . . . , xn) ≤

∑i
j=1 xjpj + pi+1.

Proof. Let π be any adaptive strategy satisfying PrΦ∼P [i ∈ V (π,Φ)] = xi, i ∈ [n]. Let Ei
denote the event that node 1 becomes active right after π chooses node i. Furthermore, we
use Ei: to denote the event that node 1 becomes active right after π chooses a node from
{i, i+ 1, . . . , n}. We notice that events E1, . . . , En are disjoint and we have

f+
1 (x1, . . . , xn) =

n∑
j=1

Pr [Ej] =
i∑

j=1
Pr [Ej] + Pr [Ei+1:] ∀i. (28)

It is easy to see that

Pr[Ei+1:] ≤ pi+1, (29)

since the event Ei+1: can only happen when the node i+ 1 can reach node 1. Moreover, let
Fi denote the event that the policy π selects the node i before any nodes in {1, . . . , i} are
active. Then we have for any j ∈ [n],

Pr [Ej] = Pr
Φ

[Ej |Fj] · Pr
Φ

[Fj] ≤ Pr
Φ

[Ej |Fj] · Pr
Φ

[j ∈ V (π,Φ)] = pj · xj . (30)

The first equality holds since the event Ej can only happen when π selects the node j before
any nodes {1, . . . , j} are active. Combining Eq. (28) (29) (30), we complete the proof. J

We measure the marginal contribution of node i in the next lemma. Intuitively, we can see
that F1(0, . . . , 0, xi, . . . , xn)− F1(0, . . . , 0, xi+1, . . . , xn) measures the marginal contribution
of i in activating node 1, when node i moves from no probability of being selected as a
seed to probability of xi being selected as the seed, under the situation that no nodes in
{1, . . . , i− 1} can be seeds while node j > i has probability xj of being selected as a seed.
Then this marginal contribution only happens when all three conditions hold: (a) possible
seeds in {i+ 1, . . . , n} cannot activate i, which has probability 1− Fi(0, . . . , 0, xi+1, . . . , xn);
(b) node i is activated as a seed, which has probability xi, and (c) node i passes influence
and activates node 1, which has probability pi.

ISAAC 2019

24:14 On Adaptivity Gaps of Influence Maximization

I Lemma 4.4. For any i, we have

F1(0, . . . , 0, xi, . . . , xn)− F1(0, . . . , 0, xi+1, . . . , xn) = xipi (1−Fi(0, . . . , 0, xi+1, . . . , xn)) .

Proof. Since the node 1’s predecessors form a directed line, for any i we have

F1(0, . . . , 0, xi, . . . , xn)− F1(0, . . . , 0, xi+1, . . . , xn)
=pi · (Fi(0, . . . , 0, xi, . . . , xn)− Fi(0, . . . , 0, xi+1, . . . , xn))
=pi · (1− (1− xi) (1− Fi(0, . . . , 0, xi+1, . . . , xn))− Fi(0, . . . , 0, xi+1, . . . , xn))
=pixi (1− Fi(0, . . . , 0, xi+1, . . . , xn)) .

The first two equalities hold because the realization and the selection of nodes are independent.
J

We are now back to prove Lemma 4.2.

Proof of Lemma 4.2.We use j to denote the minimum index that satisfies Fj(0, . . . , xj+1, . . . ,

xn) > 1
2 . If such index does not exist, we simply set j = n+ 1. Then, we have

F1(x1, . . . , xn)

=
j−1∑
i=1

(F1(0, . . . , 0, xi, . . . , xn)− F1(0, . . . , 0, xi+1, . . . , xn)) + F1(0, . . . , 0, xj , . . . , xn)

=
j−1∑
i=1

xipi (1− Fi(0, . . . , 0, xi+1, . . . , xn)) + F1(0, . . . , 0, xj , . . . , xn)

=
j−1∑
i=1

xipi (1− Fi(0, . . . , 0, xi+1, . . . , xn)) + pj · Fj(0, . . . , 0, xj , . . . , xn)

≥1
2

j−1∑
i=1

xipi + 1
2pj

≥1
2f

+
1 (x1, . . . , xn). (31)

The second equality comes from Lemma 4.4 and the last inequality comes from Lemma 4.3. J

5 Adaptivity Gap for One-Directional Bipartite Graphs

In this section, we give an upper bound on the adaptivity gap of the influence maximization
problem in the IC model with full-adoption feedback under one-directional bipartite graphs
G(L,R,E, p), where L and R are the two set of nodes on the left side and right side
respectively, and E ⊆ L × R are a set of edges only pointing from a left-side node to a
right-side node, and p maps each edge to a probability. Our upper bound is tight as it matches
the lower bound derived in [25] and it also improves the results developed in [14, 18]. The
proof strategy adopted for bipartite graphs is a relatively easy application of our approaches
in previous sections, which relates the multilinear extension and the optimal strategy (See
Appendix A).

I Theorem 5.1. When the influence graph is a one-directional bipartite graph G(L,R,E, p),
the adaptivity gap on the influence maximization problem in the IC model with full-adoption
feedback is e

e−1 .

W. Chen and B. Peng 24:15

6 Lower Bounds on the Adaptivity Gap

In this section, we give an example showing that the adaptivity gap is no less than e/(e− 1)
in the full-adoption feedback model, even when the influence graph is a directed line, a
special case of both the in-arborescence and the out-arborescence.

I Theorem 6.1. The adaptivity gap for the IM problem in the IC model with full-adoption
feedback is at least e/(e− 1), even when the influence graph is a directed line.

Proof. Consider the following influence graph G(V,E, p): the graph is a directed line with
vertices v11, . . . , v1t, v21, . . . , v2t, . . . , vk1, . . . , vkt, and each edge is live with probability 1−1/t.
Moreover, we have a budget k. Combining the following two claims, we can conclude that
the adaptivity gap is greater than or equal to e/(e − 1). The proofs of the claims are in
Appendix B.

B Claim 6.2. For any ε > 0, if k ≥ 8/ε3, we have E[OPTA(G, k)] ≥ (1− ε)kt.

B Claim 6.3. The optimal non-adaptive strategy is to select v11, . . . , vk1 as seeds. Thus, we
have E[OPTN (G, k)] = (1− (1− 1/t)t)kt. J

Discussion on Existing Approaches. There are two types of strategies for proving upper
bounds on adaptivity gaps. One common strategy is to convert any adaptive strategy to
the multilinear extension as in [27, 3] and our paper. The other is to convert the adaptive
strategy to the random walk non-adaptive strategy [16, 17, 8]. Here we claim that using the
instance constructed in Theorem 6.1, we can show that these two strategies can not yield
better-than-2 upper bounds on the adaptivity gap. We defer the detailed discussions to
Appendix B.

7 Conclusion

In this paper, we consider several families of influence graphs and give the first constant
upper bounds on adaptivity gaps for them under the full-adoption feedback model. Our
methods tackle the correlations on the feedback and hopefully can be applied to other
adaptive stochastic optimization problems. For future directions, there are still gaps between
our lower and upper bounds for both in-arborescences and out-arborescences, so it would be
interesting to close the gap. Another open question is to settle down the adaptivity gap for
general influence graphs under the IC model with the full-adoption feedback. The adaptive
gap for the linear threshold model and other diffusion models are also open.

References
1 Marek Adamczyk, Maxim Sviridenko, and Justin Ward. Submodular stochastic probing on

matroids. Mathematics of Operations Research, 41(3):1022–1038, 2016.
2 Noga Alon, Iftah Gamzu, and Moshe Tennenholtz. Optimizing budget allocation among

channels and influencers. In WWW, pages 381–388. ACM, 2012.
3 Arash Asadpour and Hamid Nazerzadeh. Maximizing stochastic monotone submodular

functions. Management Science, 62(8):2374–2391, 2015.
4 Ashwinkumar Badanidiyuru, Christos Papadimitriou, Aviad Rubinstein, Lior Seeman, and

Yaron Singer. Locally adaptive optimization: Adaptive seeding for monotone submodular
functions. In SODA. SIAM, 2016.

ISAAC 2019

24:16 On Adaptivity Gaps of Influence Maximization

5 Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. Topic-aware social influence propaga-
tion models. In ICDM’12, 2012.

6 Shishir Bharathi, David Kempe, and Mahyar Salek. Competitive influence maximization in
social networks. In WINE, pages 306–311. Springer, 2007.

7 Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing Social
Influence in Nearly Optimal Time. In SODA’14, pages 946–957. ACM-SIAM, 2014.

8 Domagoj Bradac, Sahil Singla, and Goran Zuzic. (Near) Optimal Adaptivity Gaps for
Stochastic Multi-Value Probing. arXiv preprint, 2019. arXiv:1902.01461.

9 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011.

10 Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In FOCS, pages 575–584. IEEE, 2010.

11 Wei Chen, Laks VS Lakshmanan, and Carlos Castillo. Information and Influence Propagation
in Social Networks. Morgan & Claypool Publishers, 2013.

12 Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In KDD’10, 2010.

13 Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks.
In Proceedings of the 15th ACM SIGKDD. ACM, 2009.

14 Kaito Fujii and Shinsaku Sakaue. Beyond Adaptive Submodularity: Approximation Guarantees
of Greedy Policy with Adaptive Submodularity Ratio. In ICML, pages 2042–2051, 2019.

15 Daniel Golovin and Andreas Krause. Adaptive Submodularity:Theory and Applications in
Active Learning and Stochastic Optimization. Journal of Artificial Intelligence Research, 42:427–
486, 2011. arXiv version (arXiv:1003.3967) includes discussions on the myopic feedback
model.

16 Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Algorithms and adaptivity gaps for
stochastic probing. In SODA. SIAM, 2016.

17 Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Adaptivity gaps for stochastic
probing: Submodular and XOS functions. In SODA. SIAM, 2017.

18 Daisuke Hatano, Takuro Fukunaga, and Ken-Ichi Kawarabayashi. Adaptive Budget Allocation
for Maximizing Influence of Advertisements. In IJCAI, pages 3600–3608, 2016.

19 David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. Theory of Computing, 11(4):105–147, 2015. Conference version appeared in
KDD’2003.

20 Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne M Vanbriesen,
and Natalie Glance. Cost-effective outbreak detection in networks. In ACM Knowledge
Discovery and Data Mining, pages 420–429, 2007.

21 Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. Influence Maximization on Social
Graphs: A Survey. IEEE Trans. Knowl. Data Eng., 30(10):1852–1872, 2018.

22 Yishi Lin, Wei Chen, and John CS Lui. Boosting information spread: An algorithmic approach.
In ICDE, pages 883–894. IEEE, 2017.

23 Wei Lu, Wei Chen, and Laks VS Lakshmanan. From competition to complementarity:
comparative influence diffusion and maximization. Proceedings of the VLDB Endowment,
9(2):60–71, 2015.

24 Zaixin Lu, Zhao Zhang, and Weili Wu. Solution of Bharathi–Kempe–Salek conjecture for
influence maximization on arborescence. Journal of Combinatorial Optimization, 33(2):803–808,
2017.

25 Binghui Peng and Wei Chen. Adaptive Influence Maximization with Myopic Feedback. In
NeurIPS, 2019.

26 Guillaume Salha, Nikolaos Tziortziotis, and Michalis Vazirgiannis. Adaptive Submodular
Influence Maximization with Myopic Feedback. In ASONAM, pages 455–462. IEEE, 2018.

http://arxiv.org/abs/1902.01461
https://arxiv.org/abs/1003.3967

W. Chen and B. Peng 24:17

27 Lior Seeman and Yaron Singer. Adaptive seeding in social networks. In FOCS, pages 459–468.
IEEE, 2013.

28 Yaron Singer. Influence maximization through adaptive seeding. ACM SIGecom Exchanges,
15(1):32–59, 2016.

29 Tasuku Soma, Naonori Kakimura, Kazuhiro Inaba, and Ken-ichi Kawarabayashi. Optimal
budget allocation: Theoretical guarantee and efficient algorithm. In ICML, 2014.

30 Lichao Sun, Weiran Huang, Philip S Yu, and Wei Chen. Multi-round influence maximization.
In KDD, pages 2249–2258. ACM, 2018.

31 Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear time: A
martingale approach. In SIGMOD’15, pages 1539–1554. ACM, 2015.

32 Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: near-optimal time
complexity meets practical efficiency. In SIGMOD’14, 2014.

33 Guangmo Tong, Weili Wu, Shaojie Tang, and Ding-Zhu Du. Adaptive influence maximization
in dynamic social networks. IEEE/ACM Transactions on Networking (TON), 25(1):112–125,
2017.

34 Jan Vondrák. Submodularity in combinatorial optimization, 2007.
35 Ailian Wang, Weili Wu, and Lei Cui. On Bharathi–Kempe–Salek conjecture for influence

maximization on arborescence. Journal of Combinatorial Optimization, 31(4):1678–1684, 2016.
36 Chi Wang, Wei Chen, and Yajun Wang. Scalable influence maximization for independent

cascade model in large-scale social networks. DMKD, 2012.
37 Jing Yuan and Shaojie Tang. No Time to Observe: Adaptive Influence Maximization with

Partial Feedback. In IJCAI, 2017.

A Missing Proof from Section 5

I Theorem 5.1. When the influence graph is a one-directional bipartite graph G(L,R,E, p),
the adaptivity gap on the influence maximization problem in the IC model with full-adoption
feedback is e

e−1 .

Proof. For each node u, it suffices to prove that for any configuration (x1, . . . , xn),

Fu(x1, . . . , xn) ≥
(

1− 1
e

)
f+
u (x1, . . . , xn), (32)

where Fu and f+
u are the same as defined in the proof of Theorem 4.1. We use pi to denote

the probability that node i can reach node u, then we have

Fu(x1, . . . , xn) = 1−
n∏
i=1

(1− pixi). (33)

On the other side, let Ei denote the event that node u becomes active right after the optimal
policy π+ chooses node i. We know that Pr[Ei] ≤ xi · pi and thus we can conclude that

f+
u (x1, . . . , xn) =

n∑
i=1

Pr [Ei] ≤
n∑
i=1

xipi. (34)

Combining Eq. (33) (34) and the fact that

1−
n∏
i=1

(1− yi) ≥
(

1− 1
e

)
min{1,

n∑
i=1

yn} (35)

holds for all yi ∈ [0, 1], we can prove Eq. (32) and conclude the proof. J

ISAAC 2019

24:18 On Adaptivity Gaps of Influence Maximization

B Missing Proofs and Further Discussions from Section 6

B Claim 6.2. For any ε > 0, if k ≥ 8/ε3, we have E[OPTA(G, k)] ≥ (1− ε)kt.

Proof. Consider the following adaptive policy π: π always selects the inactive node that is
closest to the origin of the directed line, until it reaches the budget. Let Xi (i ∈ [k]) denote
the number of nodes that can be reached from the ith seed and let X = X1 + · · ·+Xk. It is
easy to see that E[OPTA(G, k)] ≥ σ(π) = E[X]. Let Yi ∼ GE(1− 1/t), i.e., Yi is a geometric
random variable parametrized with 1− 1/t. Y1, . . . , Yk are independent and we know that
E[Yi] = t and Var[Yi] = t2 − t. Our key observation is that E[X] = E[min{Y1 + · · ·+ Yk, kt}].
By Chebshev bounds, we have

Pr [Y1 + · · ·+ Yk < (1− ε/2)kt] ≤ 4k(t2 − t)
ε2k2t2

≤ 4
ε2k
≤ ε/2. (36)

Thus we know that

E [min{Y1 + · · ·+ Yk, kt}] ≥ Pr [Y1 + · · ·+ Yk ≥ (1− ε/2)kt] · (1− ε/2) kt
≥ (1− ε/2) · (1− ε/2) kt ≥ (1− ε) kt. (37)

This concludes the proof. C

B Claim 6.3. The optimal non-adaptive strategy is to select v11, . . . , vk1 as seeds. Thus, we
have E[OPTN (G, k)] = (1− (1− 1/t)t)kt.

Proof. In the non-adaptive setting, for any node u and seed set S, we define the distance
between the node u and the set S as the distance between u and the closest predecessor of u
in S. We know that the probability that the node u is active only depends on the distance
between u and S. Let Ni (i ≥ 0) denote the set of nodes that has distance i with S. Then
we know that (i) nodes in Ni are active with probability (1− 1/t)i, (ii) N0, N1, . . . Nkt−1 are
disjoint and |Ni| ≤ k. Now we have that σ(S) =

∑kt−1
i=0 (1− 1/t)i · |Ni| ≤

∑t−1
i=0(1− 1/t)i · k.

Thus, we can conclude that the optimal non-adaptive solution is to select v11, . . . , vk1 as
seeds and E[OPTN (G, k)] =

∑t−1
i=0(1− 1/t)i · k = (1− (1− 1/t)t)kt. C

Discussion on Existing Approaches. In this paragraph, we give a hard instance showing
that existing approaches cannot yield better-than-2 upper bounds on the adaptivity gap.
The hard instance is exactly the directed line constructed in Theorem 6.1, i.e., a directed
line of length kt and each edge is live with probability 1− 1/t. We use node i to denote the
(i− 1)th successor of the origin of the directed line, notice that the origin itself is denoted as
node 1.

Multilinear Extension. One common strategy is to use the multilinear extension as in
[27, 3]. In [3], they consider the stochastic submodular optimization problem and prove
that f+(x1, . . . , xn) ≤ e

e−1F (x1, . . . , xn) holds for any configuration (x1, . . . , xn). We show
that the ratio of f+(x1, . . . , xn)/F (x1, . . . , xn) can approach 2 in our example. To be more
specific, consider the configuration (1, 1/t, . . . , 1/t), we claim that f+(1, 1/t, . . . , 1/t) = kt.
Consider the adaptive policy π that always selects the inactive node that is closest to the
origin of the directed line. The policy π will select the first node with probability 1 and
other nodes with probability 1/t, since it will seed a node if and only if its incoming edge is
blocked, this can happen with probability 1/t. On the other side, we have F (1, 1/t, . . . , 1/t) ≤
F (1− 1/t, 0, . . . , 0) + F (1/t, . . . , 1/t) ≤ (1− 1/t)t+ F (1/t, . . . , 1/t) ≤ t+ 1

2kt+ k. The first

W. Chen and B. Peng 24:19

inequality holds because of the DR-submodularity of the multilinear extension and the third
one holds because every node u in the line is active with probability

∞∑
i=0

Pr
[
u is activated by its ith predecessor

]
≤
∞∑
i=0

1
t
·
(

1− 1
t

)i
·
(

1− 1
t

)i
= 1
t
· 1

1− (1− 1/t)2 = t

2t− 1 . (38)

We conclude that when t, k →∞, f+(1, 1/t, . . . , 1/t)/F (1, 1/t, . . . , 1/t)→ 2.

Random Walk Non-adaptive Strategy. In [16, 17, 8], the authors consider the adaptive
stochastic probing problem and they convert an adaptive policy to a non-adaptive policy
by sampling a random leaf of the decision tree of the adaptive policy. Using our hard
instance in the previous paragraph, we can show that this approach (i.e., random walk
non-adaptive strategy) can give an upper bound of at most 2. To be more specific, we again
consider the adaptive strategy π and its corresponding non-adaptive strategy W(π), where
W(π) picks a random leaf of the decision tree of the policy π. We are going to show that
f+(1, 1/t, . . . , 1/t)/σ(W(π)) approaches 2 asymptotically and it is sufficient to show that
σ(W(π)) ≤ t + k + 1

2kt. We imagine that node 1 appears in W(π) with probability 1/t
instead of 1, this is for ease of analysis and it will decrease the influence spread for at most
(1− 1/t) · t due to the submodularity of the influence spread function. For any node u, u is
activated by its ith predecessor (if it has one) when (i) the random seed set W(π) does not
contain nodes between u and its ith predecessor (this happens with probability

(
1− 1

t

)i), (ii)
its ith predecessor is included in the seed set (this happens with probability 1

t) and (iii) node
u can be reached from its ith predecessor (this happens with probability

(
1− 1

t

)i). Moreover,
we know that the above three events are independent in the non-adaptive setting, thus the
probability that node u is activated by the ith predecessor is 1

t ·
(
1− 1

t

)i · (1− 1
t

)i and the
probability that it is active is no more than t

2t−1 . This concludes our argument.

ISAAC 2019

Minimum-Width Double-Strip and Parallelogram
Annulus
Sang Won Bae
Division of Computer Science and Engineering, Kyonggi University, Suwon, Korea
swbae@kgu.ac.kr

Abstract
In this paper, we study the problem of computing a minimum-width double-strip or parallelogram
annulus that encloses a given set of n points in the plane. A double-strip is a closed region in the
plane whose boundary consists of four parallel lines and a parallelogram annulus is a closed region
between two edge-parallel parallelograms. We present several first algorithms for these problems.
Among them are O(n2) and O(n3 logn)-time algorithms that compute a minimum-width double-strip
and parallelogram annulus, respectively, when their orientations can be freely chosen.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases geometric covering, parallelogram annulus, two-line center, double-strip

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.25

Related Version https://arxiv.org/abs/1911.07504

Funding Sang Won Bae: Supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07042755).

1 Introduction

The minimum-width annulus problem asks to find an annulus of a certain shape with the
minimum width that encloses a given set P of n points in the plane. An annulus informally
depicts a ring-shaped region in the plane. As the most natural and classical example, a
circular annulus is defined to be the region between two concentric circles. If one wants to
find a circle that best fits an input point set P , then her problem can be solved by finding
out a minimum-width circular annulus that encloses P . After early results on the circular
annulus problem [13], the currently best algorithm that computes a minimum-width circular
annulus that encloses n input points takes O(n 3

2 +ε) time [3,4] for any ε > 0. Analogously,
such a problem of matching a point set into a closed curve class can be formulated into the
minimum-width annulus problem for annuli of different shapes.

Along with applications not only to the points-to-curve matching problem but also to
other types of facility location, the minimum-width annulus problem has been extensively
studied for recent years, with a variety of variations and extensions. Abellanas et al. [1]
considered minimum-width rectangular annuli that are axis-parallel, and presented two
algorithms taking O(n) or O(n logn) time: one minimizes the width over rectangular annuli
with arbitrary aspect ratio and the other does over rectangular annuli with a prescribed
aspect ratio, respectively. Gluchshenko et al. [9] presented an O(n logn)-time algorithm
that computes a minimum-width axis-parallel square annulus, and proved a matching lower
bound, while the second algorithm by Abellanas et al. can do the same in the same time
bound. If one considers rectangular or square annuli in arbitrary orientation, the problem
becomes more difficult. Mukherjee et al. [12] presented an O(n2 logn)-time algorithm that
computes a minimum-width rectangular annulus in arbitrary orientation and arbitrary aspect
ratio. The author [5] showed that a minimum-width square annulus in arbitrary orientation
can be computed in O(n3 logn) time, and recently improved it to O(n3) time [6].

© Sang Won Bae;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8802-4247
mailto:swbae@kgu.ac.kr
https://doi.org/10.4230/LIPIcs.ISAAC.2019.25
https://arxiv.org/abs/1911.07504
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Double-Strip and Parallelogram Annulus

In this paper, we consider a more generalized shape, namely, parallelograms, and annuli
based on them in fixed or arbitrary orientation, which have at least one more degree of
freedom than square and rectangular annuli have. More precisely, we define a parallelogram
annulus as a closed region between two edge-parallel parallelograms, and address the problem
of computing a minimum-width parallelogram annulus that encloses the input point set P .
(See Figure 1(c).) We consider several restricted cases of the problem about two orientations
of sides of parallelogram annuli. Our main results are summarized as follows:
(1) When both orientations for sides are fixed, a minimum-width parallelogram annulus that

encloses P can be computed in O(n) time.
(2) When one orientation for sides is fixed and the other can be chosen arbitrarily, a

minimum-width parallelogram annulus that encloses P can be computed in O(n2) time.
(3) A minimum-width parallelogram annulus that encloses P over all pairs of orientations

can be computed in O(n3 logn) time.

To obtain these algorithms for the problem, we also introduce another geometric opti-
mization problem, called the minimum-width double-strip problem, which asks to compute a
double-strip of minimum width that encloses P . A double-strip is defined to be the union
of two parallel strips, where a strip is the region between two parallel lines in the plane.
(See Figure 1(b).) We show that this new problem is closely related to the parallelogram
annulus problem. The minimum-width double-strip problem has its own interest as a special
case of the two-line center problem, in which one wants to find two strips, possibly being
non-parallel, that encloses P and minimizes the width of the wider strip. After the first
sub-cubic algorithm is presented by Agarwal and Sharir [2], the currently best algorithm for
the two-line center problem takes O(n2 log2 n) time [8, 11].

To our best knowledge, however, no nontrivial result on the double-strip problem is known
in the literature. In this paper, we obtain the following algorithmic results:
(4) A minimum-width double-strip that encloses P over all orientations can be computed in

O(n2) time.
(5) We also consider a constrained version of the problem in which a subset Q ⊆ P with

k = |Q| is given and one wants to find a minimum-width double-strip enclosing Q such
that all points of P should lie in between its outer boundary lines. We show that this
can be solved in O(n logn+ kn) time.

(6) We further address some online and offline versions of the dynamic constrained double-
strip problem under insertions and/or deletions of a point on the subset Q to enclose.

The rest of the paper is organized as follows: Section 2 introduces necessary definitions
and preliminaries. Section 3 is devoted to solve the minimum-width double-strip problem
and present an O(n2) time algorithm, which is generalized to the constrained double-strip
problem in Section 4. The minimum-width parallelogram annulus problem is finally discussed
and solved in Section 5.

Omitted proofs and additional figures will be provided in a full version.

2 Preliminaries

In this section, we introduce definitions of necessary concepts and preliminaries for further
discussion. For any subset A ⊆ R2 of the plane R2, its boundary and interior are denoted by
∂A and intA, respectively.

For two parallel lines ` and `′ in the plane R2, the distance between ` and `′ denotes the
length of any line segment that is orthogonal to ` and `′ and have endpoints one on ` and
the other on `′. A strip is a closed region bounded by two parallel lines in the plane. For any

S.W. Bae 25:3

(a) (b) (c)

S

µ(S)

Figure 1 Illustrations to (a) a strip S and its middle line µ(S), (b) a double-strip, and (c) a
parallelogram annulus. The arrows depict the width of each shape.

strip S, its width w(S) is the distance between its bounding lines, and its middle line µ(S) is
the line parallel to its bounding lines such that the distance between µ(S) and each of the
bounding lines is exactly half the width w(S) of S. See Figure 1(a).

A double-strip is the union of two disjoint parallel strips of equal width, or equivalently,
is a closed region obtained by a strip S subtracted by the interior of another strip S′ such
that µ(S) = µ(S′) and S′ ⊆ S. For any double-strip defined by two strips S and S′ in this
way, S is called its outer strip and S′ its inner strip. The width of such a double-strip D,
denoted by w(D), is defined to be half the difference of the widths of S and S′, that is,
w(D) = (w(S)− w(S′))/2. See Figure 1(b).

A parallelogram is a quadrilateral that is the intersection of two non-parallel strips.
We define a parallelogram annulus to be a parallelogram R with a parallelogram hole R′,
analogously as a circular annulus is a circle with a circular hole. Here, we add a condition
that the outer and inner parallelograms R and R′ should be side-wise parallel. There are
several ways to define such a parallelogram annulus, among which we introduce the following
definition. A parallelogram annulus A is defined by two double-strips D1 and D2 as follows:
1. The outer parallelogram R of A is the intersection of the outer strips of D1 and D2.
2. The inner parallelogram R′ of A is the intersection of the inner strips of D1 and D2.
3. The parallelogram annulus A is the closed region between R and R′, that is, A = R\ intR′.
4. The width of A, denoted by w(A), is taken to be the bigger one between the widths of

D1 and D2, that is, w(A) = max{w(D1), w(D2)}.
See Figure 1(c) for an illustration.

The main purpose of this paper is to solve the minimum-width parallelogram annulus
problem in which we are given a set P of points in the plane and want to find a parallelogram
annulus of minimum width that encloses P . As discussed above, a parallelogram annulus is
closely related to strips and double-strips. The minimum-width double-strip problem asks to
find a double-strip of minimum width that encloses P in fixed or arbitrary orientation.

The orientation of a line or line segment ` in the plane is a value θ ∈ [−π/2, π/2)1 such
that the rotated copy of the x-axis by θ counter-clockwise is parallel to `. If the orientation
of a line or line segment is θ, then we say that the line or line segment is θ-aligned. A strip
or a double-strip is also called θ-aligned for some θ ∈ [−π/2, π/2) if its bounding lines are
θ-aligned. A parallelogram or a parallelogram annulus is (θ, φ)-aligned if it is defined by two
double-strips that are θ-aligned and φ-aligned, respectively.

For any two points p, q ∈ R2, let pq denote the line segment joining p and q, and |pq|
denote the Euclidean length of pq. We will often discuss the strip defined by two parallel lines
through p and q, and its width. Let σθ(p, q) be the width of the strip defined by two θ-aligned
lines through p and q, respectively. It is not difficult to see that σθ(p, q) = |pq| · | sin(θ− θpq)|,
where θpq ∈ [−π/2, π/2) denotes the orientation of pq. See Figure 2(a).

1 The orientation θ is indeed of period π. In this paper we choose [−π/2, π/2) for the orientation domain.

ISAAC 2019

25:4 Double-Strip and Parallelogram Annulus

σθ(p, q)

p

q

θ

(a) (b)

θ

`+(θ)

`−(θ)

χ+(θ)

χ−(θ)

conv(P)

θpq

Figure 2 (a) The θ-aligned strip defined by p and q, and its width σθ(p, q). (b) The antipodal
pair (χ+(θ), χ−(θ)) of P for orientation θ ∈ [−π/2, π/2).

A single-variate function of a particular form a sin(θ+ b) for some constants a, b ∈ R with
a 6= 0 is called sinusoidal function (of period 2π). Obviously, the equation a sin(θ + b) = 0
has at most one zero over θ ∈ [−π/2, π/2). The following property of sinusoidal functions is
well known and easily derived.

I Lemma 1. The sum of two sinusoidal functions is also sinusoidal. Therefore, the graphs
of two sinusoidal functions cross at most once over [−π/2, π/2).

Note that, taking θ ∈ [−π/2, π/2) as a variable, the function σθ(p, q) for fixed points p, q ∈ R2

is piecewise sinusoidal with at most one breakpoint.
Let P be a finite set of points in R2, and let conv(P) be its convex hull. The corners of

conv(P) are called extreme of P . For each θ ∈ [−π/2, π/2), let S(θ) be the minimum-width
θ-aligned strip enclosing P . Then, the two lines that define S(θ) pass through two extreme
points of P , one on each. More precisely, let `+(θ) and `−(θ) be the two lines defining S(θ)
such that `+(θ) lies above `−(θ) if θ 6= −π/2, or `+(θ) lies to the right of `−(θ) if θ = −π/2.
There must be an extreme point of P on each of the two lines `+(θ) and `−(θ), denoted by
χ+(θ) and χ−(θ). If there are two or more such points of P , then we choose the last one in
the counter-clockwise order along the boundary of conv(P). The width of S(θ) is equal to
σθ(χ+(θ), χ−(θ)).

For each θ ∈ [−π/2, π/2), the pair (χ+(θ), χ−(θ)) is called antipodal. It is known that
there are at most O(n) different antipodal pairs by Toussaint [14]. See Figure 2(b). Starting
from θ = −π/2, imagine the motion of the two lines `+(θ) and `−(θ) as θ continuously
increases. Then, the antipodal pair (χ+(θ), χ−(θ)) for θ only changes when one of the
two lines contains an edge of conv(P). In this way, the orientation domain [−π/2, π/2) is
decomposed into maximal intervals I such that (χ+(θ), χ−(θ)) remains the same in I.

3 Minimum-Width Double-Strips

In this section, we address the problem of computing a minimum-width double-strip that
encloses a given set P of n points in R2.

We start with the problem in a given orientation θ ∈ [−π/2, π/2). Let w(θ) be the
minimum possible width of a θ-aligned double-strip enclosing P . The following observation
can be obtained by a simple geometric argument.

S.W. Bae 25:5

I Observation 2. For each θ ∈ [−π/2, π/2), there exists a minimum-width θ-aligned double-
strip D(θ) enclosing P whose outer strip is S(θ) and inner strip is S′(θ), where

S(θ) is the minimum-width θ-aligned strip enclosing P , and
S′(θ) is the maximum-width θ-aligned strip such that its interior is empty of any point in
P and µ(S′(θ)) = µ(S(θ)).

Proof. Let D be a minimum-width θ-aligned double-strip enclosing P . Let S1 and S2 be the
two strips such that D = S1 ∪ S2. If the boundary of S1 does not contain an extreme point
of P , then we can slide S1 inwards until its boundary hits an extreme point of P . Let S′1 be
the resulting strip after this sliding process. Then, we have S1 ∩ P ⊂ S′1. In the same way,
we slide S2 until the boundary of S2 hits an extreme point of P , and let S′2 be the resulting
strip. Then, it holds that S2 ∩P ⊂ S′2. As a result, P ⊂ (S′1 ∪S′2) since P ⊂ (S1 ∪S2). Note
that the outer strip of the double-strip D′ := S′1 ∪ S′2 is exactly S(θ), the minimum-width
θ-aligned strip enclosing P .

Now, let S′ be the inner strip of D′. By definition, we have µ(S(θ)) = µ(S′). Suppose
that the inner strip S′ of D′ is not equal to S′(θ), the maximum-width θ-aligned strip such
that its interior is empty of any point in P and µ(S′(θ)) = µ(S(θ)). Then, the boundary
of S′ does not contain any point of P . Hence, the width of S′(θ) is strictly larger than the
width of S′, a contradiction that D′ is of minimum width. Therefore, the inner strip of D′
should be S′(θ). J

We focus on finding the minimum-width double-strip D(θ) described in Observation 2.
The outer strip S(θ) of D(θ) is determined by `+(θ) and `−(θ) on which the two extreme
points χ+(θ) and χ−(θ) lie. For p ∈ P , let dp(θ) := min{σθ(p, χ+(θ)), σθ(p, χ−(θ))}. Then,
the width w(θ) of D(θ) in orientation θ is determined by

w(θ) = max
p∈P

dp(θ).

It is not difficult to see that w(θ) can be evaluated in O(n) time for a given θ ∈ [−π/2, π/2).

I Theorem 3. Given a set P of n points and an orientation θ ∈ [−π/2, π/2), a minimum-
width θ-aligned double-strip enclosing P and its width w(θ) can be computed in O(n) time.

Proof. In this proof, we describe our algorithm that computes D(θ). Given θ, one can
compute the two extreme points χ+(θ) and χ−(θ) in O(n) time by computing the minimum
and maximum among the inner products of

(cos(θ + π/2)), sin(θ + π/2))

and all points in P as vectors. The antipodal pair also determines the outer strip S(θ).
After identifying χ+(θ) and χ−(θ), the value of dp(θ) for each p ∈ P can be computed

in O(1) time. Hence, w(θ) = maxp∈P dp(θ) can be found in additional O(n) time. This
determines the inner strip S′(θ). J

Next, we turn to finding a minimum-width double-strip over all orientations. This is
equivalent to computing the minimum value of w(θ) over θ ∈ [−π/2, π/2), denoted by w∗. Let
θ∗ be an optimal orientation such that w(θ∗) = w∗. Consider the corresponding double-strip
D(θ∗) whose outer strip is S(θ∗) and inner strip is S′(θ∗), as described in Observation 2. We
then observe the following for the minimum-width double-strip D(θ∗) enclosing P .

I Lemma 4. Let θ∗ be an orientation such that w(θ∗) = w∗. Then, either
(a) three extreme points of P lie on the boundary of S(θ∗), or
(b) two points of P lie on the boundary of S′(θ∗).

ISAAC 2019

25:6 Double-Strip and Parallelogram Annulus

(a) (b) (c)

U

L

M
Q+

Q−
M

A?

Figure 3 (a) The arrangement A? of lines in P ?. (b) The upper envelope U , the lower envelope
L, andM of A?. (c) Q+ and Q− depicted by red and blue chains, respectively.

Regard dp(θ) as a function of θ in domain [−π/2, π/2). This function depends on the
antipodal pair of extreme points (χ+(θ), χ−(θ)) for θ. Since there are O(n) antipodal
pairs [14], the function dp for each p ∈ P is piecewise sinusoidal with O(n) breakpoints. The
width function w(θ) is the upper envelope of the n functions dp(θ) for p ∈ P , consisting
of O(n2) sinusoidal curves in total. Thus, we can compute the minimum width w∗ =
minθ∈[−π/2,π/2) w(θ) by computing the upper envelope of these O(n2) sinusoidal curves and
finding a lowest point in the envelope. Since any two sinusoidal curves cross at most once
by Lemma 1, this can be done in O(n2 logn) time [10]. The width function w is piecewise
sinusoidal with O(n2α(n)) breakpoints, where α denotes the inverse Ackermann function.
and its lowest point always occurs at one of the breakpoints by Lemma 4. Hence, O(n2 logn)
time is sufficient to solve the problem.

In the following, we improve this to O(n2) time. As observed above, the double-strip
D(θ) of width w(θ) is determined by its outer strip S(θ) and inner strip S′(θ). Let µ(θ) :=
µ(S(θ)) = µ(S′(θ)) be the middle line of D(θ). The middle line µ(θ) separates P into two
subsets P+(θ) and P−(θ), where P+(θ) is the set of points p ∈ P lying in the strip defined
by `+(θ) and µ(θ), and P−(θ) = P \ P+(θ). Define q+(θ) ∈ P+(θ) to be the closest point to
line µ(θ) among P+(θ), and similarly q−(θ) ∈ P−(θ) to be the closest point to µ(θ) among
P−(θ). We then observe that the width of D(θ) is

w(θ) = max{σθ(q+(θ), χ+(θ)), σθ(q−(θ), χ−(θ))}.

Hence, D(θ) is completely determined by these four points: χ+(θ), χ−(θ), q+(θ), and q−(θ).
In order to analyze and specify the change of pair (q+(θ), q−(θ)) as θ continuously increases

from −π/2 to π/2, we adopt an interpretation under a geometric dualization [7, Chapter 8].
We shall call the plane R2 – in which we have discussed objects so far – the primal plane
with the x- and y-axes. Let D be another plane, called the dual plane, with u- and v-axes
that correspond to its horizontal and vertical axes, respectively. Here, we use a standard
duality transform ? which maps a point p = (a, b) ∈ R2 into a line p? : v = au− b ⊂ D and
a non-vertical line ` : y = ax− b ⊂ R2 into a point `? = (a, b) ∈ D. This duality transform
is also defined in the reversed way for points and lines in the dual plane D to be mapped
to lines and points in the primal plane R2, so that we have (p?)? = p and (`?)? = ` for any
point p and any non-vertical line ` either in R2 or in D. We say that a geometric object and
its image under the duality transform are dual to each other. Note that p lies above (on or
below, resp.) ` if and only if `? lies above (on or below, resp.) p?.

3.1 Scenes from the dual plane
Suppose that the input point set P is given in the primal plane R2. Consider the set
P ? := {p? | p ∈ P} of n lines in the dual plane D and their arrangement A? := A(P ?).
See Figure 3 for illustration. Let U and L be the upper and lower envelopes in A?. The

S.W. Bae 25:7

envelopes U and L can also be considered as two functions of u ∈ R; in this way, U(u)
and L(u) are the v-coordinates in D of points on U and L, respectively, at u ∈ R. Let
M(u) := (U(u) + L(u))/2 be the v-coordinates of the midpoint of the vertical segment
connecting L and U at u ∈ R. Similarly, we regardM as the function itself and simultaneously
as its graphM = {(u,M(u)) | u ∈ R} drawn in D.

As well known, the upper envelope U corresponds to the lower chain of conv(P) and the
lower envelope L to its upper chain. More precisely, each vertex of U and L is dual to the
line supporting an edge of conv(P). Thus, the total number of vertices of U and L is no
more than n = |P |. Also, observe that the number of vertices of M is equal to the total
number of vertices of U and L by definition.

Now, consider the portions of lines in P ? aboveM and the lower envelope of those pieces
cut byM, denoted by Q+. Analogously, let Q− be the upper envelope of portions of lines in
P ? belowM. The following observations follow directly from the basic properties of duality.

I Observation 5. For each θ ∈ [−π/2, π/2), let u := tan θ. Then, the following hold:
(1) The dual (`+(θ))? of the θ-aligned line through χ+(θ) is the point (u,L(u)) in D. Similarly,

we have (`−(θ))? = (u,U(u)).
(2) The dual (µ(θ))? of the middle line µ(θ) is the point (u,M(u)) in D.
(3) The dual of the θ-aligned line through q+(θ) is the point (u,Q−(u)) in D. Similarly, the

dual of the θ-aligned line through q−(θ) is the point (u,Q+(u)).
From Observation 5, one would say informally that `+ is dual to L, `− to U , µ toM, q+ to
Q−, and q− to Q+.

We are ready to describe our algorithm. We first compute the arrangement A? in O(n2)
time. The envelopes U and L can be traced in O(n) time from A?, and we also can compute
M in O(n) time. We then compute Q+ and Q−.

I Lemma 6. The complexity of Q+ and Q− is O(n2), and we can compute them in O(n2)
time.

By Lemma 6 together with Observation 5, we know that there are O(n2) changes in pair
(q+(θ), q−(θ)) as θ increases from −π/2 to π/2. On the other hand, we already know that
the antipodal pair (χ+(θ), χ−(θ)) changes O(n) times as θ increases from −π/2 to π/2.
Consequently, there are O(n2) changes in tuple (χ+(θ), χ−(θ), q+(θ), q−(θ)), and thus the
orientation domain [−π/2, π/2) is decomposed intoO(n2) intervals in each of which the tuple is
fixed. For each such interval I, we minimize w(θ) = max{σθ(q+(θ), χ+(θ)), σθ(q−(θ), χ−(θ))}
over θ ∈ I. Since the four points χ+(θ), χ−(θ), q+(θ), q−(θ) are fixed in I, the function w on
I is the upper envelope of at most four sinusoidal functions by Lemma 1. By Lemma 4, the
minimum occurs either (a) at an endpoint of I or (b) when the equality σθ(q+(θ), χ+(θ)) =
σθ(q−(θ), χ−(θ)) holds. Hence, we can minimize w(θ) over θ ∈ I in O(1) time. Since
w∗ = minI minθ∈I w(θ), we can compute w∗ by taking the minimum over such intervals I.

I Theorem 7. Given a set P of n points in the plane, a minimum-width double-strip
enclosing P can be computed in O(n2) time.

4 Constrained Double-Strip Problem

In this section, we discuss a constrained version of the minimum-width double-strip problem,
called the constrained double-strip problem. The constrained double-strip problem has its
own interest, while it can also be used, in particular, to obtain efficient algorithms for the
parallelogram annulus problem, which will be discussed in the following section.

ISAAC 2019

25:8 Double-Strip and Parallelogram Annulus

In the constrained double-strip problem, we are given a set P of n points and a subset
Q ⊆ P with k = |Q|. A P -constrained double-strip is a double-strip whose outer strip
contains all points in P . Then, the problem asks to find a P -constrained double-strip of
minimum width that encloses subset Q.

Analogously to Observation 2, we observe the following for the constrained problem.
I Observation 8. For each θ ∈ [−π/2, π/2), there exists a minimum-width θ-aligned P -
constrained double-strip DQ(θ) enclosing Q such that its outer strip is S(θ) and its inner
strip is S′Q(θ), where S′Q(θ) is the maximum-width θ-aligned strip such that its interior is
empty of any point in Q and µ(S′Q(θ)) = µ(θ).

Let wQ(θ) be the width of the minimum-width P -constrained double-stripDQ(θ) enclosing
Q described in Observation 8, and w∗Q := minθ∈[−π/2,π/2) wQ(θ). Hence, we focus on
computing the minimum possible width w∗Q and its corresponding double-strip DQ(w∗Q). We
also redefine q+(θ) and q−(θ) to be the closest points to µ(θ) among points in Q above and
below µ(θ), respectively. Then, we have

wQ(θ) = max{σθ(q+(θ), χ+(θ)), σθ(q−(θ), χ−(θ))}.

The following lemma is analogous to Lemma 4.
I Lemma 9. Let θ∗ be an orientation such that wQ(θ∗) = w∗Q. Then, either
(a) three extreme points of P lie on the boundary of S(θ∗), or
(b) two points of Q lie on the boundary of S′Q(θ∗).

To solve the constrained problem, we extend our approach for the unconstrained problem.
Define A?Q := A(Q? ∪ U ∪ L) to be the arrangement of k lines in Q? = {p? | p ∈ Q} plus the
envelopes U and L of A(P ?). Let Q+

Q be the lower envelope of portions of lines in Q? above
M, and Q−Q be the upper envelope of portions of lines in Q? belowM.

Our algorithm for the constrained double-strip problem runs as follows: First, compute
the convex hull conv(P) and extract U and L from conv(P) in O(n logn) time. Then, we
add lines in Q? incrementally one by one to build A?Q. Since every line in Q? lies between U
and L, this takes additional O(k2) time. Next, we compute Q+

Q and Q−Q.
I Lemma 10. The complexity of Q+

Q and Q−Q is O(kn), and we can compute them in
O(kn) time.
The rest of the algorithm is the same as that described in the previous section. As we increase
θ ∈ [−π/2, π/2) continuously, there are O(kn) changes in tuple (χ+(θ), χ−(θ), q+(θ), q−(θ))
by Lemma 10, and thus the orientation domain [−π/2, π/2) is decomposed intoO(kn) intervals
in each of which the four points are fixed. For each such interval I, we minimize wQ(θ) =
max{σθ(q+(θ), χ+(θ)), σθ(q−(θ), χ−(θ))} over θ ∈ I. By Lemma 9, the minimum occurs
either (a) at an endpoint of I or (b) when the equality σθ(q+(θ), χ+(θ)) = σθ(q−(θ), χ−(θ))
holds. Hence, we can minimize w(θ) over θ ∈ I in O(1) time, and obtain the following result.
I Theorem 11. Given a set P of n points and a subset Q ⊆ P with k = |Q|, a minimum-width
P -constrained double-strip enclosing Q can be computed in O(n logn+ kn) time.

4.1 Dynamic maintenance under insertion and deletion
In the following, we consider a dynamic situation in which a point in P can be inserted
into or deleted from Q. Our goal is to report a minimum-width P -constrained double-strip
enclosing Q over all orientations and its width, that is, w∗Q and DQ(w∗Q), whenever a change
in Q occurs, faster than computing from scratch by Theorem 11.

S.W. Bae 25:9

Q+
Q

Q−
Q

M

Figure 4 Illustration to the trapezoidal map TQ with 18 trapezoids. In this example, we take
Q = P for input point set P , being the same as the one used as in Figure 3. Red and blue dots are
vertices of A?Q that belong to Q+

Q and Q−
Q, respectively. Small circles depict the vertices ofM and

cross marks are the intersections betweenM and any line p? for p ∈ Q.

For the purpose, we keep the following invariants updated under insertions and deletions:
the arrangement A?Q and a trapezoidal map TQ. The map TQ is a vertical trapezoidal
decomposition of the region between Q+

Q and Q−Q. More precisely, let QQ be the region
between Q+

Q and Q−Q, and {u1, u2, . . . , um} be the set of u-coordinates of the vertices of Q+
Q,

Q−Q, and M such that u1 < u2 < · · · < um. By adding into QQ a vertical line segment
at u = ui for each i = 1, 2, . . . ,m between two points (ui,Q−Q(ui)) and (ui,Q+

Q(ui)), we
obtain the trapezoidal decomposition TQ consisting of m+ 1 trapezoids. For convenience,
let u0 := −∞ and um+1 := ∞. The order of trapezoids in TQ is naturally induced along
the u-axis in D. The i-th trapezoid τ in TQ for i = 1, . . . ,m+ 1 is bounded by two vertical
segments at u = ui−1 and u = ui, and two segments from Q+

Q and Q−Q. See Figure 4 for an
illustration. The two segments of τ from Q+

Q and Q−Q are called the ceiling and floor of τ ,
respectively. Let Uτ ⊂ R be an interval consisting of the u-coordinates of all points in τ .

At each trapezoid τ , we store four points χ+
τ , χ

−
τ , q

+
τ , q

−
τ ∈ P such that χ+

τ = χ+(θ),
χ−τ = χ−(θ), q+

τ = q+(θ), and q−τ = q−(θ) for all θ with tan θ ∈ Uτ . We also store at τ
the value wτ := mintan θ∈Uτ {max{σθ(q+

τ , χ
+
τ), σθ(q−τ , χ−τ)}}, which can be computed in O(1)

time per trapezoid by Lemma 9.
Note that the union of ceilings of all trapezoids in TQ forms Q+

Q, and the union of their
floors forms Q−Q. By Lemma 10, the number m + 1 of trapezoids in TQ is O(|Q|n). More
importantly, for each θ ∈ [−π/2, π/2), there is a unique trapezoid τ in TQ such that tan θ lies
in interval Uτ of τ and thus we have wQ(θ) = max{σθ(q+

τ , χ
+
τ), σθ(q−τ , χ−τ)}. This implies

that min{wQ(θ) | tan θ ∈ Uτ} = wτ , and hence w∗Q = minτ∈TQ wτ . Thus, by efficiently
maintaining TQ, the problem is reduced to finding the minimum of wτ over all trapezoids τ
in TQ.

Updating our invariants can be done in O(n) time thanks to the Zone Theorem for the
arrangement of lines.

I Lemma 12. Let Q ⊆ P , p ∈ P , and Q′ be either Q ∪ {p} or Q \ {p}. Then, A?Q′ and TQ′

can be obtained in O(n) time, provided the description of A?Q and TQ. More specifically, the
number of trapezoids in the symmetric difference (TQ′ \ TQ) ∪ (TQ \ TQ′) is O(n), and those
trapezoids can be identified in the same time bound.

Now, we are ready to describe our overall algorithm. We assume that we start with an
empty set Q = ∅ and a sequence of insertions and deletions on Q is given. For Q = ∅, it is
easy to initialize A?∅ and T∅, after computing U , L, andM in O(n logn) time as described
above. Namely, A?∅ is just the union of U and L, and T∅ can be obtained from the fact that
Q+
∅ = U and Q−∅ = L. Whenever an insertion or deletion of a point is given, we update our

ISAAC 2019

25:10 Double-Strip and Parallelogram Annulus

invariants as described in Lemma 12, spending O(n) time. We then report the minimum
possible width w∗Q for the current subset Q and the corresponding double-strip. Since TQ
consists of O(|Q|n) trapezoids by Lemma 10, a linear scan of TQ is too costly. We instead
use a basic priority queue, such as the binary heap, and conclude the following.

I Theorem 13. Let P be a set of n points, and Q0 = ∅, Q1, Q2, . . . be a sequence of subsets
of P such that the difference between Qi+1 and Qi is only a single point in P . Suppose that
each Qi is given at time i by its difference from Qi−1. Then, whenever Qi is specified for
each i ≥ 0, we can exactly compute a P -constrained double-strip of minimum width w∗Qi that
encloses Qi in O(n logn) time.

If one only wants to decide whether or not the minimum possible width w∗Q is at least a
given target value w ≥ 0, then the complexity can be reduced as follows.

I Theorem 14. Let P be a set of n points, and Q0 = ∅, Q1, Q2, . . . be a sequence of subsets
of P such that the difference between Qi+1 and Qi is only a single point in P . Suppose that
each Qi is given at time i by its difference from Qi−1. Let w ≥ 0 be a given fixed real number.
Then, after spending O(n logn) time for preprocessing, whenever Qi is specified for each
i ≥ 0, we can decide whether w ≥ w∗Qi or w < w∗Qi in O(n) time.

4.2 Offline version under insertions only

Note that the above theorems give us solutions to the online optimization and decision
versions of the P -constrained double-strip problem under insertions and deletions. Here, we
consider the offline optimization version of the problem under insertions only.

Let Q = {p1, p2, . . . , pk} ⊆ P be a subset of P , and Qi := {p1, . . . , pi} for i = 0, . . . , k.
Suppose that we know Qi for each i = 0, . . . , k for the first time and want to compute a
minimum-width P -constrained double-strip enclosing Qi for all i = 0, . . . , k.

For the purpose, we observe the following.

I Lemma 15. For each i = 0, . . . , k− 1, it holds that w∗Qi = min{w∗Qi+1
,minτ∈Ti wτ}, where

Ti := TQi \ TQi+1 denotes the set of trapezoids removed from TQi by the insertion of pi+1.

Lemma 15 suggests computing w∗Qi backwards from i = k to i = 0. By maintaining TQi
from i = 0 to k and storing the sets Ti = TQi \ TQi+1 , this can be done in O(kn) time.

More precisely, we first build A?Q0
and TQ0 as described above in O(n logn) time. We then

insert pi for i = 1, . . . , k, one by one, and compute A?Qi and TQi in O(n) time per insertion
by Lemma 12, but we do not compute the minimum width w∗Qi at every insertion. Instead,
we collect all trapezoids τ that have been deleted, that is, the set Ti = TQi \ TQi+1 . Then, we
apply Lemma 15 to compute w∗Qi for each i = 0, . . . , k and its corresponding double-strip.

We first compute w∗Qk = minτ∈TQk wτ . Then, we iterate i from k − 1 to 0, and compute
w∗Qi based on Lemma 15. Since |Ti| = O(n) for each i by Lemma 12, this takes O(kn)
additional time. We thus conclude the following theorem.

I Theorem 16. Let P be a set of n points and p1, . . . , pk ∈ P be k ≥ 1 points in P , and let
Qi := {p1, . . . , pi} for 0 ≤ i ≤ k. Then, in time O(n logn+kn), we can exactly compute w∗Qi
for all 0 ≤ i ≤ k and corresponding P -constrained double-strips of width w∗Qi enclosing Qi.

S.W. Bae 25:11

5 Minimum-Width Parallelogram Annuli

In this section, we present algorithms that compute a minimum-width parallelogram annulus
that encloses a set P of n points in R2. As introduced in Section 2, a parallelogram annulus
is defined by two double-strips and its orientation is represented by a pair of parameters
(θ, φ) with θ, φ ∈ [−π/2, π/2).

Here, we consider several cases depending on how many of the two side orientations, θ
and φ, are fixed or not. The easiest case is certainly when both θ and φ are fixed.

I Observation 17. For any θ, φ ∈ [−π/2, π/2), there exists a minimum-width (θ, φ)-aligned
parallelogram annulus that encloses P such that its outer parallelogram R(θ, φ) is the in-
tersection of S(θ) and S(φ), the minimum-width θ-aligned and φ-aligned strip enclosing P ,
respectively.

The above observation gives us a structural property of an optimal annulus which we
should look for, and leads to a linear-time algorithm.

I Theorem 18. Given a set P of n points and θ, φ ∈ [−π/2, π/2), a minimum-with (θ, φ)-
aligned parallelogram annulus that encloses P can be computed in O(n) time.

Proof. Here, we describe an algorithm that finds a minimum-width (θ, φ)-aligned parallelo-
gram annulus enclosing P whose outer parallelogram is R(θ, φ) = S(θ) ∩ S(φ), as described
in Observation 17.

As described in the proof of Theorem 3, we can find the minimum-width θ-aligned strip
S(θ) enclosing P in O(n) time by identifying the corresponding antipodal pair (χ+(θ), χ−(θ)).
In the same way, we identify the antipodal pair (χ+(φ), χ−(φ)) and strip S(φ).

We then need to find an inner parallelogram R′ that minimizes the width of the resulting
annulus defined by R(θ, φ) and R′. For the purpose, we are done by checking the distance
from each p ∈ P to the boundary of R, which is equal to

min{wθ(p, χ+(θ)), wθ(p, χ−(θ)), wφ(p, χ+(φ)), wφ(p, χ−(φ))}.

We can evaluate this in O(1) time for each p ∈ P , so in O(n) total time, and take the
maximum over them, denoted by z. Since the interior of the inner parallelogram R′ must
avoid all points in P , at least one side of R′ must be z distant from the boundary of R.
Hence, the minimum width of a (θ, φ)-aligned parallelogram annulus enclosing P is exactly
z. The value of z and a corresponding annulus can be computed in O(n) time. J

In the following, let w(θ, φ) be the smallest among the widths of all (θ, φ)-aligned
parallelogram annuli enclosing P .

5.1 When one side orientation is fixed
Next, we consider the problem where one side of a resulting annulus should be φ-aligned for
a fixed orientation φ ∈ [−π/2, π/2) while the other orientation parameter θ can be chosen
arbitrarily. So, in the following, we regard φ ∈ [−π/2, π/2) to be fixed. Without loss of
generality, we assume that φ = 0.

From the definition of a parallelogram annulus A, it is defined by two double-strips. In
addition, Observation 17 tells us that the two double-strips defining A can be chosen among
the P -constrained double-trips enclosing a subset of P . Hence, for the case where φ = 0 is
fixed, the problem is reduced to find a best bipartition of P such that one part is covered by
a 0-aligned P -constrained double-strip and the other by another P -constrained double-strip
in any orientation θ ∈ [−π/1, π/2).

ISAAC 2019

25:12 Double-Strip and Parallelogram Annulus

We first identify two extreme points χ+(0) and χ−(0), and the strip S(0) in O(n) time.
Then, sort the points in P in the non-increasing order of the value

dp(0) = min{σ0(p, χ+(0)), σ0(p, χ−(0))}

for each p ∈ P , which is the distance to the boundary of S(0). Let p1, p2, . . . , pn−1, pn ∈ P
be this order. Also, let wi := dpi(0) = min{σ0(pi, χ+(0)), σ0(pi, χ−(0))} for i = 1, . . . , n.

Consider the double-strip Di with width wi and outer strip S(0). The double-strip D1
encloses all points of P , while D2 misses one point p1 and Di misses i− 1 points p1, . . . , pi−1
in general for i = 1, . . . , n. This means that there are only n different subsets of P covered
by any 0-aligned double-strip. Thus, to enclose P by a (θ, 0)-aligned parallelogram annulus,
the other double-strip with orientation θ should cover the rest of the points in P .

Note that each Di is a minimum-width 0-aligned P -constrained double-strip that encloses
{pi, pi+1, . . . , pn} ⊆ P . Let Qi := {p1, p2, . . . , pi−1} for i = 1, . . . , n. If we choose Di for
the 0-aligned double-strip, then P \Qi ⊂ Di, so the points in Qi should be covered by the
second double-strip that define a parallelogram annulus. Let D′i be the minimum-width
P -constrained double-strip enclosing Qi, and let w′i be its width. We compute D′i and w′i
for all i ∈ {1, . . . , n} by applying Theorem 16 in O(n2) time. What remains is taking the
minimum of max{wi, w′i} over i = 1, . . . , n.

I Theorem 19. Given a set P of n points and a fixed orientation φ ∈ [−π/2, π/2), a
(θ, φ)-aligned parallelogram annulus of minimum width over all θ ∈ [−π/2, π/2) that encloses
P can be computed in O(n2) time.

5.2 General case
Finally, we consider the general case where both θ and φ can be freely chosen from domain
[−π/2, π/2). Let w∗ := minθ,φ∈[−π/2,π/2) w(θ, φ) be the minimum possible width, and (θ∗, φ∗)
be a pair of orientations such that w∗ = w(θ∗, φ∗).

We first consider the decision version of the problem in which a positive real number
w > 0 is given and we want to decide if w ≥ w∗ or w < w∗. For the purpose, we consider
the function dp defined above for each p ∈ P to be dp(θ) = min{σθ(p, χ+(θ)), σθ(p, χ−(θ))}.
As observed above, the function dp is piecewise sinusoidal with O(n) breakpoints, so its
graph {(θ, y) | y = dp(θ),−π/2 ≤ θ < π/2} consists of O(n) sinusoidal curves. Let Γp be the
set of these sinusoidal curves, and Γ :=

⋃
p∈P Γp. We build the arrangement A(Γ) of these

sinusoidal curves in Γ. Note that each vertex of A(Γ) corresponds either to a breakpoint of
function dp for some p ∈ P or to an intersection point between a curve in Γp and another in
Γp′ for some p, p′ ∈ P with p 6= p′.

I Lemma 20. The arrangement A(Γ) of curves in Γ consists of O(n3) vertices, edges, and
cells, and can be computed in O(n3) time.

Now, we describe our decision algorithm. Let w > 0 be a given positive real number.
First, we intersect the horizontal line ` : {y = w} with arrangement A(Γ).

I Lemma 21. Any horizontal line crosses the edges of A(Γ) in O(n2) points, and all these
intersection points can be specified in O(n2) time.

Our algorithm continuously increases θ from −π/2 to π/2 and checks if there exists a
parallelogram annulus of width w that encloses P such that one of the two double-strips
defining it is θ-aligned.

S.W. Bae 25:13

Let {θ1, . . . , θm} be the set of θ-values of every intersection point between ` and the edges
of A(Γ) such that −π/2 ≤ θ1 < θ2 < · · · < θm < π/2. Note that m = O(n2) by Lemma 21.
For each i = 1, . . . ,m, let Pi ⊆ P be the set of points p ∈ P such that dp(θi) ≤ w, and let
Qi := P \ Pi. Let Di be the θi-aligned P -constrained double-strip of width w. Then, we
have Pi ⊂ Di while Qi ∩Di = ∅. Let D′i be a P -constrained double-strip of minimum width
that encloses Qi. Recall that the width of D′i is denoted by w∗Qi in the previous section. If
the width w∗Qi of D

′
i is at most w, then the parallelogram annulus defined by Di and D′i

indeed encloses P and its width is w, so we conclude that w ≥ w∗. Otherwise, if w∗Qi > w,
then we proceed to next θ-value θi+1.

We perform this test for each i = 1, . . . ,m in an efficient way with the aid of our online
decision algorithm for the constrained double-strip problem. Initially, for i = 1, we compute
P1, Q1, and D1 in O(n) time. Also, we initialize the data structures T∅ and fixed value
w, as described in Theorem 14 in O(n logn) time, and insert points in Q1 to have TQ1 in
O(|Q1|n) = O(n2) time. We then know that w∗Q1

≥ w or not.
For each i ≥ 2, there is a point p ∈ P such that either Pi = Pi−1 \ {p} or Pi = Pi−1 ∪{p}.

Since Qi = P \ Pi, we have that either Qi = Qi−1 ∪ {p} or Qi = Qi−1 \ {p}. This implies
that we can answer whether w ≥ w∗Qi or not in O(n) time for each i ≥ 2 by maintaining Pi,
Qi, and TQi by Theorem 14.

Since m = O(n2) by Lemma 21, we can solve the decision problem in O(n3) time.

I Lemma 22. Given w > 0, we can decide whether or not w ≥ w∗ in O(n3) time.

Finally, we describe our algorithm to compute the exact value of w∗. To do so, we collect
a set W of candidate width values in which w∗ is guaranteed to exist, and perform a binary
search using our decision algorithm summarized in Lemma 22.

I Lemma 23. The minimum possible width w∗ over all parallelogram annulli that enclose
P is equal to the y-coordinate of a vertex of A(Γ).

We thus define W to be the set of y-coordinates of all vertices of A(Γ). Lemma 23
guarantees that w∗ ∈W . After sorting the values in W , we perform a binary search on W
using the decision algorithm. Since |W | = O(n3) by Lemma 20 and the decision algorithm
runs in O(n3) time by Lemma 22, we can find the exact value of w∗ in O(n3 logn) time.
Therefore, we conclude the following theorem.

I Theorem 24. Given a set P of n points, a minimum-with parallelogram annulus over all
pairs of orientations that encloses P can be computed in O(n3 logn) time.

References
1 M. Abellanas, Ferran Hurtado, C. Icking, L. Ma, B. Palop, and P.A. Ramos. Best Fitting

Rectangles. In Proc. Euro. Workshop Comput. Geom. (EuroCG 2003), 2003.
2 P. Agarwal and M. Sharir. Planar geometric location problems. Algorithimca, 11:185–195,

1994.
3 P.K. Agarwal and M. Sharir. Efficient randomized algorithms for some geometric optimization

problems. Discrete Comput. Geom., 16:317–337, 1996.
4 P.K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in geometric

optimization. J. Algo., 17:292–318, 1994.
5 Sang Won Bae. Computing a Minimum-Width Square Annulus in Arbitrary Orientation.

Theoret. Comput. Sci., 718:2–13, 2018.
6 Sang Won Bae. On the Minimum-Area Rectangular and Square Annulus Problem. CoRR,

2019. arXiv:1904.06832.

ISAAC 2019

http://arxiv.org/abs/1904.06832

25:14 Double-Strip and Parallelogram Annulus

7 Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computationsl
Geometry: Alogorithms and Applications. Springer-Verlag, 2nd edition, 2000.

8 Alex Glozman, Klara Kedem, and Gregory Shpitalnik. On some geometric selection and
optimization problems via sorted matrices. Comput. Geom.: Theory Appl., 11(1):17–28, 1998.

9 Olga N. Gluchshenko, Horst W. Hamacher, and Arie Tamir. An optimal O(n logn) algorithm
for finding an enclosing planar rectilinear annulus of minimum width. Operations Research
Lett., 37(3):168–170, 2009.

10 J. Hershberger. Finding the upper envelope of n line segments in O(n logn) time. Inform.
Proc. Lett., 33:169–174, 1989.

11 Jerzy Jaromczyk and Miroslaw Kowaluk. The Two-Line Center Problem from a Polar View:
A New Algorithm and Data Structure. In Proc. 4th Int. Workshop Algo. Data Struct. (WADS
1995), volume 955 of Lecture Notes Comput. Sci., pages 13–25, 1995.

12 J. Mukherjee, P.R.S. Mahapatra, A. Karmakar, and S. Das. Minimum-width rectangular
annulus. Theoretical Comput. Sci., 508:74–80, 2013.

13 U. Roy and X. Zhang. Establishment of a pair of concentric circles with the minimum radial
separation for assessing roundness error. Computer-Aided Design, 24(3):161–168, 1992.

14 G.T. Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE
MELECON, 1983.

Small Candidate Set for Translational Pattern
Search
Ziyun Huang
Department of Computer Science and Software Engineering, Penn State Erie,
The Behrend College, Erie, PA, USA
zxh201@psu.edu

Qilong Feng
School of Computer Science and Engineering, Central South University, P.R. China
csufeng@mail.csu.edu.cn

Jianxin Wang
School of Computer Science and Engineering, Central South University, P.R. China
jxwang@csu.edu.cn

Jinhui Xu
Department of Computer Science and Engineering, State University of New York at Buffalo, USA
jinhui@buffalo.edu

Abstract
In this paper, we study the following pattern search problem: Given a pair of point sets A and B
in fixed dimensional space Rd, with |B| = n, |A| = m and n ≥ m, the pattern search problem is
to find the translations T ’s of A such that each of the identified translations induces a matching
between T (A) and a subset B′ of B with cost no more than some given threshold, where the cost
is defined as the minimum bipartite matching cost of T (A) and B′. We present a novel algorithm
to produce a small set of candidate translations for the pattern search problem. For any B′ ⊆ B

with |B′| = |A|, there exists at least one translation T in the candidate set such that the minimum
bipartite matching cost between T (A) and B′ is no larger than (1 + ε) times the minimum bipartite
matching cost between A and B′ under any translation (i.e., the optimal translational matching
cost). We also show that there exists an alternative solution to this problem, which constructs a
candidate set of size O(n log2 n) in O(n log2 n) time with high probability of success. As a by-product
of our construction, we obtain a weak ε-net for hypercube ranges, which significantly improves the
construction time and the size of the candidate set. Our technique can be applied to a number of
applications, including the translational pattern matching problem.

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of compu-
tation

Keywords and phrases Bipartite matching, Alignment, Discretization, Approximate algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.26

Funding The research of the first and last authors was supported in part by NSF through grant
CCF-1716400. The research of the last author was also supported by NSF through grant IIS-1910492.
The research of the second and third authors was supported in part by NSFC through grants
61872450, 61828205, and 61672536.

1 Introduction

Pattern search/matching is an important problem in computer science and finds applications
in many different domains such as computer vision, pattern recognition, robotics, autonomous
driving, and surveillance. In this paper, we consider a special variant of the problem, where
the objective is to find a small pattern (e.g., the image of a car) from a large environment
(called background; e.g., the image of a road with traffic) which may contain multiple copies

© Ziyun Huang, Qilong Feng, Jianxin Wang, and Jinhui Xu;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zxh201@psu.edu
mailto:csufeng@mail.csu.edu.cn
mailto:jxwang@csu.edu.cn
mailto:jinhui@buffalo.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Small Candidate Set for Translational Pattern Search

of the pattern or its deformations. The problem is often encountered in our daily life. For
example, most of the smart phones have the capability of identifying human faces (or other
types of objects) in their camera softwares. The core problem for such a functionality is
to efficiently find all appearances of a given object from the pictures. The pattern search
problem may also appear in higher (d > 2) dimensional space. One of such examples is the
pattern extraction problem arising in biological image analysis, where the objective is to
identify the 3D spatial positioning patterns of chromosomes [9, 10, 22].

We approach this pattern search problem from a geometric perspective, using a formulation
from [1] with some slight modifications. The pattern is represented by a point set A and the
background by a point set B in Rd space for some fixed d. The sizes of A and B are m and
n, respectively, with n ≥ m (note that n could be significantly larger than m). If there is a
translation T which moves A to a new location T (A) such that the difference between T (A)
and some B′ ⊆ B with |B′| = |A| is minimized, we say that an instance B′ of pattern A is
discovered by T , where the difference of two sets is measured by their bipartite matching
cost (see Section Preliminaries).

The pattern search problem is a natural extension of the pattern matching problem,
whose aim is to find a rigid transformation that minimizes the difference of two given sets A
and B. Extensive research has been done for the pattern matching problem using different
metrics as the measurement for the similarity/distance of two sets [13, 11, 14]. Commonly
used metrics include Euclidean distance in 1-to-1 matching, Hausdorff distance in 1-to-many
or many-to-1 matching, and Earth’s Mover Distance (EMD) in many-to-many matching. An
early result on this problem is the paper [18] which provides an Õ(mn2)-time solution to
the matching problem under translation and Hausdorff distance in R2. A more recent result
is the one in [11] which approximates (with ratio (1 + ε)) the pattern matching problem
under rigid transformations and EMD metric in Rd. The running time of their algorithm is
Õ((mn)2d), which is near the lower bound (i.e., Ω(mnΩ(d)) [5]) of the problem.

For the pattern search problem under translations, there is a number of results [21, 4] that
are closely related to the work in this paper. Most of them use the concept of partial-matching
Voronoi diagram.

For two given point sets A and B, their partial-matching Voronoi diagram (PMVD) is a
partition of the translation space into regions so that each of them consists of translations T
sharing the same locally optimal bipartite matching between T (A) and a subset of B. The
PMVD uses the sum of squared distances as the measurement for the matching cost. Clearly,
such a Voronoi diagram is capable of solving the pattern search/matching problem, as only
one translation from every cell needs to be determined for finding the optimal translational
alignment of A and B. The best known upper bound on the size of PMVD is O(m!mdn2d) [17].
Ben-Avraham et al. [4] constructed a partial-matching Voronoi diagram in R2 of complexity
O(n2m3.5 logmm), and found locally min-cost translations in O(m6n3 logn) time.

In this paper, we develop a novel method for finding a small set T of candidate translations
so that for any instance B′ ⊆ B of A, there is at least one translation T in the candidate
set that matches T (A) and B′ approximately. A subset B′ of B is called an instance of A if
|B′| = |A|. Note that B′ can be any subset of B as long as it has the same size as A and
may have a large difference with A; this is somewhat different from the normal meaning of
instance. We say that a translation T discovers an instance B′ if it minimizes the bipartite
matching cost of T (A) and B′. For any ε > 0, a translation T (1+ ε)-approximately discovers
B′, if the bipartite matching cost between T (A) and B′ is no more than (1 + ε) times the
minimum difference between B′ and A under any translation. Clearly, with such a candidate
set T, we are able to find all instances B′ which are similar to A, where the level of similarity

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:3

is controlled by some threshold on the difference of B′ and the translations of A. Note that
if a value of the threshold is given in advance, it is possible to further reduce the size of
the candidate set by removing (during the execution of our algorithm) those translations
which induce higher matching cost (see the remark in Section 6 for more details). Also, if
B has some exact (or congruent) instances of A, T will contain all translations inducing
zero-difference matchings of A.

The problem of finding the translations that match pattern A to all its exact instances
could be quite challenging, as suggested by the exponential size of PMVD in [21, 4]. However,
we are able to show that if approximation and implicit representation are allowed, the
problem can be solved much more efficiently through identifying a small candidate set of
translations with a (surprisingly) near linear size.

Particularly, we show that it is possible to build a candidate set T with size Od,ε(n logn)
for A and B in O(mn logmn) deterministic time. This bound is asymptotically near optimal,
since it is easy to construct an example that needs O(n) different translations to yield all
perfect matches of a pattern (such an example will be given later). A trade-off between the
running time and the size of T can also be made, which provides a probabilistic algorithm
to build a T with a slightly larger size (i.e., O(n log2 n)) but a better time complexity (i.e.,
O(n log2 n)) which is independent of m. Our construction is based on a weak ε-net technique
and a space discretization technique from [7]. Our approach shows a non-obvious connection
between weak ε-net and the pattern search problem. A fast algorithm is also provided to
build a small-size ε-net for ranges of axis-aligned hypercubes.

In some sense, candidate set T can be viewed as an implicit and approximate representation
of the exponential-size PMVD. Thus, it has the potential to be used in various applications
of PMVD, such as moving object tracking and autonomous driving. Note that in such
applications, all translations in T (rather than those inducing better matchings) are needed.

2 Preliminaries

In this paper, we do not distinguish a point and its corresponding vector in Rd, i.e., a point
is equivalent to a vector that points from the origin to it. In this way, a point in Rd naturally
defines a translation (along the corresponding vector) in Rd. Following the basic vector
arithmetics, operators + and − can be applied to points in Rd.

Given two point sets A1 and A2 of the same size, their bipartite matching is represented
by a bijective mapping φ : A1 → A2. That is, each point a ∈ A1 is matched to a distinct point
φ(a) ∈ A2 and the cost Cφ,A1,A2 of the matching is defined as Cφ,A1,A2 =

∑
a∈A1

‖a− φ(a)‖.
The difference of A1 and A2, denoted by ∆(A1, A2), is then ∆(A1, A2) = minφ Cφ,A1,A2 .

Let A,B ⊂ Rd be the two point sets in the pattern search problem, with |B| = n, |A| = m

and n ≥ m. We label points in A and B, respectively, as A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn}. The reference set P of A and B is defined as follows.

I Definition 1. Let pi,j = bj − ai for any ai ∈ A and bj ∈ B. The reference set P of A and
B is the muti-set that contains all pi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

We use an injective mapping φ : {1, 2, . . . ,m} → {1, 2, . . . , n} to represent a perfect
matching for A (under a certain translation) and a subset of B. φ(i) = j means that ai is
matched to bj . The matching cost Cφ for a matching φ is defined as

∑m
i=1‖ai − bφ(i)‖.

From the definition of P , it is clear that for any ai ∈ A, bj ∈ B and translation
T ∈ Rd, ‖T (ai) − bj‖ = ‖T − pi,j‖. The matching cost Cφ(T) between T (A) and B for
matching φ is then

∑m
i=1‖T − pi,φ(i)‖. In other words, Cφ(T) is the sum of distances from

T to m points in P . For convenience, we let P (φ) = {p1,φ(1), p2,φ(2), . . . , pm,φ(m)}. Thus
Cφ(T) =

∑
p∈P (φ)‖T − p‖.

ISAAC 2019

26:4 Small Candidate Set for Translational Pattern Search

In the rest of the paper, we study all possible matchings between A and B based on the
relationship of T ∈ Rd and P . This means that our algorithms work in the translational
space of P , instead of the original space of A and B.

For any pair of point sets X and Y with the same cardinality, we use ∆(X,Y) to denote
the minimum bipartite matching cost of X and Y . A set B′ ⊆ B is called an instance of A if
|B′| = |A|. For any instance B′, let T be the translation that minimizes ∆(T (A), B′). Then,
we say that T discovers B′, or B′ is discoverable at T . If there is another translation T ′
satisfying the following inequality, ∆(T ′(A), B′) ≤ (1 + ε)∆(T (A), B′), then, we say that B′
is (1 + ε)-approximately discoverable at T ′.

3 Main Results

The main results of this paper are the following theorems which show that for any given
pair of point sets A and B, and any constant ε > 0, it is possible to efficiently construct
a small-size candidate set T of translations in Rd such that any instance B′ ⊆ B of A is
approximately discoverable at some T ∈ T. In other words, T is a small-size candidate set of
translations to find all instances of A approximately.

I Theorem 2. For any pair of point sets A and B in fixed dimensional space Rd with
size m and n (n ≥ m), respectively, and any small constant 0 < ε < 1, it is possible to
construct, deterministically, a candidate set T ⊂ Rd of size O(n logn) in O(mn logmn)
time such that for any given instance B′ ⊆ B of A, there exists a translation T ∈ T that
(1 + ε)-approximately discovers B′.

I Theorem 3. For any pair of point sets A and B in fixed dimensional space Rd with size
m and n (n ≥ m), respectively, and any small constant 0 < ε < 1, it is possible to construct
a candidate set T ⊂ Rd of size O(n log2 n) in O(n log2 n) time, with success probability at
least 1 − 1/n. For any given instance B′ ⊆ B of A, there exists a translation T ∈ T that
(1 + ε)-approximately discovers B′.

With the above theorems, we immediately have the following corollary as their application
to the classical pattern matching problem. (See the appendix for the proof.)

I Corollary 4. It is to possible to generate a set of O(n logn) candidate translations in Rd
in O(mn logmn) time such that one of them induces a (1 + ε)-approximation for the optimal
translational matching between A and B.

Another interesting conclusion from the above discussion is that if there exists an instance
B′ ⊆ B which is identical to A under translation T (i.e., the bipartite matching cost between
B′ and T (A) is 0), then T ∈ T.

The above theorems and corollary suggest an efficient way to identify a small number
of translations that enable us to obtain approximate solutions to the translational pattern
matching problem. The size of the candidate set is near optimal. This can be easily seen
from the following simple example in 1-D: Consider A = {1, 2} and B = {1, 2, . . . , n}; then
all the n translations that align 1 in A to any of the n− 1 points {1, 2, . . . , n− 1} in B are
optimal translations.

After obtaining all the candidate translations, the approximate optimal matching can
then be computed by solving a min-cost partial matching problem for fixed point sets T (A)
and B for every candidate T .

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:5

3.1 Overview of Techniques
Our main idea for constructing a small candidate set is via space discretization. We are able
to prove a locality property for the pattern search problem: if the distance between two
translations T1 and T2 (viewed as points in Rd) is close compared to their closest distance to
any point in the reference set P , then for any instance B′ ⊆ B, ∆(T1(A), B′) and ∆(T2(A), B′)
are also close. This suggests that we can decompose Rd into “small” regions, so that the
every region has a small diameter, comparing to its distance to P . For any B′ ⊆ B, let TO be
the translation that discovers B′, and TO lies in some “small” region C. Then, any T ′ ∈ C
approximately discovers B′. This means that, if we choose one arbitrary point from each
“small” region to form the candidate set T, it is guaranteed that any instance B′ will be
approximately discoverable by some translation in T. The details will be shown in Section 4.

However, making all regions of the entire space “small” seems to be challenging, if not
impossible. Existing space discretization techniques, such as [7, 3, 15], are only able to ensure
that regions distant from the points in P are “small”. For regions close to points in P (called
“close” regions), new techniques are needed to select their candidate translations. In Section
5, we discuss how to choose translations from “close” regions so that every instance B′ whose
corresponding optimal translation falls in some “close” region can also be approximately
discoverable.

In Section 4.4, we also describe how to use weak ε-net to “sketch” P (with size mn) using
a much smaller set Q of size O(n). This will allow us to significantly reduce the size of
discretization (and thus the size of the candidate set) from Õ(mn) to Õ(n), which is near
optimal. We are able to show that such a sketching still preserves the locality property of
the pattern search problem.

4 Locality Based Discretization for Pattern Search

In this section, we present a discretization approach for the pattern search problem, based
on the locality property of the problem.

4.1 Locality of Pattern Search
In the context of pattern search, locality refers to the following observation: for any instance
B′ ⊆ B and two translations T1 and T2, if T1 and T2 are close to each other, their induced
minimum bipartite matching costs between the translations of A and B′ are also close. Let
∆(X,Y) denote the minimum bipartite matching cost between two point sets X and Y . The
following lemma shows the locality property with respect to the distance between translations
and a point in the reference set P . (See Appendix for the proof.)

I Lemma 5. Let T1 and T2 be two translations in Rd, and p ∈ P be the nearest neighbor
of T1 in the reference set P . If ‖T1 − T2‖ ≤ ε‖p − T1‖ for some constant 0 < ε < 1, then
|∆(T1(A), B′)−∆(T2(A), B′)| ≤ ε∆(T1(A), B′) for any instance B′ ⊆ B.

The above locality property suggests the following discretization approach to find a
candidate set for the pattern search problem. The idea is to decompose Rd into a number of
“small” regions. Each region C is “small” enough in the sense that the minimum distance r
between C and the points in P is large, comparing to the diameter D(C) of C, i.e., D(C) ≤ εr
for some constant 0 < ε < 1. With such a discretization, we may then simply choose one
arbitrary translation from each region to form the candidate set T. To see that this is indeed
the desired candidate set, consider any instance B′ ⊆ B. Let T be the translation that
discovers B′, C ′ be the region containing T , and TC ∈ T be the translation chosen from C.
Then, by Lemma 5, we know that B′ is (1 + ε)-approximately discoverable at TC .

ISAAC 2019

26:6 Small Candidate Set for Translational Pattern Search

Figure 1 Illustrative figures for “small” and “close” regions. Left Figure: If every region needs
to be “small”, then an infinite number of regions will be generated around each point in P . Right
Figure: Possible “close” regions to prevent from yielding an infinite number of “small” regions.

4.2 Space Discretization and Close Regions
Unfortunately, an exact implementation of the above space discretization is not possible.
This is because the size of some regions can be infinitely small if the distance of the region to
a point in P is small enough. This means that an infinite number of regions can be generated
around every point in P (see Figure 1). To overcome this difficulty, a possible way is to
utilize some of the known space discretization techniques, such as [7, 3, 15]. However, a
common issue of such techniques is that only part of the resulting regions can be viewed as
“small” (i.e., D ≤ εr, where D is the diameter of the region and r is the minimum distance
between the a point in P and the region). Such regions are distant from points in P . All
other regions are in close proximity to points in P , and cannot be viewed as “small”, even
though their diameters might be small. We call such regions as “close” regions.

Clearly, for “small” regions, it will be sufficient (by Lemma 5) to choose one point
arbitrarily from each of them and include it into the candidate set T. The main issue is,
thus, how to select candidate translations from the “close” regions. We will discuss our ideas
on close regions in next section.

In this paper, we use the technique in [7] for space discretization. The main reason is
that using this technique, we have some good geometric properties on close regions. This
will help us ensure the correctness of our proposed approach and simplify the analysis.

For self completeness, below we summarize the space discretization technique in [7]. The
main technique in [7] is an algorithm AIDecomposition(P, β, γ) , where P is a point set in Rd
and 0 < β, γ < 1 are two small constants (to be determined in later analysis). The following
lemma is the main result of the algorithm.

I Lemma 6. [7] AIDecomposition(P, β, γ) generates a partition of Rd in Od,β,γ(|P | log|P |)
time, where each region C of the partition satisfies one of the following conditions.
1. C is associated with a subset V of P and a point v ∈ V , such that

a. The diameter D(V) of V is no larger than βr, where r is the closest distance between
a point in C and a point in V .

b. ‖v − u‖ ≤ γ‖v′ − u‖ and D(C) ≤ β‖v′ − u‖, for any point u ∈ C and any point
v′ ∈ P \ V

2. D(C) ≤ βr, where r is the closest distance between a point in C and a point in P .

The regions that satisfy condition 1 are the close regions in our previous discussion,
and the regions that satisfy condition 2 correspond to the small regions. Note that for a
close region C generated by AIDecomposition, it is close to the associated point set V ⊂ P ,

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:7

comparing to points in P \ V , where the closeness is controlled by the parameter γ. There
are also some other interesting properties of close regions generated by AIDecomposition
shown in Lemma 6. These properties will prove to be useful in later analysis.

4.3 Reducing the Number of Regions
If we directly apply the above AIDecomposition technique or any other space discretization
technique (such as [3, 15]) to the reference set P , at least Ω(mn) regions will be generated,
since |P | = mn. This results in a candidate set of size Ω(mn), which could be significantly
larger than O(n), i.e., the maximum number of possible translations that could yield a perfect
matching for T (A) and B. Thus, it is tempting to ask whether it is possible to construct a
discretization with size only near O(n).

A natural approach for size reduction is to use a smaller set Q to “sketch” P , and build a
discretization for Q, instead of P . Let ξ > 1 and µ > 0 be some given constants. We require
that Q be (ξ, µ)-dense for P , defined as follows.

I Definition 7. A point set Q ⊂ Rd is called (ξ, µ)-dense for P , if for any point T ∈ Rd, it
satisfies µ‖pξ − T ‖ ≥ ‖q − T ‖, where pξ is the m/ξ-th closest point in P to T , and q ∈ Q is
the nearest neighbor of T in Q.

In other words, points in Q are “dense” enough, so that for any T ∈ Rd, it is possible to
find a point q ∈ Q that is closer to, or not much farther away from T than pξ. Using such a
formulation for “dense” allows us to use ‖q − T ‖ to effectively lower bound ∆(T (A), B′) for
any B′. Let φ be the matching realizing the minimum cost bipartite matching between T (A)
and B′. Then, we have

‖q−T ‖ ≤ µ‖pξ−T ‖ ≤
∑

p∈P (φ)

µ‖p−T ‖/((1− 1/ξ)m) = µ∆(T (A), B′)/((1− 1/ξ)m). (1)

Using an argument similar to the one in Lemma 5, we have the following improved version
of locality property.

I Lemma 8. Let T1 and T2 be two translations in Rd, and p ∈ Q be the nearest neighbor of T1
in Q. If ‖T1−T2‖ ≤ β‖p−T1‖ for constant 0 < β < 1, then |∆(T1(A), B′)−∆(T2(A), B′)| ≤
βµ(1− 1/ξ)−1∆(T1(A), B′) for any instance B′ ⊆ B.

The above lemma enables us to use Q for the space discretization. More specifically, we
run AIDecomposition(Q, β, γ) on an (ξ, µ)-dense Q (with β, ξ, µ and γ to be determined
later). This yields a near linear size (in terms of the size of Q) discretization. From previous
discussion, we know that for any instance B′ ⊆ B, if the translation that discovers B′ lies
in a small region (note that since the discretization is based on Q instead of P , “small
region” now means that their diameters are small compared to the distances to their nearest
neighbors in Q), then any translation in the small region will (1 + ε)-approximately discover
B′, if parameters β, ξ, µ and γ are properly chosen according to the desired approximate
ratio ε. A formal argument will be provided later when analyzing the correctness of our
algorithm. The remaining main challenge is then to deal with the case that the translation
discovering B′ lies in a close region. This will be covered in the next section.

4.4 Finding (ξ, µ)-dense Q for P
To conclude this section, we briefly describe how to find a (ξ, µ)-dense set Q for the discre-
tization.

ISAAC 2019

26:8 Small Candidate Set for Translational Pattern Search

A set Q that is (ξ, µ)-dense can actually be found by constructing a weak ε-net of
P [16]. ε-net is an important concept in combinatorial and computational geometry, and has
been extensively studied in the past. For our problem, we use weak ε-net for axis-aligned
hypercubes (i.e., hyper-boxes with equal edge length in every direction). Below is the
definition.

I Definition 9. Let P be any point set in Rd, and ε be any small constant between 0 and 1.
A point set Q ⊂ Rd is called a weak ε-net of P for axis-aligned hypercubes, if any axis-aligned
hypercube G containing ε|P | or more points in P also contains at least one point in Q.

Note that ε-net is a much more general concept than the above definition. In this
paper, we only consider weak ε-net for axis-aligned hypercubes. For convenience, we will use
thereafter the term “ε-net” without specifying “weak” and “axis-aligned hypercubes”. For
any constant c > 1, it is easy to see that a 1/cn-net Q of P is (c,

√
d)-dense.

A small-size ε-net for the reference set P can be built efficiently. (We leave the proofs of
the following lemmas to the end of the paper.)

I Lemma 10. For any point multi-set P ⊂ Rd with size mn and any constant c > 0, a
1/cn-net of P with size Od(n) can be generated in Od(nm lognm) time.

I Lemma 11. A 1/cn-net of the reference set P with size Od(n logn) can be generated in
Od(n logn) time for any constant c > 0 with probability at leat 1− 1/n.

5 Handling Close Regions

In last section, we discuss how to use (ξ, µ)-dense Q to obtain a space discretization and how
to select translations from small regions. In this section, we show how to pick translations
from close regions (i.e. regions that satisfy condition 1 in Lemma 6) so that they will be
good approximations for all those translations that fall in close regions and discover some
instances of B.

Below, we assume that γ, β, µ and ξ are chosen such that γ < (16
√
d+ 1)−1, 4

√
dβ < 1

and ξ = 12d. Let B′ ⊆ B be an instance of A and TO be the translation that discovers B′
and lies in some close region C. Denote by V ⊂ Q and v ∈ V , respectively, the subset of
points in Q and its representative associated with C, as indicated in condition 1 of Lemma
6. Let φO be the matching between TO(A) and B′ that realizes the minimum bipartite
matching cost. Let Gv be the smallest axis-aligned box containing V . We consider 2 cases:
|Gv ∩ P (φO)| ≥ 2m/3 or |Gv ∩ P (φO)| < 2m/3.

I Lemma 12. If |Gv ∩ P (φO)| ≥ 2m/3, TO = v.

Proof. Assume by contradiction that TO 6= v. For any matching φ and any translation T ,
we use notation Cφ(T) to denote the matching cost between T (A) and B′ under φ. In the
following, we analyze how the value of CφO

(T) changes, where variable T is initially TO,
and then changed to v. Note that CφO

(T) =
∑
p∈P (φO)‖p− T ‖ =

∑
p∈Gv∩P (φO)‖p− T ‖+∑

p∈P (φO)\Gv
‖p− T ‖.

To estimate the change of
∑
p∈Gv∩P (φO)‖p− T ‖, we note that for any p ∈ Gv ∩ P (φO),

‖p − v‖ ≤
√
dD(V) ≤

√
dβ‖TO − v‖, where the last inequality is from Condition 1 of

Lemma 6 and the fact that TO is in C. From triangle inequality, we have ‖p − T0‖ ≥
‖v−T0‖−‖v−p‖ ≥ (1−

√
dβ)‖v−T0‖. Thus, we get ‖p−T0‖−‖p−v‖ ≥ (1−2

√
dβ)‖v−T0‖.

This means that moving T from TO to v reduces the value of
∑
p∈Gv∩P (φO)‖p− T ‖ by at

least (2m/3)(1− 2
√
dβ)‖v − TO‖.

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:9

Gv

G1

G2

G3

G4

Figure 2 Illustration of the arrangement of {G1, G2, . . . , G2d} and Gv.

For the term of
∑
p∈P (φO)\Gv

‖p − T ‖, we know (from triangle inequality and the as-
sumption that |P (φO) \Gv| ≤ m/3) that its change is smaller than (m/3)‖v − TO‖. Since
1− 2

√
dβ > 1/2 (by the assumption that 4

√
dβ < 1), we get (2m/3)(1− 2

√
dβ)‖v − TO‖ >

(m/3)‖v − TO‖ when TO 6= v. Therefore, we have CφO
(v) < CφO

(TO) (from previous discus-
sion). However, this results in a contradiction, since from definition, TO discovers B′ and
thus should have the minimum matching cost between A and B′ under any translation.

Thus, the lemma follows. J

For the case |Gv ∩ P (φO)| < 2m/3, we have the following lemma.

I Lemma 13. If |Gv ∩ P (φO)| < 2m/3, then for any T ′ ∈ C, ∆(T ′(A), B′) ≤ (1 +
48β
√
d)∆(TO(A), B′).

Proof. For any matching φ and any translation T , we use notation Cφ(T) to denote the
matching cost between T (A) and B′ under φ. We prove this lemma by showing that
CφO

(T ′) ≤ (1 + 48β
√
d)CφO

(TO); the lemma then follows, since CφO
(T ′) ≥ ∆(T ′(A), B′).

Let P ′ be the closest 5m/6 points to TO in P (φO). Since |Gv ∩ P (φO)| < 2m/3, we have
|P ′ \Gv| ≥ m/6.

For analysis purpose, imagine that we “attach” 2d axis-aligned boxes {G1, G2, . . . , G2d}
to each face of Gv, with centers aligned in Gv (see Figure 2 for an example in 2D), and
each box has equal edge length r, where r is the smallest positive number such that P ′ is
contained in the union of {G1, G2, . . . , G2d} and Gv. Let F = Gv ∪G1 ∪G2 . . . ∪G2d.

By the fact that |P ′ \Gv| ≥ m/6, we know that one box of {G1, G2, . . . , G2d} contains
more than m/12d points in P . Since ξ = 12d and Q is a 1/nξ-net of P , we also know that
the box contains a point qt from Q. Thus, F contains a point qt in Q \ V .

From Lemma 6, we have ‖TO − v‖ ≤ γ‖TO − qt‖. Thus,

‖v − qt‖ ≥ (1/γ − 1)‖TO − v‖. (2)

Let Lv denote the edge length of Gv. Then, we have Lv ≤ D(V) ≤ β‖TO − v‖. Since
β < 1/4

√
d < (1/4

√
d)(1/γ − 1), from (2) we get

Lv ≤ ‖v − qt‖/4
√
d. (3)

ISAAC 2019

26:10 Small Candidate Set for Translational Pattern Search

Let L denote the length of F : L = 2r + Lv. L is clearly no smaller than ‖v − qt‖/
√
d in

order to contain both v and qt. From (3), we have Lv ≤ r and r ≥ 3‖v − qt‖/8
√
d. By (2)

and the assumption that 1/γ − 1 ≥ 16
√
d, we get

r ≥ 3(1/γ − 1)‖TO − v‖/8
√
d ≥ 6‖TO − v‖. (4)

Let Ov denote the center of Gv. Then, ‖Ov − v‖ ≤
√
dLv ≤

√
dD(V) ≤

√
dβ‖TO − v‖ ≤

‖TO − v‖/4. Thus, from triangle inequality we have

‖Ov − TO‖ ≤ 5‖TO − v‖/4. (5)

Combining (4) and (5) gives us ‖Ov − TO‖ ≤ 5r/24.
From the definition of r, we know that there must exist a point p′ ∈ P ′ on the boundary

of F . From the arrangement of {G1, G2, . . . , G2d} and Gv, we have ‖Ov − p′‖ ≥ r/2. Thus,
‖TO − p′‖ ≥ r/2− 5r/24 > r/4 (by triangle inequality).

Also, from the fact that Lv ≤ r, we know that F can be covered by a box centered at Ov
and with edge length 3r. Since qt ∈ F , we have ‖Ov − qt‖ ≤ 3

√
dr/2. Combining this with

the fact that ‖Ov − TO‖ ≤ 5r/24, we get ‖TO − qt‖ ≤ 3
√
dr/2 + 5r/24 ≤ 2

√
dr. Thus, we

have ‖TO − qt‖/‖TO − p′‖ ≤ 8
√
d.

In summary, from the above discussion and Lemma 6, we have the following.

1. There exists qt ∈ Q such that the following inequality holds ‖TO − qt‖/‖TO − p′‖ ≤ 8
√
d,

where p′ ∈ P (φO) satisfies the condition that less than 5m/6 points in P (φO) are closer
to TO than it.

2. Inequality ‖TO − T ′‖ ≤ β‖TO − qt‖ holds for any T ′ ∈ C.

Following a similar argument given in Lemma 5, we can show that |CφO
(TO)−CφO

(T ′)| ≤
48β
√
dCφO

(TO). This concludes the proof. J

Now for any ε > 0, if we set 48β
√
d ≤ ε, then by Lemmas 12 and 13, we know that

if TO lies in a close region C generated by AIDecomposition, either v discovers B′ (if
|Gv ∩ P (φO)| ≥ 2m/3), or an arbitrary T ′ ∈ C (1 + ε)-approximately discovers B′ (if
|Gv ∩ P (φO)| < m/3). Therefore, we may put v and an arbitrary point in C into the
candidate set. This ensures that B′ is (1 + ε)-approximately discoverable by at least one of
these two points when TO lies in C.

6 The Algorithm and Analysis

In this section, we summarize the discussion so far and provide the algorithm to generate the
candidate set of translations. The following Algorithm 1 shows in details how to generate
the candidate set T.

Depending on the method chosen to construct the ε-net in Step 3 (Lemma 10 or Lemma
11), the size of Q is O(n) or O(n logn), the size of the discretization (in terms of number of
regions) generated in step 4 is O(n logn) or O(n log2 n), and the total running time of the
algorithm is O(mn logmn) or O(n log2 n). No matter which algorithm is chosen to construct
T, we have the following lemma.

I Lemma 14. For any instance B′ ∈ B of A, there exists at least one translation T ∈ T,
such that T (1 + ε)-approximately discovers B′.

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:11

Algorithm 1 Generate-Candidate-Set.

Input: Point sets A and B of Rd with |A| ≤ |B|. Approximate factor 0 < ε < 1.
Output: A set T of translations in Rd, such that each instance B′ of A is (1+ε)-approximately
discoverable.
1: Initialize T to be ∅.
2: Initialize constants β, γ, ξ, such that: ξ = 12d, 48β

√
d ≤ ε, γ < (16

√
d+ 1)−1, 4

√
dβ < 1

and
√
dβ(1− 1/ξ)−1 ≤ ε.

3: Build a 1/ξn-net Q for P , where P is the reference set.
4: Run AIDecomposition(Q, β, γ) to generate a discretization which decomposes Rd into

close regions and small regions.
5: For each small region C, pick an arbitrary point from C and put it into T.
6: For each close region C, suppose it is associated with point set V and v ∈ V . Pick an

arbitrary point p in C. Put both v and p into T.
7: Output T as the result.

Proof. Let TO be the translation that discovers B′.
If TO lies in a small region C, let TC ∈ T be the point chosen from C in step 5 of

Algorithm 1. Let q be the nearest neighbor of TO in Q. By Lemma 6, we know that
‖TC − TO‖ ≤ β‖q − TO‖. By Lemma 8 and the fact that Q is (ξ,

√
d)-dense, we have

∆(TC(A), B′) ≤ (1 +
√
dβ(1− ξ)−1)∆(TO(A), B′) ≤ (1 + ε)∆(TO(A), B′) (The last inequality

comes from choice of parameters in Algorithm 1). Thus, we know that B′ is (1 + ε)-
approximately discoverable at TC ∈ T.

If TO lies in a close region C, let v ∈ V ⊂ Q be the representative point associated with
C as stated in Lemma 6. Let TC ∈ T be the point chosen from C in step 6 of Algorithm
1. Then, by Lemmas 12 and 13, we know that either v discovers B′, or ∆(TC(A), B′) ≤
(1 + 48β

√
d)∆(TO(A), B′) ≤ (1 + ε)∆(TO(A), B′). This means that either v or TC (1 + ε)-

approximately discovers B′.
This completes the proof. J

From the above analysis, we immediately have our main results, Theorems 2 and 3.

7 Constructing ε-net for Hypercubes for P

To conclude this paper, we introduce efficient algorithms to construct a weak ε-net for the
reference set P with axis-aligned hypercubic ranges. From the well known ε-net theorem,
we know that a random sample of size O((d′/ε) log(d′/ε) + logn/ε) from P , where d′ is the
VC-dimension of the range space defined by hypercubes in Rd (it is known that d′ ≤ 2d), is an
ε-net with probability at least 1− 1/n. There are several previous results on ε-net for simple
shapes like axis aligned rectangles, halfspace and disks in 2 or 3 dimension [20, 8, 2], which
provide methods to build smaller size ε-nets. [19] provides a mathematical construction of
ε-nets for axis-aligned hypercubes of size O(1/ε), which is optimal in size, although its efficient
(i.e. in near O(|P |) time) algorithmic implementation is unknown. [12] introduces a method
to construct ε-nets for axis-aligned rectangles in any fixed dimension, which can be applied
to generate the (ξ, µ)-dense subset Q. The running time of this method is O(|P | logd|P |).

We show that if we further restrict the shapes to hypercubes, we are able to obtain an
optimal size (i.e. O(1/ε)) weak ε-net more efficiently. In the following we show how to
deterministically construct a linear size 1/n-net Q for any multi-set P of size O(mn), i.e.,
a point set Q of size O(n) such that if an axis-aligned hypercube G contains m points in

ISAAC 2019

26:12 Small Candidate Set for Translational Pattern Search

P , it then contains at least one point in Q. The time of the construction is O(nm lognm)
(Recall that the size of P is mn). Clearly, the same space and time complexity bounds for a
1/cn-net Q for any constant c are also achievable, thus proving Lemma 10. We also note that
by applying the ε-net theorem, it is possible to construct such a Q of larger size (O(n logn)),
but in shorter (O(n logn)) time, with high probability. This allows us to make a trade-off
between the size of Q and the time complexity of the construction. We leave the discussion
of the alternative construction to the end of section, and focus on the deterministic linear
size ε-net construction in the following.

The construction is based on the quad-tree decomposition technique, which recursively
partitions the regions inside the quad-tree boxes, and uses a 2d-way tree structure to represent
the partition. To build a quad-tree for P , we first start with a bounding box G which contains
all points in P and is the root of the quad-tree. We then decompose G into 2d smaller boxes
with equal size, with each of them being a child of G. For each child box, we recursively
perform the same decomposition. The recursion stops when a box contains no more than 1
point in P . The quad tree decomposition for P can be performed within O(|P | log|P |) time
by maintaining a sorted list of P for each of the d axes [6], and compressing the tree properly
to handle empty boxes during the decomposition.

Figure 3 below shows and example of quad-tree decomposition.

b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b
b

Figure 3 Example of quad-tree decomposition.

A quad-tree decomposition may produce a large number of empty boxes, when a large
number of points are aggregated in some region (see left of Figure 4 for an example). To
resolve this issue, when decomposing a box G in the quad-tree decomposition, we first
perform a quad-tree compression, which directly computes the smallest quad-tree box GC
that contains all the points in P ∩G (see the right side of Figure 4). Then the quad-tree
decomposition can continue on GC . This will avoid generating many unnecessary empty
boxes. Note that this compression step is not required if points are not concentrated, i.e., if
decomposing G yields at least 2 nonempty boxes (i.e., containing points in P). In this case,
we decompose G in the standard fashion.

With this compression step, the running time of the quad-tree decomposition is still
O(|P | log|P |) [6].

Algorithm 2 and Algorithm 3 describe our quad-tree decomposition-based method for
producing a weak ε-net Q. The decomposition scheme is a modification of the standard
quad-tree decomposition. The main routine Algorithm 2 outputs the ε-net Q, together with
a set U of boxes which is for analysis purpose. Algorithm 3 is the body for the recursion.

The Algorithm 2 and 3 are essentially trimmed versions of the standard quad-tree
decomposition (by not decomposing some of the boxes in the process). Given a box G

that contains multiple points in P , instead of simply decomposing it into 2d sub-boxes and
recursively building the quad-tree on them (which could generate boxes with few points in
it and thus results in a quad-tree with high complexity), Algorithm 3 iteratively performs

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:13

bb b
b
b
b

G

bb b
b
b
b

G

Gc

Figure 4 Example of quad-tree compression. It is possible that points in a box are aggregated at
some location. Directly applying the quad-tree decomposition will generate many empty boxes. We
can directly compute a box to contain all these points without really performing the decomposition.

Algorithm 2 Construct-ε-Net.

Input: A set P ⊂ Rd
Output: An ε-net Q. A set U of Rd boxes.
1: Initialize Q,U as empty sets. Initialize G as a box that contains P .
2: Start recursion by running Decompose-Single-Box subroutine on G

the quad-tree decomposition on only one sub-box which contains the maximum number of
points in P , and tries to identify a box G′ with the following properties. When the iteration
(from step 4 to step 8) stops (at step 4 or 7), G′ satisfies the following 2 conditions
1. There are less than m/2d+1 points in P ∩G \G′.
2. (a) All points in P ∩G′ have the same location, OR (b) There are at least m/2d+1 points

in P ∩G \G′′, where G′′ is the child box of G′ with the most number of points in P .
Only in case 2(b) we perform the recursion on the boxes generated by the decomposition of
G′. See Figure 5 for illustration. In addition, we do not decompose G when there are only a
small number (≤ m/2d+1) of points in it. Since the algorithm is a trimmed version of the
standard quad-tree decomposition, the running time is thus O(|P | log|P |) = O(mn logmn).

b

b

b

b

b
b

b b
b
b
b

b

b

b

b

b
b

b
b b b

b

G
′

G
′′

Figure 5 To achieve better performance, Algorithm 3 uses an iteration to find out G′ with the
desired properties. Recursion continues only (on sub-boxes of G′) if P ∩G \G′′ contains an enough
number of points, where G′′ is the quad-tree child box of G′ with the most number of points in P .
This can greatly reduce the number of boxes generated.

It is quite clear that the size of Q is O(n). The Decompose-Single-Box procedure stops
immediately once the condition |G∩P | ≤ m/2d+1 is satisfied. The procedure also makes sure
that for any G′′ of the 2d child boxes generated for G (if the decomposition and recursion
occur), inequality |G \G′′| ≥ m/2d+1 holds. This implies that the size of the recursion tree,
and thus the size of U and Q, is O(mn/(m/2d+1)) = O(n).

ISAAC 2019

26:14 Small Candidate Set for Translational Pattern Search

Algorithm 3 Decompose-Single-Box.
Input: A box G
Output: A sub-quad tree with G as the root.
1: Add G into U . Add all the vertices of G to Q.
2: If G contains ≤ m/2d+1 points in P , return.
3: Initialize variable G′ to be the box G.
4: If all points in P that lie in G′ coincide at point p. Put p and all vertices of G′ into Q.

Put G′ into U . Return.
5: Update variable G′ to be the resulting box from the quad-tree compression of the current
G′, if necessary (See Appendix A.3).

6: Decompose G′ equally into 2d sub-boxes. Let G′′ be the one that contains the most
number of points in P .

7: If G \G′′ contains ≥ m/2d+1 points in P , recursively call Decompose-Single-Box on the
2d sub-boxes generated in the above step. Then return.

8: Otherwise, update variable G′ to be G′′. Go to step 4.

I Lemma 15. Set Q generated by the above algorithm is a weak 1/n-net for P , i.e., if any
axis-aligned hypercube Gm contains at least m points in P , then Gm contains at least 1 point
in Q.

Proof. Let Um denote the subset Um ⊆ U of hyperboxes G′ in U such that the interior of
Gm intersects G′.

For each coordinate axis e of R, let F (e) be the set of faces f of boxes in Um, such that f
is perpendicular to e and intersects the interior of Gm. Let the cutting number x(e) of e be
the possible number of distinct coordinate values of faces in F (e) in the e axis.(See Figure 6
for an example.) We consider two cases.

X

Y

Gm

b b b b
x1 x2 x3 x4

Figure 6 Example of cutting number for X axis in an configuration of interior Gm. In this
example there are 3 boxes of Um intersecting Gm. There are 4 different x values for faces of these
boxes that lies in Gm and are perpendicular to the X axis. Thus the cutting number for X axis in
this example is 4.

Case 1. x(e) ≤ 1 for any axis e. Then boxes in U partitions Gm into no more than 2d
regions, since in every direction Gm is “cut” by boxes in U at most once. Since Gm
contains at least m points in P , one of the regions will contain strictly more than m/2d
points. However, from Algorithm 3, we know that all of the regions formed by U can

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:15

only have no more than m/2d+1 points, with the exception that for some regions, all its
contained points in P have the same location p. Thus, Gm intersects such a region and
contains p. Since p ∈ Q from Algorithm 3 (see Step 4), this case is proved.

Case 2. x(e) ≥ 2 for some axis e. Since the quad-tree decomposition always divides boxes
equally, the following fact is clear.

Fact. Let f1, f2 be the faces of boxes G1 and G2 in U , respectively, such that they are facing
the same direction e. If the distance between f1 and f2 in the direction of e is l > 0, one of
G1 and G2 has edge length ≤ l.

If x(e) ≥ 2, then there exist faces f1 and f2 facing the direction of e and intersect the
interior of Gm. If these 2 faces belongs to the same box Gf ∈ U , then Gf is smaller than
Gm in size. Thus, one of the vertices pf of Gf must lie in Gm. From Algorithm 3, we know
that pf ∈ Q. Therefore, Gm ∩ Q 6= ∅. If f1 and f2 belong to different boxes, say G1 and
G2 in U , from the above fact, we know that the edge length of one of the boxes will be no
larger than the distance between f1 and f2 in the direction of e. Since the box size is smaller
than Gm, one of its vertices is in Gm. This again leads to the fact that Gm ∩Q 6= ∅. This
completes the proof. J

Alternative Construction Using ε-net Theorem. Recall that the ε-net Theorem allows us
to build a 1/cn-net of P with size O(n logn) by using O(n logn) samples, where c > 0 is
a constant. Also note that, it is not necessary to explicitly compute P (whose size is mn)
before conducting the sampling. From the definition of P (in Section 2, Definition 1), a
random sample from P can be obtained by first sampling a from A, b from B, and then
computing b− a as the sample. This allows us to build a 1/cn-net of P in O(n logn) time.

References
1 Helmut Alt and Leonidas J Guibas. Discrete geometric shapes: Matching, interpolation, and

approximation. In Handbook of computational geometry, pages 121–153. Elsevier, 2000.
2 Boris Aronov, Esther Ezra, and Micha Sharir. Small-Size \eps-Nets for Axis-Parallel Rectangles

and Boxes. SIAM Journal on Computing, 39(7):3248–3282, 2010.
3 Sunil Arya, Theocharis Malamatos, and David M Mount. Space-time tradeoffs for approximate

nearest neighbor searching. Journal of the ACM (JACM), 57(1):1, 2009.
4 Rinat Ben-Avraham, Matthias Henze, Rafel Jaume, Balázs Keszegh, Orit E Raz, Micha Sharir,

and Igor Tubis. Minimum partial-matching and Hausdorff RMS-distance under translation:
combinatorics and algorithms. In European Symposium on Algorithms, pages 100–111. Springer,
2014.

5 Sergio Cabello, Panos Giannopoulos, and Christian Knauer. On the parameterized complexity
of d-dimensional point set pattern matching. In International Workshop on Parameterized
and Exact Computation, pages 175–183. Springer, 2006.

6 Paul B Callahan and S Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42(1):67–90, 1995.

7 Danny Z Chen, Ziyun Huang, Yangwei Liu, and Jinhui Xu. On Clustering Induced Voronoi
Diagrams. SIAM Journal on Computing, 46(6):1679–1711, 2017.

8 Kenneth L Clarkson and Kasturi Varadarajan. Improved approximation algorithms for
geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007.

9 Hu Ding, Ronald Berezney, and Jinhui Xu. k-prototype learning for 3d rigid structures. In
Advances in Neural Information Processing Systems, pages 2589–2597, 2013.

10 Hu Ding, Branislav Stojkovic, Ronald Berezney, and Jinhui Xu. Gauging association patterns
of chromosome territories via chromatic median. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1296–1303, 2013.

ISAAC 2019

26:16 Small Candidate Set for Translational Pattern Search

11 Hu Ding and Jinhui Xu. FPTAS for minimizing earth mover’s distance under rigid transform-
ations. In European Symposium on Algorithms, pages 397–408. Springer, 2013.

12 Esther Ezra. A note about weak ε-nets for axis-parallel boxes in d-space. Information
Processing Letters, 110(18-19):835–840, 2010.

13 Martin Gavrilov, Piotr Indyk, Rajeev Motwani, and Suresh Venkatasubramanian. Combin-
atorial and experimental methods for approximate point pattern matching. Algorithmica,
38(1):59–90, 2004.

14 Michael T Goodrich, Joseph SB Mitchell, and Mark W Orletsky. Practical methods for approx-
imate geometric pattern matching under rigid motions:(preliminary version). In Proceedings
of the tenth annual symposium on Computational geometry, pages 103–112. ACM, 1994.

15 Sariel Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science, pages 94–103. IEEE, 2001.

16 David Haussler and Emo Welzl. ε-nets and simplex range queries. Discrete & Computational
Geometry, 2(2):127–151, 1987.

17 Matthias Henze, Rafel Jaume, and Balázs Keszegh. On the complexity of the partial least-
squares matching Voronoi diagram. In Proc. 29th European Workshop on Computational
Geometry, pages 193–196, 2013.

18 Daniel P Huttenlocher, Klara Kedem, and Micha Sharir. The upper envelope of Voronoi
surfaces and its applications. Discrete & Computational Geometry, 9(3):267–291, 1993.

19 Janardhan Kulkarni and Sathish Govindarajan. New ε-net constructions. In Proceedings of
the 22nd Annual Canadian Conference on Computational Geometry, Winnipeg, Manitoba,
Canada, pages 159–162. Citeseer, 2010.

20 Jiří Matoušek, Raimund Seidel, and Emo Welzl. How to net a lot with little: Small ε-nets
for disks and halfspaces. In Proceedings of the sixth annual symposium on Computational
geometry, pages 16–22. ACM, 1990.

21 Günter Rote. Partial least-squares point matching under translations. In Proc. 26th European
Workshop on Computational Geometry, pages 249–251. Citeseer, 2010.

22 Nitasha Sehgal, Andrew J Fritz, Jaromira Vecerova, Hu Ding, Zihe Chen, Branislav Sto-
jkovic, Sambit Bhattacharya, Jinhui Xu, and Ronald Berezney. Large-scale probabilistic 3D
organization of human chromosome territories. Human molecular genetics, 25(3):419–436,
2015.

A Appendix

A.1 Proof of Corollary 4

Proof. Suppose that translation T and B′ ⊆ B realize the minimum cost bipartite matching
with A. Let COPT be the minimum bipartite matching cost of B′ and T (A). COPT is then
the optimal minimum bipartite matching cost between A and B under translations. Since
B′ is a COPT -instance of A, there exists T ′ ∈ T such that the matching cost between B′
and T ′(A) is no larger than (1 + ε)COPT . Thus, T ′ induces a (1 + ε)-approximation for the
optimal translational matching between A and B. J

A.2 Proof of Lemma 5

Proof. Let φ1 (or φ2) be the corresponding bipartite matching which gives rise to the
minimum cost between B′ and T1(A) (or T2(A)). Then, ∆(T1(A), B′) =

∑
q∈P (φ1)‖q − T1‖,

and ∆(T2(A), B′) =
∑
q∈P (φ2)‖q − T2‖. Note that

Z. Huang, Q. Feng, J. Wang, and J. Xu 26:17

∑
q∈P (φ1)

‖q − T2‖ =
∑

q∈P (φ1)

‖q − T1 − T2 + T1‖

≤
∑

q∈P (φ1)

‖T2 − T1‖+
∑

q∈P (φ1)

‖q − T1‖

= m‖T2 − T1‖+ ∆(T1(A), B′)
≤ mε‖p− T1‖+ ∆(T1(A), B′)
≤ ε∆(T1(A), B′) + ∆(T1(A), B′)
= (1 + ε)∆(T1(A), B′),

where the first inquality comes from the triangle inequality, and the third inequality comes
from the fact that p is the nearest neighbor of T1 in P , which implies that m‖p − T1‖ ≤∑
q∈P (φ1)‖q − T1‖ = ∆(T1(A), B′). From the assumption that φ2 is the minimum cost

bipartite matching between T2(A) and B′, we know that the value
∑
q∈P (φ1)‖q − T2‖, which

is the matching cost between T2(A) and B′ under φ1, must be no smaller than ∆(T2(A), B′).
Therefore, from the above inequality, we have ∆(T2(A), B′) ≤ (1 + ε)∆(T1(A), B′).

Following a similar argument, we also have

∆(T1(A), B′) ≤
∑

q∈P (φ2)

‖q − T1‖

=
∑

q∈P (φ2)

‖q − T2 − T1 + T2‖

≤
∑

q∈P (φ2)

‖T2 − T1‖+
∑

q∈P (φ2)

‖q − T2‖

= m‖T2 − T1‖+ ∆(T2(A), B′)
≤ mε‖p− T1‖+ ∆(T2(A), B′)

≤ ε

1− ε∆(T2(A), B′) + ∆(T2(A), B′)

= (1− ε)−1∆(T2(A), B′),

where the fourth inequality comes from the following argument. The closest distance from
a point in P to T1 is ‖p − T1‖. Since ‖T1 − T2‖ ≤ ε‖p − T1‖, we know that the closest
distance from a point in P to T2 is at least (1 − ε)‖p − T1‖. Therefore, ∆(T2(A), B′) =∑
q∈P (φ2)‖q − T2‖ ≥ m(1− ε)‖p− T1‖.
Putting everything together, we have that (1 − ε)∆(T1(A), B′) ≤ ∆(T2(A), B′) ≤ (1 +

ε)∆(T1(A), B′). Thus, the lemma follows. J

ISAAC 2019

The Weighted k-Center Problem in Trees for
Fixed k

Binay Bhattacharya
Simon Fraser University, Burnaby, Canada
binay@cs.sfu.ca

Sandip Das
Indian Statistical Institute, Kolkata, India
sandipdas@isical.ac.in

Subhadeep Ranjan Dev
Indian Statistical Institute, Kolkata, India
srdev_r@isical.ac.in

Abstract
We present a linear time algorithm for the weighted k-center problem on trees for fixed k. This
partially settles the long-standing question about the lower bound on the time complexity of the
problem. The current time complexity of the best-known algorithm for the problem with k as part
of the input is O(n log n) by Wang et al. [15]. Whether an O(n) time algorithm exists for arbitrary
k is still open.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Network optimization

Keywords and phrases facility location, prune and search, parametric search, k-center problem,
conditional k-center problem, trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.27

1 Introduction

In this paper, we study a popular facility location problem on graphs called the weighted
k-center problem. The sites are the vertices of the graph and have positive weights associated
with them. The edges of the graph have positive lengths and the facilities can be placed
anywhere on them. The weighted distance between a facility and a site is the length of
the shortest path between them times the weight of the site. Our objective is to place k

facilities on the graph such that the maximum weighted distance of a site to its closest facility
is minimized.

Kariv and Hakimi [9] in 1979 showed that the weighted k-center problem on general
graphs is NP-hard. In fact, they proved a much stronger statement that finding the weighted
k-center is NP-hard for planar graphs with maximum vertex degree 3. On the other hand in
the same paper, they gave an O(n2 log n) time algorithm for the problem if the underlying
graph is a tree with n vertices. Later improvements in time complexity were done by Jeger
and Kariv [8] to O(kn log n), and Megiddo and Tamir [12] to O(n log2 n) using Cole’s [6]
optimization. Very recently in 2016 Banik et. al. [1] gave an O(n log n + k log2 n log(n/k))
time algorithm for the problem which was then improved to O(n log n) by Wang and Zhang
[15] in 2018. Wang and Zang’s solution is the current state of the art for the weighted
k-center problem in trees for arbitrary value of k.

For k = 1 the problem had already been solved by Megiddo [11] in O(n) time in 1983.
In 2006 Ben-Moshe et al. [2] showed that the 2-center problem can also be computed in
O(n) time. In the same paper, they gave an O(n log n) time algorithm for the weighted
k-center problem when k is 3 or 4. The problem has also been studied in the real line setting

© Binay Bhattacharya, Sandip Das, and Subhadeep Ranjan Dev;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 27; pp. 27:1–27:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:binay@cs.sfu.ca
mailto:sandipdas@isical.ac.in
mailto:srdev_r@isical.ac.in
https://doi.org/10.4230/LIPIcs.ISAAC.2019.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 The Weighted k-Center Problem in Trees for Fixed k

where the sites and facilities are constrained to be placed on a given line. In this setting
Bhattacharya et al. [5] gave an O(n) time solution for the weighted k-center problem for any
fixed k. For the unweighted case, the k-center problem on trees has been solved optimally by
Frederickson [7] in O(n) time. Karmakar et al. [10] studied some constrained version of this
problem in R2 and gave algorithms which are near linear in n.

In this paper, we study the weighted k-center problem on trees for any constant k

and present an O(n) time solution for it. Our algorithm generalises the technique used in
Bhattacharya et al. [4] where they give a linear time algorithm for finding the k-step fitting
function of n points in R2. A different (unpublished) linear time solution to the weighted
k-center problem was also suggested in 2008 by Shi [14]. The algorithm presented in this
paper is simpler and is based on the fact that a generalization of Megiddo’s [11] approach
applies suitably to our problem. This enables us to prune vertices from a subgraph of the
tree which in turn produces a linear time algorithm.

The rest of the paper is organized as follows. In Section 2 we define the weighted
k-center problem and the conditional weighted k-center problem. We also briefly mention
the r-feasibility test. In Section 3 we introduce the notion of a big-component of a tree and
propose a linear time algorithm to find it. In Section 4 we show how to prune the vertices of
the big-component in order to reduce the size of the original tree. In Section 5 we present our
linear time algorithm for the conditional weighted k-center problem which is a generalisation
of the weighted k-center problem. We then conclude in Section 6.

2 Preliminaries

2.1 Problem Definition

Let T be a tree with vertex set V (T) and edge set E(T). Also, let the number of vertices in
T , denoted by |T |, be n. Each vertex v ∈ V (T) is associated with a positive weight w(v) and
each edge e ∈ E(T) is associated with a positive length l(e). To define the notion of points
on an edge e, we assume e to be a line segment with length l(e). The distance between two
points x and y in e is proportional to the portion of e in between x and y with respect to
l(e). A(T) denotes the set of all points on all edges of T .

The distance between any two points x, y ∈ A(T), denoted by l(x, y), is the sum of
the lengths of the edges and the partial edges in the unique path between x and y in T .
The weighted distance between a vertex v ∈ V (T) and a point x ∈ A(T) is defined as
d(x, v) = w(v) · l(x, v). We extend this definition to include the weighted distance between a
set of points X ⊆ A(T) and a set of vertices V ′ ⊆ V (T) which is given by the expression

d(X, V ′) = max
v∈V ′
{min

x∈X
{d(x, v)}}

The objective of the weighted k-center problem on T is to find a set of points X ⊂ A(T)
with |X| = k such that d(X, V (T)) is minimum. The points in X are called centers.

We solve the weighted k-center problem by solving a more general problem on trees which
is called the conditional weighted (p, S)-center problem or the (p, S)-center problem in short.
The problem was first introduced in Minieka [13]. Here, S ⊂ A(T) is the set of centers already
placed in T . We call S the set of old centers. The objective of the (p, S)-center problem is to
find a set of points X ⊂ A(T) with |X| = p such that d(X ∪ S, V (T)) is minimized. We call
X the set of new centers. Observe that the solution to the (p, S)-center problem is also the
solution to the weighted k-center problem, when S = ∅ and p = k.

B. Bhattacharya, S. Das, and S. R. Dev 27:3

2.2 The r-feasibility test

Let X be an optimal solution to the (p, S)-center problem in T . The optimal radius r∗ is
defined as the maximum weighted distance of a vertex to its closest center in X ∪ S i.e.
r∗ = d(X ∪ S, V (T)). A point x ∈ A(T) is said to cover a vertex v ∈ V (T) with radius r if
d(x, v) ≤ r. Similarly, we say that a set of centers X ′ covers a set of vertices V ′ with radius
r if d(X ′, V ′) ≤ r. If no radius is mentioned, we assume r to be r∗.

The r-feasibility test for the (p, S)-center problem on T takes as input a radius r and
returns (a) feasible if r ≥ r∗ and, (b) infeasible if r < r∗.

The algorithm was first presented by Kariv and Hakimi [9] in 1979 for the weighted
k-center problem. The feasibility test for the (p, S)-center problem follows the same principle
and is described in Shi [14]. The feasibility test takes O(n) time.

2.3 Our Approach

The solution to the (p, S)-center problem presented here is recursive in nature. We first
introduce the notion of a big-component of T . For a suitable constant c, a big-component
is a subtree T ′ of T with at least n

c vertices. Note that T \ T ′ can be disconnected. It
has the additional property that for some optimal solution X to the (p, S)-center problem
the vertices of the big-component are “covered” by at most one new center from X. This
property enables us to use the prune and search technique introduced by Megiddo [11], and
generalized by Shi [14], to prune a constant fraction of the vertices of the big-component.
The pruning step leads to a new tree T ′ with a fraction of the number of vertices in T .
We recursively perform the last two steps of finding a big-component and then pruning its
vertices on these new tree T ′ and the trees that follow until the size of the tree falls below a
certain threshold. We then use any brute force technique to calculate the (p, S)-center in
this final tree. The pruning step guarantees that the (p, S)-center solution of this reduced
tree is also the (p, S)-center solution to the original tree T .

3 Big-Component

In this section we define a big-component and provide linear time algorithm to find it. Let
V ⊆ V (T) be such that the subgraph of T induced by V is connected. We call this induced
subgraph an induced subtree of T . Let Vu(v) = {w ∈ V (T) | the path from v to w passes
through u}; then Tu(v) denotes the subtree induced by Vu(v) and rooted at u (see Figure 1).
Let N(v) denote the neighbouring vertices of v in T , and let NT ′(v) denotes the neighbouring
vertices of v in the subtree T ′ of T . For m ∈ Z+, [m] denotes the sequence {1, 2, . . . , m}.

u

v

Tu(v)

Figure 1 Tu(v) is a subtree of T rooted at vertex u and not containing v.

ISAAC 2019

27:4 The Weighted k-Center Problem in Trees for Fixed k

We now introduce the notion of a big-component of T with respect to the (p, S)-center
problem. Here, k = p + |S|.

I Definition 1. Let B be a subtree of T with at least n
2k vertices and let SB ⊆ S be the old

centers contained in it. B is a big-component of T with respect to the (p, S)-center problem
if for some solution X to the problem all vertices of B are covered by either (a) SB or (b) a
single new center x ∈ X.

If B satisfies (a) we call B a type-a big-component and if it satisfies (b) we call it a type-b
big-component.

In order to find a big-component, we first find a sequence of “candidate subtrees” of
T . On of these candidate subtrees is a big-component of T . We search the subtrees in the
candidate sequence sequentially until one of them identifies as a big-component.

3.1 Candidate Sequence
I Definition 2. A subtree C of T is a candidate subtree of T if

1. n
2k ≤ |C| <

n
k ,

2. C is connected to the rest of T i.e. T \ C by a single vertex

The vertex through which C is connected to the rest of T is called the exit vertex of C

and is denoted by v(C).

Note that removing all vertices of C except v(C) from T still keeps the rest of T i.e.
T \ C ∪ {v(C)} connected.

C1

C2

v1

v2

v3

u1

u2

u3

T

Figure 2 C1 with exit vertex v1 is a candidate subtree of T but C2 is not. Here n = 18 and
k = 2.

Let T1 = T . For i = 2, 3, . . . we define Ti to be the tree generated by removing all vertices
of Ci−1 except v(Ci−1) from Ti−1. Here, Ci is a candidate subtree of Ti.

I Definition 3. Let 〈Ci〉mi=1 = 〈C1, C2, . . . , Cm〉 be a sequence of m subtrees of T such that
Ci is a candidate subtree of Ti. We call this sequence a candidate sequence of T .

We now describe an algorithm to find a candidate sequence of T with respect to the
(p, S)-center problem. Here we assume k << n.

I Algorithm 1.
Input: Tree T .
Output: A candidate sequence of T .

B. Bhattacharya, S. Das, and S. R. Dev 27:5

C1

v(C1)

u

(a) T1.

v(C1)

u

(b) T2.

Figure 3 T2 is formed by deleting all vertices of C1 except v(C1).

C1

C2

C3

v1 v2

v3

T
u

Figure 4 First C1 is reported as a candidate subtree, then C2 and then C3.

Step 1: We consider T ′ = T and assume it to be rooted at an arbitrary vertex u. We traverse
the vertices of T ′ by first visiting the leaf vertices of T ′ and then visiting any vertex
whose all children have already been visited. For each vertex visited we perform
Step 2 until |T ′| < n

2k .
Step 2: a. Let v be the current vertex in our traversal. All vertices in T ′v(u) have already

been visited. If |T ′v(u)| < n
2k we mark v as visited and continue to the next vertex

in our traversal. Otherwise, if |T ′v(u)| ≥ n
2k we do the next step.

b. Let v1, v2, . . . , vp be the children of v and let q be the smallest integer such
that the subtree C =

⋃q
i=1 T ′vi

(v) has at least n
2k vertices. Since for each child

vi, |T ′vi
(v)| < n

2k , we have that |C| ≤ n
k . We report C as a candidate subtree with

v(C) = v and update T ′ by deleting all vertices of C except v(C). We repeat
Step 2b on v until |T ′v(u)| < n

2k .

The sequence of candidate subtrees found by Algorithm 1 is a candidate sequence of T .
For an example see Figure 4.

I Time Complexity. Since Algorithm 1 performs a single traversal of T , it takes O(n) time.

I Observation 1. The length of the candidate sequence generated by Algorithm 1 is at least
k and at most 2k.

ISAAC 2019

27:6 The Weighted k-Center Problem in Trees for Fixed k

Proof. The maximum size of a candidate subtree is bn
k c. Our algorithm stops only when

the size of Ti falls below n
2k . Therefore, the length of the candidate sequence is at least

k. Similarly, the minimum size of a candidate subtree is d n
2k e and hence the length of the

candidate sequence is at most 2k. J

The next lemma justifies the need of finding a candidate sequence in order to find a
big-component of T .

I Lemma 4. Let 〈Ci〉mi=1 be a candidate sequence generated by Algorithm 1. Then there
exists a Cj ∈ 〈Ci〉mi=1 which is a big-component of T .

Proof. Let X be any optimal solution to the (p, S)-center problem. The covering of X ∪ S

partitions T into k subtrees. These subtrees exclude exactly k − 1 edges of T from it. Since,
m ≥ k, there exists at least one candidate subtree Cj which contains none of these k − 1
edges. Then, by definition, this Cj is a big-component. J

3.2 The Big-Component Algorithm
We now present an algorithm to find a big-component B in T . The algorithm sequentially
examines whether a subtree in the candidate sequence of T is a big-component. The algorithm
is as follows.

I Algorithm 2.
Input: Tree T , integer p and old centers S.
Output: A big-component B of T with respect to the (p, S)-center problem.
Step 1: Compute a candidate sequence 〈Ci〉mi=1 of T using Algorithm 1. For each candidate

subtree Ci, i = 1, 2, . . . , k − 1(k ≤ m) we do Step 2 and Step 3.
Step 2: Let Cj be the current candidate subtree. Let 〈Cip

〉ĵp=1 be the longest subsequence of
〈Ci〉j−1

i=1 such that the subtree Ĉj = Cj ∪ (
⋃ĵ

p=1 Cip
) is connected. Note that Ĉj can

be computed using a standard tree traversal. See Figure 5 for an example. Also let
Ŝj be the old centers in Ĉj .

Step 3: We define pj to be the number of candidate subtrees in Ĉj which do not contain any
old centers. We do the following:
a. If pj < p, we compute the (pj , Ŝj)-center on Ĉj and set rj to be its radius. We do

an rj-feasibility test on T with respect to the (p, S)-center problem. We declare
Cj to be a big-component and stop if the feasibility test returns infeasible.

b. If pj ≥ p, we compute the (0, S \ Ŝj)-center in (T \ Ĉj)∪ {v(Cj)} and set rj to be
its radius. Do an rj-feasibility test on T . We declare Cj to be a big-component
and stop if the feasibility test returns feasible.

Step 4: If no subtree of 〈Ci〉k−1
i=1 has been returned as a big-component in the above steps

then we return Ck as a big-component of T . J

I Lemma 5. The candidate subtree returned by Algorithm 2 is a big component of T .

Proof. Consider a candidate subtree Cj and suppose it is not returned as a big-component.
Then for the case pj < p the rj-feasibility test returned feasible. Here, we assume rj > r∗

since otherwise we have an optimal solution. This implies that in some optimal solution
to the (p, S)-center problem on T , pj new centers along with the old centers Ŝj are not
enough to cover Ĉj . For the case pj ≥ p, the rj-feasibility test returned infeasible. Which
implies that in the optimal case the old centers S \ Ŝj have to cover more than the vertices

B. Bhattacharya, S. Das, and S. R. Dev 27:7

C1

C3

C4

v1 v2

v3

C2

T

Figure 5 〈Ci〉4
i=1 is a candidate sequence of T . Ĉ4 = C4 ∪ (C1 ∪ C3). Note that we have already

tested C1, C2 and C3 for big-component.

in T \ Ĉj ∪ {v(Cj)}. This in turn implies that p new centers along with Ŝj are not sufficient
to cover Ĉj .

By a similar argument we can show that if Cj is returned as a big-component then at most
min{p, pj} centers are enough to cover the vertices in Ĉj . And since all previous candidate
subtrees Ci, i ∈ [j − 1] were not returned as big-components, it implies that Cj is either
covered by the old centers in Cj or exactly one new center (if Cj contains no old centers).
Therefore Cj , by definition is a big-component.

Now, if Ck was returned as a big-component then, to cover all vertices in
⋃k−1

i=1 Ci at
least k − 1 centers (old and new) are necessary. This in turn implies that Ck is completely
covered by just 1 center, which again by definition is a big-component. J

I Time Complexity. Step 1 takes O(n) time as shown in Section 3.1. Step 2 and step 3
iterates at most k− 1 times. On the jth iteration, the time taken to execute theses two steps
is Ttotal(p− 1, j n

k) + O(n). Here, Ttotal(p, n) is the time required to compute the (p, S)-center
problem on a tree with n vertices. Therefore the time taken by Algorithm 2 is given by the
following recurrence.

Tbig(p, n) ≤
{∑k−1

j=1 Ttotal(p− 1, j n
k) + O(kn) , p ≥ 1

O(n) , p = 0

In this section we proposed an algorithm to find a big-component of T . In the rest
of the paper, we present an algorithm to prune a constant fraction of vertices from the
big-component without affecting solution of the (p, S)-center in T .

4 Vertex Pruning from a Big-Component

Pruning a vertex is analogous to deleting a vertex but with certain differences. While pruning
a vertex v we take actions based on the degree of v.

If v is a degree 1 vertex and its incident edge does not contain an old center from S, we
simply delete the vertex and its edge from T . Otherwise, v is not deleted. If v is a degree 2
vertex with neighbours v1 and v2 joined by edges e1 and e2 then, we delete v, e1 and e2 and

ISAAC 2019

27:8 The Weighted k-Center Problem in Trees for Fixed k

join v1 and v2 with a new edge e with l(e) = l(e1) + l(e2). If e1 and e2 had old centers, we
place them on e at appropriate locations. If v is a vertex of degree 3 or more then we do
not immediately delete it; instead we flag it for later deletion. The flagged vertices do not
contribute to the size of the candidate subtree or the big-component. But, they do contribute
when considering the degree of other vertices to be pruned. When we delete a vertex v, we
also recursively delete any adjacent flagged vertex whose current degree has fallen below 3.

Let T ′ be the tree generated after pruning some vertices from T . T ′ can contain vertices
of T which have been pruned out but have not been deleted. We have the following lemma.

I Observation 2. The number of vertices in T ′ is proportional to the number of unpruned
degree 1 and degree 2 vertices of T in T ′.

Proof. Let n1 be the number of degree 1 vertices, n2 the number of degree 2 vertices and
n3 the number of degree 3 or more vertices of T ′. If n is the total number of vertices in T ′

then n = n1 + n2 + n3. Since, the number of leaf vertices in a tree is always greater than
the number of degree 3 or more vertices, n1 ≥ n3. Therefore n = n1 + n2 + n3 ≤ 2n1 + n2.
Here, n2 does not count any pruned vertex of T which are still present in T ′. The number of
degree 1 vertices of T which have been pruned and yet have not been deleted from T ′ and
which are counted in n1 is at most k, a constant. Therefore, the claim holds. J

We are now ready to present an algorithm which prunes a constant fraction of the vertices
of a big-component B without affecting the optimal solution to the (p, S)-center problem.

I Algorithm 3.
Input: Tree T , integer p, old centers S and a big-component B.
Output: Prune a constant fraction of vertices of B.

Step 1: If B has old centers present in it then B is a type-a big-component. Let vfar ∈ V (B)
be a vertex such that d(SB , vfar) = d(SB , V (B)). We prune all vertices in V (B)
except vfar and stop.
Else B is a type-b big-component and we proceed to the next step.

Step 2: We find a centroid vc (a centroid is a vertex of tree whose removal splits the tree into
forest such that all trees in the forest have size at most half the original tree. Such a
vertex can be found out in time linear to the number of vertices) of B and compute
the (p − 1, S ∪ {vc})-center in T . Let the set of new centers be X and let rfar =
d(X ∪ S ∪ {vc}, V (T)). Let Vfar be the set of vertices of T at a weighted distance
rfar from their closest center i.e. Vfar = {vi ∈ V (T) | d

(
X ∪ S ∪ {vc}, vi

)
= rfar}.

Step 3: If the vertices in Vfar lie in more than one subtree Tvi(vc), vi ∈ N(vc) then moving
the center placed at vc away from the vertex in any direction will only increase
the covering radius. Therefore, we can conclude that rfar = r∗ and X ∪ {vc} is an
optimal (p, S)-center solution of T . Let vfar ∈ Vfar be any arbitrary vertex. We
prune all vertices in Vfar \ {vfar} and stop.
Else Vfar is a subset of the vertices in a single subtree (say) Tv0(vc) for some
v0 ∈ N(vc), we go to the next step.

Step 4: Since Vfar is a subset of the vertices of Tv0(vc), shifting the center from vc in the
direction of v0 will reduce the covering radius. Therefore, the center which will cover
the vertices of B lies in the direction of v0 from vc. Let Vrest be the set of vertices in
the union of the subtrees Bvi(vc),∀vi ∈ NB(vc), vi 6= v0. All the vertices in Vrest are
covered by a facility in Tv0(vc), and therefore, are candidates for the pruning step.

B. Bhattacharya, S. Das, and S. R. Dev 27:9

vc

v1 v2

v0

Bv1(vc)

Bv2(vc)

B

Bv0(vc)

old centers

vertices direction
of optimal
center

Figure 6 All vertices in Vfar are inside Tv0 (vc). Vrest are the vertices in Bv1 (vc) and Bv2 (vc)
together.

Step 5: Arbitrarily pair the vertices in Vrest. Leave out the last vertex if it cannot be paired.
For each pair (ai, bi) with w(ai) ≥ w(bi), we compute the value

ti = w(bi)× l(bi, vc)− w(ai)× l(ai, vc)
w(ai)− w(bi)

If ti is negative then the weighted distance from the center (that covers both ai and
bi) from ai is always greater than that from bi. Therefore we simply prune out bi,
as it cannot affect the value r∗. For the rest of the vertex pairs (ai, bi) we define
ri = w(ai)× (l(ai, vc) + ti). Let rm be the median value of all these ri’s. We do an
r-feasibility test on T with r = rm.

Step 6: Consider the case when the feasibility test returns feasible. Then for each pair (ai, bi)
with ri ≥ rm, we prune out the vertex ai, since in any optimal solution, the distance
of the center to ai always dominates that to bi. Similarly, we can prune out vertex bj

from each pair (aj , bj) with rj < rm when the feasibility test returns infeasible. J

I Time Complexity. Finding centroid vc takes O(n) time, where n is the size of T . Finding
the (p − 1, S ∪ {vc})-center takes Ttotal(p − 1, n) time. Rest of the steps takes O(n) time.
Therefore total time takes by the algorithm is

Tprune(p, n) =
{

Ttotal(p− 1, n) + O(n) , p ≥ 1
O(n) , p = 0

I Lemma 6. Algorithm 3 does not change the solution to the (p, S)-center in T .

Proof. If B is a type-a big-component then in some optimal solution all vertices in V (B)
are covered by SB . Therefore removing all vertices in V (B) except vfar does not affect the
(p, S)-center radius.

Again, if B is a type-b big-component then the vertices in Vrest are covered by a one new
center say x. In Step 6 we prune from each pair only those vertices which can never be the
farthest vertex from x. Therefore, deleting these vertices will not affect the position of x in
anyway. J

ISAAC 2019

27:10 The Weighted k-Center Problem in Trees for Fixed k

I Lemma 7. Algorithm 3 prunes at least n
16k vertices from B.

Proof. Similar to the analysis in Megiddo [11] Algorithm 3 prunes 1
8 -fraction of the vertices

in B. Since B is a big-component, it has al least n
2k vertices. Therefore, number of vertices

pruned is at least 1
8

n
2k = n

16k . J

5 The (p, S)-center Algorithm

In this section, we present a recursive O(n) time algorithm for the (p, S)-center problem in
T where k = p + |S| is a constant.

I Algorithm 4.
Input: Tree T , integer p and the set of centers S.
Output: An optimal solution X to the (p, S)-center problem in T .

Step 1: Let n0 be some suitable constant. We set T ′ = T and if |T ′| ≥ n0 we do Step 2,
otherwise we jump to Step 3.

Step 2: Find a big-component B in T ′ using Algorithm 2. Next we prune the vertices of B

using Algorithm 3. The pruning step leads to a new tree T ′′ with lesser number of
vertices than T ′. We set T ′ = T ′′ and repeat this step if |T ′| ≥ n0.

Step 3: We compute the (p, S)-center solution X in T ′ using standard brute force technique.
From Lemma 6, X is also the solution to the (p, S)-center in the original tree T . J

I Time Complexity. The time taken by the Algorithm 4 is given by the following recursion

Ttotal(p, n) =
{

Tbig(p, n) + Tprune(p, n) + Ttotal

(
p, n− n

16k

)
+ O(n) , n ≥ n0

O(1) , otherwise

Now,

Ttotal(p, n) = Ttotal

(
p, n− n

16k

)
+ Tbig(p, n) + Tprune(p, n) + O(n)

≤ Ttotal

(
p,

16k − 1
16k

n

)
+ Ttotal(p− 1, n) +

k−1∑
j=1

Ttotal(p− 1, j
n

k
) + O(kn)

≤ Ttotal

(
p,

16k − 1
16k

n

)
+ Ttotal(p− 1, n) + (k − 1)Ttotal(p− 1, n) + O(kn)

≤ Ttotal

(
p,

16k − 1
16k

n

)
+ k · Ttotal(p− 1, n) + O(kn)

To show that Ttotal(p, n) ≤ c2pkn (c is a constant such that O(kn) ≤ ckn) it suffices to
show that

Ttotal

(
p,

16k − 1
16k

n

)
+ k · Ttotal(p− 1, n) + O(kn) ≤ c2pkn

⇐⇒ c2pk · 16k − 1
16k

n + ck2(p−1)kn + ckn ≤ c2pkn

⇐⇒ − 1
16k

+ k2−k + k2−pk ≤ 0

By numerical computation we can show this to be true for k ≥ 13 and 1 ≤ p ≤ k. This
implies that the (p, S)-center problem can be solved in O(2pkn) time. By similar computation
we can show that for 1 ≤ k ≤ 12, Ttotal(p, n) ≤ O(n). Therefore the weighted k-center
problem can be solved in O(2k2

n) time. For fixed k this time is linear in n.

B. Bhattacharya, S. Das, and S. R. Dev 27:11

6 Conclusion

The most efficient algorithm for the weighted k-center problem in trees for arbitrary k takes
O(n log n) time and is given by Wang et al. [15]. For k = 1 and 2, Megiddo [11] and
Ben-Moshe et al. [2] give O(n) time solutions, respectively. It is not known whether a linear
time algorithm exists for this problem. We settle this problem partially by presenting a linear
time algorithm for any constant k. However, the question of whether an optimal linear time
algorithm exists for an arbitrary k still remains open.

For the weighted k-center problem in cactus Ben-Moshe [3] presented an O(n2) time
algorithm. In the same paper, they also showed that for k = 1 and 2, the problem can be
solved in O(n log n) and O(n log3 n) time respectively. No subquadratic time algorithm is
known for the weighted k-center problem for cactus when k > 2.

References
1 Aritra Banik, Binay Bhattacharya, Sandip Das, Tsunehiko Kameda, and Zhao Song. The p-

Center Problem in Tree Networks Revisited. In 15th Scandinavian Symposium and Workshops
on Algorithm Theory, 2016.

2 Boaz Ben-Moshe, Binay Bhattacharya, and Qiaosheng Shi. An Optimal Algorithm for the
Continuous/Discrete Weighted 2-Center Problem in Trees. In José R. Correa, Alejandro
Hevia, and Marcos Kiwi, editors, LATIN 2006: Theoretical Informatics, pages 166–177, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

3 Boaz Ben-Moshe, Binay Bhattacharya, Qiaosheng Shi, and Arie Tamir. Efficient algorithms
for center problems in cactus networks. Theoretical Computer Science, 378(3):237–252, 2007.
Algorithms and Computation.

4 Binay Bhattacharya, Sandip Das, and Tsunehiko Kameda. Linear-time fitting of a k-step
function. Discrete Applied Mathematics, 2017. doi:10.1016/j.dam.2017.11.005.

5 Binay Bhattacharya and Qiaosheng Shi. Optimal Algorithms for the Weighted p-Center
Problems on the Real Line for Small p. In Frank Dehne, Jörg-Rüdiger Sack, and Norbert Zeh,
editors, Algorithms and Data Structures, pages 529–540, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

6 Richard Cole. Slowing Down Sorting Networks To Obtain Faster Sorting Algorithm. In
Foundations of Computer Science, 1984. 25th Annual Symposium on, pages 255–260. IEEE,
1984.

7 Greg N. Frederickson. Parametric search and locating supply centers in trees. In Frank
Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, editors, Algorithms and Data Structures, pages
299–319, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

8 M Jeger and Oded Kariv. Algorithms for finding P-centers on a weighted tree (for relatively
small P). Networks, 15(3):381–389, 1985.

9 Oded Kariv and S Louis Hakimi. An algorithmic approach to network location problems. I:
The p-centers. SIAM Journal on Applied Mathematics, 37(3):513–538, 1979.

10 Arindam Karmakar, Sandip Das, Subhas C Nandy, and Binay K Bhattacharya. Some variations
on constrained minimum enclosing circle problem. Journal of Combinatorial Optimization,
25(2):176–190, 2013.

11 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related problems.
SIAM journal on computing, 12(4):759–776, 1983.

12 Nimrod Megiddo and Arie Tamir. New results on the complexity of p-centre problems. SIAM
Journal on Computing, 12(4):751–758, 1983.

13 Edward Minieka. Conditional centers and medians of a graph. Networks, 10(3):265–272, 1980.
14 Qiaosheng Shi. Efficient algorithms for network center/covering location optimization problems.

PhD thesis, School of Computing Science-Simon Fraser University, 2008.
15 Haitao Wang and Jingru Zhang. An O(n log n)-Time Algorithm for the k-Center Problem

in Trees. In Bettina Speckmann and Csaba D. Tóth, editors, 34th International Symposium
on Computational Geometry (SoCG 2018), volume 99 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 72:1–72:15, Dagstuhl, Germany, 2018.

ISAAC 2019

https://doi.org/10.1016/j.dam.2017.11.005

Online Knapsack Problems with a Resource Buffer
Xin Han
Dalian University of Technology, Dalian, China
hanxin@dlut.edu.cn

Yasushi Kawase
Tokyo Institute of Technology, Tokyo, Japan
kawase.y.ab@m.titech.ac.jp

Kazuhisa Makino
Kyoto University, Kyoto, Japan
makino@kurims.kyoto-u.ac.jp

Haruki Yokomaku
NTT DATA Mathematical Systems, Tokyo, Japan
dsm4up2c@gmail.com

Abstract
In this paper, we introduce online knapsack problems with a resource buffer. In the problems, we
are given a knapsack with capacity 1, a buffer with capacity R ≥ 1, and items that arrive one
by one. Each arriving item has to be taken into the buffer or discarded on its arrival irrevocably.
When every item has arrived, we transfer a subset of items in the current buffer into the knapsack.
Our goal is to maximize the total value of the items in the knapsack. We consider four variants
depending on whether items in the buffer are removable (i.e., we can remove items in the buffer) or
non-removable, and proportional (i.e., the value of each item is proportional to its size) or general.
For the general&non-removable case, we observe that no constant competitive algorithm exists for
any R ≥ 1. For the proportional&non-removable case, we show that a simple greedy algorithm
is optimal for every R ≥ 1. For the general&removable and the proportional&removable cases,
we present optimal algorithms for small R and give asymptotically nearly optimal algorithms for
general R.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Discrete optimization

Keywords and phrases Online knapsack problem, Resource augmentation, Competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.28

Related Version A full version of the paper is available at [8], https://arxiv.org/abs/1909.10016.

Funding Xin Han: supported by RGC (HKU716412E) and NSFC (11571060).
Yasushi Kawase: supported by JSPS KAKENHI Grant Number 16K16005.
Kazuhisa Makino: supported by JSPS KAKENHI Grant Number JP24106002, JP25280004,
JP26280001, and JST CREST Grant Number JPMJCR1402.

1 Introduction

Online knapsack problem is one of the most fundamental problems in online optimization [16,
18]. In the problem, we are given a knapsack with a fixed capacity, and items with sizes and
values, which arrive one by one. Upon arrival, we must decide whether to accept the arrived
item into the knapsack, and this decision is irrevocable.

In this paper, we introduce a variant of the online knapsack problem, which we call online
knapsack problems with a resource buffer. Suppose that we have a buffer with fixed capacity
in addition to a knapsack with fixed capacity, and items arrive online. Throughout this
paper, we assume that the knapsack capacity is 1, and the buffer capacity is R (≥ 1). In

© Xin Han, Yasushi Kawase, Kazuhisa Makino, and Haruki Yokomaku;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 28; pp. 28:1–28:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hanxin@dlut.edu.cn
mailto:kawase.y.ab@m.titech.ac.jp
mailto:makino@kurims.kyoto-u.ac.jp
mailto:dsm4up2c@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2019.28
https://arxiv.org/abs/1909.10016
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Online Knapsack Problems with a Resource Buffer

addition, assume that each item e has a size s(e) and a value v(e). When an item e has
arrived, we must decide whether to take it into the buffer or not. The total size of the
selected items must not exceed the capacity of the buffer R. Further, we cannot change the
decisions that we made past, i.e., once an item is rejected, it will never be put into the buffer.
We consider two settings: (i) non-removable, i.e., we cannot discard items in the buffer, and
(ii) removable, i.e., we can discard some items in the buffer, and once an item is discarded, it
will never be put into the buffer again. After the end of the item sequence, we transfer a
subset of items from the buffer into the knapsack. Our goal is to maximize the total value
of the items in the knapsack under the capacity constraint. It is worth mentioning that, if
R = 1, our problem is equivalent to the standard online knapsack problem.

Our model can be regarded as a “partial” resource augmentation model. That is, in the
resource augmentation model, the online algorithm can use the buffer for the final result.
On the other hand, in our model, the online algorithm uses the buffer only to temporary
store items, and it must use the knapsack to output the final result. Moreover, our model
can be viewed as a streaming setting: we process items in a streaming fashion, and we can
keep only a small portion of the items in memory at any point.

To make things more clear, let us see an example of the online knapsack problem with a
resource buffer. Let R = 1.5. Suppose that three items e1, e2, e3 with (s(e1), v(e1)) = (0.9, 4),
(s(e2), v(e2)) = (0.7, 3), (s(e3), v(e3)) = (0.2, 2) are given in this order, but we do not know
the items in advance. When e1 has arrived, suppose that we take it into the buffer. Then,
for the non-removable case, we need to reject e2 because we cannot put it together with
e1. In contrast, for the removable case, we have another option – take e2 into the buffer
by removing e1. If {e1, e3} is selected in the buffer at the end, the resulting value is 4 by
transferring {e1} to the knapsack. Note that, in the resource augmentation model, we can
obtain a solution with value 6 by selecting {e1, e3}.

Related work
For the non-removable online knapsack problem (i.e., non-removable case with R = 1),
Marchetti-Spaccamela and Vercellis [19] showed that no constant competitive algorithm
exists. Iwama and Taketomi [9] showed that there is no constant competitive algorithm even
for the proportional case (i.e., the value of each item is proportional to its size). The problem
has also studied under some restrictions on the input [1, 4, 17,20].

The removable variant of the online knapsack problem (i.e., removable case with R = 1)
is introduced by Iwama and Taketomi [9]. They proved that no constant competitive
deterministic algorithm exists in general, but presented an optimal (1 +

√
5)/2-competitive

algorithm for the proportional case. The competitive ratios can be improved by using
randomization [5, 7]. In addition, the problem with removal cost has been studied under the
name of the buyback problem [2, 3, 6, 11,12].

An online knapsack problem with resource augmentation is studied by Iwama and
Zhang [10]. In their setting, an online algorithm is allowed to use a knapsack with capacity
R ≥ 1, while the offline algorithm has a knapsack with capacity 1. They developed optimal
max{1, 1/(R− 1)}-competitive algorithms for the general&removable and proportional&non-
removable cases and an optimal max

{
1, min{ 1+

√
4R+1

2R , 2
2R−1}

}
-competitive algorithm for the

proportional&removable case. All of their algorithms are based on simple greedy strategies.
The competitive ratios except for the general&non-removable cases become exactly 1 when
R is a sufficiently large real.

In addition, there exist several papers that apply online algorithms to approximately
solve the constrained stable matching problems [13–15].

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:3

Our results

We consider four variants depending on whether removable or non-removable, and proportional
or general. In this paper, we focus on deterministic algorithms. Our results are summarized in
Table 1. To compare our model to the resource augmentation model, we list the competitive
ratio for both models in the table. It should be noted that each competitive ratio in our
model is at least the corresponding one in the resource augmentation model. Hence, lower
bounds for the resource augmentation model are also valid to our model.

For the general&non-removable case, we show that there is no constant competitive
algorithm. For the proportional&non-removable case, we show that a simple greedy is
optimal and its competitive ratio is max{2, 1/(R − 1)}. Interestingly, the competitive
ratio is equal to the ratio in resource augmentation model for 1 < R ≤ 3/2. For the
general&removable case, we present an optimal algorithm for 1 < R ≤ 2. Furthermore, for
large R, we provide an algorithm that is optimal up to a logarithmic factor. The algorithm
partitions the input items into groups according to sizes and values, and it applies a greedy
strategy for each group that meets a dynamically adjusted threshold. We will see that the
competitive ratio is larger than 1 for any R but it converges to 1 as R goes to infinity. For
the proportional&removable case, we develop optimal algorithms for 1 ≤ R ≤ 3/2. The
basic idea of the algorithms is similar to that of the algorithm for R = 1 given by Iwama
and Taketomi [9]. Our algorithms classify the items into three types – small, medium, and
large – and the algorithms carefully treat medium items. We observe that, as R becomes
large, we need to handle more patterns to obtain an optimal algorithm. In addition, for
large R, we show that the algorithm for the general&removable case is also optimal up to a
logarithmic factor.

Table 1 Summary of the competitive ratios for our model and the resource augmentation model.

variants
Our model Resource augmentation

R
lower
bound

upper
bound R

lower
bound

upper
bound

no
n-
re
m
ov
ab

le

prop.
1 ∞ [19] – 1 ∞ [19] –

(1, 3
2] 1

R−1 [10] 1
R−1 (Thm. 4) (1, 2] 1

R−1 [10] 1
R−1 [10]

[3
2 , ∞) 2 (Thm. 3) 2 (Cor. 5) [2, ∞) 1 1 [10]

gen. [1, ∞) ∞ [19] – [1, ∞) ∞ [19] –

re
m
ov
ab

le

prop.

1 1+
√

5
2 [9] 1+

√
5

2 [9] 1 1+
√

5
2 [9] 1+

√
5

2 [9]

[1, 1+
√

2
2] 1+

√
4R+1

2R
(Thm. 13) 1+

√
4R+1

2R
(Thms. 14, 15) [1, 1+

√
2

2] 1+
√

4R+1
2R

[10] 1+
√

4R+1
2R

[10]

[1+
√

2
2 , 2−

√
2

2]
√

2 †)
√

2 (Thm. 15)

[1+
√

2
2 , 3

2] 2
2R−1 [10] 2

2R−1 [10]
[2−

√
2

2 , 17− 9
√

3]
√

16R+1−1
2R

†)
√

16R+1−1
2R

†)

[17− 9
√

3, 2
√

3− 2] 1+
√

3
2

†) 1+
√

3
2

†)

[2
√

3− 2, 3
2] 2

R
†) 2

R
†)

[1, ∞) 1 + 1
d2Re+1 (Thm. 17) 1 + O(log R

R
) (Thm. 9) [3

2 , ∞) 1 1 [10]

gen.

1 ∞ [19] – 1 ∞ [19] –

(1, 3
2] 1

R−1 (Thm. 7) 1
R−1 (Thm. 12)

(1, 2] 1
R−1 [10] 1

R−1 [10]
[3

2 , 2) 2 (Thm. 8) 2 (Thm. 12)

[1, ∞) 1 + 1
R+1 (Thm. 6) 1 + O(log R

R
) (Thm. 9) [2, ∞) 1 1 [10]

†) The corresponding theorems can be found in the full version [8].

ISAAC 2019

28:4 Online Knapsack Problems with a Resource Buffer

2 Preliminaries

We denote the size and the value of an item e as s(e) and v(e), respectively. We assume
that 1 ≥ s(e) > 0 and v(e) ≥ 0 for any e. For a set of items B, we abuse notation, and let
s(B) =

∑
e∈B s(e) and v(B) =

∑
e∈B v(e).

For an item e, the ratio v(e)/s(e) is called the density of e. If all the given items have
the same density, we call the problem proportional. Without loss of generality, we assume
that v(e) = s(e) for the proportional case. We sometimes represent an item e as the pair of
its size and value (s(e), v(e)). Also, for the proportional case, we sometimes represent an
item e as its size s(e).

Let I = (e1, . . . , en) be the input sequence of the online knapsack problem with a
resource buffer. For a deterministic online algorithm ALG, let Bi be the set of items in the
buffer at the end of the round i. Note that B0 = ∅. In the removable setting, they must
satisfy Bi ⊆ Bi−1 ∪ {ei} and s(Bi) ≤ R (i = 1, . . . , n). In the non-removable setting, they
additionally satisfy Bi−1 ⊆ Bi (i = 1, . . . , n). Without loss of generality, we assume that
the algorithm transfers the optimal subset of items from the buffer into the knapsack since
we do not require the online algorithm to run in polynomial time. We denote the outcome
value of ALG by ALG(I) (:= max{v(B) | B ⊆ Bn, s(B) ≤ 1}) and the offline optimal value
OPT(I) (:= max{v(B) | B ⊆ {e1, . . . , en}, s(B) ≤ 1}). Then, the competitive ratio of ALG
for I is defined as OPT(I)/ALG(I) (≥ 1). In addition, the competitive ratio of a problem is
defined as infALG supI OPT(I)/ALG(I), where the infimum is taken over all (deterministic)
online algorithms and the supremum is taken over all input sequences.

3 General&Non-removable Case

To make the paper self-contained, we show that the general&non-removable case admits
no constant competitive algorithm. To see this, we observe an input sequence given by
Iwama and Zhang [10], which was used to prove the corresponding result for the resource
augmentation setting.

I Theorem 1. For any R ≥ 1, there exists no constant competitive algorithm for the
general&non-removable online knapsack problem with a buffer.

Proof. Let ALG be an online algorithm and let R ≥ 1 and c be positive reals. Consider the
input sequence I := ((1, c1), (1, c2), . . . , (1, ck)), where (1, ck) is the first item so that ALG
does not take into the buffer. Note that k ≤ bRc + 1 since the buffer size is R. If k = 1,
ALG is not competitive, since ALG(I) = 0 and OPT(I) = c. If k > 1, since ALG(I) = ck−1

and OPT(I) = ck, the competitive ratio is c, which is unbounded as c goes to infinity. J

4 Proportional&Non-removable Case

In this section, we consider the proportional&non-removable case. We show that the
competitive ratio is max{ 1

R−1 , 2} for the case.

4.1 Lower bounds
For lower bounds, we consider two cases separately: 1 < R ≤ 3/2 and R > 3/2.

I Theorem 2. For all R with 1 < R ≤ 3/2 and all ε > 0, the competitive ratio of the
proportional&non-removable online knapsack problem with a buffer is at least 1/(R− 1)− ε.

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:5

Proof. Let ε′ be a positive real such that 1
R−1+ε′ ≥

1
R−1 − ε and let ALG be an online

algorithm. Consider the following input sequence I:

R− 1 + ε′, 1.

Then, ALG must pick the first item, otherwise ALG is not competitive, since ALG(I) = 0
and OPT(I) = R− 1 + ε′. Recall that ALG cannot discard the item since we consider the
non-removable setting. Also, ALG cannot take the second item since the buffer size is strictly
smaller than the total size of the first and the second items. Thus, ALG(I) = R− 1 + ε′ and
OPT(I) = 1, and hence the competitive ratio is at least 1

R−1+ε′ ≥
1

R−1 − ε. J

It should be noted that the input sequence in the proof of Theorem 2 is the same as the one
in [10], which is used to show a lower bound for the resource augmentation model.

I Theorem 3. For all R > 3/2 and all ε > 0, the competitive ratio of the proportional&non-
removable online knapsack problem with a buffer is at least 2− ε.

Proof. Let ε′ be a positive real such that 2
1+2ε′ ≥ 2− ε and let ALG be an online algorithm.

Consider the following input sequence I:

1
2 + ε′,

1
2 + ε′

2 , . . . ,
1
2 + ε′

k
,

1
2 −

ε′

k
,

where the kth item (1/2 + ε′/k) is the first item that ALG does not take it into the buffer.
Note that I is uniquely determined by ALG and k ≤ 2R. Since ALG(I) = 1/2 + ε′ and
OPT(I) = 1/2 + ε′/k + 1/2− ε′/k = 1, the competitive ratio is at least 1

1/2+ε′ ≥ 2− ε. J

4.2 Upper bounds
For upper bounds, we consider an algorithm that greedily picks a given item if it is possible.
The formal description of the algorithm is given in Algorithm 1. Recall that the resulting
outcome of the algorithm is max{s(B) | B ⊆ Bn, s(B) ≤ 1}, where Bn is the items in the
buffer at the final round n. We prove that the algorithm is optimal for any R > 1.

Algorithm 1 1/(R− 1)-competitive algorithm.

1 B0 ← ∅;
2 for i← 1, 2, . . . do
3 if s(Bi−1 ∪ {ei}) ≤ R then Bi ← Bi−1 ∪ {ei} else Bi ← Bi−1;

I Theorem 4. Algorithm 1 is 1/(R − 1)-competitive for the proportional&non-removable
online knapsack problem with a buffer when 1 < R ≤ 3/2.

Proof. Let ALG be an online algorithm induced by Algorithm 1 and I be an input sequence.
Without loss of generality, we can assume s(I) > R since otherwise ALG(I) = OPT(I).

Suppose that I does not contain items with size at least R−1. Let k be the round such that∑k−1
i=1 s(ei) < R−1 ≤

∑k
i=1 s(ei). Then, we have s(Bk) =

∑k
i=1 s(ei) = s(ek)+

∑k−1
i=1 s(ei) <

(R− 1) + (R− 1) ≤ 1 by s(ek) < R− 1 and R ≤ 3/2. Therefore, in this case, the competitive
ratio is at most 1

R−1 .
Next, suppose that I contains an item with size at least R− 1. Let ej be the first item in

I such that s(ej) ≥ R− 1. If s(Bj−1) ≥ R− 1, then the competitive ratio is at most 1
R−1 by

the same argument as above. Otherwise (i.e., s(Bj−1) < R− 1), we have s(Bj−1 ∪{ej}) ≤ R
and hence ej ∈ Bj ⊆ Bn, i.e., ej is selected in Bn.

Thus, ALG(I) ≥ s(ej) = R− 1 and the competitive ratio is at most 1
R−1 . J

ISAAC 2019

28:6 Online Knapsack Problems with a Resource Buffer

Since 1/(R− 1) = 2 when R = 3/2, we obtain the following corollary from Theorem 4.

I Corollary 5. Algorithm 1 is 2-competitive for the proportional&non-removable online
knapsack problem with a buffer when R ≥ 3/2.

5 General&Removable Case

In this section, we consider the general&removable case. We show that the competitive ratio
is max{ 1

R−1 , 2} for R ≤ 2. In addition, for general R, we prove that the competitive ratio is
at most 1 +O(logR/R) and at least 1 + 1

R+1 .

5.1 Lower bounds
Here, we give lower bounds of the competitive ratio in this case. We first present a general
lower bound 1 + 1/(R+ 1). The proof can be found in the full version [8].

I Theorem 6. For R ≥ 1, the competitive ratio of the general&removable online knapsack
problem with a buffer is at least 1 + 1

R+1 .

Next, we provide the tight lower bound for R ≤ 2. We separately consider the following
two cases: 1 < R ≤ 3/2 and 3/2 ≤ R < 2.

I Theorem 7. For all R with 1 < R ≤ 3/2 and all ε > 0, the competitive ratio of the
general&removable online knapsack problem with a buffer is at least 1/(R− 1)− ε.

Proof. Let ALG be an online algorithm. Let ε̂ be a positive real such that 1/ε̂ is an integer
and min

{
1

(R−1+ε̂)(1+ε̂) ,
1−ε̂2

R−1

}
≥ 1

R−1 − ε. In addition, let m := 1/ε̂ and n := 1/ε̂3.
Suppose that ALG is requested the following sequence of items:

(1, 1), (ε̂, ε̂3), (ε̂, 2ε̂3), . . . , (ε̂, nε̂3),

until ALG discards the first item (1, 1). Note that the first item has a large size and a
medium density, and the following items have the same small sizes but different densities
that slowly increase from small to large. In addition, ALG must take the first item at the
beginning (otherwise the competitive ratio becomes infinite). Thus, ALG would keep the
first item and the last bR−1

ε̂ c items in each round.
We have two cases to consider: ALG discards the first item (1, 1) or not.

Case 1: Suppose that ALG discards the first item (1, 1) when the item (ε̂, iε̂3) comes. Note
that the requested sequence is I :=

(
(1, 1), (ε̂, ε̂3), (ε̂, 2ε̂3), . . . , (ε̂, iε̂3)

)
. Then, we have

ALG(I) ≤ (bR−1
ε̂ c+ 1)iε̂3 (since ALG keeps at most bR−1

ε̂ c+ 1 small items at the end)
and OPT(I) ≥ max{1, m · (i−m)ε̂3} (the left term 1 comes from the first item and the
right term m · (i−m)ε̂3 comes from the last m (= 1/ε̂) items). Hence, the competitive
ratio is at least max{1,m·(i−m)ε̂3}

(bR−1
ε̂ c+1)iε̂3 ≥ 1

(R−1+ε̂)(1+ε̂) ≥
1

R−1 − ε.
Case 2: Suppose that ALG does not reject the first item until the end. Then, the competitive

ratio is at least m·(n−m)ε̂3

bR−1
ε̂ cnε̂3 ≥ 1

R−1 ·
m(n−m)ε̂3

nε̂2 = 1−ε̂2

R−1 ≥
1

R−1 − ε. J

I Theorem 8. For all R with 3/2 ≤ R < 2 and all ε > 0, the competitive ratio of the
general&removable online knapsack problem with a buffer is at least 2− ε.

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:7

Proof. Let k be an integer such that k > max{ 1
2−R ,

1
ε }. Let ALG be an online algorithm.

Consider the item sequence I := (e1, . . . , ek) where (s(ei), v(ei)) = (1− i
2k2 , 1− i

2k) for
i = 1, . . . , k. Then, at the end of the sequence, ALG must keep exactly one item because it
must select at least one item (otherwise the competitive ratio is unbounded) and every pair
of items exceeds the capacity of the buffer (i.e., s(ei) + s(ej) ≥ 2(1− k

2k2) = 2− 1
k > R for

any i, j ∈ {1, . . . , k}).
Suppose that {ei} is selected in the buffer at the end of the sequence I. If i = k, then the

competitive ratio for I is OPT(I)
ALG(I) = v(e1)

v(ek) = 1− 1
2k

1− 1
2

= 2 − 1
k > 2 − ε. Otherwise (i.e., i < k),

let us consider a sequence I ′ := (e1, . . . , ek, ek+1) with (s(ek+1), v(ek+1)) = (i+1
2k2 , 1 − i

2k).
Then, the competitive ratio for I ′ is at least OPT(I′)

ALG(I′) = v(ei+1)+v(ek+1)
v(ei) = (1− i+1

2k)+(1− i
2k)

1− i
2k

=
2− 1

2k−i ≥ 2− 1
k > 2− ε. J

5.2 Upper bounds
Here, we provide an asymptotically nearly optimal algorithm for large R and an optimal
algorithm for small R (< 2).

First, we provide a (1 + O(logR/R))-competitive algorithm for the asymptotic case.
Suppose that R is sufficiently large. Let m := b(R− 3)/2c and let ε (≤ 1) be a positive real
such that log1+ε(1/ε) = m. Note that we have m = Θ(1

ε log 1
ε) and ε = O(logR/R) (see

Lemma 18 in Appendix A).
We partition all the items as follows. Let S be the set of items with size at most ε.

Let M be the set of items not in S and let M j (j ∈ Z) be the set of items e ∈ M with
(1 + ε)j ≤ v(e) < (1 + ε)j+1 (note that j is not restricted to be positive). Let us consider
Algorithm 2 for the problem. Intuitively, the algorithm selects items in greedy ways for
S and each M j with νi ≤ j ≤ µi. Note that for any i ≥ 1, we have µi − νi = 2m. For
each i ≥ 1, since s(Bi ∩ S) ≤ 2 + ε and s(Bi ∩M j) ≤ 1 for any νi ≤ j ≤ µi, we have
s(Bi) ≤ 2m+ 2 + ε ≤ R. Thus, the algorithm is applicable.

Algorithm 2 (1 + O(log R/R))-competitive algorithm.

1 B0 ← ∅;
2 for i← 1, 2, . . . do
3 Bi ← ∅ and B′i ← (Bi−1 ∪ {ei});
4 foreach e ∈ B′i ∩ S in the non-increasing order of the density do
5 Bi ← Bi ∪ {e};
6 if s(Bi) > 2 then break;
7 Let e∗i ∈ arg max{v(e) | e ∈ B′i};
8 Let µi ← blog1+ε v(e∗i)c and νi ← blog1+ε ε

2v(e∗i)c; // e∗i ∈Mµi

9 for j ← νi, . . . , µi do
10 foreach e ∈ B′i ∩M j in the non-decreasing order of the size do
11 if s(Bi ∩M j) + s(e) ≤ 1 then Bi ← Bi ∪ {e};

I Theorem 9. Algorithm 2 is (1+O(logR/R))-competitive for the general&removable online
knapsack problem with a buffer when R is a sufficiently large real.

ISAAC 2019

28:8 Online Knapsack Problems with a Resource Buffer

Let I := (e1, . . . , en) be an input sequence, BOPT ∈ arg max{v(X) | s(X) ≤ 1, X ⊆
{e1, . . . , en}} be the offline optimal solution, and BALG ∈ arg max{v(X) | s(X) ≤ 1, X ⊆
Bn} be the outcome solution of ALG. We construct another feasible solution B∗ from Bn
by Algorithm 3. Note that v(BALG) ≥ v(B∗).

Algorithm 3 Construct a feasible solution.

1 B∗ ← Bn ∩BOPT;
2 for k ← νn, . . . , µn do
3 Let rk ← |(BOPT \B∗) ∩Mk|;
4 for j ← 1, . . . , rk do
5 Let a← arg min{s(e) | e ∈ (Bn \B∗) ∩Mk} and B∗ ← B∗ ∪ {a};

6 while (Bn \B∗) ∩ S 6= ∅ do
7 Let a ∈ arg max{v(e)/s(e) | e ∈ (Bn \B∗) ∩ S};
8 if s(B∗) + s(a) ≤ 1 then B∗ ← B∗ ∪ {a};
9 else break;

10 return B∗;

To prove the theorem, we show the following two claims.

B Claim 10. v(BOPT ∩M) ≤ (1 + ε)v(B∗ ∩M) + εv(BOPT) and s(BOPT ∩M) ≥ s(B∗ ∩M).

B Claim 11. v(BOPT ∩ S) ≤ v(B∗ ∩ S) + ε(1 + 2ε)v(BOPT).

With these claims, B∗ is feasible, and we have v(BOPT) = v(BOPT ∩M) + v(BOPT ∩ S) ≤
(1 + ε)v(B∗) + (2ε + 2ε2)v(BOPT). This implies (1 − 2ε − 2ε2)v(BOPT) ≤ (1 + ε)v(B∗).
Since v(B∗) ≤ v(BALG), the competitive ratio of Algorithm 2 is at most 1+ε

1−2ε−2ε2 ≤ 1+ε
1−3ε ≤

1 + 6ε = 1 +O(logR/R), when ε < 1/12 (this inequality follows from the assumption that R
is sufficiently large).

The proof is completed by proving Claims 10 and 11.

Proof of Claim 10. Note that v(BOPT∩M) =
∑
k<νn

v(BOPT∩Mk)+
∑
k≥νn v(BOPT∩Mk).

For e ∈ Mk with k < νn, we have s(e) > ε and v(e) < (1 + ε)νn ≤ ε2v(e∗n), and hence
v(e)/s(e) ≤ ε2v(e∗n)/ε ≤ εv(BOPT). Thus, we have

∑
k<νn

v(BOPT ∩Mk) ≤ εv(BOPT). For
k with µn ≤ k ≤ νn, the set Bn ∩ Mk is the greedy solution for Mk according to the
non-decreasing order of their size. Hence, by the construction of B∗, the number of items in
BOPT∩Mk equals to the number of items in B∗∩Mk, and we have s(BOPT∩Mk) ≥ s(B∗∩
Mk). Also, for each e ∈ BOPT∩Mk and f ∈ B∗∩Mk, v(e)/v(f) < (1+ε)k+1/(1+ε)k = (1+ε).
Hence,

∑
k≥νn v(BOPT ∩Mk) ≤ (1 + ε)

∑
k≥νn v(B∗ ∩Mk). C

Proof of Claim 11. It is sufficient to consider the case BOPT ∩ S 6⊆ Bn, since otherwise
BOPT ∩ S ⊆ B∗ ∩ S and the claim clearly holds. Hence, we have s(Bn ∩ S) > 2. Let
Bn ∩ S = {f1, f2, . . . , f|Bn∩S|} be sorted in non-increasing order of their density. Let fj be
the item with the largest index in (Bn ∩ S) \BOPT. Also let ` ≥ 1 be the index such that∑`
i=1 s(fi) ≤ 1 <

∑`+1
i=1 s(fi). There are two cases to consider: j ≤ ` and j > `.

Case 1: Suppose that j ≤ `. Then, by the definition of fj , we have {f`+1, . . . f|Bn∩S|} ⊆
BOPT. Since s(Bn∩S) > 2, we have s(BOPT) ≥ s(BOPT∩S) ≥ s(Bn∩S)−

∑`
i=1 s(fi) > 1,

which contradicts with s(BOPT) ≤ 1.

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:9

Case 2: Suppose that j > `. In this case, we prove that v(fj) ≤ ε(1 + 2ε)v(BOPT).
Since

∑`
i=1 s(fi) ≥ 1 − ε, we have (1 − ε) · v(fj)

s(fj) ≤
∑`
i=1 s(fi) ·

v(fj)
s(fj) ≤

∑`
i=1 s(fi) ·

v(fi)
s(fi) =

∑`
i=1 v(fi) ≤ v(BOPT). Therefore, v(fj) ≤ s(fj)

1−ε v(BOPT) ≤ ε
1−εv(BOPT) ≤

ε(1 + 2ε)v(BOPT) when ε ≤ 1/2.
Since s(B∗ ∩M) ≤ s(BOPT ∩M) by construction of B∗, we have s(B∗ ∩ S) + s(fj) ≥
s(BOPT∩S). By construction of Bn∩S, we have min{v(f)/s(f) | f ∈ (Bn∩S)\BOPT} ≥
max{v(f)/s(f) | f ∈ (BOPT ∩ S) \ Bn}. Therefore, v(B∗ ∩ S) + v(fj) ≥ v(BOPT ∩ S).
Moreover we have v(fj) ≤ ε(1 + 2ε)v(BOPT), and the claim follows. C

The proof of Theorem 9 is completed.

Next, let us consider an algorithm that selects items according to the non-increasing
order of the density. The algorithm is formally described in Algorithm 4. We prove that it is
optimal when 1 < R < 2.

Algorithm 4 max{1/(R− 1), 2}-competitive algorithm for 1 < R < 2.

1 B0 ← ∅;
2 for i← 1, 2, . . . do
3 Bi ← ∅;
4 foreach e ∈ Bi−1 ∪ {ei} in the non-increasing order of the density do
5 if s(Bi) + s(e) ≤ R then Bi ← Bi ∪ {e} ;

I Theorem 12. Algorithm 4 is max{1/(R − 1), 2}-competitive for the general&removable
online knapsack problem with a buffer when 1 < R < 2.

Proof. Let I := (e1, . . . , en) be an input sequence. Without loss of generality, we can assume
that

∑n
i=1 s(ei) > R since otherwise ALG(I) = OPT(I). Let f1, . . . , fn be the rearrangement

of I according to the non-increasing order of the density, i.e., {f1, . . . , fn} = {e1, . . . , en} and
v(f1)/s(f1) ≥ · · · ≥ v(fn)/s(fn). Let k (≤ n− 1) be the index such that

∑k
i=1 s(fi) ≤ 1 <∑k+1

i=1 s(fi). Then, by the definition of the algorithm, we have {f1, . . . , fk} ⊆ Bn. There are
two cases to consider: fk+1 6∈ Bn and fk+1 ∈ Bn.
Case 1: Suppose that fk+1 6∈ Bn. Then, we have

∑k+1
i=1 s(fi) > R, and hence

∑k
i=1 s(fi) >

R− s(fk+1) ≥ R− 1 by s(fk+1) ≤ 1. Thus, OPT(I) is at most ALG(I)/(R− 1) and the
competitive ratio is at most 1/(R− 1).

Case 2: Suppose that fk+1 ∈ Bn. By a similar analysis of the famous 2-approximation
algorithm for the offline knapsack problem, we have OPT(I) ≤

∑k
i=1 v(fi) + v(fk+1) ≤

2 ·max{
∑k
i=1 v(fi), v(fk+1)} ≤ 2 ·ALG(I). Thus, the competitive ratio is at most 2. J

6 Proportional&Removable Case

In this section, we consider the proportional&removable case. We consider the following four
cases separately: (i) 1 ≤ R ≤ 1+

√
2

2 , (ii) 2−
√

2
2 ≤ R ≤ 17−9

√
3, (iii) 2

√
3−2 ≤ R ≤ 3/2, and

(iv) general R (see Figure 1). We remark that the competitive ratios for 1+
√

2
2 ≤ R ≤ 2−

√
2

2
(and 17−9

√
3 ≤ R ≤ 2

√
3−2) can be obtained by considering the upper bound for R = 1+

√
2

2
in case (i) (R = 17 − 9

√
3 in case (ii)) and the lower bound for R = 2 −

√
2

2 in case (ii)
(R = 2

√
3− 2 in case (iii)). Due to space limitation, we only analyze cases (i) and (iv). The

analysis for (ii) and (iii) can be found in the full version [8].

ISAAC 2019

28:10 Online Knapsack Problems with a Resource Buffer

R

Competitive ratio

(i) (ii) (iii)

1+
√

5
2

√
2

1+
√

3
2 4

3

1+
√

2
2 2−

√
2

2
17−9

√
3 2

√
3−2 3

2
1

1+
√

4R+1
2R

√
16R+1−1

2R 2
R

Figure 1 The competitive ratios for the proportional&removable case with 1 ≤ R ≤ 3
2 .

6.1 1 ≤ R ≤ 1+
√

2
2

We prove that the competitive ratio is 1+
√

4R+1
2R when 1 ≤ R ≤ 1+

√
2

2 . Let r > 0 be a real
such that r + r2 = R, i.e., r =

√
1+4R−1

2 .

6.1.1 Lower bound
We first prove the lower bound.

I Theorem 13. For any ε > 0, the competitive ratio of the proportional&removable online
knapsack problem with a buffer is at least 1+

√
4R+1

2R − ε when 1 ≤ R < 2.

Proof. Let ALG be an online algorithm and let ε′ be a positive real such that r
r2+ε′ ≥

1
r − ε

and ε′ < r− r2. Note that r =
√

1+4R−1
2 < 1 and 1

r = 1+
√

4R+1
2R . Consider the input sequence

I := (e1, e2) where s(e1) = r and s(e2) = r2 + ε′. Since r + r2 = R, ALG must discard at
least one of them. If ALG discards the item with size r, then the competitive ratio for the
sequence is r

r2+ε′ ≥
1
r − ε = 1+

√
4R+1

2R − ε. If ALG discards the item with size r2 + ε′, let
I ′ := (e1, e2, e3) where s(e3) = 1− r2 − ε′. As r ≥ 1− r2 and r + (1− r2 − ε′) > 1, we have
OPT(I ′) = 1 and ALG(I ′) ≤ r. Hence the competitive ratio is at least 1

r = 1+
√

4R+1
2R . J

6.1.2 Upper bound for 1 ≤ R ≤ 10/9
Next, we give an optimal algorithm for 1 ≤ R ≤ 10/9. In this subsubsection, an item e is
called small, medium, and large if s(e) ≤ r2, r2 < s(e) < r, and r ≤ s(e), respectively. Let S,
M , and L respectively denote the sets of small, medium, and large items.

We consider Algorithm 5, which is a generalization of the 1+
√

5
2 -competitive algorithm

for R = 1 given by Iwama and Taketomi [9]. If the algorithm can select a set of items B′
such that r ≤ s(B′) ≤ 1, it keeps the set B′ until the end since it is sufficient to achieve
1/r-competitive. Otherwise, it picks the smallest medium item (if exists) and greedily selects
small items according to the non-increasing order of the sizes. We show that it is optimal
when 1 ≤ R ≤ 10/9.

I Theorem 14. Algorithm 5 is 1+
√

1+4R
2R -competitive for the proportional&removable online

knapsack problem with a buffer when 1 ≤ R ≤ 10/9.

Proof. Let I := (e1, . . . , en) be the input sequence. If there exists a large item ei, the
competitive ratio is at most 1/r = 1+

√
1+4R

2R by r ≤ s(ei) ≤ 1. If there exist two medium
items ei, ej such that s(ei) + s(ej) ≤ 1, the competitive ratio is at most 1/r = 1+

√
1+4R

2R
by r < 2r2 < s(ei) + s(ej) ≤ 1. In what follows, we assume that all the input items are

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:11

Algorithm 5 1+
√

1+4R
2R

-competitive algorithm for 1 ≤ R ≤ 10
9 .

1 B0 ← ∅;
2 for i← 1, 2, . . . do
3 if ∃B′ ⊆ Bi−1 ∪ {ei} such that r ≤ s(B′) ≤ 1 then Bi ← B′;
4 else if ei ∈M and |Bi−1 ∩M | = 1 then
5 let {e′i} = Bi−1 ∩M ;
6 if s(ei) < s(e′i) then Bi ← Bi−1 ∪ {ei} \ {e′i};
7 else Bi ← Bi−1;
8 else
9 Bi ← ∅;

10 foreach e ∈ Bi−1 ∪ {ei} in non-increasing order of size do
11 if s(Bi) + s(e) ≤ R then Bi ← Bi ∪ {e};

not large and every pair of medium items cannot be packed into the knapsack together. In
addition, suppose that s(Bn) 6∈ [r, 1] > 1 since otherwise the competitive ratio is at most
1/r = 1+

√
1+4R

2R . By the algorithm, this additional assumption means s(B′) 6∈ [1, r] for any
B′ ⊆ Bi−1 ∪ {ei} with i ∈ {1, . . . , n}.

If {e1, . . . , en} ∩ S ⊆ Bn, the competitive ratio is at most

r + s({e1, . . . , en} ∩ S)
r2 + s({e1, . . . , en} ∩ S) ≤

1
r

= 1 +
√

1 + 4R
2R .

Otherwise, i.e., {e1, . . . , en} ∩ S 6⊆ Bn, let ei be a small item that is not in Bn, and j be the
smallest index such that j ≥ i and ei 6∈ Bj . Note that ei ∈ Bj−1 ∪ {ej}. We have four cases
to consider.
Case 1: Suppose that s(ei) ≥ r/2. In this case, there exists e′ ∈ Bj such that r2 ≥ s(e′) ≥

s(ei). Thus, we have r ≤ s(ei) + s(e′) ≤ 1, a contradiction.
Case 2: Suppose that there exists no medium item in Bj . Then, there exists B′ ⊆ Bj−1∪{ej}

such that r ≤ s(Bj) ≤ 1, because s(Bj−1 ∪ {ej}) > R and all the items in Bj−1 ∪ {ej}
are small. This is a contradiction.

Case 3: Suppose that s(e) < r/2 for any e ∈ Bj ∩ S. Then, we have r ≤ s(Bj) ≤ 1, a
contradiction.

Case 4: Let us consider the other case, i.e., s(ei) < r/2, ∃e ∈ Bj ∩M , and ∃e′ ∈ Bj ∩ S
such that s(e′) ≥ r/2. Then, s(Bj) − s(e) + s(ei) ≥ R − s(e) ≥ R − r2 = r. Also,
s(Bj) − s(e′) ≤ R − s(e′) ≤ R − r/2 = r2 + r/2 ≤ 1. By the additional assumption,
we have s(Bj) − s(e) + s(ei) > 1 and s(Bj) − s(e′) < r. Thus, we have s(Bj) >

1 + s(e)− s(ei) > 1 + r2 − r/2 = (1− r)2 + 3r/2 ≥ r + r/2 ≥ r + s(e′) > s(Bj), which is
a contradiction. J

6.1.3 Upper bound for 10
9 ≤ R ≤

1+
√

2
2

Recall that r > 0 is a real such that r + r2 = R, i.e., r =
√

1+4R−1
2 . For 10

9 ≤ R ≤ 1+
√

2
2 ,

we have 2/3 ≤ r ≤ 1/
√

2 and 1 − r ≤ r/2 ≤ r2 ≤ 1/2 < r < 1. In this subsubsection, an
item e is called small, medium, and large if s(e) ≤ 1 − r, 1 − r < s(e) < r, and r ≤ s(e),
respectively. Let S, M , and L respectively denote the sets of small, medium, and large items.
In addition, M is further partitioned into three subsets Mi (i = 1, 2, 3), where M1, M2, M3
respectively denote the set of the items e with size 1− r < s(e) ≤ r/2, r/2 < s(e) < r2, and
r2 ≤ s(e) < r.

ISAAC 2019

28:12 Online Knapsack Problems with a Resource Buffer

We consider Algorithm 6 for the problem. If the algorithm can select a set of items B′
such that r ≤ s(B′) ≤ 1, it keeps the set B′ until the end. Otherwise, it partitions the buffer
into two spaces with size r and r2. All the small items are taken into the first space. If the
set of medium items is of size at least r2, then the smallest its subset B′ with size at least r2

is selected into the first space. If the set of medium items is of size at most r2, then all of
them are selected into the first space. If there are remaining medium items, the smallest
one is kept in the second space if its size is smaller than r2. We show that the algorithm is
optimal when 10

9 ≤ R ≤
1+
√

2
2 .

Algorithm 6 1+
√

1+4R
2R

-competitive algorithm for 10
9 ≤ R ≤ 1+

√
2

2 .

1 B0 ← ∅, B(1)
0 ← ∅, B(2)

0 ← ∅;
2 for i← 1, 2, . . . do
3 if ∃B′ ⊆ Bi−1 ∪ {ei} such that r ≤ s(B′) ≤ 1 then B

(1)
i ← B′ and B(2)

i ← ∅ ;
4 else if s((Bi−1 ∪ {ei}) ∩M) ≥ r2 then
5 let Ti ∈ arg min{s(B′) | B′ ⊆ (Bi−1 ∪ {ei}) ∩M, s(B′) ≥ r2};
6 B

(1)
i ← Ti ∪ ((Bi−1 ∪ {ei}) ∩ S);

7 if B(1)
i 6= Bi−1 ∪ {ei} then

8 let a ∈ arg min{s(e) | e ∈ Bi−1 ∪ {ei} \B(1)
i };

9 if a ∈M1 ∪M2 then B
(2)
i ← {a};

10 else B
(1)
i ← Bi−1 ∪ {ei} and B(2)

i ← ∅ ;
11 Bi ← B

(1)
i ∪B

(2)
i ;

I Theorem 15. Algorithm 6 is 1+
√

1+4R
2R -competitive for the proportional&removable online

knapsack problem with a buffer when 10/9 ≤ R ≤ 1+
√

2
2 .

Let I := (e1, . . . , en) be the input sequence and let Ik := {e1, . . . , ek} be the first k items
of I.

I Lemma 16. If In ⊆M , then Algorithm 6 is 1+
√

1+4R
2R (= 1/r)-competitive when 10/9 ≤

R ≤ 1+
√

2
2 .

Proof. The proof can be found in the full version [8]. J

Now, we are ready to prove Theorem 15.

Proof of Theorem 15. Let OPT ∈ arg max{s(X) | X ⊆ In, s(X) ≤ 1} and OPTM ∈
arg max{s(X) | X ⊆ In ∩M, s(X) ≤ 1}. Without loss of generality, we can assume that∑n
i=1 s(ei) > R.
If ei ∈ L for some i, then r ≤ s(B(1)

n) ≤ 1. Thus, we assume that all the items in the
input sequence are not large, i.e., In ∩ L = ∅.

Suppose that Algorithm 6 discards some small items, i.e., In ∩ S 6= Bn ∩ S. Let j be
the round such that Ij−1 ∩ S = Bj−1 ∩ S and Ij ∩ S 6= Bj ∩ S. Let Tj ∈ arg min{s(B′) |
B′ ⊆ (Bj−1 ∪ {ej}) ∩M, s(B′) > r}. Since Ij−1 ∩ S = Bj−1 ∩ S and Ij ∩ S 6= Bj ∩ S, we
have s(Tj ∪ (Ij ∩ S)) > 1. Since s(e) < 1 − r (∀e ∈ S), there exists S′ ∈ Ij ∩ S such that
r ≤ s(Tj ∪ S′) ≤ 1. Therefore, if In ∩ S 6= Bn ∩ S, then ALG(I) ≥ r.

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:13

Consequently, we assume In ∩ L = ∅ and In ∩ S ⊆ Bn. Then, the competitive ratio is
at most

s(OPT)
s(B(1)

n)
≤ s(OPTM) + s(In ∩ S)
s(B(1)

n ∩M) + s(In ∩ S)
≤ s(OPTM)
s(B(1)

n ∩M)
,

and hence we can assume, without loss of generality, that In ⊆M .
Thus, by Lemma 16, the theorem is proved. J

6.2 General R
In this subsection, we consider proportional&removable case with general R. By Theorem 9,
the upper bound of the competitive ratio is 1 + O(logR/R). Hence, we only give a lower
bound of the competitive ratio.

I Theorem 17. For any positive real ε<1, the competitive ratio of the proportional&removable
online knapsack problem with a buffer is at least 1 + 1

d2Re+1 − ε.

Proof. Let n := d2Re+ 1 and let ALG be an online algorithm. Consider the item sequence
I := (e1, . . . , en−1, en) where s(ei) = i

n + ε
n2 for i = 1, . . . , n − 1 (we will set s(en) later

depending on ALG). At the end of (n − 1)st round, ALG must discard at least one
item because

∑n−1
i=1 s(ei) >

n−1
2 = d2Re

2 ≥ R. Suppose that ALG discards ej , and let
s(en) = 1 − s(ej). Then, we have OPT(I) = s(ej) + s(en) = 1. We will prove that
ALG(I) is at most 1− (1− ε)/n, which implies that the competitive ratio of ALG is at least

1
1−(1−ε)/n ≥ 1 + (1− ε)/n ≥ 1 + 1

d2Re+1 − ε.
Let B∗ be the output of ALG, i.e., s(B∗) = ALG(I). We have two cases to consider:

en /∈ B∗ and en ∈ B∗.

Case 1: If en 6∈ B∗, then we have s(B∗) =
∑

ei∈B∗
i

n + |B∗|·ε
n2 . We assume B∗ 6= ∅ since

otherwise s(B∗) = 0. Since s(B∗) ≤ 1 and |B
∗|·ε
n2 > 0, we have

∑
{i|ei∈B∗}
n ≤ n−1

n . Hence,
we obtain s(B∗) ≤ n−1

n + n·ε
n2 = 1− 1−ε

n .

Case 2: If en ∈ B∗, then we have s(B∗) = (n−j)+
∑
{i|ei∈B∗\{en}}
n + (|B∗|−2)·ε

n2 . We assume
|B∗| ≥ 3 since otherwise s(B∗) ≤ n−1

n by ej 6∈ B∗. Since s(B∗) ≤ 1 and (|B∗|−2)·ε
n2 > 0, we

have (n−j)+
∑
{i|ei∈B∗\{en}}
n ≤ n−1

n . Hence, we obtain s(B∗) ≤ n−1
n + n·ε

n2 = 1− 1−ε
n . J

References
1 Susanne Albers, Arindam Khan, and Leon Ladewig. Improved Online Algorithms for Knapsack

and GAP in the Random Order Model. In Proceedings of APPROX/RANDOM, pages 22:1–
22:23, 2019.

2 Badanidiyuru Ashwinkumar and Robert Kleinberg. Randomized Online Algorithms for the
Buyback Problem. In Internet and Network Economics, pages 529–536, 2009.

3 Moshe Babaioff, Jason D. Hartline, and Robert D. Kleinberg. Selling Ad Campaigns: Online
Algorithms with Cancellations. In Proceedings of EC, 2009.

4 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack secretary
problem with applications. In Proceedings of APPROX/RANDOM, pages 16–28. Springer,
2007.

5 Marek Cygan, Łukasz Jeż, and Jiří Sgall. Online Knapsack Revisited. Theory of Computing
Systems, 58(1):153–190, 2016.

6 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Online Unweighted Knapsack Problem with
Removal Cost. Algorithmica, 70(1):76–91, 2014.

ISAAC 2019

28:14 Online Knapsack Problems with a Resource Buffer

7 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Randomized algorithms for online knapsack
problems. Theoretical Computer Science, 562:395–405, 2015.

8 Xin Han, Yasushi Kawase, Kazuhisa Makino, and Haruki Yokomaku. Online Knapsack
Problems with a Resource Buffer. CoRR, abs/1909.10016, 2019. arXiv:1909.10016.

9 Kazuo Iwama and Shiro Taketomi. Removable Online Knapsack Problems. In Proceeding of
ICALP, pages 293–305, 2002.

10 Kazuo Iwama and Guochuan Zhang. Optimal Resource Augmentations for Online Knapsack.
In Proceedings of APPROX/RANDOM, pages 180–188, 2007.

11 Yasushi Kawase, Xin Han, and Kazuhisa Makino. Proportional cost buyback problem with
weight bounds. Theoretical Computer Science, 2016.

12 Yasushi Kawase, Xin Han, and Kazuhisa Makino. Unit Cost Buyback Problem. Theory of
Computing Systems, 2018.

13 Yasushi Kawase and Atsushi Iwasaki. Near-Feasible Stable Matchings with Budget Constraints.
In Proceedings of IJCAI, pages 242–248, 2017.

14 Yasushi Kawase and Atsushi Iwasaki. Approximately Stable Matchings with Budget Con-
straints. In Proceedings of AAAI, pages 242–248, 2018.

15 Yasushi Kawase and Atsushi Iwasaki. Approximately Stable Matchings with General Con-
straints. CoRR, abs/1907.04163, 2019. arXiv:1907.04163.

16 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer-Verlag
Berlin Heidelberg, 2004.

17 Anton J. Kleywegt and Jason D. Papastavrou. The dynamic and stochastic knapsack problem.
Operations research, 46(1):17–35, 1998.

18 Dennis Komm. An Introduction to Online Computation. Springer, 2016.
19 Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems.

Mathematical Programming, 68(1):73–104, 1995.
20 Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. Budget Constrained Bidding in

Keyword Auctions and Online Knapsack Problems. In Proceedings of WWW, pages 1243–1244,
2008.

A Relationship Among m, ε and R in Algorithm 2

Here, we prove some relationships among m, ε and R in Algorithm 2.

I Lemma 18. Let R ≥ 3, m := b(R−3)/2c and let ε > 0 be a real such that log1+ε(1/ε) = m.
Then, m = Θ(1

ε log 1
ε) and ε = O(logR/R)

Proof. By the definition of the base of natural logarithm e and the monotonicity of (1+1/x)x,
we have 2 ≤ (1 + 1/x)x ≤ e for any x ≥ 1. As ε ≤ 1, we have

2εm ≤ (1 + ε) 1
ε εm ≤ eεm.

By substituting m = log1+ε(1/ε), we have (1 + ε) 1
ε εm = 1/ε. Hence, we get

εm log 2 ≤ log 1
ε
≤ εm. (1)

This implies m = Θ(1
ε log 1

ε).
Next, we show that ε = O(logR/R). By the inequalities (1), we have

ε ≤
log 1

ε

m log 2 ≤
log
(1
ε log 1

ε

)
m log 2 ≤ logm

m log 2 = logb(R− 3)/2c
b(R− 3)/2c log 2 = O

(
logR
R

)
. J

http://arxiv.org/abs/1909.10016
http://arxiv.org/abs/1907.04163

Local Cliques in ER-Perturbed Random Geometric
Graphs
Matthew Kahle
Department of Mathematics, The Ohio State University, USA
mkahle@math.osu.edu

Minghao Tian
Computer Science and Engineering Dept., The Ohio State University, USA
tian.394@osu.edu

Yusu Wang
Computer Science and Engineering Dept., The Ohio State University, USA
yusu@cse.ohio-state.edu

Abstract
We study a random graph model introduced in [20] where one adds Erdős–Rényi (ER) type
perturbation to a random geometric graph. More precisely, assume G∗X is a random geometric graph
sampled from a nice measure on a metric space X = (X, d). An ER-perturbed random geometric
graph Ĝ(p, q) is generated by removing each existing edge from G∗X with probability p, while inserting
each non-existent edge to G∗X with probability q. We consider a localized version of clique number
for Ĝ(p, q): Specifically, we study the edge clique number for each edge in a graph, defined as the
size of the largest clique(s) in the graph containing that edge. We show that the edge clique number
presents two fundamentally different types of behaviors in Ĝ(p, q), depending on which “type” of
randomness it is generated from.

As an application of the above results, we show that by a simple filtering process based on the
edge clique number, we can recover the shortest-path metric of the random geometric graph G∗X
within a multiplicative factor of 3 from an ER-perturbed observed graph Ĝ(p, q), for a significantly
wider range of insertion probability q than what is required in [20].

2012 ACM Subject Classification Mathematics of computing → Random graphs; Theory of com-
putation → Computational geometry

Keywords and phrases random graphs, random geometric graphs, edge clique number, the probabil-
istic method, metric recovery

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.29

Related Version A full version of the paper is available at https://arxiv.org/abs/1810.08383.

1 Introduction

Random graphs are mathematical models which have applications in a wide spectrum of
domains. Erdős–Rényi graph G(n, p) is one of the oldest and most-studied models for
networks [19], constructed by adding edges between all pairs of n vertices with probability p
independently. Many global properties of this model are well-studied by using the probabilistic
method [1], such as the clique number and the phase transition behaviors of connected
components w.r.t. parameter p.

Another classical type of random graphs is the random geometric graph G(Xn; r) intro-
duced by Edgar Gilbert in 1961 [10]. This model starts with a set of n points Xn randomly
sampled over a metric space (typically a cube in Rd) from some probability distribution, and
edges are added between all pairs of points within distance r to each other. The Erdős–Rényi
random graphs and random geometric graphs exhibit similar behavior for the Poisson degree
distribution; however, other properties, such as the clique number and phase transition
(w.r.to p or to r), could be very different [11, 16, 21, 22].

© Matthew Kahle, Minghao Tian, and Yusu Wang;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 29; pp. 29:1–29:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mkahle@math.osu.edu
mailto:tian.394@osu.edu
mailto:yusu@cse.ohio-state.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.29
https://arxiv.org/abs/1810.08383
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Local Cliques in ER-Perturbed Random Geometric Graphs

This model has many applications in real world where the physical locations of ob-
jects involved play an important role [7], for example wireless ad hoc networks [18] and
transportation networks [2].

We are interested in mixed models that “combine” both types of randomness together.
One way to achieve this is to add Erdős–Rényi type perturbation (percolation) to random
geometric graphs. A natural question arises: what are the properties of this type of random
graphs? Although these graphs are related to the continuum percolation theory [17], our
understanding about them so far is still limited: In previous studies, the underlying spaces
are typically plane (called the Gilbert disc model) [3], cubes [6] and tori [13]; the vertices
are often chosen as the standard lattices of the space; and the results usually concern the
connectivity [4, 23] or diameter [24].

Our work. In this paper, we consider a mixed model of Erdős–Rényi random graphs and
random geometric graphs, and study the behavior of a local property called edge clique
number. More precisely, we use the following ER-perturbed random geometric graph model
previously introduced in [20]. Suppose there is a compact metric space X = (X, d) (as
feature space) with a probability distribution induced by a “nice” measure µ supported on X
(e.g., the uniform measure supported on an embedded smooth low-dimensional Riemannian
manifold). Assume we now randomly sample n points V i.i.d from this measure µ, and build
the random geometric graph G∗X (r), which is the r-neighborhood graph spanned by V (i.e,
two points u, v ∈ V are connected if their distance d(u, v) ≤ r). Next, we add Erdős–Rényi
(ER) type perturbation to G∗X (r): each edge in G∗X (r) is deleted with a uniform probability
p, while each “short-cut” edge between two unconnected nodes u, v is inserted to G∗X (r) with
a uniform probability q. We denote the resulting generated graph by Ĝp,qX (r).

Intuitively, one can imagine that a graph is generated first as a proximity graph (captured
by the random geometric graph) in some feature space (X in the above setting). The random
insertion / deletion of edges then allows for noise or exceptions. For example, in a social
network, nodes could be sampled from some feature space of people, and two people could
be connected if they are nearby in the feature space. However, there are always some
exceptions – friends could be established by chance even they are very different from each
other (“far away”), and two similar (“close”) people (say, close geographically and in tastes)
may not develop friendship. The ER-perturbation introduced above by [20] aims to account
for such kind of exceptions.

We introduce a local property called the edge clique number of a graph G, to provide
a more refined view than the global clique number. It is defined for each edge (u, v) in
the graph, denoted as ωu,v(G), as the size of the largest clique containing uv in graph
G. Our main result is that ωu,v

(
Ĝp,qX (r)

)
presents two fundamentally different types of

behaviors, depending on from which “type” of randomness the edge (u, v) is generated from:
A “good” edge from the random geometric graph G∗X (r) has an edge-clique number similar
to edges from a certain random geometric graph; while a “bad” edge (u, v) introduced during
the random-insertion process has an edge-clique number similar to edges in some random
Erdős–Rényi graph. See Theorems 5, 10, 12, and 14 for the precise statements.

As an application of our theoretical analysis, in Theorem 15, we show that by using a
filtering process based on our edge clique number, we can recover the shortest-path metric of
the random geometric graph G∗X (r) within a multiplicative factor of 3, from an ER-perturbed
graph Ĝp,qX (r), for a significantly wider range of insertion probability q than what’s required
in [20], although we do need a stronger regularity condition on the measure µ. See more
discussion at the end of Section 4.

M. Kahle, M. Tian, and Y. Wang 29:3

2 Preliminaries

Suppose we are given a compact geodesic metric space X = (X, d) [5] 1. We will consider
“nice” measures on X . Specifically,

I Definition 1 (Doubling measure [12]). Given a metric space X = (X, d), let Br(x) ⊂ X

denotes the closed metric ball Br(x) = {y ∈ X | d(x, y) ≤ r}. A measure µ : X → R on
X is said to be doubling if every metric ball (with positive radius) has finite and positive
measure and there is a constant L = L(µ) s.t. for all x ∈ X and every r > 0, we have
µ(B2r(x)) ≤ L · µ(Br(x)). We call L the doubling constant and say µ is an L-doubling
measure.

Intuitively, the doubling measure generalizes a nice measure on the Euclidean space, but
still behaves nicely in the sense that the growth of the mass within a metric ball is bounded
as the radius of the ball increases. For our theoretical results later, we in fact need a stronger
condition on the input measure, which we will specify later in Assumption-A at the beginning
of Section 3.

ER-perturbed random geometric graph. Following [20], we consider the following random
graph model: Given a compact metric space X = (X, d) and a L-doubling probability
measure µ supported on X, let V be a set of n points sampled i.i.d. from µ. We build
the r−neighborhood graph G∗X (r) = (V,E∗) for some parameter r > 0 on V ; that is,
E∗ = {(u, v) | d(u, v) ≤ r, u, v ∈ V }. We call G∗X (r) a random geometric graph generated
from (X , µ, r). Now we add the following two types of random perturbations:
p-deletion: For each existing edge (u, v) ∈ E∗, we delete edge (u, v) with probability p.
q-insertion: For each non-existent edge (u, v) /∈ E∗, we insert edge (u, v) with probability q.

The order of applying the above two types of perturbations doesn’t matter since they
are applied to two disjoint sets respectively. The final graph Ĝp,qX (r) = (V, Ê) is called a
(p, q)-perturbation of G∗X (r), or simply an ER-perturbed random geometric graph.

We now introduce a local version of the standard clique number:

I Definition 2 (Edge clique number). Given a graph G = (V,E), for any edge (u, v) ∈ E, its
edge clique number ωu,v(G) is defined as

ωu,v(G) = the size of the largest clique(s) in G containing (u, v).

Setup for the remainder of the paper. For convenience of reference, we collect our standard
notations. We assume throughout that we are given a fixed compact geodesic metric space
X = (X, d) and a fixed L-doubling probability measure µ. We denote V as the set of n
graph nodes sampled i.i.d. from µ. Ĝ = Ĝp,qX (r) = (V, Ê) is a (p, q)-perturbation of a random
geometric graph G∗ = G∗X (r) spanned by V with radius parameter r. For an arbitrary graph
G, let V (G) and E(G) refer to its vertex set and edge set, respectively, and let NG(u) denote
the set of neighbors of u in G (i.e. nodes connected to u ∈ V (G) by edges in E(G)).

We now define two types of edges in the perturbed graph Ĝ. Roughly speaking, we say
an edge in Ĝ is a good-edge if it is generated by the random geometric graph G∗ and later is
not removed by (p, q)−perturbation. A bad-edge is typically some long-range edge inserted
by the perturbation.

1 A geodesic metric space is a metric space where any two points in it are connected by a path whose
length equals the distance between them. Uniqueness of geodesics is not required. Riemannian manifolds
or path-connected compact sets in the Euclidean space are all geodesic metric spaces.

ISAAC 2019

29:4 Local Cliques in ER-Perturbed Random Geometric Graphs

I Definition 3 (Good / bad-edges). An edge (u, v) in the perturbed graph Ĝ is a good-edge
if d(u, v) ≤ r. An edge (u, v) in the perturbed graph Ĝ is a bad-edge if for any x ∈ NG∗(u)
and y ∈ NG∗(v), we have d(x, y) > r.

In other word, (u, v) is a bad-edge if and only if there are no edges between neighbors of
u and neighbors of v in G∗. See figure 1 for some examples.

u v
z

r

r

r
2

u v
r

r

(a) (b)

Figure 1 (a) shows a good-edge (u, v). It also shows that if d(u, v) ≤ r, then there exists an
r/2-ball (shaded region) in the intersection of Br(u) and Br(v); (b) shows a bad-edge (u, v).

Organization of paper. In Section 3, we study the behavior of edge clique number for good-
edges and bad-edges. Our main result Theorem 14 roughly suggests, under certain conditions
on the insertion probability q, for a good-edge (u, v) of Ĝp,qX (r), with high probability,
ωu,v

(
Ĝ
)
has order Ω (ln lnn); while for a bad-edge (u, v), its edge-clique number ωu,v

(
Ĝ
)

has order o (ln lnn) with high probability.
To illustrate the main ideas, we will first give results for when only edge-insertion type of

perturbations is added to the random geometric graph in Section 3.1 – In fact, this case is of
independent interest as well. An application of our result to recover the shortest-path metric
of the hidden geometric graph is given in Section 4.

3 Two different behaviors of edge clique number

In Section 3.1, we study the edge clique numbers for the insertion-only perturbed random
geometric graphs, both to illustrate the main ideas, and to show the different behaviors of the
edge clique number more clearly. In Section 3.2, we study the case for deletion-only perturbed
random geometric graphs, where we only delete each edge independently with probability
p to obtain an input graph Ĝ. Finally, we discuss the combined case of an ER-perturbed
random geometric graph in Section 3.3.

First, we need the following technical assumption on the parameter r (for the random
geometric graph G∗X (r)) and the measure µ where graph nodes V are sampled from.

[Assumption-A]: The parameter r and the doubling measure µ satisfy the following condition:
There exist s ≥ 13 lnn

n

(
= Ω(lnn

n)
)
and a constant ρ such that for any x ∈ X

(Density-cond) µ
(
Br/2(x)

)
≥ s.

(Regularity-cond) µ
(
Br/2(x)

)
≤ ρs

Intuitively, these two conditions require that for the specific r value we choose, the mass
contained inside all radius-r metric balls are similar (within a constant ρ factor). Density-cond
is equivalent to the Assumption-R in [20]. It requires that r is large enough such that with
high probability each vertex v in the random geometric graph G∗X (r) has degree Ω(lnn).
Indeed, we have the following claim.

M. Kahle, M. Tian, and Y. Wang 29:5

B Claim 4 ([20]). Under Density-cond, with probability at least 1− n−5/3, each vertex in
G∗X (r) has at least sn/4 neighbors.

Proof. For a fixed vertex v ∈ V , let nv be the number of points in (V − {v}) ∩ Br(v). The
expectation of nv is (n − 1) · µ (Br(v)) ≥ (n − 1) · µ

(
B r

2
(v)
)
≥ s(n − 1). By the Chernoff

bound, we thus have that

P
[
nv <

sn

4

]
< P

[
nv <

s(n− 1)
3

]
≤ P

[
nv <

1
3(n− 1)µ (Br(v))

]
≤ e−

(2
3)2

2 (n−1)µ(Br(v)) ≤ n− 8
3

It then follows from the union bound that the probability that all n vertices in V have
more than sn/4 neighbors is at least 1− n · n− 8

3 = 1− n−5/3. C

3.1 Insertion-only perturbation
Recall G∗X (r) = (V,E) is a random geometric graph whose n vertices V sampled i.i.d. from
a L-doubling probability measure µ supported on a compact metric space X = (X, d). In
this section, we assume that the input graph Ĝ is generated from G∗ = G∗X (r) as follows:
First, include all edges of G∗ in Ĝ. Next, for any u, v ∈ V with (u, v) 6= E(G∗), we add edge
(u, v) to E(Ĝ) with probability q. That is, we only insert edges to G∗ to obtain Ĝ.

First, for good-edges, it is easy to obtain the following result.

I Theorem 5. Assume Density-cond holds. Let G∗ be an n-node random geometric graph
generated from (X, d, µ) as described. Denote Ĝ = Ĝq the final graph after inserting each edge
not in G∗ independently with probability q. Then, with high probability, for each good-edge
(u, v) in Ĝ, its edge clique number satisfies that ωu,v(Ĝ) ≥ sn/4.

Proof. For each good-edge (u, v), observe that Br(u) ∩Br(v) contains at least one metric
ball of radius r/2 (say Br/2(z) with z being the mid-point of a geodesic connecting u to v in
X, see Figure 1 (a)). And all the points in an r/2−ball span a clique in G∗ (r−neighborhood
graph). Then by an argument similar to the proof of Claim 4, we have that with probability
at least 1− n− 2

3 , the number of points in all of O(n2) number r/2-balls centered at some
mid-point of the geodesics between all pair of nodes u, v ∈ V is at least sn/4. Hence with
probability at least 1− n− 2

3 , for all good-edge (u, v) in Ĝ, ωu,v(Ĝ) ≥ sn/4. J

Bounding the edge clique number for bad-edges is much more challenging due to the
interaction between local edges (from random geometric graph) and long-range edges (from
random insertion). To handle this, we will create a finite specific collection of subgraphs for
Ĝ in an appropriate manner, and bound the edge clique number of a bad-edge in each such
subgraph. The property of this specific collection of subgraphs is that the union of these
individual cliques provides an upper bound on the edge clique number for this edge in Ĝ. To
construct this finite collection of subgraphs, we will use the so-called Besicovitch covering
lemma which has a lot of applications in measure theory [8]. The finiteness here is crucial
for later applying the union bound (i.e., Bonferroni inequality [9]).

First, we introduce some notations. We use a packing to refer to a countable collection B
of pairwise disjoint closed balls. Such a collection B is a packing w.r.t. a set P if the centers
of the balls in B lie in the set P ⊂ X, and it is a δ-packing if all of the balls in B have radius
δ. A set {A1, . . . , A`}, Ai ⊆ X, covers P if P ⊆

⋃
iAi.

ISAAC 2019

29:6 Local Cliques in ER-Perturbed Random Geometric Graphs

I Lemma 6 (Besicovitch Covering Lemma, doubling space version, [14]). Let X = (X, d) be a
doubling space. Then, there exists a constant β = β(X) ∈ N such that for any P ⊂ X and
δ > 0, there are β different δ-packings w.r.t. P , denoted by {B1, · · · ,Bβ}, whose union also
covers P.

We call the constant β(X) above the Besicovitch constant. Note that this constant
only depends on the doubling space X and thus is finite. Given a set A, we say that A is
partitioned into A1, A2, · · · , Ak, if A = A1 ∪ · · · ∪Ak and Ai ∩Aj = ∅ for any i 6= j.

I Definition 7 (Well-separated clique-partitions family). Consider the random geometric graph
G∗ = G∗X (r). A family P = {Pi}i∈Λ, where Pi ⊆ V and Λ is the index set of Pis, forms a
well-separated clique-partitions family of G∗ if:
1. V = ∪i∈ΛPi.
2. ∀i ∈ Λ, Pi can be partitioned as Pi = C

(i)
1 t C

(i)
2 t · · · t C

(i)
mi where

(2-a) ∀j ∈ [1,mi], there exist v̄(i)
j ∈ V such that C(i)

j ⊆ Br/2
(
v̄

(i)
j

)
∩ V .

(2-b) For any j1, j2 ∈ [1,mi] with j1 6= j2, dH
(
C

(i)
j1
, C

(i)
j2

)
> r, where dH is the Hausdorff

distance between two sets in metric space (X, d).
We also call C(i)

1 tC
(i)
2 t· · ·tC

(i)
mi a clique-partition of Pi (w.r.t. G∗), and its size (cardinality)

is mi. The size of the well-separated clique-partitions family P is its cardinality |P| = |Λ|.

In the above definition, (2-a) implies that each C(i)
j spans a clique in G∗; thus we call

C
(i)
j a clique in Pi and C

(i)
1 t C

(i)
2 t · · · t C

(i)
mi a clique-partition of Pi. (2-b) means that

there are no edges in G∗ between any two cliques of Pi; thus, any edge in Ĝ between such
cliques must come from insertion. The following existence lemma can be derived by applying
Lemma 6 several times.

I Lemma 8. There is a well-separated clique-partitions family P = {Pi}i∈Λ of G∗X (r) with
|Λ| ≤ β2, where β = β(X) is the Besicovitch constant of X .

Proof. To prove the lemma, first we grow an r/2-ball around each node in V ⊂ X (the
vertex set of G∗). By Besicovitch covering lemma (Lemma 6), we have a family of (r/2)-
packings w.r.t. V , B = {B1, · · · ,Bα1}, whose union covers V . Here, the constant α1 satisfies
α1 ≤ β(X).

Each Bi contains a collection of disjoint r/2-balls centered at a subset of nodes in V ,
and let Vi ⊆ V denote the centers of these balls. For any u, v ∈ Vi, we have d(u, v) > r as
otherwise, Br/2(u)∩Br/2(v) 6= ∅ meaning that the r/2-balls in Bi are not all pairwise disjoint.
Now consider the collection of r-balls centered at all nodes in Vi. Applying Besicovitch
covering lemma to Vi again with δ = r, we now obtain a family of r-packings w.r.t. Vi,
denoted by D(i) = D(i)

1 t · · · t D
(i)
α

(i)
2
, whose union covers Vi. Here, the constant α(i)

2 satisfies

α
(i)
2 ≤ β(X) for each i ∈ [1, α1].
Now each D(i)

j contains a set of disjoint r-balls centered at a subset of nodes V (i)
j ⊆ Vi

of Vi. First, we claim that
⋃
j V

(i)
j = Vi. This is because that Bi is an r/2-packing which

implies that d(u, v) > r for any two nodes u, v ∈ Vi. In other words, the r-ball around any
node from Vi contains no other nodes in Vi. As the union of r-balls D(i)

1 t · · · t D
(i)
c

(i)
2

covers
Vi by construction, it is then necessary that each node Vi has to appear as the center in at
least one D(i)

j (i.e, in V (i)
j). Hence

⋃
j V

(i)
j = Vi.

M. Kahle, M. Tian, and Y. Wang 29:7

Now for each vertex set V (i)
j , let P (i)

j ⊆ V denote all points from V contained in the r/2-
balls centered at points in V (i)

j . As ∪jV (i)
j = Vi, we have that

⋃
j P

(i)
j =

⋃
v∈Vi

(
Br/2(v) ∩ V

)
.

It then follows that
⋃
i∈[1,α1]

(⋃
j∈[1,α(i)

2] P
(i)
j

)
= V as the union of the family of r/2-packings

B = {B1,B2, · · · ,Bc1} covers all points in V (recall that Bi is just the set of r/2-balls centered
at points in Vi).

Clearly, each P (i)
j adapts a clique-partition: Indeed, for each V (i)

j , any two nodes in V (i)
j

are at least distance 2r apart (as the r-balls centered at nodes in V ij are disjoint), meaning
that the r/2-balls around them are more than r (Hausdorff-)distance away. In other words,
P =

{
P

(i)
j , i ∈ [1, α1], j ∈ [1, α(i)

2]
}

forms a well-separated clique-partitions family of G∗.

Finally, since α1, α
(i)
2 ≤ β(X) = β, the cardinality of P is thus bounded by β2. J

We also need the following lemma to upper-bound the number of points in every r/2-ball
centered at nodes of G∗.

I Lemma 9. Suppose G∗ = (V,E∗) is an n-node random geometric graph sampled from
(X , µ, r). If Assumption-A holds, then with probability at least 1− n−5, for every v ∈ V , the
ball Br/2(v) ∩ V contains at most 3ρsn points.

Proof. For a fixed vertex v ∈ V , let nv,r/2 be the number of points in (V − {v}) ∩Br/2(v).
By the definition of random geometric graph, we know that nv,r/2 is subject to binomial
distribution Bin

(
n− 1, µ

(
Br/2(v)

))
. The expectation of nv,r/2 is (n− 1)µ(Br/2(v)) ≤ ρsn.

Also note that (n− 1)µ
(
Br/2(v)

)
≥ (n− 1)s ≥ 12 lnn. By applying the Chernoff bound, we

thus have that

P
[
nv,r/2 ≥

5
2ρsn

]
≤ P

[
nv,r/2 ≥

5
2(n− 1)µ

(
Br/2(v)

)]
≤ e−

1
3 (3

2)(n−1)µ(Br/2(v)) ≤ n−6

Finally, by applying the union bound, we know that with probability at least 1−n ·n−6 =
1−n−5, ∀v ∈ G∗, there are at most 5

2ρsn+ 1 < 3ρsn points in the geodesic ball Br/2(v). J

We now state one of our main theorems, which relates the edge clique number for bad-
edges with the insertion probability. To simplify notations, we call a clique containing an
edge (u, v) a uv-clique.

I Theorem 10. Assume Assumption-A holds. Let Ĝ = Ĝq denote the graph obtained by
inserting each edge not in G∗X (r) independently with probability q. Then there exist constants
c1, c2, c3 > 0 which depend on the doubling constant L of µ, the Besicovitch constant β(X),
and the regularity constant ρ, such that for any K = K(n) with K→∞ as n→∞, with high
probability, ωu,v(Ĝ) < K for any bad-edge (u, v) in Ĝ, as long as q satisfies

q ≤ min
{
c1, c2 ·

(
1
n

)c3/K
· K

sn

}
. (1)

I Remark. To illustrate the above theorem, consider for example when K = Θ(sn). Then
the theorem says that there exists constant c′ such that if q < c′, then w.h.p. ωu,v < K (thus
ωu,v = O(sn)) for any bad-edge (u, v). Now consider when q = o(1). Then the theorem
implies that w.h.p. the edge-clique number for any bad-edge is at most K = o(sn). This is
qualitatively different from the edge-clique number for a good-edge for the case q = o(1),
which is Ω(sn) as shown in Theorem 5. By reducing this insertion probability q, this gap
can be made larger and larger.

ISAAC 2019

29:8 Local Cliques in ER-Perturbed Random Geometric Graphs

Proof of Theorem 10. Given any node y, let BVr (y) ⊆ V denote Br(y) ∩ V . Now consider
a bad-edge (u, v). Set Auv = {w ∈ V |w /∈ Br(u) ∪Br(v)} and Buv = {w ∈ V |w ∈ BVr (u) ∪
BVr (v)}. Denote Ãuv = Auv ∪ {u} ∪ {v}; It is easy to check that V = Ãuv ∪Buv.

Let G|S denote the subgraph of G spanned by a subset S of its vertices. Given any set C,
let C|S = C ∩ S be the restriction of C to another set S. Now consider a subset of vertices
C ⊆ V : obviously, C = C|Ãuv ∪ C|Buv . Hence by the pigeonhole principle and the union
bound, we have:

P
[
Ĝ has a uv-clique of size ≥ K

]
≤ P

[
Ĝ|Ãuv has a uv-clique of size ≥ K

2

]
+ P

[
Ĝ|Buv has a uv-clique of size ≥ K

2

]
(2)

Next, we will bound the two terms on the right hand side of Eqn. (2) separately in Case (A)
and Case (B) below.

u v

u v

BV
r (u) BV

r (v)

(a) (b)

Figure 2 (a) A well-separated clique partition P = {P1, P2} of Auv – points in the solid ball are
P1, and those in dashed ball are P2. (b) Points in Buv.

Case (A): bounding the first term in Eqn. (2). We apply Lemma 8 for points in Auv.
This gives us a well-separated clique-partitions family P = {Pi}i∈Λ of Auv with |Λ| being a
constant (see Figure 2 (a)). Augment each Pi to P̃i = Pi∪{u}∪{v}. Suppose there is a clique
C in Ĝ|Ãuv , then as

⋃
i P̃i = Ãuv, we have C =

⋃
i∈Λ C|P̃i , implying that |C| ≤

∑
i∈Λ

∣∣C|P̃i∣∣.
Hence by pigeonhole principle and the union bound, we have:

P
[
Ĝ|Ãuvhas auv-clique of size ≥ K

2

]
≤
|Λ|∑
i=1

P
[
Ĝ|P̃ihas auv-clique of size ≥ K

2|Λ|

]
(3)

Now for arbitrary i ∈ Λ, consider Ĝ|P̃i , the induced subgraph of Ĝ spanned by vertices
in P̃i. Note, Ĝ|P̃i can be viewed as generated by inserting each edge not in G∗|P̃i ∪ {uv} to
it with probability q. Recall from Definition 7 that each Pi adapts a clique decomposition
C

(i)
1 t· · ·tC

(i)
mi , where every C

(i)
j is contained in an r/2-ball, and all such balls are r-separated

(w.r.t Hausdorff distance).
Fix any i ∈ Λ. For simplicity of the argument below, set m = mi, and let Nj =

∣∣∣C(i)
j

∣∣∣
denote the number of points in the j-th cluster C(i)

j . Note that obviously, m ≤ |Pi| ≤ |V | = n

for any i ∈ Λ. Set Nmax = 3ρsn. By Lemma 9, we know that, with high probability (at least
1− n−5), Nj ≤ Nmax for all j in [1,m]. Let F denote the event that “for every v ∈ V , the
ball Br/2(v) ∩ V contains at most Nmax points”; and Fc denotes the complement event of F.

M. Kahle, M. Tian, and Y. Wang 29:9

Now set k :=
⌊

K
2|Λ|

⌋
−2. For every set S of k+2 vertices in this graph Ĝ|P̃i , let AS be the

event “S is a uv-clique in Ĝ|P̃i” and XS its indicator random variable. Set X =
∑
|S|=k+2 XS

and note that X is the number of uv-cliques of size (k + 2) in Ĝ|P̃i . It follows from Markov
inequality that:

P
[
Ĝ|P̃i has a uv-clique of size ≥ k + 2

]
= P[X > 0] ≤ P[X > 0 | F] + P[Fc]

≤ E[X | F] + n−5. (4)

On the other hand, using linearity of expectation, we have:

E[X | F] =
∑

|S|=k+2

E[XS | F] = q2k
∑

x1+x2+···+xm=k
0≤xi≤Ni

(
N1

x1

)(
N2

x2

)
· · ·
(
Nm
xm

)
q(k2−

∑m

i=1
x2
i)/2

≤ q2k
∑

x1+x2+···+xm=k
0≤xi≤Nmax

(
Nmax

x1

)(
Nmax

x2

)
· · ·
(
Nmax

xm

)
q(k2−

∑m

i=1
x2
i)/2 (5)

To estimate this quantity, we have the following lemma:

I Lemma 11. There exists a constant c > 0 depending on β and ρ such that for any constant
ε > 0, if K ≤ csn and

q ≤ min
{(

k!
nεNk

maxm

)1/2k
,

(
k!

k2nεNk
maxm

2

)1/k
,

(
k!

nεmkNk
max

)4/k2}
(6)

then we have that E[X | F] = O(n−ε). Specifically, we can set ε = 3 (this choice will be
necessary later to apply union bound) and obtain E[X | F] = O(n−3).

The proof of this lemma is rather technical, and can be found in Appendix A.1.
Furthermore, |Λ| ≤ β2 (which is a constant) and m = |Pi| ≤ |V | = n. One can then

verify that there exist constants ca2 and ca3 (which depend on the doubling constant L of µ,
the Besicovitch constant β, and the regularity constant ρ), such that if

q ≤ ca2 ·
(

1
n

)ca3/K
· K

sn, (7)

then the conditions in Eqn. (6) will hold (the simple proof of this can be found in Appendix
A.2). Thus, by Lemma 11 and Eqn. (4), we know that if K ≤ csn and (7) holds, then

∀i ∈ Λ,P
[
Ĝ|P̃i has a uv-clique of size ≥ k + 2

]
= O(n−3). (8)

On the other hand, note that

P
[
Ĝ|P̃i has a uv-clique of size ≥ K

2|Λ|

]
= P

[
Ĝ|P̃i has a uv-clique of size ≥ k + 2

]
As |Λ| is a constant, by Eqn. (3), we obtain that

If ∀i ∈ Λ,P
[
Ĝ|P̃i has a uv-clique of size ≥ K

2|Λ|

]
= O(n−3), then

P
[
Ĝ|Ãuv has a uv-clique of size ≥ K

2

]
= O(n−3) (9)

ISAAC 2019

29:10 Local Cliques in ER-Perturbed Random Geometric Graphs

It then follows from Eqn. (8) and (9) that

If K ≤ csn and (7) holds, then P
[
Ĝ|Ãuv has a uv-clique of size ≥ K

2

]
= O(n−3). (10)

Set ca1 = c · ca2 ·
(1
n

)ca3/(c lnn). Easy to see that:

If q ≤ min
{
ca1 , c

a
2 ·
(

1
n

)ca3/K
· K

sn

}
, then

P
[
Ĝ|Ãuv has a uv-clique of size ≥ K

2

]
= O(n−3). (11)

Case (B): bounding the second term in Eqn. (2). Recall that Buv = {w ∈ V | w ∈
BVr (u) ∪ BVr (v)} (see Figure 2 (b)). Imagine we now build the following random graph
G̃localuv = (Ṽ , Ẽ): The vertex set Ṽ is simply Buv. To construct the edge set Ẽ, first, add all
edges in the clique spanned by nodes in BVr (u) as well as edges in the clique spanned by
nodes in BVr (v) into Ẽ. Next, add edge uv to Ẽ. Finally, insert each crossing edge xy with
x ∈ BVr (u) and y ∈ BVr (v) with probability q.

On the other hand, consider the graph Ĝ|Buv , the induced subgraph of Ĝ spanned by
vertices in Buv. We can imagine that the graph Ĝ|Buv was produced by first taking the
induced subgraph G∗|Buv , and then insert crossing edges xy each with probability q. Since
uv is a bad-edge, by Definition 3, we know that there are no edges between nodes in BVr (u)
and BVr (v) in the random geometric graph G∗. Hence we obtain:

P
[
Ĝ|Buv has a uv-clique of size ≥ K

2

]
≤ P

[
G̃localuv has a uv-clique of size ≥ K

2

]
(12)

Using a similar argument as in case (A) (the missing details can be found in Appendix
A.3), we have that there exist constants cb1, cb2, cb3 > 0 which depend on the doubling constant
L, the Besicovitch constant β and the regularity constant ρ such that

If q ≤ min
{
cb1, c

b
2 ·
(

1
n

)cb3/K
· K

sn

}
, then

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
= O(n−3)

Combining this with Eqn. (12), (11) and (2), we know that there exist constants
c1 = min{ca1 , cb1}, c2 = min{ca2 , cb2} and c3 = max{ca1 , cb3} such that if q satisfies conditions in
Eqn. (1), then

P
[
Ĝ has a uv-clique of size ≥ K

]
= O(n−3)

Finally, by applying the union bound, this means:

P
[
for every bad-edge (u, v), Ĝ has a uv-clique of size ≥ K

]
= O(n−1)

Thus with high probability, we have that for every bad-edge (u, v), ωu,v(Ĝ) < K as long as
Eqn. (1) holds. J

M. Kahle, M. Tian, and Y. Wang 29:11

3.2 Edge clique numbers for the deletion-only case
We now consider the deletion-only case, where we assume that the input graph Ĝ = Ĝp is
obtained by deleting each edge in the random geometric graph G∗ = G∗X (r) independently
with probability p. For an edge (u, v) in Ĝ, below we will give a lower bound on the edge-clique
number ωu,v(Ĝ). A simple observation is that for any edge (u, v) in G∗, as dX(u, v) ≤ r,
we have that Br(u) ∩Br(v) must contain a metric ball of radius r/2 (say Br/2(z) centered
at midpoint z of a geodesic connecting u to v in X; see Figure 1 (a)). Thus by a similar
argument as the proof of Claim 4, the number of points in the r/2-ball can be bounded
from below w.h.p. Note that all points in a r/2-ball span a clique in the random geometric
graph G∗. Since we then remove each edge from G∗ independently (to obtain Ĝ), to find a
lower bound for ωu,v(Ĝ), it suffices to consider the “local” subgraph of Ĝ restricted within
this r/2-ball Br/2(z). This local graph has the same behavior as the standard Erdős–Rényi
random graph G(Nz, 1−p), where Nz is the number of points from V within the ball Br/2(z).
This eventually leads to the following result.

I Theorem 12. Assume Density-cond holds. Let Ĝ = Ĝp denote the final graph after deleting
each edge in G∗X (r) independently with probability p. Then, for any constant p ∈ (0, 1), with
high probability, we have ωu,v(Ĝ) ≥ 2

3 log1/(1−p) sn for all edges (u, v) in Ĝ.

On the high level, we first prove the following technical lemma for an Erdős–Rényi random
graph, via an application of Janson’s Inequality [1]. The detailed proof can be found in the
full version of this paper [15] (see Appendix C in [15]).

I Lemma 13. Suppose G = G(N, p̄) is an Erdős–Rényi random graph with

p̄ ∈

((
1
N

) 1
10

,

(
1
N

) 1
64√
N

)
.

Set k :=
⌊
log1/p̄N

⌋
. Then, we have

P[ω(G) < k] < e−N
3/2

where ω(G) is the clique number of graph G.

I Remark. One can easily verify that (1
N) 1

10 is very close to 0 and (1
N)

1
64√
N is very close to 1

as N goes to infinity. Hence the range p̄ ∈
((1

N

) 1
10 ,
(1
N

) 1
64√
N

)
is broader (significantly more

relaxed) than requiring that p̄ is a constant between (0, 1). Hence, while not pursued in the
present paper, it is possible to show that Theorem 12 holds for a larger range of p.

Now we are ready to prove the main result in this section (Theorem 12) .

Proof of Theorem 12. Using the argument in the proof of Claim 4, we know that for a
fixed good-edge (u, v) (i.e. d(u, v) ≤ r), with probability 1− n− 8

3 , the geodesic ball Br/2(z)
(z is the mid-point of a geodesic connecting u to v in X) contains at least (sn/4) points.
Note that all points in a r/2-ball form a clique in r−neighborhood graph. Since we remove
each edge independently, in order to estimate ωu,v(Ĝ) from below, it suffices to consider
the “local” graph spanned by nodes in this r/2-ball. Note that this “local” graph have the
same behavior as the standard Erdős–Rényi random graph Glocuv := G(Nz, 1− p), where Nz
denotes the number of points falling in the ball Br/2(z).

ISAAC 2019

29:12 Local Cliques in ER-Perturbed Random Geometric Graphs

Furthermore, it is easy to see that, if Nz ≥ sn/4, then for any constant p ∈ (0, 1), one

can always find a sufficiently large n such that 1− p ∈
(

(1
Nz

) 1
10 , (1

Nz
)

1
64√Nz

)
.

Now, we are ready to apply Lemma 13 to those “local” graphs: Note that p̄ in Lemma 13
will be set to be 1− p, and N will be set to be Nz.

P
[
ω(Glocuv) < k | Nz ≥

sn

4

]
< e−(sn4)3/2

≤ e−(3 lnn)3/2
< n−(lnn)1/2

where k =
⌊
log1/(1−p)Nz

⌋
.

Hence for k′ = 2
3 log1/(1−p) sn, we have that

P
[
ω(Glocuv) < k′ | Nz ≥

sn

4

]
< P

[
ω(Glocuv) < k | Nz ≥

sn

4

]
< n−(lnn)1/2

.

By the law of total probability, we know that

P
[
ω(Glocuv) < k′ | d(u, v) ≤ r

]
< P

[
ω(Glocuv) < k′ | Nz ≥

sn

4

]
+ P

[
Nz <

sn

4

]
< n−(lnn)1/2

+ n−
8
3

Applying the union bound, we have

P

 ∧
u,v∈V ;d(u,v)≤r

ω(Glocuv) ≥ k′
 = 1− P

[
∃u, v ∈ V with d(u, v) ≤ r s.t. ω(Glocuv) < k′

]
≥ 1− 1

2n
2P
[
ω(Glocuv) < k′ | d(u, v) ≤ r

]
≥ 1− 1

2n
−(lnn)1/2+2 − 1

2n
− 2

3

Thus, with high probability, for each good-edge (u, v), we have

ωu,v(Ĝ) ≥ k′ = 2
3 log1/(1−p) sn. J

3.3 Combined Case
In this section, we consider both the deletion and insertion. In other words, we consider the
ER-perturbed random geometric graph Ĝ generated via the model described in section 2
that includes both edge-deletion probability p and edge-insertion probability q. Our main
results for the combined case are summarized in the following theorem. The (somewhat
repetitive) details can be found in the full version of this paper [15] (see Appendix D in [15]).

I Theorem 14. Assume Assumption-A holds. Let Ĝ = Ĝp,q(r) denote the graph obtained by
removing each edge in G∗ (= G∗X (r)) independently with probability p ∈ (0, 1) and inserting
each edge not in G∗ independently with probability q. There exist constants c1, c2, c3 > 0 which
depend on the doubling constant L of µ, the Besicovitch constant β(X), and the regularity
constant ρ, such that the following holds for any K = K(n) with K→∞ as n→∞
1. W.h.p., for all good-edges (u, v) ∈ Ĝ, ωu,v(Ĝ) ≥ 2

3 log1/(1−p) sn.
2. W.h.p., for all bad-edges (u, v) ∈ Ĝ, ωu,v(Ĝ) < K as long as the insertion probability q

satisfies

q ≤ min
{
c1, c2 ·

(
1
n

)c3/K
· K

sn
√

1− p

}
(13)

M. Kahle, M. Tian, and Y. Wang 29:13

I Remark. For example, assume sn = Θ(lnn). Then for a constant deletion probability
p ∈ (0, 1), w.h.p. the edge clique number for any good-edge is at least Ω

(
log1/(1−p) sn

)
=

Ω(ln lnn). For any bad-edge uv, if the insertion probably q = o
(

(1
n)

c3
ln lnn ln lnn

lnn

)
, then its

edge clique number is at most K = o(ln lnn) w.h.p.. As q decreases, the gap between the
edge clique number for good-edges and bad-edges can be made larger and larger.

Compared to the insertion-only case, it may seem that the condition on q is too restrictive
(recall that for the insertion only case we only require q = o(1) to have a gap between
edge clique number for good-edges and bad-edges). Intuitively, this is because: even for an
Erdős–Rényi graph G(n, q) with q = (1

n)
c3

ln lnn ln lnn
lnn , its clique number is of order Θ(ln lnn)

with high probability2. This clique size is already at the same scale as the bound of edge
clique number for a good-edge in the deletion-only case. Intuitively, this now gets into a
regime where the good/bad-edges potentially have edge cliques of asymptotically similar sizes.

4 Recover the shortest-path metric of G∗(r)

In this section, we show an application in recovering the shortest-path metric structure of
G∗X (r) from an input observed graph Ĝp,qX (r). This problem is previously introduced in [20].
Intuitively, assume that G∗ = G∗X (r) is the true graph of interests (which reflects the metric
structure of (X, d)), but the observed graph is a (p, q)-perturbed version Ĝ = Ĝp,qX (r) as
described in Section 2. The goal is to recover the shortest-path metric of G∗ from its noisy
observation Ĝ with approximation guarantees. Note that due to the random insertion, two
nodes could have significantly shorter path in Ĝ than in G∗.

Specifically, given two different metrics defined on the same space (Y, d1) and (Y, d2), we
say that d1 ≤ α · d2 if for any two points y1, y2 ∈ Y , we have that d1(y1, y2) ≤ α · d2(y1, y2).
The metric d1 is an α-approximation of d2 if 1

α · d2 ≤ d1 ≤ α · d2 for α ≥ 1 and α = 1 means
that d1 = d2.

Let dG denote the shortest-path metric on graph G. It was observed in [20] that, roughly
speaking, deletion (with p smaller than a certain constant) does not distort the shortest-path
metric of G∗ by more than a factor of 2. Insertion however could change shortest-path
distances significantly. The authors of [20] then proposed a filtering process to remove some
“bad” edges based on the so-called Jaccard index, and showed that after the Jaccard-filtering
process, the shortest-path metric of the resulting graph G̃ 2-approximates that of the true
graph G∗ when the insertion probability q is small.

We follow the same framework as [20], but change the filtering process to be one based
on the edge clique number instead. This allows us to recover the shortest-path metric within
constant factor for a much larger range of values of the insertion probability q, although we
do need the extra Regularity-cond which is not needed in [20]. (Note that it does not seem
that the bound of [20] can be improved even with this extra Regularity-cond).

We now introduce our edge-clique based filtering process.
τ -Clique filtering: Given graph Ĝ, we construct another graph G̃τ on the same vertex set as
follows: For each edge (u, v) ∈ E(Ĝ), we insert the edge (u, v) into E(G̃τ) if and only if
ωu,v(Ĝ) ≥ τ . That is, V (G̃τ) = V (Ĝ) and E(G̃τ) :=

{
(u, v) ∈ E(Ĝ) | ωu,v(Ĝ) ≥ τ

}
.

The following result can be proved by almost the same argument as that for Theorem 12
of [20] with the help of Theorem 14.

2 Indeed, the upper bound can be easily derived by computing the expectation; and Lemma 13 in the
Appendix provides the lower bound.

ISAAC 2019

29:14 Local Cliques in ER-Perturbed Random Geometric Graphs

I Theorem 15. Assume Assumption-A holds. Suppose Ĝ = Ĝp,q(r) is the graph as in
Theorem 14. Let G̃τ denote the resulting graph after τ -Clique filtering. Then there exist
constants c0, c1, c2, c3 > 0 which depend on the doubling constant L of µ, the Besicovitch
constant β(X), and the regularity constant ρ, such that if p ∈ (0, c0), τ ≤ 2

3 log1/(1−p) sn, and

q ≤ c2 ·
(

1
n

)c3/τ

· τ

sn
√

1− p

(
= min

{
c1, c2 ·

(
1
n

)c3/τ

· τ

sn
√

1− p

})
,

then, with high probability, the shortest-path metric dG̃τ is a 3-approximation of the shortest-
path metric dG∗ of G∗. However, if the deletion probability p = 0, then we have w.h.p. that
dG̃τ is a 3-approximation of dG∗ as long as τ < sn

4 , and q ≤ min
{
c1, c2 ·

(1
n

)c3/τ · τsn
}
.

Proof. A simple application of Theorem 14 (i) and (ii) gives the following two lemmas,
respectively.

I Lemma 16. Under the same setting as Theorem 14, if p ∈ (0, 1) and the filtering parameter
τ satisfies τ < 2

3 log1/(1−p) sn, then, with high probability, our τ -Clique filtering process will
not remove any good-edges.

I Lemma 17. Under the same setting as Theorem 14, there exist constants c1, c2, c3 > 0
such that for constant p ∈ (0, 1), with high probability, a τ -Clique filtering process deletes all
bad-edges, as long as q ≤ min

{
c1, c2 · (1

n)c3/τ · τ
sn
√

1−p

}
.

Our goal is to show that 1
3dG̃τ ≤ dG∗ ≤ 3dG̃τ . Let E1 denote the event where d

Ĝ∩G∗ ≤
2dG∗ . By Lemma 17 of [20], event E1 happens with probability at least 1− n−Ω(1).

Let E2 denote the event where all edges Ĝ ∩G∗ are also contained in the edge set of the
filtered graph G̃τ ; that is, Ĝ ∩G∗ ⊆ G̃τ . By Lemma 16, event E2 happens with probability
at least 1− n− 2

3 (this bound is derived in the proof of Theorem 12). It then follows that:

If both events E1 and E2 happen, then dG̃τ ≤ dĜ∩G∗ ≤ 2dG∗ ≤ 3dG∗ .

What remains is to show dG∗ ≤ 3dG̃τ . To this end, we define E3 to be the event where
for all bad-edges (u, v) in Ĝ, we have ωu,v(Ĝ) < τ . If E3 happens, then it implies that for an
arbitrary edge (u, v) ∈ E(G̃τ), either (u, v) ∈ E(G∗) (thus dG∗(u, v) = 1) or dG∗(u, v) ≤ 3
(since there is at least one edge connecting NG∗(u) and NG∗(v)). By Lemma 17, event E3
happens with probability at least 1 − o(1) (the exact bound can be found in the proof of
Theorem 14).

By applying the union bound, we know that E1, E2 and E3 happen simultaneously with
high probability.

Using a similar argument as the proof of Theorem 11 in [20], it then follows that given
any u, v ∈ V connected in G̃τ , we can find a path in G∗ of at most 3dG̃τ (u, v) number of
edges to connect u and v. Furthermore, event E1 implies that if u and v are not connected
in G̃τ , then they cannot be connected in G∗ either. Putting everything together, we thus
obtain dG∗ ≤ 3dG̃τ . Theorem 15 then follows. J

I Remark. Consider the insertion-only case (i.e, the deletion probability p = 0), which is a
case of independent interest. In this case, if we choose τ = lnn and assume that sn > 4τ ,
then w.h.p. we can recover the shortest-path metric within a factor of 3 as long as q ≤ c lnn

sn

for some constant c > 0. If sn = Θ(lnn) (but sn > 4τ = 4 lnn), then q is only required to
be smaller than a constant. If sn = lna n for some a > 1, then we require that q ≤ c

lna−1 n
.

In constrast, [20] requires that q = o(s), which is q = o(lnc n
n) if sn = lna n with a ≥ 1. The

gap (ratio) between these two bounds is nearly a factor of n.

M. Kahle, M. Tian, and Y. Wang 29:15

For a constant deletion probability p ∈ (0, c0), our clique filtering process still requires a
much larger range of insertion probability q compared to what’s required in [20]. For example,
assume sn = Θ(lnn). Then if we choose the filtering parameter to be τ =

√
ln lnn, then we

can recover dG∗ approximately as long as the insertion probability q = o
((1

n

) c3√
ln lnn

√
ln lnn
lnn

)
.

This is still much larger than the q required in [20], which is q = o(s) = o
(lnn
n

)
. In fact,

(1
n)

c3√
ln lnn

√
ln lnn
lnn is asymptoticly larger than 1

nε for any ε > 0. However, we do point out
that the Jaccard-filtering process in [20] is algorithmically much simpler and faster, and can
be done in O(n2) time, while the clique-filtering requires the computation of edge-clique
numbers, which is computationally expensive.

References
1 Noga Alon and Joel Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.
2 Philippe Blanchard and Dimitri Volchenkov. Mathematical analysis of urban spatial networks.

Springer Science & Business Media, 2008.
3 Béla Bollobás and Oliver Riordan. Percolation. Cambridge University Press, 2006.
4 Lorna Booth, Jehoshua Bruck, Matthew Cook, and Massimo Franceschetti. Ad hoc wireless

networks with noisy links. In Proceedings of IEEE International Symposium on Information
Theory, pages 386–386. IEEE, 2003.

5 Martin R Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319.
Springer Science & Business Media, 2011.

6 Don Coppersmith, David Gamarnik, and Maxim Sviridenko. The Diameter of a Long-Range
Percolation Graph, pages 147–159. Birkhäuser Basel, Basel, 2002.

7 Carl Dettmann and Orestis Georgiou. Random geometric graphs with general connection
functions. Physical Review E, 93(3):032313, 2016.

8 Herbert Federer. Geometric measure theory. Springer, 2014.
9 Janos Galambos. Bonferroni inequalities. The Annals of Probability, pages 577–581, 1977.
10 Edward Gilbert. Random plane networks. Journal of the Society for Industrial and Applied

Mathematics, 9(4):533–543, 1961.
11 Piyush Gupta and Panganamala Kumar. Critical power for asymptotic connectivity in

wireless networks. In Stochastic analysis, control, optimization and applications, pages 547–566.
Springer, 1999.

12 Juha Heinonen. Lectures on analysis on metric spaces. Springer Science & Business Media,
2012.

13 Svante Janson, Róbert Kozma, Miklós Ruszinkó, and Yury Sokolov. Bootstrap percolation on
a random graph coupled with a lattice. Electronic Journal of Combinatorics, 2016.

14 Antti Kaenmaki, Tapio Rajala, and Ville Suomala. Local homogeneity and dimensions of
measures. Annali Della Scoula Normale Superiore Di Pisa-Classe Di Scienze, 16(4):1315–1351,
2016.

15 Matthew Kahle, Minghao Tian, and Yusu Wang. Local cliques in ER-perturbed random
geometric graphs. arXiv preprint, 2018. arXiv:1810.08383.

16 Colin McDiarmid and Tobias Müller. On the chromatic number of random geometric graphs.
Combinatorica, 31(4):423–488, 2011.

17 Ronald Meester and Rahul Roy. Continuum percolation, volume 119. Cambridge University
Press, 1996.

18 Maziar Nekovee. Worm epidemics in wireless ad hoc networks. New Journal of Physics,
9(6):189, 2007.

19 Mark Newman. Random graphs as models of networks. Handbook of Graphs and Networks:
From the Genome to the Internet, pages 35–68, 2002.

ISAAC 2019

http://arxiv.org/abs/1810.08383

29:16 Local Cliques in ER-Perturbed Random Geometric Graphs

20 Srinivasan Parthasarathy, David Sivakoff, Minghao Tian, and Yusu Wang. A Quest to Unravel
the Metric Structure Behind Perturbed Networks. In 33rd International Symposium on
Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia, pages 53:1–53:16,
2017. doi:10.4230/LIPIcs.SoCG.2017.53.

21 Mathew Penrose. The longest edge of the random minimal spanning tree. Ann. Appl. Probab.,
7(2):340–361, May 1997.

22 Mathew Penrose. Random geometric graphs, volume 5. Oxford University Press, 2003.

23 Gareth Peters and Tomoko Matsui. Theoretical Aspects of Spatial-Temporal Modeling. Springer,
2015.

24 Xian Yuan Wu. Mixing Time of Random Walk on Poisson Geometry Small World. Internet
Mathematics, 2017.

A The missing proofs in Section 3.1

A.1 The proof of Lemma 11

We first pick c(β) to be a positive constant such that
⌊
c(β)Nmax

2|Λ|

⌋
− 2 ≤ Nmax. Then, since

k =
⌊

K
2|Λ|

⌋
− 2, it is easy to see that for any K ≤ c(β)Nmax = c(β)3ρsn, we have k ≤ Nmax.

Pick c = c(β)3ρ. Then, K ≤ csn implies k ≤ Nmax.
To estimate the summation on the right hand side of Eqn. (5), we consider the quantity

xmax := max
i
{xi}. We first enumerate all the possible cases of (x1, x2, · · · , xm) when xmax is

fixed, and then vary the value of xmax.

Set h(y) = max
xmax=y

{
m∑
i=1

x2
i

}
for y ≥

⌈
k
m

⌉
. It is the maximum value of

m∑
i=1

x2
i under the

constraint xmax = y. Without loss of generality, we assume x1 = y and y ≥ x2 ≥ x3 ≥

· · · ≥ xm ≥ 0. We argue that arg max
xmax=y

{
m∑
i=1

x2
i

}
= {y, y, · · · , y, k − ry, 0, · · · , 0}, that is

x1 = x2 = · · · = xr = y, xr+1 = k − ry where r =
⌊
k
y

⌋
.

To show this, we first consider x2: if x2 = y, then consider x3; otherwise, x2 < y, then
we search for the largest index j such that xj > 0. Note the fact that if x ≥ y > 0, then
(x + 1)2 + (y − 1)2 = x2 + y2 + 2(x − y) + 2 > x2 + y2. So if we increase x2 by 1 and
decrease xj by 1, we will enlarge

m∑
i=1

x2
i . After we update x2 = x2 + 1, xj = xj − 1, we

still get a decreasing sequence x1 ≥ x2 ≥ · · · ≥ xm ≥ 0. If we still have x2 < y, then we
repeat the same procedure above (by increasing x2 and decreasing xj where j is the largest
index such that xj > 0). We repeat this process until x2 = y or x1 + x2 = k. If it is the
former case (i.e, x2 = y), then we consider x3 and so on. Finally, we will get the sequence
x1 = · · · = xr = y, xr+1 = k − ry where r =

⌊
k
y

⌋
as claimed, and this maximizes

m∑
i=1

x2
i .

Next we claim that h(y + 1) > h(y). The reason is similar to the above. We update the
sequence x1 = x2 = · · · = xr = y, xr+1 = k − ry (which corresponding to h(y)) from x1: we
increase x1 by 1; search the largest index s such that xs > 0 and decrease xs by 1. And then
consider x2 and so on and so forth. This process won’t stop until x1 = x2 = · · · = xq = y + 1
and xq+1 = k − q(y + 1) with q =

⌊
k
y+1

⌋
. Thus h(y + 1) > h(y).

By enumerating all the possible values of xmax, we split Eqn. (5) into three parts as
follows (corresponding to xmax = k, xmax ∈

[⌈
k+1

2
⌉
, k − 1

]
and xmax ∈

[⌈
k
m

⌉
,
⌈
k+1

2
⌉
− 1
]
)

(see the remarks after this equation for how the inequality is derived);

https://doi.org/10.4230/LIPIcs.SoCG.2017.53

M. Kahle, M. Tian, and Y. Wang 29:17

q2k
∑

x1+x2+···+xm=k
xi≥0

(
Nmax

x1

)(
Nmax

x2

)
· · ·
(
Nmax

xm

)
q(k2−

∑m

i=1
x2
i)/2

≤ q2k
(
Nmax

k

)
m + q2k

k−1∑
xmax=d k+1

2 e

((
m

1

)(
Nmax

xmax

) ∑
y1+···+ym−1=k−xmax

xmax≥yi≥0

(
Nmax

y1

)
· · ·

(
Nmax

ym−1

)
qxmax(k−xmax)

)
+
(
mNmax

k

)
q

(k−1)2
4 +2k.

(14)

I Remark. The first term on the right hand side of Eqn. (14) comes from the fact that if
xmax = k, then there are m possible cases for (x1, x2, · · · , xm). For each case, the value of
each term in the summation is

(
Nmax
k

)
, giving rise to the first term in Eqn. (14).

The third term on the right hand side of Eqn. (14) can be derived as follows. First,
observe that

d k+1
2 e−1∑

xmax=d kme

(∑
x1+x2+···+xm=k

xi≥0,maxi{xi}=xmax

(
Nmax

x1

)(
Nmax

x2

)
· · ·
(
Nmax

xm

))

≤
∑

x1+x2+···+xm=k
xi≥0

(
Nmax

x1

)(
Nmax

x2

)
· · ·
(
Nmax

xm

)
=
(
mNmax

k

)
.

On the other hand, as xmax ≤
⌈
k+1

2
⌉
− 1 =

⌈
k−1

2
⌉
, we have:

k2 −
∑m
i=1 x

2
i

2 ≥ k2 − h(xmax)
2 ≥

k2 − h(
⌈
k−1

2
⌉
)

2 ≥ (k − 1)2

4 ,

where the second inequality uses the fact that h(y) is an increasing function, and the last
inequality comes from that h(

⌈
k−1

2
⌉
) ≤ (

⌈
k−1

2
⌉
)2 +(

⌈
k−1

2
⌉
)2 +1 ≤ k2/4+k2/4+1 = k2/2+1.

To this end, it suffices to estimate all three terms on the right hand side of Eqn. (14).

The first term of Eqn. (14): According to the assumptions in Eqn. (6), we know

q ≤
(

k!
nεNk

maxm

)1/2k
.

Thus, for the first term of Eqn. (14), we have:

q2k
(
Nmax

k

)
m ≤

(
k!

nεNk
maxm

)
Nk

max
k! m = 1

nε
. (15)

The second term of Eqn. (14): For the second term of Eqn. (14), we relax the constraint
xmax ≥ yi ≥ 0 to yi ≥ 0. Thus, we have:∑

y1+···+ym−1=k−xmax
xmax ≥ yi≥0

(
Nmax

y1

)
· · ·
(
Nmax

ym−1

)
≤

∑
y1+···+ym−1=k−xmax

yi≥0

(
Nmax

y1

)
· · ·
(
Nmax

ym−1

)

=
(

(m− 1)Nmax

k − xmax

)
≤ (m− 1)k−xmaxNk−xmax

max
(k − xmax)! . (16)

ISAAC 2019

29:18 Local Cliques in ER-Perturbed Random Geometric Graphs

Now apply (16) to the second term of (14), we have (starting from the second line, we
replace xmax to be j for simplicity):

q2k
k−1∑

xmax=d k+1
2 e

((
m

1

)(
Nmax

xmax

) ∑
y1+···+ym−1=k−xmax

xmax≥yi≥0

(
Nmax

y1

)
· · ·
(
Nmax

ym−1

)
qxmax(k−xmax)

)

≤
k−1∑

j=d k+1
2 e

(
m

(Nmax)j

j! q2k+j(k−j) (m− 1)k−jNk−j
max

(k − j)!

)

<

k−1∑
j=d k+1

2 e

(
mk−j+1Nk

max

(
k

k − j

)
1
k!q

2k+j(k−j)

)

<

k−1∑
j=d k+1

2 e

(
mk−j+1Nk

max
kk−j

(k − j)!
1
k!q

2k+j(k−j)

)
. (17)

Since q ≤
(

k!
k2nεNk

maxm
2

)1/k
by Eqn. (6), for each j satisfying

⌈
k+1

2
⌉
≤ j ≤ k − 1, we

have:

mk−j+1Nk
max

kk−j

(k − j)!
1
k!q

2k+j(k−j)

≤ mk−j+1Nk
max

kk−j

(k − j)!
1
k!

k!
k2nεNk

maxm
2

(
k!

k2nεNk
maxm

2

) 2k+j(k−j)
k −1

≤ mk−j−1kk−j−1
(

k!
k2nεNk

maxm
2

) k+j(k−j)
k 1

knε

≤ mk−j−1kk−j−1
(

k!
k2nεNk

maxm
2

) k−j−1
2 1

knε
(18)

=
(

k!
nεNk

max

) k−j−1
2 1

knε

≤ 1
knε

. (19)

Eqn. (18) comes from two facts: 1) k ≤ Nmax (and thus the term k!
k2nεNk

maxm
2 < 1)

and 2) by tedious by elementary calculation, we can show that k+j(k−j)
k ≥ k−j−1

2 when⌈
k+1

2
⌉
≤ j ≤ k − 1. Eqn. (19) holds since k ≤ Nmax (and thus k!

nεNk
max

< 1).

The third term of Eqn. (14): For the third term of (14), plugging in the condition

q ≤
(

k!
nεmkNk

max

) 4
k2

,

M. Kahle, M. Tian, and Y. Wang 29:19

we thus have(
mNmax

k

)
q

(k−1)2
4 +2k ≤ (mNmax)k

k! q
(k−1)2

4 +2k

≤ (mNmax)k

k!
k!

nεmkNk
max

(
k!

nεmkNk
max

) 4
k2

(
(k−1)2

4 +2k
)
−1
≤ 1

nε

(20)

where the last inequality holds as k!
nεmkNk

max
< 1.

Finally, combining (15), (19) and (20), we have:

E[X | F] ≤ 1
nε

+ k

2 ·
1
knε

+ 1
nε

= 5
2nε .

This proves Lemma 11.

A.2 Existences of constants ca
2 and ca

3

We claim that there exist constants ca2 and ca3 (which depend on the doubling constant L of
µ, the Besicovitch constant β, and the regularity constant ρ), such that if

q ≤ ca2 ·
(

1
n

)ca3/K
· K

sn,

then the conditions in Eqn. (6) will hold. We prove this by elementary calculation below,
where we will use the Stirling’s approximation k! >

√
2πkke−k and the fact that k ≤ Nmax =

3ρsn (K ≤ csn implies this due to the choice of c in the proof of Lemma 11) and m ≤ n

(where recall that m is the size of the number of clusters in the clique-decomposition of Pi).(
k!

nεNk
maxm

) 1
2k

>

(√
2πkke−k

n1+ε

) 1
2k (1

3ρsn

) 1
2

=
(
e−

1
2 (2π) 1

4k

)(1
n

) 1+ε
2k
(

k

3ρsn

) 1
2

(
k!

k2nεNk
maxm

2

) 1
k

>
(
e−1(2π) 1

4k k−
2
k

)(1
n

) 2+ε
k
(

k

3ρsn

)
(

k!
nεmkNk

max

) 4
k2

>
(

(2π)
2
k2 e−

4
k

)(1
n

) 4(k+ε)
k2

(
k

3ρsn

) 4
k

.

Thus, by comparing the exponents of each term, we know that if q ≤ 1
3ρe
(1
n

) 4+ε
k
(
k
sn

)
, then

the condition on q holds. Finally, since k =
⌊

K
2|Λ|

⌋
− 2, easy to see there exists constants

ca2 , c
a
3 such that the constraint q ≤ ca2

(1
n

)ca3/K K
sn implies the condition.

A.3 The missing details in case (B) of Theorem 10
Denote by H the event that “for every v ∈ V , the ball Br(v) ∩ V contains at most 3Lρsn
points”, and Hc is its complement. By an argument similar to that of Claim 9, we have
that P[Hc] ≤ n−5. Set Nu := |BVr (u)| and Nv := |BVr (v)|. Let k̃ :=

⌊K
2
⌋
− 2. For every set

S of (k̃ + 2) vertices in G̃localuv , let AS be the event “S is a uv-clique in G̃localuv ” and YS its
indicator random variable. Set

Y =
∑

|S|=k̃+2

YS .

ISAAC 2019

29:20 Local Cliques in ER-Perturbed Random Geometric Graphs

Then Y is the number of uv-cliques of size (k̃ + 2) in G̃localuv . Linearity of expectation gives:

E[Y | H] =
∑

|S|=k̃+2

E[YS | H] =
∑

x1+x2=k̃
0≤x1≤Nu−1
0≤x2≤Nv−1

(
Nu − 1
x1

)(
Nv − 1
x2

)
q(x1+1)(x2+1)−1. (21)

To estimate this quantity, we first prove the following result:

I Lemma 18. For any constant ε > 0, we have that E[Y | H] = O(n−ε) as long as the
following condition on q holds:

q ≤ min

(

k̃!
k̃2nε(Nu +Nv)k̃

)1/k̃

,

(
k̃!

nε(Nu +Nv)k̃

)16/k̃2
 . (22)

Specifically, setting ε = 3 (a case which we will use later), we have E[Y | H] = O(n−3).

The proof of this technical result can be found in Appendix A.4.
Note that if event H is true, then Nu+Nv ≤ 6Lρsn. In this case, there exist two constants

cb2 and cb3 which depend on the doubling constant L of µ, the Besicovitch constant β, and
the regularity constant ρ, such that if K ≤ 12Lρsn and

q ≤ cb2 ·
(

1
n

)cb3/K
· K

sn,

then the conditions in Eqn. (22) will hold (the simple proof of this can be found in Appendix
A.5).

On the other hand, we have

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
= P[Y > 0]

= P[Y > 0 | H] · P[H] + P[Y > 0 | Hc] · P[Hc]
≤ P[Y > 0 | H] + P[Hc]
≤ E[Y | H] + n−5.

Thus, by Lemma (18), we know that

If K ≤ 6Lρsn and q ≤ cb2 ·
(

1
n

)cb3/K
· K

sn , then

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
= O(n−3). (23)

Finally, suppose K > K1 = 12Lρsn. Set

cb1 = cb2 ·
(

1
n

)cb3/(12Lρ lnn)
· K1

sn ≤ c
b
2 ·
(

1
n

)cb3/K1

· K1

sn

where the inequality holds as by Assumption-A sn > lnn. Plugging in K1 = 12Lρsn to the
definition of cb1, it is then easy to see that cb1 is a positive constant. Using Eqn. (23), we
know that if q ≤ cb1 and K > K1 = 12Lρsn, then

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
≤ P

[
G̃localuv has a uv-clique of size ≥ K1

2

]
= O(n−3).

M. Kahle, M. Tian, and Y. Wang 29:21

Combining this with the discussion above and applying Lemma 18, we have

If q ≤ min
{
cb1, c

b
2 ·
(

1
n

)cb3/K
· K

sn

}
, then

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
= O(n−3).

A.4 The proof of Lemma 18

Proof. It is easy to see that if K > 2(Nu +Nv), then k̃ > Nu +Nv − 2 which implies that
the summation on the right hand side of Eqn. (21) is 0. Now let’s focus on the case when
K ≤ 2(Nu +Nv). In this case, we have k̃ ≤ (Nu − 1) + (Nv − 1) < Nu +Nv. Note that the
right hand side of (21) can be bounded from above by:

∑
x1+x2=k̃

0≤x1≤Nu−1
0≤x2≤Nv−1

(
Nu − 1
x1

)(
Nv − 1
x2

)
q(x1+1)(x2+1)−1 ≤ qk̃

k̃∑
i=0

(
Nu
i

)(
Nv
k̃ − i

)
qi(k̃−i)

≤ qk̃

b k̃4 c∑
i=0

[(
Nu
i

)(
Nv
k̃ − i

)
+
(
Nu
k̃ − i

)(
Nv
i

)]
qi(k̃−i)

 +
(
Nu +Nv

k̃

)
qk̃+ k̃2

16 . (24)

Eqn. (24) is due to the fact that when
⌊
k̃
4

⌋
+ 1 ≤ i ≤ k̃ −

⌊
k̃
4

⌋
− 1, we have

i(k̃ − i) ≥
(⌊

k̃

4

⌋
+ 1
)(⌊

k̃

4

⌋
+ 1
)
≥ k̃2

16 .

Now it suffices to estimate the two terms on the right hand side of Eqn. (24).

The first term of Eqn. (24): For the first term of (24), we have the following estimate:

[(
Nu
i

)(
Nv
k̃ − i

)
+
(
Nu
k̃ − i

)(
Nv
i

)]
qk̃+i(k̃−i) ≤ N i

uN
k̃−i
v +N k̃−i

u N i
v

i!(k̃ − i)!
qk̃qi(k̃−i)

≤ (Nu +Nv)k̃

i!(k̃ − i)!
qk̃qi(k̃−i).

By plugging in the condition q ≤
(

k̃!
k̃2nε(Nu +Nv)k̃

)1/k̃

, we have:

(Nu +Nv)k̃

i!(k̃ − i)!
qk̃qi(k̃−i) ≤ (Nu +Nv)k̃

i!(k̃ − i)!
k̃!

k̃2nε(Nu +Nv)k̃
qi(k̃−i) = k̃!

i!(k̃ − i)!
qi(k̃−i)

1
k̃2nε

.

For i = 0, we have k̃!
i!(k̃ − i)!

qi(k̃−i) 1
k̃2nε

= 1
k̃2nε

. For i ≥ 1, note that 1 ≤ i ≤
⌊
k̃
4

⌋
implies

ISAAC 2019

29:22 Local Cliques in ER-Perturbed Random Geometric Graphs

i(k̃−i)
k̃
≥ i

2 . Thus, we have:

k̃!
i!(k̃ − i)!

qi(k̃−i)
1

k̃2nε
≤ k̃i

i!

(
k̃!

k̃2nε(Nu +Nv)k̃

) i(k̃−i)
k̃ 1

k̃2nε

≤ k̃i

i!

(
k̃!

k̃2nε(Nu +Nv)k̃

) i
2 1
k̃2nε

≤
(

k̃!
nε(Nu +Nv)k̃

) i
2 1
k̃2nε

≤ 1
k̃2nε

.

The last two inequalities hold since k̃ ≤ Nu +Nv. Therefore,

qk̃
b k̃4 c∑
i=0

[(
Nu
i

)(
Nv
k̃ − i

)
+
(
Nu
k̃ − i

)(
Nv
i

)]
qi(k̃−i) ≤ k̃

4
1

k̃2nε
= 1

4k̃nε
. (25)

The second term of Eqn. (24): For the second term of (24), directly plugging in the

condition q ≤
(

k̃!
(Nu+Nv)k̃nε

)16/k̃2

, we have:

(
Nu +Nv

k̃

)
qk̃+ k̃2

16 ≤ (Nu +Nv)k̃

k̃!
k̃!

(Nu +Nv)k̃nε

(
k̃!

(Nu +Nv)k̃nε

) 16
k̃2

(
k̃+ k̃2

16

)
−1

≤ 1
nε
.

(26)

Finally, combining (25) and (26), we have:

E[Y | H] ≤ 1
4k̃nε

+ 1
nε

<
2
nε
.

This finishes the proof of Lemma 18. J

A.5 Existences of constants cb
2 and cb

3

Note that as event H holds, we have Nu +Nv ≤ 6Lρsn. Also note that if K ≤ 12Lρsn, then
k̃ ≤ 6Lρsn. Hence

(
k̃!

k̃2nε(Nu +Nv)k̃

) 1
k̃

>

(√
2πk̃k̃e−k̃

k̃2nε

) 1
k̃ 1

6Lρsn =
(

(2π)
1

2k̃ k̃−
2
k̃ e−1

)(1
n

) ε
k̃
(

k̃

6Lρsn

)
(

k̃!
nε(Nu +Nv)k̃

) 16
k̃2

> (2π)
8
k̃2 e−

16
k̃

(
1
n

) 16ε
k̃2
(

k̃

6Lρsn

) 16
k̃

.

Finally, observe that (2π)
8
k2 > 1, e− 16

k > 1
e . It then follows that there exists constants

cb2, c
b
3 such that cb2

(1
n

)cb3/K K
sn is smaller than the last term in the right hand side of each

equation above. Hence k̃ ≤ 6Lρsn and q ≤ cb2
(1
n

)cb3/K K
sn implies the condition on q as in

Eqn. (22).

Local Routing in Sparse and Lightweight
Geometric Graphs
Vikrant Ashvinkumar
University of Sydney, Australia
vash7242@uni.sydney.edu.au

Joachim Gudmundsson
University of Sydney, Australia
joachim.gudmundsson@sydney.edu.au

Christos Levcopoulos
Lund University, Sweden
christos.levcopoulos@cs.lth.se

Bengt J. Nilsson
Malmö University, Sweden
bengt.nilsson.ts@mau.se

André van Renssen
University of Sydney, Australia
andre.vanrenssen@sydney.edu.au

Abstract
Online routing in a planar embedded graph is central to a number of fields and has been studied
extensively in the literature. For most planar graphs no O(1)-competitive online routing algorithm
exists. A notable exception is the Delaunay triangulation for which Bose and Morin [6] showed that
there exists an online routing algorithm that is O(1)-competitive. However, a Delaunay triangulation
can have Ω(n) vertex degree and a total weight that is a linear factor greater than the weight of a
minimum spanning tree.

We show a simple construction, given a set V of n points in the Euclidean plane, of a planar
geometric graph on V that has small weight (within a constant factor of the weight of a minimum
spanning tree on V), constant degree, and that admits a local routing strategy that is O(1)-
competitive. Moreover, the technique used to bound the weight works generally for any planar
geometric graph whilst preserving the admission of an O(1)-competitive routing strategy.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Computational geometry, Spanners, Routing

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.30

Related Version A full version of the paper is available at https://arxiv.org/abs/1909.10215.

Funding Joachim Gudmundsson: Funded by the Australian Government through the Australian
Research Council DP150101134 and DP180102870.
Christos Levcopoulos: Swedish Research Council grants 2017-03750 and 2018-04001.

1 Introduction

The aim of this paper is to design a graph on V (a finite set of points in the Euclidean
plane) that is cheap to build and easy to route on. Consider the problem of finding a route
in a geometric graph from a given source vertex s to a given target vertex t. Routing in a
geometric graph is a fundamental problem that has received considerable attention in the
literature. In the offline setting, when we have full knowledge of the graph, the problem is
well-studied and numerous algorithms exist for finding shortest paths (for example, the classic

© Vikrant Ashvinkumar, Joachim Gudmundsson, Christos Levcopoulos, Bengt J. Nilsson, and André
van Renssen;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 30; pp. 30:1–30:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vash7242@uni.sydney.edu.au
mailto:joachim.gudmundsson@sydney.edu.au
mailto:christos.levcopoulos@cs.lth.se
mailto:bengt.nilsson.ts@mau.se
mailto:andre.vanrenssen@sydney.edu.au
https://doi.org/10.4230/LIPIcs.ISAAC.2019.30
https://arxiv.org/abs/1909.10215
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Routing in Sparse Graphs

Dijkstra’s Algorithm [9]). In an online setting the problem becomes much more complex.
The route is constructed incrementally and at each vertex a local decision has to be taken
to decide which vertex to forward the message to. Without knowledge of the full graph, an
online routing algorithm cannot identify a shortest path in general; the goal is to follow a
path whose length approximates that of the shortest path.

Given a source vertex s, a target vertex t, and a message m, the aim is for an online
routing algorithm to send m together with a header h from s to t in a graph G. Initially the
algorithm only has knowledge of s, t and the neighbors of s, denoted N (s). Note that it is
commonly assumed that for a vertex v, the set N (v) also includes information about the
coordinates of the vertices in N (v). Upon receiving a message m and its header h, a vertex
v must select one of its neighbours to forward the message to as a function of h and N (v).
This procedure is repeated until the message reaches the target vertex t. Different routing
algorithms are possible depending on the size of h and the part of G that is known to each
vertex. Usually, there is a trade-off between the amount of information that is stored in the
header and the amount of information that is stored in the vertices.

Bose and Morin [6] showed that greedy routing always reaches the intended destination on
Delaunay triangulations. Dhandapani [8] proved that every triangulation can be embedded in
such a way that it allows greedy routing and Angelini et al. [1] provided a constructive proof.

However, the above papers only prove that a greedy routing algorithm will succeed
on the specific graphs therein. No attention is paid to the quality or competitiveness of
the resulting path relative to the shortest path. Bose and Morin [6] showed that many
local routing strategies are not competitive but also show how to route competitively in a
Delaunay triangulation. Bonichon et al. [3, 4] provided different local routing algorithms
for the Delaunay triangulation, decreasing the competitive ratio, and Bonichon et al. [2]
designed a competitive routing algorithm for Gabriel triangulations.

To the best of our knowledge most of the existing routing algorithms consider well-known
graph classes such as triangulations and Θ-graphs. However, these graphs are generally very
expensive to build. Typically, they have high degree (Ω(n)) and the total length of their
edges can be as bad as Ω(n) · wt(MST (V)).

On the other hand, there is a large amount of research on constructing geometric planar
graphs with “good” properties. However, none of these have been shown to have all of bounded
degree, weight, planarity, and the admission of competitive local routing. Bose et al. [5] come
tantalisingly close by providing a local routing algorithm for a plane bounded-degree spanner.

In this paper we consider the problem of constructing a geometric graph of small weight
and small degree that guarantees a local routing strategy that is O(1)-competitive. More
specifically we show:

Given a set V of n points in the plane, together with two parameters 0 < θ < π/2 and
r > 0, we show how to construct in O(n logn) time a planar ((1 + 1/r) · τ)-spanner with
degree at most 5d2π/θe, and weight at most ((2r + 1) · τ) times the weight of a minimum
spanning tree of V , where τ = 1.998 ·max(π/2, π sin(θ/2) + 1). This construction admits an
O(1)-memory deterministic 1-local routing algorithm with a routing ratio of no more than
5.90 · (1 + 1/r) ·max(π/2, π sin(θ/2) + 1).

While we focus on our construction, we note that the techniques used to bound the weight
of the graph apply generally to any planar geometric graph. In particular, using techniques
similar to the ones we use, it may be possible to extend the results by Bose et al. [5] to
obtain other routing algorithms for bounded-degree light spanners.

V. Ashvinkumar, J. Gudmundsson, C. Levcopoulos, B. J. Nilsson, and A. van Renssen 30:3

2 Building the Network

Given a Delaunay triangulation DT (V) of a point set V we will show that one can remove
edges from DT (V) such that the resulting graph BDG(V) has constant degree and constant
stretch-factor. We will also show that the resulting graph has the useful property that for
every Delaunay edge (u, v) in the Delaunay triangulation there exists a spanning path along
the boundary of the face in BDG(V) containing u and v. This property will be critical to
develop the routing algorithm in Section 3. In Section 4 we will show how to prune BDG(V)
further to guarantee the lightness property.

2.1 Building a Bounded Degree Spanner

The idea behind the construction is slightly reminiscent to that of the Θ-graph: For a given
parameter 0 < θ < π/2, let κ = d2π/θe and let Cu,κ be a set of κ disjoint cones partitioning
the plane, with each cone having angle measure at most θ at apex u. Let v0, . . . , vm be the
clockwise-ordered Delaunay neighbours of u within some cone C ∈ Cu,κ (see Figure 1a).

(a) (b)

u u u

u u

extreme
extreme extreme

extreme extreme

penultimate

extreme extreme

penultimate penultimate

extreme extreme

penultimate penultimate

middle

u

v0
v1 v2 v3 v4 C

Figure 1 (a) An example of the vertices in some cone C with apex u. (b) Extreme, penultimate,
and middle are mutually exclusive properties taking precedence in that order.

Call edges uv0 and uvm extreme at u. Call edges uv1 and uvm−1 penultimate at u if
there are two distinct extreme edges at u induced by C. If there are two distinct edges that
are extreme at u induced by C and two distinct edges that are penultimate at u induced
by C, then, of the remaining edges incident to u and contained in C, the shortest one is
called the middle edge at u (see Figure 1b). We emphasise that: (1) If there are fewer than
three neighbours of u in the cone C, then there are no penultimate edges induced by C; and
(2) If there are fewer than five neighbours of u in the cone C, then there is no middle edge
induced by C.

The construction removes every edge except the extreme, penultimate, and middle ones
in every C ∈ Cu,κ, for every point u, in any order. The edges present in the final construction
are thus the ones which are either extreme, penultimate, or middle at both of their endpoints
(not necessarily the same at each endpoint).

The resulting graph is denoted by BDG(V). The construction time of this graph is
dominated by constructing the Delaunay triangulation, which requires O(n logn) time.
Given the Delaunay triangulation, determining which edges to remove takes linear time. The
degree of BDG(V) is bounded by 5κ, since each of the κ cones C ∈ Cu,κ can induce at most
five edges. It remains to bound the spanning ratio.

ISAAC 2019

30:4 Routing in Sparse Graphs

2.2 Spanning Ratio
Before proving that the network is a spanner (Corollary 7) we will need to prove some basic
properties regarding the edges in BDG(V). We start with a simple but crucial observation
about consecutive Delaunay neighbours of a vertex u.

I Lemma 1. Let C be a cone with apex u and angle measure 0 < θ < π/2. Let vl, v, vr be
consecutive clockwise-ordered Delaunay neighbours of u contained in C. The interior angle
∠(vl, v, vr) must be at least π − θ.

Proof. In the case when ∠(vl, v, vr) is reflex in the quadrilateral ∆u, vl, v, vr the lemma
trivially holds. Let us thus examine the case when ∠(vl, v, vr) is not, in which case the
quadrilateral ∆u, vl, v, vr is convex. Since vl and vr lie in a cone of angle measure θ, ∠(vl, u, vr)
is at most θ. Consequently, ∠(vl, u, vr) + ∠(vl, v, vr) must be at least π (see Figure 2a).
Hence, ∠(vl, v, vr) is at least π − θ. J

vl vr

u

v

≤ θ

(a) (b)

u

v0
v1 vm

vm+1
vj

Figure 2 (a) Example placement of u, vl, vr and v in the circle ◦(vl, u, vr) (b) The path from v1

to vm along the hull of u must be in BDG(V). Furthermore, uv0 and uvm+1 are extreme, uv1 and
uvm are penultimate, and uvj is a middle edge.

This essentially means that ∠(vl, v, vr) is wide, and will help us to argue when vlv and
vvr must be in BDG(V) (Lemma 5). Next, we define protected edges.

I Definition 2. An edge uv is protected at u (with respect to some fixed Cu,κ) if it is extreme,
penultimate, or middle at u. An edge uv is fully protected if it is protected at both u and v.

Hence, an edge is contained in BDG(V) if and only if it is fully protected. We continue
with an observation that allows us to argue which edges are fully protected.

I Observation 3. If an edge uvi is not extreme at u, then u must have consecutive clockwise-
ordered Delaunay neighbours vi−1, vi, vi+1, all in the same cone C ∈ Cu,κ. Similarly, if uvi
is neither extreme nor penultimate at u, then u must have consecutive clockwise-ordered
Delaunay neighbours vi−2, vi−1, vi, vi+1, vi+2, all in the same cone C ∈ Cu,κ.

I Lemma 4. Every edge that is penultimate or middle at one of its endpoints is fully
protected.

Proof. Consider an edge uv that is penultimate or middle at u. Since it is protected at u, we
need to show that it is protected at v. Since uv is not extreme at u, u must have consecutive
clockwise-ordered Delaunay neighbours vl, v, vr in the same cone by Observation 3.

We show that uv must be extreme at v. Suppose for a contradiction that uv is not extreme
at v. Then, by Observation 3, vlv and vvr are contained in the same cone with apex v and
angle at most θ < π/2. However, by Lemma 1, ∠(vl, v, vr) ≥ π − θ > θ, which is impossible.
Thus, uv is extreme at v and protected at v. Hence, the edge is fully protected. J

V. Ashvinkumar, J. Gudmundsson, C. Levcopoulos, B. J. Nilsson, and A. van Renssen 30:5

Now we can argue about the Delaunay edges along the hull of a vertex (see Figure 2b for
an illustration of the lemma).

I Lemma 5. Let v0, . . . , vm+1 be the clockwise-ordered Delaunay neighbours of u contained
in some cone C ∈ Cu,κ. The edges in the path v1, . . . , vm are all fully protected.

Proof. Let vivi+1 be an edge along this path. Suppose for a contradiction that vivi+1 is
not protected at vi. It is thus neither extreme, penultimate, nor middle at vi. Then, by
Observation 3, viu and vivi−1 must be contained in the same cone with apex vi as vivi+1. By
Lemma 1, ∠(vi−1, vi, vi+1) ≥ π − θ > θ, contradicting that vi−1, vi, and vi+1 lie in the same
cone. Such an edge must therefore be either extreme or penultimate, and thus protected,
at vi≥1. An analogous argument shows that the edge is either extreme or penultimate at
vi+1≤m. It is thus fully protected. J

Since these paths v1, . . . , vm are included in BDG(V), we can modify the proof of The-
orem 3 by Li and Wang [11] to suit our construction to prove that BDG(V) is a spanner.

I Theorem 6. BDG(V) is a max(π/2, π sin(θ/2) + 1)-spanner of the Delaunay triangulation
DT (V) for an adjustable parameter 0 < θ < π/2.

Putting the results from this section together, using that the Delaunay triangulation is a
1.998-spanner [12], and observing that BDG(V) is trivially planar since it is a subgraph of
the Delaunay triangulation, we obtain:

I Corollary 7. Given a set V of n points in the plane and a parameter 0 < θ < π/2, one
can in O(n logn) time compute a graph BDG(V) that is a planar τ -spanner having degree at
most 5d2π/θe, where τ = 1.998 ·max(π/2, π sin(θ/2) + 1).

From the proof of Theorem 6 it follows that for every Delaunay edge (u, v) that is not in
BDG(V), there is a path from u to v along the face containing u and v realising a path of
length at most τ · |uv|. This is a key observation that will be used in Section 3.

3 Routing

In order to route efficiently on BDG(V), we modify the local routing algorithm by Bonichon et
al. [4]. Given a source s and a destination t on the Delaunay triangulation DT (V), we
assume without loss of generality that the line segment [st] is horizontal with s to the left
of t. This routing algorithm then works as follows: when we are at a vertex vi (v0 = s),
set vi+1 to t and terminate if vit is an edge in DT (V). Otherwise, consider the rightmost
Delaunay triangle Ti = ∆vi, p, q at vi that has a non-empty intersection with [st]. Denote
the circumcircle ◦(vi, p, q) with Ci, denote the leftmost point of Ci with wi and the rightmost
intersection of Ci and [st] with ri.

If vi is encountered in the clockwise walk along Ci from wi to ri, set vi+1 to p, the first
vertex among {p, q} encountered on this walk starting from vi (see Figure 3a).
Otherwise, set vi+1 to q, the first vertex among {p, q} to be encountered in the counter-
clockwise walk along Ci starting from vi (see Figure 3b).

We modify this algorithm in such a way that it no longer necessarily uses the rightmost
intersected triangle: At vi>0, we will find a Delaunay triangle Ai based on the Delaunay
triangle Ai−1 = ∆vi−1, vi, f used in the routing decision at vi−1 (A0 = T0).

ISAAC 2019

30:6 Routing in Sparse Graphs

wi

p

wi

p

(a) (b)

q q

vi

vi
s t

Figure 3 The routing choice: (a) At vi we follow the edge to p. (b) At vi we follow the edge to q.

Let Ai = ∆vi, p, q be a Delaunay triangle with a non-empty intersection with [st] to the
right of the intersection of Ai−1 with [st]. Moreover, if vi is above [st], then, when making a
counterclockwise sweep centred at vi starting from vivi−1, we encounter viq before vip, with
viq intersecting [st] and vip not intersecting [st]. An analogous statement holds when vi lies
below [st], sweeping in clockwise direction.

We note that these triangles Ai always exist, since the rightmost Delaunay triangle is a
candidate. Furthermore, the triangles occur in order along [st] by definition. This implies
that the routing algorithm terminates.

I Theorem 8. The modified routing algorithm on the Delaunay triangulation is 1-local and
has a routing ratio of at most (1.185043874 + 3π/2) ≈ 5.90.

Proof. The 1-locality follows by construction. The proof for the routing ratio of Bonichon et
al.’s routing algorithm [4] holds for our routing algorithm, since the only parts of their proof
using the property that Ti is rightmost are:
1. The termination of the algorithm (which we argued above).
2. The categorisation of the Worst Case Circles of Delaunay triangles Ti into three mutually

exclusive cases (which we discuss next).
Thus, the modified routing algorithm on the Delaunay triangulation has a routing ratio of at
most (1.185043874 + 3π/2) ≈ 5.90. J

3.1 Worst Case Circles
In the analysis of the routing ratio of Bonichon et al.’s routing algorithm [4], the notion of
Worst Case Circles is introduced whereby the length of the path yielded by the algorithm is
bounded above by some path consisting of arcs along these Worst Case Circles; this arc-path
is then shown to have a routing ratio of 5.90.

Suppose we have a candidate path, and are given a Delaunay triangle ∆vi, vi+1, u

intersecting [st]; we denote its circumcircle by Ci with centre Oi. The Worst Case Circle
C ′i is a circle that goes through vi and vi+1, whose centre O′i is obtained by starting at Oi
and moving it along the perpendicular bisector of [vivi+1] until either st is tangent to C ′i or
vi is the leftmost point of C ′i, whichever occurs first. The direction O′i is moved in depends
on the routing decision at vi: if vi is encountered on the clockwise walk from wi to ri, then
O′i is moved towards this arc, and otherwise, O′i is moved in the opposite direction. Letting
w′i be the leftmost point of C ′i, we can categorise the Worst Case Circles into the following
three mutually exclusive types.
1. Type X1 : vi 6= w′i, and [vivi+1] does not cross [st], and st is tangent to C ′i.
2. Type X2 : vi = w′i and [vivi+1] does not cross [st].
3. Type Y : vi = w′i and [vivi+1] crosses [st].

V. Ashvinkumar, J. Gudmundsson, C. Levcopoulos, B. J. Nilsson, and A. van Renssen 30:7

Next, we show that the Worst Case Circles of Delaunay triangles Ai fall into the same
categories. Let Ci be the circumcircle of Ai centred at Oi, let wi be the leftmost point of Ci,
and let ri be the right intersection of Ci with [st]. We begin with the following observation
which follows from how the criteria forces Ai to intersect [st]:

I Observation 9. Let Ai = ∆vi, p, q. Taking a clockwise walk along Ci from vi to ri, exactly
one of p or q is encountered. An analogous statement holds for the counterclockwise walk.

This observation captures the necessary property that allows the categorisation to go
through. We denote the Worst Case Circle of Ai by C ′i with centre O′i, and leftmost point w′i.

I Lemma 10. C ′i can be categorised into the following three mutually exclusive types:
1. Type X1 : vi 6= w′i, and [vivi+1] does not cross [st], and st is tangent to C ′i.
2. Type X2 : vi = w′i and [vivi+1] does not cross [st].
3. Type Y : vi = w′i and [vivi+1] crosses [st].

Proof. If [vivi+1] does not cross [st], C ′i is clearly of type X1 or X2.
Consider when [vivi+1] crosses [st]. Without loss of generality, let vi be above [st] and

vi+1 be below [st]. By Observation 9, vi occurs on the counterclockwise walk around Ci from
wi to ri, for if not, neither vertex of Ai occurs on the clockwise walk around Ci from vi to ri.
Since vi is above [st], it lies above the leftmost intersection of Ci with [st] and below wi.

Since O′i is moved along the perpendicular bisector of [vivi+1] towards the counterclockwise
arc of vi to vi+1, it must be that w′i (which starts at wi when O′i starts at Oi) moves onto vi
eventually. Thus, C ′i is Type Y . J

3.2 Routing on BDG(V)
In order to route on BDG(V), we simulate the algorithm from the previous section. We first
prove a property that allows us to distribute edge information over their endpoints.

I Lemma 11. Every edge uv ∈ DT (V) is protected by at least one of its endpoints u or v.

Proof. Suppose that uv is not protected at u. Then uv is not extreme at u and thus by
Observation 3, u must have consecutive clockwise-ordered Delaunay neighbours vl, v, vr. By
Lemma 1, ∠(vl, v, vr) ≥ π − θ > θ since 0 < θ < π/2, and thus vl and vr cannot both
belong to the same cone with apex v and angle at most θ. Since vr, u, vl are consecutive
clockwise-ordered Delaunay neighbours of v, and vvl and vvr cannot be in the same cone, it
follows that vu is extreme at v. Hence, uv is protected at v when it is not protected at u. J

This lemma allows us to store all edges of the Delaunay triangulation by distributing
them over their endpoints. At each vertex u, we store:
1. Fully protected edges uv, with two additional bits to denote whether it is extreme,

penultimate, or middle at u.
2. Semi-protected edges uv (only protected at u), with one additional bit denoting whether

the clockwise or counterclockwise face path is a spanning path to v.

We denote this augmented version of BDG(V) as a Marked Bounded Degree Graph or
MBDG(V) for short. There is only a constant overhead to its construction.

I Theorem 12. MBDG(V) stores O(1) words of information at each of its vertices.

Proof. There are at most 5κ edges, each with two additional bits, and 2κ semi-protected
edges, each with one additional bit, stored at each vertex, where κ is a fixed constant. J

ISAAC 2019

30:8 Routing in Sparse Graphs

The routing algorithm now works as follows: At a high level, the simulation searches for
a suitable candidate triangle Ai at vi. This is done by taking a walk from vi along a face to
be defined later, ending at some vertex of Ai. Once at a vertex of Ai, we know the locations
of the other vertices of this triangle and thus we can make the routing decision and we route
to that vertex. Next, we describe how to route on the non-triangular faces ofMBDG(V).

3.2.1 Unguided Face Walks
Suppose vu1 and vum are a middle edge and a penultimate edge in cone C and suppose that
vu1 is the shorter of the two. For any vertex p on this face, we refer to the spanning face
path from v to p starting with vu1 as an Unguided Face Walk from v to p.

In the simulation, we use Unguided Face Walks in a way that p is undetermined until it
is reached; we will take an Unguided Face Walk from v and test at each vertex along this
walk if it satisfies some property, ending the walk if it does. Routing in this manner from v

to p can easily be done locally: Suppose vu1 was counterclockwise to vum. Then, at any
intermediate vertex ui, we take the edge immediately counterclockwise to uiui−1 (v = u0).
The procedure when vu1 is clockwise to vum is analogous.

I Observation 13. An Unguided Face Walk needs O(1) memory since at ui, the previous
vertex along the walk ui−1 must be stored in order to determine ui+1.

I Observation 14. An Unguided Face Walk from v to p has a stretch factor of at most
max(π/2, π sin(θ/2) + 1) by the proof of Theorem 6.

3.2.2 Guided Face Walks
Suppose vp is extreme at v but not protected at p (i.e., it is a semi-protected edge stored
at v). Then, vp is a chord of some face determined by pu1 and pum where the former is a
middle edge and the latter a penultimate edge. Moreover, recall that we stored a bit with the
semi-protected edge vp at v indicating whether to take the edge clockwise or counterclockwise
to reach p. We refer to the face path from v to p following the direction pointed to by these
bits as the Guided Face Walk from v to p. Routing from v to p can now be done as follows:
1. At v, store p in memory.
2. Until p is reached, if there is an edge to p, take it. Otherwise, take the edge pointed to

by the bit of the semi-protected edge to p.

I Observation 15. A Guided Face Walk needs O(1) memory since p needs to be stored in
memory for the duration of the walk.

I Observation 16. A Guided Face Walk from v to p has a stretch factor of at most
max(π/2, π sin(θ/2) + 1) by the proof of Theorem 6.

3.2.3 Simulating the Routing Algorithm
We are now ready to describe the routing algorithm in more detail. First, we consider finding
the first vertex after s. If st is an edge, take it and terminate. Otherwise, at s = v0, we
consider all edges protected at s, and let su1 and sum be the first such edge encountered in a
counterclockwise and clockwise sweep starting from [st] centred at s. There are two subcases.

(I) If both su1 and sum are not middle edges at s, ∆s, u1, um is a Delaunay triangle
A0. Determine whether to route to u1 or um, using the method described at the start of
Section 3. If the picked edge is fully protected, we follow it. Otherwise, we take the Guided
Face Walk from s to this vertex.

V. Ashvinkumar, J. Gudmundsson, C. Levcopoulos, B. J. Nilsson, and A. van Renssen 30:9

(II) If one of su1 and sum is a middle edge at s, the other edge must then be a penultimate
edge. Then, A0 = ∆s, p, q must be contained in the cone with apex s sweeping clockwise
from su1 to sum. We assume that su1 is shorter than sum. Take the Unguided Face Walk
from s until some ui such that ui = p is above [st] and ui+1 = q is below [st]. We have
now found A0 = ∆s, p, q and we determine whether to route to p or q, using the method
described at the start of Section 3.

In both cases, the memory used for the Face Walks is cleared and A0 = ∆s, u1, um is
stored as the last triangle used.

Next, we focus on how to simulate a routing step from an arbitrary vertex vi. Suppose
vi is above [st], and that Ai−1 is stored in memory. If vit is an edge, take it and terminate.
Otherwise, let vif be rightmost edge of Ai−1 that intersects [st], and vif be its extension to
a line. Make a counterclockwise sweep, centred at vi and starting at vif , through all edges
that are protected at vi that lie in the halfplane defined by vif that contains t. Note that
this region must have at least one such edge, since otherwise vif is a convex hull edge, which
cannot be the case since s and t are on opposite sides.

(I) If there is some edge that does not intersect [st] in this sweep, let viu1 be the first such
edge encountered in the sweep and let vium be the protected edge immediately clockwise to
viu1 at vi. There are two cases to consider.

(I.I) If Ai−1 is not contained in the cone with apex vi sweeping clockwise from viu1 to
vium (see Figure 4a), simulating the Delaunay routing algorithm is analogous to the method
used for the first step: determine if viu1 or vium is a middle edge and use a Guided or
Unguided Face Walk to reach the proper vertex of Ai.

u1

(a)

um

vi

Ai−1

Ai

s t

u1

(b)
um

vi

Ai−1
Ai

u1

(c)

um

vi

Ai−1

Ai

Figure 4 The three cases when simulating a step of the routing algorithm: (a) Case I.I, (b)
case I.II, and (c) case II.

(I.II) If Ai−1 is contained in the cone with apex vi sweeping clockwise from viu1 to vium
(see Figure 4b), then one of viu1 and vium must be a middle edge and the other a penultimate
edge, since the edge vif is contained in the interior of this cone. Then, Ai = ∆vi, p, q must
be contained in the cone with apex vi sweeping clockwise from viu1 to vif .

We take the Unguided Face Walk, starting from the shorter of viu1 and vium, stopping
when we find some ui such that ui = p is above [st] and ui+1 = q is below [st], and make the
decision to complete the Unguided Face Walk to q or not. Note that when starting from
vium we need to pass f to ensure that Ai lies to the right of Ai−1.

(II) If all of the edges in the sweep intersect [st] (see Figure 4c), let vium be the last edge
encountered in the sweep, and viu1 be the protected edge immediately counterclockwise to it.
Note that Ai−1 cannot be contained in this cone, as that would imply that ∠(u1, vi, um) ≥ π,
making vium a convex hull edge. Simulating the Delaunay routing algorithm is analogous
to the method used for the first step: determine if viu1 or vium is a middle edge and use a
Guided or Unguided Face Walk to reach the proper vertex of Ai.

ISAAC 2019

30:10 Routing in Sparse Graphs

In all cases, we clear the memory and store Ai = ∆vi, p, q as the previous triangle. The
case where vi lies below [st] is analogous. We obtain the following theorem.

I Theorem 17. The routing algorithm on MBDG(V) is 1-local, has a routing ratio of at
most 5.90 ·max(π/2, π sin(θ/2) + 1) and uses O(1) memory.

4 Lightness

In the previous sections we have presented a bounded degree networkMBDG(V) with small
spanning ratio that allows for local routing. It remains to show how we can prune this graph
even further to guarantee that the resulting network LMBDG(V) also has low weight.

We will describe a pruning algorithm that takesMBDG(V) and returns a graph (Light
Marked Bounded Degree Graph) LMBDG(V) ⊆MBDG(V), allowing a trade-off between
the weight (within a constant times that of the minimum spanning tree of V) and the (still
constant) stretch factor. Then, we show how to route on LMBDG(V) with a constant
routing ratio and constant memory.

4.1 The Levcopoulos and Lingas Protocol
To bound the weight ofMBDG(V), we use the algorithm by Levcopoulos and Lingas [10]
with two slight modifications: (1) allow any planar graph as input instead of only Delaunay
triangulations, and (2) marking the endpoints of pruned edges to facilitate routing.

At a high level, the algorithm works as follows: Given MBDG(V), we compute its
minimum spanning tree and add these edges to LMBDG(V). We then take an Euler Tour
around the minimum spanning tree, treating it as a degenerate polygon P enclosing V .
Finally, we start expanding P towards the convex hull CH(V). As edges of MBDG(V)
enter the interior of P , we determine whether to add them to LMBDG(V). This decision
depends on a given parameter r > 0. If an edge is excluded from LMBDG(V), we augment
its endpoints with information to facilitate routing should that edge be used in the path
found onMBDG(V). Once P has expanded into CH(V), we return LMBDG(V).

Before we bound the weight of LMBDG(V), we need some new notations. An edge in
LMBDG(V) that belongs to the polygon P , or lies in the interior of P , is called an included
settled edge. If it does not belong to LMBDG(V), then we say it is an excluded settled edge.
An edge that has not been processed yet by the algorithm is said to be an unsettled edge.

Given an unsettled edge uv, let ∂P (u, v) be the path along P from u to v such that
∂P (u, v) concatenated with uv forms a closed curve that does not intersect the interior of P .
When processing an edge uv, it is added to LMBDG(V) when the summed weight of the
edges of ∂P (u, v) is greater than (1 + 1/r) · |uv|. This implies that LMBDG(V) is a spanner.

I Theorem 18. LMBDG(V) is a (1 + 1/r)-spanner ofMBDG(V) for an adjustable para-
meter r > 0.

I Theorem 19. LMBDG(V) has weight at most (2r + 1) times the weight of the minimum
spanning tree ofMBDG(V) for an adjustable parameter r > 0.

Proof. Let P be the polygon that encloses V in the above algorithm. Initially P is the
degenerate polygon described by the Euler tour of the minimum spanning tree of V in
LMBDG(V). Give each edge e of P , a starting credit of r|e|. Denote the sum of credits of
edges in P with credit(P). The sum of credit(P) and the weight of the initially included
settled edges is then (2r + 1) times the weight of the minimum spanning tree ofMBDG(V).

V. Ashvinkumar, J. Gudmundsson, C. Levcopoulos, B. J. Nilsson, and A. van Renssen 30:11

As P is expanded and edges are settled, we adjust the credits in the following manner:
If an unsettled edge uv is added into LMBDG(V) when settled, we set the credit of the
newly added edge uv of P to credit(∂P (u, v))− |uv|, and, by removing ∂P (u, v) from P ,
we effectively set the credit of edges along ∂P (u, v) to 0.
If an unsettled edge is excluded from LMBDG(V) when settled, we set the credit of the
newly added edge uv of P to credit(∂P (u, v)), and, by removing ∂P (u, v), we effectively
set the credit of edges along ∂P (u, v) to 0.

We can see that the sum of credit(P) and the weights of included settled edges, at any time,
is at most 2r + 1 times the weight of the minimum spanning tree ofMBDG(V).

It now suffices to show that credit(P) is never negative, which we do by showing that
for every edge uv of P , at any time, credit(uv) ≥ r · weight(uv) ≥ 0. Initially, when
P is the Euler Tour around the minimum spanning tree of MBDG(V), we have that
credit(uv) = r · weight(uv). We now consider two cases.

(I) If uv is added to LMBDG(V), then credit(uv) equals

credit(∂P (u, v))−|uv| ≥ r ·weight(∂P (u, v))−|uv| ≥ r(1+1/r) |uv|−|uv| = r ·weight(uv).

The first inequality holds from the induction hypothesis, and the second inequality and last
equality hold since uv is added to LMBDG(V).

(II) If uv is not added to LMBDG(V), then credit(uv) equals

credit(∂P (u, v)) ≥ r · weight(∂P (u, v)) = r · weight(uv).

The first inequality holds by induction, and the equality holds since uv was not added.
Since credit(P) is never negative, and the sum of credit(P) and the weights of included

settled edges is at most 2r+ 1 times the weight of the minimum spanning tree ofMBDG(V),
the theorem follows. J

Putting together all the results so far, we get:

I Theorem 20. Given a set V of n points in the plane together with two parameters
0 < θ < π/2 and r > 0, one can compute in O(n logn) time a planar graph LMBDG(V) that
has degree at most 5 d2π/θe, weight of at most ((2r+1) ·τ) times that of a minimum spanning
tree of V , and is a ((1 + 1/r) · τ)-spanner of V , where τ = 1.998 ·max(π/2, π sin(θ/2) + 1).

Proof. Let us start with the running time. The algorithm by Levcopoulos and Lingas
(Lemma 3.3 in [10]) can be implemented in linear time and, according to Corollary 7,
BDG(V) can be constructed in O(n logn) time, hence, O(n logn) in total.

The degree bound and planarity follow immediately from the fact that LMBDG(V) is a
subgraph ofMBDG(V), and the bound on the stretch factor follows from Theorem 18.

It only remains to bound the weight. Callahan and Kosaraju [7] showed that the weight
of a minimum spanning tree of a Euclidean graph G(V) is at most t times that of the weight
of MST (V) whenever G is a t-spanner on V . Since MBDG(V) is a τ -spanner on V by
Corollary 7, LMBDG(V) has weight of at most ((2r + 1) · τ) times that of the minimum
spanning tree of V . This concludes the proof of the theorem. J

Finally, we prove that LMBDG(V) has short paths between the ends of pruned edges.

I Theorem 21. Let uv be an excluded settled edge. There is a face path in LMBDG(V)
from u to v of length at most (1 + 1/r) · |uv|.

ISAAC 2019

30:12 Routing in Sparse Graphs

Proof. If uv is the first excluded settled edge processed by the Levcopoulos-Lingas algorithm,
then all edges of ∂P (u, v) must be included in LMBDG(V). By planarity, no edge will be
added into the interior of the cycle consisting of uv and ∂P (u, v) once uv is settled, and thus
uv will be a chord on the face in LMBDG(V) that coincides with ∂P (u, v). Thus, ∂P (u, v) is
a face path in LMBDG(V) from u to v with a length of at most weight(uv) ≤ (1+1/r) · |uv|.

Otherwise, if uv is an arbitrary excluded edge, then some edges of ∂P (u, v) may be
excluded settled edges. If none are excluded, then ∂P (u, v) is again a face path with length at
most weight(uv). However, if some edges are excluded, then, by induction, for each excluded
edge pq along ∂P (u, v), there is a face path in LMBDG(V) from p to q with a length of
weight(pq) ≤ (1 + 1/r) · |pq|. Replacing all such pq in ∂P (u, v) by their face paths, and since
no edge will be added into the interior of the cycle consisting of uv and ∂P (u, v) once uv
is settled, ∂P (u, v) with its excluded edges replaced by their face paths is a face path in
LMBDG(V) from u to v with a length of weight(uv) ≤ (1 + 1/r) · |uv|. J

5 Routing on the Light Graph

In order to route on LMBDG(V), we store an edge at each of its endpoints when it is
excluded. Specifically, let uv be some excluded edge, at u (and v) we store uv, along with
one bit to indicate whether the starting edge of the (1 + 1/r)-path is the edge clockwise or
counterclockwise to uv.

I Observation 22. LMBDG(V) stores O(1) words of information at each vertex.

To route on LMBDG(V), we simulate the routing algorithm onMBDG(V). When this
algorithm would follow an excluded edge uv at u, we store v and the orientation of the face
path from uv at u in memory. Then, until v is reached, take the edge that is clockwise or
counterclockwise to the edge arrived from, in accordance with the orientation stored. Once v
is reached, we proceed with the next step of the routing algorithm onMBDG(V).

Note that bounding the weight in this manner only requires the input graph to be planar.
It transforms the pruned edges into O(d) information, where d is the degree of the input
graph. This information is then distributed across the vertices of the face, such that each
vertex stores O(1) information. The scheme of simulating a particular routing algorithm and
switching to a face routing mode when needed can then be applied to the resulting graph.

I Lemma 23. The routing algorithm on LMBDG(V) is 1-local, has a routing ratio of
5.90(1 + 1/r) max(π/2, π sin(θ/2) + 1) and uses O(1) memory.

Proof. The 1-locality follows by construction. The routing ratio follows from Theorem 17.
Finally, the memory bound follows from the fact that while routing along a face path to
get across a pruned edge, no such subpaths can be encountered. Thus, the only additional
memory needed at any point in time is a constant amount to navigate a single face path. J

6 Conclusion

We showed how to construct and route locally on a bounded-degree lightweight spanner.
In order to do this, we simulate the Delaunay routing algorithm by Bonichon et al. [4]. A
natural question is whether our routing algorithm can be improved by using the improved
Delaunay routing algorithm by Bonichon et al. [3]. Unfortunately, this is not obvious: when
applying the improved algorithm on our graph, we noticed that the algorithm can revisit
vertices. While this may not be a problem, it implies that the routing ratio proof from [3]
needs to be modified in a non-trivial way and thus we leave this as future work.

V. Ashvinkumar, J. Gudmundsson, C. Levcopoulos, B. J. Nilsson, and A. van Renssen 30:13

References
1 Patrizio Angelini, Fabrizio Frati, and Luca Grilli. An Algorithm to Construct Greedy Drawings

of Triangulations. Journal of Graph Algorithms and Applications, 14(1):19–51, 2010.
2 Nicolas Bonichon, Prosenjit Bose, Paz Carmi, Irina Kostitsyna, Anna Lubiw, and Sander

Verdonschot. Gabriel triangulations and angle-monotone graphs: Local routing and recognition.
In International Symposium on Graph Drawing and Network Visualization (GD), pages 519–531,
2016.

3 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Darryl Hill, and
Michiel Smid. Improved routing on the Delaunay triangulation. In Proceedings of the 26th
Annual European Symposium on Algorithms (ESA), 2018.

4 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Ljubomir Perković, and André
Van Renssen. Upper and lower bounds for online routing on Delaunay triangulations. Discrete
& Computational Geometry, 58(2):482–504, 2017.

5 Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Optimal Local
Routing on Delaunay Triangulations Defined by Empty Equilateral Triangles. SIAM Journal
on Computing, 44(6):1626–1649, 2015.

6 Prosenjit Bose and Pat Morin. Online routing in triangulations. SIAM Journal on Computing,
33(4):937–951, 2004.

7 Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 291–300, 1993.

8 Raghavan Dhandapani. Greedy Drawings of Triangulations. Discrete & Computational
Geometry, 43(2):375–392, 2010.

9 Edgar W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

10 Christos Levcopoulos and Andrzej Lingas. There are planar graphs almost as good as the
complete graphs and almost as cheap as minimum spanning trees. Algorithmica, 8(1-6):251–256,
1992.

11 Xiang-Yang Li and Yu Wang. Efficient construction of low weight bounded degree planar
spanner. In Proceedings of the 9th Annual International Computing and Combinatorics
Conference (COCOON), pages 374–384. Springer, 2003.

12 Ge Xia. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM Journal on
Computing, 42(4):1620–1659, 2013.

ISAAC 2019

Searching for Cryptogenography Upper Bounds
via Sum of Square Programming
Dominik Scheder
Shanghai Jiao Tong University, China
dominik@cs.sjtu.edu.cn

Shuyang Tang
Shanghai Jiao Tong University, China
htftsy@sjtu.edu.cn

Jiaheng Zhang
UC Berkeley, USA
jiaheng_zhang@berkeley.edu

Abstract
Cryptogenography is a secret-leaking game in which one of n players is holding a secret to be leaked.
The n players engage in communication as to (1) reveal the secret while (2) keeping the identity
of the secret holder as obscure as possible. All communication is public, and no computational
hardness assumptions are made, i.e., the setting is purely information theoretic. Brody, Jakobsen,
Scheder, and Winkler [2] formally defined this problem, showed that it has an equivalent geometric
characterization, and gave upper and lower bounds for the case in which the n players want to leak
a single bit. Surprisingly, even the easiest case, where two players want to leak a secret consisting of
a single bit, is not completely understood. Doerr and Künnemann [4] showed how to automatically
search for good protocols using a computer, thus finding an improved protocol for the 1-bit two-player
case. In this work, we show how the search for upper bounds (impossibility results) can be formulated
as a Sum of Squares program. We implement this idea for the 1-bit two-player case and significantly
improve the previous upper bound from 47/128 = 0.3671875 to 0.35183.

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory
of computation → Semidefinite programming

Keywords and phrases Communication Complexity, Secret Leaking, Sum of Squares Programming

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.31

Supplement Material http://basics.sjtu.edu.cn/~dominik/sos-cryptogenography/

Funding Dominik Scheder : This research has been supported by the National Natural Science
Foundation of China under grant 61502300.

1 Introduction

Cryptogenography is a whistleblowing problem involving n players. One player J ∈ [n] is
holding a secret X ∈ X . The value of X is unknown to everybody else. The value of J is
unknown, too (the other players just know that they do not have the secret). The goal of
the players is to publish the secret while keeping the identity of J as obscure as possible. To
achieve this goal, the players engage in public communication according to some publicly
known protocol. The protocol ends once the value of the secret has been determined. At this
point, the authorities step in and arrest the prime suspect, i.e., the player with the highest
a-posteriori probability to be J .

In an (imaginary) application, the secret X could be a compromising document of some
government agency or company, J a whistleblower, and [n] a community of transparency
activists of which J is a member. A more mundane application sees X as a pirated movie, J

© Dominik Scheder, Shuyang Tang, and Jiaheng Zhang;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 31; pp. 31:1–31:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominik@cs.sjtu.edu.cn
mailto:htftsy@sjtu.edu.cn
mailto:jiaheng_zhang@berkeley.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.31
http://basics.sjtu.edu.cn/~dominik/sos-cryptogenography/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Cryptogenography Upper Bounds via SoS Programming

as the person sharing the video, and [n] as the users of a file sharing platform. In both cases,
the participants want to keep the leaker J anonymous but make the secret X public. This
distinguishes it from most other problems in cryptography.

Towards a rigorous formulation, suppose (J,X) are drawn from some prior distribution
D on [n] × X . Typically, this will be the uniform distribution, representing a complete
lack of knowledge about X and J . A communication protocol is a finite binary tree T , in
which every inner node u is labeled with a speaker Pu ∈ [n] and a vector (pi)i∈X∪{∗}. The
semantics of this tree is as follows: we start at the root of the tree. At an inner node u,
player Pu sends the next bit of communication. If player Pu is the secret holder, she sends
right with probability pX (and left with probability 1 − pX). If she does not hold the
secret, her message cannot depend on X, and thus she sends right with probability p∗. The
protocol then proceeds to the left or right child of u, depending on the message sent by Pu.

With every node u of the tree we associate a distribution Du on [n] · X . Namely, Du(i, x)
is the probability that player i holds the secret and the secret is x, conditioned on the
protocol arriving at node u. Note that Droot is the prior distribution. A protocol is said
to be valid if X is determined once the protocol ends. In other words, for every leaf l of
the protocol tree there is some x ∈ X such that

∑
i Dl(i, x) = 1. We call x the output of

leaf l. If the protocol reaches leaf l, an outside observer can be sure that the secret is x.
At this point, the authorities arrest the prime suspect, which is the player i maximizing
Dl(i, x). The players win if the arrested player is not the secret holder, which happens with
probability 1−maxi∈[n] Dl(i, x). The value val(u) of a node u, is the winning probability of
the players, conditioned on this node being reached (so val(l) = 1−maxi Dl(i, x) for a leaf l
with output x, and val(u) is a weighted average of val(u0) and val(u1), where u0 and u1 are
the two children of u). The value of the protocol is the value of its root (which is equal to
the overall winning probability). The value val(D) of a distribution D is the supremum of
val(root), taken over all valid protocol trees. In words, it is the optimal achievable success
probability for the Cryptogenography problem with prior distribution D.

Note that our scenario is purely information theoretical. We assume participants and
the authorities to be computationally unlimited. This precludes us from using established
methods like public-key cryptography. Also, all communicated is public, and thus methods
from multi-party communication (which otherwise could easily solve this problem) do not
apply here. In general, we consider cryptogenography as being part of communication
complexity, and we study it to explore the limitations of randomized two-party (or multi-
party) communication.

1.1 Previous Work
The Cryptogenography problem was introduced by Brody, Jakobsen, Scheder, and Winkler [2].
They also chose the name Cryptogenography, which roughly translates to “hidden source
writing”. This is because we want to protect the source and not, as would be more common
in cryptography, the message. They show that finding the optimal value is equivalent to
optimizing a function on the simplex ∆[n]×X (the set of probability distributions on [n]×X),
subject to certain concavity constraints (see Section 2). As for concrete bounds, [2] focus on
the case |X | = 2, i.e., the secret consists of a single bit. This might feel a bit unrealistic, as
most government documents and most movies consist of more than one bit; however, already
the 1-bit case turns out to be challenging. For the n-player case, [2] show that a simple
majority voting protocol has a success probability of 0.5406 if n ≥ 23; a more sophisticated
protocol, based on voting with abstention, achieves 0.5644 if n ≥ 1200. They also prove
an upper bound of 3

4 −
1

2n . For n = 2, the simplest non-trivial case, they show a protocol
achieving 1/3 and an upper bound of 3/8.

D. Scheder, S. Tang, and J. Zhang 31:3

The success probability of 1/3 for n = 2 is achieved by a simple three-round protocol.
Somewhat surprisingly, it is not optimal. Doerr and Künnemann [4] showed how Crypto-
genography protocol design can be viewed as a certain vector splitting game, and used a
computer program to find improved protocols. Their best protocol tree consists of 18248
nodes and achieves a success probability of 0.3384; the shortest protocol (in terms of rounds)
they found which beats 1/3 uses up to sixteen rounds of communication. They also improve
the upper bound for n = 2 from 3/8 to 47

128 .
What about the general case of larger n, |X | > 2? Sune Jakobsen [5] showed what the

skeptical reader might already suspect: as |X | increases, the optimal success probability
goes to 0, regardless of n. Thus, secure secret leakage is impossible, purely information
theoretically speaking. In fact, Jakobsen considered an even more general setting, in which
k = γ n “insider players” know the secret, and X = {0, 1}b, i.e., the secret has b bits,
with b = β n. He gives a simple and beautiful protocol using error correcting codes and
Shannon’s Noisy Channel Coding Theorem (see for example [3]) to show that the players
have a reasonable success probability if β is not too large compared to γ. He also shows
that this protocol is in some sense asymptotically optimal. Unfortunately, his method give
exact results only if γ, β are constants and n tends to infinity and thus do not help us for
the case |X | = 2.

Furthermore, Jakobsen and Orlandi [6] introduce a model in which a almost all commu-
nication is public, and only a very small key is sent through an anonymous channel. They
show that with high probability, the secret leaker stays anonymous. However, they assume
the adversary to be computationally bounded, and thus their techniques do not apply to our
purely information theoretic setting.

1.2 Our Contribution
Like Doerr and Künnemann [4], we focus on the 1-bit 2-player case: n = 2 and X = {0, 1}.
We show how to search for upper bounds in an automated way. We use the geometric
characterization of [2], which states that to find an upper bound on the possible success
probability, it is enough to minimize a function f : ∆[n]×X 7→ R subject to certain boundary
and concavity constraints. Since n = 2 and X = {0, 1}, the function f has only four variables.
If we let f be a degree-d polynomial in those four variable, this becomes an optimization
problem in the coefficients of f . We make this optimization problem tractable by formulating
it as a Sum-of-Squares problem (SoS), which we then solve using the Matlab packages
yalmip1 [9] and sostools [10]. The following table summarizes our results obtained with
yalmip. The numerical error arising from the SoS solver needs careful treatment in our case,
and indeed causes degree 8 to be worse than degree 6.

Degree SoS opt
numerical

error
SoS opt
+ error Remark

2 0.375 0 0.375 Same as [2]
4 0.3644 negligible 0.3644 slightly better than 0.3671875 from [4]
6 0.351612 0.000217 0.35183 our best bound so far
8 0.349515 0.0079587 0.35747 worse than degree 6 (numerical errors)

In theory, our techniques easily extend to the multi-player case and beyond the 1-bit case.
However, the complexity increases in a way that makes it quickly impractical for current
SoS solvers.

1 https://yalmip.github.io/

ISAAC 2019

https://yalmip.github.io/

31:4 Cryptogenography Upper Bounds via SoS Programming

2 Geometric Formulation

We now formally introduce the geometric characterization given by Brody, Jakobsen, Scheder,
and Winkler [2]. We focus on the two-player 1-bit case, since this already contains all
main ideas. Consider the simplex ∆ := {Alice,Bob} × {0, 1}, the space of all probability
distributions on who has the secret bit and what its value is. We represent a distribution D
as a matrix:

0 1
Alice x0 x1
Bob y0 y1

,

or short as
[
x0 x1
y0 y1

]
. Given a protocol tree, we associate a distribution Du ∈ ∆ with every

node u: namely, Du(j, x) is the probability that j is the secret holder and x is the secret,
conditioned on the protocol passing through u. Suppose it’s Alice’s turn to send a bit at node
u. Let p be the probability that she sends right at node u and denote by D, D′, and D′′ the
distributions at u, its left child, and its right child, respectively. Then D = pD′ + (1− p)D′′,
so the three distributions[

x′0 x′1
y′0 y′1

]
,

[
x0 x1
y0 y1

]
,

[
x′′0 x′′1
y′′0 y′′1

]
lie on a common line. In fact, this line has a crucial additional property: the line through
[y′0, y′1], [y0, y1], [y′′0 , y′′1] also passes through the origin! In other words, the ratio between y0
and y1 is the same for all three distributions. This is because Alice can give hints about (1)
whether she has the secret and (2) what its value is provided she owns it but not what the
value is if Bob has it. This property is formally proven in [2]. The upshot is that the line
through D,D′, D′′ can be parametrized as

` : t 7→
[
x0 x1
y0 y1

]
+ t

[
r0 r1
s0 s1

]
(1)

where

x0 + x1 + y0 + y1 = 1 (2)
x0, x1, y0, y1 ≥ 0 (3)

r0 + r1 + s0 + s1 = 0 (4)
s0 y1 − s1 y0 = 0 (5)

s0 s1 ≥ 0. (6)

Note that (2) and (3) simply state thatD is a distribution; (4) must hold since the line contains
two other distributions D′ and D′′, too. Equality (5) states that the line [y0 y1] + t [s0 s1]
contains the origin. Finally, (6) follows from the other constraints and is included only
because it turns out to help the SoS solver.

A line of the form (1) satisfying (2)–(6) is an Alice-line. If it’s Bob’s turn to talk at u,
then equality (5) and (6) and should be replaced by r0 x1 − r1 x0 = 0 and r0 r1 ≥ 0; we call
such a line a Bob-line. A player-line is a line that is an Alice-line or a Bob-line. A player-line
is non-trivial if it intersects ∆ in more than one point.

D. Scheder, S. Tang, and J. Zhang 31:5

To wrap up, if Alice talks at node u, she “splits” the distribution D into D′ and D′′ such
that all three distributions lie on an Alice-line. A certain converse of this actually holds, too:
if D is the distribution associated with node u, and D lies between the distributions D′ and
D′′ on a common Alice-line, then there is a way for Alice to sample her message (depending
on whether she has the secret and if yes, what it is), such that the two children of u will be
labeled with D′ and D′′, respectively. The (straightforward) proof can be found in [2].

I Definition 1. A function f : ∆→ R is called admissible if

(a) f(D) ≥ 0 for D =
(

1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
, and

(
0 0
0 1

)
;

(b) f(D) ≥ 1/2 for D =
(

1/2 0
1/2 0

)
and

(
0 1/2
0 1/2

)
;

(c) If ` is a non-trivial player-line, then f |`, the restriction of f to `, is concave at every
point in ∆.

The following theorem gives a geometric characterization of the problem. It is an adaptation
of Lemma 4.3 from [2], together with the additional observation, made in [4], that the six
“boundary distributions” in Point (a) and Point (b) actually suffice.

I Theorem 2 (adapted from [2] and [4]). If f is an admissible function, then f(D) ≥ val(D)
for all distributions D.

The proof of the theorem is simple and works by induction on the protocol tree. Point (a)
and Point (b) of Definition 1 serve as the induction base, and concavity along player-lines (c)
is used in the induction step.

A similar geometric characterization by has been used by Mark Braverman, Ankit
Garg, Denis Pankratov, and Omri Weinstein [1] to determine the information complexity
of zero-error protocols computing the 2-bit AND function, and subsequently determining
the asymptotic communication complexity of Disjointness, one of the most important
functions in communication complexity.

I Lemma 3. A function f : ∆→ R is concave along every Alice-line (respectively, Bob-line),
if and only if ∂2

∂t2 f(`(t))|t=0 ≤ 0 for every Alice-line ` as in (1) (respectively, Bob-line).

Proof. For fixed x0, x1, y0, y1, r0, r1, s0, s1 the function g(t) = f(`(t)) is a univariate polyno-
mial in t. For the “if” part, not that if this is not concave for some t∗ such that `(t∗) ∈ ∆,
then g′′(t∗) > 0; furthermore, we can re-parametrize the line as `(t∗ + t); this is also an Alice
line (resp., Bob-line), and concavity is violated at t = 0. For the “only if” part, note that
concavity of f |` implies that g′′(0) ≤ 0. J

3 Sum of Square Programs

In this section we introduce the absolute basics of Sum of Square (SoS) Programs. SoS
programming is a rapidly evolving field with vast literature but unfortunately no standard
textbook yet. The reader interested in actually solving SoS programs may have a look at the
SOSTOOLS User’s guide [11]. If the reader is more interested in the theoretical background
of SoS programming, they might start with Laurent [8].

How do you show that P (x, y, z) = (x2 +y)2 (1+z2)−4xyz is non-negative? For example,
you could check that P (x, y, z) = (x− yz)2 + (y − xz)2. In other words, you write it as a
sum of squares polynomial (SoS). Next, consider Q(x, y) = 1− x2y2 − 2x2y. How can one
show that Q ≥ 0 on the unit disk? For example, by writing

Q(x, y) = (x2 − y)2 + (1 + x2) (1− x2 − y2) .

ISAAC 2019

31:6 Cryptogenography Upper Bounds via SoS Programming

Indeed, (x2− y)2 and 1 +x2 are SoS, and 1−x2− y2 is non-negative on the unit disk. Is this
method complete? No: there are non-negative polynomials that are not SoS. Is it correct?
Obviously. Even better, it is “tractable”, in a certain sense. Namely, while deciding “Is
P (x) ≥ 0?” is NP-hard, the question “Is P (x) a SoS” can be translated into a semi-definite
program and then efficiently solved (at least up to arbitrary precision). This is the basic
idea behind sum-of-square programs. In its full generality, however, it allows us much more.
Namely, each line of a SoS program can be
1. A polynomial declaration, like “P is a polynomial of degree 6 in variables u,w, x, z”.

From the SoS program’s point of view, the coefficients of P are variables. We call them
decision variables since the SoS solver will decide what values to assign to them; the
“true” variables u,w, x, z, etc. will be called polynomial variables.

2. A linear constraint in the decision variables.
3. A statement like “P is a Sum of Square polynomial”.
4. A target function “minimize T”, where T is a linear expression in the decision variables.

Of course, there can be only one target function.
Thus, not only can we ask the SoS solver check that P = (x2 + y)2 (1 + z2)− 4xyz is non-
negative; we can also use it to find the maximum w for which (x2 +y)2 (1+z2)−wxyz is non-
negative. There is no guarantee that it finds the maximum such value w; instead, it finds the
maximum w for which (x2+y)2 (1+z2)−wxyz is a SoS. Next, setQw(x, y, z) = 1−x2y2−w x2y.
We have seen above that Q2 is non-negative on the unit disk. Can we determine the maximum
w for which Qw is non-negative on the unit disk? Again, the SoS framework offers no such
guarantee, but we can write the following SoS program:

maximize w

subject to Qw = P1 + P2 (1− x2 − y2)
P1, P2 are SoS polynomials of degree d1 and d2, respectively.

Note that the constraint Qw = P1 + P2 (1 − x2 − y2) is linear in the coefficients of the
polynomials. Also, it is not clear a priori what degree d we should choose. As a heuristic,
we could choose d1 = 4 and d2 = 2 to make sure that every summand on the right-hand
side has degree 4, which is the degree of the left-hand side. If we are lucky, this returns the
optimal w. In any case, the result will be a lower bound on the optimum: if P1, P2 are SoS
and Qw = P1 + P2 (1− x2 − y2), then surely Qw ≥ 0 on the unit disk.

Let us now try to formulate our hunt for Cryptogenography upper bounds as a SoS
program. Referring to Definition 1 and Theorem 2, we define f to be a polynomial of degree
d in the variables U = {x0, x1, y0, y1} with unknown coefficients. Point (a) and (b) of the
definition are linear in the coefficients. How do we write (c) as a SoS constraint? First, define

g := − ∂2f(`(t))
∂t2

∣∣∣∣
t=0

.

This is a polynomial in the variables V := U ∪ {r0, r1, s0, s1}. We could add the constraint
“g is a SoS” into our program, but this requirement is way too strong. Indeed, g need be
non-negative only for those values of V that constitute a player-line, i.e., that satisfy (2)–(6).
We define b1 := x0, b2 := x1, b3 := y0, b4 := y1, b5 := s0 s1, c1 := x0 + x1 + y0 + y1 − 1, and
c2 := r0 + r1 + s0 + s1, and c3 := y0 s1 − y1 s0. Note that (2)–(6) are satisfied if and only if
b1, . . . , b5 ≥ 0 and c1 = c2 = c3 = 0. We add the following lines to our SoS program:

g = c1 ·R1 + c2 ·R2 + c3 ·R3 +
∑

I⊆[5]

QI ·
∏
i∈I

bi , (7)

each QI is a SoS polynomials of degree dI ,

R1, R2, R3 are arbitrary polynomials of degree dR .

D. Scheder, S. Tang, and J. Zhang 31:7

If g is as in (7), then g ≥ 0 for all values of V constituting an Alice-line, and thus f is concave
along all such lines. Obviously, we should add a similar constraint for Bob-lines. For efficiency
reason we don’t. Instead, we will exploit some inherent symmetries in the problem, as we
explain in the next paragraph. Finally, we define the target function of our SoS program:
“minimize f(1/4, 1/4, 1/4, 1/4)”, which is a linear function in the coefficients of f .

3.1 Exploiting Symmetries
The Cryptogenography problem has two fundamental symmetries: we can switch the roles
of Alice and Bob, and we can switch 0 and 1, all without changing the optimal value of a
protocol for the uniform prior distribution. Suppose our generic admissible function f is a
polynomial of degree d, namely f(x) =

∑
a∈N4

0:|a|1≤d waxa, where x = (x0, x1, y0, y1). By
symmetry, we can require that the wa,b,c,d = wb,a,d,c = wc,d,a,b = wd,c,b,a for all a, b, c, d ∈ N0.
Formally, for a = (a, b, c, d) ∈ N4

0, let ã denote the lexicographically first among (a, b, c, d),
(b, a, d, c), (c, d, a, b), (d, c, b, a). Thus, we can write f as

f(x) =
∑

a∈N4
0:|a|1≤d

wãxa . (8)

If such a n f is concave along Alice-lines, it is also concave along Bob-lines, by symmetry.
Thus, our SoS program only needs to contain a constraint for Alice-lines. As an additional
bonus, formulating Point (a) and Point (b) of Definition 1 only takes two constraints rather
than six. This basically describes our SoS program.

3.2 Obvious Optimizations
Note that (2) states x0 + x1 + y0 + y1 = 1 and (4) states that r0 + r1 + s0 + s1 = 0. Thus,
instead of adding c1 ·R1 + c2 ·R2 to the right-hand side of (7), we can “by hand” substitute
x1 = 1 − x0 − y0 − y1 and r1 = −r0 − s0 − s1. This reduces the number of polynomial
variables from 8 to 6, which tremendously improves running time. The only downside is that
our SoS program becomes a bit uglier. Putting everything together, here is the pseudocode
of our SoS program:

f(x) :=
∑

a∈N4
0:|a|1≤d

wãxa .

minimize f(1/4, 1/4, 1/4, 1/4)
subject to f(1, 0, 0, 0) ≥ 0
subject to f(1/2, 0, 1/2, 0) ≥ 1/2

g(x0, x1, y0, y1, r0, r1, s0, s1) := − ∂2f(`(t))
∂t2

∣∣∣
t=0

h(x0, y0, y1, r0, s0, s1) := g(x0, 1− x0 − y0 − y1, y0, y1, r0,−r0 − s0 − s1, s0, s1)
b1 := x0, b2 := 1− x0 − y0 − y1, b3 := y0, b4 := y1, b5 := s0 s1, c := y0 s1 − y1 s0

subject to h =
∑

I⊆[5] QI ·
∏

i∈I
bi + R · c

subject to each QI is a SoS polynomial in x0, y0, y1, r0 of degree dI ,
R is an arbitrary polynomial of degree dR

It remains to specify the degree dI of each SoS polynomial QI . We heuristically set dI to
d− |I| or d− |I| − 1, whatever is even, and set dR := d − 2. The intuition is that (a) the
degree of the SoS polynomial QI must be even and (b) the degree of each summand on the
right-hand side should be at most d, the degree of the left-hand side.

ISAAC 2019

31:8 Cryptogenography Upper Bounds via SoS Programming

To implement the SoS program, we use the matlab package yalmip [9], since it turned
out to run significantly faster on our problems than sostools [10]. In the “exploration phase”
of this work we mostly used sostools, which might be a bit easier to work with for the
non-experienced user. We wrote a python program that takes a degree d as input and outputs
the yalmip code for our SoS program. In particular, it computes f(x) =

∑
a∈N4

0:|a|1≤d wãxa,
taking care of all symmetries; the remaining yalmip code is the same for each d.

4 Handling Numerical Errors

We are solving a SoS program on a computer; this uses a numerical algorithm, so the result
will contain some numerical errors. Inevitably so: SoS solvers are basically SDP solvers plus
syntactic sugar, and some semi-definite programs only have irrational solutions.

In particular, the equation h =
∑

I⊆[5] QI ·
∏

i∈I bi +R ·c will only hold approximately. At
least we can be sure that the QI on the right are SoS polynomials – we can ask the SoS solver
to give us the SoS decomposition p2

1 + p2
2 + · · ·+ p2

k and then simply define our QI to be this
sum, and let h̃ :=

∑
I⊆[5] QI ·

∏
i∈I bi +R · c. However, h = h̃ will hold only approximately.

Formally, E := h̃− h is some non-zero polynomial with very small coefficients. By design,
h̃ ≥ 0 for all values constituting an Alice-line; however, h might attain small negative values.
If we had an “approximate version” of Theorem 2, stating that if f is “almost concave” along
player-lines then it is “almost an upper bound”, we would be done. Unfortunately, we do
not have that, so we have to come up with a manual work-around. Let f be tentative upper
bound function as found by the SoS solver. For some suitable ε > 0, define

f̂(x) = f(x)− ε

2 (x2
0 + x2

1 + y2
0 + y2

1) + ε .

If f satisfies the boundary conditions up to error ε/2, that is, if f(1, 0, 0, 0) ≥ −ε/2 and
f(1/2, 0, 1/2, 0) ≥ 1/2 − ε/2, then f̂ does indeed satisfy them. Next, we want to show
that f̂ satisfies the concavity constraints. By re-parametrizing the equation of a generic
Alice-line (1), we can assume that r2

0 + r2
1 + s2

0 + s2
1 = 1. Put differently, one observes that

g is homogenous of degree 2 in each of the variables r0, r1, s0, s1. So it is non-negative for
all inputs in S if and only if it is for all inputs with r2

0 + r2
1 + s2

0 + s2
1 = 1. Consider the

polynomials ĝ and ĥ, defined analogous to g and h, but starting with f̂ instead of f . A brief
calculation shows that ĝ = g+ ε · (r2

0 + r2
1 + s2

0 + s2
1) = g+ ε and thus ĥ = h+ ε. Thus, on any

input (x, r) ∈ S with ‖r‖2 = 1, we have h(x, r) = h̃(x, r)−E(x, r) + ε ≥ ε−E(x, r). We give
a very crude upper bound on E(x, r): since all input variables are at most 1 in absolute value,
E(x, r) is at most the sum of all coefficients. Let us denote this quantity by ‖E‖1. Thus,
as long as ε ≥ ‖E‖1, we can be sure that f̂ is indeed admissible, and thus an upper bound.
That is, val(1/4, 1/4, 1/4, 1/4) ≤ f̂(1/4, 1/4, 1/4, 1/4) ≤ f(1/4, 1/4, 1/4, 1/4) + ‖E‖1. The
table in Section 1.2 sums up the results for degree 2, 4, 6, 8. The column labeled “numerical
error” is our upper bound ‖E‖1.

One could attempt to further reduce the number of variables. Indeed, equality (5) states
y0 s1 = y1 s0. Using this, we could scale (1) to ensure that s0 = y0 and s1 = y1. This reduces
the number of variables from six to four, and vastly reduces the running time of yalmip.
However, we cannot simultaneously ensure that ‖r‖2 = 1 and thus do not know how to
handle the resulting numerical error. It would still be interesting to see what this gives
for degree 10 and 12, but it would require a leap of faith to conclude that the bound thus
computed really holds.

D. Scheder, S. Tang, and J. Zhang 31:9

5 Open Questions

Is there a better way to handle numerical errors? If so, then maybe one can remove the
number of variables to four and explore higher degrees. As for theoretical aspects, can one
prove that as d→∞, the optimal value of the SoS program converges to the actual optimum
of the cryptogenography problem? It is known (see for example Lasserre [7]) that any non-
negative f : [−1, 1]m → R can be arbitrarily well approximated by SoS polynomials. However,
we don’t require the polynomial g to be non-negative everywhere; only non-negative on a
certain set. It is not clear to me whether the approximation result transfers to this setting.

6 Source Code and Data

Since already for degree four, the number of monomials in f and the polynomials QI are too
large to be comfortably printed in an article, we created the webpage

http://basics.sjtu.edu.cn/~dominik/sos-cryptogenography/

to which we uploaded all source code and all output data that enables the reader to verify
our results without having to run yalmip or any SoS solver.

References
1 Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From information

to exact communication. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 151–160. ACM, 2013. doi:10.1145/2488608.2488628.

2 Joshua Brody, Sune K. Jakobsen, Dominik Scheder, and Peter Winkler. Cryptogenography.
In Moni Naor, editor, Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ,
USA, January 12-14, 2014, pages 13–22. ACM, 2014. doi:10.1145/2554797.2554800.

3 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA, 2006.

4 Benjamin Doerr and Marvin Künnemann. Improved Protocols and Hardness Results for the
Two-Player Cryptogenography Problem. In Ioannis Chatzigiannakis, Michael Mitzenmacher,
Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, pages 150:1–150:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:
10.4230/LIPIcs.ICALP.2016.150.

5 Sune K. Jakobsen. Information Theoretical Cryptogenography. J. Cryptology, 30(4):1067–1115,
2017. doi:10.1007/s00145-016-9242-8.

6 Sune K. Jakobsen and Claudio Orlandi. How To Bootstrap Anonymous Communication. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
ITCS ’16, pages 333–344, New York, NY, USA, 2016. ACM. doi:10.1145/2840728.2840743.

7 Jean B. Lasserre. A Sum of Squares Approximation of Nonnegative Polynomials. SIAM J. on
Optimization, 16(3):751–765, March 2006. doi:10.1137/04061413X.

8 Monique Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials. In
Mihai Putinar and Seth Sullivant, editors, Emerging Applications of Algebraic Geometry, pages
157–270. Springer New York, New York, NY, 2009. doi:10.1007/978-0-387-09686-5_7.

9 J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

10 A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo.
SOSTOOLS: Sum of squares optimization toolbox for MATLAB, 2013. Available from
http://www.eng.ox.ac.uk/control/sostools, http://www.cds.caltech.edu/sostools
and http://www.mit.edu/˜parrilo/sostools. arXiv:1310.4716.

ISAAC 2019

http://basics.sjtu.edu.cn/~dominik/sos-cryptogenography/
https://doi.org/10.1145/2488608.2488628
https://doi.org/10.1145/2554797.2554800
https://doi.org/10.4230/LIPIcs.ICALP.2016.150
https://doi.org/10.4230/LIPIcs.ICALP.2016.150
https://doi.org/10.1007/s00145-016-9242-8
https://doi.org/10.1145/2840728.2840743
https://doi.org/10.1137/04061413X
https://doi.org/10.1007/978-0-387-09686-5_7
http://www.eng.ox.ac.uk/control/sostools
http://www.cds.caltech.edu/sostools
http://www.mit.edu/~parrilo/sostools
http://arxiv.org/abs/1310.4716

31:10 Cryptogenography Upper Bounds via SoS Programming

11 Antonis Papachristodoulou, James Anderson, Giorgio Valmorbida, Stephen Prajna, Pete Seiler,
and Pablo A. Parrilo. SOSTOOLS version 3.00 sum of squares optimization toolbox for
MATLAB. CoRR, abs/1310.4716, 2013. arXiv:1310.4716.

A The yalmip Code for Degree 4

clear
yalmip(’clear’)
tic
echo on

%%% begin python generated code
degree = 4;
sdpvar a b c d r0 s0 s1 t w0000 w1000 w2000 w1100 w1010 w1001 w3000
w2100 w2010 w2001 w1110 w4000 w3100
w3010 w3001 w2200 w2110 w2101 w2020 w2011 w2002 w1111;
fvars = [w0000; w1000; w2000; w1100; w1010; w1001; w3000; w2100;
w2010; w2001; w1110; w4000; w3100; w3010;
w3001; w2200; w2110; w2101; w2020; w2011; w2002; w1111];
decisionvars = fvars;
f = w0000*1 + w1000*a + w1000*b + w1000*c + w1000*d + w2000*a^2 + w1100*a*b +
w1010*a*c + w1001*a*d + w2000*b^2 + w1001*b*c + w1010*b*d + w2000*c^2 + w1100*c*d +
w2000*d^2 + w3000*a^3 + w2100*a^2*b + w2010*a^2*c + w2001*a^2*d + w2100*a*b^2 +
w1110*a*b*c + w1110*a*b*d + w2010*a*c^2 + w1110*a*c*d + w2001*a*d^2 + w3000*b^3 +
w2001*b^2*c + w2010*b^2*d + w2001*b*c^2 + w1110*b*c*d + w2010*b*d^2 + w3000*c^3 +
w2100*c^2*d + w2100*c*d^2 + w3000*d^3 + w4000*a^4 + w3100*a^3*b + w3010*a^3*c +
w3001*a^3*d + w2200*a^2*b^2 + w2110*a^2*b*c + w2101*a^2*b*d + w2020*a^2*c^2 +
w2011*a^2*c*d + w2002*a^2*d^2 + w3100*a*b^3 + w2101*a*b^2*c + w2110*a*b^2*d +
w2011*a*b*c^2 + w1111*a*b*c*d + w2011*a*b*d^2 + w3010*a*c^3 + w2110*a*c^2*d +
w2101*a*c*d^2 + w3001*a*d^3 + w4000*b^4 + w3001*b^3*c + w3010*b^3*d +
w2002*b^2*c^2 + w2011*b^2*c*d + w2020*b^2*d^2 + w3001*b*c^3 + w2101*b*c^2*d +
w2110*b*c*d^2 + w3010*b*d^3 + w4000*c^4 + w3100*c^3*d + w2200*c^2*d^2 +
w3100*c*d^3 + w4000*d^4;
%%% end python generated code

B = 1-a-c-d;
R1 = -r0-s0-s1;
f_replace = replace(f, [a,b,c,d], [a + t*r0, B + t*R1, c + t*s0, d + t*s1])
h = -replace(jacobian(jacobian(f_replace ,t), t), [t], [0])

corner = replace(f, [a,b,c,d], [1,0,0,0]);
edge = replace(f, [a,b,c,d], [1/2,0,1/2,0]);

Constraintsp0 = [corner == 0, edge == 1/2];
Constraintsp = [];

%%% concavity constraint for Alice:

%% Our set S of feasible inputs is defined by five polynomial inequalities
%% and one equality
%% The five inequalities are a, B, c, d, s0*s1 >= 0
%% Each subset of [5] gives us a ’region polynomial’, like a*B*s0*s1

http://arxiv.org/abs/1310.4716

D. Scheder, S. Tang, and J. Zhang 31:11

%% For technical reasons we only list the products over non-empty subsets:

region_vector = [a, B, c, d, a*B, a*c, a*d, B*c, B*d, c*d, a*B*c, a*B*d, a*c*d,
B*c*d, a*B*c*d, s0*s1, a*s0*s1, B*s0*s1, c*s0*s1, d*s0*s1, a*B*s0*s1,
a*c*s0*s1, a*d*s0*s1, B*c*s0*s1, B*d*s0*s1, c*d*s0*s1, a*B*c*s0*s1,
a*B*d*s0*s1, a*c*d*s0*s1, B*c*d*s0*s1, a*B*c*d*s0*s1];

%% This is simply a list containing the degrees of the polynomials just defined

deg_of_boundaries = [1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6];

%% We now define our polynomails Q_I for each (non-empty) subset I of [5]
%% Each Q_I is in the variables a,c,d,s0, s1, r0:

polyvars = [a,c,d, s0, s1, r0];
boundary_polys = [];
for i=1:length(region_vector)

% Creating the polynomial Q_I
% remember: the degree of Q_I * prod_{i in I} b_i should be at most <degree>,
% and the degree of Q_I must be even

degree_here = max(0,2*floor((degree - deg_of_boundaries(i))/2));

% We ask yalmip to create a new polynomial Q_I
[Q_I, coeff] = polynomial(polyvars, degree_here);
boundary_polys = [boundary_polys; Q_I];

% this Q_I must be SoS, so add a SoS constraint
Constraintsp = [Constraintsp, sos(Q_I)];

% tell yalmip that we created a new bunch of decision variables:
% the coefficients of Q_I
decisionvars = [decisionvars; coeff];

end

% In the paper we had the (not necessarily SoS) polynomial R
% which enters the SoS program as R*(y0*s1 - y1*s0)
% Here, we use c,d instead of y0, y1 and, for clarity
% ’alice_line_poly’ instead of ’R’

[alice_line_poly, alice_line_poly_coeff] = polynomial(polyvars, degree-2);
decisionvars = [decisionvars; alice_line_poly_coeff];

[normalization_poly, normalization_poly_coeff] = polynomial(polyvars, degree-2);
decisionvars = [decisionvars; normalization_poly_coeff];

Constraints = [sos(h - region_vector * boundary_polys ...
- (c*s1 - d*s0) * alice_line_poly ...
- (1 - r0^2 - R1^2 - s0^2 - s1^2) * normalization_poly), Constraintsp];

Constraints = [Constraintsp0, Constraints];

target = replace(f, [a,b,c,d], [1/4,1/4,1/4,1/4]);

ISAAC 2019

31:12 Cryptogenography Upper Bounds via SoS Programming

ops = sdpsettings(’solver’,’sedumi’,’sedumi.eps’,1e-14);

%% finally solving the SoS program

solvesos(Constraints, target, [ops] , decisionvars);

%% assembling the right-hand side of h, i.e., what we call \tilde{h} in the paper

sdpvar Q0_sos_polys Qi_sos_poly sum_poly error_poly error_poly_sym

sum_poly = 0;

Q0_sos_polys = sosd(Constraints(3));
for i=1:length(Q0_sos_polys)

sum_poly = sum_poly + Q0_sos_polys(i)^2;
end

for k=1:length(region_vector)
Qi_sos_polys = sosd(Constraints(k+3));
for i=1:length(Qi_sos_polys)

sum_poly = sum_poly + region_vector(k)*(Qi_sos_polys(i)^2);
end

end

sum_poly = sum_poly ...
+ (c*s1 - d*s0) * replace(alice_line_poly, decisionvars, value(decisionvars))
+ (1 - r0^2 - R1^2 - s0^2 - s1^2) *
replace(normalization_poly, decisionvars, value(decisionvars));

error_poly = sum_poly - replace(h, decisionvars, value(decisionvars));

error_poly_sym = str2sym(sdisplay(error_poly));

syms vec_error vec_sum;

vec_error = coeffs(error_poly_sym);

total_error = 0;
for i=1:length(vec_error)

total_error = total_error + abs(vec_error(i));
end

sdisplay(replace(target,decisionvars,value(decisionvars)))
total_error

toc

On the Complexity of Lattice Puzzles
Yasuaki Kobayashi
Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku,
Kyoto 606-8501 Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp

Koki Suetsugu
National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 Japan
suetsugu.koki@gmail.com

Hideki Tsuiki
Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho,
Sakyo-ku, Kyoto 606-8501 Japan
tsuiki.hideki.8e@kyoto-u.ac.jp

Ryuhei Uehara
School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai,
Nomi, Ishikawa 923-1292, Japan
uehara@jaist.ac.jp

Abstract
In this paper, we investigate the computational complexity of lattice puzzle, which is one of the
traditional puzzles. A lattice puzzle consists of 2n plates with some slits, and the goal of this puzzle
is to assemble them to form a lattice of size n×n. It has a long history in the puzzle society; however,
there is no known research from the viewpoint of theoretical computer science. This puzzle has
some natural variants, and they characterize representative computational complexity classes in the
class NP. Especially, one of the natural variants gives a characterization of the graph isomorphism
problem. That is, the variant is GI-complete in general. As far as the authors know, this is the first
non-trivial GI-complete problem characterized by a classic puzzle. Like the sliding block puzzles, this
simple puzzle can be used to characterize several representative computational complexity classes.
That is, it gives us new insight of these computational complexity classes.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases Lattice puzzle, NP-completeness, GI-completeness, FPT algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.32

Related Version An early version was presented orally at JCDCGGG 2017 http://www.jcdcgg.
u-tokai.ac.jp/past_conferences/2017.html.

Funding This work is partially supported by KAKENHI grant numbers 15K00015, 17H06287, and
18H04091, and JST CREST JPMJCR1401.

Acknowledgements The authors thank Prof. Shuji Yamada for his introduction of his original
designed lattice puzzle to the first three authors. The authors also thank JCDCGGG 2017 for giving
a chance to give an oral presentation of the early work on this topic, which motivated the last author
to join this research. The last author thanks Hisayoshi Akiyama and Mineyuki Uyematsu who kindly
taught him the history of the lattice puzzle.

1 Introduction

In history of theoretical computer science, some puzzles and games play important roles
for giving reasonable characterization to computational complexity classes. For example,
Conway’s game of life is universal [2], and it essentially has the same computational power of
the Turing machine. Later, “pebble game” was proposed as a classic model that gives some

© Yasuaki Kobayashi, Koki Suetsugu, Hideki Tsuiki, and Ryuhei Uehara;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 32; pp. 32:1–32:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kobayashi@iip.ist.i.kyoto-u.ac.jp
https://orcid.org/0000-0003-2529-7501
mailto:suetsugu.koki@gmail.com
mailto:tsuiki.hideki.8e@kyoto-u.ac.jp
https://orcid.org/0000-0003-0895-3765
mailto:uehara@jaist.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2019.32
http://www.jcdcgg.u-tokai.ac.jp/past_conferences/2017.html
http://www.jcdcgg.u-tokai.ac.jp/past_conferences/2017.html
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 On the Complexity of Lattice Puzzles

complexity classes in a natural way (see, e.g., [6]). The “constraint logic” is a recent model
that succeeds to solve a long standing open problem due to Martin Gardner that asks the
computational complexity of sliding block puzzles [5]. Such puzzles and games have been
giving us some intuitive insight for some computational complexity classes.

Figure 1 Illustration of a lattice puzzle.

Figure 2 The first lattice puzzle invented by T. Betsumiya (crafted by M. Uyematsu).

In this paper, we investigate the lattice puzzle and its variants. Typical one is illustrated
in Figure 1: we are given some plates with slits, and the goal is to assemble them into the
form of a lattice. There are many variants of them. In Japanese puzzle society, they say that
the first one was called “cross block”, and invented by a Japanese puzzle designer, Toshiaki
Betsumiya, in 1992 [1] (see Figure 2). This puzzle consists of ten plates. Each plate has five
slits; three slits have depth 1/2, one slit has depth 1/4, and the last slit has depth 3/4 (we
normalize it to 1 for simplicity). This puzzle has a beautiful mathematical design (

(5
2
)

= 10),
and it is reasonably difficult (it has 20 solutions, however, it is difficult to find one). Since
then, many variants are invented and are on the market.

It is natural to consider two variants of the cross block. First, the slits are on the same
side of a plate, we call it one-sided. We can consider two-sided plates whose slits are on
both sides as Figure 3. In the cross block, when two plates are assembled, there is no gap
at the crossing point. We call it fit. That is, two slits of depth p and q can be assembled
only if p+ q = 1 in the fit model. In the loose model, we permit to assemble when p+ q > 1.
Some readers may think that the two-sided model should be loose; otherwise we may not be
able to assemble/disassemble the plates as Figure 3(b). Actually, the two-sided fit model
was invented in the puzzle society (see Figure 4). In this commercial product, each piece is
made by rubber, and the puzzle itself is in the fit model. However, we can still consider the
problem of assembling/disassembling. Even if the final form is feasible in the loose model, we
may not assemble when the plates are rigid. In this paper, we focus on the problem that asks
whether the assembled form is feasible or not. This assembling problem is another problem,
which is not dealt with in this paper.

We here note that there is an old application of this problem. In the classic Japanese
wood craft, called “kumiki” which means “assembling wood”, there is a tricky method to
combine bars so that they seem to be “impossible” to assemble. Such a kumiki is actually

Y. Kobayashi, K. Suetsugu, H. Tsuiki, and R. Uehara 32:3

(a) (b)

Figure 3 Two-sided lattice puzzle.

Figure 4 Two-sided lattice puzzle with no gap and one depth.

the puzzle which can be seen as the two-sided loose model (Figure 5). This kumiki pattern
is known as “chidori-goshi”, which means “thousand-of-birds lattice”. For example, this craft
can be found at the Kiyomizu-temple in Kyoto, which is one of the most famous temples in
Japan (Figure 6). This kumiki method is too old and traditional to find the inventor1. As a
mark of respect for the inventor, we name this puzzle lattice puzzle.

As seen in Figure 6, we can consider the lattice puzzle of size n×m in general. When
n 6= m, we can distinguish horizontal plates and vertical plates. However, if the lattice is
square of size n× n, we can consider a variant that asks us to partition the given set of 2n
plates into two sets of n plates. We call this variant a square lattice puzzle. We also consider
two variants based on the set of operations we use to solve a puzzle. To obtain a solution,
one needs to order the plates in a sequence in each set. We call this process the permutation
process. One also needs to flip the pieces so that they have correct directions and correct
upsides. Note that each plate can be flipped to change its direction in the one-sided model,
and to change its direction and its upside in the two-sided model. If the puzzle has a hint of
the direction and the upside by, for example, coloring one of the endpoints and one of the
sides of each plate, then one can only permute the pieces. We call this variant permutation
lattice puzzle. If the puzzle has a hint of the order of each set of plates by, for example,
assigning numbers to each set of plates, then one can only flip the pieces. We call this variant
flip lattice puzzle.

1 We found one in a literature published in 1770 at http://www.wul.waseda.ac.jp/kotenseki/html/
i16/i16_00875/index.html.

ISAAC 2019

http://www.wul.waseda.ac.jp/kotenseki/html/i16/i16_00875/index.html
http://www.wul.waseda.ac.jp/kotenseki/html/i16/i16_00875/index.html

32:4 On the Complexity of Lattice Puzzles

Figure 5 Traditional wooden craft in Japan (Kumiki).

Figure 6 Large (im)possible wooden lattice at Kiyomizu temple in Kyoto.

We here summarize the table of our results in Table 1. It is easy to observe that the
lattice puzzle is in the class NP since we can check the feasibility of a given solution in
polynomial time. We show in Section 3 that the one-sided permutation loose model with 3
depths is NP-complete. This implies that the puzzle is NP-complete in general in the most
flexible variant; two-sided, loose, and the number of different depths is not bounded.

On the other hand, we show in Section 4 that when we turn to the one-sided permutation fit
model with 2 depths, this puzzle is GI-complete in general. The graph isomorphism problem
(GI) is a decision problem that, given two graphs, decides whether they are isomorphic or
not. This problem is one of the most well-studied problems in computational complexity and
some related areas, and is believed to be in neither P nor NP-complete. There are several
work to seek problems that are equivalent to GI. A problem is said to be GI-complete if the
problem is as hard as the GI problem for general graphs. (Precisely speaking, a problem
P is GI-complete if and only if the graph isomorphism problem for general graphs can be
reducible to P and vice versa under polynomial time reduction.) As far as the authors know,
there is no known characterization of the GI problem with such a simple puzzle.

Y. Kobayashi, K. Suetsugu, H. Tsuiki, and R. Uehara 32:5

Table 1 Summary of results.

square/
colored one/two sided operations #depths rule complexity note

any one-sided permutation 3 loose NP-complete Theorem 2
colored one-sided permutation 2 fit GI-complete Theorem 3
any one-sided both 3 fit GI-hard Corollary 4

colored one-sided flip unbounded any poly Theorem 5
n× k (k:fixed) any both unbounded any FPT for k Theorem 6

Finally, we show in Section 5 that when we turn to the one-sided flip fit model, the
problem can be reduced to the 2SAT problem, which can be solved in linear time for the size
of the puzzle. We also consider the case that the lattice size is bounded as n× k for a fixed
constant k. In this case, we show that the problem is fixed parameter tractable for k. That
is, this problem can be solved in f(k)p(n) time, where p(n) is a polynomial function of n.

2 Definition of lattice puzzles and preliminaries

We first explain the one-sided model. We assume that each instance of a lattice puzzle P is
given by two sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of plates. Each plate in X and Y
is a rectangle of size 1× (m+ 1) and 1× (n+ 1), respectively. Let x be a plate in X. On x,
we have m slits uniformly spaced on the long side. In the one-sided model, we denote the
depth of the ith slit from the left by di(x) with 0 < di(x) < 1 (since the plate is disconnected
if di(x) = 1, and we have no feasible solution if di(x) = 0). We define dj(y) in the same
manner for each y ∈ Y . We distinguish a plate and the one obtained by flipping it, and
denote by flip(x) the plate obtained by flipping x. That is, if n is the number of slits of x,
di(flip(x)) = dn+1−i(x) for every 1 ≤ i ≤ n. We say that two plates x and y fit at point (i, j)
if di(x) + dj(y) = 1, and weakly fit if di(x) + dj(y) ≥ 1.

A solution of the puzzle is an arrangement of the plates in X and Y so that they form
a lattice as shown in Figure 1 and Figure 2. More precisely, a solution is a pair of lists
of plates [x′1, . . . , x′n] and [y′1, . . . , y′m] such that every x′i is x or flip(x) for some different
x ∈ X and every y′j is y or flip(y) for some different y ∈ Y and x′i and y′j (weakly) fit at
(j, i) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. That is, we have dj(x′i) + di(y′j) = 1 in the fit model,
and dj(x′i) + di(y′j) ≥ 1 in the loose model. We consider three different models based on
the operations we can use. The above model is called the all-operations model. In the
permutation model, neither flip(x) nor flip(y) do not appear in the list. In the flip model,
the sets X and Y are ordered from the beginning and we are given two lists [x1, . . . , xn] and
[y1, . . . , ym], and x′i is xi or flip(xi) for 1 ≤ i ≤ n and y′j is yj or flip(yj) for 1 ≤ j ≤ m.

We here note for the special case |X| = |Y | = n. In this case, we cannot distinguish the
plates of X and Y from their shapes. Thus, we can consider a variant of the lattice puzzle
that a set of 2n plates is given and one divides it into two sets X and Y of n plates. We call
this variant an n× n square lattice puzzle. Note that when we simply say an n× n lattice
puzzle, we consider that two sets X and Y of plates are given. In this case, we sometimes
say it is colored (as Figure 5) to emphasis the model.

In the two-sided model, we select one side and call it the positive side and the other
one the negative side. If the ith slit of x is on the negative side, then we define di(x) as
−1 < di(x) < 0 according to the length of the slit. (That is, we do not allow to have two
slits on both sides at the same position.) In this model, we allow two kinds of flip operations.
That is, for a plate x, the plate flip(x) such that di(flip(x)) = dn+1−i(x) for every i and the

ISAAC 2019

32:6 On the Complexity of Lattice Puzzles

plate sflip(x) such that di(sflip(x)) = −di(x) for every i. We say that two plates x and y fit
at point (i, j) if di(x) + dj(y) = ±1 and weakly fit if |di(x) + dj(y)| ≥ 1. The solution in the
two-sided model can be defined in a similar way.

By default, we consider non-square one-sided all-operations 2-depth fit lattice puzzle and
we omit these adjectives. We use adjectives square, two-sided, permutation, flipping, n-depth,
any number of depth, and loose if they are.

For any given two graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2|, a bijection
φ : V1 → V2 is said to be an isomorphism when {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2.
When there is an isomorphism between G1 and G2, G1 is isomorphic to G2. The graph
isomorphism problem (GI) is a decision problem that, given two graphs G1 and G2, decides
whether G1 is isomorphic to G2. A problem is graph isomorphism complete (GI-complete) if
the problem is as hard as the graph isomorphism problem on general graphs. (GI-hardness
is defined in the same manner of NP-hardness.) It is known that the graph isomorphism
problem is GI-complete even if the input graphs are bipartite graphs (see, e.g., [7]).

In this paper, we did not give a definition of fixed parameter tractability; see e.g., [3] for
the details. In our context, when an instance of a lattice puzzle P is given by two sets X
and Y with |X| = n and |Y | = k for any fixed positive constant k, we say that the lattice
puzzle P is fixed parameter tractable if there is an algorithm that solves P in f(k)p(n) time,
where f is any function of k, and p is a polynomial function of n.

3 NP-completeness

We first show the following key lemma:

I Lemma 1. The lattice puzzle of size n×m is NP-complete in the loose model with linear
number of depths.

Proof. We reduce the following positive 1-IN-3SAT problem, which is one of the well
known NP-complete problems [4], to one-sided lattice puzzle (hence two-sided lattice puzzle
immediately follows):
Input: A collection of clauses C1, . . . , Cm of variables x1, . . . , xn such that each Cj is a
disjunction of exactly three positive literals.
Question: Is there a truth assignment to the variables occurring so that exactly one literal
is true in each Cj?

We will use n′ = 2n + 1 plates for variables and m′ = 3m + 1 plates for clauses and
reduce the above 1-IN-3SAT problem to the problem of solving an n′ ×m′ lattice puzzle(in
Figure 7, vertical plates are for variables, and horizontal ones are for clauses). There are
two special horizontal plate px and vertical plate pC which are called ID organizers for x
and C, respectively. We first define d1(px) = ε0 and d1(pC) = 1− ε0 for sufficiently small
ε0 > 0. In the following construction, the depth d of all the other slits satisfy ε0 < d < 1− ε0.
Therefore, px and pC should be assembled as shown in Figure 7 at the pivot (1, 1). We let
0 < ε0 < ε1 < · · · < εn < ε′1 < · · · < ε′m < 1/4 for some small distinct values. Then we define
d2(px) = d3(px) = ε1, d4(px) = d5(px) = ε2, . . ., d2i(px) = d2i+1(px) = εi, . . ., d2n(px) =
d2n+1(px) = εn. For these slits, we prepare 2n variable plates x+

1 , x
−
1 , x

+
2 , x

−
2 , . . . , x

+
n , x

−
n . For

each i with 1 ≤ i ≤ n, we let d1(x+
i) = d1(x−i) = 1− εi. As we will see, the depths of other

vertical slits are 1/4, 1/2, or 3/4. Therefore, it is easy to see that each pair of variable plates
x+
i and x−i should be assembled at points (2i, 1) and (2i+ 1, 1) (or (2i+ 1, 1) and (2i, 1)). In

a similar way for the plate pC with small values ε′1, . . . , ε′m, the ID organizer for C organizes

Y. Kobayashi, K. Suetsugu, H. Tsuiki, and R. Uehara 32:7

pivot

ID organizer for C

ID organizer for x
x

+

1 x
-

1 x
+

2x
-

2 x
+

3 x
-

3 x
+

n
x

-

n

C
1

1

C
1

2

C
2

3

C
2

1

C
3

1

C
2

2

C
3

2

C
1

3

C
3

3

2m unused plates for C

...

...

C
2

m

...

C
1

m

C
3

m

m plates for C

Figure 7 Reduction from 1-IN-3SAT to lattice puzzle.

the clause plates as follows. We first define d2(pC) = ε′1, d3(pC) = ε′2, . . ., dm+1(pC) = ε′m.
Then we further define dm+2(pC) = dm+3(pC) = ε′1, dm+4(pC) = dm+5(pC) = ε′2, . . .,
dm+2j(pC) = dm+2j+1(pC) = ε′j , . . ., d3m(pC) = d3m+1(pC) = ε′m. For these slits, we
prepare 3m clause plates C1

j , C
2
j , C

3
j (1 ≤ j ≤ m). For each j with 1 ≤ j ≤ m, we let

d1(C1
j) = d1(C2

j) = d1(C3
j) = 1− ε′j . Thus, one of C1

j , C
2
j , C

3
j is assembled at (1, j + 1) and

the other two plates are assembled at (1,m+ 2j) and (1,m+ 2j + 1).
From the construction, we can observe that all ordering of these plates are fixed except

(1) we can exchange x+
i and x−i , and (2) we can exchange C1

j , C2
j , and C3

j . Now we give the
assignments of depths for each x+

i , x
−
i , C1

j , C2
j , and C3

j .
First, we define depths of variable plates x+

i and x−i . As depth, we use three values
3/4, 1/4, and 1/2. We set dj(x) = 3/4 for all variable plates x and j > m+ 1. Note that a
slit with depth 3/4 matches with any slit in the loose model. Therefore, for each 1 ≤ j ≤ m,
one can put any two (unused) clause plates Ckj (k ∈ {1, 2, 3}) at some jth row for j > m+ 1
as shown in the lower part of Figure 7.

For each 1 ≤ j ≤ m, suppose that the clause Cj contains variables xi1 , xi2 and xi3 . Then
we set dj+1(x+

ik
) = 3/4 for each k ∈ {1, 2, 3}. The depth of other slits of variable plates are

set to 1/2.
Next, we define depths of clause plates. Suppose that Cj contains variables xi1 , xi2 , and

xi3 . Let s+
k = 2ik and s−k = 2ik + 1, which are the two indices of the rows at which x+

ik
and

x−ik can be placed. We assign depth 1/4 to the slits at the following positions of C1
j , C

2
j , and

ISAAC 2019

32:8 On the Complexity of Lattice Puzzles

C3
j . On C1

j , we assign at positions s+
1 , s

−
2 , and s

−
3 . On C2

j , we assign at positions s+
2 , s

−
3 ,

and s−1 . On C3
j , we assign at positions s+

3 , s
−
1 , and s−2 . At all the other positions, of clause

plates we assign depth 1/2.
Suppose that a solution of the original instance of the 1-IN-3SAT is given. If xi is true,

then we set the plate x+
i at position 2i and the plate x−i at position 2i+ 1. If xi is false, we

exchange these two plates. Then, for each 1 ≤ j ≤ m, one can observe that exactly one of
C1
j , C2

j , or C3
j can be placed on the (j + 1)st line, and we put the other two plates on the

lines with indices greater than m+ 1. Thus, we obtain a solution of the lattice puzzle. This
is a one-to-one correspondence, and one can construct a solution of the 1-IN-3SAT problem
from a solution of this puzzle. J

In the proof of Lemma 1, except ID organizers for x and C, we need depths 1/4, 1/2,
and 3/4. Moreover, flipping is not required in the proof. These facts lead us to the following
stronger result.

I Theorem 2. The lattice puzzle of size n×m and the square lattice puzzle of size n×n are
NP-complete in the loose model with 3 depths even if one-sided model and only permutation
is permitted.

Proof. It is enough to show that we can design a “frame” surrounding the puzzle in the
proof of Lemma 1. A brief sketch is given in right down in Figure 8. The gray area of the
figure forms a frame, which plays ID organizers in the proof of Lemma 1. The magnification
of the left up corner of the frame is depicted at left up in Figure 8. Let n′ = max{2n, 3m}.
Then the frame F is the set of 4n′ plates. For each i = 1, 2, . . . , n′, we have two copies of fi
and two copies of f ′i . The set of fis plays the role of the ID organizer of C, and the set of
f ′is plays the rule of the ID organizer of x.

In Figure 8, each small circle on fi corresponds to depth 3/4, and each small circle on f ′i
corresponds to depth 1/4. The other intersection of fi and f ′j , the depth is 1/2.

We apply the same manner for each intersection between fi and Cjk and each intersection
between f ′i and x+

j or x−j . Precisely, for example, f2 has depth 3/4 at the points corresponding
to C1

1 , C2
1 , and C3

1 , and has depth 1/2 at the other points. In general, fi+1 has depth 3/4 at
the points corresponding to C1

i , C2
i , and C3

i . Similarly, each f ′i+1 has depth 1/4 at the points
corresponding to x+

i and x−i , and has depth 1/2 at the other points. The corresponding
depths of the plates xj and Cj are trivial.

We note that they fit without any gap in the gray area of the figure. Since there is no
gap at the gray area, we can observe that the shape of the frame is uniquely formed by these
4n′ plates.

Therefore, combining the reduction in Lemma 1, we prove that the lattice puzzle of size
n×m is NP-complete in the loose model with 3 depths.

It is easy to see that the reductions work even in one-sided model and only permutation
is permitted. Addition of extra plates to make the frame square is trivial. J

4 GI-completeness

In this section, we show the following theorem:

I Theorem 3. The permutation lattice puzzle is GI-complete.

Proof. We show a correspondence between lattice puzzles and graph isomorphism problems
of bipartite graphs. Let G1 = (A1, B1, E1) and G2 = (A2, B2, E2) be two bipartite graphs
with |A1| = |A2| = n and |B1| = |B2| = m. Let A1 = {a1, a2, . . . , an}, B1 = {b1, b2, . . . , bm},

Y. Kobayashi, K. Suetsugu, H. Tsuiki, and R. Uehara 32:9

ID organizers for C

ID organizers for x

C
1

1

C
1

2

C
2

3

f1 f2 f3 f4 x
+

2x
-

2 ...x
+

1 x
-

1

...

fn’

f’1

f’2

f’3

f’4

fn’

...

... ...

Figure 8 Framing of the lattice puzzle in Lemma 1.

A2 = {a′1, a′2, . . . , a′n} and B2 = {b′1, b′2, . . . , b′m}. From these graphs, we construct a lattice
puzzle as follows. The set X = {x1, . . . , xn} of plates is constructed from G1: the plate xi of
size 1× (m+ 1) corresponds to ai ∈ A1 and dj(xi) = 2/3 if {ai, bj} is in E1, and dj(xi) = 1/3
otherwise. The set Y = {y1, . . . , ym} of plates is constructed from G2: the plate yj of size
1 × (n + 1) corresponds to b′j ∈ B2 and di(yj) = 1/3 if {a′i, b′j} is in E2, and di(yj) = 2/3
otherwise.

Now we check that a graph isomorphism gives us a solution of the puzzle, and vice
versa. Let φA and φB be permutations on {1, . . . , n} and {1, . . . ,m}, respectively. φA
induces a bijection ai 7→ a′φA(i) from A1 to A2, and φB induces a bijection bj 7→ b′φB(i)
from B1 to B2. They form a graph isomorphism from G1 to G2 if and only if {ai, bj} ∈
E1 ⇔ {a′φA(i), b

′
φB(j)} ∈ E2 for 1 ≤ i ≤ n and 1 ≤ j ≤ m. On the other hand, φA induces

a permutation on X such that the result of permutation X ′ = [x′1, . . . , x′n] is given as
x′i = xφ−1

A
(i). In the same way, φ−1

B induces a permutation on Y such that the result of
permutation Y ′ = [y′1, . . . , y′m] is given as y′j = yφB(j).

Now, we look at the point (i, j) where the plates x′i = xφ−1
A

(i) and y′j = yφB(j) are
crossing. On the plate x′i, dj(x′i) = 2/3 if and only if {aφ−1

A
(i), bj} ∈ E1 and on the plate y′j ,

di(y′j) = 1/3 if and only if {a′i, b′φB(j)} ∈ E2. Therefore, X ′ and Y ′ form a solution of the

ISAAC 2019

32:10 On the Complexity of Lattice Puzzles

puzzle if and only if {aφ−1
A

(i), bj} ∈ E1 ⇔ {a′i, b′φB(j)} ∈ E2 for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let
i′ = φ−1

A (i). Then, it is equivalent to {ai′ , bj} ∈ E1 ⇔ {a′φA(i), b
′
φB(j)} ∈ E2 for 1 ≤ i′ ≤ n

and 1 ≤ j ≤ m. That is, G1 and G2 are isomorphic. J

I Corollary 4.
(1) The square lattice puzzle is GI-complete.
(2) The square permutation lattice puzzle is GI-complete.

Proof. We reduce a colored permutation puzzle of size n × n to a square all-operations
puzzle of size (n + 4) × (n + 4). We denote by 0 a slot with depth 1/3, and by 1 a
slot with depth 2/3. Suppose that an n × n non-square lattice puzzle with the lists of
plates X = [x1, . . . , xn], Y = [y1, . . . , yn] is given. From X and Y , we form a new set
Z̃ = {x̃1, . . . , x̃n, ỹ1, . . . , ỹn, z̃1, . . . , z̃8} of plates with n+ 4 slots. The sequences of slots are
given as follows. Here, x is the sequence of slots of x.

x̃i = 1 0 xi 0 0 (1 ≤ i ≤ n)
ỹi = 0 1 yi 0 0 (1 ≤ i ≤ n)
z̃i = 1 1 1n 0 0 (i = 1, 2, 3, 4)
z̃i = 1 0 1n 0 1 (i = 5, 6)
z̃i = 0 1 0n 1 0 (i = 7, 8)

Let [x′1, . . . , x′n+4] and [y′1, . . . , y′n+4] be the lists of plates which form a solution of this
puzzle. We first study x′1, x′2, x′n+3, x

′
n+4 and y′1, y′2, y′n+3, y

′
n+4. First note that these plates

cross at the four 2× 2 corners, and each place needs to contain at least one 1-slot. It means
we need, in all, 16 1-slots at the positions 1, 2, n+ 3, n+ 4 of the 8 plates. Therefore, these
8 plates must be zi (1 ≤ i ≤ 8). One can see that [x′1, x′2, x′n+3, x

′
n+4] = [z1, z7,flip(z2), z5]

and [y′1, y′2, y′n+3, y
′
n+4] = [z8,flip(z3), z6, z4] form a solution. In this case, for each 3 ≤

j ≤ n + 2, the jth slots of x′1, x′2, x′n+3, x
′
n+4 form the sequence 0 1 1 1, and those of

y′1, y
′
2, y
′
n+3, y

′
n+4 form the sequence 1 0 1 1. There are other possibilities of the assignments

of x′1, x′2, x′n+3, x
′
n+4, y

′
1, y
′
2, y
′
n+3, y

′
n+4. However, one can see that, in all of them, we have

the same sequences 0 1 1 1 and 1 0 1 1 or their rotation at these slots. It means that
{x′i | 3 ≤ i ≤ n + 2} must be {x̃i | 1 ≤ i ≤ n} and {y′i | 3 ≤ i ≤ n + 2} must be
{ỹi | 1 ≤ i ≤ n}. Note that x̃i and ỹi cannot be flipped. Therefore, there is a correspondence
between solutions of the original non-square permutation puzzle of size n×n and this square
all-operations puzzle of size (n+ 2)× (n+ 2). J

5 Polynomial time algorithms

In this section, we show two variants that can be solved in polynomial time.

5.1 Fixed ordering case
In this variant, we assume that the place of each plate is fixed. That is, the lattice of size
n×m is fixed, and each plate can only be flipped. In such a restricted case, we still have
2n+m possible cases. However, we can solve this variant in linear time:

I Theorem 5. The lattice puzzle of size n×m can be solved in O(nm) time in the flip fit
model with 2 depths2.

2 The modification of the number of depths from 2 to any positive integer is straightforward and omitted
here.

Y. Kobayashi, K. Suetsugu, H. Tsuiki, and R. Uehara 32:11

Proof. Without loss of generality, the set X = {x1, . . . , xn} of n plates with m slits and the
set Y = {y1, . . . , ym} of m plates with n slits are given, their positions are given by their
indices, and the depth of each slit is 1/3 or 2/3. We reduce this puzzle to the 2SAT problem,
which can be solved in linear time.

From the set X of n plates, we define a Boolean matrix A of size n × m which may
contain Boolean variables a1, . . . , an. For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, we define

Ai,j =

T if dj(xi) = dm−j+1(xi) = 1/3
F if dj(xi) = dm−j+1(xi) = 2/3
ai if dj(xi) = 1/3 and dm−j+1(xi) = 2/3
āi if dj(xi) = 2/3 and dm−j+1(xi) = 1/3.

The variable ai represents the direction of the ith plate. Similarly, the matrix B is defined
from the set Y of m plates as

Bi,j =

T if di(yj) = dn−i+1(yj) = 2/3
F if di(yj) = dn−i+1(yj) = 1/3
bj if di(yj) = 2/3 and dn−i+1(yj) = 1/3
b̄j if di(yj) = 1/3 and dn−i+1(yj) = 2/3,

for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, where b1, . . . , bm are Boolean variables. Observe that the
plates xi and yj can fit at (i, j) if and only if Ai,j = Bi,j .

Now we solve the assignment problem for these variables. This condition can be represen-
ted by two clauses as (αji ∧ β

j
i) ∨ (ᾱji ∧ β̄

j
i), where α

j
i and βji are the literals appearing in

Ai,j and Bi,j , respectively. We consider the 2-CNF formula obtained as their conjunction.
Then, this puzzle is solvable if and only if there is a satisfying assignment for this formula.

Suppose that it is satisfied with a variable assignment to a1, . . . , an, b1, . . . , bm. We
obtain a solution of the puzzle with the following procedure: If ai = F , then we flip xi for
i = 1, . . . , n. If bj = F , then we flip yj for j = 1, . . . ,m. Since the 2SAT problem can be
solved in polynomial time, Theorem 5 follows. J

5.2 Fixed parameter tractable algorithm
In this variant, we consider the lattice of size n× k for a fixed constant k. First, we mention
that the fit model with one-sided plates is easy to solve by checking all permutations of k
plates of size 1 × (n + 1). Considering the flipping, we have k!2k ways to arrange these k
plates. Once we fix one arrangement of k plates, checking of feasibility is straightforward in
O(kn2) time. Therefore, the algorithm runs in O(k!2kkn2) time. For the two-sided plates,
the number of possible permutations is k!4k, and the checking of feasibility can be done in
O(kn2) time. Therefore, we can solve the lattice puzzle in O(k!4kkn2) time. We extend this
idea to the loose model:

I Theorem 6. The lattice puzzle of size n × k in the loose model can be solved by a fixed
parameter tractable algorithm with parameter k.

Proof. We first consider the one-sided plates. The basic idea is similar to the algorithm for
the fit model: the algorithm checks all k!2k permutations. Now we fix a permutation. We have
n possible places for n plates. Thus, we construct a bipartite graph G = (X,Y,E) as follows.
Let X = {x1, x2, . . . , xn} be the set of n plates of size 1× (k + 1), and Y = {y1, y2, . . . , yn}
be the places produced by k plates of size 1 × (n + 1). E consists of an edge {xi, yj} if
and only if the plate xi can be assembled to the place yj . The construction of the graph G

ISAAC 2019

32:12 On the Complexity of Lattice Puzzles

takes O(kn2) time. Then, it is easy to see that a solution of the lattice puzzle corresponds
to a perfect matching on G. It is known that the perfect matching problem on a bipartite
graph can be solved in polynomial time p(|X|+ |Y |) = O(min{

√
|X|+ |Y ||E|, (|X|+ |Y |)ω}),

where ω < 2.373 is the matrix multiplication exponent.
Therefore, the lattice puzzle can be solved in O(k!2k(kn2 + p(n+ k))) time. When the

plates are two-sided, in the same way, we can solve it in O(k!4k(kn2 + p(n+ k))) time. J

6 Concluding remarks

In this paper, we propose a general framework of simple lattice puzzles. Using this framework,
we can characterize some representative computational complexity classes. Especially, we
can characterize the problems in NP-complete and GI-complete. As far as the authors know,
there is no such a simple framework.

Although we show several results, we still have many unsolved problems. Especially,
computational complexity of the simplest problem on 2n plates of size 1 × (n + 1) in the
one-sided fit model is open. By Theorems 2 and 3, it seems that this problem exists between
the NP-complete problem and the GI-complete problem.

We also mention that we focus on the problems that ask if a given set of plates has a
feasible state or not in this paper. That is, we do not ask if the feasible state can be assembled
even if each plate is rigid. Like the sliding block puzzles, allowing the “movement of pieces”,
the assembling puzzle of rigid plates can be PSPACE-complete. Is there a variant of the
lattice puzzle with movement which gives us a characterization of PSPACE-completeness?

References
1 Hisayoshi Akiyama. Cube Puzzle Book (in Japanese). Shinkigensha, 2004.
2 E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathematical Plays,

volume 1–4. A K Peters Ltd., 2001–2003.
3 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh. Parameterized Algorithms. Springer, 2015.
4 M.R. Garey and D.S. Johnson. Computers and Intractability – A Guide to the Theory of

NP-Completeness. Freeman, 1979.
5 R. A. Hearn and E. D. Demaine. Games, Puzzles, and Computation. A K Peters Ltd., 2009.
6 Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete

problems. SIAM Journal on Computing, 1979.
7 R. Uehara, S. Toda, and T. Nagoya. Graph Isomorphism Completeness for Chordal Bipartite

Graphs and Strongly Chordal Graphs. Discrete Applied Mathematics, 145(3):479–482, 2004.
doi:10.1016/j.dam.2004.06.008.

https://doi.org/10.1016/j.dam.2004.06.008

The I/O Complexity of Hybrid Algorithms for
Square Matrix Multiplication
Lorenzo De Stefani
Department of Computer Science, Brown University, United States of America
lorenzo@cs.brown.edu

Abstract
Asymptotically tight lower bounds are derived for the I/O complexity of a general class of hy-
brid algorithms computing the product of n × n square matrices combining “Strassen-like” fast
matrix multiplication approach with computational complexity Θ

(
nlog2 7), and “standard” matrix

multiplication algorithms with computational complexity Ω
(
n3). We present a novel and tight

Ω
((

n

max{
√

M,n0}

)log2 7 (
max{1, n0

M
}
)3

M

)
lower bound for the I/O complexity of a class of “uni-

form, non-stationary” hybrid algorithms when executed in a two-level storage hierarchy with M

words of fast memory, where n0 denotes the threshold size of sub-problems which are computed
using standard algorithms with algebraic complexity Ω

(
n3).

The lower bound is actually derived for the more general class of “non-uniform, non-stationary”
hybrid algorithms which allow recursive calls to have a different structure, even when they refer
to the multiplication of matrices of the same size and in the same recursive level, although the
quantitative expressions become more involved. Our results are the first I/O lower bounds for these
classes of hybrid algorithms. All presented lower bounds apply even if the recomputation of partial
results is allowed and are asymptotically tight.

The proof technique combines the analysis of the Grigoriev’s flow of the matrix multiplication
function, combinatorial properties of the encoding functions used by fast Strassen-like algorithms,
and an application of the Loomis-Whitney geometric theorem for the analysis of standard matrix
multiplication algorithms. Extensions of the lower bounds for a parallel model with P processors
are also discussed.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases I/O complexity, Hybrid Algorithm, Matrix Multiplication, Recomputation

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.33

Related Version A full version of the paper is available at https://arxiv.org/abs/1904.12804.

Funding This research was supported by NSF Award ISS 1813444.

Acknowledgements I want to thank Gianfranco Bilardi at the University of Padova (Italy) for inital
conversations on the topic of this work, and Megumi Ando at Brown University (USA) for her
feedback on early versions of this manuscript.

1 Introduction

Data movement plays a critical role in the performance of computing systems, in terms of
both time and energy. This technological trend [16] appears destined to continue, as physical
limitations on minimum device size and on maximum message speed lead to inherent costs
when moving data, whether across the levels of a hierarchical memory system or between
processing elements of a parallel system [13]. While the communication requirements of
algorithms have been widely investigated in the literature, obtaining significant and tight
lower bounds based on such requirements remains an important and challenging task.

© Lorenzo De Stefani;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lorenzo@cs.brown.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.33
https://arxiv.org/abs/1904.12804
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

In this paper, we focus on the I/O complexity of a general class of hybrid algorithms
for computing the product of square matrices. Such algorithms combine fast algorithms
with base case 2× 2 similar to Strassen’s matrix multiplication algorithm [36] with algebraic
(or computational) complexity O

(
nlog2 7) with standard (or classic) matrix multiplication

algorithms with algebraic complexity Ω
(
n3). Further, these algorithms allow recursive

calls to have a different structure, even when they refer to the multiplication of matrices
in the same recursive level and of the same input size. These algorithms are referred in
literature as “non-uniform, non-stationary”. This class includes, for example, algorithms that
optimize for input sizes [19, 20, 23]. Matrix multiplication is a pervasive primitive utilized in
many applications.

While of actual practical importance, to the best of our knowledge, no characterization of
the I/O complexity of such algorithms has presented before this work. This is likely due to
the the fact that the irregular nature of hybrid algorithms and, hence, the irregular structure
of the corresponding Computational Directed Acyclic Graphs (CDAGs), complicates the
analysis of the combinatorial properties of the CDAG which is the foundation of many of
I/O lower bound technique presented in literature (e.g., [8, 25, 32]).

The technique used in this work overcomes such challenges and yields asymptotically
tight I/O lower bounds which hold even if recomputation of intermediate values is allowed.

Previous and Related Work. Strassen [36] showed that two n×n matrices can be multiplied
with O(nω) operations, where ω = log2 7 ≈ 2.8074, hence with asymptotically fewer than the
n3 arithmetic operations required by the straightforward implementation of the definition
of matrix multiplication. This result has motivated a number of efforts which have led
to increasingly faster algorithms, at least asymptotically, with the current record being at
ω < 2.3728639 [28].

I/O complexity has been introduced in the seminal work by Hong and Kung [25]; it is
essentially the number of data transfers between the two levels of a memory hierarchy with a
fast memory of M words and a slow memory with an unbounded number of words. Hong and
Kung presented techniques to develop lower bounds to the I/O complexity of computations
modeled by computational directed acyclic graphs (CDAGs). The resulting lower bounds
apply to all the schedules of the given CDAG, including those with recomputation, that is,
where some vertices of the CDAG are evaluated multiple times. Among other results, they
established a Ω

(
n3/
√
M
)
lower bound to the I/O complexity of standard, definition-based

matrix multiplication algorithms, which matched a known upper bound [15]. The techniques
of [25] have also been extended to obtain tight communication bounds for the definition-based
matrix multiplication in some parallel settings [4, 24]. Ballard et al. generalized the results
on matrix multiplication of Hong and Kung [25] in [7, 6] by using the approach proposed
in [24] based on the Loomis-Whitney geometric theorem [29, 37].

In an important contribution, Ballard et al. [8], obtained an Ω((n/
√
M)log2 7M) I/O

lower bound for Strassen’s algorithm, using the “edge expansion approach”. The authors
extend their technique to a class of “Strassen-like” fast multiplication algorithms and to
fast recursive multiplication algorithms for rectangular matrices [3]. This result was later
generalized to increasingly broader classes of “Strassen-like” algorithms by Scott et. al [33]
using the “path routing” technique, and De Stefani [17] using a combination the concept of
Grigoriev’s flow of a function and the “dichotomy width” technique [14]. While the previously
mentioned results hold only under the restrictive assumption that no intermediate result may
be more than once (i.e., the no-recomputation assumption), in [10] Bilardi and De Stefani

L. De Stefani 33:3

introduced the first asymptotically tight I/O lower bound which holds if recomputation is
allowed. Their technique was later extended to the analysis of Strassen-like algorithms with
base case 2× 2 [30], and to the analysis of Toom-Cook integer multiplication algorithms [11].

A parallel, “communication avoiding” implementation of Strassen’s algorithm whose
performance matches the known lower bound [8, 33], was proposed by Ballard et al. [5].

In [34], Scott derived a lower bound for the I/O complexity of a class of uniform, non-
stationary algorithms combining Strassen-like algorithm with recursive standard algorithms.
This result holds only under the restrictive no-recomputation assumption and considers only
compositions of recursive matrix multiplication algorithms.

To the best of our knowledge, ours is the first work presenting asymptotically tight I/O
lower bounds for non-uniform, non-stationary hybrid algorithms for matrix multiplication
that hold when recomputation is allowed.

On the impact of recomputation. While it is of interest to study the I/O complexity
under the no-recomputation assumption, it is also very important to investigate what can be
achieved with recomputation. For some CDAGs, recomputing intermediate values allows
reducing the space and/or the I/O complexity of an algorithm [32]. As shown [12], some
algorithms admit a “portable schedule” (i.e., a schedule which achieves optimal performance
across memory hierarchies with different access costs) only if recomputation is allowed.
Recomputation can also enhance the performance of simulations among networks (see [27]
and references therein) and plays a key role in the design of efficient area-universal VLSI
architectures with constant slowdown [9].

Our results. In our main result, we present the first I/O lower bound for a class H of non-
uniform, non-stationary hybrid matrix multiplication algorithms when executed in a two-level
storage hierarchy with M words of fast memory. Algorithms in H combine fast Strassen-like
algorithms with base case 2×2 with algebraic complexity Θ

(
nlog2 7), and standard algorithms

based on the definition with algebraic complexity Ω
(
n3). These algorithms allow recursive

calls to have a different structure, even when they refer to the multiplication of matrices in
the same recursive level and of the same input size. The result in Theorem 9 relates the I/O
complexity of algorithms in H to the number and the input size of an opportunely selected
set of the sub-problems generated by the algorithms themselves.

By specializing the result in Theorem 9, we also present, in Theorem 11, a novel

Ω
((

n
max{

√
M,n0}

)log2 7 (
max{1, n0

M }
)3
M

)
lower bound for the I/O complexity of algorithms

in a subclass UH (n0) of H composed by uniform non-stationary hybrid algorithms where
n0 denotes the threshold input size of sub-problems which are computed using standard
algorithms with algebraic complexity Ω

(
n3).

The result in Theorem 11 considerably extends a previous result by Scott [34] as the
latter covers only a sub-class of UH (n0) composed by uniform, non-stationary algorithms
combining Strassen-like algorithms with the recursive standard algorithm, and holds only
assuming that no intermediate value is recomputed.

Our lower bounds in Theorem 9 and Theorem 11 allow for recomputation of intermediate
values and are asymptotically tight. As the matching upper bounds do not recompute any
intermediate value, we conclude that using recomputation may reduce the I/O complexity of
the considered classes of hybrid algorithms by at most a constant factor.

Our proof technique is of independent interest since it exploits to a significant extent
the “divide and conquer” nature exhibited by many algorithms. Our approach combines
elements from the “G-flow” I/O lower bound technique originally introduced by Bilardi

ISAAC 2019

33:4 The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

and De Stefani, with an application of the Loomis-Whitney geometric theorem, which has
been used by Irony et al. to study the I/O complexity of standard matrix multiplication
algorithms [24], to recover an information which relates to the concept of “Minimum set”
introduced in Hong and Kung’s method. We follow the “dominator set” approach pioneered
by Hong and Kung in [25]. However, we focus the dominator analysis only on a select set
of target vertices, which, depending on the algorithm structure, correspond either to the
outputs of the sub-CDAGs that correspond to sub-problems of a suitable size (i.e., chosen as
a function of the fast memory capacity M) computed using a fast Strassen-like algorithm,
or to the the vertices corresponding to the elementary products evaluated by a standard
(definition) matrix multiplication algorithm.

We derive our main results for the hierarchical memory model (or external memory
model). Our results generalize to parallel models with P processors. For these parallel
models, we derive lower bounds for the “bandwith cost”, that is for the number of messages
(and, hence, the number of memory words) that must be either sent or received by at least
one processor during the execution of the algorithm.

Paper organization. In Section 2 we outline the notation and the computational models
used in the rest of the presentation. In Section 3 we rigorously define the class of hybrid
matrix multiplication algorithms H being considered. In Section 4 we discuss the construction
and important properties of the CDAGs corresponding to algorithms in H. In Section 5 we
introduce the concept of Maximal Sup-Problem (MSP) and describe their properties which
lead to the I/O lower bounds for algorithms in H in Section 6.

2 Preliminaries

We consider algorithms that compute the product of two square matrices A×B = C with
entries from a ring R. We use A to denote the set of variables each corresponding to an entry
of matrix A. We refer to the number of entries of a matrix A as its “size” and we denote it
as |A|. We denote the entry on the i-th row of the j-th column of matrix A as A[i][j].

In this work we focus on algorithms whose execution can be modeled as a computational
directed acyclic graph (CDAG) G = (V,E). Each vertex v ∈ V represents either an input
value or the result of a unit-time operation (i.e., an intermediate result or one of the output
values) which is stored using a single memory word. For example, each of the input (resp.,
output) vertices of G corresponds to one of the 2n2 entries of the factor matrices A and
B (resp., to the n2 entries of the product matrix C). The directed edges in E represent
data dependencies. That is, a pair of vertices u, v ∈ V are connected by an edge (u, v)
directed from u to v if and only if the value corresponding to u is an operand of the unit
time operation which computes the value corresponding to v. A directed path connecting
vertices u, v ∈ V is an ordered sequence of vertices starting with u and ending with v, such
that there is an edge in E directed from each vertex in the sequence to its successor.

We say that G′ = (V ′, E′) is a sub-CDAG of G = (V,E) if V ′ ⊆ V and E′ ⊆ E∩(V ′×V ′).
Note that, according to this definition, every CDAG is a sub-CDAG of itself. We say that
two sub-CDAGs G′ = (V ′, E′) and G′′ = (V ′′, E′′) of G are vertex-disjoint if V ′ ∩ V ′′ = ∅.
Analogously, two directed paths in G are vertex-disjoint if they do not share any vertex.

When analyzing the properties of CDAGs we make use of the concept of dominator set
originally introduced in [25]. We use the following – slightly different – definition:

L. De Stefani 33:5

I Definition 1 (Dominator set). Given a CDAG G = (V,E), let I ⊂ V denote the set of its
input vertices. A set D ⊆ V is a dominator set for V ′ ⊆ V with respect to I ′ ⊆ I if every
path from a vertex in I ′ to a vertex in V ′ contains at least a vertex of D. When I ′ = I, D is
simply referred as “a dominator set for V ′”.

I/O model and machine models. We assume that sequential computations are executed
on a system with a two-level memory hierarchy, consisting of a fast memory or cache of size
M (measured in memory words) and a slow memory of unlimited size. An operation can
be executed only if all its operands are in cache. We assume that each entry of the input
and intermediate results matrices (including entries of the output matrix) is maintained in a
single memory word (the results trivially generalize if multiple memory words are used).

Data can be moved from the slow memory to the cache by read operations and, in the
other direction, by write operations. These operations are also called I/O operations. We
assume the input data to be stored in slow memory at the beginning of the computation.
The evaluation of a CDAG in this model can be analyzed by means of the “red-blue pebble
game” [25]. The number of I/O operations executed when evaluating a CDAG depends on
the “computational schedule”, that is, it depends on the order in which vertices are evaluated
and on which values are kept in/discarded from cache.

The I/O complexity IOG(M) of a CDAG G is defined as the minimum number of I/O
operations over all possible computational schedules. We further consider a generalization
of this model known as the “External Memory Model” by Aggarwal and Vitter [2], where
B ≥ 1 values can be moved between cache and consecutive slow memory locations with a
single I/O operation. For B = 1, this model clearly reduces to the red-blue pebble game.

Given an algorithm A, we only consider “parsimonious execution schedules”, that is
schedules such that: (i) each time an intermediate result (excluding the output entries of
C) is computed, such value is then used to compute at least one of the values of which it is
an operand before being removed from the memory (either the cache or slow memory); and
(ii) any time an intermediate result is read from slow to cache memory, such value is then
used to compute at least one of the values of which it is an operand before being removed
from the memory or moved back to slow memory using a write I/O operation. Clearly, any
non-parsimonious schedule C can be reduced to a parsimonious schedule C′ by removing all
the steps which violate the definition of parsimonious computation. C′ has therefore less
computational and I/O operations than C. Hence, restricting the analysis to parsimonious
computations leads to no loss of generality.

We also consider a parallel model where P processors, each with a local memory of size
2n2/P ≤M < n2, are connected by a network. We do not, however, make any assumption
on the initial distribution of the input data nor regarding the balance of the computational
load among the P processors. Processors can exchange point-to-point messages, with every
message containing up to Bm memory words. For this parallel model, we derive lower
bounds for the number of messages that must be either sent or received by at least one
processor during the CDAG evaluation. The notion of “parsimonious execution schedules”
straightforwardly extends to this parallel model.

3 Hybrid matrix multiplication algorithms

In this work, we consider a family of hybrid matrix multiplication algorithms obtained by
hybridizing the two following classes of algorithms:

ISAAC 2019

33:6 The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

Standard matrix multiplication algorithms. This class includes all the square matrix
multiplication algorithms which, given the input factor matrices A,B ∈ Rn×n, satisfy
the following properties:

The n3 elementary products A[i][j]B[j][i], for i, j = 0, . . . , n− 1, are directly computed;
Each of the C[i][j] is computed by summing the values of the n elementary products
A[i][z]B[z][j], for z = 0, . . . , n−1, through a summation tree by additions and subtractions
only;
The evaluations of the C[i][j]’s are independent of each other. That is, internal vertex
sets of the summation trees of all the C[i][j]’s are disjoint from each other.

This class, also referred in literature as classic, naive or conventional algorithms, correspond
to that studied for the by Hong and Kung [25] (for the sequential setting) and by Irony et
al. [24] (for the parallel setting). Algorithms in this class have computational complexity
Ω
(
n3). This class includes, among others, the sequential iterative definition algorithm, the

sequential recursive divide and conquer algorithm based on block partitioning, and parallel
algorithms such as Cannon’s “2D” algorithm [15], the “2.5D” algorithm by Solomonik and
Demmel [35], and “3D” algorithms [1, 26].

Fast Strassen-like matrix multiplication algorithms with base case 2 × 2. This class
includes algorithms following a structure similar to that of Strassen’s [36] and Winograd’s
variation [38] (which reduces the leading coefficient of the arithmetic complexity reduced
from 7 to 6). For further details on Strassen’s algorithm we refer the reader to the extended
version of this work [18]). Algorithms in this class follow three common steps:
1. Encoding: Generate the inputs, of size n/2× n/2 of seven sub-problems, as linear sums

of the input matrices;
2. Recursive multiplications: Compute (recursively) the seven generated matrix multi-

plication sub-products;
3. Decoding: Computing the entries of the product matrix C via linear combinations of

the output of the seven sub-problems.
Algorithms in this class have algebraic complexity O

(
nlog2 7), which is optimal for algorithms

with base case 2× 2 [38].

Remarkably, the only properties of relevance for the analysis of the I/O complexity of
algorithms in these classes are those used in the characterization of the classes themselves.

In this work we consider a general class of non-uniform, non-stationary hybrid square
matrix multiplication algorithms, which allow mixing of schemes from the fast Strassen-like
class with algorithms from the standard class. Given an algorithm A let P denote the
problem corresponding to the computation of the product of the input matrices A and
B. Consider an “instruction function” fA(P), which, given P as input returns either (a)
indication regarding the algorithm from the standard class which is to be used to compute P ,
or (b) indication regarding the fast Strassen-like algorithm to be used to recursively generate
seven sub-problems P1, P2, . . . , P7 and the instruction functions fA(Pi) for each of the seven
sub-problems. We refer to the class of non-uniform, non-stationary algorithms which can be
characterized by means of such instruction functions as H. Algorithms in H allow recursive
calls to have a different structure, even when they refer to the multiplication of matrices in
the same recursive level. E.g., some of the sub-problems with the same size may be computed
using algorithms form the standard class while others may be computed using recursive
algorithms from the fast class. This class includes, for example, algorithms that optimize for
input sizes, (for sizes that are not an integer power of a constant integer).

L. De Stefani 33:7

This corresponds to actual practical scenarios, as the use of Strassen-like algorithms is
mostly beneficial for large input size. As the size of the input of the recursively generated
sub-problems decreases, the asymptotic benefit of fast algorithms is lost due to the increasing
relative impact of the constant multiplicative factor, and algorithms in the standard class
exhibit lower actual algebraic complexity. For a discussion on such hybrid algorithms and
their implementation issues we refer the reader to [20, 23] (sequential model) and [19]
(parallel model).

We also consider a sub-class UH (n0) of H constituted by uniform, non-stationary hybrid
algorithms which allow mixing of schemes from the fast Strassen-like class for the initial `
recursion levels, and then cut the recursion off once the size the generated sub-problems is
smaller or equal to a set threshold n0 × n0, and switch to using algorithm form the standard
class. Algorithms in this class are uniform, i.e., sub-problems of the same size are all either
recursively computed using a scheme form the fast class, or are all computed using algorithms
from the standard class.

4 The CDAG of algorithms in H

Let GA = (VA, EA) denote the CDAG that corresponds to an algorithm A ∈ H used for
multiplying input matrices A,B ∈ Rn×n. The challenge in the characterization of GA comes
from the fact that rather than considering to a single algorithm, we want to characterize the
CDAG corresponding to the class H. Further, the class H is composed of a rich variety of
vastly different and irregular algorithm. Despite such variety, we show a general template for
the construction of GA and we identify some of its properties which crucially hold regardless
of the implementation details of A and, hence, of GA.

Construction. GA can be obtained by using a recursive construction that mirrors the
recursive structure of the algorithm itself. Let P denote the entire matrix multiplication
problem computed by A. Consider the case for which, according to the instruction function
fA(P), P is to be computed using an algorithm from the standard class. As we do not fix
a specific algorithm, we do not correspondingly have a fixed CDAG. The only feature of
interest for the analysis is that, in this case, the CDAG GA corresponds to the execution of
an algorithm from the standard class for input matrices of size n× n.

Consider instead the case for which, according to fA(P), P is to be computed using
an algorithm from the fast class. In the base case for n = 2 the problem P is computed
without generating any further sub-problems. As an example, we present in Figure 1a the
base case for Strassen’s original algorithm [36]. If n > 2, then fA(P) specifies the divide
and conquer scheme to be used to generate the seven sub-problems P1, P2, . . . , P7, and the
instruction function for each of them. The sub-CDAGs of GA corresponding to each of
the seven sub-problems Pi, denoted as GAPi

are constructed according to fA(Pi), following
recursively the steps discussed previously. GA can then be constructed by composing the
seven sub-CDAGs GAPi

. n2 disjoint copies of an encoder sub-CDAG EncA (resp., EncB) are
used to connect the input vertices of GA, which correspond to the values of the input matrix
A (resp., B) to the appropriate input vertices of the seven sub-CDAGs GAPi

; the output
vertices of the sub-CDAGs GAPi

(which correspond to the outputs of the seven sub-products)
are connected to the appropriate output vertices of the entire GA CDAG using n2 copies
of the decoder sub-CDAG Dec. We present an example of such recursive construction in
Figure 1b.

ISAAC 2019

33:8 The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

A[0][0] A[0][1] A[1][0] A[1][1] B[0][0] B[0][1] B[1][0] B[1][1]

C[0][0] C[0][1] C[1][0] C[1][1]

M7 M5 M4 M1 M3 M2 M6

EncA EncB

Dec

(a) GA CDAG for base case n = 2, using Strassen’s
algorithm [36] (for details see extended version [18]).

A1,1 A1,2 A2,1 A2,2 B1,1 B1,2 B2,1 B2,2

C1,1 C1,2 C2,1 C2,2

GAP7 GAP5 GAP4 GAP1 GAP3 GAP2 GAP6

n2 × EncA n2 × EncB

n2 ×Dec

(b) Recursive construction of GA. Ai,j , Bi,j and
Ci,j denote the block-partition of A, B and C.

Figure 1 Blue vertices represent combinations of the input values from the factor matrices A
and B used as input values for the seven sub-problems; red vertices represent the output of the
seven sub-problems which are used to compute the values of the output matrix C.

Properties of GA. While the actual internal structure GA, and, in particular, the structure
of encoder and decoder sub-CDAGs depends on the specific Strassen-like algorithm being
used by A, all versions share some properties of great importance. Let G(X,Y,E) denote
an encoder CDAG for a fast multiplication algorithm 2 × 2 base case, with X (resp., Y)
denoting the set of input (resp., output) vertices, and E denoting the set of edges directed
from X to Y .

I Lemma 2 (Lemma 3.3 [30]). Let G = (X,Y,E) denote an encoder graph for a fast matrix
multiplication algorithm with base case 2× 2. There are no two vertices in Y with identical
neighbors sets.

While the correctness of this Lemma can be simply verified by inspection in the case of
Strassen’s algorithm [36], Lemma 2 generalizes the statement to all encoders corresponding
to fast matrix multiplication algorithms with base case 2× 2. From Lemma 2 we have:

I Lemma 3. Let A ∈ H and let P1 and P2 be any two sub-problems generated by A with
input size greater than n0 × n0, such that P2 is not recursively generated while computing P1
and vice versa. Then, the sub-CDAGs of GA corresponding, respectively, to P1 and to P2 are
vertex-disjoint.

The following lemma, originally introduced for Strassen’s algorithm in [10] and then
generalized for Strassen-like algorithms with base case 2×2 in in [30], captures a connectivity
property of encoder sub-CDAGs.

I Lemma 4 (Lemma 3.1 [30]). Given an encoder CDAG for any Strassen-like algorithm
with base case 2 × 2, for any subset Y of its output vertices, there exists a subset X of
its input vertices, with min{|Y |, 1 + d(|Y | − 1) /2e} ≤ |X| ≤ |Y |, such that there exist |X|
vertex-disjoint paths connecting the vertices in X to vertices in Y .

The proofs of Lemma 2 and Lemma 4 are based on an argument originally presented by
Hopcroft and Kerr [22]. We refer the reader to [30] for the proofs.

5 Maximal sub-problems and their properties

For an algorithm A ∈ H, let P ′ denote a sub-problem generated by A. In our presentation
we consider the entire matrix multiplication problem as an improper sup-problem generated
by A. Given a sub=problem P ′ let P ′0, P ′2, . . . , P ′i be the sequence of sub-problems generated

L. De Stefani 33:9

by A such that P ′j+1 was recursively generated to compute P ′j for j = 0, 1, . . . , i − 1, and
such that P ′ was recursively generated to compute P ′i . We refer to the sub-problems in such
sequence as the ancestor sub-problems of P ′. If P ′ is the entire problem, it has no ancestors.

Towards studying the I/O complexity of algorithms in H we focus on the analysis of a
particular set of sub-problems.

I Definition 5 (Maximal Sub-Problems (MSP)). Let A ∈ H be an algorithm used to multiply
matrices A,B ∈ Rn×n. If n ≤ 2

√
M we say that A does not generate any Maximal

Sub-Problem (MSP).
Let Pi be a sub-problem generated by A with input size ni × ni, with ni ≥ 2M , and such that
all its ancestors sub-problems are computed, according to A using algorithms from the fast
class. We say that:

Pi is a Type 1 MSP of A if, according to A, is computed using an algorithm from the
standard class. If the entire problem is solved using an algorithm from the standard class,
we say that the entire problem is the unique (improper) Type 1 MSP generated by A.
Pi is a Type 2 MSP of A if, according to A, is computed by generating 7 sub-problems
according to the recursive scheme corresponding to an algorithm from the fast (Strassen-
like) class, and if the generated sub-problems have input size strictly smaller than 2

√
M ×

2
√
M . If the entire problem uses a recursive algorithm from the fast class to generate 7

sub-problems with input size smaller than 2
√
M × 2

√
M , we say that the entire problem

is the unique, improper, Type 2 MSP generated by A.
In the following we denote as ν1 (resp., ν2) the number of Type 1 (resp., Type 2) MSPs
generated by A.

Let Pi denote the i-th MSP generated by A and let GAPi
denote the corresponding sub-

CDAG of GA. We denote as Ai and Bi (resp., Ci) the input factor matrices (resp., the
output product matrix) of Pi.

Properties of MSPs and their corresponding sub-CDAGs. By Definition 5, we have that
for each pair of distinct MMSPs P1 and P2, P2 is not recursively generated by A in order to
compute P1 or vice versa. Hence, by Lemma 3, the sub-CDAGs of GA that correspond each
to one of the MSPs generated by A are vertex-disjoint.

In order to obtain our I/O lower bound for algorithms in H, we characterize properties
regarding the minimum dominator size of an arbitrary subset of Y and Z.

I Lemma 6. Let GA be the CDAG corresponding to an algorithm A ∈ H which admits
n1 Type 1 MSPs. For each Type 1 MSP Pi let Yi denote the set of input vertices of the
associated sub-CDAG GAPi

which correspond each to an entry of the input matrices Ai and
Bi. Further, we define Y = ∪ν1

i=1Yi.
Let Y ⊆ Y in GA such that |Y ∩Yi| = ai/

√
bi, with ai, bi ∈ N, ai ≥ bi for i = 1, 2, . . . , ν1,

and such that bi = 0 if and only if ai = 0.1 Any dominator set D of Y satisfies |D| ≥
min{2M,

∑ν1
i=1 ai/

√∑ν1
i=1 bi}.

I Lemma 7. Let GA be the CDAG corresponding to an algorithm A ∈ H which admits n2
Type 2 MSPs. Further let Z denote the set of vertices corresponding to the entries of the
output matrices of the n2 Type 2 MSPs. Given any subset Z ⊆ Z in GA with |Z| ≤ 4M , any
dominator set D of Z satisfies |D| ≥ |Z|/2.

1 Here we use as convention that 0/0 = 0.

ISAAC 2019

33:10 The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

For each Type 1 MSP Pi generated by A, with input size2 ni × ni, we denote as Ti the
set of variables whose value correspond to the n3

i elementary products Ai[j][k]Bi[k][j] for
j, k = 0, 1, . . . , ni − 1. Further, we denote as Ti the set of vertices corresponding to the
variables in Ti, and we define T = ∪ν1

i=1Ti.

I Lemma 8. For any Type 1 MSPs generated by A consider T ′i ⊆ Ti. Let Y(A)
i ⊆ Yi (resp.,

Y(B)
i ⊆ Yi) denote a subset of the vertices corresponding to entries of Ai (resp., Bi) which

are multiplied in at least one of the elementary products in T ′i . Then any dominator D of
the vertices corresponding to T ′i with respect to the the vertices in Yi is such that

|D| ≥ max{|Y ′i ∩Ai|, |Y ′i ∩Bi|}.

For the proofs of Lemmas 6, 7 and 8 we refer the reader to the extended version of this
work [18]. The proofs are based on the analysis of the combinatorial properties of Strassen-like
algorithms, and on the analysis of the Grigoriev’s information flow of the square matrix
multiplication function [21, 31].

6 I/O lower bounds for algorithms in H and UH (n0)

I Theorem 9. Let A ∈ H be an algorithm to multiply two square matrices A,B ∈ Rn×n.
If run on a sequential machine with cache of size M and such that up to B memory words
stored in consecutive memory locations can be moved from cache to slow memory and vice
versa using a single memory operation, A’s I/O complexity satisfies:

IOA (n,M,B) ≥ max{2n2, c|T |M−1/2, ν2M}B−1 (1)

for c = 0.38988157484, where |T | denotes the total number of internal elementary products
computed by the Type 1 MSPs generated by A and ν2 denotes the total number of Type 2
MSPs generated by A.

If run on P processors each equipped with a local memory of size M < n2 and where for
each I/O operation it is possible to move up to Bm ≤M words, A’s I/O complexity satisfies:

IOA (n,M,Bm, P) ≥ max{c|T |M−1/2, ν2M} (PBm)−1 (2)

Proof. We prove the result in (1) (resp., (2)) for the case B = 1 (resp., Bm = 1). The
result then trivially generalizes for a generic B (resp., Bm). We first prove the result for the
sequential case in in (1). The bound for the parallel case in (2) will be obtained as a simple
generalization. For simplicity of presentation, we assume

√
M ∈ N+.

The fact that IOA(n,M, 1) ≥ 2n2 follows trivially from the fact that as in our model
the input matrices A and B are initially stored in slow memory, it will necessary to move
the entire input to the cache at least once using at least 2n2 I/O operations. If A does not
generate any MSPs the statement in (1) is trivially verified. In the following, we assume
ν1 + ν2 ≥ 1.

Let GA denote the CDAG associated with algorithm A according to the construction in
Section 4. By definition, and from Lemma 3, the ν1 + ν2 sub-CDAGs of GA corresponding
each to one of the MSPs generated by A are vertex-disjoint. Hence, the Ti’s are a partition
of T and |T | =

∑ν1
i=1 |Ti|.

2 In general, different Type 1 MSP may have different input sizes

L. De Stefani 33:11

By Definition 5, the MSP generated by A have input (resp., output) matrices of size
greater or equal to 2

√
M × 2

√
M . Recall that we denote as Z the set of vertices which

correspond to the outputs of the ν2 Type 2 MSPs, we have |Z| ≥ 4Mνl.
Let C be any computation schedule for the sequential execution of A using a cache of size

M . We partition C into non-overlapping segments C1, C2, . . . such that during each Cj either
(a) exactlyM3/2 distinct values corresponding to vertices in T , denoted as T (j), are explicitly
computed (i.e., not loaded from slow memory), or (b) 4M distinct values corresponding to
vertices in Z (denoted as Zj) are evaluated for the first time. Clearly there are at least
max{|T |/M3/2, ν2} such segments. Below we show that the number gj of I/O operations
executed during each Cj satisfies gj ≥ cM for case (a) and gj ≥M for case (b), from which
the theorem follows.

Case (a): For each Type 1 MSP Pi let T (j)
i = T (j) ∩ Ti. As the ν1 sub-CDAGs

corresponding each to one of the Type 1 MSPs are vertex-disjoint, so are the sets Ti. Hence,
the T (j)

i ’s constitute a partition of T (j). Let Ai and Bi (resp., Ci) denote the input matrices
(resp., output matrix) of Pi with Ai,Bi,Ci ∈ Rni×ni , and let Ai and Bi (resp., Ci) denote
the set of the variables corresponding to the entries of Ai and Bi (resp., Ci). Further, we
denote as Ti the set of values corresponding to the vertices in Ti. For r, s = 0, 1, . . . , ni−1, we
say that Ci[r][s] is “active during Cj” if any of the elementary multiplications Ai[r][k]Bi[k][s],
for k = 0, 1, . . . , ni − 1, correspond to any of the vertices in T (j)

i . Further we say that a
Ai[r][s] (resp., Bi[r][s]) is “accessed during Cj” if any of the elementary multiplications
Ai[r][s]Bi[s][k] (resp., Ai[k][r]Bi[r][s]), for k = 0, 1, . . . , ni − 1, correspond to any of the
vertices in T (j)

i . Our analysis makes use of the following property of standard matrix
multiplication algorithms:

I Lemma 10 (Loomis-Whitney inequality [24, Lemma 2.2]). Let Y ′i,A (resp., Y ′i,B) denote
the set of vertices corresponding to the entries of Ai (resp., Bi) which are accessed during
Cj, and let Z ′i denote the set of vertices corresponding to the entries of Ci which are active
during Cj. Then

|T (j)
i | ≤

√
|Y ′i,A||Y ′i,B||Z ′i|. (3)

Lemma 10 is a reworked version of a property originally presented by Irony et al. [24, Lemma
2.2], which itself is a consequence of the Loomis-Whitney geometric theorem [29]. We refer
the reader to [24, Lemma 2.2] for the proof of of Lemma 10.

Let Ci[r][s] be active during Cj . In order to compute Ci[r][s] entirely during Cj (i.e.,
without using partial accumulation of the summation

∑ni−1
k=0 Ai[r][k]B[k][s]), it will be

necessary to evaluate all the ni elementary products Ai[r][k]Bi[k][s], for k = 0, 1, . . . , ni − 1,
during Cj itself. Thus, at most b|T (j)

i |/nic entries of Ci[r][s] can be entirely computed during
Cj .

Let Ci[r][s] denote an entry of Ci which is active but not entirely computed during Cj .
There are two possible scenarios:

Ci[r][s] is computed during Cj : The computation thus requires for a partial accumulation
of
∑ni−1
k=0 Ai[r][k]B[k][s] to have been previously computed and either held in the cache

at the beginning of Cj , or to moved to cache using a read I/O operation during Cj ;
Ci[r][s] is not computed during Cj : As C is a parsimonious computation, the partial
accumulation of

∑ni−1
k=0 Ai[r][k]B[k][s] obtained from the elementary products computed

during Cj must either remain in the cache at the end of Cj , or be moved to slow memory
using a write I/O operation during Cj ;

ISAAC 2019

33:12 The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

In both cases, any partial accumulation either held in memory at the beginning (resp., end)
of Cj or read from slow memory to cache (resp., written from cache to slow memory) during
Cj is, by definition, not shared between multiple entries in Ci.

Let GAPi
denote the sub-CDAG of GA corresponding to the Type 1 MSP Pi. In the

following, we refer as D′i to the set of vertices of GAPi
corresponding to the values of such

partial accumulators. For each of the least |D′i| = max{0, |Z ′i| − |T
(j)
i |/ni} entries of Ci

which are active but not entirely computed during Cj , either one of the entries of the cache
must be occupied at the beginning of Cj , or one I/O operation is executed during Cj . Let
D′ = ∪ν1

i=1D
′
i. As, by Lemma 3, the sub-CDAGs corresponding to the ν1 Type 1 MSPs are

vertex-disjoint, so are the the sets D′i. Let Z ′ =
∑νl

i=1 |Z ′i|. We have:

|D′| =
ν1∑
i=1
|D′i| =

ν1∑
i=1

max{0, |Z ′i| − |T
(j)
i |/ni} ≥ |Z| − |T

(j)|/2
√
M, (4)

where the last passage follows from the fact that, by Definition 5, ni ≥ 2M .
From Lemma 10, the set of vertices Y ′i,A (resp., Y ′i,B) which correspond to entries of Ai

(resp., Bi) which are accessed during Cj satisfies |Y ′i,A||Y ′i,B| ≥ |T
(j)
i |2/|Z ′i|. Hence, at least

|Y ′i,A|+ |Y ′i,B| ≥ 2|T (j)
i |/

√
|Z ′i| entries from the input matrices of Pi are accessed during Cj .

Let Y denote the set of vertices corresponding to the entries of the input matrices Ai,Bi of
Pi. From Lemma 8 we have that there exists a set Y ′i ⊆ Yi, with|Y ′i| ≥ max{|Y ′i,A|, |Y ′i,B|} ≥
|T (j)
i |/

√
|Z ′i|, such that the vertices in Y ′i are connected by vertex-disjoint pats to the vertices

in T (j)
i . Let Y = ∪ν1

i=1Y ′i. As, by Lemma 3, the sub-CDAGs corresponding to the νl Type 1
MSPs are vertex-disjoint, so are the the sets Y ′i for i = 1, 2, . . . , ν1. Hence

|Y | =
ν1∑
i=1
|Y ′i| ≥

ν1∑
i=1

|T (j)
i |√
|Z ′i|

.

From Lemma 6 any dominator DY of Y , must be such that

|DY | ≥ min
{

2M,

∑ν1
i=1 |T

(j)
i |∑ν1

i=1
√
|Z ′i|

}
= min

{
2M,

|T (j)|√
|Z ′|

}
.

Hence, we can conclude that any dominator D′′ of T (j) must be such that

|D′′| ≥ min
{

2M, |T (j)|/
√
|Z ′|

}
. (5)

Consider the set D of vertices of GA corresponding to the at most M values stored in
the cache at the beginning of Cj and to the at most gj values loaded into the cache form the
slow memory (resp., written into the slow memory from the cache) during Cj by means of a
read (resp., write) I/O operation. Clearly, |D| ≤M + gj .

In order for the M3/2 values from T (j) to be computed during Cj there must be no path
connecting any vertex in T (j), and, hence, Y , to any input vertex of GA which does not
have at least one vertex in D, that is D has to admit a subset D′′ ⊆ D such that D′′ is a
dominator set of T (j). Note that, as the values corresponding to vertices in T (j) are actually
computed during CJ (i.e., not loaded from memory using a read I/O operation), D′′ does
not include vertices in T (j) itself. Further, as motivated in the previous discussion, D must
include all the vertices in the set D′ corresponding to values of partial accumulators of the
active output values of Type 1 MSPs during Cj .

By construction, D′ and D′′ are vertex-disjoint. Hence, from (4) and (5) we have:

|D| ≥ |D′|+ |D′′| ≥ |Z ′| − |T (j)|/2
√
M + min

{
2M, |T (j)|/

√
|Z ′|

}
.

L. De Stefani 33:13

As, by construction, |T (j)| = M3/2, we have:

|D| > |Z ′| −M/2 + min
{

2M,M3/2/
√
|Z ′|

}
. (6)

By studying its derivative after opportunely accounting for the minimum, we have that (6)
is minimized for |Z ′| = 2−2/3M . Hence we have: |D| > 2−2/3M + 21/3M3/2 −M/2 =
1.38988157484M . Whence |D| ≤M + gj , which implies gj ≥ |D| −M > 0.38988157484M ,
as stated above.

Case (b): In order for the 4M values from Zj to be computed during Cj there must
be no path connecting any vertex in Zj to any input vertex of GA which does not have
at least one vertex in Dj , that is Dj has to be a dominator set of Zj . From Lemma 7,
any dominator set D of any subset Z ⊆ Z with |Z| ≤ 4M satisfies |D| ≥ |Z|/2, whence
M + gi ≥ |Di| ≥ |Zj |/2 = 2M , which implies gj ≥M as stated above. This concludes the
proof for the sequential case in (1).

The proof for the bound for the parallel model in (2), follows from the observation
that at least one of the P processors, denoted as P ∗, must compute at least |T |/P values
corresponding to vertices in T or |Z|/P values corresponding to vertices in Z (or both).
The bound follows by applying the same argument discussed for the sequential case to the
computation executed by P ∗. J

Note that if A is such that the product is entirely computed using an algorithm from
the standard class (resp., a fast matrix multiplication algorithm), the bounds of Theorem 9
corresponds asymptotically to the results in [25] for the sequential case, and in [24] for the
parallel case (resp., the results in [10]).

For the sub-class of uniform, non stationary algorithms UH (n0) , given the values of n,
M and n0 is possible to compute a closed form expression for the values of ν1, ν2 and |T |.
Then, by applying Theorem 9 we have:

I Theorem 11. Let A ∈ UH (n0) be an algorithm to multiply two square matrices A,B ∈
Rn×n. If run on a sequential machine with cache of size M and such that up to B memory
words stored in consecutive memory locations can be moved from cache to slow memory and
vice versa using a single memory operation, A’s I/O complexity satisfies:

IOA (n,M,B) ≥ max{2n2,

(
n

max{n0, 2
√
M}

)log2 7(
max

{
1, n0

2
√
M

})3
M}B−1 (7)

If run on P processors each equipped with a local memory of size M < n2 and where for each
I/O operation it is possible to move up to Bm memory words, A’s I/O complexity satisfies:

IOA (n,M,Bm, P) ≥
(

n

max{n0, 2
√
M}

)log2 7(
max

{
1, n0

2
√
M

})3
M

PBm
. (8)

Proof. The proof follows by bounding the values ν1,ν2 and |T | for A ∈ UH (n0) , and by
applying the general result from Theorem 9. To simplify the presentation, in the following we
assume that the values n, n0 and

√
M are powers of two. If that is not the case, the theorem

holds with some minor adjustments to the constant multiplicative factor.
Let let i be the smallest value in N such that n/2i = max{n0, 2

√
M}. By definition of H,

at each of the i recursive levels A generates 7i sub-problems of size n/2i.

If n0 > 2
√
M , A generates ν1 = 7i = 7log2 n/n0 = (n/n0)log2 7 Type 1 MSP each with

input size n0 × n0. As, by Definition 5, the Type 1 MSP are input-disjoint we have
|T | = ν1n0

3 = (n/n0)log2 7
n0

3.

ISAAC 2019

33:14 The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

Otherwise, if n0 ≤ 2
√
M , A generates ν2 = 7i = 7log2 n/2

√
M =

(
n/2
√
M
)log2 7

Type 2
MSP each with input size 2

√
M × 2

√
M .

The statement then follows by applying the result in Theorem 9. J

The constants terms in (7) and (8) hold under the assumption that n, n0 and
√
M are

powers of two. If that is not the case the statement holds with minor adjustments to said
constant factors.

Theorem 11 extends the result by Scott [34] by expanding the class of hybrid matrix
multiplication algorithms being considered (e.g., it does not limit the class of standard matrix
multiplication to the divide and conquer algorithm based on block-partitioning), and by
removing the assumption that no intermediate value may be recomputed.

On the tightness of the bound. An opportune composition of the cache-optimal version
of the Strassen’s algorithm [36] (as discussed in [5]) with the standard cache-optimal divide
and conquer algorithm for square matrix multiplication based on block-partitioning [15]
leads to a sequential hybrid algorithms in H (resp., UH (n0)) whose I/O cost asymptotically
matches the I/O complexity lower bounds in Theorem 9 (1) (resp., Theorem 11 (7)).

Parallel algorithms in H (resp., UH (n0)) asymptotically matching the I/O lower bounds in
for the parallel case in Theorem 9 (2) (resp., Theorem 11 (8)) can be obtained by composing
the communication avoiding version of Strassen’s algorithm by Ballard et al. [5] with the
communication avoiding “2.5” standard algorithm by Solomonik and Demmel [35].

Hence, the lower bounds in Theorem 9 and Theorem 11 are asymptotically tight and
the mentioned algorithms form H and UH (n0) whose I/O cost asymptotically match the
lower bounds are indeed I/O optimal. Further, as the mentioned I/O optimal algorithms
from H and UH (n0) do not recompute any intermediate value, we can conclude that using
recomputation may lead to at most a constant factor reduction of the I/O cost of hybrid
algorithms in H and UH (n0) . Note that the replication of the input used by the mentioned
algorithms as recomputation it should be considered as repeated access to the input values,
and not as recomputation.

Generalization to fast matrix multiplication model with base other than 2 × 2. The
general statement of Theorem 9 can be extended by enriching H to include any fast Strassen-
like algorithm with base case other than 2× 2 provided that the associated encoder CDAG
satisfies properties equivalent to those expressed by Lemma 3 (i.e., the input disjointedness
of the sub-problems generated at each recursive step) and Lemma 4 (i.e., the connectivity
between input and output of the encoder CDAGs via vertex disjoint paths) for the 2× 2 base.
If these properties hold, so does the general structure of Theorem 9, given an opportune
adjustment of the definition of maximal sub-problem.

7 Conclusion

This work contributed to the characterization of the I/O complexity of hybrid matrix multi-
plication algorithms combining fast Strassen-like algorithms with standard algorithms. We
established asymptotically tight lower bounds that hold even when recomputation is allowed.
The generality of the technique used for the analysis makes it promising for the analysis of
other hybrid recursive algorithms, e.g., hybrid algorithms for integer multiplication [11].

L. De Stefani 33:15

References
1 Alok Aggarwal, Bowen Alpern, Ashok Chandra, and Marc Snir. A model for hierarchical

memory. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 305–314. ACM, 1987.

2 Alok Aggarwal, Jeffrey Vitter, et al. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

3 G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Graph expansion analysis
for communication costs of fast rectangular matrix multiplication. In Design and Analysis of
Algorithms, pages 13–36. Springer, 2012.

4 Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz. Brief
announcement: strong scaling of matrix multiplication algorithms and memory-independent
communication lower bounds. In Proceedings of the twenty-fourth annual ACM symposium on
Parallelism in algorithms and architectures, pages 77–79. ACM, 2012.

5 Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz.
Communication-optimal parallel algorithm for Strassen’s matrix multiplication. In Proceedings
of the twenty-fourth annual ACM symposium on Parallelism in algorithms and architectures,
pages 193–204. ACM, 2012.

6 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Communication-optimal
parallel and sequential Cholesky decomposition. SIAM Journal on Scientific Computing,
32(6):3495–3523, 2010.

7 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing communication in
numerical linear algebra. SIAM Journal on Matrix Analysis and Applications, 32(3):866–901,
2011.

8 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Graph expansion and
communication costs of fast matrix multiplication. Journal of the ACM (JACM), 59(6):32,
2012.

9 Sandeep N Bhatt, Gianfranco Bilardi, and Geppino Pucci. Area-time tradeoffs for universal
VLSI circuits. Theoretical Computer Science, 408(2-3):143–150, 2008.

10 Gianfranco Bilardi and Lorenzo De Stefani. The I/O complexity of Strassen’s matrix multiplic-
ation with recomputation. In Workshop on Algorithms and Data Structures, pages 181–192.
Springer, 2017.

11 Gianfranco Bilardi and Lorenzo De Stefani. The I/O complexity of Toom-Cook integer
multiplication. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2034–2052. SIAM, 2019.

12 Gianfranco Bilardi and Enoch Peserico. A characterization of temporal locality and its
portability across memory hierarchies. In International Colloquium on Automata, Languages,
and Programming, pages 128–139. Springer, 2001.

13 Gianfranco Bilardi and Franco P Preparata. Horizons of parallel computation. Journal of
Parallel and Distributed Computing, 27(2):172–182, 1995.

14 Gianfranco Bilardi and Franco P Preparata. Processor—Time Tradeoffs under Bounded-Speed
Message Propagation: Part II, Lower Bounds. Theory of Computing Systems, 32(5):531–559,
1999.

15 Lynn Elliot Cannon. A cellular computer to implement the Kalman filter algorithm. PhD
thesis, Montana State University-Bozeman, College of Engineering, 1969.

16 National Research Council et al. Getting up to speed: The future of supercomputing. National
Academies Press, 2005.

17 Lorenzo De Stefani. On space constrained computations. PhD thesis, University of Padova,
2016.

18 Lorenzo De Stefani. The I/O complexity of hybrid algorithms for square matrix multiplication.
arXiv preprint, 2019. arXiv:1904.12804.

ISAAC 2019

http://arxiv.org/abs/1904.12804

33:16 The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

19 Frédéric Desprez and Frédéric Suter. Impact of mixed-parallelism on parallel implementations
of the Strassen and Winograd matrix multiplication algorithms. Concurrency and Computation:
practice and experience, 16(8):771–797, 2004.

20 Craig C Douglas, Michael Heroux, Gordon Slishman, and Roger M Smith. GEMMW: a
portable level 3 BLAS Winograd variant of Strassen’s matrix-matrix multiply algorithm.
Journal of Computational Physics, 110(1):1–10, 1994.

21 Dmitrii Yur’evich Grigor’ev. Application of separability and independence notions for proving
lower bounds of circuit complexity. Zapiski Nauchnykh Seminarov POMI, 60:38–48, 1976.

22 John E Hopcroft and Leslie R Kerr. On minimizing the number of multiplications necessary
for matrix multiplication. SIAM Journal on Applied Mathematics, 20(1):30–36, 1971.

23 Steven Huss-Lederman, Elaine M Jacobson, Jeremy R Johnson, Anna Tsao, and Thomas Turn-
bull. Implementation of Strassen’s algorithm for matrix multiplication. In Supercomputing’96:
Proceedings of the 1996 ACM/IEEE Conference on Supercomputing, pages 32–32. IEEE, 1996.

24 Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. Journal of Parallel and Distributed Computing, 64(9):1017–1026,
2004.

25 Hong Jia-Wei and Hsiang-Tsung Kung. I/O complexity: The red-blue pebble game. In
Proceedings of the thirteenth annual ACM symposium on Theory of computing, pages 326–333.
ACM, 1981.

26 S Lennart Johnsson. Minimizing the communication time for matrix multiplication on
multiprocessors. Parallel Computing, 19(11):1235–1257, 1993.

27 Richard R. Koch, F. T. Leighton, Bruce M. Maggs, Satish B. Rao, Arnold L. Rosenberg,
and Eric J. Schwabe. Work-preserving Emulations of Fixed-connection Networks. J. ACM,
44(1):104–147, January 1997. doi:10.1145/256292.256299.

28 François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
international symposium on symbolic and algebraic computation, pages 296–303. ACM, 2014.

29 Lynn H Loomis and Hassler Whitney. An inequality related to the isoperimetric inequality.
Bulletin of the American Mathematical Society, 55(10):961–962, 1949.

30 Roy Nissim and Oded Schwartz. Revisiting the I/O-Complexity of Fast Matrix Multiplication
with Recomputations. In Proceedings of the 33rd IEEE International Parallel and Distributed
Processing Symposium, pages 714–716, 2019.

31 J. E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1997.

32 John E Savage. Extending the Hong-Kung model to memory hierarchies. In International
Computing and Combinatorics Conference, pages 270–281. Springer, 1995.

33 Jacob Scott, Olga Holtz, and Oded Schwartz. Matrix multiplication I/O-complexity by
path routing. In Proceedings of the 27th ACM symposium on Parallelism in Algorithms and
Architectures, pages 35–45. ACM, 2015.

34 Jacob N Scott. An I/O-Complexity Lower Bound for All Recursive Matrix Multiplication
Algorithms by Path-Routing. PhD thesis, UC Berkeley, 2015.

35 Edgar Solomonik and James Demmel. Communication-optimal parallel 2.5 D matrix multi-
plication and LU factorization algorithms. In European Conference on Parallel Processing,
pages 90–109. Springer, 2011.

36 Volker Streets. Gaussian elimination is not optimal. numerical mathematics, 13(4):354–356,
1969.

37 Y. D. Burago V. A. Zalgaller, A. B. Sossinsky. Geometric Inequalities. The American
Mathematical Monthly, 96(6):544–546, 1989.

38 Shmuel Winograd. On multiplication of 2× 2 matrices. Linear algebra and its applications,
4(4):381–388, 1971.

https://doi.org/10.1145/256292.256299

Accurate MapReduce Algorithms for k-Median
and k-Means in General Metric Spaces
Alessio Mazzetto1

Department of Computer Science, Brown University, Providence, USA
alessio_mazzetto@brown.edu

Andrea Pietracaprina
Department of Information Engineering, University of Padova, Padova, Italy
andrea.pietracaprina@unipd.it

Geppino Pucci
Department of Information Engineering, University of Padova, Padova, Italy
geppino.pucci@unipd.it

Abstract
Center-based clustering is a fundamental primitive for data analysis and becomes very challenging
for large datasets. In this paper, we focus on the popular k-median and k-means variants which,
given a set P of points from a metric space and a parameter k < |P |, require to identify a set S of k
centers minimizing, respectively, the sum of the distances and of the squared distances of all points in
P from their closest centers. Our specific focus is on general metric spaces, for which it is reasonable
to require that the centers belong to the input set (i.e., S ⊆ P). We present coreset-based 3-round
distributed approximation algorithms for the above problems using the MapReduce computational
model. The algorithms are rather simple and obliviously adapt to the intrinsic complexity of the
dataset, captured by the doubling dimension D of the metric space. Remarkably, the algorithms
attain approximation ratios that can be made arbitrarily close to those achievable by the best
known polynomial-time sequential approximations, and they are very space efficient for small D,
requiring local memory sizes substantially sublinear in the input size. To the best of our knowledge,
no previous distributed approaches were able to attain similar quality-performance guarantees in
general metric spaces.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Facility location and clustering; Theory of computation → MapReduce
algorithms

Keywords and phrases Clustering, k-median, k-means, MapReduce, Coreset

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.34

Funding This work was supported, in part, by the University of Padova under grant SID2017 and
by MIUR, the Italian Ministry of Education, University and Research, under grant PRIN AHeAD:
efficient Algorithms for HArnessing networked Data and grant L. 232 “Dipartimenti di Eccellenza”.

1 Introduction

Clustering is a fundamental primitive in the realms of data management and machine learning,
with applications in a large spectrum of domains such as database search, bioinformatics,
pattern recognition, networking, operations research, and many more [15]. A prominent
clustering subspecies is center-based clustering whose goal is to partition a set of data items
into k groups, where k is an input parameter, according to a notion of similarity, captured
by a given measure of closeness to suitably chosen representatives, called centers. There is

1 This work was done while the author was a graduate student at University of Padova.

© Alessio Mazzetto, Andrea Pietracaprina, and Geppino Pucci;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alessio_mazzetto@brown.edu
mailto:andrea.pietracaprina@unipd.it
mailto:geppino.pucci@unipd.it
https://doi.org/10.4230/LIPIcs.ISAAC.2019.34
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

a vast and well-established literature on sequential strategies for different instantiations of
center-based clustering [3]. However, the explosive growth of data that needs to be processed
often rules out the use of these sequential strategies, which are often impractical on large
data sets, due to their time and space requirements. Therefore, it is of paramount importance
to devise efficient distributed clustering strategies tailored to the typical computational
frameworks for big data processing, such as MapReduce [20].

In this paper, we focus on the k-median and k-means clustering problems. Given a set
P of points in a general metric space and a positive integer k ≤ |P |, the k-median (resp.,
k-means) problem requires to find a subset S ⊆ P of k points, called centers, so that the sum
of all distances (resp., square distances) between the points of P to their closest center is
minimized. Once S is determined, the association of each point to its closest center naturally
defines a clustering of P . While scarcely meaningful for general metric spaces, for Euclidean
spaces, the widely studied continuous variant of these two problems removes the constraint
that S is a subset of P , hence allowing a much richer choice of centers from the entire space.
Along with k-center, which requires to minimize the maximum distance of a point to its
closest center, k-median and k-means are the most popular instantiations of center-based
clustering, whose efficient solution in the realm of big data has attracted vast attention in
the recent literature [10, 5, 6, 24, 7]. One of the reference models for big data computing,
also adopted in most of the aforementioned works, is MapReduce [9, 22, 20], where a set of
processors with limited-size local memories process data in a sequence of parallel rounds.
Efficient MapReduce algorithms should aim at minimizing the number of rounds while using
substantially sublinear local memory.

A natural approach to solving large instances of combinatorial optimization problems
relies on the extraction of a much smaller “summary” of the input instance, often dubbed
coreset in the literature [14], which embodies sufficient information to enable the extraction
of a good approximate solution of the whole input. This approach is profitable whenever
the (time and space) resources needed to compute the coreset are considerably lower than
those required to compute a solution by working directly on the input instance. Coresets
with different properties have been studied in the literature to solve different variants of the
aforementioned clustering problems [21].

The main contributions of this paper are novel coreset-based space/round-efficient MapRe-
duce algorithms for k-median and k-means.

1.1 Related work
The k-median and k-means clustering problems in general metric spaces have been extensively
studied, and constant approximation algorithms are known for both problems [3]. In recent
years, there has been growing interest in the development of distributed algorithms to attack
these problems in the big data scenario (see [24] and references therein). While straightforward
parallelizations of known iterative sequential strategies tend to be inefficient due to high
round complexity, the most relevant efforts to date rely on distributed constructions of
coresets of size much smaller than the input, upon which a sequential algorithm is then run
to obtain the final solution. Ene et al. [10] present a randomized MapReduce algorithm which
computes a coreset for k-median of size O(k2|P |δ) in O(1/δ) rounds, for any δ ∈ (0, 1). By
using an α-approximation algorithm on this coreset, a weak (10α+ 3)-approximate solution
is obtained. In the paper, the authors claim that their approach extends also to the k-means
problem, but do not provide the analysis. For this latter problem, in [5] a parallelization
of the popular k-means++ algorithm by [1] is presented, which builds an O(k log |P |)-size
coreset for k-means in O(log |P |) rounds. By running an α-approximation algorithm on

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:3

the coreset, the returned solution features an O(α) approximation ratio. A randomized
MapReduce algorithm for k-median has been recently presented in [24], where the well known
local-search PAM algorithm [19] is employed to extract a small family of possible solutions
from random samples of the input. A suitable refinement of the best solution in the family is
then returned. While extensive experiments support the effectiveness of this approach in
practice, no tight theoretical analysis of the resulting approximation quality is provided.

In the continuous setting, Balcan et al. [6] present randomized 2-round algorithms to build
coresets in Rd of size O

(
kd
ε2 + Lk

)
for k-median, and O

(
kd
ε4 + Lk log(Lk)

)
for k-means, for

any choice of ε ∈ (0, 1), where the computation is distributed among L processing elements.
By using an α-approximation algorithm on the coresets, the overall approximation factor
is α+O(ε). For k-means, a recent improved construction yields a coreset which is a factor
O(ε2) smaller and features very fast distributed implementation [4]. It is not difficult to
show that a straightforward adaptation of these algorithms to general spaces (hence in a
non-continuous setting) would yield (c·α+O(ε))-approximations, with c ≥ 2, thus introducing
a non-negligible gap with respect to the quality of the best sequential approximations.

Finally, it is worth mentioning that there is a rich literature on sequential coreset
constructions for k-median and k-means, which mostly focus on the continuous case in
Euclidean spaces [11, 14, 13, 23, 8]. We do not review the results in these works since our
focus is on distributed algorithms in general metric spaces. We also note that the recent
work of [16] addresses the construction of coresets for k-median and k-means in general
metric spaces, where the coreset sizes are expressed as a function of the doubling dimension.
However, their construction strategy is rather complex and it is not clear how to adapt it to
the distributed setting.

1.2 Our contribution
We devise new distributed coreset constructions and show how to employ them to yield
accurate space-efficient 3-round MapReduce algorithms for k-median and k-means. Our
coresets are built in a composable fashion [17] in the sense that they are obtained as the union
of small local coresets computed in parallel (in 2 MapReduce rounds) on distinct subsets of a
partition of the input. The final solution is obtained by running a sequential approximation
algorithm on the coreset in the third MapReduce round. The memory requirements of our
algorithms are analyzed in terms of the desired approximation guarantee, and of the doubling
dimension D of the underlying metric space, a parameter which generalizes the dimensionality
of Euclidean spaces to general metric spaces and is thus related to the increasing difficulty of
spotting good clusterings as the parameter D grows.

Let α denote the best approximation ratio attainable by a sequential algorithm for
either k-median or k-means on general metric spaces. Our main results are 3-round
(α + O(ε))-approximation MapReduce algorithms for k-median and k-means, which re-
quire O

(
|P |2/3k1/3(c/ε)2D log2 |P |

)
local memory, where c > 0 is a suitable constant that

will be specified in the analysis, and ε ∈ (0, 1) is a user-defined precision parameter. To
the best of our knowledge, these are the first MapReduce algorithms for k-median and
k-means in general metric spaces which feature approximation guarantees that can be made
arbitrarily close to those of the best sequential algorithms, and run in few rounds using local
space substantially sublinear for low-dimensional spaces. In fact, prior to our work existing
MapReduce algorithms for k-median and k-means in general metric spaces either exhibited
approximation factors much larger than α [10, 5], or missed a tight theoretical analysis of
the approximation factor [24].

ISAAC 2019

34:4 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

Our algorithms revolve around novel coreset constructions somehow inspired by those
proposed in [14] for Euclidean spaces. As a fundamental tool, the constructions make use of a
procedure that, starting from a set of points P and a set of centers C, produces a (not much)
larger set C ′ such that for any point x ∈ P its distance from C ′ is significantly smaller than
its distance from C. Simpler versions of our constructions can also be employed to attain
2-round MapReduce algorithms for the continuous versions of the two problems, featuring
α+O(ε) approximation ratios. While similar approximation guarantees have already been
achieved in the literature using more space-efficient but randomized coreset constructions
[6, 4], this result provides evidence of the general applicability of our novel approach.

Finally, we want to point out that a very desirable feature of our MapReduce algorithms
is that they do not require a priori knowledge of the doubling dimension D and, in fact, it is
easily shown that they adapt to the dimensionality of the dataset which, in principle, can be
much lower than the one of the underlying space.

Organization of the paper. The rest of the paper is organized as follows. Section 2 contains
a number of preliminary concepts, including various properties of coresets that are needed
to achieve our results. Section 3 presents our novel coreset constructions for k-median
(Subsection 3.2) and k-means (Subsection 3.3). Based on these constructions, Subsection 3.4
derives the MapReduce algorithms for the two problems. Finally, Section 4 offers some
concluding remarks.

2 Preliminaries

LetM be a metric space with distance function d(·, ·). We define the ball of radius r centered
at x as the set of points at distance at most r from x. The doubling dimension ofM is the
smallest integer D such that for any r and x ∈M, the ball of radius r centered at x can be
covered by at most 2D balls of radius r/2 centered at points ofM. Let x ∈M and Y ⊆M.
We define d(x, Y) = miny∈Y d(x, y) and xY = arg miny∈Y d(x, y). A set of points P ⊆M can
be weighted by assigning a positive integer w(p) to each p ∈ P . In this case, we will use the
notation Pw (note that an unweighted set of points can be considered weighted with unitary
weights). Let Xw and Y be two subsets of M. We define νXw (Y) =

∑
x∈Xw

w(x)d(x, Y)
and µXw

(Y) =
∑
x∈Xw

w(x)d(x, Y)2. The values νXw
(Y) and µXw

(Y) are also referred to
as costs.

In the k-median problem (resp., k-means problem), we are given in input an instance
I = (P, k), with P ⊆M and k a positive integer. A set S ⊆ P is a solution of I if |S| ≤ k.
The objective is to find the solution S with minimum cost νP (S) (resp., µP (S)). Given an
instance I of one of these two problems, we denote with optI its optimal solution. Moreover,
for α ≥ 1, we say that S is an α-approximate solution for I if its cost is within a factor
α from the cost of optI . In this case, the value α is also called approximation factor. An
α-approximation algorithm computes an α-approximate solution for any input instance. The
two problems are immediately generalized to the case of weighted instances (Pw, k). In fact,
all known approximations algorithms can be straightforwardly adapted to handle weighted
instances keeping the same approximation quality.

Observe that the squared distance does not satisfy the triangle inequality. During the
analysis, we will use the following weaker bound.

I Proposition 2.1. Let x, y, z ∈ M. For every c > 0 we have that d(x, y)2 ≤ (1 +
1/c)d(x, z)2 + (1 + c)d(z, y)2.

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:5

Proof. Let a, b be two real numbers. Since (a/
√
c − b ·

√
c)2 ≥ 0, we obtain that 2ab ≤

a2/c+ c · b2. Hence, (a+ b)2 ≤ (1 + 1/c)a2 + (1 + c)b2. The proof follows since d(x, y)2 ≤
[d(x, z) + d(z, y)]2 by triangle inequality. J

A coreset is a small (weighted) subset of the input which summarizes the whole data. The
concept of summarization can be captured with the following definition, which is commonly
adopted to describe coresets for k-means and k-median (e.g., [14, 11, 16]).

I Definition 2.2. A weighted set of points Cw is an ε-approximate coreset of an instance
I = (P, k) of k-median (resp., k-means) if for any solution S of I it holds that |νP (S) −
νCw

(S)| ≤ ε · νP (S) (resp., |µP (S)− µCw
(S)| ≤ ε · µP (S)).

Informally, the cost of any solution is approximately the same if computed from the ε-
approximate coreset rather than from the full set of points. In the paper we will also make
use of the following different notion of coreset (already used in [14, 10]), which upper bounds
the aggregate “proximity” of the input points from the coreset as a function of the optimal
cost.

I Definition 2.3. Let I = (P, k) be an instance of k-median (resp., k-means). A set of points
Cw is an ε-bounded coreset of I if it exists a map τ : P → Cw such that

∑
x∈P d(x, τ(x)) ≤

ε · νP (optI) (resp.,
∑
x∈P d(x, τ(x))2 ≤ ε · µP (optI)) and for any x ∈ Cw, w(x) = |{y ∈ P :

τ(y) = x}|. We say that Cw is weighted according to τ .

The above two kind of coresets are related, as shown in the following two lemmas.

I Lemma 2.4. Let Cw be an ε-bounded coreset of a k-median instance I = (P, k). Then Cw
is also a ε-approximate coreset of I.

Proof. Let τ be the map of the definition of ε-bounded coreset. Let S be a solution of
I. Using triangle inequality, we can easily see that d(x, S) − d(x, τ(x)) ≤ d(τ(x), S) and
d(τ(x), S) ≤ d(τ(x), x) + d(x, S) for any x ∈ P . Summing over all points in P , we obtain
that

νP (S)−
∑
x∈P

d(x, τ(x)) ≤ νCw
(S) ≤

∑
x∈P

d(x, τ(x)) + νP (S)

To conclude the proof, we observe that
∑
x∈P d(x, τ(x)) ≤ ε · νP (optI) ≤ ε · νP (S). J

I Lemma 2.5. Let Cw be an ε-bounded coreset of a k-means instance I = (P, k). Then Cw
is also a (ε+ 2

√
ε)-approximate coreset of I.

Proof. Let τ be the map of the definition of ε-bounded coreset. Let S be a solution of I. We
want to bound the quantity |µP (S)− µCw (S)| =

∑
x∈P |d(x, S)2 − d(τ(x), S)2|. We rewrite

|d(x, S)2−d(τ(x), S)2| as [d(x, S) + d(τ(x), S)] · |d(x, S)−d(τ(x), S)|. By triangle inequality,
we have that d(x, S) ≤ d(x, τ(x)) + d(τ(x), S) and d(τ(x), S) ≤ d(τ(x), x) + d(x, S). By
combining these two inequalities, it results that |d(x, S)− d(τ(x), S)| ≤ d(x, τ(x)). Moreover,
d(x, S) + d(τ(x), S) ≤ 2d(x, S) + d(x, τ(x)). Hence

|µP (S)− µCw (S)| ≤
∑
x∈P

d(x, τ(x)) [2d(x, S) + d(x, τ(x))]

≤ ε · µP (S) + 2
∑
x∈P

d(x, τ(x))d(x, S)

ISAAC 2019

34:6 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

where we used the fact that
∑
x∈P d(x, τ(x))2 ≤ ε · µP (optI) ≤ ε · µP (S). We now want

to bound the sum over the products of the two distances. Arguing as in the proof of
Proposition 2.1, we can write:

2
∑
x∈P

d(x, τ(x))d(x, S) ≤
√
ε ·
∑
x∈P

d(x, S)2 + 1√
ε

∑
x∈P

d(x, τ(x))2 ≤ 2
√
ε · µP (S)

To wrap it up, it results that |µP (S)− µCw
(S)| ≤ (ε+ 2

√
ε) · µP (S). J

In our work, we will build coresets by working in parallel over a partition of the input
instance. The next lemma provides known results on the relations between the optimal
solution of the whole input points and the optimal solution of a subset of the input points.

I Lemma 2.6. Let Cw ⊆ P . Let I = (P, k) and I ′ = (Cw, k). Then: (a) νCw
(optI′) ≤

2νCw
(optI); and (b) µCw

(optI′) ≤ 4µCw
(optI).

Proof. We first prove point (b). Let X = {xCw : x ∈ optI}. The set X is a solution
of I ′. By optimality of optI′ , we have that µCw (optI′) ≤ µCw (X). Also, by triangle
inequality, it holds that µCw

(X) ≤
∑
x∈Cw

w(x) [d(x, optI) + d(xoptI , X)]2. We observe that
d(xoptI , X) ≤ d(x, optI) by definition of X. Thus, we obtain that µCw

(optI′) ≤ 4µCw
(optI).

The proof of (a) follows the same lines with a factor 2 less since we do not square. J

Bounded coresets have the nice property to be composable. That is, we can partition
the input points into different subsets and compute a bounded coreset separately in each
subset: the union of those coresets is a bounded coreset of the input instance. This property,
which is formally stated in the following lemma, is crucial to develop efficient MapReduce
algorithms for the clustering problems.

I Lemma 2.7. Let I = (P, k) be an instance of k-median (resp., k-means). Let P1, . . . , PL
be a partition of P . For ` = 1, . . . , L, let Cw,` be an ε-bounded coreset of I` = (P`, k). Then
Cw = ∪`Cw,` is a 2ε-bounded coreset (resp., a 4ε-bounded coreset) of I.

Proof. We prove the lemma for k-median. The proof for k-means is similar. For ` = 1, . . . , L,
let τ` be the map from P` to Cw,` of Definition 2.3. Now, for any x ∈ P , let ` be the integer
such that x ∈ P`; we define τ(x) = τ`(x).

∑
x∈P

d(x, τ(x)) ≤
L∑
`=1

∑
x∈P`

d(x, τ`(x)) ≤ ε
L∑
`=1

νP`
(optI`

) ≤ 2ε · νP (optI)

In the last inequality, we used the fact that νP`
(optI`

) ≤ 2νP`
(optI) from Lemma 2.6. J

In the paper, we will need the following additional characterization of a representative
subset of the input, originally introduced in [14].

I Definition 2.8. Let I = (P, k) be an instance of k-median (resp., k-means). A set C
is said to be an ε-centroid set of I if there exists a subset X ⊆ C, |X| ≤ k, such that
νP (X) ≤ (1 + ε)νP (optI) (resp., µP (X) ≤ (1 + ε)µP (optI)).

Our algorithms are designed for the MapReduce model of computation which has become a de
facto standard for big data algorithmics in recent years. A MapReduce algorithm [9, 22, 20]
executes in a sequence of parallel rounds. In a round, a multiset X of key-value pairs
is first transformed into a new multiset X ′ of key-value pairs by applying a given map
function (simply called mapper) to each individual pair, and then into a final multiset Y

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:7

of pairs by applying a given reduce function (simply called reducer) independently to each
subset of pairs of X ′ having the same key. The model features two parameters, ML, the
local memory available to each mapper/reducer, and MA, the aggregate memory across all
mappers/reducers.

3 Coresets construction in MapReduce

Our coreset constructions are based on a suitable point selection algorithm called
CoverWithBalls, somewhat inspired by the exponential grid construction used in [14]
to build ε-approximate coresets in Rd for the continuous case. Suppose that we want to build
an ε-bounded coreset of a k-median instance I = (P, k) and that a β-approximate solution T
for I is available. A simple approach would be to find a set Cw such that for any x in P there
exists a point τ(x) ∈ C for which d(x, τ(x)) ≤ (ε/2β) · d(x, T). Indeed, if Cw is weighted
according to τ , it can be seen that Cw is an ε-bounded coreset of I. The set Cw can be
constructed greedily by iteratively selecting an arbitrary point p ∈ P , adding it to Cw, and
discarding all points q ∈ P (including p) for which the aforementioned property holds with
τ(q) = p. The construction ends when all points of P are discarded. However, note that the
points of P which are already very close to T , say at a distance ≤ R for a suitable tolerance
threshold R, do not contribute much to νP (T), and so to the sum

∑
x∈P d(x, τ(x)). For these

points, we can relax the constraint and discard them from P as soon their distance to Cw
becomes at most (ε/2β) ·R. This relaxation is crucial to bound the size of the returned set
as a function of the doubling dimension of the space. Algorithm CoverWithBalls is formally

Algorithm 1 CoverWithBalls(P, T,R, ε, β).

1 Cw ← ∅
2 while P 6= ∅ do
3 p←− arbitrarily selected point in P
4 Cw ←− Cw ∪ {p}, w(p)←− 0
5 foreach q ∈ P do
6 if d(p, q) ≤ ε/(2β) max{R, d(q, T)} then
7 remove q from P

8 w(p)←− w(p) + 1 /* (i.e. τ(q) = p, see Lemma 3.1) */
9 end

10 end
11 end
12 return Cw

described in the pseudocode below. It receives in input two sets of points, P and T , and
three positive real parameters R, ε, and β, with ε < 1 and β ≥ 1 and outputs a weighted set
Cw ⊆ P which satisfies the property stated in the following lemma.

I Lemma 3.1. Let Cw be the output of CoverWithBalls(P, T,R, ε, β). Cw is weighted ac-
cording to a map τ : P → Cw such that, for any x ∈ P , d(x, τ(x)) ≤ ε/(2β) max{R, d(x, T)}.

Proof. For any x ∈ P , we define τ(x) as the point in Cw which caused the removal of x from
P during the execution of the algorithm. The statement immediately follows. J

ISAAC 2019

34:8 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

While in principle the size of Cw can be arbitrarily close to |P |, the next theorem shows that
this is not the case for low dimensional spaces, as a consequence of the fact that there cannot
be too many points which are all far from one another. We first need a technical lemma. A
set of points X is said to be an r-clique if for any x, y ∈ X, x 6= y, it holds that d(x, y) > r.
We have:

I Lemma 3.2. Let 0 < ε < 1. Let M be a metric space with doubling dimension D. Let
X ⊆M be an ε · r-clique and assume that X can be covered by a ball of radius r centered at
a point ofM. Then, |X| ≤ (4/ε)D.

Proof. By recursively applying the definition of doubling dimension, we observe that the
ball of radius r which covers X can be covered by 2j·D balls of radius 2−j · r, where j is any
non negative integer. Let i be the least integer for which 2−i · r ≤ ε/2 · r holds. Any of the
2i·D balls with radius 2−i · r can contain at most one point of X, since X is a ε · r-clique.
Thus |X| ≤ 2i·D. As i = 1 + dlog2 (1/ε)e, we finally obtain that |X| ≤ (4/ε)D. J

I Theorem 3.3. Let Cw be the set returned by the execution of CoverWithBalls(P, T,R, ε, β).
Suppose that the points in P and T belong to a metric space with doubling dimension D. Let
c be a real value such that, for any x ∈ P , c ·R ≥ d(x, T). Then,

|Cw| ≤ |T | · (16β/ε)D · (log2 c+ 2)

Proof. Let T = {t1, . . . , t|T |} be the set in input to the algorithm. For any i, 1 ≤ i ≤ |T |, let
Pi = {x ∈ P : xT = ti} and Bi = {x ∈ Pi : d(x, T) ≤ R}. In addition, for any integer value
j ≥ 0 and for any feasible value of i, we define Di,j = {x ∈ Pi : 2j ·R < d(x, T) ≤ 2j+1 ·R}.
We observe that for any j ≥ dlog2 ce, the sets Di,j are empty, since d(x, T) ≤ c ·R. Together,
the sets Bi and Di,j are a partition of Pi.

For any i, let Ci = Cw ∩Bi. We now want to show that the set Ci is a ε/(2β) ·R-clique.
Let c1, c2 be any two different points in Ci and suppose, without loss of generality, that
c1 was added first to Cw. Since c2 was not removed from P , this means that d(c1, c2) >
ε/(2β) · max{d(c2, T), R} ≥ ε/(2β)R, where we used the fact that d(c2, T) ≤ R since c2
belongs to Bi. Also, the set Ci ⊆ Bi is contained in a ball of radius R centered in ti, thus
we can apply Lemma 3.2 and bound its size, obtaining that |Ci| ≤ (8β/ε)D.

For any i and j, let Ci,j = Cw ∩Di,j . We can use a similar strategy to bound the size of
those sets. We first show that the sets Ci,j are ε

4β ·2
j+1R-cliques. Let c1, c2 be any two different

points in Ci,j and suppose, without loss of generality, that c1 was added first to Cw. Since c2
was not removed from P , this means that d(c1, c2) > ε/(2β)·max{d(c2, T), R} ≥ ε/(4β)2j+1R,
where we used the fact that d(c2, T) > 2j ·R since c2 belongs to Di,j . Also, the set Ci,j ⊆ Di,j

is contained in a ball of radius 2j+1R centered in ti, thus we can apply Lemma 3.2 and
obtain that |Ci,j | ≤ (16β/ε)D. Since the sets Ci and Ci,j partition Cw, we can bound the
size of Cw as the sum of the bounds of the size of those sets. Hence:

|Cw| ≤
|T |∑
i=1
|Ci|+

|T |∑
i=1

dlog2 ce−1∑
j=0

|Ci,j | ≤ |T | · (16β/ε)D · (log2 c+ 2). J

3.1 A first approach to coreset construction for k-median
In this subsection we present a 1-round MapReduce algorithm that builds a weighted coreset
Cw ⊆ P of a k-median instance I = (P, k). The algorithm is parametrized by a value
ε ∈ (0, 1), which represents a tradeoff between coreset size and accuracy. The returned
coreset has the following property. Let I ′ = (Cw, k). If we run an α-approximation algorithm

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:9

on I ′, then the returned solution is a (2α + O(ε))-approximate solution of I. Building
on this construction, in the next subsection we will obtain a better coreset which allows
us to reduce the final approximation factor to the desired α + O(ε) value. The coreset
construction algorithm operates as follows. The set P is partitioned into L equally-sized
subsets P1, . . . , PL. In parallel, on each k-median instance I` = (P`, k), with ` = 1, . . . , L,
the following operations are performed:
1. Compute a set T` of m ≥ k points such that νP`

(T`) ≤ β · νP`
(optI`

).
2. R` ←− νP`

(T`)/|P`|.
3. Cw,` ←− CoverWithBalls(P`, T`, R`, ε, β).
The set Cw = ∪L`=1Cw,` is the output of the algorithm.

In Step 1, the set T` can be computed through a sequential (possibly bi-criteria) approxi-
mation algorithm for m-median, with a suitable m ≥ k, to yield a small value of β. If we
assume that such an algorithm requires space linear in P`, the entire coreset costruction can
be implemented in a single MapReduce round, using O(|P |/L) local memory and O(|P |)
aggregate memory. For example, using one of the known linear-space, constant-approximation
algorithms (e.g., [2]), we can get β = O(1) with m = k.

I Lemma 3.4. For ` = 1, . . . , L, Cw,` is an ε-bounded coreset of the k-median instance I`.

Proof. Fix a value of `. Let τ` be the map between the points in Cw,` and the points in P`
of Lemma 3.1. The set Cw,` is weighted according to τ`. Also, it holds that:∑

x∈P`

d(x, τ`(x)) ≤ ε

2β
∑
x∈P`

(R` + d(x, T`)) ≤
ε

2β (R` · |P`|+ νP`
(T`)) ≤ ε · νP`

(optI`
) J

By combining Lemma 3.4 and Lemma 2.7, the next lemma immediately follows.

I Lemma 3.5. Let I = (P, k) be a k-median instance. The set Cw returned by the above
MapReduce algorithm is a 2ε-bounded coreset of I.

It is possible to bound the size of Cw as a function of the doubling dimension D. For any
` = 1, . . . , L and x ∈ P`, it holds that R` · |P`| = νP`

(T`) ≥ d(x, T`), thus we can bound the
size of Cw,` by using Theorem 3.3. Since Cw is the union of those sets, this argument proves
the following lemma.

I Lemma 3.6. Let I = (P, k) be a k-median instance. Suppose that the points in P belong
to a metric space with doubling dimension D. Let Cw be the set returned by the above
MapReduce algorithm with input I and m ≥ k. Then, |Cw| = O

(
L ·m · (16β/ε)D log |P |

)
Let S be an α-approximate solution of I ′ = (Cw, k), with constant α. We will now show

that νP (S)/νP (optI) = 2α+O(ε). Let τ be the map of from P to Cw (see Lemma 3.1). By
triangle inequality, νP (S) ≤

∑
x∈P d(x, τ(x)) + νCw

(S). We have that
∑
x∈P d(x, τ(x)) ≤

2ε · νP (optI) since, by Lemma 3.5, Cw is a 2ε-bounded coreset. By the fact that S is an
α-approximate solution of I ′ and by Lemma 2.6, we have that νCw

(S) ≤ α · νCw
(optI′) ≤

2α · νCw
(optI). By Lemma 2.4, Cw is also a 2ε-approximate coreset of I, thus νCw

(optI) ≤
(1 + 2ε)νP (optI). Putting it all together, we have that νP (S)/νP (optI) ≤ 2α(1 + 2ε) + 2ε =
2α + O(ε). We observe that the factor 2 is due to the inequality which relates optI and
optI′ , namely νCw (optI′) ≤ 2νCw (optI). In the next subsection, we will show how to get rid
of this factor.

ISAAC 2019

34:10 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

Application to the continuous case

The same algorithm of this subsection can also be used to build a O(ε)-approximate coreset
in the continuous scenario where centers are not required to belong to P . It is easy to verify
that the construction presented in this subsection also works in the continuous case, with
the final approximation factor improving to (α + O(ε)). Indeed, we can use the stronger
inequality νCw

(optI′) ≤ νCw
(optI), as optI is also a solution of I ′, which allows us to avoid

the factor 2 in front of α. While the same approximation guarantee has already been achieved
in the literature using more space-efficient but randomized coreset constructions [6, 4], as
mentioned in the introduction, this result provides evidence of the general applicability of
our approach.

3.2 Coreset construction for k-median

In this subsection, we present a 2-round MapReduce algorithm which computes a weighted
subset which is both an O(ε)-bounded coreset and an O(ε)-centroid set of an input instance
I = (P, k) of k-median. The algorithm is similar to the one of the previous subsection, but
applies CoverWithBalls twice in every subset of the partition. This idea is inspired by the
strategy presented in [14] for Rd, where a double exponential grid construction is used to
ensure that the returned subset is a centroid set.

First Round. P is partitioned into L equally-sized subsets P1, . . . , PL. Then in parallel, on
each k-median instance I` = (P`, k), with ` = 1, . . . , L, the following steps are performed:
1. Compute a set T` of m ≥ k points such that νP`

(T`) ≤ β · νP`
(optI`

).
2. R` ←− νP`

(T`)/|P`|.
3. Cw,` ←− CoverWithBalls(P`, T`, R`, ε, β).

Second Round. Let Cw = ∪L`=1Cw,`. The same partition of P of the first round is used.
Together with P`, the `-th reducer receives a copy of Cw, and all values Ri computed in the
previous round, for i = 1, . . . , L. On each k-median instance I` = (P`, k), with ` = 1, . . . , L,
the following steps are performed:
1. R←−

∑L
i=1 |Pi| ·Ri/|P |

2. Ew,` ←− CoverWithBalls(P`, Cw, R, ε, β).

The set Ew = ∪L`=1Ew,` is the output of the algorithm. The computation of T` in the
first round is accomplished as described in the previous section.

The following lemma characterizes the properties of Ew.

I Lemma 3.7. Let I = (P, k) be a k-median instance. Then, the set Ew returned by the
above MapReduce algorithm is both a 2ε-bounded coreset and a 7ε-centroid set of I.

Proof. The first three steps of the algorithm are in common with the algorithm of Subsec-
tion 3.2. By Lemma 3.4, for ` = 1, ..., L, the sets Cw,` are ε-bounded coresets of I`. Let
Cw = ∪L`=1Cw,`. By Lemma 2.7, the set Cw is a 2ε-bounded coreset of I, and also, by
Lemma 2.4, a 2ε-approximate coreset. Let τ(x) be the map from P to Cw as specified in
Definition 2.3. It holds that νP (Cw) ≤

∑
x∈P d(x, τ(x)) ≤ 2ε · νP (optI). Let φ` be the map

of Lemma 3.1 from the points in P` to the points in Ew,`. By reasoning as in the proof of
Lemma 3.4, we obtain that

∑
x∈P`

d(x, φ`(x)) ≤ ε/(2β) [|P`| ·R+ νP`
(Cw)]. For any x ∈ P ,

let ˆ̀ be the index for which x ∈ Pˆ̀, we define φ(x) = φˆ̀(x). We have that

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:11

∑
x∈P

d(x, φ(x)) ≤ ε

2β

L∑
`=1

[R · |P`|+ νP`
(Cw)] = ε

2β

((
L∑
`=1
|P`| ·R`

)
+ νP (Cw)

)

where in the last equality we applied the definition of R. Since |P`| · R` = νP`
(T`) ≤

β · νP`
(optI`

) ≤ 2β · νP`
(optI), where the last inequality follows from Lemma 2.6, we have

that
∑L
`=1 |P`|·R` ≤ 2β ·νP (optI). Additionally, νP (Cw) ≤ 2ε·νP (optI) as argued previously

in the proof. Therefore Ew is a 2ε-bounded coreset.
We now show that Ew is a 7ε-centroid set of I. Let X = {xEw : x ∈ optI}. We will

prove that νP (X) ≤ (1 + 7ε)νP (optI). By triangle inequality, we obtain that:

νP (X) =
∑
x∈P

d(x,X) ≤
∑
x∈P

d(x, τ(x)) +
∑
x∈P

d(τ(x), X)

The first term of the above sum can be bounded as
∑
x∈P d(x, τ(x)) ≤ 2ε ·νP (optI), since Cw

is a 2ε-bounded coreset. Also, we notice that the second term of the sum can be rewritten as∑
x∈P d(τ(x), X) =

∑
x∈Cw

w(x)d(x,X), due to the relation between τ and w. By triangle
inequality, we obtain that:∑

x∈Cw

w(x)d(x,X) ≤
∑
x∈Cw

w(x)d(x, xoptI) +
∑
x∈Cw

w(x)d(xoptI , X)

Since Cw is a 2ε-approximate coreset, we can use the bound
∑
x∈Cw

w(x)d(x, xoptI) =
νCw

(optI) ≤ (1 + 2ε)νP (optI). Also, by using the definition of X, we observe that∑
x∈Cw

w(x)d(xoptI , X) =
∑
x∈Cw

w(x)d(xoptI , Ew) ≤
∑
x∈Cw

w(x)d(xoptI , φ(xoptI))

≤ ε

2β
∑
x∈Cw

w(x) ·
(
R+ d(xoptI , Cw)

)
≤ ε

2β

((
L∑
`=1
|P`| ·R`

)
+ νCw (optI)

)

In the last inequality, we used the definition of R, and the simple observation that for any
x ∈ Cw, d(xoptI , Cw) ≤ d(x, xoptI) = d(x, optI). As argued previously in the proof, we
have that

∑
` |P`| · R` ≤ 2β · νP (optI). Also, νCw (optI) ≤ (1 + 2ε)νP (optI) as Cw is a

2ε-approximate coreset of I. Since we assume that β ≥ 1, we finally obtain:∑
x∈Cw

w(x)d(xoptI , X) ≤ ε

2β (2β + 1 + 2ε)νP (optI) ≤ 3ε · νP (optI)

We conclude that νP (X) ≤ (2ε+ 1 + 2ε+ 3ε)νP (optI) = (1 + 7ε) · νP (optI) J

The next lemma establishes an upper bound on the size of Ew.

I Lemma 3.8. Let I = (P, k) be a k-median instance. Suppose that the points in P belong
to a metric space with doubling dimension D. Let Ew be the set returned by the above
MapReduce algorithm with input I and m ≥ k. Then |Ew| = O

(
L2 ·m · (16β/ε)2D log2 |P |

)
.

Proof. From the previous subsection, we know that |Cw| = O
(
L ·m · (16β/ε)D log |P |

)
.

Also, by Lemma 3.4, we have that νP`
(Cw,`) ≤ ε · νP`

(optI`
) for any ` = 1, . . . , L. For

every x ∈ P we have that ε|P | · R = ε
∑
` |P`| · R` = ε

∑
` νP`

(T`) ≥
∑
` ε · νP`

(optI`
) ≥∑

` νP`
(Cw,`) ≥ νP (Cw) ≥ d(x,Cw). The lemma follows by applying Theorem 3.3 to bound

the sizes of the sets Ew,`. J

ISAAC 2019

34:12 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

We are now ready to state the main result of this subsection.

I Theorem 3.9. Let I = (P, k) be a k-median instance and let Ew be the set returned by
the above MapReduce algorithm for a fixed ε ∈ (0, 1). Let A be an α-approximation algorithm
for the k-median problem, with constant α. If S is the solution returned by A with input
I ′ = (Ew, k), then νP (S)/νP (optI) ≤ α+O(ε).

Proof. Let τ be the map from P to Ew of Definition 2.3. By triangle inequality, it results
that νP (S) ≤

∑
x∈P d(x, τ(x))+νEw

(S). The set Ew is a 2ε-bounded coreset of I, so we have
that

∑
x∈P d(x, τ(x)) ≤ 2ε · νP (optI). Since A is an α-approximation algorithm, we have

that νEw
(S) ≤ α ·νEw

(optI′). As Ew is also a 7ε-centroid set, there exists a solution X ⊆ Ew
such that νP (X) ≤ (1 + 7ε)νP (optI). We obtain that νEw (optI′) ≤ νEw (X) ≤ (1 + 2ε)(1 +
7ε)νP (optI). In the last inequality, we used the fact that Ew is a 2ε-approximate coreset of I
due to Lemma 2.4. To wrap it up, νP (X)/νP (optI) ≤ α(1 + 7ε)(1 + 2ε) + 2ε = α+O(ε). J

3.3 Coreset construction for k-means
In this subsection, we present a 2-round MapReduce algorithm to compute a weighted subset
Ew which is both an O(ε2)-approximate coreset and a O(ε)-centroid set of an instance I of
k-means and then show that an α-approximate solution of I ′ = (Ew, k) is an (α + O(ε))-
approximate solution of I. The algorithm is an adaptation of the one devised in the previous
subsection for k-median, with suitable tailoring of the parameters involved to account for
the presence of squared distances in the objective function of k-means.

First Round. P is partitioned into L equally-sized subsets P1, . . . , PL. Then in parallel, on
each k-means instance I` = (P`, k), with ` = 1, . . . , L, the following steps are performed:
1. Compute a set T` of m ≥ k points such that µP`

(T`) ≤ β · µP`
(optI`

).
2. R` ←−

√
µP`

(T`)/|P`|.
3. Cw,` ←− CoverWithBalls(P`, T`, R`,

√
2ε,
√
β).

Second Round. Let Cw = ∪L`=1Cw,`. The same partition of P of the first round is used.
Together with P`, the `-th reducer receives a copy of Cw, and all values Ri computed in the
previous round, for i = 1, . . . , L. On each k-means instance I` = (P`, k), with ` = 1, . . . , L,
the following steps are performed:
1. R←−

√∑L
i=1 |Pi| ·R2

i /|P |
2. Ew,` ←− CoverWithBalls(P`, Cw, R,

√
2ε,
√
β).

The set Ew = ∪L`=1Ew,` is the output of the algorithm. The computation of T` in the first
round can be accomplished using the the linear-space constant approximation algorithms of
[12, 18].

The analysis follows the lines of the one carried out for the k-median coreset construction.
The following lemma establishes the properties of each Cw,`.

I Lemma 3.10. For ` = 1, . . . , L, Cw,` is a ε2-bounded coreset of the k-means instance I`.

Proof. Fix a value of `. Let τ` be the map between the points in Cw,` and the points in P`
of Lemma 3.1. The set Cw,` is weighted according to τ`. Also, it holds that:

∑
x∈P`

d(x, τ`(x))2 ≤ ε2

2β
∑
x∈P`

[
R2
` + d(x, T`)2] ≤ ε2

2β
[
R2
` · |P`|+ µP`

(T`)
]

≤ ε2 · µP`
(optI`

). J

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:13

Next, in the following two lemmas, we characterize the properties and the size of Ew.

I Lemma 3.11. Let I = (P, k) be a k-means instance and assume that ε is a positive value
such that ε+ ε2 ≤ 1/8. Then, the set Ew returned by the above MapReduce algorithm is both
a 4ε2-bounded coreset and a 27ε-centroid set of I.

Proof. Let φ` be the map of Lemma 3.1 from the points in P` to the points in Ew,`. We
have that

∑
x∈P`

d(x, φ`(x))2 ≤ ε2/(2β)
(
|P`| ·R2

` + µP`
(Cw)

)
. For any x ∈ P , let ˆ̀ be the

index for which x ∈ Pˆ̀, we define φ(x) = φˆ̀(x). We have that:

∑
x∈P

d(x, φ(x))2 ≤ ε2

2β

L∑
`=1

[
R2|P`|+ µP`

(Cw)
]

= ε2

2β

((
L∑
`=1
|P`| ·R2

`

)
+ µP (Cw)

)

Using the fact that |P`| · R2
` = µP`

(T`) ≤ β · µP`
(optI`

) ≤ 4β · µP`
(optI), where the last

inequality is due to Lemma 2.6, we have that
∑
`R

2
` |P`| ≤

∑
` 4β ·µP`

(optI) ≤ 4β ·µP (optI).
Also, by Lemma 3.10 and Lemma 2.7, Cw is an 4ε2-bounded coreset of P , thus µP (Cw) ≤
4ε2 · µP (optI). Therefore, Ew is an 4ε2-bounded coreset of I.

We now show that Ew is a centroid set of I. Let X = {xEw : x ∈ optI}. By Lemma 2.5,
Cw is a γ-approximate coreset of I, with γ = 4(ε+ ε2) ≤ 1/2. Hence, µP (X) ≤ 1/(1− γ) ·
µCw

(X). By Proposition 2.1, we have:

µCw (X) =
∑
x∈Cw

w(x)d(x,X)2 ≤ (1 + ε)µCw (optI) + (1 + 1/ε)
∑
x∈Cw

w(x)d(xoptI , X)2

Since Cw is a γ-approximate coreset, it holds that µCw (optI) ≤ (1 + γ)µP (optI). By
reasoning as in the proof of Lemma 3.7, we have that

∑
x∈Cw

w(x)d(xoptI , X)2 ≤ (5ε2/2 +
γε2/2)µP (optI). Putting it all together, we conclude:

µP (X)/µP (optI) ≤
(
1 + γ + 5ε2/2 + γε2/2 + 7ε/2 + 3γε/2

)
/(1− γ).

Since γ ≤ 1/2, we have that 1/(1 − γ) ≤ 1 + 2γ. By using the constraint on ε and the
definition of γ, after some tedious computations, we obtain µP (X)/µP (optI) ≤ 1 + 27ε. J

I Lemma 3.12. Let I = (P, k) be a k-means instance. Suppose that the points in P belong to
a metric space with doubling dimension D. Let Ew be the set returned by the above MapReduce
algorithm with input I and m ≥ k. Then, |Ew| = O

(
L2 ·m · (8

√
2β/ε)2D log2 |P |

)
Proof. For any ` = 1, . . . , L and x ∈ P`, it holds that R` ·

√
|P`| =

√
µP`

(T`) ≥ d(x, T`). By
using Theorem 3.3, we obtain that |Cw,`| = O

(
m · (8

√
2β/ε)D log |P |

)
, and we can bound

the size of Cw with an union bound. By Lemma 3.10, Cw,` is a ε2-bounded coreset of I`,
hence µP`

(Cw,`) ≤ ε2µP`
(optI`

). For any x ∈ P we have that ε
√
|P | ·R =

√
ε2
∑
` |P`|R2

` =√
ε2
∑
` µP`

(T`) ≥
√
ε2
∑
` µP`

(optI`
) ≥

√∑
` µP`

(Cw,`) ≥
√
µP (Cw) ≥ d(x,Cw). Thus,

the lemma follows by applying Theorem 3.3 to bound the sizes of the sets Ew,`. J

We are now ready to state the main result of this subsection.

I Theorem 3.13. Let I = (P, k) be a k-means instance and let Ew be the set returned by
the above MapReduce algorithm for a fixed positive ε such that ε + ε2 ≤ 1/8. Let A be an
α-approximation algorithm for the k-means problem, with constant α. If S is the solution
returned by A with input I ′ = (Ew, k), then µP (S)/µP (optI) ≤ α+O(ε).

ISAAC 2019

34:14 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

Proof. By Lemma 3.11 and Lemma 2.5, Ew is a (4ε2 + 4ε)-approximate coreset of I.
Therefore, µP (S) ≤ (1/(1− 4ε− 4ε2)) · µEw

(S). Since A is an α-approximation algorithm,
µEw

(S) ≤ α · µEw
(optI′). Also, Ew is a 27ε-centroid set, thus there exists a solution

X ⊆ Ew such that µP (X) ≤ (1 + 27ε) · µP (optI). We have that µEw (optI′) ≤ µEw (X) ≤
(1 + 4ε + 4ε2) · µP (X) ≤ (1 + 4ε + 4ε2)(1 + 27ε) · µP (optI), where the second inequality
follows again from the fact that Ew is a (4ε2 + 4ε)-approximate coreset of I. Because of the
constraints on ε, we have that 1/(1− 4ε− 4ε2) ≤ 1 + 8ε+ 8ε2. Therefore, it finally results
that µP (S)/µP (optI) ≤ α · (1 + 8ε+ 8ε2)(1 + 4ε+ 4ε2)(1 + 27ε) = α+O(ε). J

As noted in Subsection 3.1, a simpler version of this algorithm can be employed if we
restrict our attention to the continuous case. Indeed, if we limit the algorithm to the first
round and output the set Cw = ∪`Cw,`, it is easy to show that an α-approximate algorithm
executed on the coreset Cw returns a (α+O(ε))-approximate solution.

3.4 MapReduce algorithms for k-median and k-means
Let I = (P, k) be a k-median (resp., k-means) instance. We can compute an approximate
solution of I in three MapReduce rounds: in the first two rounds, a weighted coreset Ew
is computed using the algorithm described in Subsection 3.2 (resp., Subsection 3.3), while
in the third round the final solution is computed by running a sequential approximation
algorithm for the weighted variant of the problem on Ew. Suppose that in the first of the
two rounds of coreset construction we use a linear-space algorithm to compute the sets T` of
size m = O(k), and cost at most a factor β times the optimal cost, and that in the third
round we run a linear-space α-approximation algorithm on Ew, with constant α. Setting
L = 3

√
|P |/k we obtain the following theorem as an immediate consequence of Lemmas 3.8

and 3.12, and Theorems 3.9 and 3.13.

I Theorem 3.14. Let I = (P, k) be an instance of k-median (resp., k-means). Suppose
that the points in P belong to a metric space with doubling dimension D. For any ε ∈ (0, 1)
(with ε+ ε2 ≤ 1/8 for k-means) the 3-round MapReduce algorithm described above computes
an (α+O(ε))-approximate solution of I using local space O

(
|P |2/3k1/3(16β/ε)2D log2 |P |

)
(resp., O

(
|P |2/3k1/3(8

√
2β/ε)2D log2 |P |

)
).

Note that for a wide range of the relevant parameters, the local space of the MapReduce
algorithms is substantially sublinear in the input size, and it is easy to show that the
aggregate space is linear in |P |. As concrete instantiations of the above result, both the
T`’s and the final solution may be obtained through the sequential algorithms in [2] for
k-median, and in [12] for k-means. Both algorithms are based on local search and feature
approximations α = 3+2/t for k-median, and α = 5+4/t for k-means, where t is the number
of simultaneous swaps allowed. With this choice, the result of the above theorem holds
with β = α = O(1). Alternatively, for the T`’s we could use k-means++ [5] as a bi-criteria
approximation algorithm (e.g, see [25]), which yields a smaller β, at the expense of a slight,
yet constant, increase in the size m of the T`’s. For larger D, this might be a better choice
as the coreset size (hence the local memory) is linear in m and β2D (resp., βD). Moreover,
bi-criteria approximations are usually faster to compute than actual solutions.

4 Conclusions

We presented distributed coreset constructions that can be used in conjunction with sequential
approximation algorithms for k-median and k-means in general metric spaces to obtain the
first space-efficient, 3-round MapReduce algorithms for the two problems, which are almost as

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:15

accurate as their sequential counterparts. The constructions for the two problems are based
on a uniform strategy, and crucially leverage the properties of spaces of bounded doubling
dimension, specifically those related to ball coverings of sets of points. One attractive
feature of our constructions is their simplicity, which makes them amenable to fast practical
implementations.

References
1 D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In Proc. 18th

ACM-SIAM SODA, pages 1027–1035, 2007.
2 V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local Search

Heuristics for k-Median and Facility Location Problems. SIAM J. Comput., 33(3):544–562,
2004.

3 P. Awasthi and M.F. Balcan. Center based clustering: A foundational perspective. In Handbook
of cluster analysis. CRC Press, 2015.

4 O. Bachem, M. Lucic, and A. Krause. Scalable k -Means Clustering via Lightweight Coresets.
In Proc. 24th ACM KDD, pages 1119–1127, 2018.

5 B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable K-Means++.
PVLDB, 5(7):622–633, 2012.

6 M.F. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clustering on
general communication topologies. In Proc. 27th NIPS, pages 1995–2003, 2013.

7 M. Ceccarello, A. Pietracaprina, and G. Pucci. Solving k-center Clustering (with Outliers) in
MapReduce and Streaming, almost as Accurately as Sequentially. PVLDB, 12(7), 2019.

8 E. Cohen, S. Chechik, and H. Kaplan. Clustering Small Samples With Quality Guarantees:
Adaptivity With One2all PPS. In Proc. 32nd AAAI, pages 2884–2891, 2018.

9 J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM, 51(1):107–113, 2008.

10 A. Ene, S. Im, and B. Moseley. Fast Clustering Using MapReduce. In Proc. 17th ACM KDD,
pages 681–689, 2011.

11 D. Feldman and M. Langberg. A Unified Framework for Approximating and Clustering Data.
In Proc. 43rd ACM STOC, pages 569–578, 2011.

12 A. Gupta and K. Tangwongsan. Simpler Analyses of Local Search Algorithms for Facility
Location. CoRR, abs/0809.2554, 2008. arXiv:0809.2554.

13 S. Har-Peled and A. Kushal. Smaller Coresets for K-median and K-means Clustering. In Proc.
21st SCG, pages 126–134, 2005.

14 S. Har-Peled and S. Mazumdar. On Coresets for K-means and K-median Clustering. In Proc.
36th ACM STOC, pages 291–300, 2004.

15 C. Hennig, M. Meila, F. Murtagh, and R. Rocci. Handbook of cluster analysis. CRC Press,
2015.

16 L. Huang, S. Jiang, J. Li, and X. Wu. Epsilon-Coresets for Clustering (with Outliers) in
Doubling Metrics. In Proc. 59th IEEE FOCS, pages 814–825, 2018.

17 P. Indyk, S. Mahabadi, M. Mahdian, and V.S. Mirrokni. Composable Core-sets for Diversity
and Coverage Maximization. In Proc. 33rd ACM PODS, pages 100–108, 2014.

18 T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A
Local Search Approximation Algorithm for K-means Clustering. In Proc. 18th SCG, pages
10–18, 2002.

19 L. Kaufmann and P. Rousseeuw. Clustering by Means of Medoids. Data Analysis based on the
L1-Norm and Related Methods, pages 405–416, 1987.

20 J. Leskovec, A. Rajaraman, and J.D. Ullman. Mining of Massive Datasets, 2nd Ed. Cambridge
University Press, 2014.

21 J. M. Phillips. Coresets and Sketches. Handbook of Discrete and Computational Geometry,
3rd Ed, 2016.

ISAAC 2019

http://arxiv.org/abs/0809.2554

34:16 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

22 A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, and E. Upfal. Space-Round Tradeoffs
for MapReduce Computations. In Proc. 26th ACM ICS, pages 235–244, 2012.

23 C. Sohler and D. P. Woodruff. Strong Coresets for k-Median and Subspace Approximation:
Goodbye Dimension. In Proc. 59th IEEE FOCS, pages 802–813, 2018.

24 H. Song, J.G. Lee, and W.S. Han. PAMAE: parallel k-medoids clustering with high accuracy
and efficiency. In Proc. 23rd ACM KDD, pages 1087–1096, 2017.

25 D. Wei. A Constant-Factor Bi-Criteria Approximation Guarantee for k-means++. In Proc.
30th NIPS, pages 604–612, 2016.

On Optimal Balance in B-Trees: What Does It
Cost to Stay in Perfect Shape?
Rolf Fagerberg
University of Southern Denmark, Odense, Denmark
rolf@imada.sdu.dk

David Hammer
Goethe University Frankfurt, Germany
University of Southern Denmark, Odense, Denmark
hammer@imada.sdu.dk

Ulrich Meyer
Goethe University Frankfurt, Germany
umeyer@ae.cs.uni-frankfurt.de

Abstract
Any B-tree has height at least dlogB(n)e. Static B-trees achieving this height are easy to build. In
the dynamic case, however, standard B-tree rebalancing algorithms only maintain a height within
a constant factor of this optimum. We investigate exactly how close to dlogB(n)e the height of
dynamic B-trees can be maintained as a function of the rebalancing cost. In this paper, we prove a
lower bound on the cost of maintaining optimal height dlogB(n)e, which shows that this cost must
increase from Ω(1/B) to Ω(n/B) rebalancing per update as n grows from one power of B to the
next. We also provide an almost matching upper bound, demonstrating this lower bound to be
essentially tight. We then give a variant upper bound which can maintain near-optimal height at
low cost. As two special cases, we can maintain optimal height for all but a vanishing fraction of
values of n using Θ(logB(n)) amortized rebalancing cost per update and we can maintain a height
of optimal plus one using O(1/B) amortized rebalancing cost per update. More generally, for any
rebalancing budget, we can maintain (as n grows from one power of B to the next) optimal height
essentially up to the point where the lower bound requires the budget to be exceeded, after which
optimal height plus one is maintained. Finally, we prove that this balancing scheme gives B-trees
with very good storage utilization.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases B-trees, Data structures, Lower bounds, Complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.35

Funding Rolf Fagerberg: Supported by the Independent Research Fund Denmark, Natural Sciences,
grant DFF-7014-00041.
David Hammer : Supported by the Deutsche Forschungsgemeinschaft (DFG) under grants ME 2088/3-
2 and ME 2088/4-2.
Ulrich Meyer : Supported by the Deutsche Forschungsgemeinschaft (DFG) under grants ME 2088/3-2
and ME 2088/4-2.

1 Introduction

1.1 Motivation

B-trees are search trees particularly suited for data organization in external memory. They
are widely employed in database systems and file systems [12] and since their introduction
in 1972 by Bayer and McCreight [7], they have been the subject of much theoretical and
practical study.

© Rolf Fagerberg, David Hammer, and Ulrich Meyer;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rolf@imada.sdu.dk
mailto:hammer@imada.sdu.dk
mailto:umeyer@ae.cs.uni-frankfurt.de
https://doi.org/10.4230/LIPIcs.ISAAC.2019.35
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 On Optimal Balance in B-Trees

B2B3 B4 B5

n

re
ba

la
nc

in
g
co
m
pl
ex
ity n/B

logB(n)
lower bound

Figure 1 Plot illustrating how the lower bound for rebalancing cost increases as n approaches
different powers of B. Intervals where the cost exceeds logB(n) are highlighted in orange.

A standard B-tree of order B is a search tree where all leaves are on the same level and
every internal node has between dB/2e and B children except for the root which may have
any number of children between 2 and B. One common generalization is (a, b)-trees [16]
where internal nodes have between a and b children for 2 ≤ a ≤ db/2e. The standard
operations for rebalancing B-trees are split of an overfull node into two nodes (increasing
the degree of the parent by one), merge which is the reverse of split, and share which is a
redistribution of keys among neighboring nodes.

In search trees, the cost of an operation is measured as the number of nodes accessed.
For a search operation, this cost is determined by the height of the tree. For any search tree
with maximal fanout B, dlogB(n)e is a lower bound on its height. In the static case, this
height is easily achieved by a bottom-up linear (that is, O(n/B) assuming presorted keys)
cost construction method. In the dynamic case, standard B-trees maintain an upper bound
of b1 + logdB/2e(n/2)c on their height using O(logB(n)) rebalancing cost per insertion and
deletion. Using (a, b)-trees, the amortized rebalancing cost per update can be reduced to
O(1) for a = bb/2c and to O(1/b) for a = b/4, at the price of a moderate increase in the
height bound [16, 22].

The upper bound of b1+logdB/2e(n/2)c on the height is a constant factor of approximately
logB/(logB−1) away from the lower bound. The optimal bound dlogB(n)e can of course be
achieved by spending linear cost on a rebuilding after each update, but this cost is prohibitive
in most situations and begs the question: can optimal height be maintained more cheaply?

Intuitively, maintaining optimal height should become harder as n approaches the next
power of B, since the amount of available space in the tree decreases, giving less flexibility
during rebalancing. Or put differently, the number of different trees of optimal height shrinks
as n increases – when reaching a power of B, there is only one such tree. Overall, we can
expect that there must be a trade-off between how full the tree is and how costly rebalancing
to optimal height will be. The goal we pursue in this paper is to find this trade-off. More
generally, we would like to know which height bounds can be maintained at which costs – a
correlation which may be called the intrinsic rebalancing cost of B-trees.

1.2 Our contributions
For any n, let N denote the next power of B (i.e., N = BdlogB ne) and define ε by n = N(1−ε).
Our first main result is a lower bound showing that for any B-tree of optimal height, there
exists an insertion forcing Ω(1/(εB)) nodes to be rebalanced before the tree can again have
optimal height. This expression describes how the rebalancing cost must change from Ω(1/B)
to Ω(n/B) as n approaches the next power of B. See Figure 1 for a visualization of this bound.

R. Fagerberg, D. Hammer, and U. Meyer 35:3

B B2 B3 B4

2

4

6

n (logarithmic)

he
ig
ht
f

(n
)

⌈
logB/2(n)

⌉
logB(n) budget
dlogB(n)e

Figure 2 Plot showing different B-tree heights as a function of n. The functions represent the
height of standard B-trees, the height achieved by our new scheme using a rebalancing budget of
O(logB(n)), and the optimal height bound. For this particular plot, B = 10.

Our second main result is an almost matching upper bound, which maintains optimal
height using amortized O(log2 B/(εB)) rebalancing per update, thereby proving the lower
bound essentially tight.

This lower bound (and hence the upper bound) approaches linear cost as n approaches
the next power of two. As our third main result, we give a variant rebalancing scheme
that allows almost optimal height at much lower amortized cost. More precisely, for any
rebalancing budget f(n), we can maintain optimal height dlogB(n)e as n approaches the
next power of B essentially up to the point where the lower bound result requires the budget
to be exceeded, after which height dlogB(n)e+ 1 is maintained. To our knowledge, this is
the first rebalancing scheme for B-trees with a height bound whose difference compared to
optimal is an additive constant rather than a multiplicative constant.

One natural choice of budget is f(n) = logB(n) as this matches the search cost. Figure 2
illustrates the height bound of this new scheme, the height bound of standard B-trees, and
the optimal height bound. As is hinted by the figure, the fraction of values of n for which this
scheme does not maintain optimal height dlogB(n)e is actually vanishing for growing n. Since
in real life uses of B-trees in external memory the values of B are large and realistic values
of n are fairly bounded in terms of possible powers of B, one may also want to look at the
concrete improvements in height bounds for some practically occurring values of B and n. In
database systems and file systems there are two main regimes, often termed OLTP and OLAP
in the database setting. In the former, B = 256 is a typical value, in the latter, B = 106

is a typical value. For B = 256, the expression B3 < M � n . B4 (where M denotes
the number of keys that can be held in internal memory) describes many real situations.
Figure 3a repeats the plot of Figure 2 for the interval B3 < n < B4, but with B = 256 and
the horizontal axis linear (not logarithmic). Standard B-trees and our scheme achieve the
optimal height bound 4 for some part of the interval, but that part differs significantly in
size: 12.16% versus 93.71%. For B = 106, the expression B1 < M � n . B2 describes many
real situations. As illustrated by Figure 3b, the part of the interval B1 < n < B2 where
optimal height is guaranteed is here 27.49% and 99.98% for the two schemes.

Another natural choice of budget is f(n) = O(1/B) as this is the best possible amortized
rebalancing cost (we can always make one node overflow at least every B insertions). With
this budget, our scheme maintains height at most dlogB(n)e+ 1 for all values of n.

Finally, we prove that our near-optimal balancing scheme gives B-trees with very good
storage utilization. Storage utilization is the fraction of the total space in the nodes allocated
which is occupied by tree pointers, keys, and elements, i.e., the average use of the space in a
node. High storage utilization is a desirable quality since it allows more of the tree to be
cached in main memory and it has been the topic of much previous literature on B-trees, in
particular in the database setting.

ISAAC 2019

35:4 On Optimal Balance in B-Trees

B3 B4

3

4

5

n

he
ig
ht
f

(n
)

⌈
logB/2(n)

⌉
logB(n) budget
dlogB(n)e

(a) B = 256. Standard B-trees are optimal in
12.16% of the interval, our scheme is in 93.71% of
the interval.

B1 B2

1

2

3

n

he
ig
ht
f

(n
)

⌈
logB/2(n)

⌉
logB(n) budget
dlogB(n)e

(b) B = 106. Standard B-trees are optimal in
27.49% of the interval, our scheme is in 99.98% of
the interval. Note: two of the plots are essentially
coincident.

Figure 3 Plots showing different B-tree heights as a function of n similar to Figure 2 but for
two specific, realistic settings. The horizontal axes are non-logarithmic to more faithfully show
proportions.

1.3 Previous work

Not much work has been done with an explicit focus on the height of B-trees. The concept
of storage utilization is rather closely related, since optimizing the height requires increasing
the average fanout of nodes, which again increases storage utilization. A number of previous
results present different trade-offs between update complexity and storage utilization, and we
now survey these. Standard B-trees have a worst-case storage utilization of approximately
1/2 and a logarithmic rebalancing cost. It is well known that lowering the worst-case storage
utilization of B-trees slightly by using (a, b)-trees with a < db/2e allows for amortized constant
rebalancing costs [22, 16]. The average storage utilization may be somewhat better than the
worst-case. In [26], an analysis of 2–3 trees with random insertions suggests that such trees
tend towards an expected storage utilization of ln 2 ≈ 0.69.

To improve the storage utilization in dynamic B-trees, Bayer and McCreight [7] proposed
an overflow technique: full nodes share their load with their siblings (when possible) instead
of splitting (Knuth [18] refers to this variant as B*-trees). This improves the storage
utilization in the worst case from 1/2 to 2/3, and the height bound from b1 + logdB/2e(n/2)c
to b1 + logd2B/3e(n/2)c, at the price of increasing the update cost by a constant factor. As
suggested in [7], this approach can be generalized to redistribution in bigger groups of nodes
before splitting, thus further improving the storage utilization and the height bound at
the cost of even higher rebalancing costs. However, no matter the group size, the height
bound will be some constant factor away from optimal. The average storage utilization
in a randomized setting using this approach is analyzed in [19], indicating that storage
utilization converges to m ln((g + 1)/g) for random trees under insertions where g is the
overflow group size.

Similarly, an overflow scheme is tested in [25] which attaches overflow nodes to groups
of nodes to delay splitting. They compute the average storage utilization to be 2g/(2g + 3)
when each overflow node is shared by a group of up to g leaf nodes. Both theoretical analysis
and practical simulations show improved storage utilization at a cost of increased complexity
during updates.

Rosenberg and Snyder [24] introduce so-called compact B-trees which are node-oriented
trees shown to be close to optimal with respect to access costs while requiring minimal
space. However, it is essentially a static structure as compaction incurs linear cost and

R. Fagerberg, D. Hammer, and U. Meyer 35:5

no faster compactness-preserving update algorithm is known. The empirical analysis in a
dynamic setting presented in [6] indeed shows that insertion into compact B-trees is very
costly and that, without compaction, storage utilization rapidly degrades when the number
of updates grows.

Recently, Brown [10, 11] has developed a practically motivated variation called B-slack
trees which has amortized logarithmic update complexity while achieving high storage
utilization. Slack for a node refers to the difference between its maximum degree and actual
degree (number of children “missing”). Special to B-slack trees is that the children of any
internal node have a combined slack of at most B − 1 where B > 4 is the maximum degree
of nodes. Maintaining this property is shown to ensure that a tree with n keys occupies at
most 2B

B−3.4n words (which approaches 2n – the optimal value given the model used – as B
increases). The rebalancing cost is amortized logarithmic per update.

It is worth mentioning key compression techniques like those found in prefix B-trees [8]
as an approach to improve fanout and thus potentially lower tree height. This and similar
key compression techniques represent an orthogonal line of research which we do not pursue.

In contrast to B-trees, there for binary trees is a much stronger tradition for focusing on
the height. In particular, there is a body of work [23, 3, 1, 2, 4, 5, 21, 20, 14, 15] focusing
on rebalancing schemes with height bounds close to the optimal value dlog2(n)e. The end
result of this line of investigation is the matching upper and lower bounds in [14, 15]. Our
results in this paper can be seen as a generalization of those methods and results to the case
of B-trees – setting B = 2 in our bounds gives those of [14, 15]. One core new ingredient is
the methods of Section 4.4 which are necessary for the upper bound to almost match the
loss of a factor of B in the lower bound in Section 3 compared to the bound in [15].

2 Model

We describe our results for leaf-oriented B-trees, as these are standard in the literature. In
leaf-oriented B-trees, internal nodes contain a total of 2B − 1 fields: B pointers to subtrees
and B − 1 search keys to guide the search (consistent with B-trees of order B as defined by
Knuth [18]). Both keys and pointers can be nil. Since keys separate subtrees, the number
of non-nil pointers is equal to the number of non-nil keys plus one. Leaf nodes contain
the actual elements, including their search keys. For simplicity, we assume that leaf nodes
contain up to B elements.1 All leaf nodes appear at the same level.

A B-tree of height h can contain up to N = Bh elements. We let T denote a B-tree with
n elements and optimal height h = dlogB ne and we define ε by n = N(1− ε) = Bh(1− ε).
Since the height is optimal, we have Bh−1 < n ≤ Bh and hence 0 ≤ ε < (B − 1)/B. A node
is said to be modified by an update operation if any of its fields are changed. Clearly the
number of modified nodes is a lower bound on the rebalancing cost of an update operation.
Unlike in standard B-trees, we do not impose a lower bound on the number of keys. This
only makes our lower bound stronger and it thus applies to standard B-trees. Our upper
bounds can easily be adapted to conform to a lower bound on node contents.

1 In practice, the size of elements relative to the size of keys may vary between data sets (and leaves may
also store pointers to elements instead of elements themselves), but it is straight-forward to adapt our
statements accordingly.

ISAAC 2019

35:6 On Optimal Balance in B-Trees

T :

ψ(T) :

Figure 4 Illustration of the mapping of a tree T (with B = 3) into ψ(T). Grey circles represent
keys in internal nodes, black circles represent elements (in leaves).

3 Lower bound

In this section, we prove the following main theorem.

I Theorem 1. For any B-tree T of optimal height h = dlogB ne, there exists an insertion
into T such that rebalancing T to optimal height after the insertion will require modifying
Ω(1/(εB)) nodes, where ε is given by n = Bh(1− ε).

The proof is based on creating a mapping from B-trees into arrays (by suitably generalizing
a mapping for binary trees in [14]). The mapping allows us to exploit the existence in any
array of a “uniformly dense” position, which will point to an update position in T for which
we can prove the lower bound stated in Theorem 1.

3.1 Mapping into array
We create the mapping from elements of T to entries of an array ψ(T) of length Bh as follows.
For a full tree (n = Bh), this mapping is given by an inorder traversal which maps elements
met during the traversal to increasing array entries. For a non-full tree, we embed T into
a full tree of the same height before applying the mapping. We use the following specific
embedding: keys fill up nodes from the left such that missing keys (and for internal nodes
the corresponding missing subtrees) for non-full nodes will be on the right. This embedding
and the resulting mapping is illustrated in Figure 4.

The mapping has the property that any subtree of the full tree is mapped to a contiguous
interval in ψ(T). In particular, for the full tree, a subtree with root at height h′ spans an
interval of size Bh′ in ψ(T). This implies that if such a subtree of T is moved during a
rebalancing, (say, if siblings of the parent of the subtree are added or removed in T), the
positions in ψ(T) of its nodes will be shifted by a multiple of Bh′ .

We denote intervals of array indices (that is, intervals of integers) as [a; b] and the length
b− a+ 1 of such intervals as l([a; b]). The following lemma regarding density of subsets of
intervals is from Dietz et al. [13].

I Lemma 2. For any two indices a and b and any S ⊆ [a; b], there is an index i ∈ [a; b] such
that for any indices s and t where a ≤ s ≤ i ≤ t ≤ b, the following holds:

|S ∩ [s; t]|
l([s; t]) ≤ 2 |S|

l([a; b]) .

Consider the subset S = {j ∈ [a; b] | ψ(T)[j] is empty} where a and b are the endpoints
of the array ψ(T). Applying Lemma 2 with this S, a, and b shows the existence of an index
i where any interval around i in ψ(T) will have a density of “holes” (empty array entries) of
at most two times the global density of holes in ψ(T), i.e. of at most 2ε. For this i, setting
s = t = i and s = i − 1, t = i + 1 in Lemma 2 shows that ψ(T)[i] and at least one of its
direct neighbors are non-empty if ε < 1/3. We insert a new element in the tree with a
key x lying between ψ(T)[i] and this neighbor. The rest of the proof assumes w.l.o.g. that
ψ(T)[i] < x < ψ(T)[i+ 1].

R. Fagerberg, D. Hammer, and U. Meyer 35:7

3.2 Counting node changes
Consider any rebalancing operations ensuing from the insertion of x into the original tree
T and let T ′ be the tree after rebalancing. Let all nodes in T modified by the rebalancing
be colored blue and let unmodified nodes be colored white. We apply a recursive splitting
procedure on all blue nodes layer for layer in a top-down manner. This procedure will
maintain a set of parts. Each part is a tuple which contains a connected subgraph of T and
a contiguous subset of the elements in ψ(T) which we call a segment. As the subgraph in a
part is connected, it has a unique highest node which will be called the root of the part.

Initially, the set of parts contains a single tuple consisting of T and a segment containing
all elements of ψ(T). Each splitting step on a blue node splits a part into new parts containing
subsets of the original part.

We now describe a splitting step on a blue node v. Let Tv be the subtree of v and let Sv
be the elements corresponding to the elements contained in the leaves of Tv mapped into
ψ(T). Let (Gp, Sp) be the existing part (where p is the root of Gp) containing v and its
subtree. The existing part (Gp, Sp) is replaced by the following new parts.

For each subtree under v, add a new part consisting of the subtree and all elements in the
subtree in ψ(T). Refer to Figure 5 for an illustration of these subtree parts. When splitting

v

T

Gp

Figure 5 Illustrating of a general case of a splitting step on the node v. The subtree parts created
in this step (both subgraphs and segments) have been highlighted.

blue leaf nodes, we create a part for each element stored in the node. Such a part will consist
of an empty subgraph and a singleton segment containing the element. Generally, Gp may
be a proper superset of Tv (see Figure 5). In this case, we create up to two boundary parts
for Sp \ Sv. The segment S< for the left boundary part (G<, S<) consists of all elements in
Sp left of Sv. The subgraph G< consists of all nodes on the path from v to p and all nodes in
Gp to the left of this path. Creating the right boundary part is done similarly. See Figure 6
for examples of these boundary parts. For later use, we note that this splitting procedure
results in O(B) segments per blue node.

v

G<

S<

(a) (G<, S<).

v

G>

S>

(b) (G>, S>).

Figure 6 Illustration of the boundary parts of Figure 5.

ISAAC 2019

35:8 On Optimal Balance in B-Trees

The following simple invariants for the splitting procedure are easy to verify: 1) When
processing layer k, no part will have a subgraph containing a blue node on any layer k′ > k.
2) For each part (G,S) where |S| > 1, elements of S are in leaves of G. 3) Until the leaves
are reached, the process does not create any parts with empty subgraphs.

After the splitting procedure, there will by 1) be no blue nodes within connected subgraphs
of the remaining parts. This can be used to show that such subgraphs are not moved
up or down.

I Lemma 3. After splitting is done, for parts (G,S) with |S| > 1, G will appear in T and
T ′ with the same height.

Proof. By 3), G will be a non-empty subgraph consisting of white nodes. Hence, this
subgraph must appear again in T ′. Due to 2), G contains some leaves, hence they appear on
the same height in both T and T ′ (all leaves appear on the same level, so G cannot have
moved vertically between T and T ′). J

We now focus on the segments of parts as the construction will impose restrictions on
their ability to move around from ψ(T) to ψ(T ′). The previous lemma implies that segments
can only be shifted when going from ψ(T) to ψ(T ′) (meaning that elements appearing in
a segment will have the same relative positions to each other in both arrays). How far a
segment is shifted can be bounded from below by its size.

I Lemma 4. A segment containing s elements which has different position in ψ(T) compared
to ψ(T ′) has moved by a distance of Ω(s).

Proof. For segments of at most one element, the statement is obvious. Consider a part
(G,S) with s = |S| > 1 and let v be the topmost node of G. By Lemma 3, G will be found in
T ′, too, with v having the same height in both trees. As discussed in Section 3.1, nodes on a
given height can only appear in specific positions. When v moves, it translates the elements
of S by (at least) a multiple of the size (in number of elements in leaves) of a full subtree
under v. By (2), this size is at least s. J

Proof of Theorem 1. Suppose that the newly inserted element x lies between two segments,
Sl−1 and Sl. As no holes were available, at least one of Sl−1 and Sl must have moved in
ψ(T ′) compared to ψ(T). Suppose w.l.o.g. that Sl has moved to the right (potentially along
with some segments to the right of Sl). Let j be the index of the right-most element in the
last consecutive segment Sr right of i which has moved to the right and let ` = l([i; j]). Due
to the choice of i, at most 2ε` of the entries in [i; j] are empty, so there are at least (1− 2ε)`
elements in this interval of ψ(T). All of these elements are in the segments Sl, Sl+1, . . . , Sr by
choice of Sr. Segments can only be translated if there is room in the array (available holes).
Since Er+1 did not move to the right, this implies that none of the segments Sl, Sl+1, . . . , Sr
can have moved more than 2ε`, so by Lemma 4, they can then only contain O(2ε`) elements
each. This means that the number of segments Sl, Sl+1, . . . , Sr must be Ω

(
(1−2ε)`

2ε`

)
= Ω

(1
ε

)
.

As each blue node accounts for O(B) segments, this implies the existence of Ω(1/(εB))
blue nodes. J

R. Fagerberg, D. Hammer, and U. Meyer 35:9

4 Upper bound

In this section, we present a rebalancing scheme for performing insertions into a B-tree
containing Bh(1 − ε) elements while maintaining optimal height h. The basic scheme is
building on ideas from a rebalancing scheme for binary search tree in [15]. It may also be
viewed as a (highly non-trivial) extension of the overflow technique analyzed in [19]. Adding
ideas from density keeping algorithms [17], we arrive at the final scheme.

For convenience of notation in the proof, we introduce the parameter k = 1/ε. Also,
ε from now on denotes a value fixed over a sequence of updates (it will be used in such
a way that it is never more than a constant factor from its previous meaning, defined by
n = Bh(1− ε)).

I Theorem 5. For any ε with 0 < ε < (B − 1)/B there exists a rebalancing scheme
for maintaining optimal height h in a B-tree while its size ranges between (1 − ε)Bh and
(1− ε/2)Bh which has an amortized rebalancing cost per update of

O

(
k log2(min{k,B})

B

)
,

where k = 1/ε.

In Section 4.1, we describe the initial setup of the scheme, and in Section 4.2 we describe
its rebalancing operations. In Section 4.3, we show how these rebalancing operations can
maintain the structure at an amortized rebalancing cost of O(k) node updates per update.
In Section 4.4, we combine the scheme with density keeping methods in order to lower
the amortized rebalancing cost to O(k log2(min{k,B})/B). We focus on insertions, since
rebalancing after deletions can be handled by simply running the operations in reverse. We
assume n = (1− ε)Bh initially.

4.1 Layout
The main mechanism employed in the structure is the distribution and redistribution of
holes in the tree. A hole in a node is simply a missing entry – for leaves, this means that an
element field is NIL, for internal nodes this means that a search key field and a corresponding
pointer field are NIL. We define the weight of a hole in a node of height h′ to be Bh′ , i.e.,
the capacity of a subtree of height h′. This is the number of elements missing from the full
tree due to this hole.

Since we initially have n = (1− ε)Bh, we must initialize the tree such that the sum of
weights of all holes in the tree is εBh. We call this sum our weight budget. On each level
of the tree, we divide the nodes into horizontal groups of contiguous nodes. It will be an
invariant of the rebalancing scheme that each group contains between 0 and B holes. Initially,
this value is B. The bigger the groups, the more sparse the holes will be. On the leaf level
we set the group size (the number of nodes in a group) to Θ(k). On the levels above, we
double the group size for each new level. If we conceptually consider this to happen in the
full tree of degree B, the B holes per group will on the leaf level correspond to a constant
fraction of the weight budget. By tuning the exact group size on the leaf level, we make this
fraction be at most 1/8. While the weight of a hole increases by a factor B per level, the
width of the layers in the full tree decreases by the same factor. Thus, doubling the group
size means that the total weight of holes in a level decreases by a factor of two for each level.
Hence, the level sums in the full tree form a geometrically decreasing series with total sum
at most twice the weight of the leaf level, i.e., at most 1/4 of the weight budget. Some level

ISAAC 2019

35:10 On Optimal Balance in B-Trees

Figure 7 Illustration of horizontally sliding a hole within a (sub)tree.

hmax will be the last where the group size does not exceed the total number of nodes on that
level. On this level, we place 3/4 of the total weight budget (arbitrarily positioned on the
level). We will refer to this as the reservoir.

The actual initial layout is built top-down: Above hmax no weight is placed and all nodes
have degree B. At level hmax, 3/4 of the total weight budget is placed, which compared to
the full tree removes nodes (by removing entire subtrees) on the levels below. The weight on
the lower levels (which removes further nodes of the tree during the top-down process) is
given by the group sizes defined above and the rule that each group has B holes. Due to
the top-down removal of nodes in the tree, the resulting tree will be thinner than the full
tree, hence the level sums in the actual tree produced will be smaller than the 1/4 of the
total budget. Hence, after this top-down procedure, there is some budget of left. This is
distributed evenly as holes on the leaf level (these holes are for simplicity of argumentation in
proofs considered inactive, i.e., they will not take part in the rebalancing process described
below and will not be considered in the invariant that groups have at most B holes). Once
the shape of the tree has been produced, it is filled with elements and search keys in a
bottom-up fashion. Assuming the elements given in sorted order (for instance during a global
rebuild), the above process can be done at linear cost O(n/B).

The rebalancing scheme we describe below works until there are no more holes in the
reservoir. By the invariant on the number of holes per group in layers below the reservoir,
the total weight outside of the reservoir will never exceed the fraction 1/4, so emptying the
reservoir requires a number of insertions proportional to the initial weight in the reservoir.
Hence, the scheme will last at least until size (1− ε/2)Bh, as required for Theorem 5.

4.2 Rebalancing operations
Two basic operations will be used in the rebalancing scheme to move holes around within the
tree: horizontal sliding and vertical redistribution. As the names imply, horizontal sliding will
move a hole from one location to another (within a group) on the same level while vertical
redistribution moves a hole from one level to another.

The horizontal sliding procedure is illustrated in Figure 7. To efficiently access the nodes
to be slid on the sliding level, we maintain horizontal level-pointers between nodes which are
neighbors on the level. As groups do not necessarily align with subtree boundaries, neighbors
on the level may have a lowest common ancestor which is further away than the sliding
distance. Since this ancestor is among the nodes whose keys should be changed due to the
slide (to maintain search tree order), we maintain pointers to these ancestors for all pairs of
neighboring nodes on a level which are not siblings (these pointers and the level-pointers
are not shown in Figure 7). When sliding, subtrees below the slide level must be moved
along with the keys to maintain search tree order of the keys (as shown in Figure 7). In that
process, the ancestor pointers between the edges of these subtrees may have to be updated,
which for each subtree is a number of pointers proportional to its height. Thus, sliding a hole
from another node in the current group on a level at height i will require accessing O(i2ik)
nodes, since the group size is 2ik.

R. Fagerberg, D. Hammer, and U. Meyer 35:11

Figure 8 Illustrating the vertical redistribution. A hole is moved down one layer, thus allowing
the creation of a new node on said layer. This corresponds directly to splitting in standard B-trees.

A vertical redistribution transforms one hole on a level l + 1 into B holes on level l. It is
illustrated in Figure 8. This operation is the same as the split operation in standard B-trees.
To perform a vertical redistribution, one clearly needs to access less nodes than for a slide at
the same level.

4.3 Insertion
We now describe how to insert a new element with a given key. As in standard B-trees, we
first search for the key in the tree to find a leaf node, v. If v contains a hole, we simply add
the element to v as in a standard B-tree and no further work is done. Otherwise, a hole is
first moved to v to make room for the new element. This is done by a searching the group of
v for a hole to slide to v. If none exists, we ask for the parent of v to obtain a hole, which
we then can redistribute to v’s level as B holes. If the parent has no hole, the process is
repeated recursively. This recursive process, called Request, is described as Algorithm 1.
The recursion ends at the latest when the reservoir is reached.

Algorithm 1 Request.

procedure Request(v)
if any node in v’s group has a hole then

slide this hole to v
else

Request(parent node of v)
redistribute a hole from parent
if v’s group is too big then

split v’s group
end if

end if
end procedure

Moving down holes from higher levels via a vertical redistribution increases the size of
the receiving group by one (see Figure 8). To keep the sizes of groups, and hence the cost
of sliding within groups, we split a group in two when a redistribution discovers that the
size of the receiving group has doubled compared to its initial group size from Section 4.1.
Groups are simply implemented by marking the border nodes of groups, so this splitting is
straight-forward to carry out as part of the operation.

As each redistribution provides B holes to a group, Algorithm 1 will only recurse upwards
(the else case) from a group when B new calls of Algorithm 1 to nodes in the group have
been issued since the last recursion upwards from this group. Recall that a horizontal slide
on a level at height i has a cost of O(i2ik) and that vertical redistributions are also covered
by this bound. From this follows an amortized bound on the rebalancing cost of:

k + 1 · 2k
B

+ 2 · 22k

B2 + · · ·+ i · 2ik
Bi

+ · · ·+ hmax · 2hmaxk

Bhmax
(1)

ISAAC 2019

35:12 On Optimal Balance in B-Trees

which is O(k) (assuming B > 2). As is standard, this can formally be proven by a potential
function which amounts to each insertion bringing an amount of “coins” equal to Equation (1).
Coins are conceptually stored in groups and will pay for all rebalancing work. When splitting
a group, the new group has an additional need for coins not covered by Equation (1). As
groups grow slowly, the extra amount compared to Equation (1) is low order in its terms, so
just doubling Equation (1) is more than enough.

4.4 Achieving log squared amortized rebalancing
We now describe how to modify the rebalancing procedure such that the amortized cost per
insertion becomes:

O

(
k log2(min{k,B})

B

)
.

Note that the amortized cost of rebalancing on all non-leaf levels is already as low as O
(
k
B

)
.

This can be seen by excluding the first term in Equation (1). Since k = Θ(1/ε), that value
matches the lower bound, so we only need to lower the cost of rebalancing on the leaf level.

The overall plan is to distribute holes more evenly within leaf groups, both when con-
structing the tree initially and when vertically redistributing holes from the next higher level.
We will use a density keeping scheme [17] on the nodes within each leaf group. Concretely
we will use the version described in section 3.1 of [9] (to which we refer for full details). The
scheme maintains a distribution of holes in a binary search tree by enforcing density (number
of keys relative to the maximum for a given height) bounds on the levels of the tree. In this
scheme, each insertion will require redistribution within an interval of size O

(
log2(n)/τ1

)
(amortized) where n is the size of the array and τ1 is upper limit on the density for the array
(τ1 can be set to 1/2 here).

We apply this scheme to each group of k leaves such that each leaf node within a group
is treated like a leaf node in the binary tree of the density keeping scheme. The binary tree
is implicitly overlaid on the group and not actually constructed. The analysis in [9] requires
that redistributing everything in a subtree takes linear time in the size of the subtree. We
point out that this requirement is satisfied in this setting as the number of nodes involved in
rebuilding an interval on the leaf level will be dominated by the distance on the leaf level (as
described regarding sliding in Section 4.3).

For B ≥ k, we must ensure that a node will sustain Θ (B/k) insertions per request for
more holes to achieve the desired amortized cost. To this end, we specify how many holes a
node gets from its neighbors via a request (slide) and how many holes a node must have in
order to be able to give some holes away (this specifies whether the density keeping scheme
should consider the node full). We split the B/k holes in each node into two equal portions:
one to handle insertions into the node and one to service a request from another node. This
means that a node issues a request only after Θ (B/k) keys have been inserted into it and
that a node is given Θ (B/k) holes when it issues a request for holes. A node can only help
another node (potentially itself) once – this is also the case in the setting of [9] as each node
has capacity one. The amortized number of insertions between each request within the group
is now Ω(k/B) and hence the amortized cost is O

(
k log2(k)

B

)
.

For k > B, not all nodes can get a hole per vertical redistribution. Instead, we apply the
density keeping scheme to subgroups of k/B nodes where each such subgroup gets one hole
after a vertical redistribution. The distance to a hole within a subgroup is O(k/B) and as
there will be B subgroups per actual group, using the density keeping scheme will mean that
insertions will have an amortized cost of O

(
k log2(B)

B

)
.

R. Fagerberg, D. Hammer, and U. Meyer 35:13

It is important to note that, in both cases, Θ(B) of the holes are used before a vertical
redistribution is requested (this is necessary to cover the cost of global rebuilding).

To handle deletions, the operations can be performed in reverse, as mentioned earlier.
This implies moving holes upwards in the tree (equivalent to merge in standard B-trees)
when the number of holes in a group grows sufficiently big.

5 Global rebalancing scheme

We here describe how repeated global rebuilding can be used with the scheme presented in
Section 4 to achieve a global rebalancing scheme (i.e., not bound to a specific range of tree
sizes as in Theorem 5).

Immediately before performing a global rebuild, the tree contains n = N(1− ε) elements
for some ε, where N is the next power of B. We set up the system from Section 4 by
performing a global rebuild at linear cost (i.e., O(n/B) node updates). We use this set-up
while N(1 − 2ε) ≤ n ≤ N(1 − ε/2). Once one of these bounds have been reached, we
rebuild again, updating ε by increasing or decreasing it by a factor of two. There will be
at least Θ(Nε) updates between each rebuilding. Thus, the amortized cost incurred by the
rebuilding process per update will be O(1/(Bε)), which does not increase the upper bound
from Section 4.

Applying this scheme during insertions (with ε successively decreasing by factors of two
along the way) allows us to maintain optimal height until the tree is arbitrarily full and the
update cost hence is arbitrarily close to Θ(n/B). In practice, one would presumably choose
to allow suboptimal height when the complexity of rebalancing exceeds a certain rebalancing
budget. Figure 1 illustrates how the complexity (lower bound) behaves as n approaches
powers of B and how this complexity lower bound relates to a logarithmic budget. Suppose
we want to limit the update complexity to a given budget f(n). We can do that by keeping
optimal height from n = Bh−1 up to the point where the budget is exceeded and from that
point up to n = Bh allowing the height to be optimal plus one. Specifically, we define ε′ by
k log2(min{k,B})/B = f(n) and k = 1/ε′. For most f(n), this has for Bh−1 < n ≤ Bh one
solution ε′ for each h, similarly to Figure 1. We assume this to be the case for the f(n) in
question. We adjust the scheme above in the following way:

If n exceeds Bh(1− ε′/2), rebuild the tree with the height incremented by one and use
ε = 1/2.
If n falls below Bh(1− ε′), rebuild the tree with the height decremented by one and use
ε = ε′.

This gives the result below, where ε′ is defined as above.

I Theorem 6. There exists a rebalancing scheme such that, given a rebalancing budget f(n),
a B-tree can be maintained with perfect height from Bh−1 to (1 − ε′)Bh and with perfect
height plus one up to Bh.

We highlight two interesting special cases. The first case is f(n) = Θ(logB(n)), which is a
natural choice since it allocates the same cost for rebalancing as for searching time. For this
choice, ε′ = o(1), leading to:

I Corollary 7. There exists a rebalancing scheme that given a rebalancing budget of Θ(logB(n))
maintains a B-tree which has optimal height for all but a vanishing fraction of values of n.
For the remaining values of n the height is optimal plus one.

A comparison of the result of Corollary 7 to optimal height and to the height bound obtained
by standard B-trees is given in Figure 2.

ISAAC 2019

35:14 On Optimal Balance in B-Trees

The second case is f(n) = Θ(1/B), for which we have ε′ = Θ(1), leading to:

I Corollary 8. There exists a rebalancing scheme that given a rebalancing budget of Θ(1/B)
maintains a B-tree with optimal height plus one.

6 Storage utilization

We here consider the connection between the parameter ε and the storage utilization.
Our upper bound rebalancing scheme directly implies excellent storage utilization. When

we lay out a tree with a given k this tree will have a storage utilization of at least (k−1)/k =
1− ε. This is trivially true for the leaf level as each group consisting of a multiple of k leaves
has at most one empty node worth of holes (refer to Section 4.1). As holes are more sparse
on higher levels of the tree, these levels have higher storage utilization than the leaves. The
total weight of holes in the reservoir is at most a constant times the total weight of holes in
the leaves. Since the number of nodes allocated in the reservoir is bounded by the number
of allocated leaves and the weight per hole in the reservoir will be greater (by a factor of
a power of B), the storage utilization among nodes in the reservoir is at least that of the
leaves, too.

The scheme in Section 5 changes ε and thus the guaranteed storage utilization while
growing a tree. To get a consistent high storage utilization while growing a tree, one can
instead choose a desired low ε′ (lower than needed initially for n = (1− ε)N), lay out the
holes among the leaves and internal layers according to this ε′, and leave the extra free
storage this would yield in the reservoir. By the same arguments as before, the storage
utilization on the leaf and inner levels of the tree would then be 1− ε′. On the reservoir level,
one could compact the nodes such that at most one node would be non-full.

Our lower bound results do not translate directly into a statement about storage utilization.
This result is about the amount of room (weight) in a tree of a particular height – the
actual number of nodes allocated within the tree is not considered. As a counter-example to
implications for storage utilization, take for instance a B-tree with all nodes completely full
except the root which has only a tiny fraction of the B possible children. This tree will have
excellent storage utilization – it will approach 1 for increasing n – while ε will be large as the
number of keys could be increased massively without increasing tree height.

References
1 Arne Andersson. Optimal bounds on the dictionary problem. In G. Goos, J. Hartmanis,

D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli,
G. Seegmüuller, J. Stoer, N. Wirth, and Hristo Djidjev, editors, Optimal Algorithms, volume
401, pages 106–114. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989. doi:10.1007/
3-540-51859-2_10.

2 Arne Andersson. Efficient Search Trees. PhD Thesis, Department of Computer Science, Lund
University, Sweden, 1990.

3 Arne Andersson, Christian Icking, Rolf Klein, and Thomas Ottmann. Binary search trees
of almost optimal height. Acta Informatica, 28(2):165–178, February 1990. doi:10.1007/
BF01237235.

4 Arne Andersson and Tony W. Lai. Fast updating of well-balanced trees. In John R. Gilbert
and Rolf Karlsson, editors, SWAT 90, pages 111–121. Springer Berlin Heidelberg, 1990.

5 Arne Andersson and Tony W. Lai. Comparison-efficient and write-optimal searching and
sorting. In Wen-Lian Hsu and R. C. T. Lee, editors, ISA’91 Algorithms, pages 273–282.
Springer Berlin Heidelberg, 1991.

https://doi.org/10.1007/3-540-51859-2_10
https://doi.org/10.1007/3-540-51859-2_10
https://doi.org/10.1007/BF01237235
https://doi.org/10.1007/BF01237235

R. Fagerberg, D. Hammer, and U. Meyer 35:15

6 David M. Arnow and Aaron M. Tenenbaum. An empirical comparison of B-trees, compact
B-trees and multiway trees. In Proceedings of the 1984 ACM SIGMOD international conference
on Management of data, page 33. ACM Press, 1984. doi:10.1145/602259.602265.

7 R. Bayer and E. M. McCreight. Organization and maintenance of large ordered indexes. Acta
Informatica, 1(3):173–189, September 1972. doi:10.1007/BF00288683.

8 Rudolf Bayer and Karl Unterauer. Prefix B-trees. ACM Transactions on Database Systems,
2(1):11–26, March 1977. doi:10.1145/320521.320530.

9 Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache Oblivious Search Trees via
Binary Trees of Small Height. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’02, pages 39–48, Philadelphia, PA, USA, 2002. Society for
Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=545381.
545386.

10 Trevor Brown. B-slack Trees: Space Efficient B-Trees. In David Hutchison, Takeo Kanade,
Josef Kittler, Jon M. Kleinberg, Alfred Kobsa, Friedemann Mattern, John C. Mitchell,
Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Demetri Terzopoulos,
Doug Tygar, Gerhard Weikum, R. Ravi, and Inge Li Gørtz, editors, Algorithm Theory –
SWAT 2014, volume 8503, pages 122–133. Springer International Publishing, Cham, 2014.
doi:10.1007/978-3-319-08404-6_11.

11 Trevor Brown. B-slack trees: Highly Space Efficient B-trees. arXiv:1712.05020 [cs], December
2017. arXiv:1712.05020.

12 Douglas Comer. Ubiquitous B-Tree. ACM Comput. Surv., 11(2):121–137, June 1979. doi:
10.1145/356770.356776.

13 Paul F. Dietz, Joel I. Seiferas, and Ju Zhang. A tight lower bound for on-line monotonic list
labeling. In Erik M. Schmidt and Sven Skyum, editors, Algorithm Theory — SWAT ’94, pages
131–142. Springer Berlin Heidelberg, 1994.

14 Rolf Fagerberg. Binary search trees: How low can you go? In G. Goos, J. Hartmanis,
J. Leeuwen, Rolf Karlsson, and Andrzej Lingas, editors, Algorithm Theory — SWAT’96,
volume 1097, pages 428–439. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996. doi:
10.1007/3-540-61422-2_151.

15 Rolf Fagerberg. The complexity of rebalancing a binary search tree. In International Conference
on Foundations of Software Technology and Theoretical Computer Science, pages 72–83.
Springer, 1999.

16 Scott Huddleston and Kurt Mehlhorn. Robust balancing in B-trees. In Theoretical Computer
Science, pages 234–244. Springer, 1981.

17 Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table implementation of priority
queues. In Shimon Even and Oded Kariv, editors, Automata, Languages and Programming,
pages 417–431. Springer Berlin Heidelberg, 1981.

18 Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

19 Klaus Küspert. Storage utilization in B *-trees with a generalized overflow technique. Acta
Informatica, 19(1), April 1983. doi:10.1007/BF00263927.

20 Tony W. Lai and Derick Wood. Updating almost complete trees or one level makes all the
difference. In Christian Choffrut and Thomas Lengauer, editors, STACS 90, pages 188–194.
Springer Berlin Heidelberg, 1990.

21 Tony Wen Hsun Lai. Efficient Maintenance of Binary Search Trees. PhD Thesis, University
of Waterloo, Waterloo, Ont., Canada, Canada, 1990.

22 David Maier and Sharon C. Salveter. Hysterical B-trees. Information Processing Letters,
12(4):199–202, August 1981. doi:10.1016/0020-0190(81)90101-0.

23 H.A. Maurer, Th. Ottmann, and H.-W. Six. Implementing dictionaries using binary trees
of very small height. Information Processing Letters, 5(1):11–14, May 1976. doi:10.1016/
0020-0190(76)90094-6.

ISAAC 2019

https://doi.org/10.1145/602259.602265
https://doi.org/10.1007/BF00288683
https://doi.org/10.1145/320521.320530
http://dl.acm.org/citation.cfm?id=545381.545386
http://dl.acm.org/citation.cfm?id=545381.545386
https://doi.org/10.1007/978-3-319-08404-6_11
http://arxiv.org/abs/1712.05020
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/356770.356776
https://doi.org/10.1007/3-540-61422-2_151
https://doi.org/10.1007/3-540-61422-2_151
https://doi.org/10.1007/BF00263927
https://doi.org/10.1016/0020-0190(81)90101-0
https://doi.org/10.1016/0020-0190(76)90094-6
https://doi.org/10.1016/0020-0190(76)90094-6

35:16 On Optimal Balance in B-Trees

24 Arnold L. Rosenberg and Lawrence Snyder. Compact B-trees. In Proceedings of the 1979
ACM SIGMOD international conference on Management of data, page 43. ACM Press, 1979.
doi:10.1145/582095.582102.

25 Balasubramaniam Srinivasan. An Adaptive Overflow Technique to Defer Splitting in B-trees.
The Computer Journal, 34(5):397–405, 1991. doi:10.1093/comjnl/34.5.397.

26 Andrew Chi-Chih Yao. On random 2–3 trees. Acta Informatica, 9(2):159–170, June 1978.
doi:10.1007/BF00289075.

https://doi.org/10.1145/582095.582102
https://doi.org/10.1093/comjnl/34.5.397
https://doi.org/10.1007/BF00289075

How Does Object Fatness Impact the Complexity
of Packing in d Dimensions?
Sándor Kisfaludi-Bak
Max Planck Institut für Infromatik, Saarbrücken, Germany
sandor.kisfaludi-bak@mpi-inf.mpg.de

Dániel Marx
Max Planck Institut für Infromatik, Saarbrücken, Germany
dmarx@cs.bme.hu

Tom C. van der Zanden
Department of Data Analytics and Digitalisation, Maastricht University, The Netherlands
T.vanderZanden@maastrichtuniversity.nl

Abstract
Packing is a classical problem where one is given a set of subsets of Euclidean space called objects,
and the goal is to find a maximum size subset of objects that are pairwise non-intersecting. The
problem is also known as the Independent Set problem on the intersection graph defined by the
objects. Although the problem is NP-complete, there are several subexponential algorithms in the
literature. One of the key assumptions of such algorithms has been that the objects are fat, with a
few exceptions in two dimensions; for example, the packing problem of a set of polygons in the plane
surprisingly admits a subexponential algorithm. In this paper we give tight running time bounds for
packing similarly-sized non-fat objects in higher dimensions.

We propose an alternative and very weak measure of fatness called the stabbing number, and
show that the packing problem in Euclidean space of constant dimension d > 3 for a family of
similarly sized objects with stabbing number α can be solved in 2O(n1−1/dα) time. We prove that
even in the case of axis-parallel boxes of fixed shape, there is no 2o(n1−1/dα) algorithm under ETH.
This result smoothly bridges the whole range of having constant-fat objects on one extreme (α = 1)
and a subexponential algorithm of the usual running time, and having very “skinny” objects on the
other extreme (α = n1/d), where we cannot hope to improve upon the brute force running time
of 2O(n), and thereby characterizes the impact of fatness on the complexity of packing in case of
similarly sized objects. We also study the same problem when parameterized by the solution size k,
and give a nO(k1−1/dα) algorithm, with an almost matching lower bound: there is no algorithm with
running time of the form f(k)no(k1−1/dα/ log k) under ETH. One of our main tools in these reductions
is a new wiring theorem that may be of independent interest.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric intersection graph, Independent Set, Object fatness

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.36

Related Version A full version of the paper is available at http://arxiv.org/abs/1909.12044.

Funding Sándor Kisfaludi-Bak: Supported by NWO Gravitation Grant Networks (No. 024.002.003).
Dániel Marx: Supported by ERC Consolidator Grant SYSTEMATICGRAPH (No. 725978).

1 Introduction

Many well-known NP-hard problems (e.g. Independent Set, Hamilton Cycle, Dom-
inating Set) can be solved in time 2O(

√
n) when restricted to planar graphs, while only

2O(n) algorithms are known for general graphs [11–16,18, 24, 28, 30]. This beneficial effect of
planarity is known as the “square root phenomenon,” and can be exploited also in the context
of 2-dimensional geometric problems where the problem is defined on various intersection

© Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der Zanden;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 36; pp. 36:1–36:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sandor.kisfaludi-bak@mpi-inf.mpg.de
mailto:dmarx@cs.bme.hu
mailto:T.vanderZanden@maastrichtuniversity.nl
https://doi.org/10.4230/LIPIcs.ISAAC.2019.36
http://arxiv.org/abs/1909.12044
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 How Does Object Fatness Impact Packing?

graphs in R2 [3,4,17,25]. In particular, consider the geometric packing problem where, given
a set of polygons in R2, the task is to find a subset of k pairwise disjoint polygons. This
problem can be solved in time nO(

√
k) [25], which – when expressed only a as a function of the

input – gives an nO(
√
n) = 2O(

√
n logn) algorithm for finding a maximum size disjoint subset.

Can these 2-dimensional subexponential algorithms be generalized to higher dimensions?
It seems that the natural generalization is to aim for 2O(n1−1/d) , or in case of parameterized
problems, either 2O(k1−1/d) ·nO(1) or nO(k1−1/d) time algorithms in d-dimensions: the literature
contains upper and lower bounds of this form (although sometimes with extra logarithmic
factors in the exponent) [9, 26, 29]. However, all of these algorithms have various restrictions
on the object family on which the intersection graph is based: there is no known analogue of
the nO(

√
k) time algorithm of Marx and Pilipczuk [25] in higher dimensions with the same

generality of objects. There is a good reason for this: it is easy to see that any n-vertex
graph can be expressed as the intersection graph of 3-dimensional simple polyhedra. Thus a
subexponential algorithm for 3-dimensional objects without any severe restriction would give
a subexponential algorithm for Independent Set on general graphs, violating standard
complexity-theoretic assumptions.

What could be reasonable restrictions on the objects that allow running times of the form,
e.g., 2O(n1−1/d)? One of the most common restrictions is to study a set F ⊂ 2Rd of fat objects,
where for each object o ∈ F the ratio radius(Bin(o))/ radius(Bout(o)) is at least some fixed
positive constant. (We denote by radius(Bin) and radius(Bout) the radius of the inscribed
and circumscribed ball respectively.) Another common restriction is to have similarly sized
objects, that is, a family F where the ratio of the largest and smallest object diameter is at
most some absolute constant. Many results concern only unit disk graphs, where F consists
of unit disks in the plane: unit disks are both fat and similarly sized. The focus of our
paper is to explore the role of fatness in the context of packing problems and to understand
when and to what extent fatness decreases the complexity of the problem. We observe that
fatness is a crucial requirement for subexponential algorithms in higher dimensions, and this
prompts us to explore in a quantitave way how fatness influences the running time. For this
purpose, we introduce a parameter α describing the fatness of the objects and give upper
and lower bounds taking into account this parameter as well.

More precisely, we introduce the notion of the stabbing number, which can be regarded
as an alternative measure of fatness. This slightly extends a similar definition by Chan [6].
We say that an object o is stabbed by a point p if p ∈ o. A family of objects F ⊆ 2Rd is
α-stabbed if for any r ∈ R, the subset of F -objects o of diameter diam(o) ∈ [r/2, r) contained
in any ball of radius r can be stabbed by αd points. The stabbing number of F is defined
as infα∈[1,∞){F is α-stabbed}. Note that a set of n objects in d-dimensions has stabbing
number at most n1/d. The stabbing number is closely related to the inverse of a common
measure of fatness. This relationship is explored in Section 2.

By adapting a separator theorem from [9], we can give an algorithm where the running
time smoothly goes from 2O(n1−1/d) to 2O(n) as the stabbing number goes from O(1) to the
maximum possible n1/d.

I Theorem 1. Let α ∈ [1,∞) and 2 6 d ∈ N be fixed constants. There is an algorithm that
solves Independent Set for intersection graphs of similarly sized α-stabbed objects in Rd
running in time 2O(n1−1/dα).

As mentioned, the stabbing number is at most n1/d, and this algorithm runs in subexpo-
nential time whenever the stabbing number is better than this trivial upper bound, that is,
whenever α = o(n1/d) holds.

S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:3

In order to have definite answers to the best running times achievable, we also need a
lower bound framework. A popular starting point in the past decades is the Exponential
Time Hypothesis (ETH) [21], which posits that there exists a constant γ > 0 such that there
is no 2γn algorithm for the 3-SAT problem. Classical NP-hardness reductions automatically
yield quantitative lower bounds on the running time under ETH. If enough care is taken to
ensure that the constructed instance is sufficiently small, then one can find lower bounds
that match the best known algorithms [8]. For the Independent Set problem, a lower
bound of 2Ω(n) is a consequence of classical reductions under ETH.

A standard way to explore the impact of a parameter such as fatness is to give an
algorithm where the parameter appears in the running time, together with a matching lower
bound. However, the notion of “matching lower bound” needs to be defined precisely if we
are expressing the running time as a function of two parameters, the size n of the instance
and the stabbing number α of the objects.

A recent example of such an algorithm and lower bound involving two parameters is the
paper by Biró et al. [5], where it is shown that the coloring problem of unit disk graphs
with ` = nλ colors can be solved in 2O(

√
n` logn) time, where λ ∈ [0, 1] is a fixed constant,

and they also exclude algorithms of running time 2o(
√
n`) under ETH. This is interesting

since this smoothly bridges the gap between a standard “square root phenomenon” algorithm
(` = O(1))) on one extreme and the brute force 2O(n) on the other (` = n1−o(1)). Our results
show a similar behavior in the context of fatness and the packing problem: the running time
of Theorem 1 is optimal, with the running time smoothly going from 2O(n1−1/d) time in the
case of α = O(1) to the trivial 2O(n) time of brute force when α = n1/d.

Let G(d, L) denote the set of intersection graphs in Rd where each object is an axis-parallel
box whose side lengths form the multiset {1, . . . , 1, L}. Let us call such an axis-parallel box
canonical. As usual, n denotes the number of objects (the number of vertices in the graph).

For example, it is easy to see that 1× 1× L boxes have stabbing number O(L2/3). Any
collection of 1× 1× L boxes of the same orientation can be stabbed by the lattice generated
by the vertices of such a box, which has O(L2) points in a ball of radius O(L). By taking the
same lattice for the two other orientations, we obtain a complete stabbing set of size O(L2)
inside a ball of radius O(L) for all axis-parallel boxes of this shape. In general for d > 3, the
stabbing number for canonical boxes is α = O(L1−1/d), so in particular, for L = 1 we have
α = O(1), and for L > n1/(d−1) we have α = O(n1/d). In our main contribution, we show
that this very restricted set of non-fat objects is sufficient to prove the desired lower bound.

I Theorem 2. Let d > 3 be fixed. Then there is a constant γ > 0 such that for all α ∈ [1, n1/d]
it holds that Independent Set on intersection graphs of d-dimensional canonical axis-
parallel boxes of stabbing number α has no algorithm running in time 2γn1−1/dα, unless
ETH fails.

An immediate corollary is that the 2O(n) time brute-force algorithm cannot be improved,
even for the intersection graph of axis-parallel boxes. This Corollary 3 can also be derived
from a simpler construction by Chlebík and Chlebíková [7].

I Corollary 3. Let 3 6 d ∈ N be fixed. Then Independent Set on intersection graphs of
axis-parallel boxes in d-dimensions has no algorithm running in time 2o(n), unless ETH fails.

In unit ball graphs, there is a lower bound of 2Ω(n1−1/d) under ETH, which of course carries
over to intersection graphs of fat objects [9]. This latter reduction is based on establishing
efficient routing constructions (called the “Cube Wiring theorem”) in the d-dimensional
Euclidean grid. The crucial insight of the present paper is that tight lower bounds for nonfat

ISAAC 2019

36:4 How Does Object Fatness Impact Packing?

objects can be obtained via Independent Set on induced subgraphs of the d-dimensional
blown-up grid cube, where each vertex is replaced by a clique of t vertices, fully connected to
the adjacent cliques in all d directions. First we establish a lower bound for Independent
Set on subgraphs of such cubes (even for subgraphs of maximum degree 3), using and
extending the Cube Wiring theorem [9]. Unlike for unit balls, it now seems difficult to realize
every such subgraph G as intersection graph of appropriate boxes. Instead, we realize a
graph G′ that is obtained from G by some number of double subdivisions (subdividing some
edge twice). As every double subdivision is known to increase the size of the maximum
independent set by exactly 1, switching to G′ does not cause a problem in the reduction.

The key insight of the reduction (in 3-dimensions) is that if t = L2, then t vertices can be
represented with 1×1×L size boxes arranged in an L×L grid, occupying O(L)×O(L)×O(L)
space. Each t-clique of the blown-up cube is represented by such arrangements of boxes. The
main challenge that we have to overcome is that the subgraph G may contain an arbitrary
matching between two adjacent t-cliques. Given two sets of 1× 1× L size boxes arranged
in two L × L grids, it seems unclear whether such arbitrary connections can be realized
while staying in an O(L) × O(L) × O(L) region of space. However, we show that this is
possible, as the L × L grid arrangement allows easy reordering within the rows or within
the columns, and it is known that any permutation of a grid can be obtained as doing a
permutation first within the rows, then within the columns, and finally one more time within
the rows. Thus with some effort, it is possible to build gadgets representing L×L vertices in
an O(L)×O(L)×O(L) region of space that allows arbitrary matchings to be realized with
the adjacent gadgets.

The idea is similar in higher dimensions d > 3. We reduce from the Independent Set
problem on a subgraph of the blow-up of a d-dimensional grid where each vertex is blown-up
into a clique of Ld−1 vertices. Each gadget now contains Ld−1 boxes of size 1×1×· · ·×1×L
arranged in a grid. In order to implement arbitrary matchings between adjacent gadgets, we
decompose every permutation of the (d− 1)-dimensional grid into O(d) simpler permutations
that are easy to realize in d-dimensional space.

We also study the complexity of packing in the context of parameterized algorithms:
the question is how much one can improve the brute force nO(k) algorithm for finding k
independent objects. We present a counterpart of Theorem 1 in this setting.

I Theorem 4. Let α ∈ [1,∞) and 2 6 d ∈ N. There is a parameterized algorithm that solves
independent set for intersection graphs of similarly sized α-stabbed objects in Rd running in
time nO(k1−1/dα), where the parameter k is the size of the maximum independent set.

If one regards the parameterized algorithm’s running time in terms of the instance size
only, the result would be a 2O(n1−1/d(logn)α) algorithm, which is slower than the running time
2O(n1−1/dα) provided by the latter algorithm. The parameterized algorithm is based on a
separator theorem by Miller et al. [27].

Finally, we sketch how the lower bound construction of Theorem 2 can be adapted to a
parameterized setting, and obtain the following theorem:

I Theorem 5. Let 3 6 d ∈ N be fixed. Then there is a constant γ > 0 such that for all
α ∈ [1, n1/d] it holds that deciding if there is an independent set of size k in intersection graphs
of d-dimensional canonical axis-parallel boxes of stabbing number α has no f(k)nγk1−1/dα/ log k

algorithm for any computable function f , unless ETH fails.

The crucial difference is that we are reducing from the Partitioned Subgraph Iso-
morphism problem instead of Independent Set, which means that instead of choosing or
not choosing a box (representing choosing or not choosing a vertex in the Independent

S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:5

Set problem), the solution needs to choose one of n very similar boxes (representing the
choice of one of n vertices in a class of the partition). The overall structure of the reduction
(e.g., routing in the blown-up d-dimensional grid) is similar to the proof of Theorem 2, and
it can be found in the full version [23] along with other missing proofs.

2 The relationship between the stabbing number and fatness

In the usual definition of fatness, an object o ⊂ Rd is α-fat if there exists a ball of radius
ρin contained in o and a ball of radius ρout that contains o, where ρin/ρout = α. For a fixed
constant α this is a useful definition and unifies many other similar notions in case of convex
objects, i.e., it holds that a set of convex objects that is constant-fat for this notion of fatness
are constant-fat for more restrictive definitions and vice versa. For our purposes however
this definition is not fine-grained enough in the following sense. The fatness of a 1× 1× n
box in three dimensions would be Θ(n), just as the fatness of a 1× n× n box. As it will be
apparent in what follows, we need a fatness definition according to which 1×n×n boxes are
much more fat than 1× 1× n boxes. For this purpose, we use the following weaker definition
of fatness, that tracks the volume compared to a circumscribed ball more closely. (Note that
constant-fat objects are also weakly constant-fat.)

I Definition 6 (Weakly α-fat). A measurable object o ⊆ Rd is α-fat for some α ∈ [1,∞) if
V ol(o)/V ol(B) 6 αd, where V ol(o) and V ol(B) denotes the volume of o and the volume of
its circumscribed ball B respectively.

An object o is strongly α-fat if for any ball B centered inside o we have V ol(B ∩
o)/V ol(B) > αd. In case of convex objects, weak fatness coincides with strong fatness up to
constant factors, see [31].

The next theorem shows that the inverse of the weak fatness of an object family is
related to the stabbing number. In a sense, this means that the stabbing number is a further
weakening of weak fatness. Note that in our setting, the stabbing number will be polynomial
in n (i.e., α = nλ for some constant λ), so the logn term is insignificant.

I Theorem 7. Let d be a fixed constant. Then the stabbing number of any family of n weakly
(1/α)-fat (measurable) objects in Rd is O(α log1/d n).

Proof. Consider a family F of weakly 1/α-fat objects. Let B be a ball of radius δ, and let
FB be the set of objects contained in B of diameter at least δ/2. It is sufficient to show
that we can stab FB with O(αd logn) points. Pick k =

⌊
(4α)d(logn+ 1)

⌋
points p1, . . . pk

independently uniformly at random in B. For any given object o, its volume is at least
Vol(B)/(4α)d, so the probability that a given pi is not in o is at most 1− 1/(4α)d. Since the
k points are chosen independently, the probability that a given object o is unstabbed is at
most

(
1− 1

(4α)d

)k
. By the union bound, the probability that there is an unstabbed object

is at most

n

(
1− 1

(4α)d

)k

= n

(
1− 1

(4α)d

)b(4α)d(logn+1)c
< n(1/e)logn+1 < 1.

Consequently, there exists an outcome where all objects are stabbed. J

We conclude this section with the following theorem, which shows an even stronger
connection between fatness and stabbing in case of convex objects. The theorem uses the
existence of the John ellipsoid [22] and the ε-net theorem [20].

ISAAC 2019

36:6 How Does Object Fatness Impact Packing?

I Theorem 8. Let d be a fixed constant. Then the stabbing number of any family of n weakly
(1/α)-fat convex objects in Rd is O(α log1/d α).

Proof. Consider a family F of weakly 1/α-fat convex objects. Let B be a ball of ra-
dius δ, and let FB be the set of objects contained in B of diameter at least δ/2. It is
sufficient to show that we can stab FB with O(αd logα) points. For any given object o,
its volume is at least Vol(B)/(4α)d. Every convex object o ∈ FB contains an ellipsoid
`(o) ⊆ o such that Vol(o)/Vol(`(o)) 6 dd [22]. Since the VC-dimension of ellipsoids in Rd is
O(d2) [2], the ε-net theorem [20] implies that the ellipsoids `(o) (o ∈ FB) can be stabbed
by O(d2

1/(4α)d log d2

1/(4α)d) = O(αd logα) points. Since the ellipsoids are contained in their
respective objects, this point set also stabs all objects in FB . J

3 Algorithms

We require very little from the objects that we use in our algorithms. It is necessary that
we can decide in polynomial time whether a point is contained in an object, whether two
objects intersect, and whether an object intersects some given sphere, ball, and empty or
dense hypercube. Let us assume that such operations are possible from now on.

To prove Theorem 4, we use the following separator theorem, due to Miller et al. [27].
The ply of a set of objects in Rd is the largest number p such that there exists a point x ∈ Rd
which is contained in p objects.

I Theorem 9 (Miller et al. [27]). Let Γ = {B1, . . . , Bn} be a collection of n closed balls in
Rd with ply at most p. Then there exists a sphere S whose boundary intersects at most
O(p1/dn1−1/d) balls, and the number of balls in Γ disjoint from S that fall inside and outside
S are both at most d+1

d+2n.

Proof sketch. Consider the set of balls B made up by the circumscribed balls of the objects
in a maximum independent set. We claim that the ply of this set is O(αd). To prove the
claim, let S be a subset of the independent set whose circumscribed balls overlap at a point
x ∈ Rd. Since the objects are similarly sized, S must lie within a ball centered at x whose
radius is at most a constant times the diameter of the largest object. Thus, S can be stabbed
by O(αd) points. However, as S forms an independent set, each point can only stab at most
one object from S. Therefore, |S| = O(αd). By Theorem 9 the ball set B has a sphere
separator intersecting O((αd)1/dk1−1/d) = O(k1−1/dα) balls. We proceed by guessing such
a sphere: a discretization argument shows that there are poly(n) distinct guesses for this
sphere spearator. We also guess the set of objects in the independent set that intersect the
sphere, and remove all other objects intersecting the sphere or the guessed objects, and
recurse on the remaining objects inside S and on the remaining objects outside S. The
resulting running time is nO(k1−1/dα). J

For arbitrary size objects that are O(1)-fat in some stronger sense (or just O(1)-stabbed),
we can apply the above scheme of guessing a separating sphere or hypercube, and use one of
the many separator theorems designed for objects of small ply. See [6, 19,29]. One can also
apply [9] since in case of ply 1, the weights are constants; although the theorem is stated
for the usual notion of fatness, the proof itself uses only the stabbing number. We get the
following theorem.

I Theorem 10. Let 2 6 d ∈ N. There is a parameterized algorithm that solves Independent
Set for intersection graphs of O(1)-stabbed objects in Rd running in time nO(k1−1/d), where
the parameter k is the size of the maximum independent set.

S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:7

The algorithm for Theorem 1 is an adaptation of the Independent Set algorithm for fat
objects from [9], based on weighted cliques, and its proof is deferred to the full version [23].

4 Wiring in a blowup of the Euclidean Cube

Our wiring theorem relies on the folklore observation that can be informally stated the
following way: an n×m matrix can be sorted by first permuting the elements within each
row, then permuting the elements within each column, and then permuting the elements in
each row again. Note that the permutations are independent of each other, and they are not
sorting steps; the permutations required are quite specialized. We state the lemma in a more
group-theoretic setting. Let Sym(X) denote the symmetric group on the set X.

I Lemma 11 (Lemma 4 of [1]). Let A and B be two finite sets. Then Sym(A × B) =
GAGBGA, where GA is the subgroup of Sym(A × B) consisting of permutations π where
π(a, b) ∈ A× {b} for all (a, b) ∈ A×B, and GB is the subgroup of Sym(A×B) consisting
of permutations π where π(a, b) ∈ {a} ×B for all (a, b) ∈ A×B.

I Corollary 12. Let 2 ≤ d ∈ N and let A1, A2, . . . , Ad be finite sets. Then Γ def= Sym(A1 ×
A2×· · ·×Ad) is of the form Γ = G1G2 . . . Gd−1GdGd−1Gd−2 . . . G1, where Gi is the subgroup
of Γ consisting of permutations π where π(a1, . . . , ai, . . . , ad) ∈ {a1} × · · · × {ai−1} × Ai ×
{ai+1} × · · · × {ad} for all (a1, . . . , ad) ∈ Γ.

Proof. We use induction on d; for d = 2, the statement is equivalent to Lemma 11. Let
d ≥ 3. We can write Γ as Sym

(
(A1 × · · · × Ad−1) × Ad

)
, so by induction (for d = 2),

we have that Γ = G1 × GA2×···×Ad
× G1. By induction, we also have that GA2×···×Ad

=
G2 . . . Gd−1GdGd−1Gd−2 . . . G2, therefore Γ = G1G2 . . . Gd−1GdGd−1Gd−2 . . . G1. J

For an integer n, let [n] = {1, . . . , n}. Let ECd(n) be the d-dimensional Euclidean grid
graph whose vertices are [n]d, and x, y ∈ V (G) are connected if and only if they are at
distance 1 in Rd. For x ∈ Zd and S ⊂ Zd, we use the shorthand x+S

def= {x+ y | y ∈ S}. Let
BECd(n, t) denote the t-fold blowup of ECd(n), where all vertices of ECd(n) are exchanged
with a clique of size t, and vertices in neighboring cliques are connected. More precisely,

V (BECd(n, t)) = [n]d × [t]
E(BECd(n, t)) =

{
(x, i)(y, j)

∣∣ x = y ∨ (x, y) ∈ E(ECd(n))
}
.

Our second key ingredient is the Euclidean Cube Wiring theorem.

I Theorem 13 (Theorem 21 in [9]). Let 3 ≤ d ∈ Z. There exists a constant c dependent only
on the dimension such that any matching M between P = [n]d−1×{1} and Q def= [n]d−1×{cn}
can be embedded in ECd(cn), that is, there is a set of vertex disjoint paths connecting p and q
in ECd(cn) for all pq ∈M .

I Theorem 14 (Blown-up Cube Wiring). Let 3 ≤ d ∈ Z, and let n, t be positive integers. We
consider two opposing facets of the blown-up cube C def= BECd(cn, t) (where c ∈ Z+ depends
only on d):

P
def=

(
[n]d−1 × {1}

)
× [t]

Q
def=

(
[n]d−1 × {cn}

)
× [t]

Any matching M between P and Q can be embedded in C, that is, there is a constant integer
c dependent only on the dimension d such that for any matching M there is a set of vertex
disjoint paths connecting p and q in BECd(cn, t) for all pq ∈M .

ISAAC 2019

36:8 How Does Object Fatness Impact Packing?

Proof. Without loss of generality, suppose that M is a perfect matching between P and Q
(this can be ensured by adding dummy edges to M if necessary). Let c = c′ + 2 where c′ is a
constant such that cube wiring can be done in height h = c′n. Let A = [n]d−1 and let B = [t].
The matching M can be regarded as a permutation π of A× B, where π(a, b) = (a′, b′) if(
(a, b)(a′, b′)

)
∈M .

By Lemma 11, there exists a permutation πA ∈ GA and πB , π
′
B ∈ GB such that π =

π′BπAπB , where GA and GB are defined as in Lemma 11. We can think of both πB and π′B
as the union of nd−1 distinct permutations of [t]. We can realize πB using one matching:
for all (x, i) ∈ A × B, we add the edge ((x, 1), i)((x, 2), j) to MB, where πB(x, i) = (x, j).
As a result, MB is a perfect matching between P and the next layer of the blown-up
cube, P ′ def=

(
[n]d−1 × {2}

)
× [t]. Similarly, for all (x, i) ∈ A × B, let M ′B contain the edge

((x, cn− 1), i)((x, cn), j), where π′B(x, i) = (x, j); this matches Q′ def=
(
[n]d−1 ×{cn− 1}

)
× [t]

to Q. Finally, by the Cube Wiring Theorem (Theorem 13), for each i ∈ [t], there are vertex
disjoint paths from P ′i

def=
(
[n]d−1×{2}

)
×{i} to Q′i

def=
(
[n]d−1×{cn− 1}

)
×{i} that realizes

the matching

M i
A

def= {(x, i)(y, i) | x ∈ [n]d−1 and πA(x, i) = (y, i)}.

For each i ∈ [t], these wirings are vertex disjoint since they are contained in vertex disjoint
Euclidean grid hypercubes. The matchings M i

A for i ∈ [t] together with the matchings MB

and M ′B realize the matching M . J

5 Lower bounds for packing isometric axis-parallel boxes

Our first lower bound shows that the running time of the algorithm in Theorem 1 is tight
under ETH.

Overview of the proof of Theorem 2. Our proof is a reduction from (3, 3)-SAT, the
satisfiability problem of CNF formulas where clauses have size at most three and each
variable occurs at most three times. Such formulas have the property that if they have n
variables, then they have O(n) clauses. The problem has no 2o(n) algorithm under ETH [10].

The proof has two steps; the first step is a reduction form (3, 3)-SAT to Independent
Set in certain subgraphs of the blown-up Euclidean cube, and the second step is to show
that these subgraphs can essentially be realized with axis-parallel boxes. Throughout the
proof, we consider the dimension d to be a constant.

The incidence graph of a (3, 3)-CNF formula φ is a graph where vertices correspond to
clauses and variables of φ, and a variable and clause vertex are connected if and only if the
variable occurs in the clause.

5.1 Independent Set in subgraphs of the blown-up Euclidean cube
A simple and generic lower bound construction for Independent Set

We give a generic reduction from (3, 3)-SAT to Independent Set, which serves as a skeleton
for the more geometric type of reduction we will do later.

Consider the incidence graph of φ. Replace each variable vertex v with a cycle of length 6,
consisting of vertices v1, . . . , v6, where the edges formerly incident to v are now connected to
distinct cycle vertices v2, v4 or v6 for positive literals and to v1, v3 or v5 for negative literals
(see Figure 1). We replace each clause vertex w that corresponds to a clause of exactly 3
literals with a cycle of length three, and connect the formerly incident edges to distinct

S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:9

v1 v2 v3

(v1 ∨ ¬v2 ∨ v3)

Figure 1 The graph Gφ for φ = (v1 ∨ ¬v2 ∨ v3).

vertices of the triangle. For clauses that have exactly two literals, the gadget is a single
edge, and we connect the formerly incident edges to distinct endpoints of the edge. We can
eliminate clauses of size 1 in a preprocessing step. Let G′φ be the resulting graph.

An independent set can contain at most 3 vertices of a variable cycle of length 6, and at
most 1 vertex per clause gadget. Observe that a formula with ν variables and γ clauses has
an independent set of size 3ν + γ if and only if the original formula is satisfiable.

Let G be a graph and let uv be an edge of G. A double subdivision of uv is replacing uv
with a path of length 3, i.e., we add the new vertices w and w′, remove the edge uv and add
the edges uw,ww′, w′v. A graph that can be obtained from G by some sequence of double
subdivisions is called an even subdivision of G. Observe that a double subdivision increases
the size of the maximum independent set by one, so G has an independent set of size k if
and only if its even subdivision G′ has an independent set of size k + |V (G′)|−|V (G)|

2 .

Embedding G′
φ into a blown-up cube

In a blown-up cube BECd(n, t), we call a clique corresponding to x ∈ [n]d the cell of x or
simply a cell, that is, the cell of x is defined as the set of vertices {x} × [t] ⊂ V (BECd(n, t)).

The following is a tight lower bound for Independent Set inside the blown-up Euclidean
cube.

I Theorem 15. For any fixed constant d > 3, there exists a γ > 0 such that for any t > 2
there is no 2γn1−1/dt1/d algorithm for Independent Set for subgraphs of the blown-up
cube C def= BECd((n/t)1/d, t) under ETH. The lower bound holds even if the subgraph G has
maximum degree three, and the neighbors of each vertex in G lie in distinct cells.

Proof sketch. Given a (3, 3)-SAT formula φ, we show that we construct a subgraph of a
blown-up cube with the required properties that is also an even subdivision of G′φ. If φ
has n̄ literals, then we create a subgraph G that has n = c · n̄

d
d−1 /t

1
d−1 vertices; a simple

computation shows that this is sufficient. The variable cycles become cycles of length 6,
and they are placed densely within cells that lie in some facet of C. Similarly, for clauses of
size two and three, we associate an edge or a triangle in the cells of the opposing facet of C.
Using Theorem 14, we can construct wires that for each literal connect the relevant vertex of
the variable cycle to the relevant vertex of the clause cycle. If the resulting wire has even
length, then we add an extra edge to its end that connects to the clause cycle. The resulting
embedding has the desired properties. J

5.2 Detailed construction and gadgetry
Having established our lower bound for blown-up Euclidean cubes, we now need to construct
a set of canonical boxes whose intersection graph is an even subdivision of a given subgraph
with maximum degree three where the neighbors of each vertex lie in distinct cells.

ISAAC 2019

36:10 How Does Object Fatness Impact Packing?

Figure 2 A basic brick.

I Theorem 16. Let d > 3 and L > 16 be fixed, and let G be a subgraph of the blown-up cube
C = BECd(s, (L/8)d−1) of maximum degree three, where the neighbors of each vertex lie in
distinct cells. Then G has an even subdivision G′ that can be realized using boxes of size
1× · · · × 1× L. Moreover, given G, the boxes of G′ can be constructed in O(|V (C)|) time,
and |V (G′)| = O(|V (G)|).

We consider d = 3 first; later on, we show how the construction can be generalized to
higher dimensions. We need to define a set of boxes whose intersection graph is an even
subdivision of G. The idea is to create a generic module that is able to represent a subgraph
of G induced by any cell; these modules will take up O(L)×O(L)×O(L) space. The modules
are arranged into a larger cube of side length O(sL) to make up the final construction.

Due to space constraints, we concentrate on giving a picture of the overall construction
for d = 3, and on presenting our most intricate gadget that is capable of realizing so-called
parallel matchings. The rest of the gadgetry and other details are deferred to Appendix A.

Modules and bricks

We index the vertices in a cell by a pair from [L/8]2. The starting object in our reduction is
a set of (L/8)2 disjoint boxes parallel to the same axis, arranged loosely in an L/8 × L/8
grid structure called a brick. See Figure 2 for an example. Loosely speaking, each box of
each brick within the cell’s module can be associated with a vertex of the cell; for a brick B,
we can refer to a box corresponding to vertex (i, j) of the cell as B(i, j).

Let X be the set of cells within C: X def=
{
{x} × [L/8]2

∣∣ x ∈ [cn]d
}
. The wiring within

each cell x ∈ X will be represented by O(1) bricks, and these bricks will fit in an O(L) side
length module.

The position of a brick can be specified by defining its axis (along which the side length
of the boxes is L), and for each box (i, j) within the brick, defining the coordinates of its
lexicographically smallest corner (or lexmin corner for short). For example, consider the
brick B with axis x3 where box B(i, j) has coordinates (3i, 3j, 0). (See Figure 2.) This brick
and all bricks isometric to this are called basic bricks. Most bricks can be thought of as a
perturbation of a basic brick, where we apply shifts to each box. The eventual module that
we create will consist of several bricks, which together will represent an even subdivision
of the sparse graph G restricted to a given cell. Note that no single brick can be said to
represent the set of vertices in a cell. When defining our gadgetry, it is convenient to talk
about these bricks, even though in the final construction we only need a certain subset of the
boxes within each brick. We can remove the unwanted boxes from each brick at a later stage.

S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:11

Figure 3 Left: First column of a parallel matching gadget for the permutation π1(1) = 1, π1(2) =
4, π1(3) = 2, π1(4) = 3. Boxes of each color induce paths; boxes of different color are disjoint. Right:
A full parallel matching gadget.

The parallel matching gadget

A parallel matching gadget is capable of realizing a matching between two cells where the
endpoints of each matching edge differ only on a fixed coordinate, so for d = 3, all edges are
of the type

(
(x, (i, j)), (x′, (i′, j))

)
or all edges are of the type

(
(x, (i, j)), (x′, (i, j′))

)
for some

cells x and x′.We call a matching with this property a parallel matching. Parallel matchings
can be decomposed into matchings on disjoint cliques, where each clique contains vertices
that share all of their coordinates except one. In the remainder of this gadget’s description,
we will omit the cells x and x′ from the coordinate lists.

Suppose that each matching edge is of the form
(
(i, j), (i′, j)

)
. Let πj(i) denote the first co-

ordinate of the pair of (i, j), that is, suppose that the matching edges are
(
(i, j), (πj(i), j)

)
, i ∈

Ij for some sets Ij ⊆ [L/8]. Instead of realizing these matchings, we first extend them to
permutations πj on each clique [L/8]× {j}. A permutation can be thought of as a perfect
matching between two copies of a set; by removing the unwanted vertices (removing the
unwanted boxes) we can get to a representation of the matching, i.e., a set of vertex disjoint
paths that connect box (i, j) in the starting brick to box (πj(i), j) in the target brick.

In every brick, each box is translated individually, where the translation vector’s compon-
ent along the brick’s axis must be an integer k ∈ 3 · {−L/8, . . . , L/8}, and along the other
axes it must be of the form k/L for some k ∈ {−L/8, . . . , L/8}. For a brick B, its box of
index (i, j) is denoted by B(i, j), and recall that the position of a box is defined by its lexmin
corner and the axis of the brick.

We give the coordinates of each box in each brick of the parallel matching gadget below.
Let us take the matching edges where j = 1 first. We start with the first column of
the brick (j = 1), where the coordinates of B(1)(i, 1) are (3i, 3 + i/L,−3i). See the left
hand side of Figure 3 that illustrates the idea behind the gadget. The coordinates for
B(1)(i, j) are (3i, 3j + i/L,−3i). The first column of the next brick B(2) has axis x1 and the
coordinates of B(2)(i, 1) are (0, 4 + i/L, L− 1− 3i), that is, these boxes touch the previously
defined boxes of B(1) from “behind” in Figure 3. In general, B(2)(i, j) has coordinates
(0, 3j + 1 + i/L, L − 3i). The next brick B(3) also has axis x1, and the coordinates for
B(3)(i, j) are (L/2+3πj(i), 3j+1+πj(i)/L,L−3i), that is, we change the box perturbations
along the first and second coordinate. Finally, the last brick B(4) has axis x3 and the
coordinates are (3L/2 + 3πj(i), 3j − πj(i)/L,L − 3i), i.e., they are placed “in front of”

ISAAC 2019

36:12 How Does Object Fatness Impact Packing?

the bricks of B(3) in Figure 3. This can be rewritten as B(4)(i′, j) having coordinates
(3L/2 + 3i′, 3j− i′/L,L−3π−1

j (i′)). Notice that in the final brick, we indeed have the desired
ordering, i.e., the ordering of the boxes along the x1 axis is as required. It is routine to check
that the intersection graph induced each column of this parallel matching gadget consists of
vertex disjoint paths of length four. Different columns are also disjoint since projecting the
boxes of column j onto the x2 axis results in a subset of the open interval (3j − 0.5, 3j + 2.5).

Using several parallel matching gadgets, by Lemma 11 we are capable of representing
arbitrary matchings between two neighboring cells or within a single cell in O(L)×O(L)×O(L)
space. Further detailed gadgetry describing how branching gadgets are made (capable of
representing a collection of degree 3 vertices), and how everything can be fit into modules
of side length O(L) are described in Appendix A. Using Theorem 16, it is easy to prove
Theorem 2.

Proof of Theorem 2. Set L def= max(16, α
d

d−1). This choice of L implies that any family
of canonical boxes of size 1 × 1 × L are O(α)-stabbed. Furthermore, set t = (L/8)d−1.
The proof is by reduction from Independent Set on subgraphs of the blown-up cube
C def= BECd((n̄/t)1/d, t), where the subgraph G has maximum degree three, and the neighbors
of each vertex in G lie in distinct cells. By Theorem 15, there is no γ > 0 for which a
2γn1−1/dt1/d algorithm exists for this problem under ETH.

Let G be a subgraph of C as described above. By Theorem 16, we can realize an odd
subdivision G′ of G using boxes of size 1× · · · × 1× L, with O(n̄) vertices in poly(n̄) time.
If for any γ > 0 there is an algorithm for Independent Set on α-stabbed canonical boxes
with running time 2γn1−1/dα, then this translates into 2γn1−1/dL1−1/d algorithms for all γ > 0.
This can be composed with our construction to get 2γn̄(1−1/d)t1/d algorithms for all γ > 0 for
Independent Set on the described subgraphs of C, which contradicts ETH according to
Theorem 15. J

6 Conclusion

We have explored the impact of the stabbing number on the complexity of packing. We have
seen that subexponential packing algorithms are possible for similarly sized objects if the
stabbing number is o(n1/d). The subexponential algorithms could be derived from powerful
separator theorems, while the lower bounds required custom wiring results and non-trivial
geometric gadgetry. We propose two open problems for future research.

What is the precise impact of the stabbing number on the complexity of packing if objects
are not similarly sized? One can get a subexponential algorithm by an adaptation of the
separator in [9], but it yields an algorithm whose dependence on α is much weaker: it
has αd in the exponent instead of α. Is this algorithm optimal?
Is there a subexponential algorithm for the Dominating Set problem in intersection
graphs of α-stabbed similarly sized objects? Or even for n axis-parallel 1× nε and nε × 1
boxes in two dimensions?

References
1 Miklós Abért. Symmetric groups as products of abelian subgroups. Bulletin of the London

Mathematical Society, 34(4):451–456, 2002.
2 Yohji Akama and Kei Irie. VC dimension of ellipsoids. CoRR, abs/1109.4347, 2011. arXiv:

1109.4347.

http://arxiv.org/abs/1109.4347
http://arxiv.org/abs/1109.4347

S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:13

3 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. Journal of Algorithms, 52(2):134–151, 2004. doi:
10.1016/j.jalgor.2003.10.001.

4 Julien Baste and Dimitrios M. Thilikos. Contraction-Bidimensionality of Geometric Intersection
Graphs. In IPEC 2017, volume 89 of LIPIcs, pages 5:1–5:13, 2018. doi:10.4230/LIPIcs.
IPEC.2017.5.

5 Csaba Biró, Édouard Bonnet, Dániel Marx, Tillmann Miltzow, and Paweł Rzążewski. Fine-
grained complexity of coloring unit disks and balls. JoCG, 9(2):47–80, 2018. doi:10.20382/
jocg.v9i2a4.

6 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

7 Miroslav Chlebík and Janka Chlebíková. Approximation hardness of optimization problems
in intersection graphs of d-dimensional boxes. In Proceedings of SODA 2005, pages 267–276.
SIAM, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070470.

8 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for ETH-tight algorithms and lower bounds in geometric intersection
graphs. In Proceedings of STOC 2018, pages 574–586, 2018. doi:10.1145/3188745.3188854.

10 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A Framework for ETH-Tight Algorithms and Lower Bounds in Geometric Intersection
Graphs. CoRR, abs/1803.10633, 2018. arXiv:1803.10633.

11 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Fixed-parameter algorithms for (k, r)-Center in planar graphs and map graphs. ACM Trans-
actions on Algorithms, 1(1):33–47, 2005.

12 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
Journal of the ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

13 Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Subexponential parameterized
algorithms. Computer Science Review, 2(1):29–39, 2008.

14 Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Catalan structures and dynamic
programming in H-minor-free graphs. J. Comput. Syst. Sci., 78(5):1606–1622, 2012.

15 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient Exact
Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. Algorithmica, 58(3):790–
810, 2010.

16 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Subexponential
algorithms for partial cover problems. Inf. Process. Lett., 111(16):814–818, 2011.

17 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In Proceedings of SODA 2012, pages 1563–1575. SIAM, 2012. URL: http://portal.
acm.org/citation.cfm?id=2095240&CFID=63838676&CFTOKEN=79617016.

18 Fedor V. Fomin and Dimitrios M. Thilikos. Dominating Sets in Planar Graphs: Branch-Width
and Exponential Speed-Up. SIAM J. Comput., 36(2):281–309, 2006.

19 Sariel Har-Peled and Kent Quanrud. Approximation Algorithms for Polynomial-Expansion and
Low-Density Graphs. SIAM J. Comput., 46(6):1712–1744, 2017. doi:10.1137/16M1079336.

20 David Haussler and Emo Welzl. ε-nets and simplex range queries. Discrete & Computational
Geometry, 2(2):127–151, June 1987. doi:10.1007/BF02187876.

21 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

22 Fritz John. Extremum Problems with Inequalities as Subsidiary Conditions, pages 197–215.
Springer Basel, Basel, 2014. doi:10.1007/978-3-0348-0439-4_9.

ISAAC 2019

https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.4230/LIPIcs.IPEC.2017.5
https://doi.org/10.4230/LIPIcs.IPEC.2017.5
https://doi.org/10.20382/jocg.v9i2a4
https://doi.org/10.20382/jocg.v9i2a4
https://doi.org/10.1016/S0196-6774(02)00294-8
http://dl.acm.org/citation.cfm?id=1070432.1070470
https://doi.org/10.1145/3188745.3188854
http://arxiv.org/abs/1803.10633
https://doi.org/10.1145/1101821.1101823
http://portal.acm.org/citation.cfm?id=2095240&CFID=63838676& CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095240&CFID=63838676& CFTOKEN=79617016
https://doi.org/10.1137/16M1079336
https://doi.org/10.1007/BF02187876
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/978-3-0348-0439-4_9

36:14 How Does Object Fatness Impact Packing?

23 Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der Zanden. How does object fatness
impact the complexity of packing in d dimensions? CoRR, abs/1909.12044, September 2019.
arXiv:1909.12044.

24 Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for Subset TSP
on planar graphs. In SODA 2014 Proc., pages 1812–1830, 2014.

25 Dániel Marx and Michal Pilipczuk. Optimal Parameterized Algorithms for Planar Facility
Location Problems Using Voronoi Diagrams. In Proceedings of ESA 2015, volume 9294 of
LNCS, pages 865–877. Springer, 2015. doi:10.1007/978-3-662-48350-3_72.

26 Dániel Marx and Anastasios Sidiropoulos. The limited blessing of low dimensionality: when
1− 1/d is the best possible exponent for d-dimensional geometric problems. In Proceedings of
SoCG 2014, pages 67–76. ACM, 2014. doi:10.1145/2582112.2582124.

27 Gary L. Miller, Shang-Hua Teng, William P. Thurston, and Stephen A. Vavasis. Separators
for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1–29, 1997. doi:10.1145/
256292.256294.

28 Marcin Pilipczuk, Michał Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.
Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs. In STACS
2013 Proc., pages 353–364, 2013.

29 Warren D. Smith and Nicholas C. Wormald. Geometric Separator Theorems & Applications.
In Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS
1998, pages 232–243. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743449.

30 Dimitrios M. Thilikos. Fast Sub-exponential Algorithms and Compactness in Planar Graphs.
In ESA 2011 Proc., pages 358–369, 2011.

31 A. Frank van der Stappen, Dan Halperin, and Mark H. Overmars. The Complexity of the
Free Space for a Robot Moving Amidst Fat Obstacles. Comput. Geom., 3:353–373, 1993.
doi:10.1016/0925-7721(93)90007-S.

A Gadgetry and further construction details for the proof of
Theorem 16

Parity Fix, adjustment, bridge, and elbow gadgets

The parity fix gadget is introduced so that we can ensure that each of the subdivisions that
we create are even subdivisions. The gadget induces a path of length 3 or 4 depending on
our needs, but occupies the same space in both cases. More precisely, the parity fix gadget
contains three or four boxes, depending on the parity we need. The union of the boxes is a
larger box of size 3L× 1× 1; it is easy to see that within that space we can realize both a
path of length three and four using L× 1× 1 boxes: one can cover the larger box by placing
their lexmin corners at equal length intervals.

We can bridge distance along the axis of a basic brick by putting basic bricks next to
each other, where each box intersects only the box of the same index from the previous and
following brick. This creates a set of (L/8)2 vertex disjoint paths in the intersection graph.
We call this a bridge gadget.

Using two bricks of the same axis, we can in one step get rid of a perturbation (or
introduce one). Let B be a normal brick with axis x3 that is a perturbation of the basic
brick. We introduce the basic brick B′ that is the translate of the basic brick with the vector
(0, 1, L/2). Notice that box B(i, j) intersects B′(i, j) and no other boxes. Moreover, we could
even introduce arbitrary perturbations along the x1 axis in B′ and along the x3 axis within
both B and B′ without changing the intersection graph induced by B and B′. We call a pair
of normal bricks that are a translated and rotated version of these an adjustment gadget.

http://arxiv.org/abs/1909.12044
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1145/2582112.2582124
https://doi.org/10.1145/256292.256294
https://doi.org/10.1145/256292.256294
https://doi.org/10.1109/SFCS.1998.743449
https://doi.org/10.1016/0925-7721(93)90007-S

S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:15

Figure 4 An elbow.

Figure 5 The first “column” of a branching gadget.

Next, we introduce a way to change brick axis using an “elbow”. Consider a brick B that
is a perturbation of the basic brick, where box (i, j) has coordinates (3i, 3j,−3i). The brick
B′ has axis x1 and the coordinates for B′(i, j) are (3i, 3j, L− 3i) (see Figure 4). Notice that
using these elbow gadgets and adjustment gadgets together, one can route from any brick to
any other brick at distance Θ(L) in O(1) steps.

Realizing an arbitrary matching of a biclique or clique

We can regard a general matching M induced by two neighboring cells as a permutation of
[L/8]2, which can be written as the product of three special permutations by Corollary 12
that correspond to parallel matchings; i.e., the matching M is realizable as the succession of
three parallel matchings. This means that each edge of M becomes a path of length three, so
by using three parallel matching gadgets in succession we can represent M . We add a parity
fix gadget to each box at the beginning of each wire, which will be useful later to ensure
that each edge has been subdivided an even number of times. As a result, we have realized
M using O(1) bricks and O(L) × O(L) × O(L) space. This collection of boxes is called a
general matching gadget. A general matching gadget has a first and a last brick where it
connects to the rest of the construction, we call these bricks endbricks.

ISAAC 2019

36:16 How Does Object Fatness Impact Packing?

interface

core

spikes

Figure 6 A module with general matching gadgets of the interface and the core, with the simplified
image of a brick-tree (in red).

If the goal is to realize a matching within a cell with vertex set Vx, then we can just
create two copies of Vx (denoted by V ′x and V ′′x), with a complete bipartite graph between
them. For a matching edge vivj ∈

(
Vx

2
)
, we identify it with the edge v′iv′′j . Then we realize

the matching of this biclique using a general matching gadget.

The branching gadget

The branching gadget creates for all indices in [L/8]2 a disjoint copy of a star on 4 vertices
(that is, a vertex of degree 3 with its neighborhood of 3 isolated vertices). This gadget
contains four bricks, and realizes (L/8)2 disjoint stars. We use the first two bricks (B(1) and
B(2)) of the parallel matching gadget. The third brick B′ is a translate of the first brick B(1)

with the vector (3, 2, L−1), i.e., the coordinates of B′(i, j) are (3i+3, 3j+2+ i/L, L−1−3i).
The final brick B′′ is the translate of B(2) by the vector (L, 0, 0). See Figure 5 for a rendering
of the first “column” of the four bricks. Vertices corresponding to B(2) have degree three,
and their neighbors are the boxes of the same index in B(1), B′ and B′′.

Constructing a module

Our goal is to define modules of side length O(L) that are capable of representing the role
played by cells. The modules together must be able to represent a subgraph of C of maximum
degree three, where the neighbors of any vertex lie in distinct cells.

For all pairs of neighboring modules, we introduce a general matching gadget to represent
the matching required by G between the two neighboring cells. These gadgets form the
interface. Moreover, in the middle of each module, we add another general matching gadget
to represent the matching within the cell; this gadget is the core of the module. See Figure 6.
Finally, within each module, we tie the endbricks of the core and the endbricks of the interface
falling inside the module together with a brick-tree. The brick-tree is a collection of (L/8)2

isomorphic and disjoint trees, realized as a collection of branching, elbow, adjustment and
bridge gadgets. Each tree (i, j) has maximum degree three, and its leaves are the boxes of
index (i, j) in the interface and in the core.

S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:17

First, we show that such a construction is sufficient to represent an even subdivision of
an arbitrary subgraph G, and later we show how the brick-tree can be constructed. Let G
be a subgraph with the desired properties, and let x be a particular cell. For each edge uv
induced by x, we fix an arbitrary orientation, and realize the acquired matching so that the
source vertex of the arcs are in one end of the core and the targets are in the other. Since the
neighbors of any vertex lie in different cells, all indices of [L/8]2 appear at most once, either
as a source of an arc, as a target of an arc, or not at all. Then we realize the arcs using the
core’s general matching gadget of the module. For each index i ∈ [L/8]2, the edges incident
to vertex i of x can be assigned to a subtree T of the tree corresponding to index i, where T
has at most three leaves, at most one of which is adjacent to a box of the core, and other
leaves are adjacent to boxes in distinct endbricks of the interface. There is a unique minimal
subtree T that induces the desired (at most three) leaves; we can map a vertex v ∈ V (G)
of degree three to the degree three vertex of T . If V has a smaller degree, then it can be
mapped to an arbitrary non-leaf vertex of T .

To construct a brick-tree in R3, consider first a Euclidean grid cube of size O(1). We can
use this small cube as a model of our module: in general, an edge of this cube represents a
brick. We have some edges already occupied by the general matching gadgets corresponding
to the interface and the core. By choosing a cube large enough, we can ensure that these
vertices are distant in the `1 norm. It is easy to see that if the cube is large enough (we
allow its size to depend only on d), then there is a subtree of the grid of maximum degree
three, where the leaves are some distant prescribed vertices. Such a tree can be constructed
for example by mimicking a Hamiltonian path of the inscribed octahedron of the module,
and adding to it small “spikes” that go to the endbrick of the interfaces. At the end of the
path, we extend it towards the center of the cube, where we add another branching for the
two endbricks of the core. The branching points in the brick-tree are branching gadgets, the
turns are elbow gadgets, and straight segments are bridges and adjustments.

Finalizing the construction in R3

By packing the modules in a side length O(sL) Euclidean cube, and removing unused boxes
from each module according to the given subgraph, we get our final construction for three
dimensions. For each edge, we have it represented by a sequence of O(1) boxes passing
through a single general matching gadget. Using the parity fix gadget inside the general
matching gadget, we can ensure that the path representing the edge has an odd number of
internal vertices. Therefore, the final construction has O(|V (G)|) boxes, and each edge of G
is represented with a path of odd length, that is, the graph induced by the boxes is an even
subdivision of G.

The construction in higher dimensions

It is surprisingly easy to adapt our three-dimensional construction to the d-dimensional case.
This time, we need to realize a subgraph of C = BECd(s, (L/8)d−1).

The basic brick in d dimensions contains (L/8)d−1 boxes, indexed by [L/8]d−1, where the
lexicographically minimal corner of box i is (0, 3i). For normal bricks, we allow perturbations
of the form 3k (|k| ∈ [L/8]) along the axis of the brick, and k/L (|k| ∈ [L/8]) in all other
directions. The parity fix, adjustment, and elbow gadgets can be defined analogously. The
parallel matching gadget is also straightforward: the task here is to represent a parallel
matching, where each edge is of the form (i, i′) ∈ [L/8]d−1× [L/8]d−1, where i, i′ differ only on

ISAAC 2019

36:18 How Does Object Fatness Impact Packing?

the t-th coordinate for some fixed t ∈ [d− 1]. As previously, we can extend this to (L/8)d−2

permutations, where for each ι ∈ [L/8]d−2, we have a permutation πι over the “column” ι,
i.e., over the set

{(i1, . . . , id−1)
∣∣ it ∈ [L/8] and (i1, . . . , it−1, it+1, . . . , id−1) = ι}.

Such a permutation can be represented as described before: we replace the role played by
the x1 axis with xt, the role of x2 with xt+1 mod (d−1) and x3 with xd. Along all other axes,
we introduce no perturbations to the boxes. The column gadget corresponding to column
ι = (i1, . . . , it−1, it+1, . . . , id−1) can be covered by1

[3i1, 3i1 + 1]× · · · × [3it−1, 3it−1 + 1]
× [−L/2, 3L/2]× (3it+1 − 0.5, 3it+1 + 2.5)]

× [3it+2, 3it+2 + 1]× · · · × [3id−1, 3id−1 + 1]× [0, 3
2L].

These sets are clearly disjoint for distinct values of ι.
A general matching M is regarded as a permutation of [L/8]d−1, which can be written as

the product of 2(d− 1)− 1 special permutations by Corollary 12 that correspond to parallel
matchings; therefore, M is realizable as the succession of 2d− 3 parallel matchings. As a
result, we can realize M with O(d) = O(1) bricks and O(L)× · · · ×O(L) space. As before,
we add parity fix gadgets to each box of one of the endbricks.

To realize a brick-tree, we can again trace a Hamiltonian path of the graph given by the
dimension 1 faces of the cross-polytope inside the module, and add spikes to it to reach
the endbricks of the interface and extend it to the two endbricks of the core. Note that the
cross-polytope does have a Hamiltonian path, we can use e.g.

(1, 0, . . . , 0); (0, 1, 0, . . . , 0) . . . (0, . . . , 0, 1); (−1, 0, . . . , 0); (0,−1, 0, . . . , 0) . . . (0, . . . , 0,−1).

The finalizing steps are again analogous to the 3-dimensional case. This concludes the proof
of Theorem 16.

1 The formula is only accurate for the case t 6 d − 2. If t = d − 1, the role of xt+1 and x1 should be
switched.

On One-Round Discrete Voronoi Games
Mark de Berg
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
m.t.d.berg@tue.nl

Sándor Kisfaludi-Bak
Max Planck Institut für Infromatik, Saarbrücken, Germany
sandor.kisfaludi-bak@mpi-inf.mpg.de

Mehran Mehr
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
mehran.mehr@gamil.com

Abstract
Let V be a multiset of n points in Rd, which we call voters, and let k > 1 and ` > 1 be two given
constants. We consider the following game, where two players P and Q compete over the voters
in V : First, player P selects a set P of k points in Rd, and then player Q selects a set Q of ` points
in Rd. Player P wins a voter v ∈ V iff dist(v, P) 6 dist(v,Q), where dist(v, P) := minp∈P dist(v, p)
and dist(v,Q) is defined similarly. Player P wins the game if he wins at least half the voters. The
algorithmic problem we study is the following: given V , k, and `, how efficiently can we decide if
player P has a winning strategy, that is, if P can select his k points such that he wins the game no
matter where Q places her points.

Banik et al. devised a singly-exponential algorithm for the game in R1, for the case k = `. We
improve their result by presenting the first polynomial-time algorithm for the game in R1. Our
algorithm can handle arbitrary values of k and `. We also show that if d ≥ 2, deciding if player P
has a winning strategy is ΣP

2 -hard when k and ` are part of the input. Finally, we prove that for
any dimension d, the problem is contained in the complexity class ∃∀R, and we give an algorithm
that works in polynomial time for fixed k and `.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Algorithmic game theory; Theory of computation → Problems, reductions and
completeness

Keywords and phrases competitive facility location, plurality point

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.37

Related Version A full version of the paper is available at https://arxiv.org/abs/1902.09234.

Funding MdB, SKB, and MM are supported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 024.002.003, 024.002.003, and 022.005.025, respectively.

1 Introduction

Voronoi games, as introduced by Ahn et al. [1], can be viewed as competitive facility-location
problems in which two players P and Q want to place their facilities in order to maximize
their market area. The Voronoi game of Ahn et al. is played in a bounded region R ⊂ R2,
and the facilities of the players are modeled as points in this region. Each player gets the
same number, k, of facilities, which they have to place alternatingly. The market area of P
(and similarly of Q) is now given by the area of the region of all points q ∈ R whose closest
facility was placed by P , that is, it is the total area of the Voronoi cells of P ’s facilities in the
Voronoi diagram of the facilities of P and Q. Ahn et al. proved that for k > 1 and when the
region R is a circle or a segment, the second player can win the game by a payoff of 1/2 + ε,
for some ε > 0, where the first player can ensure ε is arbitrarily small.

© Mark de Berg, Sándor Kisfaludi-Bak, and Mehran Mehr;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 37; pp. 37:1–37:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.t.d.berg@tue.nl
mailto:sandor.kisfaludi-bak@mpi-inf.mpg.de
mailto:mehran.mehr@gamil.com
https://doi.org/10.4230/LIPIcs.ISAAC.2019.37
https://arxiv.org/abs/1902.09234
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 On One-Round Discrete Voronoi Games

The one-round Voronoi game introduced by Cheong et al. [8] is similar to the Voronoi
game of Ahn et al., except that the first player must first place all his k facilities, after which
the second player places all her k facilities. They considered the problem where R is a square,
and they showed that when k is large enough the second player can always win a fraction
1/2 + α of the area of R for some α > 0. Fekete and Meijer [11] considered the problem on a
rectangle R of aspect ratio ρ 6 1. They showed that the first player wins more than half
the area of R, unless k > 3 and ρ >

√
2/n, or k = 2 and ρ >

√
3/2. They also showed that

if R is a polygon with holes, then computing the locations of the facilities for the second
player that maximize the area she wins, against a given set of facilities of the first player is
NP-hard.

One-round discrete Voronoi games. In this paper we are interested in discrete (Euclidean)
one-round Voronoi games, where the players do not compete for area but for a discrete set of
points. That is, instead of the region R one is given a set V of n points in a geometric space,
and a point v ∈ V is won by the player owning the facility closest to v. (Another discrete
variant of Voronoi games is played on graphs [16, 18] but we restrict our attention to the
geometric variant.) Formally, the problem we study is defined as follows.

Let V be a multiset of n points in Rd, which we call voters from now on, and let k > 1
and ` > 1 be two integers. The one-round discrete Voronoi game defined by the triple 〈V, k, `〉
is a single-turn game played between two players P and Q. First, player P places a set P of
k points in Rd, then player Q places a set Q of ` points in Rd. (These points may coincide
with the voters in V .) We call the set P the strategy of P and the set Q the strategy of
Q. Player P wins a voter v ∈ V if dist(v, P) 6 dist(v,Q), where dist(v, P) and dist(v,Q)
denote the minimum distance between a voter v and the sets P and Q, respectively. Note
that this definition favors player P , since in case of a tie a voter is won by P . We now define
V [P � Q] := {v ∈ V : dist(v, P) 6 dist(v,Q)} to be the multiset of voters won by player P
when he uses strategy P and player Q uses strategy Q. Player P wins the game 〈V, k, `〉 if
he wins at least half the voters in V , that is, when

∣∣V [P � Q]
∣∣ > n/2; otherwise Q wins the

game. Here
∣∣V [P � Q]

∣∣ denotes the size of the multiset V [P � Q] (counting multiplicities).
We now define Γk,`(V) as the maximum number of voters that can be won by player P
against an optimal opponent:

Γk,`(V) := max
P⊂Rd, |P |=k

min
Q⊂Rd, |Q|=`

∣∣V [P � Q]
∣∣.

For a given multiset V of voters, we want to decide if1 Γk,`(V) > n/2. In other words, we
are interested in determining for a given game 〈V, k, `〉 if P has a winning strategy, which is
a set of k points such that P wins the game no matter where Q places her points.

An important special case, which has already been studied in spatial voting theory for
a long time, is when k = ` = 1 [14]. Here the coordinates of a point in V represent the
preference of the voter on certain topics, and the point played by Q represents a certain
proposal. If the point played by P wins against all possible points played by Q, then the P ’s
proposal will win the vote against any other proposal. Note that in the problem definition we
gave above, voters at equal distance from P and Q are won by P , and P has to win at least
half the voters. This is the definition typically used in papers of Voronoi games [3, 4, 5, 6]. In
voting theory other variants are studied as well, for instance where points at equal distance

1 One can also require that Γk,`(V) > n/2; with some small modifications, all the results in this paper
can be applied to the case with strict inequality as well.

M. de Berg, S. Kisfaludi-Bak, and M. Mehr 37:3

to P and Q are not won by either of them, and P wins the game if he wins more voters than
Q; see the paper by McKelvey and Wendell [14] who use the term majority points for the
former variant and the term plurality points for the latter variant.

Previous work. Besides algorithmic problems concerning the one-round discrete Voronoi
game one can also consider combinatorial problems. In particular, one can ask for bounds on
Γk,`(V) as a function of n, k, and `. It is known that for any set V in R2 and k = ` = 1 we
have bn/3c 6 Γ1,1(V) 6 dn/2e. This result is based on known bounds for maximum Tukey
depth, where the lower bound can be proven using Helly’s theorem. It is also known [6] that
there is a constant c such that k = c` points suffice for P to win, that is, Γc`,`(V) > n/2
for any V .

In this paper we focus on the algorithmic problem of computing Γk,`(V) for given V ,
k, and `. The problem of deciding if Γk,`(V) > n/2 was studied for the case k = ` = 1 by
Wu et al. [19] and Lin et al. [13], and later by De Berg et al. [9] who solve this problem
in O(n logn) time in any fixed dimension d. Their algorithms works when V is a set (not
a multiset) and for plurality points instead of majority points. Other algorithmic results
are for the setting where the players already placed all but one of their points, and one
wants to compute the best locations for the last point of P and of Q. Banik et al. [5] gave
algorithms that finds the best location for P in O(n8) time and for Q in O(n2) time. For
the two-round variant of the problem, with k = ` = 2, polynomial algorithms for finding the
optimal strategies of both players are also known [4].

Our work is inspired by the paper of Banik et al. [3] on computing Γk,`(V) in R1. They
considered the case of arbitrarily large k and `, but where k = ` (and V is a set instead of a
multiset). For this case they showed that depending on the set V either P or Q can win
the game, and they presented an algorithm to compute Γk,`(V) in time O(nk−λk), where
0 < λk < 1 is a constant dependent only on k. This raises the question: is the problem
NP-hard when k is part of the input?

Our results. We answer the question above negatively, by presenting an algorithm that
computes Γk,`(V) in R1 in polynomial time. Our algorithm works when V is a multiset, and
it does not require k and ` to be equal. Our algorithm computes Γk,`(V) and finds a strategy
for P that wins this many voters in time O(kn4). The algorithm can be extended to the
case when the voters are weighted, requiring only a slight increase in running time.

The algorithm by Banik et al. [3] discretizes the problem, by defining a finite set of
potential locations for P to place his points. However, to ensure an optimal strategy for P,
the set of potential locations has exponential size. To overcome this problem we need several
new ideas. First of all, we partition the possible strategies into various classes – the concept
of thresholds introduced later plays this role – such that for each class we can anticipate the
behavior of the optimal strategy for Q. To compute the best strategy within a certain class
we use dynamic programming, in a non-standard (and, unfortunately, rather complicated)
way. The subproblems in our dynamic program are for smaller point sets and smaller values
of k and ` (actually we will need several other parameters) where the goal of P will be to
push his rightmost point as far to the right as possible to win a certain number of points.
One complication in the dynamic program is that it is unclear which small subproblems I ′
can be used to solve a given subproblem I. The opposite direction – determining for I ′
which larger I may use I ′ in their solution – is easier, so we use a sweep approach: when
the solution to some I ′ is determined, we update the solution to larger subproblems I that
can use I ′.

ISAAC 2019

37:4 On One-Round Discrete Voronoi Games

After establishing that we can compute Γk,`(V) in polynomial time in R1, we turn to the
higher-dimensional problem. We show (in the full version) that deciding if P has a winning
strategy is ΣP2 -hard in R2. We also show that for fixed k and ` this problem can be solved
in polynomial time. Our solution combines algebraic methods [7] with a result of Paterson
and Zwick [15] that one can construct a polynomial-size boolean circuits that implements
the majority function. The latter result in essential to avoid the appearance of n in the
exponent. As a byproduct of the algebraic method, we show that the problem is contained
in the complexity class ∃∀R; see [10] for more information on this complexity class.

2 A Polynomial-Time Algorithm for d = 1

In this section, we present a polynomial-time algorithm for the 1-dimensional discrete Voronoi
game. Our algorithm will employ dynamic programming, and it will be convenient to use n,
k, and ` as variables in the dynamic program. From now on, we therefore use n∗ for the size
of the original multiset V , and k∗ and `∗ for the initial number of points that can be played
by P and Q, respectively.

2.1 Notation and Basic Properties
We denote the given multiset of voters by V := {v1, . . . , vn∗}, where we assume the voters
are numbered from left to right. We also always number the points in the strategies
P := {p1, . . . , pk∗} and Q := {q1, . . . , q`∗} from left to right. For brevity we make no
distinction between a point and its value (that is, its x-coordinate), so that we can for
example write p1 < q1 to indicate that the leftmost point of P is located to the left of the
leftmost point of Q.

For a given game 〈V, k, `〉, we say that a strategy P of player P realizes a gain γ if∣∣V [P � Q]
∣∣ > γ for any strategy Q of player Q. Furthermore, we say that a strategy P is

optimal if it realizes Γk,`(V), the maximum possible gain for P, and we say a strategy Q is
optimal against a given strategy P if

∣∣V [P � Q]
∣∣ 6 ∣∣V [P � Q′]

∣∣ for any strategy Q′.

Trivial, reasonable, and canonical strategies for P. For 0 6 n 6 n∗, define Vn :=
{v1, . . . , vn} to be the leftmost n points in V . Suppose we want to compute Γk,`(Vn)
for some 1 6 k 6 n and 0 6 ` 6 n. The trivial strategy of player P is to place his points at
the k points of Vn with the highest multiplicities – here we consider the multiset Vn as a set
of distinct points, each with a multiplicity corresponding to the number of times it occurs
in Vn – with ties broken arbitrarily. Let ‖Vn‖ denote the number of distinct points in Vn.
Then the trivial strategy is optimal when k > ‖Vn‖ and also when ` > 2k: in the former
case P wins all voters with the trivial strategy, and in the latter case Q can always win all
voters not coinciding with a point in P (namely by surrounding each pi ∈ P by two points
very close to pi) so the trivial strategy is optimal for P. Hence, from now on we consider
subproblems with k < ‖Vn‖ and ` < 2k.

We can without loss of generality restrict our attention to strategies for P that place
at most one point in each half-open interval of the form (vi, vi+1] with vi 6= vi+1, where
0 6 i 6 n, v0 := −∞, and vn∗+1 := ∞. Indeed, placing more than two points inside an
interval (vi, vi+1] is clearly not useful, and if two points are placed in some interval (vi, vi+1]
then we can always move the leftmost point onto vi. (If vi is already occupied by a point
in P , then we can just put the point on any unoccupied voter; under our assumption that
k < ‖Vn‖ an unoccupied voter always exists.) We will call a strategy for P satisfying the
property above reasonable.

M. de Berg, S. Kisfaludi-Bak, and M. Mehr 37:5

I Observation 1 (Banik et al. [3]). Assuming k < ‖Vn‖ there exist an optimal strategy for P
that is reasonable and has p1 ∈ V (that is, p1 coincides with a voter).

We can define an ordering on strategies of the same size by sorting them in lexicographical
order. More precisely, we say that a strategy P = {p1, . . . , pk} is greater than a strategy P ′ =
{p′1, . . . , p′k}, denoted by P � P ′, if 〈p1, . . . , pk〉 >lex 〈p′1, . . . , p′k〉, where >lex denotes the
lexicographical order. Using this ordering, the largest reasonable strategy P that is optimal –
namely, that realizes Γk,`(Vn) – is called the canonical strategy of P.

α-gains, β-gains, and gain sequences. Consider a strategy P := {p1, . . . , pk}. It will be
convenient to add two extra points to P , namely p0 := −∞ and pk+1 :=∞; this clearly does
not influence the outcome of the game. The strategy P thus induces k + 1 open intervals of
the form (pi, pi+1) where player Q may place her points. It is easy to see that there exists an
optimal strategy for Q with the following property: Q contains at most two points in each
interval (pi, pi+1) with 1 6 i 6 k− 1, and at most one point in (p0, p1) and at most one point
in (pk, pk+1). From now on we restrict our attention to strategies for Q with this property.

Now suppose that x and y are consecutive points (with x < y) in some strategy P , where
x could be −∞ and y could be ∞. As just argued, Q either places zero, one, or two points
inside (x, y). When Q places zero points, then she obviously does not win any of the voters
in Vn ∩ (x, y). The maximum number of voters Q can win from Vn ∩ (x, y) by placing a single
point is the maximum number of voters in (x, y) that can be covered by an open interval of
length (y − x)/2, as by placing her point in any q ∈ (x, y), Q wins all (and only) the voters
in the open interval ((x+ q)/2, (q + y)/2) of length (y − x)/2; see Banik et al. [3]. We call
this value the α-gain of Q in (x, y) and denote it by gainα(Vn, x, y). By placing two points
inside (x, y), one immediately to the right of x and one immediately to the left of y, player Q
will win all voters Vn ∩ (x, y). Thus the extra number of voters won by the second point in
(x, y) as compared to just placing a single point is equal to |Vn ∩ (x, y)| − gainα(Vn, x, y).
We call this quantity the β-gain of Q in (x, y) and denote it by gainβ(Vn, x, y). Note that
for intervals (x,∞) we have gainα(x,∞) = |Vn ∩ (x,∞)| and gainβ(x,∞) = 0; a similar
statement holds for (−∞, y).

The following observation follows from the fact that gainα(Vn, x, y) equals the maximum
number of voters in (x, y) that can be covered by an open interval of length (y − x)/2.

I Observation 2 (Banik et al. [3]). For any x, y we have gainα(Vn, x, y) > gainβ(Vn, x, y).

Let P := {p0, p1, . . . , pk, pk+1} be a given strategy for P , where by convention p0 = −∞ and
pk+1 =∞. Consider {gainα(Vn, pi, pi+1) : 0 6 i 6 k} ∪ {gainβ(Vn, pi, pi+1) : 0 6 i 6 k}, the
multiset of all α-gains and β-gains defined by the intervals (pi, pi + 1). Sort this sequence in
non-increasing order, using the following tie-breaking rules if two gains are equal:

Gains from the interval (pi, pi+1) have precedence over gains from intervals (pj , pj+1)
when i < j.
if both gains are for the same interval (pi, pi+1) then the α-gain precedes the β-gain.

We call the resulting sorted sequence the gain sequence induced by P on Vn. We denote this
sequence by Σgain(Vn, P) or, when P and Vn are clear from the context, by Σgain.

The canonical strategy of Q and sequence representations. Given the multiset Vn, a
strategy P and value `, player Q can compute an optimal strategy as follows. First she
computes the gain sequence Σgain(Vn, P) and chooses the first ` gains in Σgain(Vn, P). Then
for each 0 6 i 6 k she proceeds as follows. When gainα(Vn, pi, pi+1) and gainβ(Vn, pi, pi+1)
are both chosen, she places two points in (pi, pi+1) that win all voters in (pi, pi+1); when only

ISAAC 2019

37:6 On One-Round Discrete Voronoi Games

gainα(Vn, pi, pi+1) is chosen, she places one point in (pi, pi+1) that win gainα(Vn, pi, pi+1)
voters. (By Observation 2 and the tie-breaking rules, when gainβ(Vn, pi, pi+1) is chosen it is
always the case that gainα(Vn, pi, pi+1) is also chosen.) The resulting strategy Q is optimal
as highest possible gains are chosen and is called the canonical strategy of Q with ` points
against P on Vn.

From now one we restrict the strategies of player Q to canonical strategies. In a
canonical strategy, player Q places at most two points in any interval induced by a strategy
P = {p0, . . . , pk+1}, and when we know that Q places a single point (and similarly when she
places two points) then we also know where to place the point(s). Hence, we can represent
a canonical strategy Q, for given Vn and P , by a sequence M(V, P,Q) := 〈m0, . . . ,mk〉
where mi ∈ {0, 1, 2} indicates how many points Q plays in the interval (pi, pi+1). We call
M(V, P,Q) the sequence representation of the strategy Q against P on Vn. We denote the
sequence representation of the canonical strategy of Q with ` points against P on Vn by
M(V, P, `).

I Observation 3. The canonical strategy of Q with ` points against P is the optimal strategy
Q with ` points against P which has lexicographically maximal sequence representation.

2.2 The Subproblems for a Dynamic-Programming Solution
For clarity, in the rest of Section 2 we assume the multiset of voters V does not have
repetitive entries, i.e we have a set of voters, and not a multiset. While all the results are
easily extendible to multisets, dealing with them adds unnecessary complexity to the text.

Our goal is to develop a dynamic-programming algorithm to compute Γk∗,`∗(V). Before
we can define the subproblems on which the dynamic program is based, we need to introduce
the concept of thresholds, which is a crucial ingredient in the subproblems.

Strict and loose thresholds. Recall that in an arbitrary gain sequence Σgain(Vn, P) =
〈τ1, . . . , τ2k+2〉, each τj is the α-gain or β-gain of some interval (pi, pi+1), and that these
gains are sorted in non-increasing order. We call any integer value τ ∈ [τ`+1, τ`] an `-threshold
for Q induced by P on Vn, or simply a threshold if ` is clear from the context. We implicitly
assume τ0 := n so that talking about 0-threshold is also meaningful. Note that when
τ` > τ > τ`+1 then the canonical strategy for Q chooses all gains larger than τ and no gains
smaller or equal to τ . Hence, we call τ a strict threshold if τ` > τ > τ`+1. On the other
hand, when τ = τ`+1 then gains of value τ may or may not be chosen by the canonical
strategy of Q. (Note that in this case for gains of value τ to be picked, we would actually
need τ` = τ = τ`+1.) In this case we call τ a loose threshold.

The idea will be to guess the threshold τ in an optimal solution and then use the fact
that fixing the threshold τ helps us to limit the strategies for P and anticipate the behavior
of Q. Let Popt be the canonical strategy realizing Γk∗,`∗(V). We call any `∗-threshold of
Popt an optimal threshold. We devise an algorithm that gets a value τ as input and computes
Γk∗,`∗(V) correctly if τ is an optimal threshold, and computes a value not greater than
Γk∗,`∗(V), otherwise.

Clearly we only need to consider values of τ that are at most n∗. In fact, since each
α-gain or β-gain in a given gain sequence corresponds to a unique subset of voters, the
`∗-th largest gain can be at most n∗/`∗, so we only need to consider τ -values up to bn∗/`∗c.
Observe that when there exists an optimal strategy that induces an `∗-threshold equal to
zero, then Q can win all voters not explicitly covered by P . In this case the trivial strategy
is optimal for P. Our global algorithm is now as follows.

M. de Berg, S. Kisfaludi-Bak, and M. Mehr 37:7

1. For all thresholds τ ∈ {1, . . . , bn∗/`∗c}, compute an upper bound on the number of voters
P can win with a strategy that has an `∗-threshold τ . For the run where τ is an optimal
threshold, the algorithm will return Γk∗,`∗(V).

2. Compute the number of voters P wins in the game 〈V, k∗, `∗〉 by the trivial strategy.
3. Report the best of all solutions found.

The subproblems for a fixed threshold τ . From now on we consider a fixed threshold
value τ ∈ {1, . . . , bn∗/`∗c}. The subproblems in our dynamic-programming algorithm for the
game 〈V, k∗, `∗〉 have several parameters.

A parameter n ∈ {0, . . . , n∗}, specifying that the subproblem is on the voter set Vn.
Parameters k, ` ∈ {0, . . . , n}, specifying that P can use k + 1 points and Q can use `
points.
A parameter γ ∈ {0, . . . , n}, specifying the number of voters P must win.
A parameter δ ∈ {strict, loose}, specifying the strictness of the fixed `-threshold τ .

Intuitively, the subproblem specified by a tuple 〈n, k, `, γ, δ〉 asks for a strategy P where P
wins at least γ voters from Vn and such that P that induces an `-threshold of strictness δ,
against an opponent Q using ` points. Player P may use k + 1 points and his objective will
be to push his last point, pk+1 as far to the right as possible. The value of the solution to
such a subproblem, which we denote by Xmax(n, k, `, γ, δ), will indicate how far to the right
we can push pk+1. Ultimately we will be interested in solutions where P can push pk∗+1 all
the way to +∞, which means he can actually win γ voters by placing only k∗ points.

To formally define Xmax(n, k, `, γ, δ), we need two final pieces of notation. Let x ∈
R ∪ {−∞}, let n ∈ {1, . . . , n∗}, and let a, b be integers. For convenience, define vn∗+1 :=∞.
Now we define the (a, b)-span of x to vn+1, denoted by span(x, n, a, b), as

span(x, n, a, b) :=
the maximum real value y ∈ (vn, vn+1] such that
gainα(V, x, y) = a and gainβ(V, x, y) = b

if x 6= −∞ and y exists

−∞ otherwise.

If we let a := gainα(Vn, x, y) and b := gainβ(Vn, x, y), then player Q wins either 0, a, or a+ b

points depending on whether she plays 0, 1, or 2 points inside the interval. It will therefore
be convenient to introduce the notation ⊕j for j ∈ {0, 1, 2}, which is defined as

a⊕0 b := 0, a⊕1 b := a, a⊕2 b := a+ b.

We assume the precedence of these operators are higher than addition.

I Definition 4. For parameters n ∈ {0, . . . , n∗}, k, `, γ ∈ {0, . . . , n}, and δ ∈ {strict, loose},
we define the value Xmax(n, k, `, γ, δ) and what it means when a strategy P realizes this, as
follows.

For k = 0, we call it an elementary subproblem, and define Xmax(n, k, `, γ, δ) = vn+1 if
1. {vn+1} wins at least γ voters from Vn, and
2. {vn+1} induces an `-threshold τ with strictness δ on Vn,
and we define Xmax(n, k, `, γ, δ) = −∞ otherwise. In the former case we say that
P := {vn+1} realizes Xmax(n, k, `, γ, δ).
For k > 0, we call it a non-elementary subproblem, and Xmax(n, k, `, γ, δ) is defined
to be equal to the maximum real value y ∈ (vn, vn+1] such that there exists a strategy
P := P ′ ∪ {y} with P ′ = {p1, . . . , pk}, integer values n′, a, b with 0 6 n′ < n and
0 6 a, b 6 n, an integer j ∈ {0, 1, 2}, and a δ′ ∈ {strict, loose} satisfying the following
conditions:

ISAAC 2019

37:8 On One-Round Discrete Voronoi Games

1. P wins at least γ voters from Vn,
2. P induces an `-threshold τ with strictness δ on Vn,
3. span(pk, n, a, b) = y,
4. P ′ realizes Xmax(n′, k − 1, `− j, γ − n+ n′ + a⊕j b, δ′),
5. Let M(Vn′ , P ′, ` − j) := 〈m′0, . . . ,m′k〉 and M(Vn, P, `) := 〈m0, . . . ,mk+1〉. Then

m′i = mi for all 0 6 i < k.
When a set P satisfying the conditions exists, we say that P realizes Xmax(n, k, `, γ, δ).
We define Xmax(n, k, `, γ, δ) = −∞ if no such P exists.

For example, given voters V = {1, . . . , 6}, k∗ = 3, l∗ = 3, and n∗ = 6, Xmax(3, 0, 1, 2, strict) =
−∞ because P cannot win voters without placing any points and Xmax(3, 2, 1, 2, strict) = 4
because player P can easily win two of the first three voters by placing his first two points
on them and then push his third point to the far right to position 4; note that τ = 1 is an
strict induced 1-threshold in this case.

Intuitively, each prefix of a canonical strategy of P is a realizing strategy to some of these
subproblems, which is consistent with Definition 4 as realizing strategies to subproblems are
defined to be a realizing strategy to a smaller subproblem plus the last point of P pushed to
the rightmost possible position, where Q’s response would be the same except she has the
chance to place j ∈ {0, 1, 2} without violating the conditions mentioned in the definition.

By induction we can show that if the parameters n, k, ` are not in a certain range, namely
if one of the conditions ` < 2(k + 1) or k 6 ‖Vn‖ is violated, then Xmax(n, k, `, γ, δ) = −∞.
The next lemma shows we can compute Γk∗,`∗(V) from the solutions to our subproblems.

I Lemma 5. Let V = {v1, . . . , vn∗} be a set of n∗ voters in R1. Let 0 6 k∗ 6 n∗ and
1 6 `∗ 6 n∗ be two integers such that `∗ < 2k∗ and k∗ < ‖V ‖, and let τ be a fixed threshold.
Then

Γk∗,`∗(V) > the maximum value of γ with 0 6 γ 6 n∗ for which there exist a
δ ∈ {loose, strict} such that Xmax(n∗, k∗, `∗, γ, δ) =∞.

(1)

Moreover, for an optimal threshold τopt > 0, the inequality changes to equality.

I Remark. Usually in dynamic programming, subproblems have a clean non-recursive
definition – the recursion only comes in when a recursive formula is given to compute the
value of an optimal solution. Our approach is more complicated: Definition 4 above gives
a recursive subproblem definition (and Lemma 5 shows how to use it), however, using this
recursive formula to compute solutions is not feasible and Lemma 7 below will then give a
different recursive formula to actually compute the solutions to the subproblems.

2.3 Computing Solutions to Subproblems
The solution to an elementary subproblem follows fairly easily from the definitions, and can
be computed in constant time; see the full version.

By definition, in order to obtain a strategy P realizing the solution to a non-elementary
subproblem I = 〈n, k, `, γ, δ〉 of size k, we need a solution to a smaller subproblem I ′ = 〈n′, k−
1, `′, γ′, δ′〉 of size k − 1 and add one point y ∈ (vn, vn+1] to the strategy P ′ = {p1, . . . , pk}
realizing I ′. Thus by adding y, we extend the solution to I ′ to get a solution to I. To find the
“right” subproblem I ′, we guess some values for n′, a, b, j ∈ {0, 1, 2}, and δ′ ∈ {strict, loose};
these values are enough to specify I ′. We note that there are just a polynomial number
of cases and therefore a polynomial number of values for the value y ∈ (vn, vn+1] which
we want to maximize. Namely, there are O(n) choices for the values n′, a, and b, three

M. de Berg, S. Kisfaludi-Bak, and M. Mehr 37:9

choices for j, and two choices for δ′. This makes O(n3) different cases to be considered for
each subproblem I, in total. However, not all those subproblems can be extended to I. In
the following definition, we list all the triples (δ′, j, δ) that can guarantee the extendibility
of I ′ to I.

Let a and b be the α-gain and β-gain of the interval (pk, y) in a strategy P = {p1, . . . , pk, y}
with threshold τ . We define the following sets of triples:

∆(τ, a, b) :=

{(loose, 2, loose), (strict, 2, strict)} if a > τ ∧ b > τ

{(loose, 1, loose), (strict, 1, loose), (strict, 2, strict)} if a > τ ∧ b = τ

{(loose, 1, loose), (strict, 1, strict)} if a > τ ∧ b < τ

{(loose, 0, loose), (strict, 0, loose), (strict, 1, loose), (strict, 2, strict)} if a = τ ∧ b = τ

{(loose, 0, loose), (strict, 0, loose), (strict, 1, strict)} if a = τ ∧ b < τ

{(loose, 0, loose), (strict, 0, strict)} if a < τ ∧ b < τ.

I Lemma 6. Let P ′ = {p1, . . . , pk} and P := P ′ ∪ {y}, be two reasonable strategies on Vn′
and Vn, where n′ = argmax16i6n∗ vi < pk, n = argmax16i6n∗ vi < y, and y ∈ (vn, vn+1].
Let a = gainα(Vn, pk, y) and b = gainβ(Vn, pk, y), and assume τ > 0 is an (`− j)-threshold
of strictness δ′ for Q induced by P ′ on Vn′ , where j ∈ {0, 1, 2}. Then, there exists a triple
(δ′, j, δ) ∈ ∆(τ, a, b) if and only if
1. P induces an `-threshold τ with strictness δ on Vn.
2. Let M(Vn′ , P ′, `−j) := 〈m′0, . . . ,m′k〉 and M(Vn, P, `) := 〈m0, . . . ,mk+1〉. Then m′i = mi

for all 0 6 i < k.
Moreover, this triple is unique if it exists.

I Lemma 7. For a non-elementary subproblem I = 〈n, k, `, γ, δ〉, we have

Xmax(n, k, `, γ, δ) = max
06n′<n

max
06a6n

max
06b6n

max
(δ′,j,δ)∈∆(τ,a,b)

span
(
Xmax(n′, k − 1, ` − j, γ − n + n′ + a ⊕j b, δ′), n, a, b

)
.

If we can compute the span function efficiently, we can compute all the solutions by
dynamic programming and solve the problem. However, a solution based on a trivial
dynamic programming will have running time bn∗/`∗c · O(k∗`∗(n∗)2) · O((n∗)3f(n∗)) =
O(k∗(n∗)6f(n∗)), where bn∗/`∗c is the total number of choices for the threshold, O(k∗`∗(n∗)2)
is the number of subproblems for each threshold, and O((n∗)3f(n∗)) is the time needed to
solve each subproblem where f(n) is the time needed to compute the span(x, n, a, b) function.
This algorithm is quite slow. More importantly it is not easy to compute the span function.
In the following, we introduce some new concepts to compute the span function and also get
a better running time.

2.4 Computing the span Function Using Gain Maps
Before we give the algorithm we introduce the gain map, which we need to compute the span
function. Consider an arbitrary strategy P of P on V , and recall that such a strategy induces
open intervals of the form (pi, pi+1) where Q can place her points. We can represent any
interval (x, y) that may arise in this manner as a point (x, y) in the plane. Thus the locus of
all possible intervals is the region R := {(x, y) : x < y}. We will define two subdivisions of
this region, the A-map and the B-map, and the gain map will then be the overlay of the
A-map and the B-map.

ISAAC 2019

37:10 On One-Round Discrete Voronoi Games

2
1

3

4

(b)

2
1

3

4

(a)

Figure 1 a) A-map of V = {1, 4, 6, 13} with the corresponding α-gain for each region. b) B-map
of V with the corresponding β-gain for each region.

The A-map is the subdivision of R into regions At and Bt, for 0 6 t 6 n∗, defined as
At := {(x, y) : gainα(V, x, y) = t} and Bt := {(x, y) : gainα(V, x, y) + gainβ(V, x, y) = t}. In
other words, At is the locus of all intervals (x, y) such that, if (x, y) is an interval induced
by P , then Q can win t voters (but no more than t) from V ∩ (x, y) by placing a single
point in (x, y). To construct the A-map, let A>t denote the locus of all intervals (x, y)
such that gainα(V, x, y) > t. Note that At = A>t \ A>t+1. For 1 6 i 6 n∗ − t + 1, let
V ti := {vi, . . . , vi+t−1} and define

A>t
i := {(x, y) : V ti ⊂ (x, y) and Q can win V ti by placing a single point in (x, y)}.

Thus A>t
i = {(x, y) : x < vi and y > vi+t−1 and y > x+ 2(vi+t−1− vi)}. Here the conditions

x < vi and y > vi+t−1 are needed to guarantee that V ti ⊂ (x, y). The condition y >

x+ 2(vi+t−1 − vi) implies that V ti can be covered with an interval of length (y− x)/2, which
is necessary and sufficient for Q to be able to win all these voters. Note that each region A>t

i

is the intersection of three halfplanes, bounded by a vertical, a horizontal and a diagonal
line, respectively.

Since Q can win at least t voters in inside (x, y) with a single point if she can win at
least t consecutive voters with a single point, we have A>t =

⋃n∗−t+1
i=1 A>t

i . Thus A>t is
a polygonal region, bounded from below and from the right by a a polyline consisting of
horizontal, vertical, and diagonal segments, and the regions At are sandwiched between such
polylines; see Figure 1a. We call the polylines that form the boundary between consecutive
regions At boundary polylines.

The B-map can be constructed in a similar, but easier manner. Indeed, Bt is the locus
of all intervals such that Q can win t voters (but no more) from V ∩ (x, y), and this is
the case if and only if |V ∩ (x, y)| = t. Hence, Bt is the union of the rectangular regions
[vi, vi+1) × (vi+t, vi+t+1] (intersected with R), for 0 6 i 6 n∗ − t, where v0 := −∞ and
vn∗+1 :=∞, as shown in Figure 1b.

As mentioned, by overlaying the A- and B-map, we get the gain map. For any given
region on this map, the corresponding intervals have equal α-gain and equal β-gain.

I Lemma 8. The complexity of the gain-map is O((n∗)2).

Proof. The boundary polylines in the A-map are xy-monotone and comprised of vertical,
horizontal, and diagonal lines. The B-map is essentially a grid of size O((n∗)2) defined by the
lines x = vi and y = vi, for 1 6 i 6 n∗. Since each of these lines intersects any xy-monotone
polyline at most once – in a point or in a vertical segment – the complexity of the gain map
is also O((n∗)2). J

M. de Berg, S. Kisfaludi-Bak, and M. Mehr 37:11

Using the gain map, we can compute the values span(x0, n, a, b) for a given x0 ∈ R and
for all triples n, a, b satisfying 1 6 n 6 n∗, and 0 6 a 6 n∗ and 0 6 b 6 n∗, as follows. First,
we compute the intersection points of the vertical line x = x0 with (the edges of) the gain
map, sorted by increasing y-coordinates. (If this line intersects the gain map in a vertical
segment, we take the topmost endpoint of the segment.) Let (x0, y1), . . . , (x0, yz) denote this
sorted sequence of intersection points, where z 6 2n∗ denotes the number of intersections.
Let ai and bi denote the α-gain and β-gain of the interval corresponding to the point (x0, yi),
and let az+1 and bz+1 denote the α-gain and β-gain of the unbounded region intersected by
the line x = x0. Define ni = argmaxn vn < yi. Then we have

span(x0, n, a, b) =

yi if a = ai and b = bi, and n = ni, for some 1 6 i 6 z

+∞ if a = az+1 and b = bz+1 and n = n∗

−∞ for all other triples n, a, b
(2)

Our algorithm presented below moves a sweep line from left to right over the gain map.
During the sweep we maintain the intersections of the sweep line with the gain map. It will
be convenient to maintain the intersections with the A-map and the B-map separately. We
will do so using two sequences, A(x0) and B(x0).

The sequence A(x0) is the sequence of all diagonal or horizontal edges in the A-map that
are intersected by the line x = x0, ordered from bottom to top along the line. (More
precisely, the sequence contains (at most) one edge for any boundary polyline. When the
sweep line reaches the endpoint of such an edge, the edge will be removed and it will be
replaced by the next non-vertical edge of that boundary polyline, if it exists.)
The sequence B(x0) is the sequence of the y-coordinates of the horizontal segments in
the B-map intersected by the line x = x0, ordered from bottom to top along the line.

The number of intersections of the A-map, and also of the B-map, with the line x = x0 is
equal to n∗ − n0 + 1, where n0 = argminn vn > x0. Hence, the sequences A(x0) and B(x0)
have length n∗ − n0 + 1 6 n∗ + 1.

If we have the sequences A(x0) and B(x0) available then, using Equation (2), we can
easily find all triples n, a, b such that span(x0, n, a, b) 6= −∞ (and the corresponding y-values)
by iterating over the two sequences. We can summarize the results of this section as follows.

I Observation 9. Given the sequences A(x0) and B(x0), we can compute all the values
span(x0, n, a, b) with 1 6 n 6 n∗ and 0 6 a, b 6 n that are not equal to −∞ in O(n∗) time
in total.

This observation, together with Lemma 7 forms the basis of our dynamic-programming
algorithm.

2.5 The Sweep-Line Based Dynamic-Programming Algorithm
We will use a sweep-line approach, moving a vertical line from left to right over the gain
map. We will maintain a table X, indexed by subproblems, such that when the sweep line
is at position x0, then X[I] holds the best solution known so far for subproblem I, where
the effect of all the subproblems with solution smaller than x0 have been taken into account.
When our sweep reaches a subproblem I ′, then we check which later subproblems I can use
I ′ in their solution, and we update the solutions to these subproblems.

Recall that the algorithm works with a fixed threshold value τ ∈ {1, . . . , bn∗/`∗c} and that
its goal is to compute the valuesXmax(n∗, k∗, `∗, γ, δ) for all 0 6 γ 6 n∗ and δ ∈ {strict, loose}.
Our algorithm maintains the following data structures.

ISAAC 2019

37:12 On One-Round Discrete Voronoi Games

A[0..n∗] is an array that stores the sequence A(x0), where x0 is the current position of
the sweep line and A[i] contains the i-th element in the sequence. When the i-th element
does not exist then A[i] = Nil.
Similarly, B[0..n∗] is an array that stores the sequence B(x0).
X: This is a table with an entry for each subproblem I = 〈n, k, `, γ, δ〉 with 0 6 n 6 n∗,
and 0 6 k 6 k∗ and 0 6 ` 6 `∗, and 0 6 γ 6 n∗ and δ ∈ {strict, loose}. When the sweep
line is at position x0, then X[I] holds the best solution known so far for subproblem I,
where the effect of all the subproblems with solution smaller than x0 have been taken into
account. More precisely, in the right-hand side of the equation in Lemma 7 we have taken
the maximum value over all subproblems I ′ = 〈n′, k− 1, `− j, γ−n+n′+ a⊕j b, δ′〉 with
Xmax(I ′) < x0. In the beginning of the algorithm the entries for elementary subproblems
are computed in constant time and all other entries have value −∞.
E: This is the event queue, which will contain four types of events, as explained below.

The event queue E is a min-priority queue on the x-value of the events. There are four types
of events, as listed next, and when events have the same x-value then the first event type
(in the list below) has higher priority, that is, will be handled first. When two events of
the same type have equal x-value then their order is arbitrary. Note that events with the
same x-value are not degenerate cases – this is inherent to the structure of the algorithms,
as many events take place at x-coordinates corresponding to voters.
A-map events, denoted by eA(a, s, s′): At an A-map event, the edge s of the A-map ends

– thus the x-value of an A-map event is the x-coordinate of the right endpoint of s –
and the array A must be updated by replacing it with the edge s′. Here s′ is the next
non-vertical edge along the boundary polyline that s is part of, where s′ = Nil if s is the
last non-vertical edge of the boundary polyline. The value a indicates that the edge s
is on the boundary polyline between Aa and Aa+1. In other words s (and s′, if it exist)
are the a-th intersection point, 0 6 a < n∗, with the A-map along the current sweep line,
and so we must update the entry A[a] by setting A[a]← s′.

B-map events, denoted by eB(vn): At a B-map event, a horizontal edge of the B-map
ends. This happens when the sweep line reaches a voter vn – that is, when x0 = xn – and
so the x-value of this event is vn. The bottommost intersection of he sweep line with the
B-map now disappears (see Figure 1b), and so we must update B by shifting all other
intersection points one position down in B and setting B[n∗ − n]← Nil.

Subproblem events, denoted by eX(n′, k′, `′, γ′, δ′): At a subproblem event the solution
to the subproblem given by I ′ = 〈n′, k′, `′, γ′, δ′〉 is known and the x-value of this event
is equal to Xmax(I ′). Handling the subproblem event for I ′ entails deciding which later
subproblems I can use I ′ in their solution and how they can use it, using the sets ∆(τ, a, b),
and updating the solutions to these subproblems.
In the beginning of the algorithm all the events associated with elementary subproblems
are known. The events associated with non-elementary subproblems are added to the
event queue when handling an update event eE(vn), as discussed next.

Update events, denoted by eE(vn): At the update event happening at x-value vn, all
subproblem events of size n are added to the event queue E. These are simply the
subproblems 〈n, k, `, γ, δ〉 for all k, `, γ ∈ {0, . . . , n} and δ ∈ {strict, loose}. The reason
we could not add them at the start of the algorithm was that the x-value of such a
subproblem I was now known yet. However, when we reach vn thenXmax(I) is determined,
so we can add the event to E with Xmax(I) as its x-value.

The pseudocode below summarizes the algorithm.

M. de Berg, S. Kisfaludi-Bak, and M. Mehr 37:13

Algorithm 1 ComputeSolutions(τ, V, k∗, `∗).

1 for i← 0 to n∗ − 1 do
2 A[i]← (vi, vi+1)− (vi+1, vi+1); B[i]← vi+1 . define v0 := v1 − 1
3 A[n∗]← Nil; B[n∗]← Nil
4 Initialize X by the solutions to elementary subproblems
5 Initialize E by all map events, update events, and elementary subproblem events
6 while E is not empty do
7 e← extractMin(E); x0 ← x-value of e
8 switch e do
9 case eA(a, s, s′) do

10 A[a]← s′

11 case eE(vn) do
12 B[n∗ − n]← Nil
13 for i← 0 to n∗ − n− 1 do
14 B[i]← vn+i+1

15 case eX(n′, k′, `′, γ′, δ′) do
16 for all span(x0, n, a, b) = y where y 6= −∞ do
17 for all (δ′, j, δ) ∈ ∆(τ, a, b) do
18 I ← 〈n, k′ + 1, `′ + j, γ′ + n− n′ − gainj(a, b), δ〉
19 X(I)← max(X(I), y)

20 case eE(vn) do
21 Add all the events for subproblems of size n to E, as explained above

I Lemma 10. Algorithm 1 correctly computes the solutions for subproblems 〈n, k, `, γ, δ〉
for the given value τ , for all n, k, `, γ, δ with 0 6 n 6 n∗, and 0 6 k, `, γ 6 n, and
δ ∈ {strict, loose}, and ` < 2(k + 1). The running time of the algorithm is O(k∗`∗(n∗)3).

Proof. We handle the A-map and B-map events before a subproblem event so that A and
B data structures are up-to-date when we want to compute the span function on handling a
subproblem event. We also handle a subproblem event before an update event so that when
we want to add a new subproblem event to the event queue on handling an update event, its
entry in table X has the correct value. The correctness of the algorithm now follows from
the discussion and lemmas above.

The running time is dominated by the handling of the subproblem events. By Observa-
tion 9, the algorithm handles each subproblem in O(n∗) time, plus O(logn∗) for operations
on the event queue, and there are O(k∗`∗(n∗)2) subproblems. Hence, the total running time
is O(k∗`∗(n∗)3). J

By Lemmas 5 and 10, the algorithm described at the beginning of Section 2.2 computes
Γk∗,`∗(V) correctly. Since this algorithm calls ComputeSolutions bn∗/`∗c times in Step 1,
we obtain the following theorem.

I Theorem 11. There exists an algorithm that computes Γk∗,`∗(V), and thus solves the
one-dimensional case of the one-round discrete Voronoi game, in time O(k∗(n∗)4).

ISAAC 2019

37:14 On One-Round Discrete Voronoi Games

I Remark. We can also solve the one-dimensional case of the one-round discrete Voronoi
game when voters are weighted, i.e. each voter v ∈ V has an associated weight ω(v) and
the players try to maximize the total weight of the voters they win. In this case, the α-gain
and β-gain of an interval is defined as the total weight of voters the second player can win
in that interval by placing one point and two points, respectively. The number of possible
thresholds is not an integer in range [0, n∗], but the sum of any sequence of consecutive voters
define a threshold, which makes a total of O((n∗)2) different thresholds. The gain map also
becomes more complex and in the algorithm we need to spend O((n∗)2) time (instead of
O(n∗)) to handle each subproblem event, which results in an algorithm with running time
O(k∗`∗(n∗)5).

3 Containment in ∃∀R and the Algorithm for d > 2

We now consider the one-round discrete Voronoi game in the Lp-norm, for some arbitrary p.
Then a strategy P = {p1, . . . , pk} can win a voter v ∈ V against a strategy Q = {q1, . . . , q`}
if and only if the following Boolean expression is satisfied:

win(v) :=
∨
i∈[k]

∧
j∈[`]

(distp(pi, v))p 6 (distp(qj , v))p,

where distp is the Lp-distance. This expression has k` polynomial inequalities of degree p.
The strategy P is winning if and only if the majority of the expressions win(v1), . . . ,win(vn)
are true. Having a majority function Majority that evaluates to true if at least half of its
parameters evaluates to true, player P has a winning strategy if and only if

∃x1(p1), . . . , xd(p1), . . . , x1(pk), . . . , xd(pk)
∀x1(q1), . . . , xd(q1), . . . , x1(q`), . . . , xd(q`) : Majority(win(v1), . . . ,win(vn))

is true, where xi(·) denotes the i-th coordinate of a point.
Ajtai et al. [2] show that it is possible to construct a sorting network, often called the

AKS sorting network, composed of comparison units configured in c · logn levels, where c is
a constant and each level contains exactly bn/2c comparison units. Each comparison unit
takes two numbers as input and outputs its input numbers in sorted order. Each output of a
comparison unit (except those on the last level) feeds into exactly one input of a comparison
unit in the next level, and the input numbers are fed to the inputs of the first level. The
outputs of the comparison units in the last level (i.e., the outputs of the network) give the
numbers in sorted order.

Using AKS sorting networks we can construct a Boolean formula of size O(nc) for some
constant c that tests if the majority of its n inputs are true as follows. Assuming the boolean
value false is smaller than the boolean value true value, we make an AKS sorting network
that sorts n boolean values. This is possible using comparison units that get p and q as input,
and output p ∧ q and p ∨ q. It is not hard to verify that the dn/2e-th output of the network
is equal to the value of the majority function on the input boolean values. By construction,
we can write the Boolean formula representing the value of this output as logical and (∧)
and logical or (∨) combination of the input boolean values, and the size of the resulting
formula is O(nc).

Thus we can write Majority(win(v1), . . . ,win(vn)) as a Boolean combination of O(nck`)
polynomial inequalities of degree p, where each quantified block has kd and `d variables
respectively. Basu et al. [7] gave an efficient algorithm for deciding the truth of quantified

M. de Berg, S. Kisfaludi-Bak, and M. Mehr 37:15

formulas. For our formula this gives an algorithm with O((nck`)(kd+1)(`d+1)pk`d
2) running

time to decide if P has a winning strategy for a given instance 〈V, k, `〉 of the Voronoi game
problem. Note that this is polynomial when k, ` and d are constants.

For the L∞ norm, we can define F (v) as follows:

F (v) :=
∨
i∈[k]

∧
j∈[`]

∨
s′∈[d]

∧
s∈[d]

|xs(pi)− xs(v)| 6 |xs′(qj)− xs′(v)|,

By comparing the squared values instead of the absolute values, we have a formula which
demonstrates that even with the L∞ norm, the problem is contained in ∃∀R and there exists
an algorithm of complexity O((nck`d2)(kd+1)(`d+1)2k`d2) to solve it.

I Theorem 12. The one-round discrete Voronoi game 〈V, k, `〉 in Rd with the Lp norm is
contained in ∃∀R. Moreover, for fixed k, `, d there exists an algorithm that solves it in
polynomial time.

De Berg et al. [9] introduced the notion of personalized preferences. More precisely, given
a natural number p, assuming each axis defines an aspect of the subject voters are voting
for, the voter vi gives different weights to different axes, and vi has a weighted Lp distance
(
∑
j∈[d] wij(xj(p)− xj(vi))p)1/p from any point p ∈ Rd. For the weighted L∞ distance, vi is

at distance maxj∈[d](wij |xj(p)− xj(vi)|) from any point p ∈ Rd. This approach also works
when voters have personalized preferences.

4 ΣP
2 -Hardness for d > 2

In this section, we present the most important ideas behind our proof that the one-round
discrete Voronoi game is ΣP

2 -hard in R2. To prove ΣP
2 -hardness, it suffices to show that

deciding if Q has a winning strategy against every possible strategy of P is ΠP
2 -hard. Our

proof will use a reduction from a special case of the quantified Boolean formula problem
(qbf), as defined next. Let S := {s1, . . . , sns} and T := {t1, . . . , tnt} be two sets of variables,
and let S̄ := {s̄1, . . . , s̄ns

} and T̄ := {t̄1, . . . , t̄nt
} denote their negations. We consider Boolean

formulas B of the form

B := ∀s1, . . . , sns
∃t1, . . . , tnt

: c1 ∧ · · · ∧ cnc

where each clause ci in C := {c1, . . . , cnc} is a disjunctive combination of at most three
literals from S ∪ S̄ ∪ T ∪ T̄ . Deciding if a formula of this form is true is a ΠP

2 -complete
problem [17].

Consider the undirected graph GB := (N,A) representing B, where N := S ∪T ∪C is the
set of nodes of GB and A := {(ci, sj) : sj ∈ ci∨ s̄j ∈ ci}∪{(ci, tj) : tj ∈ ci∨ t̄j ∈ ci} is the set
of edges of GB . Lichtenstein [12] showed how to transform an instance of qbf in polynomial
time to an equivalent one whose corresponding graph is planar (and of quadratic size). Thus
we may start our reduction from a formula B such that GB is planar. Our reduction then
creates an instance 〈V, k, `〉 of the Voronoi game such that B is true if and only if Q has a
winning strategy.

Define Di, the disk of vi with respect to a given set P , as the disk with center vi and
radius dist(vi, P), that is, Di is the largest disk centered at vi that has no point from P in
its interior.

I Observation 13. Q wins a voter vi against P iff she places a point q in the interior of Di.

ISAAC 2019

37:16 On One-Round Discrete Voronoi Games

W voters

v1 v2 v3 v4 v5

D1 D2 D3 D4 D5

∈ P ∈ P ∈ P ∈ P ∈ P

q1 q2

(b)

w + 1 voters

dw/2e+ 1 voters bw/2c+ 1 voters

(a)

Figure 2 When all the heavy-weight clusters of W voters are chosen by P, the best strategy of
Q to win the remaining single voters is to put her points in every other intersection of the disks.

The idea of the construction is that a cluster ofW coinciding voters, for a sufficiently largeW ,
forces P to put a point on top of that cluster. The disk Di of a voter vi is then prescribed by
cluster closest to vi. This allows us to create gadgets for the variables si, and clause gadgets,
consisting of (sets of) disks. Because the graph GB is planar, we can carry information
from the variable gadgets to the clause gadgets using non-crossing chains of disks. This is
done in such a way that Q must either place points in the “even-numbered” intersections or
in the “odd-numbered” intersections in a chain, corresponding to the truth settings of the
variables tj ; see Figure 2. An optimal choice of Q will also carry the bits so that the clauses
of B can be checked. The detailed construction is described in the full version.

5 Concluding Remarks

We presented the first polynomial-time algorithm for the one-round discrete Voronoi game
in R1. The algorithm is quite intricate, and it would be interesting to see if a simpler (and
perhaps faster) algorithm is possible. Finding a lower bound for the 1-dimensional case is
also open.

We also showed that the problem is ΣP2 -hard in R2. Fekete and Meijer [11] conjectured
that finding an optimal strategy for the multi-round continuous version of the Voronoi game
is PSPACE-complete. We conjecture that in the multi-round version of the discrete version,
finding an optimal strategy is PSPACE-hard as well. Note that using the algebraic method
presented in this paper, it is easy to show that this problem is contained in PSPACE. While
the algebraic method we used is considered a standard technique, it is, as far as we know, the
first time this method is combined with polynomial-size boolean formulas for the majority
function. We think it should be possible to apply this combination to other problems as well.

References

1 Hee-Kap Ahn, Siu-Wing Cheng, Otfried Cheong, Mordecai Golin, and Rene Van Oostrum.
Competitive facility location: the Voronoi game. Theoretical Computer Science, 310(1-3):457–
467, 2004.

2 Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c logn parallel steps. Combinat-
orica, 3(1):1–19, 1983.

3 Aritra Banik, Bhaswar B Bhattacharya, and Sandip Das. Optimal strategies for the one-round
discrete Voronoi game on a line. Journal of Combinatorial Optimization, 26(4):655–669, 2013.

4 Aritra Banik, Bhaswar B Bhattacharya, Sandip Das, and Sreeja Das. Two-round discrete
Voronoi Game along a line. In Frontiers in Algorithmics and Algorithmic Aspects in Information
and Management, pages 210–220. Springer, 2013.

5 Aritra Banik, Bhaswar B Bhattacharya, Sandip Das, and Satyaki Mukherjee. The discrete
Voronoi game in R2. Computational Geometry, 63:53–62, 2017.

M. de Berg, S. Kisfaludi-Bak, and M. Mehr 37:17

6 Aritra Banik, Jean-Lou De Carufel, Anil Maheshwari, and Michiel Smid. Discrete Voronoi
games and epsilon-nets, in two and three dimensions. Computational Geometry, 55:41–58,
2016.

7 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the combinatorial and algebraic
complexity of quantifier elimination. Journal of the ACM, 43(6):1002–1045, 1996.

8 Otfried Cheong, Sariel Har-Peled, Nathan Linial, and Jiří Matoušek. The One-Round Voronoi
Game. Discrete & Computational Geometry, 31(1):125–138, 2004.

9 Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algorithms for computing
plurality points. ACM Transactions on Algorithms, 14(3):36:1–36:23, 2018.

10 Michael G Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł Rzążewski. ∀∃R-Completeness
and Area-Universality. In Proceedings of the 44th International Graph-Theoretic Concepts in
Computer Science (WG 2018), pages 164–175, 2018.

11 Sándor P Fekete and Henk Meijer. The one-round Voronoi game replayed. Computational
Geometry, 30(2):81–94, 2005.

12 David Lichtenstein. Planar formulas and their uses. SIAM Journal on Computing, 11(2):329–
343, 1982.

13 Wei-Yin Lin, Yen-Wei Wu, Hung-Lung Wang, and Kun-Mao Chao. Forming Plurality
at Minimum Cost. In Proceedings of the 9th International Workshop on Algorithms and
Computation, pages 77–88, 2015.

14 Richard D McKelvey and Richard E Wendell. Voting equilibria in multidimensional choice
spaces. Mathematics of operations research, 1(2):144–158, 1976.

15 Michael Paterson and Uri Zwick. Shallow circuits and concise formulae for multiple addition
and multiplication. Computational Complexity, 3(3):262–291, 1993.

16 Joachim Spoerhase and H-C Wirth. (r, p)-centroid problems on paths and trees. Theoretical
Computer Science, 410(47-49):5128–5137, 2009.

17 Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976.

18 Sachio Teramoto, Erik D Demaine, and Ryuhei Uehara. The Voronoi game on graphs and its
complexity. Journal of Graph Algorithms and Applications, 15(4):485–501, 2011.

19 Yen-Wei Wu, Wei-Yin Lin, Hung-Lung Wang, and Kun-Mao Chao. Computing plurality
points and Condorcet points in Euclidean space. In International Symposium on Algorithms
and Computation, pages 688–698, 2013.

ISAAC 2019

On Explicit Branching Programs for the
Rectangular Determinant and Permanent
Polynomials
V. Arvind
Institute of Mathematical Sciences (HBNI), Chennai, India
arvind@imsc.res.in

Abhranil Chatterjee
Institute of Mathematical Sciences (HBNI), Chennai, India
abhranilc@imsc.res.in

Rajit Datta
Chennai Mathematical Institute, Chennai, India
rajit@cmi.ac.in

Partha Mukhopadhyay
Chennai Mathematical Institute, Chennai, India
partham@cmi.ac.in

Abstract
We study the arithmetic circuit complexity of some well-known family of polynomials through
the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic
branching programs (ABP) for determinant and permanent polynomials of the rectangular symbolic
matrix in both commutative and noncommutative settings. The main results are:

We show an explicit O∗(
(

n
↓k/2

)
)-size ABP construction for noncommutative permanent polynomial

of k× n symbolic matrix. We obtain this via an explicit ABP construction of size O∗(
(

n
↓k/2

)
) for

S∗n,k, noncommutative symmetrized version of the elementary symmetric polynomial Sn,k.

We obtain an explicit O∗(2k)-size ABP construction for the commutative rectangular determinant
polynomial of the k × n symbolic matrix.

In contrast, we show that evaluating the rectangular noncommutative determinant over rational
matrices is #W[1]-hard.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation

Keywords and phrases Determinant, Permanent, Parameterized Complexity, Branching Programs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.38

1 Introduction

The complexity of arithmetic computations is usually studied in the model of arithmetic
circuits and its various restrictions. An arithmetic circuit is a directed acyclic graph with
each indegree-0 node (called an input gate) labeled by either a variable in {x1, x2, . . . , xn}
or a scalar from the field F, and all other nodes (called gates) labeled as either + or ×
gate. At a special node (designated the output gate), the circuit computes a multivariate
polynomial in F[x1, x2, . . . , xn]. Usually we use the notation F[X] to denote the polynomial
ring F[x1, x2, . . . , xn].

© V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 38; pp. 38:1–38:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arvind@imsc.res.in
mailto:abhranilc@imsc.res.in
mailto:rajit@cmi.ac.in
mailto:partham@cmi.ac.in
https://doi.org/10.4230/LIPIcs.ISAAC.2019.38
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 On Explicit Branching Programs

Arithmetic computations are also considered in the noncommutative setting. The free non-
commutative ring F〈y1, y2, . . . , yn〉 is usually denoted by F〈Y〉1. In the ring F〈Y〉, monomials
are words in Y∗ and polynomials in F〈Y〉 are F-linear combinations of words. We define
noncommutative arithmetic circuits essentially as their commutative counterparts. The only
difference is that at each product gate in a noncommutative circuit there is a prescribed left
to right ordering of its inputs.

A more restricted model than arithmetic circuits are algebraic branching programs.
An algebraic branching program (ABP) is a directed acyclic graph with one in-degree-0
vertex called source, and one out-degree-0 vertex called sink. The vertex set of the graph is
partitioned into layers 0, 1, . . . , `, with directed edges only only between adjacent layers (i to
i+ 1). The source and the sink are at layers zero and ` respectively. Each edge is labeled
by a linear form over variables x1, x2, . . . , xn. The polynomial computed by the ABP is the
sum over all source-to-sink directed paths of the product of linear forms that label the edges
of the path. An ABP is homogeneous if all edge labels are homogeneous linear forms. ABPs
can be defined in both commutative and noncommutative settings.

The main purpose of the current paper is to present new arithmetic complexity upper
bound results, in the form of “optimal” algebraic branching programs, for some important
polynomials in both the commutative and noncommutative domains. These results are
motivated by our recent work on an algebraic approach to designing efficient parameterized
algorithms for various combinatorial problems [1].

We now proceed to define the polynomials and explain the results obtained.

The Elementary Symmetric Polynomial
We first recall the definition of kth elementary symmetric polynomial Sn,k ∈ F[X], over the n
variables X = {x1, x2, . . . , xn},

Sn,k(X) =
∑

S⊆[n]:|S|=k

∏
i∈S

xi.

It is well-known that Sn,k(X) can be computed by an algebraic branching program of size
O(nk). In this paper, we consider the noncommutative symmetrized version S∗n,k, in the ring
F〈Y〉, defined as:

S∗n,k(Y) =
∑

T⊆[n]:|T |=k

∑
σ∈Sk

∏
i∈T

yσ(i).

The complexity of the polynomial S∗n,k is first considered by Nisan in his seminal work in
noncommutative computation [9]. Nisan shows that any ABP for S∗n,k is of size Ω(

(
n
↓k/2

)
) 2.

Furthermore, Nisan also shows the existence of ABP of size O(
(
n
↓k/2

)
) for S∗n,k. However,

it is not clear how to construct such an ABP in time O(
(
n
↓k/2

)
). Note that an ABP of size

O∗(nk) for S∗n,k can be directly constructed in O∗(nk) time by opening up the expression
completely 3. The main upper bound question is whether we can achieve any constant factor
saving of the parameter k in terms of size and run time of the construction. In this paper,
we give such an explicit construction. Note that Nisan’s result also rules out any FPT(k)-size
ABP for S∗n,k. That also justifies the problem from an exact computation point of view.

1 Throughout the paper, we use X to denote the set of commuting variables and Y,Z to denote the set of
noncommuting variables.

2 We use
(

n
↓r

)
to denote

∑r

i=0

(
n
i

)
.

3 In this paper we use the notation O∗(·) freely to suppress the terms asymptotically smaller than the
main term.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:3

Rectangular Permanent and Rectangular Determinant Polynomial
The next polynomial of interest in the current paper is rectangular permanent polynomial.
Given a k × n rectangular matrix X = (xi,j)1≤i≤k,1≤j≤n of commuting variables and a
k × n rectangular matrix Y = (yi,j)1≤i≤k,1≤j≤n of noncommuting variables, the rectangular
permanent polynomial in commutative and noncommutative domains are defined as follows

rPer(X) =
∑
σ∈Ik,n

k∏
i=1

xi,σ(i), rPer(Y) =
∑
σ∈Ik,n

k∏
i=1

yi,σ(i).

Here, Ik,n is the set of all injections from [k] → [n]. An alternative view is that
rPer(X) =

∑
S⊂[n]:|S|=k Per(XS) where XS is the k × k submatrix where the columns are

indexed by the set S. Of course, such a polynomial can be computed in time O∗(nk)
using a circuit of similar size, the main interesting issue is to understand whether the
dependence on the parameter k can be improved. It is implicit in the work of Vassilevska and
Williams [10] that the rPer(X) polynomial in the commutative setting can be computed by
an algebraic branching program of size O∗(2k). This problem originates from its connection
with combinatorial problems studied in the context of exact algorithm design [10]. In the
noncommutative setting, set-multilinearizing S∗n,k(Y) polynomial (i.e. replacing each yi at
position j by yj,i), we obtain rPer(Y) where Y is a k × n symbolic matrix of noncommuting
variables. Using this connection with the explicit construction of S∗n,k(Y) polynomial,
we provide an ABP for rPer(Y) in the noncommutative setting of size O∗(

(
n
↓k/2

)
). The

construction time is also similar.
As in the usual commutative case, the noncommutative determinant polynomial of a

symbolic matrix Y = (yi,j)1≤i,j≤k is defined as follows (the variables in the monomials are
ordered from left to right):

Det(Y) =
∑
σ∈Sk

sgn(σ) y1,σ(1) . . . yk,σ(k).

Nisan [9] has also shown that any algebraic branching program for the noncommutative
determinant of a k × k symbolic matrix must be of size Ω(2k). In this paper we give an
explicit construction of such an ABP in time O∗(2k). Here too, the main point is that Nisan
has also shown that the lower bound is tight, but we provide an explicit construction.

Moreover, motivated by the result of Vassilevska and Williams [10], we study the com-
plexity of the rectangular determinant polynomial (in commutative domain) defined as
follows.

rDet(X) =
∑

S∈([n]
k)

Det(XS).

We prove that the rectangular determinant polynomial can be computed using O∗(2k)-size
explicit ABP.

Finally, we consider the problem of evaluating the noncommutative rectangular determ-
inant over matrix algebras and show that it is #W[1]-hard for polynomial dimensional
matrices. Hence the noncommutative rectangular determinant is unlikely to have an explicit
O∗(no(k))-size ABP. Recently, we have shown the #W[1]-hardness of computing noncommut-
ative rectangular permanents over poly-dimensional rational matrices [1]. We note that the
noncommutative n× n determinant over matrix algebras is well-studied, and computing it
remains #P-hard even over 2× 2 rational matrices [3, 7, 6]. Our proof technique is based on

ISAAC 2019

38:4 On Explicit Branching Programs

Hadamard product of noncommutative polynomials which is also used in [3]. However, the
crucial difference is that, to show the #P-hardness of noncommutative determinant, authors
in [3] reduce the evaluation of commutative permanent to this case; whereas, #W[1]-the
hardness of noncommutative rectangular determinant seems more challenging as commutative
rectangular permanent is in FPT. In contrast, we show that the rectangular determinant (and
rectangular permanent), whose entries are r × r matrices over any field, can be computed in
time O∗(2kr2k).

Our Results
We first formally define what we mean by explicit circuit upper bounds.

I Definition 1 (Explicit Circuit Upper Bound). A family {fn}n>0 of degree-k polynomials in
the commutative ring F[x1, x2, . . . , xn] (or the noncommutative ring F〈y1, y2, . . . , yn〉) has
q(n, k)-explicit upper bounds if there is an O∗(q(n, k)) time-bounded algorithm A that on
input 〈0n, k〉 outputs a circuit Cn of size O∗(q(n, k)) computing fn.

We show the following explicit upper bound results.

I Theorem 2.
1. The family of symmetrized elementary polynomials {S∗n,k(Y)}n>0 has

(
n
↓k/2

)
-explicit ABPs

over any field.
2. The noncommutative rectangular permanent family {rPer(Y)}n>0, where Y is a k × n

symbolic matrix of variables has
(
n
↓k/2

)
-explicit ABPs.

I Remark 3. We note here that there is an algorithm of run time O∗(
(
n
↓k/2

)
) for computing

the rectangular permanent over rings and semirings [5]. Our contribution in Theorem 2.2 is
that we obtain an

(
n
↓k/2

)
-explicit ABP for it.

I Theorem 4.
1. The family of noncommutative determinants {Det(Y)}k>0 has 2k-explicit ABPs over any

field.
2. There is a family {fn} of noncommutative degree-k polynomials fn such that fn has the

same support as S∗n,k, and it has 2k-explicit ABPs. This result holds over any field that
has at least n distinct elements.

3. The commutative rectangular determinant family {rDet(X)}k>0, where X is a k×n matrix
of variables has 2k-explicit ABPs.

We stress here that the constructive aspect of the above upper bounds is new. The
existence of the ABPs claimed in the first two parts of Theorem 2 and the first part of
Theorem 4 follows from Nisan’s work [9] which shows a tight connection between optimal
ABP-size for some f ∈ F〈X〉 and ranks of the matrices Mr whose rows are labeled by degree
r monomials, columns by degree k − r monomials and the (m1,m2)th entry is the coefficient
of m1m2 in f .

Next we describe the parameterized hardness result for rectangular determinant polyno-
mial when we evaluate over matrix algebras.

I Theorem 5. For any fixed ε > 0, evaluating the k× n rectangular determinant polynomial
over nε × nε rational matrices is #W[1]-hard, treating k as fixed parameter.

However, we can easily design an algorithm of run time O∗(2kr2k) for computing the
rectangular permanent and determinant polynomials with r × r matrix entries over any field.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:5

Organization
The paper is organized as follows. In Section 2, we provide the necessary background. The
proofs of Theorem 2 and Theorem 4 are given in Section 3 and Section 4 repectively. We
prove Theorem 5 in Section 5.

2 Preliminaries

We provide some background results from noncommutative computation. Given a commut-
ative circuit C, we can naturally associate a noncommutative circuit Cnc by prescribing an
input order at each multiplication gate. This is captured in the following definition.

I Definition 6. Given a commutative circuit C computing a polynomial in F[x1, x2, ..., xn],
the noncommutative version of C, Cnc is the noncommutative circuit obtained from C by fixing
an ordering of the inputs to each product gate in C and replacing xi by the noncommuting
variable yi : 1 ≤ i ≤ n.

Let f ∈ F[X] be a homogenous degree-k polynomial computed by a circuit C, and let
f̂(Y) ∈ F〈Y〉 be the polynomial computed by Cnc. Let Xk denote the set of all degree-k
monomials over X. As usual, Yk denotes all degree-k noncommutative monomials (i.e., words)
over Y. Each monomial m ∈ Xk can appear as different noncommutative monomials m̂ in
f̂ . We use the notation m̂→ m to denote that m̂ ∈ Yk will be transformed to m ∈ Xk by
substituting xi for yi, 1 ≤ i ≤ n. Then, we observe the following, [m]f =

∑
m̂→m[m̂]f̂ .

For each monomial m̂ = yi1yi2 · · · yik , the permutation σ ∈ Sk maps m̂ to the monomial
m̂σ defined as m̂σ = yiσ(1)yiσ(2) · · · yiσ(k) . By linearity, f̂ =

∑
m̂∈Yk [m̂]f̂ · m̂ is mapped by σ

to the polynomial, f̂σ =
∑
m̂∈Yk [m̂]f̂ · m̂σ. This gives the following definition.

I Definition 7. The symmetrized polynomial of f , f∗ is degree-k homogeneous polynomial
f∗ =

∑
σ∈Sk f̂

σ.

Next, we recall the definition of Hadamard product of two polynomials.

I Definition 8. Given polynomials f, g, their Hadamard product is defined as

f ◦ g =
∑
m

([m]f · [m]g) ·m,

where [m]f denotes the coefficient of monomial m in f .

In the commutative setting, computing the Hadamard product is intractable in general.
This is readily seen as the Hadamard product of the determinant polynomial with itself
yields the permanent polynomial. However, in the noncommutative setting the Hadamard
product of two ABPs can be computed efficiently [2].

I Theorem 9 ([2]). Given a noncommutative ABP of size S′ for degree k polynomial
f ∈ F〈y1, y2, . . . , yn〉 and a noncommutative ABP of size S for another degree k polynomial
g ∈ F〈y1, y2, ..., yn〉, we can compute a noncommutative ABP of size SS′ for f ◦ g in
deterministic SS′ · poly(n, k) time.

Let C be a circuit and B an ABP computing homogeneous degree-k polynomials f, g ∈
F〈Y〉 respectively. Then their Hadamard product f ◦ g has a noncommutative circuit of
polynomially bounded size which can be computed efficiently [2].

Furthermore, if C is given by black-box access then f ◦ g(a1, a2, . . . , an) for ai ∈ F, 1 ≤
i ≤ n can be evaluated by evaluating C on matrices defined by the ABP B [3] as follows:
For each i ∈ [n], the transition matrix Mi ∈Ms(F) are computed from the noncommutative

ISAAC 2019

38:6 On Explicit Branching Programs

ABP B (which is of size s) that encode layers. We define Mi[k, `] = [xi]Lk,`, where Lk,` is
the linear form on the edge (k, `). Now to compute (f ◦ g)(a1, a2, . . . , an) where ai ∈ F for
each 1 ≤ i ≤ n, we compute C(a1M1, a2M2, . . . anMn). The value (f ◦ g)(a1, a2, . . . , an) is
the (1, s)th entry of the matrix f(a1M1, a2M2, . . . , anMn).

I Lemma 10 ([3]). Given a circuit C and a ABP B computing homogeneous noncommutative
polynomials f and g in F〈Y〉, the Hadamard product f ◦ g can be evaluated at any point
(a1, . . . , an) ∈ Fn by evaluating C(a1M1, . . . , anMn) where M1, . . . ,Mn are the transition
matrices of B, and the dimension of each Mi is the size of B.

3 The Proof of Theorem 2

In this section, we present the construction of explicit ABPs for S∗n,k(Y) and noncommutative
rPer(Y).

3.1 The construction of ABP for S∗
n,k(Y)

The construction of the ABP for S∗n,k(Y) is inspired by a inclusion-exclusion based dynamic
programming algorithm for the disjoint sum problem [4].

Proof of Theorem 2.1. Let us denote by F the family of subsets of [n] of size exactly k/2.
Let ↓F denote the family of subsets of [n] of size at most k/2. For a subset S ⊂ [n], we
define mS =

∏
j∈S yj . Let us define

fS =
∑

σ∈Sk/2

k/2∏
j=1

yiσ(j)

where S ∈ F and S = {i1, i2, . . . , ik/2}, otherwise for subsets S /∈ F , we define fS = 0. Note
that, for each S ∈ F , fS is the symmetrization of the monomial mS which we denote by m∗S
(notice Definition 7).

For each S ∈↓F , let us define f̂S =
∑
S⊆A fA where A ∈ F . We now show, using the

inclusion-exclusion principle, that we can express S∗n,k using an appropriate combination of
these symmetrized polynomials for different subsets.

I Lemma 11.

S∗n,k =
∑
S∈↓F

(−1)|S|f̂2
S .

Proof. Let us first note that, S∗n,k =
∑
A∈F

∑
B∈F [A ∩ B = ∅]fAfB, where we use [P] to

denote that the proposition P is true. By the inclusion-exclusion principle:

S∗n,k =
∑
A∈F

∑
B∈F

[A ∩B = ∅]fAfB

=
∑
A∈F

∑
B∈F

∑
S∈↓F

(−1)|S|[S ⊆ A ∩B]fAfB

=
∑
S∈↓F

(−1)|S|
∑
A∈F

∑
B∈F

[S ⊆ A][S ⊆ B]fAfB

=
∑
S∈↓F

(−1)|S|
(∑
A∈F

[S ⊆ A]fA

)2

=
∑
S∈↓F

(−1)|S|f̂2
S . J

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:7

Now we describe two ABPs where the first ABP simultaneously computes fA for each
A ∈ F and the second one simultaneously computes f̂S for each S ∈↓F .

I Lemma 12. There is an
(
n
↓k/2

)
-explicit multi-output ABP B1 that outputs the collection

{fA} for each A ∈ F .

Proof. First note that, m∗S =
∑
j∈Sm

∗
S\{j} ·yj . Now, the construction of the ABP is obvious.

It consists of (k/2 + 1) layers where layer ` ∈ {0, 1, . . . , k/2} has
(
n
`

)
many nodes indexed

by ` size subsets of [n]. In (`+ 1)th layer, the node indexed by S is connected to the nodes
S \ {j} in the previous layer with an edge label yj for each j ∈ S. Clearly, in the last layer,
the Sth sink node computes fS . J

I Lemma 13. There is an
(
n
↓k/2

)
-explicit multi-output ABP B2 that outputs the collection

{f̂S} for each S ∈↓F .

Proof. To construct such an ABP, we use ideas from [4]. We define f̂i,S =
∑
S⊆A fA where

S ⊆ A and A ∩ [i] = S ∩ [i]. Note that, f̂n,S = fS and f̂0,S = f̂S . From the definition, it is
clear that f̂i−1,S = f̂i,S + f̂i,S∪{i} if i /∈ S and f̂i−1,S = f̂i,S if i ∈ S. Hence, we can take a
copy of ABP B1 from Lemma 12, and then simultaneously compute f̂i,S for each S ∈↓F and
i ranging from n to 0. Clearly, the new ABP B2 consists of (n+ k/2 + 1) many layers and
at most

(
n
↓k/2

)
nodes at each layer. The number of edges in the ABP is also linear in the

number of nodes. J

Let f =
∑
m∈Y k [m]f ·m be a noncommutative polynomial of degree k in F〈Y 〉. The

reverse of f is defined as the polynomial

fR =
∑
m∈Y k

[m]f ·mR,

where mR is the reverse of the word m.

I Lemma 14 (Reversing an ABP). Suppose B is a multi-output ABP with r sink nodes where
the ith sink node computes fi ∈ F〈Y〉 for each i ∈ [r]. We can construct an ABP of twice the
size of B that computes the polynomial

∑r
i=1 fi · Li · fRi where Li are affine linear forms.

Proof. Suppose B has ` layers, then we construct an ABP of 2`+ 1 layers where the first `
layers are the copy of ABP B and the last ` layers are the “mirror image” of the ABP B,
call it BR. In the (`+ 1)th layer we connect the ith sink node of ABP B to the ith source
node of BR by an edge with edge label Li. Note that, BR has r source nodes and one sink
node and the polynomial computed between ith source node and sink is fRi . J

Now, applying the construction of Lemma 14 to the multi-output ABP B2 of Lemma 13
with LS = (−1)|S| we obtain an ABP that computes the polynomial

∑
S(−1)|S|f̂S · f̂RS . Since

f̂S is a symmetrized polynomial, we note that f̂RS = f̂S and using Lemma 11 we conclude
that this ABP computes S∗n,k. The ABP size is O(k

(
n
↓k/2

)
). J

3.2 The construction of ABP for rPer(Y)
Proof of Theorem 2.2. A

(
n
↓k/2

)
-explicit ABP for the rectangular permanent polynomial can

be obtained easily from the
(
n
↓k/2

)
-explicit ABP for S∗n,k(Y) by careful set-multilinearization.

This can be done by simply renaming the variables yi : 1 ≤ i ≤ n at the position 1 ≤ j ≤ k
by yj,i. J

ISAAC 2019

38:8 On Explicit Branching Programs

4 The Proof of Theorem 4

We divide the proof in three subsections.

4.1 A 2k-explicit ABP for k × k noncommutative determinant
In this section, we present an optimal explicit ABP construction for the noncommutative
determinant polynomial for the square symbolic matrix. .

Proof of Theorem 4.1. The ABP B has k + 1 layers with
(
k
`

)
nodes at the layer ` for each

0 ≤ ` ≤ k. The source of the ABP is labeled ∅ and the nodes in layer ` are labeled by the
distinct size ` subsets S ⊆ [k], 1 ≤ ` ≤ k, hence the sink is labeled [k]. From the node labeled
S in layer `, there are k − ` outgoing edges (S, S ∪ {j}), j ∈ [k] \ S.

Define the sign sgn(S, j) as sgn(S, j) = (−1)tj , where tj is the number of elements in S
larger than j. Equivalently, tj is the number of swaps required to insert j in the correct
position, treating S as a sorted list.

For noncommutative determinant polynomial, we connect the set S in the ith layer to
a set S ∪ {j} in the (i+ 1)th layer with the edge label sgn(S, j) · yi+1,j The source to sink
paths in this ABP are in 1-1 correspondence to the node labels on the paths which give
subset chains ∅ ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tk = [k] such that |Ti \ Ti−1| = 1 for all i ≤ k. Such
subset chains are clearly in 1-1 correspondence with permutations σ ∈ Sk listed as a sequence:
σ(1), σ(2), . . . , σ(k), where Ti = {σ(1), σ(2), . . . , σ(i)}. The following claim spells out the
connection between the sign sgn(σ) of σ and the sgn(S, j) function defined above.

B Claim 15. For each σ ∈ Sk and Ti = {σ(1), σ(2), . . . , σ(i)}, we have

sgn(σ) =
k∏
i=1

sgn(Ti−1, σ(i)).

Proof. We first note that sgn(σ) = (−1)t, if there are t transpositions (ri si), 1 ≤ i ≤ t such
that σ · (r1 s1) · (r2 s2) · · · (rt st) = 1. Equivalently, interpreting this as sorting the list
σ(1), σ(2), . . . , σ(k) by swaps (ri si), applying these t swaps will sort the list into 1, 2, . . . , k. As
already noted, sgn(Ti−1, σ(i)) = (−1)ti , where ti is the number of swaps required to insert σ(i)
in the correct position into the sorted order of Ti−1 (where σ(i) is initially placed to the right
of Ti−1). Hence,

∑k
i=1 ti is the total number of swaps required for this insertion sort procedure

to sort σ(1), σ(2), . . . , σ(k). It follows that
∏k
i=1 sgn(Ti−1, σ(i)) = (−1)

∑
i
ti = sgn(σ), which

proves the claim. C

The fact that the ABP computes the noncommutative determinant polynomial follows
directly from Claim 15 and the edge labels. J

4.2 A 2k-explicit ABP weakly equivalent to S∗
n,k

A polynomial f ∈ F[X] (resp. F〈Y〉) is said to be weakly equivalent to a polynomial g ∈ F[X]
(resp. F〈Y〉), if for each monomial m over X, [m]f = 0 if and only if [m]g = 0. For the
construction of an ABP computing a polynomial weakly equivalent to S∗n,k, we will suitably
modify the ABP construction described above.

Proof of Theorem 4.2. Let αi, 1 ≤ i ≤ n be distinct elements from F. For each j ∈ [k] \ S,
the edge (S, S ∪ {j}) is labeled by the linear form sgn(S, j) ·

∑n
i=1 α

j
iyi, where yi, 1 ≤ i ≤ n

are noncommuting variables. This gives an ABP B of size O∗(2k).

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:9

We show that the polynomial computed by ABP B is weakly equivalent to S∗n,k. Clearly,
B computes a homogeneous degree k polynomial in the variables yi, 1 ≤ i ≤ n. We determine
the coefficient of a monomial yi1yi2 · · · yik . As noted, each source to sink path in B corresponds
to a permutation σ ∈ Sk. Along that path the ABP compute the product of linear forms

sgn(σ)Lσ(1)Lσ(2) · · ·Lσ(k), where Lσ(q) =
n∑
i=1

α
σ(q)
i yi,

where the sign is given by the previous claim. The coefficient of monomial yi1yi2 · · · yik in the
above product is given by sgn(σ)

∏k
q=1 α

σ(q)
iq

. Thus, the coefficient of yi1yi2 · · · yik in the ABP
is given by

∑
σ∈Sk sgn(σ)

∏k
q=1 α

σ(q)
iq

, which is the determinant of the k × k Vandermonde
matrix whose qth column is (αiq , α2

iq
, . . . , αkiq)

T . Clearly, that determinant is non-zero if and
only if the monomial yi1yi2 · · · yik is multilinear. Clearly the proof works for any field that
contains at least n distinct elements. J

I Remark 16. A polynomial f ∈ F〈Y〉 is positively weakly equivalent to S∗n,k, if for each
multilinear monomial m ∈ Yk, [m]f > 0. In the above proof, let g be the polynomial
computed by ABP B that is weakly equivalent to S∗n,k. Clearly, f = g ◦ g is positively weakly
equivalent to S∗n,k, and f has a 4k-explicit ABP, since B is 2k-explicit. This follows from
Theorem 9. We leave open the problem of finding a 2k-explicit ABP for some polynomial
that is positively weakly equivalent to S∗n,k. Such an explicit construction would imply a
deterministic O∗(2k) time algorithm for k-path which is a long-standing open problem [8].

4.3 A 2k-explicit ABP for k × n commutative rectangular determinant
In this section, we present the ABP construction for commutative determinant polynomial
for k × n symbolic matrix.

Proof of Theorem 4.3. We adapt the ABP presented in Subsection 4.1. The main difference
is that, for the edge (S, S∪{j}), the linear form is sgn(S, j)·(

∑n
i=1 xj,izi), where zi : 1 ≤ i ≤ n

are fresh noncommuting variables, and the xj,i : 1 ≤ j ≤ k, 1 ≤ i ≤ n are commuting variables.
Then with a similar argument as before, the coefficient of the monomial zi1zi2 . . . zik

where i1 < i2 < . . . < ik is given by
∑
σ∈Sk sgn(σ)xσ(1),i1 . . . xσ(k),ik Now for a fixed σ ∈ Sk,

let τσ be the injection [k]→ [n] such that τσ(j) = iσ−1(j) : 1 ≤ j ≤ k.
Let (j1, j2) be an index pair that is an inversion in σ, i.e. j1 < j2 and σ(j1) > σ(j2).

Let `1 = σ(j1) and `2 = σ(j2). So iτσ(`1) = iσ−1(`1) and iτσ(`2) = iσ−1(`2). Clearly,
iτσ(`1) < iτσ(`2). Hence:∑

σ∈Sk

sgn(σ)xσ(1),i1 . . . xσ(k),ik =
∑

τσ∈Ik,n

sgn(τσ)x1,τσ(1) . . . xk,τσ(k).

Now the idea is to filter out only the good monomials zi1zi2 . . . zik where i1 < i2 < . . . < ik
from among all the monomials. This can be done by taking Hadamard product (using Theorem
9) with the following polynomial,

Sncn,k(Z) =
∑

S={i1<i2<...<ik}

zi1zi2 . . . zik .

Clearly, Sncn,k has a poly(n, k)-sized ABP which is just the noncommutative version (see
Definition 6) of the well-known ABP for commutative Sn,k. Finally, we substitute each zi = 1
to get the desired ABP for rDet(X). J

ISAAC 2019

38:10 On Explicit Branching Programs

5 Hardness of Evaluating Rectangular Determinant Over Matrix
Alegbras

In this section we prove a hardness result for evaluating the rectangular determinant over
matrix algebras. More precisely, if A is a k× n matrix whose entries Aij are nε × nε rational
matrices for a fixed ε > 0, then it is #W[1]-hard to compute rDet(A). We show this by a
reduction from the #W[1]-complete problem of counting the number of simple k-paths in
directed graphs.

However, there is a simple algorithm of run time O∗(2kr2k) to evaluate rectangular
permanent or rectangular determinant of size k×n over matrix algebras of dimension r. The
proof is given in the appendix.

For the proof of Theorem 5, we also use the notion of Graph Polynomial. Let G(V,E) be
a directed graph with n vertices where V (G) = {v1, v2, . . . , vn}. A k-walk is a sequence of k
vertices vi1 , vi2 , . . . , vik where (vij , vij+1) ∈ E for each 1 ≤ j ≤ k − 1. A k-path is a k-walk
where no vertex is repeated. Let A be the adjacency matrix of G, and let z1, z2, . . . , zn be
noncommuting variables. Define an n× n matrix B

B[i, j] = A[i, j] · zi, 1 ≤ i, j ≤ n.

Let ~1 denote the all 1’s vector of length n. Let ~z be the length n vector defined by ~z[i] = zi.
The graph polynomial CG ∈ F〈Z〉 is defined as

CG(z1, z2, . . . , zn) = ~1T ·Bk−1 · ~z.

Let W be the set of all k-walks in G. The following observation is folklore.

I Observation 1.

CG(z1, z2, . . . , zn) =
∑

vi1vi2 ...vik∈W
zi1zi2 · · · zik .

Hence, G contains a k-path if and only if the graph polynomial CG contains a multilinear
term.

5.1 The Proof of Theorem 5
Let Ik,n be the set of injections from [k]→ [n]. Define

S := {f ∈ I2k,2n|∃g ∈ Ik,n such that ∀i ∈ [k], f(2i− 1) = g(i); f(2i) = n+ g(i)}.

Clearly, there is a bijection between S and Ik,n. We denote each f ∈ S as fg where
g ∈ Ik,n is the corresponding injection. By a simple counting argument, we observe the
following.

I Observation 2. For each f ∈ S, sgn(f) = (−1)
k(k−1)

2 .

Consider a set of noncommuting variables Y = {y1,1, y1,2, . . . , y2k,2n} corresponding to
the entries of a 2k × 2n symbolic matrix Y. Given f ∈ I2k,2n, define mf =

∏2k
i=1 yi,f(i).

I Lemma 17. There is an ABP B of poly(n, k) size that computes a polynomial F ∈ F〈Y〉
such that for each f ∈ I2k,2n, [mf]F = 1 if f ∈ S and otherwise [mf]F = 0.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:11

Proof. The ABP B consists of 2k + 1 layers, labelled {0, 1, . . . , 2k}. For each even i ∈
[0, 2k], there is exactly one node qi at level i. For each odd i ∈ [0, 2k], there are n nodes
pi,1, pi,2, . . . , pi,n at level i. We now describe the edges of B. For each even i ∈ [0, 2k − 2]
and j ∈ [n], there is an edge from qi to pi+1,j labelled yi+1,j . For each odd i ∈ [0, 2k− 1] and
j ∈ [n], there is an edge from pi,j to qi+1 labelled yi+1,n+j . For an injection f ∈ I2k,2n, B
contributes a monomialmf if and only if f ∈ S and B can be computed in poly(n, k) time. J

Suppose, Y is a 2k × 2n matrix where the (i, j)th entry is yi,j . By Observation 2 and
Lemma 17,

rDet(Y) ◦ F (Y) =
∑
fg∈S

sgn(fg)mfg = (−1)
k(k−1)

2
∑
g∈Ik,n

mfg .

Let Z = {z1, . . . , zn} be a set of noncommuting variables. Define for each g ∈ Ik,n,
m′g =

∏k
i=1 zg(i). Define a map τ such that τ : yi,j 7→ zj if i is odd, and τ : yi,j 7→ 1 for even

i. In other words, τ(mfg) = m′g. Notice that,

rDet(Y) ◦ F (Y)|τ = (−1)
k(k−1)

2
∑
g∈Ik,n

mfg |τ = (−1)
k(k−1)

2
∑
g∈Ik,n

m′g = (−1)
k(k−1)

2 S∗n,k(Z).

Given a directed graph G on n vertices, we first construct an ABP for the noncommutative
graph polynomial CG over rationals. From the definition, it follows that CG has a polynomial
size ABP. Notice that, ((rDet(Y) ◦ F (Y)|τ) ◦ CG(Z))(~1) = S∗n,k(Z) ◦ CG(Z)(~1) counts the
number of directed k-paths in the graph G, and hence evaluating this term is #W[1]-hard.
Let us modify the ABP for graph polynomial CG(Z) by replacing each edge labeled by zj at
ith layer by two edges where the first edge is labeled by y2i−1,j and second one is labeled by
y2i,n+j . Let C ′G(Y) is the new polynomial computed by the ABP. Notice that, each monomial
of the modified graph polynomial looks like

∏2k
i=1 yi,f(i) for some f : [2k] 7→ [2n]. More

importantly, for each k-path vi1vi2 . . . vik , if g ∈ Ik,n is the corresponding injection, then∏k
i=1 zg(i) is converted to

∏2k
i=1 yi,fg(i) for fg ∈ S. Notice that, (rDet(Y) ◦ F (Y)|τ) ◦ CG(Z)

= (rDet(Y)◦F (Y)◦C ′G(Y))|τ and hence, evaluating (rDet(Y)◦F (Y)◦C ′G(Y))(~1) is #W[1]-hard.
Now, assume to the contrary, we have an FPT algorithm A to evaluate rDet(Y) over

matrix inputs. As, C ′G(Y) and F (Y) are computed by ABPs, we obtain an ABP B′ computing
C ′G ◦F (Y). From ABP B′, we construct the t× t transition matrices M1,1, . . . ,M2k,2n where
t is the size of the ABP B′. From Lemma 10 we know that, we are interested to compute
rDet(Y) over the matrix tuple (M1,1, . . . ,M2k,2n) which is same as invoking the algorithm
A on the following 2k × 2n matrix A: ai,j = Mi,j . By a simple reduction we get a similar
hardness over nε × nε dimensional matrix algebras for any fixed ε > 0. J

6 Conclusion

In this paper, we have presented the construction of explicit algebraic branching pro-
grams for noncommutative symmetrized elementary symmetric polynomial, noncommutative
rectangular permanent polynomial and commutative rectangular determinant polynomial.
Additionally, we present an explicit algebraic branching program for noncommutative square
determinant polynomial. In most of the cases the constructions are optimal in the sense of
lower bound result of Nisan [9]. It is also shown that evaluating rectangular determinant
polynomial over matrix algebras is #W[1]-hard. The paper brings out further avenues of
research. A very interesting problem is to tightly classify the complexity of computing
the commutative rectangular k × n determinant polynomial. Is it computable in poly(n, k)

ISAAC 2019

38:12 On Explicit Branching Programs

time? If not, can one show a complexity theoretic hardness of evaluating the commutative
determinant polynomial? We feel that the main obstacle is to interpret rectangular determ-
inant computation combinatorially. Another open end is to construct an explicit algebraic
branching program for noncommutative rectangular determinant polynomial of size O∗(nck)
for some c < 1 similar to the one we have constructed for noncommutative rectangular
permanent polynomial.

References
1 Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay. Fast

Exact Algorithms Using Hadamard Product of Polynomials. CoRR, abs/1807.04496, 2018.
arXiv:1807.04496.

2 Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic Circuits and the
Hadamard Product of Polynomials. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT
Kanpur, India, pages 25–36, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2304.

3 Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncommutative
determinant. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 677–686, 2010. doi:
10.1145/1806689.1806782.

4 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting Paths and
Packings in Halves. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, pages
578–586, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

5 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Evaluation of
permanents in rings and semirings. Inf. Process. Lett., 110(20):867–870, 2010. doi:10.1016/
j.ipl.2010.07.005.

6 Markus Bläser. Noncommutativity Makes Determinants Hard. In Automata, Languages, and
Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part I, volume 243, pages 172–183, 2013. doi:10.1007/978-3-642-39206-1_15.

7 Steve Chien, Prahladh Harsha, Alistair Sinclair, and Srikanth Srinivasan. Almost settling the
hardness of noncommutative determinant. In Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 499–508, 2011.
doi:10.1145/1993636.1993703.

8 Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras for parameter-
ized problems. ACM Trans. Algorithms, 12(3):31:1–31:18, 2016. doi:10.1145/2885499.

9 Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 410–418, 1991. doi:10.1145/103418.103462.

10 Virginia Vassilevska Williams and Ryan Williams. Finding, Minimizing, and Counting
Weighted Subgraphs. SIAM J. Comput., 42(3):831–854, 2013. doi:10.1137/09076619X.

A Computing Rectangular Permanent and Determinant over Small
Dimensional Algebras

The main result of the section is as follows.

I Theorem 18. Let F be any field and A be an r dimensional algebra over F with basis
e1, e2, . . . , er. Let {Aij}1≤i≤k

1≤j≤n
be a k × n matrix with Aij ∈ A. Then rPer(A) and rDet(A)

can be computed in deterministic O∗(2krk) time.

http://arxiv.org/abs/1807.04496
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2304
https://doi.org/10.1145/1806689.1806782
https://doi.org/10.1145/1806689.1806782
https://doi.org/10.1016/j.ipl.2010.07.005
https://doi.org/10.1016/j.ipl.2010.07.005
https://doi.org/10.1007/978-3-642-39206-1_15
https://doi.org/10.1145/1993636.1993703
https://doi.org/10.1145/2885499
https://doi.org/10.1145/103418.103462
https://doi.org/10.1137/09076619X

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:13

Proof. We present the proof for rectangular permanent. The proof for rectangular determ-
inant is identical. The proof follows easily from expressing each entry Ai,j in the standard
basis and then rearranging terms. Let e1, e2, . . . , er be the standard basis for A over F. First
we note that

rPer(A) =
∑
f∈Ik,n

k∏
i=1

Aif(i)

=
∑
f∈Ik,n

k∏
i=1

r∑
`=1

A
(`)
if(i)e`

=
∑
f∈Ik,n

∑
(t1,t2,...,tk)∈[r]k

k∏
i=1

A
(ti)
if(i)

k∏
i=1

eti

=
∑

(t1,t2,...,tk)∈[r]k
(
∑
f∈Ik,n

k∏
i=1

A
(ti)
if(i))

k∏
i=1

eti . (1)

Now we observe that

∑
f∈Ik,n

k∏
i=1

A
(ti)
if(i) = rPer(A(t1,t2,...,tk)),

where A(t1,t2,...,tk) is the k × n matrix defined as A(t1,t2,...,tk)
ij = A

(ti)
ij . Thus we have

rPer(A) =
∑

(t1,t2,...,tk)∈[r]k
rPer(A(t1,t2,...,tk))

k∏
i=1

eti . (2)

For a fixed (t1, t2, . . . , tk) ∈ [r]k the value rPer(A(t1,t2,...,tk)) can be computed in O∗(2k)
time using the rectangular permanent algorithm [10]. Now we can compute rPer(A) by
computing rk many such rectangular permanents and putting them together according to
equation 2. This gives a deterministic O∗(2kr2k) time algorithm for computing rPer(A). J

As a direct corollary we get the following.

I Corollary 19. Let F be any field and let A be a k × n matrix with Aij ∈Mr×r(F). Then
rPer(A) and rDet(A) can be computed in O∗(2krk) time.

ISAAC 2019

A Competitive Algorithm for Random-Order
Stochastic Virtual Circuit Routing
Thắng Nguyễn Kim
IBISC, Univ Evry, University Paris Saclay, Evry, France
kimthang.nguyen@univ-evry.fr

Abstract
We consider the virtual circuit routing problem in the stochastic model with uniformly random
arrival requests. In the problem, a graph is given and requests arrive in a uniform random order.
Each request is specified by its connectivity demand and the load of a request on an edge is a random
variable with known distribution. The objective is to satisfy the connectivity request demands while
maintaining the expected congestion (the maximum edge load) of the underlying network as small
as possible.

Despite a large literature on congestion minimization in the deterministic model, not much
is known in the stochastic model even in the offline setting. In this paper, we present an
O(logn/ log logn)-competitive algorithm when optimal routing is sufficiently congested. This ratio
matches to the lower bound Ω(logn/ log logn) (assuming some reasonable complexity assumption)
in the offline setting. Additionally, we show that, restricting on the offline setting with deterministic
loads, our algorithm yields the tight approximation ratio of Θ(logn/ log logn). The algorithm is
essentially greedy (without solving LP/rounding) and the simplicity makes it practically appealing.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation Algorithms, Congestion Minimization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.39

Funding Research supported by the ANR project OATA no ANR-15-CE40-0015-01.

1 Introduction

Congestion minimization is a fundamental problem for network operations/communication.
In the former, there are connectivity requests and serving requests induces loads on network
links. The load vector of each request is deterministically given. The objective is to satisfy the
connectivity demands while maintaining the congestion of the underlying network as small
as possible. The problem has been widely studied and several algorithms with performance
guarantee have been designed.

In real-world scenarios, given the presence of uncertainty, request loads are rarely determ-
inistic but vary as random variables. Uncertainty may come from different sources due to
unexpected events, noise, etc. The uncertainty in the loads represents the main difficulty in
designing performant algorithms in such scenarios. In this paper, we take one step closer to
real-world situations by considering the congestion minimization in the stochastic model.

Stochastic Virtual Circuit Routing Problem (SVCR). Given a directed graph G(V,E)
where |V | = n, |E| = m and a set of k requests. A request i (for 1 ≤ i ≤ k) is specified by a
origin/destination pair (oi, di) and a random variable Xi,e whose distribution is known that
represents the load of request i on an edge e. Assume that Xi,e’s are bounded and without
loss of generality, Xi,e’s take values in [0, 1]. For each request i, one needs to choose a routing
path connecting oi to di. The expected congestion of a routing (connecting all requests’ pairs)
is E

[
maxe

∑
i∈Te Xi,e

]
where Te is the set of requests whose routing path passes through e.

The objective is to minimize the expected congestion.
© Thắng Nguyễn Kim;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 39; pp. 39:1–39:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6085-9453
mailto:kimthang.nguyen@univ-evry.fr
https://doi.org/10.4230/LIPIcs.ISAAC.2019.39
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

In this paper, we consider the SVCR problem in the random-order setting. In the latter,
requests are released over time in an uniformly random order and at the arrival of a request,
one needs to make an irrevocable decision to satisfy the request. The random-order setting is
similar to the online one; however, in the former the adversary can choose request parameters
but has no influence on the request arrival order (which is uniformly random).

The congestion objective belongs to the class of `p-norm functions on load vectors.
Specifically, the former corresponds to the `∞-norm and it is well-known that the `∞-norm
of a m-vector can be approximated up to a constant factor by the `p-norm where p = logm.
In the SVCR problem, we also consider `p-norm objective functions on load vectors. Note
that when we mention the SVCR problem without stating explicitly the objective, it means
that the congestion objective is considered.

Stochastic algorithmic problems are common in real-world situations and have been
extensively studied in different domains, including approximation algorithms. There are
two classes of algorithms for stochastic problems: non-adaptive and adaptive. In the former,
the decisions have been made up-front and then the realization of the randomness will be
revealed. In the latter, the randomness is revealed instantaneously after each decision (so an
algorithm can adapt its strategy due to the outcome of random variables observed so far).
In virtual circuit routing, non-adaptive solutions are preferable and more suitable than the
adaptive ones since the former is usually simpler and easier to implement. In this paper, we
are interested in designing non-adaptive solutions for the SVCR problem.

The virtual circuit routing problem has been well understood in the deterministic model.
Specifically, in offline setting Raghavan and Thompson [23] gave an O(logn/ log logn)-
approximation algorithm and in online setting Aspnes et al. [3] provided an O(logn)-
competitive algorithm. The bounds are optimal up to a constant factor. However, not much
in term of approximation is known in the stochastic model. A closely related problem to
SVCR, the stochastic load balancing problem, has been studied in the offline setting. In the
problem, given a set of jobs and machines, one needs to assign jobs to machines such that
the (expected) maximum load of the assignment is minimized. Kleinberg et al. [17] first
considered this problem and gave a constant approximation for identical machines, i.e., for
each job j, the random loads of a job on all machines are identical. Goel and Indyk [11]
provided better approximations when the job loads follow some specific distributions, for
example Poisson distributions, Exponential distributions. Very recently, Gupta et al. [12]
gave a constant approximation for unrelated machines. They also considered the objective of
minimizing the `p-norm of machine loads and showed an O(p/ log p)-approximation algorithm.
Their technique is based on a linear program which guarantees a strong lower bound for the
stochastic load balancing problem. In their paper, Gupta et al. [12] raised an open question
of designing algorithms for the SVCR problem. The main difficulty, which resists to current
approaches, is to deal with the correlation of edges loads where different paths may share
common edges.

1.1 Our Contribution and Approach
We give a competitive algorithm for the SVCR problem in the random-order setting. Specific-
ally, our algorithm is O(logn/ log logn)-competitive if the congestion of the optimal solution
is at least 1, i.e., informally, optimal routing is sufficiently congested. Note that even in the
offline setting with deterministic loads, the problem is known to be hard to approximate
within factor Ω(logn/ log logn) unless all problems in NP have randomized algorithms with
running time npoly logn [2, 8]. The result shows that in terms of approximation, one can
guarantee the quality of the algorithmic solutions for the virtual circuit routing problem
even with uncertainty in the request loads. Moreover, our algorithm is essentially greedy
which makes it practically appealing and is easy to implement.

T. Nguyễn Kim 39:3

In order to design algorithms for the SVCR problem, we study the more general objective
of minimizing the `p-norm of edge loads. We consider the primal-dual technique with
configuration LPs [25]. This approach provides a clean way to deal with non-linear objective
functions and intuitive constructions of dual variables. Our algorithm is a generalized version
of Greedy Restart algorithms introduced by Molinaro [22] in the context of machine load
balancing (which can be seen as a special case of the SVCR problem where the network
consists of two nodes and parallel edges connecting these two nodes). Informally, for every
request the algorithm selects a routing path greedily with respect to some function ψκ,p
(defined later) which depends on the current load vector. However, when half of the requests
have been considered, the algorithm restarts the procedure: it still chooses a routing path
greedily with respect to the function ψκ,p but now the function ψκ,p depends on the load
vector induced only by the second half of the requests. Building on the primal-dual technique
with configuration LPs [25] and useful probability inequalities together with insightful
observations by Molinaro [22], we prove the competitiveness of the algorithm in the online
random-order setting.

Besides, we revisit the classic virtual circuit routing problem in offline setting with
deterministic loads (where Xi,e’s are deterministic values wi for every e). We show that our
algorithm achieves the tight approximation ratio of Θ(logn/ log logn). Remark that our
greedy algorithm is simpler than the algorithms by Raghavan and Thompson [23], Srinivasan
[24] which are based on LP-rounding techniques or the recent algorithm by Chekuri and
Idleman [6] which relies on the notion of multiroute flows [16].

1.2 Further Related Works
In the offline setting, the virtual circuit routing problem is also known under the name of
the congestion minimization problem. The latter is a relaxation of the classsic edge-disjoint
paths problem: given a graph and a collection of source-sink pairs, can the pairs be connected
via edge-disjoint paths. For the variant of the congestion minimization problem where
di = 1 and wi ≡ 1 for every 1 ≤ i ≤ k, Raghavan and Thompson gave an O(logn/ log logn)-
approximation algorithm via their influential randomized rounding technique [23]. This ratio
is subsequently proved by Chuzhoy et al. [8] to be tight assuming some complexity hypothesis.
Srinivasan [24] considered the multipath congestion minimization problem corresponding
to the setting where di ≥ 1 and wi ≡ 1 for every 1 ≤ i ≤ k. Srinivasan presented an
O(logn/ log logn)-approximation algorithm by developing a dependent rounding technique
for cardinality constraints [24] . The technique is extended in subsequent works for handling
more general constraints [10, 9, 7]. Recently, Chekuri and Idleman [6] gave a simple algorithm
for the multipath congestion minimization problem. They showed the O(logn/ log logn)
approximation ratio via the notion of multiroute flows which were originally introduced
by Kishimoto and Takeuchi [16]. That enables a simple solution without using dependent
rounding and also allows them to improve the results in some particular cases.

The congestion minimization problem has been also studied in online setting where
requests arrive online. Aspnes et al. [3] gave an O(logn)-competitive algorithm and proved
that this bound is optimal up to a constant factor. For the more general objective of
`p-norm, Awerbuch et al. [4] considered the load balancing problem and proved that greedy
algorithm achieved the bound of O(p), also optimal up to a constant factor. Caragiannis [5]
strengthened and significantly simplified the analysis of the greedy algorithm and showed
the optimal bound of 1

21/p−1 .
Stochastic combinatorial optimization problems such as shortest paths, minimum spanning

trees, knapsack, bin-packing etc have been considered by Li and Deshpande [18] and Li and
Yuan [19] and Kleinberg et al. [17]. In these problems, parameters (length, weights, etc)

ISAAC 2019

39:4 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

are given as random variables with known distributions and the objective is to optimize the
expected value of some cost/utility functions. In this paper, we are interested in the class of
non-adaptive algorithms. Several works [21, 20, 15, 14] have considered adaptive algorithms
where the decisions of algorithms depend on the current state of the solutions.

2 Preliminaries

In this section, we give some definitions and technical lemmas which are useful in our analysis.
This part is drawn significantly from Molinaro [22]. Recall that in the random-order model,
the cost of a routing is the expected `p-norm of the load vector where the expectation is
taken over the random order and the random vectors Xi,e’s.

Given p > 1, its Hölder conjugate q is the number that satisfies 1
p + 1

q = 1. The dual of the
`p-norm is the `q-norm. Let `+

q be the set of non-negative vectors in Rm with `q-norm at most

1. Given a constant κ and p, define function ψκ,p : Rm → R as ψκ,p(u) = p
κ

(∥∥∥1 + κ
pu
∥∥∥
p
− 1
)
.

The function ψκ,p can be equivalently written as

ψκ,p(u) = f−1
κ,p

(m∑
h=1

fκ,p(uh)
)

where fκ,p(uh) =
(

1 + κ

p
uh

)p

Recall that ‖u‖p = g−1
(∑m

h=1 g(uh)
)

where g(uh) = (uh)p. Informally, ψκ,p(·) is a smooth

approximation of ‖·‖p as shown later in Lemma 1. In the paper, we are interested in the
congestion which is the `∞-norm of the load vectors. It is well-known that the `∞-norm
of any vector can be approximated by `p-norm of that vector where m is the number of
coordinates and p = logm. Molinaro [22] introduced the function ψκ,p as a smoother version
of `p-norm and showed that using function ψκ,p, one can obtain tighter bound then using
directly the `p-norm function for the scheduling problem of minimizing the `p-norm of the
load vectors in the random-order model.

First, observe that

∇ψκ,p(u) = p

κ
· ∇
∥∥∥∥1 + κ

p
u

∥∥∥∥
p

∈ `+
q (1)

where q = p/(p− 1) since

p

κ
· ∂

∂uh

∥∥∥∥1 + κ

p
u

∥∥∥∥
p

=
(
1 + κ

puh
)p−1(∑m

h=1
(
1 + κ

puh
)p)1−1/p ∀1 ≤ h ≤ m

⇒ ‖∇ψκ,p(u)‖q = 1.

The following lemma shows useful properties of functions ψκ,p’s and relates them to the
`p-norm function.

I Lemma 1 ([22]). For arbitrary κ > 0, it holds that
For all u ∈ Rm+ ,

‖u‖p ≤ ψκ,p(u) ≤ ‖u‖p + p(m1/p − 1)
κ

(2)

For all u ∈ Rm+ and v ∈ [0, 1]m, for every coordinate 1 ≤ h ≤ m,

e−κ (∇ψκ,p(u))h ≤ (∇ψκ,p(u + v))h ≤ e
κ (∇ψκ,p(u))h (3)

T. Nguyễn Kim 39:5

The following key inequality is proved in [22, Lemma 3.1].

I Lemma 2 ([22]). Consider a set of vector {v1, . . . ,vk} ∈ [0, 1]m and let V1, . . . , Vt be
sample without replacement from this set for 1 ≤ t ≤ k. Let U be a random vector in `+

q that
depends only on V1, . . . , Vt−1. Then, for all κ > 0,

E
[〈
V t, U

〉]
≤ eκ ‖EVt‖p + 1

k − (t− 1) ·
p(m1/p − 1)

κ

The following corollary is a direct consequence by replacing κ by κ · 1
4 log logn.

I Corollary 3. Consider a set of vector {v1, . . . ,vk} ∈ [0, 1]m and let V1, . . . , Vt be sample
without replacement from this set for 1 ≤ t ≤ k. Let U be a random vector in `+

q that depends
only on V1, . . . , Vt−1. Then, for all κ > 0,

E
[〈
V t, U

〉]
≤ eκ(log1/4 n) ‖EVt‖p + 1

k − (t− 1) ·
p(m1/p − 1)

κ

1
1
4 log logn

I Remark. We emphasize that Lemma 2 and Corollary 3 hold with arbitrary κ > 0 (not
necessarily 0 < κ < 1). Molinaro [22] proved Lemma 2 using the regret-minimization
technique from online learning. It has been observed that there is an interesting connection
between regret minimization and the random-order model: regret minimization techniques
can be used to prove probability inequalities. This direction has been recently explored in
[1, 13, 22]. In particular, employing Lemma 2 and other powerful inequalities, Molinaro [22]
proved competitive algorithms for the load balancing problem in the random-order model.

3 An O(log n/ log log n)-Competitive Algorithm in Random-Order
Setting

We consider the SVCR problem in the random-order setting with the objective of minimizing
the `p-norm of edge loads. The algorithm for the congestion objective will be deduced by
choosing appropriate parameters.

Formulation. We say that C is a configuration if C is a partial feasible solution of the
problem. In other words, a configuration C is a set {(i, Pij) : 1 ≤ i ≤ k, Pij ∈ Pi} where the
couple (i, Pij) represents request i and the selected oi − di path Pij in configuration C to
satisfy request i. Given an arrival order (a permutation) π, denote π(t) the request which is
released at step t in the order π. For any permutation π, let xππ(t),j be a variable indicating
whether the selected path for request π(t) is Pπ(t),j . For a configuration C and a permutation
π, let zπC be a variable such that zπC = 1 if and only if for every (π(t), Pπ(t),j) ∈ C, xππ(t),j = 1.
In other words, zπC = 1 iff the selected solution is C when the request arrival order is π.

Let `(i, Pij) ∈ Rm be the load random vector of path Pij , i.e., `(i, Pij)e = Xi,e for every
e ∈ Pij and equals 0 otherwise (e /∈ Pij). Moreover, let `(C) be the load random vector of
configuration C, i.e., `(C) =

∑
(i,Pij)∈C `(i, Pij). The expected cost (`p-norm objective) of

configuration C is EX
[
‖`(C)‖p

]
where the expectation is taken over the random vectors

Xi,e’s. We consider the following formulation (left-hand side) and the dual of its relaxation.

ISAAC 2019

39:6 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

minEπ
[∑
C

EX
[
‖`(C)‖p

]
zπC

]
∑

j:Pπ(t),j∈Pπ(t)

xππ(t),j = 1 ∀π, t

∑
C:(π(t),Pπ(t),j)∈C

zπC = xππ(t),j ∀π, t, j

∑
C

zπC = 1 ∀π

xππ(t),j , z
π
C ∈ {0, 1} ∀π, t, j, C

max
∑
π

(∑
t

απt + γπ
)

απt ≤ βπt,j ∀π, t, j (4)

γπ+
∑

(π(t),Pπ(t),j)∈C

βπt,j ≤

≤ P[π] · EX
[
‖`(C)‖p

]
∀π,C (5)

In the primal, the first constraint guarantees that for any arrival order π, request π(t) has
to be satisfied by some path Pπ(t),j ∈ Pπ(t). The second constraint ensures that if request
π(t) selects path Pπ(t),j then the couple (π(t), Pπ(t),j) must be in the solution. The third
constraint says that one always has to output a solution for the problem.

Algorithm. The algorithm is primarily a form of Greedy Restart introduced by Molinaro
[22] in the context of machine load balancing. We consider a generalized version for the
SVCR problem in the angle of a primal-dual method with configuration LPs. Informally, for
every request the algorithm selects a routing path greedily with respect to the function ψκ,p
which depends on the current load vector. However, when half of the requests have been
considered, the algorithm restarts the procedure: it still chooses a routing path greedily with
respect to a function ψκ,p but now the function ψκ,p depends on the load vector induced
only by the second half of the requests. The intuition is the following. In the worst-case
lower bound construction [3, 4, 5], at every time given the current routing the adversary
traps every algorithm to accumulate the loads on links which become congested later. The
restart step in the algorithm avoids accumulating the loads on potentially-congested links.
The formal description of the algorithm is the following.

Let κ > 0 be a fixed parameter to be determined later. Let At be the configuration
(partial solution) of the algorithm before the arrival of the tth request. Initially, A0 = B0 = ∅.
At the arrival of the tth request, denoted as i, select a path Pi,j∗ that is an optimal solution of

min
Pij∈Pi

{
ψκ′,p

(
`(Bt) + `(i, Pij)

)
− ψκ′,p

(
`(Bt)

)}
where ` is the load function (defined in the formulation) and κ′ = κ · 1

4 log logn. Update
At+1 = At ∪ (i, Pi,j∗) and Bt+1 = Bt ∪ (i, Pi,j∗). If t = k/2 + 1, reset Bt = ∅.

In the above description of the algorithm, we need the knowledge of k – the number of
requests – in order to reset Bt at t = k/2 + 1. In fact, one can implement the algorithm
without the knowledge of k as the following. Initially, A0 = Bodd = Beven = ∅. At the arrival
of the tth request, denoted as i, select a path Pi,j∗ that is an optimal solution of{

minPij∈Pi
{
ψκ′,p

(
`(Bodd) + `(i, Pij)

)
− ψκ′,p

(
`(Bodd)

)}
if t is odd

minPij∈Pi
{
ψκ′,p

(
`(Beven) + `(i, Pij)

)
− ψκ′,p

(
`(Beven)

)}
if t is even

where ` is the load function (defined in the formulation) and κ′ = κ · 1
4 log logn. Update

At+1 = At ∪ (i, Pi,j∗) and update Bodd or Beven depending on whether t is odd or even.

T. Nguyễn Kim 39:7

Analysis

For the sake of simplicity, we will analyze the algorithm using its first description. In the
sequel, we will define the dual variables, prove the feasibility and show the competitive ratio.
As κ (so κ′) and p are fixed, for simplicity, we drop the indices κ′ and p in ψκ′,p.

Dual variables. For any permutation σ, denote Aσt and Bσt as the configurations At and Bt
(respectively) in the execution of algorithm (before the arrival of the tth) request assuming
that the request arrival order is σ. Define the dual variables as follows.

βπt,j := P[π]
e2κ(log1/4 n)

EXEσ
[
ψ
(
`(Bσt) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt)

)]
,

απt := P[π]
e2κ(log1/4 n)

EXEσ
[
min
j

{
ψ
(
`(Bσt) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt)

)}]
= P[π]
e2κ(log1/4 n)

EXEσ
[
ψ
(
`(Bσt) + `(σ(t), Pσ(t),j∗)

)
− ψ

(
`(Bσt)

)]
,

γπ := − P[π]
2e2κ(log1/4 n)

EXEσ
[
‖`(Aσ)‖p

]
.

Informally, βπt,j is proportional (up to a factor P[π] = 1/n!) to the expected marginal increase
(over random order σ) of the objective at the arrival of request σ(t) assuming that the
selected strategy to serve σ(t) is Pσ(t),j . Variable απt is also proportional (up to a factor
P[π] = 1/n!) to the expected marginal increase of the objective at the arrival of request σ(t)
due to the algorithm.

I Lemma 4. For any permutation σ, denote Aσ as the final configuration of the al-
gorithm in case that the request arrival order is σ. Suppose that the cost of the algorithm
EXEσ

[
‖`(Aσ)‖p

]
≥ 4eκp(m1/p−1)

κ· 14 log logn . Then the variables defined above constitute a dual feasible
solution.

Proof. The first dual constraint (4) follows immediately the definitions of απt and βπt,j . In
the remaining of the proof, we prove the second dual constraint (5). Fix a configuration C
and a permutation π. Let Pi,c(i) be the path of request i in configuration C. In other words,
configuration C consists of couples (i, Pi,c(i)) for all requests i.

By the definition of dual variables, the second constraint reads: for any given permutation
π and any given configuration C,

−1
2P[π] · EXEσ

[
‖`(Aσ)‖p

]
+

k∑
t=1

P[π] · EXEσ
[
ψ
(
`(Bσt) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt)

)]
≤ e2κ(log1/4 n) · P[π] · EX

[
‖`(C)‖p

]
where for any permutation σ, the path Pσ(t),c(σ(t)) of request σ(t) is completely determined
in configuration C, i.e., (σ(t), Pσ(t),c(σ(t))) ∈ C. This is equivalent to

k∑
t=1

EXEσ
[
ψ
(
`(Bσt) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt)

)]
≤ e2κ(log1/4 n) · EX

[
‖`(C)‖p

]
+ 1

2 · EXEσ
[
‖`(Aσ)‖p

]
. (6)

ISAAC 2019

39:8 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

We prove Inequality (6). First we bound the sum in the left-hand side for all 1 ≤ t ≤ k/2.

EX
k/2∑
t=1

Eσ
[
ψ
(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
− ψ (`(Bσt))

]

≤ EX
k/2∑
t=1

Eσ
[〈
∇ψ

(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]

≤ eκ
k/2∑
t=1

EXEσ
[〈
∇ψ

(
`
(
Bσt
))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]

≤ eκ ·
k/2∑
t=1

(
eκ(log1/4 n) · EX

∥∥∥∥Eσ [`(σ(t), Pσ(t),c(σ(t))

)]∥∥∥∥
p

+ 1
k − t+ 1 ·

p(m1/p − 1)
κ · 1

4 log logn

)

= e2κ(log1/4 n) · k2 · EX
∥∥∥∥`(C)

k

∥∥∥∥
p

+ eκ
k/2∑
t=1

1
k − t+ 1 ·

p(m1/p − 1)
κ · 1

4 log logn

≤ e2κ(log1/4 n)
2 EX

[
‖`(C)‖p

]
+ eκ · p(m

1/p − 1)
κ · 1

4 log logn

<
e2κ(log1/4 n)

2 EX
[
‖`(C)‖p

]
+ 1

4 · EXEσ
[
‖`(Aσ)‖p

]
. (7)

Recall that `
(
σ(t), Pσ(t),c(σ(t))

)
∈ [0, 1]m. The first and second inequalities follow the

convexity of ψ and Lemma 1 (Inequality (3)), respectively. The third inequality holds by
Corollary 3 and note that ∇ψ

(
`
(
Bσt
))
∈ `+

q by observation (1). The next equality is due to
the fact that σ is an uniform random order. The last inequality follows the assumption of
the algorithm cost.

Now we bound the sum of the left-hand side of Inequality (6) for k/2 < t ≤ k. That can
be done similarly with a subtle observation. For completeness, we show all steps.

EX
k∑

t=k/2+1

Eσ
[
ψ
(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
− ψ (`(Bσt))

]

≤ EX
k∑

t=k/2+1

Eσ
[〈
∇ψ
(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]

≤ eκ
k∑

t=k/2+1

EXEσ
[〈
∇ψ
(
`
(
Bσt
))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]

≤ eκ ·
k∑

t=k/2+1

(
eκ(log1/4 n) · EX

∥∥∥∥Eσ[`
(
σ(t), Pσ(t),c(σ(t))

)]∥∥∥∥
p

+ 1
k − (t− k/2− 1) ·

p(m1/p − 1)
κ · 1

4 log logn

)
= e2κ(log1/4 n) · k2 · EX

∥∥∥∥`(C)
k

∥∥∥∥
p

+ eκ
k∑

t=k/2+1

1
k − (t− k/2− 1) ·

p(m1/p − 1)
κ · 1

4 log logn

≤ e2κ(log1/4 n)
2 EX

[
‖`(C)‖p

]
+ eκ · p(m

1/p − 1)
κ · 1

4 log logn

<
e2κ(log1/4 n)

2 EX
[
‖`(C)‖p

]
+ 1

4 · EXEσ
[
‖`(Aσ)‖p

]
. (8)

T. Nguyễn Kim 39:9

All the above equalities and inequalities follow by the same arguments as before except the
third inequality. In the latter, we apply Corollary 3 with the observation that ∇ψ

(
`
(
Bσt
))

depends only on (t − k/2 − 1) random load variables due to the fact that the algorithm
restarts at t = k/2. This interesting idea has been observed by Molinaro [22]. Note that this
is the only place we use the restart property of the algorithm.

Hence, summing Inequalities (7) and (8), Inequality (6) follows. J

I Theorem 5. For any arbitrary κ > 0, the algorithm has expected cost at most 2e2κ(log1/4 n)
times the optimal value plus an additive constant 4eκp(m1/p−1)

κ· 14 log logn for the SVCR problem with
`p-norm objective in the random-order setting.

Proof. Consider first the case where the (expected) cost of the algorithm EXEσ
[
‖`(Aσ)‖p

]
≥

4eκp(m1/p−1)
κ· 14 log logn . Then, by the algorithm and the definition of dual variables, the dual objective

equals∑
π

(∑
t

απt + γπ
)

= P[π]
e2κ(log1/4 n)

∑
π,t

EXEσ
[
ψ
(
`(Bσt) + `(σ(t), Pσ(t),j∗)

)
− ψ

(
`(Bσt)

)]
− P[π]

2e2κ(log1/4 n)

∑
π

EXEσ
[
‖`(Aσ)‖p

]
= 1
e2κ(log1/4 n)

EXEσ
[
ψ
(
`(Bσn/2)

)
+ ψ

(
`(Bσn)

)]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
≥ 1
e2κ(log1/4 n)

EXEσ
[∥∥∥`(Bσn/2)

∥∥∥
p

+ ‖`(Bσn)‖p
]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
≥ 1
e2κ(log1/4 n)

EXEσ
[∥∥∥`(Bσn/2) + `(Bσn)

∥∥∥
p

]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
= 1
e2κ(log1/4 n)

EXEσ
[
‖`(Aσ)‖p

]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
= 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
.

The first inequality follows the properties of ψ (Lemma 1, Inequality (2)). The second
inequality is due to the norm inequality ‖a‖p + ‖b‖p ≥ ‖a + b‖p. The subsequent equality
holds since Bσn/2]B

σ
n = Aσ (note that Bσn/2+1 was re-initialized as an empty set).

Besides, the primal is EXEσ
[
‖`(Aσ)‖p

]
. Therefore, by weak duality, EXEσ

[
‖`(Aσ)‖p

]
≤

2e2κ(log1/4 n)OPT where OPT is the value of an optimal solution.
Now consider the case that the expected cost of the algorithm EXEσ

[
‖`(Aσ)‖p

]
is at most

4eκp(m1/p−1)
κ· 14 log logn . Obviously, EXEσ

[
‖`(Aσ)‖p

]
< OPT + 4eκp(m1/p−1)

κ· 14 log logn . Therefore, combining the
cases we deduce that

EXEσ
[
‖`(Aσ)‖p

]
≤ 2e2κ(log1/4 n)OPT + 4eκp(m1/p − 1)

κ · 1
4 log logn

. J

I Corollary 6. Assume that the optimum solution is at least 1 (i.e., the optimal routing
is sufficiently congested). Then the algorithm with parameters p = O(logn) and κ = 1 is
O(logn/ log logn)-approximation for the SVCR problem.

ISAAC 2019

39:10 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

Proof. Recall that the congestion (`∞-norms over edge loads) can be approximated up to
a constant factor by the `p-norm function for p = logm = O(logn). Applying Theorem 5
for p = O(logn) and κ = 1, we have the following upper-bound on the congestion of the
algorithm:

O
(
e2κ(log1/4 n)

)
OPT + 4eκp(m1/p − 1)

κ · 1
4 log logn

≤ O
(
e2κ(log1/4 n) + eκ logn

κ · 1
4 log logn

)
OPT

= O

(
log1/4 n+ logn

log logn

)
OPT = O

(
logn

log logn

)
OPT (9)

where OPT is the value of an optimal solution. As the optimum solution is at least 1, the
corollary follows. J

4 A Simple Θ(log n/ log log n)-Approximation Algorithm for Virtual
Circuit Routing

In this section, we revisit the classic virtual circuit routing problem and provide a simple
algorithm with tight approximation guarantee (assuming some complexity hypothesis).

Virtual Circuit Routing. In the problem, there is a directed graph G(V,E) where |V | = n

and a collection of k requests. A request i for 1 ≤ i ≤ k is specified by a origin-destination
pairs oi, di ∈ V , and a positive weight wi representing the (deterministic) load of request
i on an edge e if it is used by request i. The goal is to choose for each request i a routing
path connecting oi and di so that the congestion induced by the collection of all paths is
minimized. The load of an edge e is equal to the total weight of requests routing through
e, i.e.,

∑
i wi where the sum is taken over all requests i whose some path contains e. The

congestion of a collection of paths is the maximum load over all edges.

Approximation algorithm.
1. Normalize all request weights by dividing every weight by maxi′ wi′ . The new normalized

weights w̃i = wi
maxi′ wi′

satisfy w̃i ∈ [0, 1].
2. Define the parameters p = O(logn), κ = 1 and κ′ = 1

4 log logn.
3. Sample an uniform random order of the requests and consider requests in this order.
4. Let At be the configuration (partial solution) of the algorithm before the arrival of the

tth request. Initially, A0 = B0 = ∅. At the arrival of the tth request, denoted as i, select
a path Pi,j∗ that is an optimal solution of

min
Pij∈Pi

ψκ′,p
(˜̀(Bt) + ˜̀(i, Pij)

)
− ψκ′,p

(˜̀(Bt)
)

where ˜̀ is the load function with respect to the normalized weights. Update At+1 =
At ∪ (i, Pi,j∗) and Bt+1 = Bt ∪ (i, Pi,j∗). If t = k/2 + 1, reset Bt = ∅.

I Theorem 7 ([23, 24, 6]). The algorithm has approximation ratio O(logn/ log logn).
Proof. By Corollary 6, specifically Inequality (9), we have the bound on the congestion of
the algorithm (after normalizing the weights):

E[ÃLG] ≤ O
(

logn
log logn

)
ÕPT

where ÃLG and ÕPT are the congestions of the algorithm and the optimal solution with
normalized weights, respectively. Multiplying both sides by the normalizing factor, the
theorem follows. J

T. Nguyễn Kim 39:11

5 Conclusion

In the paper, we have provided a competitive algorithm for the SCVR problem and prove
that the quality of approximation solutions to the problem can be preserved even with the
presence of uncertainty. Through the paper, we also show that primal-dual approaches are
robust in the stochastic model and the random-order model can be used to design/simplify
randomized approximation algorithms. A direction is to design randomized algorithms for
other (stochastic) problems using primal-dual techniques and random-order request sequences.

References
1 Shipra Agrawal and Nikhil R Devanur. Fast algorithms for online stochastic convex pro-

gramming. In Proc. 26th ACM-SIAM symposium on Discrete algorithms, pages 1405–1424,
2014.

2 Matthew Andrews and Lisa Zhang. Logarithmic hardness of the directed congestion minimiza-
tion problem. In Proc. 38th Symposium on Theory of Computing, pages 517–526, 2006.

3 James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line routing of
virtual circuits with applications to load balancing and machine scheduling. Journal of the
ACM (JACM), 44(3):486–504, 1997.

4 Baruch Awerbuch, Yossi Azar, Edward F Grove, Ming-Yang Kao, P Krishnan, and Jeffrey Scott
Vitter. Load balancing in the `p-norm. In Proc. 36th Foundations of Computer Science, pages
383–391, 1995.

5 Ioannis Caragiannis. Better bounds for online load balancing on unrelated machines. In Proc.
19th Symposium on Discrete Algorithms, pages 972–981, 2008.

6 Chandra Chekuri and Mark Idleman. Congestion minimization for multipath routing via
multiroute flows. In Proc. 1st Symposium on Simplicity in Algorithms, 2018.

7 Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In Proc. 51st Annual IEEE Symposium on
Foundations of Computer Science, pages 575–584, 2010.

8 Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, and Kunal Talwar. Hardness of
routing with congestion in directed graphs. In Proc. 39th ACM Symposium on Theory of
Computing, pages 165–178, 2007.

9 Benjamin Doerr. Randomly rounding rationals with cardinality constraints and derandomiza-
tions. In Symposium on Theoretical Aspects of Computer Science, pages 441–452, 2007.

10 Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent
rounding and its applications to approximation algorithms. Journal of the ACM, 53(3):324–360,
2006.

11 Ashish Goel and Piotr Indyk. Stochastic load balancing and related problems. In Proc. 40th
Symposium on Foundations of Computer Science, pages 579–586, 1999.

12 Anupam Gupta, Amit Kumar, Viswanath Nagarajan, and Xiangkun Shen. Stochastic load
balancing on unrelated machines. In Proc. 29th Symposium on Discrete Algorithms, pages
1274–1285, 2018.

13 Anupam Gupta and Marco Molinaro. How the experts algorithm can help solve LPs online.
Mathematics of Operations Research, 41(4):1404–1431, 2016.

14 Varun Gupta, Benjamin Moseley, Marc Uetz, and Qiaomin Xie. Stochastic online scheduling on
unrelated machines. In Conference on Integer Programming and Combinatorial Optimization,
pages 228–240, 2017.

15 Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Stochastic scheduling of heavy-tailed jobs. In
Proc. 32nd Symposium on Theoretical Aspects of Computer Science, pages 474–486, 2015.

16 Wataru Kishimoto and Masashi Takeuchi. m-route flows in a network. Electronics and
Communications in Japan (Part III: Fundamental Electronic Science), 77(5):1–18, 1994.

ISAAC 2019

39:12 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

17 Jon Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for bursty connections.
SIAM Journal on Computing, 30(1):191–217, 2000.

18 Jian Li and Amol Deshpande. Maximizing expected utility for stochastic combinatorial
optimization problems. Mathematics of Operations Research, 2018.

19 Jian Li and Wen Yuan. Stochastic combinatorial optimization via poisson approximation. In
Proc. 45th Symposium on Theory of Computing, pages 971–980, 2013.

20 Nicole Megow, Marc Uetz, and Tjark Vredeveld. Models and algorithms for stochastic online
scheduling. Mathematics of Operations Research, 31(3):513–525, 2006.

21 Rolf H Möhring, Andreas S Schulz, and Marc Uetz. Approximation in stochastic scheduling:
the power of LP-based priority policies. Journal of the ACM, 46(6):924–942, 1999.

22 Marco Molinaro. Online and random-order load balancing simultaneously. In Proc. 28th
ACM-SIAM Symposium on Discrete Algorithms, pages 1638–1650, 2017.

23 Prabhakar Raghavan and Clark D Thompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

24 Aravind Srinivasan. Distributions on level-sets with applications to approximation algorithms.
In Proc. 42nd IEEE Symposium on Foundations of Computer Science, pages 588–597, 2001.

25 Nguyen Kim Thang. Online primal-dual algorithms with configuration linear programs. arXiv,
2017. arXiv:1708.04903.

http://arxiv.org/abs/1708.04903

An Improved Data Structure for Left-Right
Maximal Generic Words Problem
Yuta Fujishige
Department of Informatics, Kyushu University, Japan
yuta.fujishige@inf.kyushu-u.ac.jp

Yuto Nakashima
Department of Informatics, Kyushu University, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai
Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

Masayuki Takeda
Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
For a set D of documents and a positive integer d, a string w is said to be d-left-right maximal,
if (1) w occurs in at least d documents in D, and (2) any proper superstring of w occurs in less
than d documents. The left-right-maximal generic words problem is, given a set D of documents, to
preprocess D so that for any string p and for any positive integer d, all the superstrings of p that
are d-left-right maximal can be answered quickly. In this paper, we present an O(n log m) space
data structure (in words) which answers queries in O(|p|+ o log log m) time, where n is the total
length of documents in D, m is the number of documents in D and o is the number of outputs.
Our solution improves the previous one by Nishimoto et al. (PSC 2015), which uses an O(n log n)
space data structure answering queries in O(|p|+ r · log n + o · log2 n) time, where r is the number
of right-extensions q of p occurring in at least d documents such that any proper right extension of
q occurs in less than d documents.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Math-
ematics of computing → Combinatorics on words

Keywords and phrases generic words, suffix trees, string processing algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.40

Funding Yuto Nakashima: Supported by JSPS KAKENHI Grant Number JP18K18002.
Shunsuke Inenaga: Supported by JSPS KAKENHI Grant Number JP17H01697.
Hideo Bannai: Supported by JSPS KAKENHI Grant Number JP16H02783.
Masayuki Takeda: Supported by JSPS KAKENHI Grant Number JP18H04098.

1 Introduction

String Data Mining is an important research area which has received special attention. One
of the fundamental tasks in this area is the frequent pattern mining, the aim of which is to
find patterns occurring in at least d documents in D for a given collection D of documents
and a given threshold d, where the patterns are drawn from a fixed hypothesis space. The
task is useful not only in extracting patterns which characterize the documents in D, but also
in enumerating candidates for the most classificatory pattern that separates two given sets of

© Yuta Fujishige, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 40; pp. 40:1–40:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuta.fujishige@inf.kyushu-u.ac.jp
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
mailto:inenaga@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:bannai@inf.kyushu-u.ac.jp
mailto:takeda@inf.kyushu-u.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2019.40
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 An Improved Data Structure for Left-Right Maximal Generic Words Problem

strings. The hypothesis space varies depending upon users’ particular interest or purpose, and
is ranging from the substring patterns to the VLDC patterns. Frequent substring patterns
are often referred to as generic words. The generic words mining problem (or the frequent
substring pattern mining problem) has a wide variety of applications, e.g., Computational
Biology, Text mining, and Text Classification [5, 2, 3].

One interesting variant of the generic words mining problem is the right maximal generic
words problem, formulated by Kucherov et al. [5]. In this variant, a pattern p is given as
additional input, which limits the outputs to the right extensions of p. Moreover, the outputs
are limited to the maximal ones. Formally, the problem is to preprocess D so that, for any
pattern p and for any threshold d, all right extensions of p that are d-right maximal can be
computed efficiently, where a string w is said to be d-right maximal if x occurs in at least d
documents but xa occurs in less than d documents for any character a. They presented in
[5] an O(n)-size data structure which answers queries in O(|p|+ r) time, where n is the total
length of strings in D and r is the number of outputs. Later, Biswas et al. [2] developed a
succinct data structure of size n log |Σ| + o(n log |Σ|) + O(n) bits of space, which answers
queries in O(|p|+ log logn+ r) time.

As a generalization, Nishimoto et al. [7] defined the left-right-maximal generic word
problem. In this problem, all superstrings of p that are d-left-right maximal should be
answered, where a string w is said to be d-left-right maximal if x has a document frequency
≥ d but xa and ax respectively have a document frequency < d for any character a.

One naive solution to this problem is to compute the sets Md of d-left-right maximal
strings for d = 1, . . . ,m, where m is the number of documents in D and then apply the
optimal algorithm of Muthukrishnan [6] for the document listing problem, regarding Md as
input document collection. The query time is O(|p| + o) time, where o is the number of
outputs. The space requirement is O(n2 logm) since the Muthukrishnan algorithm uses the
(generalized) suffix tree of input document collection and the size of suffix tree for Md can be
shown to be O(n2/d) for every d = 1, . . . ,m. The O(n2 logm) space requirement is, however,
impractical when dealing with a large-scale document collection.

In [7] Nishomoto et al. presented an O(n logn)-space data structure which answers queries
in O(|p| + r logn + o log2 n) time, where r is the number of d-right-maximal strings that
subsume p as a prefix. The factor O(r logn) is for computing the d-right-maximal right
extensions of p, which are required for computing d-left-right-maximal extensions of p in
their method.

In this paper, we address the left-right-maximal generic word problem and propose an
O(n logm)-space data structure with query time O(|p| + o log logm). The data structure
outperforms the previous work by Nishimoto et al. [7] both in the query time and in the
space requirement.

Our method uses the suffix trees of Md for d = 1, . . . ,m. For a string set S = {w1, . . . , w`},
Usually, “the suffix tree of S” means the suffix tree of {w1$1, . . . , w`$`} with ` distinct
endmarkers $1, . . . , $`, or the suffix tree of S$ = {w1$, . . . , w`$} with a single endmarker $.
In both cases, the size of suffix tree is proportional to the total length of the strings in S.
The total size of suffix trees of Md$ for d = 1, . . . ,m is O(nm), where n is the total length
of D. Our idea in reducing the space requirement is to replace the suffix tree of Md$ with
the suffix tree of Md. Removing the endmarker successfully reduces the O(nm) total size of
the suffix trees to O(n logm), with a small sacrifice of query time.

Y. Fujishige, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 40:3

2 Preliminaries

2.1 Strings
Let Σ be an alphabet, that is, a nonempty, finite set of characters. Throughout this paper,
we assume that Σ is an ordered alphabet of constant size. A string over Σ is a finite sequence
of characters from Σ. Let Σ∗ denote the set of strings over Σ. The length of a string w is the
number of characters in w and denoted by |w|. The string of length 0 is called the empty
string and denoted by ε. Let Σ+ = Σ∗ \ {ε}. The i-th character of a string w is denoted
by w[i] for 1 ≤ i ≤ |w|. Strings x, y, and, z are, respectively, said to be a prefix, substring,
and suffix of string w = xyz. The substring of a string w that begins at position i and ends
at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. That is, w[i..j] = w[i] · · ·w[j]. For
convenience, let w[i..j] = ε for i > j. We use w[..j] and w[i..] as abbreviations of w[1..j]
and w[i..|w|]. Let Pre(w), Sub(w) and Suf (w) denote the sets of prefixes, substrings, and
suffixes of a string w, respectively. Let Pre(S) =

⋃
w∈S Pre(w), Sub(S) =

⋃
w∈S Sub(w) and

Suf (S) =
⋃

w∈S Suf (w) for any set S of strings. The reversal of a string w, denoted by wR,
is defined to be w[|w|] . . . w[1]. Let SR = {wR | w ∈ S} for any set S of strings.

The longest repeating suffix of a string x is the longest suffix of x that occurs elsewhere
in x. Let LRS(x) denote the length of the longest repeating suffix of x. We note that any
suffix of x longer than LRS(x) occurs only once in x.

2.2 d-left-right maximality of strings
Let D be a set of documents (strings). The document frequency of a string x in D, denoted
by df D(x), is defined to be the number of documents in D that contain x as a substring. We
write df (x) instead of df D(x) when D is clear from the context.

A string x is said to be d-left maximal w.r.t. D if df (x) ≥ d and df (ax) < d for all a ∈ Σ,
and said to be d-right maximal w.r.t. D if df (x) ≥ d and df (xa) < d for all a ∈ Σ. A string
x is said to be d-left-right maximal w.r.t. D if it is d-left maximal and d-right maximal w.r.t.
D. Let Md denote the sets of d-left-right maximal strings w.r.t. D.

I Example 1. For D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, the sets of
d-left-right maximal strings for d = 1, 2, 3, 4 are as follows: M1 = D, M2 = {aaabaab, aabab,
abaaba, ababb, abbba}, M3 = {aaba, abaab, abb, bba} and M4 = {aaba, baa}.

I Lemma 2 ([5]). For any set D of strings with total length n, the number of d-right maximal
strings w.r.t. D is O(n/d).

I Lemma 3. For any string y the following statements hold.
1. Let z be the shortest string such that yz ∈ Suf (Md). If xyz ∈ Md for some string x, then

xy is d-left maximal.
2. Let x be the shortest string such that xy ∈ Pre(Md). If xyz ∈ Md for some string z, then

yz is d-right maximal.

Proof. It suffices to give proof only for the first statement. Suppose to the contrary that
xy is not d-left maximal. Then, df (xy) ≥ df (xyz) ≥ d, and there exists some α ∈ Σ+ such
that αxy is d-left maximal. Since xyz is d-maximal, df (αxyz) < d. Furthermore, since
df (αxy) ≥ d, there exists a prefix z′ of z such that αxyz′ is d-maximal and |z′| < |z|. This
implies yz′ ∈ Suf (Md) and contradicts that z is the shortest such string. Therefore, xy must
be d-left maximal. J

ISAAC 2019

40:4 An Improved Data Structure for Left-Right Maximal Generic Words Problem

2.3 Suffix trees
Let S = {w1, . . . , w`} be a set of nonempty strings with total length n. The suffix tree [8]
of S, denoted by ST (S), is a path-compressed trie which represents all suffixes of S. More
formally, ST (S) is an edge-labeled rooted tree such that (1) Every internal node is branching;
(2) The out-going edges of every internal node begin with mutually distinct characters; (3)
Each edge is labeled by a non-empty substring of S; (4) For each suffix s of S, there is a
unique path from the root which spells out s and the path possibly ends on an edge; (5) Each
path from the root to a leaf spells out a suffix of S. It follows from the definition of ST (S)
that the numbers of nodes and edges in ST (S) are O(n), respectively. By representing every
edge label x by a triple (i, j, k) of integers such that x = wk[i..j], ST (S) can be represented
in O(n) space. The size of suffix tree ST(S) is defined to be the number of nodes and is
denoted by |ST (S)|.

A node v of ST (S) is said to represent a string x if the path from the root to v spells out
x. For a substring x of S, the locus of x in ST (S) is defined to be the highest node v that
represents a right extension of x. A string x is said to be explicit in ST (S) if there exists a
node v of ST (S) that represents x and implicit otherwise.

In this paper, we properly use the suffix trees of the following three types to suit its use.
1. ST (S) where S = {w1$1, . . . , w`$`} and $1, . . . , $` are mutually distinct endmarkers not

in Σ.
2. ST (S$) where $ is an endmarker not in Σ.
3. ST (S) without endmarker.
The above suffix trees are all capable of determining whether x ∈ Sub(S) for any x ∈ Σ+.
ST (S) cannot distinguish the elements of Suf (S) from those of Sub(S) whereas ST (S$) and
ST(S) can determine whether x ∈ Suf (S) for any x ∈ Sub(S). In addition, ST(S) can
determine the set of indices k such that x ∈ Suf (wk). It is easy to see that:

I Lemma 4. |ST (S)| ≥ |ST (S$)| ≥ |ST (S)| for any set S of strings.

2.4 Tools
Let x be a fixed string over A = {1, . . . , σ}. The Rank query rankx(a, i) returns the number
of occurrences of a ∈ A in the prefix x[..i] of x, and the Select query selectx(a, j) returns the
position of j-th occurrence of a ∈ A in x.

I Lemma 5 ([4]). There is an O(|x|) space data structure that answers Rank/Select queries
in O(log log σ) time.

Let T be an ordered tree with n nodes and with function val that maps the nodes to the
integers. The find-less-than (FLT) query on tree T is, given a threshold τ and a node v of T ,
to enumerate the descendants u of v with val(u) < τ .

I Lemma 6. We can build from T an O(n) space data structure in O(n) time that answers
FLT queries in O(out) time, where out is the number of outputs.

Proof. Let v1, . . . , vn be the nodes T in the preorder. Let B be an array such that B[i] =
val(vi) for all i ∈ [1..n]. Then, the problem of FLT queries on tree can be reduced to the
problem of FLT queries on array B defined as follows:

Given a threshold τ and a subinterval [i..j] of [1..n], enumerate the indices k in [i..j]
such that val(B[k]) < τ .

FLT queries on array B of size n can be answered in linear time proportional to the number
of outputs, by repeated use of the Range Minimum Query (see [6]). J

Y. Fujishige, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 40:5

2.5 Computation model
Our model of computation is the word RAM: We shall assume that the computer word size is
at least dlog2 ne, and hence, standard operations on values representing lengths and positions
of strings can be manipulated in constant time. Space complexities will be determined by
the number of computer words (not bits).

3 Main Result and Algorithm Outline

3.1 Main result
Our problem is formulated as follows.

I Problem 7.
To-preprocess: A subset D = {w1, . . . , wm} of Σ+.
Query: A string p ∈ Σ+ and an integer d ∈ [1..m].
Answer: The strings in Σ∗pΣ∗ ∩Md.

One naive solution to the problem would be to apply the optimal algorithm of Muthukrish-
nan et al. [6] for the document listing problem regarding Md as input document collec-
tion. This solution requires space proportional to the total size of suffix trees ST(Md) for
d = 1, . . .m.

I Lemma 8. The suffix trees ST (Md$) and ST (Md) are of size O(n) for any d = 1, . . . ,m,
and the suffix tree ST (Md) is of size O(n2/d) for any d = 1, . . . ,m.

Proof. First, we show that ST(Md$) has O(n) leaves. Let v be any leaf of ST(Md$), and
let x$ be the string represented by v. There is a string α such that αx ∈ Md. Assume, for a
contradiction, that x is implicit in ST(D). Then, there uniquely exists a character a such
that every occurrence of x in the strings of D is followed by a. This contradicts αx ∈ Md.
Hence x is explicit in ST(D). The number of leaves of ST(Md$) is not greater than the
number of nodes of ST (D), which is O(n). By Lemma 4, ST (Md$) and ST (Md) are of size
O(n). Next, we prove that ST(Md) has O(n2/d) leaves. Let v be any leaf of ST(Md), and
let x$i be the string represented by v. As the previous discussion, x is explicit in ST(D).
There are |Md| endmarkers $j in Md, and by Lemma 2 we have |Md| = O(n/d). Hence the
number of leaves of ST (Md) is not greater than O(n/d) times the number of nodes of ST (D),
which is O(n2/d). J

The naive solution answers queries in O(|p|+ o) time using O(n2 logm) space, where o is the
number of outputs. The O(n2 logm) space requirement is, however, impractical for dealing
with a large-scale document set.

Our solution reduces the O(n2 logm) space requirement to O(n logm) with a little sacrifice
in query response time.

I Theorem 9. There exists an O(n logm) space data structure for Problem 7 which answers
queries in O(|p|+ o log logm) time, where o is the number of outputs.

3.2 Algorithm outline
Our task is, given a string p ∈ Σ+, to enumerate the strings αpβ in Md with α, β ∈ Σ∗.
One solution would be to enumerate the strings αp in Pre(Md) with α ∈ Σ∗, and then, for
each αp enumerate the strings αpβ in Md with β ∈ Σ∗. The resulting enumeration, however,

ISAAC 2019

40:6 An Improved Data Structure for Left-Right Maximal Generic Words Problem

contains duplicates if there is some string in Md containing p more than once. Consider the
string abaaba which contains p = ab twice in Example 10. The strings ab (α = ε) and abaab
(α = aba) appear in the enumeration of αp, and therefore the string abaaba appears twice
in the enumeration of αpβ.

I Example 10. Let D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, d = 2 and
p = ab. Then M2 is {aaabaab, aabab, abaaba, ababb, abbba} and the answer is {aaabaab,
aabab, abaaba, ababb, abbba}. (1) Σ∗p ∩ Pre(Md) = {aaab, aaabaab, aab, aabab, ab, abaab,
abab}. (2) Their d-left-right-maximal extensions are {aaabaab}, {aaabaab}, {aabab},
{aabab}, {abaaba, ababb, abbba}, {abaaba}, {ababb}, respectively. (3) The union of these
string sets is {aaabaab, aabab, abaaba, ababb, abbba}, which coincides with the answer.

In order to avoid such duplicates in enumeration, we put a restriction on the enumeration
of the strings αp ∈ Pre(Md). That is, we enumerate the strings αp ∈ Pre(Md) satisfying
the condition that αp contains p just once, which can be replaced with LRS(αp) < |p|. The
outline of our algorithm is as follows:
Step 1. Enumerate the strings αp such that α ∈ Σ∗, αp ∈ Pre(Md) and LRS(αp) < |p|.
Step 2. For each string αp obtained in Step 1, enumerate the strings αpβ such that β ∈ Σ∗

and αpβ ∈ Md.

I Example 11. Let D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}, d = 2 and
p = ab. Then M2 is {aaabaab, aabab, abaaba, ababb, abbba} and the answer is {aaabaab,
aabab, abaaba, ababb, abbba}. (1) Σ∗p ∩ Pre(Md) = {aaab, aaabaab, aab, aabab, ab, abaab,
abab}. (2) Of the seven strings, the three strings aaab, aab, ab satisfy the condition
LRS(x) < |p|. Their d-right extensions are {aaabaab}, {aabab}, {abaaba, ababb, abbba},
respectively. These sets are mutually disjoint. (3) The union of the disjoint sets is
{aaabaab, aabab, abaaba, ababb, abbba}, which coincides with the answer (see Figure 1).

!"!"# #$%$&%& '()aaab*(aaabaab*(aab*(aabab*(ab*(abaab*(abab+

&% ')aaabaab*(aabab*(abaaba*(ababb*(abbba+*(! '(ab

!"!!" # &% ')aaabaab*(aabab*(abaaba*(ababb*(abbba+

)aaabaab+*()aabab+*()abaaba*(ababb*(abbba+

,-./0(120134-53

63-53

Figure 1 Illustration of Example 11.

4 Simplified Solution

For the sake of simplicity in presentation, we here present a simplified version of our algorithm
using an O(nm) space data structure which answers queries in O(|p|+ o) time, where o is the
number of outputs. How to improve the data structure will be described in the next section.

Basically, we represent substrings of Md as their loci in ST (Md). We note that although
the strings αp in Step 1 may be represented as implicit nodes of ST(Md), using their loci
does not affect the result of Step 2. The algorithm outline can then be rewritten as follows.
Step 1. Enumerate the loci v of αp in ST(Md) such that α ∈ Σ∗, αp ∈ Pre(Md) and

LRS(αp) < |p|.
Step 2. For each locus v obtained in Step 1, enumerate the loci of xβ in ST (Md) such that

β ∈ Σ∗ and xβ ∈ Md, where x is the string represented by v in ST (Md).

Y. Fujishige, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 40:7

!

!

b

b

a

a

a

b

b

a

b

a

a

b!

! a

!

!

a!

! b

!

a

a

a !

a

ba

!
! a

!

!

a

a

b

a

!

a

a

!

a

! b

!

a

b

!

a

!

!

Figure 2 Illustration of Suffix tree ST(M2
R$).

a

b

a

a b

b

a

a

b

b

b

bb

b

b

a

ba a

a

a b

a

a

b

a

b

a b

b

a

a

b

Figure 3 Illustration of Suffix tree ST(M2).

4.1 Implementation of Step 1

We use the suffix trees ST (Md
R$) for d = 1, . . . ,m. We note that there is a natural one-to-one

correspondence between the strings x in Pre(Md) and the leaves of ST (Md
R$) representing

xR$. We also note that for any p ∈ Σ+, the strings in Pre(Md) ∩ Σ∗p correspond to the
leaves of the subtree rooted at the locus v of pR in ST(Md

R$). Of the leaves representing
xR$, we have to select those satisfying LRS(x) < |p|.

In the running example, the leaves of the subtree rooted at the locus of pR = ba in
ST (M2

R$) represent the strings ba$, baa$, baaa$, baaba$, baabaaaa$, baba$, babaa$ (see
Figure 2). Of the seven strings of the form xR$, the three strings ba$, baa$, baaa$ satisfy
the condition LRS(x) < |p|.

Define the function val from the nodes of ST (Md
R$) to the integers by: For any node u

of ST(Md
R$), let val(u) = LRS(x) if u is a leaf of ST(Md

R$), and ∞ otherwise, where x
is the string such that u represents xR. By applying the FLT query technique, mentioned
in Section 2.4, to the tree ST(Md

R$) with val, we can compute the leaves of ST(Md
R$)

representing (αp)R$ such that α ∈ Σ∗, αp ∈ Pre(Md) and LRS(αp) < |p|. From such a leaf,
we can obtain the locus of αp in ST (Md) in constant time by keeping pointers from the nodes
u of ST (Md

R$) to the loci of x in ST (Md), where x is the string such that xR is represented
by u in ST (Md

R$).

4.2 Implementation of Step 2

We note that the locus of any string in Md is a leaf of ST (Md) (see Figure 3). The outputs
of Step 2 are thus the leaves u of the subtree rooted at v representing strings in Md. Define
the function val from the nodes of ST(Md) to the integers by: For any node u of ST(Md),
let val(u) = 0 if u is a leaf and represents some string in Md, and 1 otherwise. We again
apply the FLT query technique to the tree ST(Md) with val, to enumerate the loci of xβ
appropriately.

ISAAC 2019

40:8 An Improved Data Structure for Left-Right Maximal Generic Words Problem

4.3 Query time and space requirement
In Step 1, computing the locus of pR in ST (Md

R$) takes O(|p|) time. Each execution of the
FLT query takes constant time in Steps 1 and 2. Thus the query time is O(|p|+ o), where o
is the number of outputs. For d = 1, . . . ,m, the suffix trees ST(Md) and ST(Md

R$), and
the relevant data structures for the FLT queries require O(n) space. The total space of our
data structure is O(nm).

5 Space Efficient Implementation of Step 1

As seen in Section 4.3, the use of the suffix trees ST (Md
R$) for d = 1, . . . ,m in Step 1 causes

the O(nm) space requirement. Our idea to reduce the space requirement is to substitute
ST(Md

R) for ST(Md
R$). The following lemma gives an upper bound on the total size of

suffix trees ST (Md
R).

I Lemma 12. The suffix trees ST(Md) for d = 1, . . . ,m are, respectively, of size O(n/d),
and their total size is O(n logm).

Proof. It suffices to show that ST(Md) has O(n/d) leaves. Let v be any leaf of ST(Md),
and let x be the string represented by v. Assume, for a contradiction, that x is not d-right
maximal. Then, there exists a string β ∈ Σ+ such that αxβ ∈ Md for some α ∈ Σ∗. Thus xβ
is a suffix of Md, which contradicts that v is a leaf of ST (Md). Therefore x is d-right maximal.
The number of leaves of ST (Md) is not greater than the number of d-right maximal strings,
which is O(n/d) by Lemma 2. J

The difficulty in using not ST (Md
R$) but ST (Md

R) is that the string (αp)R is possibly
implicit in ST (Md

R) whereas the string (αp)R$ is necessarily explicit and represented by a
leaf in ST (Md

R$). We partition Step 1 into two parts:
Step 1A. Enumerate the loci of αp in ST (Md) such that α ∈ Σ∗, αp ∈ Pre(Md), LRS(αp) <
|p| and (αp)R is explicit in ST (Md

R).
Step 1B. Enumerate the loci of αp in ST (Md) such that α ∈ Σ∗, αp ∈ Pre(Md), LRS(αp) <
|p| and (αp)R is implicit in ST (Md

R).

Step 1A can be done in O(|p|+ o) time with O(n logm) space in almost the same way as
Section 4.1. Below we describe how to implement Step 1B.

5.1 Implementation of Step 1B
I Lemma 13. For any string x in Pre(Md), xR is explicit in ST (DR$).

Proof. Let β ∈ Σ∗ be a string such that xβ ∈ Md. Since the string (xβ)R is d-left-right
maximal, it is explicit in ST (DR$) and therefore its suffix xR is also explicit in ST (DR$). J

We thus use ST (DR$) to represent strings in Pre(Md).
Let q1 and q2 be the strings represented by the loci of pR in ST (DR$) and in ST (Md

R),
respectively. The p-critical path of ST(DR$) is the path from u1 to u2 such that u1 and
u2 are the nodes of ST (DR$) representing q1 and q2, respectively. A string x and the node
representing xR in ST (DR$) are said to be p-satisfying if x is a left extension of p such that
x ∈ Pre(Md), LRS(x) < |p| and xR is implicit in ST (Md

R). An edge e of ST (Md
R) and the

path corresponding to e in ST (DR$) are said to be p-admissible if e is in the subtree rooted
at the node representing q2 and at least one implicit node is present on e which represents
the reversal xR of a p-satisfying string x.

Y. Fujishige, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 40:9

Every p-satisfying node of ST (DR$) is present on: (i) the p-critical path of ST (DR$) or
(ii) a p-admissible path of ST (Md

R). Thus, the enumeration of the loci of αp in ST (Md) can
be performed as follows.

(1) Enumerate the p-admissible paths of ST (DR$).
(2) For each p-admissible path of ST (DR$) and for the p-critical path of ST (DR$), enumerate

the p-satisfying nodes on it.
(3) For each p-satisfying node of ST(DR$) representing xR, compute the locus of x in

ST (Md).

I Example 14. Suppose that D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba},
d = 2 and p = abab. Then, q1 = baba and q2 = babaaa (see Figure 4). We want to compute
baba in Step 1B.

a b!

! a

! a

a b! b

a

a

b

a

a

!

a

! a

!

a b

a

a

!

a

a

b

a

b

a

a

!

!

!

!

a b

a

! a

a

!

a

a

b

b

a

a

!

b

a

b

a

b

a

a

!

a

b

a

a

a

!

b

a

a

b

a

!

a b

b

a a!

! a b

! a

! a

a

!

b

a

a

b

a

!

b

a

a

!

a

b

a

a

a

!

a

b

a

!

b

a

a

!

b

a

a

b

a

a

a

!

b

a

a

b

a

!

b

a

!

b

a

ST(DR$)

a

a

a

a b

b

a

a

b

b

a

bb

a

a

b

a

a

a

ba a

a

a

b

a

a

a

a

b

a

b

a

ST(M2
R)

Figure 4 ST(DR$) and ST(M2
R) for D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba}.

In (1), we shall enumerate all p-admissible edges of ST(Md
R). With each edge (s, t) of

ST (Md
R), we associate the value LRS(zR) such that x and y are the strings represented by

s and t, respectively, and z = y[..i] where i is the smallest integer in [|x|+ 1, |y| − 1] with
z ∈ Suf (Md

R) (i.e. zR ∈ Pre(Md)). We associate ∞ with it, if no such i exists. Then, we
can enumerate all p-admissible edges of ST(Md

R), by applying the FLT query technique
to ST (Md

R), with regarding the value associated with the incoming edge (s, t) of a node t
as the value of t. Computing the loci of pR in ST(Md

R$) and ST(DR$) takes O(|p|) time.
Execution of the FLT query takes constant time.

In (2), we proceed to examine nodes representing xR on the path until we encounter a
node representing xR with LRS(x) ≥ |p|, by repeatedly querying with the data structure
stated in the following lemma.

I Lemma 15. There exists an O(n logm) size data structure which, given a node of ST (DR$)
representing string yR, returns in O(log logm) time the locus of (xy)R in ST(DR$) such
that x is the shortest string with xy ∈ Pre(Md), and nil if no such x exists.

In (3), for each p-satisfying node of ST (DR$) representing xR, compute the locus of x in
ST (Md) by using the data structure stated in the following lemma.

I Lemma 16. The locus of a string x in ST (Md) can be computed in O(log logm) time from
the locus of xR in ST (DR$) using an O(n logm) space data structure.

The suffix tree ST(DR$) takes O(n) space. For d = 1, . . . ,m, the suffix trees ST(Md)
and ST(Md

R$), and the relevant data structures for the FLT queries require O(n) space.
The total computation time of Step 1B is O(|p|+ o log logm) and the total space of our data
structure is O(n logm).

ISAAC 2019

40:10 An Improved Data Structure for Left-Right Maximal Generic Words Problem

5.2 Proofs of Lemmas 15 and 16
To complete the proof of Theorem 9, we give proofs of Lemmas 15 and 16. For the sake of
convenience, we first prove Lemma 16.

5.2.1 Proof of Lemma 16
From the locus of xR in ST (DR$) we can obtain the locus of x in ST (D$) in constant time
by using direct links from the nodes of ST(DR$) to the corresponding nodes of ST(D$).
Thus we describe how to compute from the locus of x in ST (D$) the locus of x in ST (Md)
in O(log logm) time using O(n logm) space.

A node v of ST(D$) representing string z is called a d-node if z is explicit in ST(Md).
The locus of x in ST (Md) then corresponds to the earliest d-node preceded by the locus of x
in the pre-order traversal of ST (D$).

I Example 17. Suppose that D = {aaabaabaaa, aaabaabbba, aabababbaa, abaababbba},
d = 2 and x = aab. Then the earliest 2-node preceded by the locus of x is the node
representing aaba (see Figure 5). The locus of x in ST (M2) represents the same string aaba.

a b!

! a

! a

a b
! b

a

a

b

b

!

a b

b

a

!

b

a

!

a

b

b

b

a b

b

a a!

! a b

!

b

a

!

b

a

b

a

!

b !

b

a

!

a

a

a

a

a

!

b

b

a

!

a

a

a

!

b

b

a

!

b

b

a

a

b

a

!

a
a

!

b

b

b

a

a

a

!

!

b

b

a

b

b

a

a

!

b

a

!
b

a

a

!

b

b

b

!

a

a a

a

!

b

a

!

!

a

!

a

a

!

b

a

!

!

a

b

b

a

a a

b

Figure 5 Illustration of ST(D$), where the double lined circles represent the 2-nodes.

For any node s of ST (D$), let L(s) be the sequence of non-negative integers d arranged
in the increasing order such that d = 0 or s is a d-node. Let A be the sequence obtained by
concatenating L(s) according to the pre-order of nodes s of ST (D$). Let u and v be the loci
of x in ST (D$) and ST (Md), respectively. Then v corresponds to the leftmost occurrence of d
in A[i+1..] such that i is the position of j-th occurrence of 0 where j is the rank of u in the pre-
order traversal of ST (D$). Thus v can be computed from u as follows. For the rightmost leaf lu
of the subtree rooted at u, v = nil if rankA(d, selectA(0,PreOrd(u))) > selectA(0,PreOrd(lu)),
and otherwise, v corresponds to A[rankA(d, selectA(0,PreOrd(u)))], where PreOrd(s) denotes
the rank of a node s in the pre-order traversal of ST (D$).

The numbers of 0’s and d’s in the array A are O(n) and O(n/d), respectively, and hence
we have |A| = O(n logm). By Lemma 5, we can compute the locus of x in ST (Md) from the
locus of x in ST (DR$) in O(log logm) time using O(n logm) space.

5.2.2 Proof of Lemma 15
By Lemma 3, xyz ∈ Md implies that yz is d-right maximal. For each d-right maximal string
β, let len(β) denote the length of the shortest string α with αβ ∈ Md. Then the desired
string xy can be obtained from the d-right maximal extension yz of y that minimizes len(yz).

Y. Fujishige, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 40:11

From the locus of yR in ST (DR$), the locus of (xy)R in ST (DR$) can be computed in
three steps (see Figure 6).

Step 1. From the locus of yR in ST (DR$), find the locus of y in ST (Md).
Step 2. From the locus of y in ST (Md), find the locus of (xyz)R in ST (DR$) such that x is

one of the shortest strings x satisfying xyz ∈ Md for some string z.
Step 3. From the locus of (xyz)R, find the locus of (xy)R in ST (DR$).

!"!#$"

#$%&'(

#$%&)
#$%&'*

+,-./',0'%&

+,-./',0'!'%"&

!"!(&1"

+,-./',0'%

+,-./',0'!'%)"&

Figure 6 Computing the locus of (xy)R from the locus of yR in ST(DR$).

Step 1 requires O(log logm) time by using the O(n logm)-size data structure stated in
Lemma 16.

For Step 2, we define two functions len and link on the set of nodes of ST (Md) as follows:
For any node u of ST(Md), let β be the string represented by u. If there is some string α
such that αβ ∈ Pre(Md), choose α as short as possible, and let len(u) = |α| and let link(u)
be the locus of α in ST (DR$). If there is no such α, let len(u) =∞ and link(u) = nil.

Suppose that v is the descendant of the locus of y in ST(Md) that minimizes len(v).
Then len(v) = |x| and link(v) is the locus of (xyz)R in ST (DR$) since yz is d-right maximal.
The locus of (xyz)R in ST(DR) can then be computed in constant time by storing the
values len(u) and link(u) into the nodes u of ST(Md) and applying the Range Minimum
Query technique.

In Step 3, the locus of (xy)R is obtained from the locus of (xyz)R in ST(DR$) by
traversing suffix links |x| times. The task can be done in constant time by using the O(n)
space data structure for the level ancestor query [1] on suffix link tree of ST (DR$).

Step 1 through Step 3 can be done in O(log logm) time using O(n logm) space.

6 Conclusion

In this paper, we addressed the left-right maximal generic words problem and developed an
O(n logm) size data structure, which answers queries in O(|p|+ o log logm) time, where o is
the size of outputs. Our method is better than the previous work by Nishimoto et al. [7]
both in the space requirement and in the query time. We achieved the O(n logm) space
requirement by substituting ST(Md) for ST(Md$), with the conjecture that the total size
of ST(Md$)’s for d = 1, . . . ,m are Θ(nm). To prove that the total size is Ω(nm) is left as
future work.

ISAAC 2019

40:12 An Improved Data Structure for Left-Right Maximal Generic Words Problem

References
1 Omer Berkman and Uzi Vishkin. Finding Level-Ancestors in Trees. J. Comput. Syst. Sci.,

48(2):214–230, 1994.
2 Sudip Biswas, Manish Patil, Rahul Shah, and Sharma V. Thankachan. Succinct Indexes for

Reporting Discriminating and Generic Words. In Edleno Silva de Moura and Maxime Cro-
chemore, editors, String Processing and Information Retrieval - 21st International Symposium,
SPIRE 2014, Ouro Preto, Brazil, October 20-22, 2014. Proceedings, volume 8799 of Lecture
Notes in Computer Science, pages 89–100. Springer, 2014. doi:10.1007/978-3-319-11918-2.

3 Pawel Gawrychowski, Gregory Kucherov, Yakov Nekrich, and Tatiana A. Starikovskaya.
Minimal Discriminating Words Problem Revisited. In Oren Kurland, Moshe Lewenstein, and
Ely Porat, editors, String Processing and Information Retrieval - 20th International Symposium,
SPIRE 2013, Jerusalem, Israel, October 7-9, 2013, Proceedings, volume 8214 of Lecture Notes
in Computer Science, pages 129–140. Springer, 2013. doi:10.1007/978-3-319-02432-5.

4 Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on large
alphabets: a tool for text indexing. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006,
pages 368–373. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.
1109599.

5 Gregory Kucherov, Yakov Nekrich, and Tatiana A. Starikovskaya. Computing Discriminating
and Generic Words. In Liliana Calderón-Benavides, Cristina N. González-Caro, Edgar Chávez,
and Nivio Ziviani, editors, String Processing and Information Retrieval - 19th International
Symposium, SPIRE 2012, Cartagena de Indias, Colombia, October 21-25, 2012. Proceedings,
volume 7608 of Lecture Notes in Computer Science, pages 307–317. Springer, 2012. doi:
10.1007/978-3-642-34109-0.

6 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In David Eppstein,
editor, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 6-8, 2002, San Francisco, CA, USA., pages 657–666. ACM/SIAM, 2002. URL:
http://dl.acm.org/citation.cfm?id=545381.545469.

7 Takaaki Nishimoto, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing Left-Right Maximal Generic Words. In Jan Holub and Jan Zdárek, editors,
Proceedings of the Prague Stringology Conference 2015, Prague, Czech Republic, August 24-
26, 2015, pages 5–16. Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, 2015. URL: http://www.stringology.
org/event/2015/p02.html.

8 Peter Weiner. Linear Pattern Matching Algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11, 1973.

https://doi.org/10.1007/978-3-319-11918-2
https://doi.org/10.1007/978-3-319-02432-5
http://dl.acm.org/citation.cfm?id=1109557.1109599
http://dl.acm.org/citation.cfm?id=1109557.1109599
https://doi.org/10.1007/978-3-642-34109-0
https://doi.org/10.1007/978-3-642-34109-0
http://dl.acm.org/citation.cfm?id=545381.545469
http://www.stringology.org/event/2015/p02.html
http://www.stringology.org/event/2015/p02.html

Parameterized Complexity Classification of
Deletion to List Matrix-Partition for Low-Order
Matrices
Akanksha Agrawal
Ben-Gurion University of the Negev, Beer-Sheva, Israel
agrawal@post.bgu.ac.il

Sudeshna Kolay
Ben-Gurion University of the Negev, Beer-Sheva, Israel
sudeshna@post.bgu.ac.il

Jayakrishnan Madathil
The Institute of Mathematical Sciences, HBNI, Chennai, India
jayakrishnanm@imsc.res.in

Saket Saurabh
University of Bergen, Bergen, Norway
The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

Abstract
Given a symmetric ` × ` matrix M = (mi,j) with entries in {0, 1, ∗}, a graph G and a function
L : V (G)→ 2[`] (where [`] = {1, 2, . . . , `}), a list M -partition of G with respect to L is a partition
of V (G) into ` parts, say, V1, V2, . . . , V` such that for each i, j ∈ {1, 2, . . . , `}, (i) if mi,j = 0 then
for any u ∈ Vi and v ∈ Vj , uv /∈ E(G), (ii) if mi,j = 1 then for any (distinct) u ∈ Vi and v ∈ Vj ,
uv ∈ E(G), (iii) for each v ∈ V (G), if v ∈ Vi then i ∈ L(v). We consider the Deletion to List
M-Partition problem that takes as input a graph G, a list function L : V (G)→ 2[`] and a positive
integer k. The aim is to determine whether there is a k-sized set S ⊆ V (G) such that G− S has a
list M -partition. Many important problems like Vertex Cover, Odd Cycle Transversal, Split
Vertex Deletion, Multiway Cut and Deletion to List Homomorphism are special cases of
the Deletion to List M-Partition problem. In this paper, we provide a classification of the
parameterized complexity of Deletion to List M-Partition, parameterized by k, (a) when M is
of order at most 3, and (b) when M is of order 4 with all diagonal entries belonging to {0, 1}.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Fixed parameter tractability

Keywords and phrases list matrix partitions, parameterized classification, Almost 2-SAT, important
separators, iterative compression

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.41

Funding Akanksha Agrawal: Supported by the PBC Program of Fellowships for Outstanding Post-
doctoral Researchers from China and India (No. 5101479000).
Saket Saurabh: Supported by the Horizon 2020 Framework program, ERC Consolidator Grant
LOPPRE (No. 819416).

1 Introduction

A large number of problems in algorithmic graph theory are of the following two types. (1)
Given a graph G, can the vertices of G be partitioned subject to a set of constraints? And
(2) given a graph G and a non-negative integer k, is it possible to delete at most k vertices
from G so that the vertices of the resulting graph can be partitioned subject to a set of

© Akanksha Agrawal, Sudeshna Kolay, Jayakrishnan Madathil, and Saket Saurabh;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 41; pp. 41:1–41:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:agrawal@post.bgu.ac.il
mailto:sudeshna@post.bgu.ac.il
mailto:jayakrishnanm@imsc.res.in
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.ISAAC.2019.41
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Deletion to List Matrix-Partition for Low-Order Matrices

constraints? In this paper, we study the parameterized complexity of a family of problems of
the second type, (with k, the size of the deletion set, as the parameter). We consider those
partitions that can be characterised by a matrix of order at most 4. In this regard, we follow
Feder et al. [17], who undertook a similar study of partition problems of the first type.

Let M be a symmetric ` × ` matrix with entries from {0, 1, ∗}. For a graph G, an
M-partition V of G is a partition of V (G) into ` parts {V1, V2, . . . , V`} (where some part
could be empty) such that for every i ∈ [`], (i) Vi is an independent set if mi,i = 0, (ii)
G[Vi] is a clique if mi,i = 1 (and no restriction on Vi if mi,i = ∗); and for distinct indices
i, j ∈ [`], (iii) Vi and Vj are completely adjacent if mi,j = 1, (iv) Vi and Vj are completely
non-adjacent if mi,j = 0 (and no restriction on the edges between Vi and Vj if mi,j = ∗).
The M-Partition problem takes as input a graph G, and the objective is to determine
if G admits an M -partition. This problem encompasses recognition of many graph classes
that can be characterised by a partition of the vertex set satisfying certain constraints. For
instance, consider the following matrices:

M1 =
(

0 ∗
∗ 0

)
M2 =

(
0 ∗
∗ 1

)
M` =

0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

...
∗ ∗ · · · 0

`×`

The set of graphs that admit an M1-partition and M2-partition are exactly the family of
bipartite graphs and split graphs, respectively. Note that both bipartite graphs and split
graphs have polynomial time recognition algorithms [3, 22, 25]. The graphs that admit an
M`-partition are exactly the graphs that admit a proper colouring using at most ` colours. It
is well-known that while 2-colouring is polynomial time solvable [3], `-colouring is NP-hard
for every ` ≥ 3 [19, 20].

For an `× ` matrix M , List M-Partition is a generalization of M-Partition. Let M
be a symmetric `× ` matrix over {0, 1, ∗}. Given a graph G and a function L : V (G)→ 2[`]

(L is called a list function, and for each v ∈ V (G), L(v) is called the list of v), a list M-
partition of G with respect to L (or a list M -partition of G that respects L) is an M -partition
V = {V1, V2, . . . , V`} of G such that for each v ∈ V (G), if v ∈ Vi for some i ∈ [`] then
i ∈ L(v). List M-Partition takes as input a graph G, a list function L : V (G)→ 2[`], and
the objective is to determine if G admits a list M -partition of G that respects L. Note that
when an instance of List M-Partition has the input list function mapping every vertex to
the set [`], then it is also an instance of M-Partition (where we forget the list function).

Both M-Partition and List M-Partition problems have been extensively studied
in the literature, both for restricted matrices and for restricted graph classes (see, for
example, [1, 5, 8, 10, 11, 12, 16, 17, 24, 29] and references therein). The most widely known
special case of List M-Partition is perhaps the List Colouring problem. The notion of
studying the restriction of colouring problems with a list of allowed colours on vertices was
introduced and studied (independently) by Vizing [28] and Erdős et al. [13]. Since its advent,
the problem has been extensively studied in both graph theory and algorithms [13, 24, 29].
Another important special case of List M-Partition is the List Homomorphism problem,
which to the best of our knowledge, was introduced by Feder and Hell [14], and has been
extensively studied in the literature [1, 8, 10, 11, 12, 16].

Feder et al. [17] studied List M-Partition, and established a complete classification of
List M-Partition for small matrices M (into P/NP-hard/quasi polynomial time). Their
results form a special case of later results due to Feder and Hell [15, Corollary 3.4] on

A. Agrawal, S. Kolay, J. Madathil, and S. Saurabh 41:3

constraint satisfaction problems. In this paper, we look at the deletion version of List
M-Partition, which we call Deletion to List M-Partition. The problem is formally
defined as follows.

Deletion to List M-Partition Parameter: k
Input: A graph G, a list function L : V (G) → 2[`] where ` is the order of M , and a
non-negative integer k.
Question: Does there exist X ⊆ V (G) such that |X| ≤ k and G − X admits a list
M -partition that respects L?

The Deletion to List M-Partition problem generalises many well-studied classical
problems, such as Vertex Cover (VC), Odd Cycle Transversal (OCT), Split
Vertex Deletion (SVD) and Multiway Cut, to name a few. These problems (VC,
OCT, SVD etc.) have been studied in both classical and parameterized complexity settings
and are all NP-hard [30, 9]. Chitnis et al. [7] initiated the study of the deletion version
of List Homomorphism to a graph H, called Dl-Hom(H), which is a special case of
Deletion to List M-Partition. (In [7], H is considered to be a loopless, simple graph.)
They showed that Dl-Hom(H) is FPT (parameterized by k and |H|) for any (P6, C6)-free
bipartite graph H, and conjectured that the problem is FPT for those graphs H for which
List Homomorphism (i.e., without deletions) is polynomial-time solvable. Notice that for
some of the matrices that do not contain both 1 and 0 and do not have a * as a diagonal
entry, the corresponding Deletion to List M-Partition problem is covered by the results
in [7].1 While we study the deletion version of List M-Partition, the “counting version,”
denoted by #List M-Partition, where given G and L as input, the goal is to determine
the number of M -partitions of G that respect L, has been studied by Göbel et al. [21]. They
established a complete dichotomy by showing that for any symmetric matrix M over {0, 1, ∗},
#List M-Partition is either in FP or #P-complete.

Our Results and Methods

We study the parameterized complexity of Deletion to List M-Partition for different
matrices M , and obtain a classification of these problems (into polynomial time solvable,
NP-hard and FPT or para-NP-hard) when M is a matrix of order at most 4.

M is of order at most 3. First, we resolve the classical complexity of Deletion to List
M-Partition problems when M is of order at most 3, except for one matrix. We extend
the study to explore the parameterized complexity of these deletion problems, parameterized
by the size k of the deletion set. Specifically, we prove the following theorem.

I Theorem 1 (?2). For a 3× 3 symmetric matrix M over {0, 1, ∗}, the Deletion to List
M-Partition problem is
1. polynomial time solvable if either M or M is equivalent to one of the three matrices∗ ∗ ∗∗ ∗ ∗

∗ ∗ ∗

 ,

∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗

 or

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 ;

1 The results in [7] only cover a few matrices of the described form because there is an additional constraint
of H being a (P6, C6)-free bipartite graph.

2 Due to paucity of space, (full) proofs of statements marked with a ? have been omitted.

ISAAC 2019

41:4 Deletion to List Matrix-Partition for Low-Order Matrices

0
@
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

1
A

<latexit sha1_base64="u47h5jPvQ5MZxXLj9dLi90wNkxw=">AAACK3icbVDLSgMxFM3UV62vUZdugkWRLsqMCLosdeOygm2FzlAy6W0bmskMSUYsQ//Hjb/iQhc+cOt/mE4H0dYDCSfn3kPuPUHMmdKO824VlpZXVteK66WNza3tHXt3r6WiRFJo0ohH8jYgCjgT0NRMc7iNJZAw4NAORpfTevsOpGKRuNHjGPyQDATrM0q0kbp23QtgwEQah0RLdj/BFXyMs6uCPS8niw8QvR9L1y47VScDXiRuTsooR6NrP3u9iCYhCE05UarjOrH2UyI1oxwmJS9REBM6IgPoGCpICMpPs10n+MgoPdyPpDlC40z97UhJqNQ4DEynmW+o5mtT8b9aJ9H9Cz9lIk40CDr7qJ9wrCM8DQ73mASq+dgQQiUzs2I6JJJQbeItmRDc+ZUXSeu06jpV9/qsXKvncRTRATpEJ8hF56iGrlADNRFFD+gJvaI369F6sT6sz1lrwco9++gPrK9v4wShWw==</latexit><latexit sha1_base64="u47h5jPvQ5MZxXLj9dLi90wNkxw=">AAACK3icbVDLSgMxFM3UV62vUZdugkWRLsqMCLosdeOygm2FzlAy6W0bmskMSUYsQ//Hjb/iQhc+cOt/mE4H0dYDCSfn3kPuPUHMmdKO824VlpZXVteK66WNza3tHXt3r6WiRFJo0ohH8jYgCjgT0NRMc7iNJZAw4NAORpfTevsOpGKRuNHjGPyQDATrM0q0kbp23QtgwEQah0RLdj/BFXyMs6uCPS8niw8QvR9L1y47VScDXiRuTsooR6NrP3u9iCYhCE05UarjOrH2UyI1oxwmJS9REBM6IgPoGCpICMpPs10n+MgoPdyPpDlC40z97UhJqNQ4DEynmW+o5mtT8b9aJ9H9Cz9lIk40CDr7qJ9wrCM8DQ73mASq+dgQQiUzs2I6JJJQbeItmRDc+ZUXSeu06jpV9/qsXKvncRTRATpEJ8hF56iGrlADNRFFD+gJvaI369F6sT6sz1lrwco9++gPrK9v4wShWw==</latexit><latexit sha1_base64="u47h5jPvQ5MZxXLj9dLi90wNkxw=">AAACK3icbVDLSgMxFM3UV62vUZdugkWRLsqMCLosdeOygm2FzlAy6W0bmskMSUYsQ//Hjb/iQhc+cOt/mE4H0dYDCSfn3kPuPUHMmdKO824VlpZXVteK66WNza3tHXt3r6WiRFJo0ohH8jYgCjgT0NRMc7iNJZAw4NAORpfTevsOpGKRuNHjGPyQDATrM0q0kbp23QtgwEQah0RLdj/BFXyMs6uCPS8niw8QvR9L1y47VScDXiRuTsooR6NrP3u9iCYhCE05UarjOrH2UyI1oxwmJS9REBM6IgPoGCpICMpPs10n+MgoPdyPpDlC40z97UhJqNQ4DEynmW+o5mtT8b9aJ9H9Cz9lIk40CDr7qJ9wrCM8DQ73mASq+dgQQiUzs2I6JJJQbeItmRDc+ZUXSeu06jpV9/qsXKvncRTRATpEJ8hF56iGrlADNRFFD+gJvaI369F6sT6sz1lrwco9++gPrK9v4wShWw==</latexit><latexit sha1_base64="u47h5jPvQ5MZxXLj9dLi90wNkxw=">AAACK3icbVDLSgMxFM3UV62vUZdugkWRLsqMCLosdeOygm2FzlAy6W0bmskMSUYsQ//Hjb/iQhc+cOt/mE4H0dYDCSfn3kPuPUHMmdKO824VlpZXVteK66WNza3tHXt3r6WiRFJo0ohH8jYgCjgT0NRMc7iNJZAw4NAORpfTevsOpGKRuNHjGPyQDATrM0q0kbp23QtgwEQah0RLdj/BFXyMs6uCPS8niw8QvR9L1y47VScDXiRuTsooR6NrP3u9iCYhCE05UarjOrH2UyI1oxwmJS9REBM6IgPoGCpICMpPs10n+MgoPdyPpDlC40z97UhJqNQ4DEynmW+o5mtT8b9aJ9H9Cz9lIk40CDr7qJ9wrCM8DQ73mASq+dgQQiUzs2I6JJJQbeItmRDc+ZUXSeu06jpV9/qsXKvncRTRATpEJ8hF56iGrlADNRFFD+gJvaI369F6sT6sz1lrwco9++gPrK9v4wShWw==</latexit>

0
@
⇤ ⇤ 0
⇤ ⇤ 0
0 0 ⇤

1
A

<latexit sha1_base64="RMPk0/FZRgYTG7XFIpp2Vb5XxZs=">AAACKnicbZBNSwMxEIazftb6terRS7Ao4qHsiqDHqhePFewHdJeSTadtaDa7JFmxLP09XvwrXnpQild/iOl2Kdo6kPDknRky8wYxZ0o7zsRaWV1b39gsbBW3d3b39u2Dw7qKEkmhRiMeyWZAFHAmoKaZ5tCMJZAw4NAIBvfTfOMZpGKReNLDGPyQ9ATrMkq0kdr2rRdAj4k0DomW7GWEL/AZzi4He14G84eTgRE8EJ15R9suOWUnC7wMbg4llEe1bY+9TkSTEISmnCjVcp1Y+ymRmlEOo6KXKIgJHZAetAwKEoLy02zVET41Sgd3I2mO0DhTf3ekJFRqGAam0szXV4u5qfhfrpXo7o2fMhEnGgSdfdRNONYRnvqGO0wC1XxogFDJzKyY9okkVBt3i8YEd3HlZahfll2n7D5elSp3uR0FdIxO0Dly0TWqoAdURTVE0St6Rx/o03qzxtbE+pqVrlh5zxH6E9b3D6W/oUk=</latexit><latexit sha1_base64="RMPk0/FZRgYTG7XFIpp2Vb5XxZs=">AAACKnicbZBNSwMxEIazftb6terRS7Ao4qHsiqDHqhePFewHdJeSTadtaDa7JFmxLP09XvwrXnpQild/iOl2Kdo6kPDknRky8wYxZ0o7zsRaWV1b39gsbBW3d3b39u2Dw7qKEkmhRiMeyWZAFHAmoKaZ5tCMJZAw4NAIBvfTfOMZpGKReNLDGPyQ9ATrMkq0kdr2rRdAj4k0DomW7GWEL/AZzi4He14G84eTgRE8EJ15R9suOWUnC7wMbg4llEe1bY+9TkSTEISmnCjVcp1Y+ymRmlEOo6KXKIgJHZAetAwKEoLy02zVET41Sgd3I2mO0DhTf3ekJFRqGAam0szXV4u5qfhfrpXo7o2fMhEnGgSdfdRNONYRnvqGO0wC1XxogFDJzKyY9okkVBt3i8YEd3HlZahfll2n7D5elSp3uR0FdIxO0Dly0TWqoAdURTVE0St6Rx/o03qzxtbE+pqVrlh5zxH6E9b3D6W/oUk=</latexit><latexit sha1_base64="RMPk0/FZRgYTG7XFIpp2Vb5XxZs=">AAACKnicbZBNSwMxEIazftb6terRS7Ao4qHsiqDHqhePFewHdJeSTadtaDa7JFmxLP09XvwrXnpQild/iOl2Kdo6kPDknRky8wYxZ0o7zsRaWV1b39gsbBW3d3b39u2Dw7qKEkmhRiMeyWZAFHAmoKaZ5tCMJZAw4NAIBvfTfOMZpGKReNLDGPyQ9ATrMkq0kdr2rRdAj4k0DomW7GWEL/AZzi4He14G84eTgRE8EJ15R9suOWUnC7wMbg4llEe1bY+9TkSTEISmnCjVcp1Y+ymRmlEOo6KXKIgJHZAetAwKEoLy02zVET41Sgd3I2mO0DhTf3ekJFRqGAam0szXV4u5qfhfrpXo7o2fMhEnGgSdfdRNONYRnvqGO0wC1XxogFDJzKyY9okkVBt3i8YEd3HlZahfll2n7D5elSp3uR0FdIxO0Dly0TWqoAdURTVE0St6Rx/o03qzxtbE+pqVrlh5zxH6E9b3D6W/oUk=</latexit><latexit sha1_base64="RMPk0/FZRgYTG7XFIpp2Vb5XxZs=">AAACKnicbZBNSwMxEIazftb6terRS7Ao4qHsiqDHqhePFewHdJeSTadtaDa7JFmxLP09XvwrXnpQild/iOl2Kdo6kPDknRky8wYxZ0o7zsRaWV1b39gsbBW3d3b39u2Dw7qKEkmhRiMeyWZAFHAmoKaZ5tCMJZAw4NAIBvfTfOMZpGKReNLDGPyQ9ATrMkq0kdr2rRdAj4k0DomW7GWEL/AZzi4He14G84eTgRE8EJ15R9suOWUnC7wMbg4llEe1bY+9TkSTEISmnCjVcp1Y+ymRmlEOo6KXKIgJHZAetAwKEoLy02zVET41Sgd3I2mO0DhTf3ekJFRqGAam0szXV4u5qfhfrpXo7o2fMhEnGgSdfdRNONYRnvqGO0wC1XxogFDJzKyY9okkVBt3i8YEd3HlZahfll2n7D5elSp3uR0FdIxO0Dly0TWqoAdURTVE0St6Rx/o03qzxtbE+pqVrlh5zxH6E9b3D6W/oUk=</latexit>

0
@
⇤ 0 ⇤
0 ⇤ ⇤
⇤ ⇤ ⇤

1
A

<latexit sha1_base64="CCaCq2QxzMLaOBMpmH0uMsucuMI=">AAACLHicbVBLSwMxEM7WV62vqkcvwaJID2VXBD0We/FYwT6gW0o2O9uGZrNLkhXL0h/kxb8iiAeLePV3mLaLj9aBhG++mY+Z+byYM6Vte2LlVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsjCjgT0NBMc2jHEkjocWh5w9q03roHqVgk7vQohm5I+oIFjBJtqF6xhl0P+kykcUi0ZA9jXManGNvmK2PXzUCWlH8SEP63pFcs2RV7FngZOBkooSzqveKL60c0CUFoyolSHceOdTclUjPKYVxwEwUxoUPSh46BgoSguuns2DE+MYyPg0iaJzSesb8VKQmVGoWe6TT7DdRibUr+V+skOrjqpkzEiQZB54OChGMd4alz2GcSqOYjAwiVzOyK6YBIQrXxt2BMcBZPXgbN84pjV5zbi1L1OrMjj47QMTpDDrpEVXSD6qiBKHpEz+gNTawn69V6tz7mrTkr0xyiP2F9fgFVYqGR</latexit><latexit sha1_base64="CCaCq2QxzMLaOBMpmH0uMsucuMI=">AAACLHicbVBLSwMxEM7WV62vqkcvwaJID2VXBD0We/FYwT6gW0o2O9uGZrNLkhXL0h/kxb8iiAeLePV3mLaLj9aBhG++mY+Z+byYM6Vte2LlVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsjCjgT0NBMc2jHEkjocWh5w9q03roHqVgk7vQohm5I+oIFjBJtqF6xhl0P+kykcUi0ZA9jXManGNvmK2PXzUCWlH8SEP63pFcs2RV7FngZOBkooSzqveKL60c0CUFoyolSHceOdTclUjPKYVxwEwUxoUPSh46BgoSguuns2DE+MYyPg0iaJzSesb8VKQmVGoWe6TT7DdRibUr+V+skOrjqpkzEiQZB54OChGMd4alz2GcSqOYjAwiVzOyK6YBIQrXxt2BMcBZPXgbN84pjV5zbi1L1OrMjj47QMTpDDrpEVXSD6qiBKHpEz+gNTawn69V6tz7mrTkr0xyiP2F9fgFVYqGR</latexit><latexit sha1_base64="CCaCq2QxzMLaOBMpmH0uMsucuMI=">AAACLHicbVBLSwMxEM7WV62vqkcvwaJID2VXBD0We/FYwT6gW0o2O9uGZrNLkhXL0h/kxb8iiAeLePV3mLaLj9aBhG++mY+Z+byYM6Vte2LlVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsjCjgT0NBMc2jHEkjocWh5w9q03roHqVgk7vQohm5I+oIFjBJtqF6xhl0P+kykcUi0ZA9jXManGNvmK2PXzUCWlH8SEP63pFcs2RV7FngZOBkooSzqveKL60c0CUFoyolSHceOdTclUjPKYVxwEwUxoUPSh46BgoSguuns2DE+MYyPg0iaJzSesb8VKQmVGoWe6TT7DdRibUr+V+skOrjqpkzEiQZB54OChGMd4alz2GcSqOYjAwiVzOyK6YBIQrXxt2BMcBZPXgbN84pjV5zbi1L1OrMjj47QMTpDDrpEVXSD6qiBKHpEz+gNTawn69V6tz7mrTkr0xyiP2F9fgFVYqGR</latexit><latexit sha1_base64="CCaCq2QxzMLaOBMpmH0uMsucuMI=">AAACLHicbVBLSwMxEM7WV62vqkcvwaJID2VXBD0We/FYwT6gW0o2O9uGZrNLkhXL0h/kxb8iiAeLePV3mLaLj9aBhG++mY+Z+byYM6Vte2LlVlbX1jfym4Wt7Z3dveL+QVNFiaTQoBGPZNsjCjgT0NBMc2jHEkjocWh5w9q03roHqVgk7vQohm5I+oIFjBJtqF6xhl0P+kykcUi0ZA9jXManGNvmK2PXzUCWlH8SEP63pFcs2RV7FngZOBkooSzqveKL60c0CUFoyolSHceOdTclUjPKYVxwEwUxoUPSh46BgoSguuns2DE+MYyPg0iaJzSesb8VKQmVGoWe6TT7DdRibUr+V+skOrjqpkzEiQZB54OChGMd4alz2GcSqOYjAwiVzOyK6YBIQrXxt2BMcBZPXgbN84pjV5zbi1L1OrMjj47QMTpDDrpEVXSD6qiBKHpEz+gNTawn69V6tz7mrTkr0xyiP2F9fgFVYqGR</latexit>

0
@

0 ⇤ ⇤
⇤ 0 ⇤
⇤ ⇤ 0

1
A

<latexit sha1_base64="JS2RtGrIWB9+AXZwC5rf5TlEvSY=">AAACK3icbVDLSgMxFM3UV62vqks3waJIF2VGBF2WunFZwT6gM5RM5rYNzWSGJCOWof/jxl9xoQsfuPU/TNtBauuBhJNz7yH3Hj/mTGnb/rByK6tr6xv5zcLW9s7uXnH/oKmiRFJo0IhHsu0TBZwJaGimObRjCST0ObT84fWk3roHqVgk7vQoBi8kfcF6jBJtpG6x5vrQZyKNQ6IlexhjG59iXDZXGbvulNjzj5ngggh+Ld1iya7YU+Bl4mSkhDLUu8UXN4hoEoLQlBOlOo4day8lUjPKYVxwEwUxoUPSh46hgoSgvHS66xifGCXAvUiaIzSeqvOOlIRKjULfdJr5BmqxNhH/q3US3bvyUibiRIOgs496Ccc6wpPgcMAkUM1HhhAqmZkV0wGRhGoTb8GE4CyuvEya5xXHrji3F6VqLYsjj47QMTpDDrpEVXSD6qiBKHpEz+gNvVtP1qv1aX3NWnNW5jlEf2B9/wAAj6Ft</latexit><latexit sha1_base64="JS2RtGrIWB9+AXZwC5rf5TlEvSY=">AAACK3icbVDLSgMxFM3UV62vqks3waJIF2VGBF2WunFZwT6gM5RM5rYNzWSGJCOWof/jxl9xoQsfuPU/TNtBauuBhJNz7yH3Hj/mTGnb/rByK6tr6xv5zcLW9s7uXnH/oKmiRFJo0IhHsu0TBZwJaGimObRjCST0ObT84fWk3roHqVgk7vQoBi8kfcF6jBJtpG6x5vrQZyKNQ6IlexhjG59iXDZXGbvulNjzj5ngggh+Ld1iya7YU+Bl4mSkhDLUu8UXN4hoEoLQlBOlOo4day8lUjPKYVxwEwUxoUPSh46hgoSgvHS66xifGCXAvUiaIzSeqvOOlIRKjULfdJr5BmqxNhH/q3US3bvyUibiRIOgs496Ccc6wpPgcMAkUM1HhhAqmZkV0wGRhGoTb8GE4CyuvEya5xXHrji3F6VqLYsjj47QMTpDDrpEVXSD6qiBKHpEz+gNvVtP1qv1aX3NWnNW5jlEf2B9/wAAj6Ft</latexit><latexit sha1_base64="JS2RtGrIWB9+AXZwC5rf5TlEvSY=">AAACK3icbVDLSgMxFM3UV62vqks3waJIF2VGBF2WunFZwT6gM5RM5rYNzWSGJCOWof/jxl9xoQsfuPU/TNtBauuBhJNz7yH3Hj/mTGnb/rByK6tr6xv5zcLW9s7uXnH/oKmiRFJo0IhHsu0TBZwJaGimObRjCST0ObT84fWk3roHqVgk7vQoBi8kfcF6jBJtpG6x5vrQZyKNQ6IlexhjG59iXDZXGbvulNjzj5ngggh+Ld1iya7YU+Bl4mSkhDLUu8UXN4hoEoLQlBOlOo4day8lUjPKYVxwEwUxoUPSh46hgoSgvHS66xifGCXAvUiaIzSeqvOOlIRKjULfdJr5BmqxNhH/q3US3bvyUibiRIOgs496Ccc6wpPgcMAkUM1HhhAqmZkV0wGRhGoTb8GE4CyuvEya5xXHrji3F6VqLYsjj47QMTpDDrpEVXSD6qiBKHpEz+gNvVtP1qv1aX3NWnNW5jlEf2B9/wAAj6Ft</latexit><latexit sha1_base64="JS2RtGrIWB9+AXZwC5rf5TlEvSY=">AAACK3icbVDLSgMxFM3UV62vqks3waJIF2VGBF2WunFZwT6gM5RM5rYNzWSGJCOWof/jxl9xoQsfuPU/TNtBauuBhJNz7yH3Hj/mTGnb/rByK6tr6xv5zcLW9s7uXnH/oKmiRFJo0IhHsu0TBZwJaGimObRjCST0ObT84fWk3roHqVgk7vQoBi8kfcF6jBJtpG6x5vrQZyKNQ6IlexhjG59iXDZXGbvulNjzj5ngggh+Ld1iya7YU+Bl4mSkhDLUu8UXN4hoEoLQlBOlOo4day8lUjPKYVxwEwUxoUPSh46hgoSgvHS66xifGCXAvUiaIzSeqvOOlIRKjULfdJr5BmqxNhH/q3US3bvyUibiRIOgs496Ccc6wpPgcMAkUM1HhhAqmZkV0wGRhGoTb8GE4CyuvEya5xXHrji3F6VqLYsjj47QMTpDDrpEVXSD6qiBKHpEz+gNvVtP1qv1aX3NWnNW5jlEf2B9/wAAj6Ft</latexit>

0
@
⇤ 0 ⇤
0 ⇤ ⇤
⇤ ⇤ 0

1
A

<latexit sha1_base64="amW4q7E8J0m0HP1pFt0UOUZH2aE=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp442AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAImhbQ==</latexit><latexit sha1_base64="amW4q7E8J0m0HP1pFt0UOUZH2aE=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp442AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAImhbQ==</latexit><latexit sha1_base64="amW4q7E8J0m0HP1pFt0UOUZH2aE=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp442AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAImhbQ==</latexit><latexit sha1_base64="amW4q7E8J0m0HP1pFt0UOUZH2aE=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp442AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAImhbQ==</latexit>

all others
<latexit sha1_base64="T4QFT4/gM/1aZaWO6+l4VTGdMJE=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkRdFl047KCfUBbSibNtKF5DMkdtYz9FDcuFHHrl7jzb0zbWWjrgcDhnHO5NydKBLcQBN/eyura+sZmYau4vbO7t++XDhpWp4ayOtVCm1ZELBNcsTpwEKyVGEZkJFgzGl1P/eY9M5ZrdQfjhHUlGSgec0rAST2/1JGRfsyIEFjD0AUnPb8cVIIZ8DIJc1JGOWo9/6vT1zSVTAEVxNp2GCTQzYgBTgWbFDupZQmhIzJgbUcVkcx2s9npE3zilD6OtXFPAZ6pvycyIq0dy8glJYGhXfSm4n9eO4X4sptxlaTAFJ0vilOBQeNpD7jPDaMgxo4Qari7FdMhMYSCK6HoSggXv7xMGmeVMKiEt+fl6lVeRwEdoWN0ikJ0garoBtVQHVH0gJ7RK3rznrwX7937mEdXvHzmEP2B9/kDvwSUTQ==</latexit><latexit sha1_base64="T4QFT4/gM/1aZaWO6+l4VTGdMJE=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkRdFl047KCfUBbSibNtKF5DMkdtYz9FDcuFHHrl7jzb0zbWWjrgcDhnHO5NydKBLcQBN/eyura+sZmYau4vbO7t++XDhpWp4ayOtVCm1ZELBNcsTpwEKyVGEZkJFgzGl1P/eY9M5ZrdQfjhHUlGSgec0rAST2/1JGRfsyIEFjD0AUnPb8cVIIZ8DIJc1JGOWo9/6vT1zSVTAEVxNp2GCTQzYgBTgWbFDupZQmhIzJgbUcVkcx2s9npE3zilD6OtXFPAZ6pvycyIq0dy8glJYGhXfSm4n9eO4X4sptxlaTAFJ0vilOBQeNpD7jPDaMgxo4Qari7FdMhMYSCK6HoSggXv7xMGmeVMKiEt+fl6lVeRwEdoWN0ikJ0garoBtVQHVH0gJ7RK3rznrwX7937mEdXvHzmEP2B9/kDvwSUTQ==</latexit><latexit sha1_base64="T4QFT4/gM/1aZaWO6+l4VTGdMJE=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkRdFl047KCfUBbSibNtKF5DMkdtYz9FDcuFHHrl7jzb0zbWWjrgcDhnHO5NydKBLcQBN/eyura+sZmYau4vbO7t++XDhpWp4ayOtVCm1ZELBNcsTpwEKyVGEZkJFgzGl1P/eY9M5ZrdQfjhHUlGSgec0rAST2/1JGRfsyIEFjD0AUnPb8cVIIZ8DIJc1JGOWo9/6vT1zSVTAEVxNp2GCTQzYgBTgWbFDupZQmhIzJgbUcVkcx2s9npE3zilD6OtXFPAZ6pvycyIq0dy8glJYGhXfSm4n9eO4X4sptxlaTAFJ0vilOBQeNpD7jPDaMgxo4Qari7FdMhMYSCK6HoSggXv7xMGmeVMKiEt+fl6lVeRwEdoWN0ikJ0garoBtVQHVH0gJ7RK3rznrwX7937mEdXvHzmEP2B9/kDvwSUTQ==</latexit><latexit sha1_base64="T4QFT4/gM/1aZaWO6+l4VTGdMJE=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkRdFl047KCfUBbSibNtKF5DMkdtYz9FDcuFHHrl7jzb0zbWWjrgcDhnHO5NydKBLcQBN/eyura+sZmYau4vbO7t++XDhpWp4ayOtVCm1ZELBNcsTpwEKyVGEZkJFgzGl1P/eY9M5ZrdQfjhHUlGSgec0rAST2/1JGRfsyIEFjD0AUnPb8cVIIZ8DIJc1JGOWo9/6vT1zSVTAEVxNp2GCTQzYgBTgWbFDupZQmhIzJgbUcVkcx2s9npE3zilD6OtXFPAZ6pvycyIq0dy8glJYGhXfSm4n9eO4X4sptxlaTAFJ0vilOBQeNpD7jPDaMgxo4Qari7FdMhMYSCK6HoSggXv7xMGmeVMKiEt+fl6lVeRwEdoWN0ikJ0garoBtVQHVH0gJ7RK3rznrwX7937mEdXvHzmEP2B9/kDvwSUTQ==</latexit>

4 ⇥ 4 [0/1 diagonals]
<latexit sha1_base64="eNZb9lK225ribvdnVcfPivYSq3I=">AAACFHicbVDLSgMxFM3UV62vUZdugkUQhDojBV0W3bisYB8wHUomzbShmWRIMmIZ5iPc+CtuXCji1oU7/8ZMO4K2HgicnHsv954TxIwq7ThfVmlpeWV1rbxe2djc2t6xd/faSiQSkxYWTMhugBRhlJOWppqRbiwJigJGOsH4Kq937ohUVPBbPYmJH6EhpyHFSBupb5/UYU/TiChoSBSI+xR6GXRO3Z/fgKKh4IgpP+vbVafmTAEXiVuQKijQ7NufvYHASUS4xgwp5blOrP0USU0xI1mllygSIzxGQ+IZypG5w0+npjJ4ZJQBDIU0j2s4VX9PpChSahIFpjNCeqTma7n4X81LdHjhp5THiSYczxaFCYNawDwh41gSrNkkt44lNbdCPEISYW1yrJgQ3HnLi6R9VnOdmntTrzYuizjK4AAcgmPggnPQANegCVoAgwfwBF7Aq/VoPVtv1vustWQVM/vgD6yPb2A3nS0=</latexit><latexit sha1_base64="eNZb9lK225ribvdnVcfPivYSq3I=">AAACFHicbVDLSgMxFM3UV62vUZdugkUQhDojBV0W3bisYB8wHUomzbShmWRIMmIZ5iPc+CtuXCji1oU7/8ZMO4K2HgicnHsv954TxIwq7ThfVmlpeWV1rbxe2djc2t6xd/faSiQSkxYWTMhugBRhlJOWppqRbiwJigJGOsH4Kq937ohUVPBbPYmJH6EhpyHFSBupb5/UYU/TiChoSBSI+xR6GXRO3Z/fgKKh4IgpP+vbVafmTAEXiVuQKijQ7NufvYHASUS4xgwp5blOrP0USU0xI1mllygSIzxGQ+IZypG5w0+npjJ4ZJQBDIU0j2s4VX9PpChSahIFpjNCeqTma7n4X81LdHjhp5THiSYczxaFCYNawDwh41gSrNkkt44lNbdCPEISYW1yrJgQ3HnLi6R9VnOdmntTrzYuizjK4AAcgmPggnPQANegCVoAgwfwBF7Aq/VoPVtv1vustWQVM/vgD6yPb2A3nS0=</latexit><latexit sha1_base64="eNZb9lK225ribvdnVcfPivYSq3I=">AAACFHicbVDLSgMxFM3UV62vUZdugkUQhDojBV0W3bisYB8wHUomzbShmWRIMmIZ5iPc+CtuXCji1oU7/8ZMO4K2HgicnHsv954TxIwq7ThfVmlpeWV1rbxe2djc2t6xd/faSiQSkxYWTMhugBRhlJOWppqRbiwJigJGOsH4Kq937ohUVPBbPYmJH6EhpyHFSBupb5/UYU/TiChoSBSI+xR6GXRO3Z/fgKKh4IgpP+vbVafmTAEXiVuQKijQ7NufvYHASUS4xgwp5blOrP0USU0xI1mllygSIzxGQ+IZypG5w0+npjJ4ZJQBDIU0j2s4VX9PpChSahIFpjNCeqTma7n4X81LdHjhp5THiSYczxaFCYNawDwh41gSrNkkt44lNbdCPEISYW1yrJgQ3HnLi6R9VnOdmntTrzYuizjK4AAcgmPggnPQANegCVoAgwfwBF7Aq/VoPVtv1vustWQVM/vgD6yPb2A3nS0=</latexit><latexit sha1_base64="eNZb9lK225ribvdnVcfPivYSq3I=">AAACFHicbVDLSgMxFM3UV62vUZdugkUQhDojBV0W3bisYB8wHUomzbShmWRIMmIZ5iPc+CtuXCji1oU7/8ZMO4K2HgicnHsv954TxIwq7ThfVmlpeWV1rbxe2djc2t6xd/faSiQSkxYWTMhugBRhlJOWppqRbiwJigJGOsH4Kq937ohUVPBbPYmJH6EhpyHFSBupb5/UYU/TiChoSBSI+xR6GXRO3Z/fgKKh4IgpP+vbVafmTAEXiVuQKijQ7NufvYHASUS4xgwp5blOrP0USU0xI1mllygSIzxGQ+IZypG5w0+npjJ4ZJQBDIU0j2s4VX9PpChSahIFpjNCeqTma7n4X81LdHjhp5THiSYczxaFCYNawDwh41gSrNkkt44lNbdCPEISYW1yrJgQ3HnLi6R9VnOdmntTrzYuizjK4AAcgmPggnPQANegCVoAgwfwBF7Aq/VoPVtv1vustWQVM/vgD6yPb2A3nS0=</latexit>

0
@

0 ⇤ ⇤
⇤ 0 ⇤
⇤ ⇤ 0

1
A

<latexit sha1_base64="6owTXNtC93jqeRJP0A+xQ6amPBw=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0URFyURQZdFNy4r2Ac0pUwmN+3QySTMTMQS+jtu/BU3Coq69UecpkVq64ELZ869h7n3+AlnSjvOp1VYWl5ZXSuulzY2t7Z37N29hopTSaFOYx7Llk8UcCagrpnm0EokkMjn0PQH1+N+8x6kYrG408MEOhHpCRYySrSRunbV86HHRJZEREv2MHLwMT7Ny/Ny4sw+JoIHIvg1dO2yU3Fy4EXiTkkZTVHr2q9eENM0AqEpJ0q1XSfRnYxIzSiHUclLFSSEDkgP2oYKEoHqZPmlI3xklACHsTQlNM7VWUdGIqWGkW8mzX59Nd8bi//12qkOLzsZE0mqQdDJR2HKsY7xODYcMAlU86EhhEpmdsW0TySh2oRbMiG48ycvksZZxXUq7u15uXo1jaOIDtAhOkEuukBVdINqqI4oekTP6A29W0/Wi/VhfU1GC9bUs4/+wPr+ATtKoRk=</latexit><latexit sha1_base64="6owTXNtC93jqeRJP0A+xQ6amPBw=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0URFyURQZdFNy4r2Ac0pUwmN+3QySTMTMQS+jtu/BU3Coq69UecpkVq64ELZ869h7n3+AlnSjvOp1VYWl5ZXSuulzY2t7Z37N29hopTSaFOYx7Llk8UcCagrpnm0EokkMjn0PQH1+N+8x6kYrG408MEOhHpCRYySrSRunbV86HHRJZEREv2MHLwMT7Ny/Ny4sw+JoIHIvg1dO2yU3Fy4EXiTkkZTVHr2q9eENM0AqEpJ0q1XSfRnYxIzSiHUclLFSSEDkgP2oYKEoHqZPmlI3xklACHsTQlNM7VWUdGIqWGkW8mzX59Nd8bi//12qkOLzsZE0mqQdDJR2HKsY7xODYcMAlU86EhhEpmdsW0TySh2oRbMiG48ycvksZZxXUq7u15uXo1jaOIDtAhOkEuukBVdINqqI4oekTP6A29W0/Wi/VhfU1GC9bUs4/+wPr+ATtKoRk=</latexit><latexit sha1_base64="6owTXNtC93jqeRJP0A+xQ6amPBw=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0URFyURQZdFNy4r2Ac0pUwmN+3QySTMTMQS+jtu/BU3Coq69UecpkVq64ELZ869h7n3+AlnSjvOp1VYWl5ZXSuulzY2t7Z37N29hopTSaFOYx7Llk8UcCagrpnm0EokkMjn0PQH1+N+8x6kYrG408MEOhHpCRYySrSRunbV86HHRJZEREv2MHLwMT7Ny/Ny4sw+JoIHIvg1dO2yU3Fy4EXiTkkZTVHr2q9eENM0AqEpJ0q1XSfRnYxIzSiHUclLFSSEDkgP2oYKEoHqZPmlI3xklACHsTQlNM7VWUdGIqWGkW8mzX59Nd8bi//12qkOLzsZE0mqQdDJR2HKsY7xODYcMAlU86EhhEpmdsW0TySh2oRbMiG48ycvksZZxXUq7u15uXo1jaOIDtAhOkEuukBVdINqqI4oekTP6A29W0/Wi/VhfU1GC9bUs4/+wPr+ATtKoRk=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="1yRVRUzfw8KeblQ/Ooi3CmkK6N0=">AAACHnicbVBNSwMxEJ3121q1evUSFEU8lKwXPRa8eFSwH9BdSjadbYPZ7JJkxbL073jxr3hRUNRfY7ototUHAy/vZZiZF2VSGEvph7ewuLS8srq2Xtmobm5t13aqLZPmmmOTpzLVnYgZlEJh0worsZNpZEkksR3dXkz89h1qI1J1Y0cZhgkbKBELzqyTerVGEOFAqCJLmNXifkzJETkpKwhKQn8+pkKAqv/d0Ksd0DotQf4Sf0YOYIarXu0l6Kc8T1BZLpkxXZ9mNiyYtoJLHFeC3GDG+C0bYNdRxRI0YVFeOiaHTumTONWulCWl+rOjYIkxoyRyP91+QzPvTcT/vG5u4/OwECrLLSo+HRTnktiUTGIjfaGRWzlyhHEt3K6ED5lm3LpwKy4Ef/7kv6R1Wvdp3b+msAZ7sA/H4MMZNOASrqAJHB7gCV7hzXv0nr33aVwL3iy3XfgF7/MLVQSfhQ==</latexit><latexit sha1_base64="1yRVRUzfw8KeblQ/Ooi3CmkK6N0=">AAACHnicbVBNSwMxEJ3121q1evUSFEU8lKwXPRa8eFSwH9BdSjadbYPZ7JJkxbL073jxr3hRUNRfY7ototUHAy/vZZiZF2VSGEvph7ewuLS8srq2Xtmobm5t13aqLZPmmmOTpzLVnYgZlEJh0worsZNpZEkksR3dXkz89h1qI1J1Y0cZhgkbKBELzqyTerVGEOFAqCJLmNXifkzJETkpKwhKQn8+pkKAqv/d0Ksd0DotQf4Sf0YOYIarXu0l6Kc8T1BZLpkxXZ9mNiyYtoJLHFeC3GDG+C0bYNdRxRI0YVFeOiaHTumTONWulCWl+rOjYIkxoyRyP91+QzPvTcT/vG5u4/OwECrLLSo+HRTnktiUTGIjfaGRWzlyhHEt3K6ED5lm3LpwKy4Ef/7kv6R1Wvdp3b+msAZ7sA/H4MMZNOASrqAJHB7gCV7hzXv0nr33aVwL3iy3XfgF7/MLVQSfhQ==</latexit><latexit sha1_base64="yotudLhXFiojDjw8AT+skKWtuWc=">AAACKXicbVDLSgMxFM34rPVVdekmWBRxUTJudFl047KCfUCnlEzmThuayQxJRixDf8eNv+JGQVG3/ojptEhtPXDh5Nx7yL3HTwTXhpBPZ2l5ZXVtvbBR3Nza3tkt7e03dJwqBnUWi1i1fKpBcAl1w42AVqKARr6Apj+4Hveb96A0j+WdGSbQiWhP8pAzaqzULVU9H3pcZklEjeIPI4JP8FlenpcTMvuYCB7I4NfQLZVJheTAi8SdkjKaotYtvXpBzNIIpGGCat12SWI6GVWGMwGjopdqSCgb0B60LZU0At3J8ktH+NgqAQ5jZUsanKuzjoxGWg8j307a/fp6vjcW/+u1UxNedjIuk9SAZJOPwlRgE+NxbDjgCpgRQ0soU9zuilmfKsqMDbdoQ3DnT14kjfOKSyruLSlXr6ZxFNAhOkKnyEUXqIpuUA3VEUOP6Bm9oXfnyXlxPpyvyeiSM/UcoD9wvn8AOgqhFQ==</latexit><latexit sha1_base64="6owTXNtC93jqeRJP0A+xQ6amPBw=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0URFyURQZdFNy4r2Ac0pUwmN+3QySTMTMQS+jtu/BU3Coq69UecpkVq64ELZ869h7n3+AlnSjvOp1VYWl5ZXSuulzY2t7Z37N29hopTSaFOYx7Llk8UcCagrpnm0EokkMjn0PQH1+N+8x6kYrG408MEOhHpCRYySrSRunbV86HHRJZEREv2MHLwMT7Ny/Ny4sw+JoIHIvg1dO2yU3Fy4EXiTkkZTVHr2q9eENM0AqEpJ0q1XSfRnYxIzSiHUclLFSSEDkgP2oYKEoHqZPmlI3xklACHsTQlNM7VWUdGIqWGkW8mzX59Nd8bi//12qkOLzsZE0mqQdDJR2HKsY7xODYcMAlU86EhhEpmdsW0TySh2oRbMiG48ycvksZZxXUq7u15uXo1jaOIDtAhOkEuukBVdINqqI4oekTP6A29W0/Wi/VhfU1GC9bUs4/+wPr+ATtKoRk=</latexit><latexit sha1_base64="6owTXNtC93jqeRJP0A+xQ6amPBw=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0URFyURQZdFNy4r2Ac0pUwmN+3QySTMTMQS+jtu/BU3Coq69UecpkVq64ELZ869h7n3+AlnSjvOp1VYWl5ZXSuulzY2t7Z37N29hopTSaFOYx7Llk8UcCagrpnm0EokkMjn0PQH1+N+8x6kYrG408MEOhHpCRYySrSRunbV86HHRJZEREv2MHLwMT7Ny/Ny4sw+JoIHIvg1dO2yU3Fy4EXiTkkZTVHr2q9eENM0AqEpJ0q1XSfRnYxIzSiHUclLFSSEDkgP2oYKEoHqZPmlI3xklACHsTQlNM7VWUdGIqWGkW8mzX59Nd8bi//12qkOLzsZE0mqQdDJR2HKsY7xODYcMAlU86EhhEpmdsW0TySh2oRbMiG48ycvksZZxXUq7u15uXo1jaOIDtAhOkEuukBVdINqqI4oekTP6A29W0/Wi/VhfU1GC9bUs4/+wPr+ATtKoRk=</latexit><latexit sha1_base64="6owTXNtC93jqeRJP0A+xQ6amPBw=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0URFyURQZdFNy4r2Ac0pUwmN+3QySTMTMQS+jtu/BU3Coq69UecpkVq64ELZ869h7n3+AlnSjvOp1VYWl5ZXSuulzY2t7Z37N29hopTSaFOYx7Llk8UcCagrpnm0EokkMjn0PQH1+N+8x6kYrG408MEOhHpCRYySrSRunbV86HHRJZEREv2MHLwMT7Ny/Ny4sw+JoIHIvg1dO2yU3Fy4EXiTkkZTVHr2q9eENM0AqEpJ0q1XSfRnYxIzSiHUclLFSSEDkgP2oYKEoHqZPmlI3xklACHsTQlNM7VWUdGIqWGkW8mzX59Nd8bi//12qkOLzsZE0mqQdDJR2HKsY7xODYcMAlU86EhhEpmdsW0TySh2oRbMiG48ycvksZZxXUq7u15uXo1jaOIDtAhOkEuukBVdINqqI4oekTP6A29W0/Wi/VhfU1GC9bUs4/+wPr+ATtKoRk=</latexit><latexit sha1_base64="6owTXNtC93jqeRJP0A+xQ6amPBw=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0URFyURQZdFNy4r2Ac0pUwmN+3QySTMTMQS+jtu/BU3Coq69UecpkVq64ELZ869h7n3+AlnSjvOp1VYWl5ZXSuulzY2t7Z37N29hopTSaFOYx7Llk8UcCagrpnm0EokkMjn0PQH1+N+8x6kYrG408MEOhHpCRYySrSRunbV86HHRJZEREv2MHLwMT7Ny/Ny4sw+JoIHIvg1dO2yU3Fy4EXiTkkZTVHr2q9eENM0AqEpJ0q1XSfRnYxIzSiHUclLFSSEDkgP2oYKEoHqZPmlI3xklACHsTQlNM7VWUdGIqWGkW8mzX59Nd8bi//12qkOLzsZE0mqQdDJR2HKsY7xODYcMAlU86EhhEpmdsW0TySh2oRbMiG48ycvksZZxXUq7u15uXo1jaOIDtAhOkEuukBVdINqqI4oekTP6A29W0/Wi/VhfU1GC9bUs4/+wPr+ATtKoRk=</latexit><latexit sha1_base64="6owTXNtC93jqeRJP0A+xQ6amPBw=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0URFyURQZdFNy4r2Ac0pUwmN+3QySTMTMQS+jtu/BU3Coq69UecpkVq64ELZ869h7n3+AlnSjvOp1VYWl5ZXSuulzY2t7Z37N29hopTSaFOYx7Llk8UcCagrpnm0EokkMjn0PQH1+N+8x6kYrG408MEOhHpCRYySrSRunbV86HHRJZEREv2MHLwMT7Ny/Ny4sw+JoIHIvg1dO2yU3Fy4EXiTkkZTVHr2q9eENM0AqEpJ0q1XSfRnYxIzSiHUclLFSSEDkgP2oYKEoHqZPmlI3xklACHsTQlNM7VWUdGIqWGkW8mzX59Nd8bi//12qkOLzsZE0mqQdDJR2HKsY7xODYcMAlU86EhhEpmdsW0TySh2oRbMiG48ycvksZZxXUq7u15uXo1jaOIDtAhOkEuukBVdINqqI4oekTP6A29W0/Wi/VhfU1GC9bUs4/+wPr+ATtKoRk=</latexit><latexit sha1_base64="6owTXNtC93jqeRJP0A+xQ6amPBw=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0URFyURQZdFNy4r2Ac0pUwmN+3QySTMTMQS+jtu/BU3Coq69UecpkVq64ELZ869h7n3+AlnSjvOp1VYWl5ZXSuulzY2t7Z37N29hopTSaFOYx7Llk8UcCagrpnm0EokkMjn0PQH1+N+8x6kYrG408MEOhHpCRYySrSRunbV86HHRJZEREv2MHLwMT7Ny/Ny4sw+JoIHIvg1dO2yU3Fy4EXiTkkZTVHr2q9eENM0AqEpJ0q1XSfRnYxIzSiHUclLFSSEDkgP2oYKEoHqZPmlI3xklACHsTQlNM7VWUdGIqWGkW8mzX59Nd8bi//12qkOLzsZE0mqQdDJR2HKsY7xODYcMAlU86EhhEpmdsW0TySh2oRbMiG48ycvksZZxXUq7u15uXo1jaOIDtAhOkEuukBVdINqqI4oekTP6A29W0/Wi/VhfU1GC9bUs4/+wPr+ATtKoRk=</latexit>

(as a sub-matrix)
<latexit sha1_base64="Bxuimj0i503EZPOl7NoURKj2aZs=">AAACAXicbVA9SwNBEJ2LXzF+ndoINotBiIXhTgQtgzaWEcwHJEfY22ySJbt7x+6eJByx8a/YWChi67+w89+4Sa7Q6IOBx3szzMwLY8608bwvJ7e0vLK6ll8vbGxube+4u3t1HSWK0BqJeKSaIdaUM0lrhhlOm7GiWIScNsLh9dRv3FOlWSTvzDimgcB9yXqMYGOljnvQFmE0SktYI4x0Ep4KbBQbnUw6btErezOgv8TPSBEyVDvuZ7sbkURQaQjHWrd8LzZBipVhhNNJoZ1oGmMyxH3aslRiQXWQzj6YoGOrdFEvUrakQTP150SKhdZjEdpOe+BAL3pT8T+vlZjeZZAyGSeGSjJf1Es4MhGaxoG6TFFi+NgSTBSztyIywAoTY0Mr2BD8xZf/kvpZ2ffK/u15sXKVxZGHQziCEvhwARW4gSrUgMADPMELvDqPzrPz5rzPW3NONrMPv+B8fAPPkJZ3</latexit><latexit sha1_base64="Bxuimj0i503EZPOl7NoURKj2aZs=">AAACAXicbVA9SwNBEJ2LXzF+ndoINotBiIXhTgQtgzaWEcwHJEfY22ySJbt7x+6eJByx8a/YWChi67+w89+4Sa7Q6IOBx3szzMwLY8608bwvJ7e0vLK6ll8vbGxube+4u3t1HSWK0BqJeKSaIdaUM0lrhhlOm7GiWIScNsLh9dRv3FOlWSTvzDimgcB9yXqMYGOljnvQFmE0SktYI4x0Ep4KbBQbnUw6btErezOgv8TPSBEyVDvuZ7sbkURQaQjHWrd8LzZBipVhhNNJoZ1oGmMyxH3aslRiQXWQzj6YoGOrdFEvUrakQTP150SKhdZjEdpOe+BAL3pT8T+vlZjeZZAyGSeGSjJf1Es4MhGaxoG6TFFi+NgSTBSztyIywAoTY0Mr2BD8xZf/kvpZ2ffK/u15sXKVxZGHQziCEvhwARW4gSrUgMADPMELvDqPzrPz5rzPW3NONrMPv+B8fAPPkJZ3</latexit><latexit sha1_base64="Bxuimj0i503EZPOl7NoURKj2aZs=">AAACAXicbVA9SwNBEJ2LXzF+ndoINotBiIXhTgQtgzaWEcwHJEfY22ySJbt7x+6eJByx8a/YWChi67+w89+4Sa7Q6IOBx3szzMwLY8608bwvJ7e0vLK6ll8vbGxube+4u3t1HSWK0BqJeKSaIdaUM0lrhhlOm7GiWIScNsLh9dRv3FOlWSTvzDimgcB9yXqMYGOljnvQFmE0SktYI4x0Ep4KbBQbnUw6btErezOgv8TPSBEyVDvuZ7sbkURQaQjHWrd8LzZBipVhhNNJoZ1oGmMyxH3aslRiQXWQzj6YoGOrdFEvUrakQTP150SKhdZjEdpOe+BAL3pT8T+vlZjeZZAyGSeGSjJf1Es4MhGaxoG6TFFi+NgSTBSztyIywAoTY0Mr2BD8xZf/kvpZ2ffK/u15sXKVxZGHQziCEvhwARW4gSrUgMADPMELvDqPzrPz5rzPW3NONrMPv+B8fAPPkJZ3</latexit><latexit sha1_base64="Bxuimj0i503EZPOl7NoURKj2aZs=">AAACAXicbVA9SwNBEJ2LXzF+ndoINotBiIXhTgQtgzaWEcwHJEfY22ySJbt7x+6eJByx8a/YWChi67+w89+4Sa7Q6IOBx3szzMwLY8608bwvJ7e0vLK6ll8vbGxube+4u3t1HSWK0BqJeKSaIdaUM0lrhhlOm7GiWIScNsLh9dRv3FOlWSTvzDimgcB9yXqMYGOljnvQFmE0SktYI4x0Ep4KbBQbnUw6btErezOgv8TPSBEyVDvuZ7sbkURQaQjHWrd8LzZBipVhhNNJoZ1oGmMyxH3aslRiQXWQzj6YoGOrdFEvUrakQTP150SKhdZjEdpOe+BAL3pT8T+vlZjeZZAyGSeGSjJf1Es4MhGaxoG6TFFi+NgSTBSztyIywAoTY0Mr2BD8xZf/kvpZ2ffK/u15sXKVxZGHQziCEvhwARW4gSrUgMADPMELvDqPzrPz5rzPW3NONrMPv+B8fAPPkJZ3</latexit>

all others
<latexit sha1_base64="T4QFT4/gM/1aZaWO6+l4VTGdMJE=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkRdFl047KCfUBbSibNtKF5DMkdtYz9FDcuFHHrl7jzb0zbWWjrgcDhnHO5NydKBLcQBN/eyura+sZmYau4vbO7t++XDhpWp4ayOtVCm1ZELBNcsTpwEKyVGEZkJFgzGl1P/eY9M5ZrdQfjhHUlGSgec0rAST2/1JGRfsyIEFjD0AUnPb8cVIIZ8DIJc1JGOWo9/6vT1zSVTAEVxNp2GCTQzYgBTgWbFDupZQmhIzJgbUcVkcx2s9npE3zilD6OtXFPAZ6pvycyIq0dy8glJYGhXfSm4n9eO4X4sptxlaTAFJ0vilOBQeNpD7jPDaMgxo4Qari7FdMhMYSCK6HoSggXv7xMGmeVMKiEt+fl6lVeRwEdoWN0ikJ0garoBtVQHVH0gJ7RK3rznrwX7937mEdXvHzmEP2B9/kDvwSUTQ==</latexit><latexit sha1_base64="T4QFT4/gM/1aZaWO6+l4VTGdMJE=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkRdFl047KCfUBbSibNtKF5DMkdtYz9FDcuFHHrl7jzb0zbWWjrgcDhnHO5NydKBLcQBN/eyura+sZmYau4vbO7t++XDhpWp4ayOtVCm1ZELBNcsTpwEKyVGEZkJFgzGl1P/eY9M5ZrdQfjhHUlGSgec0rAST2/1JGRfsyIEFjD0AUnPb8cVIIZ8DIJc1JGOWo9/6vT1zSVTAEVxNp2GCTQzYgBTgWbFDupZQmhIzJgbUcVkcx2s9npE3zilD6OtXFPAZ6pvycyIq0dy8glJYGhXfSm4n9eO4X4sptxlaTAFJ0vilOBQeNpD7jPDaMgxo4Qari7FdMhMYSCK6HoSggXv7xMGmeVMKiEt+fl6lVeRwEdoWN0ikJ0garoBtVQHVH0gJ7RK3rznrwX7937mEdXvHzmEP2B9/kDvwSUTQ==</latexit><latexit sha1_base64="T4QFT4/gM/1aZaWO6+l4VTGdMJE=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkRdFl047KCfUBbSibNtKF5DMkdtYz9FDcuFHHrl7jzb0zbWWjrgcDhnHO5NydKBLcQBN/eyura+sZmYau4vbO7t++XDhpWp4ayOtVCm1ZELBNcsTpwEKyVGEZkJFgzGl1P/eY9M5ZrdQfjhHUlGSgec0rAST2/1JGRfsyIEFjD0AUnPb8cVIIZ8DIJc1JGOWo9/6vT1zSVTAEVxNp2GCTQzYgBTgWbFDupZQmhIzJgbUcVkcx2s9npE3zilD6OtXFPAZ6pvycyIq0dy8glJYGhXfSm4n9eO4X4sptxlaTAFJ0vilOBQeNpD7jPDaMgxo4Qari7FdMhMYSCK6HoSggXv7xMGmeVMKiEt+fl6lVeRwEdoWN0ikJ0garoBtVQHVH0gJ7RK3rznrwX7937mEdXvHzmEP2B9/kDvwSUTQ==</latexit><latexit sha1_base64="T4QFT4/gM/1aZaWO6+l4VTGdMJE=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkRdFl047KCfUBbSibNtKF5DMkdtYz9FDcuFHHrl7jzb0zbWWjrgcDhnHO5NydKBLcQBN/eyura+sZmYau4vbO7t++XDhpWp4ayOtVCm1ZELBNcsTpwEKyVGEZkJFgzGl1P/eY9M5ZrdQfjhHUlGSgec0rAST2/1JGRfsyIEFjD0AUnPb8cVIIZ8DIJc1JGOWo9/6vT1zSVTAEVxNp2GCTQzYgBTgWbFDupZQmhIzJgbUcVkcx2s9npE3zilD6OtXFPAZ6pvycyIq0dy8glJYGhXfSm4n9eO4X4sptxlaTAFJ0vilOBQeNpD7jPDaMgxo4Qari7FdMhMYSCK6HoSggXv7xMGmeVMKiEt+fl6lVeRwEdoWN0ikJ0garoBtVQHVH0gJ7RK3rznrwX7937mEdXvHzmEP2B9/kDvwSUTQ==</latexit>

NP-hard
<latexit sha1_base64="XhJQktVGktD2jzZ+zUvwT3O5xns=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0lE0GXRjSupYB/QhDKZTtqh8wgzE7GG4K+4caGIW//DnX/jtM1CWw9cOJxzL/feEyWMauN5387C4tLyympprby+sbm17e7sNrVMFSYNLJlU7QhpwqggDUMNI+1EEcQjRlrR8Grst+6J0lSKOzNKSMhRX9CYYmSs1HX3Ax7JhywLdAxv6vnJAKle3nUrXtWbAM4TvyAVUKDedb+CnsQpJ8JghrTu+F5iwgwpQzEjeTlINUkQHqI+6VgqECc6zCbX5/DIKj0YS2VLGDhRf09kiGs94pHt5MgM9Kw3Fv/zOqmJL8KMiiQ1RODpojhl0Eg4jgL2qCLYsJElCCtqb4XY/o+wsYGVbQj+7MvzpHla9b2qf3tWqV0WcZTAATgEx8AH56AGrkEdNAAGj+AZvII358l5cd6dj2nrglPM7IE/cD5/AHMYlTQ=</latexit><latexit sha1_base64="XhJQktVGktD2jzZ+zUvwT3O5xns=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0lE0GXRjSupYB/QhDKZTtqh8wgzE7GG4K+4caGIW//DnX/jtM1CWw9cOJxzL/feEyWMauN5387C4tLyympprby+sbm17e7sNrVMFSYNLJlU7QhpwqggDUMNI+1EEcQjRlrR8Grst+6J0lSKOzNKSMhRX9CYYmSs1HX3Ax7JhywLdAxv6vnJAKle3nUrXtWbAM4TvyAVUKDedb+CnsQpJ8JghrTu+F5iwgwpQzEjeTlINUkQHqI+6VgqECc6zCbX5/DIKj0YS2VLGDhRf09kiGs94pHt5MgM9Kw3Fv/zOqmJL8KMiiQ1RODpojhl0Eg4jgL2qCLYsJElCCtqb4XY/o+wsYGVbQj+7MvzpHla9b2qf3tWqV0WcZTAATgEx8AH56AGrkEdNAAGj+AZvII358l5cd6dj2nrglPM7IE/cD5/AHMYlTQ=</latexit><latexit sha1_base64="XhJQktVGktD2jzZ+zUvwT3O5xns=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0lE0GXRjSupYB/QhDKZTtqh8wgzE7GG4K+4caGIW//DnX/jtM1CWw9cOJxzL/feEyWMauN5387C4tLyympprby+sbm17e7sNrVMFSYNLJlU7QhpwqggDUMNI+1EEcQjRlrR8Grst+6J0lSKOzNKSMhRX9CYYmSs1HX3Ax7JhywLdAxv6vnJAKle3nUrXtWbAM4TvyAVUKDedb+CnsQpJ8JghrTu+F5iwgwpQzEjeTlINUkQHqI+6VgqECc6zCbX5/DIKj0YS2VLGDhRf09kiGs94pHt5MgM9Kw3Fv/zOqmJL8KMiiQ1RODpojhl0Eg4jgL2qCLYsJElCCtqb4XY/o+wsYGVbQj+7MvzpHla9b2qf3tWqV0WcZTAATgEx8AH56AGrkEdNAAGj+AZvII358l5cd6dj2nrglPM7IE/cD5/AHMYlTQ=</latexit><latexit sha1_base64="XhJQktVGktD2jzZ+zUvwT3O5xns=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0lE0GXRjSupYB/QhDKZTtqh8wgzE7GG4K+4caGIW//DnX/jtM1CWw9cOJxzL/feEyWMauN5387C4tLyympprby+sbm17e7sNrVMFSYNLJlU7QhpwqggDUMNI+1EEcQjRlrR8Grst+6J0lSKOzNKSMhRX9CYYmSs1HX3Ax7JhywLdAxv6vnJAKle3nUrXtWbAM4TvyAVUKDedb+CnsQpJ8JghrTu+F5iwgwpQzEjeTlINUkQHqI+6VgqECc6zCbX5/DIKj0YS2VLGDhRf09kiGs94pHt5MgM9Kw3Fv/zOqmJL8KMiiQ1RODpojhl0Eg4jgL2qCLYsJElCCtqb4XY/o+wsYGVbQj+7MvzpHla9b2qf3tWqV0WcZTAATgEx8AH56AGrkEdNAAGj+AZvII358l5cd6dj2nrglPM7IE/cD5/AHMYlTQ=</latexit>

P<latexit sha1_base64="XjLjbtMcR9RlGGL9oOPx672WXok=">AAAB7nicbVDLSgNBEOzxGeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJkdnaZmRXCko/w4kERr36PN//GSbIHTSxoKKq66e4KUymM9bxvsra+sbm1Xdop7+7tHxxWjo5bJsk0xyZPZKI7ITMohcKmFVZiJ9XI4lBiOxzfzfz2E2ojEvVoJykGMRsqEQnOrJPaec9EtDHtV6pezZuDrhK/IFUo0OhXvnqDhGcxKsslM6bre6kNcqat4BKn5V5mMGV8zIbYdVSxGE2Qz8+d0nOnDGiUaFfK0rn6eyJnsTGTOHSdMbMjs+zNxP+8bmajmyAXKs0sKr5YFGWS2oTOfqcDoZFbOXGEcS3crZSPmGbcuoTKLgR/+eVV0rqs+V7Nf7iq1m+LOEpwCmdwAT5cQx3uoQFN4DCGZ3iFN5KSF/JOPhata6SYOYE/IJ8/DEqPXQ==</latexit><latexit sha1_base64="XjLjbtMcR9RlGGL9oOPx672WXok=">AAAB7nicbVDLSgNBEOzxGeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJkdnaZmRXCko/w4kERr36PN//GSbIHTSxoKKq66e4KUymM9bxvsra+sbm1Xdop7+7tHxxWjo5bJsk0xyZPZKI7ITMohcKmFVZiJ9XI4lBiOxzfzfz2E2ojEvVoJykGMRsqEQnOrJPaec9EtDHtV6pezZuDrhK/IFUo0OhXvnqDhGcxKsslM6bre6kNcqat4BKn5V5mMGV8zIbYdVSxGE2Qz8+d0nOnDGiUaFfK0rn6eyJnsTGTOHSdMbMjs+zNxP+8bmajmyAXKs0sKr5YFGWS2oTOfqcDoZFbOXGEcS3crZSPmGbcuoTKLgR/+eVV0rqs+V7Nf7iq1m+LOEpwCmdwAT5cQx3uoQFN4DCGZ3iFN5KSF/JOPhata6SYOYE/IJ8/DEqPXQ==</latexit><latexit sha1_base64="XjLjbtMcR9RlGGL9oOPx672WXok=">AAAB7nicbVDLSgNBEOzxGeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJkdnaZmRXCko/w4kERr36PN//GSbIHTSxoKKq66e4KUymM9bxvsra+sbm1Xdop7+7tHxxWjo5bJsk0xyZPZKI7ITMohcKmFVZiJ9XI4lBiOxzfzfz2E2ojEvVoJykGMRsqEQnOrJPaec9EtDHtV6pezZuDrhK/IFUo0OhXvnqDhGcxKsslM6bre6kNcqat4BKn5V5mMGV8zIbYdVSxGE2Qz8+d0nOnDGiUaFfK0rn6eyJnsTGTOHSdMbMjs+zNxP+8bmajmyAXKs0sKr5YFGWS2oTOfqcDoZFbOXGEcS3crZSPmGbcuoTKLgR/+eVV0rqs+V7Nf7iq1m+LOEpwCmdwAT5cQx3uoQFN4DCGZ3iFN5KSF/JOPhata6SYOYE/IJ8/DEqPXQ==</latexit><latexit sha1_base64="XjLjbtMcR9RlGGL9oOPx672WXok=">AAAB7nicbVDLSgNBEOzxGeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJkdnaZmRXCko/w4kERr36PN//GSbIHTSxoKKq66e4KUymM9bxvsra+sbm1Xdop7+7tHxxWjo5bJsk0xyZPZKI7ITMohcKmFVZiJ9XI4lBiOxzfzfz2E2ojEvVoJykGMRsqEQnOrJPaec9EtDHtV6pezZuDrhK/IFUo0OhXvnqDhGcxKsslM6bre6kNcqat4BKn5V5mMGV8zIbYdVSxGE2Qz8+d0nOnDGiUaFfK0rn6eyJnsTGTOHSdMbMjs+zNxP+8bmajmyAXKs0sKr5YFGWS2oTOfqcDoZFbOXGEcS3crZSPmGbcuoTKLgR/+eVV0rqs+V7Nf7iq1m+LOEpwCmdwAT5cQx3uoQFN4DCGZ3iFN5KSF/JOPhata6SYOYE/IJ8/DEqPXQ==</latexit>

FPT<latexit sha1_base64="YNncyLyJq8LKICoaTTn4WQRAUJU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegIB4j5CXJEmYns8mQeSwzs0JY8hVePCji1c/x5t84SfagiQUNRVU33V1Rwpmxvv/tFdbWNza3itulnd29/YPy4VHLqFQT2iSKK92JsKGcSdq0zHLaSTTFIuK0HY1vZ377iWrDlGzYSUJDgYeSxYxg66THrGdidFdvTPvlil/150CrJMhJBXLU++Wv3kCRVFBpCcfGdAM/sWGGtWWE02mplxqaYDLGQ9p1VGJBTZjND56iM6cMUKy0K2nRXP09kWFhzERErlNgOzLL3kz8z+umNr4OMyaT1FJJFovilCOr0Ox7NGCaEssnjmCimbsVkRHWmFiXUcmFECy/vEpaF9XArwYPl5XaTR5HEU7gFM4hgCuowT3UoQkEBDzDK7x52nvx3r2PRWvBy2eO4Q+8zx9EuZAL</latexit><latexit sha1_base64="YNncyLyJq8LKICoaTTn4WQRAUJU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegIB4j5CXJEmYns8mQeSwzs0JY8hVePCji1c/x5t84SfagiQUNRVU33V1Rwpmxvv/tFdbWNza3itulnd29/YPy4VHLqFQT2iSKK92JsKGcSdq0zHLaSTTFIuK0HY1vZ377iWrDlGzYSUJDgYeSxYxg66THrGdidFdvTPvlil/150CrJMhJBXLU++Wv3kCRVFBpCcfGdAM/sWGGtWWE02mplxqaYDLGQ9p1VGJBTZjND56iM6cMUKy0K2nRXP09kWFhzERErlNgOzLL3kz8z+umNr4OMyaT1FJJFovilCOr0Ox7NGCaEssnjmCimbsVkRHWmFiXUcmFECy/vEpaF9XArwYPl5XaTR5HEU7gFM4hgCuowT3UoQkEBDzDK7x52nvx3r2PRWvBy2eO4Q+8zx9EuZAL</latexit><latexit sha1_base64="YNncyLyJq8LKICoaTTn4WQRAUJU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegIB4j5CXJEmYns8mQeSwzs0JY8hVePCji1c/x5t84SfagiQUNRVU33V1Rwpmxvv/tFdbWNza3itulnd29/YPy4VHLqFQT2iSKK92JsKGcSdq0zHLaSTTFIuK0HY1vZ377iWrDlGzYSUJDgYeSxYxg66THrGdidFdvTPvlil/150CrJMhJBXLU++Wv3kCRVFBpCcfGdAM/sWGGtWWE02mplxqaYDLGQ9p1VGJBTZjND56iM6cMUKy0K2nRXP09kWFhzERErlNgOzLL3kz8z+umNr4OMyaT1FJJFovilCOr0Ox7NGCaEssnjmCimbsVkRHWmFiXUcmFECy/vEpaF9XArwYPl5XaTR5HEU7gFM4hgCuowT3UoQkEBDzDK7x52nvx3r2PRWvBy2eO4Q+8zx9EuZAL</latexit><latexit sha1_base64="YNncyLyJq8LKICoaTTn4WQRAUJU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegIB4j5CXJEmYns8mQeSwzs0JY8hVePCji1c/x5t84SfagiQUNRVU33V1Rwpmxvv/tFdbWNza3itulnd29/YPy4VHLqFQT2iSKK92JsKGcSdq0zHLaSTTFIuK0HY1vZ377iWrDlGzYSUJDgYeSxYxg66THrGdidFdvTPvlil/150CrJMhJBXLU++Wv3kCRVFBpCcfGdAM/sWGGtWWE02mplxqaYDLGQ9p1VGJBTZjND56iM6cMUKy0K2nRXP09kWFhzERErlNgOzLL3kz8z+umNr4OMyaT1FJJFovilCOr0Ox7NGCaEssnjmCimbsVkRHWmFiXUcmFECy/vEpaF9XArwYPl5XaTR5HEU7gFM4hgCuowT3UoQkEBDzDK7x52nvx3r2PRWvBy2eO4Q+8zx9EuZAL</latexit>

para-NP-
<latexit sha1_base64="YlLBNdCAvkcHFCQAFa0kg/uR8ps=">AAAB/nicbVDLSsNAFJ34rPUVFVduBovgpiURQZdFN66kgn1AE8pkOmmHziPMTMQSAv6KGxeKuPU73Pk3TtsstPXAhcM593LvPVHCqDae9+0sLa+srq2XNsqbW9s7u+7efkvLVGHSxJJJ1YmQJowK0jTUMNJJFEE8YqQdja4nfvuBKE2luDfjhIQcDQSNKUbGSj33MOCRfMwSpFA1C3QMbxt5Ne+5Fa/mTQEXiV+QCijQ6LlfQV/ilBNhMENad30vMWGGlKGYkbwcpJokCI/QgHQtFYgTHWbT83N4YpU+jKWyJQycqr8nMsS1HvPIdnJkhnrem4j/ed3UxJdhRkWSGiLwbFGcMmgknGQB+1QRbNjYEoQVtbdCPLRJYGMTK9sQ/PmXF0nrrOZ7Nf/uvFK/KuIogSNwDE6BDy5AHdyABmgCDDLwDF7Bm/PkvDjvzsesdckpZg7AHzifP+x9lXA=</latexit><latexit sha1_base64="YlLBNdCAvkcHFCQAFa0kg/uR8ps=">AAAB/nicbVDLSsNAFJ34rPUVFVduBovgpiURQZdFN66kgn1AE8pkOmmHziPMTMQSAv6KGxeKuPU73Pk3TtsstPXAhcM593LvPVHCqDae9+0sLa+srq2XNsqbW9s7u+7efkvLVGHSxJJJ1YmQJowK0jTUMNJJFEE8YqQdja4nfvuBKE2luDfjhIQcDQSNKUbGSj33MOCRfMwSpFA1C3QMbxt5Ne+5Fa/mTQEXiV+QCijQ6LlfQV/ilBNhMENad30vMWGGlKGYkbwcpJokCI/QgHQtFYgTHWbT83N4YpU+jKWyJQycqr8nMsS1HvPIdnJkhnrem4j/ed3UxJdhRkWSGiLwbFGcMmgknGQB+1QRbNjYEoQVtbdCPLRJYGMTK9sQ/PmXF0nrrOZ7Nf/uvFK/KuIogSNwDE6BDy5AHdyABmgCDDLwDF7Bm/PkvDjvzsesdckpZg7AHzifP+x9lXA=</latexit><latexit sha1_base64="YlLBNdCAvkcHFCQAFa0kg/uR8ps=">AAAB/nicbVDLSsNAFJ34rPUVFVduBovgpiURQZdFN66kgn1AE8pkOmmHziPMTMQSAv6KGxeKuPU73Pk3TtsstPXAhcM593LvPVHCqDae9+0sLa+srq2XNsqbW9s7u+7efkvLVGHSxJJJ1YmQJowK0jTUMNJJFEE8YqQdja4nfvuBKE2luDfjhIQcDQSNKUbGSj33MOCRfMwSpFA1C3QMbxt5Ne+5Fa/mTQEXiV+QCijQ6LlfQV/ilBNhMENad30vMWGGlKGYkbwcpJokCI/QgHQtFYgTHWbT83N4YpU+jKWyJQycqr8nMsS1HvPIdnJkhnrem4j/ed3UxJdhRkWSGiLwbFGcMmgknGQB+1QRbNjYEoQVtbdCPLRJYGMTK9sQ/PmXF0nrrOZ7Nf/uvFK/KuIogSNwDE6BDy5AHdyABmgCDDLwDF7Bm/PkvDjvzsesdckpZg7AHzifP+x9lXA=</latexit><latexit sha1_base64="YlLBNdCAvkcHFCQAFa0kg/uR8ps=">AAAB/nicbVDLSsNAFJ34rPUVFVduBovgpiURQZdFN66kgn1AE8pkOmmHziPMTMQSAv6KGxeKuPU73Pk3TtsstPXAhcM593LvPVHCqDae9+0sLa+srq2XNsqbW9s7u+7efkvLVGHSxJJJ1YmQJowK0jTUMNJJFEE8YqQdja4nfvuBKE2luDfjhIQcDQSNKUbGSj33MOCRfMwSpFA1C3QMbxt5Ne+5Fa/mTQEXiV+QCijQ6LlfQV/ilBNhMENad30vMWGGlKGYkbwcpJokCI/QgHQtFYgTHWbT83N4YpU+jKWyJQycqr8nMsS1HvPIdnJkhnrem4j/ed3UxJdhRkWSGiLwbFGcMmgknGQB+1QRbNjYEoQVtbdCPLRJYGMTK9sQ/PmXF0nrrOZ7Nf/uvFK/KuIogSNwDE6BDy5AHdyABmgCDDLwDF7Bm/PkvDjvzsesdckpZg7AHzifP+x9lXA=</latexit>

hard
<latexit sha1_base64="MZ8h4brgPqL31vTHKgG29YY1jLk=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7APaoWQymTY0jyHJiGXoZ7hxoYhbv8adf2PazkJbDwQO59xL7jlRypmxvv/tldbWNza3ytuVnd29/YPq4VHbqEwT2iKKK92NsKGcSdqyzHLaTTXFIuK0E41vZ37nkWrDlHywk5SGAg8lSxjB1km9vojUUz7COp4OqjW/7s+BVklQkBoUaA6qX/1YkUxQaQnHxvQCP7VhjrVlhNNppZ8ZmmIyxkPac1RiQU2Yz0+eojOnxChR2j1p0Vz9vZFjYcxERG5SYDsyy95M/M/rZTa5DnMm08xSSRYfJRlHVqFZfhQzTYnlE0cw0czdiojLj4l1LVVcCcFy5FXSvqgHfj24v6w1boo6ynACp3AOAVxBA+6gCS0goOAZXuHNs96L9+59LEZLXrFzDH/gff4AyP+RkQ==</latexit><latexit sha1_base64="MZ8h4brgPqL31vTHKgG29YY1jLk=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7APaoWQymTY0jyHJiGXoZ7hxoYhbv8adf2PazkJbDwQO59xL7jlRypmxvv/tldbWNza3ytuVnd29/YPq4VHbqEwT2iKKK92NsKGcSdqyzHLaTTXFIuK0E41vZ37nkWrDlHywk5SGAg8lSxjB1km9vojUUz7COp4OqjW/7s+BVklQkBoUaA6qX/1YkUxQaQnHxvQCP7VhjrVlhNNppZ8ZmmIyxkPac1RiQU2Yz0+eojOnxChR2j1p0Vz9vZFjYcxERG5SYDsyy95M/M/rZTa5DnMm08xSSRYfJRlHVqFZfhQzTYnlE0cw0czdiojLj4l1LVVcCcFy5FXSvqgHfj24v6w1boo6ynACp3AOAVxBA+6gCS0goOAZXuHNs96L9+59LEZLXrFzDH/gff4AyP+RkQ==</latexit><latexit sha1_base64="MZ8h4brgPqL31vTHKgG29YY1jLk=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7APaoWQymTY0jyHJiGXoZ7hxoYhbv8adf2PazkJbDwQO59xL7jlRypmxvv/tldbWNza3ytuVnd29/YPq4VHbqEwT2iKKK92NsKGcSdqyzHLaTTXFIuK0E41vZ37nkWrDlHywk5SGAg8lSxjB1km9vojUUz7COp4OqjW/7s+BVklQkBoUaA6qX/1YkUxQaQnHxvQCP7VhjrVlhNNppZ8ZmmIyxkPac1RiQU2Yz0+eojOnxChR2j1p0Vz9vZFjYcxERG5SYDsyy95M/M/rZTa5DnMm08xSSRYfJRlHVqFZfhQzTYnlE0cw0czdiojLj4l1LVVcCcFy5FXSvqgHfj24v6w1boo6ynACp3AOAVxBA+6gCS0goOAZXuHNs96L9+59LEZLXrFzDH/gff4AyP+RkQ==</latexit><latexit sha1_base64="MZ8h4brgPqL31vTHKgG29YY1jLk=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7APaoWQymTY0jyHJiGXoZ7hxoYhbv8adf2PazkJbDwQO59xL7jlRypmxvv/tldbWNza3ytuVnd29/YPq4VHbqEwT2iKKK92NsKGcSdqyzHLaTTXFIuK0E41vZ37nkWrDlHywk5SGAg8lSxjB1km9vojUUz7COp4OqjW/7s+BVklQkBoUaA6qX/1YkUxQaQnHxvQCP7VhjrVlhNNppZ8ZmmIyxkPac1RiQU2Yz0+eojOnxChR2j1p0Vz9vZFjYcxERG5SYDsyy95M/M/rZTa5DnMm08xSSRYfJRlHVqFZfhQzTYnlE0cw0czdiojLj4l1LVVcCcFy5FXSvqgHfj24v6w1boo6ynACp3AOAVxBA+6gCS0goOAZXuHNs96L9+59LEZLXrFzDH/gff4AyP+RkQ==</latexit>

}
<latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit>

}
<latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit>}

<latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit>

}
<latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit><latexit sha1_base64="RlH2tdjr0xMRC8QkwnZnHd0h1Fs=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpoTftu1Wv5s1BVolfkCoUaPTdr94gYVnMFTJJjen6XopBTjUKJvm00ssMTykb0yHvWqpozE2Qzy+dkjOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vm2F0HeRCpRlyxRaLokwSTMjsbTIQmjOUE0so08LeStiIasrQhlOxIfjLL6+S1kXN92r+/WW1flPEUYYTOIVz8OEK6nAHDWgCgwie4RXenLHz4rw7H4vWklPMHMMfOJ8/noyNZw==</latexit>

0
@
⇤ 0 1
0 ⇤ ⇤
1 ⇤ ⇤

1
A

<latexit sha1_base64="w3IF8A6iIHhwZjPPp013CkPMNvs=">AAACK3icbVBLSwMxEM7WV62vqkcvwaJID2VXBD2WevFYwT6gW0o2O9uGZrNLkhXL0v/jxb/iQQ8+8Or/MN0WH60DE775Zj4y83kxZ0rb9puVW1peWV3Lrxc2Nre2d4q7e00VJZJCg0Y8km2PKOBMQEMzzaEdSyChx6HlDS8n/dYtSMUicaNHMXRD0hcsYJRoQ/WKNdeDPhNpHBIt2d0Yl/ExxrZ5HOy6GShnaQrnpwDhf0t6xZJdsbPAi8CZgRKaRb1XfHL9iCYhCE05Uarj2LHupkRqRjmMC26iICZ0SPrQMVCQEFQ3zW4d4yPD+DiIpEmhccb+VqQkVGoUembS7DdQ870J+V+vk+jgopsyEScaBJ1+FCQc6whPjMM+k0A1HxlAqGRmV0wHRBKqjb0FY4Izf/IiaJ5WHLviXJ+VqrWZHXl0gA7RCXLQOaqiK1RHDUTRPXpEL+jVerCerXfrYzqas2aaffQnrM8vDgehdQ==</latexit><latexit sha1_base64="w3IF8A6iIHhwZjPPp013CkPMNvs=">AAACK3icbVBLSwMxEM7WV62vqkcvwaJID2VXBD2WevFYwT6gW0o2O9uGZrNLkhXL0v/jxb/iQQ8+8Or/MN0WH60DE775Zj4y83kxZ0rb9puVW1peWV3Lrxc2Nre2d4q7e00VJZJCg0Y8km2PKOBMQEMzzaEdSyChx6HlDS8n/dYtSMUicaNHMXRD0hcsYJRoQ/WKNdeDPhNpHBIt2d0Yl/ExxrZ5HOy6GShnaQrnpwDhf0t6xZJdsbPAi8CZgRKaRb1XfHL9iCYhCE05Uarj2LHupkRqRjmMC26iICZ0SPrQMVCQEFQ3zW4d4yPD+DiIpEmhccb+VqQkVGoUembS7DdQ870J+V+vk+jgopsyEScaBJ1+FCQc6whPjMM+k0A1HxlAqGRmV0wHRBKqjb0FY4Izf/IiaJ5WHLviXJ+VqrWZHXl0gA7RCXLQOaqiK1RHDUTRPXpEL+jVerCerXfrYzqas2aaffQnrM8vDgehdQ==</latexit><latexit sha1_base64="w3IF8A6iIHhwZjPPp013CkPMNvs=">AAACK3icbVBLSwMxEM7WV62vqkcvwaJID2VXBD2WevFYwT6gW0o2O9uGZrNLkhXL0v/jxb/iQQ8+8Or/MN0WH60DE775Zj4y83kxZ0rb9puVW1peWV3Lrxc2Nre2d4q7e00VJZJCg0Y8km2PKOBMQEMzzaEdSyChx6HlDS8n/dYtSMUicaNHMXRD0hcsYJRoQ/WKNdeDPhNpHBIt2d0Yl/ExxrZ5HOy6GShnaQrnpwDhf0t6xZJdsbPAi8CZgRKaRb1XfHL9iCYhCE05Uarj2LHupkRqRjmMC26iICZ0SPrQMVCQEFQ3zW4d4yPD+DiIpEmhccb+VqQkVGoUembS7DdQ870J+V+vk+jgopsyEScaBJ1+FCQc6whPjMM+k0A1HxlAqGRmV0wHRBKqjb0FY4Izf/IiaJ5WHLviXJ+VqrWZHXl0gA7RCXLQOaqiK1RHDUTRPXpEL+jVerCerXfrYzqas2aaffQnrM8vDgehdQ==</latexit><latexit sha1_base64="w3IF8A6iIHhwZjPPp013CkPMNvs=">AAACK3icbVBLSwMxEM7WV62vqkcvwaJID2VXBD2WevFYwT6gW0o2O9uGZrNLkhXL0v/jxb/iQQ8+8Or/MN0WH60DE775Zj4y83kxZ0rb9puVW1peWV3Lrxc2Nre2d4q7e00VJZJCg0Y8km2PKOBMQEMzzaEdSyChx6HlDS8n/dYtSMUicaNHMXRD0hcsYJRoQ/WKNdeDPhNpHBIt2d0Yl/ExxrZ5HOy6GShnaQrnpwDhf0t6xZJdsbPAi8CZgRKaRb1XfHL9iCYhCE05Uarj2LHupkRqRjmMC26iICZ0SPrQMVCQEFQ3zW4d4yPD+DiIpEmhccb+VqQkVGoUembS7DdQ870J+V+vk+jgopsyEScaBJ1+FCQc6whPjMM+k0A1HxlAqGRmV0wHRBKqjb0FY4Izf/IiaJ5WHLviXJ+VqrWZHXl0gA7RCXLQOaqiK1RHDUTRPXpEL+jVerCerXfrYzqas2aaffQnrM8vDgehdQ==</latexit>

NP-hard?
<latexit sha1_base64="QAE2YXzNP+hBfLkgA7KVcdWC5qc=">AAACA3icdVDLSgMxFM34rPVVdaebYBHcWDLj0NaVRTeupIJ9QGcomTTThmYeJBmxDAU3/oobF4q49Sfc+Tdm2goqeuBeDufcS3KPF3MmFUIfxtz8wuLScm4lv7q2vrFZ2NpuyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3PM/81g0VkkXhtRrF1A1wP2Q+I1hpqVvYdXwvuk2dYNKlDy/r46MBFr3TcbdQRKWTatmyyxCVEKqYlpkRq2If29DUSoYimKHeLbw7vYgkAQ0V4VjKjoli5aZYKEY4HeedRNIYkyHu046mIQ6odNPJDWN4oJUe9COhK1Rwon7fSHEg5Sjw9GSA1UD+9jLxL6+TKL/qpiyME0VDMn3ITzhUEcwCgT0mKFF8pAkmgum/QqIDwETp2PI6hK9L4f+kaZVMVDKv7GLtbBZHDuyBfXAITFABNXAB6qABCLgDD+AJPBv3xqPxYrxOR+eM2c4O+AHj7RNhQpf8</latexit><latexit sha1_base64="QAE2YXzNP+hBfLkgA7KVcdWC5qc=">AAACA3icdVDLSgMxFM34rPVVdaebYBHcWDLj0NaVRTeupIJ9QGcomTTThmYeJBmxDAU3/oobF4q49Sfc+Tdm2goqeuBeDufcS3KPF3MmFUIfxtz8wuLScm4lv7q2vrFZ2NpuyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3PM/81g0VkkXhtRrF1A1wP2Q+I1hpqVvYdXwvuk2dYNKlDy/r46MBFr3TcbdQRKWTatmyyxCVEKqYlpkRq2If29DUSoYimKHeLbw7vYgkAQ0V4VjKjoli5aZYKEY4HeedRNIYkyHu046mIQ6odNPJDWN4oJUe9COhK1Rwon7fSHEg5Sjw9GSA1UD+9jLxL6+TKL/qpiyME0VDMn3ITzhUEcwCgT0mKFF8pAkmgum/QqIDwETp2PI6hK9L4f+kaZVMVDKv7GLtbBZHDuyBfXAITFABNXAB6qABCLgDD+AJPBv3xqPxYrxOR+eM2c4O+AHj7RNhQpf8</latexit><latexit sha1_base64="QAE2YXzNP+hBfLkgA7KVcdWC5qc=">AAACA3icdVDLSgMxFM34rPVVdaebYBHcWDLj0NaVRTeupIJ9QGcomTTThmYeJBmxDAU3/oobF4q49Sfc+Tdm2goqeuBeDufcS3KPF3MmFUIfxtz8wuLScm4lv7q2vrFZ2NpuyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3PM/81g0VkkXhtRrF1A1wP2Q+I1hpqVvYdXwvuk2dYNKlDy/r46MBFr3TcbdQRKWTatmyyxCVEKqYlpkRq2If29DUSoYimKHeLbw7vYgkAQ0V4VjKjoli5aZYKEY4HeedRNIYkyHu046mIQ6odNPJDWN4oJUe9COhK1Rwon7fSHEg5Sjw9GSA1UD+9jLxL6+TKL/qpiyME0VDMn3ITzhUEcwCgT0mKFF8pAkmgum/QqIDwETp2PI6hK9L4f+kaZVMVDKv7GLtbBZHDuyBfXAITFABNXAB6qABCLgDD+AJPBv3xqPxYrxOR+eM2c4O+AHj7RNhQpf8</latexit><latexit sha1_base64="QAE2YXzNP+hBfLkgA7KVcdWC5qc=">AAACA3icdVDLSgMxFM34rPVVdaebYBHcWDLj0NaVRTeupIJ9QGcomTTThmYeJBmxDAU3/oobF4q49Sfc+Tdm2goqeuBeDufcS3KPF3MmFUIfxtz8wuLScm4lv7q2vrFZ2NpuyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3PM/81g0VkkXhtRrF1A1wP2Q+I1hpqVvYdXwvuk2dYNKlDy/r46MBFr3TcbdQRKWTatmyyxCVEKqYlpkRq2If29DUSoYimKHeLbw7vYgkAQ0V4VjKjoli5aZYKEY4HeedRNIYkyHu046mIQ6odNPJDWN4oJUe9COhK1Rwon7fSHEg5Sjw9GSA1UD+9jLxL6+TKL/qpiyME0VDMn3ITzhUEcwCgT0mKFF8pAkmgum/QqIDwETp2PI6hK9L4f+kaZVMVDKv7GLtbBZHDuyBfXAITFABNXAB6qABCLgDD+AJPBv3xqPxYrxOR+eM2c4O+AHj7RNhQpf8</latexit>

(solvable in 2.3146knO(1))
<latexit sha1_base64="BDii/m22qDF5cqlrVvneKZ3Q8PY=">AAACIHicbVDLTgIxFO3gC/GFunTTSExgQ2aQiEuiG3diIo+EAdIpBRo67aTtEMlkPsWNv+LGhcboTr/GDrBQ8CRNTs45N733eAGjStv2l5VaW9/Y3EpvZ3Z29/YPsodHDSVCiUkdCyZky0OKMMpJXVPNSCuQBPkeI01vfJ34zQmRigp+r6cB6fhoyOmAYqSN1MtWXN8TD1FeCTZBZghSDmNYKp475YvumHcj10d6hBGLbuO8U4jn8ULcy+bsoj0DXCXOguTAArVe9tPtCxz6hGvMkFJtxw50J0JSU8xInHFDRQKEx2hI2oZy5BPViWYHxvDMKH04ENI8ruFM/T0RIV+pqe+ZZLKuWvYS8T+vHerBZSeiPAg14Xj+0SBkUAuYtAX7VBKs2dQQhCU1u0I8QhJhbTrNmBKc5ZNXSaNUdOyic1fOVa8WdaTBCTgFeeCACqiCG1ADdYDBI3gGr+DNerJerHfrYx5NWYuZY/AH1vcPaB2ifw==</latexit><latexit sha1_base64="BDii/m22qDF5cqlrVvneKZ3Q8PY=">AAACIHicbVDLTgIxFO3gC/GFunTTSExgQ2aQiEuiG3diIo+EAdIpBRo67aTtEMlkPsWNv+LGhcboTr/GDrBQ8CRNTs45N733eAGjStv2l5VaW9/Y3EpvZ3Z29/YPsodHDSVCiUkdCyZky0OKMMpJXVPNSCuQBPkeI01vfJ34zQmRigp+r6cB6fhoyOmAYqSN1MtWXN8TD1FeCTZBZghSDmNYKp475YvumHcj10d6hBGLbuO8U4jn8ULcy+bsoj0DXCXOguTAArVe9tPtCxz6hGvMkFJtxw50J0JSU8xInHFDRQKEx2hI2oZy5BPViWYHxvDMKH04ENI8ruFM/T0RIV+pqe+ZZLKuWvYS8T+vHerBZSeiPAg14Xj+0SBkUAuYtAX7VBKs2dQQhCU1u0I8QhJhbTrNmBKc5ZNXSaNUdOyic1fOVa8WdaTBCTgFeeCACqiCG1ADdYDBI3gGr+DNerJerHfrYx5NWYuZY/AH1vcPaB2ifw==</latexit><latexit sha1_base64="BDii/m22qDF5cqlrVvneKZ3Q8PY=">AAACIHicbVDLTgIxFO3gC/GFunTTSExgQ2aQiEuiG3diIo+EAdIpBRo67aTtEMlkPsWNv+LGhcboTr/GDrBQ8CRNTs45N733eAGjStv2l5VaW9/Y3EpvZ3Z29/YPsodHDSVCiUkdCyZky0OKMMpJXVPNSCuQBPkeI01vfJ34zQmRigp+r6cB6fhoyOmAYqSN1MtWXN8TD1FeCTZBZghSDmNYKp475YvumHcj10d6hBGLbuO8U4jn8ULcy+bsoj0DXCXOguTAArVe9tPtCxz6hGvMkFJtxw50J0JSU8xInHFDRQKEx2hI2oZy5BPViWYHxvDMKH04ENI8ruFM/T0RIV+pqe+ZZLKuWvYS8T+vHerBZSeiPAg14Xj+0SBkUAuYtAX7VBKs2dQQhCU1u0I8QhJhbTrNmBKc5ZNXSaNUdOyic1fOVa8WdaTBCTgFeeCACqiCG1ADdYDBI3gGr+DNerJerHfrYx5NWYuZY/AH1vcPaB2ifw==</latexit><latexit sha1_base64="BDii/m22qDF5cqlrVvneKZ3Q8PY=">AAACIHicbVDLTgIxFO3gC/GFunTTSExgQ2aQiEuiG3diIo+EAdIpBRo67aTtEMlkPsWNv+LGhcboTr/GDrBQ8CRNTs45N733eAGjStv2l5VaW9/Y3EpvZ3Z29/YPsodHDSVCiUkdCyZky0OKMMpJXVPNSCuQBPkeI01vfJ34zQmRigp+r6cB6fhoyOmAYqSN1MtWXN8TD1FeCTZBZghSDmNYKp475YvumHcj10d6hBGLbuO8U4jn8ULcy+bsoj0DXCXOguTAArVe9tPtCxz6hGvMkFJtxw50J0JSU8xInHFDRQKEx2hI2oZy5BPViWYHxvDMKH04ENI8ruFM/T0RIV+pqe+ZZLKuWvYS8T+vHerBZSeiPAg14Xj+0SBkUAuYtAX7VBKs2dQQhCU1u0I8QhJhbTrNmBKc5ZNXSaNUdOyic1fOVa8WdaTBCTgFeeCACqiCG1ADdYDBI3gGr+DNerJerHfrYx5NWYuZY/AH1vcPaB2ifw==</latexit>

0
@
⇤ 0 ⇤
0 ⇤ ⇤
⇤ ⇤ 1

1
A

<latexit sha1_base64="nPXxJrRr2/fWrroUi/XS61Q1Pk0=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp642AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAhuhbg==</latexit><latexit sha1_base64="nPXxJrRr2/fWrroUi/XS61Q1Pk0=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp642AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAhuhbg==</latexit><latexit sha1_base64="nPXxJrRr2/fWrroUi/XS61Q1Pk0=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp642AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAhuhbg==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="0QF71fSbGripkt4UlvnGQe6IQIA=">AAACIHicbVDLSgMxFL3js9aqo1s3waJIF2XGjS5FNy4r2Ad0Ssmkt21oJjMkGbEM/R83/ooLXfjAjzFtB9HWAwnnnpNL7j1hIrg2nvfhrKyurW9sFraK26Wd3T13v9TQcaoY1lksYtUKqUbBJdYNNwJbiUIahQKb4eh66jfvUWkeyzszTrAT0YHkfc6osVLXvQpCHHCZJRE1ij9MSIWcEOLZq0KCICd5UckLnwQoez8tXbfsVb0ZyDLxc1KGHLWu+xL0YpZGKA0TVOu27yWmk1FlOBM4KQapxoSyER1g21JJI9SdbLbrhBxbpUf6sbJHGjJTf3dkNNJ6HIX2pZ1vqBe9qfif105N/6KTcZmkBiWbf9RPBTExmQZHelwhM2JsCWWK21kJG1JFmbHxFm0I/uLKy6RxVvW9qn/rQQEO4QhOwYdzuIQbqEEdGDzCM7zBu/PkvDqf87hWnDy3A/gD5+sbGIqf2A==</latexit><latexit sha1_base64="0QF71fSbGripkt4UlvnGQe6IQIA=">AAACIHicbVDLSgMxFL3js9aqo1s3waJIF2XGjS5FNy4r2Ad0Ssmkt21oJjMkGbEM/R83/ooLXfjAjzFtB9HWAwnnnpNL7j1hIrg2nvfhrKyurW9sFraK26Wd3T13v9TQcaoY1lksYtUKqUbBJdYNNwJbiUIahQKb4eh66jfvUWkeyzszTrAT0YHkfc6osVLXvQpCHHCZJRE1ij9MSIWcEOLZq0KCICd5UckLnwQoez8tXbfsVb0ZyDLxc1KGHLWu+xL0YpZGKA0TVOu27yWmk1FlOBM4KQapxoSyER1g21JJI9SdbLbrhBxbpUf6sbJHGjJTf3dkNNJ6HIX2pZ1vqBe9qfif105N/6KTcZmkBiWbf9RPBTExmQZHelwhM2JsCWWK21kJG1JFmbHxFm0I/uLKy6RxVvW9qn/rQQEO4QhOwYdzuIQbqEEdGDzCM7zBu/PkvDqf87hWnDy3A/gD5+sbGIqf2A==</latexit><latexit sha1_base64="sCMlcyp7mlJq43Kq7Rr/YncpQpI=">AAACK3icbVDJTsMwEHXKVsoW4MjFogKhHqqECxyrcuFYJLpITVU5zqS16jiR7SCqqP/DhV/hAAcWceU/cNsIQctItt68maeZeX7CmdKO824VVlbX1jeKm6Wt7Z3dPXv/oKXiVFJo0pjHsuMTBZwJaGqmOXQSCSTyObT90dW03r4DqVgsbvU4gV5EBoKFjBJtqL5d93wYMJElEdGS3U9wBZ9i7Jivgj0vB3lSyRMXeyCCH0nfLjtVZxZ4Gbg5KKM8Gn372QtimkYgNOVEqa7rJLqXEakZ5TApeamChNARGUDXQEEiUL1sdusEnxgmwGEszRMaz9jfioxESo0j33Sa/YZqsTYl/6t1Ux1e9jImklSDoPNBYcqxjvHUOBwwCVTzsQGESmZ2xXRIJKHa2FsyJriLJy+D1nnVdarujVOu1XM7iugIHaMz5KILVEPXqIGaiKIH9IRe0Zv1aL1YH9bnvLVg5ZpD9Cesr28A26Fq</latexit><latexit sha1_base64="nPXxJrRr2/fWrroUi/XS61Q1Pk0=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp642AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAhuhbg==</latexit><latexit sha1_base64="nPXxJrRr2/fWrroUi/XS61Q1Pk0=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp642AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAhuhbg==</latexit><latexit sha1_base64="nPXxJrRr2/fWrroUi/XS61Q1Pk0=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp642AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAhuhbg==</latexit><latexit sha1_base64="nPXxJrRr2/fWrroUi/XS61Q1Pk0=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp642AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAhuhbg==</latexit><latexit sha1_base64="nPXxJrRr2/fWrroUi/XS61Q1Pk0=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp642AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAhuhbg==</latexit><latexit sha1_base64="nPXxJrRr2/fWrroUi/XS61Q1Pk0=">AAACK3icbVBNS8NAEN3Ur1q/oh69LBZFeiiJCHos9eKxgm2FJpTNZtou3WzC7kYsof/Hi3/Fgx78wKv/w20bRFsHdnnzZh4z84KEM6Ud590qLC2vrK4V10sbm1vbO/buXkvFqaTQpDGP5W1AFHAmoKmZ5nCbSCBRwKEdDC8n9fYdSMVicaNHCfgR6QvWY5RoQ3XtuhdAn4ksiYiW7H6MK/gYY8d8Fex5OciTSp642AMR/ki6dtmpOtPAi8DNQRnl0ejaz14Y0zQCoSknSnVcJ9F+RqRmlMO45KUKEkKHpA8dAwWJQPnZ9NYxPjJMiHuxNE9oPGV/KzISKTWKAtNp9huo+dqE/K/WSXXvws+YSFINgs4G9VKOdYwnxuGQSaCajwwgVDKzK6YDIgnVxt6SMcGdP3kRtE6rrlN1r8/KtXpuRxEdoEN0glx0jmroCjVQE1H0gJ7QK3qzHq0X68P6nLUWrFyzj/6E9fUNAhuhbg==</latexit>

FPT?
<latexit sha1_base64="eG/3lZq0Uj3dnbE3roKLI8Ehtl0=">AAAB/3icdVDLSsNAFJ3UV62vqODGzWARXIWkhrauLAriskIfQhPKZDpph04ezEzEErPwV9y4UMStv+HOv3HSVlDRA/dyOOde5s7xYkaFNM0PrbCwuLS8Ulwtra1vbG7p2zsdESUckzaOWMSvPSQIoyFpSyoZuY45QYHHSNcbn+d+94ZwQaOwJScxcQM0DKlPMZJK6ut7ju9Ft6kTTLvw4UWzlZ1mfb1sGif1asWuQtMwzZpVsXJSqdnHNrSUkqMM5mj29XdnEOEkIKHEDAnRs8xYuinikmJGspKTCBIjPEZD0lM0RAERbjq9P4OHShlAP+KqQgmn6veNFAVCTAJPTQZIjsRvLxf/8nqJ9OtuSsM4kSTEs4f8hEEZwTwMOKCcYMkmiiDMqboV4hHiCEsVWUmF8PVT+D/pVAzLNKwru9w4m8dRBPvgABwBC9RAA1yCJmgDDO7AA3gCz9q99qi9aK+z0YI239kFP6C9fQJh6JZU</latexit><latexit sha1_base64="eG/3lZq0Uj3dnbE3roKLI8Ehtl0=">AAAB/3icdVDLSsNAFJ3UV62vqODGzWARXIWkhrauLAriskIfQhPKZDpph04ezEzEErPwV9y4UMStv+HOv3HSVlDRA/dyOOde5s7xYkaFNM0PrbCwuLS8Ulwtra1vbG7p2zsdESUckzaOWMSvPSQIoyFpSyoZuY45QYHHSNcbn+d+94ZwQaOwJScxcQM0DKlPMZJK6ut7ju9Ft6kTTLvw4UWzlZ1mfb1sGif1asWuQtMwzZpVsXJSqdnHNrSUkqMM5mj29XdnEOEkIKHEDAnRs8xYuinikmJGspKTCBIjPEZD0lM0RAERbjq9P4OHShlAP+KqQgmn6veNFAVCTAJPTQZIjsRvLxf/8nqJ9OtuSsM4kSTEs4f8hEEZwTwMOKCcYMkmiiDMqboV4hHiCEsVWUmF8PVT+D/pVAzLNKwru9w4m8dRBPvgABwBC9RAA1yCJmgDDO7AA3gCz9q99qi9aK+z0YI239kFP6C9fQJh6JZU</latexit><latexit sha1_base64="eG/3lZq0Uj3dnbE3roKLI8Ehtl0=">AAAB/3icdVDLSsNAFJ3UV62vqODGzWARXIWkhrauLAriskIfQhPKZDpph04ezEzEErPwV9y4UMStv+HOv3HSVlDRA/dyOOde5s7xYkaFNM0PrbCwuLS8Ulwtra1vbG7p2zsdESUckzaOWMSvPSQIoyFpSyoZuY45QYHHSNcbn+d+94ZwQaOwJScxcQM0DKlPMZJK6ut7ju9Ft6kTTLvw4UWzlZ1mfb1sGif1asWuQtMwzZpVsXJSqdnHNrSUkqMM5mj29XdnEOEkIKHEDAnRs8xYuinikmJGspKTCBIjPEZD0lM0RAERbjq9P4OHShlAP+KqQgmn6veNFAVCTAJPTQZIjsRvLxf/8nqJ9OtuSsM4kSTEs4f8hEEZwTwMOKCcYMkmiiDMqboV4hHiCEsVWUmF8PVT+D/pVAzLNKwru9w4m8dRBPvgABwBC9RAA1yCJmgDDO7AA3gCz9q99qi9aK+z0YI239kFP6C9fQJh6JZU</latexit><latexit sha1_base64="eG/3lZq0Uj3dnbE3roKLI8Ehtl0=">AAAB/3icdVDLSsNAFJ3UV62vqODGzWARXIWkhrauLAriskIfQhPKZDpph04ezEzEErPwV9y4UMStv+HOv3HSVlDRA/dyOOde5s7xYkaFNM0PrbCwuLS8Ulwtra1vbG7p2zsdESUckzaOWMSvPSQIoyFpSyoZuY45QYHHSNcbn+d+94ZwQaOwJScxcQM0DKlPMZJK6ut7ju9Ft6kTTLvw4UWzlZ1mfb1sGif1asWuQtMwzZpVsXJSqdnHNrSUkqMM5mj29XdnEOEkIKHEDAnRs8xYuinikmJGspKTCBIjPEZD0lM0RAERbjq9P4OHShlAP+KqQgmn6veNFAVCTAJPTQZIjsRvLxf/8nqJ9OtuSsM4kSTEs4f8hEEZwTwMOKCcYMkmiiDMqboV4hHiCEsVWUmF8PVT+D/pVAzLNKwru9w4m8dRBPvgABwBC9RAA1yCJmgDDO7AA3gCz9q99qi9aK+z0YI239kFP6C9fQJh6JZU</latexit>

(solvable in 2.3146knO(log n))
<latexit sha1_base64="UVV0s+61kWa6J6tW7s+izCxTC8Y=">AAACJXicbVDLTgIxFO3gC/GFunTTSExgQ2aQqAsXRDfuxEQeCQOkUwo0dNpJ2yGSyfyMG3/FjQuJMXHlr1hgFgqepMnJOfek9x4vYFRp2/6yUmvrG5tb6e3Mzu7e/kH28KiuRCgxqWHBhGx6SBFGOalpqhlpBpIg32Ok4Y1uZ35jTKSigj/qSUDaPhpw2qcYaSN1s9eu74mnKK8EGyMTgpTDGJaK5075ojPincj1kR5ixKL7OO8yMYC8EC8yhbibzdlFew64SpyE5ECCajc7dXsChz7hGjOkVMuxA92OkNQUMxJn3FCRAOERGpCWoRz5RLWj+ZUxPDNKD/aFNI9rOFd/JyLkKzXxPTM521ktezPxP68V6v5VO6I8CDXhePFRP2RQCzirDPaoJFiziSEIS2p2hXiIJMLaFJsxJTjLJ6+Seqno2EXnoZyr3CR1pMEJOAV54IBLUAF3oApqAINn8ArewdR6sd6sD+tzMZqykswx+APr+weLvaSs</latexit><latexit sha1_base64="UVV0s+61kWa6J6tW7s+izCxTC8Y=">AAACJXicbVDLTgIxFO3gC/GFunTTSExgQ2aQqAsXRDfuxEQeCQOkUwo0dNpJ2yGSyfyMG3/FjQuJMXHlr1hgFgqepMnJOfek9x4vYFRp2/6yUmvrG5tb6e3Mzu7e/kH28KiuRCgxqWHBhGx6SBFGOalpqhlpBpIg32Ok4Y1uZ35jTKSigj/qSUDaPhpw2qcYaSN1s9eu74mnKK8EGyMTgpTDGJaK5075ojPincj1kR5ixKL7OO8yMYC8EC8yhbibzdlFew64SpyE5ECCajc7dXsChz7hGjOkVMuxA92OkNQUMxJn3FCRAOERGpCWoRz5RLWj+ZUxPDNKD/aFNI9rOFd/JyLkKzXxPTM521ktezPxP68V6v5VO6I8CDXhePFRP2RQCzirDPaoJFiziSEIS2p2hXiIJMLaFJsxJTjLJ6+Seqno2EXnoZyr3CR1pMEJOAV54IBLUAF3oApqAINn8ArewdR6sd6sD+tzMZqykswx+APr+weLvaSs</latexit><latexit sha1_base64="UVV0s+61kWa6J6tW7s+izCxTC8Y=">AAACJXicbVDLTgIxFO3gC/GFunTTSExgQ2aQqAsXRDfuxEQeCQOkUwo0dNpJ2yGSyfyMG3/FjQuJMXHlr1hgFgqepMnJOfek9x4vYFRp2/6yUmvrG5tb6e3Mzu7e/kH28KiuRCgxqWHBhGx6SBFGOalpqhlpBpIg32Ok4Y1uZ35jTKSigj/qSUDaPhpw2qcYaSN1s9eu74mnKK8EGyMTgpTDGJaK5075ojPincj1kR5ixKL7OO8yMYC8EC8yhbibzdlFew64SpyE5ECCajc7dXsChz7hGjOkVMuxA92OkNQUMxJn3FCRAOERGpCWoRz5RLWj+ZUxPDNKD/aFNI9rOFd/JyLkKzXxPTM521ktezPxP68V6v5VO6I8CDXhePFRP2RQCzirDPaoJFiziSEIS2p2hXiIJMLaFJsxJTjLJ6+Seqno2EXnoZyr3CR1pMEJOAV54IBLUAF3oApqAINn8ArewdR6sd6sD+tzMZqykswx+APr+weLvaSs</latexit><latexit sha1_base64="UVV0s+61kWa6J6tW7s+izCxTC8Y=">AAACJXicbVDLTgIxFO3gC/GFunTTSExgQ2aQqAsXRDfuxEQeCQOkUwo0dNpJ2yGSyfyMG3/FjQuJMXHlr1hgFgqepMnJOfek9x4vYFRp2/6yUmvrG5tb6e3Mzu7e/kH28KiuRCgxqWHBhGx6SBFGOalpqhlpBpIg32Ok4Y1uZ35jTKSigj/qSUDaPhpw2qcYaSN1s9eu74mnKK8EGyMTgpTDGJaK5075ojPincj1kR5ixKL7OO8yMYC8EC8yhbibzdlFew64SpyE5ECCajc7dXsChz7hGjOkVMuxA92OkNQUMxJn3FCRAOERGpCWoRz5RLWj+ZUxPDNKD/aFNI9rOFd/JyLkKzXxPTM521ktezPxP68V6v5VO6I8CDXhePFRP2RQCzirDPaoJFiziSEIS2p2hXiIJMLaFJsxJTjLJ6+Seqno2EXnoZyr3CR1pMEJOAV54IBLUAF3oApqAINn8ArewdR6sd6sD+tzMZqykswx+APr+weLvaSs</latexit>

�
⇤
�

<latexit sha1_base64="3yCItm7byMrnPUCy9JCG5cgiSCA=">AAACCHicbVDLSsNAFJ34rPUVdenCwSKIi5KIoMuiG5cV7AOaUCaTm3boZBJmJmIJXbrxV9y4UMStn+DOv3HaBtHWAwNnzrmXe+8JUs6Udpwva2FxaXlltbRWXt/Y3Nq2d3abKskkhQZNeCLbAVHAmYCGZppDO5VA4oBDKxhcjf3WHUjFEnGrhyn4MekJFjFKtJG69oEXQI+JPI2Jlux+hE+wByL8+XftilN1JsDzxC1IBRWod+1PL0xoFoPQlBOlOq6Taj8nUjPKYVT2MgUpoQPSg46hgsSg/HxyyAgfGSXEUSLNExpP1N8dOYmVGsaBqTT79dWsNxb/8zqZji78nIk00yDodFCUcawTPE4Fh0wC1XxoCKGSmV0x7RNJqDbZlU0I7uzJ86R5WnWdqntzVqldFnGU0D46RMfIReeohq5RHTUQRQ/oCb2gV+vRerberPdp6YJV9OyhP7A+vgFtwJo5</latexit><latexit sha1_base64="3yCItm7byMrnPUCy9JCG5cgiSCA=">AAACCHicbVDLSsNAFJ34rPUVdenCwSKIi5KIoMuiG5cV7AOaUCaTm3boZBJmJmIJXbrxV9y4UMStn+DOv3HaBtHWAwNnzrmXe+8JUs6Udpwva2FxaXlltbRWXt/Y3Nq2d3abKskkhQZNeCLbAVHAmYCGZppDO5VA4oBDKxhcjf3WHUjFEnGrhyn4MekJFjFKtJG69oEXQI+JPI2Jlux+hE+wByL8+XftilN1JsDzxC1IBRWod+1PL0xoFoPQlBOlOq6Taj8nUjPKYVT2MgUpoQPSg46hgsSg/HxyyAgfGSXEUSLNExpP1N8dOYmVGsaBqTT79dWsNxb/8zqZji78nIk00yDodFCUcawTPE4Fh0wC1XxoCKGSmV0x7RNJqDbZlU0I7uzJ86R5WnWdqntzVqldFnGU0D46RMfIReeohq5RHTUQRQ/oCb2gV+vRerberPdp6YJV9OyhP7A+vgFtwJo5</latexit><latexit sha1_base64="3yCItm7byMrnPUCy9JCG5cgiSCA=">AAACCHicbVDLSsNAFJ34rPUVdenCwSKIi5KIoMuiG5cV7AOaUCaTm3boZBJmJmIJXbrxV9y4UMStn+DOv3HaBtHWAwNnzrmXe+8JUs6Udpwva2FxaXlltbRWXt/Y3Nq2d3abKskkhQZNeCLbAVHAmYCGZppDO5VA4oBDKxhcjf3WHUjFEnGrhyn4MekJFjFKtJG69oEXQI+JPI2Jlux+hE+wByL8+XftilN1JsDzxC1IBRWod+1PL0xoFoPQlBOlOq6Taj8nUjPKYVT2MgUpoQPSg46hgsSg/HxyyAgfGSXEUSLNExpP1N8dOYmVGsaBqTT79dWsNxb/8zqZji78nIk00yDodFCUcawTPE4Fh0wC1XxoCKGSmV0x7RNJqDbZlU0I7uzJ86R5WnWdqntzVqldFnGU0D46RMfIReeohq5RHTUQRQ/oCb2gV+vRerberPdp6YJV9OyhP7A+vgFtwJo5</latexit><latexit sha1_base64="3yCItm7byMrnPUCy9JCG5cgiSCA=">AAACCHicbVDLSsNAFJ34rPUVdenCwSKIi5KIoMuiG5cV7AOaUCaTm3boZBJmJmIJXbrxV9y4UMStn+DOv3HaBtHWAwNnzrmXe+8JUs6Udpwva2FxaXlltbRWXt/Y3Nq2d3abKskkhQZNeCLbAVHAmYCGZppDO5VA4oBDKxhcjf3WHUjFEnGrhyn4MekJFjFKtJG69oEXQI+JPI2Jlux+hE+wByL8+XftilN1JsDzxC1IBRWod+1PL0xoFoPQlBOlOq6Taj8nUjPKYVT2MgUpoQPSg46hgsSg/HxyyAgfGSXEUSLNExpP1N8dOYmVGsaBqTT79dWsNxb/8zqZji78nIk00yDodFCUcawTPE4Fh0wC1XxoCKGSmV0x7RNJqDbZlU0I7uzJ86R5WnWdqntzVqldFnGU0D46RMfIReeohq5RHTUQRQ/oCb2gV+vRerberPdp6YJV9OyhP7A+vgFtwJo5</latexit>

✓
⇤ ⇤
⇤ ⇤

◆

<latexit sha1_base64="aLzx2dw33f9oLlmyYF9qH+owoPY=">AAACFXicbVDLSsNAFJ34rPUVdelmsChSpCQi6LLoxmUF+4AmlMn0th06mYSZiVhCf8KNv+LGhSJuBXf+jdM0iLYemOFwzr3ce08Qc6a043xZC4tLyyurhbXi+sbm1ra9s9tQUSIp1GnEI9kKiALOBNQ10xxasQQSBhyawfBq4jfvQCoWiVs9isEPSV+wHqNEG6ljn3gB9JlI45Boye7HuIyPsPk8L2NlD0T3x+zYJafiZMDzxM1JCeWodexPrxvRJAShKSdKtV0n1n5KpGaUw7joJQpiQoekD21DBQlB+Wl21RgfGqWLe5E0T2icqb87UhIqNQoDU2n2G6hZbyL+57UT3bvwUybiRIOg00G9hGMd4UlEuMskUM1HhhAqmdkV0wGRhGoTZNGE4M6ePE8apxXXqbg3Z6XqZR5HAe2jA3SMXHSOquga1VAdUfSAntALerUerWfrzXqfli5Yec8e+gPr4xtCFZz9</latexit><latexit sha1_base64="aLzx2dw33f9oLlmyYF9qH+owoPY=">AAACFXicbVDLSsNAFJ34rPUVdelmsChSpCQi6LLoxmUF+4AmlMn0th06mYSZiVhCf8KNv+LGhSJuBXf+jdM0iLYemOFwzr3ce08Qc6a043xZC4tLyyurhbXi+sbm1ra9s9tQUSIp1GnEI9kKiALOBNQ10xxasQQSBhyawfBq4jfvQCoWiVs9isEPSV+wHqNEG6ljn3gB9JlI45Boye7HuIyPsPk8L2NlD0T3x+zYJafiZMDzxM1JCeWodexPrxvRJAShKSdKtV0n1n5KpGaUw7joJQpiQoekD21DBQlB+Wl21RgfGqWLe5E0T2icqb87UhIqNQoDU2n2G6hZbyL+57UT3bvwUybiRIOg00G9hGMd4UlEuMskUM1HhhAqmdkV0wGRhGoTZNGE4M6ePE8apxXXqbg3Z6XqZR5HAe2jA3SMXHSOquga1VAdUfSAntALerUerWfrzXqfli5Yec8e+gPr4xtCFZz9</latexit><latexit sha1_base64="aLzx2dw33f9oLlmyYF9qH+owoPY=">AAACFXicbVDLSsNAFJ34rPUVdelmsChSpCQi6LLoxmUF+4AmlMn0th06mYSZiVhCf8KNv+LGhSJuBXf+jdM0iLYemOFwzr3ce08Qc6a043xZC4tLyyurhbXi+sbm1ra9s9tQUSIp1GnEI9kKiALOBNQ10xxasQQSBhyawfBq4jfvQCoWiVs9isEPSV+wHqNEG6ljn3gB9JlI45Boye7HuIyPsPk8L2NlD0T3x+zYJafiZMDzxM1JCeWodexPrxvRJAShKSdKtV0n1n5KpGaUw7joJQpiQoekD21DBQlB+Wl21RgfGqWLe5E0T2icqb87UhIqNQoDU2n2G6hZbyL+57UT3bvwUybiRIOg00G9hGMd4UlEuMskUM1HhhAqmdkV0wGRhGoTZNGE4M6ePE8apxXXqbg3Z6XqZR5HAe2jA3SMXHSOquga1VAdUfSAntALerUerWfrzXqfli5Yec8e+gPr4xtCFZz9</latexit><latexit sha1_base64="aLzx2dw33f9oLlmyYF9qH+owoPY=">AAACFXicbVDLSsNAFJ34rPUVdelmsChSpCQi6LLoxmUF+4AmlMn0th06mYSZiVhCf8KNv+LGhSJuBXf+jdM0iLYemOFwzr3ce08Qc6a043xZC4tLyyurhbXi+sbm1ra9s9tQUSIp1GnEI9kKiALOBNQ10xxasQQSBhyawfBq4jfvQCoWiVs9isEPSV+wHqNEG6ljn3gB9JlI45Boye7HuIyPsPk8L2NlD0T3x+zYJafiZMDzxM1JCeWodexPrxvRJAShKSdKtV0n1n5KpGaUw7joJQpiQoekD21DBQlB+Wl21RgfGqWLe5E0T2icqb87UhIqNQoDU2n2G6hZbyL+57UT3bvwUybiRIOg00G9hGMd4UlEuMskUM1HhhAqmdkV0wGRhGoTZNGE4M6ePE8apxXXqbg3Z6XqZR5HAe2jA3SMXHSOquga1VAdUfSAntALerUerWfrzXqfli5Yec8e+gPr4xtCFZz9</latexit>

✓
⇤ 0
0 ⇤

◆

<latexit sha1_base64="nWCH2lV3A0N7zz7n+ktet9tPAAA=">AAACFXicbVDLSgMxFM3UV62vUZdugsUiRcqMCLosunFZwT6gM5RMetuGZjJDkhHL0J9w46+4caGIW8Gdf2PaDqKtBxIO59zLvfcEMWdKO86XlVtaXlldy68XNja3tnfs3b2GihJJoU4jHslWQBRwJqCumebQiiWQMODQDIZXE795B1KxSNzqUQx+SPqC9Rgl2kgd+8QLoM9EGodES3Y/xmVcwtjBnme+Ei57ILo/ZscuOhVnCrxI3IwUUYZax/70uhFNQhCacqJU23Vi7adEakY5jAteoiAmdEj60DZUkBCUn06vGuMjo3RxL5LmCY2n6u+OlIRKjcLAVJr9Bmrem4j/ee1E9y78lIk40SDobFAv4VhHeBIR7jIJVPORIYRKZnbFdEAkodoEWTAhuPMnL5LGacV1Ku7NWbF6mcWRRwfoEB0jF52jKrpGNVRHFD2gJ/SCXq1H69l6s95npTkr69lHf2B9fANVL50J</latexit><latexit sha1_base64="nWCH2lV3A0N7zz7n+ktet9tPAAA=">AAACFXicbVDLSgMxFM3UV62vUZdugsUiRcqMCLosunFZwT6gM5RMetuGZjJDkhHL0J9w46+4caGIW8Gdf2PaDqKtBxIO59zLvfcEMWdKO86XlVtaXlldy68XNja3tnfs3b2GihJJoU4jHslWQBRwJqCumebQiiWQMODQDIZXE795B1KxSNzqUQx+SPqC9Rgl2kgd+8QLoM9EGodES3Y/xmVcwtjBnme+Ei57ILo/ZscuOhVnCrxI3IwUUYZax/70uhFNQhCacqJU23Vi7adEakY5jAteoiAmdEj60DZUkBCUn06vGuMjo3RxL5LmCY2n6u+OlIRKjcLAVJr9Bmrem4j/ee1E9y78lIk40SDobFAv4VhHeBIR7jIJVPORIYRKZnbFdEAkodoEWTAhuPMnL5LGacV1Ku7NWbF6mcWRRwfoEB0jF52jKrpGNVRHFD2gJ/SCXq1H69l6s95npTkr69lHf2B9fANVL50J</latexit><latexit sha1_base64="nWCH2lV3A0N7zz7n+ktet9tPAAA=">AAACFXicbVDLSgMxFM3UV62vUZdugsUiRcqMCLosunFZwT6gM5RMetuGZjJDkhHL0J9w46+4caGIW8Gdf2PaDqKtBxIO59zLvfcEMWdKO86XlVtaXlldy68XNja3tnfs3b2GihJJoU4jHslWQBRwJqCumebQiiWQMODQDIZXE795B1KxSNzqUQx+SPqC9Rgl2kgd+8QLoM9EGodES3Y/xmVcwtjBnme+Ei57ILo/ZscuOhVnCrxI3IwUUYZax/70uhFNQhCacqJU23Vi7adEakY5jAteoiAmdEj60DZUkBCUn06vGuMjo3RxL5LmCY2n6u+OlIRKjcLAVJr9Bmrem4j/ee1E9y78lIk40SDobFAv4VhHeBIR7jIJVPORIYRKZnbFdEAkodoEWTAhuPMnL5LGacV1Ku7NWbF6mcWRRwfoEB0jF52jKrpGNVRHFD2gJ/SCXq1H69l6s95npTkr69lHf2B9fANVL50J</latexit><latexit sha1_base64="nWCH2lV3A0N7zz7n+ktet9tPAAA=">AAACFXicbVDLSgMxFM3UV62vUZdugsUiRcqMCLosunFZwT6gM5RMetuGZjJDkhHL0J9w46+4caGIW8Gdf2PaDqKtBxIO59zLvfcEMWdKO86XlVtaXlldy68XNja3tnfs3b2GihJJoU4jHslWQBRwJqCumebQiiWQMODQDIZXE795B1KxSNzqUQx+SPqC9Rgl2kgd+8QLoM9EGodES3Y/xmVcwtjBnme+Ei57ILo/ZscuOhVnCrxI3IwUUYZax/70uhFNQhCacqJU23Vi7adEakY5jAteoiAmdEj60DZUkBCUn06vGuMjo3RxL5LmCY2n6u+OlIRKjcLAVJr9Bmrem4j/ee1E9y78lIk40SDobFAv4VhHeBIR7jIJVPORIYRKZnbFdEAkodoEWTAhuPMnL5LGacV1Ku7NWbF6mcWRRwfoEB0jF52jKrpGNVRHFD2gJ/SCXq1H69l6s95npTkr69lHf2B9fANVL50J</latexit>

`⇥ `, where ` 3
<latexit sha1_base64="JKcpoJEwTGAxBrXN69N3qWYJfKI=">AAACFXicbZDLSsNAFIYnXmu9RV26GWwFF6UkKuiy6MZlBXuBJpTJ9KQdOrk4M1FL6Eu48VXcuFDEreDOt3HSZqGtPwx8/Occ5pzfizmTyrK+jYXFpeWV1cJacX1jc2vb3NltyigRFBo04pFoe0QCZyE0FFMc2rEAEngcWt7wMqu37kBIFoU3ahSDG5B+yHxGidJW16w4wDl2FAtA4owr2Am86CHF9wMQgMuZ53C4xSflcdcsWVVrIjwPdg4llKveNb+cXkSTAEJFOZGyY1uxclMiFKMcxkUnkRATOiR96GgMid7CTSdXjfGhdnrYj4R+ocIT9/dESgIpR4GnOwOiBnK2lpn/1TqJ8s/dlIVxoiCk04/8hGMV4Swi3GMCqOIjDYQKpnfFdEAEoUoHWdQh2LMnz0PzuGpbVfv6tFS7yOMooH10gI6Qjc5QDV2hOmogih7RM3pFb8aT8WK8Gx/T1gUjn9lDf2R8/gCkl53W</latexit><latexit sha1_base64="JKcpoJEwTGAxBrXN69N3qWYJfKI=">AAACFXicbZDLSsNAFIYnXmu9RV26GWwFF6UkKuiy6MZlBXuBJpTJ9KQdOrk4M1FL6Eu48VXcuFDEreDOt3HSZqGtPwx8/Occ5pzfizmTyrK+jYXFpeWV1cJacX1jc2vb3NltyigRFBo04pFoe0QCZyE0FFMc2rEAEngcWt7wMqu37kBIFoU3ahSDG5B+yHxGidJW16w4wDl2FAtA4owr2Am86CHF9wMQgMuZ53C4xSflcdcsWVVrIjwPdg4llKveNb+cXkSTAEJFOZGyY1uxclMiFKMcxkUnkRATOiR96GgMid7CTSdXjfGhdnrYj4R+ocIT9/dESgIpR4GnOwOiBnK2lpn/1TqJ8s/dlIVxoiCk04/8hGMV4Swi3GMCqOIjDYQKpnfFdEAEoUoHWdQh2LMnz0PzuGpbVfv6tFS7yOMooH10gI6Qjc5QDV2hOmogih7RM3pFb8aT8WK8Gx/T1gUjn9lDf2R8/gCkl53W</latexit><latexit sha1_base64="JKcpoJEwTGAxBrXN69N3qWYJfKI=">AAACFXicbZDLSsNAFIYnXmu9RV26GWwFF6UkKuiy6MZlBXuBJpTJ9KQdOrk4M1FL6Eu48VXcuFDEreDOt3HSZqGtPwx8/Occ5pzfizmTyrK+jYXFpeWV1cJacX1jc2vb3NltyigRFBo04pFoe0QCZyE0FFMc2rEAEngcWt7wMqu37kBIFoU3ahSDG5B+yHxGidJW16w4wDl2FAtA4owr2Am86CHF9wMQgMuZ53C4xSflcdcsWVVrIjwPdg4llKveNb+cXkSTAEJFOZGyY1uxclMiFKMcxkUnkRATOiR96GgMid7CTSdXjfGhdnrYj4R+ocIT9/dESgIpR4GnOwOiBnK2lpn/1TqJ8s/dlIVxoiCk04/8hGMV4Swi3GMCqOIjDYQKpnfFdEAEoUoHWdQh2LMnz0PzuGpbVfv6tFS7yOMooH10gI6Qjc5QDV2hOmogih7RM3pFb8aT8WK8Gx/T1gUjn9lDf2R8/gCkl53W</latexit><latexit sha1_base64="JKcpoJEwTGAxBrXN69N3qWYJfKI=">AAACFXicbZDLSsNAFIYnXmu9RV26GWwFF6UkKuiy6MZlBXuBJpTJ9KQdOrk4M1FL6Eu48VXcuFDEreDOt3HSZqGtPwx8/Occ5pzfizmTyrK+jYXFpeWV1cJacX1jc2vb3NltyigRFBo04pFoe0QCZyE0FFMc2rEAEngcWt7wMqu37kBIFoU3ahSDG5B+yHxGidJW16w4wDl2FAtA4owr2Am86CHF9wMQgMuZ53C4xSflcdcsWVVrIjwPdg4llKveNb+cXkSTAEJFOZGyY1uxclMiFKMcxkUnkRATOiR96GgMid7CTSdXjfGhdnrYj4R+ocIT9/dESgIpR4GnOwOiBnK2lpn/1TqJ8s/dlIVxoiCk04/8hGMV4Swi3GMCqOIjDYQKpnfFdEAEoUoHWdQh2LMnz0PzuGpbVfv6tFS7yOMooH10gI6Qjc5QDV2hOmogih7RM3pFb8aT8WK8Gx/T1gUjn9lDf2R8/gCkl53W</latexit>

Figure 1 An overview of the results on matrices, up to complementation and equivalence.

2. para-NP-hard if either M or M is equivalent to one of the two matrices0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

 or

∗ 0 ∗
0 ∗ ∗
∗ ∗ 0

 ;

3. solvable by an algorithm running in time 2.3146knO(logn), when M or M is equivalent to∗ 0 ∗
0 ∗ ∗
∗ ∗ 1

 ;

4. FPT if M is not covered by any of the previous cases.

Theorem 1 shows that the Deletion to List M-Partition problem has polynomial
time algorithms, FPT algorithms or algorithms of the form cknO(logn), depending on the
matrix M (see also Figure 1). We also have two cases for M where the Deletion to List
M-Partition problem is para-NP-hard. With such a varied range of complexities, we use
several techniques to design the algorithms. The polynomial time algorithms are based on
ideas that help to reduce the problem to an equivalent minimum separator problem [18]. For
our FPT algorithms, we utilize the notion of important separators, which was introduced by
Marx [27]. Another technique we use to design our FPT algorithms for Deletion to List
M-Partition is based on reducing the given instance to (polynomially many) instances of
Variable Deletion Almost 2-SAT, and then employing the known FPT algorithm for
Variable Deletion Almost 2-SAT to resolve the instance. We also use the technique of
“iterative compression” for designing FPT algorithm for one of our cases. For the matrix M
defined in item 3 of Theorem 1, although the FPT solvability versus W-hardness of Deletion
to List M-Partition remains open, we design an algorithm for this problem that runs
in time 2.3146knO(logn), where n is the number of vertices in the input graph. We use the
technique of separating families introduced by Feder et al. [17] to design this algorithm.
These results can be found in Section 3.

M is of order 4. We restrict the matricesM to have only 0s and 1s as their diagonal entries.
First, we observe that all these problems are NP-hard. Second, we design FPT algorithms
for these problems, unless the matrix M “encompasses” the 3-Colouring problem. Let
Mcol denote the 3× 3 matrix with only 0s on the diagonal, and ∗s elsewhere. We prove the
following theorem.

A. Agrawal, S. Kolay, J. Madathil, and S. Saurabh 41:5

I Theorem 2 (?). Consider a Deletion to List M-Partition problem, where M is a
4× 4 matrix over {0, 1, ∗} that has only 0s and 1s as diagonal entries. If M does not contain
an equivalent matrix of Mcol (or its complement) as a sub-matrix, then the problem is FPT.
Otherwise, the problem is para-NP-hard.

Our FPT algorithms use the technique of iterative compression along with the known FPT
algorithm for Variable Deletion Almost 2-SAT. Our use of iterative compression
exploits structural properties provided by M in order to design the FPT algorithms. Our
results, in particular show that, for a 3× 3 matrix (except the matrix defined in item 3 of
Theorem 1) or a 4× 4 matrix with no ∗s on the diagonal, whenever the List M-Partition
is polynomial time solvable, the corresponding Deletion to List M-Partition problem
is fixed-parameter tractable, and whenever List M-Partition is NP-hard, Deletion to
List M-Partition is para-NP-hard, and thus provide a (partial) parameterized analogue of
the results established in [17].

2 Preliminaries and Basic Tools

For a graph G, V (G) and E(G) denote respectively the vertex set and edge set of G. Given
a partition V of V ′ ⊆ V (G), V (V) = V ′, and for X ⊆ V ′, V −X denotes the restriction of
the partition to V ′ \X. Let G be a graph and X,Y ⊆ V (G). A set of vertices S ⊆ V (G) is
said to be an (X,Y)-separator if G− S contains no path from X to Y .

Definitions and results for some useful problems. Consider a 2-CNF formula ψ. The
variable set of ψ is denoted by Var(ψ). For a set Y ⊆ Var(ψ), ψ − Y denotes the 2-CNF
formula obtained from ψ by deleting all the clauses that contain a variable from Y . The
2-SAT problem takes as input a 2-CNF formula ψ, and the question is to test if there is a
satisfying assignment for ψ. The 2-SAT problem admits a polynomial time algorithm [23].
The Variable Deletion Almost 2-SAT problem takes as input a 2-CNF formula ψ and
a non-negative integer k, and the objective is to test if there is a set X ⊆ Var(ψ) of size at
most k such that ψ−X is satisfiable. It is known that Variable Deletion Almost 2-SAT
admits an algorithm that runs in time 2.3146knO(1), where n is the number of variables [26],
and hence is in FPT, when parameterized by k.

Matrices and list partitioning. For an ` × ` matrix M , consider an M -partition V =
{V1, V2, . . . , V`} of a graph G. Then the part Vi will be said to have index i. For an instance
(G,L : V (G)→ 2[`]) of List M-Partition, throughout the paper we assume that L(v) 6= ∅,
as otherwise, we can immediately report that (G,L) does not admit an M -partition that
respects L. Similarly, for an instance (G,L : V (G) → 2[`], k) of Deletion to List M-
Partition, we assume that L(v) 6= ∅, as otherwise, we can (safely) delete such a vertex from
G and reduce k by 1 (or return that it is a no-instance when k ≤ 0).

Given a matrix M , the complement M is defined as follows: mi,j = 0 ⇐⇒ mi,j =
1,mi,j = 1 ⇐⇒ mi,j = 0,mi,j = ∗ ⇐⇒ mi,j = ∗. The lower triangular submatrix
ML = (mL

i,j) of a matrix M = (mi,j) is defined as follows: ∀i ≥ j,mL
i,j = mi,j and

∀i < j,mL
i,j = 0. When the context is clear we drop the superscript from the entry names

of the lower triangular matrix ML and simply use the entry names mi,j of M . Similarly,
the upper triangular submatrix MU = (mU

i,j) of a matrix M = (mi,j) is defined as follows:
∀i ≤ j,mU

i,j = mi,j and ∀i > j,mU
i,j = 0. Again, we drop superscripts when the context is

clear. The following observation follows from the definition of the complement of a matrix.

ISAAC 2019

41:6 Deletion to List Matrix-Partition for Low-Order Matrices

I Observation 3. A graph G admits a list M-partition with respect to a list function L if
and only if G admits a list M -partition with respect to L.

In this paper, for an `× ` matrix M , a submatrix M ′ of order p ≤ ` is defined as follows:
there are p distinct indices {i1, i2, . . . , ip} ∈ [`] such that m′a,b = mia,ib for all a, b ∈ [p].
Consider two symmetric `× ` matrices M = (mi,j) and M ′ = (m′i,j) over {0, 1, ∗}. We say
that M is equivalent to M ′, if there is a permutation π : [`]→ [`] such that m′i,j = mπ(i),π(j).
And such a permutation π is called a witness-permutation for (M,M ′). Notice that if M is
equivalent to M ′, then M ′ is also equivalent to M with witness-permutation π−1. That is,
M and M ′ are equivalent if they define the same partition up to a re-indexing of the parts.
We immediately obtain the following result.

I Proposition 4. Let M be a symmetric matrix equivalent to M ′, with a witness-permutation
π. Then, a graph G admits a list M -partition with respect to a list function L if and only if G
admits a list M ′-partition with respect to the list function L′, where L′(v) = {π(i) | i ∈ L(v)}
for every v ∈ V (G).

Some Useful Results on List M -Partition

We present a summary of results from [17], which will be used throughout.

Reducing List M -partition to 2-SAT, for a 2 × 2 matrix M . It was shown in [17] that
an instance of the List M-partition problem can be reduced (in polynomial time) to an
equivalent instance of 2-SAT, provided that M is a 2 × 2 matrix. And since 2-SAT is
polynomial time solvable [2], so is List M-partition, when M is a 2× 2 matrix. What is
interesting is that this reduction works even if M is not of order 2, but the size of L(v) is
at most 2 for every vertex v of the input graph G. The List M-Partition problem such
that the list of every vertex in G has size at most two will also be referred to as the 2-List
M-Partition problem. The reduction from 2-List M-Partition to 2-SAT will also be
useful while designing algorithms for Deletion to List M-Partition. Next, we state the
properties of the reduction from 2-List M-Partition to 2-SAT.

I Proposition 5 (?). Let (G,L : V (G)→ 2[`]) be an instance of 2-List M-Partition. In
polynomial time we can output an instance ψ of 2-SAT and a bijective function f : V (G)→
Var(ψ), such that for every X ⊆ V (G): i) ψ − f(X) is a yes instance of 2-SAT if and
only if (G − X,L|V (G−X) : V (G − X) → 2[`]) is a yes instance of 2-List M-Partition,
and ii) a set A ⊆ Var(ψ − f(X)) is a satisfying assignment for ψ − f(X) if and only if for
each v ∈ {f−1(a) | a ∈ A} with L|V (G−X)(v) = {i, j}, where i ≤ j, we have v ∈ Vi. Here,
V = {V1, V2, . . . , V`} is an M -partition of G−X (if it exists).

From the above proposition, we can conclude that 2-List M-Partition admits a
polynomial time algorithm. It also suggests a strategy for solving List M-partition: try to
reduce the size of every list. It is indeed possible to do that, as shown in [17], if the matrix
M has a row that contains both a 0 and a 1 (see Proposition 2.3 and Corollary 2.4 in [17]).

I Proposition 6 ([17]). Suppose the matrix M has mi1,i2 = 0 and mi1,i3 = 1 (one of i3 or
i2 can be equal to i1). Then an instance (G,L) of the List M-Partition problem can be
reduced (in polynomial time) to (i) one instance with no list containing i1 and (ii) at most
|V (G)| instances with no list containing both i2 and i3, such that (G,L) is a yes instance if
and only if at least one of the |V (G)|+ 1 instances is a yes instance.

A. Agrawal, S. Kolay, J. Madathil, and S. Saurabh 41:7

The above proposition comes handy when M is a 3× 3 matrix, as in this case the problem
reduces to |V (G)|+ 1 instances that have only lists of size at most two. Another notion that
will be useful in our algorithm is “domination”, defined below.

I Definition 7. For a symmetric matrix M of order ` over {0, 1, ∗}, and rows i1, i2 ∈ [`], i1
dominates i2 in M if for each column i3 ∈ [`], either mi1i3 = mi2i3 or mi1i3 = ∗.

I Proposition 8 (Proposition 2.5 [17]). Consider a matrix M of order `, where the row i1
dominates the row i2, and an instance (G,L) of List M-Partition. Let L′ be the list
function such that for each v ∈ V (G), (i) L′(v) = L(v) if |L(v) ∩ {i1, i2}| ≤ 1, and (ii)
L′(v) = L(v) \ {i2} otherwise. The graph G admits a list M -partition that respects L if and
only if it admits a list M -partition that respects L′.

Basic tools for Deletion to List M -Partition. We show how the results presented earlier
for List M-Partition can be used for solving Deletion to List M-Partition. Consider
an instance (G,L, k) of Deletion to List M-Partition. Suppose |L(v)| ≤ 2 for every
v ∈ V (G). Let ψ be the 2-CNF formula and f : V (G)→ Var(ψ) be the bijective function
returned by Proposition 5. The properties of ψ and f (as in Proposition 5), ensures that
deleting a set X ⊆ V (G) of vertices from G is equivalent to deleting the variables f(X)
from ψ. Let Deletion to 2-List M-Partition be the special case of Deletion to
List M-Partition where the list of each vertex has size at most two. By Proposition 5,
Deletion to 2-List M-Partition is equivalent to testing whether k variables can be
deleted from ψ to make it satisfiable. This is exactly the same as the Variable Deletion
Almost 2-SAT problem, which admits an FPT algorithm running in time 2.3146k′

n′
O(1),

where k′ is the size of the deletion set and n′ is the number of variables. This together with
Proposition 5 gives us the following result.

I Proposition 9. Deletion to 2-List M-Partition is fixed-parameter tractable with
running time 2.3146knO(1).

Now using Propositions 6 and 9, we obtain the following result.

I Proposition 10. Let M be a 3× 3 matrix such that M has a row that contains both a 0
and a 1. Then Deletion to List M-Partition is fixed-parameter tractable.

I Proposition 11 (?). Deletion to List M-Partition is NP-hard if at least one of the
diagonal entries of M is 0 or 1.

The reduction rule stated in the following lemma will be useful in our algorithms.

I Lemma 12 (?). For a matrix M , let (G,L, k) be an instance of Deletion to List
M-Partition, with a vertex v ∈ V (G), such that L(v) = ∅. Then, (G,L, k) and (G −
{v}, L|V (G)\{v}, k − 1) are equivalent instances of Deletion to List M-Partition.

I Remark 13. We note that for any Deletion to List M-Partition problem, we assume
that we are looking for a list M -partition where each part is non-empty. First, if there is
a part that is empty in the list M -partition, then our current instance can be resolved as
an instance of Deletion to List M ′-Partition, where M ′ is a matrix of order strictly
less than M . Otherwise, for no list M -partition is any part empty. In such a case, in a
polynomial time preprocessing step, we can guess one vertex vi per part i of the hypothetical
list M -partition V and appropriately reduce L(vi) = {i}.

ISAAC 2019

41:8 Deletion to List Matrix-Partition for Low-Order Matrices

Table 1 An overview of our NP-hardness vs. P results (not covered by Proposition 11) for
matrices of order 3× 3, where complement matrices are not shown.

Matrices (and witness-permutation π : [3]→ [3]) Equivalent matrix Class Proof
π(1) = 1, π(2) = 3, π(3) = 2 π(1) = 3, π(2) = 2, π(3) = 1 ∗ ∗ ∗∗ ∗ ∗

∗ ∗ ∗

 P Lemma 16(a)

∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗

 ∗ ∗ ∗∗ ∗ 0
∗ 0 ∗

 ∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗

 P Lemma 16(b)

∗ 0 ∗
0 ∗ 0
∗ 0 ∗

 ∗ 0 0
0 ∗ ∗
0 ∗ ∗

 ∗ ∗ 0
∗ ∗ 0
0 0 ∗

 P Lemma 16(c)

∗ 0 0
0 ∗ 0
0 0 ∗

 NP-hard Lemma 14(a)

∗ 0 1
0 ∗ 0
1 0 ∗

 ∗ 0 0
0 ∗ 1
0 1 ∗

 ∗ 1 0
1 ∗ 0
0 0 ∗

 NP-hard Lemma 14(b)

3 Classification of 3 × 3 matrices

In this section, our main objective is to classify Deletion to List M-Partition for
matrices M of order 3, both in classical complexity as well as parameterized complexity.
Throughout the section,M = (mi,j) denotes a symmetric 3×3 matrix over {0, 1, ∗}. We prove
some of the main algorithmic results that we obtain for Deletion to List M-Partition
for matrices M of order 3, and thus present a partial proof of Theorem 1.

Before we go into the proof of Theorem 1, we first address the question of NP-hardness
versus polynomial time solvability of these problems. Already we saw in Proposition 11 that
Deletion to List M-Partition is NP-hard if at least one of the diagonal entries of M is 0
or 1. So we now need to consider only those matrices M for which m1,1 = m2,2 = m3,3 = ∗.
And up to complementation and equivalence of matrices, we are left with only six such
matrices. We resolve five of these cases; see Table 1 for an overview of these results.

I Lemma 14 (?). Deletion to List M-Partition is NP-hard if M is one of the following
matrices: (a) m1,1 = m2,2 = m3,3 = ∗, m1,2 = m1,3 = m2,3 = 0, and (b) m1,1 = m2,2 =
m3,3 = ∗, m1,3 = m2,3 = 0,m1,2 = 1.

I Remark 15. We do not know whether Deletion to List M-Partition is NP-hard or
not when M is described as m1,1 = m2,2 = m3,3 = ∗, m1,2 = 0,m1,3 = 1,m2,3 = ∗. However,
in the course of the proof of Theorem 1, we show that Deletion to List M-Partition is
FPT, when M or M is equivalent to the above matrix.

We now briefly discuss the polynomial time solvability of the cases described in Theorem 1,
item 1.

I Lemma 16 (?). Deletion to List M-Partition is polynomial time solvable if M is
one of the following matrices:

(a)

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 , (b)

∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗

 , (c)

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 .

A. Agrawal, S. Kolay, J. Madathil, and S. Saurabh 41:9

Proof Sketch. In each of the cases below, (G,L, k) denotes an input instance of Deletion
to List M-Partition. We assume that for each v ∈ V (G), we have L(v) 6= ∅ (see
Lemma 12). And recall that for any X,Y ⊆ V (G), an (X,Y)-separator can be found in
polynomial time [18].
(a) In this case, all entries of the matrix M are ∗s. Notice that a vertex v ∈ V (G) can go to

any one of the parts Vi in a list M -partition as long as i ∈ L(v).
(b) Let X = {v ∈ V (G) | L(v) = {1}}, Y = {v ∈ V (G) | L(v) = {2}} and Z = {v ∈

V (G) | 3 ∈ L(v)}. We can show that S ⊆ V (G) is a solution for the Deletion
to List M-Partition instance (G,L, k) if and only if S is an (X,Y)-separator in
G− Z.

(c) In this case, indices 1 and 2 dominate each other. Thus we can assume that the
list of no vertex contains both 1 and 2. Let X = {v ∈ V (G) | L(v) = {3}} and Y =
{x ∈ V (G) | L(v) ⊆ {1, 2}}. Notice that a set S ⊆ V (G) is a solution to the Deletion
to List M-Partition instance (G,L, k) if and only if S is an (X,Y)-separator. J

Now we turn our attention to the parameterized complexity of Deletion to List
M-Partition when M is of order 3. First, we consider the matrices defined in item 2 of
Theorem 1.

I Observation 17. The problem Deletion to List M-Partition is para-NP-hard, when
M is one of the two matrices matrices define in item 2 of Theorem 1. The first matrix in item
2 corresponds to a 3-colouring and the second matrix corresponds to a stable-cutset partition.
Therefore, the corresponding List M-Partition problems correspond to the problems 3-
Colouring and Stable Cutset, respectively, both of which are NP-hard [19, 4].

In the remaining part of this section, we consider some special cases from Theorem 1 and
describe algorithms for these special cases. The rest of the case analysis leading to the proof
of Theorem 1 has been omitted due to space constraints.

Algorithm for the Deletion to List Clique-Cutset Partition. The problem is Deletion
to List M-Partition, where M is the matrix such that an M -partition is a clique-cutset
partition, i.e., M is such that m1,1 = m2,2 = ∗, m3,3 = 1 and m1,3 = m2,3 = ∗. m1,2 = 0.
Consider a clique-cutset partition V = {V1, V2, V3} of a graph G. The subgraph G[V3] is a
clique, and V3 is also a cutset between the parts V1 and V2. Hence the name clique-cutset
partition. We now prove the following lemma, the proof of which relies on a family of vertex
subsets that “separate cliques and stable-pairs,” defined below.

I Lemma 18. Deletion to List Clique-Cutset Partition is solvable in 2.3146knO(logn)

time.

I Definition 19. For a graph G, a pair of disjoint sets A,B ⊆ V (G) is a stable-pair if for
every a ∈ A and b ∈ B, ab /∈ E(G). A family F ⊆ {F | F ⊆ V (G)} separates cliques and
stable-pairs if for every A,B,C ⊆ V (G) such that A,B is a stable-pair, G[C] is a clique and
C ∩ (A ∪B) = ∅, there is F ∈ F such that C ⊆ F and either F ∩A = ∅ or F ∩B = ∅.

I Proposition 20 (Theorem 4.3 [17]). Every graph on n vertices has a family of size nlogn

that separate cliques and stable-pairs. Moreover, such a family can be found in time nO(logn).

Let us see the implication of this proposition to our problem. Consider an instance (G,L, k)
of Deletion to List Clique-Cutset Partition, and its solution S ⊆ V (G) (if it exists).
Let F be a family of sets that separates cliques and stable-pairs in G. And consider the list

ISAAC 2019

41:10 Deletion to List Matrix-Partition for Low-Order Matrices

Algorithm 3.1 Algorithm for Deletion to List Clique-Cutset Partition.

Input: (G,L, k).
Output: yes or no.

1 Construct a family F of size nlogn that separates cliques and stable-pairs in G.
2 for each F ∈ F do
3 Define L1 : V (G)→ 2[3] as follows. For every v ∈ F , set L1(v) = L(v) \ {1}. For

every v /∈ F , set L1(v) = L(v) \ {3}.
4 if Proposition 9 returns yes for the instance (G,L1, k) then
5 return yes
6 Define L2 : V (G)→ 2[3] as follows. For every v ∈ F , set L2(v) = L(v) \ {2}. For

every v /∈ F , set L2(v) = L(v) \ {3}.
7 if Proposition 9 returns yes for the instance (G,L2, k) then
8 return yes

9 return no

clique-cutset partition (V1, V2, V3) of G−S. Note that G[V3] is a clique, V1, V2 is a stable-pair,
and V3 is disjoint from V1 ∪ V2. Then, by Proposition 20, there exists F ∈ F such that F
contains V3 and F is disjoint from at least one of V1 and V2. Consider the set of lists L1
obtained from L by removing 1 from L(v) for every v ∈ F and 3 from L(v) for every v /∈ F .
Observe that if F ∩ V1 = ∅, then S is a solution for the Deletion to List M-Partition
instance (G,L1, k) as well. Similarly, let L2 be the set of lists obtained from L by removing
2 from L(v) for every v ∈ F and 3 from L(v) for every v /∈ F . Then if F ∩ V2 = ∅, then S
is a solution for the Deletion to List M-Partition instance (G,L2, k) as well. But we
know that either F ∩ V1 = ∅ or F ∩ V2 = ∅. Therefore, S is a solution to either (G,L1, k) or
(G,L2, k). These observations lead us to our algorithm (see Algorithm 3.1).

The correctness of Algorithm 3.1 is apparent from our previous discussions. As for the
running time, Step 1 takes nO(logn) time to construct F , and we have |F| ≤ nlogn. For
each F ∈ F , Steps 2–8 take 2.3146knO(1) time. Therefore, the algorithm runs in time
2.3146knO(logn). We have thus proved Lemma 18.

Algorithm for Deletion to List M -Partition, where M is the bipartite-star matrix or
the three-stars matrix. We are now going to design an FPT algorithm that works for two
different partitions. The first of these is anM -partition whenM is defined bym1,1 = m2,2 = 0,
m3,3 = ∗, m1,2 = ∗, m1,3 = m2,3 = 0. We call M the bipartite-star matrix and an M -
partition a bipartite-star partition. The second partition is an M -partition for M defined by
m1,1 = m2,2 = m3,3 = ∗, m1,2 = m1,3 = m2,3 = 0. We call M the three-stars matrix and an
M -partition a three-stars partition. We shall prove the following lemma.

I Lemma 21. Deletion to List M-Partition, where M is either the bipartite-star
matrix or the three-stars matrix is fixed-parameter tractable.

We prove Lemma 21 by showing that Algorithm 3.2 solves Deletion to List M-Partition
in 16knO(1) time, when M is either the bipartite-star matrix or the three-stars matrix. Let
(G,L, k) be an instance of Deletion to List M-Partition. The idea behind our algorithm
is as follows. Assume that (G,L, k) is a yes-instance. Let S ⊆ V (G) be an optimal solution
for the problem, and V = {V1, V2, V3} be a list M -partition of G− S. Then, S contains an
(X,Y)-separator where X = {u ∈ V (G) | L(u) = {3}} and Y = {u ∈ V (G) | L(u) ⊆ {1, 2}}.
And for a vertex u with 3 ∈ L(u), note that u can be placed in V3 (because m3,3 = ∗) if u

A. Agrawal, S. Kolay, J. Madathil, and S. Saurabh 41:11

Algorithm 3.2 Algorithm for the proof of Lemma 21.

Input: (G,L, k).
Output: yes or no.

1 Define X = {u ∈ V (G) | L(u) = {3}} and Y = {u ∈ V (G) | L(u) ⊆ {1, 2}}.
2 Let F be the family of all important (X,Y)-separators of size at most k.
3 for each Ŝ ∈ F do
4 Let Ẑ be the reachability set of Y \ Ŝ in G− Ŝ. (Note that for

v ∈ V (G) \ (Ŝ ∪ Ẑ), we have 3 ∈ L(v), and for v ∈ Ẑ, L(v) ∩ {1, 2} 6= ∅.)
5 Define a new list function L′ for the vertices in Ẑ. For every v ∈ Ẑ, let

L′(v) = L(v) \ {3}. (Then |L′(v)| ≤ 2 for every v ∈ Ẑ.)
6 Set k′ = k − |Ŝ|.
7 if Proposition 9 returns yes for the instance (G[Ẑ], L′, k′) then
8 return yes

9 return no

is not reachable from Y in G − S. Hence we try to place as many vertices as possible in
V3 by choosing an (X,Y)-separator that is “farthest from X,” (and by augmenting such a
separator to ensure that the other constraints dictated by M are also satisfied). For this,
Algorithm 3.2 uses the concept of an important separator, introduced by Marx in [27]. For a
graph G and A ⊆ V (G), RG(A) = {v ∈ V (G) | there is a path from x to v in G for some x
∈ A}. And the set RG(A) is called the reachability set of A in G. For A,B ⊆ V (G), a
minimal (A,B)-separator S ⊆ V (G) is said to be an important (A,B)-separator if there
exists no (A,B)-separator S′ such that |S′| ≤ |S| and RG−S(A) ⊂ RG−S′(A).

I Proposition 22 ([27, 6]). Given a graph G, sets A,B ⊆ V (G) and an integer k, G contains
at most 4k important (A,B)-separators of size at most k. Moreover, all these important
separators can be enumerated in time O(4k(|V (G)|+ |E(G)|)).

I Lemma 23. Algorithm 3.2 is correct.

Proof. In light of Remark 13, we assume that X,Y 6= ∅, where X and Y are as defined in
Step 1 of Algorithm 3.2.

Notice first that if Algorithm 3.2 returns yes, then (G,L, k) is indeed a yes-instance.
Assume that the algorithm returns yes. Then there exists Ŝ ∈ F such that Ŝ is an important
(X,Y)-separator, and (G[Ẑ], L′, k′) is a yes-instance, where Ẑ = R(G−Ŝ)(Y \ Ŝ), (and
X,Y,F , L′ and k′ are as defined in the algorithm). Let U ⊆ Ẑ be an optimal solution for
the instance (G[Ẑ], L′, k′). Then, |U | ≤ k′ = k − |Ŝ|. Let (V1, V2, V3) be a partition of Z \ U
that respects L′. Since 3 /∈ L′(v) for every v ∈ Z, we have V3 = ∅. It is not difficult to see
that (V1, V2, V (G) \ (Ẑ ∪ Ŝ ∪ U)) is a list partition of V (G) \ (Ŝ ∪ U) that respects L. That
is, Ŝ ∪ U is a solution for the instance (G,L, k) and |Ŝ ∪ U | ≤ k.

Now, we prove that if (G,L, k) is a yes-instance, then Algorithm 3.2 returns yes. Assume
that (G,L, k) is a yes-instance, and let S be an optimal solution to the list partition instance
(G,L, k), and S′ ⊆ S be a minimal (X,Y)-separator. Let Ŝ be an important (X,Y)-
separator that dominates S′, i.e., |Ŝ| ≤ |S′| and RG−S′(X) ⊂ RG−Ŝ(X). We will show that
S̃ = (S \ S′) ∪ Ŝ is also an optimal solution.

We first show that Ŝ is an (S′ \ Ŝ, Y)-separator. Suppose not, then there is an s–y
path P in G− Ŝ for some s ∈ S′ \ Ŝ and y ∈ Y \ Ŝ. As S′ is a minimal (X,Y)- separator,
there is an X–Y path, say P ′, that intersects S′ only in s. Consider the X–s subpath of

ISAAC 2019

41:12 Deletion to List Matrix-Partition for Low-Order Matrices

P ′ and call it P ′′. None of the vertices of P ′′ can belong to Ŝ, as for each v ∈ V (P ′′),
v ∈ RG−S′(X) ⊆ RG−Ŝ(X). Thus, P ′′ is a path in G− Ŝ. Then P ′′ followed by the path P
is an X–Y path in G− Ŝ, which contradicts the fact that Ŝ is an (X,Y)-separator. Thus, Ŝ
is an (S′ \ Ŝ, Y)-separator.

Now, let Z ′ be the reachability set of Y \S′ in G−S′, and Ẑ the reachability set of Y \ Ŝ
in G − Ŝ. (Notice that for every vertex v /∈ Ẑ, we have 3 ∈ L(v), and therefore, v can be
placed in V3 without violating any of the constraints on m3,3 or m1,3 or m2,3. And every
vertex v ∈ Ẑ has either 1 or 2 on its list.) We claim that Ẑ ⊆ Z ′. Consider z ∈ Ẑ. Let Q be
a w–z path in G− Ŝ for some w ∈ Y . Suppose z /∈ Z ′. Then Q must pass through S′, i.e.,
V (Q) ∩ S′ 6= ∅. Let u ∈ V (Q) ∩ S′ 6= ∅. But then the u–w subpath of Q is an (S′ \ Ŝ)− Y
path in G− Ŝ, which contradicts the fact that Ŝ is an (S′ \ Ŝ, Y)-separator. Thus, Ẑ ⊆ Z ′,
and G[Ẑ] is an induced subgraph of G[Z ′]. Observe that (S \ S′) is a solution of size at
most k− |S′| for the list partition instance on G[Z ′]. Hence, (S \ S′) is a solution for the list
partition instance on G[Ẑ] as well. J

I Lemma 24 (?). Algorithm 3.2 runs in time 16knO(1).

Lemmas 23 and 24 together prove Lemma 21. Next we give a proof sketch of Theorem 1.

Proof sketch of Theorem 1. The proofs of item 1, item 2 and item 3 of the theorem
statement follow from Lemma 16, Observation 17 and Lemma 18, respectively. Therefore,
we next focus on the proof of item 4 of the theorem statement. We only consider matrices
that are not covered by any of the previous three cases. Let us first classify matrices M
depending on the number of off-diagonal entries that are 0s. In fact, we will only make
distinctions based on the off-diagonal entries in the upper triangular submatrix MU of M ,
since M is a symmetric matrix. Below, we deal with one of the classes, which is illustrative
of the techniques used to resolve these problems.

Exactly two off-diagonal entries of MU are 0s. Assume that m1,3 = m2,3 = 0 and
m1,2 ∈ {1, ∗}. All other cases of two off-diagonal entries of MU being 0 can be symmetrically
argued. If any one of m1,1,m2,2 or m3,3 is 1, then M has a row that contains both a 0 and a
1, and then by Proposition 10, the problem is fixed-parameter tractable. So assume that
m1,1,m2,2,m3,3 ∈ {0, ∗}. We consider each possibility of m1,2 for our analysis. First, suppose
m1,2 = ∗. If m1,1 = ∗, then index 1 dominates 2. If m2,2 = ∗, then index 2 dominates 1. In
either case, the problem is fixed-parameter tractable, by Propositions 8 and 9. So assume
that m1,1 = m2,2 = 0. If m3,3 = 0, then index 1 dominates 3, and by Propositions 8 and
9 the problem is again fixed-parameter tractable. If m3,3 = ∗, then an M -partition is a
bipartite-star partition, and by Lemma 21, the problem is fixed-parameter tractable. The
other possibility for m1,2 is that m1,2 = 1. Then M has a row containing both a 0 and a 1,
and by Proposition 10, the problem is fixed-parameter tractable. J

4 Conclusion

We almost complete the parameterized classification of Deletion to List M-Partition
when the matrix M is of order ≤ 3, or when it is of order 4 and has its diagonal entries from
{0, 1}. We do not know whether the Deletion to Clique Cutset problem is FPT– we
obtain an algorithm with running time 2.3146knO(logn), where k is the solution size. Also, the
NP-hardness of the Deletion to List M-Partition problem whenm1,1 = m2,2 = m3,3 = ∗,
m1,2 = 0,m1,3 = 1,m2,3 = ∗ is open, although we give an FPT algorithm, parameterized by

A. Agrawal, S. Kolay, J. Madathil, and S. Saurabh 41:13

the solution size. It would be interesting to complete the classification of these problems, as
well as the paramaterized dichotomy of Deletion to List M-Partition for all matrices
of order 4. We are also interested in optimising the running time of our algorithms, and
studying the kernelization complexity of these problems in the future.

References
1 Noga Alon and Michael Tarsi. Colorings and orientations of graphs. Combinatorica, 12(2):125–

134, 1992.
2 Bengt Aspvall, Michael F. Plass, and Robert E. Tarjan. A Linear-Time Algorithm for

Testing the Truth of Certain Quantified Boolean Formulas. Information Processing Letters,
8(3):121–123, 1979.

3 Armen S. Asratian, Tristan M. J. Denley, and Roland Häggkvist. Bipartite graphs and their
applications, volume 131. Cambridge University Press, 1998.

4 Andreas Brandstädt, Feodor F. Dragan, Van Bang Le, and Thomas Szymczak. On stable cutsets
in graphs. Discrete Applied Mathematics, 105(1-3):39–50, 2000. doi:10.1016/S0166-218X(00)
00197-9.

5 Kathie Cameron, Elaine M. Eschen, Chính T. Hoàng, and R. Sritharan. The Complexity of
the List Partition Problem for Graphs. SIAM J. Discrete Math., 21(4):900–929, 2007.

6 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. Journal of the ACM, 55(5):21:1–21:19,
2008.

7 Rajesh Chitnis, László Egri, and Dániel Marx. List H-Coloring a Graph by Removing Few
Vertices. Algorithmica, 78(1):110–146, 2017.

8 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socała. Tight Bounds for Graph Homomorphism and Subgraph
Isomorphism. In ACM-SIAM Symposium on Discrete Algorithms, pages 1643–1649, 2016.

9 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The Complexity of Multiway Cuts (Extended Abstract). In ACM Symposium on
Theory of Computing (STOC), pages 241–251, 1992.

10 Josep Díaz, Maria Serna, and Dimitrios M. Thilikos. (H,C,K)-coloring: Fast, easy, and hard
cases. In Mathematical Foundations of Computer Science (MFCS), pages 304–315, 2001.

11 Josep Díaz, Maria Serna, and Dimitrios M Thilikos. Recent results on parameterized H-
colorings. Discrete Mathematics and Theoretical Computer Science, 63:65–86, 2004.

12 László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson. The complexity of the list
homomorphism problem for graphs. Theory of Computing Systems, 51(2):143–178, 2012.

13 Paul Erdős, Arthur L. Rubin, and Herbert Taylor. Choosability in graphs. In Proc. West Coast
Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, volume 26,
pages 125–157, 1979.

14 Tomás Feder and Pavol Hell. List Homomorphisms to Reflexive Graphs. Journal of Combin-
atorial Theory, Series B, 72(2):236–250, 1998.

15 Tomás Feder and Pavol Hell. Full Constraint Satisfaction Problems. SIAM J. Comput.,
36(1):230–246, 2006. doi:10.1137/S0097539703427197.

16 Tomás Feder, Pavol Hell, and Jing Huang. List Homomorphisms and Circular Arc Graphs.
Combinatorica, 19(4):487–505, October 1999.

17 Tomás Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. List Partitions. Journal of
Discrete Mathematics, 16(3):449–478, 2003.

18 Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8(3):399–404, 1956.

19 Michael R. Garey and David S. Johnson. Computers and intractability: A guide to the theory
of NP-completeness. Computers and Intractability, page 340, 1979.

ISAAC 2019

https://doi.org/10.1016/S0166-218X(00)00197-9
https://doi.org/10.1016/S0166-218X(00)00197-9
https://doi.org/10.1137/S0097539703427197

41:14 Deletion to List Matrix-Partition for Low-Order Matrices

20 Michael. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some Simplified NP-Complete
Graph Problems. Theor. Comput. Sci., 1(3):237–267, 1976. doi:10.1016/0304-3975(76)
90059-1.

21 Andreas Göbel, Leslie Ann Goldberg, Colin McQuillan, David Richerby, and Tomoyuki
Yamakami. Counting List Matrix Partitions of Graphs. SIAM J. Comput., 44(4):1089–1118,
2015. doi:10.1137/140963029.

22 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2004.
23 Melven R. Krom. The decision problem for a class of first-order formulas in which all

disjunctions are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967.
24 Marek Kubale. Some results concerning the complexity of restricted colorings of graphs.

Discrete Applied Mathematics, 36(1):35–46, 1992.
25 S. Føldes and P. L. Hammer. Split graphs. South-Eastern Conference on Combinatorics,

Graph Theory and Computing (SEICCGTC), pages 311–315, 1977.
26 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket

Saurabh. Faster Parameterized Algorithms Using Linear Programming. Transactions on
Algorithms, 11(2):15:1–15:31, 2014.

27 Dániel Marx. Parameterized graph separation problems. Theoretical Computer Science,
351(3):394–406, 2006.

28 Vadim G. Vizing. Vertex colorings with given colors. Diskret. Analiz, 29:3–10, 1976.
29 Margit Voigt. List colourings of planar graphs. Discrete Mathematics, 120(1-3):215–219, 1993.
30 Mihalis Yannakakis. Node-and Edge-deletion NP-complete Problems. In ACM Symposium on

Theory of Computing (STOC), pages 253–264, 1978.

https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1137/140963029

The Generalized Microscopic Image
Reconstruction Problem
Amotz Bar-Noy
City University of New York (CUNY), USA
amotz@sci.brooklyn.cuny.edu

Toni Böhnlein
Bar Ilan University, Ramat-Gan, Israel
toni.bohnlein@biu.ac.il

Zvi Lotker
Ben Gurion University of the Negev, Beer Sheva, Israel
Bar Ilan University, Ramat-Gan, Israel
zvi.lotker@gmail.com

David Peleg
Weizmann Institute of Science, Rehovot, Israel
david.peleg@weizmann.ac.il

Dror Rawitz
Bar Ilan University, Ramat-Gan, Israel
dror.rawitz@biu.ac.il

Abstract
This paper presents and studies a generalization of the microscopic image reconstruction problem
(MIR) introduced by Frosini and Nivat [7, 12]. Consider a specimen for inspection, represented
as a collection of points typically organized on a grid in the plane. Assume each point x has an
associated physical value `x, which we would like to determine. However, it might be that obtaining
these values precisely (by a surgical probe) is difficult, risky, or impossible. The alternative is to
employ aggregate measuring techniques (such as EM, CT, US or MRI), whereby each measurement
is taken over a larger window, and the exact values at each point are subsequently extracted by
computational methods.

In this paper we extend the MIR framework in a number of ways. First, we consider a generalized
setting where the inspected object is represented by an arbitrary graph G, and the vector ` ∈ Rn

assigns a value `v to each node v. A probe centered at a vertex v will capture a window encompassing
its entire neighborhood N [v], i.e., the outcome of a probe centered at v is Pv =

∑
w∈N [v] `w. We

give a criterion for the graphs for which the extended MIR problem can be solved by extracting the
vector ` from the collection of probes, P̄ = {Pv | v ∈ V }.

We then consider cases where such reconstruction is impossible (namely, graphs G for which
the probe vector P is inconclusive, in the sense that there may be more than one vector ` yielding
P). Let us assume that surgical probes (whose outcome at vertex v is the exact value of `v) are
technically available to us (yet are expensive or risky, and must be used sparingly). We show that in
such cases, it may still be possible to achieve reconstruction based on a combination of a collection of
standard probes together with a suitable set of surgical probes. We aim at identifying the minimum
number of surgical probes necessary for a unique reconstruction, depending on the graph topology.
This is referred to as the Minimum Surgical Probing problem (MSP).

Besides providing a solution for the above problems for arbitrary graphs, we also explore the
range of possible behaviors of the Minimum Surgical Probing problem by determining the number
of surgical probes necessary in certain specific graph families, such as perfect k-ary trees, paths,
cycles, grids, tori and tubes.

2012 ACM Subject Classification Mathematics of computing

Keywords and phrases Discrete mathematics, Combinatorics, Reconstruction algorithm, Image
reconstruction, Graph spectra, Grid graphs

© Amotz Bar-Noy, Toni Böhnlein, Zvi Lotker, David Peleg, and Dror Rawitz;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 42; pp. 42:1–42:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amotz@sci.brooklyn.cuny.edu
mailto:toni.bohnlein@biu.ac.il
mailto:zvi.lotker@gmail.com
mailto:david.peleg@weizmann.ac.il
mailto:dror.rawitz@biu.ac.il
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 The Generalized Microscopic Image Reconstruction Problem

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.42

Funding This work was supported by US-Israel BSF grant 2018043.
Amotz Bar-Noy: ARL Cooperative Grant, ARL Network Science CTA, W911NF-09-2-0053
Dror Rawitz: ISF grant no. 497/14

1 Introduction

Background and motivation. Imaging technologies are used increasingly widely in a variety
of medical, engineering, and scientific application domains. Imagine a specimen for inspection,
represented as a collection of points organized in (2- or 3-dimensional) space. Assume each
point x has an associated physical value `x (e.g., atom density, brightness, etc). Our goal is
to determine these values at all points in the specimen. However, it is often the case that
obtaining these values through a direct and precise inspection (hereafter referred to as a
surgical probe) is complicated, prohibitively expensive, potentially risky, or even impossible.
A commonly used alternative is to employ aggregate measuring techniques (such as EM,
CT, US or MRI), whereby measurements are taken over a larger area (rather than a single
point), and the (exact or approximate) values at each point are subsequently extracted
by computational methods. For example, a microscope with a scanning window can be
used for inspecting the specimen by systematically going over it and probing (i.e., taking a
measurement in) each window. The measurement taken from each window centered at point
x, hereafter denoted by Px, consists of the sum of the observed values at all the points in
the observed window. (This is sometimes referred to as the luminosity of the window.) The
goal is then to use the measurements obtained by a sufficiently diverse collection of probes
in order to deduce the original values `x at each point x in the specimen.

This general problem has been extensively studied as the discrete tomography recon-
struction problem (DTR). For a survey, see Herman and Kuba [10]. The microscopic image
reconstruction problem (MIR) was then introduced by Frosini and Nivat in [7, 12] as a
natural extension of the DTR problem. In both problems, the specimen is represented
by a 2-dimensional grid (see Figure 1b) whose points, x = (i, j), for i ∈ {1, . . . , n1} and
j ∈ {1, . . . , n2}, are assigned nonnegative integer 1 values `i,j . In the DTR problem, the
window of a probe is typically an entire row or column (i.e., the probe can be thought of as
performed by a ray piercing the specimen from one side to the other). In the MIR problem,
it is assumed that the microscope’s scanning window is a segment of the plane (e.g., a circle
or a rectangle). For example, assume for the sake of illustration that the window corresponds
to a circle of radius 1 (see Figure 1a). Then the input can be thought of as an n1×n2 integer
matrix, and the output is an n1 × n2 integer matrix. A similar setting can be described with
a square scanning window as shown in Figure 1c. A window consisting of a node and its
eight neighbors in the grid is depicted by the king’s graph, illustrated in Figure 1d.

In this paper we extend the MIR framework of [7] in a number of ways. First, we
consider a generalized setting where the inspected object is represented by an arbitrary
simple undirected connected graph G = (V,E) with vertex set V = {1, . . . , n}. Given a graph
G, the vector ` ∈ Rn is an assignment of a value `v to each node v. Given a graph G and a
vector ` ∈ Rn, define `(U) ,

∑
v∈U `v, for every U ⊆ V . Here, a probe centered at a vertex

v captures a window encompassing its entire neighborhood, N [v] , {w | (v, w) ∈ E} ∪ {v},
i.e., the outcome of a probe centered at v is Pv , `(N [v]) =

∑
w∈N [v] `w. For example, in

1 In fact, [7] assume only Boolean values, 0 or 1.

https://doi.org/10.4230/LIPIcs.ISAAC.2019.42

A. Bar-Noy, T. Böhnlein, Z. Lotker, D. Peleg, and D. Rawitz 42:3

(a) Circle scanning
window.

(b) Grid Graph. (c) Square scanning
window.

(d) King’s Graph.

Figure 1 Scanning windows for the grid.

the case of a grid specimen, N [v] may contain all vertices at distance at most d (according
to any norm Lp) from v. Our first question is to determine the class of graphs for which the
extended MIR problem can be solved, namely, for which it is possible to extract the vector `
from the collection of probes at all vertices, P̄ = {Pv | v ∈ V }.

Note, however, that in some cases, this type of reconstruction is not possible. Given a
graph G and a probe vector P, it may be possible that the outcome of the measurements is
inconclusive, in the sense that there may be several (or even infinitely many) vectors ` that
would yield the same probe vector P. For example, consider the case where G consists of
two nodes and an edge between them. In this case, the same probe vector P = (p1, p2) is
obtained for any vector (`1, `2) such that `1 + `2 = p1 = p2.

This leads to our next extension of the problem. Let us assume that surgical probes
(whose outcome at vertex v is the exact value of `v) are technically available to us, yet are so
expensive or risky that we must use them sparingly. In cases where a unique reconstruction
based on standard (aggregate) probes alone is not possible, it may still be possible to achieve
a reliable reconstruction based on a combination of a comprehensive collection of standard
probes together with a (hopefully small) set of surgical probes. Hence, our second goal is
to identify the minimum number of surgical probes necessary for a unique reconstruction,
depending on the graph topology. Formally, we consider the following Minimum Surgical
Probing problem (MSP). Given a graph G and a vector P, the goal is to find the actual
vector ` that generated P, using as few surgical probes as possible.

Our results. In Section 2 we present an efficient algorithm for solving the Minimum
Surgical Probing problem. We show that one can compute the minimum number of
surgical probes necessary for any graph and determine a subset of the vertices which need to
be probed. The general problem can be formulated as a system of linear equations. The
adjacency matrix of our graph (whose main diagonal is set to 1) determines the coefficient
matrix and the probe vector P is the right hand side. We use techniques from linear algebra
to solve the problem.

While these results allow us to determine the number of surgical probes necessary for
every graph, it is interesting to explore and chart the range of possible behaviors of the
problem, by identifying the number of surgical probes necessary for some specific graph
families. Towards this goal, we consider (in Section 3) the behavior of the problem on trees.
We first show that ` can be uncovered on any n-vertex tree using

⌊
n
2
⌋
− 1 many surgical

probes, and that this number is tight if n is odd. In contrast we show that on the class of
perfect k-ary trees, no surgical probes are required to uncover `.

We continue pursuing this line of investigation by considering (in Section 4) Cartesian
products of paths and cycles, resulting in grids, tubes and tori. Furthermore, Section 5
deals with the Strong product of two path graphs, which is known as the king’s graph
(see Figure 1d). Grid graphs are interesting as they have the topology which was studied
in previous papers on discrete tomography. A probe P has a circular scanning window.
Similarly, in the king’s graph a probe P has a square scanning window.

ISAAC 2019

42:4 The Generalized Microscopic Image Reconstruction Problem

As we will see, the number of required surgical probes is related to the rank of our
graph’s adjacency matrix which in turn is related to its eigenvalues. The eigenvalues of
adjacency matrices are studied in spectral graph theory. Simple expressions to determine
the eigenvalues for adjacency matrices of path and cycle graphs are known. This and the
fact that Cartesian and Strong products preserve the eigenvalues of their factor’s adjacency
matrices allow us to derive expressions for the eigenvalues of the grids, tubes, tori and king’s
graph adjacency matrices. We use these expressions to determine the number of surgical
probes in a more efficient way than our general result allows for.

Table 1 lists the number of surgical probes that are sufficient to discover ` for grids, tubes,
tori and king’s graphs. To express our results, we introduce the following indicator variables:

Iab (n) ,
{

1 if n mod a ≡ b
0 otherwise.

Surprisingly, only a constant number of surgical probes are needed for any grid, tube, or
torus. On the other hand, the king’s graph may require as many as n1 + n2 − 1 probes. In
addition, in all the above graphs the number of probes may be zero, depending on the graph
dimensions. For example, when both n1 and n2 are multiples of 30, a grid of size n1 × n2
does not requires surgical probes. Similarly, when n1 and n2 are multiples of 3, no surgical
probes are required for the king’s graph. Hence, when given control on the dimensions (say,
in a design phase), one may fix the dimensions such that no surgical probes are required.

Note that, these results give us only the number of surgical probes that are sufficient to
uncover `. In general, we need to resort to our result from Section 2 to find a set of vertices
that needs to be probed. For paths and cycles, however, it is possible to find these vertices
directly and uncover ` in linear time.

Table 1 The table shows the number of surgical probes. In the case of a tube n1 is the length of
the path while n2 ≥ 3 is the length of the cycle.

Graph # surgical probes at most

Grid I3
2 (n1)I2

1 (n2) + I2
1 (n1)I3

2 (n2) + 2I5
4 (n1)I5

4 (n2) 4

Path (n2 = 1) I3
2 (n1) 1

Tube 2I2
1 (n1)I3

0 (n2) + I3
2 (n1)I2

0 (n2)+
2I3

2 (n1)I4
0 (n2) + 4I5

4 (n1)I5
0 (n2) 9

Cycle (n1 = 1) 2I3
0 (n2) 2

Torus 4I3
0 (n1)I4

0 (n2) + 4I4
0 (n1)I3

0 (n2) + 2I2
0 (n1)I6

0 (n2)
+2I6

0 (n1)I2
0 (n2) + 8I5

0 (n1)I5
0 (n2) 20

King’s graph I3
2 (n1)n2 + I3

2 (n2)n1 − I3
2 (n1)I3

2 (n2) n1 + n2 − 1

Related Work. Most important for our work is the extension of the DTR problem by
Frosini and Nivat [7, 12]. They introduced the problem of reconstructing a binary matrix
from a rectangular scan instead of the row and column sums. A polynomial time algorithm is
presented that solves the reconstruction problem for a class of matrices. Battaglino, Frosini
and Rinaldi [4] extended this by studying scans of different shapes like diamond shapes.
Relations to tiling are discovered.

A. Bar-Noy, T. Böhnlein, Z. Lotker, D. Peleg, and D. Rawitz 42:5

A concept similar to surgical probing was considered by Frosini, Nivat and Rinaldi [8].
They analyze a variation where a grid is scanned by the means of two rectangular windows.
To solve the reconstruction problem, they assume that a small number of the values associated
with the grid points are known in advance.

A combination of DTR and MIR is studied by Alpers and Gritzmann [1]. Their goal is to
reconstruct a matrix from column and row sums with additional windows constraints. In [3]
they study applications to image reconstruction.

Gritzmann et al. [9] show that determining the minimum number of prescribed values
making the DTR problem unique is in general a NP-hard problem. Prescribed values are
an analogue to surgical probes. The hardness results from the integer values in the DTR
problem. Alpers and Gritzmann [2] discuss uniqueness problems for a dynamic variation of
DTR. Here, the application is to track particles over time.

2 Algorithm for Solving Minimum Surgical Probing

In this section, we show how to solve the Minimum Surgical Probing problem. We
start with some preliminaries. Denote the n× n identity matrix by In. Given a matrix A,
let rank(A) denote its rank, and let Λ(A) denote its set of eigenvalues. For an eigenvalue
λ ∈ Λ(A), denote by φ(λ,A) the multiplicity of λ in Λ(A).

Given a graph G, let AG = {aij} be G’s n× n adjacency matrix, i.e.,

aij =
{

1, (i, j) ∈ E,
0, otherwise.

Define ĀG , AG + I|V | as the adjacency matrix whose main diagonal is set to 1.
A probe vector P is induced by ` ∈ Rn if the following is satisfied:

ĀG · ` = P . (1)

I Lemma 1. The multiplicity of the eigenvalue -1 in the matrix AG is

φ(−1, AG) = φ(0, ĀG) = |V | − rank(ĀG) .

Proof. If ĀG has an eigenvalue 0, then it is singular. Indeed, the multiplicity of the eigenvalue
0 is the dimension on the kernel (null-space) ker(ĀG) (cf. [5]). The eigenspace of an eigenvalue
λ consists of the solutions to (ĀG − λI|V |)x = 0. Therefore, the eigenspace of eigenvalue 0
is the kernel of ĀG. If 0 is an eigenvalue of ĀG, then −1 is an eigenvalue of AG, and the
multiplicity is the same. J

We now present our general result.

I Theorem 2. Consider a graph G and a probe vector P.
1. If the adjacency matrix ĀG has full rank, i.e., rank(ĀG) = |V |, then ` can be uncovered

in polynomial time without using any surgical probes.
2. Otherwise, the minimum number of surgical probes needed to uncover ` is s = φ(−1, AG).

Moreover, a set of s nodes whose surgical probes uncover ` can be computed in polynomial
time.

Proof. As mentioned above, the label vector ` ∈ R|V | satisfies the system of linear equations
given in (1). Therefore, system (1) has at least one solution. If the adjacency matrix ĀG has
full rank, i.e., rank(ĀG) = |V |, then system (1) has a unique solution. A standard method,
like the Gauss-Jordan elimination, can be used to uncover ` without any surgical probe in
polynomial time.

ISAAC 2019

42:6 The Generalized Microscopic Image Reconstruction Problem

If rank(ĀG) < |V |, then system (1) has (infinitely) many solutions. The column space
C(ĀG) of ĀG contains all vectors ĀG · x. It is spanned by a maximal subset of independent
columns of ĀG, and its dimension is rank(ĀG). The kernel ker(ĀG) of ĀG consists of all
solutions to the homogeneous system ĀG · x = 0; its dimension is s , |V | − rank(ĀG). To
describe all solutions of system (1), let x be a vector such that ĀG · x = P. Then,

ĀG · (x+ x0) = ĀG · x+ ĀG · x0 = P + 0 = P

for any x0 ∈ ker(ĀG).
To uncover `, we need to remove this ambiguity by surgical probes. One approach is to

select a maximal subset of independent columns U of ĀG. The columns of U are a basis of
C(ĀG), and |U | = rank(ĀG). Let U ′ = ĀG \ U be the remaining columns. Thus, |U ′| = s.
Probing the vertices that correspond to the columns of U ′ returns ¯̀∈ Rs. Now, we can solve
the system

U · x = P − U ′ · ¯̀ (2)

to uncover the unknown entries of `. If ` is a solution of system (1), then system (2) has
at least one solution. Since U is a set of linearly independent columns, this solution is
unique. If we select more than rank(ĀG) columns to form U , system (2) does not have a
unique solution.

A structured way to select a maximal subset of independent columns of ĀG is the reduced
row echelon form. The reduced row echelon form can be computed in polynomial time using
the Gauss-Jordan elimination method (cf. [11]). The output is a partition of the columns
into pivot-columns and free-columns. The pivot-columns form a basis of C(ĀG). We probe
the vertices corresponding to the free-columns. Back-substitution takes care of uncovering
the missing entries of ` (if ĀG was augmented by P before the elimination process). J

Note that the rank of ĀG can be as low as one, e.g., in the case of the complete graph Kn

we have rank(ĀKn
) = 1. Hence, to solve Minimum Surgical Probing for Kn a maximum

number of n− 1 surgical probes is required. However, as we will see in the following sections,
there are many graphs for which we can uncover ` without any surgical probes.

In classic DTR problems the labels are binary or integer vectors. If we add respective
constraints on ` to System (1), Theorem 2 provides an upper bound on the number of
required surgical probes.

3 Minimum Surgical Probing in Trees

In this section we consider the Minimum Surgical Probing problem in trees. A first class
of trees that requires no surgical probes are stars.

I Lemma 3. A star graph requires no surgical probes to uncover `.

Proof. Let G be a star with n ≥ 3 vertices {1, . . . , n} where vertex n is the center. The
label `n can be computed from the neighborhood probes as follows:

1
n−2 (

∑n−1
i=1 Pi − Pn) = 1

n−2 (
∑n−1
i=1 (`n + `i)− (`n +

∑n−1
i=1 `i)) = `n .

Given `n, the remaining labels can be computed using `i = Pi − `n, for i < n. J

The following theorem shows an upper bound on the number of surgical probes that are
required to uncover bipartite graphs. Trees are always connected and bipartite.

A. Bar-Noy, T. Böhnlein, Z. Lotker, D. Peleg, and D. Rawitz 42:7

n

2

1

4

3

n− 1

n− 2

· · ·

(a) Spider with n−1
2 legs.

1 1 0 0 · · · 0
1 1 0 0 · · · 1
0 0 1 1 · · · 0
0 0 1 1 · · · 1
...

0 1 0 1 · · · 1

(b) Adj. matrix of a spider.

Figure 2 A spider graph and its adjacency matrix.

I Theorem 4. Let G = (L ∪R,E) be a connected, bipartite graph with n ≥ 3 nodes. Then `
can be uncovered using

⌊
n
2
⌋
− 1 many surgical probes.

Proof. Assume without loss of generality that |L| ≤ |R|. Observe that there must be a
node v ∈ L such that deg(v) > 1 since G is connected. Now, surgical probe L \ {v} and
uncover the labels of all nodes in R \ N(v). This can be done since the induced graph
T [(L \ {v}) ∪ (R \N(v))] is bipartite and we know all the labels of one of the blocks. Since
the graph that is induced by the nodes with unknown labels is a star, we are done due to
Lemma 3.

If n is even, we perform at most n
2 − 1 = n−2

2 many surgical probes. If n is odd, we
perform at most n−1

2 − 1 = n−3
2 many surgical probes. J

We can show that the given upper bound is tight for trees where the number of vertices
is odd.

I Theorem 5. There exist n-vertex trees, for odd n, that require
⌊
n
2
⌋
− 1 surgical probes.

Proof. Consider a spider G with n−1
2 legs as shown in Figure 2a. The adjacency matrix is

given in Figure 2b. Elementary row operations can be used to show that rank(ĀG) = n+3
2 .

To see this, subtract each odd row i < n from its succeeding row i+ 1. The claim follows
from Theorem 2. J

Another class of trees that require no surgical probes are perfect k-ary trees. Recall that
a perfect k-ary tree is a tree where all internal nodes have k children and all leaves have the
same depth.

I Theorem 6. Let T = (V,E) be a perfect k-ary tree. Then, no surgical probes are needed
to uncover `.

Proof. We prove the theorem by induction on the height h of T . For a vertex v we denote
the set of its children by ch(v). As a base case, we consider h = 1. This yields a (k+1)-vertex
star graph, and due to Lemma 3, no surgical probes are needed to uncover `.

Now, let h ≥ 2 and let r be the root of T . We start by calculating the root label, `r,
based on the given neighborhood probes. To do that, we express `r as a function of the
probe results over the entire tree. This is done as follows. Arrange the tree vertices in levels,
with the leaves on level 0 and the root r on level h. Let

γj =

−1 j = 0,
1 j = 1,
−γj−1 − k · γj−2 j ≥ 2,

and b = γh + k · γh−1 . (3)

Next, define a coefficient av = γj for every vertex v on level j.

ISAAC 2019

42:8 The Generalized Microscopic Image Reconstruction Problem

v

z

xy

—

—

— γ0 = −1

γ1 = 1

γ2 = −1 + 2 = 1Pz = `v + `z + . . .

Pv = `v + `z + `x + `y

Py = `v + `y Px = `v + `x

. .
.

. . .

Figure 3 Part of a perfect binary tree. Vertices x and y are leafs. The label `x appears only in
Px and Pv. Their coefficients sum up to 0, i.e., the label cancels out. Analogously, the labels `y and
`v cancel out.

B Claim 7. The root label satisfies b · `r =
∑
v∈V

avPv .

Proof. Consider the sum on the right hand side. Observe that for every vertex v except the
root r, the contribution of the label `v to this sum is cancelled out. To see this, note the
following observations:

The label of a leaf v appears once in Pv and once in Pz where z is v’s parent, so it is
cancelled out in the sum since the coefficients of these probes are av = −1 and az = 1.
The label of a nonleaf v on level 1 appears in Pv, Pz, and Px for x ∈ ch(v) where z is v’s
parent, so it is cancelled out since the coefficients of these probes are ax = −1 (k times
in the sum), av = 1, and az = k − 1.
The label of a vertex v on level 2 ≤ j < h appears in Pv, Pz, and Px for x ∈ ch(v) where
z is v’s parent, so it is cancelled out in the sum since the coefficients of these probes
are ax = γj−1 (k times in the sum), av = −γj−1 − k · γj−2, and az = −γj − k · γj−1 =
−(−γj−1 − k · γj−2)− k · γj−1 = −(k − 1) · γj−1 + k · γj−2.

See Figure 3 for an example of a perfect 2-ary (binary) tree.
It follows that the only label that remains in the sum is the root label `r. This label appears

in Pr and Px for x ∈ ch(r). The coefficients of these probes are ax = γh−1 and ar = γh.
Hence, after all other labels are canceled out, the sum simplifies to (γh + k · γh−1)`r = b`r.

C

B Claim 8. b 6= 0.

Proof. By Eq. (3), b = −γh+1. The recursion of Eq. (3) solves to the following explicit
formula2:

γj = 2−j−1
√

1−4·k ·
((
−1−

√
1− 4 · k

)j+1 −
(
−1 +

√
1− 4 · k

)j+1)
.

Hence b = −γh+1 = 0 if and only if −
√

1− 4 · k =
√

1− 4 · k, which is false. C

Claims 7 and 8 enable us to extract `r from the neighborhood probes P without using
any surgical probes. Subsequently, we use the inductive argument to calculate the rest of the
labels, proving the claim for h. To do this, we remove r from the tree T , and get k smaller
trees Ti whose roots are ri for i ∈ [k]. As the trees Ti are trees of height h−1, we can use the
inductive hypothesis to solve for ` on each of the subtrees Ti. The only correction required
is that before solving the labels on the subtrees Ti, we need to fix the probe results on the

2 the explicit formula can be computed with a computer algebra system

A. Bar-Noy, T. Böhnlein, Z. Lotker, D. Peleg, and D. Rawitz 42:9

roots, ri , since probing the vertex ri in Ti yields a different value than in T (in which ri
has another neighbor, r). Hence, to get the correct labels of these roots in Ti, we need to
subtract `r from Pri

. More precisely, for i ∈ [k], let us denote by P̂ri
the expected outcome

of the probe operation on ri had it been applied to the tree Ti. Then P̂ri = Pri − `r. J

4 Mesh graphs and Cartesian Products

In this section we consider mesh graphs, which are Cartesian products of simpler graphs.
For example, grid graphs which were studied in previous papers on discrete tomography can
be presented as the Cartesian product of two path graphs. In addition to grid graphs, we
consider the Cartesian product of a path and a cycle (a tube) and two cycles (a torus).

Graph Products. Let us start with some definitions and notation, following [5]. Given two
graphs, G1 = (V1, E1) and G2 = (V2, E2), the Cartesian product of G1 and G2, denoted
G1�G2, is the graph G = (V,E) where V = V1 × V2 and

E = {(v, u), (v′, u) : (v, v′) ∈ E1} ∪ {(v, u), (v, u′) : (u, u′) ∈ E2} .

The adjacency matrices of the path and cycle graphs are connected to the product graphs’
adjacency matrices by the Kronecker product and Kronecker sum. Given two square matrices
A and B of respective sizes n and m, the Kronecker product and Kronecker sum of A and B
are defined, respectively, as

A⊗B , [aijB] and A⊕B , (A⊗ Im) + (In ⊗B) .

The Kronecker sum of the adjacency matrices of two graphs is the adjacency matrix of the
Cartesian product graph, i.e., AG1�G2 = (AG1 ⊗ I|V2|) + (I|V1| ⊗AG2).

The Kronecker sum preserves eigenvalues of its summands in the following way.

I Theorem 9 ([5]). Let G1 and G2 be graphs. Then, the set of eigenvalues of AG1�G2 is the
Minkowski sum of the set of eigenvalues of AG1 and the set of eigenvalues of AG2 , i.e., it is

Λ(AG1�G2) = {λ+ µ | λ ∈ Λ(AG1), µ ∈ Λ(AG2)} .

Cosine at Rational Angles. The required number of surgical probes for the graphs studied
herein is determined by the number of solutions to equations that involve trigonometric
functions. In particular, rational values of the cosine function at rational angles are of interest.
A rational angle is a rational multiple of π. Conway and Jones [6] give a characterization of
linear combinations of up to four cosine functions at rational angles that are rational.

I Theorem 10 ([6]). Suppose we have at most four distinct rational multiples of π lying
strictly between 0 and π

2 for which some rational linear combination of their cosines is
rational but no proper subset has this property. Then the appropriate linear combination is
proportional to one from the following list:

cos(π3) = 1
2

− cos(ϕ) + cos(π3 − ϕ) + cos(π3 + ϕ) = 0 (0 < ϕ < π
6)

cos(π5)− cos(2π
5) = 1

2
cos(π7)− cos(2π

7) + cos(3π
7) = 1

2
cos(π5)− cos(π15) + cos(4π

15) = 1
2

− cos(2π
5) + cos(2π

15)− cos(7π
15) = 1

2
cos(π7) + cos(3π

7)− cos(π21) + cos(8π
21) = 1

2

ISAAC 2019

42:10 The Generalized Microscopic Image Reconstruction Problem

− cos(2π
7) + cos(3π

7) + cos(4π
21) + cos(10π

21) = 1
2

cos(π7)− cos(2π
7) + cos(2π

21)− cos(5π
21) = 1

2
− cos(π15) + cos(2π

15) + cos(4π
15)− cos(7π

15) = 1
2

The angles are normalized due to the symmetry of the cosine function. The theorem does
not cover the values of the cosine function at 0 and multiples of π2 . This is characterized by
the following theorem.

I Theorem 11 ([13]). The only rational values of the circular trigonometric functions at
rational multiples of π are 0,± 1

2 and ±1 for cosine and sine, 0 and ±1 for tangent and
cotangent, and ±1 and ±2 for secant and cosecant.

Grids and Paths. We exploit the fact that mesh graphs are products of simpler graphs to
determine the number of surgical probes without having to resort to Theorem 2.

I Theorem 12. Let G be a grid graph of size n1 × n2. The number of surgical probes that
are sufficient to uncover ` is

I2
1 (n1)I3

2 (n2) + I3
2 (n1)I2

1 (n2) + 2I5
4 (n1)I5

4 (n2).

In particular, the number of surgical probes to uncover ` for grid graphs of any size is at
most 4.

Proof. Let G be a grid graph which is the Cartesian product of the two path graphs P1
and P2, of length n1 and n2, resp. By Lemma 1, we look for eigenvalues of AG that are −1.
By Theorem 9, we need to identify eigenvalues of AP1 and AP2 that add up to −1. The
eigenvalues of AP where P is a path of length n are given by 2 cos(πj

n+1), for j ∈ [1, n] (cf.
[5]). Hence, we are looking for the number of solutions to the following equation:

2 cos
(

i

n1 + 1 · π
)

+ 2 cos
(

j

n2 + 1 · π
)

= −1 , (4)

for i ∈ [1, n1] and j ∈ [1, n2].
Due to Theorem 11 the only rational values the cosine function takes at rational angles

are 0,± 1
2 and ±1. Since 0 < i

n1+1 ,
j

n2+1 < 1, the values 0 and − 1
2 are the only combination

that can satisfy Eq. (4). For 0 < x < 1, the equations cos(πx) = 0 and cos(πx) = − 1
2 have

solutions x = 1
2 and x = 2

3 , respectively. Hence, Eq. (4) has a solution if 3i = 2(n1 + 1)
and 2j = n2 + 1. This is the case if n1 mod 3 ≡ 2 and n2 mod 2 ≡ 1. Here, we have
that 2(n1+1)

3 ∈ [1, n1] and n2+1
2 ∈ [1, n2]. Due to symmetry, we get another solution if

n1 mod 2 ≡ 1 and n2 mod 3 ≡ 2.
Theorem 10 characterizes linear combinations of cosine functions that have a rational value.

Here, the values of a single cosine function are irrational. For a combination of two cosine
functions, Theorem 10 states that there is only one such combination: cos(π5)− cos(2π

5) = 1
2 .

Due to symmetry, cos(π5) = − cos(4π
5), and we derive

2 cos
(

4π
5

)
+ 2 cos

(
2π
5

)
= −1 . (5)

Hence, Eq. (4) has a solution if 5i = 4(n1 + 1) and 5j = 2(n2 + 1). For 4(n1 + 1) or 2(n2 + 1)
to become a multiple of 5, we need that n1 mod 5 ≡ 4 and n2 mod 5 ≡ 4. In both cases,
4(n1+1)

5 , 2(n1+1)
5 ∈ [1, n1] and 4(n2+1)

5 , 2(n2+1)
5 ∈ [1, n2] giving two solutions to Eq. (4) if both

n1 mod 5 ≡ 4 and n2 mod 5 ≡ 4. J

A. Bar-Noy, T. Böhnlein, Z. Lotker, D. Peleg, and D. Rawitz 42:11

1 2 3 4 5

P1 = `1 + `2

P2 = `1 + `2 + `3

P3 = `2 + `3 + `4

P4 = `3 + `4 + `5

P5 = `4 + `5

Figure 4 A path of length n = 5. One probe is needed, but not at i = 3.

There are many grids where no surgical probes are required to uncover ` (e.g. the 3× 3
grid). In the worst case, a total of 4 surgical probes is required to uncover `. This is the case
if n1 = 30i− 1 and n2 = 30j − 1, for i, j ∈ N.

When n2 = 1, i.e., graph G is a path, we can also provide a linear time algorithm for
uncovering `.

I Theorem 13. Let P be a path with n vertices, where V = {1, . . . , n}. If n mod 3 ≡ 2, then
a single probe is needed, and it should be at a node i such that i mod 3 6≡ 0. Otherwise, no
surgical probes are needed. In both cases, the labels can be discovered in O(n) time.

Proof. The number of surgical probes follows from Theorem 12
To discover the labels along the path, we use the following procedure. First, the label

`3 can be discovered using `3 = P2 − P1. Iteratively, `3i, for i = 2, . . . ,
⌊
n
3
⌋
, can be

discovered using

P3i−1 − P3i−2 + `3i−3 = (`3i−2 + `3i−1 + `3i)− (`3i−3 + `3i−2 + `3i−1) + `3i−3 = `3i .

If n mod 3 6≡ 2, we discover either `n or `n−1 in the last iteration. We may discover the other
value due to Pn = `n−1 + `n. Given `n and `n−1, we may discover the rest of the labels going
from right to left. If n mod 3 ≡ 2, then probe any vertex i ∈ [n], such that i mod 3 6≡ 2. The
probe splits the path into two sub-paths of length n1 and n2, where n1, n2 mod 3 6≡ 2. The
rest of the labels can be discovered as above, for each sub-path. See Figure 4. J

Tubes and Cycles. A tube graph is a Cartesian product of a path and a cycle graph. We
denote the length of the path by n1 and the length of the cycle by n2 ≥ 3.

I Theorem 14. Let T be a tube graph of dimensions n1×n2. The number of surgical probes
that are sufficient to uncover ` is

2I2
1 (n1)I3

0 (n2) + I3
2 (n1)I2

0 (n2) + 2I3
2 (n1)I4

0 (n2) + 4I5
4 (n1)I5

0 (n2).

In particular, the number of surgical probes to uncover ` for any tube graph is at most 9.

Proof. Let T be a tube graph which is the Cartesian product of a path graphs P and a cycle
C, of length n1 and n2, resp. The eigenvalues of AP are given by 2 cos(πi

n1+1), for i ∈ [1, n1],
and the eigenvalues of AC are given by 2 cos(2πj

n2
), for j ∈ [0, n2 − 1] (cf. [5]). By Theorem 9

and Lemma 1, we are interested in solutions of the equation

2 cos
(

i

n1 + 1 · π
)

+ 2 cos
(

2j
n2
· π
)

= −1. (6)

Since 0 < πi
n1+1 < π, cos(πi

n1+1) has the rational values − 1
2 , 0,

1
2 , and since 0 ≤ 2πj

n2
< 2π,

cos(2πj
n2

), has the rational values −1,− 1
2 , 0,

1
2 , 1, due to Theorem 11. This gives us the

solutions to Eq. (6) where both cosine functions have rational values. The following
combinations satisfy Eq. (6):

ISAAC 2019

42:12 The Generalized Microscopic Image Reconstruction Problem

cos(πi
n1+1) = − 1

2 and cos(2πj
n2

) = 0. The equation cos(πx) = − 1
2 has one solution x = 2

3 ,
for 0 < x < 1. Our question is reduced to 3i = 2(n1 + 1). For 2(n1 + 1) to become a
multiple of 3, we need that n1 mod 3 ≡ 2. In this case, 2

3 (n1 + 1) ∈ [1, n1]. The equation
cos(2πx) = 0 has two solutions x = 1

4 and x = 3
4 , for 0 ≤ x < 1. Hence, either 4j = n2 or

4j = 3n2. It follows that if n2 is a multiple of 4, we have that n2
4 ,

3n2
4 ∈ [0, n2 − 1]. We

get two solutions for Eq. (6) if n1 mod 3 ≡ 2 and n2 mod 4 ≡ 0.

cos(πi
n1+1) = 0 and cos(2πj

n2
) = − 1

2 . The equation cos(πx) = 0 has one solution x = 1
2 , for

0 < x < 1. Our question is reduced to 2i = n1 + 1. For n1 + 1 to become a multiple of 2,
we need that n1 mod 2 ≡ 1. In this case, 1

2 (n1 +1) ∈ [1, n1]. The equation cos(2πx) = − 1
2

has two solutions x = 1
3 and x = 2

3 , for 0 ≤ x < 1. Hence, either 3j = n2 or 3j = 2n2.
It follows that if n2 is a multiple of 3, we have that n2

3 ,
2n2

3 ∈ [0, n2 − 1]. We get two
solutions for Eq. (6) if n1 mod 2 ≡ 1 and n2 mod 3 ≡ 0.

cos(πi
n1+1) = 1

2 and cos(2πj
n2

) = −1. The equation cos(πx) = 1
2 has one solution x = 1

3 , for
0 < x < 1. Our question is reduced to 3i = n1 + 1. For n1 + 1 to become a multiple of 3,
we need that n1 mod 3 ≡ 2. In this case, 1

3 (n1 + 1) ∈ [1, n1]. The equation cos(2πx) = −1
has one solution x = 1

2 , for 0 ≤ x < 1. Hence, we need that 2j = n2. It follows that if
n2 is a multiple of 2, we have that n2

2 ∈ [0, n2 − 1]. We get one solution for Eq. (6) if
n1 mod 3 ≡ 2 and n2 mod 2 ≡ 0.

Theorem 10 characterizes a linear combination of two cosines which yields four more
solutions to Eq. (6). We derive Eq. (5) again: 2 cos

(4π
5
)

+ 2 cos
(2π

5
)

= −1. We have
cos(4π

5) = 1
4 (−1 −

√
5). The equation cos(πx) = 1

4 (−1 −
√

5) has one solution x = 4
5 , for

0 < x < 1. Our question is reduced to 5i = 4(n1 + 1). For n1 + 1 to become a multiple of 5,
we need that n1 mod 5 ≡ 4. In this case, 4

5 (n1 + 1) ∈ [1, n1]. We have cos(2π
5) = 1

4 (−1 +
√

5).
The equation cos(2πx) = 1

4 (−1 +
√

5) has two solutions x = 1
5 and x = 4

5 , for 0 ≤ x < 1.
Hence, either 5j = n2 or 5j = 4n2. It follows that if n2 is a multiple of 5, we have that
2n2

5 , 4n2
5 ∈ [0, n2 − 1]. We get two solutions for Eq. (6) if n1 mod 5 ≡ 4 and n2 mod 5 ≡ 0.

Since n1 and n2 can switch, we get another pair of solutions. The equation cos(πx) =
1
4 (−1 +

√
5) has one solution x = 2

5 , for 0 < x < 1. Our question is reduced to 5i = 2(n1 + 1).
For n1 + 1 to become a multiple of 5, we need that n1 mod 5 ≡ 4. In this case, 4

5 (n1 + 1) ∈
[1, n1]. We have cos(2π

5) = 1
4 (−1 +

√
5). The equation cos(2πx) = 1

4 (−1 −
√

5) has two
solutions x = 2

5 and x = 3
5 , for 0 ≤ x < 1. Hence, either 5j = 2n2 or 5j = 3n2. It follows

that if n2 is a multiple of 5, we have that 2n2
5 , 3n2

5 ∈ [0, n2 − 1]. In summary, we get four
solutions for Eq. (6) if n1 mod 5 ≡ 4 and n2 mod 5 ≡ 0. J

I Theorem 15. Let C be a cycle of length n. If n mod 3 ≡ 0, then two probes are needed,
and they should be at nodes i, j such that i− j mod 3 6≡ 0. Otherwise, no surgical probes are
needed. In both cases, the labels can be discovered in O(n) time.

Proof. The number of surgical probes follows from Theorem 14
To discover the labels of a cycle, we use the following

If n mod 3 ≡ 0, then probe vertex 1 which can be understood as removing the vertex
from the cycle. Hence, we are left with a path of length n− 1. Since (n− 1) mod 3 ≡ 2,
we can use the procedure described in the proof of Theorem 13 to discover the remaining
labels with one additional surgical probe.

A. Bar-Noy, T. Böhnlein, Z. Lotker, D. Peleg, and D. Rawitz 42:13

If n mod 3 ≡ 1, we compute `1 as follows:

3`1 = (`n + `1 + `2) +
bn/3c∑
i=1

(`3i−2 − `3i−1 − `3i+1 + `3i+2)

= P1 +
bn/3c∑
i=1

(P3i−1 − 2P3i + P3i+1) .

If n mod 3 ≡ 2, we compute `1 as follows:

3`1 = (−`n + `1 + `2 + 2`3) +
bn/3c∑
i=1

(−`3i−1 − 2`3i + `3i+2 + 2`3i+3)

= −P1 + 2P2 +
bn/3c∑
i=1

(−P3i − P3i+1 + 2P3i+2) .

In the two latter cases we are left with a path where we can uncover the remaining labels
without any surgical probes due to Theorem 13. J

Tori. A torus graph is a Cartesian product of two cycle graphs.

I Theorem 16. Let T be a torus graph of dimensions n1 × n2. The number of surgical
probes that are sufficient to uncover ` is

4I3
0 (n1)I4

0 (n2) + 4I4
0 (n1)I3

0 (n2) + 2I2
0 (n1)I6

0 (n2) + 2I6
0 (n1)I2

0 (n2) + 8I5
0 (n1)I5

0 (n2).

In particular, the number of surgical probes to uncover ` for any torus graph is at most 20.

Proof. Let T be a torus graph which is the Cartesian product of two cycles C1 and C2 of
lenghts n1 and n2, resp. The eigenvalues of ACi

are given by 2 cos(2jπ
ni

), for j ∈ [0, ni − 1]
(cf. [5]). By Theorem 9 and Lemma 1, we are interested in solutions of the equation

2 cos
(

2i
n1
· π
)

+ 2 cos
(

2j
n2
· π
)

= −1 . (7)

The two summands cos(2iπ
n1

) and cos(2jπ
n2

) have the rational values −1,− 1
2 , 0,

1
2 , 1, due to

Theorem 11. This gives us the solutions to Eq. (6) where both cosine functions have rational
values. We consider the combinations that satisfy Eq. (7):

cos(2iπ
n1

) = − 1
2 and cos(2jπ

n2
) = 0. The equation cos(2πx) = − 1

2 has two solutions
x = 1

3 and x = 2
3 , for 0 ≤ x < 1. It follows that if n1 is a multiple of 3, we have that

n1
3 ,

2n1
3 ∈ [0, n1 − 1]. The equation cos(2πx) = 0 has two solutions x = 1

4 and x = 3
4 , for

0 ≤ x < 1. It follows that if n2 is a multiple of 4, we have that n2
4 ,

3n2
4 ∈ [0, n2 − 1]. We

get four solutions for Eq. (7) if n1 mod 3 ≡ 0 and n2 mod 4 ≡ 0.
cos(2iπ

n1
) = 0 and cos(2jπ

n2
) = − 1

2 . Similarly, we get four solutions if n1 mod 4 ≡ 0 and
n2 mod 3 ≡ 0.
cos(2iπ

n1
) = 1

2 and cos(2jπ
n2

) = −1. The equation cos(2πx) = 1
2 has two solutions x = 1

6
and x = 5

6 , for 0 ≤ x < 1. It follows that if n1 is a multiple of 6, we have that
n1
6 ,

5n1
6 ∈ [0, n1 − 1]. The equation cos(2πx) = −1 has one solution x = 1

2 , for 0 ≤ x < 1.
It follows that if n2 is a multiple of 2, we have that n2

2 ∈ [0, n2 − 1]. We get two solutions
for Eq. (7) if n1 mod 2 ≡ 0 and n2 mod 6 ≡ 0.
cos(2iπ

n1
) = −1 and cos(2jπ

n2
) = 1

2 . Similarly, we get two solutions if n1 mod 6 ≡ 0 and
n2 mod 2 ≡ 0.

ISAAC 2019

42:14 The Generalized Microscopic Image Reconstruction Problem

Theorem 10 characterizes a linear combination of two cosines which yields eight more
solutions to Eq. (7). We derive Eq. (5) once again: 2 cos

(4π
5
)

+ 2 cos
(2π

5
)

= −1. We have
cos(4π

5) = − 1+
√

5
4 . The equation cos(2πx) = − 1+

√
5

4 has two solutions x = 2
5 and x = 3

5 , for
0 ≤ x < 1. It follows that if n1 is a multiple of 5, we have that 2n1

5 , 3n1
5 ∈ [0, n1 − 1]. We

have cos(2π
5) = −1+

√
5

4 . The equation cos(2πx) = −1+
√

5
4 has two solutions x = 1

5 and x = 4
5 ,

for 0 ≤ x < 1. It follows that if n2 is a multiple of 5, we have that n2
5 ,

4n2
5 ∈ [0, n2− 1]. Since

n1 and n2 can switch roles, in total, we get eight solutions for Eq. (7) if n1 mod 5 ≡ 0 and
n2 mod 5 ≡ 0. J

5 King’s Graph and Strong Products

Again, let us start with some definitions. The Strong product of two graphs G1 and G2,
denoted by G1 �G2, is the graph G = (V,E) where V = V1 × V2 and

E = {(v, u), (v′, u) : (v, v′) ∈ E1} ∪ {(v, u), (v, u′) : (u, u′) ∈ E2}∪
{(v, u), (v′, u′) : (v, v′) ∈ E1 and (u, u′) ∈ E2} .

The adjacency matrix of G1 �G2 is defined as AG1�G2 = ĀG1 ⊗ ĀG2 − I|V1||V2| .

I Theorem 17 ([5]). Let G1 and G2 be graphs. Then, the set of eigenvalues of AG1�G2 is

Λ(AG1�G2) = {(λ+ 1)(µ+ 1)− 1 | λ ∈ Λ(AG1), µ ∈ Λ(AG2)} .

A king’s graph is the Strong product of two paths (see Figure 1d). Underlying a king’s
graph has the topology of a grid graph. Here, the neighborhood of a vertex corresponds
to a rectangular scanning window (see Figure 1c). Again, we use the product-property to
determine the number of surgical probes directly, without using Theorem 2.

I Theorem 18. Let G be a king’s graph of dimensions n1 × n2. The number of surgical
probes that are sufficient to uncover ` is I3

2 (n1)n2 + I3
2 (n2)n1 − I3

2 (n1)I3
2 (n2).

Proof. Due to Theorem 17 the number of required probes is given by the solutions of the
equation:(

2 cos
(

i

n1 + 1 · π
)

+ 1
)(

2 cos
(

j

n2 + 1 · π
)

+ 1
)

= 0 , (8)

for i = [1, n1] and j = [1, n2]. Equation (8) has solutions if one of the factors becomes zero.
From the proof of Theorem 12, we know that the equation 2 cos(iπ

n1+1) = −1 has one solution
if n1 mod 3 ≡ 2. In this case, we get a solution of Eq. (8) for each value of j if n2 mod 3 6≡ 2.
By symmetry we get n1 solutions if n2 mod 3 ≡ 2 and n1 mod 3 6≡ 2. If n1, n2 mod 3 ≡ 2,
we get n1 + n2 − 1 solutions for Eq. (8). J

We see that king’s graphs behave quite differently compared to grid graphs. Here, the
number of required surgical probes can be as large as n1 + n2 − 1.

6 Future directions

We extended the MIR framework by representing the inspected object by an undirected
graph. A probe corresponds to a measurement taken over the node and its neighborhood.
There are many other potentially interesting types of probes in this general model of graphs.
For example, when the specimen is a grid and a probe at a node contains all nodes at distance

A. Bar-Noy, T. Böhnlein, Z. Lotker, D. Peleg, and D. Rawitz 42:15

at most d from this node. We gave a closed form formula for the number of surgical probes
for the case where d = 1 (grid graph and king’s graph). It would be interesting to obtain
such a formula for general d.

In the setting introduced here, the surgical probes have the same costs at each node.
However, parts of a specimen might be less accessible and therefore more expensive to probe.
It might be interesting to study a variation where a surgical probe at node i implies costs ci,
and the goal is now to uncover the labels with minimum total costs.

Moreover, considering directed graphs instead of un-directed graphs leads to a type of
probes that are not symmetric. However, this implies that the adjacency matrix is no longer
symmetric and Lemma 1 does not longer hold (see example on page 3 of [5]).

Another possible direction is to determine the minimum number of surgical probes in
case ` is a binary or integer vector. As mentioned earlier, our results provide an upper bound
on the number of required surgical probes. This problem is most likely NP-hard as the work
by Gritzmann et al. [9] suggests.

Finally, we conjecture that Theorem 6 can be extended to full k-ary trees.

References
1 Andreas Alpers and Peter Gritzmann. Reconstructing binary matrices under window con-

straints from their row and column sums. Fundamenta Informaticae, 155(4):321–340, 2017.
2 Andreas Alpers and Peter Gritzmann. Dynamic discrete tomography. Inverse Problems,

34(3):034003, 2018.
3 Andreas Alpers and Peter Gritzmann. On double-resolution imaging and discrete tomography.

SIAM Journal on Discrete Mathematics, 32(2):1369–1399, 2018.
4 Daniela Battaglino, Andrea Frosini, and Simone Rinaldi. A decomposition theorem for

homogeneous sets with respect to diamond probes. Computer Vision and Image Understanding,
117(4):319–325, 2013.

5 Andries E. Brouwer and Willem H. Haemers. Spectra of Graphs. Springer, 2011.
6 John Conway and Alice J. Jones. Trigonometric diophantine equations (On vanishing sums of

roots of unity). Acta Arithmetica, 30(3):229–240, 1976.
7 Andrea Frosini and Maurice Nivat. Binary matrices under the microscope: A tomographical

problem. Theor. Comput. Sci., 370(1-3):201–217, 2007.
8 Andrea Frosini, Maurice Nivat, and Simone Rinaldi. Scanning integer matrices by means of

two rectangular windows. Theoretical Computer Science, 406(1-2):90–96, 2008.
9 Peter Gritzmann, Barbara Langfeld, and Markus Wiegelmann. Uniqueness in discrete tomo-

graphy: three remarks and a corollary. SIAM Journal on Discrete Mathematics, 25(4):1589–
1599, 2011.

10 Gabor T Herman and Attila Kuba. Discrete tomography: Foundations, algorithms, and
applications. Springer Science & Business Media, 2012.

11 Carl D Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000.
12 Maurice Nivat. Sous-ensembles homogénes de Z2 et pavages du plan. Comptes Rendus

Mathematique, 335(1):83–86, 2002.
13 Ivan Niven. Numbers: rational and irrational, volume 1. Random House New York, 1961.

ISAAC 2019

Stabilization Time in Minority Processes
Pál András Papp
ETH Zürich, Switzerland
apapp@ethz.ch

Roger Wattenhofer
ETH Zürich, Switzerland
wattenhofer@ethz.ch

Abstract
We analyze the stabilization time of minority processes in graphs. A minority process is a dynamically
changing coloring, where each node repeatedly changes its color to the color which is least frequent
in its neighborhood. First, we present a simple Ω(n2) stabilization time lower bound in the
sequential adversarial model. Our main contribution is a graph construction which proves a Ω(n2−ε)
stabilization time lower bound for any ε > 0. This lower bound holds even if the order of nodes is
chosen benevolently, not only in the sequential model, but also in any reasonable concurrent model
of the process.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Theory of compu-
tation → Distributed computing models; Theory of computation → Self-organization

Keywords and phrases Minority process, Benevolent model

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.43

Related Version An archive version is available at https://arxiv.org/abs/1907.02131.

1 Introduction

If you google “bad wifi”, one advice you will get for sure is to choose the least crowded
frequency in order to minimize interference with your neighbors. Unfortunately, this least
crowded frequency may change again if some of your neighbors do the same.

Frequency allocation is a familiar example of minority processes in graphs: given a graph,
a set of colors, and an initial coloring of the nodes with these colors, a minority process is a
process where each node, when given the chance to act, modifies its color to a color that
has the smallest number of occurrences in its neighborhood. This results in a dynamically
changing coloring, which is essentially a form of distributed automata. Minority processes
arise in various fields of economics [12] or social science [3] when players are motivated to
differentiate from each other, but they also emerge in cellular biology [4] or crystallization
mechanics [2].

A minority process is said to stabilize when no node has an incentive to change its color
anymore. The aim of the paper is to understand how long it takes until such a minority
process reaches a stable state. We study the process in several different models, some of
them sequential, some concurrent. In sequential models, when only one node at a time can
change its color, stabilization time depends on the choice of the order of nodes. Hence, the
model can further be subdivided into three cases, depending on whether the order of acting
nodes is specified benevolently (trying to minimize stabilization time), adversarially (trying
to maximize stabilization time), or randomly.

On the other hand, in concurrent models, multiple nodes are allowed to switch their color
at the same time. However, if two (or more) neighboring nodes continuously keep on forcing
each other to switch their color, the system may never stabilize. The simplest such example
is a graph of two connected nodes that have the same initial color, and keep on switching

© Pál András Papp and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 43; pp. 43:1–43:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:apapp@ethz.ch
mailto:wattenhofer@ethz.ch
https://doi.org/10.4230/LIPIcs.ISAAC.2019.43
https://arxiv.org/abs/1907.02131
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Stabilization Time in Minority Processes

to the same new color in every step. We also study concurrent models that exclude this
behavior, as it is unrealistic in many application areas where neighbors are unlikely to switch
at the exact same time.

In any model where simultaneous neighboring switches are excluded, it is easy to prove a
O(n2) upper bound on stabilization time for minority processes. Initially, some (maybe even
all) of the at most O(n2) edges in the graph are monochromatic (i.e., they have a conflict).
When a node switches its color to the minority color in its neighborhood (but its neighbors
do not change color in the same step), then the number of conflicts on the adjacent edges
strictly decrease. Since the original number of conflicts is O(n2) and the overall number of
conflicts decreases by 1 at least in each step, the number of steps is limited to O(n2).

However, this raises a natural question: are there example graphs that exhibit this naive
upper bound? Or is there a significantly lower (e.g. linear) upper bound on stabilization
time in some models? While these questions are already answered for the “dual” problem of
majority processes (when nodes switch to the most frequent color in their neighborhood), for
the case of minority processes, they have remained open so far.

The main contributions of the paper are constructions that prove lower bounds on
stabilization time of minority processes. As a warm-up, we present a simple example in
Section 4 which shows that in the sequential adversarial model, stabilization may take Θ(n2)
steps. Our main result is a construction proving that stabilization can also take superlinear
time in the sequential benevolent case. We first present a graph and an initial coloring
in Section 5 where any selectable sequence lasts for Ω(n3/2) steps. Then in Section 6, we
outline how a recursive application of this technique leads to a stabilization time of Ω(n2−ε)
for any ε > 0, almost matching the upper bound of O(n2). This is an interesting contrast
to majority processes, where stabilization time is bounded by O(n) in the benevolent case.
Furthermore, our construction shows that this almost-quadratic lower bound holds not only
in the sequential model, but also in any reasonable concurrent setting.

2 Related work

While there is a wide variety of results on both minority and majority processes, majority
processes have been studied much more extensively. Recently, [5] has shown that stabilization
time in majority processes can be superlinear both in the synchronous model, and in the
sequential model if the order is chosen by an adversary. However, [5] has also shown that
stabilization always happens in O(n) time in the sequential benevolent model. In case of
majority processes in weighted graphs, a 2Θ(n) lower bound on stabilization time was also
shown in [11].

Other aspects of majority processes have also been studied thoroughly, especially in the
synchronous model. Results on majority processes include basic properties [8], their behavior
on random graphs [6], complexity results on determining stabilization time [10], minimal sets
of nodes that dominate the process [7], and the existence of stable states in the process [1].

In contrast to this, the dynamics of minority processes has received less attention. The
stabilization of minority processes has only been studied in special classes of graphs, including
tori, cycles, trees and cliques [14, 15, 16]. These studies are mostly conducted only in the
synchronous or the sequential random model. More importantly, these results study a
different variant of the minority process, which considers the closed neighborhood of nodes,
and thus can result in significantly larger (possibly exponential) stabilization time, even in
the unweighted case. An experimental study of the processes on grids is also available in [14].

P.A. Papp and R. Wattenhofer 43:3

In weighted graphs, it has recently been shown in [13] that stabilization of minority
processes can take 2Θ(n) steps in various models, matching a straightforward exponential
upper bound in the weighted case. However, the constructions of [13] use exponentially large
node or edge weights to obtain these results; as such, the same techniques are not applicable
in the unweighted case.

Besides these studies on the dynamics of the process, there are also numerous theoretical
results on stable states in minority processes. These include complexity results on deciding
the existence of different stable state variants [12], characterization of infinite graphs with a
stable state [17], and analysis of price of anarchy in such states as local minima [12]. In the
work of [9], it is also shown that slightly modified minority processes, based on distance-2
neighborhood of nodes, can provide better local minima at the cost of larger (but still
polynomial) stabilization time.

However, in contrast to majority processes, the stabilization time of minority processes in
general unweighted graphs has remained unresolved so far.

3 Definitions and background

3.1 Models
In the paper, we primarily focus on the following models:
A. Sequential adversarial: In every step, only one node switches. The order of nodes is

specified by an adversary who maximizes stabilization time.
B. Sequential benevolent: In every step, only one node switches. The order is specified

by a benevolent player who minimizes stabilization time.
C. Independent benevolent: In every step, the benevolent player is allowed to choose

any independent set of switchable nodes, and switch them simultaneously.
D. Free benevolent: In each step, the benevolent player is allowed to choose any set of

switchable nodes, and switch them simultaneously.
However, our lower bounds extend to a range of other popular models:
E. Concurrent synchronous: In every step, all switchable nodes switch simultaneously.
F. Sequential random: In every step, only one node switches, chosen uniformly at random

among the switchable nodes.
G. Concurrent random: In every step, every switchable node switches with probability p,

independently from other nodes.

An intuitive illustration of these models is shown in Figure 1. The vertical axis shows
how concurrent a model is, the horizontal shows how wide is the set of opportunities it grants
the player to speed up / slow down stabilization. In the case of majority processes, models A
and E are shown to take superlinear time to stabilize for some graphs, but model B always
stabilizes in linear time [5]. However, we prove that for minority processes, even model B
can take superlinear time. Models C and D grant even wider sets of possible (concurrent)
moves for the benevolent player, which may drastically reduce the number of steps in some
cases; however, we show that the same lower bound holds even if such moves are available.

Note that models A, B, C and F exhibit a natural O(n2) upper bound on stabilization
time, as the overall number of conflicts decreases in each step by at least 1. On the other
hand, models D, E or G may allow neighboring nodes to switch at the same time, and thus in
these models, some nodes may keep on endlessly changing colors. However, our constructions
specifically ensure that connected nodes are never switchable at the same time, and thus for
these particular graphs, the process stabilizes in any of the models.

ISAAC 2019

43:4 Stabilization Time in Minority Processes

sequential

concurrent

adversarial benevolent
A B

C

DE

G

F

Figure 1 Properties of the listed models.

Through most of the analysis in the paper, we focus on the sequential models. We first
show a simple construction with Θ(n2) stabilization time in model A. We then present a more
complex construction to first show Ω(n3/2), and then Ω(n2−ε) stabilization time in model B.
It then follows from a few observations that these latter constructions also have the same
stabilization time in models C and D. Since model D provides the widest set of opportunities
from all models, this implies the same lower bound for each of the listed models.

3.2 Preliminaries
Throughout the paper, we consider simple, unweighted, undirected graphs. Graphs are
denoted by G, their number of nodes by n, and the maximum degree in the graph by ∆.

Given a graph G on the vertex set V , an independent set is a subset of V such that no two
nodes in this subset are connected. A coloring of the graph with k colors is the assignment
of one of the colors (numbers) from {1, 2, ..., k} to each of the nodes. If two nodes share an
edge and are assigned the same color, then the nodes have a conflict on this edge.

Our process consists of discrete time steps (states), where we have a current coloring of
the graph in every state. When a node v is currently colored c1, but there exists a color c2
such that the neighborhood of v contains strictly less nodes colored c2 than nodes colored c1,
then the node is switchable (since the node could reduce its number of conflicts by changing
its color). The process of v changing its color is switching. Nodes always make locally optimal
solutions, that is, they switch to the color which is least frequent in their neighborhood.
In case of multiple optimal colors, related work on majority processes considers different
tie-breaking rules. However, our constructions ensure that a tie can never occur, and thus
our bounds hold for any tie-breaking strategy.

The minority process is a sequence of steps, where each step is described by a set of nodes
that switch. Note that we only consider valid steps, where every chosen node is switchable.

A state is stable when no node in the graph is switchable; a system stabilizes if it reaches
a stable state. Stabilization time is the number of steps until the process stabilizes. Note
that in case of model E, papers studying majority processes often use a different definition of
stabilization, based on periodicity. However, our constructions ensure that the process always
ends in a stable state, thus for the graphs in the paper, the two definitions of stabilization
are equivalent.

In our examples, we will consider the case of having only two available colors, black and
white. However, as discussed in Section 3.3, our lower bounds are easy to generalize to any
number of colors.

P.A. Papp and R. Wattenhofer 43:5

The restriction to two colors allows us to introduce some helpful terminology. Consider a
node v at a given state of the process. If v has vs neighbors with the same color as v, and vo
neighbors with the opposite color, the number vo − vs is called the balance of v. Note that
if one of the neighbors of v switches, then the balance of v either increases or decreases by
2 (which shows that the parity of the balance of v can never change). The definition also
implies that v is switchable if and only if its balance is negative. Switching v changes the
sign of its balance.

3.3 General tools in the constructions
Groups. We use the notion group to refer to a set of nodes that have the same initial color
and the exact same set of neighbors (hence, groups are independent sets). Groups are, in
fact, only a tool to consider certain nodesets together as one entity for simpler presentation.
They will be shown as only one node with double borders in the figures, with the size of the
group indicated in brackets.

In the adversarial case, we will only consider sequences that switch groups together (i.e
consecutively in any order). In the benevolent case, groups will be switched together in the
sense that if a node in the group switches, then all other nodes in the group will also switch
before any neighbor of the group becomes switchable; this property is enforced by the graph
construction. The more complicated definition in the benevolent case is due to the fact that
we have to consider every possible sequence that the player can choose. Technically, in some
sequences, a group might not be switched consecutively (it might be interrupted by switches
in other, distant parts of the graph), but the outcome will still be equivalent to switching
them consecutively.

Fixed nodes. Given a graph G, let us add two more set of nodes Fw, Fb to the graph such
that |Fw| = |Fb| = n + 1, and vw and vb are connected for all vw ∈ Fw, vb ∈ Fb. Let the
color of Fw and Fb initially be white and black, respectively. The nodes in Fw and Fb will
be referred to as fixed nodes, and we will connect them to some of the nodes in our original
graph. Note that these fixed nodes already have n+ 1 neighbors of the opposite color, and
can never have more neighbors of the same color (as they can have at most n neighbors G),
so their color is indeed fixed and they can never switch.

Such fixed nodes are widely used in our construction; we can allow any node in G to
have up to ∆ + 1 fixed neighbors of either color. The introduction of fixed nodes increases
the graph size only by a constant factor (to 3n + 2), so all lower bounds expressed as a
function of n will still be of the same magnitude as a function of 3n+ 2. Therefore, for ease
of presentation, we still use n to denote the number of nodes in the graph without the extra
fixed nodes, and express our bounds as a function of n.

Fixed node neighbors are denoted by squares in the figures, with the multiplicity written
beside the square (if more than 1). We always draw separate squares for distinct nodes, even
though the corresponding fixed node sets might overlap. This is because fix node connections
are thought of as a “property” of the node, introducing an offset into its initial balance.

Generalization to more colors. While the paper discusses the case of two colors, a simple
idea allows a generalization to any constant number of colors k. Assume we have a construction
G on n nodes, showing a lower bound on stabilization time with two colors; we can simply
add sets of nodes F3, F4, ..., Fk of size ∆ + 1 such that they form a complete multipartite
graph, and connect all these new nodes to all nodes in G. Let us color the nodes in Fi
with color i.

ISAAC 2019

43:6 Stabilization Time in Minority Processes

. . .

m+1 m+1 m+1 m+1 m+1

A1 A2 A3 A4 A2m

P (m)

Figure 2 Construction with an adversarial sequence of Θ(n2) switches.

None of the original nodes in G will ever assume any of the colors 3, 4, ..., k, since
they always have ∆ + 1 neighbors of these colors, while they have strictly less (at most ∆)
neighbors of colors 1 and 2. Nodes in Fi will never have any incentive to switch, since they
have no conflicts at all. Thus the process will behave as if the graph only consisted of G
with colors 1 and 2. As the new nodes only increase the graph size by a constant factor, we
receive an example with the same magnitude of running time, but with k colors.

With the same technique, our lower bound of Ω(n3/2) can also be generalized to the case
of up to Θ(

√
n) colors; details of this are discussed in Appendix B.

4 Sequential adversarial model

We first present a simple example where model A takes Ω(n2) steps. Our construction, shown
in Figure 2, consist of a group P of size m (for some parameter m), initially colored white,
and 2m distinct nodes A1, A2, ..., A2m, such that Ai is initially colored black for odd values
of i and white for even i. Let us connect all nodes Ai to P , and add one more fixed black
node that is connected only to P . Finally, let us connect each Ai to m+ 1 fixed nodes of the
same color as Ai. Recall that although the figure shows multiple squares, there are in fact
only n+ 1 fixed black and n+ 1 fixed white nodes in the graph altogether.

In this graph, P has a balance of 1 initially, while black Ai have a balance of −1 and
white Ai have a balance of −(2m + 1). Note that even after execution begins, until Ai is
switched for the first time, it will have m+ 1 fixed neighbors of the same color and at most
m neighbors of the opposite color (depending on the current color of P), and thus a negative
balance. Therefore, each Ai is switchable anytime if it has not been switched before.

Consider the following sequence of adversarial moves in this graph: the player first decides
to switch A1, then P , then A2, then P again, then A3, P , ..., A2m, and finally P again. As
each Ai is used only once, they are clearly all switchable. As for P , its balance first changes
from 1 to −1, when changing A1 to white, but increases back to 1 when we switch P itself.
Then it changes to −1 once again after changing A2, so it is switchable again, and so on:
each time we switch an Ai, we change it to the same color that P currently has, decreasing
P ’s balance to −1, which increases back to 1 again as we switch P . Therefore, this strategy
is indeed a sequence of valid switches.

Since P containsm nodes and is switched 2m times in this sequence, this alone contributes
to 2m2 switches. Altogether, we have 3m nodes in the graph (without fixed nodes), allowing
us a choice of m = n

3 . This gives us a sequence with at least 2
9n

2 steps.

I Theorem 1. There exists a graph construction with Ω(n2) stabilization time in model A.

P.A. Papp and R. Wattenhofer 43:7

BvL vR

(a) (b) (c)

Figure 3 Simple relay gadget (a), the steps of its operation (b), and a chain of relays (c).

5 Construction for benevolent models

We now presents a construction with Ω(n3/2) stabilization time in benevolent models. Note
that it is much more involved to find an example where benevolent models take ω(n) steps,
since in such a construction, we have to ensure that any possible sequence lasts for a long
time. In order to have an easy-to-analyze construction, our graph will, at any point in
time, contain only one, or a small set of nodes that are switchable, and switching this or
these nodes enables the next such set of nodes (i.e., makes them switchable). This way, the
switchable point “propagates” through the graph, and the benevolent player has no other
valid move than to follow this path of propagation that has been designed into the graph.

The general idea behind the construction is to have a linearly long chain of nodes which is
propagated through multiple times. After each such round, the propagation enters a different
branch of further nodes; this branch resets the chain for the following round, and then also
triggers the following round of propagation (as outlined later in Figure 11).

Due to the complexity of the construction, we do not describe it directly; instead, we
define smaller functional elements (gadgets) that execute a certain task. We then use these
gadgets as building blocks to put our example graph together. This section outlines the tasks
and main properties of the gadgets; a detailed description and analysis of each gadget can be
found in Appendix B. While the concrete gadget designs are specific to minority processes,
they are built on general ideas and techniques for benevolent models; as such, we hope they
may inspire similar solutions in the analysis of related processes or cellular automata.

When describing a gadget, the edges connecting the gadget to other nodes in the graphs
are drawn as dashed lines in the figures, with the external node usually denoted by v (possibly
with some subscript). Although our graph is undirected, we often refer to such edges as input
or output edges of the gadget, and also show this direction in the figures. This will refer to
the role that the external node plays in the functionality of the gadget. That is, whenever
the gadget is used in our constructions, it is triggered by (some of) its input nodes switching,
and upon completing its task, the gadget makes (some of) its output nodes switchable.

Naturally, as in the entire graph, the role of the two colors is always interchangeable
within the gadgets. Therefore, we only present each such gadget in one color variant.

Due to the complexity of the construction, we have also verified its correctness through
implementing the process. A discussion of these simulations is available in Appendix C.

Simple relay. As our most basic tool to propagate the only possible point of switching, we
use the simple relay shown in Figure 3a. A simple relay consists of a base node B, connected
to a fixed node of the same color, and two further nodes outside of the gadget, which initially
have the opposite color as B. Until neither of vL and vR switch, B has positive balance
and cannot switch either. However, as soon as vL switches to the color of B, B becomes
switchable, and as B switches, this propagates the point of change to its other neighbor vR
(as shown in Figure 3b).

ISAAC 2019

43:8 Stabilization Time in Minority Processes

B

U

C(2)

R1 R2

vL vR

(a)

(2)

3 switches
to white

(2) (2) (2)

3 switches
to black

(2)

(b)

Figure 4 Rechargeable relay gadget (a) and the steps of its operation (b).

Note that connecting alternating-colored relays into a chain already gives a simple
example of linear stabilization time (see Figure 3c). If the leftmost (white) relay’s base node
is connected to a fixed white node, then the only available sequence of moves is to switch the
base nodes in the relays one by one from left to right, resulting in a sequence of n steps.

Through the concept of input and output nodes, relays essentially allow us to connect
other, more sophisticated gadgets in our constructions. If some gadget has an output node
v1 and another gadget has an input node v2, we can add a chain of relays between v1 and v2,
ensuring that once v1 switches, it will be followed by v2 eventually. Due to this role, relays
are not shown explicitly in our final overview figure of the construction, but only represented
by arrows, indicating the direction of propagation between more complex gadgets.

Rechargeable relay. A more sophisticated version of a relay is the rechargeable relay shown
in Figure 4a. In such a relay, node B is extended by an upper node U , a control group C of
size 2, and two recharge nodes R1, R2, the role of which are interchangeable. Besides vL
and vR, the nodes R1 and R2 also have edges to some external nodes. It is always ensured
that the initial balance of R1 and R2 from these upper neighbors (that is, with C ignored) is
exactly 3.

As in case of a simple relay, if vL switches, then B itself can switch, followed by vR. Now
assume that in this “used” phase of the relay, some outside circumstance changes 3 neighbors
of node R2 from black to white, and thus its balance changes from the current value of 5 to
−1 (the relay is recharged). Then R2 can switch to black, making C and in turn U switch,
too. Finally, assume that some other outside circumstance then changes the balance of R2
from 5 to −1 again (known as resetting the relay); then R2 will switch back to white (with a
new balance of 1), and we end up in the initial state of a rechargeable relay of the opposite
color. The steps of the process are shown in Figure 4b.

This is exactly the essence of this gadget: it is a relay which can be used the same way
multiple times. Connecting such gadgets into a chain in the same fashion as Figure 3c, we
get a chain that can propagate the point of change not only once, but multiple times if
“recharged” through their upper connections between two such propagations.

Recharging system. The rechargeable relay suggests that it is useful to have a tool to
“recharge” some nodes, i.e. to decrease their balance by switching some of their neighbors to
the color they currently have. To execute this task efficiently on many nodes, we present a
recharging system.

For the first version of this gadget, assume a setting where there is a set X of m black
nodes, and we want to decrease the balance of each of these nodes by 2 (i.e., change exactly
one white neighbor of each of them to black). A basic recharging system, shown in Figure 5,

P.A. Papp and R. Wattenhofer 43:9

√
m nodes

Set X of m nodes

... Li (
√
m nodes)

M(
√
m+1)

U v√
m + 1

√
m

Figure 5 Basic recharging system.

Set X, with a balance to be
decreased by 2·χ altogether

... Li (√χ nodes)

M(√χ+1)

U v√
χ + 1

√
χ

Figure 6 Generalized recharging system.

4
3

x+ 1

A

B1

B2
C(3)

D v
x input
nodes

Figure 7 and gate.

can execute this task while using only O(
√
m) nodes. The gadget is organized into 3 levels:

a single node U in the upper level, a group M of
√
m + 1 nodes in the middle level, and√

m distinct nodes Li in the lower level. Each lower level node is connected to
√
m different

nodes in X, thus exactly covering the nodes of X. The gadget operates in a top-to-bottom
fashion: once v switches, U turns black, followed by M turning white. Once all nodes in M
are switched, the nodes Li all decide to switch, too.

The key idea in the design of the gadget is that each node Li has strictly more neighbors
in M than in X. This ensures that as long as M is black, the nodes Li always have a positive
balance, regardless of the current color of their neighbors in X. Therefore, no node in the
gadget can ever switch before the node U is triggered.

We can use this insight to create a similar gadget for a more general setting. Assume
that we similarly have a set X of m black nodes, but instead of decreasing their balance by
2, we want to decrease the balance of each node in X by some specific (possibly different)
even value, denoted by 2x1, 2x2, ..., 2xm (i.e., for the jth node in X, we want to change xj
of its white neighbors to black). Let us denote the sum

∑m
j=1 xj of these values by χ.

We can achieve this using a similar construction, shown in Figure 6. In this generalized
recharging system, we allow multiple nodes Li to be connected to the same node in X: if a
node in X has a corresponding value 2xj , then it has exactly xj neighbors in the lower level
of the system. This ensures that once all the nodes Li switch, the new balance of each node
in X is exactly as desired. The number of nodes in the gadget can be minimized by placing√
χ nodes Li in the lower level, each with √χ neighbors in X; this way, the overall number

of edges going into the set X from the gadget is exactly χ as required. To ensure that the
neighborhood of each Li is dominated by M , we choose the size of group M to be √χ+ 1.

AND gate. Another ingredient we use is an and gate. As its name suggests, this gadget
has x input edges from a set of nodes X, and once all nodes in X have switched to the same
color (say, white), the gadget triggers a change in another part of the graph.

ISAAC 2019

43:10 Stabilization Time in Minority Processes

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

Figure 8 Operation of an and gate. In the end, node D switches to black, making v switchable.

...

v1

v2

vp

A1(2) B1(2)

A2(2) B2(2)

Ap(2) Bp(2)

C v

2

2

2

2

Figure 9 Join gadget.

...
v

F1

F2

F3

Fq−1

Fq

v1

v2

v3

vq−1

vq

Figure 10 Fork gadget.

Note that we could achieve this functionality with a single node, by carefully setting its
initial balance such that it switches exactly when all inputs have the desired color. However,
and gates are used to “check” the state of specific nodes in the construction, and as such, it
is unfortunate that this check also affects the nodes that are being checked: once the node
in this simple and gate switches, the balance of all input nodes in X will increase by 2. It
would be much better to have a gadget that can perform this task without having any effect
on the nodes in X.

For this purpose, consider the gadget in Figure 7, which is connected to the nodes in X
on the input side and a black node v on the output side. Once all nodes in X are white, node
A switches, followed by B1 and B2, and then by C. With C switched, A decides to switch
back to its original color white. However, since now both A and B1 are white, this finally
switches D to black, triggering a change in the output node v (Figure 8). The usefulness of
the gadget lies in the fact that by the end of this sequence, A is switched back to its original
color, and thus the balance of nodes in X is again the same as it was in the beginning.

Join and fork gadgets. Finally, we need two small gadgets in the construction to fork and
join the control sequence at the ends of our main relay chain.

A join gadget, shown in Figure 9, connects a specific number of input nodes vi to an
output node v. When an input node vi switches, then so does Ai and then Bi in the
corresponding input branch, which also switches C and triggers node v. Then when vi+1
later switches at some point, the same thing happens to the next input branch and C again,
only with the two colors swapping roles. Thus if the nodes v1, v2, ... are switched one after
another in this order, then each of these input switches make the output node v switch again.

P.A. Papp and R. Wattenhofer 43:11

RS

A

RS

A

RS

A

RS

A

F
RRRR

J
RR RR RR

. . .

chain of m relays

relays
reset black

relays
reset white

black relays
recharge

white relays
recharge

Figure 11 Overview of the whole construction, with one branch shown in detail. Rechargeable
relays (RR), Recharging systems (RS), and gates (A), Joins (J) and Forks (F) are explicitly shown.

The fork gadget of Figure 10, on the other hand, is responsible for receiving triggers from
a given input node v, and directing the propagation to a new branch (a new output node vi)
every time. When v first switches, only v1 becomes switchable. Similarly, after v is switched
for the ith time, only vi becomes switchable, and thus the gadget triggers the ith branch
of output.

Assembling the pieces. Our final graph construction (shown in Figure 11) has two defining
parameters m and r. The base of the construction is a chain of m rechargeable relays,
connected to a join gadget of r branches and a fork gadget of r−1 branches. For each
i ∈ {1, ..., r−1}, we add a sequence of gadgets (a branch) to connect the ith output of the fork
to the i+ 1th input of the join gadget, which is responsible for recharging the relay chain.

Each branch consists of recharging systems connected to our main chain. First let us
consider the rechargeable relays where node U is currently white (either the even or the
odd ones; relays at positions of the same parity are all in the same state). We first need a
recharging system to recharge all these relays, and then we need another system to reset the
relays. We need similarly 2 recharging systems for the other half of the relays which are in
the opposite color phase.

Finally, we need to force the player to indeed execute these changes on the relays. For
that, we insert an and gate after each recharging system, which checks if all switchable nodes
have indeed been switched before moving on. The output of the and gate is then used to
enable the next recharging systems (or the next input of the join gadget).

This construction ensures that the player has no other choice than to go through the
relay chain, follow the next branch from the fork, recharge and reset all the relays, and start
going through the relay chain again. Since the chain consists of m relays and it is traversed
r times in this process, the switches in the chain add up to m · r steps altogether.

Of course, one also needs to introduce a starting point (initially switchable node) into
the construction. This can be done by replacing v1 in the join gadget by a fixed white node.

Let us consider the number of nodes in the construction. Since rechargeable relays consist
of constantly many nodes, the size of the relay chain is O(m). The size of the join and
fork gadgets is O(r). Finally, each of the r−1 recharging branches consist of constantly
many recharging systems, and gates and simple relays; since the latter two have constant

ISAAC 2019

43:12 Stabilization Time in Minority Processes

size, branch size is dominated by the size of the recharging systems. Each such system is
connected to m

2 relays, and thus needs to reduce the balance of O(m) nodes by a constant
value of 6. This implies that each recharging system needs O(

√
m) nodes.

This shows that we can choose r = Θ(
√
m) and m = Θ(n) for our parameters. Our graph

then contains O(m) +O(r) + r ·O(
√
m) = O(n) nodes, so it is indeed a valid setting with

the proper choice of constants.
To investigate runtime, it is enough to consider the switches in the main relay chain.

Each of the Θ(n) relays has a base node that is switched Θ(
√
n) times, adding up to a total

of Ω(n3/2) switches.

I Theorem 2. There exists a graph construction with Ω(n3/2) stabilization time in model B.

Note that in the previous construction, whenever any of the base nodes of the relay chain
are switchable, there is no other switchable node in the entire graph. This implies that
even in the independent benevolent case, the player has no other option than to select this
single node, so the number of minimal switches is Ω(n3/2) even if we assume the independent
benevolent model.

In fact, one can observe that the construction also ensures that regardless of the choices
of the player, the set of switchable nodes is always an independent set at any point in the
process. Hence models C and D are in fact the same in this graph, and thus the lower bound
also holds for model D. This then implies the same bound for all the remaining models.

I Corollary 3. There is a graph construction with Ω(n3/2) stabilization time in models C–G.

6 Recursive construction

We now briefly outline the modification idea that provides the almost tight lower bound of
Ω(n2−ε). A more detailed discussion of the construction can be found in Appendix A.

The key idea is to make the recharging systems themselves also rechargeable, so that
they can recharge the same output nodes repeatedly. Note that once a recharging system
has been used, the color of its nodes is exactly that of a recharging system of the opposite
color. Thus, if we reset the balance of each node in the system to its initial value, we can
use the system again to recharge the same output nodes again. More specifically, given a
used recharging system, we need to restore the balance of M and U to 1 in order to obtain a
recharging system of the opposite color; then by triggering U again, we can use the system
to recharge the nodes in X once more.

Therefore, we can add a layer of second-level recharging systems to recharge all the original
(first-level) systems in the graph after all first-level system have been used, as illustrated
in Figure 12. Recall that decreasing the sum of balances in a set of nodes by χ requires a
recharging system of O(√χ) nodes. We have Θ(

√
m) first-level systems in our graph, each

consisting of Θ(
√
m) nodes, with a balance of Θ(

√
m) after use; to reset each node in these

systems to their default balance of 1, with χ = Θ(m3/2), a second-level system requires√
χ = Θ(m3/4) nodes.
In order to keep the overall number of nodes in second-level systems in O(m), we add

Θ(m1/4) distinct second-level systems to our graph. When used, each of these second-level
systems recharges all systems on the first level, which in turn allows us to propagate through
the main relay chain Θ(m1/2) times again. Therefore, with Θ(m1/4) second-level systems
in the construction, the first two levels already allow us to traverse the main relay chain
Θ(m1/2) ·Θ(m1/4) times.

P.A. Papp and R. Wattenhofer 43:13

...

Θ(m
1
2)

Θ(m
1
2)

Θ(m
1
2)

...

Θ(m
3
4)

Θ(m
3
4)

Θ(m
3
4)

first-level
systems

second-level
system

Figure 12 Connection of a second-level recharging system to first-level recharging systems. For
simplicity, only the recharging of group M is shown (node U also has to be recharged).

We can continue this technique in a recursive manner. Assume that we have Θ(m1/(2i))
distinct ith-level systems in the construction, each consisting of Θ(m1−1/(2i)) nodes (which,
therefore, all have a balance of Θ(m1−1/(2i)) after they have been used). We can then use an
(i+ 1)th-level recharging system to recharge all of these ith-level systems; since we now have
χ = Θ(m1/(2i)) ·Θ(m1−1/(2i)) ·Θ(m1−1/(2i)) = Θ(m(2i+1−1)/(2i)), this requires a next level
system of √χ = Θ(m(2i+1−1)/(2i+1)) = Θ(m1−1/(2i+1)) nodes. In order to keep the nodes in
this new level also in O(m), we only add Θ(m1/(2i+1)) systems to the (i+ 1)th-level.

Generally, these higher-level recharging systems fit into our construction in the following
way. Every time when first-level systems have all been used, an extra branch is added to
the construction, which uses one of the second-level systems to recharge the entire first
level (and does not influence the relay chain). Similarly, whenever we would need such a
second-level branch but all of them has been used, a third-level branch is added to recharge
all second-level systems, and the required second-level branch is only visited after traversing
this third-level branch.

Following the recursive pattern, we obtain a construction that allows us to traverse the
main relay chain Θ(m1/2) ·Θ(m1/4) ·Θ(m1/8) · ... times altogether. If the number of levels
go to infinity with m increasing, then for any ε > 0, there is an m large enough that the
number of relay chain traversals is at least Θ(m1−ε). Since the relay chain consists of Θ(m)
nodes, this leads to a stabilization time of Θ(m2−ε).

If we have Θ(m1/(2i)) recharging systems on the ith level, this setting allows us to add
Θ(log logm) levels until the number of systems on a level decreases to a constant value.

Now let us analyze the number of nodes in the graph. On each level, the systems
contain Θ(m) nodes altogether, so the number of nodes in recharging systems adds up to
Θ(m log logm) over all levels. One can easily show that the size of the graph is dominated by
these nodes. The number of branches controlling first-level systems is Θ(m1/2·m1/4·m1/8·...) =
O(m), the number of branches controlling second-level systems is only Θ(m1/4 ·m1/8 · ...) =
O(m1/2), and so on, the number of ith-level branches is O(m1/2i−1). Summing these up, the
number of branches altogether is still O(m). Apart from recharging systems, each branch
contains constantly many nodes only (in the form of simple relays, and gates, and the
corresponding parts of the fork and join gadgets). This shows that the number of nodes
outside of the recharging system is only O(m) altogether, thus the number of nodes in the
entire graph is indeed Θ(m log logm).

ISAAC 2019

43:14 Stabilization Time in Minority Processes

This allows for a choice ofm = Θ(n
log logn), leading to a stabilization time of Ω(n2−ε

(log logn)2−ε).
Since this bound holds for any ε > 0, we can easily remove the logarithmic factors: a lower
bound of Ω(n2−ε) follows from the same construction for any ε̂ < ε. Thus the construction
shows that the number of steps is Ω(n2−ε).

Similarly to the non-recursive case, this lower bound holds in all of our models, since
propagations over the relay chain are still only possible sequentially.

I Theorem 4. For any ε > 0, there exists a graph construction with Ω(n2−ε) stabilization
time in models B–G.

References
1 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. Satisfactory graph partition, variants,

and generalizations. European Journal of Operational Research, 206(2):271–280, 2010.
2 Olivier Bodini, Thomas Fernique, and Damien Regnault. Crystallization by stochastic flips.

In Journal of Physics: Conference Series, volume 226, page 012022. IOP Publishing, 2010.
3 Zhigang Cao and Xiaoguang Yang. The fashion game: Network extension of matching pennies.

Theoretical Computer Science, 540:169–181, 2014.
4 Jacques Demongeot, Julio Aracena, Florence Thuderoz, Thierry-Pascal Baum, and Olivier

Cohen. Genetic regulation networks: circuits, regulons and attractors. Comptes Rendus
Biologies, 326(2):171–188, 2003.

5 Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Convergence in (social) influence
networks. In International Symposium on Distributed Computing, pages 433–446. Springer,
2013.

6 Bernd Gärtner and Ahad N Zehmakan. Color war: Cellular automata with majority-rule. In
International Conference on Language and Automata Theory and Applications, pages 393–404.
Springer, 2017.

7 Bernd Gärtner and Ahad N Zehmakan. Majority model on random regular graphs. In Latin
American Symposium on Theoretical Informatics, pages 572–583. Springer, 2018.

8 Eric Goles and Jorge Olivos. Periodic behaviour of generalized threshold functions. Discrete
Mathematics, 30(2):187–189, 1980.

9 Sandra M Hedetniemi, Stephen T Hedetniemi, KE Kennedy, and Alice A Mcrae. Self-stabilizing
algorithms for unfriendly partitions into two disjoint dominating sets. Parallel Processing
Letters, 23(01):1350001, 2013.

10 Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Natale. Brief Announcement: On
the Voting Time of the Deterministic Majority Process. Distributed, page 647, 2015.

11 Barbara Keller, David Peleg, and Roger Wattenhofer. How Even Tiny Influence Can Have a
Big Impact! In International Conference on Fun with Algorithms, pages 252–263. Springer,
2014.

12 Jeremy Kun, Brian Powers, and Lev Reyzin. Anti-coordination games and stable graph
colorings. In International Symposium on Algorithmic Game Theory, pages 122–133. Springer,
2013.

13 Pál András Papp and Roger Wattenhofer. Stabilization Time in Weighted Minority Processes.
In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

14 Damien Regnault, Nicolas Schabanel, and Éric Thierry. Progresses in the Analysis of Stochastic
2D Cellular Automata: A Study of Asynchronous 2D Minority. In Luděk Kučera and Antonín
Kučera, editors, Mathematical Foundations of Computer Science 2007, pages 320–332. Springer
Berlin Heidelberg, 2007.

15 Damien Regnault, Nicolas Schabanel, and Éric Thierry. On the analysis of “simple” 2d
stochastic cellular automata. In International Conference on Language and Automata Theory
and Applications, pages 452–463. Springer, 2008.

P.A. Papp and R. Wattenhofer 43:15

16 Jean-Baptiste Rouquier, Damien Regnault, and Éric Thierry. Stochastic minority on graphs.
Theoretical Computer Science, 412(30):3947–3963, 2011.

17 Saharon Shelah and Eric C Milner. Graphs with no unfriendly partitions. A tribute to Paul
Erdös, pages 373–384, 1990.

A Further discussion of the recursive construction

While the main idea of the recursive construction has been outlined above, there are some
details worth discussing for completeness.

Since a second-level system can only be used to recharge nodes of the same color, every
time we recharge all the first-level systems, we in fact need two second-level recharging
systems, one of each color.

Recall that in addition to the groupM , the balance of node U also has to be reset between
two uses of a recharging system; however, we did not point this out when calculating the
necessary size of systems, since besides M , a single extra node does not affect the magnitude.
Earlier, we have noted that the recharging systems on a certain level consist of two classes
of systems of different color; observe that the next level systems that recharge the groups
M in one class can simultaneously be used to also recharge the nodes U in the other class.
Alternatively (for simpler analysis), we can add an extra recharging system (of the same size)
on each branch in order to separately recharge the nodes U on the level below.

Note that the number of total relay chain traversals, which is Θ(m1/2 ·m1/4 ·m1/8 · ...),
is in fact only guaranteed to be at least Θ(m1−ε) if the coefficients in these factors are
sufficiently large. With an analysis of the constants in the process, one can show that the
coefficient in each factor can indeed be chosen as 1, and thus these constant do not add up
to dividing logarithmic factors when taking the product. However, this is in fact unnecessary,
as any such logarithmic factor could also be removed simply by a smaller choice of ε.

Finally, note that in this recursive setting, recharging systems are slightly modified in the
sense that they have multiple input nodes from multiple different branches, each connected
to node U . However, this does not modify the behavior of U as long as its initial balance is
readjusted to 1. This also requires a minor modification in the simple relays that are used as
input nodes, since relays generally assume that their output node never switches before the
relays themselves are triggered. This can be resolved by using a modified relay where the
base node has an initial balance of 3, and thus it is enabled by two distinct simple relays on
the branch.

B Detailed analysis of gadgets

Here we provide a more detailed description of the gadgets, and also comment on their
behavior and their use in the construction.

Simple relay. The construction and behavior of the simple relay has already been described
above. One thing to note is that in our construction, simple relays are always used only once:
after node B switches, propagation never returns to the same part of the graph again, and
thus node B will remain unswitchable for the rest of the process.

While we mostly use this original version of the gadget, we occasionally need relays with
multiple output nodes instead of just one. This only requires a simple modification: besides
connecting x extra (black) output nodes to node B, we also need to add x fixed (white)
nodes in order to keep the initial balance of B unchanged.

ISAAC 2019

43:16 Stabilization Time in Minority Processes

Chains of simple relays are mostly used to connect more complex gadgets in our con-
struction. Note that depending on whether the input and output nodes in these gadgets are
supposed to have the same or different initial colors, we only need a chain of length 1 or 2
for this, respectively.

Rechargeable relay. In a rechargeable relay, node B is connected to an upper node U
instead of a fixed node. Node U is connected to a group C of two nodes, which is further
connected to nodes R1, R2. Initially, C has the opposite color as B and U , and one of R1
and R2 is white, the other is black. Node B has the same external neighbors as a simple
relay. The recharge nodes can both have any set of external neighbors as long as their initial
balance is 3 with C ignored (so with C included, the initial balance of R1 and R2 is then 1
and 5, respectively).

Note that since R1 and R2 have opposite colors, this recharging process can always be
executed on a used relay through either R1 or R2, depending on the current color of the
nodes. We only need to select the recharge node that has the current color of U , and switch
3 of its neighbors (to U ’s current color) for the recharging step, and then switch 3 of its
neighbors (to the opposite color) for the resetting step.

Recharging system. In a basic recharging system, the node U is connected to the input
node v, the group M , and to

√
n+ 1 fixed white nodes. The middle level group M has a

further edge to all nodes Li, and is balanced by
√
m fixed black nodes. Finally, each node

Li has
√
m distinct neighbors in X, and thus each node in X is connected to exactly one

lower-level node. For convenience, we assume that m is a square number.
A generalized recharging system is almost identical to this, except for the nodes Li

occasionally being connected to the same node. The connections between the lower level
and X are not directly specified: we are free to choose which of the nodes Li to connect
to a specific node in X. Note, however, that the gadget design implicitly assumes that
xj ≤

√
χ for all nodes in X. This is naturally satisfied whenever we use the gadget in our

constructions, since we always have x1 = x2 = ... = xm with |X| > xj . Also note that for
convenience, we assume χ to be a square number.

Nodes in the upper and lower levels are initially white, while M and the input node v
are initially black. The nodes X may assume any color, and also may switch multiple times
before the recharging system is activated. However, the graph construction ensures that at
the time when the gadget is activated (that is, when v switches), all nodes in X are currently
colored black (i.e., we indeed use the system on rechargeable relays that can currently be
recharged). The gadget design ensures that U and M have an initial balance of 1, while the
nodes Li have a balance of 1 at least, depending on the current color of their neighbors in X.

AND gate. The and gate consist of 7 nodes. The input nodes of X are connected to node
A, which is further connected to all other nodes in the gadget (B1, B2, D and the group C
on 3 nodes). Nodes B1 and B2 are also connected to group C, node B1 has an edge to node
D, and node D is connected to some external black node v on the output side. Furthermore,
A, B1 and B2 have x+ 1, 4 and 3 fixed black neighbors, respectively.

One can check that each node has a positive balance as long as there exists a black node
in X. Node A gets a balance of x−1 from the nodes within the gadget, so it is not switchable
unless all nodes in X are white. Nodes B1, B2, C and D all have an initial balance of 1.

After the gadget reaches its final stage (see Figure 8), no node in the gadget can ever
change again, regardless of the states of X or v.

P.A. Papp and R. Wattenhofer 43:17

Note that for the described behavior of the gadget, we also need the fact that none of
the nodes in X switch between the first and second switching of A. The switching of A only
increases their balance (temporarily), so this is guaranteed if other neighbors of nodes in
X do not interfere with the process. In the construction, we only use and gates this way:
whenever a node A becomes switchable in a gate, then that is the only switchable node in
the entire graph, so no other nodes will switch until the propagation reaches v.

As long as this condition is fulfilled, we can connect any number of and gates to a given
node of the graph without affecting its behavior; we only have to make sure that we also add
fixed node neighbors to restore the node’s balance to the original value.

Join gadget. The join gadget consists of a central node C, and of p distinct 2-group starter
gadgets of alternating color (we assume p to be even). Each starter gadget consists of two
groups Ai and Bi, both of size 2 (with i ∈ {1, 2, ..., p}). The two groups are connected to
each other, and Ai has a further edge to the input node vi, and two fixed nodes of the same
color as its own. Finally, all Bi are connected to a central node C, which is in turn connected
to an output node v. Node C also has two further fixed black connections.

Initially, Ai for odd i values, Bi for even i values, vi for even i and node C are colored
white; the remaining nodes are colored black. Nodes Ai have an initial balance of 1, nodes
Bi have an initial balance of 1 or 3 (depending on parity), and C has an initial balance of 3.

Every time after v switches, the balance of C returns to its initial value of 3, so the
switching of the next input node will trigger the same process through the next starter
gadget.

Fork gadget. The fork gadget consists of q nodes F1, ..., Fq of alternating color, where we
assume q to be an odd number. All Fi are connected to the same input node v, and each to
a distinct output node vi. They are also linked to each other, with Fi connected to Fi+1 for
all i ∈ {1, 2, ..., q − 1}. Also, node F1 and Fq have a fixed neighbor colored black and white,
respectively (imitating the role of the nonexistent nodes F0 and Fq+1). Finally, each Fi has
a further fixed neighbor of its original color. Initially, Fi is colored black for odd i and white
for even i values.

The balance of F1 and all white Fi-s is originally 1 in this setting, while the balance of
black Fi-s (except for F1) is 3. Hence when v first switches, only F1 will become switchable
(and switching it will propagate on through v1). The next time v switches, it switches back
to white; with v and F1 both white, F2 can now switch too. The pattern continues all the
way to Fq: as Fi−1 has already been switched before, as soon as v switches back to the
color of Fi, Fi becomes switchable, too, enabling propagation on the next branch. After vi
switches (and remains that way), Fi is not switchable anymore, since vi, Fi−1 and its fixed
neighbor all have the opposite color.

Note that since each switching Fi increases the current balance of v from 1 to 3, we
need to switch two neighbors of v in each turn to make v switchable again. This is exactly
what happens when v is the base node of the rightmost relay in the chain: between every
consecutive switches of v, we switch both node U (by the recharging step) and node vL (by
propagation through the chain) in the relay, and thus v becomes switchable again.

Note that since it is connected to the fork gadget, the rightmost rechargeable relay in the
chain is a modified one in the sense that its base node has not one, but q right-side neighbors,
colored in alternating fashion. However, this fact does not change its behavior at all. The
initial balance of the base node is still 1, and every time after v switches, it has one of its
neighbors Fi switching in the opposite direction. That has exactly the same effect as if the
right neighbor was simply a subsequent relay in the chain, triggered by v.

ISAAC 2019

43:18 Stabilization Time in Minority Processes

On the whole construction. For convenience, we assume in the construction that both m
and r are even numbers.

Recharging systems and and gates, as all other gadgets, are available in two color variants;
in the overview of the construction, we did not discuss which variant is used in which case.
However, the current state of each relay in each round is straightforward to calculate, so the
necessary color of all recharging systems and and gates can easily be determined.

Also, we have seen that and gates are used to ensure that the given recharging or resetting
operations have completely been executed. In order to achieve this, in case of the first systems
(which recharge relays), the input edges of the gates can be connected to the upper nodes of
the corresponding relays, since that is the last node to switch in the sequence. In case of the
systems that reset relays, the aim is only to switch the corresponding recharge node of the
relay, so we can connect the gates to the recharge nodes.

However, as each and gate belongs to a certain branch of the construction, we also have
to ensure that the and gate is only activated when the propagation reaches this branch,
and stays inactive as long as previous branches are being processed. Therefore, besides the
specified nodes in the relays, the final input node of the and gate is the node which was
used to enable the recharging system in question (node v of Figure 5). This way, the gates
ensure that after the recharging system is activated, propagation only continues if all the
resulting switches were executed.

Generalization to ω(1) colors
One can observe that in the construction of Section 5, except for nodes A in the and gates,
all nodes in the graph have a degree of O(

√
n). We can slightly modify the construction and

replace each of these and gates with two levels of such gates, with Θ(
√
n) distinct gates on

the first level (each with Θ(
√
n) input nodes), and a final gate that connects the outputs of

these first-level gates. This gives us a construction with the same properties, but a maximum
degree of O(

√
n).

This allows us to generalize the lower bound of Ω(n 3
2) to the case of not only O(1), but

up to O(
√
n) colors. The technique for this is the same as in the case of O(1) colors: we

add a multipartite graph colored with the additional colors, and connect each of its nodes to
each original node. With ∆ = O(

√
n) established, it suffices to have Θ(

√
n) nodes in each of

the color classes. Therefore, using only Θ(n) additional nodes, we can extend the graph by a
multipartite graph on Θ(

√
n) color classes, each consisting of only Θ(

√
n) nodes.

C Notes on simulations

Due to its complexity, we have also verified the correctness of the non-recursive construction
of Section 5 through implementing it and running a simulation of the minority process. Note
that in general, it is difficult to simulate a minority process in a benevolent model, since all
possible switching sequences would have to be examined to find the one with the smallest
number of steps.

Fortunately, the task is significantly simpler in our case, due to the properties of the
construction. The key observation in our graph is that whenever propagation is split into
multiple parallel threads (that is, when there are multiple switchable nodes at the same
time), then propagation on any of these threads does not influence propagation on other
threads at all. Specifically, the nodes on separate threads do not have common neighbors
except for the beginning and end of such threads; i.e. when a switching node splits the
propagation to multiple threads, or when threads are joined in an and-like fashion, meaning

P.A. Papp and R. Wattenhofer 43:19

that a common neighbor only becomes switchable when propagation has been finished in
all of the threads. This implies that throughout the process, these threads can be handled
completely independently from each other, and the order in which they are processed is
irrelevant. Note that this is also the property of the construction which ensures that the set
of switchable nodes is an independent set in any state.

If we exploit this property, the process can be simulated easily by always choosing an
arbitrary one of the switchable nodes in the graph, knowing that the choice of nodes will not
influence the outcome. To verify correctness in such a simulation, we only have to check that
in each step of the process, the set of nodes that become switchable is exactly the set of nodes
determined by the analysis. Note that the opposite does not happen in our construction:
the switching of a node never makes another switchable node unswitchable (this would also
contradict the property that switchable nodes form an independent step in any state).

When examining concrete instances of our construction, we used the parameter r as the
input to determine the size of the instance. For a given input value of r (always an even
number), we have chosen m = 2 · (r − 1)2, which fits our preconditions on both magnitudes
and parity. All other details of the construction are already determined above; the only
additional thing to note is that whenever different gadgets are connected through a chain of
simple relays, we always use the smallest possible such chain in the implementation.

The simulations verified that the analysis of the construction is correct, and thus stabiliz-
ation time is indeed Ω(n3/2) in model B. Table 1 illustrates the number of steps for some
choices r, along with the resulting number of nodes in the construction. One can observe
that the number of steps indeed grows superlinearly in n.

Table 1 Number of steps on some specific graphs.

Input (r) Nodes (n) Steps

2 99 112
4 469 772
8 1 929 5 884

16 7 729 47 404
24 17 369 161 372
30 27 119 316 568
40 48 169 754 108
60 108 269 2 559 188
80 192 369 6 084 268

100 300 469 11 905 348
120 432 569 20 598 428

ISAAC 2019

Parameterized Complexity of Stable Roommates
with Ties and Incomplete Lists Through the Lens
of Graph Parameters
Robert Bredereck
Technische Universität Berlin, Chair of Algorithmics and Computational Complexity, Germany
robert.bredereck@tu-berlin.de

Klaus Heeger
Technische Universität Berlin, Chair of Algorithmics and Computational Complexity, Germany
heeger@tu-berlin.de

Dušan Knop
Technische Universität Berlin, Chair of Algorithmics and Computational Complexity, Germany
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
dusan.knop@fit.cvut.cz

Rolf Niedermeier
Technische Universität Berlin, Chair of Algorithmics and Computational Complexity, Germany
rolf.niedermeier@tu-berlin.de

Abstract
We continue and extend previous work on the parameterized complexity analysis of the NP-hard
Stable Roommates with Ties and Incomplete Lists problem, thereby strengthening earlier
results both on the side of parameterized hardness as well as on the side of fixed-parameter tractability.
Other than for its famous sister problem Stable Marriage which focuses on a bipartite scenario,
Stable Roommates with Incomplete Lists allows for arbitrary acceptability graphs whose edges
specify the possible matchings of each two agents (agents are represented by graph vertices). Herein,
incomplete lists and ties reflect the fact that in realistic application scenarios the agents cannot bring
all other agents into a linear order. Among our main contributions is to show that it is W[1]-hard
to compute a maximum-cardinality stable matching for acceptability graphs of bounded treedepth,
bounded tree-cut width, and bounded feedback vertex number (these are each time the respective
parameters). However, if we “only” ask for perfect stable matchings or the mere existence of a stable
matching, then we obtain fixed-parameter tractability with respect to tree-cut width but not with
respect to treedepth. On the positive side, we also provide fixed-parameter tractability results for
the parameter feedback edge set number.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis; Mathematics of computing →
Matchings and factors

Keywords and phrases Stable matching, acceptability graph, fixed-parameter tractability, W[1]-
hardness, treewidth, treedepth, tree-cut width, feedback set numbers

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.44

Related Version A full version of this paper can be found at http://arxiv.org/abs/1911.09379.

Funding Main work was done while all authors were with TU Berlin.
Klaus Heeger : Supported by DFG Research Training Group 2434 “Facets of Complexity”.
Dušan Knop: Supported by the DFG, project MaMu (NI 369/19).

© Robert Bredereck, Klaus Heeger, Dušan Knop, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6303-6276
mailto:robert.bredereck@tu-berlin.de
https://orcid.org/0000-0001-8779-0890
mailto:heeger@tu-berlin.de
https://orcid.org/0000-0003-2588-5709
mailto:dusan.knop@fit.cvut.cz
https://orcid.org/0000-0003-1703-1236
mailto:rolf.niedermeier@tu-berlin.de
https://doi.org/10.4230/LIPIcs.ISAAC.2019.44
http://arxiv.org/abs/1911.09379
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

1 Introduction

The computation of stable matchings is a core topic in the intersection of algorithm design
and theory, algorithmic game theory, and computational social choice. It has numerous
applications – the research goes back to the 1960s. The classic (and most prominent from
introductory textbooks) problem Stable Marriage, which is known to be solvable in linear
time, relies on complete bipartite graphs for the modeling with the two sides representing
the same number of “men” and “women”. Herein, each side expresses preferences (linear
orderings aka rankings) over the opposite sex. Informally, stability then means that no two
matched agents have reason to break up. Stable Roommates, however, is not restricted
to a bipartite setting: given is a set V of agents together with a preference list Pv for
every agent v ∈ V , where a preference list Pv is a strict (linear) order on V \ {v}. The
task is to find a stable matching, that is, a set of pairs of agents such that each agent is
contained in at most one pair and there is no blocking edge (i.e., a pair of agents who strictly
prefer their mates in this pair to their partners in the matching; naturally, we assume that
agents prefer to be matched over being unmatched). Such a matching can be computed in
polynomial time [18]. We refer the reader to the monographs [16, 25] for a general discussion
on Stable Roommates. Recent practical applications of Stable Roommates and its
variations also to be studied here range from kidney exchange to connections in peer-to-peer
networks [10, 33, 34].

If the preference lists Pv for all agents v are complete, then the graph-theoretic model
behind is trivial – a complete graph reflects that every agent ranks all other agents. In the
more realistic scenario that an agent may only rank part of all other agents, the corresponding
graph, referred to as acceptability graph, is no longer a complete graph but can have an
arbitrary structure. We assume that the acceptability is symmetric, that is, if an agent v finds
an agent u acceptable, then also agent u finds v acceptable. Moreover, to make the modeling
of real-world scenarios more flexible and realistic, one also allows ties in the preference lists
(rankings) of the agents, meaning that tied agents are considered equally good. Unfortunately,
once allowing ties in the preferences, Stable Roommates already becomes NP-hard [24, 32],
indeed this is true even if each agent finds at most three other agents acceptable [7]. Hence,
in recent works specific (parameterized) complexity aspects of Stable Roommates with
Ties and Incomplete Lists (SRTI) have been investigated [1, 3, 5]. In particular, while
Bredereck et al. [3] studied restrictions on the structure of the preference lists, Adil et
al. [1] initiated the study of structural restrictions of the underlying acceptability graph,
including the parameter treewidth of the acceptability graph. We continue Adil et al.’s line of
research by systematically studying three variants (“maximum”, “perfect”, “existence”) and
by extending significantly the range of graph parameters under study, thus gaining a fairly
comprehensive picture of the parameterized complexity landscape of Stable Roommates
with Ties and Incomplete Lists.

Notably, while previous work [1, 15] argued for the (also practical) relevance for studying
the structural parameters treewidth and vertex cover number, our work extends this to
further structural parameters that are either stronger than vertex cover number or yield
more positive algorithmic results than possible for treewidth. We study the arguably most
natural optimization version of Stable Roommates with ties and incomplete lists, referred
to as Max-SRTI:

Input: A set V of agents and a profile P = (Pv)v∈V .
Task: Find a maximum-cardinality stable matching or decide that none exists.

Max-SRTI

R. Bredereck, K. Heeger, D. Knop, and R. Niedermeier 44:3

In addition to Max-SRTI, we also study two NP-hard variants. The input is the same,
but the task either changes to finding a perfect stable matching – this is Perfect-SRTI –
or to finding just any stable matching – this is SRTI-Existence.1

Input: A set of agents V and a profile P = (Pv)v∈V .
Task: Find a perfect stable matching or decide that none exists.

Perfect-SRTI

Input: A set of agents V and a profile P = (Pv)v∈V .
Task: Find a stable matching or decide that none exists.

SRTI-Existence

Related Work. On bipartite acceptability graphs, where Stable Roomates is called
Stable Marriage, Max-SRTI admits a polynomial-time factor- 2

3 -approximation [29].
However, even on bipartite graphs it is NP-hard to approximate Max-SRTI by a factor
of 29

33 , and Max-SRTI cannot be approximated by a factor of 3
4 + ε for any ε > 0 unless

Vertex Cover can be approximated by a factor strictly smaller than two [36]. Note that,
as we will show in our work, SRTI-Existence is computationally hard in many cases, so
good polynomial-time or even fixed-parameter approximation algorithms for Max-SRTI
seem out of reach.

Perfect-SRTI was shown to be NP-hard even on bipartite graphs [19]. This holds also
for the more restrictive case when ties occur only on one side of the bipartition, and any
preference list is either strictly ordered or a tie of length two [24]. As SRTI-Existence is
NP-hard for complete graphs, all three problems considered in this paper are NP-hard on
complete graphs (as every stable matching is a maximal matching). This implies paraNP-
hardness for all parameters which are constant on cliques, including distance to clique,
cliquewidth, neighborhood diversity, the number of uncovered vertices, and modular width.

Following up on work by Bartholdi III and Trick [2], Bredereck et al. [3] showed NP-
hardness and polynomial-time solvability results for SRTI-Existence under several restric-
tions constraining the agents’ preference lists.

On a fairly general level, there is quite some work on employing methods of parameterized
algorithmics in the search for potential islands of tractability for in general NP-hard stable
matching problems [1, 5, 6, 26, 28]. More specifically, Marx and Schlotter [26] showed that
Max-SRTI is W[1]-hard when parameterized by the number of ties. They observed that it
is NP-hard even if the maximum length of a tie is constant but showed that Max-SRTI
is fixed-parameter tractable when parameterized by the combined parameter “number of
ties and maximum length of a tie”. Meeks and Rastegari [30] considered a setting where the
agents are partitioned into different types having the same preferences. They show that the
problem is FPT in the number of types. Mnich and Schlotter [31] defined Stable Marriage
with Covering Constraints, where the task is to find a matching which matches a given
set of agents, and minimizes the number of blocking pairs among all these matchings. They
showed the NP-hardness of this problem and investigated several parameters such as the
number of blocking pairs or the maximum degree of the acceptability graph.

1 In the following, we consider a slightly different formulation of these problems: We assume that the
input consists of the acceptability graph and rank functions. This is no restriction, as one can transform
a set of agents and a profile to an acceptability graph and rank functions and vice versa in linear time.

ISAAC 2019

44:4 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

Most importantly for our work, however, Adil et al. [1] started the research on structural
restrictions of the acceptability graph, which we continue and extend. Their result is an
XP-algorithm for the parameter treewidth; indeed, they did not show W[1]-hardness for this
parameter, leaving this as an open question. This open question was solved (also for the
bipartite case) by Gupta et al. [15], who further considered various variants (such as sex-equal
or balanced) of stable marriage with respect to two variants of treewidth.2 Moreover, Adil et
al. [1] showed that Max-SRTI is fixed-parameter tractable when parameterized by the size
of the solution (that is, the cardinality of the set of edges in the stable matching) and that
Max-SRTI restricted to planar acceptability graphs then is fixed-parameter tractable even
with subexponential running time.3

Our Contributions. We continue the study of algorithms for Max-SRTI and its variants
based on structural limitations of the acceptability graph. In particular, we extend the results
of Adil et al. [1] in several ways. For an overview on our results we refer to Figure 1. We
highlight a few results in what follows. We observe that Adil et al.’s dynamic programming-
based XP-algorithm designed for the parameter treewidth4 indeed yields fixed-parameter
tractability for the combined parameter treewidth and maximum degree. We complement
their XP result and the above mentioned results by showing that Max-SRTI is W[1]-hard for
the graph parameters treedepth, tree-cut width, and feedback vertex set. Notably, all these
graph parameters are “weaker” [22] than treewidth and these mutually independent results
imply W[1]-hardness with respect to treewidth; the latter was also shown in the independent
work of Gupta et al. [15].

For the two related problems Perfect-SRTI and SRTI-Existence, on the contrary
we show fixed-parameter tractability with respect to the parameter tree-cut width. These
results confirm the intuition that tree-cut width, a recently introduced [35] and since then
already well researched graph parameter [11, 12, 13, 20, 27] “lying between” treewidth
and the combined parameter “treewidth and maximum vertex degree”, is a better suited
structural parameter for edge-oriented problems than treewidth is. Moreover, we extend our
W[1]-hardness results to Perfect-SRTI and SRTI-Existence parameterized by treedepth
and to Perfect-SRTI parameterized by the feedback vertex number.

In summary, we provide a fairly complete picture of the (graph-)parameterized computa-
tional complexity landscape for the three studied problems – see Figure 1 for an overview of
our results. Among other things Figure 1 for the parameter tree-cut width depicts a surprising
complexity gap between Max-SRTI on the one side (W[1]-hardness) and Perfect-SRTI
and SRTI-Existence (fixed-parameter tractability) on the other side. Finally, Figure 1
leaves as an open question the parameterized complexity of SRTI-Existence with respect
to the parameter feedback vertex set number which we conjecture to be answered with
W[1]-hardness.

2 Indeed, without knowing the work of Gupta et al. [15] our work initially was strongly motivated by
Adil et al.’s [1] open question for treewidth. To our surprise, although the Adil et al. [1] paper has been
revised six months after the publication of Gupta et al. [15], it was not mentioned by Adil et al. [1] that
this open question was answered by a subset of the authors, namely Gupta et al. [15].

3 More precisely, Adil et al. state their result for the parameter “size of a maximum matching of the
acceptability graph”, which is only by a factor at most two greater than the size of a stable matching.

4 It only gives containment in XP for this parameter, and only this is stated by Adil et al. [1].

R. Bredereck, K. Heeger, D. Knop, and R. Niedermeier 44:5

treewidth

tree-cut width

treewidth + max. degreevertex cover

treedepth feedback vertex set

feedback edge set

Max Perfect ∃

Max Perfect ∃

Max Perfect ∃ Max Perfect ∃

Max Perfect ∃

Max Perfect ∃

Max Perfect ∃

W[1]-h W[1]-h W[1]-h

W[1]-h W[1]-h W[1]-h

Thm. 7 Cor. 8 Cor. 9

FPT FPT FPT

[1] [1] [1]

FPT FPT FPT

[1] [1] [1]

W[1]-h♦ FPT FPT

Thm. 10 Thm. 13 Thm. 13

FPT FPT FPT

Thm. 17 Thm. 17 Thm. 17

W[1]-h W[1]-h ?

Thm. 7 Cor. 8

Figure 1 Results for graph-structural parameterizations of Stable Roommates with Ties
and Incomplete Lists. Max means Max-SRTI, Perfect means Perfect-SRTI, and ∃ means
SRTI-Existence. The symbol ♦ indicates the existence of an FPT factor- 1

2 -approximation algorithm
(see Corollary 16). The arrows indicate dependencies between the different parameters. An arrow
from a parameter p1 to a parameter p2 means that there is a computable function f : N→ N such
that for any graph G we have p1(G) ≤ f(p2(G)). Consequently, fixed-parameter tractability for p1

then implies fixed-parameter tractability for p2, and W[1]-hardness for p2 then implies W[1]-hardness
for p1.

2 Preliminaries

For a positive integer n let [n] := {1, 2, 3, . . . , n} = {x ∈ N : x ≤ n}. We write vectors h in
boldface, and access their entries (coordinates) via h(e).

For a graph G and a vertex v ∈ V (G), let δG(v) be the set of edges incident to v.
If the graph G is clear from the context, then we may just write δ(v). For a subset of
edges M ⊆ E(G) and a vertex v ∈ V (G), we define δM (v) := δG(v) ∩M . We denote the
maximum degree in G by ∆(G), i.e., ∆(G) := maxv∈V (G) |δG(v)|. For a tree T rooted
at a vertex r and a vertex v ∈ V (T), we denote by Tv the subtree rooted at v. For a
graph G and a subset of vertices X (a subset of edges F), we define G − X (G − F)
to be the graph arising from G by deleting all vertices in X and all edges incident to a
vertex from X (deleting all edges in F). For a graph G and a set of vertices X ⊆ V (G),
the graph arising by contracting X is denoted by G/X ; it is defined by replacing the
vertices in X by a single vertex. Thus, we have V (G/X) :=

(
V (G) \ X

)
∪ {vX} and

E(G/X) := {{v, w} ∈ E(G) : v, w /∈ X} ∪ {{v, vX} : {v, x} ∈ E(G) : v /∈ X,x ∈ X}. Unless
stated otherwise, n := |V (G)|, and m := |E(G)|.

We define the directed graph ←→G by replacing each edge {v, w} ∈ E(G) by two directed
ones in opposite directions, i.e. (v, w) and (w, v).

Note that the acceptability graph for a set of agents V and a profile P is always simple,
while a graph arising from a simple graph through the contraction of vertices does not need
to be simple.

ISAAC 2019

44:6 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

A parameterized problem consists of the problem instance I (in our setting the Stable
Roommate instance) and a parameter value k (in our case always a number measuring
some aspect in acceptability graph). An FPT-algorithm for a parameterized problem is
an algorithm that runs in time f(k)|I|O(1), where f is some computable function. That
is, an FPT algorithm can run in exponential time, provided that the exponential part of
the running time depends on the parameter value only. If such an algorithm exists, the
parameterized problem is called fixed-parameter tractable for the corresponding parameter.
There is also a theory of hardness of parameterized problems that includes the notion of
W[1]-hardness. If a problem is W[1]-hard for a given parameter, then it is widely believed
not to be fixed-parameter tractable for the same parameter.

The typical approach to showing that a certain parameterized problem is W[1]-hard is
to reduce to it a known W[1]-hard problem, using the notion of a parameterized reduction.
In our case, instead of using the full power of parameterized reductions, we use standard
many-one reductions that ensure that the value of the parameter in the output instance is
bounded by a function of the parameter of the input instance.

The Exponential-Time Hypothesis (ETH) of Impagliazzo and Paturi [17] asserts that
there is a constant c > 1 such that there is no co(n) time algorithm solving the Satisfiability
problem, where n is the number of variables. Chen et al. [4] showed that assuming ETH,
there is no f(k) · no(k) time algorithm solving k-(Multicolored) Clique, where f is any
computable function and k is the size of the clique we are looking for. For further notions
related to parameterized complexity and ETH refer to [8].

2.1 Profiles and preferences
Let V be a set of agents. A preference list Pv for an agent v is a subset Pv ⊆ V \ {v}
together with an ordered partition (P 1

v , P
2
v , . . . , P

k
v) of Pv. A set P i

v with |P i
v| > 1 is called a

tie. The size of a tie P i
v is its cardinality, i.e., |P i

v|. For an agent v ∈ V , the rank function is
rkv : Pv ∪ {v} → N ∪ {∞} with rkv(x) := i for x ∈ P i

v, and rkv(v) =∞.
We say that v prefers x ∈ Pv over y ∈ Pv if rkv(x) < rkv(y). If rkv(x) = rkv(y), then

v ties x and y. For a set V of agents, a set P = (Pv)v∈V of preference lists is called a
profile. The corresponding acceptability graph G consists of vertex set V (G) := V and edge
set E(G) := {{v, w} : v ∈ Pw ∧ w ∈ Pv}.

A subsetM ⊆ E(G) of pairwise non-intersecting edges is called a matching. If {x, y} ∈M ,
then we denote the corresponding partner y of x by M(x) and set M(x) := x if x is
unmatched, that is, if {y ∈ V (G) : {x, y} ∈M} = ∅. An edge {v, w} ∈ E(G) is blocking for
M if rkv(w) < rkv(M(v)) and rkw(v) < rkw(M(w)); we say that v, w constitutes a blocking
pair for M . A matching M ⊆ E(G) is stable if there are no blocking pairs, i.e., for all
{v, w} ∈ E(G), we have rkv(w) ≥ rkv(M(v)) or rkw(v) ≥ rkv(M(w)).

Note that the literature contains several different stability notions for a matching in the
presence of ties. Our stability definition is frequently called weak stability.5

2.2 Structural graph parameters
We consider the (graph-theoretic) parameters treewidth, tree-cut width, treedepth, feedback
vertex number, feedback edge number, vertex cover number, and the combined parameter
“treewidth + maximum vertex degree” (also called degree-treewidth in the literature).

5 Manlove [23] discusses other types of stability – strong stability and super-strong stability.

R. Bredereck, K. Heeger, D. Knop, and R. Niedermeier 44:7

A set of vertices S ⊆ V (G) is a feedback vertex set if G− S is a forest and the feedback
edge set is a subset F ⊆ E(G) of edges such that G− F is a forest. We define the feedback
vertex (edge) number fvs(G) (fes(G)) to be the cardinality of a minimum feedback vertex
(edge) set of G. A vertex cover is a set of vertices intersecting with every edge of G, and the
vertex cover number vc(G) is the size of a minimum vertex cover. The treedepth td(G) is the
smallest height of a rooted tree T with vertex set V (G) such that for each {v, w} ∈ V (G) we
have that either v is a descendant of w in T or w is a descendant of v in T .

Treewidth intuitively measures the tree-likeness of a graph. It can be defined via structural
decompositions of a graph into pieces of bounded size, which are connected in a tree-like
fashion, called tree decompositions.

Tree-Cut Width. Tree-cut width has been introduced by Wollan [35] as tree-likeness
measure between treewidth and treewidth combined with maximum degree. A family of
subsets X1, . . . , Xk of a finite set X is a near-partition of X if Xi ∩ Xj = ∅ for all i 6= j

and
⋃k

i=1 Xi = X. Note that Xi = ∅ is possible (even for several distinct i). A tree-cut
decomposition of a graph G is a pair (T,X) which consists of a tree T and a near-partition
X = {Xt ⊆ V (G) : t ∈ V (T)} of V (G). A set in the family X is called a bag of the tree-cut
decomposition. Given a tree node t, let Tt be the subtree of T rooted at t. For a node
t ∈ V (T), we denote by Yt the set of vertices induced by Tt, i.e. Yt :=

⋃
v∈V (Tt) Xv.

For an edge e = {u, v} ∈ E(T), we denote by T
{u,v}
u and T

{u,v}
v the two connected

components in T − e which contain u respectively v. These define a partition

(
⋃

t∈T
{u,v}
u

Xt,
⋃

t∈T
{u,v}
v

Xt)

of V (G). We denote by cut(e) ⊆ E(G) the set of edges of G with one endpoint in
⋃

t∈T
{u,v}
u

Xt

and the other one in
⋃

t∈T
{u,v}
v

Xt.
A tree-cut decomposition is called rooted if one of its nodes is called the root r. For any

node t ∈ V (T) \ {r}, we denote by e(t) the unique edge incident to t on the r-t-path in T .
The adhesion adhT (t) is defined as | cut(e(t))| for each t 6= r, and adhT (r) := 0.

The torso of a tree-cut decomposition (T,X) at a node t, denoted byHt, can be constructed
from G as follows: If T consists of a single node, then the torso of t ∈ V (T) is G. Else let
C1

t , . . . , C
`
t be the connected components of T − t. Let Zi :=

⋃
v∈V (Ci

t) Xv. Then, the torso
arises from G by contracting each Zi ⊆ V (G) for 1 ≤ i ≤ `.

The operation of suppressing a vertex v of degree at most two consists of deleting v
and, if v has degree exactly two, then adding an edge between the two neighbors of v. The
torso-size tor(t) is defined as the number of vertices of the graph arising from the torso Ht

by exhaustively suppressing all vertices of degree at most two.
The width of a tree-cut decomposition (T,X) is defined as maxt∈V (T){adh(t), tor(t)}. The

tree-cut width tcw(G) of a graph G is the minimum width of a tree-cut decomposition of G.

Nice tree-cut decompositions. Similarly to nice tree decompositions [21], each tree-cut
decomposition can be transformed into a nice tree-cut decomposition. Nice tree-cut decom-
positions have additional properties which help simplifying algorithm design. Besides the
definition of nice tree-cut decompositions, in the following we provide some of its properties.6

6 The properties used here are stated (without a proof) by Ganian et al. [11].

ISAAC 2019

44:8 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

I Definition 1 ([11]). Let (T,X) be a tree-cut decomposition. A node t ∈ V (T) is called
light if adh(t) ≤ 2 and all outgoing edges from Yt end in Xp, where p is the parent of t, and
heavy otherwise (see Figure 2 for an example).

I Theorem 2 ([11, Theorem 2]). Let G be a graph with tcw(G) = k. Given a tree-cut
decomposition of G of width k, one can compute a nice tree-cut decomposition (T,X) of G of
width k with at most 2|V (G)| nodes in cubic time.

I Lemma 3 ([11, Lemma 2]). Each node t in a nice tree-cut decomposition of width k has at
most 2k + 1 heavy children.

In what follows, we will assume that a nice tree-cut decomposition of the input graph
is given. Computing the tree-cut width of a graph is NP-hard [20], but there exists an
algorithm, given a graph G and an integer k, either finds a tree-cut decomposition of width
at most 2k or decides that tcw(G) > k in time 2O(k2 log k)n2. Furthermore, Giannopoulou
et al. [14] gave a constructive proof of the existence of an algorithm deciding whether the
tree-cut width of a given graph G is at most k in f(k)n time, where f is a computable
recursive function. Very recently, Ganian et al. [13] performed experiments on computing
optimal tree-cut decompositions using SAT-solvers.

I Lemma 4. Let T be a forest. Then tcw(T) = 1.

Proof. As clearly tcw(T) ≤ tcw(T + F) for any set of edges F , we may assume without loss
of generality that T is a tree.

We define Xt = {t} for all t ∈ V (T), and consider the tree-cut decomposition (T,X), and
pick an arbitrary vertex r to be the root of T .

As T is a tree, we have adh(t) = 1 for all t 6= r.
Furthermore, for each t ∈ V (T), all vertices but t contained in the torso of t can be

suppressed, and thus tor(t) ≤ 1. J

I Lemma 5. Let G be a graph. Then tcw(G+ e) ≤ tcw(G) + 2 for any edge e.

Proof. Consider a tree-cut decomposition (T,X) of G. This is also a tree-cut decomposition
of G+ e.

Clearly, the adhesion of any node of T can increase by at most 1.
The torso-size of a vertex can also increase by at most 2, as e can prevent at most both

of its endpoints from being suppressed. J

I Corollary 6. Let G be a graph, and k the feedback edge number. Then tcw(G) ≤ 2k + 1.

Proof. This directly follows from Lemmas 4 and 5. J

3 Hardness Results

All our hardness result are based on parameterized reductions from the Multicolored
Clique problem, a well-known W[1]-hard problem. The so-called vertex selection gadgets are
somewhat similar to those of Gupta et al. [15], however, the other gadgets in our reductions
are different. Here we only discuss the main dissimilarities of the reductions we present here
and the one of Gupta et al. [15]. We use one gadget for each edge whereas the reduction
presented therein uses a single gadget for all edges between two color classes. This subtle
difference allows us to bound not only treewidth of the resulting graph but rather both
treedepth and the size of a feedback vertex set. It is worth noting that it is not clear whether
the reduction of Gupta et al. [15] can, with some additional changes and work, yield hardness

R. Bredereck, K. Heeger, D. Knop, and R. Niedermeier 44:9

for these parameters as well or not. On the other hand, we use some consistency gadget
which is essentially a triangle (while the graph resulting from the reduction of Gupta et
al. [15] is bipartite). Furthermore, in our reduction all of the vertices have either strictly
ordered preferences or a tie between (the only) two agents they find acceptable. We defer
details and further comments to a full version of this paper due to space reasons.

I Theorem 7 (?). Max-SRTI parameterized by treedepth and feedback vertex set is W[1]-
hard. Moreover, there is no no(td(G)) time algorithm for Max-SRTI, unless ETH fails.

Note that such a maximum stable matching corresponding to a clique of size k leaves
only 2k(k − 1) vertices uncovered. Thus, by adding 2k(k − 1) vertices connected to all other
vertices, we also get the W[1]-hardness for Perfect-SRTI:

I Corollary 8 (?). Perfect-SRTI parameterized by treedepth and feedback vertex set is
W[1]-hard.

From this, we get the W[1]-hardness of SRTI-Existence for treedepth by adding for
each vertex a 3-cycle, ensuring that this vertex is matched (similarly to the 3-cycles cij , c′

ij ,
c′′

ij for the vertex cij in the consistency gadgets).

I Corollary 9 (?). SRTI-Existence parameterized by treedepth is W[1]-hard.

A different reduction partially using similar ideas and techniques yields the W[1]-hardness
of Max-SRTI for the parameter tree-cut width:

I Theorem 10 (?). Max-SRTI parameterized by tree-cut width is W[1]-hard.

4 Tractability Results

We present an FPT-algorithm for Perfect-SRTI and SRTI-Existence. Given a tree-cut
decomposition of the acceptability graph, we use dynamic programming to decide whether a
solution exists or not. In the dynamic programming table for a node t we store information
whether there exists a matching M for the set Yt of vertices from the bags of the subtree of
the tree-cut decomposition rooted in t. We allow that M is not stable in G but require that
the blocking pairs are incident to vertices outside Yt, and for some of the edges {v, w} in
cut(t), we require the endpoint v in Yt to be matched at least as good as he ranks w.

DP Tables. Before we describe the idea behind the table entries we store in our dynamic
programming procedure, we introduce the following relaxation of matching stability.

I Definition 11. Let (T,X) be a nice tree-cut decomposition of G. For a node t ∈ V (T),
the closure of t (clos(t)) is the set of vertices in Yt together with their neighbors, that is,
clos(t) := Yt ∪NG(Yt) . We say that a matching M on clos(t) for some t ∈ V (T) complies
with a vector h ∈ {−1, 0, 1}cut(t) if the following conditions hold:

for each edge e ∈ cut(t), we have e ∈M if and only if he = 0;
for each e = {v, w} ∈ cut(t) with v ∈ Yt and he = 1, we have rkv(M(v)) ≤ rkv(w), i.e. v
ranks its partner (not being w by the previous condition) in M at least as good as w; and
every blocking pair contains a vertex from V (G) \ Yt not matched in M .

Intuitively, if we set ht(e) = 1 for an edge e = {v, x} in cut(t) with x ∈ Xt, then we are
searching for a matching M (in G[clos(t)]) for which we can guarantee that rkx(M(x)) ≤
rkx(v). Consequently, we know that e will not be blocking in an extension of such a matching.
Contrary, if we set ht(e) = −1, then we allow x to prefer v over its partner (in particular, x

ISAAC 2019

44:10 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

r1 r2

v11
v12

v13

v14
v15

v21

v22

v41

v42

v43

v3

r1 r2

v11
v12

v13

v14
v15

v3v21 v22 v41 v42 v43

r

t1

t2 t3 t4

Figure 2 An example of a graph G (left part of the picture) and its nice tree-cut decomposition
(T,X) (not of minimal width). The vertices of G are the circles, while the nodes of T are the
rectangles. For a node t ∈ V (T), the bag Xt contains exactly those vertices inside the rectangle. In
the right picture, the solid edges are the edges of T , while the dotted edges are from G. The nodes
t1 and t4 are light, while t2 (because there is an edge connecting a vertex in t2 to a vertex in r) and
t3 (because adh(t3) = 3) are heavy.

may remain unmatched). Thus, for an extension of such a matching in order to maintain
stability we have to secure that rkv(M(v)) ≤ rkv(x), since otherwise e will be blocking.
Observe that if a matching complies with h for a vector h ∈ {−1, 0, 1}cut(t) with h(e) = 1 for
some edge e ∈ cut(t), then it complies with ĥ ∈ {−1, 0, 1}cut(t) which is the same as h but
for e is set to −1 (formally, ĥ(f) = h(f) for f 6= e and ĥ(e) = −1). Clearly, any matching
complying with h complies with ĥ, since the latter is more permissive.

For a node t ∈ T its dynamic programming table is τt and it contains an entry for every
h ∈ {−1, 0, 1}cut(t). An entry τt[h] is a matching M ⊆ E(G[Yt]) ∪ cut(t) if M complies
with h. If no such matching for h exists, then we set τt[h] = ∅. Note that the size of the
table τt for a node t is upper-bounded by 3tcw(G).

I Example 12. The graph and tree-cut decomposition are depicted in Figure 2:
For t1 and h1({t1, v21}) = 0 and h1({v12, r2}) = 1, all stable matchings contain-

ing {t1, v21} and {v21, v22} are complying with h. For t2 and h2({v21, r1}) = 1 and
h2({v22, v11}) = −1, the matching M = {{v21, v22}} is complying with h2. For t3 and
any vector h3 with h3({v3, v12}) = 1, no matching complies with h3: In such a matching,
v3 must be ranked at least as good as rkv3(v12) = 1, but not to v12, which is impossible. For
t4 and h4({v42, v15}) = 0 = h4({v42, v13}), no matching complying with h4 exists, as such a
matching must match v42 to both v13 and v15.

I Theorem 13 (?). Perfect-SRTI and SRTI-Existence can be solved in 2O(k log k)nO(1)

time, where k := tcw(G).

Proof Sketch. Let (T,X) be a nice tree-cut decomposition of G of width k. We will first
explain the algorithm for SRTI-Existence, and in the end we highlight how this algorithm
can be adapted to Perfect-SRTI. We compute the values τt[h] by bottom-up induction
over the tree T .

For a leaf t ∈ V (T) and a vector h, we enumerate all matchings Mt on G[Xt ∪N(Yt)].
We check whether Mt complies with h. If we find such a matching, then we store one of
these matchings in τt[h], and else set τt[h] = ∅. As |Xt ∪N(Yt)| ≤ 2k, and G is simple, the
number of matchings is bounded by 2O(k log k).

The induction step, that is, computing the table entries for the inner nodes of the tree-cut
decomposition is the most-involved part and sketched below.

R. Bredereck, K. Heeger, D. Knop, and R. Niedermeier 44:11

For the root r ∈ V (T), we have Yr = V (G) and cut(r) = ∅. Thus, a matching on
Yr = V (G) complying with hr ∈ {−1, 0, 1}∅ is just a stable matching (note that hr is
unique). Hence, G contains a stable matching if and only if τr[hr] 6= ∅.

The induction step is executed for each t ∈ V (T) and each h ∈ {−1, 0, 1}cut(t), and
therefore at most n3k times. As each execution takes 2O(k log k)nO(1) time, the total running
time of the algorithm is bounded by 2O(k log k)nO(1).

To solve Perfect-SRTI, we store in any dynamic programming table τt only matchings
such that every vertex inside Yt is matched.

Induction Step. In what follows we sketch how to solve the induction step.

Input: The acceptability graph G, rank functions rkv for all v ∈ V (G), a tree-cut
decomposition (T,X), a node t ∈ V (T), a vector h ∈ {−1, 0, 1}cut(t), for
each child c of t and each hc ∈ {−1, 0, 1}cut(c) the value τc[hc].

Task: Compute τt[h].

Induction Step

Before we give the proof idea we first give the definition of light children classes. Intuitively,
two light children of a note t are in the same class if, with respect to t, they behave in a similar
way, that is, their neighborhood in Xt is the same and their table entries are compatible. In
order to properly define the later notion we first need to introduce few auxiliary definitions.
To simplify the notation, we assume that the edges of G are enumerated, that is, we have
E(G) = {e1, e2, . . . , em}. For a vector h ∈ {−1, 0, 1}cut(t), the i-th coordinate will always be
the coordinate of the edge with the i-th lowest index in cut(t).

I Definition 14. Let t ∈ V (T) be a node. We define the signature sig(t) to be the set
{h ∈ {−1, 0, 1}cut(t) : τt[h] 6= ∅}.

Let c, d be light children of t. We write c♦d if and only if sig(c) = sig(d) and N(c) = N(d),
where we define N(c) := NG(Yc) for each c ∈ V (T).

It follows immediately that ♦ is an equivalence relation on light children of t. Furthermore,
since each class of ♦ is identified by its signature and neighborhood in Xt, there are O(k2)
classes of ♦. Let C(c) denote the equivalence class of the light child c of t and let N(C) ⊆ Xt

be the set of neighbors of the class C of ♦ (i.e., N(C) is the set of neighbors N(Yc) ⊆ Xt for
c ∈ C). Furthermore, let sig(C) denote the signature of the class C and similarly let sigx(C)
denote the signature of C with respect to its neighbor x ∈ N(C).

I Observation 15. If C is a class with |C| ≥ 3 and (−1,−1) /∈ sig(C), then there is no stable
matching in G.

Proof Idea (Induction Step). Due to space reasons, we defer proof details to a full version
of this paper. First, we will guess which edges incident to heavy children are in the matching
M to be computed and which are not. Note that there are at most k(2k + 1) edges incident
to heavy children of t, since their adhesion is at most k. Thus, we fix a matching between
vertices in Xt and heavy children and what remains is to combine the guessed matching with
matchings in their graphs; note that we can also guess these, however, this results in (3k)O(k)

guesses. Instead of trying all of the possibilities we prove that it is possible to reduce the
number of heavy children matchings we try to extend to kO(k). It is worth noting that these
choices will result in some further constraints the matching in the light children must fulfill.

ISAAC 2019

44:12 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

Then for every class of the equivalence ♦ we guess whether its neighbor(s) in Xt are
matched to it (i.e., matched to a vertex in a child or two in this class) or not. Let N denote
the guessed matching. Note that there are kO(k) such choices, since each vertex v ∈ Xt is
“adjacent” to at most k+1 classes of ♦ (i.e., there are at most k classes such that v is adjacent
to a vertex in all of the children contained in this class) and choosing a class (or deciding not
to be adjacent to any light child) for every vertex in Xt yields the claimed bound. We show
that if a class of ♦ with N(C) = {x} is selected to be matched with its neighbor x, then
it is possible to match x to the best child in this class (the one containing the top choice
for x among these children); provided there exists a solution which is compatible with such a
choice. We do this by showing a rather simple exchange argument.

Having resolved heavy children and light children with only one neighbor in Xt it remains
to deal with children with two neighbors. We generalise the exchange argument we provide
for classes with one neighbor. Then, we prove that many combinations of N and a signature
of a class C allows us to reduce the number of children in C in which we have to search for
a partner of a vertex in N(C) to a constant (in fact, four). We call such classes the good
classes. However, there are classes where this is not possible (call these the bad classes).
Consequently, there are only 4k possibilities how to match vertices in Xt to good classes of
children. Finally, we characterise the bad classes and use this characterisation to show how
to reduce the question of existence of a (perfect) matching complying with h and obeying all
the constraints of heavy children to an instance of 2-SAT (similarly to Feder [9]). J

I Corollary 16 (?). A factor- 1
2 -approximation for Max-SRTI can be computed in

2O(k log k)nO(1) time, where k := tcw(G).

Using standard techniques and the polynomial-time algorithm for graphs of bounded
treewidth by Adil et al. [1], we obtain an FPT-algorithm for Max-SRTI (and therefore also
Perfect-SRTI and SRTI-Existence) parameterized by feedback edge number:

I Theorem 17 (?). Max-SRTI can be solved in 2fes(G)nO(1) time.

5 Conclusion

Taking the viewpoint of parameterized graph algorithmics, we investigated the line between
fixed-parameter tractability and W[1]-hardness of Stable Roommates with Ties and
Incomplete Lists. Studying parameterizations mostly relating to the “tree-likeness” of the
underlying acceptability graph, we arrived at a fairly complete picture (refer to Figure 1) of
the corresponding parameterized complexity landscape. There is a number of future research
issues stimulated by our work. First, we did not touch on questions about polynomial
kernelizability of the fixed-parameter tractable cases. Indeed, for the parameter feedback
edge number we believe that a polynomial kernel should be possible. Another issue is how tight
the running time for our fixed-parameter algorithm for the parameter tree-cut width k is; more
specifically, can we show that our exponential factor kO(k) is basically optimal or can it be
improved to say 2O(k)? Also the case of SRTI-Existence parameterized by feedback vertex
number remained open (see Figure 1). Based on preliminary considerations, we conjecture it
to be W[1]-hard. Clearly, there is still a lot of room to study Stable Roommates with
Ties and Incomplete Lists through the lens of further graph parameters. On a general
note, we emphasize that so far our investigations are on the purely theoretic and classification
side; practical algorithmic considerations are left open for future research.

R. Bredereck, K. Heeger, D. Knop, and R. Niedermeier 44:13

References
1 Deeksha Adil, Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. Paramet-

erized algorithms for stable matching with ties and incomplete lists. Theor. Comput. Sci.,
723:1–10, 2018.

2 John J. Bartholdi III and Michael Trick. Stable Matching with Preferences Derived from a
Psychological Model. Oper. Res. Lett., 5(4):165–169, 1986.

3 Robert Bredereck, Jiehua Chen, Ugo Paavo Finnendahl, and Rolf Niedermeier. Stable
Roommate with Narcissistic, Single-Peaked, and Single-Crossing Preferences. In Proc. of
ADT ’17, volume 10576 of LNCS, pages 315–330. Springer, 2017.

4 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes, Iyad A. Kanj, and
Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information and
Computation, 201(2):216–231, 2005.

5 Jiehua Chen, Danny Hermelin, Manuel Sorge, and Harel Yedidsion. How Hard Is It to Satisfy
(Almost) All Roommates? In Proc. of ICALP ’18, volume 107 of LIPIcs, pages 35:1–35:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

6 Jiehua Chen, Rolf Niedermeier, and Piotr Skowron. Stable Marriage with Multi-Modal
Preferences. In Proc. of EC ’18, pages 269–286. ACM, 2018.

7 Ágnes Cseh, Robert W. Irving, and David F. Manlove. The Stable Roommates Problem with
Short Lists. Theory Comput. Syst., 63(1):128–149, 2019.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Tomás Feder. A new fixed point approach for stable networks and stable marriages. J. Comput.
Syst. Sci., 45(2):233–284, 1992.

10 Anh-Tuan Gai, Dmitry Lebedev, Fabien Mathieu, Fabien de Montgolfier, Julien Reynier, and
Laurent Viennot. Acyclic Preference Systems in P2P Networks. In Proc. of Euro-Par ’07,
volume 4641 of LNCS, pages 825–834. Springer, 2007.

11 Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic Applications of Tree-Cut
Width. In Proc. of MFCS ’15, volume 9235 of LNCS, pages 348–360. Springer, 2015.

12 Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On Structural Parameterizations of
the Bounded-Degree Vertex Deletion Problem. In Proc. of STACS ’18, volume 96 of LIPIcs,
pages 33:1–33:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

13 Robert Ganian, Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. SAT-encodings for
treecut width and treedepth. In Proc. of ALENEX ’19, pages 117–129. SIAM, 2019.

14 Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M. Thilikos.
Lean Tree-Cut Decompositions: Obstructions and Algorithms. In Proc. of STACS ’19, volume
126 of LIPIcs, pages 32:1–32:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

15 Sushmita Gupta, Saket Saurabh, and Meirav Zehavi. On Treewidth and Stable Marriage.
CoRR, abs/1707.05404, 2017. arXiv:1707.05404.

16 Dan Gusfield and Robert W. Irving. The Stable Marriage Problem - Structure and Algorithms.
MIT Press, 1989.

17 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

18 Robert W. Irving. An Efficient Algorithm for the “Stable Roommates” Problem. J. Algorithms,
6(4):577–595, 1985.

19 Kazuo Iwama, Shuichi Miyazaki, Yasufumi Morita, and David Manlove. Stable Marriage with
Incomplete Lists and Ties. In Proc. of ICALP ’99, volume 1644 of LNCS, pages 443–452.
Springer, 1999.

20 Eun Jung Kim, Sang-il Oum, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. An
FPT 2-Approximation for Tree-Cut Decomposition. Algorithmica, 80(1):116–135, 2018.

21 Ton Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer,
1994. doi:10.1007/BFb0045375.

ISAAC 2019

https://doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/1707.05404
https://doi.org/10.1007/BFb0045375

44:14 Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists

22 Christian Komusiewicz and Rolf Niedermeier. New Races in Parameterized Algorithmics. In
Proc. of MFCS ’12, volume 7464 of LNCS, pages 19–30. Springer, 2012.

23 David Manlove. The structure of stable marriage with indifference. Discrete Appl. Math.,
122(1-3):167–181, 2002.

24 David Manlove, Robert W. Irving, Kazuo Iwama, Shuichi Miyazaki, and Yasufumi Morita.
Hard variants of stable marriage. Theor. Comput. Sci., 276(1-2):261–279, 2002.

25 David F. Manlove. Algorithmics of Matching Under Preferences, volume 2 of Series on
Theoretical Computer Science. WorldScientific, 2013.

26 Dániel Marx and Ildikó Schlotter. Parameterized Complexity and Local Search Approaches
for the Stable Marriage Problem with Ties. Algorithmica, 58(1):170–187, 2010.

27 Dániel Marx and Paul Wollan. Immersions in Highly Edge Connected Graphs. SIAM J.
Discrete Math., 28(1):503–520, 2014.

28 Dániel Marx and Ildikó Schlotter. Stable assignment with couples: Parameterized complexity
and local search. Discrete Optim., 8(1):25–40, 2011.

29 Eric McDermid. A 3/2-Approximation Algorithm for General Stable Marriage. In Proc. of
ICALP ’09, pages 689–700. Springer, 2009.

30 Kitty Meeks and Baharak Rastegari. Stable Marriage with Groups of Similar Agents. In
Proc. of WINE ’18, volume 11316 of LNCS, pages 312–326. Springer, 2018. doi:10.1007/
978-3-030-04612-5_21.

31 Matthias Mnich and Ildikó Schlotter. Stable Marriage with Covering Constraints-A Complete
Computational Trichotomy. In Proc. of SAGT ’17, volume 10504 of LNCS, pages 320–332.
Springer, 2017. doi:10.1007/978-3-319-66700-3_25.

32 Eytan Ronn. NP-complete stable matching problems. J. Algorithms, 11(2):285–304, 1990.
33 Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. Pairwise kidney exchange. J. Econ.

Theory, 125(2):151–188, 2005.
34 Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. Efficient Kidney Exchange: Coincidence

of Wants in Markets with Compatibility-Based Preferences. Am. Econ. Rev., 97(3):828–851,
June 2007.

35 Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory, Ser.
B, 110:47–66, 2015. doi:10.1016/j.jctb.2014.07.003.

36 H. Yanagisawa. Approximation Algorithms for Stable Marriage Problems. PhD thesis, Kyoto
University, 2007.

https://doi.org/10.1007/978-3-030-04612-5_21
https://doi.org/10.1007/978-3-030-04612-5_21
https://doi.org/10.1007/978-3-319-66700-3_25
https://doi.org/10.1016/j.jctb.2014.07.003

Path and Ancestor Queries over Trees with
Multidimensional Weight Vectors
Meng He
Faculty of Computer Science, Dalhousie University, Canada
mhe@cs.dal.ca

Serikzhan Kazi
Faculty of Computer Science, Dalhousie University, Canada
skazi@dal.ca

Abstract
We consider an ordinal tree T on n nodes, with each node assigned a d-dimensional weight vector
w ∈ {1, 2, . . . , n}d, where d ∈ N is a constant. We study path queries as generalizations of well-
known orthogonal range queries, with one of the dimensions being tree topology rather than a linear
order. Since in our definitions d only represents the number of dimensions of the weight vector
without taking the tree topology into account, a path query in a tree with d-dimensional weight
vectors generalize the corresponding (d+ 1)-dimensional orthogonal range query. We solve ancestor
dominance reporting problem as a direct generalization of dominance reporting problem, in time
O(lgd−1 n+ k) and space of O(n lgd−2 n) words, where k is the size of the output, for d ≥ 2. We also
achieve a tradeoff of O(n lgd−2+ε n) words of space, with query time of O((lgd−1 n)/(lg lgn)d−2 + k),
for the same problem, when d ≥ 3. We solve path successor problem in O(n lgd−1 n) words of
space and time O(lgd−1+ε n) for d ≥ 1 and an arbitrary constant ε > 0. We propose a solution
to path counting problem, with O(n(lgn/ lg lgn)d−1) words of space and O((lgn/ lg lgn)d) query
time, for d ≥ 1. Finally, we solve path reporting problem in O(n lgd−1+ε n) words of space and
O((lgd−1 n)/(lg lgn)d−2 + k) query time, for d ≥ 2. These results match or nearly match the best
tradeoffs of the respective range queries. We are also the first to solve path successor even for d = 1.

2012 ACM Subject Classification Information systems → Data structures; Theory of computation
→ Data structures design and analysis; Information systems → Multidimensional range search

Keywords and phrases path queries, range queries, algorithms, data structures, theory

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.45

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.01147v1.

Funding This work was supported by NSERC of Canada.

1 Introduction

The problem of preprocessing a weighted tree, i.e., a tree in which each node is associated
with a weight value, to support various queries evaluating a certain function on the node
weights of a given path, has been extensively studied [2, 6, 12, 17, 8, 15, 4]. For example, in
path counting (resp. path reporting), the nodes of the given path with weights lying in the
given query interval are counted (resp. reported). These queries address the needs of fast
information retrieval from tree-structured data such as XML and tree network topology.

For many applications, meanwhile, a node in a tree is associated with not just a single
weight, but rather with a vector of weights. Consider a simple scenario of an online forum
thread, where users can rate responses and respond to posts. Induced is a tree-shaped
structure with posts representing nodes, and replies to a post being its children. One can
imagine enumerating all the ancestor posts of a given post that are not too short and have
sufficiently high average ratings. Ancestor dominance query, which is among the problems
we consider, provides an appropriate model in this case.

© Meng He and Serikzhan Kazi;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 45; pp. 45:1–45:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mhe@cs.dal.ca
mailto:skazi@dal.ca
https://doi.org/10.4230/LIPIcs.ISAAC.2019.45
https://arxiv.org/abs/1910.01147v1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Path and Ancestor Queries over Trees

We define a d-dimensional weight vector w = (w1, w2, . . . , wd) to be a vector with d

components, each in rank space [n], 1 i.e. w ∈ [n]d, with wi being referred to as the ith weight
of w. We then consider an ordinal tree T on n nodes, each node x of which is assigned a d-
dimensional weight vector w(x). The queries we will define all give a d-dimensional orthogonal
range Q =

∏d
i=1[qi, q′i], and a weight vector w is in Q iff for any i ∈ [1, d], qi ≤ wi ≤ q′i holds.

In our queries, then, we are given a pair of vertices x, y ∈ T, and an arbitrary orthogonal
range Q. With Px,y being the path from x to y in the tree T, the goal is to preprocess the
tree T for the following types of queries:

Path Counting: return |{z ∈ Px,y |w(z) ∈ Q}|.
Path Reporting: enumerate {z ∈ Px,y |w(z) ∈ Q}.
Path Successor : return argmin{w1(z) | z ∈ Px,y andw(z) ∈ Q}.2
Ancestor Dominance Reporting: a special case of path reporting, in which y is the root of
the tree and q′i = +∞ for all i ∈ [d]. That is, the query reports the ancestors of x whose
weight vectors dominate the vector q = (q1, q2, . . . , qd).

This indeed is a natural generalization of the traditional weighted tree, which we refer to
as “scalarly-weighted”, to the case when the weights are multidimensional vectors. At the
same time, when the tree degenerates into a single path, these queries become respectively
(d + 1)-dimensional orthogonal range counting, reporting, successor, as well as (d + 1)-
dimensional dominance reporting queries. Thus, the queries we study are generalizations
of these fundamental geometric queries in high dimensions. We also go along with the
state-or-art in orthogonal range search by considering weights in rank space, since the case
in which weights are from a larger universe can be reduced to it [10].

1.1 Previous Work
Path Queries in Weighted Trees. For scalarly-weighted trees, Chazelle [6] gave an O(n)-
word emulation dag-based data structure that answers path counting queries in O(lgn)
time;3 it works primarily with topology of the tree and is thus oblivious to the distribution
of weights. Later, He et al. [15] proposed a solution with nH(WT) + O(n lg σ) bits of space
and O(lgσ

lg lgn + 1) query time, when the weights are from [σ]; here, H(WT) is the entropy of
the multiset of the weights in T. When σ � n, this matters.

He et al. [15] introduced and solved path reporting problem using linear space and
O((1 + k) lg σ) query time, and O(n lg lg σ) words of space but O(lg σ + k lg lg σ) query time,
in the word-RAM model; henceforth we reserve k for the size of the output. Patil et al. [21]
presented a succinct data structure for path reporting with n lg σ + 6n + O(n lg σ) bits of
space and O((lgn+ k) lg σ) query time. An optimal-space solution with nH(WT) + O(n lg σ)
bits of space and O((1 + k)(lgσ

lg logn + 1)) reporting time is due to He et al. [15]. One of the
tradeoffs proposed by Chan et al. [4], requires O(n lgε n) words of space for the query time
of O(lg lgn+ k).

Orthogonal Range Queries. Dominance reporting in 3D was solved by Chazelle and
Edelsbrunner [7] in linear space with either O((1 + k) lgn) or O(lg2 n+ k) time, in pointer-
machine (PM) model, with the latter being improved to O(lgn lg lgn+ k) by Makris and
Tsakalidis [18]. Same authors [18] developed, in the word-RAM, a linear-size, O(logn+ k)

1 Throughout this paper, [n] stands for {1, 2, . . . , n} for any positive integer n.
2 For path successor, we assume that q′1 =∞; if not, we need only check whether the 1st weight of the

returned node is at most q′1.
3 lg x denotes log2 x in this paper.

M. He and S. Kazi 45:3

and O((lg lgn lg lg lgn+ k) lg lgn) query-time data structures for the unrestricted case and
for points in rank space, respectively. Nekrich [19] presented a word-RAM data structure for
points in rank space, supporting queries in O((lg lgn)2 + k) time, and occupying O(n lgn)
words; this space was later reduced to linear by Afshani [1], retaining the same query time.
Finally, in the same model, a linear-space solution with O(log logn + k) query time was
designed for 3D dominance reporting in rank space [1, 3]. In the PM model, Afshani [1] also
presented an O(logn+ k) query time, linear-space data structure for the points in R3.

For the word-RAM model, JáJá et al. [16] generalized the range counting problem for
d ≥ 2 dimensions and proposed a data structure with O(n(lgn/ lg lgn)d−2) words of space
and O((lgn/ lg lgn)d−1) query time. Chan et al. [5] solved orthogonal range reporting in 3D
rank space in O(n lg1+ε n) words of space and O(lg lgn+ k) query time.

Nekrich and Navarro [20] proposed two tradeoffs for range successor, with either O(n)
or O(n lg lgn) words of space, and respectively with O(lgε n) or O((lg lgn)2) query time.
Zhou [23] later improved upon the query time of the second tradeoff by a factor of lg lgn,
within the same space. Both results are for points in rank space.

1.2 Our Results
As d-dimensional path queries generalize the corresponding (d+ 1)-dimensional orthogonal
range queries, we compare results on them to show that our bounds match or nearly match
the best results or some of the best tradeoffs on geometric queries in Euclidean space. We
present solutions for the (we assume d is a positive integer constant):

ancestor dominance reporting problem, in O(n lgd−2 n) words of space and O(lgd−1 n+k)
query time for d ≥ 2. When d = 2, this matches the space bound for 3D dominance
reporting of [1, 3], while still providing efficient query support. When d ≥ 3, we also achieve
a tradeoff of O(n lgd−2+ε n) words of space, with query time of O(lgd−1 n/(lg lgn)d−2 +k);
path successor problem, in O(n lgd−1 n) words and O(logd−1+ε n) query time, for an
arbitrarily small positive constant ε, and d ≥ 2. These bounds match the first tradeoff
for range successor of Nekrich and Navarro [20]. 4 Previously this problem has not been
studied even on scalarly-weighted trees;
path counting problem, in O(n(logn

log logn)d−1) words of space and O((logn
log logn)d) query time

for d ≥ 1. This matches the best bound for range counting in d+ 1 dimensions [16];
path reporting problem, in O(n lgd−1+ε n) words of space and O((lgd−1 n)/(lg lgn)d−2 +k)
query time, for d ≥ 2. When d = 2, the space matches that of the corresponding result of
Chan et al. [5] on 3D range reporting, while the first term in the query complexity is
slowed down by a sub-logarithmic factor.

To achieve our results, we introduce a framework for solving range sum queries in arbitrary
semigroups and extend base-case data structures to higher dimensions using universe reduction.
A careful design with results hailing from succinct data structures and tree representations
has been necessary, both for building space- and time-efficient base data structures, and for
porting, using tree extractions, the framework of range trees decompositions from general
point-sets to tree topologies (Lemma 5). We employ a few novel techniques, such as extending
the notion of maximality in Euclidean sense to tree topologies, and providing the means
of efficient computation thereof (Section 5). Given a weighted tree T, we propose efficient
means of zooming into the nodes of T with weights in the given range in the range tree
(Lemma 13). Given the ubiquitousness of the concepts, these technical contributions are
likely to be of independent interest.

4 which can be generalized to higher dimensions via standard techniques based on range trees

ISAAC 2019

45:4 Path and Ancestor Queries over Trees

Described further are our solutions to ancestor dominance reporting and path successor
problems, while our data structures for path counting and path reporting are deferred to the
full version of this paper.

2 Preliminaries

Notation. Given a d-dimensional weight vector w = (w1, w2, . . . , wd), we define vector wi,j

to be (wi, wi+1, . . . , wj). We extend the definition to a range Q =
∏d
i=1[qi, q′i] by setting

Qi,j =
∏j
k=i[qk, q′k]. We use the symbol � for domination: p � q iff p dominates q. With

d′ ≤ d and 0 < ε < 1 being constants, a weight vector w is said to be (d′, d, ε)− dimensional
iff w ∈ [n]d′ × [dlgε ne]d−d′ ; i.e., each of its first d′ weights is drawn from [n], while each of
its last d− d′ weights is in [dlgε ne]. When stating theorems, we define i/0 =∞ for i > 0.

During a preorder traversal of a given tree T , the ith node visited is said to have preorder
rank i. Preorder ranks are commonly used to identify tree nodes in various succinct data
structures which we use as building blocks. Thus, we also identify a node by its preorder
rank, i.e., node i in T is the node with preorder rank i in T . The path between the nodes
x, y ∈ T is denoted as Px,y, both ends inclusive. For a node x ∈ T, its set of ancestors,
denoted as A(x), includes x itself; A(x) \ {x} is then the set of proper ancestors of x. Given
two nodes x, y ∈ T, where y ∈ A(x), we set Ax,y , Px,y \ {y}.

Succinct Representations of Ordinal Trees. Succinct representations of unlabeled and
labeled ordinal trees is a widely researched area. In a labeled tree, each node is associated
with a label over an alphabet. Such a label can serve as a scalar weight; in our solutions,
however, they typically categorize tree nodes into different classes. Hence we call these
assigned values labels instead of weights. We summarize the previous result used in our
solutions, in which a node (resp. ancestor) with label α is called an α-node (resp. α-ancestor):

I Lemma 1 ([15, 13]). Let T be an ordinal tree on n nodes, each having a label drawn
from [σ], where σ = O(lgε n) for some constant 0 < ε < 1. Then, T can be represented in
n(lg σ + 2) + O(n) bits of space to support the following operations, for any node x ∈ T,
in O(1) time: child(T, x, i), the i-th child of x; depth(T, x), the number of ancestors of
x; level_anc(T, x, i), the i-th lowest proper ancestor of x; pre_rankα(T, x), the number
of α-nodes that precede x in preorder; pre_selectα(T, i), the i-th α-node in preorder; and
level_ancα(T, x, i), the i-th lowest α-ancestor of x.

Lemma 1 also includes a result on representing an unlabeled ordinal tree, which corresponds
to σ ≡ 1, in 2n+ O(n) bits [13]. Another important special case is that of σ = 2; here, T is
referred to as a 0/1-labeled tree, and the storage space becomes 3n+ O(n) bits.

Tree Extraction. Tree extraction [15] filters out a subset of nodes while preserving the
underlying ancestor-descendant relationship among the nodes. Namely, given a subset X of
tree nodes called extracted nodes, an extracted tree TX can be obtained from the original
tree T as follows. Consider each node v /∈ X in an arbitrary order; let p be v’s parent. We
remove v and all its incident edges from T , and plug all its children v1, v2, . . . , vk (preserving
their left-to-right order) into the slot now freed from v in p’s list of children. After removing
all the non-extracted nodes, if the resulting forest FX is a tree, then TX ≡ FX . Otherwise,
we create a dummy root r and insert the roots of the trees in FX as the children of r, in the
original left-to-right order. The preorder ranks and depths of r are both 0, so that those
of non-dummy nodes still start at 1. An original node x ∈ X of T and its copy, x′, in TX

M. He and S. Kazi 45:5

are said to correspond to each other; x′ is also said to be the TX-view of x, and x is the
T-source of x′. The TX -view of a node y ∈ T (y is not required to be in X) is more generally
defined to be the node y′ ∈ TX corresponding to the lowest extracted ancestor of y, i.e. to
the lowest node in A(y) ∩X.

Representation of a Range Tree on Node Weights by Hierarchical Tree Extraction.
Range trees are widely used in solutions to query problems in Euclidean space. He et
al. [15] further applied the idea of range trees to scalarly-weighted trees. They defined a
conceptual range tree on node weights and represented it by a hierarchy of tree extractions.
We summarize its workings when the weights are in rank space.

We first define a conceptual range tree on [n] with branching factor f , where f = O(lgε n)
for some constant 0 < ε < 1. Its root represents the entire range [n]. Starting from the root
level, we keep partitioning each range, [a, b], at the current lowest level into f child ranges
[a1, b1], . . . , [af , bf], where ai = d(i− 1)(b− a+ 1)/fe+ a and bi = di(b− a+ 1)/fe+ a− 1.
This ensures that, if weight j ∈ [a, b], then j is contained in the child range with subscript
df(j − a+ 1)/(b− a+ 1)e, which can be determined in O(1) time. We stop partitioning a
range when its size is 1. This range tree has h = dlogf ne+ 1 levels. The root is at level 1
and the bottom level is level h.

For 1 ≤ l < h, we construct an auxiliary tree Tl for level l of this range tree as follows: Let
[a1, b1], . . . , [am, bm] be the ranges at level l. For a range [a, b], let Fa,b stand for the extracted
forest of the nodes of T with weights in [a, b]. Then, for each range [ai, bi], we extract Fai,bi

and plug its roots as children of a dummy root rl, retaining the original left-to-right order
of the roots within the forest. Between forests, the roots in Fai+1,bi+1 are the right siblings
of the roots in Fai,bi

, for any i ∈ [m− 1]. We then label the nodes of Tl using the reduced
alphabet [f], as follows. Note that barring the dummy root rl, there is a bijection between
the nodes of T and those of Tl. Let xl ∈ Tl be the node corresponding to x ∈ T. In the
range tree, let [a, b] be the level-l range containing the weight of x. Then, at level l + 1, if
the weight of x is contained in the jth child range of [a, b], then xl ∈ Tl is labeled j. Each Tl
is represented by Lemma 1 in n(lg f + 2) + O(n) bits, so the total space cost of all the Tl’s
is n lgn+ (2n+ O(n)) logf n bits. When f = ω(1), this space cost is n+ O(n) words. This
completes the outline of hierarchical tree extraction. Henceforth, we shorthand as Tv the
extraction from T of the nodes with weights in v’s range, for a node v of the range tree. The
following lemma maps xl to xl+1:

I Lemma 2 ([15]). Given a node xl ∈ Tl and the range [a, b] of level l containing the weight
of x, node xl+1 ∈ Tl+1 can be located in O(1) time, for any l ∈ [h− 2].

Later, Chan et al. [4] augmented this representation with ball-inheritance data structure
to map an arbitrary xl back to x:

I Lemma 3 ([4]). Given a node xl ∈ Tl, where 1 ≤ l < h, the node x ∈ T that corresponds
to xl can be found using O(n lgn · s(n)) bits of additional space and O(t(n)) time, where
(a) s(n) = O(1) and t(n) = O(lgε n); or (b) s(n) = O(lg lgn) and t(n) = O(lg lgn); or (c)
s(n) = O(lgε n) and t(n) = O(1).

Path Minimum in (Scalarly-)Weighted Trees. In a weighted tree, path minimum query
asks for the node with the smallest weight in the given path. We summarize the best result
on path minimum; in it, α(m,n) and α(n) are the inverse-Ackermann functions:

ISAAC 2019

45:6 Path and Ancestor Queries over Trees

I Lemma 4 ([4]). An ordinal tree T on n weighted nodes can be indexed (a) using O(m) bits
of space to support path minimum queries in O(α(m,n)) time and O(α(m,n)) accesses to
the weights of nodes, for any integer m ≥ n; or (b) using 2n+ O(n) bits of space to support
path minimum queries in O(α(n)) time and O(α(n)) accesses to the weights of nodes. In
particular, when m = Θ(n lg∗∗ n),5 one has α(m,n) = O(1), and therefore (a) includes the
result that T can be indexed in O(n lg∗∗ n) bits of space to support path minimum queries in
O(1) time and O(1) accesses to the weights of nodes.

3 Reducing to Lower Dimensions

This section presents a general framework for reducing the problem of answering a d-
dimensional query to the same query problem in (d − 1) dimensions, by generalizing the
standard technique of range tree decomposition for the case of tree topologies weighted
with multidimensional vectors. To describe this framework, we introduce a d-dimensional
semigroup path sum query problem which is a generalization of all the query problems we
consider in this paper. Let (G,⊕) be a semigroup and T a tree on n nodes, in which each
node x is assigned a d-dimensional weight vector w(x) and a semigroup element g(x), with
the semigroup sum operator denoted as ⊕. Then, in a d-dimensional semigroup path sum
query, we are given a path Px,y in T, an orthogonal query range Q in d-dimensional space,
and we are asked to compute

∑
z∈Px,y and w(z)∈Q g(z). When the weight vectors of the nodes

and the query range are both from a (d′, d, ε)-dimensional space, the (d′, d, ε)-dimensional
semigroup path sum query problem is defined analogously.

The following lemma presents our framework for solving a d-dimensional semigroup path
sum query problem; its counterpart in (d′, d, ε)-dimensional space is given in Section 4.

I Lemma 5. Let d be a positive integer constant. Let G(d−1) be an s(n)-word data structure
for a (d−1)-dimensional semigroup path sum problem of size n. Then, there is an O(s(n) lgn+
n)-word data structure G(d) for a d-dimensional semigroup path sum problem of size n, whose
components include O(lgn) structures of type G(d−1), each of which is constructed over a tree
on n+ 1 nodes. Furthermore, G(d) can answer a d-dimensional semigroup path sum query by
performing O(lgn) (d− 1)-dimensional queries using these components and returning the
semigroup sum of the answers. Determining which queries to perform on structures of type
G(d−1) requires O(1) time per query. 6

Proof. We define a conceptual range tree R with branching factor 2 over the dth weights
of the nodes of T and represent it using hierarchical tree extraction as in Section 2. For
each level l of the range tree, we define a tree T ∗l with the same topology as Tl. We assign
(d− 1)-dimensional weight vectors and semigroup elements to each node, x′, in T ∗l as follows.
If x′ is not the dummy root, then w(x′) is set to be (w1(x), . . . , wd−1(x)), where x is the
node of T corresponding to x′. We also set g(x′) = g(x). If x′ is the dummy root, then its
first (d− 1) weights are −∞, while g(x′) is set to an arbitrary element of the semigroup. We
then construct a data structure, Gl, of type G(d−1), over T ∗l . The data structure G(d) thus

5 lg∗∗ n stands for the number of times an iterated logarithm function lg∗ needs to be applied to n in
order for the result to become at most 1.

6 It may be tempting to simplify the statement of the lemma by defining t(n) as the query time of G(d−1)

and claiming that G(d) can answer a query in O(t(n) lgn) time. However, this bound is too loose when
applying this lemma to reporting queries.

M. He and S. Kazi 45:7

comprises the structures Tl and Gl, over all l. The range tree has O(lgn) levels, each T ∗l has
n+1 nodes, and the Gls are the O(lgn) structures of type G(d−1) referred to in the statement.
As all the structures Tl occupy n+ O(n) words, G(d) occupies O(s(n) lgn+ n) words.

Next we show how to use G(d) to answer queries. Let Px,y be the query path and
Q =

∏d
j=1[qj , q′j] be the query range. To answer the query, we first decompose Px,y into Ax,z,

{z}, and Ay,z, where z is the lowest common ancestor of x and y, found in O(1) time via
LCA in T1. It suffices to answer three path semigroup sum queries using each subpath and Q
as query parameters, as the semigroup sum of the answers to these queries is the answer to
the original query. Since the query on subpath {z} reduces to checking whether w(z) ∈ Q,
we show how to answer the query on Ax,z; the query on Ay,z is then handled similarly. To
answer the query on Ax,z, we perform a standard top-down traversal in the range tree to
identify up to two nodes at each level representing ranges that contain exactly one of qd or
q′d. Let, thus, v be the node that we are visiting, in the range tree R. We maintain current
nodes, xv and zv (initialized as respectively x and z) local to the current level l; they are
the nodes in Tl that correspond to Tv-view of the original query nodes x and z. Nodes xv
and zv are kept up-to-date in O(1) time as we descend the levels of the range tree. Namely,
when descending to the jth (j ∈ {0, 1}) child of the node v, we identify, via Lemma 2, the
corresponding nodes in Tl+1, for nodes level_ancj(Tl, xv, 1) and level_ancj(Tl, zv, 1).

For each node v identified at each level l, such that v’s range contains qd but not
q′d, we check if it is its left child-range that contains qd. If so, we perform a (d − 1)-
dimensional semigroup range sum query with the following parameters: (i) the query range
[q1, q

′
1] × [q2, q

′
2] × . . . × [qd−1, q

′
d−1] (i.e. we drop the last range); and (ii) the query path

is Axu,zu
, where xu and zu are the nodes in Tl+1 corresponding to the Tu-views of x and

z, with u being the right child of v; this is analogous to updating xv and zv, i.e. applying
Lemma 2 to nodes level_anc1(Tl, xv, 1), level_anc1(Tl, zv, 1). For each node whose range
contains q′d but not qd, a symmetrical procedure is performed by considering its left child.

The semigroup sum of the answers to these O(lgn) queries is the answer to the original
query. J

4 Space Reduction Lemma for Non-Constant Branching Factor

This section presents a general framework for reducing the problem of answering a (d′, d, ε)-
dimensional query to the same query problem in (d′ − 1, d, ε) dimensions, by generalizing the
approach of [16] for the case of trees weighted with multidimensional vectors.

I Lemma 6. Let d and d′ be positive integer constants such that d′ ≤ d, and ε be a constant
in (0, 1). Let G(d′−1) be an s(n)-word data structure for a (d′− 1, d, ε)-dimensional semigroup
path sum problem of size n. Then, there is an O(s(n) lgn/ lg lgn+ n)-word data structure
G(d′) for a (d′, d, ε)-dimensional semigroup path sum problem of size n, whose components
include O(lgn/ lg lgn) structures of type G(d′−1), each of which is constructed over a tree
on n+ 1 nodes. Furthermore, G(d′) can answer a (d′, d, ε)-dimensional semigroup path sum
query by performing O(lgn/ lg lgn) (d′ − 1, d, ε)-dimensional queries using these components
and returning the semigroup sum of the answers. Determining which queries to perform on
structures of type G(d′−1) requires O(1) time per query.

Proof. We define a conceptual range tree over the d′th weights of the nodes of T and represent
it using hierarchical tree extraction as in Section 2. For each level l of the range tree, we
define a tree T ∗l with the same topology as Tl. We assign (d′ − 1, d, ε)-dimensional weight
vectors and semigroup elements to each node, x′, in T ∗l , as follows. If x′ is not the dummy

ISAAC 2019

45:8 Path and Ancestor Queries over Trees

root, then w(x′) is set to be (w1(x), . . . , wd′−1(x), λ(Tl, x′), wd′+1(x), . . . , wd(x)), where x is
the corresponding node of x′ in T, and λ(Tl, x′) is the label assigned to x′ in Tl. We also
set g(x′) = g(x). If x′ is the dummy root, then its first d′ − 1 weights are −∞ and last
d− d′+ 1 weights are −dlgεe, while g(x′) is set to an arbitrary element of the semigroup. We
further construct a data structure, Gl, of type G(d′−1), over T ∗l . The data structure G(d′)

then comprises the structures Tl and Gl, over all l. The range tree has O(lgn/ lg lgn) levels
and each T ∗l has n+ 1 nodes, and the structures Gl are the O(lgn/ lg lgn) structures of type
G(d′−1) referred to in the statement. As all the Tls occupy n+ O(n) words, G(d′) occupies
O(s(n) lgn/ lg lgn+ n) words.

Next we show how to use G(d′) to answer queries. Let Px,y be the query path and
Q =

∏d
j=1[qj , q′j] be the query range. As discussed in the proof of Lemma 5, it suffices to

describe the handling of the path Ax,z, where z is the lowest common ancestor of x and y.
To answer the query on Ax,z, we perform a top-down traversal in the range tree to identify

the up to two nodes at each level representing ranges that contain at least one of qd′ and q′d′ .
For each node v identified at each level l, we perform a (d′ − 1, d, ε)-dimensional semigroup
range sum query with parameters computed as follows: (i) the query path is Pxv,zv

, where
xv and zv are the nodes in Tl corresponding to the Tv-views of x and z; and (ii) the query
range is Qv = [q1, q

′
1] × [q2, q

′
2] × . . . × [qd′−1, q

′
d′−1] × [iv..jv] × [qd′+1, q

′
d′+1] × . . . × [qd, q′d],

such that the children of v representing ranges that are entirely within [qd′ , q′d′] are children
iv, iv + 1, . . . , jv (child i refers to the ith child); no queries are performed if such children do
not exist. The semigroup sum of these O(lgn/ lg lgn) queries is the answer to the original
query. It remains to show that the parameters of each query are computed in O(1) time
per query. By Section 2, iv and jv are computed in O(1) time via simple arithmetic, which
is sufficient to determine Qv. Nodes xv and zv are computed in O(1) time each time we
descend down a level in the range tree: Initially, when v is the root of the range tree, xv and
zv are nodes x and z in T1. When we visit a child, vj , of v whose range contains at least one
of qd′ and q′d′ , we compute (via Lemma 2) xvj

as the node in Tl+1 corresponding to the node
level_ancj(Tl, xv, 1) in Tl, which uses constant time. Node zvj

is located similarly. J

5 Ancestor Dominance Reporting

In Lemma 7 we solve the (1, d, ε)-dimensional path dominance reporting problem, which asks
one to enumerate the nodes in the query path whose weight vectors dominate the query
vector. The strategy employed in Lemma 7 is that of zooming into the extraction dominating
the query point in the last (d− 1) weights, and therein reporting the relevant nodes based
on the 1st weight and tree topology only.

I Lemma 7. Let d ≥ 1 be a constant integer and 0 < ε < 1
d−1 be a constant number. A tree

T on m ≤ n nodes, in which each node is assigned a (1, d, ε)-dimensional weight vector, can
be represented in m+O(m) words, so that a path dominance reporting query can be answered
in O(1 + k) time, where k is the number of the nodes reported.

Proof. We represent T using Lemma 1. For any (0, d − 1, ε)-dimensional vector g =
(g1, g2, . . . , gd−1), we consider a conceptual scalarly-weighted tree Eg by first extracting the
node set G = {x |x ∈ T and w2,d(x) � g} from T . The weight of a non-dummy node in Eg
is the 1st weight of its T -source. If Eg has a dummy root, then its weight is −∞.

Instead of storing Eg explicitly, we create the following structures, the first two of which
are built for any possible (0, d− 1, ε)-dimensional vector g:

M. He and S. Kazi 45:9

A 0/1-labeled tree Tg (using Lemma 1) with the topology of T , in which a node u has
label 1 iff u is extracted when constructing Eg;
A succinct index Ig for path maximum queries in Eg (using Lemma 4(a));
An array W1 where W1[x] stores the 1st weight of the node x in T ;
A table C which stores pointers to Tg and Ig for each possible g.

For any node x′ in Eg, its T -source x can be computed using x = pre_select1(Tg, x
′).

Then, the weight of x′ is W1[x]. With this O(1)-time access to node weights in Eg, by
Lemma 4 we can use Ig to answer path maximum queries in Eg in O(1) time.

We now show how to answer a path dominance reporting query in T . Let Px,y and
q = (q1, q2, . . . , qd) be respectively the path and weight vector given as query parameters.
First, we use C to locate Tq′ and Iq′ , where q′ = q2,d. As discussed in the proof of Lemma 5, it
suffices to show how to answer the query with Ax,z as the query path, where z = LCA(T, x, y).
To that end, we fetch the Tq′ -view, x′, of x, as x′ = pre_rank1(Tq′ , level_anc1(Tq′ , x, 1)),
and analogously the view, z′, of z. Next, Iq′ locates a node t′ ∈ Ax′,z′ with the maximum
weight. If the weight of t′ is less than q1, then no node in Ax,y can possibly have a weight
vector dominating q, and our algorithm is terminated without reporting any nodes. Otherwise,
the T -source t of t′ is located as t = pre_select1(Tq′ , t

′). The node t ∈ T then claims the
following two properties: (i) as Tq′ contains a node corresponding to t, one has w2,d(t) � q′;
and (ii) as w1(t) equals the weight of t′, it is at least q1. We therefore have that w(t) � q
and hence report t. Afterwards, we perform the same procedure recursively on paths Ax′,t′
and As′,z′ in Eq′ , where s′ = pre_rank1(Tq′ , level_anc1(Tq′ , t, 1)).

To analyze the running time, the key observation is that we perform path maximum
queries using Iq′ at most 2k + 1 times. Since both each query itself and the operations
performed to identify the query path use O(1) time, our algorithm runs in O(1 + k) time.

To analyze the space cost, we observe thatW1 occupies m words. The total number of pos-
sible (0, d− 1, ε)-dimensional vectors is O(lg(d−1)ε n). Since each Tg uses O(m) bits and each
Ig uses O(m lg∗∗m) bits, the total space space cost of storing Tg’s and Ig’s for all possible g’s
is O((m+m lg∗∗m) lg(d−1)ε n) = O(m lg∗∗m lg(d−1)ε n) ≤ O(m lg∗∗ n lg(d−1)ε n) = O(m lgn)
bits for any constant 0 < ε < 1/(d − 1), which is O(m) words. Furthermore, C stores
O(lg(d−1)ε n) pointers. To save the space cost of each pointer, we concatenate the encod-
ings of all the Tgs and Igs and store them in a memory block of O(m lgn) bits. Thus,
each pointer stored in C can be encoded in O(lg(m lgn)) bits, and the table C thus uses
O((lgm + lg lgn) log(d−1)ε n) = O(lgm log(d−1)ε n) + O(lg lgn log(d−1)ε n) = O(lgm lgn) +
O(lgn) = O(lgm lgn) bits for any constant 0 < ε < 1/(d−1), which is O(lgm) words. Finally,
the encoding of T using Lemma 1 is 2m + O(m) bits. Therefore, the total space cost is
m+ O(m) words. J

We next design a solution to the 2-dimensional ancestor dominance reporting problem,
by first generalizing the notion of 2-dominance in Euclidean space to weighted trees. More
precisely, in a tree T in which each node is assigned a d-dimensional weight vector, we say
that a node x 2-dominates another node y iff x ∈ A(y) and w1(x) ≥ w1(y). Then a node x
is defined to be 2-maximal iff no other node in T 2-dominates x.

The following property is then immediate: Given a set, X, of 2-maximal nodes, let TX
be the corresponding extraction from T . Let the weight of a node x′ ∈ TX be the 1st weight
of its T -source x. Then, in any upward path of TX , the node weights are strictly decreasing.
In such a tree as TX , the weighted ancestor problem [9] is defined. In this problem, one is
given a weighted tree with monotonically decreasing node weights along any upward path.
We preprocess such a tree to answer weighted ancestor queries, which, for any given node

ISAAC 2019

45:10 Path and Ancestor Queries over Trees

x and value κ, ask for the highest ancestor of x whose weight is at least κ. Farach and
Muthukrishnan [9] presented an O(n)-word solution that answers this query in O(lg lgn)
time, for an n-node tree weighted over [n]. With an easy reduction we can further achieve
the following result:

I Lemma 8. Let T be a tree on m ≤ n nodes, in which each node is assigned a weight
from [n]. If the node weights along any upward path are strictly decreasing, then T can be
represented using O(m) words to support weighted ancestor queries in O(lg lgn) time.

Proof. Let W be the set of weights actually assigned to the nodes of T . We replace the
weight, h, of any node x in T by the rank of h in W , which is in [m]. We then represent the
resulting tree T ′ in O(m) words to support a weighted ancestor query in T ′ in O(lg lgm)
time [9]. We also construct a y-fast trie [22], Y , on the elements of W ; the rank of each
element is also stored with this element in Y . Y uses O(m) space. Given a weighted ancestor
query over T , we first find the rank, κ, of the query weight in W in O(lg lgn) time by
performing a predecessor query in Y , and κ is further used to perform a query in T ′ to
compute the answer. J

To design our data structures, we define a conceptual range tree with branching factor
f = dlgε ne over the 2nd weights of the nodes in T and represent it using hierarchical tree
extraction as in Section 2. Let v be a node in this range tree. In Tv, we assign to each node
the weight vector of the T -source and call the resulting weighted tree T (v). We then define
M(v) as follows: If v is the root of the range tree, then M(v) is the set of all the 2-maximal
nodes in T . Otherwise, let u be the parent of v. Then a node, t, of T (v) is in M(v) iff t is
2-maximal in T (v) and its corresponding node in T (u) is not 2-maximal in T (u). Thus, for
any node x in T , there exists a unique node v in the range tree such that there is a node in
M(v) corresponding to x.

We further conceptually extract two trees from Tl : (i) Ml is an extraction from Tl of the
node set {x |x ∈ Tl and there exists a node u at level l of the range tree, s.t. x has a
corresponding node in M(u)}; while (ii) Nl is an extraction from Tl of the node set {x |x ∈
Tl and ∃ a node v at level l + 1 of the range tree, s.t. x has a corresponding node ∈M(v)}.
TM (v) is the tree formed by extracting M(v) from T (v), and TG(v) is the tree formed by
extracting from T (v) the node set {x |x ∈ T (v) and there exists a child, t of v
s.t. there is a node in M(t) corresponding to x}. Then, for each level l, we also create the
following data structures (when defining these structures, we assume that the root, rl, of Tl
corresponds to a dummy node η in T with weight vector (−∞,−∞); the node η is omitted
when determining the rank space, preorder ranks, and depths in T):

Dl, a 1-dimensional path dominance reporting structure (using Lemma 7) over the tree
obtained by assigning weight vectors to the nodes of Ml as follows: each node x′ of Ml is
assigned a scalar weight w2(x), where x is the node of T corresponding to x′;
El, a 1-dimensional path dominance reporting structure (using Lemma 7) over the tree
obtained by assigning weight vectors to the nodes of Ml as follows: each node x′ of Ml is
assigned a scalar weight w1(x), where x is the node of T corresponding to x′;
Fl, a (1, 2, ε)-dimensional path dominance reporting structure (using Lemma 7) over the
tree obtained by assigning weight vectors to the nodes of Nl as follows: each node x′ of
Nl is assigned (w1(x), κ), where x is the node of T corresponding to x′, and κ is the label
assigned to the node in Tl corresponding to x′;
Al, a weighted ancestor query structure over Ml (using Lemma 8), when its nodes are
assigned the 1st weights of the corresponding nodes in T ;

M. He and S. Kazi 45:11

T ′l , a 0/1-labeled tree (using Lemma 1) with the topology of Tl, and a node is assigned 1
iff it is extracted when constructing Ml;
T ′′l , a 0/1-labeled tree (using Lemma 1) with the topology of Tl, and a node is assigned 1
iff it is extracted when constructing Nl;
Pl, an array where Pl[x] stores the preorder number of the node in T corresponding to a
node x in Ml.

We now describe the algorithm for answering queries, and analyze its running time and space
cost:

I Lemma 9. A tree T on n nodes, in which each node is assigned a 2-dimensional weight
vector, can be represented in O(n) words, so that an ancestor dominance reporting query can
be answered in O(lgn+ k) time, where k is the number of the nodes reported.

Proof. Let x and q = (q1, q2) be the node and weight vector given as query parameters,
respectively. We define Π as the path in the range tree between and including the root and
the leaf storing q2. Let πl denote the node at level l in this path. Then the root of the
range tree is π1. To answer the query, we perform a traversal of a subset of the nodes of
the range tree, starting from π1. The invariant maintained during this traversal is that a
node u of the range tree is visited iff one of the following two conditions holds: (i) u = πl
for some l; or (ii) M(u) contains at least one node whose corresponding node in T must
be reported. We now describe how the algorithm works when visiting a node, v, at level
l of this range tree, during which we will show how the invariant is maintained. Let xv
denote the node in Tl that corresponds to the Tv-view of x; xv can be located in constant
time each time we descend down one level in the range tree, as described in the proof of
Lemma 5. Our first step is to report all the nodes in the answer to the query that have
corresponding nodes in M(v). There are two cases depending on whether v = πl; this
condition can be checked in constant time by determining whether q2 belongs to the range
represented by v. In either of these cases, we first locate the Ml-view, x′v, of xv by computing
x′v = pre_rank1(T ′l , level_anc1(T ′l , xv, 1)).

If (i) holds, then the non-dummy ancestors of x′v in Ml correspond to all the ancestors of
x in T that have corresponding nodes in M(v). We then perform a weighted ancestor query
using Al to locate the highest ancestor, y, of x′v in Ml whose 1st weight is at least q1. Since
the 1st weights of the nodes along any upward path in Ml are decreasing, the 1st weights of
the nodes in path Px′v,y are greater than or equal to q1, while those of the proper ancestors
of y are strictly less. Hence, by performing a 1-dimensional path dominance reporting query
in Dl using Px′v,y as the query path and q′ = (q2) as the query weight vector, we can find
all the ancestors of x′v whose corresponding nodes in T have weight vectors dominating q.
Then, for each of these nodes, we retrieve from Pl its corresponding node in T which is
further reported.

IF v 6= πl, the maintained invariant guarantees that the 2nd weights of the nodes in M(v)
are greater than q2. Therefore, by performing a 1-dimensional path dominance reporting
query in El(s) using the path between (inclusive) x′v and the root of Ml as the query path
and q′′ = (q1) as the query weight vector, we can find all the ancestors of x′v in Ml whose
corresponding nodes in T have weight vectors dominating q. By mapping these nodes to
nodes in T via Pl, we have reported all the nodes in the answer to the query that have
corresponding nodes in M(v).

After we handle both cases, the next task is to decide which children of v we should visit.
Let vi denote the ith child of v. We always visit πl+1 if it happens to be a child of v. To main-
tain the invariant, for any other child vi, we visit it iff there exists at least one node in M(vi)

ISAAC 2019

45:12 Path and Ancestor Queries over Trees

whose corresponding node in T should be reported. To find the children that we will visit,
we locate the Nl-view, x′′v , of xv by computing x′′v = pre_rank1(T ′′l , level_anc1(T ′′l , xv, 1)).
Then the non-dummy ancestors of x′′v correspond to all the ancestors of x in T that have cor-
responding nodes in ∪i=1,2,...M(vi). We then perform a (1, 2, ε)-dimensional path dominance
reporting query in Fl using the path between (inclusive) x′′v and the root of Nl as the query
path and (q1, κ+ 1) as the query weight vector if πl+1 is the κth child of v, and we set κ = 0
if πi+1 is not a child of v. For each node, t, returned when answering this query, if its 2nd
weight in Fl is j, then t corresponds to a node in M(vj). Since the node corresponding to t
in T should be included in the answer to the original query, we iteratively visit vj if we have
not visited it before (checked e.g. using an f -bit word to flag the children of v).

The total query time is dominated by the time used to perform queries using Al, Dl, El and
Fl. We only perform one weighted ancestor query when visiting each πl, and this query is not
performed when visiting other nodes of the range tree. Given the O(lgn/ lg lgn) levels of the
range tree, all the weighted ancestor queries collectively useO(lg lgn×(lgn/ lg lgn)) = O(lgn)
time. Similarly, we perform one query using Dl at each level of the range tree, and the query
times summed over all levels is O(lgn/ lg lgn+ k). Our algorithm guarantees that, each time
we perform a query using El, we report a not-reported hitherto, non-empty subset of the
nodes in the answer to the original query. Therefore, the queries performed over all El’s use
O(k) time in total. Querying the Fl-structures incurs O(k) time cost when visiting nodes
not in Π, and O(lgn/ lg lgn+ k) time when visiting nodes in Π. Thus, the query times spent
on all these structures throughout the execution of the algorithm sum up to O(lgn+ k).

We next analyze space cost of our data structures. As mentioned in Section 2, all the Tls
occupy n+O(n) words. By Lemma 1, each T ′l or T ′′l uses 3n+O(n) bits, so over all lgn/ lg lgn
levels, they occupy O(n lgn/ lg lgn) bits, which is O(n/ lg lgn) words. As discussed earlier,
we know that, for any node x in T , there exists one and only one node v in the range tree
such that there is a node in M(v) corresponding to x. Furthermore, M(v)s only contain
nodes that have corresponding nodes in T. Therefore, the sum of the sizes of all M(v)s is
exactly n. Hence all the Pl’s have n entries in total and thus uses n words. By Lemma 7,
the size of each Dl in words is linear in the number of nodes in Ml. The sum of the numbers
of nodes in Mls over all levels of the range tree is equal to the sum of the sizes of all M(v)s
plus the number of dummy roots, which is n+O(lgn/ lg lgn). Therefore, all the Dls occupy
O(n) words. By similar reasoning, all the Els and Als occupy O(n) words in total. Finally,
it is also true that, for any node x in T , there exists a unique node v in the range tree such
that there is a node in N(v) corresponding to x. Thus, we can upper-bound the total space
cost of all the Fls by O(n) words in a similar way. All our data structures, therefore, use
O(n) words. J

Further, we describe the data structure for (2, d, ε)-dimensional ancestor dominance
reporting, and analyze its time- and space-bounds:

I Lemma 10. Let d ≥ 2 be a constant integer and 0 < ε < 1
d−2 be a constant number. A

tree T on n nodes, in which each node is assigned a (2, d, ε)-dimensional weight vector, can
be represented in O(n lg(d−2)ε n) words, so that an ancestor dominance reporting query can
be answered in O(lgn+ k) time, where k is the number of the nodes reported.

Proof. In our design, for any (0, d − 2, ε)-dimensional vector g, we consider a concep-
tual scalarly-weighted tree Eg as the tree extraction from T of the node set {x |x ∈
T and w3,d(x) � g}. The weight of a node x′ in Eg is the 2-dimensional weight vector
w1,2(x), where x the T -source of x′. If Eg has a dummy root, then its weight is (−∞,−∞).
Rather than storing Eg explicitly, we follow the strategy in the proof of Lemma 7 and store

M. He and S. Kazi 45:13

a 0/1-labeled tree Tg for each possible g. Tg is obtained from T by assigning 1-labels to the
nodes of T extracted when constructing Eg. We also maintain arrays W1 and W2 storing
respectively the 1st and 2nd weights of all nodes of T, in preorder, which enables accessing
the weight of an arbitrary node of Eg in O(1) time. Let ng be the number of nodes in Eg.

We convert the node weights of each Eg to rank space [ng]. For each such Eg, we build the
2-dimensional ancestor dominance reporting data structure, Vg, from Lemma 9. Thus, the
space usage of the resulting data structure is upper-bounded by O(n lg(d−2)ε n) words.

Let x and q = (q1, q2, . . . , qd) be the node and weight vector given as query parameters,
respectively. In O(1) time, we fetch the data structures pertaining to the range q′ = q3,d;
this way, all the weights 3 through d of the query vector have been taken care of, and all we
need to consider is the tree topology and the first two weights, q1 and q2, of the original query
vector. We localize the query node x to Eq′ via x′ = pre_rank1(Tq′ , level_anc1(Tq′ , x, 1)),
and launch the query in Vq′ with x′ as a query node, having reduced the components of the
query vector (q1, q2) to the rank space of Eq′ (the time- and space-bounds for the reductions
are absorbed in the final bounds). J

Instantiating Section 3 with g(x) = {x} and the semigroup sum operator ⊕ as the
set-theoretic union operator ∪, Lemma 5 iteratively applied to Lemma 9 yields

I Theorem 11. Let d ≥ 2 be a constant integer. A tree T on n nodes, in which each node is
assigned a d-dimensional weight vector, can be represented in O(n lgd−2 n) words, so that an
ancestor dominance reporting query can be answered in O(lgd−1 n+ k) time, where k is the
number of the nodes reported.

Analogously, Lemma 6 (Section 4) that is the counterpart of Lemma 5 when the range
tree has a non-constant branching factor f = O(lgε n), with Lemma 10 which addresses
(2, d, ε)-dimensional ancestor reporting, together yield a different tradeoff:

I Theorem 12. Let d ≥ 3 be a constant integer. A tree T on n nodes, in which each node is
assigned a d-dimensional weight vector, can be represented in O(n lgd−2+ε n) words of space,
so that an ancestor dominance reporting query can be answered in O((lgd−1 n)/(lg lgn)d−2+k)
time, where k is the number of the nodes reported. Here, ε ∈ (0, 1) is a constant.

6 Path Successor

We first solve the path successor problem when d = 1, and extend the result to d > 1 via
Lemma 5.

The topology of T is stored using Lemma 1. We define a binary range tree R over
[n], and build the associated hierarchical tree extraction as in Section 2; Tl denotes the
auxiliary tree built for each level l of R, and Tv denotes the tree extraction from T associated
with the range of node v ∈ R. We represent R using Lemma 1, and augment it with the
ball-inheritance data structure B from Lemma 3(a), as well as with the data structure from
the following

I Lemma 13. Let R be a binary range tree with topology encoded using Lemma 1, and
augmented with ball-inheritance data structure B from Lemma 3(a). With additional space of
O(n) words, the node xu,l in Tl corresponding to the Tu-view of x can be found in O(logε

′
n)

time, where ε′ is an arbitrary constant in (0, 1), for an arbitrary node x ∈ T and an arbitrary
node u ∈ R residing on a level l.

ISAAC 2019

45:14 Path and Ancestor Queries over Trees

Proof. For a node u ∈ R at a level l, and a node x ∈ T, the query can be thought of as a
chain of transformations T → Tu → Tl. In the first transition, T → Tu, given an original
node x ∈ T, we are looking for its Tu-view, xu. That is, although Tu is obtained from T

through a series of extractions, the wish is to “jump” many successive extractions at once,
as if Tu were extracted from T directly. This would be trivial to achieve through storing a
0/1-labeled tree per range u, if it were not for prohibitive space-cost – number of bits more
than quadratic in the number of nodes. One can avoid extra space cost altogether and use
Lemma 2 directly to explicitly descend the hierarchy of extractions. In this case, the time
cost is proportional to the height of the range tree, and hence becomes the bottleneck.

In turn, in the Tu → Tl-transition, we are looking for the identity of xu in Tl. For this
second transformation, we recall (from Section 2) that Tu is embedded within Tl. Moreover,
the nodes of Tu must lie contiguously in the preorder sequence of Tl.

We overcome these difficulties with the following data structures.
For R, we maintain an annotation array I, such that I[u] stores a quadruple 〈au, bu, su, tu〉

for an arbitrary node u ∈ R, such that (i) the weight range associated with u is [au, bu]; and
(ii) all the nodes of T with weights in [au, bu] occupy precisely the preorder ranks su through
tu in Tl. The space occupied by the annotation array I, which is O(lgn) bits summed over
all the O(n) nodes of R, is O(n) words.

For each level L ≡ 0 mod dlg lgne, which we call marked, we maintain a data structure
enabling the direct T → Tu → TL-conversion. Namely, for each individual node u on marked
level L of R, we define a conceptual array Au, which stores, in increasing order, the (original)
preorder ranks of all the nodes of T whose weights are in the range represented by u. Rather
than maintaining Au explicitly, we store a succinct index, Su, for predecessor/successor
search [11] in Au. Assuming the availability of a O(nδ)-bit universal table, where δ is
a constant in (0, 1), given an arbitrary value in [n], this index can return the position
of its predecessor/successor in Au in O(lg lgn) time plus accesses to O(1) entries of Au.
The size of the index in bits is O(lg lgn) times the number of entries in Au. For a fixed
marked level L, therefore, all the Su-structures sum up to O(n lg lgn) bits. There being
O(lgn/ lg lgn) marked levels, the total space cost for the Su-structures over all the entire
tree R is O(n) words.

We now turn to answering the query using the data structures built. Resolving the query
falls into two distinct cases, depending on whether the level l, at which the query node u
resides, is marked or not.

When the level l is marked, we use the structures Su stored therein, directly. We adopt
the strategy in [14] to find xu,l. First, for an arbitrary index i to Au, we observe that node
Au[i] ∈ T corresponds to node (su + i − 1) in Tl. We thus fetch 〈au, bu, su, tu〉 from I[u].
Then the predecessor p ∈ Au of x is obtained through Su via an O(lg lgn) query and O(1)
calls to the B-structure, which totals O(lgε

′
n) time. We then determine the lowest common

ancestor χ ∈ T of x and p, in O(1) time. If the weight of χ is in [au, bu], then it must be
present in Au by the latter’s very definition. By another predecessor query, therefore, we can
find the position, j, of χ in Au, and (su + j − 1) is the sought xu,l. Otherwise, a final query
to Su returns the successor χ′ in Au of χ. Let κ be the position of χ′ in Au. Then the parent
of the node (su +κ− 1) in Tl is xu,l. We perform a constant number of predecessor/successor
queries, and correspondingly a constant number of calls to the ball-inheritance problem. The
time complexity is thus O(lgε

′
n).

When the level l is not marked, we ascend to the lowest ancestor u′ of u residing on
a marked level l′, and reduce the problem to the previous case. More precisely, via the
navigation operations (level_anc() to move to a parent, and depth() to determine the

M. He and S. Kazi 45:15

status of a level) available through R’s encoding, we climb up at most dlg lgne levels to the
closest marked level l′. Let u′ be therefore the ancestor of u found on that marked level l′.
We find the answer to the original query, as if the query node were u′; that is, we find the
node x′u′,l′ in Tl′ that corresponds to the Tu′ -view of the original query node x in T. Let us
initialize a variable χ to be xu′,l′ .We descend down to the original level l, back to the original
query node u, all the while adjusting the node χ as we move down a level, analogously to
the proof of Lemma 5. As we arrive, in time O(lg lgn), at node u, the variable χ stores the
answer, xu,l.

In both cases, the term O(lgε
′
n) dominates the time complexity, as climbing to/from a

marked level is an additive term of O(lg lgn). Therefore, a query is answered in O(lgε
′
n)

time. J

Finally, each Tl is augmented with succinct indices ml (resp. Ml) from Lemma 4(b), for
path minimum (resp. path maximum) queries. As weights of the nodes of Tl, the weights of
their corresponding nodes in T are used.

We now describe the algorithm for answering queries and analyze its running time, as
well as give the space cost of the built data structures:

I Lemma 14. A scalarly-weighted tree T on n nodes can be represented in O(n) words, so
that a path successor query is answered in O(lgε n) time, where ε ∈ (0, 1) is a constant.

Proof. Let x, y and Q = [q1, q
′
1] be respectively the nodes and the orthogonal range given as

query’s parameters. Appealing to the proof of Lemma 5, we focus only on the path Ax,z,
where z is LCA(T, x, y). We locate in O(1) time the leaf Lq1 of R that corresponds to the
singleton range [q1, q1]. Let Π be the root-to-leaf path to Lq1 in R; let πl be the node at level
l of Π. We binary search in Π for the deepest node πf ∈ Π whose associated extraction Tπf

contains the node corresponding to the answer to the given query.
We initialize two variables: high as 1 so that πhigh is the root of R, and low as the height

of R so that πlow is the leaf Lq1 . We first check if Tπlow
already contains the answer, by

fetching the node x′ in Tlow corresponding to the Tπlow
-view of x, using Lemma 13. If x′

exists, we examine its corresponding node x′′ in T (fetched via B) to see whether x′′ is on
Ax,z, by performing depth and level_anc operations in R; if it is, x′′ is the final answer. If
not, this establishes the invariant of the ensuing search: Tπhigh

contains a node corresponding
to the answer, whereas Tπlow

does not.
At each iteration, therefore, we set (via level_anc in R) πmid to be the node mid-way

from πlow to πhigh. We then fetch the nodes x′, z′ in Tmid corresponding to the Tπmid
-views

of respectively x and z, using Lemma 13. The non-existence of x′ or the emptiness of Ax′,z′
sets low to mid, and the next iteration of the search ensues. If z′ does not exist, z′ is set to
the root of Tmid. A query to the Mmid-structure then locates a node in Ax′,z′ for which the
1st weight, µ, of its corresponding node in T is maximized. Accounting for the mapping of
a node in Tmid to its corresponding node in T via B, this query uses O((lgε

′
n)α(n)) time.

The variables are then updated as high← mid if µ ≥ q1, and low ← mid, otherwise.
Once πf is located, it must hold for πf that (i) it is its left child that is on Π [20];

and (ii) its right child, v, contains the query result, even though v represents a range of
values all larger than q1. When locating πf , we also found the nodes in Tf corresponding
to the Tπf

-views of x and z; they can be further used to find the nodes in Tf+1, x∗ and z∗,
corresponding to the Tv-views of x and z. We then use mf+1 to find the node in Ax∗,z∗
with minimum 1st weight, whose corresponding node in T is the answer.

ISAAC 2019

45:16 Path and Ancestor Queries over Trees

The total query time is dominated by that needed for binary search. Each iteration of the
search is in turn dominated by the path maximum query in Tmid, which is O((lgε

′
n)α(n)).

Given the O(lgn) levels of R, the binary search has O(lg lgn) iterations. Therefore, the total
running time is O(lg lgn · lgε

′
n · α(n)) = O(lgε n) if we choose ε′ < ε.

To analyze the space cost, we observe that the topology of T , represented using Lemma 1,
uses only 2n+O(n) bits. As mentioned in Section 2, all the structures Tl occupy O(n) words.
The space cost of the structure from Lemma 13 built for R is O(n) words. The B-structure
occupies another O(n) words. The ml- and Ml-structure occupy O(n) bits each, or O(n)
words in total over all levels of R. Thus, the final space cost is O(n) words. J

Lemmas 5 and 14 yield the following

I Theorem 15. Let d ≥ 1 be a constant integer. A tree T on n nodes, in which each node is
assigned a d-dimensional weight vector can be represented in O(n lgd−1 n) words, so that a
path successor query can be answered in O(lgd−1+ε n) time, for an arbitrarily small positive
constant ε.

Proof. We instantiate Section 3 with g(x) = x and the semigroup sum operator ⊕ as
x ⊕ y = argminζ=x,y{w1(ζ)}. Lemma 5 applied to Lemma 14 yields the space bound of
O(n lgd−1 n) words and query time complexity of O(lgd−1+ε n). J

References
1 Peyman Afshani. On Dominance Reporting in 3D. In ESA, pages 41–51, 2008.
2 Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries.

Technical report, Tel-Aviv University, 1987.
3 Timothy M. Chan. Persistent Predecessor Search and Orthogonal Point Location on the

Word RAM. In SODA, pages 1131–1145, 2011.
4 Timothy M. Chan, Meng He, J. Ian Munro, and Gelin Zhou. Succinct Indices for Path

Minimum, with Applications. Algorithmica, 78(2):453–491, 2017.
5 Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal range searching on

the RAM, revisited. In SoCG, pages 1–10, 2011.
6 Bernard Chazelle. Computing on a free tree via complexity-preserving mappings.

Algorithmica, 2(1):337–361, 1987.
7 Bernard Chazelle and Herbert Edelsbrunner. Linear Space Data Structures for Two Types of

Range Search. Discrete & Computational Geometry, 2:113–126, 1987.
8 Erik D. Demaine, Gad M. Landau, and Oren Weimann. On Cartesian Trees and Range

Minimum Queries. Algorithmica, 68(3):610–625, 2014.
9 Martin Farach and S. Muthukrishnan. Perfect Hashing for Strings: Formalization and

Algorithms. In CPM, pages 130–140, 1996.
10 Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and Related Techniques

for Geometry Problems. In STOC, pages 135–143, 1984.
11 Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. More Haste, Less

Waste: Lowering the Redundancy in Fully Indexable Dictionaries. In STACS, pages 517–528,
2009.

12 Torben Hagerup. Parallel Preprocessing for Path Queries Without Concurrent Reading. Inf.
Comput., 158(1):18–28, 2000.

13 Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct ordinal trees based on tree
covering. ACM Trans. Algorithms, 8(4):42:1–42:32, 2012.

14 Meng He, J. Ian Munro, and Gelin Zhou. A Framework for Succinct Labeled Ordinal Trees
over Large Alphabets. Algorithmica, 70(4):696–717, 2014.

M. He and S. Kazi 45:17

15 Meng He, J. Ian Munro, and Gelin Zhou. Data Structures for Path Queries. ACM Trans.
Algorithms, 12(4):53:1–53:32, 2016.

16 Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-Efficient and Fast
Algorithms for Multidimensional Dominance Reporting and Counting. In ISAAC, pages
558–568, 2004.

17 Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range Mode and Range Median Queries
on Lists and Trees. Nord. J. Comput., 12(1):1–17, 2005.

18 Christos Makris and Athanasios K. Tsakalidis. Algorithms for Three-Dimensional Dominance
Searching in Linear Space. Inf. Process. Lett., 66(6):277–283, 1998.

19 Yakov Nekrich. A data structure for multi-dim. range reporting. In SoCG, pages 344–353,
2007.

20 Yakov Nekrich and Gonzalo Navarro. Sorted Range Reporting. In SWAT, pages 271–282,
2012.

21 Manish Patil, Rahul Shah, and Sharma V. Thankachan. Succinct representations of weighted
trees supporting path queries. J. Discrete Algorithms, 17:103–108, 2012.

22 Dan E. Willard. Log-Logarithmic Worst-Case Range Queries are Possible in Space Theta(N).
Inf. Process. Lett., 17(2):81–84, 1983.

23 Gelin Zhou. Two-dimensional range successor in optimal time and almost linear space. Inf.
Process. Lett., 116(2):171–174, 2016.

ISAAC 2019

A 21
16-Approximation for the Minimum 3-Path

Partition Problem
Yong Chen
Department of Mathematics, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
chenyong@hdu.edu.cn

Randy Goebel
Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
rgoebel@ualberta.ca

Bing Su
School of Economics and Management, Xi’an Technological University, Xi’an, Shaanxi, China
subing684@sohu.com

Weitian Tong1

Department of Computer Science, Eastern Michigan University, Ypsilanti, Michigan 48197, USA
wtong.research@gmail.com

Yao Xu
Department of Computer Science, Kettering University, Flint, Michigan 48504, USA
skyaoxu@outlook.com

An Zhang
Department of Mathematics, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
anzhang@hdu.edu.cn

Abstract
The minimum k-path partition (Min-k-PP for short) problem targets to partition an input graph
into the smallest number of paths, each of which has order at most k. We focus on the special case
when k = 3. Existing literature mainly concentrates on the exact algorithms for special graphs, such
as trees. Because of the challenge of NP-hardness on general graphs, the approximability of the
Min-3-PP problem attracts researchers’ attention. The first approximation algorithm dates back
about 10 years and achieves an approximation ratio of 3

2 , which was recently improved to 13
9 and

further to 4
3 . We investigate the 3

2 -approximation algorithm for the Min-3-PP problem and discover
several interesting structural properties. Instead of studying the unweighted Min-3-PP problem
directly, we design a novel weight schema for `-paths, ` ∈ {1, 2, 3}, and investigate the weighted
version. A greedy local search algorithm is proposed to generate a heavy path partition. We show
the achieved path partition has the least 1-paths, which is also the key ingredient for the algorithms
with ratios 13

9 and 4
3 . When switching back to the unweighted objective function, we prove the

approximation ratio 21
16 via amortized analysis.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics
of computing → Approximation algorithms; Theory of computation → Graph algorithms analysis;
Theory of computation → Approximation algorithms analysis

Keywords and phrases 3-path partition, exact set cover, approximation algorithm, local search,
amortized analysis

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.46

Funding Yong Chen: NSFC Grants 11971139 and 11571252; CSC Grant 201508330054
Randy Goebel: NSERC Canada
An Zhang: NSFC Grants 11771114 and 11571252; CSC Grant 201908330090

1 Corresponding author

© Yong Chen, Randy Goebel, Bing Su, Weitian Tong, Yao Xu, and An Zhang;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 46; pp. 46:1–46:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenyong@hdu.edu.cn
mailto:rgoebel@ualberta.ca
mailto:subing684@sohu.com
https://orcid.org/0000-0002-9815-2330
mailto:wtong.research@gmail.com
mailto:skyaoxu@outlook.com
mailto:anzhang@hdu.edu.cn
https://doi.org/10.4230/LIPIcs.ISAAC.2019.46
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 A 21
16 -Approximation for Min-3-PP

1 Introduction

In the minimum k-path partition (abbreviated as Min-k-PP) problem, a simple graph
G = (V,E) is partitioned into the smallest number of paths such that each path has at most
k vertices for a given positive integer k. We can observe that when k = 2 the Min-k-PP
problem is closely related to the maximum matching problem in an unweighted graph and
that when k = n the Min-k-PP problem has an optimal value 1 if and only if the input
graph contains a Hamiltonian path. Besides, the Min-k-PP problem can be treated as a
special case of the minimum k-set exact cover problem by associating each path (of order
at most k) with a set of size at most k. The decision version of the minimum exact cover
problem is one of Karp’s 21 NP-complete problems [5]. To the best of our knowledge, there
are no non-trivial approximation algorithms for the minimum k-set exact cover problem.
The Min-k-PP problem also has a close relation to the classic minimum k-set cover problem,
which does not require the mutual disjointness for the resultant cover. Though the Min-k-PP
and minimum k-set cover problems share some similarities, none contains the other as a
special case. A detailed discussion of the relationship between them can be found in [1].

It is not hard to see the Min-k-PP problem is NP-hard on general graphs [4]. It remains
intractable on cographs [8] and chordal bipartite graphs [9] when k is an input. Moreover,
the Min-k-PP problem remains to be NP-hard in comparability graphs even for k = 3 [9].
Recently, Korpelainen [6] further investigated and depicted the NP-hardness of the Min-k-PP
problem in some special graph classes.

On the positive side, the Min-k-PP problem is polynomial-time solvable in several special
cases. Motivated by the application in network broadcasting, which finds the minimum
number of message originators necessary to broadcast a message to all vertices in a tree
network in one or two time units, Yan et al. [10] presented a linear-time algorithm for the
Min-k-PP problem on trees. A polynomial-time algorithm on cographs when k is fixed was
designed by Steiner [8], who later proposed a polynomial-time solution for the Min-k-PP
problem, with any k, on bipartite permutation graphs [9].

Monnot and Toulouse [7] are the pioneer to investigate the approximability for the
Min-k-PP problem. In particular, they studied the special case, Min-3-PP, and designed a
neat 3/2-approximation algorithm with a running time O(nm+ n2 logn) for general graphs,
where n and m are the numbers of vertices and edges in the graph. Recently, Chen et
al. [2] presented an improved approximation algorithm with a ratio 13/9 by first computing
a k-path partition with the least 1-paths for any k ≥ 3 and then greedily merging three
2-paths into two 3-paths whenever possible. Their greedy algorithm takes O(nm) and O(n3)
time respectively in these two steps. Based on the first step of the 13/9-approximation
algorithm, Chen et al. [1] designed a novel local search scheme to improve the approximation
ratio to 4/3. Specifically, their local search algorithm repeatedly searches for an expected
collection of 2- and 3-paths and replaces it by a strictly smaller replacement collection of
new 2- and 3-paths. It is worth noting that the ratio 4/3 matches the best approximation
ratio for the minimum 3-set cover problem [3]. Due to the similarity between the Min-3-PP
problem and the minimum 3-set cover problem, it seems difficult to improve this ratio a step
further and Chen et al. [1] left an open question for a better approximation algorithm for
the Min-3-PP problem.

Our paper addresses this open question proposed by Chen et al. [1]. Our main con-
tributions are as follows. 1) We propose a novel weight function for `-paths, ` ∈ {1, 2, 3},
which forces any heavy path partition prefer specific combinations of `-paths. In particular,
the number of 1-paths in a heavy path partition cannot be too large. 2) We design a

Y. Chen, R. Goebel, B. Su, W. Tong, Y. Xu, and A. Zhang 46:3

greedy local search strategy (named as Greedy) to generate a path partition that contains
2-paths “sparsely” compared with the 3-paths. Moreover, we are able to show there exits an
optimal solution whose number of 1-paths is upper bounded by our greedy solution. 3) We
design another well-designed wide-range tree-like search strategy (named as TreeSearch)
to further reduce the number of 1-paths. More specifically, the resultant path partition
contains the least amount of 1-paths. 4) We conduct an delicate amortized analysis to
show the “sparseness” of 2-paths quantitatively, leading to a better approximation ratio 21

16
(= 1.3125 < 1.3333 ≈ 4

3) for the Min-3-PP problem.
In the following, Section 2 introduces basic concepts and notations; Section 3 restates

the classic 3
2 -algorithm by Monnot and Toulouse [7]; Section 4 shows our 21

16 -approximation
algorithm based on non-trivial discoveries of the structural properties of the Min-3-PP
problem; Section 5 concludes the paper and proposes open questions.

2 Preliminaries

We begin with definitions and notations which hold throughout this paper. Let G = (V,E)
be a simple undirected graph, defined by a set of vertices V = {v1, v2, . . . vn} and a set of
undirected edges E = {e1, e2, . . . , em}, where each edge e = {u, v} connects two vertices
u, v ∈ V . Let U ⊂ V be any subset of vertices of G. Then the (vertex) induced subgraph
G[U] is the subgraph whose vertex set is U and whose edge set consists of edges in E with
both endpoints in U . For any subgraph S of G, let VG(S) and EG(S) denote the vertex set
and edge set of S, respectively. The order of S is defined as the cardinality of VG(S). For
each vertex v ∈ V , define its neighbor set as NG(v) = {u | {u, v} ∈ E(G)} and its degree
as dG(v) = |NG(v)|. If the underlying graph G is clear, we may omit the subscript G in all
notations for the sake of simplicity. In sequel, we use ∪ and] to denote the set union and
multiset union respectively. For any graph (even multigraph) S with V (S) ⊆ VG, we abuse
the notation G[S] to denote the induced graph (VG(S), E(S)).

A path P inG is a sequence of distinct vertices 〈v1, v2, . . . , v`〉, ` ≥ 1, such that {vi, vi+1} ∈
E, for i = 1, 2, . . . , ` − 1. We say a path is an `-path if its order is `, i.e., |V (P)| = `. A
path partition of G is a collection of vertex disjoint paths P such that V (G) =

⋃
P∈P V (P).

A k-path partition is a path partition P with each path having at most k vertices for a
given positive integer k, and the minimum k-path partition problem aims at minimizing the
cardinality of P. Our paper considers the special case when k = 3. In the following context,
a path partition is a 3-path partition by default.

Consider an optimal path partition P∗ = {P∗1 ,P∗2 ,P∗3}, where P∗` , ` ∈ {1, 2, 3} denotes
the set of `-paths. Suppose P = {P1,P2,P3} is any feasible path partition on G. Let
OPT = |P∗| and SOL = |P|. Denote the cardinality of P∗` (P`, respectively) as p∗` (p`,
respectively), ` ∈ {1, 2, 3}. Then we have

n = p∗1 + 2p∗2 + 3p∗3 = p1 + 2p2 + 3p3, (1)
OPT = p∗1 + p∗2 + p∗3, (2)
SOL = p1 + p2 + p3, (3)

which implies

SOL ≥ OPT ≥ n

3 . (4)

Let Q`, ` ∈ {1, 2, 3} denote the collection of all possible `-paths in the given graph G

and define Q = Q1 ∪ Q2 ∪ Q3. We introduce two important concept: conflict graph and
intersection graph.

ISAAC 2019

46:4 A 21
16 -Approximation for Min-3-PP

I Definition 1 (Conflict graph). In a conflict graph, denoted by CG, each vertex represents
an element of Q, i.e., some `-path in G, ` ∈ {1, 2, 3}; and each edge {P,Q} with P,Q ∈ Q
exists only if VG(P) ∩ VG(Q) 6= ∅. In addition, we add i parallel edges between two vertices
in CG if and only if two corresponding paths in G have i vertices in common.

I Definition 2 (Intersection graph). Considering the optimal partition P∗ and any feasible
partition P, the intersection graph induced P and P∗, denoted by IG, is a bipartite graph,
where each vertex represents an element of P and P∗, and two vertices in IG are adjacent if
and only if the vertex sets of the corresponding paths in G intersect. Similar to the conflict
graph, parallel edges are allowed in IG.

According to the above definitions, parallel edges are allowed in both CG and IG. Next,
we partition the edges of IG into sets Eij , i, j ∈ {1, 2, 3} such that Eij = {{P, P ∗} | P ∩P ∗ 6=
∅, P ∈ Pi, P ∗ ∈ P∗j }. Let mij denote the cardinality of Eij . We have

pi = 1
i

3∑
j=1

mij , p∗j = 1
j

3∑
i=1

mij , n =
∑
i,j

mij . (5)

Then the relation between any feasible solution and the optimal solution can be represented
as follows.

SOL = p1 + p2 + p3 =
3∑

i=1

(
1
i

3∑
j=1

mij

)
= (m11/1 + m12/1 + m13/1) + (m21/2 + m22/2 + m23/2) + (m31/3 + m32/3 + m33/3)
= (m31/3 + m21/2 + m11/1) + (m32/3 + m22/2 + m12/1) + (m33/3 + m23/2 + m13/1)

=

(
3∑

i=1

mi1 −
2
3 m31 −

1
2 m21

)
+

(
1
2

3∑
i=1

mi2 −
1
6 m32 + 1

2 m12

)
+

(
1
3

3∑
i=1

mi3 + 1
6 m23 + 2

3 m13

)
= p∗

1 + p∗
2 + p∗

3 +
(2

3 m13 + 1
2 m12 + 1

6 m23 −
2
3 m31 −

1
2 m21 −

1
6 m32

)
= OPT +

(2
3 m13 + 1

2 m12 + 1
6 m23 −

2
3 m31 −

1
2 m21 −

1
6 m32

)
. (6)

3 A brief review of the classic 3/2-approximation algorithm

For the algorithm designed by Monnot and Toulouse [7], the main idea is to first compute a
maximum matching M1 in the input graph G and then find another maximum matching M2
to connect M1 with the vertices left from the calculation of M1. Since each time an edge is
added to the solution, the number of connected components decreases by 1 and therefore
SOL = n − |M1| − |M2|. Let’s consider the vertex set left over after the first maximum
matching M∗1 is found, i.e., V \V (M∗1). For any vertex v ∈ (V \V (M∗1)) \{

⋃
P∈P∗

1
V (P)}, v

must be contained in some `-path with ` ≥ 2 in the optimal partition, which implies v is
adjacent to some edge in M∗1 . Each vertex in V (M∗1) can be adjacent to at most two such
vertices and from the maximality each edge {u, v} in M∗1 can be adjacent to at most two
such vertices. Also from the maximality, we have |M2| ≥ 1

2 (n− 2|M1| − p∗1), which implies
SOL ≤ 1

2 (n+ p∗1). Therefore, OPT = p∗3 + p∗2 + p∗1 = 1
3 (n+ p∗2 + 2p∗1) ≥ 1

3 (n+ p∗1) ≥ 2
3SOL,

which shows an approximation ratio of 3/2.

Y. Chen, R. Goebel, B. Su, W. Tong, Y. Xu, and A. Zhang 46:5

4 The 21/16-Approximation Algorithm

Based on the observation and analysis of the equation (6), our main idea is to find a partition
P to minimize m13, m12 and m23. Note that the analysis of our algorithm only depends on
the existence of an optimal partition and we do not need to find an optimal partition.

Due to the definitions of the conflict graph and intersection graph, we may abuse an
`-path to denote a vertex in CG and IG, vice versa. Recall that Q is the collection of all
`-paths, ` ∈ {1, 2, 3}, in G. We define a weight function w(·) mapping each path to a real
value. Specifically, let

w(P) =

1, if P ∈ Q1;
5, if P ∈ Q2;
8, if P ∈ Q3.

(7)

For any subset Q′ ⊂ Q, let w(Q′) denote the total weight of paths in Q′.

I Definition 3 (Improving set). For any I ⊂ Q\P, NCG(I,P) = NCG(I) ∩ P is the set
of neighbors of I restricted in P. I is an improving set if w(I) > w(NCG(I,P)) and
(P\NCG(I,P)) ∪ I is a partition of G.

Our algorithm, named as Greedy-TreeSearch, is a local search algorithm, which
invokes two local search strategies, Greedy and TreeSearch, as subroutines iteratively
until the total weight of the partition cannot be increased.

The intuition behind the design of our weight function is that we prefer partitioning a
4-path into two 2-paths over partitioning into one 1-path and one 3-path and partitioning
a 6-path into two 3-paths over three 2-paths. When analyzing the algorithm Greedy-
TreeSearch, an optimal solution is compared. Without loss of generality, we choose the
optimal path partition P∗ with the maximum weight with respect to our weight function.

Considering two vertex disjoint paths X,Y ∈ P, we say X and Y are friends if there is
an edge {u, v} incident to both X and Y in the original graph G. Refer to Figure 1 for more
details. If u (v, respectively) is the ending vertex of X (Y , respectively), connecting X and
Y in G via {u, v} forms a path in G and we say X and Y are close friends with respect to
{u, v}. We also say X is a close friend to Y via {u, v} or via u or via v. Otherwise, assuming
u is the middle vertex of X, we say X is an ordinary friend to Y via {u, v}. Or we just say
X and Y are ordinary friends via {u, v}. According to the definitions of different types of
friends, we have the following observation.

x2

y1

z1

x1 x3

y2 y3

z2

Figure 1 An illustration of friends. The solid and dashed edges denote the edges in E(P) and
E(G)\E(P), respectively. The paths in P are indicated in ellipses. The {〈z1, z2〉, 〈y1, y2, y3〉} and
{〈y1, y2, y3〉, 〈x1, x2, x3〉} are two pairs of friends. The first pair are close friends while the second
pair are ordinary friends.

I Observation 4. For any two paths X and Y in a path partition P, X and Y are ordinary
friends only if at least one of them is a 3-path and the friendship is built through the middle
vertex of the 3-path.

ISAAC 2019

46:6 A 21
16 -Approximation for Min-3-PP

4.1 The Greedy Algorithm
The algorithm Greedy starts with an arbitrary path partition for G and then increases
the partition’s weight by iteratively updating the current partition with an improving set of
size at most 6 until there are no improving sets. The value 6 is determined in the proof for
Lemma 14, where at most 6 paths are involved for the detection of an improving set. We
abuse the notation P to denote the resultant partition when Greedy terminates.

I Lemma 5. For any two friends X and Y in P, if X is a 1-path, Y can only be a 3-path
and the friendship is built through the middle vertex on Y .

Proof. Recall that the weight of a 1-, 2-, 3-path is 1, 5, 8, respectively. We prove the lemma
by contradiction. If Y is an `-path with ` ≤ 2, connecting X and Y forms an (`+ 1)-path,
which is an improving set. Refer to the left two subfigures of Figure 2. If Y is a 3-path and
Y is a close friend of X, connecting X and Y produces a 4-path, which can be partitioned
into two 2-paths 〈x1, y1〉 and 〈y2, y3〉. It is easy to check these two paths form an improving
set. Refer to the third subfigure of Figure 2. The Greedy algorithm will not terminate if
there is an improving set. This implies the correctness of the lemma. J

x1

y1

x1

y1 y2

x1

y1 y2 y3

x1

y2y1 y3

Figure 2 Four subgraphs of G show the different cases of the friendship involving a 1-path. The
solid and dashed edges denote the edges in E(P) and E(G)\E(P), respectively. The paths in P are
indicated in ellipses.

x1 x2

y12 y11 y21 y22

x1 x2 x3

y12 y11

y21 y22

y31 y32

Figure 3 The left and right subgraphs show the friendship of a 2-path and 3-path, respectively.
The solid and dashed edges denote the edges in E(P) and E(G)\E(P), respectively. The paths in
P are indicated in ellipses.

I Lemma 6. Consider an `-path X = 〈x1, . . . , x`〉 in P. Let Fi denote the set of 2-path
friends in P via xi, i ∈ {1, . . . , `} in the multigraph induced by the union of paths in P and
P∗, that is, G[E(P∗)

⊎
E(P)].

In G[E(P∗)
⊎
E(P)], X has at most 2` distinct friends in P.

There are at most `− 1 distinct 2-paths Yi such that Yi ∈ Fi.

Proof. By Lemma 5, we only need to consider ` ∈ {2, 3}. Since each path in P∗ has an order
at most 3, X can be adjacent to at most 2 other paths in P via one vertex and therefore
X has at most 2` distinct friends in P. Suppose there are ` distinct 2-paths Yi such that
Yi ∈ Fi. Assume Yi = 〈yi1, yi2〉 are the 2-path friends via the ending vertex xi. Refer to
Figure 3. Then the ` 3-paths 〈xi, yi1, yi2〉, i ≤ `, form an improving set, which indicates a
contradiction. J

Y. Chen, R. Goebel, B. Su, W. Tong, Y. Xu, and A. Zhang 46:7

Recall that the chosen optimal path partition P∗ has the maximum weight with respect
to our weight function. In addition, we require that |EG(P∗) ∩ EG(P)| is maximized over
all the heaviest optimal path partitions. In other words, we consider the heaviest optimal
path partition that overlaps our solution as many edges as possible. Then we have the
following lemma.

I Lemma 7. Let P∗ be the heaviest optimal path partition that maximizes |EG(P∗)∩EG(P)|.
We have P∗1 ⊆ P1 and thus p∗1 ≤ p1.

Proof. Suppose X = 〈x〉 ∈ P∗1\P1. x must be on some `-path P in P2 ∪ P3. Since P∗ has
the maximum weight, any 1-path in P∗ can only have an ordinary friend in P∗ by a similar
argument in the proof for Lemma 5. Without loss of generality, we assume y is a neighbor of x
on P . Then y has to be the middle vertex of a 3-path in P∗, denoted by Y = 〈y1, y, y3〉. Since
{x, y} ∈ E(P), at least one of {y, y1} and {y, y3} is not in E(P). Assume {y, y1} 6∈ E(P), we
modify the paths X and Y to 〈x, y, y3〉 and 〈y1〉. This modification does not change the weight
of P∗ and |EG(P∗) ∩ EG(P)| is increased by 1, which contradicts to the maximality. J

4.2 The TreeSearch Algorithm
The algorithm TreeSearch aims at reducing the number of 1-paths in the partition P
returned by the Greedy algorithm. Though the TreeSearch algorithm also targets to
find an improving set, the size of an improving set may be fairly large.

Fix any 1-path 〈r〉 in P. We modify the depth first search (DFS for short) to explore G
with the root r. Recall that the DFS grows a tree node by node as deep as possible to expand
the whole connected graph. We modify the DFS as follows: if the currently exploring vertex
u is connected with its parent via an edge in E(G)\E(P) in the current tree, instead of
expanding the vertex as the normal DFS, we expand the current tree simply with the `-path
in P containing u, and then the normal DFS is applied on the ending vertex (or vertices) of
this `-path. Abbreviate the modified DFS as MDFS. Note that the MDFS produces a forest
instead of a spanning tree as the MDFS does not fully expand every node in the graph.

We say an `-path is involved in a tree path PT starting at r, if the intersection of PT
and this `-path is not empty. In Figure 4, the tree path 〈r, x22, x23, x32, x42, x43〉 involves
paths X1, X2, X3, X4. Once the MDFS finds an improving set for the `-paths involved
along a path starting at r, the TreeSearch algorithm refines the current partition. Our
TreeSearch algorithm invokes the MDFS on the 1-paths iteratively until no more improving
sets can be identified.

Let’s consider the multigraph induced by the union of paths in P and P∗, i.e.,
G[E(P∗)

⊎
E(P)]. Let F be the resultant forest returned by the TreeSearch algorithm

on this multigraph. For any 3-path in P involved in F , its endpoints are expanded by the
MDFS but its middle vertex is ignored during the MDFS search. It is possible that this
middle vertex is connected to at most two friends in P. In particular, if the friends is a
1-path, we call it as a free 1-path, which forms a tree of size 1 in the forest F . Refer to Figure
4 for an example of a free 1-path.

I Lemma 8. Consider any tree T in the forest F . For any path connecting the root r and a
leaf in T , suppose the `-paths in P involved in the path are 〈X1, X2, . . . , Xt〉 in order with
X1 = {r}. We claim that

X2, . . . , Xt are all 3-paths and moreover Xi and Xi+1 are ordinary friends, i ∈ {1, . . . , t−
1};
any two involved 3-paths say, X and Y , cannot be connected via the ending vertices in
G[E(P∗)

⊎
E(P)];

the two ending vertices of Xi are not connected in G[E(P∗)
⊎
E(P)].

ISAAC 2019

46:8 A 21
16 -Approximation for Min-3-PP

r

x21 x22 x23

x31 x32 x33

x41 x42 x43

x51 x52 x53

x61 x62 x63

x71 x72 x73

r′X1

X2

X3

X4

free 1-path X ′1

1-path in P∗

x22

x21 x23

x31 x33

x41 x43

x51 x53

x61 x63

x71 x73

Figure 4 The left subfigure is an MDFS tree, which is highlighted in bold. The solid and dashed
edges denote the edges in E(P) and E(P∗), respectively. The paths in P are indicated in ellipses.
The 1-paths in P∗ are indicated in squares. The right subfigure is the contracted tree T̃ .

Proof. We prove the first claim in the lemma by contradiction. Assume Xj , j ≥ 2 is the
first `-path such that ` < 3 or it is a close friend to Xj−1. Suppose Xi = 〈xi,1, xi,2, xi,3〉, i ∈
{2, . . . , j−1}. If j = 2, the proof reduces to the proof of Lemma 5. We assume j ≥ 3 without
loss of generality.

Xj is an `-path with ` ≤ 2. The 3-paths 〈r, x2,2, x2,1〉, 〈x2,3, x3,2, x3,1〉, . . ., 〈xj−2,3, xj−1,2,

xj−1,1〉 together with the (`+ 1)-path connecting xj−1,3 and Xj form an improving set.
Xj is a 3-path and Xj is a close friend of Xj−1. Connecting Xj and Xj−1,3 produces a
4-path, which can be partitioned into two 2-paths. Together with the 3-paths 〈r, x2,2, x2,1〉,
〈x2,3, x3,2, x3,1〉, . . ., 〈xj−2,3, xj−1,2, xj−1,1〉, we find an improving set.

The TreeSearch algorithm will not terminate if there is an improving set, which implies
the correctness of the claim.

By the first claim, each tree in the forest produced by the TreeSearch algorithm on
G[E(P∗)

⊎
E(P)] can only involve 3-paths if its root is a 1-path in P . Suppose there are two

involved 3-paths X and Y such that they are connected via the ending vertices. Consider
X if 1) X and Y are involved in the same root-to-leaf path and X is the ancestor; 2) X
and Y are involved in different root-to-leaf paths. An improving set can be found similarly
following the argument for the first claim.

The third claim states the edge {xi,3, xi,1} does not exist in G[E(P∗)
⊎
E(P)]. Otherwise,

we can find a 4-path 〈xi−1,3, xi,2, xi,3, xi,1〉 if i ≥ 3 or 〈r, xi,2, xi,3, xi,1〉 if i = 2. Then an
improving set can be identified similar to the proof for the first claim. J

Let’s consider any tree T in the forest F returned by the TreeSearch algorithm. If
we contract the edges in P∗, T become a tree where each internal node has a degree 2 or 4.
Denote the contracted tree as T̃ . Refer to Figure 4 for details.

I Lemma 9. m13 +m12 ≤ m31.

Proof. Since the P∗ contains paths of order at most 3, each edge in EG(T) ∩ EG(P∗) can
be connected at most once to some leaf in T . In the left subfigure in Figure 4, the edge
{x23, x32} is connected with the leaf x43 in a 3-path in P∗. Each leaf in T is also a vertex in
G thus must be included in some `-path in P∗. According to Lemma 8, different leaves can
only be connected to different edges in E(T) ∩E(P∗), i.e., different internal nodes in T̃ . If a
leaf is not connected to the other vertex, it must be a 1-path in P∗, which contributes 1 to
the value of m31. Suppose the number of leaves is L. Also assume the number of leaves that
are connected to edges in E(T) ∩ E(P∗) is L1. Denote the number of remaining leaves as
L2 = L− L1.

In the contracted tree T̃ , each internal node representing edge(s) in E(P∗) has at least
2 children. Thus, the number of leaves in T̃ is at least 1 plus the number of the internal
vertices. Since the P∗ contains paths of order at most 3, each internal node in T̃ can be

Y. Chen, R. Goebel, B. Su, W. Tong, Y. Xu, and A. Zhang 46:9

connected to at most one leaf or one free path. Assume without loss of generality that the
number of these two types of internal nodes are I1 and I2 respectively. Each node of the
second type contributes 1 to m13 if the free path is a 1-path. Denote the number of internal
nodes to be I. Then I1 + I2 ≤ I.

According to the definitions of I1, I2, L1, L2, and L, we have

I1 + I2 + 1 ≤ I + 1 ≤ L = L1 + L2;L1 = I1;m13 +m12 = I2 + 1;m31

= L2;m13 ≤ I2 + 1;m12 ≤ 1,

where the last inequality is because of the root contributing 1 to m12 or m13. Using the
above equations and summarizing over all trees in the forest F , we have

m13 +m12 = I2 + 1 ≤ L− L1 = L2 = m31. J

I Corollary 10. Comparing the resultant partition P and any optimal partition P∗, P has
less amount of 1-paths than P∗.

Proof. p1 = m13 +m12 +m11 ≤ m31 +m11 ≤ m31 +m21 +m11 = p∗1. J

Corollary 10 is coincident with an intermediate result in [2, 1]. Combining with Lemma
7, we have the following theorem.

I Theorem 11. For the path partition obtained by our Greedy-TreeSearch algorithm,
there exists an optimal path partition P∗ such that P∗1 = P1 and m13 = m12 = m31 = m21 = 0.

4.3 Algorithm Analysis
Recall that

SOL = OPT +
(

2
3m13 + 1

2m12 + 1
6m23 −

2
3m31 −

1
2m21 −

1
6m32

)
.

By Theorem 11, we have m13 = m12 = m31 = m21 = 0 and thus

SOL ≤ OPT + 1
6 (m23 −m32) . (8)

m23 ≤ n holds trivially as there are at most n
2 2-paths in P and each 2-path contributes

at most 2 to m23. Thus, we have

SOL ≤ OPT + n

6 ≤ OPT + 1
2OPT = 3

2OPT,

which matches the ratio obtained by Monnot and Toulouse [7]. Next, we present an amortized
analysis to show the value of the second term in (8), 1

6m23 in particular, is actually much
less than n

6 . The idea behind is to lower bound the number of 3-paths in P by the number of
effective 2-paths in P , where an effective 2-path means a 2-path that contributes to the value
of the second term in (8). The relation between 2-paths and 3-paths is in turn used to upper
bound the number of 2-paths. Assume α · p2 ≤ p3 for some α > 0. Since 2p2 + 3p3 ≤ n, we
have p2 ≤ n

2+3α . Each 2-path contributes at most 2 to the value of m23. Then we have

SOL ≤ OPT + 1
6 ·m23 ≤ OPT + 1

6 ·
2n

2 + 3α ≤
(

1
2 + 3α + 1

)
OPT, (9)

where the last inequality follows from the fact OPT ≥ n
3 .

ISAAC 2019

46:10 A 21
16 -Approximation for Min-3-PP

In the following, we consider a connect component in G[E(P∗)
⊎
E(P)], which is induced

by the 2-paths in P and the neighbors in IG from P∗ and thus may contain parallel edges.
Besides, we only consider the 2-path that shares at least one vertex with some 3-path in
P∗, as otherwise a 2-path contributes 0 to m23 and thus a non-positive value to the second
term in (8).

I Lemma 12. For any 2-path X = 〈x1, x2〉 in P, either X has at least one 3-path friend(s),
or X has only one 2-path friend in P which has at least one 3-path friend in P.

Proof. Let Fi denote the set of 2-path friends via xi, i ∈ {1, 2}. Define the cardinality of Fi
as fi. Let ~f = (f1, f2). It is possible that F1

⋂
F2 6= ∅. We introduce F =

⋃
i Fi to denote

the set of distinct 2-path friends of X. Let f = |F|. Suppose X does not have a 3-path
friend in P.

According to Theorem 11, X does not share a vertex with a 1-path in P∗. If X is
contained in a 3-path in P∗, X has only one friend via one ending vertex; otherwise, X
has friend(s) via both ending vertices. By Lemma 6, f ≤ 2. When f = 2, either ~f = (2, 0)
or ~f = (1, 1), both of which are impossible due to Theorem 11 and Lemma 6, respectively.
Thus, we have f = 1. Let F = {Y } and Y = 〈y1, y2〉.
1. ~f = (1, 0): The symmetric case ~f = (0, 1) can be discussed similarly. X must be contained

in a 3-path in P∗, say 〈x1, x2, y1〉. y2 cannot form a 1-path in P∗ by Theorem 11, which
implies Y has another friend via y2, denoted by Z. If Z is a 2-path as shown in the first
subfigure of Figure 5, an improving set 〈x1, x2, y1〉 and 〈y2, z1, z2〉 can be identified. This
is a contradiction

2. ~f = (1, 1): We have F1 = F2 = {Y }. At least one of the 〈x1, y1〉 and 〈x2, y2〉 is a part of
a 3-path in P∗ as otherwise X contributes 0 to m23 and thus can be ignored. Without
loss of generality, assume Y has another friend via y2, denoted by Z. If Z is a 2-path as
shown in the second subfigure of Figure 5, an improving set 〈x2, x1, y1〉 and 〈y2, z1, z2〉
can be identified. This is a contradiction.

y1 y2

x1 x2 z1 z2

y1 y2

x1 x2

z1 z2

Figure 5 The solid and dashed edges denote the edges in E(P) and E(G)\E(P), respectively.
The paths in P are indicated in ellipses. The thick paths form an improving set. J

I Definition 13. We say a 2-path X in P is the special 1-hop-away friend of a 3-path Z in
P, if they satisfy the relation in Figure 5.

In the resultant partition P, suppose each 3-path owns one token. We distribute each
token to 2-paths in P evenly if these 2-paths are the friends or special 1-hop-away friends of
this 3-path in the induced graph G[E(P∗)

⊎
E(P)]. We say such 2-paths are associated with

this 3-path. Assume each 2-path can receive at least γ token in average and the value of γ
will be estimated in Lemma 14.

I Lemma 14. γ = min
{ 2

5 ,
2+γ

6 , 2+3γ
7
}
.

Proof. Consider any 3-path X = 〈x1, x2, x3〉 in P . Let Fi denote the set of 2-path friends via
xi, i ∈ {1, 2, 3}. Define the cardinality of Fi as fi. Let ~f = (f1, f2, f3). Suppose F =

⋃
i Fi

and f = |F|. Assume F = {Y1, Y2, . . . , Yf} and Yi = {yi1, yi2}.

Y. Chen, R. Goebel, B. Su, W. Tong, Y. Xu, and A. Zhang 46:11

We claim f ≤ 4. Otherwise, there are five different 2-path friends and we are able to find
three distinct 2-paths Yi such that Yi ∈ Fi, i ∈ {1, 2, 3}, which is contradictory to Lemma
6. Next, we discuss how to distribute the token case by case with respect to the value of
f ≤ 4 and ~f . Due the page limit, we only discuss Case 1: f ≤ 1 and Case 2: f = 2. The
discussions for Case 3: f = 3 and Case 4: f = 4 will delayed to Appendix A.

Case 1: f ≤ 1. There is at most one 2-path friend and possibly one special 1-hop-away
2-path friend. Thus, each 2-path associated with X receives at least 1/2 token.

Case 2: f = 2. There are two distinct 2-path friends. If f1 + f2 + f3 ≥ 4, there exist two
pairs of i and j with i 6= j ∈ {1, 2, 3} such that Fi ∩ Fj 6= ∅, which indicates that X has
no special 1-hop-away 2-path friends. If X has no special 1-hop-away 2-path friends, only
two 2-paths are associated with X and each receives 1

2 token. In the following discussion
under the Case 2, we assume X has at least one special 1-hop-away 2-path friend(s) and
thus we suppose f1 + f2 + f3 ≤ 3.

Case 2.1: f = 2 and f1 + f2 + f3 = 2, i.e., Fi ∩ Fj = ∅, ∀ i 6= j ∈ {1, 2, 3}.
Case 2.1.1: ~f = (2, 0, 0). The symmetric case ~f = (0, 0, 2) can be discussed similarly.

Suppose F1 = {Y1, Y2}. By Theorem 11, Yi must have a friend via yi2, i ∈ {1, 2}.
We claim X has at most one special 1-hop 2-path friend either via Y1 or Y2. Suppose
Yi has a 2-path friend Zi via yi2, i ∈ {1, 2}. As shown in Figure 6, there exists an
improving set {〈z12, z11, y12〉, 〈z22, z21, y22〉, 〈y11, x1, y21〉, 〈x2, x3〉}. Moreover, at
least one of Y1 and Y2 has a 3-path friend in P , which cannot be X as ~f = (2, 0, 0).
There are at most three 2-paths associated with X and each receives at least 1+γ

3
token in average.

x1 x2 x3

y11 y12

y21 y22

z11 z12

z21 z22

Figure 6 Case 2.1.1 f = 2 and ~f = (2, 0, 0). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 2.1.2: ~f = (0, 2, 0). Suppose F2 = {Y1, Y2}. By Theorem 11, Yi has another
friend via yi2, denoted as Zi, i ∈ {1, 2}. If at least one of the Z1 and Z2 is a 3-path,
each 2-path (special 1-hop-away) friend receives at least 1+γ

3 token in average.
Suppose both Z1 and Z2 are the special 1-hop-away 2-path friends of X. In the
following discussion, we focus on Z1 Without loss of generality.
By Theorem 11, X have friends in P via both x1 and x3. More specifically, these
friends are 3-paths as we are discussing the case ~f = (0, 2, 0). Let’s focus on the
3-path friend via x3, denoted as Y3 = 〈y31, y32, y33〉. For Y3, we define F ′i , f ′i , F ′,
f ′, and ~f ′ similarly.
Case 2.1.2.1: Y3 is connected with X via y32. We claim f ′1 = f ′3 = 0 and f ′2 ≤

1. Suppose Y3 has a 2-path friend via y33, denoted as Z3 = 〈z31, z32〉. It is
possible that Z3 = Y2. As shown in the first subfigure in Figure 7, there is an
improving set { 〈z12, z11, y12〉, 〈y11, x2, x1〉, 〈x3, y32, y31〉 〈y33, z31, z32〉 }, which
is a contradiction. f ′2 ≤ 1 is because X is a friend of Y3 via y32 and Y3 has at
most one more friend via y32. Thus, there are at most five 2-paths associated
with X and Y3 and each receives at least 2

5 token in average.

ISAAC 2019

46:12 A 21
16 -Approximation for Min-3-PP

x1 x2 x3

y11 y12

y21 y22

z11 z12 y31

y32

y33 z31

z32 x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32

x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32

x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32

x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32 w31 w32

x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32 w31 w32

Figure 7 Case 2.1.2 f = 2 and ~f = (0, 2, 0). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 2.1.2.2: Y3 is connected with X via y31. We claim f ′3 = 0 and f ′1 ≤ 1. The
proof is similar to the Case 2.1.2.1. An analogical example is shown in the second
subfigure of Figure 7.
If f ′1 = 1, denote this friend via y31 as Z3 = 〈z31, z32〉. We claim Z3 has
another 3-path in P, except for X and Y3. It is possible that Z3 is coin-
cident with Y2. By Theorem 11, Z3 has another friend via z32. W3 cannot
be X as we are discussing under the case ~f = (0, 2, 0). If W3 = Y3, de-
pending on whether the friendship is via y32 or y33 there exits an improving
set { 〈z12, z11, y12〉, 〈y11, x2, x1〉, 〈x3, y31, z31〉 〈z32, y32, y33〉 } or { 〈z12, z11, y12〉,
〈y11, x2, x1〉, 〈x3, y31, z31〉 〈z32, y33, y32〉 }, respectively, as shown in the fourth
subfigure of Figure 7. This is a contradiction. We claim W3 is a 3-path except for
X and Y3. Otherwise, suppose W3 is a 2-path. As shown in the fifth subfigure
of Figure 7, there is an improving set { 〈z12, z11, y12〉, 〈y11, x2, x1〉, 〈x3, y31, z31〉
〈y32, y33〉 〈z32, w31, w32〉 }, which is a contradiction.
If Y3 has a 2-path friend Z3 via y32 and Z3 has another friend in P, except
for X and Y3, we claim Z3 is a 3-path. Otherwise, suppose W3 = 〈z31, z32〉 is
a 2-path. It is possible that Z3 is coincident with Y2. As shown in the sixth
subfigure of Figure 7, there is an improving set { 〈z12, z11, y12〉, 〈y11, x2, x1〉,
〈x3, y31〉 〈z31, y32, y33〉 〈z32, w31, w32〉 }, which is a contradiction.
Due to the previous discussion, we have f ′ ≤ 3 and Y3 has no special 1-hop-away
2-path friends.
1. f ′ = 0: there are at most four 2-paths associated with X and Y3, and each

receives at least 1
2 token in average.

2. f ′ = 1: There is only one 2-path friend associated with Y3. ~f ′ = (1, 1, 0) cannot
happen as we discussed above. If ~f ′ = (1, 0, 0), Y3’ 2-path friend receives
extra γ token from another 3-path. If ~f ′ = (0, 1, 0), Y3’ 2-path friend may
not receive extra tokens from other 3-paths. There are at most five 2-paths
associated with X and Y3. Thus each 2-path receives at least min{ 2+γ

5 , 2
5}

token in average.
3. f ′ = 2: There are two 2-paths associated with Y3. ~f ′ = (1, 2, 0) cannot happen

as we discussed above (also refer to the fourth subfigure of Figure 7). If
~f ′ = (1, 1, 0), Y3’ 2-path friend via y31 receives extra γ token from another
3-path, but Y3’ 2-path friend via y32 may not receive extra token from other
3-paths. If ~f ′ = (0, 2, 0), both Y3’ 2-path friends via y32 have another friends

Y. Chen, R. Goebel, B. Su, W. Tong, Y. Xu, and A. Zhang 46:13

except for Y3 and X, and each receives extra γ token from other 3-paths.
There are at most six 2-paths associated with X and Y3. Thus each 2-path
receives at least min{ 2+γ

6 , 2+2γ
6 } token in average.

4. f ′ = 3: There are three 2-paths associated with Y3. If ~f ′ = (1, 2, 0), every Y3’
2-path friend receives extra γ token from another 3-path except for Y3 and X.
There are at most seven 2-paths associated with X and Y3. Thus each 2-path
receives at least 2+3γ

7 token in average.
To summarize, each 2-path receives at least min{ 2

5 ,
2+γ

6 , 2+3γ
7 } token in average.

Case 2.1.3: ~f = (1, 1, 0). The symmetric case ~f = (0, 1, 1) can be discussed similarly.
Suppose F1 = {Y1} and F2 = {Y2}. We claim that X cannot have a special
1-hop-away 2-path friend via Y2. Otherwise, denote this friend as Z2 = 〈z21, z22〉.
As shown in the first subfigure of Figure 8, there is an improving set { 〈x1, y11, y12〉,
〈y21, x2, x3〉, 〈y22, z21, z22〉 }, which is a contradiction.
Suppose X has a special 1-hop-away 2-path friend via Y1, denoted as Z1.
1. If Y2 has a friend via y22, denoted as Z2, Z2 is another 3-path except for X,

following the previous argument. Each of three associated 2-paths receives 1+γ
3

token from X.
2. If Y2 has no other friends via y22, it is contained in a 3-path in P∗ as shown

in in the second subfigure of Figure 8, X have a 3-path friend in P via x3,
denoted as Y3 = 〈y31, y32, y33〉. There are three (special 1-hop-away) 2-path
friends associated with X. By a similar discussion in the Case 2.1.2 “f = 2 and
~f = (0, 2, 0)”, each 2-path receives at least min{ 1

2 ,
2+γ

5 , 2+3γ
6 } token from X and

Y3 token in average.

x1 x2 x3

y11 y12

y21 y22

z11 z12

z21 z22

x1 x2 x3

y11 y12

y21 y22

z11 z12

x1 x2 x3

y11 y12

y21y22

z11 z12

Figure 8 Case 2.1.3 f = 2 and ~f = (1, 1, 0) (left two subfigures) and Case 2.1.4 f = 2 and
~f = (1, 0, 1) (rightmost subfigure). The solid and dashed edges denote the edges in E(P) and E(P∗),
respectively. The thick paths form an improving set.

Case 2.1.4: ~f = (1, 0, 1). Suppose F1 = {Y1} and F3 = {Y2}. Without loss of
generality, assume X has a special 1-hop-away 2-path friend via Y1, denoted as Z1.
By the definition of the special 1-hop-away 2-path friend, Z1 6= Y2. As shown in the
third subfigure of Figure 8, there is an improving set { 〈y12, z11, z12〉, 〈y11, x1, x2〉,
〈x3, y21, y22〉 }, which implies this case is impossible. That is, X has no a special
1-hop-away 2-path friends via Yi, i ∈ {1, 2}.

Case 2.2: f = 2 and f1 + f2 + f3 = 3. There exist some i 6= j ∈ {1, 2, 3} such that
Fi ∩ Fj 6= ∅.

Case 2.2.1: f = 2 and ~f = (1, 1, 1).
Suppose F1 = {Y1}, F2 = {Y1}, and F3 = {Y2}. The symmetric case can be
discussed similarly. We claim X has no a special 1-hop-away 2-path friends via
Yi, i ∈ {1, 2}. Otherwise, if X has a special 1-hop-away 2-path friend via Y1, this
special 1-hop-away 2-path friend can only in the format shown in the first subfigure
of Figure 9, where an improving set {〈z11, y11, x1〉, 〈z12, y12, x2〉, 〈x3, y21, y22〉} can
be identified; if X has a special 1-hop-away 2-path friend via Y2, as shown in the

ISAAC 2019

46:14 A 21
16 -Approximation for Min-3-PP

x1 x2 x3

y11 y12

y21y22

z11 z12

x1 x2 x3

y11 y12

y21y22z21z22

x1 x2 x3

y11 y12

y21y22

z11 z12

x1 x2 x3

y11 y12

y21y22z21z22

Figure 9 Case 2.2.1 f = 2 and ~f = (1, 1, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

second subfigure of Figure 9, there is an improving set {〈z22, z21, y22〉, 〈y12, y11, x1〉,
〈x2, x3, y21〉}, which is a contradiction.
The case where F1 = {Y1}, F2 = {Y2}, and F3 = {Y1} can be discussed similarly by
following the third and fourth subfigures of Figure 9. To summarize, this case cannot
happen. That is, X has no special 1-hop-away 2-path friends via Yi, i ∈ {1, 2}.

x1 x2 x3

y11 y12

y21 y22 z21 z22

x1 x2 x3

y11 y12

y21 y22 z21 z22

x1 x2 x3

y11 y12

y21y22z21z22

Figure 10 Cases 2.2.2 – 2.2.4 from left to right. (~f = (1, 2, 0), ~f = (2, 1, 0), ~f = (1, 0, 2)). The
solid and dashed edges denote the edges in E(P) and E(P∗), respectively. The thick paths form an
improving set.

Case 2.2.2: f = 2 and ~f = (1, 2, 0). The symmetric case ~f = (0, 2, 1) can be discussed
similarly. Suppose F1 = {Y1} and F2 = {Y1, Y2}. By the definition of the special
1-hop-away 2-path friend, X has no special 1-hop-away 2-path friends via Y1. We
also claim X has no special 1-hop-away 2-path friends via Y2. Otherwise, denote this
special 1-hop-away 2-path friend as Z2 = 〈z21, z22〉. As shown in the first subfigure
of Figure 10, there is an improving set {〈z22, z21, y22〉, 〈y12, y11, x1〉, 〈x3, x2, y21〉},
which is a contradiction.

Case 2.2.3: f = 2 and ~f = (2, 1, 0). The symmetric case ~f = (0, 1, 2) can be discussed
similarly. Suppose F1 = {Y1, Y2} and F2 = {Y1}. By the definition of the special
1-hop-away 2-path friend, X has no special 1-hop-away 2-path friends via Y1. We
also claim X has no special 1-hop-away 2-path friends via Y2. Otherwise, denote this
special 1-hop-away 2-path friend as Z2 = 〈z21, z22〉. As shown in the second subfigure
of Figure 10, there is an improving set {〈z22, z21, y22〉, 〈y11, x1, y21〉, 〈x3, x2, y12〉},
which is a contradiction.

Case 2.2.4: f = 2 and ~f = (1, 0, 2). The symmetric case ~f = (0, 1, 2) can be discussed
similarly. Suppose F1 = {Y1, Y2} and F2 = {Y1}. By the definition of the special
1-hop-away 2-path friend, X has no special 1-hop-away 2-path friends via Y1. We
also claim X has no special 1-hop-away 2-path friends via Y2. Otherwise, denote this
special 1-hop-away 2-path friend as Z2 = 〈z21, z22〉. As shown in the second subfigure
of Figure 10, there is an improving set {〈z22, z21, y22〉, 〈y11, x1, y21〉, 〈x2, x3, y12〉},
which is a contradiction. J

The minimum average number of token a 2-path can receive is γ = 2
5 by solving the

equation in Lemma 14. The total number of token is p3 and thus we have

2
5 · p2 ≤ p3. (10)

Y. Chen, R. Goebel, B. Su, W. Tong, Y. Xu, and A. Zhang 46:15

Combining inequalities (10) and (9), we have

SOL ≤ 21
16 ·OPT. (11)

I Theorem 15. Our algorithm Greedy-TreeSearch is a 21
16 -approximation algorithm.

Proof. The approximation ratio is shown in (11). Next we argue the running time of the
Greedy-TreeSearch algorithm is polynomial.

According to the definition of our weight function, the upper bound for the weight of a
path partition is 5× dn2 e. Each iteration of Greedy-TreeSearch identifies an improving
set and the weight of the partition increases by at least 1. Therefore, our local search
algorithm terminates within O(n) iterations. In the worst case, finding an improving set
needs to invoke both Greedy and TreeSearch. The subroutine Greedy searches for
the improving set of size at most 6 by exhausting all possible path set of size 6. Note that
Greedy does not need to recheck all examined path sets. Since the collection of all `-path,
` ∈ {1, 2, 3}, in G has a size O(n3), the total time of invoking Greedy is O(n18). The
subroutine TreeSearch applies the modified depth first search algorithm to G and has a
time complexity O(n+m). To summarize, the time complexity for Greedy-TreeSearch
is O(n18 + n · (n+m)) = O(n18), which is a polynomial. J

5 Conclusion

We study the approximability of the minimum 3-path partition (Min-3-PP) problem, which
has wide applications in the communication network. Several intrinsic structural properties
on the feasible and optimal solutions are discovered. In particular, a quantitative relation
between any feasible solution and the optimal solution to an arbitrary Min-3-PP instance is
described. A further exploration of the optimal solution’s structure distills the quantitative
relation to estimate the number of a special type of 2-paths, named as effective 2-paths.
Then we show that the number of effective 2-paths is upper bounded by a ratio of the
3-paths, which implies the number of effective 2-paths cannot be too large. Inspired by the
discovered properties, a novel weighted local search algorithm is designed to obtain a better
approximation ratio 21

16 for the Min-3-PP problem.
As we discussed in the introduction section, the Min-3-PP problem is closely related

to the minimum 3-set cover problem, for which it is widely believed difficult to break the
approximation barrier of 4/3. However, we break this barrier for the Min-3-PP problem.
It will be interesting to further investigate the differences and similarities between these
two problems. Since the inapproximability of the Min-3-PP problem is still open, it is
interesting to investigate whether there exists a better approximation algorithm or there is
an approximation barrier.

For the general minimum k-path partition problem, its approximability is open in the
literature. We think it should be also interesting to design non-trivial approximation
algorithms even for some fixed k ≥ 4.

References
1 Y. Chen, R. Goebel, G. Lin, L. Liu, B. Su, W. Tong, Y. Xu, and A. Zhang. A local search

4/3-approximation algorithm for the minimum 3-path partition problem. In FAW, pages 14–25,
2019.

2 Y. Chen, R. Goebel, G. Lin, B. Su, Y. Xu, and A. Zhang. An improved approximation
algorithm for the minimum 3-path partition problem. Journal of Combinatorial Optimization,
38(1):150–164, 2019.

ISAAC 2019

46:16 A 21
16 -Approximation for Min-3-PP

3 R.-c. Duh and M. Fürer. Approximation of k-set cover by semi-local optimization. In STOC,
pages 256–264, 1997.

4 M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. wh freeman New
York, 2002.

5 R. M Karp. Reducibility among combinatorial problems. In Complexity of computer computa-
tions, pages 85–103. 1972.

6 N. Korpelainen. A boundary class for the k-path partition problem. Electronic Notes in
Discrete Mathematics, 2018.

7 J. Monnot and S. Toulouse. The Pk partition problem and related problems in bipartite
graphs. In SOFSEM, pages 422–433, 2007.

8 G. Steiner. On the k-th path partition problem in cographs. Congressus Numerantium, pages
89–96, 2000.

9 G. Steiner. On the k-path partition of graphs. Theoretical Computer Science, 290(3):2147–2155,
2003.

10 J.-H. Yan, G. J. Chang, S. M. Hedetniemi, and S. T. Hedetniemi. k-Path partitions in trees.
Discrete Applied Mathematics, 78(1-3):227–233, 1997.

A Further Proof for Lemma 14

Recall that Lemma 14 states each 2-path receives at least γ = min
{ 2

5 ,
2+γ

6 , 2+3γ
7
}
token in

average. We have already discussed Case 1: f ≤ 1 and Case 2: f = 2. Now we continue to
discuss Case 3: f = 3 and Case 4: f = 4.

Case 3: f = 3. There are three distinct 2-path friends. If f1 + f2 + f3 ≥ 5, we have
~f = (1, 2, 2) or (2, 2, 1) or (2, 1, 2) or (2, 2, 2), which is impossible by Lemma 6. Thus,
f1 + f2 + f3 ≤ 4.

Case 3.1: f = 3 and f1 + f2 + f3 = 3, i.e., Fi ∩ Fj = ∅, ∀ i 6= j ∈ {1, 2, 3}.
Case 3.1.1: f = 3 and ~f = (0, 2, 1). The symmetric case ~f = (1, 2, 0) can be discussed

similarly. Suppose F2 = {Y1, Y2} and F3 = {Y3}. Using a similar argument in the
Case 2.1.3 “f = 2 and ~f = (1, 1, 0)”, X cannot have a special 1-hop-away 2-path
friend via Y1 and Y2, which can also be observed from the first subfigure of Figure
11. By Theorem 11, Yi has friends via yi2, i ∈ {1, 2}

x1 x2 x3

y11 y12

y21 y22 y31 y32

z11 z12

x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

z31 z32

Figure 11 Case 3.1.1 f = 3 and ~f = (0, 2, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

We discuss the following cases.
Case 3.1.1.1: X has a special 1-hop-away 2-path friend via Y3. We claim both Y1

and Y2 have 3-path friends except for X, denoted as Z1 and Z2. It is possible
that Z1 = Z2. Assume without loss of generality, let’s focus on Z1. Suppose
Z1 = {z11, z12}. Z1 = Y3 is impossible in this case.

Y. Chen, R. Goebel, B. Su, W. Tong, Y. Xu, and A. Zhang 46:17

1. Z1 6∈ {Y2, Y3}. We can find an improving set {〈x1, x2, y11〉, 〈y12, z11, z12〉,
〈x3, y31, y32〉} for P. Refer to the first subfigure in Figure 11.

2. Z1 = Y2. The friendship between Y1 and Y2 can only be built via the
edge {y12, y22}. We can find an improving set {〈x1, x2, y11〉, 〈y12, y22, y21〉,
〈x3, y31, y32〉} for P. Refer to the second subfigure of Figure 11.

There are at most four 2-paths associated with X. Y1 and Y2 both receive γ
token from other 3-paths in P . Thus each 2-path receives at least 1+2γ

4 token in
average.

Case 3.1.1.2: X does not a special 1-hop-away 2-path friend via Y3. We claim at
least one of Yi, i ∈ {1, 2, 3} have 3-path friends except for X. Suppose Z1 = Y3
and Z2 = Y3.
1. The friendship between Y1 and Z is built via the edge {y12, y31}. The friendship

between Y2 and Z can only be built via the edge {y22, y32}. We can find an
improving set {〈x1, x2, y11〉, 〈y21, y22, y32〉, 〈y12, y31, x3〉} for P. Refer to the
third subfigure of Figure 11.

2. The friendship between Y1 and Z is built via the edge {y12, y32}. The friendship
between Y2 and Z can only be built via the edge {y22, y31}. It is symmetric
to the previous case.

3. The friendship between Y1 and Z is built via the edge {y12, y32}. The friendship
between Y2 and Z is built via the edge {y22, y32}. If the edge {x3, y31} is a
2-path in P∗, it contributes 1 to m32. Contracting the vertices x3, y31, y32 does
not affect the value of the second term in (8). It reduces to Case 2 “f = 2”,
where X has two distinct 2-path friends. If the edge {x3, y31} is a part of
3-path in P∗ and x3 is the middle vertex, then f3 = 2, which is a contradiction.
If the edge {x3, y31} is a part of 3-path in P∗ and y31 is the middle vertex, Y3
has another friend in P, denoted as Z3 = 〈z31, z32〉. We claim Z ′ is a 3-path.
Otherwise, We can find an improving set {〈y11, y12, y32〉, 〈y31, z31, z32〉} for P .
Refer to the fourth subfigure in Figure 11.

There are three 2-path associated with X. At least one Yi receive γ token from
other 3-path friends in P. Thus each 2-path receives at least 1+γ

3 token in
average.

To summarize, each 2-path receives at least min{ 1+2γ
4 , 1+γ

3 , 1
2} token in average.

Case 3.1.2: f = 3 and ~f = (0, 1, 2). The symmetric case ~f = (2, 1, 0). can be discussed
similarly. Suppose F2 = {Y1} and F3 = {Y2, Y3}. By Theorem 11, Y1 has another
friend via y12, denoted as Z1. We claim Z1 is a 3-path in P , which implies X has no
special 1-hop-away 2-path friend via Y1. Otherwise, let Z = 〈z1, z2〉. If Z 6∈ {Y2, Y3},
Z must be a 3-path with a similar argument in Case 3.1.1.1; if Z ∈ {Y2, Y3}, say
Z = Y2, the friendship between Y1 and Y2 can only be built via the edge {y12, y22}
and we can find an improving set {〈x1, x2, y11〉, 〈y12, y22, y21〉, 〈x3, y31, y32〉} for P.
Refer to Figure 12. On the other hand, following from a similar argument in Case
2.1.1 “f = 2 and ~f = (2, 0, 0)”, X has at most one special 1-hop-away 2-path friend
either via Y2 or Y3, say Y2 without loss of generality, and Y3 has a another 3-path
friend in P.
To summarize, there are at most one special 1-hop away 2-path friend associated
with X and each 2-path receives at least min{ 1+γ

3 , 1+2γ
4 } token from X.

Case 3.1.3: f = 3 and ~f = (2, 0, 1). The symmetric case ~f = (1, 0, 2) can be discussed
similarly. Suppose F1 = {Y1, Y2} and F3 = {Y3}. Using a similar argument in the
Case 2.1.4 “f = 2 and ~f = (1, 0, 1)”, X cannot have special 1-hop-away 2-path

ISAAC 2019

46:18 A 21
16 -Approximation for Min-3-PP

x1 x2 x3

y11 y12 y21 y22

y31 y32

Figure 12 Case 3.1.2 f = 3 and ~f = (0, 1, 2). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

friends via Y1 and Y2, which can also be observed from the first subfigure of Figure
13. The Case 3.1.1 “f = 3 and ~f = (0, 2, 1)” is a “semi-symmetric” to this case. Since
the edge {x2, x3} is not used to construct an improving set during the discussion for
the Case 3.1.1, the same argument still holds correctly. Subfigures for corresponding
different subcases are shown in Figure 13. To summarize, each 2-path receives at
least min{ 1+2γ

4 , 1+γ
3 } token in average.

x1 x2 x3

y11 y12

y21 y22

y31y32

z11 z12

x1 x2 x3

y11 y12

y21 y22

y31y32

x1 x2 x3

y11 y12

y21 y22

y31y32

x1 x2 x3

y11 y12

y21 y22

y31y32

z′1z′2

Figure 13 Case 3.1.3 f = 3 and ~f = (2, 0, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 3.1.4: f = 3 and ~f = (1, 1, 1). That is, F1 = Y1, F2 = Y2, F3 = Y3, which is
impossible by Lemma 6.

Case 3.2: f = 3 and f1 + f2 + f3 = 4. There exist some i 6= j ∈ {1, 2, 3} such that
Fi ∩ Fj 6= ∅.
Case 3.2.1: ~f = (0, 2, 2). The symmetric case ~f = (2, 2, 0) can be discussed similarly.

Without loss of generality, suppose F2 = {Y1, Y2} and F3 = {Y1, Y3}. By Theorem
11, Yi has another friend via yi2, denoted as Zi, i ∈ {2, 3}. By a similar argument
in Case 2.2.2 “f = 2 and ~f = (1, 2, 0)” and Case 2.2.3 “f = 2 and ~f = (2, 1, 0)”, we
claim X has no special 1-hop-away 2-path friends via Yi, i ∈ {1, 2, 3}.
We claim Z2 is a 3-path. Otherwise, let Z2 = {z21, z22}. If Z2 = Y3, the friendship
between Y2 and Y3 can only be built via the edge {y22, y32}, we can find an improving
set {〈x1, x2, y21〉, 〈y22, y32, y31〉, 〈y11, y12, x3〉} for P , as shown in the first subfigure
of Figure 14. If Z2 6= Y3, there is an improving set {〈x1, x2, y21〉, 〈y22, z1, z2〉,
〈x3, y31, y32〉} for P, as shown in the second subfigure of Figure 14.
Similarly, we can also prove Z3 is a 3-path. To summarize, there are three 2-paths
associated with X. Each of Y2 and Y3 receives γ token from other 3-path friends in
P. Thus each 2-path receives at least 1+2γ

3 token in average.
Case 3.2.2: ~f = (2, 0, 2). Without loss of generality, suppose F1 = {Y1, Y2} and
F3 = {Y1, Y3}. By a similar argument in Case 2.2.4 “f = 2 and ~f = (1, 0, 2)”, we
claim X has no special 1-hop-away 2-path friends via Yi, i ∈ {1, 2, 3}. The Case
3.2.1 “f = 3 and ~f = (2, 0, 2)” is a “semi-symmetric” to this case. Since the edge
{x2, x3} is not used to construct an improving set during the discussion for the
Case 3.2.1, the same argument still holds correctly. A set of subfigures for different
subcases is shown in Figure 14. Each associated 2-path receives at least 1+2γ

3 tokens
in average.

Y. Chen, R. Goebel, B. Su, W. Tong, Y. Xu, and A. Zhang 46:19

x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

z21 z22

x2x1 x3

y11 y12

y21 y22 y31 y32

x2x1 x3

y11 y12

y21 y22 y31 y32

z21 z22

Figure 14 Case 3.2.1 f = 3, ~f = (0, 2, 2) (left two subfigures) and Case 3.2.2 f = 3, ~f = (2, 0, 2)
(right two subfigures). The solid and dashed edges denote the edges in E(P) and E(P∗), respectively.
The thick paths form an improving set.

Case 3.2.3: ~f = (2, 1, 1). The symmetric case ~f = (1, 1, 2) can be discussed similarly.
Suppose F1 = {Y1, Y2}, F2 = F3 = {Y3}. We claim X cannot have a special
1-hop-away 2-path friend via Yi, i ∈ {1, 2, 3}. The correctness proof follows from
a similar argument in Case 2.2.1 “f = 2 and ~f = (1, 1, 1)”. By Theorem 11, Yi
has another friend via yi2, denoted as Zi, i ∈ {1, 2}. We claim Zi is a 3-path in P,
i ∈ {1, 2}. Otherwise, let Z1 = {z11, z12}.

If Z 6∈ {Y2, Y3}, we can find an improving set {〈y11, x1, x2〉, 〈y12, z11, z12〉,
〈x3, y32, y31〉} for P. Refer to the first subfigure in Figure 15.
If Z = Y2, the friendship between Y1 and Z can only be built via the edge
{y12, y22} and we can find an improving set {〈y11, x1, x2〉, 〈y12, y22, y21〉,
〈x3, y32, y31〉} for P. Refer to the second subfigure in Figure 15.
If Z = Y3 and the friendship between Y1 and Z is built via the edge {y12, y31},
we can find an improving set {〈x1, y21, y22〉, 〈x2, x3, y32〉, 〈y11, y12, y31〉} for P.
Refer to the third subfigure in Figure 15.
If Z = Y3 and the friendship between Y1 and Z is built via the edge {y12, y32},
we can find an improving set {〈x1, y21, y22〉, 〈x3, x2, y31〉, 〈y11, y12, y32〉} for P.
Refer to the fourth subfigure in Figure 15.

To summarize, each 2-path receives at least 1+2γ
3 token in average.

x1 x2 x3

y11 y12

y21 y22 y31 y32

z11 z12

x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

Figure 15 Case 3.2.3 f = 3 and ~f = (2, 1, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 3.2.4: ~f = (1, 2, 1). Suppose F1 = {Y1}, F2 = {Y2}, F3 = {Y3}. We claim X

cannot have a special 1-hop-away 2-path friend via Yi, i ∈ {1, 2, 3}. The correctness
proof follows from a similar argument in Case 2.2.1 “f = 2 and ~f = (1, 1, 1)”. By
Theorem 11, Yi has another friend via yi2, denoted as Zi, i ∈ {1, 2}. We claim Zi is
a 3-path in P, i ∈ {1, 2}. Otherwise, let Z1 = {z11, z12}.

If Z 6∈ {Y2, Y3}, we can find an improving set {〈x1, x2, y11〉, 〈y12, z11, z12〉,
〈x3, y32, y31〉} for P. Refer to the first subfigure in Figure 16.
If Z = Y2, the friendship between Y1 and Z can only be built via the edge
{y12, y22} and we can find an improving set {〈x1, x2, y11〉, 〈y12, y22, y21〉,
〈x3, y32, y31〉} for P. Refer to the second subfigure in Figure 16.

ISAAC 2019

46:20 A 21
16 -Approximation for Min-3-PP

If Z = Y3, the friendship between Y1 and Z is built via the edge {y12, y32} or
{y12, y31}. We consider the first case without loss of generality. By Theorem 11,
Y2 has another friend via y22, denoted as Z ′. We claim Z ′ 6= Z. Otherwise, the
friendship between Y2 and Z can only be built via the edge {y22, y31}. Refer to
the third subfigure in Figure 16. We can find an improving set {〈y21, y22, y31〉,
〈y11, y12, y32〉} for P.

To summarize, each 2-path receives at least 1+2γ
3 token in average.

x1 x2 x3

y11 y12

y21 y22

y31 y32

z11 z12

x1 x2 x3

y11 y12

y21 y22

y31 y32

x1 x2 x3

y11 y12

y21 y22

y31 y32

Figure 16 Case 3.2.4 f = 3 and ~f = (1, 2, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 4: f = 4.
By Lemma 6, we cannot find three distinct 2-paths Yi such that Yi ∈ Fi, i ∈ {1, 2, 3},
which implies f1 + f2 + f3 < 5, that is f1 + f2 + f3 = 4. Moreover, there exits one
i ∈ {1, 2, 3} such that fi = 0. Otherwise, each Fi contains distinct 2-path friends,
which is a contradiction.
Case 4.1: f = 4 and ~f = (0, 2, 2). The symmetric case ~f = (2, 2, 0) can be discussed

similarly. Suppose F2 = {Y1, Y2} and F3 = {Y3, Y4}. Using a similar argument in
the Case 2.1.3 “f = 2 and ~f = (1, 1, 0)”, X cannot have a special 1-hop-away 2-path
friend via Y1 and Y2. Besides, using a similar argument in the Case 2.1.1 “f = 2
and ~f = (2, 0, 0)”, X has at most one special 1-hop-away 2-path friend either via Y3
or Y4, and at least one of Y3 and Y4 has a another 3-path friend in P. We discuss
the following cases.
Case 4.1.1: X has a special 1-hop-away 2-path friend via Y4 without loss of gen-

erality. Following in the argument in Case 3.1.1.1, both Y1 and Y2 have 3-path
friends except for X. There are five 2-paths associated with X. Yi, i ∈ {1, 2, 3},
receives γ token from other 2-paths in P . Therefore, each 2-path receives at least
1+3γ

5 token in average.
Case 4.1.2: X has no special 1-hop-away 2-path friends. There are four 2-paths

associated with X. For at least two paths in {Yi, i ∈ {1, 2, 3, 4}}, each receives
γ token from other 2-paths in P. Therefore, each 2-path receives at least 1+2γ

4
token in average.

To summarize, each 2-path associated with X receives at least min{ 1+3γ
5 , 1+2γ

4 }
token in average.

Case 4.2: f = 4 and ~f = (2, 0, 2). Suppose F1 = {Y1, Y2} and F3 = {Y3, Y4}. Using
a similar argument in the Case 2.1.4 “f = 2 and ~f = (1, 0, 1)”, X cannot have a
special 1-hop-away 2-path friend via Yi, i ∈ {1, 2, 3, 4}. Besides, using a similar
argument in the Case 2.1.1 “f = 2 and ~f = (2, 0, 0)”, at least one of Y1 and Y2 (Y3
and Y4) has a another 3-path friend in P. There are four 2-paths associated with
X For at least two paths in {Yi, i ∈ {1, 2, 3, 4}}, each receives γ token from other
2-paths in P . Therefore, each 2-path associated with X receives at least 1+2γ

4 token
in average.

Efficiently Realizing Interval Sequences∗

Amotz Bar-Noy
City University of New York (CUNY), USA
amotz@sci.brooklyn.cuny.edu

Keerti Choudhary
Weizmann Institute of Science, Rehovot, Israel
keerti.choudhary@weizmann.ac.il

David Peleg
Weizmann Institute of Science, Rehovot, Israel
david.peleg@weizmann.ac.il

Dror Rawitz
Bar Ilan University, Ramat-Gan, Israel
dror.rawitz@biu.ac.il

Abstract
We consider the problem of realizable interval-sequences. An interval sequence comprises of n

integer intervals [ai, bi] such that 0 ≤ ai ≤ bi ≤ n− 1, and is said to be graphic/realizable if there
exists a graph with degree sequence, say, D = (d1, . . . , dn) satisfying the condition ai ≤ di ≤ bi, for
each i ∈ [1, n]. There is a characterisation (also implying an O(n) verifying algorithm) known for
realizability of interval-sequences, which is a generalization of the Erdös-Gallai characterisation for
graphic sequences. However, given any realizable interval-sequence, there is no known algorithm for
computing a corresponding graphic certificate in o(n2) time.

In this paper, we provide an O(n log n) time algorithm for computing a graphic sequence for any
realizable interval sequence. In addition, when the interval sequence is non-realizable, we show how
to find a graphic sequence having minimum deviation with respect to the given interval sequence, in
the same time. Finally, we consider variants of the problem such as computing the most regular
graphic sequence, and computing a minimum extension of a length p non-graphic sequence to a
graphic one.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Enumeration

Keywords and phrases Graph realization, graphic sequence, interval sequence

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.47

Funding US-Israel BSF grant 2018043; Army Research Laboratory Cooperative Grant, ARL Network
Science CTA, W911NF-09- 2-0053.

1 Introduction

The Graph Realization problem for a property P deals with the following existential question:
Does there exist a graph that satisfies the property P? Its fundamental importance is
apparent, ranging from better theoretical understanding, to network design questions (such
as constructing networks with certain desirable connectivity properties). Some very basic,
yet challenging, properties that have been considered in past are degree sequences [7, 16, 18],
eccentricites [4, 22], connectivity and flow [14, 10, 8, 9].

One of the earliest classical problems studied in this domain is that of graphic sequences.
A sequence of n positive integers, D = (d1, . . . , dn), is said to be graphic if there exists an n
vertex graph G such that D is identical to the sequence of vertex degrees of G. The problem

∗ Extended abstract

© Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 47; pp. 47:1–47:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amotz@sci.brooklyn.cuny.edu
mailto:keerti.choudhary@weizmann.ac.il
mailto:david.peleg@weizmann.ac.il
mailto:dror.rawitz@biu.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2019.47
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Efficiently Realizing Interval Sequences

of realizing graphic sequences and counting the number of non-isomorphic realizations of a
given graphic-sequence, is particularly of interest due to many practical applications, see [25]
and reference therein. In 1960, Erdös and Gallai [7] gave a characterization (also implying an
O(n) verifying algorithm) for graphic sequences. Havel and Hakimi [16, 18] gave a recursive
algorithm that given a sequence D of integers computes a realizing graph, or proves that the
sequence is non-graphic, in optimal time O(

∑
i di). Recently, Tripathi et al. [26] provided a

constructive proof of Erdös and Gallai’s [7] characterization.
We consider a generalization of the graphic sequence problem where instead of specifying

precise degrees, we are given a range (or interval) of possible degree values for each vertex.
Formally, an interval-sequence is a sequence of n intervals S = ([a1, b1], . . . , [an, bn]), also
represented as S = (A,B), where A = (a1, . . . , an) and B = (b1, . . . , bn), and 0 ≤ ai ≤ bi ≤
n− 1 for every i. It is said to be realizable if there exists a sequence D = (d1, . . . , dn) that
is graphic and satisfies the condition ai ≤ di ≤ bi, for 1 ≤ i ≤ n. Two questions that are
natural to ask here are:

I Question 1 (Verification). Find an efficient algorithm for verifying the realizability of any
given interval-sequence S?

I Question 2 (Graphic Certificate). Given a realizable interval-sequence S, compute a certi-
ficate (that is, a graphic sequence D) realizing it.

Cai et al. [5] extended Erdös and Gallai’s work by providing an easy to verify characteriz-
ation for realizable interval-sequences, thereby resolving Question 1. Their result crucially
uses the (g, f)-Factor Theorem of Lovász [23]. Garg et al. [13] provided a constructive
proof of the characterisation of Cai et al. [5] for realizable interval sequences. In [20], Hell
and Kirkpatrick provided an algorithm based on Havel and Hakimi’s work for computing
a graph that realizes an interval sequence (if exists). For non-realizable interval sequences
S, their algorithm computes a graph whose deviation δ(D,S) (see Section 2 for definition)
with respect to L1-norm is minimum. The time complexity of their algorithm is O(

∑n
i=1 bi)

(which can be as high as Θ(n2)).

Our Contributions. In this paper we introduce a new approach for representing and analyz-
ing the interval sequence realization problem. Our algorithms are based on a novel divide and
conquer methodology, wherein we show that partitioning a realizable interval sequence along
any levelled sequence (a new class of sequences introduced herein) guarantees that at least one
of the new child interval sequences is also realizable. This enables us to present an O(n logn)
time algorithm for computing a graphic certificate (if exists) for a given interval sequence.
While the problem was well studied, to the best of our knowledge there was no known
o(n2) time algorithm for computing graphic certificate. Also, there was no sub-quadratic
time algorithm known for computing even the deviation δ(D,S). Specifically, we obtain the
following result.

I Theorem 1. There exists an algorithm that for any integer n ≥ 1 and any length n interval
sequence S, computes a graphic sequence D realizing S, if exists, in O(n logn) time.

Moreover, when S is non-realizable, the algorithm outputs in same time a graphic sequence
D minimizing the deviation δ(D,S).

Our new approach enables us to tackle also an optimization version of the problem in
which it is required to compute the “most regular” sequence realizing the given interval
sequence S, using the natural measure of the minimum sum of pairwise degree differences,∑
i,j |di − dj |, as our regularity measure. To the best of our knowledge, this problem was

not studied before and is not dealt with directly by the existing approaches to the interval
sequence problem. Specifically, we obtain the following.

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 47:3

I Theorem 2. There exists an algorithm that for any integer n ≥ 1 and any length n

realizable interval sequence S, computes the most regular graphic sequence realizing interval
sequence S (i.e., the one minimizing the sum of pairwise degree difference), in time O(n2).

The tools developed in this paper allows us to study other interesting applications, such
as computing a minimum extension of non-graphic sequences to graphic ones (see Section 6).

Related work. Kleitman and Wang [21], and Fulkerson-Chen-Anstee [2, 6, 12] solved the
problem of degree realization for directed graphs, wherein, for each vertex both the in-degree
and out-degree is specified. In [17], Nichterlein and Hartung proved the NP-completeness of
the problem when the additional constraint of acyclicity is imposed. Over the years, various
extensions of the degree realization problems were studied as well, cf. [1, 28]. The Subgraph
Realization problem considers the restriction that the realizing graph must be a subgraph
(factor) of some fixed input graph. For an interesting line of work on graph factors, refer
to [27, 3, 19, 15]. The subgraph realization problems are generally harder. For instance, it
is very easy to compute an n-vertex connected graph whose degree sequence consists of all
values 2, however, the same problem for subgraph-realization is NP-hard (since it reduces to
Hamiltonian-cycle problem).

Lesniak [22] provided a characterization for the sequence of eccentricities of an n-vertex
graph. Behzad et al. [4] studied the problem of characterizing the set comprising of vertex-
eccentricity values of general graphs (the sequence problem remains open). Fujishige et al. [11]
considered the problem of realizing graphs and hypergraphs with given cut specifications.

Organization of the Paper. In Section 2, we present the notation and definitions. In
Section 3, we discuss the main ideas and tools that help us to construct graph certificates for
interval sequence problem. Section 4 presents our O(n logn) time algorithm for computing
graphic certificate with minimum deviation. Section 5 provides a quadratic-time algorithm
for computing the most regular certificate. We discuss the applications in Section 6.

2 Preliminaries

A sequence is defined to be an n-element vector whose entries are non-negative integers.
For any sequence D = (d1, . . . , dn), define min(D) = minni=1{di}, max(D) = maxni=1{di},
sum(D) =

∑n
i=1 di, and parity(D) = sum(D) mod 2. Given any two sequences X =

(x1, . . . , xn) and Y = (y1, . . . , yn), we say that X ≤ Y if xi ≤ yi for 1 ≤ i ≤ n. Any
two sequences X and Y are said to be similar if they are identical up to permutation of
the elements (i.e., their sorted versions are identical). A sequence D is said to lie in an
interval-sequence (A,B), denoted by D ∈ (A,B), if A ≤ D ≤ B. We define min(X,Y) =
(min{x1, y1}, . . . ,min{xn, yn}), and max(X,Y) = (max{x1, y1}, . . . ,max{xn, yn}). The L1-
distance of the pair (X,Y) is defined as L1(X,Y) =

∑n
i=1 |yi − xi|.

Denote by > and ⊥ the n-length sequences all whose entries are respectively n− 1 and 0.
Given a sequence D = (d1, . . . , dn) and an integer k ∈ [1, n], define the vectors X(D) and
Y (D) by setting for 1 ≤ k ≤ n:

Xk(D) ,
k∑
i=1

di, and Yk(D) , k(k − 1) +
n∑

i=k+1
min(di, k) .

For any sequence D = (d1, . . . , dn), the spread of D is defined as φ(D) =
∑

1≤r<s≤n |dr−ds|,
and it always lies in the range [0, n3]. A sequence D is said to be more regular than another
sequence D′ if φ(D) < φ(D′). For any two integers x ≤ y, [x, y] = {x, x+ 1, . . . , y}. For any

ISAAC 2019

47:4 Efficiently Realizing Interval Sequences

I ⊆ [1, n], define D[I] to be the subsequence of D consisting of elements di, for i ∈ I; and
define EI to be the characteristic vector of I, namely, the sequence (e1, e2, . . . , en) such that
ei = 1 if i ∈ I, and ei = 0 otherwise. For any sequence D = (d1, . . . , dn) and an interval-
sequence S = ([a1, b1], . . . , [an, bn]), the upper and lower deviation of D, is respectively
defined as

δU (D,S) =
n∑
i=1

max{0, (di − bi)}, and δL(D,S) =
n∑
i=1

max{0, (ai − di)} .

The deviation of D is defined as δ(D,S) = δU (D,S) + δL(D,S). For any vertex x in
an undirected simple graph H, define degH(x) to be the degree of x in H, and define
NH(x) = {y | (x, y) ∈ E(H)} to be the neighbourhood of x in H.

We next state the Erdös and Gallai [7] characterisation for realizable(graphic) sequences,
and Cai et al. [5] characterisation for realizable interval sequences. An O(n)-time implement-
ation of the both theorems is provided in the full version.

I Theorem 3 (Erdös and Gallai [7]). A non-increasing sequence D = (d1, . . . , dn) is graphic
if and only if
(i) Xn(D) is even, and
(ii) X(D) ≤ Y (D).

I Theorem 4 (Cai et al. [5]). Let S = ([a1, b1], . . . , [an, bn]) = (A,B) be an interval-sequence
such that A is non-increasing and for any index 1 ≤ i < n, bi+1 ≤ bi whenever ai = ai+1.
For each k ∈ [1, n], define Wk(S) = {i ∈ [k + 1, n] | bi ≥ k + 1}. Then S is realizable if and
only if X(A) ≤ Y (B)− ε(S), where, ε(S) is defined by setting

εk(S) =
{

1 if ai = bi for i ∈Wk(S) and
∑
i∈Wk(S)(bi + k|Wk(S)|) is odd,

0 otherwise.

3 Main Tools

In this section, we develop some crucial tools that help us in efficient computation of certificate
for a realizable interval-sequence. These tools will help us to search a graphic sequence in
O(n logn) time using a clever divide and conquor methodology. Also they aid in searching
for the maximally regular sequence in just quadratic time.

Levelling operation. Given a sequence D = (d1, . . . , dn) and a pair of indices α 6= β

satisfying dα > dβ , we define π(D,α, β) = D∗ = (d∗1, . . . , d∗n) to be a sequence obtained from
D by decrementing dα by 1 and incrementing dβ by 1 (i.e., d∗α = dα − 1, d∗β = dβ + 1, and
d∗k = dk for k 6= α, β). This operation is called the levelling operation on D for the indices α
and β. The operation essentially “levels” (or “flattens”) the sequence D, making it more
uniform.

We now discuss some properties of levelling operations.

I Lemma 5. Any levelling operation on a sequence D that results in a non-similar sequence,
reduces its spread φ(D) by a value at least two.

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 47:5

Proof. Let D = (d1, d2, . . . , dn) and Z = (z1, . . . , zn) = π(D,α, β), be a sequence obtained
from D by performing a levelling operation on a pair of indices α, β such that dα > dβ . If
dα = dβ + 1, then it is easy to verify that D and Z are similar. If dα ≥ dβ + 2, then

φ(Z) = |zα − zβ |+
∑
s6=α,β

(|zα − zs|+ |zβ − zs|) +
∑

1≤r<s≤n,
r,s/∈{α,β}

|zr − zs|

= |dα − dβ | − 2 +
∑

s6=α,β s.t.
ds /∈(dβ ,dα)

(|dα − ds|+ |dβ − ds|)

+
∑
s6=α,

β s.t.ds∈(dβ ,dα)

(|dα − ds|+ |dβ − ds| − 2) +
∑

1≤r<s≤n,
r,s/∈{α,β}

|dr − ds|

≤
(∑

1≤r<s≤n
|dr − ds|

)
− 2 = φ(D)− 2 .

Thus, the claim follows. J

I Lemma 6 (Corollary 3.1.4, [24]). The levelling operations preserves graphicity, that is, if
we perform a levelling operation on a graphic sequence, then the resulting sequence is also
graphic.

Proof. Let D = (d1, . . . , dn) be a graphic sequence, and π(D,α, β) = D∗ = (d∗1, . . . , d∗n) for
some indices α, β satisfying dα > dβ . If dα = 1 + dβ , then D∗ is similar to D, and thus also
graphic. So for the rest the proof let us focus on the case dα ≥ 2 + dβ . Let G = (V,E) be
a graph realising the sequence D, and let xα and xβ be two vertices in G having degrees
respectively dα and dβ . Since |NG(xα)| ≥ 2 + |NG(xβ)|, there must exists at least one
neighbour, say w, of vertex xα that does not lie in set {xβ} ∪ NG(xβ). Let G∗ = (V,E∗)
be a graph obtained from G by deleting the edge (w, xα), and adding a new edge (w, xβ).
Observe that the degree of all vertices other than xα and xβ are identical in graphs G and
G∗, also degG∗(xα) = degG(xα)−1, and degG∗(xβ) = degG(xβ)+1. Therefore G∗ is a graph
realising the profile D∗, and thus the claim follows. J

Levelled sequences. A sequence D is said to be levelled with respect to the integer-sequence
S = (A,B) if
(i) A ≤ D ≤ B, and
(ii) the spread of D cannot be decreased by a levelling operation, i.e., for any two indices

α 6= β satisfying dα > dβ and A ≤ π(D,α, β) ≤ B, we have φ(π(D,α, β)) = φ(D).
See Figure 1.

The volume of a sequence D lying between A and B with respect to S = (A,B) is defined
as

vol(D,S) , L1(D,A) ,

and is invariant of levelling operations applied to D. In other words, applying a levelling
operation to a sequence D may reduce its spread but preserves its volume. Note that the
volume lies in the range [0, L1(A,B)].

ISAAC 2019

47:6 Efficiently Realizing Interval Sequences

I Lemma 7. For any S = (A,B), a sequence D satisfying A ≤ D ≤ B can be transformed
into a levelled sequence D∗ having the same volume vol(D,S) by a repeated application of
(at most O(n3)) levelling operations.1

Proof. By Lemma 5, every levelling operation that results in a new (non-similar) sequence
decreases the spread by at least two. Since the spread of any sequence D is always non-
negative and finite (specifically, O(n3)), it is possible to perform (O(n3)) levelling operations
on D so that the resultant sequence D∗ is levelled. Since the levelling operation preserves
the volume, vol(D∗,S) must be same as vol(D,S). J

Any graphic sequence D realizing the interval sequence S = (A,B) by Lemma 7 can
be altered by O(n3) levelling operations to obtain a levelled sequence lying between A and
B. The resultant sequence by Lemma 6 remains graphic, thus the following theorem is
immediate.

I Theorem 8. For any realizable interval sequence S = (A,B) there exists a graphic sequence
realizing S which is a levelled sequence.

Characterizing and Computing Levelled sequences. Given any interval sequence S =
(A,B) and a real number ` ∈ [min(A),max(B)], let2

F (`,S) ,
∑
i∈[1,n]

(min{`, bi} −min{`, ai}) .

Observe that F (·,S) is a non-decreasing function in the range (min(A),max(B)). Hence we
may define the corresponding inverse function as F−1(L,S) = min{` | F (`,S) = L}.

Given any interval sequence S = (A,B), we define I(`,S) , {i ∈ [1, n] | ai < ` < bi}.
We conclude this section by providing the following theorems for characterising and

computing levelled sequences (proofs are deferred to the full version).

I Theorem 9. Consider an interval sequence S = (A,B). Let L be an integer in [0,L1(A,B)]
and ` ≥ 0 be such that ` = F−1(L,S). Then the collection of levelled sequences that have
volume L with respect to S is equal to the collection of sequences D = (d1, . . . , dn) satisfying
the following three conditions:
(a) di = bi for any i satisfying bi ≤ `;
(b) di = ai for any i satisfying ai ≥ `; and
(c) Among all indices lying in set I(`,S), exactly F (`,S)−F (b`c ,S) indices i satisfy di = d`e,

and the remaining indices i satisfy di = b`c.

I Theorem 10. Given an interval sequence S = (A,B) consisting of n-pairs, and an integer
L ∈ [0,L1(A,B)], a levelled sequence D having volume L with respect to S can be computed
in O(n) time.

1 We remark that the algorithms presented later on generate a desired levelled sequence using more
efficient methods than the one implicit in the proof, and are therefore faster.

2 One can think of S as representing a collection of n connected vessels, each in the shape of a unit column
closed at both ends, then F (`,S) is the amount of fluid that will fill this connected vessel system to
level `.

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 47:7

Figure 1 Illustration of a levelled sequence D (in red) satisfying L = vol(D,S) = 33. For ` = 7.5,
F (` = 7.5,S) = 33, F (b`c = 7,S) = 30, and F (d`e = 8,S) = 36. The segments contributing to
F (` = 7.5,S), i.e., the parts of the connected vessel system filled with fluid, are shown in blue. The
values in D at all indices in set I(`,S) differ by at most one as they lie in the set {b`c , d`e}.

4 An O(n log n) time algorithm for Graphic Certificate

In this section, we present an algorithm for computing a certificate for interval sequence that
takes just O(n logn) time. If the input interval S = (A,B) is realizable, our algorithm com-
putes a graphic sequence D ∈ S, otherwise it computes a sequence minimizing the deviation
value δ(D,S). We begin by considering the case where the sequence S is realizable (since it
is simpler to understand given Theorems 9 and 10), and then we move to the case where S
is non-realizable. Then characterization of [5] implies an O(n) time verification algorithm for
realizability of interval sequence. (For details refer to the full version).

4.1 Realizable Interval Sequences
First we show that any two levelled sequences after an appropriate reordering of their elements
are coordinate-wise comparable.

I Lemma 11. For any interval sequence S = (A,B), and any two levelled sequences C,D ∈ S
satisfying vol(D,S) ≤ vol(C,S), the following holds.
1. D′ ≤ C, for some sequence D′ ∈ S similar to D.
2. D ≤ C ′′, for some sequence C ′′ ∈ S similar to C.

Proof. We show how to transform D = (d1, · · · , dn) into sequence D′ = (d′1, · · · , d′n) ∈ S
such that D′ ≤ C. Let `D = F−1(vol(D,S),S) and `C = F−1(vol(C,S),S). Since F (·,S)
is a non-decreasing function, we have that `D ≤ `C .

Let us first consider the case where `C and `D are both non-integral, and b`Cc = b`Dc =
(say `1) and d`Ce = d`De = (say `2). By Theorem 9, for any index i ∈ [1, n],

ISAAC 2019

47:8 Efficiently Realizing Interval Sequences

(i) ai ≥ `D (or ai ≥ `C) implies di = ai = ci;
(ii) bi ≤ `D (or bi ≤ `C) implies di = bi = ci.

Also, among indices in set I0 = I(`D,S) = I(`C ,S),
(i) exactly LD−F (b`Dc ,S) indices i satisfy di = `2 (let ID denote the set of these indices)

and the remaining indices i satisfy di = `1;
(ii) exactly LC −F (b`Cc ,S) indices i satisfy ci = `2 (let IC denote the set of these indices)

and the remaining indices i satisfy ci = `1.
Since LD ≤ LC , it follows that |ID| ≤ |IC |, however, observe that ID need not be a subset of
IC . We set D′ to be the sequence that satisfy the condition that
(i) d′i = di, for each i /∈ I0, and
(ii) for indices in I0, at any arbitrary |ID| indices lying in IC , d′i take the value `2, and at

remaining |I0| − |ID| indices d′i take the value `1.
It is easy to verify that D and D′ are similar, and D′ ≤ C.

The remaining case is when d`De ≤ b`Cc. For any index i ∈ [1, n], di ≤ d`De and
ci ≥ b`Cc, implies di ≤ ci. Observe that by Theorem 9,
(i) for an index i, di > d`De implies di = ai(≤ ci); and
(ii) for an index i, ci < b`Cc implies ci = bi(≥ di).

Therefore, for each index i, di ≤ ci. So in this case, we set D′ to be D. The construction of
sequence C ′′ follows similarly. J

Next lemma shows significance of partitioning an interval-sequence using a levelled
sequence.

I Lemma 12. Let C and D be any two levelled sequences lying in an interval sequence
S = (A,B), and having volume LC and LD, respectively. Also assume D is a graphic
sequence. Then,
(a) LD ≤ LC implies (A,C) is a realizable interval sequence.
(b) LD ≥ LC implies (C,B) is a realizable interval sequence.

Proof. We provide proof of the case LD ≤ LC (the proof of part (b) will follow in a similar
fashion). By Lemma 11, we can transform D = (d1, · · · , dn) into another levelled sequence
D′ = (d′1, · · · , d′n) ∈ S such that D′ is similar to D and D′ ≤ C. Since D′ ≤ C, and D′ is a
graphic sequence, it follows that (A,C) is realizable interval sequence. J

From Lemma 12, and the fact that each realizable interval-sequence contains a levelled
graphic sequence (see Theorem 8), we obtain following.

I Theorem 13. For any realizable interval sequence S = (A,B), and any levelled sequence
C ∈ S, at least one of the interval-sequences (A,C) and (C,B) is realizable.

The above theorem provides a divide-and-conquer strategy to search for a levelled graphic
sequence for realizable interval-sequences as shown in Algorithm 1. Let (A0, B0) be initialized
to (A,B). We compute a levelled sequence C0 having volume bL1(A0, B0)/2c using Theorem 9.
It follows from Theorem 13, either (A0, C0) or (C0, B0) must be a realizable interval-sequence.
If (A0, C0) is realizable then we replace B0 by C0; otherwise (C0, B0) must be realizable, so
we replace A0 by C0. We continue this process (of replacements) until L1(A0, B0) decreases
to a value smaller than 2. In the end, the interval sequence (A0, B0) contains at most two
sequences, namely A0 and B0. If A0 is graphic then we return A0, otherwise we return B0.
The correctness of the algorithm is immediate from the description.

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 47:9

Algorithm 1 Certificate-Realizable(A, B).

1 Initialize interval sequence (A0, B0) to (A,B);
2 while L1(A0, B0) ≥ 2 do
3 C0 ← a levelled sequence of volume bL1(A0, B0)/2c;
4 if (Interval-sequence (A0, C0) is realizable) then B0 ← C0;
5 else A0 ← C0;
6 if A0 is graphic then Return A0;
7 else Return B0;

To analyze the running time, observe that the L1-distance between A0 and B0 decreases
by (roughly) a factor of 2 in each call of the while loop, so it follows that number of iterations
is O(logn). Verifying if an interval sequence is realizable, or a sequence D is graphic can be
performed in O(n) time. Also in O(n) time we can generate a levelled sequence of any given
volume L by Theorem 10. Thus, the total time complexity of the algorithm is O(n logn).

We obtain the following result:

I Theorem 14. There exists an algorithm that for any integer n ≥ 1 and any n-length
interval sequence S = (A,B), computes a graphic sequence D ∈ (A,B), if it exists, in
O(n logn) time.

4.2 Non-Realizable Sequences
In this subsection we consider the scenario where S is non-realizable, our goal is to compute
a graphic sequence D minimizing the deviation δ(D,S) with respect to the given interval
sequence S.

As a first step, we show that in order to search a sequence D minimizing δ(D,S), it
suffices to search a sequence D ≥ A that minimizes the value δU (D,S).

I Lemma 15. min{δ(D,S) | D is graphic } = min{δU (D,S) | D is graphic, D ≥ A}, for
any interval sequence S = (A,B).

Proof. Let D = (d1, . . . , dn) be a graphic sequence minimizing the value δ(D,S), and in
case of ties take that D for which δL(D,S) is the lowest. Let us suppose there exists an
index i ∈ [1, n] such that di < ai. Consider the graph G realizing the sequence D, and let
vi denote the ith vertex of G, so that, deg(vi) = di. Observe that |NG(vi)| 6= n− 1, since
di < ai ≤ n − 1. For any vertex vj /∈ NG(vi), dj = deg(vj) must be at least bj , because
otherwise adding (vi, vj) to G reduces δ(D,S). Thus for any vertex vj /∈ NG(vi), adding
(vi, vj) to G, decreases δL(D,S) and increases δU (D,S) by a value exactly 1. However, by
our choice D was a sequence minimizing δL(D,S), thus δL(D,S) must be zero. The claim
follows from the fact that D ≥ A and δ(D,S) = δU (D,S). J

By the previous lemma, our goal is to find a graphic sequence D in the interval sequence
(A,>) minimizing δ(D,S). Notice that if D is graphic, then the interval sequence (A,R),
where R = max(D,B), is realizable. Also, δ(D,S) = sum(R − B). Hence, in order to
compute a graphic sequence with minimum deviation, we define R to be the set of all
sequence R ∈ [B,>] such that
(i) the interval sequence (A,R) is realizable, and
(ii) sum(R−B) is minimized.

ISAAC 2019

47:10 Efficiently Realizing Interval Sequences

The following lemma shows the significance of the set R in computing a certificate with
minimum deviation.

I Lemma 16. For any R ∈ R, and any graphic sequence D0 lying in the interval sequence
(A,R), we have δ(D0,S) = min{δ(D,S) | D is graphic } = sum(R−B).

Proof. Let D∗ be a graphic sequence minimizing the value δ(D,S). By Lemma 15, we
may assume that D∗ belongs to (A,>). Observe that δ(D∗,S) = sum(R∗ − B), where
R∗ = max{B,D∗}. By the choice of D∗ we have that sum(R∗−B) = δ(D∗,S) ≤ δ(D0,S) =
δU (D0,S) ≤ sum(R−B), where the last inequality follows from the fact that D0 ∈ (A,R).
By definition of R, we have that sum(R∗ − B) ≥ sum(R − B), and therefore δ(D∗,S) =
δ(D0,S) = sum(R−B) = sum(R∗ −B). Thus R∗ also lies in the set R. The lemma follows
from the fact that δ(D∗,S) = min{δ(D,S) | D is graphic }. J

Next, let RL be the set of all levelled sequences in R with respect to interval sequence
(B,>).

I Lemma 17. RL 6= ∅.

Proof. Clearly, R 6= ∅. Consider any sequence R = (r1, . . . , rn) ∈ R. Suppose there
exists α, β ∈ [1, n] such that rα − rβ ≥ 1 and R′ = π(R,α, β) ∈ [B,>]. Observe that
sum(R′ − B) = sum(R − B). It remains to show that (A,R′) is realizable. Indeed, if
D ∈ (A,R) is a graphic sequence, then either
(i) D = (d1, . . . , dn) lies in (A,R′), or
(ii) dα − dβ ≥ 1 and D′ = π(D,α, β) lies in (A,R′).

Since levelling operation preserves graphicity, D′ is graphic. Thus R′ ∈ R, which shows that
R is closed under the levelling operation, and hence RL is non-empty. J

Algorithm 2 Certificate-Non-Realizable(A, B).

1 (M1,M2)← (B,>);
2 while L1(M1,M2) ≥ 2 do
3 M0 ← a levelled sequence of volume bL1(M1,M2)/2c;
4 if (Interval-sequence (A,M0) is realizable) then M2 ←M0;
5 else M1 ←M0;
6 if (A,M1) is realizable then R←M1;
7 else R←M2;
8 Return Certificate-Realizable(A,R)

We now describe the algorithm for computing a graphic sequence with minimum deviation
(refer to Algorithm 2 for a pseudocode). Recall that we assume that (A,B) is a non-realizable
interval sequence. The first step is to compute a levelled sequence R ∈ RL, and the second
is to use Algorithm 1 to find a graphic sequence in (A,R).

We initialize two sequences M1 and M2, resp., to B and >, and these sequences serve
as lower and upper boundaries for sequence R. The pair (M1,M2) is updated as long
as sum(M2 − M1) ≥ 2 as follows. We compute a levelled sequence M0 having volume
bL1(M1,M2)/2c with respect to the interval sequence (M1,M2) using Theorem 10. There
are two cases:

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 47:11

Case 1. (A,M0) is realizable.
Consider any sequence R ∈ (M1,M2) that lies in RL. Since (A,M0) is realizable, from
the definition of R it follows that sum(R−B) ≤ sum(M0−B). As R andM0 both belong
to (M1,M2), by Lemma 11, there exists a sequence R0 similar to R lying in interval
(M1,M2) ⊆ (B,>) such that R0 ≤ M0. It is easy to check that R0 ∈ RL, thus the
search range of R which was (M1,M2) can be narrowed down to (M1,M0), so we reset
M2 to M0.

Case 2. (A,M0) is not realizable.
Consider any R ∈ RL, we first show that sum(R−B) > sum(M0 −B). Let us assume
on the contrary, sum(R−B) ≤ sum(M0 −B). In such a case, by Lemma 11, there exists
a sequence R′ similar to R lying in interval (M1,M2) ⊆ (B,>) such that R′ ≤M0. Also
R′ ∈ RL. Since, by definition of RL, (A,R′) is realizable, it violates the fact that (A,M0)
is not realizable. Now as R,M0 both belong to (M1,M2), by Lemma 11, there exists a
sequence R0 similar to R lying in interval (M1,M2) ⊆ (B,>) such that R0 ≥M0. Also
R0 ∈ RL, thus the search range of R can be narrowed down to (M0,M2), so we reset
M1 to M0.

We continue the process of shrinking the range (M1,M2) until L1(M1,M2) decreases to a
value smaller than 2. Finally there exists in range (M1,M2) at most two sequences, namely
M1 and M2. If (A,M1) is graphic then we set R to M1, otherwise we set R to M2.

The running time analysis is similar to the one for Algorithm 1. Since the L1-distance
between M1 and M2 decreases by a factor of 2 in each successive call of the while loop of the
algorithm, it follows that number of times the while loops run is O(logn). Verifying if an
interval sequence is realizable, or a sequence D is graphic can be performed in O(n) time.
Also it takes O(n) time to generate a levelled sequence of any given volume L by Theorem 10.
Finally, the running time of Algorithm 1 is O(n logn). Thus, the total time complexity of
algorithm is O(n logn).

This completes the proof of Theorem 1.

5 Most Regular Certificate in O(n2) time

In this section, we present an O(n2)-time algorithm for computing a most-regular certificate
with respect to a given interval sequence S = (A,B). We assume that S is realizable. Our
algorithm involves a subroutine that given an integer z ∈ [min(A),max(B)− 1], computes a
most-regular graphic-sequence, say D, satisfying the condition z ≤ ` = F−1(vol(D,S),S) ≤
z + 1. The following lemma is immediate from Theorem 9.

I Lemma 18. Any levelled sequence D̄ = (d̄1, . . . , d̄n) of volume L with respect to interval
sequence S = (A,B), satisfies z ≤ ` = F−1(L,S) ≤ z+ 1 if and only if d̄i = ai for ai ≥ z+ 1,
d̄i = bi for bi ≤ z, and d̄i ∈ {z, z + 1} for remaining indices i.

We partition the set [1, n] into three sets I1, I2, I3 such that I1 = {i ∈ [1, n] | ai ≥ z+ 1},
I2 = {i ∈ [1, n] | ai ≤ z and z + 1 ≤ bi}, and I3 = {i ∈ [1, n] | bi ≤ z}. Also, using
integer sort in linear time, we rearrange the pairs in (A,B) along with the corresponding
sets I1, I2, I3 so that
(i) for any i ∈ I1, j ∈ I2, k ∈ I3, we have i < j < k, and
(ii) the sub-sequences A[I1] and B[I3] are sorted in the non-increasing order.

ISAAC 2019

47:12 Efficiently Realizing Interval Sequences

We initialize Dz = (dz,1, dz,2, . . . , dz,n) by setting dz,i to : ai if i ∈ I1, z if i ∈ I2, and
bi if i ∈ I3. The sequence Dz is sorted in non-increasing order, since the sub-sequences
A[I1] and B[I3] are sorted in non-increasing order. Let α = |I1| and β = |I1| + |I2|, so
that I2 = [α + 1, α + 2, . . . , β]. We would search all those indices i ∈ [α, β] such that on
incrementing dα+1, . . . , di to value z + 1, the resulting sequence is graphic; or equivalently,
the sequence Dz + E[α+1,i] is graphic. Note that for any index i ∈ [α, β],
(i) the sequence Dz + E[α+1,i] is non-increasing, and
(ii) A ≤ Dz + E[α+1,i] ≤ B.

The next lemma, which follows from the definition of φ, will be used to compute φ(Dz +
E[α+1,i]) from φ(Dz). (The proof is deferred to the full version).

I Lemma 19. For any index i ∈ [α+ 1, β], φ(Dz + E[α+1,i]) = φ(Dz) + (i− α)(n− i− α).

For each z we compute the vectors X(Dz) and Y (Dz). For each integer k ∈ [1, n], let

Avoid(k) =
{
i ∈ [α, β] | Xk

(
Dz + E[α+1,i]

)
> Yk

(
Dz + E[α+1,i]

)}
, and

Avoid =
⋃n
k=1 Avoid(k) .

By Theorem 3, for any i ∈ [α, β], the sequence Dz+E[α+1,i] is graphic if and only if i does
not lie in the set Avoid, and parity(Dz + E[α+1,i]) = 0. The following lemma (whose proof
is deferred to the full version) shows that the set Avoid(k), for any index k, is computable
in O(1) time.

I Lemma 20. For each k ∈ [1, n], Avoid(k) is a contiguous sub-interval of [1, n], and is
computable in O(1) time.

Algorithm 3 presents the procedure for computing the most-regular certificate. For each
k ∈ [1, n], Avoid(k) is a contiguous sub-interval of [1, n], therefore, the union Avoid =⋃n
k=1 Avoid(k) can be computed in linear time using simple stack based data-structure, once

the intervals are sorted in order of their endpoints3 using integer sort. Let Iz denote the
set obtained by removing from [α, β] \Avoid each index i for which parity(Dz +E[α+1,i]) =
parity(sum(Dz) + (i − α)) is non-zero. Since sum(Dz) (or parity(Dz)) is computable in
O(n), the set Iz can be computed in O(n) time as well. Note that Dz + E[α+1,i] is graphic
if and only if i ∈ Iz. By Lemma 19, for any index i ∈ Iz, the value φ(Dz + E[α+1,i]) is
computable in O(1) time, once we know φ(Dz). This shows that in just O(n) time, we can
compute the spread of all the levelled sequences D satisfying z ≤ F−1(vol(D),S) < z + 1,
and also find a sequence having the minimum spread. All that remains is to efficiently
computing φ(Dz) for each z ∈ [min(A),max(B)]. Observe that Dmin(A) = A, and so
φ(Dmin(A)) =

∑
1≤r<s≤n |ar − as| is computable in O(n2) time. Next by Lemma 19, for

any z ∈ [min(A),max(B) − 1], φ(Dz+1) = φ(Dz) + (β − α)(n − β − α) is computable in
O(1) time. Since z can take max(B) − min(A) − 1 values, our algorithm in total takes
O(n2 + n(max(B)−min(A)− 1)) = O(n2) time.

This completes the proof of Theorem 2.

3 We say [r, s] ≤ [r′, s′] if either
(i) r < r′, or

(ii) r = r′ and s ≤ s′.

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 47:13

Algorithm 3 Most-Regular-Certificate(A, B).

1 opt←∞;
2 foreach z ∈ [min(A),max(B)− 1] do
3 I1 ← {i ∈ [1, n] | ai ≥ z + 1};
4 I2 ← {i ∈ [1, n] | ai ≤ z, z + 1 ≤ bi};
5 I3 ← {i ∈ [1, n] | bi ≤ z};
6 Rearrange the pairs in (A,B) along with the corresponding sets I1, I2, I3 so that

(i) for any triplet (i, j, k) satisfying i ∈ I1, j ∈ I2, k ∈ I3, we have i < j < k, and
(ii) the sub-sequences A[I1] and B[I3] are sorted in the non-increasing order;

7 Initialize Dz = (d1, d2, . . . , dn), where for i ∈ I1, di = ai; for i ∈ I2, di = z; and
for i ∈ I3, di = bi;

8 if z = min(A) then set φ(Dz) =
∑

1≤r<s≤n |ar − as|;
9 Compute X(Dz), Y (Dz);

10 Let α = |I1| and β = |I1|+ |I2|;
11 for k = 1 to n do
12 Avoid1(k) = [α, β] ∩ [α+ 1 + Yk(Dz)−Xk(Dz), k];
13 if max{k − α, 0}+Xk(Dz) > Yk(Dz) and k ≤ z then

Avoid2(k) = [α, β] ∩ [k, n];
14 else if max{k − α, 0}+Xk(Dz) ≤ Yk(Dz) then Avoid2(k) = ∅;
15 else Avoid2(k) = [α, β] ∩ [k,max{k, α}+Xk(Dz)− Yk(Dz)− 1];
16 Avoid(k) = Avoid1(k) ∪Avoid2(k);
17 Compute Avoid =

⋃n
k=1 Avoid(k);

18 foreach i ∈ [α, β] \Avoid do
19 if (parity(Dz) = (i− α) mod 2) then
20 Compute φ(Dz + E[α+1,i]) = φ(Dz) + (i− α)(n− i− α);
21 opt = min{opt, φ(Dz + E[α+1,i])};

22 Set φ(Dz+1) = φ(Dz) + (β − α)(n− β − α);
23 Return opt and the corresponding graphic sequence;

6 Applications and Extensions

In this section, we discuss some related problems whose solutions follow as immediate
application of our interval sequence work.

I Problem 1 (Minimum Graphic extensions). Given a sequence A = (a1, . . . , ap) find the
minimum integer n(≥ p) such that a super sequence D = (a1, . . . , ap, dp+1, dp+2, . . . , dn) of
sequence A is realizable.

Solution: Let M denote the value max(A) = maxi∈[1,p] ai. For any n ≥ p, let Sn =
([a1, a1], . . . , [ap, ap], [1, n], . . . , [1, n]) denote the sequence obtained by appending n−p copies
of interval [1, n] to interval sequence (A,A). Let n0 the denote the length of a minimum
graphic extension of A. Observe that n0 ∈ [max{p,M}, p+M]. The lower limit is due to
the fact that the length of minimum graphic extension of A must be at least max{p,M};
the upper limit holds since one can have a bipartite graph with partitions X = {x1, . . . , xp}
and Y = {y1, . . . , YM} of length p and M , and for i ∈ [1, p], connect the vertex xi to vertices
y1, . . . , yai . It turns out that we need to find the smallest integer n ∈ [max{p,M}, p+M]

ISAAC 2019

47:14 Efficiently Realizing Interval Sequences

such that Sn is graphic. The minimum n can be obtained by a binary search over the
range [max{p,M}, p + d] and using Theorem 4; this takes O(max{p,M} log max{p,M})
time. Once n0 is known, the optimal graphic extension can be computed using Theorem 14
for searching graphic certificate in O(max{p,M} log max{p,M}) time.

I Problem 2. Given A = (a1, . . . , an), find a graphic sequence D = (d1, . . . , dn) whose
chebyshev distance (L∞ distance) from A is minimum.

Solution: The above problem can be reduced to interval sequence problem, as we need to find
smallest non-negative integer c ∈ [1, n] such that Sc = ([a1 − c, a1 + c], . . . , [an − c, an + c])
is realizable. To find the minimum c, we do a binary search with help of Theorem 4 for
verification; this takes O(n logn) time. Once optimal c is known, the sequence D can be
computed using Theorem 14 to search graphic certificate in Sc, thus the time complexity for
computing sequence D is O(n logn).

I Problem 3. Given A = (a1, . . . , an), find minimum fraction ε and a graphic sequence
D = (d1, . . . , dn) satisfying ai(1− ε) ≤ di ≤ ai(1 + ε).

Solution: Again we need to find smallest non-negative fraction ε such that the interval
sequence Sε = ([a1(1 − ε), a1(1 + ε)], . . . , [an(1 − ε), an(1 + ε)]) is realizable. To find the
minimum ε, we do a binary search with help of Theorem 4; this takes O(n logn) time. Once
ε is known, using Theorem 14, sequence D can be computed in O(n logn) time.

References
1 Martin Aigner and Eberhard Triesch. Realizability and uniqueness in graphs. Discrete

Mathematics, 136:3–20, 1994.
2 Richard Anstee. Properties of a class of (0,1)-matrices covering a given matrix. Can. J. Math.,

pages 438–453, 1982.
3 Richard Anstee. An algorithmic proof of Tutte’s f-factor theorem. J. Algorithms, 6(1):112–131,

1985.
4 M. Behzad and James E. Simpson. Eccentric sequences and eccentric sets in graphs. Discrete

Mathematics, 16(3):187–193, 1976.
5 Mao-cheng Cai, Xiaotie Deng, and Wenan Zang. Solution to a problem on degree sequences of

graphs. Discrete Mathematics, 219(1-3):253–257, 2000.
6 Wai-Kai Chen. On the realization of a (p,s)-digraph with prescribed degrees. Journal of the

Franklin Institute, 281(5):406–422, 1966.
7 Paul Erdös and Tibor Gallai. Graphs with Prescribed Degrees of Vertices [Hungarian].

Matematikai Lapok, 11:264–274, 1960.
8 A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discrete

Math., 5:25–43, 1992.
9 A. Frank. Connectivity augmentation problems in network design. In Mathematical Program-

ming: State of the Art, pages 34–63. Univ. Michigan, 1994.
10 H. Frank and W. Chou. Connectivity considerations in the design of survivable networks.

IEEE Trans. Circuit Theory, CT-17:486–490, 1970.
11 Satoru Fujishige and Sachin B. Patkar. Realization of set functions as cut functions of graphs

and hypergraphs. Discrete Mathematics, 226(1-3):199–210, 2001.
12 D.R. Fulkerson. Zero-one matrices with zero trace. Pacific J. Math., 12:831–836, 1960.
13 Ankit Garg, Arpit Goel, and Amitabha Tripathi. Constructive extensions of two results on

graphic sequences. Discrete Applied Mathematics, 159(17):2170–2174, 2011.
14 R.E. Gomory and T.C. Hu. Multi-terminal network flows. J. Soc. Industrial & Applied Math.,

9, 1961.

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 47:15

15 Jiyun Guo and Jianhua Yin. A variant of Niessen’s problem on degree sequences of graphs.
Discrete Mathematics and Theoretical Computer Science, Vol. 16 no. 1 (in progress)(1):287–292,
May 2014. Graph Theory. URL: https://hal.inria.fr/hal-01179211.

16 S. Louis Hakimi. On Realizability of a Set of Integers as Degrees of the Vertices of a Linear
Graph –I. SIAM J. Appl. Math., 10(3):496–506, 1962.

17 Sepp Hartung and André Nichterlein. NP-Hardness and Fixed-Parameter Tractability of
Realizing Degree Sequences with Directed Acyclic Graphs. SIAM J. Discrete Math., 29(4):1931–
1960, 2015.

18 V. Havel. A Remark on the Existence of Finite Graphs [in Czech]. Casopis Pest. Mat.,
80:477–480, 1955.

19 Katherine Heinrich, Pavol Hell, David G. Kirkpatrick, and Guizhen Liu. A simple existence
criterion for g < f–factors, with applications to [a, b]–factors. Discrete Mathematics, 85:313–317,
1990.

20 Pavol Hell and David G. Kirkpatrick. Linear-time certifying algorithms for near-graphical
sequences. Discrete Mathematics, 309(18):5703–5713, 2009.

21 Daniel J. Kleitman and D. L. Wang. Algorithms for constructing graphs and digraphs with
given valences and factors. Discrete Mathematics, 6(1):79–88, 1973.

22 Linda Lesniak. Eccentric sequences in graphs. Periodica Mathematica Hungarica, 6(4):287–293,
1975.

23 László Lovász. Subgraphs with prescribed valencies. J. Comb. Theory, 8:391–416, 1970.
24 N.V.R. Mahadev and U.N. Peled. Threshold Graphs and Related Topics. Annals of Discrete

Mathematics. Elsevier Science, 1995.
25 Akutsu Tatsuya and Hiroshi Nagamochi. Comparison and enumeration of chemical graphs.

Computational and structural biotechnology, 5, 2013.
26 Amitabha Tripathi, Sushmita Venugopalan, and Douglas B. West. A short constructive proof

of the Erdos-Gallai characterization of graphic lists. Discrete Mathematics, 310(4):843–844,
2010.

27 W. T. Tutte. Graph factors. Combinatorica, 1(1):79–97, March 1981.
28 D.L. Wang and D.J. Kleitman. On the existence of n-connected graphs with prescribed degrees

(n > 2). Networks, 3:225–239, 1973.

ISAAC 2019

https://hal.inria.fr/hal-01179211

Efficient Interactive Proofs for Linear Algebra
Graham Cormode
University of Warwick, UK
g.cormode@warwick.ac.uk

Chris Hickey
University of Warwick, UK
c.hickey@warwick.ac.uk

Abstract
Motivated by the growth in outsourced data analysis, we describe methods for verifying basic linear
algebra operations performed by a cloud service without having to recalculate the entire result.
We provide novel protocols in the streaming setting for inner product, matrix multiplication and
vector-matrix-vector multiplication where the number of rounds of interaction can be adjusted to
tradeoff space, communication, and duration of the protocol. Previous work suggests that the costs
of these interactive protocols are optimized by choosing O(logn) rounds. However, we argue that
we can reduce the number of rounds without incurring a significant time penalty by considering the
total end-to-end time, so fewer rounds and larger messages are preferable. We confirm this claim
with an experimental study that shows that a constant number of rounds gives the fastest protocol.

2012 ACM Subject Classification Theory of computation → Interactive computation

Keywords and phrases Streaming Interactive Proofs, Linear Algebra

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.48

Funding Graham Cormode: Supported by European Research Council grant ERC-2014-CoG 647557.
Chris Hickey: Supported by European Research Council grant ERC-2014-CoG 647557.

1 Introduction

The pitch for cloud computing services is that they allow us to outsource the effort to store
and compute over our data. The ability to gain cheap access to both powerful computing and
storage resources makes this a compelling offer. However, it brings increased emphasis on
questions of trust and reliability: to what extent can we rely on the results of computations
performed by the cloud? In particular, the cloud provider has an economic incentive to take
shortcuts or allow buggy code to provide fast results, if they are hardly noticed by the client.

Prior work has developed the idea of using interactive proofs to independently verify
outsourced computations without duplicating the effort. Originally invented as tools in the
realm of computational complexity, recent work has sought to argue that interactive proofs
can indeed be practically used for verification. Modern research takes two main approaches,
from highly general methods with currently far-from-practical costs, to tackling specific
fundamental problems where the overhead of verification is negligible.

In this work, we focus on the “negligible” end of the spectrum and study primitive
computations within linear algebra – a core set of tools with applications across engineering,
data analysis and machine learning. We make four main contributions:

We consider protocols for inner product and matrix multiplication and present lightweight
tunable verification protocols for these problems. We also produce an entirely new
protocol for vector-matrix-vector multiplication.
Our protocols allow us to trade off computational effort and communication size against
the number of rounds of interaction. We show it is often desirable to have fewer rounds
of interaction.

© Graham Cormode and Chris Hickey;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 48; pp. 48:1–48:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0698-0922
mailto:g.cormode@warwick.ac.uk
mailto:c.hickey@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.ISAAC.2019.48
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Efficient Interactive Proofs for Linear Algebra

We optimize the costs for the cloud, and show that the protocols impose a computational
overhead that is typically much smaller than the cost of the computation itself.
Our experimental study confirms our analysis, and demonstrates that the absolute cost
is minimal, with the client’s cost significantly less than performing the computation
independently.

1.1 Streaming Interactive Proofs
Our work adopts the model of streaming interactive proofs (SIPs), formalized in [7, 8].

I Definition 1. We have two communicating computational entities, a helper, H, and a
verifier, V , observing a stream S. V wishes to know f(S), for some function f . After
viewing the stream, H and V have a conversation, culminating in V producing an output,
Out(V,S, VR, H), where VR represents a private random string belonging to V , so that

Out(V,S, VR, H) =
{
X if V is convinced by H that f(S) = X

⊥ Otherwise

We say the protocol used by the two parties is complete for f if there exists an honest helper
H such that

P[Out(V,S, VR, H) = f(S)] = 1

and sound if for any helper, H ′, and any input, S ′

P[Out(V,S ′, VR, H
′) /∈ {f(S ′),⊥}] ≤ 1

3

Informally, complete protocols always accept an honest answer, and sound protocols reject
an incorrect answer most of the time (the constant probability 1

3 is arbitrary and can be
reduced to be vanishingly small via standard amplification techniques). If a protocol for V is
both complete and sound, we call it a valid protocol for f . A valid protocol is characterized
by costs in terms of required space and communication.

I Definition 2. For a function f we say that there is a d-round (h, v)−protocol if there is a
valid protocol for f with

Verifier Memory v – Verifier uses O(v) working memory.
Communication h – The total communication between the two parties is O(h). Note
that we do not include the cost of sending the claimed solution in this cost.
Interactivity d at most 2d messages sent from H to V or vice versa.

Furthermore, we quantify the computational costs by
Verifier Streaming Cost – The work during the initial stream.
Verifier Checking Computation – The work for the interactive stage.
Helper Overhead – The additional work outside of solving the problem.

Problem Statement

We seek optimal or near optimal verification protocols for core linear algebra operations.
The canonical (and previously studied) example is the multiplication of two matrices A ∈
Fk×n

q , B ∈ Fn×k′

q , where Fq is the finite field of integers modulo q, for some prime q > M2n,
whereM = maxi,j(Aij , Bij) or chosen sufficiently large to not incur overflows. Our protocols
work on any prime size finite field, consistent with prior work. This allows computation over
fixed precision rational numbers, with appropriate scaling. For ease of exposition, we assume

G. Cormode and C. Hickey 48:3

in this paper that n = k = k′, although all our algorithms work with rectangular matrices.
The resulting matrix AB is assumed to be too large for the verifier to conveniently store,
and so our aim is for the helper to allow the verifier to compute a fingerprint of AB [14],
defined formally in Section 3.1, that can be used to check the helper’s claimed answer.

1.2 Prior Work
Interactive proofs were introduced in the 1980s, primarily as a tool for reasoning about
computational complexity [12]. A key result showed that the class of problems admitting
interactive proofs is equivalent to the complexity class PSPACE [17]. Subsequent work in
this direction led to the development of probabilistically checkable proofs (PCPs), where
(in our terminology) the verifier only inspects a small fraction of the proof written by the
helper. One distinction between this prior work and our setting is that PCPs consider a
verifier who can devote polynomial time to inspecting the proof and has access to the full
input; by contrast, we consider weaker verifiers, and try to more tightly bound their space
and computational resources. The notion that interactive proofs could be a practical tool for
verifying outsourced computation was advocated by Goldwasser, Kalai and Rothblum [11].
This paper introduced the powerful GKR (or “muggles”) protocol for verifying arbitrary
computations specified as arithmetic circuits. Several papers have aimed to optimize the
costs of the GKR protocol [7, 19, 18], or to provide systems for verifying general purpose
computation under a variety of computational or cryptographic models [13, 16, 15]. The latter
of which tackle large classes of problems using arguments, which consider a computationally
bounded prover. We consider only proofs as we can achieve highly efficient protocols without
requiring restriction on the prover, or use of cryptographic assumptions. Furthermore, some
costs associated with such verification still remain high, such as requiring a large amount of
pre-processing on the part of the helper, which can only be amortized over a large number of
invocations. For the common and highly symmetric algebraic computations we work with in
this paper, it is beneficial to build a specialised protocol.

Other work has considered engineering protocols for specific problems that are more
lightweight, and so trade generality for greater practicality. The motivation is that some
primitives are sufficiently ubiquitous that having special purpose protocols will outweigh the
effort to design them. An early example of this is given by Frievalds’ algorithm for verifying
matrix multiplication [10]. This and similar algorithms unfortunately don’t directly work
for verifiers that can’t store the entire input. This line of work was initiated for problems
arising in the context of data stream processing, such as frequency analysis of vectors derived
from streams [5]. Follow-up work addressed problems on graph data [8], data mining [9] and
machine learning [6].

These papers tend to consider either the non-interactive case (minimizing the number of
rounds), or have a poly-logarithmic number of rounds (minimizing the total communication).
For example, [8] introduces an interactive inner product protocol which can accommodate a
variable number of rounds. The development assumes that setting the number of rounds to
be log(n) will be universally optimal, an assumption we reassess in this work. Similarly, in
[18] the matrix multiplication protocol takes place over O(log(n)) rounds. Our observation
is that the pragmatic choice may fall between these extremes of non-interactive and highly
interactive. Taking into account latency and round-trip time between participants, the
preferred setting might be a constant number of rounds, which yields a communication cost
which is a small polynomial in the input size, but which is not significantly higher in absolute
terms from the minimal poly-logarithmic cost.

We summarize the current state of the art for the problems of computing inner product
(Table 1) and matrix multiplication (Table 2), and show the results we obtain here for
comparison.

ISAAC 2019

48:4 Efficient Interactive Proofs for Linear Algebra

Table 1 Different SIPs for Inner Product with u, v ∈ Fn
q , with n = ld and a ∈ [0, 1].

Method O(h) O(v) Rounds H overhead V overhead + checking
This Work O(ld) O(l + d) d− 1 O(n log(l)) O(nld) +O(ld)

Binary SC [8] O(log(n)) O(log(n)) log(n) O(n) O(n log(n)) +O(log(n))
FFT LDEs [7] O(n1−a) O(na) 1 O(n log(n)) O(n) +O(log(n))

Table 2 Different SIPs for Matrix Multiplication with A,B ∈ Fn×n
q and n = ld.

Method O(h) O(v) Rounds H overhead V overhead + checking
This Work O(ld) O(l + d) d O(n2) O(n2ld) +O(ld)

Binary SC [18] O(log(n)) O(log(n)) log(n) + 1 O(n2) O(n2 log(n)) +O(log(n))
Fingerprints [5] O(n2) O(1) 1 O(1) O(n2) +O(n2)

Lastly, we comment that our results are restricted to the information-theoretically secure
model of Interactive Proofs, and are separate from recent results in the computational
(cryptographic) security model [3, 4].

1.3 Contributions and outline
Our main contribution is an investigation into the time-optimal number of rounds for a variety
of protocols. We adapt and improve protocols for inner product and matrix multiplication, as
well as introducing an entirely new protocol for vector-matrix-vector multiplication. We then
perform experiments in order to evaluate the time component of each stage of interaction.

We begin in Section 2 by re-evaluating how to measure the communication cost of a
protocol, and propose to combine the competing factors of latency and bandwidth into a
total time cost. This motivates generalized protocols that take a variable number of rounds,
where we can pick a parameter setting to minimizes the total completion time.

In Section 3 and 4 we build on previous protocols [8, 7] to construct novel efficient
variable round protocols for core linear algebra operations. We begin by revisiting variable
round protocols for inner product. We leverage these to obtain new protocols for matrix
multiplication and vector-matrix-vector multiplication (which does not appear to have been
studied previously) with similar asymptotic costs.

In Section 5, we thoroughly analyse the practical computation costs of the resulting
protocols, and compare to existing verification methods. We perform a series of experiments
to back up our claims, and draw conclusions on what we should want from interactive proofs.
We show that it can be preferable to use fewer rounds, despite some apparently higher costs.

2 How Much Interaction Do We Want?

Prior work has sought to find “optimal” protocols which minimize the total communication
cost. This is achieved by increasing the number of rounds of interaction, with the effect of
driving down the amount of communication in each round. The minimum communication is
typically attained when the number of rounds is polylogarithmic [7]. The non-interactive case
represents another extreme in this regard, requiring a single message from the helper to verifier.
This allows the parties to work asynchronously at the cost of larger total communication.

In this section we argue that the right approach is neither the non-interactive case nor
the highly-interactive case. Rather, we argue that a compromise of “moderately interactive
proofs” can yield better results. To do so we consider the overall time required to process
the proof.

G. Cormode and C. Hickey 48:5

Figure 1 Optimal number of rounds for matrix multiplication of various sizes when considering
only communication, with a field size q = O(n3).

The key observation is that the time to process a proof depends not just on the amount
of communication, but also the number of rounds. In the protocols from Table 1 and 2, each
round cannot commence until the previous round completes, hence we incur a time penalty
as a function of the latency between the two communicating parties. The duration of a round
depends on the bandwidth between them. Thus, we aim to combine number of rounds and
message size into a single intuitive quantity based on bandwidth and latency that captures
the total wall-clock time cost of the protocol.

For matrix multiplication, the variable round protocols summarized in Table 2 spread the
verification over d rounds, and have a total communication cost proportional to dn1/d. Hence,
we write the time to perform the communication of the protocol as T = 2dL+ 2dn1/d log(|F|)

B ,
where latency (L) is measured in seconds, and bandwidth (B) in bits per second. This
expression emerges due to the 2d changes in direction over the protocol, and considering a
protocol that sends a total of 2dn1/d field elements (from the analysis in Section 4.2).

We measured the cost using typical values of L and B observed on a university campus
network, where the “ping” time to common cloud service providers (Google, Amazon,
Microsoft) is of the order of 20ms, and the bandwidth is around 100Mbps. From the above
equation for T we see that, for a constant field size |F|, the value of 2n1/dd log(|F|)/B is
dominated by 2dL for even small d under such parameter settings. Hence, we should prefer
fewer rounds as latency increases. Figure 1 shows the number of rounds which minimizes
the communication time as a function of the size of the input. We observe that the answer
is a small constant, at most just two or three rounds, even for the largest input sizes,
corresponding to exabytes of data.

3 Primitives

Before we introduce our protocols, we first describe the building blocks they rely on.

3.1 Fingerprints
Fingerprints can be thought of as hash functions for large vectors and matrices with additional
useful algebraic properties. For A ∈ Fn×n

q and x ∈ Fq, define the matrix fingerprint
as Fx(A) =

∑n−1
i=0

∑n−1
j=0 Aijx

in+j . Similarly, for u ∈ Fn
q we have the vector fingerprint

F vec
x (u) =

∑n−1
i=0 uix

i. The probability of two different matrices having the same fingerprint
(over the random choice of x) can be made arbitrarily small by increasing the field size.

ISAAC 2019

48:6 Efficient Interactive Proofs for Linear Algebra

I Lemma 3 ([14]). Given A,B ∈ Fn×n
q and x ∈R Fq, we have P[Fx(A) = Fx(B)|A 6= B] ≤

n2

q .

A similar result holds for F vec
x . In our model, fingerprints can be constructed in constant

space, and with computation linear to the input size.

3.2 Low Degree Extensions
Low degree extensions (LDEs) have been used extensively in interactive proofs. LDEs have
been used in conjunction with sum-check (Section 3.3) in a variety of contexts [11, 7, 8].
Formally, for a set of data S an LDE is a low degree polynomial that goes through each data
point. Typically, we think of S as being laid out as a vector or d-dimensional tensor indexed
over integer coordinates. This polynomial can then be evaluated at a random point r with
the property that, like fingerprinting, two different data sets are unlikely to evaluate to the
same value at r (inversely proportional to the field size).

Given input as a vector u ∈ Fn
q , we consider two new parameters, l and d with n ≤ ld, and

re-index u over [`]d. The d-dimensional LDE of u satisfies f̃u(k0, ..., kd−1) = uk for k ∈ [n]
where k0...kd−1 is the base l representation of k. For a random point r = (r0, ..., rd−1) ∈ Fd

q ,
we have

f̃u(r0, ..., rd−1) =
l−1∑
k0

· · ·
l−1∑

kd−1

ukχk(r) (1)

χk(r) =
d−1∏
j=0

l−1∏
i=0

i 6=kj

rj − i
kj − i

, (2)

where χ is the Lagrange basis polynomial. Note that f̃u : Fd
q → Fq and q ≥ l. A similar

definition can be used for a matrix A ∈ Fn×n
q , by reshaping into a vector in Fn2

q .
The polynomials can be evaluated over a stream of updates in space O(d) and time per

update O(ld) [8]. The time cost of our verifier to evaluate an LDE at one location, r, is
O(nld) (for sparse data, n can be replaced with the number of non-zeros in the input).

3.3 Sum-Check Protocol
Our final primitive is the sum-check protocol [12]. Sum-check is a multi-round protocol for
verifying the sum

G =
l−1∑

k0=0

l−1∑
k1=0
· · ·

l−1∑
kd−1=0

g(k0, k1, ..., kd−1) for g : Fd
q → Fq. (3)

For our purposes, g will be a polynomial derived from the LDE of a dataset of size n = ld

(i.e. the d-dimensional tensor representation of the data), and each polynomial used in
the protocol will have degree λ, with λ = O(l); however, we keep the parameter λ for
completeness. Provided that all the checks are passed then the verifier is convinced that
(except with small probability) the value G was as claimed in (3). The original descriptions
of the sum-check protocol [12, 2] use l = 2, however we shift to using arbitrary l, similar to
[1, 7, 8]. The protocol goes as follows:

G. Cormode and C. Hickey 48:7

Stream Processing: V randomly picks r ∈ Fd
q and computes g(r0, ..., rd−1).

Round 1: H computes and sends G and g0 : Fq → Fq, where

g0(k0) =
l−1∑

k1=0
· · ·

l−1∑
kd−1=0

g(k0, k1, ..., kd−1).

V checks that G =
∑l−1

k0=0 g0(k0), computes g0(r0) and sends r0 to H.
...

Round j + 1: H has received r0, . . . , rj−1 from V , and sends gj : Fq → Fq, where

gj(kj) =
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

g(r0, ..., rj−1, kj , ..., kd−1).

V checks if gj−1(rj−1) =
∑l−1

kj=0 gj(kj), computes gj(rj) and sends rj to H.
...

Round d: H sends gd−1 : Fq → Fq, where gd−1(kd−1) = g(r0, ..., rd−3, rd−2, kd−1).
V checks that gd−2(rd−2) =

∑l−1
kd−1=0 gd−1(kd−1), computes gd−1(rd−1), and finally checks

this is g(r0, ..., rd−2, rd−1).

H can express the polynomial gj as a set Gj =
{

(gj(x), x) : x ∈ [λ]
}
. In each round V

sums the first l elements of this set, and checks it is gj−1(rj−1) for j > 0, then evaluates the
LDE of Gj at rj , giving a computation cost per round of O(l + λ). The verifier also has to
do some work in the streaming phase, evaluating the function g at r, with cost O(nλd). The
helper’s computation time comes from having to evaluate g at ld−j points in the jth round,
and so ultimately evaluating g at

∑d−1
j=1 l

d−j = O(n) points, with a cost per point of O(λd)
(we subsequently show how this can be reduced in our protocols for linear algebra). The
costs of performing sum-check are summarized as follows:
Communication O(λd) words, spread over d rounds.
Helper costs O(nλd) time for computation.
Verifier costs O(λ+ d) memory cost, O(nλd) overhead to compute LDE and checking cost

O(d(l + λ)).

In our implementations, we will optimize our methods to “stop short” the sum-check
protocol and terminate at round d − 1 (this idea is implicit in the work of Aaronson and
Wigderson [1, Section 7.2]). In this setting, the verifier finds the set

{g(r0, ..., rd−3, rd−2, kd−1) : kd−1 ∈ [l]}.

in the stream processing stage, and then checks this against the claimed set of values provided
by the helper in round d− 1. This increases the space used by the verifier to maintain these
l LDE evaluations. However, this does not affect the asymptotic space usage of the verifier,
since we assume that V already keeps space proportional to l to handle H’s messages. It
does not affect the streaming overhead time, since each update affects only the LDE point
with which it shares the final coordinate. Equivalently, this can be viewed as running l
instances of sum-check in parallel on the data divided into l partitions. Hence, this appears
as an all-round improvement, at least in theory.

ISAAC 2019

48:8 Efficient Interactive Proofs for Linear Algebra

4 Protocols for Linear Algebra Primitives

Using the previously discussed primitives for SIPs, we show how they have been used in
inner product [7]. We then use this to construct a new variable round method for matrix
multiplication, and extend it to achieve a novel vector-matrix-vector multiplication protocol.

4.1 Inner Product
Given two vectors a, b ∈ Fn

q , the verifier wishes to receive aT b ∈ Fq from the helper. We
give a straightforward generalization of the analysis of a protocol in [8], as an application of
sum-check on the LDEs of a and b. This variable round protocol has costs detailed below.

I Theorem 4. Given a, b ∈ Fn
q , there is a (d − 1)-round (ld, l + d)-protocol with n = ld

for verifying aT b with helper computation time O
(

n log(n)
d

)
, verifier overhead O(nld), and

checking cost O(ld).

The analysis from [8] sets l = 2 and d = log(n), and the computational cost for the verifier is
O(log(n)) while the cost for the helper is O(n log(n)). For general l and d these costs become
O(ld) and O(nld) for the verifer and helper respectively.

In [7] it is shown how the helper’s cost can be reduced to O(n log(n)) for d = 2 and
l =
√
n using the Discrete Fast Fourier Transform to make a fast non-interactive protocol.

We extend this for arbitrary d and l, and show how by combining with sum-check we can
keep the helper’s computation low, proving Theorem 1.

I Lemma 5. Given a, b ∈ Fn
q the sum

aT b =
l−1∑

k0=0
· · ·

l−1∑
kd−1=0

f̃a(k0, ..., kd−1)f̃b(k0, ..., kd−1) (4)

can be verified using a (d−1)-round (ld, l+d)-protocol with helper computation time O(n log(n)
d),

and verifier computation time O(ld), overhead time O(nld).

Proof. First, set

g(k0, ..., kd−1) = f̃a(k0, ..., kd−1)f̃b(k0, ..., kd−1).

g : Fd
q → Fq is a degree 2l polynomial in each variable. Now, consider round j + 1 of the

sum-check protocol, where the helper is required to send

gj(x) =
l−1∑

kj+1=0
· · ·

l−1∑
kd=0

g(r1, ..., rj−1, x, kj+1, ..., kd).

Here, g is degree 2l polynomial, sent to V as a set GΣ
j =

{
(gj(x), x) : x ∈ [2l]

}
. To compute

this set we have H find the individual summands as

Gj =
{(
g(r1, ..., rj−1, x, kj+1, ..., kd−1), x

)
: x ∈ [2l], kj+1, ..., kd−1 ∈ [l]

}
.

Naive computation of all the values in Gj takes time O(nd) each, for a total cost of O(nld−jd).
However, instead of computing the LDE at ld−j points with cost O(ld) we can sum ld−j

convolutions of length 2l vectors to obtain the same result. We present the full proof of this
claim in the Appendix. The total cost of each convolution is O(l log(l)). Summing these
ld−j convolutions gives the cost of the jth round for the helper as O

(
ld−j log(n)

d

)
. Summing∑d−1

j=0 l
d−j over the d rounds gives us our cost of O

(
n log(n)

d

)
. The remaining costs are as in

our version of the sum-check protocol (Section 3.3). J

G. Cormode and C. Hickey 48:9

4.2 Matrix Multiplication
By combining the power of LDEs with the matrix multiplication methods from [6], we can
create a protocol with only marginally larger costs than inner product.

I Theorem 6. Given two matrices A,B ∈ Fn×n
q , we can verify the product AB ∈ Fn×n

q

using a d-round (ld, l + d)-protocol with verifier overhead time O(n2ld), checking time O(ld)
and helper computation time O(n2).

Proof. We make use of the matrix fingerprints from [6], and generate the fingerprint of AB
for some x ∈ Fq by expressing matrix multiplication as a sum of outer products.

Fx(AB) =
n−1∑
i=0

F vec
xn (A↓i)F vec

x (B→i) (5)

where A↓i denotes the ith column of A and B→j is the jth row of B. We also define:

Acol = (F vec
xn (A↓1), ..., F vec

xn (A↓n)) and Brow = (F vec
x (B→1), ..., F vec

x (B→n)).

Our fingerprint Fx(AB) is then given by the inner product of Acol and Brow. We apply the
inner product protocol of Theorem 4, hence we need to show the verifier can evaluate the
LDE of the product of these two vectors at a random point,

l−1∑
kd−1=0

f̃Acol(r0, ..., rd−2, kd−1)f̃Brow(r0, ..., rd−2, kd−1),

which we denote as Σf̃Acol(r)f̃Brow(r). We can construct this value in the initial stream by
storing, for each value of kd−1, f̃Acol(r0, ..., rd−1, kd−1) and f̃Brow(r0, ..., rd−1, kd−1), which is
done in space O(ld) for the verifier. Each of these requires an initial verifier overhead of
O(ld) for each of the n2 elements, then checking requires O(ld) as in Theorem 4. The helper
has to fingerprint the matrices to form Acol and Brow, at a cost of O(n2). The result follows
by using the generated fingerprint to compare to the fingerprint of the claimed result AB
(which is provided by the helper in some suitable form, and excluded from the calculation of
the protocol costs). J

Note that the helper is not required to follow any particular algorithm to compute the
matrix product AB. Rather, the purpose of the protocol is for the helper to assist the verifier
in computing a fingerprint of AB from its component matrices. The time cost of this is much
faster: linear in the size of the input.

Fingerprinting versus LDEs. Our protocol in Theorem 6 is stated in terms of fingerprints.
In [18], a d-round protocol is presented which uses

f̃AB(R1, R2) =
1∑

k0=0
· · ·

1∑
klog(n)−1=0

f̃A(R1, k)f̃B(k,R2).

This uses the inner product definition of matrix multiplication, whilst we use the outer
product property of fingerprints. Finding f̃AB(R1, R2) during the initial streaming has cost
per update O(log(n)). For our method, we find Σf̃Acol(r)f̃Brow(r), which has cost O(ld). In
the case l = 2, d = log(n), we see these two methods are very similar. The methods differ
in how we respond to receiving the result, AB. In [18], the verifier computes the LDE of

ISAAC 2019

48:10 Efficient Interactive Proofs for Linear Algebra

AB at a cost of O(n2ld), while our method takes time Õ(n2) to process the claimed AB,
as we simply fingerprint the result. Thaler’s method posesses some other advantages, for
example it can chain matrix powers (finding Am) without the Helper having to materialize
the intermediate matrices. Nevertheless, in data analysis applications, it is often the case
that only a single multiplication is required.

4.3 Vector-Matrix-Vector Multiplication
Vector-matrix-vector multiplication appears in a number of scenarios. A simple example
arises in the context of graph algorithms: suppose that helper wishes to demonstrate that a
graph, specified by an adjacency matrix A, is bipartite. Let v be an indicator vector for one
part of the graph, then vTAv = (1− v)TA(1− v) = 0 iff v is as claimed. More generally, the
helper can show a k colouring of a graph using k vector-matrix-vector multiplications between
the adjacency matrix and the k disjoint indicator vectors for the claimed colour classes.

We reduce the problem of vector-matrix-vector multiplication (which yields a single scalar)
to inner product computation, after reshaping the data as vectors. Formally, given u, v ∈ Fn

and A ∈ Fn×n, we can compute uTAv as

uTAv =
n∑

i=1

n∑
j=1

uiAijvj = (uvT)vec ·Avec

uTAv is equal to computing the inner product of A and uvT written as length n2 vectors.
Protocols using this form will need to make use of an LDE evaluation of uvT . We show that
this can be built from independent LDE evaluations of each vector.

I Lemma 7. Given u, v ∈ Fn and r ∈R Fd, with n = ld

fuvT (r0, . . . r2d−1) = fu(r0, . . . , rd−1)fv(rd, . . . , r2d−1)

Proof. We abuse notation a little to treat uvT as a vector of length n2, and we assume that
n = ld (if not, we can pad the vectors with zeros without affecting the asymptotic behaviour).
We write R1 = (r0, . . . , rd−1) and R2 = (rd, . . . , r2d−1). The proof follows by expanding out
expression (2) to observe that χk(r0 . . . r2d−1) = χk0,...kd−1(R1)χkd,...,k2d−1(R2) and so

fuvT (r0, . . . r2d−1) =
l−1∑

k0=0
. . .

l−1∑
k2d−1=0

[(
uvT

)
k
χk(r)

]
=

l−1∑
i0=0

. . .

l−1∑
id−1=0

l−1∑
j0=0

. . .

l−1∑
jd−1=0

(uivj)χi(R1)χj(R2)

= fu(R1)fv(R2). J

The essence of the proof is that we can obtain all the needed cross-terms corresponding to
entries of uvT from the product involving all terms in fu and all terms in fv.

We can employ the protocol for inner product using fA and fuvT , which we can compute
in the streaming phase, as fuvT = fufv to give us Theorem 3.

I Theorem 8. Given u, v ∈ Fn and A ∈ Fn×n, we can verify uTAv using a (d− 1) round
(ld, l+d)-protocol for n2 = ld, with helper computation O

(
n2 log(n)

d

)
, verifier overhead O(nld)

and checking cost O(l).

G. Cormode and C. Hickey 48:11

Verifier Tasks Helper Tasks

a Finds AB

b0 Sends AB

Computes G0b
Sends G0c

Computes Gd−2b
Sends Gd−2c

Streams A,B and
computes ΣfAcol

(r)fBrow (r) α

Computes fx(AB) β0

Sends x δ

Checks
∑l−1

i=0(G0)i = fx(AB)
Computes fG0(r0)

β

Sends r0 δ

Checks∑l−1
i=0(Gd−2)i = fGd−3(rd−3)

fGd−2(rd−2) = ΣfAcol
(r)fBrow

(r)
β

Figure 2 Detailed Matrix Multiplication Protocol.

5 Practical Analysis

To evaluate these protocols in practice, we focus on the core task of matrix multiplication.
In order to discuss the time costs associated with execution of our protocols in more detail,
we break down the various steps into components as illustrated in Figure 2. Here, we use
Greek characters to describe the costs for the verifier: the initial streaming overhead (t[α]),
the checks performed in total in each round (t[β]), as well as the time to send responses
(t[δ]). For the helper, we identify four groups of tasks, denoted by Latin characters: the
computation of the matrix product itself (t[a]), the communication of this result to the
verifier (t[b0]), and the time per round to compute and send the required message (t[b] and
t[c] respectively).

Recall our discussion in Section 2 on the effects of communication bandwidth and latency
on the optimal number of rounds. In our simple model we focused on the tasks most directly
involved with communication (the verifier round cost t[δ] and helper round cost t[c]). We
implicitly treated the corresponding round computation costs (t[β] and t[b]) as nil. As the
construction and sending of the solution (t[a] and t[b0]) will dominate the first stage of the
protocol, we focus our experimental study on measuring values of t[b], t[β0] and t[β] to
quantify a reasonable estimate for the length of time the interactive phase of the protocol
takes with bandwidth B and latency L.

We account for the cost required for computation and communication separately to find
the total time, T , as follows:

T = t[work] + t[comm] = (t[β0] + t[β] + t[b]) +
(

2dL+ 2dl log(|F|)
B

)
.

T is the total time for the protocol from receiving the answer to producing a conclusion of
the veracity of the result. We can omit the verifier’s streaming computation time t[α] from
the total protocol run time, as this can be overlapped with the helper’s computation of the
true answer, which should always dominate.

ISAAC 2019

48:12 Efficient Interactive Proofs for Linear Algebra

Table 3 Interaction phase costs.

(a) n = 212, t [β0] = 149± 15ms.

l d t[b] (ms) t[β] (µs)
2 12 0.230±0.02 9±2
4 6 0.120±0.01 14±1
8 4 0.099±0.01 35±7
16 3 0.097±0.01 35±7
64 2 0.110±0.01 43±5

(b) n = 216, t [β0] = 38.0± 6.5s.

l d t[b] (ms) t[β] (µs)
2 16 3.5± 0.2 6± 1
4 8 2.0± 0.1 9± 1
16 4 1.6± 0.1 46± 3
256 2 1.8± 0.1 1700± 200

(c) n = 218, t [β0] = 603± 63s.

l d t[b] (ms) t[β] (µs)
2 18 14.1± 0.9 6± 1
4 9 8.0± 0.5 11± 3
8 6 6.3± 0.5 30± 3
64 3 7.1± 0.6 270± 30
512 2 7.8± 0.7 6400± 650

Table 4 Matrix Multiplication Timings.

n t[a] (s)
210 0.61± 0.06
211 5.61± 0.7
212 47.9± 4.3
213 403± 34

In what follows, we instantiate this framework and determine the costs of implementing
protocols. These demonstrate that while computation cost for matrix multiplication (t[a])
grows superquadratically, the streaming cost (t[α]) is linear in the input size n. The dominant
cost during the protocol is t[β0], to fingerprint the claimed answer; other computational costs
in the protocol are minimal. Factoring in the communication based on real-world latency
and bandwith costs, we conclude that latency dominates, and indeed we prefer to have fewer
rounds. In all our experiments, the optimal number of rounds is just 2. Extrapolating to
truly enormous values of n suggest that still three rounds would suffice.

5.1 Setup

The experiments were performed on a workstation with an Intel Core i7-6700 CPU @ 3.40GHz
processor, and 16GB RAM. Our implementations were written in single-threaded C using the
GNU Scientific Library with BLAS for the linear algebra, and FFTW3 library for the Fourier
Transform. The programs were compiled with GCC 5.4.0 using the -O3 optimization flag,
under Linux (64-bit Ubuntu 16.04), with kernel 4.15.0. Timing was done using the clock()
function for all readings except t[β], which used getrusage() as the timings were so small.

For the various tests performed, the matrices and vectors were generated using the C
rand() function. Note that the work of the protocols is not affected by the data values, so
we are not much concerned with how the inputs are chosen. The arithmetic field used was Fq

with q = 231 − 1 (larger fields, such as q = 261 − 1 or q = 2127 − 1 could easily be substituted
to obtain much lower probability of error, at a small increase in time cost). The work of the
verifier and work of the helper were both simulated on the same machine.

G. Cormode and C. Hickey 48:13

Table 5 Time taken for interactions (ping
20ms, bandwidth 100Mbps, |F|=231−1).

n l d
Latency
cost (ms)

Bandwidth
cost (ms)

212

2 12 440 0.014
4 6 200 0.012
8 4 120 0.015
16 3 80 0.020
64 2 40 0.041

216

2 16 600 0.019
4 8 280 0.018
16 4 120 0.031
256 2 40 0.163

218

2 18 680 0.022
4 9 320 0.020
8 6 200 0.026
64 3 80 0.082
512 2 40 0.328

Table 6 Verifier matrix multiplication time (ping
20ms, bandwidth 100Mbps, |F|=231−1).

n l d
t[comm]

(s)
t[work]
(s) T (s)

212

2 12 0.44

0.149

0.589
4 6 0.20 0.349
8 4 0.12 0.269
16 3 0.08 0.229
64 2 0.04 0.189

216

2 16 0.60

38

38.6
4 8 0.28 38.3
16 4 0.12 38.1
256 2 0.04 38.0

218

2 18 0.68

603

604
4 9 0.32 603
8 6 0.20 603
64 3 0.08 603
512 2 0.04 603

5.2 Matrix Multiplication Results
Table 3 shows the experimental results for the matrix multiplication protocol for matrix
sizes ranging from n = 212 to 218. Note, this means we are tackling matrices with tens of
billions of entries. For completeness, we timed BLAS matrix multiplication on our machine
for n = 210 to 213 to give an idea of the comparative magnitude of a (Table 4), although
further results were restricted by machine memory. Due to memory limitations, we tested
our algorithms using freshly drawn random values in place of stored values of the required
vectors or matrices. This does not affect our ability to compare the data, and allows us to
increase the data size beyond that of the machine memory.

The computation cost t[a] grows with the cost of matrix multiplication, which is super-
quadratic in n, while t[α] grows linearly with the size of the input, which is strictly quadratic
in n. Further, the verifier does not need to retain whole matrices in memory, and can compute
the needed quantities with a single linear pass over the input.

We next study the helper’s cost across all d rounds to compute the responses in each step
of the protocol. Our analysis bounds this total cost as O(n log(n)

d). However, we observe that
in our experiments, this quantity tends to decrease as d decreases. We conjecture that while
the cost does decrease each round, the amount of data needed to be handled quickly decreases
to a point where it is cache resident, and the computation takes a negligible amount of time
compared to the data access. Thus, this component of the helper’s time cost is driven by the
number of rounds during which the relevant data is still “large”, which is greater for larger d.

When we look at the contributory factors to t[work], we observe that the dominant
term is by far t[β0], where the verifier reads through the claimed answer and computes the
fingerprint. Thus, arguably, the computational cost of any such protocol once the prover finds
the answer is dominated by the time the verifier takes to actually inspect the answer: all
subsequent checks are minimal in comparison. This justifies our earlier modelling assumption
to omit computational costs in our balancing of latency and bandwidth factors.

We now turn to the time due to communication, summarized in Table 5. Here, we can
clearly see the huge difference of several orders of magnitude between the latency cost, 2dL,
versus the bandwidth cost, 2dl log(|F|)

B . Note that these timing figures are simulated, based on
the average values of latency and the corresponding average bandwidth found when pinging

ISAAC 2019

48:14 Efficient Interactive Proofs for Linear Algebra

several cloud servers such as Google, Amazon and Microsoft from a university network.
The dependencies on both latency and bandwidth are linear. Consequently, if the latency
were reduced to 10ms, this would halve the times in the Latency cost column; similarly, if
bandwidth were doubled, this would halve the times in the Bandwidth cost column. We
observe then that for all but very low bandwidth scenarios, the latency cost will dominate.

Finally, we put these pieces together, and consider the total protocol time from both
computation and communication components. We obtain the total time by summing t[work]
and t[comm], in Table 6. These results confirm our earlier models, and the fastest time is
achieved with a very small number of rounds. For all values of n tested in these experiments,
we see the optimal value of d is 2, the minimally interactive scenario. The trend is such that,
because of the sheer domination of latency and t[β0], it is unlikely that more than two or
three rounds will ever be needed for even the largest data sets. As n increases, the size of
t[work] grows faster than t[comm], predominantly due to t[β0]. Therefore to minimize the
cost of verification one should prefer a small constant number of rounds.

6 Concluding Remarks

Our experimental study supports the claim that fewer rounds of interaction are preferable
to allow efficient interactive proofs for linear algebra primitives. For large instances in
our experiments, the optimal number of rounds is just two. These primitives allow simple
implementation of more complex tools such as regression and linear predictors [6]. Other
primitive operations, such as scalar multiplication and addition, are trivial within this model
(since LDE evaluations and fingerprints are linear functions), so these primitives collectively
allow a variety of computations to be efficiently verified. Further operators, such as matrix
(pseudo)inversion and factorization are rather more involved, not least since they bring
questions of numerical precision and representation [6]. Nevertheless, it remains open to
show more efficient protocols for other functions, such as matrix exponentiation, and to allow
sequences of operations to be easily “chained together” to verify more complex expressions.

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A New Barrier in Complexity Theory.

ACM Trans. Comput. Theory, 1(1):2:1–2:54, February 2009. doi:10.1145/1490270.1490272.
2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.
3 Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs. Crypto-

logy ePrint Archive, Report 2016/116, 2016. URL: https://eprint.iacr.org/2016/116.
4 Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and Ron D.

Rothblum. Fiat-Shamir From Simpler Assumptions. Cryptology ePrint Archive, Report
2018/1004, 2018. URL: https://eprint.iacr.org/2018/1004.

5 Amit Chakrabarti, Graham Cormode, and Andrew Mcgregor. Annotations in data streams.
Automata, Languages and Programming, pages 222–234, 2009.

6 Graham Cormode and Chris Hickey. Cheap Checking for Cloud Computing: Statistical
Analysis via Annotated Data Streams. In International Conference on Artificial Intelligence
and Statistics, pages 1318–1326, 2018.

7 Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 90–112. ACM, 2012.

8 Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. Proceedings of the VLDB Endowment, 5(1):25–36, 2011.

https://doi.org/10.1145/1490270.1490272
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2018/1004

G. Cormode and C. Hickey 48:15

9 Samira Daruki, Justin Thaler, and Suresh Venkatasubramanian. Streaming verification in
data analysis. In International Symposium on Algorithms and Computation, pages 715–726.
Springer, 2015.

10 Rūsin, š Freivalds. Fast probabilistic algorithms. Mathematical Foundations of Computer
Science 1979, pages 57–69, 1979.

11 Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation:
interactive proofs for muggles. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 113–122. ACM, 2008.

12 Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992.

13 Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly Practical
Verifiable Computation. Commun. ACM, 59(2):103–112, January 2016.

14 Michael O Rabin. Fingerprinting by random polynomials. Center for Research in Computing
Techn., Aiken Computation Laboratory, Univ., 1981.

15 Srinath TV Setty, Richard McPherson, Andrew J Blumberg, and Michael Walfish. Making
argument systems for outsourced computation practical (sometimes). In NDSS, volume 1,
page 17, 2012.

16 Srinath TV Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J Blumberg, and
Michael Walfish. Taking Proof-Based Verified Computation a Few Steps Closer to Practicality.
In USENIX Security Symposium, pages 253–268, 2012.

17 Adi Shamir. IP=PSPACE. Journal of the ACM (JACM), 39(4):869–877, 1992.
18 Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Advances in Cryptology–

CRYPTO 2013, pages 71–89. Springer, 2013.
19 Victor Vu, Srinath Setty, Andrew J Blumberg, and Michael Walfish. A hybrid architecture for

interactive verifiable computation. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 223–237. IEEE, 2013.

A Details of Proof of Lemma 5

I Lemma 9 (Restatement of Lemma 5). Given a, b ∈ Fn
p the sum

aT b =
l−1∑

k0=0
· · ·

l−1∑
kd−1=0

fa(k0, ..., kd−1)fb(k0, ..., kd−1)

can be verified using a (d− 1)-round (ld, l+ d)-protocol with helper overhead time O(n log(n)
d),

and verifier overhead time of O(nld) and checking computation time O(ld).

Proof. First, set

g(k0, ..., kd−1) = fa(k0, ..., kd−1)fb(k0, ..., kd−1)

g : Fq × ...× Fq → Fq is a degree 2l polynomial in each variable. Now, consider round j + 1
of the sum-check protocol, where the helper is required to send

gj(x) =
l∑

kj+1=1
· · ·

l∑
kd=1

g(r1, ..., rj−1, x, kj+1, ..., kd)

Here, g is degree 2l polynomial, sent to V as a set GΣ
j =

{
(gj(x), x) : x ∈ [2l]

}
. To compute

this set we have H find the individual summands as

Gj =
{(
g(r1, ..., rj−1, x, kj+1, ..., kd−1), x

)
: x ∈ [2l], kj+1, ..., kd−1 ∈ [l]

}

ISAAC 2019

48:16 Efficient Interactive Proofs for Linear Algebra

Naive computation of all the values in Gj takes time O(nd) each, for a total cost of O(nld−jd).
However, instead of computing the LDE at ld−j points with cost O(ld) we can sum ld−j

convolutions of length 2l vectors to obtain the same result (See below). The total cost of the
convolution is O(l log(l)) = O(l log(n)

d), using n = ld. Summing these ld−j convolutions gives
the cost of the jth round for the helper as O(ld−j log(n)

d). Summing over the d rounds gives
us our cost of O(n log(n)

d). J

A.1 Finding Gj with Convolution
To simplify the argument, we consider the computation of aTa (also referred to as F2). The
general case of aT b follows the same steps but the notation quickly becomes cumbersome.
So, given a vector a ∈ Fn

q , we want to find
∑n−1

i=0 a
2
i . This is equivalent to finding the inner

product of a with itself.
Consider a d− 1 round protocol for the F2 problem on a ∈ Fn

q . We have n = ld, and so
for each round of interaction the helper sends

gj(x) =
l∑

kj+1=1
· · ·

l∑
kd−1=1

fA(r0, ..., rj−1, x, kj+1, ..., kd−1)2,

where the input is reshaped as the d-dimensional A ∈ Fl×l×...×l. There are d − 1 such
polynomials to send over the course of the protocol, and each one has degree 2l − 1.

Round 1

Consider first the opening round

g0(x) =
l∑

k1=1
· · ·

l∑
kd−1=1

fA(x, k1, ..., kd−1)2

This can be found by materializing the set of values G0 =
{(
fA(x, k1, ..., kd), x

)
: x ∈

[2l], k1, ..., kd−1 ∈ [l]
}
, and then summing over k1, . . . , kd to obtain GΣ

0 .
For the first half of the GΣ

0 , the computation is closely linked to the original input, and
so we can simply compute the partial sums

l∑
k1=1
· · ·

l∑
kd−1=1

fA(x, k1, ..., kd−1)2.

These sums partition the input, so the total time is O(n) to obtain the values for all x ∈ [l].
However, for x values in the range l + 1 . . . 2l, we need to evaluate the LDE at locations

not present in the original input. To avoid the higher cost associated with naive computation
of all terms, we expand the definition of LDEs:

fA(k0, ..., kd−1) =
l−1∑

p0=0
· · ·

l−1∑
pd−1=0

Ap0p1...pd−1χp0p1...pd−1(k0, ..., kd−1)

χp0p1...pd−1(k0, ..., kd−1) =
d−1∏
j=0

l−1∏
i=0,i6=pj

kj − i
pj − i

G. Cormode and C. Hickey 48:17

In what follows, we can make use of the fact that not all input values contribute to every
LDE evaluation needed. We expand as follows:

g0(x) =
l−1∑

k1=0

· · ·
l−1∑

kd−1=0

fA(x, k1, ..., kd−1)

=
l−1∑

k1=0

· · ·
l−1∑

kd−1=0

 l−1∑
p0=0

l−1∑
p1=0

· · ·
l−1∑

pd−1=0Ap0p1...pd−1

[
l−1∏

i=0,i 6=p0

x− i
p0 − i

][
l−1∏

i=0,i6=p1

k1 − i
p1 − i

]
· · ·

 l−1∏
i=0,i 6=pd−1

kd−1 − i
pd−1 − i

2

=
l−1∑

k1=0

· · ·
l−1∑

kd−1=0

(
l−1∑

p0=0

[
Ap0k1...kd−1

l−1∏
i=0,i 6=p0

x− i
p0 − i

])2

=
l−1∑

k1=0

· · ·
l−1∑

kd−1=0

(
l−1∑

p0=0

[(
Ap0k1...kd−1

l−1∏
i=0,i6=p0

1
p0 − i

)(
l−1∏
i=0

(x− i)

)(
1

x− p0

)])2

=
l−1∑

k1=0

· · ·
l−1∑

kd−1=0

((
l−1∏
i=0

(x− i)

)
l−1∑

p0=0

[(
Ap0k1...kd−1

l−1∏
i=0,i 6=p0

1
p0 − i

)(
1

x− p0

)])2

Note in the second step we use that
l−1∑

pj=0

l−1∏
i=0,i6=pj

kj − i
pj − i

=
{

0 pj 6= kj

1 pj = kj

We now introduce the helper functions

g(p) = 1
p

; h(x) =
l∏

i=1
(x− i) and q(p) =

l−1∏
i=0,i6=p

1
p− i

(6)

to simplify the notation. We define the vectors

bk1...kd−1(p) =
{
Ap,k1...kd−1q(p) for p ∈ [0, l − 1], k1, ..., kd−1 ∈ [0, l − 1]
0 for p ∈ [l, 2l − 1], k1, ..., kd−1 ∈ [0, l − 1]

and use these to rewrite in terms of convolutions

g0(x) :=
l−1∑

k1=1
· · ·

l−1∑
kd−1=0

(
h(x)

l−1∑
p0=0

[
bk1...kd−1(p0)g(x− p0)

])2

= h(x)2
l−1∑

k1=0
· · ·

l−1∑
kd−1=0

(conv(bk1...kd−1 , g)[x])2

= h(x)2

(
l∑

k2=1
· · ·

l∑
kd=1

DFT−1(DFT(bk1...kd−1) ·DFT(g))
)

[x]2.

Thus, by precomputing some arrays of values, we reduce the computation to several
convolutions that can be evaluated quickly via fast Fourier transform. Observe that this
FFT does not need to be computed over the same field as the matrix multiplication: we can
choose any suitably large field for which there is an FFT (say, real vectors of size 2j for some
j), and then map the result back into Fq. Forming bk1...kd

(p) takes time O(ld). We have to
do O(ld−1) convolutions on vectors of length O(l), so each convolution takes time O(l log(l)).
Since log(l) = log(n 1

d), we can write the helper’s time cost for the first round as O(n
d log(n)).

ISAAC 2019

48:18 Efficient Interactive Proofs for Linear Algebra

Round j

Similar rewritings are possible in subsequent rounds. Initially, it may seem that things
are more complex for Gj , as each fA(r0, ..., rj−1, x, kj+1, ..., kd−1) appears to require full
inspection of the input to evaluate at (r0, ..., rj−1). However, we can again define an ancillary
array bk1...kd−1 to more easily compute this. In the sum-check protocol after the helper sends
G0, it receives r0, with which we define the array over [l]d−1 :

A
(1)
r0k1...kd−1

=
l−1∑
p=0

bk1...kd−1(p)
l−1∏

i=0,i6=p

(r0 − i)

This allows the Helper to form G1 using the same idea as above, but with A(1) instead of
A. Working in terms of A(1) reduces the Helper’s cost from O(ld−1ld) for computing the
fA(r0, k1, ..., kd−1) for each ki ∈ [l] to just O(l2) when combined with using bk1...kd−1 .

In more detail, and with more generality, let us consider the jth round, where we are
forming Gj and GΣ

j . We define

A
(j)
r0,...,rj−1,kj ...kd−1

=
l−1∑
p=0

bkj ...kd−1(p)
l−1∏

i=0,i6=p

(rj−1 − i)

Then we have the following computation for x ∈ [l, 2l − 1]:

gj(x) =
l−1∑

kj+1=0

· · ·
l−1∑

kd−1=0

fA(r0, ..., rj−1, x, kj+1, ..., kd−1)2

=
l−1∑

kj+1=0

· · ·
l−1∑

kd−1=0

 l−1∑
p0=0

· · ·
l−1∑

pd−1=0

Ap0...pd−1

[
l−1∏

i=0,i 6=p0

r0 − i

p0 − i

]
· · ·

 l−1∏
i=0,i 6=pj−1

rj−1 − i

pj−1 − i

 l−1∏

i=0,i 6=pj

x− i

pj − i

 l−1∏
i=0,i 6=pj+1

kj+1 − i

pj+1 − i

 · · ·
 l−1∏

i=0,i 6=pd−1

kd−1 − 1
pd−1 − 1

2

=
l−1∑

kj+1=0

· · ·
l−1∑

kd−1=0

 l−1∑
pj =0

A
(j)
r0...rj−1pj kj+1...kd−1

l−1∏
i=0,i 6=pj

x− i

pj − i

2

=
l−1∑

kj+1=0

· · ·
l−1∑

kd−1=0

 l−1∑
pj =0

A
(j)
r0...rj−1pj kj+1...kd−1

l−1∏
i=0,i 6=pj

1
pj − i

(l−1∏
i=0

(x− i)

)(
1

x− pj

)2

=
l−1∑

kj+1=0

· · ·
l−1∑

kd−1=0

(l−1∏
i=0

(x− i)

)
l−1∑

pj =0

A
(j)
r0...rj−1pj kj+1...kd−1

l−1∏
i=0,i 6=pj

1
pj − i

(1
x− pj

)2

.

We make use of the same set of helper functions specified in equation (6), and define
the vectors

bkj+1...kd
(p) =

{
A

(j)
r0...rj−1pkj+1...kd−1

q(p) for p ∈ [0, l − 1], kj+1, ..., kd ∈ [0, l − 1]
0 for p ∈ [l, 2l − 1], kj+1, ..., kd−1 ∈ [0, l − 1]

G. Cormode and C. Hickey 48:19

We can now continue to express the computation in terms of convolutions

gj(x) :=
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

h(x)
l−1∑

pj=0

[
bkj+1...kd−1(pj)g(x− pj)

]2

=
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

(
h(x) conv(bkj+1...kd−1 , g)[x]

)2
= h(x)2

 l−1∑
kj+1=0

· · ·
l−1∑

kd−1=0
DFT−1(DFT(bkj ...kd

) ·DFT(g))

 [x]2.

We can think of A(j) as a shrinking input array, where A(j) ∈ Fl×l×...×l is d− j dimen-
sional, and

bkj+1...kd
(pj) = A

(j)
r1...rj−1pjkj+1...kd

l∏
i=1,i6=pj

1
pj − i

A
(j)
r0,...,rj−1,kj ...kd−1

=
l−1∑

pj−1=0
A

(j−1)
r1...rj−2pj−1kj ...kd

l−1∏
i=0,i6=pj−1

rj−1 − i
pj−1 − i

.

Using this formulation, the dominant computation cost in round j will be from the FFT,
which involves ld−j−1 convolutions of cost O(l

d log(n)) each. Thus the final cost for the round
is O(ld−j

d log(n)). The cost of running the entire protocol requires d− 1 rounds, making the
computational cost for the helper

O

d−2∑
j=0

ld−j

d
log(n)

 = O

(
n log(n)

∑d−2
j=0 l

−j

d

)
= O

(
n log(n)

d

)

since l ≥ 2. Note that when d = log(n) and l = 2, we achieve O(n) time for the helper.
The cost increases with fewer rounds, up to a maximum of O(n logn) for a constant round
protocol.

Cost summary

For the verifier, the checking computation cost is O(ld), which emerges from the d rounds,
where in each round the verifier sums the first l elements of GΣ

j , before evaluating the LDE
of GΣ

j at rj , making for a total cost of O(l). The streaming overhead for the verifier involves
evaluating the LDE of the input A, for a cost of O(nld) The verifier requires O(l+d) memory
to find the LDE of a at r ∈ Fd. The communication will be O(ld) as we have the helper
sending d sets Gj of size O(l). Hence, we summarize the various costs as
Rounds d− 1
Communication O(ld)
Verifier Memory O(l + d)
Helper Computation Time O(n log(n)

d)
Verifier Overhead Time O(nld)
Verifier Checking Computation Time O(ld)

ISAAC 2019

When Maximum Stable Set Can Be Solved in
FPT Time
Édouard Bonnet
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
edouard.bonnet@ens-lyon.fr

Nicolas Bousquet
CNRS, G-SCOP laboratory, Grenoble-INP, France
nicolas.bousquet@grenoble-inp.fr

Stéphan Thomassé
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
Institut Universitaire de France
stephan.thomasse@ens-lyon.fr

Rémi Watrigant
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
remi.watrigant@ens-lyon.fr

Abstract
Maximum Independent Set (MIS for short) is in general graphs the paradigmatic W [1]-hard
problem. In stark contrast, polynomial-time algorithms are known when the inputs are restricted to
structured graph classes such as, for instance, perfect graphs (which includes bipartite graphs, chordal
graphs, co-graphs, etc.) or claw-free graphs. In this paper, we introduce some variants of co-graphs
with parameterized noise, that is, graphs that can be made into disjoint unions or complete sums by
the removal of a certain number of vertices and the addition/deletion of a certain number of edges
per incident vertex, both controlled by the parameter. We give a series of FPT Turing-reductions
on these classes and use them to make some progress on the parameterized complexity of MIS in
H-free graphs. We show that for every fixed t > 1, MIS is FPT in P (1, t, t, t)-free graphs, where
P (1, t, t, t) is the graph obtained by substituting all the vertices of a four-vertex path but one end of
the path by cliques of size t. We also provide randomized FPT algorithms in dart-free graphs and in
cricket-free graphs. This settles the FPT/W[1]-hard dichotomy for five-vertex graphs H.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases Parameterized Algorithms, Independent Set, H-Free Graphs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.49

Related Version A full version of the paper is available at http://arxiv.org/abs/1909.08426.

1 Introduction

A stable set or independent set in a graph is a subset of vertices which are pairwise non-adjacent.
Finding an independent set of maximum cardinality, called Maximum Independent Set
(or MIS for short), is not only NP-hard to solve [19] but also to approximate within ratio
n1−ε [24, 39]. One can then wonder if efficient algorithms exist with the additional guarantee
that k, the size of the maximum stable set, is fairly small compared to n, the number of
vertices of the input (think, for instance, k 6 logn). It turns out that, for any computable
function h = ω(1) (but whose growth can be arbitrarily slow), MIS is unlikely to admit
a polynomial-time algorithm even when k 6 h(n). In parameterized complexity terms,
MIS is W [1]-hard [17]. More quantitatively, MIS cannot be solved in time f(k)no(k) for
any computable function f , unless the Exponential Time Hypothesis fails. This is quite

© Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 49; pp. 49:1–49:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1653-5822
mailto:edouard.bonnet@ens-lyon.fr
mailto:nicolas.bousquet@grenoble-inp.fr
mailto:stephan.thomasse@ens-lyon.fr
https://orcid.org/0000-0002-6243-5910
mailto:remi.watrigant@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.ISAAC.2019.49
http://arxiv.org/abs/1909.08426
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 When Maximum Stable Set Can Be Solved in FPT Time

a statement when a trivial algorithm for MIS runs in time nk+2, and a simple reduction
to triangle detection yields a nωk

3 +O(1)-algorithm, where ω is the best exponent known for
matrix multiplication.

It thus appears that MIS on general graphs is totally impenetrable. This explains why
efforts have been made on solving MIS in subclasses of graphs. The most emblematic result
in that line of works is a polynomial-time algorithm in perfect graphs [21]. Indeed, perfect
graphs generalize many graph classes for which MIS is in P: bipartite graphs, chordal graphs,
co-graphs, etc. In this paper, we put the focus on classes of graphs for which MIS can be
solved in FPT time (rather than in polynomial-time). For graphs with bounded degree ∆,
the simple branching algorithm has FPT running time (∆ + 1)knO(1). The same observation
also works more generally for graphs with bounded average degree, or even d-degenerate
graphs. A non-trivial result is that MIS remains FPT in arguably the most general class
of sparse graphs, nowhere dense graphs. Actually, deciding first-order formulas of size k
can be done in time f(k)n1+ε on any nowhere dense class of graphs [20]. Since MIS and
the complement problem, Maximum Clique, are both expressible by a first-order formula
of length O(k2), ∃v1, . . . , vk

∧
i,j(¬)E(vi, vj), there is an FPT algorithm on nowhere dense

graphs and also on complements of nowhere dense graphs. A starting point of the present
paper is to design FPT Turing-reductions in classes containing both very dense and very
sparse graphs.

Co-graphs with parameterized noise. If G and H are two graphs, we can define two new
graphs: G ∪H, their disjoint union, and G ⊕H their (complete) sum, obtained from the
disjoint union by adding all the edges from a vertex of G to a vertex of H. Then, the
hereditary class of co-graphs can be inductively defined by: K1 (an isolated vertex) is a
co-graph, and G∪H and G⊕H are co-graphs, if G and H are themselves co-graphs. So the
construction of a co-graph can be seen as a binary tree whose internal nodes are labeled by ∪
or ⊕, and leaves are K1. Finding the tree of operations building a given co-graph, sometimes
called co-tree, can be done in linear time [11]. This gives a simple algorithm to solve MIS on
co-graphs: α(K1) = 1, α(G ∪H) = α(G) + α(H), and α(G⊕H) = max(α(G), α(H)).

We add a parameterized noise to the notion of co-graphs. More precisely, we consider
graphs that can be made disjoint unions or complete sums by the deletion of g(k) vertices
and the edition (i.e., addition or deletion) of d(k) edges per incident vertex. We design
a series of FPT Turing-reductions on several variants of these classes using the so-called
iterative expansion technique [10, 4], Cauchy-Schwarz-like inequalities, and Kővári-Sós-Turán’s
theorem. This serves as a crucial foundation for the next part of the paper, where we explore
the parameterized complexity of MIS in H-free graphs (i.e., graphs not containing H as an
induced subgraph). However, we think that the FPT routines developed on co-graphs with
parameterized noise may also turn out to be useful outside the realm of H-free graphs.

Classical and parameterized dichotomies in H-free graphs. The question of whether MIS
is in P or NP-complete in H-free graphs, for each connected graph H, goes back to the early
eighties. However, a full dichotomy is neither known nor does it seem within reach in the
near future. For three positive integers i, j, k, let Si,j,k be the tree with exactly one vertex of
degree three, from which start three paths with i, j, and k edges, respectively. The claw is
the graph S1,1,1, thus {Si,j,k}i6j6k is the set of all the subdivided claws. We denote by P`
the path on ` vertices.

If G′ is the graph obtained by subdividing each edge of a graph G exactly 2t times,
Alekseev observed that α(G′) = α(G) + t|E(G)| [1]. This shows that MIS remains NP-
hard on graphs which locally look like paths or subdivided claws (one can perform the
subdivision on sub-cubic graphs G, on which MIS remains NP-complete). In other words,
if a connected graph H is not a path nor a subdivided claw then MIS is NP-complete

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:3

on H-free graphs [1]. The MIS problem is easy on P4-free graphs, which are exactly the
co-graphs. Already on P5-free graphs, a polynomial algorithm is much more difficult to
obtain. This was done by Lokshtanov et al. [28] using the framework of potential maximal
cliques. A quasi-polynomial algorithm was proposed for P6-free graphs [27], and recently, a
polynomial-time algorithm was found by Grzesik et al. [22]. Brandstädt and Mosca showed
how to solve MIS in polynomial-time on (P7, triangle)-free graphs [8]. This result was then
generalized by the same authors on (S1,2,4, triangle)-free graphs [9], and by Maffray and
Pastor on (P7, bull1)-free graphs (as well as (S1,2,3, bull)-free graphs) [33]. Bacsó et al. [3]
presented a subexponential-time 2O(

√
tn logn)-algorithm in Pt-free graphs, for every integer t.

Nevertheless, the classical complexity of MIS remains wide open on Pt-free graphs, for t > 7.
On claw-free graphs MIS is known to be polynomial-time solvable [36, 37]. Recently, this

result was generalized to `claw-free graphs [7] (where `claw is the disjoint union of ` claws).
On fork-free graphs (the fork is S1,1,2) MIS admits a polynomial-time algorithm [2], and
so does its weighted variant [31]. The complexity of MIS is open for S1,1,3-free graphs and
S1,2,2-free graphs, and there is no triple i 6 j 6 k, for which we know that MIS is NP-hard
on Si,j,k-free graphs. Some subclasses of Si,j,k-free graphs are known to admit polynomial
algorithms for MIS: for instance (S1,1,3,Kt,t)-free graphs [15], subcubic S2,t,t-free graphs
[23] (building upon [32], and generalizing results presented in [34, 35] for subcubic planar
graphs), bounded-degree tS1,t,t-free graphs [30], for any fixed positive integer t. This leads
to the following conjecture:

I Classical MIS Dichotomy Conjecture(H). For every connected graph H,
Maximum Independent Set in H-free graphs is in P iff H ∈ {P`}` ∪ {Si,j,k}i6j6k.

An even stronger conjecture is postulated by Lozin (see Conjecture 1 in [29]). Dabrowski
et al. initiated a systematic study of the parameterized complexity of MIS on H-free graphs
[13, 14]. In a nutshell, parameterized complexity aims to design f(k)nO(1)-algorithms (FPT
algorithm, for Fixed-Parameter Tractable), where n is the size of the input, and k is the
size of the solution (or another well-chosen parameter), for most often NP-hard problems.
The so-called W -hierarchy (and in particular, W [1]-hardness) and the Exponential Time
Hypothesis (ETH) both provide a framework to rule out such a running time. We refer
the interested reader to two recent textbooks [17, 12] and to a survey on the ETH and its
consequences [26]. In the language of parameterized complexity, the dichotomy problem is
the following:

I Parameterized MIS Dichotomy(H). Is MIS (randomized) FPT or W [1]-hard in H-free
graphs?

This question may be even more challenging than its classical counterpart. Indeed, there
is no FPT algorithm known for the classical open cases: P7-, S1,1,3-, and S1,2,2-free graphs.
Besides, the reduction of Alekseev [1] that we mentioned above does not show W [1]-hardness.
Thus, there are a priori more candidates H for which the parameterized status of MIS is
open. For instance, by Ramsey’s theorem, MIS is FPT on Kt-free graphs, for any fixed t.
Observe that a randomized FPT algorithm for a W[1]-hard problem is highly unlikely, as it
would imply a randomized algorithm solving 3-SAT in subexponential time.

Dabrowski et al. showed that MIS is FPT2 in H-free graphs, for all H on four vertices,
except H = C4 (the cycle on four vertices). Thomassé et al. presented an FPT algorithm on
bull-free graphs [38], whose running time was later improved by Perret du Cray and Sau [18].

1 The bull is obtained by adding a pendant neighbor to two distinct vertices of the triangle (K3).
2 Here and in what follows, the parameter is the size of the solution.

ISAAC 2019

49:4 When Maximum Stable Set Can Be Solved in FPT Time

Bonnet et al. provided three variants of a parameterized counterpart of Alekseev’s reduction
[4, 5]. Although the description of the open cases (see Figure 1) is not nearly as nice and
compact as for the classical dichotomy, it is noteworthy that they almost correspond to paths
and subdivided claws where vertices are blown-up into cliques.

And Or
And

Figure 1 The dotted edge represents a path with at least one edge. The filled vertices emphasize
two vertices with degree at least three in a tree. The rounded boxes are cliques. A red edge
corresponds to a complete bipartite minus at most one edge. A blue edge correspond to a 2K2-free
bipartite graph. The FPT connected candidates H have to be chordal, without induced K1,4 or
trees with two branching vertices (i.e., vertices of degree at least 3), and have to fit on a path with
at most one blue edge (and the rest of red edges) or both in a subdivided claw and a line-graph of a
subdivided claw with red edges only. A further restriction in the line-graph of subdivided claw is
that three vertices each in a different clique of the triangle of red edges cannot induce a K1 ∪K2

(see [4]).

Let us make that idea more formal. Substituting a graph H at a vertex v of a graph G
gives a new graph with vertex set (V (G) \ {v}) ∪ V (H), and the same edges as in G and H,
plus all the edges xy where x ∈ V (H), y ∈ V (G), and vy ∈ E(G). For a sequence of positive
integers a1, a2, . . . , a`, we denote by P (a1, a2, . . . , a`) the graph obtained by substituting a
clique Kai at the i-th vertex of a path P`, for every i ∈ [`]. We also denote by T (a, b, c) the
graph obtained by substituting a clique Ka, Kb, and Kc to the first, second, and third leaves,
respectively, of a claw. Thus, T (1, 1, 1) is the claw and T (1, 1, 2) is called the cricket (see
Figure 3d).

We show in this paper that MIS is (randomized) FPT in T (1, 1, 2)-free graphs (or cricket-
free graphs). This is in sharp contrast with the W [1]-hardness for T (1, 2, 2)-free graphs [5]
(see Figure 2e). It disproves a seemingly reasonable conjecture that FPTness is preserved
by adding a true twin to a vertex of H. We thus have a fairly good understanding of the
parameterized complexity of MIS when H is obtained by substituting cliques on a claw.
We therefore turn towards the graphs H obtained by substituting cliques on a path. MIS
was shown FPT on P (t, t, t)-free graphs [4]. A natural next step is to attack the following
conjecture.

I Conjecture 1. For any integer t, MIS can be solved in FPT time in P (t, t, t, t)-free graphs.

We denote by P`(t) the graph P (t, t, . . . , t) where the sequence t, t, . . . , t is of length `.
We further conjecture the following, which is a far more distant milestone.

I Conjecture 2. For any integers t and `, MIS is FPT in P`(t)-free graphs.

Let us recall though that the parameterized complexity of MIS is open in P7-free graphs,
and no easy FPT algorithm is known on P5-free graphs. In general, we believe that there
will be very few connected candidates (as described by Figure 1) which will not end up in
(randomized) FPT. As a first empirical evidence, we show that the four candidates remaining
among the 34 graphs on five vertices indeed all lead to (randomized) FPT algorithms.

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:5

(a) The net. (b) The chain of four triangles with or
without the dash-dotted edge.

(c) The triforce.

(d) Gem ∪K1 . (e) T1,2,2 = W4 ∪K1.

Figure 2 Some connected chordal K1,4-free graphs H for which H-free MIS is W [1]-hard (see [4]).
These graphs do not fit the candidate forms of Figure 1 for subtle reasons and illustrate how delicate
the parameterized dichotomy promises to be. In particular, observe that MIS is W [1]-hard on
T (1, 2, 2)-graphs, whereas we will show in this paper that it is FPT in T (1, 1, 2)-graphs (a.k.a.
cricket-free graphs).

(a) P̄ . (b) Kite. (c) Dart. (d) Cricket.

Figure 3 The four (out of 34) remaining cases on five vertices for the FPT/W [1]-hard dichotomy
(see [5]). In this paper, we come up with new tools and solve all of them in (randomized) FPT.

Organization of our results. The rest of the paper is organized as follows. In Section 2,
we introduce FPT Turing-reductions relevant to the subsequent section. In Section 3, we
give a series of FPT algorithms in far-reaching generalizations of co-graphs: graphs where
the deletion of g(k) vertices leads to a separation which is either very sparse or very dense,
in a way that is controlled by the parameter. In this section the proofs of two lemmas
and one theorem, marked with a ? symbol, are deferred to the appendix. In Section 4, we
use these results to obtain an FPT algorithm on P (1, t, t, t)-free graphs for any positive
integer t, taking a stab at Conjecture 1. Observe that this result settles at the same time P
(=P (1, 1, 1, 2)) and the kite (=P (1, 1, 2, 1)). The pseudo-code of the algorithm can be found
in the appendix. In Section 5, we finish the FPT/W [1]-hard classification for five-vertex
graphs by designing randomized FPT algorithms on dart-free graphs and cricket-free graphs.
These results are marked with a ♠ symbol, which means that their proof can only be found
in the long version of the paper [6].

We believe that the results of Section 3 as well as the techniques developed in Sections 4
and 5 may help in settling Conjecture 1. For P (t, t, t, t, t)-free graphs, it is possible that one
will have to combine the framework of potential maximal cliques with our techniques. To
solve Conjecture 2, let alone the full parameterized dichotomy, some new ideas will be needed.
The FPT algorithms of the current paper merely serve for classification purposes, and are not
practical. A possible line of work is to get improved running times for the already established
FPT cases. We also hope that the results of Section 3 will prove useful in a context other
than H-free graphs.

ISAAC 2019

49:6 When Maximum Stable Set Can Be Solved in FPT Time

2 Preliminaries

Here, we introduce some basics about graph notations, Ramsey numbers, and FPT algorithms.

2.1 Notations
For any pair of integers i 6 j, we denote by [i, j] the set of integers {i, i+ 1, . . . , j− 1, j}, and
for any positive integer i, [i] is a shorthand for [1, i]. We use the standard graph terminology
and notations [16]. All our graphs are finite and simple, i.e., they have no multiple edge nor
self-loop. For a vertex v, we denote by N(v) the set of neighbors of v, and N [v] := N(v)∪{v}.
For a subset of vertices S, we set N(S) :=

⋃
v∈S N(v) \ S and N [S] := N(S) ∪ S. The

degree (resp. co-degree) of a vertex v is |N(v)| (resp. |V \N [v]|). If G is a graph and X is
a subset of its vertices, G[X] is the subgraph induced by X and G−X is a shorthand for
G[V (G) \X]. We denote by α(G) the independence number, that is the size of a maximum
independent set. If H and G are two graphs, we write H ⊆i G to mean that H is an induced
subgraph of G, and H ⊂i G if H is a proper induced subgraph of G. We denote by K`, P`,
C`, the clique, path, cycle, respectively, on ` vertices, and by Ks,t the complete bipartite
graph with s vertices on one side and t, on the other. The claw is K1,3, and the paw is the
graph obtained by adding one edge to the claw. If H is a graph and t is a positive integer,
we denote by tH the graph made of t disjoint copies of H. For instance, 2K2 corresponds to
the disjoint union of two edges. We say that a class of graphs C is hereditary if it is closed by
induced subgraph, i.e., ∀H,G, (G ∈ C ∧H ⊆i G)⇒ H ∈ C.

2.2 Ramsey numbers
For two positive integers a and b, R(a, b) is the smallest integer such that any graph with at
least that many vertices has an independent set of size a or a clique of size b. By Ramsey’s
theorem, R(a, b) always exists and is no greater than

(
a+b
a

)
. For the sake of convenience, we

set Ram(a, b) :=
(
a+b
a

)
=
(
a+b
b

)
. We will use repeatedly a constructive version of Ramsey’s

theorem.

I Lemma 3 (folklore). Let a and b be two positive integers, and let G be a graph on at least
Ram(a, b) vertices. Then an independent set of size a or a clique of size b can be found in
linear time.

Proof. We show this lemma by induction on a+ b. For a = 1 (or b = 1), any vertex of G
works (it is a clique and an independent set at the same time). And G is non-empty since it
has at least

(1+b
1
)
(or

(
a+1

1
)
) vertices. We assume a, b > 2 and consider any vertex v of G.

Let G1 := G−N [v] and G2 := G[N(v)], so |V (G)| = 1 + |V (G1)|+ |V (G2)|.
Since |V (G)| >

(
a+b
a

)
=
(
a+b−1
a−1

)
+
(
a+b−1
a

)
, it cannot be that both |V (G1)| 6 Ram(a−

1, b)− 1 and |V (G2)| 6 Ram(a, b− 1)− 1. If G1 has at least Ram(a− 1, b) vertices, we find
by induction an independent set I of size a − 1 or a clique of size b. Thus I ∪ {v} is an
independent set of size a in G. If instead G2 has at least Ram(a, b − 1) vertices, we find
by induction an independent set of size a or a clique C of size b − 1. Thus C ∪ {v} is an
independent set of size b in G. J

For two positive integers a and b, we denote by Rama(b) the smallest integer n such that
any edge-coloring of Kn with a colors has a monochromatic clique of size b. In particular,
Ram2(b) = Ram(b, b) (one color for the edges, and one color for the non-edges). Again,
Rama(b) always exists and a monochromatic clique of size b in an a-edge-colored clique of
size at least Rama(b) can be found in polynomial-time (whose exponent does not depend on
a and b).

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:7

2.3 FPT Turing-reductions
For an instance (I, k) of MIS, let yes(I, k) be the Boolean function which equals True if and
only if (I, k) is a positive instance.

I Definition 4. A decreasing FPT g-Turing-reduction is an FPT algorithm which, given
an instance (I, k), produces ` := g(k) instances (I1, k1), . . . , (I`, k`), for some computable
function g, such that:

(i) yes(I, k) ⇔ φ(yes(I1, k1), . . . , yes(I`, k`)), where φ is a fixed FPT-time checkable
formula3,
(ii) |Ij | 6 |I| for every j ∈ [`], and
(iii) kj 6 k − 1 for every j ∈ [`].

Note that conditions (ii) and (iii) prevent the instance size from increasing and force the
parameter to strictly decrease, respectively.

I Lemma 5. Assume there is a decreasing FPT g-Turing-reduction for MIS on every
input (G ∈ C, k), running in time h(k)|V (G)|γ (this includes the time to check φ). Let
f : [k − 1] → N be a non-decreasing function. If any instance (H, k′) with k′ < k can be
solved in time f(k′)|V (H)|c with c > γ, then MIS can be solved in FPT time f(k)|V (G)|c in
C, with f(k) := h(k) + g(k)f(k − 1).

Proof. We show the lemma by induction. If k = 1, this is immediate. We therefore assume
that k > 2. We apply the decreasing FPT g-Turing-reduction to (G, k). That creates at most
g(k) instances with parameter at most k− 1. We solve each instance in time f(k− 1)nc with
n := |V (G)|. The overall running time is bounded by h(k)nγ + g(k)f(k − 1)nc 6 f(k)nc by
extending the partial function f with f(k) := h(k) + g(k)f(k − 1). J

This corollary follows by induction on the parameter k.

I Corollary 6. If MIS admits a decreasing FPT g-Turing-reduction on a hereditary class,
then MIS can be solved in FPT time in C.

I Definition 7. An improving FPT g-Turing-reduction is an FPT time h(k)|V (G)|γ al-
gorithm which, given an instance (I, k), produces some instances (I1, k1), . . . , (I`, k`), and
can check a formula φ, such that:

(i) yes(I, k)⇔ φ(yes(I1, k1), . . . , yes(I`, k`)), and
(ii) ∃c0, f0, ∀c > c0, f ∈ Ω(f0), h(k)|V (G)|γ +

∑
j∈[`]

f(kj)|Ij |c 6 f(k)|I|c.

I Lemma 8. Assume there is an improving FPT g-Turing-reduction for MIS on every input
(I ∈ C, k), producing in time h(k)|I|γ , some instances (I1, k1), . . . , (I`, k`). If each instance
(Ij , kj) can be solved in time h(kj)|Ij |c

′ , then MIS can be solved in FPT time in C.

Proof. Let c := max(c0, c
′) and f := max(f0, h), for the c0 and f0 of Definition 8. A

fortiori, instances (Ij , kj) can be solved in time f(kj)|Ij |c. We call the Turing-reduction on
(I, k), solve every subinstances (Ij , kj), and check φ. By item (ii), the overall running time
h(k)|V (G)|γ +

∑
j∈[`]

f(kj)|Ij |c is bounded by f(k)|I|c. By item (i), this decides (I, k). J

When trying to compute MIS in FPT time, one can assume that there is no vertex of
bounded degree or bounded co-degree (in terms of a function of k).

3 By FPT-time checkable formula, we mean that there exists an algorithm which takes as input ` Booleans
b1, . . . , b` and tests whether φ(b1, . . . , b`) is true in FPT time parameterized by `.

ISAAC 2019

49:8 When Maximum Stable Set Can Be Solved in FPT Time

I Observation 9. Let (G, k) be an input of MIS with a vertex v of degree g(k) for some
computable function g. Then the instance admits a decreasing FPT Turing-reduction.

Proof. A maximal independent set has to intersect N [v]. So, we can branch on g(k) + 1
instances with parameter k − 1. J

I Observation 10. Let (G, k) be an input of MIS with a vertex v of co-degree g(k) for some
computable function g. Then the instance admits an improving FPT Turing-reduction.

Proof. We can find the vertex v in time ng(k) with n := |V (G)|, and we assume n > 2. By
branching on v, we define two instances (G−N [v], k−1) and (G−{v}, k) (which corresponds
to including v to the solution, or not). The first instance can be further reduced in time
g(k)k−1 (by actually solving it). So the two instances output by the Turing-reduction are
Bool and (G−{v}, k), where Bool is the result of solving (G−N [v], k− 1). The formula φ is
just Bool ∨ yes(G− {v}, k). Let c0 := 2 and f0(k) := g(k)k−1. For all c > c0 and f ∈ Ω(f0),
ng(k) + g(k)k−1 + f(k)(n− 1)c 6 nf(k) + f(k) + f(k)(n− 1)c 6 f(k)(n+ 1 + (n− 1)c) 6
f(k)nc. J

3 Almost disconnected and almost join graphs

We say that a graph is a join or a complete sum, if there is a non-trivial bipartition (A,B) of
its vertex set (i.e. A and B are non-empty) such that every pair of vertices (u, v) ∈ A×B is
linked by an edge. Equivalently, a graph is a complete sum if its complement is disconnected.
In the following subsection, we define a series of variants of complete sums and disjoint
unions in the presence of a parameterized noise.

3.1 Definition of the classes
In all the following definitions, we say that a tripartition (A,B,R) is non-trivial if A and B
are non-empty and |R| < min(|A|, |B|). Notice that we do not assume R is non-empty.

I Definition 11. Graphs in a class C are (g, d)-almost disconnected if there exist two
computable functions g and d, such that for every G ∈ C and k > α(G), there is a non-trivial
tripartition (A,B,R) of V (G) satisfying:
|R| 6 g(k), and
∀v ∈ A, |N(v) ∩B| 6 d(k) and ∀v ∈ B, |N(v) ∩A| 6 d(k).

Similarly, we define a generalization of a complete sum.

IDefinition 12. Graphs in a class C are (g, d)-almost bicomplete if there exist two computable
functions g and d, such that for every G ∈ C and k > α(G), there is a non-trivial tripartition
(A,B,R) of V (G) satisfying:
|R| 6 g(k), and
∀v ∈ A, |B \N(v)| 6 d(k) and ∀v ∈ B, |A \N(v)| 6 d(k).

By extension, if C only contains graphs which are almost disconnected (resp. (g, d)-almost
disconnected, almost bicomplete, (g, d)-almost bicomplete), then we say that C is almost
disconnected (resp. (g, d)-almost disconnected, almost bicomplete, (g, d)-almost bicomplete).
Note that we do not require an almost disconnected or an almost bicomplete class to
be hereditary. For G ∈ C, we call a satisfying tripartition (A,B,R) a witness of almost
disconnectedness (resp. witness of almost bicompleteness).

We define the one-sided variants.

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:9

I Definition 13. Graphs in a class C are one-sided (g, d)-almost disconnected if there exist
two computable functions g and d, such that for every G ∈ C and k > α(G), there is a
non-trivial tripartition (A,B,R) of V (G) satisfying:
|R| 6 g(k),
|B| > kd(k), and
∀v ∈ A, |N(v) ∩B| 6 d(k).

In the above definition, the second condition is purely a technical one. Observe, though,
that any tripartition (A,B,R) with |R| < |B| 6 d(k) trivially satisfies the third condition
(provided |R| < d(k)). So a condition forcing B to have more than d(k) vertices is somehow
needed. Now, we set the lower bound on |B| a bit higher to make Lemma 18 work. Similarly,
we could define the one-sided generalization of a complete sum.

I Definition 14. Graphs in a class C are one-sided (g, d)-almost bicomplete if there exist two
computable functions g and d, such that for every G ∈ C and k > α(G), there is a non-trivial
tripartition (A,B,R) of V (G) satisfying:
|R| 6 g(k),
if there is an independent set of size k, there is one that intersects A, and
∀v ∈ B, |A \N(v)| 6 d(k).

Again, the second condition is there to make Theorem 20 work.

3.2 Improving and decreasing FPT Turing-reductions
The following technical lemma will be used to bound the running time of recursive calls on
two almost disjoint parts of the input.

I Lemma 15. Suppose γ > 0 and c > max(2, γ + 2) are two constants, and n1, n2, n, u are
four positive integers such that n1 + n2 + u = n and min(n1, n2) > u. Then,

nγ + (n1 + u)c + (n2 + u)c < nc.

Proof. First we observe that n2 − ((n1 + u)2 + (n2 + u)2) = n2
1 + n2

2 + u2 + 2(n1n2 + n1u+
n2u) − (n2

1 + 2n1u + u2 + n2
2 + 2n2u + u2) = 2n1n2 − u2 > 2u2 − u2 = u2 > 1. Now,

nc = nc−2n2 > nc−2(1 + (n1 + u)2 + (n2 + u)2) > nc−2(nγ−c+2 + (n1 + u)2 + (n2 + u)2) =
nγ + nc−2(n1 + u)2 + nc−2(n2 + u)2 > nγ + (n1 + u)c + (n2 + u)c. The last inequality holds
since n > n1 + u and n > n2 + u. J

We start with an improving FPT Turing-reduction on almost bicomplete graphs. It finds
a kernel for solutions intersecting both A and B, solves recursively on A ∪R and B ∪R for
the other solutions, and uses Lemma 15 to bound the overall running time.

I Lemma 16. Let C be a (g, d)-almost bicomplete class of graphs. Suppose for every G ∈ C,
a witness (A,B,R) of almost bicompleteness can be found in time h(k)|V (G)|γ . Then, MIS
admits an improving FPT Turing-reduction in C. In particular, MIS can be solved in FPT
time if both (G[A ∪R], k) and (G[B ∪R], k) can.

Proof. We can detect a potential solution S intersecting both A and B in time n2(2d(k) +
g(k))k = n2s(k), with n := |V (G)|, by setting s(k) := (2d(k) + g(k))k−2. We exhaustively
guess one vertex a ∈ S ∩A and one vertex b ∈ S ∩B. For each of these quadratically many
choices, there are at most d(k) non-neighbors of a in B and at most d(k) non-neighbors of b
in A. So the remaining instance G− (N(a) ∪N(b)) has at most 2d(k) + g(k) vertices; hence
the running time.

ISAAC 2019

49:10 When Maximum Stable Set Can Be Solved in FPT Time

We are now left with potential solutions intersecting A but not B, or B but not A. These
are fully contained in A∪R or in B ∪R. Let n1 := |A| and n2 := |B| (so n = n1 + n2 + |R|).
The two last branches just consist of recursively solving the instances (G[A ∪ R], k) and
(G[B ∪R], k). Let c0 := max(4, γ + 2) and f0 := h+ s. For all c > c0 and f ∈ Ω(f0),

h(k)nγ + s(k)n2 + f(k)(n1 + g(k))c + f(k)(n2 + g(k))c

6 f(k)nmax(γ,2) + f(k)(n1 + g(k))c + f(k)(n2 + g(k))c 6 f(k)nc.

The last inequality holds by Lemma 15, since max(γ, 2) + 2 6 c and min(n1, n2) > g(k). The
conclusion holds by Lemma 8. J

If we only have one-sided almost bicompleteness, we need some additional conditions
on the solution: at least one solution should intersect A (see Definition 14). We recall that
H ⊂i G means that H is a proper induced subgraph of G.

I Lemma 17 (?). Let C be a one-sided (g, d)-almost bicomplete class of graphs. Suppose for
every G ∈ C, a witness (A,B,R) of one-sided almost bicompleteness can be found in time
h(k)|V (G)|γ. Then, MIS admits an improving FPT Turing-reduction in C. In particular,
MIS can be solved in FPT time if (G[A ∪R], k) and ∀k′ 6 k − 1, ∀H ⊂i G, (H, k′) all can.

We now turn our attention to almost disconnected classes. For these classes, we obtain
decreasing FPT Turing-reductions, i.e., where the produced instances have a strictly smaller
parameter than the original instance.

I Lemma 18 (?). Let C be a one-sided (g, d)-almost disconnected class of graphs. Suppose
for every G ∈ C, a witness (A,B,R) of one-sided almost disconnectedness can be found in
time h(k)|V (G)|γ . Then, MIS admits a decreasing FPT Turing-reduction in C. In particular,
MIS can be solved in FPT time if ∀k′ 6 k − 1 and ∀H ⊆i G, instances (H, k′) can.

Let B(A,B) be the bipartite graph between two disjoint vertex-subsets A and B (ignoring
the edges internal to A and to B). We can further generalize the previous result to tripartitions
(A,B,R) such that B(A,B) is Kd(k),d(k)-free.

I Definition 19. Graphs in a class C are (g, d)-weakly connected if there exist two computable
functions g and d, such that for every G ∈ C and k > α(G), there is a non-trivial tripartition
(A,B,R) of V (G) satisfying:
|R| 6 g(k),
|A|, |B| > dd(k)d(k)k2d(k)−1e+ 1, and
B(A,B) is Kd(k),d(k)-free.

Again, if we do not require |A| and |B| to be larger than d(k), such a tripartition may
trivially exist. We force A and B to be even larger than that to make the next theorem
work. We show this theorem by combining ideas of the proof of Lemma 18 with the extremal
theory result, known as Kővári-Sós-Turán’s theorem, that Kt,t-free n-vertex graphs have at
most tn2− 1

t edges [25].

I Theorem 20 (?). Let C be a (g, d)-weakly connected class of graphs. Suppose for every
G ∈ C, a witness (A,B,R) of weakly connectedness can be found in time h(k)|V (G)|γ . Then,
MIS admits a decreasing FPT Turing-reduction in C. In particular, MIS can be solved in
FPT time if ∀k′ 6 k − 1 and ∀H ⊆i G, the instance (H, k′) can.

A class of co-graphs with parameterized noise is a hereditary class in which all the graphs
are almost bicomplete or almost disconnected. The following is a direct consequence of the
previous lemmas.

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:11

I Corollary 21. Given an FPT oracle finding the corresponding tripartitions, MIS is FPT
in co-graphs with parameterized noise.

The corollary still holds by replacing almost disconnected by one-sided almost disconnected,
or even by weakly connected.

3.3 Summary and usage
Figure 4 sums up the four FPT Turing-reductions that we obtained on almost disconnected
and almost join graphs.

|R| 6 g(k)

A B

6 d(k)

6 d(k)

(a) Almost bicomplete tri-
partition, A 6= ∅, B 6= ∅.

|R| 6 g(k)

A B

6 d(k)

(b) One-sided almost
bicomplete, S ∩ A 6= ∅
promise.

|R| 6 g(k)

A B

6 d(k)

(c) One-sided almost
disconnected,
|B| > kd(k), A 6= ∅.

|R| 6 g(k)

A B

d(k) d(k)

(d) Weakly connected,
min(|A|, |B|) >
(d(k)k2)d(k).

Figure 4 Summary of the FPT Turing-reductions and their hypotheses, provided we can efficiently
find such tripartitions. For (c) and (d), the FPT Turing-reductions are decreasing, while for (a) and
(b) they are just improving.

We know provide a few words in order to understand how to use these results. An obvious
caveat is that, even if such a tripartition exists, computing it (or even, approximating it)
may not be fixed-parameter tractable. What we hope is that on a class C, we will manage
to exploit the class structure in order to eventually find such tripartitions, in the cases we
cannot conclude by more direct means. One of our main results, Theorem 22, illustrates that
mechanism, when the algorithm is centered around getting to the hypotheses of Lemma 17
or Theorem 20.

4 FPT algorithm in P (1, t, t, t)-free graphs

We denote by P (a, b, c, d) the graph made by substituting the vertices of P4 by cliques of size
a, b, c, and d, respectively. For instance, P (1, 1, 1, 2) is P and P (1, 1, 2, 1) is the kite. We
settle the parameterized complexity of MIS on P -free and kite-free graphs simultaneously
(see Figure 3), by showing that MIS is FPT even in the much wider class of P (1, t, t, t)-free
graphs.

I Theorem 22. For every integer t, MIS is FPT in P (1, t, t, t)-free graphs.

Proof. Let t be a fixed integer, and (G, k) be an input such that G is P (1, t, t, t)-free and
α(G) 6 k. We assume that k > 3, otherwise we conclude in polynomial-time.

The global strategy is the following. First we extract a collection C of disjoint and
non-adjacent cliques with minimum and maximum size requirements, and some maximality
condition. Then we partition the remaining vertices into equivalence classes with respect
to their neighborhood in C. The maximum size imposed on the cliques of C ensures that

ISAAC 2019

49:12 When Maximum Stable Set Can Be Solved in FPT Time

the number of equivalence classes is bounded by a function of k. Setting C and the small4
equivalence classes apart, we show that the rest of the graph is partitionable into (A,B)
such that either B(A,B) is Kd(k),d(k)-free, in which case we conclude with Theorem 20, or
B(A,B) is almost a complete bipartite graph, in which case we conclude with Lemma 17
(see Algorithm 2 in the appendix for the pseudo-code).

As for the running time, we are looking for an algorithm in time f(k)nc for some fixed
constant c > 2, and f an increasing computable function. We see f as a partial function on
[k − 1], and extend it to [k] in the recursive calls.

Building the clique collection C. For technical reasons, we want our collection C to contain
at least two cliques, at least one of which being fairly large (larger than we can allow ourselves
to brute-force). So we proceed in the following way. We find in polynomial-time n8t+O(1) a
2K4t. If G is 2K4t-free, an FPT algorithm already exists [4]. We see these two K4t as the
two initial cliques of our collection. Let X be the set of vertices with less than t neighbors in
at least one of these two K4t. We partition X into at most 28t vertex-sets (later they will
be called subclasses) with the same neighborhood on the 2K4t. If all these sets contain less
than Ram(k + 1, 2kt) vertices, X is fairly small: it contains less than 28tRam(k + 1, 2kt).
The other vertices have at least t neighbors in both K4t. We will show (Lemma 24) that this
implies that these vertices are completely adjacent to both K4t. Hence, vertices in the 2K4t
would have at most 28tRam(k + 1, 2kt) non-neighbors. In that case, we can safely remove
the 2K4t from G, by Observation 10.

So we can safely assume that (eventually) one subclass of X has more than Ram(k+1, 2kt)
vertices. We can find in polynomial-time a clique C2 of size 2kt. We build a new collection
with 3t vertices of the first K4t, that we name C1. We take these vertices not adjacent to C2
(this is possible since vertices in C2 have the same at most t− 1 neighbors in K4t). Now we
have in C a clique C1 of size 3t and a clique C2 of size 2kt.

We say that a clique of C is large if its size is above kt, and small otherwise. We can
now specify the requirements on the collection C.
(1) C is a vertex-disjoint and independent5 collection of cliques.
(2) all the cliques have size at least 3t and at most 2kt.
(3) the number of cliques is at least 2.
(4) if we find a way to strictly increase the number of large cliques in C, we do it.

As α(G) 6 k, the number of cliques in C cannot exceed k. This has two positive
consequences. The first is in conjunction with the way we improve the collection C: by
always increasing the number of large cliques by 1. Therefore, we can improve the collection
C at most k − 1 times. In particular, the improving process of C terminates (in polynomial
time). The second benefit is that the total number of vertices of C is always bounded by
2k2t. Hence, the number of subclasses (sets of vertices with the exact same neighborhood in
C) is bounded by a function of k (and the constant t).

As a slight abuse of notation, C1, . . . , Cs will always be the current collection C (s < k).
We say that a vertex of G− C t-sees a clique Cj of C if it has at least t neighbors in Cj . A
class is a set of vertices t-seeing the same set of cliques of C. A subclass is a a set of vertices
with the same neighborhood in C. Both classes and subclasses partition G− C. Observe
that subclasses naturally refine classes. By extension, we say that a (sub)class t-sees a clique
Ci ∈ C if one vertex or equivalently all the vertices of that (sub)class t-see Ci.

4 the ones whose size is bounded by a later-specified function of k
5 There is no edge between two cliques of the collection.

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:13

Let η := d(2Ram(k + 1, t))Ram(k+1,t)22Ram(k+1,t)−1e+ 1. We choose this value so that
η2/2 > Ram(k+ 1, t)(2η)2−1/Ram(k+1,t) (it will become clear why in the proof of Lemma 27).
We say that a subclass is big if it has more than max(Ram(k + 1, 2kt), η) = η vertices, and
small otherwise. Since α(G) 6 k, here are two convenient properties on a big subclass:

a clique of size t can be found in polynomial-time, in order to build a potential P (1, t, t, t),
a clique of size 2kt can be found, in order to challenge the maximality of C.

We will come back to the significance of η later.
We can now specify item (4) of the clique-collection requirements. We resume where we

left off the collection C, that is {C1 = K3t, C2 = K2kt}. While there is a big subclass that
does not t-see any large clique of C, we find a clique of size 2kt in that subclass, and add it
to the collection. We then remove the small clique (K3t) potentially left, and in each large
clique of C, we remove from C all neighbors of the subclass (they are at most t− 1 many of
them). This process adds a large clique to C, and decreases the size of the previous large
cliques by at most t− 1. Since the large cliques all enter C with size 2kt, and the number
of improvements is smaller than k, a large clique will remain large throughout the entire
process. Therefore, the number of large cliques in C increases by 1. Since we started with
one large clique among the first two cliques, the number of cliques remains at least 2. Note
that, at each iteration, we update the subclasses with respect to the new collection C (see
Algorithm 1 for the pseudo-code).

Algorithm 1 Routine for computing the clique collection C.

Precondition: k is a positive integer, G is not 2K4t-free, α(G) 6 k

1: function BuildCliqueCollection(G, k):
2: C ← {K4t,K4t} . computed by brute-force
3: if ∃ big subclass not t-seeing both K4t then
4: C2 ← K2kt in the subclass . by Ramsey
5: C1 ← 3t vertices not adjacent to C2 from one of the K4t not t-seen by the subclass
6: C ← {C1, C2}
7: else every big subclasses t-see both K4t
8: vertices in C have bounded co-degree . Lemma 24
9: we can safely delete them . Observation 10
10: and call BuildCliqueCollection(G′, k) with the new graph G′
11: end if
12: while ∃ big subclass not t-seeing any large clique do
13: Cj ← K2kt in the subclass . by Ramsey
14: C ′ ← C \ {small clique} . this is actually done at most once
15: C ′′ ← map(C ′,deleteNeighborsOf(Cj)) . remove Ci ∩N(Cj) from each Ci ∈ C
16: C ← C ′′ ∪ {Cj} . the new C contains one more large clique, Cj .
17: end while
18: return C

19: end function
Postcondition: output C is a collection of at least two (and at most k − 1) pairwise

independent cliques of size between 3t and 2tk, and every big subclass t-sees at least one
large clique (i.e., clique of C of size at least tk).

Small subclasses are set aside as their size is bounded by a function of k. Therefore, from
hereon, all the subclasses are supposed big. We denote by P (I) the class for which I ⊆ [s]
represents the indices of the cliques it t-sees. A first remark is that all the subclasses of P (∅)
are small (so we “get rid of” the whole class P (∅)).

ISAAC 2019

49:14 When Maximum Stable Set Can Be Solved in FPT Time

I Lemma 23. If P ′ is a subclass of P (∅), then |P ′| 6 Ram(k + 1, 2kt).

Proof. P ′ does not t-see any (large) clique of C. So by the maximality property of C, it
cannot contain a clique of size 2kt (see Algorithm 1). In particular, it cannot have more than
Ram(k + 1, 2kt) vertices. J

We turn our attention to classes P (I) with |I| > 1 and their subclasses.

Structure of the classes P (I). We show a series of lemmas explaining how classes are
connected to C and, more importantly, how they are connected to each other. This uses the
ability to build cliques of size t at will, in big subclasses. Avoiding the formation of P (1, t, t, t)
will imply relatively dense or relatively sparse connections between classes P (I) and P (J).

I Lemma 24. If a big subclass t-sees at least two cliques Ci and Cj of C, then all the vertices
of that subclass are adjacent to all the vertices of both cliques.

Proof. We find D, a clique of size t in the subclass. Let Di and Dj be t neighbors of the
subclass in Ci and Cj , respectively. Assume that the subclass has a non-neighbor v ∈ Ci.
Then vDiDDj is a P (1, t, t, t). J

In light of the previous lemma, if |I| > 2, the cliques of C that the class P (I) t-sees are
completely adjacent to P (I).

I Lemma 25. Let I (J ⊆ [s]. Then, every vertex of P (I) is adjacent to every vertex of
P (J) except at most Ram(k + 1, t).

Proof. Let i ∈ I and j ∈ J \ I. By Lemma 24, all vertices of P (J) are adjacent to all vertices
of Ci ∪ Cj . Suppose, by contradiction, that there is a vertex u ∈ P (I) with more than
Ram(k + 1, t) non-neighbors in P (J). We find a clique D of size t in G[P (J) \N(u)]. Let
Di be t neighbors of u in Ci. Let Dj ⊂ Cj be t neighbors of P (J) which are not neighbors
of u. Such a set Dj necessarily exists since u has at most t− 1 neighbors in Cj , while P (J)
is completely adjacent to Cj , and |Cj | > 3t. Then uDiDDj is a P (1, t, t, t). J

We say that two sets I, J are incomparable if I is not included in J , and J is not included in
I. Recall that B(A,B) stands for the bipartite graph between vertex-set A and vertex-set B.
Let p(t, k) := 22k2t be a crude upper bound on the total number of subclasses.

I Lemma 26. Let I, J ⊆ [s] be two incomparable sets, and P`(I), P`′(J) be any pair of
subclasses of P (I) and P (J), respectively. Then, B(P`(I), P`′(J)) is KRam(k+1,t),Ram(k+1,t)-
free. Hence, B(P (I), P (J)) is Kp(t,k)Ram(k+1,t),p(t,k)Ram(k+1,t)-free.

Proof. Let i ∈ I \ J and j ∈ J \ I. We first assume that one of I, J , say I, has at least two
elements. Suppose, by contradiction, that there is a set BI ⊆ P`(I) and a set BJ ⊆ P`′(J)
both of size Ram(k + 1, t), such that there is no non-edge between BI and BJ . Let u be
a vertex of Cj which is adjacent to P`′(J) but not to P`(I). We find DI , a clique of size
t in G[BI], and DJ , a clique of size t in G[BJ]. Let Di be t neighbors of P`(I) in Ci that
are not adjacent to P`′(J). Those t vertices exist since, by Lemma 24, P`(I) is completely
adjacent to Ci (by assumption |I| > 2). And P`′(J) has more than t non-neighbors in Ci.
Then, uDJDIDi is a P (1, t, t, t).

We now have to settle the remaining case: |I| = |J | = 1 (I = {i} and J = {j}). If P`(I)
has at least 2t neighbors in Ci or P`′(J) has at least 2t neighbors in Cj , we conclude as in
the previous paragraph. So we assume that it is not the case. We distinguish two cases.

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:15

Either P`(I) has at least one neighbor in Cj , say u. Let DI be a clique of size t in P`(I),
Di ⊆ Ci be t neighbors of P`(I), and D′i ⊆ Ci be t non-neighbors of P`(I). Di and D′i exist
since P`(I) has between t and 2t− 1 neighbors in Cj , and |Cj | > 3t. Then, uDIDiD

′
i is a

P (1, t, t, t).
Or P`(I) has no neighbor in Cj . Let u be a non-neighbor of P`′(J) in Cj , and Dj ⊆ Cj

be t neighbors of P`′(J). If there is a set BI ⊆ P`(I) and a set BJ ⊆ P`′(J) both of size
Ram(k + 1, t), such that BI and BJ are completely adjacent to each other. We can find
DI , a clique of size t in G[BI], and DJ , a clique of size t in G[BJ]. Then, uDjDJDI is a
P (1, t, t, t). This implies that, in any case, there cannot be a Kp(t,k)Ram(k+1,t),p(t,k)Ram(k+1,t)
in B(P (I), P (J)). J

We say that the sets I and J overlap if all three of I ∩ J , I \ J , J \ I are non-empty.

I Lemma 27. Let I, J ⊆ [s] be two overlapping sets. Then, at least one of P (I) and P (J)
have only small subclasses.

Proof. Suppose, by contradiction, that there is a big subclass P`(I) of P (I), and a big
subclass P`′(J) of P (J). Observe that, for I and J to overlap, their size should be at least 2.
Let i ∈ I \ J , j ∈ J \ I, h ∈ I ∩ J . By the arguments of Lemma 25 applied to the restriction
to P (I), P (J), Ch, and Cj , a vertex in P (I) has at most Ram(k + 1, t) non-neighbors in
P (J). Let us consider η vertices in P`(I) and η vertices in P`′(J). Since η > 2Ram(k + 1, t),
the previous observation implies that the number of edges between them is at least η2/2.
But by Lemma 26, the bipartite graph linking them should be KRam(k+1,t),Ram(k+1,t)-
free. By Kővári-Sós-Turán’s theorem, this number of edges is bounded from above by
Ram(k + 1, t)(2η)2−1/Ram(k+1,t) < η2/2, a contradiction. J

Hence, the remaining (not entirely made of small subclasses) classes define a laminar6
set-system. We denote by R the union of the vertices in all the small subclasses and C. We
now add a new condition to be a small subclass (condition that we did not need thus far). A
subclass is also small if it has at most |R| vertices. Note that this condition can snowball.
But eventually R has size bounded by g(k) := 2p(t,k)(p(t, k)η + 2k2t). A class is remaining if
it contains at least one big subclass. By Lemma 23, P (∅) cannot be remaining. If no class is
remaining, then the whole graph is a kernel. So we can assume that there is at least one
remaining class. Let P (I) be a remaining class in G−R such that I is maximal among the
remaining classes. We distinguish two cases: either there is at least one other remaining class
P (J) (I 6= J), or P (I) is the unique remaining class.

At least two remaining classes P (I) and P (J). By Lemma 27, any other class P (J)
satisfies J (I or I ∩J = ∅. Let ι, δ 6 2k be the number of remaining classes such that J (I

and such that I ∩ J = ∅, respectively. Again, we distinguish two cases: δ > 0, and δ = 0. If
δ > 0, we build the partition (A,B,R) of V (G) such that A contains the ι+ 1 classes whose
set is included in I and B contains the δ classes whose set is disjoint from I. By Lemma 26,
the bipartite graph between any of the (ι+ 1)δ pairs of classes made of one class whose set is
contained in I and one class whose set is disjoint from I is Kp(t,k)Ram(k+1,t),p(t,k)Ram(k+1,t)-
free. Hence, the bipartite graph between A and B is K2kp(t,k)Ram(k+1,t),2kp(t,k)Ram(k+1,t)-free.
Thus we conclude by Theorem 20 with d(k) = 2kp(t, k)Ram(k + 1, t).

6 where two sets are nested or disjoint

ISAAC 2019

49:16 When Maximum Stable Set Can Be Solved in FPT Time

We now tackle the case δ = 0, that is, all the remaining classes P (J) satisfy J ⊆ I. We
first assume that there are two remaining classes with disjoint sets. A laminar set-system
with a unique maximal set can be represented as a rooted tree, where nodes are in one-to-one
correspondence with the sets, and the parent-to-child arrow represents the partial order of
inclusion. Here, the root is labeled by I (since I is the unique maximal set), and all the nodes
are labeled by a subset of [s] corresponding to a remaining class. Let I = I1) I2) . . .) Ih
be the path from the root to the first node with out-degree at least 2. Observe that C contains
at most k cliques, so h 6 k. Let J1, J2, . . . , J` be the ` children of Ih (with ` > 2). Let P1 be
the remaining classes whose set is included in J1, and P2+ be the remaining classes whose
set is included in one Ji for some i ∈ [2, `]. Let A :=

⋃
q∈[h] P (Iq), and B := V (G) \ (A ∪R).

By Lemma 25, vertices of B have at most hRam(k + 1, t) 6 kRam(k + 1, t) non-neighbors
in A. We apply Lemma 17 with the tripartition (A,B,R) and d1(k) = kRam(k + 1, t).
Only we did not cover the case in which the solution does not intersect A. We do so by
applying Theorem 20 to the tripartition (P1,P2+, R) with d2(k) = 2kp(t, k)Ram(k + 1, t).
A priori, what we just did is not bounded by f(k)|V (G)|c, hence not legal. Let us go
back to the last lines of Lemma 17 and of Theorem 20. Our running time is bounded by
f(k)|A∪R|c + k2(d1(k)

k

)
d1(k)cf(k− 1)|B|c + k(k+ 2)(dd2(k)d2(k)k2d2(k)−1e+ 1)f(k− 1)|B|c,

where the two first terms come from the application of Lemma 17, and the third term, from
Theorem 20. This is at most f(k)|A ∪ R|c + f(k)|B|c 6 f(k)|V (G)|c by Cauchy-Schwarz
inequality, with f(k) := (k2(d1(k)

k

)
d1(k)c + k(k + 2)(dd2(k)d2(k)k2d2(k)−1e+ 1))f(k − 1).

Let now assume that all the remaining classes have nested sets (no two sets are disjoint).
Let I = I1) I2) . . .) Ih the sets of all the remaining classes (h 6 k). Suppose h > 3. We
apply Lemma 17 to the tripartition (P (I1) ∪ P (I2),

⋃
j∈[3,h] P (Ij), R) with d(k) = 2Ram(k +

1, t). Indeed, by Lemma 25, vertices of
⋃
j∈[3,h] P (Ij) have at most Ram(k+1, t) non-neighbors

in P (I1) and at most Ram(k+1, t) non-neighbors in P (I2). We deal with the case in which the
solution does not intersect P (I1)∪P (I2) in the following way. Let Cq be the clique of C only
t-seen by P (I1) and Cq′ the clique of C only t-seen by P (I1)∪P (I2). One of these two cliques
has to be large (since there is at most one small clique). We branch on the at least tk and at
most 2tk vertices of that large clique, say C ′. A maximal independent set cannot be fully
contained in

⋃
j∈[3,h] P (Ij). Indeed, any choice of at most k vertices in this set dominates at

most k(t−1) vertices of C ′. Thus, we cannot miss a solution. Let us turn to the running time.
Once again, we cannot use Lemma 17 as a total black-box. Our running time is bounded by
f(k)|A∪R|c+k2(d(k)

k

)
d(k)cf(k−1)|B|c+ 2tkf(k−1)|B∪R|c 6 f(k)|A∪R|c+f(k)|B∪R|c

with f(k) := (k2(d(k)
k

)
d(k)c + 2tkf)f(k− 1), and f(k)|A∪R|c + f(k)|B ∪R|c 6 f(k)|V (G)|c,

by Lemma 15. Here we need that |A| > |R| and |B| > |R| which is the case: recall that we
added that requirement to be a big subclass.

The last case is the following. There are exactly two remaining classes associated to sets
I = I1) I2. If a clique not t-seen by P (I2) is large or if P (I2) is 2K4t-free, we conclude with
Lemma 17 (recall that this finds a solution if there is one intersecting P (I1). In both cases,
if the solution does not intersect P (I1), we can find it with only a small overhead cost. If a
clique not t-seen by P (I2) is large, we branch on the at most 2kt vertices of that clique. If
P (I2) is 2K4t-free, an independent set of size k can be found in G[P (I2)] in FPT time [4].

Finally, we can assume that G[P (I2)] contains a 2K4t,4t and does not t-see a small clique
in C. Note that this implies that C is made of two cliques K3t and K2kt. We call critical
such a case where C = {K3t,K2kt} and a 2K4t can be found in a class not t-seeing K3t.

For this very specific case (that may also arise with a unique remaining class, see below),
we perform the following refinement of the clique-collection computation. We compute a new
clique collection, say C2, in G− C, starting with a 2K4t,4t found in the class not t-seeing

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:17

the previous K3t. If C2 is not of the form {K3t,K2kt}, we add C to the bounded-in-k set R,
and we follow our algorithm (that is, a non-critical case). If C2 = {K3t,K2kt}, we compute
a new clique collection C3 in G− (C1 ∪ C2) (with C1 = C), again starting with a 2K4t,4t
found in the class not t-seeing the previous K3t, and so on. Let us assume that we are always
in a critical case, with Ch = {Ch1 = K3t, C

h
2 = K2kt}. We stop after ζ := Ram2(3t)2 (4kt)

iterations, leading to disjoint (though not independent) clique collections C = C1, C2, . . . , Cζ .
In particular, |

⋃
h∈ζ C

h| is still bounded by a function of k, namely ζ(3t+ 2kt). We claim
that we can find a 2K2kt,2kt in G[

⋃
h∈ζ C

h
1].

Because of the number of iterations, one can extract 4kt cliques Ch1 (of size 3t) with the
same bipartite graph linking any pair of Ch1 (with a fixed but arbitrary ordering of each Ch1).
This common bipartite graph has to be empty, complete, or a half-graph. Let us show that
it can only be a half-graph. For any i ∈ [3t], the i-th vertices in the Ch1 should be adjacent
(otherwise they form an independent set of size 2kt). That excludes the empty bipartite
graph. Let h1 be the smallest index such that we have extracted Ch1

1 . The common bipartite
graph cannot be complete either, since all the vertices of G− (

⋃
h∈[h1]) have at most t− 1

neighbors in Ch1
1 . This was one of the condition of a critical case. So the bipartite graph

is a half-graph. Then we find our 2K2kt,2kt as the first vertex (or last vertex) of the first
2kt extracted cliques, and the last vertex (or first vertex) of the last 2kt extracted cliques.
Now we finally have a clique collection with two independent large cliques, depending on the
orientation of the half-graph. So we can start again without reaching the problematic case.

Unique remaining P (I). If |I| > 2, by Lemma 24, P (I) is completely adjacent to one
clique Ci (with i ∈ I). Any vertex of Ci has at most g(k) non-neighbors. This case is
handled by Observation 10. So we now suppose that |I| = 1 (and I = {i}). If P (I) does
not t-see a large clique Cj , we can branch on the at most 2kt vertices of that clique. Indeed,
there is a solution that intersects it, since k − 1 vertices in G − R can dominate at most
(k− 1)(t− 1) < kt vertices. Thus, we can further assume that P (I) t-sees all the large cliques.
This forces that there is at most one large clique, since |I| = 1. There cannot be at least
three cliques in C. Indeed, the way the collection is maintained, that would imply that there
are at least two large cliques. So, C = {C1 = K3t, C2 = K2kt} and I = {2}. This is a critical
case, which we handle as in the previous paragraph (with two remaining classes). J

5 Randomized FPT algorithms in dart-free and cricket-free graphs

In this section, we consider the case of dart-free and cricket-free graphs, and prove that there
is a randomized FPT algorithm for MIS in both graph classes. To this end, we use the
technique of iterative expansion together with a Ramsey extraction, as well as the results
developed in Section 3. The proofs can be found in the long version of the paper [6].

I Theorem 28 (♠). There is a randomized FPT algorithm for MIS in dart-free graphs.

I Theorem 29 (♠). There is a randomized FPT algorithm for MIS in cricket-free graphs.

References
1 Vladimir E. Alekseev. The Effect of Local Constraints on the Complexity of Determination of

the Graph Independence Number. Combinatorial-Algebraic Methods in Applied Mathematics,
pages 3–13, 1982. in Russian.

2 Vladimir E. Alekseev. Polynomial algorithm for finding the largest independent sets in
graphs without forks. Discrete Applied Mathematics, 135(1-3):3–16, 2004. doi:10.1016/
S0166-218X(02)00290-1.

ISAAC 2019

https://doi.org/10.1016/S0166-218X(02)00290-1
https://doi.org/10.1016/S0166-218X(02)00290-1

49:18 When Maximum Stable Set Can Be Solved in FPT Time

3 Gábor Bacsó, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Zsolt Tuza, and Erik Jan
van Leeuwen. Subexponential-Time Algorithms for Maximum Independent Set in Pt-Free and
Broom-Free Graphs. Algorithmica, 81(2):421–438, 2019. doi:10.1007/s00453-018-0479-5.

4 Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant.
Parameterized Complexity of Independent Set in H-Free Graphs. In 13th International
Symposium on Parameterized and Exact Computation, IPEC 2018, August 20-24, 2018,
Helsinki, Finland, pages 17:1–17:13, 2018. doi:10.4230/LIPIcs.IPEC.2018.17.

5 Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant.
Parameterized Complexity of Independent Set in H-Free Graphs. CoRR, abs/1810.04620, 2018.
arXiv:1810.04620.

6 Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant. When Maximum
Stable Set can be solved in FPT time. CoRR, abs/1909.08426, 2019. arXiv:1909.08426.

7 Andreas Brandstädt and Raffaele Mosca. Maximum weight independent set for `claw-free
graphs in polynomial time. Discrete Applied Mathematics, 237:57–64, 2018. doi:10.1016/j.
dam.2017.11.029.

8 Andreas Brandstädt and Raffaele Mosca. Maximum Weight Independent Sets for (P7, triangle)-
free graphs in polynomial time. Discrete Applied Mathematics, 236:57–65, 2018. doi:10.1016/
j.dam.2017.10.003.

9 Andreas Brandstädt and Raffaele Mosca. Maximum Weight Independent Sets for (S1,2,4,
Triangle)-Free Graphs in Polynomial Time. CoRR, abs/1806.09472, 2018. arXiv:1806.09472.

10 Jianer Chen, Yang Liu, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Iterative Expansion
and Color Coding: An Improved Algorithm for 3D-Matching. ACM Trans. Algorithms,
8(1):6:1–6:22, 2012.

11 Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A Linear Recognition Algorithm for
Cographs. SIAM J. Comput., 14(4):926–934, 1985.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

13 Konrad Dabrowski. Structural Solutions to Maximum Independent Set and Related Problems.
PhD thesis, University of Warwick, 2012.

14 Konrad Dabrowski, Vadim V. Lozin, Haiko Müller, and Dieter Rautenbach. Parameterized
complexity of the weighted independent set problem beyond graphs of bounded clique number.
J. Discrete Algorithms, 14:207–213, 2012.

15 Konrad K. Dabrowski, Vadim V. Lozin, Dominique de Werra, and Victor Zamaraev. Combin-
atorics and Algorithms for Augmenting Graphs. Graphs and Combinatorics, 32(4):1339–1352,
2016. doi:10.1007/s00373-015-1660-0.

16 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

17 Rod G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013.

18 Henri Perret du Cray and Ignasi Sau. Improved FPT algorithms for weighted independent set
in bull-free graphs. Discrete Mathematics, 341(2):451–462, 2018.

19 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

20 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding First-Order Properties of
Nowhere Dense Graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

21 Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981. doi:10.
1007/BF02579273.

22 Andrzej Grzesik, Tereza Klimosova, Marcin Pilipczuk, and Michal Pilipczuk. Polynomial-time
algorithm for Maximum Weight Independent Set on P6-free graphs. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 1257–1271, 2019. doi:10.1137/1.9781611975482.
77.

https://doi.org/10.1007/s00453-018-0479-5
https://doi.org/10.4230/LIPIcs.IPEC.2018.17
http://arxiv.org/abs/1810.04620
http://arxiv.org/abs/1909.08426
https://doi.org/10.1016/j.dam.2017.11.029
https://doi.org/10.1016/j.dam.2017.11.029
https://doi.org/10.1016/j.dam.2017.10.003
https://doi.org/10.1016/j.dam.2017.10.003
http://arxiv.org/abs/1806.09472
https://doi.org/10.1007/s00373-015-1660-0
https://doi.org/10.1145/3051095
https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/BF02579273
https://doi.org/10.1137/1.9781611975482.77
https://doi.org/10.1137/1.9781611975482.77

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:19

23 Ararat Harutyunyan, Michael Lampis, Vadim V. Lozin, and Jérôme Monnot. Maximum
Independent Sets in Subcubic Graphs: New Results. In Graph-Theoretic Concepts in Computer
Science - 45th International Workshop, WG 2019, Vall de Núria, Spain, June 19-21, 2019,
Revised Papers, pages 40–52, 2019. doi:10.1007/978-3-030-30786-8_4.

24 Johan Håstad. Clique is Hard to Approximate Within n1−ε. In 37th Annual Symposium on
Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October,
1996, pages 627–636, 1996. doi:10.1109/SFCS.1996.548522.

25 Tamás Kovári, Vera Sós, and Pál Turán. On a problem of K. Zarankiewicz. In Colloquium
Mathematicum, volume 1, pages 50–57, 1954.

26 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http://eatcs.org/beatcs/
index.php/beatcs/article/view/92.

27 Daniel Lokshtanov, Marcin Pilipczuk, and Erik Jan van Leeuwen. Independence and Efficient
Domination on P6-free Graphs. ACM Trans. Algorithms, 14(1):3:1–3:30, 2018. doi:10.1145/
3147214.

28 Daniel Lokshtanov, Martin Vatshelle, and Yngve Villanger. Independent Set in P5-Free Graphs
in Polynomial Time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, pages 570–581, 2014.

29 Vadim V. Lozin. From matchings to independent sets. Discrete Applied Mathematics, 231:4–14,
2017. doi:10.1016/j.dam.2016.04.012.

30 Vadim V. Lozin and Martin Milanič. Maximum independent sets in graphs of low degree.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 874–880, 2007. URL:
http://dl.acm.org/citation.cfm?id=1283383.1283477.

31 Vadim V. Lozin and Martin Milanič. A polynomial algorithm to find an independent set
of maximum weight in a fork-free graph. J. Discrete Algorithms, 6(4):595–604, 2008. doi:
10.1016/j.jda.2008.04.001.

32 Vadim V. Lozin, Jérôme Monnot, and Bernard Ries. On the maximum independent set
problem in subclasses of subcubic graphs. J. Discrete Algorithms, 31:104–112, 2015. doi:
10.1016/j.jda.2014.08.005.

33 Frédéric Maffray and Lucas Pastor. Maximum weight stable set in (P7, bull)-free graphs
and (S1,2,3, bull)-free graphs. Discrete Mathematics, 341(5):1449–1458, 2018. doi:10.1016/j.
disc.2017.10.004.

34 Dmitriy S. Malyshev. Classes of subcubic planar graphs for which the independent set problem
is polynomially solvable. Journal of Applied and Industrial Mathematics, 7(4):537, 2013.

35 Dmitriy S. Malyshev and Dmitrii V. Sirotkin. Polynomial-time solvability of the independent
set problem in a certain class of subcubic planar graphs. Journal of Applied and Industrial
Mathematics, 11(3):400–414, 2017.

36 George J. Minty. On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theory, Ser. B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

37 Najiba Sbihi. Algorithme de recherche d’un stable de cardinalite maximum dans un graphe
sans etoile. Discrete Mathematics, 29(1):53–76, 1980. doi:10.1016/0012-365X(90)90287-R.

38 Stéphan Thomassé, Nicolas Trotignon, and Kristina Vuskovic. A Polynomial Turing-Kernel
for Weighted Independent Set in Bull-Free Graphs. Algorithmica, 77(3):619–641, 2017.

39 David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3(1):103–128, 2007.

A Proof of Lemma 17

Proof. Let S be an unknown solution. Let k1 := S ∩A and k2 := S ∩B. Let us anticipate
on an FPT running time f(k)nc for instances of size n and parameter k (the definition of f
will be given later). For instance, covering the case k2 = 0 takes time f(k)|A ∪R|c, since it
consists in solving (G[A ∪R], k). By assumption, we do not have to consider the case k1 = 0.
For each pair k1, k2 such that k1 > 1, k2 > 1, k1 + k2 6 k, we do the following.

ISAAC 2019

https://doi.org/10.1007/978-3-030-30786-8_4
https://doi.org/10.1109/SFCS.1996.548522
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1145/3147214
https://doi.org/10.1145/3147214
https://doi.org/10.1016/j.dam.2016.04.012
http://dl.acm.org/citation.cfm?id=1283383.1283477
https://doi.org/10.1016/j.jda.2008.04.001
https://doi.org/10.1016/j.jda.2008.04.001
https://doi.org/10.1016/j.jda.2014.08.005
https://doi.org/10.1016/j.jda.2014.08.005
https://doi.org/10.1016/j.disc.2017.10.004
https://doi.org/10.1016/j.disc.2017.10.004
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1016/0012-365X(90)90287-R

49:20 When Maximum Stable Set Can Be Solved in FPT Time

An independent set of size k1 in G[A] is candidate if it is in the non-neighborhood of at
least one vertex v ∈ B. Since k2 > 1, we can restrict the search in A to candidate independent
sets of size k1. Indeed, any independent set in A, not in the non-neighborhood of any vertex
of B, cannot be extended to k2 (> 1) more vertices of B. For each candidate independent
set I1 of size k1, we compute an independent set of size k2 in B \N(I1). This takes time

∑
I1 candidate
|I1|=k1

f(k2)|B \N(I1)|c = f(k2)
∑

I1 candidate
|I1|=k1

|B \N(I1)|c 6 f(k2)

 ∑
I1 candidate
|I1|=k1

|B \N(I1)|

c

by Cauchy-Schwarz inequality (since c > 2). Now, since k1 > 0,

∑
I1 candidate
|I1|=k1

|B \N(I1)| 6
∑

I1 candidate
|I1|=k1

|I1| · |B \N(I1)| 6
(
d(k)
k1

)
d(k)|B|.

The last inequality holds since
∑
I1 candidate,|I1|=k1

|I1| · |B \ N(I1)| counts the number of
non-edges between A and B with multiplicity at most

(
d(k)
k1

)
. Indeed a same non-edge uv

(with u ∈ A, v ∈ B) is counted for at most
(
d(k)
k1

)
candidate independent sets (since they

have to be in the non-neighborhood of v). Since, by assumption, vertices in B have at most
d(k) non-neighbors in A, the total number of non-edges is d(k)|B|. Let c0 > γ + 2 and
f0 := max(h, k 7→ k2k(d(k)

k

)ck
d(k)ck). For any c > c0 and f ∈ Ω(f0),

h(k)|V (G)|γ + f(k)|A ∪R|c +
∑

k1∈[k−1],k2∈[k−k1]

f(k2)

 ∑
I1 candidate
|I1|=k1

|B \N(I1)|

c

6 h(k)|V (G)|γ + f(k)|A ∪R|c + k2f(k − 1)
(
d(k)
k

)c
d(k)c|B|c

6 f(k)|V (G)|γ + f(k)|A ∪R|c + f(k)|B|c 6 f(k)|V (G)|c

since f(k) > k2(d(k)
k

)c
d(k)cf(k− 1). The last inequality holds by Lemma 15. The conclusion

holds by Lemma 8. J

B Proof of Lemma 18

Proof. Let S be an unknown but supposed independent set of G of size k. In time h(k)nc
with n := |V (G)|, we compute a witness (A,B,R). For each u ∈ R, we branch on including
u to our solution. This represents at most g(k) branches with parameter k− 1. Now, we can
focus on the case S ∩R = ∅.

We first deal separately with the special cases of |S ∩ A| = k, |S ∩ B| = 0 (a), and of
|S ∩ A| = 0, |S ∩B| = k (b). As by assumption |B| > kd(k), no maximal independent set
has k vertices in A and zero in B. Indeed, by the one-sided almost disconnectedness, any k
vertices in A dominate at most k2 vertices in B. Hence at least one vertex of B could be
added to this independent set of size k. So case (a) is actually impossible.

For case (b), we proceed as follows. We compute an independent set of size k − 1 in
G[B]. We temporary remove it from the graph, without removing its neighborhood. We
compute a second independent set of size k − 1 in G[B] (without the first independent set);
then a third one (in the graph deprived of the first two). We iterate this process until no

É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant 49:21

independent set of size k − 1 is found or we reach a total of d(k) + 1 (disjoint) independent
sets of size k − 1 excavated in B. If we stop because of the former alternative, we know that
an independent set of size k (actually even of size k− 1) in B has to intersect the union of at
most d(k) independent sets of size k − 1; so at most (k − 1)d(k) vertices in total. In that
case, we branch on each vertex of this set of size at most (k − 1)d(k) with parameter k − 1.
If we stop because of the latter condition, we can include an arbitrary vertex w of A in the
solution. By assumption, w has at least one neighbor in at most d(k) independent sets of
size k − 1 in B. So at least one independent set of size k − 1 of the collection is not adjacent
to w, and forms with w a solution.

Now we are done with cases (a) and (b), we can assume that k1 := |S∩A|, k2 := |S∩B| =
k− k1 are both non-zero. Equivalently, 1 6 k1 6 k− 1. We try out all the k− 1 possibilities.
For each, we perform a similar trick to the one used for case (b). We compute an independent
set I1 of size k2 in G[B]. We then compute an independent set I2 of size k2 in G[B \ I1].
Observe that there may be edges between I1 and I2. We compute an independent set I3 in
G[B \ (I1 ∪ I2)], and so on. We iterate this process until no independent set of size k2 is
found or we reach a total of d(k)k1 + 1 (disjoint) independent sets of size k2 excavated in B.

Say, we end up with the sets I1, . . . , Is. Let I :=
⋃
j∈[s] Ij . If s 6 f(k)k1, then we stopped

because there was no independent set of size k2 in G[B \ I]. This means that S intersects I.
In that case, we branch on each vertex of I.

The other case is that s = f(k)k1 + 1 and we stopped because we had enough sets
Ij . In that case, we compute one independent set A1 of size k1 in G[A]. By assumption,
|NB(A1)| 6 k1d(k). In particular, there is at least one Ij which does not intersect NB(A1).
And A1 ∪ Ij is our independent of size k.

Our algorithm makes at most

g(k) + d(k) + 1 +
∑

k1∈[k−1]

(d(k)k1 + 1) + 1 6 g(k) + d(k) + 2 + k2d(k) + k

recursive calls to instances with parameter k − 1, and we conclude by Lemma 5. J

C Proof of Theorem 20

Proof. Let S be an unknown solution with k1 := S ∩ A and k2 := S ∩ B = k − k1. As
previously, we try out all the k + 1 values for k1, setting k2 to k − k1. Let us first consider
the k − 1 branches in which k1 6= 0 and k2 6= 0.

Let s := dd(k)d(k)k2d(k)−1e + 1. Using the same process as in Lemma 18, we compute
s disjoint independent sets A1, . . . , As of size k1 in G[A] and s disjoint independent sets
B1, . . . , Bs of size k2 in G[B]. Again, if the process stops before we reach s independent sets,
we know that a solution (with k1 vertices of A and k2 vertices of B) intersects a set of size
at most k1(s− 1) or k2(s− 1) and we can branch (since s is bounded by a function of k).

Now we claim that there is at least one pair (Ai, Bj) (among the s2 pairs) without any
edge between Ai and Bj ; hence Ai ∪Bj is an independent of size k. Suppose that this is not
the case. Then, there is at least one edge between each pair (Ai, Bj). Therefore the bipartite
graph B := B(

⋃
i∈[s] Ai,

⋃
i∈[s] Bi) has at least s2 edges, and sk1 + sk2 = sk vertices. As B

is also Kd(k),d(k)-free, it has, by Kővári-Sós-Turán’s theorem, at most d(k)(sk)2− 1
d(k) edges.

But, by the choice of s, s2 > d(k)(sk)2− 1
d(k) , a contradiction.

We now deal with the case k1 = 0. We show that if a solution exists with k1 = 0, k2 = k,
then the branch k1 = 1, k2 = k − 1 also leads to a solution. Let us revisit that latter branch.
We compute s disjoint independent sets B1, . . . , Bs of size k−1 in G[B]. Again, if this process
stops before we reach s independent sets, we can branch on each vertex of a set of size at
most (k− 1)(s− 1). This branching also covers the case k2 = k, since clearly, an independent

ISAAC 2019

49:22 When Maximum Stable Set Can Be Solved in FPT Time

set of size k in G[B] intersects those at most (k − 1)(s− 1) vertices. Now, let A′ be any set
of s vertices in A and B := B(A′,

⋃
i∈[s] Bi). By applying Kővári-Sós-Turán’s theorem to B

as in the previous paragraph, there should be at least one pair (u,Bj) ∈ A′ × {B1, . . . , Bs}
such that u is not adjacent to Bj .

We handle the case k2 = 0 similarly, the conclusion being that we do not need to explore
these branches. So we have described a decreasing FPT Turing-reduction creating less than
k(k + 2)s instances (each with parameter k′ 6 k − 1), and we conclude by Lemma 5. J

D Pseudo-code for P (1, t, t, t)-free graphs

Algorithm 2 FPT algorithm for MIS on P (1, t, t, t)-free graphs.

Precondition: G is P (1, t, t, t)-free, k > α(G)
1: function Stable(G, k):
2: if k 6 2 then solve in n2 by brute-force
3: end if . now k > 3
4: if G is 2K4t-free then solve in FPT time
5: end if . see [4]
6: C ← BuildCliqueCollection(G, k)
7: R ← C ∪ subclasses of size less than η . small subclasses are set aside
8: while ∃ subclass Q of size at most |R| do
9: R ← R ∪Q
10: end while
11: P ← remaining classes
12: if P = ∅ then input is a kernel
13: end if
14: P (I) ← remaining class with I maximal for inclusion
15: if |P| > 2 then
16: if ∃P (J) ∈ P such that I ∩ J = ∅ then
17: (A,B,R) with B(A,B) Kd(k),d(k)-free . Theorem 20
18: end if
19: if ∀P (J) ∈ P, J ⊆ I then
20: (A,B,R) with ∀v ∈ B, v has co-degree 6 d1(k) in A . Lemma 17
21: and (B1, B2, R) in G[B ∪R] with B(B1, B2) Kd2(k),d2(k)-free, . Theorem 20
22: or branching on 2tk vertices,
23: or critical case, when repeated, yields a 2K2kt,2kt
24: end if
25: end if
26: if P = {P (I)} then a vertex of C has small co-degree, . see Observation 10
27: or branching on 2tk vertices,
28: or critical case, when repeated, yields a 2K2kt,2kt
29: end if
30: end function

The k-Fréchet Distance: How to Walk Your Dog
While Teleporting
Hugo Alves Akitaya
Department of Computer Science, Tufts University, Massachusetts, USA
hugo.alves_akitaya@tufts.edu

Maike Buchin
Department of Mathematics, Ruhr University Bochum, Germany
maike.buchin@rub.de

Leonie Ryvkin
Department of Mathematics, Ruhr University Bochum, Germany
leonie.ryvkin@rub.de

Jérôme Urhausen
Department of Information and Computing Sciences, Utrecht University, Netherlands
J.E.Urhausen@uu.nl

Abstract
We introduce a new distance measure for comparing polygonal chains: the k-Fréchet distance. As
the name implies, it is closely related to the well-studied Fréchet distance but detects similarities
between curves that resemble each other only piecewise. The parameter k denotes the number of
subcurves into which we divide the input curves (thus we allow up to k − 1 “teleports” on each
input curve). The k-Fréchet distance provides a nice transition between (weak) Fréchet distance and
Hausdorff distance. However, we show that deciding this distance measure turns out to be NP-hard,
which is interesting since both (weak) Fréchet and Hausdorff distance are computable in polynomial
time. Nevertheless, we give several possibilities to deal with the hardness of the k-Fréchet distance:
besides a short exponential-time algorithm for the general case, we give a polynomial-time algorithm
for k = 2, i.e., we ask that we subdivide our input curves into two subcurves each. We can also
approximate the optimal k by factor 2. We then present a more intricate FPT algorithm using
parameters k (the number of allowed subcurves) and z (the number of segments of one curve that
intersect the ε-neighborhood of a point on the other curve).

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms; Theory of computation → Fixed parameter
tractability

Keywords and phrases Measures, Fréchet distance, Hardness, FPT

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.50

Related Version A full version of the paper is available at http://arxiv.org/abs/1903.02353.

Funding Hugo Alves Akitaya: supported by NSF awards CCF-1422311 and CCF-1423615, and the
Science Without Borders scholarship program.
Jérôme Urhausen: supported by the Netherlands Organisation for Scientific Research under project
612.001.651.

Acknowledgements We would like to thank Erik Demaine for contributing the key idea for proving
hardness in the free space diagram in Section 3.1, as well as the organizers and other participants
of the Intensive Research Program in Discrete, Combinatorial and Computational Geometry in
Barcelona, 2018, for providing the perfect environment to meet other researchers.

© Hugo Alves Akitaya, Maike Buchin, Leonie Ryvkin, and Jérôme Urhausen;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 50; pp. 50:1–50:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hugo.alves_akitaya@tufts.edu
mailto:maike.buchin@rub.de
mailto:leonie.ryvkin@rub.de
mailto:J.E.Urhausen@uu.nl
https://doi.org/10.4230/LIPIcs.ISAAC.2019.50
http://arxiv.org/abs/1903.02353
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 The k-Fréchet Distance

1 Introduction

During the last decades, several methods for comparing geometrical shapes have been studied
in a variety of applications, e.g., analyzing geographic data, such as trajectories, or comparing
chemical structures like protein chains or DNA. The Fréchet distance has been well-studied
in the past since it has proven to be helpful in several of the mentioned applications. The
Hausdorff distance, another similarity measure, has also proven useful in applications and
can be computed more efficiently. However, it provides us with less information by taking
only the overall positioning of curves into consideration, not how they are traversed.

We introduce the k-Fréchet distance as a distance measure in between Hausdorff and
(weak) Fréchet distance. This measure allows us to compare shapes consisting of several
parts: we cover the input curves by at most k (possibly overlapping) subcurves each and ask
for a matching of the subcurves such that each pair of matched subcurves has at most weak
Fréchet distance ε (where ε > 0 is a given constant). Note that there are in fact two variants
of the k-Fréchet distance: the cover variant described above and the cut variant, where we
partition the input curves into k disjoint subcurves each. These subcurves are then matched
if and only if their (weak) Fréchet distance is small. In this paper, by k-Fréchet distance we
always refer to the cover variant and mention the cut variant only briefly.

Thus the new measure allows us to find similarities between curves that need to be cut
and reordered to be similar under the Fréchet distance. For instance, this could be objects of
rearranged pieces such as a set of trajectories of tourists visiting several sights in a city. If
the k-Fréchet distance of two trajectories is small, the respective tourists used similar routes
to get to the sights. For small k we can also conclude that the tourists visited many sights in
the same order. Other examples would be chemical structures or handwritten characters
and symbols. An example is displayed in Figure 1, where we compare three variants of
writing the letter k by hand. Note that we deal with disconnected curves by concatenating
the respective subcurves. Of course, we can easily identify that all three of them are k’s by
using the Hausdorff distance to compare them to a “generic” k, but the k-Fréchet distance
provides us with more information: the 2-Fréchet distance between the second and the third
k is large because the strokes are set differently. Those k’s are unlikely to be written by the
same person. The 3-Fréchet distance, however, is small, because the letter consists of at most
3 strokes in general.

Figure 1 Three ‘k’s written in a different way. For the middle and the right one, the 2-Fréchet
distance is large and the 3-Fréchet distance is small.

Characterizing the mentioned variants of the Fréchet distance next to the Hausdorff
distance intuitively shows that the new distance measure bridges between weak Fréchet and
Hausdorff distance. As is common for the Fréchet distance, we use the following analogy: we
interpret our input curves as two paths, which have to be traversed by a man and a dog, each
of them walking on one of the paths. For the (weak) Fréchet distance we ask for the length
of the shortest leash so that man and dog can traverse their curves. They may choose their
speeds independently. For the weak Fréchet distance, man and dog are allowed to backtrack.

The Hausdorff distance finds for each point on either curve the closest point on the other
curve and takes the largest of the obtained distances. In terms of man and dog we do not
ask for traversal as such, we simply need that for any fixed position on either path there is a

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen 50:3

position on the other one such that man and dog can stand on their respective positions using
a leash of fixed length. One could say they may “teleport” on their curves any number of
times as long as both man and dog can reach all positions on their respective curves without
exceeding the given maximum distance, i.e., the leash length. The k-Fréchet distance limits
this number of teleports to a constant k (actually, we have k − 1 teleports), so we want man
and dog to traverse their paths piecewise. Note that we use the weak Fréchet distance as an
underlying distance measure. As we picture man and dog to teleport, it is more natural to
allow backtracking, especially since we allow any point on a curve to be the target point of a
teleport. Imagine a subcurve oriented in the opposite direction than the subcurve closest to
it: we would like to teleport the dog to the end of that curve and have it traverse the curve
backward. Moreover, we do not ask to match the endpoints of our input curves.

Related work. Efficient algorithms were presented for computing the Fréchet distance and
the weak Fréchet distance by Alt and Godau in 1995. They first introduced the concept of
the free space diagram, which is key to computing this distance measure and its variants [3].
Following their work, numerous variants and extensions have been considered. Here we
mention only a few results related to our work. Alt, Knauer and Wenk compared Hausdorff to
Fréchet distance and discussed κ-bounded curves as a special input instance [4]. In particular,
they showed that for convex closed curves Hausdorff distance equals Fréchet distance. For
curves in one dimension Buchin et al. [6] proved the equality of Hausdorff and weak Fréchet
distance using the well-known Mountain climbing theorem [18]. For computing the Hausdorff
distance, Alt et. al. [2] gave a thorough overview. Buchin [9] gave the characterization of
these measures in free space, which motivated our study of k-Fréchet distance.

For c-packed curves, Driemel, Har-Peled and Wenk presented a (1 + ε)-approximation
algorithm, which determines the Fréchet distance in near linear time [15]. For general
polygonal curves, Buchin et al. [7] recently slightly improved the original algorithm of Alt
and Godau, while Bringmann [5] showed that unless SETH fails no strongly subquadratic
algorithm for the Fréchet distance exists. An interesting variant was presented by Gheibi
et al.: they studied the weak Fréchet distance but minimized the length of the subcurves
on which backtracking is necessary [17]. Buchin, Buchin and Wang studied partial curve
matching, where they presented a polynomial-time algorithm to compute the “partial Fréchet
similarity” [8], and a variation of this similarity was presented by Scheffer in [20]. Also,
Driemel and Har-Peled defined a Fréchet distance with shortcuts [14], which was proven to
be the first NP-hard variant of the Fréchet distance in [10].

Interestingly, both Hausdorff and (weak) Fréchet distance are computable in polynomial
time. However, the k-Fréchet distance, as a distance measure that bridges between the two
of them, proves to be NP-complete.

Overview. In the next chapter, we introduce and formally define the k-Fréchet distance.
In Chapter 3, we determine its hardness in two steps: first, we prove NP-hardness of a
simpler auxiliary problem to gain some intuition (Section 3.1) for the then following reduction.
The most intricate part of our work is the construction of said reduction and analyzing its
correctness, both of which are presented in Section 3.2. Finally, we present our algorithmic
findings in Chapter 4. We give an XP-algorithm with parameter k, which even works in
polynomial time for small k. A greedy approach leads to a 2-approximation on the optimal
k. We then make use of two parameters, again the selection size k, and the parameter z,
which indicates how “entangled” the input curves are, to construct our FPT algorithm.

ISAAC 2019

50:4 The k-Fréchet Distance

2 Preliminaries

First we define the Hausdorff distance [4] for curves P,Q : [0, 1]→ Rd as

δH(P,Q) = max(δ̃H(P,Q), δ̃H(Q,P)), where

δ̃H(P,Q) = max
t1∈[0,1]

min
t2∈[0,1]

‖P (t1)−Q(t2)‖

denotes the directed Hausdorff distance from P to Q. By ‖ · ‖ we refer to the Euclidean
norm in Rd. Now recall the Fréchet distance [3]: For curves P,Q : [0, 1]→ Rd it is given by

δF(P,Q) = inf
σ

max
t∈[0,1]

‖P (t)−Q(σ(t))‖,

where the reparametrizations σ : [0, 1]→ [0, 1] range over all orientation-preserving homeo-
morphisms. A variant is the weak Fréchet distance δwF where both curves are reparameterised
by σ and τ , respectively, which range over all continuous surjective functions.

As mentioned, the Fréchet distance is often illustrated by a man and a dog walking on
two curves where both may choose their speed independently. For the Fréchet distance, man
and dog may not backtrack, for the weak Fréchet distance they may. The (weak) Fréchet
distance corresponds to the shortest leash length allowing them to traverse the curves.

A well-known characterization, which is key to efficient algorithms for computing both
weak and (strong) Fréchet distance uses the free space diagram, which was introduced by
Alt and Godau [3]. First we recall the free space Fε:

Fε(P,Q) = {(t1, t2) ∈ [0, 1]2 : ‖P (t1)−Q(t2)‖ ≤ ε}.

For piecewise-linear P and Q, the free space diagram puts this information into an (n×m)-
grid where n and m are the numbers of segments in P and Q respectively. For the rest of
this paper we assume that m = O(n) to simplify runtime expressions.

The Fréchet distance of two curves is at most a given value ε if there exists a monotone
path through the free space connecting the bottom left to the top right corner. For the weak
Fréchet distance, this path need not be monotone. It may also start and end somewhere
other than the corners of the diagram, as long as it touches all four boundaries.

We now define further terms regarding the free space diagram: A component of a free
space diagram is a connected subset c ⊆ Fε(P,Q). A set S of components covers a set
I ⊆ [0, 1]P of the parameter space (corresponding to the curve P) if I is a subset of the
projection of S onto said parameter space, i.e., ∀x ∈ I : ∃c ∈ S, y ∈ [0, 1]Q : (x, y) ∈ c.
Covering on the second parameter space is defined analogously. This means the weak Fréchet
distance is smaller than ε if there is one component in Fε(P,Q) that covers both parameter
spaces. Similarly, the Hausdorff distance can be tested by checking whether the set of all
components covers both parameter spaces. In this paper we extend this concept to also
account for the number of components needed to cover the parameter spaces.

We define the k-Fréchet distance δkF(P,Q) as the minimal ε such that there is a set of at
most k components of Fε(P,Q) covering both parameter spaces. That is, we cover the curves
P and Q by at most k pieces (i.e., subcurves) such that there is a matching of the subcurves
where a matched pair has small weak Fréchet distance. Note that the subcurves may overlap.
In the analogy, we allow man and dog to “teleport” on their respective curves, i.e., they may
skip parts of their paths and come back later. We still ask for a complete traversal, but some
parts of the curves may be traversed multiple times with teleports in between.

The decision problem for this distance measure asks whether for a fixed value of k,
δkF(P,Q) is smaller than or equal to a given ε. Naturally, for a fixed real ε > 0, we would

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen 50:5

like to cut the curves into as few subcurves as possible (optimization version). By definition,
the k-Fréchet distance lies in between the Hausdorff and the (weak) Fréchet distances:

δH(P,Q) ≤ δkF(P,Q) ≤ δwF(P,Q) ≤ δF(P,Q).

Also, the k-Fréchet distance decreases as k increases: for k = 1 it equals the weak Fréchet
distance, whereas for k sufficiently large, e.g., k ≥ n2, it equals the Hausdorff distance.

Figure 2 illustrates this property. The diagram on the left corresponds to a fixed ε1. We
observe that there is one connected component in the free space Fε1(P,Q) that projects
surjectively onto both parameter spaces. We therefore have ε1 ≥ δwF (= δ1F). The diagram
in the middle depicts Fε2(P,Q) for a value ε2 slightly smaller than ε1. In that case two
components cover the parameter spaces, which means ε2 ≥ δ2F. The free space Fε3(P,Q)
shown on the right for an ε3 smaller than ε2 consists of three components and all three are
necessary to cover the parameter spaces. Furthermore, reducing the value of ε3 even more
would not split up the components into smaller subcomponents, but would just result in the
set of all components not covering the parameter spaces any more. So we have ε3 ≥ δH = δ3F.

P

Q

ε1 ≥ δwF = δ1F ε2 ≥ δ2F ε3 ≥ δH = δ3F

Figure 2 Comparison of weak Fréchet, 2-Fréchet and Hausdorff distance of curves P and Q.

3 Hardness results

In this section, we prove that deciding the k-Fréchet distance for fixed ε is NP-hard.
To give some intuition for the later proof, we first present a reduction from the well-known

3-SAT problem to the problem of covering two sides of a rectangle by selecting a number
of smaller rectangles, or boxes, that are situated inside. This problem (we call it the box
problem) mimics selecting the components in the free space to cover the parameter spaces.
However, we do not ask to find curves that realize this specific free space.

Afterwards we reduce from rectilinear monotone planar 3-SAT [13] to prove hardness of
the actual k-Fréchet distance problem.

3.1 Gaining intuition: The box problem
We want to reduce from the following classical NP-hard satisfiability problem [16]:

3-SAT:
Input: a boolean formula with n variables written as a conjunction of m clauses, where a
clause is a disjunction of at most 3 literals;
Output: “Yes” if there exists a satisfying variable assignment, “No” otherwise.

ISAAC 2019

50:6 The k-Fréchet Distance

Box problem:
Input: a set A of aligned, interior-disjoint rectangles bi, their bounding box B, k ∈ N;
Output: “Yes” if there exists a selection of at most k rectangles from A such that their
union surjectively projects onto the bottom and left boundary of B, “No” otherwise.

Given any instance of a 3-SAT formula, we build a bounding box B containing a number
of boxes bi such that we can find a covering selection of size k if and only if there is an
assignment for the formula that outputs true. A covering selection of boxes is a subset of
the bi that projects surjectively onto the bottom and left boundaries of B. For this we build
boxes bi that correspond to the variables and any satisfying assignment of the variables can
be directly “translated” into a covering selection of the bi.

First, note that we assume that no clause contains duplicates, i.e., no clause is of the form
v ∨ v ∨ w. The duplicates can be deleted without changing the boolean function induced by
the formula. Note that clauses of the form v ∨ ¬v ∨ w are allowed. Additionally, we require
that throughout the formula each literal appears at least once, i.e., each variable appears at
least once in its positive and in its negated form. For each variable v where this is not the
case we add the clause v ∨ ¬v (colored dark green in Figure 3). These clauses are always
fulfilled and therefore do not change the output of our boolean formula. We add at most n
clauses in this way, which means that the size of the formula only changes polynomially in
the input size.

Now we give the detailed construction of our box problem instance derived from some
3-SAT formula: Let V = {v1, . . . , vn} be the set of variables and let C = {c1, . . . , cm} be
the set of clauses. For each variable vi, let a+

i (respectively a−i) be the number of clauses in
which vi appears positive (respectively negatively), and let {c+

i,1, c
+
i,2, . . . , c

+
i,a+

i

} (respectively
{c−i,1, . . . , c

−
i,a−

i

}) be the set of clauses in which vi appears positive (respectively negatively).

Additionally we define the sums s+
i =

∑i
k=1 a

+
k and s−i =

∑i
k=1 a

−
k .

In the following we describe the placement of boxes, which is depicted in Figure 3. The
number of rows and columns needed for the different gadgets is indicated in the figure. A
box (x, y, w, `) designates the axis-aligned rectangle with unit height and width w whose
bottom left corner has coordinates (x, y) ∈ R2 with label `. The labels are later used in the
proof of correctness.

Variable gadget. For each variable vi, we place two boxes (i, i, 1,¬vi) and (i, i+n+s+
n , 1, vi),

and no other boxes are placed over the interval (i, i+ 1) of the bottom boundary. That way,
in order to cover said interval, at least one of those two boxes has to be chosen.

Split gadget. The split gadget ensures that we can propagate the assignment of a variable
onto all clauses the variable takes part in. We build the splits used for the positive occurrences
of the variables first. For each variable vi, we place the box (1 + n+ s+

i−1, i, a
+
i , vi) and the

boxes (n + s+
i−1 + j, n + s+

i−1 + j, 1,¬vi), for j ∈ {1, . . . , a+
i }. For negated occurrences of

vi ∈ V we place the box (1 + n + s+
n + s−i−1, n + s+

n + i, a−i ,¬vi) and the boxes (n + s+
n +

s−i−1 + j, 2n+ s+
n + s−i−1 + j, 1, vi), for j ∈ {1, . . . , a−i }.

Clause gadget. We assign to each clause ci the unit interval on the bottom boundary of B
starting at I(ci) = n + s+

n + s−n + i. For each literal of a clause ci we place a box labeled
with the respective literal above the unit interval [I(ci), I(ci) + 1]. To be precise, for each
vi ∈ V we place the boxes (I(ch), n+ s+

i−1 + j, 1, vi), for j ∈ {1, . . . , a+
i } and h ∈ {1, . . .m}

where ch = c+
i,j , and (I(ch), 2n + s+

n + s−i−1 + j, 1,¬vi), for j ∈ {1, . . . , a−i }, h ∈ {1, . . .m}
where this time ch = c−i,j .

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen 50:7

b
a

¬a
¬b
¬c
¬d

c
d

¬a
¬a
¬a

¬a

¬b

¬b

¬c
¬c

¬c
¬d

¬d

a

a

b

b

c

c

d

d

a
a

a

¬a
¬b

¬c
¬d

b
c

c
d

variables positive split neg.split clauses

1

1
n s+n s−n m

n

s+n

s−n

n

(a ∨ b ∨ ¬c)
∧(a ∨ c ∨ ¬d)
∧(¬b ∨ c ∨ d)
∧(¬a ∨ a)

Figure 3 Construction of the box problem instance and propagation of assignment.

Overall, we have 4n + 2(m1 + 2m2 + 3m3) boxes, where mi is the number of clauses
with i variables (and therefore m1 + m2 + m3 = m). Each unit interval (i, i + 1) with
i ∈ {1, . . . , 2n+ s+

n + s−n } on the left boundary of B can be covered by exactly two different
boxes. The same holds for every unit interval (i, i+ 1) with i ∈ {1, . . . , n+ s+

n + s−n } on the
bottom boundary. Note that for all these unit intervals, one of the boxes is labeled with a
variable and the other one is labeled with the negated version of that variable, i.e., one box is
labeled v and the other one ¬v. Each Interval I(c) on the bottom boundary can be covered
by as many boxes as the clause c contains literals. The labels of these boxes correspond to
the variables contained within this clause. We set the bounding box B as the axis-aligned
rectangle spanned by the points (1, 1) and (1 + n+ s+

n + s−n +m, 1 + 2n+ s+
n + s−n) and we

set k = 2n + m1 + 2m2 + 3m3 so only half the boxes can be chosen. For a given boolean
formula, the set of boxes defined above can be determined in polynomial time.

I Theorem 1. The box problem is NP-hard.

Proof. First we prove that the box problem as constructed above has a solution if and only
if the input 3-SAT formula has a variable assignment such that it evaluates to true.

“⇐”. Let f : V → {true, false} be an assignment of the variables that satisfies the
3-SAT formula. We set S = {boxes (x, y, w, v) | f(v) = true} ∪ {boxes (x, y, w,¬v) | f(v) =
false}. The set S projects surjectively onto the bottom and left boundary of the bounding
box B because each unit interval on the left boundary is covered by exactly one box. For
most of the bottom boundary we also have that each interval is uniquely covered, but for the
clauses columns we allow that more than one box per unit interval is chosen (i.e., more than
one corresponding literal is set to true).

ISAAC 2019

50:8 The k-Fréchet Distance

“⇒”. Let S be a minimal set of boxes that covers the boundaries of the bounding box B
with |S| = k. This means that each unit interval on the left boundary of B is covered by
exactly one box. Due to the position of the boxes, this means that for each variable v either
all boxes labeled v or all boxes labeled ¬v have been chosen. This induces an assignment of
the variable v, i.e., v is set to true if the boxes labeled v have been chosen and else v is set
to false. Note that the selection S covers the box B. Therefore, for each clause c one of
the boxes that can cover I(c) is an element of the selection S. It follows that the assignment
of variables induced by S fulfills the formula.

Above we showed the NP-hardness of the box problem. The box problem is in fact even
NP-complete since for a given subset S of boxes one can test if the bounding box B is covered
by simply marking the covered intervals, which can be done in polynomial time. J

We can interpret the box problem as the problem of finding a selection of components in
the free space that cover the parameter spaces. The small boxes can be seen as bounding
boxes of actual components (for the projection there is no difference) and the bottom and
left boundary of the large box B correspond to the respective parameter spaces. The above
hardness proof, especially the construction of the boxes, provides us with the key ideas to
prove hardness of the k-Fréchet distance. Next, we construct actual curves where certain
intervals on the parameter spaces of the free space diagram each have two components that
could cover them. As with the box problem, the choice we make for one of those intervals
determines the choices for other intervals as we still need to ensure that the selection size
is minimal in the end. The propagation of choices works in the same manner for the box
problem as for the k-Fréchet distance problem.

3.2 Reduction for the k-Fréchet distance
We use the following variant of the 3-SAT problem in this subsection.

Rectilinear monotone planar 3-SAT:
Input: a 3-SAT formula with only all positive or all negated variables per clause, embedded
as a graph with rectilinear, non-crossing edges; variables are drawn as vertices on a horizontal
line, positive clauses are vertices drawn above this line and negative clauses are drawn below;
Output: “Yes” if there exists a satisfying assignment for the variables, “No” otherwise.

v1 v2 v3 v4 v5 v6

¬v3 ∨ ¬v4 ∨ ¬v5

¬v3 ∨ ¬v5 ∨ ¬v6¬v1 ∨ ¬v2 ∨ ¬v3

v2 ∨ v3 ∨ v4

v1 ∨ v4 ∨ v5

v1 ∨ v5 ∨ v6

Figure 4 Instance of rectilinear monotone planar 3-SAT.

Note that we assume that each variable appears in at least one positive and one negative
clause. Otherwise, we could simply define the occurring literal to be true (or false,
respectively) and omit the clauses the literal appears in.

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen 50:9

We can draw any graph corresponding to such a 3-SAT formula on a grid, see, e.g.,
Figure 4, which is useful when constructing and analyzing our curves. Since rectilinear
monotone planar 3-SAT is NP-hard [13], we prove hardness of the k-Fréchet distance problem
by reducing from it.

k-Fréchet distance problem:
Input: Two polygonal curves P and Q, a distance ε and a natural number k;
Output: “Yes” if there exists a selection of at most k components in the free space diagram
Fε such that their union projects surjectively onto both parameter spaces, “No” otherwise.

Our goal is to construct two curves P (yellow) and Q (blue) that mimic any input instance
of a rectilinear monotone planar 3-SAT graph and show that in the free space resulting from
these curves we can find a covering selection of size k if and only if there exists a satisfying
assignment for the formula. The detailed construction can be found in the full version of this
paper [1].

Overall we create wire and clause gadgets to represent variables and clauses, where wires
correspond to the edges of the input graph. Wire gadgets allow a boolean choice that is
propagated consistently throughout the wire. Clause gadgets test whether at least one
incoming wire carries an appropriate choice.

Figure 5 shows a wire gadget and how it is used. Both curves consist of two long parallels,
which we call base parts of the curves, and spikes, which are the horizontal segments in the
figure. The spikes are formed by taking a 90 degree turn from the base part and traversing
the spike segment back and forth. The base parts are not particularly relevant for the
analysis because the segments forming them can only be covered by larger components that
are always part of any covering selection. The value ε is chosen such that two adjacent spikes
are just within distance ε. It follows that the spikes induce components that are similar to
the boxes of Subsection 3.1. We say that a spike s is covered by an adjacent spike t of the
other curve if the component of the free space diagram that covers the two intervals induced
by these spikes is chosen for the covering selection. In the end, we choose k such that each
blue spike in any gadget can only be covered by one single adjacent yellow spike. The choice
for blue spikes must be consistent along the wire to preserve minimality of k, and it encodes
the assignment of the corresponding variable.

P

Q

wires

bend gadget

clause gadget

wire

ε

P
Q

Figure 5 (Left and middle) The wire gadget and its corresponding free space diagram. Note that
we connected the curves to give a small example, but the horizontal segment on top is not part of
the wire itself. (Right) A part of the construction where wires connect other gadgets.

As displayed in Figure 5, the clause gadget features one yellow spike that can be covered by
either one of the three blue spikes within its ε-neighborhood. Which one of their neighboring

ISAAC 2019

50:10 The k-Fréchet Distance

yellow spikes the blue ones cover is determined by the variable assignment and propagated
throughout the wire, so if at least one of the variables is set to true, the yellow spike at the
center of the clause is covered.

Next, we need a number of other gadgets, too. As mentioned, the wires correspond
to edges in the rectilinear monotone planar 3-SAT instance. To draw them coherently we
need to make sure we can make 90 degree turns (so-called bends, see the right-hand side of
Figure 5) and do T-crossings, i.e., split a wire into two.

We need to treat remaining difficulties: first of all, there is a connection gadget that
enables us to connect the opposite base parts of P and Q, respectively. The resulting curves
are closed, which we solve by applying the scissor gadget. Finally, we may need to change
which of the curves has spikes on a specific side to draw the other gadgets consistently, so we
also built a color gadget to “switch” the color pattern of the spikes.

At last, we want to connect all gadgets such that the resulting curves follow the embedding
of the input graph G. Recall that the input is a grid embedding. We first scale the grid by
a factor of 210 to place all gadgets consistently. Note, that we have to deal with 2-clauses
and take into account that our split gadget is directed, so we need to have some space for
workarounds. Afterwards we can draw the curves’ vertices on grid points only. Consider the
input graph G. We want to traverse all edges of G twice, once per inner, once per outer
base parts. To do so, we have to “walk around” each face of G. To switch between faces we
use connection gadgets. We obtain a traversal order of the faces by computing a minimum
spanning tree of the dual graph, see [1] for a detailed description.

Finally, it remains to prove that our construction works in the sense that the curves have
k-Fréchet distance ε if and only if the specific 3-SAT instance is satisfiable.

First, we note that the complexity of our curves is polynomial in the size of our input
instance: the numbers of variables and clauses, but also the number of splits and the length
of the edges determine the number of spikes and therefore also the number of components
in the free space diagram. A spike induces either two or three components, depending on
whether it is part of a specific gadget, i.e., a clause, or not. In addition, the gadgets induce
a number of components, called clutter, that are always part of a covering selection. Some
gadgets also induce a constant number of unnecessary components that are never chosen.

Our goal is to cover the parameter spaces with k components. We definitely need to
select all clutter components and we need to cover all spikes, therefore we need to select (at
least) one component per spike. We set k to be the number of clutter components plus the
number of blue spikes (spikes of Q). It follows that each blue spike can only be covered once,
which ensures that choices are propagated.

I Theorem 2. It is NP-hard to decide whether δkF(P,Q) ≤ ε for given polygonal curves P
and Q, integer k, and ε > 0 where δkF denotes the k-Fréchet distance.

For the full proof, we refer to the arXiv-Version of this paper [1]. For the reduction
constructed above, the following holds: given a satisfying assignment for the input formula,
we know which components to select: apart from all clutter components, we have to decide
how to cover the blue spikes. This choice is implied by the assignment and propagated
throughout the gadgets.

Given a selection of components, we need to backtrack our choices throughout the wires
and other gadgets to determine how the blue spikes are covered. Depending on this choice,
we know whether the corresponding variable has to be set to true or to false. Thus we
derive our assignment for the 3-SAT formula and complete the proof of NP-hardness.

We can test in polynomial time whether the union of a selection of components covers
the parameter spaces. Thus the problem of deciding the k-Fréchet distance lies in NP.

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen 50:11

4 Algorithms

In this chapter, we begin by presenting a preprocessing algorithm, which applies to the
following algorithmic approaches: First, we can find a covering selection of at most size k in
exponential time and describe how to approximate k by factor 2 (Section 4.2). Then, we
describe an FPT-algorithm for finding an optimal covering selection in Section 4.3. Note that
the XP-algorithm as well as the FPT-algorithm are designed to solve the decision problem,
but we can also optimize k by repeating the decision problem solving algorithm for different
values of k by performing a parametric search on the reasonable values for k, similar to the
algorithm for the Fréchet distance for polygonal curves by Alt and Godau [3].

4.1 Preprocessing
First, we observe two preprocessing strategies, which can be applied before entering any
of our algorithms. In any case we start by computing the free space diagram, which takes
quadratic time. In the free space diagram it is easy to identify all necessary components:
any component that covers an interval of one of the parameter spaces uniquely (i.e., there is
no other component covering the exact same interval) is necessarily chosen for an output
selection. Such components can be found in O(n logn) time using a scan. Furthermore, it is
possible to rule out all redundant components. A component is called redundant if and only
if it is completely contained in the bounding box of a different component (but there could
be more than one such component with a sufficiently large bounding box). This case can
also be detected via scans. Thus our preprocessing needs quadratic time. However, it does
not improve the size of the input (being the complexity of the free space) nor the resulting
runtime of any of the presented algorithms asymptotically.

4.2 XP-algorithm and approximation
We start by giving the more straight-forward approaches. First, we present an XP-algorithm.
I Remark 3. The k-Fréchet distance can be decided in O(k · n2k) time for constant k.

The brute force approach simply checks for all selections of k components of the free
space whether their joint projections cover both parameter spaces surjectively. That means
we have to check at most

(
n2

k

)
possible combinations of components resulting in a runtime of

O(k · n2k) for fixed k, which is of course only feasible for very small k. Therefore we can
compute the answer to the decision problem for the cover distance with k = 2 in O(n4). Since(
m
k

)
≤ 2m holds for any m > k, our runtime is upper-bounded by O(n · 2n2) for general k.

We can also approximate the size of an optimal solution.
The main idea of our algorithm is to find minimal covering selections for each parameter

space individually and combine those selections into an overall solution in the end. We can
find both selections covering only a single parameter space by applying a greedy technique.

Given the free space diagram, we first project all components onto the parameter spaces.
We get two sets of intervals, one covering the first parameter space (we store these intervals
in the list LP , see Figure 6) and one for the second parameter space (stored in LQ). So one
component projects onto two intervals, one on each parameter space (and thus one per list).
We store the information on which two intervals stem from the same component accordingly.

Now we simply want to select a minimum number of intervals whose union equals the
unit interval, i.e., the parameter space. We deal with each parameter space on its own as
follows: we sort the lists LP (and LQ) by left endpoint. Now, per list, starting at 0, we
make a greedy choice and select the interval (among the intervals starting at 0) with the

ISAAC 2019

50:12 The k-Fréchet Distance

P

Q

ε

1

3

IP,1
IP,2

IP,3

2

Figure 6 The projection onto the first parameter space and the resulting elements of LP .

rightmost endpoint, say r1. Here we recurse, i.e., we take r1 as new start point and again
search among the intervals covering r1 (i.e., intervals starting at or to the left of r1) for the
one with the rightmost endpoint. As soon as we select an interval with 1 as endpoint we
have found a minimal covering selection. To see that our greedy strategy is optimal, observe
that the algorithm proceeds from left to right maintaining the following invariant: at any
time we selected a minimum number of intervals to cover the parameter space from its left
boundary to the current position.

As output we have two selections of intervals, SP and SQ. The intervals correspond to
components. We build the union of both lists, taking into account that an interval in SP may
belong to the same component as an interval of SQ, and output the selection of components
S that contributed at least one of the chosen intervals.

The worst case that might occur is the following: all of the intervals we selected during
the greedy procedures correspond to different components in the free space, so that the union
of our selections is of size |SP | + |SQ|. A different selection of size |Ŝ| = max(|SP |, |SQ|)
might cover both parameter spaces but is not detected by the greedy scan. Schäfer proves
that the approximation factor 2 is indeed tight [19].

Finally, we consider the runtime: computing the free space takes quadratic time. Sorting
the lists adds another logarithmic factor while the greedy selection routine takes linear time
in the number of intervals. Hence we get an overall runtime of O(n2 logn).

I Theorem 4. The algorithm described above runs in O(n2 logn) time and finds a selection
of components that covers both parameter spaces if and only if one exists. A found selection
contains at most twice the minimum number of components needed.

4.3 Fixed-parameter tractability
Lastly, we present an algorithm for deciding whether δkF(P,Q) ≤ ε for given ε and k.
The runtime of our algorithm is polynomial in the complexity of our curves P and Q, but
exponential in the two parameters k (the selection size) and z (the neighborhood complexity).

We define the neighborhood complexity as the maximum number of segments of one curve
that intersect with the ε-neighborhood of any point of the other curve. In the free space
diagram we get that each horizontal or vertical line intersects at most z components. Note
that this requirement is similar but not directly related to c-packedness. The first counts the
number of segments of one curve within a fixed distance of any point of the other curve. In
contrast, c-packedness bounds the length of one curve within a ball of arbitrary radius.

The idea is the following: we build two directed bounded search trees (as described in
Chapter 3 of [12]) to create selections of components of size at most k. Each search tree
represents the projection of the free space onto one parameter space, see Figure 7 below. A

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen 50:13

node corresponds to a component in the free space (or rather the interval on the respective
parameter space it covers) and a path encodes a selection that covers the interval [l, r]. By l
we denote the left boundary point of the interval corresponding to the root of the path and
r is the right boundary point of the interval of the bottommost node (e.g. a leaf). We call
a selection or a path feasible if the union of the (at most k) components it encodes covers
the respective parameter space. From the first tree, TP , we are able to extract all feasible
selections which cover the parameter space corresponding to curve P , feasible selections
of the second tree, TQ, cover the other parameter space. In the end, we compare and/or
combine a feasible selection of TP with a feasible selection of TQ to get a selection S that
contains no more than k components, so that its union covers both parameter spaces.

P

Q
1

2

3

4

5

6

7

8

ε

R

1

2

2

3

3

5

4 45

4

3

6 7

5

4 666 7 7 78 8 8 8

4 46 6 6 6

Figure 7 Curves P, Q, their free space diagram and the resulting bounded search tree TP . Leaves
of feasible paths are marked in green.

More formally, we build two trees of depth k and branching factor z. Consider the tree
TP . The root is labeled by the left boundary point of the parameter space of P (we assume
w.l.o.g. that the bottom boundary of the free space diagram corresponds to P). Now we use
a sweep line initialized at the left boundary of the free space diagram. We assign a node in
the tree to all components intersecting the sweep line, i.e., the root has as many children as
there are components touching the left boundary of the free space diagram. The sweep line
moves to the right. Whenever the sweep line is tangent to a component, one of two cases
occur: if it touches the leftmost point of a component it becomes active, i.e., the sweep line
continues to intersect this component when moving further to the right; if the line touches
the rightmost point of the component, it becomes inactive (so the sweep line just stops to
intersect it). In the first case, nothing immediate happens to the tree, in the latter case,
if the tangent component already has a node in the tree, we insert new nodes: each node
corresponding to the tangent component gets assigned as many children as there are other
currently active components. By definition, a node can never have more than z children.
Note that some (small) components may not get assigned any nodes in one tree. Also, with
every node we store its depth (the root has depth 0) and stop assigning children at depth k -
or as soon as a component touches the right boundary of the free space diagram. If a leaf
vl corresponds to a component touching the right boundary, the path from the root to vl
encodes a feasible selection of components for TP . Other selections are called non-feasible.
The second tree TQ is built analogously by sweeping from bottom to top.

We store the feasible selections obtained from TP and TQ in sorted lists LTP and LTQ. For
each pair of selections SP,i, SQ,j , where 1 ≤ i, j ≤ zk, we test whether |SP,i ∪ SQ,j | ≤ k and
output this union if the answer is positive.

I Theorem 5. The algorithm described above returns a selection S of k components in the
free space that covers both parameter spaces if and only if such a selection exists. Hence it
solves the decision problem for the k-Fréchet distance in time O(nz + kz2k).

ISAAC 2019

50:14 The k-Fréchet Distance

Proof. Our algorithm treats all possible selections of size at most k per parameter space
and combines all these, hence it necessarily finds a valid solution if and only if one exists.

For the first step, we compute the free space, which takes O(n · z) time. Building the
trees takes O(zk) time since we are limited to depth k and insert at most z children per
node. Note that any operation in the free space diagram, such as detecting components that
cover a boundary or projecting them onto the boundaries to find the intervals they cover,
can be done in O(nz) time. We obtain at most zk selections per search tree. Each selection
is stored as the sorted set SP,i, respectively SQ,i, by encoding each component as an integer.
We then sort both lists of selections lexicographically. During the sorting we might detect
duplicates, which we discard immediately. We then compare each selection of the first list
LTP to each selection of LTQ, taking time k per comparison. For any selection smaller than k
we can test whether its union with a selection of the other list is still a solution, i.e., whether
the unified selection does not have more than k integers. All in all, we have a runtime of
O(zn+ zk + zk · k log k + k(zk)2) = O(zn+ kz2k). J

By combining a greedy approach with building an interval tree, Schäfer improved the runtime
of our FPT algorithm to O(nz + k · (logn+ z) · zk) in [19].

5 Conclusion

We present a novel variant of the Fréchet distance for polygonal chains that allows to compare
objects of rearranged pieces. We ask for k (possibly overlapping) subcurves per input curve
that have pairwise small weak Fréchet distance. Thus, the k-Fréchet distance provides a
transition between weak Fréchet (k = 1) and Hausdorff distance (k sufficiently large).

But as we prove, deciding the k-Fréchet distance of two polygonal curves is NP-hard.
However, we were able to tackle the computational challenge from different angles: we give
an XP-algorithm depending on k, approximate k by factor 2 and present an FPT-algorithm.

As mentioned in the introduction, there is a second variant of defining the k-Fréchet
distance we call the “cut version”: instead of allowing overlapping subcurves, we cut the
curves into pieces and search for a matching between these pieces. The NP-hardness proof
presented at EuroCG2018 [11] holds for this variant. However, the algorithmic approaches
only work for the variant we discuss in this paper (we call it the “cover variant”). Finding
algorithmic approaches for the cut version of the k-Fréchet distance is work in progress.

References

1 Hugo A. Akitaya, Maike Buchin, Leonie Ryvkin, and Jérôme Urhausen. The k-Fréchet distance.
CoRR, 2019. arXiv:1903.02353.

2 Helmut Alt, Peter Braß, Michael Godau, Christian Knauer, and Carola Wenk. Computing the
Hausdorff distance of geometric patterns and shapes. In Discrete and computational geometry,
volume 25 of Algorithms Combin., pages 65–76. Springer, 2003.

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5:75–91, 1995.

4 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45–58, 2004.

5 Karl Bringmann. Why Walking the Dog Takes Time: Fréchet Distance Has No Strongly
Subquadratic Algorithms Unless SETH Fails. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 661–670, 2014.

http://arxiv.org/abs/1903.02353

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen 50:15

6 Kevin Buchin, Maike Buchin, Christian Knauer, Günther Rote, and Carola Wenk. How
Difficult is it to Walk the Dog? In 23rd European Workshop on Computational Geometry
(EuroCG), pages 170–173, 2007.

7 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets Walk
the Dog: Improved Bounds for Computing the Fréchet Distance. Discrete and Computational
Geometry, 58:180–216, 2017.

8 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’09, pages 645–654, 2009.

9 Maike Buchin. On the Computability of the Fréchet Distance Between Triangulated Surfaces.
PhD thesis, Free University Berlin, Institute of Computer Science, 2007. URL: http://www.
diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002618.

10 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance with
shortcuts is NP-hard. In Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, SOCG’14, pages 367–376. ACM, 2014. doi:10.1145/2582112.2582144.

11 Maike Buchin and Leonie Ryvkin. The k-Fréchet distance of polygonal curves. In 34th
European Workshop on Computational Geometry (EuroCG), 2018. URL: conference.imp.
fu-berlin.de/eurocg18/.

12 Marek Cygan, Fedor V. Fomin, Ł ukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

13 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. Internat. J. Comput. Geom. Appl., 22:187–205, 2012.

14 Anne Driemel and Sariel Har-Peled. Jaywalking your Dog - Computing the Fréchet Distance
with Shortcuts. CoRR, 2011. arXiv:1107.1720.

15 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete and Computational Geometry, 48:94–127, 2012.

16 Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman and
Co., San Francisco, Calif., 1979.

17 Amin Gheibi, Anil Maheshwari, Jörg-Rüdiger Sack, and Christian Scheffer. Minimum backward
Fréchet distance. In Proceedings of the 22Nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, SIGSPATIAL ’14, pages 381–388. ACM, 2014.
doi:10.1145/2666310.2666418.

18 Jacob E. Goodman, János Pach, and Chee-K. Yap. Mountain climbing, ladder moving, and
the ring-width of a polygon. Amer. Math. Monthly, 96:494–510, 1989.

19 Peter Schäfer. Untersuchungen zu Varianten des Fréchet-Abstands. Master’s thesis, Fernuni-
versität Hagen, 2019.

20 Christian Scheffer. More Flexible Curve Matching via the Partial Fréchet Similarity. Int. J.
Comput. Geometry Appl., 26:33–52, 2016.

ISAAC 2019

http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002618
http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002618
https://doi.org/10.1145/2582112.2582144
conference.imp.fu-berlin.de/eurocg18/
conference.imp.fu-berlin.de/eurocg18/
http://arxiv.org/abs/1107.1720
https://doi.org/10.1145/2666310.2666418

New Applications of Nearest-Neighbor Chains:
Euclidean TSP and Motorcycle Graphs
Nil Mamanoa

Department of Computer Science,
University of California, Irvine, USA
nmamano@uci.edu
a Corresponding author

Alon Efrat
Department of Computer Science,
University of Arizona, Tucson, USA
alon@cs.arizona.edu

David Eppstein
Department of Computer Science,
University of California, Irvine, USA
eppstein@uci.edu

Daniel Frishberg
Department of Computer Science,
University of California, Irvine, USA
dfrishbe@uci.edu

Michael T. Goodrich
Department of Computer Science,
University of California, Irvine, USA
goodrich@uci.edu

Stephen Kobourov
Department of Computer Science,
University of Arizona, Tucson, USA
kobourov@cs.arizona.edu

Pedro Matias
Department of Computer Science,
University of California, Irvine, USA
pmatias@uci.edu

Valentin Polishchuk
Communications and Transport Systems,
ITN, Linköping University, Sweden
valentin.polishchuk@liu.se

Abstract
We show new applications of the nearest-neighbor chain algorithm, a technique that originated in
agglomerative hierarchical clustering. We use it to construct the greedy multi-fragment tour for
Euclidean TSP in O(n log n) time in any fixed dimension and for Steiner TSP in planar graphs in
O(n
√

n log n) time; we compute motorcycle graphs, a central step in straight skeleton algorithms, in
O(n4/3+ε) time for any ε > 0.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry

Keywords and phrases Nearest-neighbors, Nearest-neighbor chain, motorcycle graph, straight skele-
ton, multi-fragment algorithm, Euclidean TSP, Steiner TSP

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.51

Related Version A full version of the paper is available on https://arxiv.org/abs/1902.06875.

Funding David Eppstein: Supported in part by NSF grants CCF-1618301 and CCF-1616248.
Michael T. Goodrich: Supported in part by NSF grant 1815073.
Stephen Kobourov: Supported in part by NSF grants CCF-1740858, CCF-1712119, DMS-1839274,
and DMS-1839307.

1 Introduction

The nearest-neighbor chain (NNC) technique is used for agglomerative hierarchical cluster-
ing [36, 35], and has only seen one other use besides it, in stable matching [22]. In this
paper, we use it to speed up an algorithm for Euclidean TSP called multi-fragment heuristic.
We also use it to speed up the computation of motorcycle graphs, which is a central step
in algorithms for computing straight skeletons. In the full version of the paper [32], we
follow this approach for two additional problems: a special case of stable matching and a

© Nil Mamano, Alon Efrat, David Eppstein, Daniel Frishberg, Michael T. Goodrich,
Stephen Kobourov, Pedro Matias, and Valentin Polishchuk;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 51; pp. 51:1–51:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0414-2885
mailto:nmamano@uci.edu
mailto:alon@cs.arizona.edu
mailto:eppstein@uci.edu
https://orcid.org/0000-0002-1861-5439
mailto:dfrishbe@uci.edu
https://orcid.org/0000-0002-8943-191X
mailto:goodrich@uci.edu
https://orcid.org/0000-0002-0477-2724
mailto:kobourov@cs.arizona.edu
https://orcid.org/0000-0003-0664-9145
mailto:pmatias@uci.edu
mailto:valentin.polishchuk@liu.se
https://doi.org/10.4230/LIPIcs.ISAAC.2019.51
https://arxiv.org/abs/1902.06875
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 New Applications of Nearest-Neighbor Chains

geometric coverage problem. All the mentioned problems share a property with agglomerative
hierarchical clustering, which we call global-local equivalence, and which is the key to using
the NNC algorithm. First, we review the NNC algorithm in its original context.

1.1 Prior work: NNC in hierarchical clustering
Given a set of points, the agglomerative hierarchical clustering problem is defined procedurally
as follows: each point starts as a base cluster, and the two closest clusters are repeatedly
merged until there is only one cluster left. This creates a hierarchy, where any two clusters
are either nested or disjoint. A key component of hierarchical clustering is the function
used to measure distances between clusters. Popular metrics include minimum distance (or
single-linkage), maximum distance (or complete-linkage), and centroid distance.

We call two clusters mutually nearest neighbors (MNNs) if they are the nearest neighbor
of each other. Consider this alternative, non-deterministic procedure: instead of repeatedly
merging the two overall closest clusters, merge any pair of MNNs. The non-determinism
comes from the fact that there can be multiple pairs of MNNs, and thus several valid
choices. Clearly, this may merge clusters in a different order. Nonetheless, if the cluster-
distance metric satisfies a property called reducibility, this procedure results in the same
hierarchy [9, 10, 35]. A cluster-distance metric d(·, ·) is reducible if for any clusters A,B,C:
if A and B are MNNs, then

d(A ∪B,C) ≥ min (d(A,C), d(B,C)). (1)

In words, the new cluster A ∪ B resulting from merging A and B is not closer to other
clusters than both A and B were. The relevance of this property is that, if, say, C and D
are MNNs, merging A and B does not break that relationship. The net effect is that MNNs
can be merged in any order and produce the same result. Many commonly used metrics
are reducible, including minimum–, maximum–, and average–distance, but others such as
centroid and median distance are not.

The NNC algorithm exploits this reducibility property, which was originally observed
by Bruynooghe [10]. We briefly review the algorithm for hierarchical clustering, since we
discuss it in detail later in the context of the new problems. For extra background on NNC
for hierarchical clustering, see [36, 35]. The basic idea is to maintain a stack (called chain)
of clusters. The first cluster is arbitrary. The chain is always extended with the nearest
neighbor (NN) of the current cluster at the top of the chain. Note that the distance between
clusters in the chain keeps decreasing, so (with an appropriate tie breaking rule) no repeated
clusters or “cycles” occur, and the chain inevitably reaches a pair of MNNs. At this point,
the MNNs are merged and removed from the chain. Crucially, after a merge happens, the
rest of the chain is not discarded. Due to reducibility, every cluster in the chain still points
to its NN, so the chain is still valid. The process continues from the new top of the chain.

The algorithm is efficient because each cluster is added to the chain only once, since it
stays there until it is merged with another cluster. As we will see in detail for our problems,
this bounds the number of iterations to be linear in the input size, with the cost of each
iteration dominated by a NN computation.

Recently, the NNC algorithm was used for the first time outside of the domain of
hierarchical clustering [23]. It was used in a stable matching problem where the two sets
to be matched are point sets in a metric space, and each agent in one set ranks the agents
in the other set by distance, with closer points being preferred. In this setting, there is an
analogous phenomenon: the stable matching is unique, and it can be obtained in two ways;
by repeatedly matching the closest pair (from different sets), or by repeatedly matching
MNNs. They used the NNC algorithm to solve the problem efficiently.

N. Mamano et al. 51:3

1.2 Our Contributions
Our new observation is that this equivalence between merging closest pairs and MNNs is not
unique to hierarchical clustering and stable matching: it also applies to the problems in this
paper. We coin the term global-local equivalence for it. The main thesis of this paper is that
NNC is an efficient algorithm for problems with global-local equivalence, which may include
even more problems than those discussed here and in the full version of the paper.

Section 3 speeds up the multi-fragment heuristic for Euclidean TSP with a variant of NNC
that uses a new data structure that we describe in Section 2, the soft nearest-neighbor data
structure. We extend this result to Steiner TSP in Section 3.3. Section 4 is on motorcycle
graphs. Each section contains background on the corresponding problems.

2 The Soft Nearest-Neighbor Data Structure

Throughout this section, we consider points in Rδ, for some fixed dimension δ, and distances
measured under any Lp metric d(·, ·). We begin with a formal definition of the structure and
the main result of this section.

I Definition 2.1 (Dynamic soft nearest-neighbor data structure). Maintain a dynamic set of
points, P , subject to insertions, deletions, and soft nearest-neighbor queries: given a query
point q, return either of the following:

The nearest neighbor of q in P : p∗ = arg minp∈P d(q, p).
A pair of points p, p′ in P satisfying d(p, p′) < d(q, p∗).

We make a general position assumption: the distances between q and the points in P are
all unique. If this is not the case, the query point q can be perturbed slightly.

I Theorem 2.2. In any fixed dimension, and for any Lp metric, there is a dynamic soft
nearest-neighbor data structure that maintains a set of n points with O(n logn) preprocessing
time and O(logn) time per operation (queries and updates).

We label the two types of answers to soft nearest-neighbor (SNN) queries as hard or soft.
A “standard” NN data structure is a special case of a SNN structure that always gives hard
answers. However, in light of Theorem 2.2, a standard NN structure would not be as efficient
as a SNN structure. For comparison, the best dynamic NN structure in R2 requires O(log4 n)
time per operation [12].

Given a point set P and a point q, let p∗i denote the i-th closest point to q in P . In our
implementation, we use the following data structure.

IDefinition 2.3 (Dynamic ε-approximate k nearest-neighbor (k-ANN) data structure). Maintain
a dynamic set of points, P , subject to insertions, deletions, and ε-approximate k nearest-
neighbor queries: given a query point q and an integer k with 1 ≤ k ≤ |P |, return k points
p1, . . . , pk ∈ P such that, for each pi, d(q, pi) ≤ (1 + ε)d(q, p∗i), where ε > 0 is a constant
known at construction time1. We assume that p1, . . . , pk are sorted by non-decreasing distance
from q.

We reduce each SNN query to a single k-ANN query with constant ε and k. Once we
show this reduction, Theorem 2.2 will follow from the following result by Arya et al. [4]:

1 Some approximate nearest-neighbor data structures [4] do not need to know ε at construction time, and,
in fact, allow ε to be part of the query and to be different for each query. Clearly, such data structures
are also valid for our needs.

ISAAC 2019

51:4 New Applications of Nearest-Neighbor Chains

I Lemma 2.4 ([4]). In any fixed dimension, for any Lp metric, and for any constant
ε > 0, there is a dynamic ε-approximate k nearest-neighbor data structure with O(n logn)
preprocessing time and O(logn) time per operation (query and updates) for constant k.

2.1 Soft nearest-neighbor implementation
We maintain the point set P in a dynamic k-ANN structure initialized with an approximation
factor ε that will be determined later. The chosen ε will depend only on the metric space.
In what follows, q denotes an arbitrary query point and p∗i the i-th closest point to q in P .
Using this notation, p∗ = p∗1. Recall the assumption that the points returned by a k-ANN
structure are sorted by distance from the query point, so only the first one can be p∗. Queries
rely on the following lemma.

I Lemma 2.5. Let p1, . . . , pk be the answer given by a k-ANN structure, initialized with
approximation factor ε, to a query (q, k). If p1 6= p∗, then, for each pi in p1, . . . , pk,
d(q, pi) ≤ (1 + ε)i−1d(q, p1).

Proof. For i = 1, the claim is trivial. For i = 2, . . . , k, note that d(q, p∗i) ≤ d(q, pi−1). This
is because there are at least i points within distance d(q, pi−1) of q: p∗, p1, . . . , pi−1. Thus,
d(q, pi) ≤ (1 + ε)d(q, p∗i) ≤ (1 + ε)d(q, pi−1). The claim follows by induction on i. J

Let S(q, r1, r2) denote a closed shell centered at q with inner radius r1 and outer radius
r2 (i.e., S(q, r1, r2) is the difference between two balls centered at q, the bigger one of radius
r2 and the smaller one of radius r1).

We call a pair (ε, k) valid SNN parameters (for a given metric space) if any set of k points
inside a shell with inner radius 1 and outer radius (1 + ε)k−1 contains two points, p and p′,
satisfying d(p, p′) < 1/(1 + ε).

Suppose that (ε∗, k∗) are valid parameters. Initially, we construct the k-ANN structure
using ε∗ for the approximation factor. Then we answer queries as in Algorithm 1.

Algorithm 1 Soft nearest-neighbor query.

Ask query (q, k∗) to the k-ANN structure initialized with ε∗.
Measure the distance between each pair of the k∗ returned points, p1, . . . , pk∗ .
if any pair (pi, pj) satisfies d(pi, pj) < d(q, p1)/(1 + ε∗) then

return pi, pj .
else

return p1.

I Lemma 2.6. If (ε∗, k∗) are valid SNN parameters, Algorithm 1 is correct.

Proof. The algorithm considers two cases. First, if a pair pi, pj of points returned by the
k-ANN structure satisfies d(pi, pj) < d(q, p1)/(1 + ε∗), pi and pj are a valid soft answer to
the query, as d(q, p1)/(1 + ε∗) ≤ d(q, p∗).

In the alternative case, no pair among the returned points is at distance< d(q, p1)/(1 + ε∗).
Consider the shell S(q, d(q, p1), (1+ε∗)k∗−1d(q, p1)). If we scale distances so that d(q, p1) = 1,
then this shell has inner radius 1 and outer radius (1 + ε∗)k∗−1. Given that (ε∗, k∗) are valid
SNN parameters, if all k∗ of the returned points were inside this shell, at least two of them
would be at a distance smaller than 1/(1 + ε∗). However, without the scaling, this distance

N. Mamano et al. 51:5

would be smaller than d(q, p1)/(1 + ε∗), which corresponds to the first case. Thus, at least
one of the returned points lies outside the shell. In particular, the farthest point from q, pk∗ ,
satisfies d(q, pk∗) > (1 + ε∗)k∗−1d(q, p1). By the contrapositive of Lemma 2.5, we have that
p∗ = p1. J

As a side note, a SNN structure always returns a hard answer when queried from a point
that is part of the closest pair of the set of points it maintains, as there is no closer pair. In
this way, a SNN structure can be used to find the closest pair in (Rδ, Lp), for constant δ,
in O(n logn) time by querying from every point. This matches the known runtimes in the
literature [7].

We left open the issue of finding valid parameters (ε∗, k∗), which we defer to Appendix A.
In particular, it is not hard to see that they exist in any metric space (Rδ, Lp) (see Lemma A.1).

3 Multi-Fragment Euclidean TSP

Given an undirected, complete graph G with uniquely and positively weighted edges, the
traveling salesperson problem asks to find a cycle passing through all the nodes of minimum
weight. In this section, we consider a classic greedy heuristic for constructing TSP tours, the
multi-fragment algorithm.

Given two disjoint paths, p and p′, in G, we define the cost of connecting them, cost(p, p′),
as the weight of the cheapest edge between an endpoint of p and an endpoint of p′. We
use p ∪ p′ to denote the path resulting from connecting p and p′ into a single path along
that edge.

The multi-fragment algorithm works as follows. A path generally has two endpoints, but,
in this algorithm, each node starts as a single-node path. While there is more than one path,
we connect the two paths such that the cost of connecting them is minimum. We call this
the closest pair. Once there is a single path left, we connect its endpoints to complete the
tour. We call the tour resulting from this process the multi-fragment tour, and the problem
of constructing this tour multi-fragment TSP.

Euclidean TSP is the variant of TSP where the nodes are points in the plane, and the
weights of the edges are the Euclidean distance between the points. Thus, here the goal is to
find a closed polygonal chain, called a tour, through all the points of shortest length. The
problem is NP-hard even in this geometric setting [27], but a polynomial-time approximation
scheme is known [3].

The multi-fragment algorithm was proposed by Bentley [5] specifically in the geometric
setting. Its approximation ratio is O(logn) [37, 8]. Nonetheless, it is used in practice
due to its simplicity and empirical support that it generally performs better than other
heuristics [19, 30, 33, 34, 6].

We are interested in the complexity of computing the multi-fragment tour in the geometric
setting. A straightforward implementation of the multi-fragment algorithm is similar to
Kruskal’s minimum spanning tree algorithm: sort the

(
n
2
)
pairs of points by increasing

distances and process them in order: for each pair, if the two points are endpoints of separate
paths, connect them. The runtime of this algorithm is O(n2 logn). Eppstein [21] uses
dynamic closest pair data structures to compute the multi-fragment tour in O(n2) time (for
arbitrary distance matrices). Bentley [5] gives a K-d tree-based implementation and says
that it appears to run in O(n logn) time on uniformly distributed points in the plane. We
give a NNC-type algorithm that compute the multi-fragment tour for Euclidean TSP in
O(n logn) in any fixed dimensions. We do not know of any prior worst-case subquadratic
algorithm.

ISAAC 2019

51:6 New Applications of Nearest-Neighbor Chains

3.1 Global-local equivalence for multi-fragment TSP
In this section, we prove global–local equivalence for multi-fragment TSP in general graphs.
That is, this result is not restricted to the Euclidean setting.

We say two paths are mutually nearest neighbors if the cost of connecting them is lower
than the cost of connecting either with a third path. We consider an alternative algorithm
to the multi-fragment algorithm, which connects MNNs paths instead of the closest pair.
We use CP-MF to refer to the multi-fragment algorithm, and MNN-MF to refer to this
new algorithm.

Clearly, CP-MF is a special case of MNN-MF. We show that any run of MNN-MF outputs
the same solution as CP-MF.

Note the similarity between multi-fragment TSP and hierarchical clustering. Instead of
merging clusters, we merge paths. The difference is that, in a cluster, it does not matter
in which order the points were added when determining the distance to another cluster. In
contrast, in a path, it is important which points are the endpoints.

We can see that in multi-fragment TSP we have a notion equivalent to reducibility in
agglomerative hierarchical clustering (Equation 1).

I Lemma 3.1 (Reducibility in multi-fragment TSP). Let a, b, and c be paths in an undirected,
complete graph G with positively weighted edges. Then, cost(a ∪ b, c) ≥
min (cost(a, c), cost(b, c)).

Proof. The cost of connecting paths is defined as the minimum weight among the edges
connecting their endpoints. The claim is clear given that two endpoints of a ∪ b are a subset
of the four endpoints of a and b. J

Given that we have reducibility, we can adapt the proof of global-local equivalence for
agglomerative hierarchical clustering presented by Müllner [35] to multi-fragment TSP. The
proof is in Appendix B.

I Lemma 3.2 (Global-local equivalence in multi-fragment TSP). Let G be an undirected,
complete graph with uniquely and positively weighted edges. Then, CP-MF and MNN-MF
output the same solution.

3.2 Soft nearest-neighbor chain for multi-fragment Euclidean TSP
In general graphs, computing the multi-fragment tour with CP-MF requires O(n2 logn)
time, where the bottleneck is to sort the Θ(n2) edges from cheapest to most expensive.
Given that we have global-local equivalence (Lemma 3.2), this can be improved to O(n2) by
implementing MNN-MF via a straightforward adaptation of the NNC algorithm. NNC builds
a chain of paths in order to find MNN paths. We only need to spell out how to find the
“nearest neighbor” of a path. We can find it in O(n) time by scanning through the adjacency
list of each endpoint. Thus, we can finish the O(n) iterations of the algorithm in O(n2) time.

Similarly, in the geometric setting, for points in R2, we can pair NNC with the dynamic
NN data structure from [12], which runs in O(log4 n) amortized time per operation. Thus,
we can compute the multi-fragment tour in O(n log4 n) time. However, we do not go into
the details of these results and jump directly to our main result, which further improves the
runtime in the geometric setting:

I Theorem 3.3. The multi-fragment tour of a set of n points in any fixed dimension, and
under any Lp metric, can be computed in O(n logn) time.

N. Mamano et al. 51:7

We use a variation of the NNC algorithm that uses a SNN structure instead of the usual
NN structure, which we call the soft nearest-neighbor chain algorithm (SNNC). For this, we
need a SNN structure for paths in the plane (polygonal chains) instead of points. That is, a
structure that maintains a set of (possibly single-point) paths, and, given a query path q,
returns the closest path to q or two paths in the set which are closer to each other than q to
its closest path in the set. The distance between paths is measured as the minimum distance
between an endpoint of one and an endpoint of the other, so, for the purposes of this data
structure, only the coordinates of the endpoints are important.

A soft nearest-neighbor structure for paths

We simulate a SNN structure for paths with a SNN structure for points. Given a set of
paths, we maintain the set of path endpoints in the SNN structure for points. Updates are
straightforward: we add or remove both endpoints of the path. Given a query path q with
endpoints {q1, q2}, we do a SNN query from each endpoint of the path. If both answers are
hard (assuming that the path has two distinct endpoints, otherwise, just the one), then we
find the true NN of the path, and we can return it. However, there is a complication with
soft answers: the two points returned could be the endpoints of the same path. Thus, it
could be the case that we find two closer points, but not two closer paths, as we need. The
solution is to modify the specification of the SNN structure for points so that soft answers,
instead of returning two points closer to each other than the query point to its NN, return
three pairwise closer points. We call this a three-way SNN structure. In the context of using
the structure for paths, this guarantees that even if two of the three endpoints belong to the
same path, at least two different paths are involved.

Lemma 3.4 shows how to obtain a three-way SNN structure for points, Algorithm 2 shows
the full algorithm for answering SNN queries about paths using a three-way SNN structure
for points, and Lemma 3.5 shows its correctness.

I Lemma 3.4. In any fixed dimension and for any Lp metric, there is a three-way SNN
structure with O(n logn) preprocessing time and O(logn) operation time (queries and up-
dates).

Proof. Recall the implementation of the SNN structure from Section 2. To obtain a three-way
SNN structure, we need to change the values of ε and k to make the shell smaller and k
bigger, so that if there are k points in a shell of inner radius 1 and outer radius (1 + ε)k, then
there must be at least three points at pairwise distance less than 1. The method described
in Section A for finding valid parameters in (Rδ, Lp) also works here. It only needs to be
modified so that the area (or surface) of the shell is accounted for twice. Since k and ε are
still constant, this does not affect the asymptotic runtimes in Theorem 2.2. J

I Lemma 3.5. In any fixed dimension, and for any Lp metric, we can maintain a set of n
paths in a SNN structure for paths with O(n logn) preprocessing time and O(logn) operation
time (queries and updates).

Proof. All the runtimes follow from Lemma 3.4: we maintain the set of path endpoints in a
three-way SNN structure S. The structure S can be initialized in O(n logn) time. Updates
require two insertions or deletions to S, taking O(logn) time each. Algorithm 2 for queries
clearly runs in O(logn) time. We argue that it returns a valid answer. Let q be a query path
with endpoints {q1, q2}, and consider the three possible cases:

ISAAC 2019

51:8 New Applications of Nearest-Neighbor Chains

Algorithm 2 Soft-nearest-neighbor query for paths.

Let q1 and q2 be the endpoints of the query path, q.
Let S be a three-way SNN structure containing the set of path endpoints.
Query S with q1 and q2.
if both answers are hard then

Let p1 and p2 be the respective answers.
return the closest path to the query path among the paths with endpoints p1 and p2.

else if one answer is hard and the other is soft then
Let p be the hard answer to q1 and (a, b, c) the soft answer to q2 (wlog). Let P and P ′
be the two closest paths among the paths with endpoints a, b, and c.
if d(p, q) < d(P, P ′) then

return the path with endpoint p.
else

return (P, P ′).
else (both answers are soft)

Let (a1, b1, c1) and (a2, b2, c2) be the answers to q1 and q2.
return the closest pair of paths among the paths with endpoints a1, b1, c1, a2, b2, c2.

Both answers are hard. In this case, we find the closest path to each endpoint, and, by
definition, the closest of the two is the NN of q.
One answer is soft and the other is hard. Let p be the hard answer to q1 and (a, b, c) the
soft answer to q2 (wlog). Let P and P ′ be the two closest paths among the paths with
endpoints a, b, and c. If d(p, q) < d(P, P ′), then, the path with p as endpoint must be
the NN of q, because there is no endpoint closer than d(P, P ′) to q2. Otherwise, P, P ′ is
a valid soft answer, as they are closer to each other than either endpoint of q to their
closest endpoints.
Both answers are soft. Assume (wlog) that the NN of q is closer to q1 than q2. Then, the
soft answer to q1 gives us two paths closer to each other than q to its NN, so we return a
valid soft answer. J

The soft nearest-neighbor chain algorithm

We use a SNN for paths (Lemma 3.5). In the context of this algorithm, let us think of a
SNN answer, hard or soft, as being a set of two paths. If the answer is hard, then one of the
paths returned in the answer is the query path itself, and the remaining path is its NN. Now,
we can establish a comparison relationship between SNN answers (independently of their
type): given two SNN answers {a, b} and {c, d}, we say that {a, b} is better than {c, d} if
and only if d(a, b) < d(c, d).

The algorithm is given in Algorithm 3. The input is a set of points, which are interpreted
as single-point paths and added to the SNN structure for paths. We assume unique distances
between the points. The algorithm maintains a stack (the chain) of nodes, where each node
consists of a pair of paths. In particular, each node in the chain is the best SNN answer
among two queries for the two paths in the predecessor node (when querying from a path,
we remove it from the structure temporarily, so that the answer is not the path itself).

Figure 1 shows a snapshot of the algorithm. Nodes 3 and 5 are soft answers, whereas
nodes 2 and 4 are hard answers. The pair of paths in the fifth node are the overall closest
pair, so the SNN structures will return that pair when queried from each of them. The
algorithm will connect them, remove the fifth node from the chain, and continue from the
fourth node.

N. Mamano et al. 51:9

1

2

3
4

5

Figure 1 Left: a set of paths, including some single-point paths, and a possible chain, where
the nodes are denoted by dashed lines and appear in the chain according to the numbering. Right:
Nearest-neighbor graph of the set of paths. For each path, a dashed/red arrow points to its NN.
Further, the arrows start and end at the endpoints determining the minimum distance between
the paths.

Algorithm 3 Soft nearest-neighbor chain algorithm for multi-fragment Euclidean TSP.

Initialize an empty stack (the chain).
Initialize a SNN structure S for paths (Lemma 3.5) with the set of input points as
single-point paths.
while there is more than one path in S do

if the chain is empty then
add a node containing an arbitrary pair of paths from S to it.

Let U = {u, v} be the node at the top of the chain.
Remove u from S, query S with u, and re-add u to S.
Remove v from S, query S with v, and re-add v to S.
Let A be the best answer.
if A 6= U then

Add A to the chain.
else

Remove u and v from S and add u ∪ v.
Remove U from the chain.
if the chain is not empty and the new last node, V, contains u or v then

Remove V from the chain.
Connect the two endpoints of the remaining path in S.

Correctness and runtime analysis

I Lemma 3.6. The following invariants hold at the beginning of each iteration of Algorithm 3:
1. Each input point is an endpoint or a vertex of exactly one path in S.
2. If node R appears after node {s, t} in the chain, then R is better than {s, t}.
3. Every path in S appears in at most two nodes in the chain, in which case they are

consecutive nodes.
4. The chain only contains paths in S.

ISAAC 2019

51:10 New Applications of Nearest-Neighbor Chains

Proof.
1. The claim holds initially. Each time two paths u, v are replaced by u∪ v, one endpoint of

each becomes a vertex in the new path u ∪ v, and the other endpoints become endpoints
of u ∪ v.

2. We show it for the specific case where R is immediately after {s, t} in the chain, which
suffices. Note that R 6= {s, t}, or it would not have been added to the chain. We
distinguish between two cases:
s and t were MNNs when R was added. Then, R had to be a soft answer from s or t,
which would have to be better than {s, t}.
s and t were not MNNs when R was added. Then, s had a closer path than t (wlog).
Thus, whether the answer for s was soft or hard, the answer had to be better than
{s, t}.

3. Assume, for a contradiction, that a path p appears in two non-consecutive nodes, X =
{p, x} and Z = {p, z} (this covers the case where p appears more than twice). Let Y be
the successor of X. By Invariant 2, Z is better than Y . It is easy to see that if z1 and z2
are the two endpoints of path z, then z1 and z2 were endpoints of paths since the beginning
of the algorithm. Thus, the answer for p when X was at the top of the chain had to be a
pair at distance at most min(d(p, z1), d(p, z2)). However, min(d(p, z1), d(p, z2)) = d(p, z),
contradicting that Z is better than Y .

4. Clearly, each node in the chain contains paths that were present in S at the time the
node was added. Therefore, the invariant could only break when removing paths from S.
In the algorithm, paths are removed from S when merging the paths in the top node.
Thus, if a path p is removed from S, it means that p is in the top node. By Invariant 3,
besides the top node, p can only occur in the second-from-top node. In the algorithm,
when we merge the paths in the top node, we remove the top node from the chain, as
well as its predecessor if has a path in common with the top node. J

I Lemma 3.7. Paths connected in Algorithm 3 are MNNs in the set of paths in the SNN
structure.

Proof. Let {u, v} be the node at the top of the chain at some iteration of Algorithm 3. Let
A the best SNN answer among the queries from u and v. In the algorithm, u and v are
connected when A = {u, v}. Thus, we need to show that if A is {u, v}, then u and v are
MNNs. We show the contrapositive: if u and v are not MNNs, then A is not {u, v}. If u and
v are not MNN, at least one of them, u (wlog), has a closer path than the other, v, so the
answer for u is better than {u, v}. J

Proof of Theorem 3.3. We show that Algorithm 3 computes the multi-fragment tour in
O(n logn) time.

For its correctness, note that the output is a single cycle that visits every vertex (Invari-
ant 1). This cycle is constructed by only merging pairs of paths that are MNNs (Lemma 3.7).
Thus, Algorithm 3 implements MNN-MF. By global-local equivalence (Lemma 3.2), this
produces the multi-fragment tour.

For the runtime, note that the chain is acyclic in the sense that each node contains a path
from the current set of paths in S (Invariant 4) not found in previous nodes (Invariant 3).
Thus, the chain cannot grow indefinitely, so, eventually, paths get connected. The main loop
does not halt until there is a single path.

If there are n points at the beginning, there are n − 1 connections between different
paths in total, and 2n− 1 different paths throughout the algorithm. This is because each
connection removes two paths and adds one new path. At each iteration, either two paths
are connected or one node is added to the chain. There are n− 1 iterations of the first kind,

N. Mamano et al. 51:11

each of which triggers the removal of one or two nodes in the chain. Thus, the total number
of nodes removed from the chain is at most 2n− 2. Since every node added is removed, the
number of nodes added to the chain is also bounded by 2n− 2. Thus, the total number of
iterations of the second kind is also at most 2n− 2, and the total number of iterations is at
most 3n− 3. Therefore, the total running time is O(P (n) + nT (n)), where P (n) and T (n)
are the preprocessing and operation time of a SNN structure for paths. By Lemma 3.5, this
can be done in O(n logn) time. J

3.3 Steiner TSP
In the traditional, non-Euclidean setting, a TSP instance consists of a complete graph with
arbitrary distances. We remark that global-local equivalence (Lemma 3.2) still holds in this
general setting. In this context, the nearest neighbor of a path can be found in O(n) time
by iterating through the adjacency lists of both endpoints, where n is the number of nodes.
Using this linear search, we can easily compute the multi-fragment tour in O(n2) time with
a NNC-based algorithm. It is a simpler version of Algorithm 3 that only has to handle
hard answers and does not need any sophisticated data structures. This improves upon the
natural way to implement the multi-fragment heuristic, which is to sort the Θ(n2) edges by
weight. Sorting requires Θ(n2 logn) time.

This is the first use of NNC in a graph-theoretical setting, but the fact of the matter is
that the NNC algorithm can be used in any setting where we can find nearest neighbors
efficiently. Consider the related Steiner TSP problem [16]: given a weighted, undirected
graph and a set of k node sites P ⊆ V , find a minimum-weight tour (repeated vertices and
edges allowed) in G that goes at least once through every site in P . Nodes not in P do
not need to be visited. For instance, G could represent a road network, and the sites could
represent the daily drop-off locations of a delivery truck.

Recently, Eppstein et al. [24] gave a NN structure for graphs from graph families with
sublinear separators, which is the same as the class of graphs with polynomial expansion [18].
For instance, planar graphs have O(

√
n)-size separators2. This data structure maintains

a subset of nodes P of a graph G, and, given a query node q in G, returns the node in P
closest to q. It allows insertions and deletions to and from the set P . We cite their result in
Lemma 3.8.

I Lemma 3.8 ([24]). Given an n-node weighted graph from a graph family with separators of
size S(n) = nc, with 0 < c < 1, which can be constructed in O(n) time, there is a dynamic3
nearest-neighbor data structure requiring O(nS(n)) space and preprocessing time and that
answers queries in O(S(n)) time and updates in O(S(n) logn) time.

As mentioned, one way to implement the multi-fragment heuristic is to sort the
(
k
2
)
pairs

of sites by increasing distances, and process them in order: for each pair, if the two sites
are endpoints of separate paths, connect them. The bottleneck is computing the distances.
Running Dijkstra’s algorithm from each site in a sparse graph, this takes O(k(n logn)) (or
O(kn) in planar graphs [28]). When k is Θ(n), this becomes O(n2 logn). We do not know of
any prior faster algorithm to compute the multi-fragment tour for Steiner TSP.

2 Other important families of sparse graphs with sublinear separators include k-planar graphs [17],
minor-closed graph families [31], and graphs that model road networks (better than, e.g., k-planar
graphs) [25].

3 They ([24]) use the term reactive for the data structure instead of dynamic, to distinguish from other
types of updates, e.g., edge insertions and deletions.

ISAAC 2019

51:12 New Applications of Nearest-Neighbor Chains

Since we have global-local equivalence, we can use the NNC algorithm to construct the
multi-fragment tour in O(P (n) + kT (n)) time, where P (n) and T (n) are the preprocessing
and operation time of a nearest-neighbor structure. Thus, using the structure from [24],
we get:

I Theorem 3.9. The multi-fragment tour for the steiner TSP problem can be computed in
O(nS(n) + kS(n) logn)-time in weighted graphs from a graph family with separators of size
S(n) = nc, with 0 < c < 1.

Finally, in graphs of bounded treewidth, which have separators of size O(1), the data
structure from [24] achieves P (n) = O(n logn) and T (n) = O(log2 n), so we can construct a
multi-fragment tour in O(n logn+ k log2 n).

4 Motorcycle Graphs

An important concept in geometric computing is the straight skeleton [2]. It is a tree-like
structure similar to the medial axis of a polygon, but which consists of straight segments
only. Given a polygon, consider a shrinking process where each edge moves inward, at the
same speed, in a direction perpendicular to itself. The straight skeleton of the polygon is
the trace of the vertices through this process. Some of its applications include computing
offset polygons [20] and medical imaging [15]. It is a standard tool in geometric computing
software [11].

The fastest algorithms for computing straight skeletons consist of two phases [14, 29],
neither of which dominates the other in computation time [13]. We focus on the first phase,
which is a motorcycle graph computation induced by the reflex vertices of the polygon.

The motorcycle graph problem can be described as follows (see Figure 2, top) [20].
The input consists of n points in the plane, with associated directions and speeds (the
motorcycles). Consider the process where all the motorcycles start moving at the same time,
in their respective directions and speeds. Motorcycles leave a trace behind that acts as a
“wall” such that other motorcycles crash and stop if they reach it. Some motorcycles escape
to infinity while others crash against the traces of other motorcycles. The motorcycle graph
is the set of traces.

Most existing algorithms rely on three-dimensional ray-shooting queries. This is because if
time is seen as the third dimension, the position of a motorcycle starting to move from (x, y),
at speed s, in the direction (u, v), forms a ray (if it escapes) or a segment (if it crashes) in
three dimensions, starting at (x, y, 0) in the direction (u, v, 1/s). In particular, the impassable
traces left behind by the motorcycles correspond to infinite vertical “curtains” – wedges or
trapezoidal slabs, depending on whether they are bounded below by a ray or a segment.

Thus, ray-shooting queries help determine which trace a motorcycle would reach first, if
any. Of course, the complication is that as motorcycles crash, their potential traces change.
Early algorithms handle this issue by computing the crashes in chronological order [20, 14].
The best previously known algorithm, by Vigneron and Yan [39], is the first that computes
the crashes in non-chronological order. It runs in O(P (n)+n(T (n)+ logn) logn) time, where
P (n) and T (n) are the preprocessing time and operation time (maximum between query and
update) of a dynamic ray-shooting data structure for curtains in R3.

We propose a NNC-based algorithm which improves the number of ray-shooting operations
needed from O(n logn) to 3n. Besides the ray-shooting structure, Vigneron and Yan also
use range searching data structures, which do not increase the asymptotic runtime but make
the algorithm more complex. Our algorithm only uses a ray-shooting data structure.

N. Mamano et al. 51:13

mm′ mm′

Input Output

Nearest-neighbor chain Nearest-neighbor cycle

Figure 2 Top: an instance input with uniform velocities and its corresponding motorcycle graph.
Bottom: snapshots of the NNC algorithm before and after determining all the motorcycles in a
NN cycle found by the chain: the NN of the motorcycle at the top, m, is m′, which is already in
the chain. Note that some motorcycles in the chain have as NNs motorcycles against the traces
of which they do not crash in the final output. That is expected, because these motorcycles are
still undetermined (e.g., as a result of clipping the curtain of m′, the NN of its predecessor in the
chain changes).

Agarwal and Matoušek [1] give a ray-shooting data structure for curtains in R3 which
achieves P (n) = O(n4/3+ε) and T (n) = O(n1/3+ε) for any ε > 0. Using this structure, both
our algorithm and the algorithm of Vigneron and Yan [39] run in O(n4/3+ε) time for any
ε > 0. However, if both algorithms use the same ε in the ray-shooting data structure, then
our algorithm is asymptotically faster by a logarithmic factor.

4.1 Algorithm description

Initially, we label all motorcycles as undetermined, meaning that their final location is
still unknown. They change to determined during the algorithm. We use a dynamic
three-dimensional ray-shooting data structure to maintain a set of curtains, one for each
motorcycle. Determined motorcycles have wedges or slabs as curtains, corresponding to their
final trajectory. Undetermined motorcycles have wedge curtains as if they were to escape.
When a motorcycle goes from undetermined to determined, the curtain is “clipped” from a
wedge to a slab at the point where it crashes.

For an undetermined motorcycle m, we define its nearest neighbor to be the motorcycle,
determined or not, against which m would crash next according to the set of curtains in
the data structure. We can find the NN of a motorcycle m with one ray-shooting query.
Motorcycles that escape may have no NN. Note that m may actually not crash against the
trace of its NN, say m′, if m′ is undetermined and happens to crash early.

ISAAC 2019

51:14 New Applications of Nearest-Neighbor Chains

Our main structure is a chain (a stack) of undetermined motorcycles. It starts (and
restarts, if it becomes empty) with an arbitrary motorcycle, and it is repeatedly extended
with the NN of the motorcycle m at the top of the chain, until one of the following cases is
reached: (a) m has no NN (it escapes), (b) the NN of m is determined, or (c) the NN of m
is already in the chain. In Case (a), we label m as determined and remove it from the chain.
In Case (b), we clip m’s curtain, mark it as determined, and remove it and the previous
motorcycle (if any) from the chain, as m may not be its NN anymore after the clipping.

In contrast to typical applications of the NNC algorithm, here “proximity” is not sym-
metric: there may be no “mutually nearest-neighbors”. In fact, the only case where two
motorcycles are MNNs is the degenerate case where two motorcycles reach the same point
simultaneously. That said, mutually nearest neighbors have an appropriate analogue in
the asymmetric setting: nearest-neighbor cycles, m1 → m2 → · · · → mk → m1. Case (c)
corresponds to finding such a cycle. If we find a nearest-neighbor cycle of undetermined
motorcycles, then each motorcycle in the cycle crashes into the next motorcycle’s trace. It
is easy to see from our definition of nearest neighbors that no motorcycle outside the cycle
would “interrupt” the cycle by making one of them crash early. Thus, in Case (c), we can
determine all the motorcycles in the cycle at once (this can be seen as a type of chronological
global-local equivalence; See Figure 2, bottom). We clip their curtains appropriately and we
remove them and the prior motorcycle (if any) from the chain.

The process continues until all motorcycles are determined. Note that we only modify
the curtain of the newly determined motorcycles. Thus, if at some step we determine the
motorcycle (or motorcycles) at the top of the chain, only the NN of the would-be top
motorcycle in the chain may have changed. This is why the would-be top motorcycle is
removed from the chain in Cases (b) and (c). The rest of the chain remains consistent.

4.2 Analysis
Clearly, every motorcycle eventually becomes determined, and we have already argued in the
algorithm description that irrespective of whether it becomes determined through Case (a),
(b), or (c), its final position is correct. Thus, we move on to the complexity analysis. Each
“clipping” update can be seen as an update to the ray-shooting data structure: we remove
the wedge and add the slab.

I Theorem 4.1. The NNC algorithm computes the motorcycle graph in time O(P (n)+nT (n)),
where P (n) and T (n) are the preprocessing time and operation time (maximum between query
and update) of a dynamic, three-dimensional ray-shooting data structure.

Proof. Each step of the algorithm requires one ray-shooting query from the motorcycle at
the top of the chain. At each iteration, either a motorcycle is added to the chain, or at least
one motorcycle is determined.

Motorcycles begin as undetermined and, once they become determined, they remain
so. This bounds the number of Cases (a–c) to n. In Cases (b) and (c), one undetermined
motorcycle may be removed from the chain. Thus, the number of undetermined motorcycles
removed from the chain is at most n. It follows that there are at most 2n iterations where a
motorcycle is added to the chain.

Overall, the algorithm takes at most 3n iterations, so it needs no more than 3n ray-
shooting queries and at most n “clipping” updates where we change a triangular curtain into
a slab. It follows that the runtime is O(P (n) + nT (n)). J

See Appendix C for additional results in special cases and some remarks.

N. Mamano et al. 51:15

5 Conclusions

Before this paper, NNC had been used only in agglomerative hierarchical clustering and
stable matching problems based on proximity. This paper adds: its first use without a NN
structure (multi-fragment TSP, which uses our new soft NN structure); its first use in a
graph-theoretical framework (Steiner TSP, Subsection 3.3); and its first use in problems
without symmetric distances (motorcycle graphs, where it finds nearest-neighbor cycles).

The full version of the paper considers two additional problems [32]. The NNC technique
is versatile enough that it seems likely that it will find more uses.

References
1 Pankaj K. Agarwal and Jiří Matoušek. Ray Shooting and Parametric Search. SIAM Journal

on Computing, 22(4):794–806, 1993.
2 Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. A novel type of

skeleton for polygons. In J. UCS The Journal of Universal Computer Science, pages 752–761.
Springer, 1996.

3 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM (JACM), 45(5):753–782, 1998.

4 Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM), 45(6):891–923, 1998.

5 Jon Jouis Bentley. Fast Algorithms for Geometric Traveling Salesman Problems. ORSA
Journal on Computing, 4(4):387–411, 1992.

6 Jon Louis Bentley. Experiments on Traveling Salesman Heuristics. In Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, pages 91–99, Philadelphia,
PA, USA, 1990. Society for Industrial and Applied Mathematics.

7 Sergei N. Bespamyatnikh. An Optimal Algorithm for Closest-Pair Maintenance. Discrete &
Computational Geometry, 19(2):175–195, February 1998.

8 Judith Brecklinghaus and Stefan Hougardy. The approximation ratio of the greedy algorithm
for the metric traveling salesman problem. Operations Research Letters, 43(3):259–261, 2015.

9 Michel Bruynooghe. New methods in automatic classification of numerous taxonomic data.
Statistics and data analysis, 2(3):24–42, 1977.

10 Michel Bruynooghe. Classification ascendante hiérarchique des grands ensembles de données:
un algorithme rapide fondé sur la construction des voisinages réductibles. Les cahiers de
l’analyse de données, 3:7–33, 1978.

11 Fernando Cacciola. A CGAL implementation of the Straight Skeleton of a Simple 2D
Polygon with Holes. 2nd CGAL User Workshop, January 2004. URL: http://www.cgal.org/
UserWorkshop/2004/straight_skeleton.pdf.

12 Timothy M. Chan. Dynamic Geometric Data Structures via Shallow Cuttings. In Gill
Barequet and Yusu Wang, editors, 35th International Symposium on Computational Geometry
(SoCG 2019), volume 129 of Leibniz International Proceedings in Informatics (LIPIcs), pages
24:1–24:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.SoCG.2019.24.

13 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron. A Faster Algorithm for Computing
Straight Skeletons. ACM Trans. Algorithms, 12(3):44:1–44:21, April 2016.

14 Siu-Wing Cheng and Antoine Vigneron. Motorcycle Graphs and Straight Skeletons. Algorith-
mica, 47(2):159–182, February 2007.

15 F. Cloppet, J. M. Oliva, and G. Stamon. Angular bisector network, a simplified generalized
Voronoi diagram: application to processing complex intersections in biomedical images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):120–128, January 2000.

ISAAC 2019

http://www.cgal.org/UserWorkshop/2004/straight_skeleton.pdf
http://www.cgal.org/UserWorkshop/2004/straight_skeleton.pdf
https://doi.org/10.4230/LIPIcs.SoCG.2019.24

51:16 New Applications of Nearest-Neighbor Chains

16 Gérard Cornuéjols, Jean Fonlupt, and Denis Naddef. The traveling salesman problem on a
graph and some related integer polyhedra. Mathematical Programming, 33(1):1–27, September
1985.

17 Vida Dujmović, David Eppstein, and David R. Wood. Structure of graphs with locally
restricted crossings. SIAM J. Discrete Mathematics, 31(2):805–824, 2017.

18 Zdeněk Dvořák and Sergey Norin. Strongly sublinear separators and polynomial expansion.
SIAM Journal on Discrete Mathematics, 30(2):1095–1101, 2016.

19 Mehdi El Krari, Belaïd Ahiod, and Bouazza El Benani. An Empirical Study of the Multi-
fragment Tour Construction Algorithm for the Travelling Salesman Problem. In Ajith Abraham,
Abdelkrim Haqiq, Adel M. Alimi, Ghita Mezzour, Nizar Rokbani, and Azah Kamilah Muda,
editors, Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS
2016), pages 278–287, Cham, 2017. Springer International Publishing.

20 D. Eppstein and J. Erickson. Raising Roofs, Crashing Cycles, and Playing Pool: Applications
of a Data Structure for Finding Pairwise Interactions. Discrete & Computational Geometry,
22(4):569–592, December 1999.

21 David Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs.
Journal of Experimental Algorithmics (JEA), 5:1, 2000.

22 David Eppstein, Michael T. Goodrich, Doruk Korkmaz, and Nil Mamano. Defining equitable
geographic districts in road networks via stable matching. In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
page 52. ACM, 2017.

23 David Eppstein, Michael T. Goodrich, and Nil Mamano. Algorithms for stable matching
and clustering in a grid. In International Workshop on Combinatorial Image Analysis, pages
117–131. Springer, 2017.

24 David Eppstein, Michael T. Goodrich, and Nil Mamano. Reactive Proximity Data Structures
for Graphs. In Michael A. Bender, Martín Farach-Colton, and Miguel A. Mosteiro, editors,
LATIN 2018: Theoretical Informatics, pages 777–789, Cham, 2018. Springer International
Publishing.

25 David Eppstein and Siddharth Gupta. Crossing patterns in nonplanar road networks. In 25th
ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems, September
2017.

26 Michael T. Goodrich and Roberto Tamassia. Dynamic Ray Shooting and Shortest Paths
via Balanced Geodesic Triangulations. In Proceedings of the Ninth Annual Symposium on
Computational Geometry, SCG ’93, pages 318–327, New York, NY, USA, 1993. ACM.

27 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete.
Theoretical Computer Science, 4:237–244, June 1977.

28 Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster shortest-path
algorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997.

29 Stefan Huber and Martin Held. A fast straight-skeleton algorithm based on generalized motorcy-
cle graphs. International Journal of Computational Geometry & Applications, 22(05):471–498,
2012.

30 David S. Johnson and Lyle A. McGeoch. The traveling salesman problem: A case study in
local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial
Optimization, pages 215–310. John Wiley and Sons, Chichester, United Kingdom, 1997.

31 Ken-ichi Kawarabayashi and Bruce Reed. A separator theorem in minor-closed classes. In
51st IEEE Symp. on Foundations of Computer Science (FOCS), pages 153–162, 2010.

32 Nil Mamano, Alon Efrat, David Eppstein, Daniel Frishberg, Michael Goodrich, Stephen
Kobourov, Pedro Matias, and Valentin Polishchuk. Euclidean TSP, Motorcycle Graphs, and
Other New Applications of Nearest-Neighbor Chains, 2019. arXiv:1902.06875.

33 Alfonsas Misevicius and Andrius Blazinskas. Combining 2-OPT, 3-OPT and 4-OPT with
K-Swap-Kick perturbations for the traveling salesman problem. 17th International Conference
on Information and Software Technologies, 2011.

http://arxiv.org/abs/1902.06875

N. Mamano et al. 51:17

34 Pablo Moscato and Michael G. Norman. On the Performance of Heuristics on Finite and
Infinite Fractal Instances of the Euclidean Traveling Salesman Problem. INFORMS Journal
on Computing, 10(2):121–132, 1998. doi:10.1287/ijoc.10.2.121.

35 Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv e-prints,
September 2011. arXiv:1109.2378.

36 Fionn Murtagh. A survey of recent advances in hierarchical clustering algorithms. The
Computer Journal, 26(4):354–359, 1983.

37 Hoon Liong Ong and J. B. Moore. Worst-case analysis of two travelling salesman heuristics.
Operations Research Letters, 2(6):273–277, 1984.

38 Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of mathematical
economics, 1(1):23–37, 1974.

39 Antoine Vigneron and Lie Yan. A Faster Algorithm for Computing Motorcycle Graphs.
Discrete Comput. Geom., 52(3):492–514, October 2014.

A Choice of Parameters

We left open the issue of finding valid SNN parameters. Recall that (ε, k) are valid if any set
of k points inside a shell with inner radius 1 and outer radius (1 + ε)k−1 contains two points,
p and p′, satisfying d(p, p′) < 1/(1 + ε). To simplify the question, we can scale distances by
(1 + ε), so that the inner radius is 1 + ε, the outer radius (1 + ε)k, and the required distance
between the two points is < 1. As a further simplification, we can reduce the inner radius to
be 1. This makes the shell grow, and thus, if (ε, k) are valid parameters with this change,
then they are also valid under the original statement. Hence, to clarify, the goal of this
section is to show how to find, for any metric space (Rδ, Lp), a pair of parameters (ε, k) such
that any set of k points inside a shell with inner radius 1 and outer radius (1 + ε)k contains
two points, p and p′, satisfying d(p, p′) < 1.

This question is related to the kissing number of the metric space, which is the maximum
number of points that can be on the surface of a unit sphere all at pairwise distance ≥ 1.
For instance, it is well known that the kissing number is 6 in (R2, L2) and 12 in (R3, L2).
It follows that, in (R2, L2), (ε∗ = 0, k∗ = 7) are valid SNN parameters. Of course, we are
interested in ε∗ > 0. Thus, our question is more general in the sense that our points are not
constrained to lie on a ball, but in a shell (and, to complicate things, the width of the shell,
(1 + ε)k − 1, depends on the number of points).

I Lemma A.1. There are valid SNN parameters in any metric space (Rδ, Lp).

Proof. Consider a shell with inner radius 1 and outer radius 1 + c, for some constant c > 0.
A set of points in the shell at pairwise distance ≥ 1 corresponds to a set of disjoint balls of
radius 1/2 centered inside the shell. Consider the volume of the intersection of the shell with
such a ball. This volume is lower bounded by some constant, v, corresponding to the case
where the ball is centered along the exterior boundary. Since the volume of the shell, vs, is
itself constant, the maximum number of disjoint balls of radius 1/2 that fit in the shell is
constant smaller than vs/v. This is because no matter where the balls are placed, at least v
volume of the shell is inside any one of them, so, if there are more than vs/v balls, there
must be some region in the shell inside at least two of them. This corresponds to two points
at distance < 1.

Set k to be vs/v, and ε to be the constant such that (1 + ε)k = 1 + c. Then, (ε, k) are
valid parameters for (Rδ, Lp). J

ISAAC 2019

https://doi.org/10.1287/ijoc.10.2.121
http://arxiv.org/abs/1109.2378

51:18 New Applications of Nearest-Neighbor Chains

The dependency of k-ANN structures on 1/ε is typically severe. Thus, for practical
purposes, one would like to find a valid pair of parameters with ε as big as possible. The
dependency on k is usually negligible in comparison, and, in any case, k cannot be too
large because the shell’s width grows exponentially in k. Thus, we narrow the question to
optimizing ε: what is the largest ε that is part of a pair of valid parameters?

We first address the case of (R2, L2), where we derive the optimal value for ε analytically.
We then give a heuristic, numerical algorithm for general (Rδ, Lp) spaces.

Parameters in (R2, L2)

Let εϕ ≈ 0.0492 be the number such that (1 + εϕ)10 = ϕ, where ϕ = 1+
√

5
2 is the golden

ratio. The valid SNN parameters with largest ε for (R2, L2) are (ε∗ < εϕ, k
∗ = 10) (ε∗ can

be arbitrarily close to εϕ, but must be smaller). This follows from the following observations.
The kissing number is 6, so there are no valid parameters with k < 6.
The thinnest annulus (i.e., 2D shell) with inner radius 1 such that 10 points can be placed
inside at pairwise distance ≥ 1 has outer radius ϕ = (1 + εϕ)10. Figure 3, top, illustrates
this fact. In other words, if the outer radius is any smaller than ϕ, two of the 10 points
would be at distance < 1. Thus, any valid pair with k = 10 requires ε to be smaller than
εϕ, but any value smaller than εϕ forms a valid pair with k = 10.
For 6 ≤ k < 10 and for k > 10, it is possible to place k points at pairwise distance > 1
in an annulus of inner radius 1 and outer radius (1 + εϕ)k, and they are not packed
“tightly”, in the sense that k points at pairwise distance > 1 can lie in a thinner annulus.
This can be observed easily; Figure 3 (bottom) shows the cases for k = 9 and k = 11.
Cases with k < 9 can be checked one by one; in cases with k > 11, the annulus grows
at an increasingly faster rate, so placing k points at pairwise distance > 1 of each other
becomes increasingly “easier”. Thus, for any k 6= 10, any valid pair with that specific k
would require an ε smaller than εϕ.

Parameters in (Rδ, Lp)

For other Lp spaces, we suggest a numerical approach. We can do a binary search on the
values of ε to find one close to optimal. For a given value of ε, we want to know if there is
any k such that (ε, k) are valid. We can search for such a k iteratively, trying k = 1, 2, . . .
(the answer will certainly be “no” for any k smaller than the kissing number). Note that,
for a fixed k, the shell has constant volume. As in Lemma A.1, let v be the volume of the
intersection between the shell and a ball of radius 1/2 centered on the exterior boundary
of the shell. As argued before, if kv is bigger than the shell’s volume, then (ε, k) are valid
parameters. For the termination condition, note that if in the iterative search for k, k reaches
a value where the volume of the shell grows more than v in a single iteration, no valid k for
that ε will be found, as the shell grows faster than the new points cover it.

Besides the volume check, one should also consider a lower bound on how much of the
shell’s surface (both inner and outer) is contained inside an arbitrary ball. We can then see
if, for a given k, the amount of surface contained inside the k balls is bigger than the total
surface of the shell, at which point two balls surely intersect. This check finds better valid
parameters than the volume one for relatively thin shells, where the balls “poke” out of the
shell on both sides.

N. Mamano et al. 51:19

1

1ϕ

1

1
1

Figure 3 Top: The first figure shows two concentric circles of radius 1 and ϕ with an inscribed
pentagon and decagon, respectively, and some proportions of these shapes. The other figures show
two different ways to place 10 points at pairwise distance ≥ 1 inside an annulus of inner radius 1 and
outer radius (1 + εϕ)10 = ϕ. Disks of radius 1/2 around each point are shown to be non-overlapping.
In one case, the points are placed on the vertices of the decagon. In the other, they alternate between
vertices of the decagon and the pentagon. In both cases, the distance between adjacent disks is 0.
Thus, these packings are “tight”, i.e., if the annulus were any thinner, there would be two of the 10
points at distance < 1. Bottom: 9 and 11 points at pairwise distance ≥ 1 inside annuli of radius
(1 + εϕ)9 and (1 + εϕ)11, respectively. These packings are not tight, meaning that, for k = 9 and
k = 11, a valid value of ε would have to be smaller than εϕ.

B Proof of Global-Local Equivalence in Multi-Fragment TSP

In this section, we show the proof for Lemma 3.2. First we introduce another lemma.

I Lemma B.1. Let G be an undirected, complete graph with uniquely and positively weighted
edges. Then, any pair of paths p, p′ that is or becomes MNNs during CP-MF remains MNNs
until they are connected.

Proof. By definition of MNNs, it is cheaper to connect p and p′ to each other than to any
third path. By reducibility (Lemma 3.1), this does not change if CP-MF connects other
paths, as the resulting path will be further from p and from p′ than at least one of the
preexisting paths before the merge. Eventually, p and p′ become the overall cheapest pair to
connect, and CP-MF connects them. J

Proof of Lemma 3.2. Let L = l1, l2, . . . , lm be the sequence of pairs of paths merged by a
specific run of MNN-MF. Now, consider an algorithm that is a hybrid between MNN-MF
and CP-MF. Let hybridj be an algorithm that starts merging the same pairs as in L up to
and including lj−1, and then switches to CP-MF, that is, it switches to merging closest pairs.

ISAAC 2019

51:20 New Applications of Nearest-Neighbor Chains

The main claim is that, no matter at which iteration the switch happens, the final solution is
the same. In the extremes, if the switch happens before the first pick, the method is simply
CP-MF. If the switch happens after the last pick, when no more elements can be picked, the
solution is L. If we can prove the main claim, it follows that the solution of CP-MF is L.

Let i ∈ {1, . . . ,m}. We show that the hybrid that switches before iteration i (hybridi)
finds the same solution as the greedy that switches after iteration i (hybridi+1). The main
claim follows by induction on i.

We label the pairs merged by hybridi starting at iteration i with gi, gi+1, and so on. We
label the pairs merged by hybridi+1 starting at iteration i + 1 with g′i+1, g

′
i+2, and so on.

Figure 4, Left, shows this setup. Figure 4, Right, shows what actually happens with the
paths merged by the two hybrid methods.

l1 li−1· · ·
li

gi+1

hybridi

hybridi+1

gi · · ·gi+2

g′i+1 · · ·g′i+2

l1 li−1· · ·
li

hybridi

hybridi+1

gi gi+1 · · ·gi+2 gj−1

g′i+1 · · ·g′i+2

gj
gj+1 gj+2 · · · gm

Setup: Proof:

both both bothg′i+3 g′j

Figure 4 Left: the sequence of path pairs merged by hybridi and hybridi+1. They agree up to
and including iteration i− 1, and then hybridi switches to CP-MF an iteration early. Right: what
we prove about the pairs merged by the two hybrid methods. The arrows indicate that these pairs
are actually the same. They coincide up to and including iteration i− 1 and after iteration j.

First, note that hybridi eventually merges li. That is, li = gj for some j ≥ i. This follows
from Lemma B.1.

Further, g′k+1 = gk for all k ∈ {i, . . . , j − 1}. This can be shown by induction on k. By
Lemma B.1 again, the path resulting from merging the paths in li is not closer to any of the
paths involved in any of the pairs g′i+1, . . . , g

′
j than one of the two paths in li. It follows that

“hoisting” the merge of li before them does not change the fact that g′k is the closest pair at
iteration k.

After iteration j, both hybridi and hybridi+1 have merged exactly the same pairs, so
they have the same partial solutions, and both are now the same algorithm, CP-MF. Thus,
from that point on, they coincide in their merges, and finish with the same solution. J

C Motorcycle Graphs: Special Cases and Remarks

Consider the case where all motorcycles start from the boundary of a simple polygon with
O(n) vertices, move through the inside of the polygon, and also crash against the edges of
the polygon. In this setting, the motorcycle trajectories form a connected planar subdivision.
There are dynamic ray-shooting queries for connected planar subdivisions that achieve
T (n) = O(log2 n) [26]. Vigneron and Yan used this data structure in their algorithm to get a
O(n log3 n)-time algorithm for this case [39]. Our algorithm brings this down to O(n log2 n).
Furthermore, their other data structures require that coordinates have O(logn) bits, while
we do not have this requirement.

Vigneron and Yan also consider the case where motorcycles can only go in C differ-
ent directions. They show how to reduce T (n) to min(O(C log2 n,C2 logn), leading to a
O(n log2 nC min(logn,C)) algorithm for motorcycle graphs in this setting. Using the same
data structures, the NNC algorithm improves the runtime to O(n lognC min(logn,C)).

N. Mamano et al. 51:21

A remark on the use of our algorithm for computing straight skeletons: degenerate
polygons where two shrinking reflex vertices collide gives rise to a motorcycle graph problem
where two motorcycles collide head on. To compute the straight skeleton, a new motorcycle
should emerge from the collision. Our algorithm does not work if new motorcycles are added
dynamically (such a motorcycle could, e.g., disrupt a NN cycle already determined), so it
cannot be used in the computation of straight skeletons of degenerate polygons.

As a side note, the NNC algorithm for motorcycle graphs is reminiscent of Gale’s top
trading cycle algorithm [38] from the field of economics. That algorithm also works by finding
“first-choice” cycles. We are not aware of whether they use a NNC-type algorithm to find
such cycles; if they do not, they certainly can; if they do, then at least our use is new in the
context of motorcycle graphs.

ISAAC 2019

Efficient Circuit Simulation in MapReduce
Fabian Frei
Department of Computer Science, ETH Zürich, Universitätstrasse 6, CH-8006 Zürich, Switzerland
fabian.frei@inf.ethz.ch

Koichi Wada
Department of Applied Informatics, Hosei University, 3-7-2 Kajino, 184-8584 Tokyo, Japan
wada@hosei.ac.jp

Abstract
The MapReduce framework has firmly established itself as one of the most widely used parallel
computing platforms for processing big data on tera- and peta-byte scale. Approaching it from a
theoretical standpoint has proved to be notoriously difficult, however. In continuation of Goodrich et
al.’s early efforts, explicitly espousing the goal of putting the MapReduce framework on footing equal
to that of long-established models such as the PRAM, we investigate the obvious complexity question
of how the computational power of MapReduce algorithms compares to that of combinational
Boolean circuits commonly used for parallel computations. Relying on the standard MapReduce
model introduced by Karloff et al. a decade ago, we develop an intricate simulation technique to show
that any problem in NC (i.e., a problem solved by a logspace-uniform family of Boolean circuits
of polynomial size and a depth polylogarithmic in the input size) can be solved by a MapReduce
computation in O(T (n)/ logn) rounds, where n is the input size and T (n) is the depth of the
witnessing circuit family. Thus, we are able to closely relate the standard, uniform NC hierarchy
modeling parallel computations to the deterministic MapReduce hierarchy DMRC by proving that
NCi+1 ⊆ DMRCi for all i ∈ N. Besides the theoretical significance, this result has important
applied aspects as well. In particular, we show for all problems in NC1 – many practically relevant
ones, such as integer multiplication and division and the parity function, being among these – how
to solve them in a constant number of deterministic MapReduce rounds.

2012 ACM Subject Classification Theory of computation→ Complexity classes; Computing method-
ologies → MapReduce algorithms; Theory of computation → Circuit complexity; Theory of compu-
tation → MapReduce algorithms; Software and its engineering → Ultra-large-scale systems

Keywords and phrases MapReduce, Circuit Complexity, Parallel Algorithms, Nick’s Class NC

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.52

Related Version The full version of this paper including all figures and proofs is freely available at
http://arxiv.org/abs/1907.01624.

Funding Koichi Wada: Research done in part during a supported visit at ETH Zürich and partly
supported by JSPS KAKENHI No. 17K00019 and by the Japan Science and Technology Agency
(JST) SICORP (Grant#JPMJSC1806).

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Despite the overwhelming success of the MapReduce framework in the big data industry and
the great attention it has garnered ever since its inception over a decade ago, theoretical
results about it have remained scarce in the literature. In particular, it is very natural to
ask how powerful exactly MapReduce computations are in comparison to the traditional
models of parallel computations based on circuits; a question that has practical implications
as well. The answers have proved to be very elusive, however. In this paper, we show how
MapReduce programs can efficiently simulate circuits used for parallel computations, thus
tying these two worlds together more tightly.

© Fabian Frei and Koichi Wada;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 52; pp. 52:1–52:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.frei@inf.ethz.ch
mailto:wada@hosei.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2019.52
http://arxiv.org/abs/1907.01624
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Efficient Circuit Simulation in MapReduce

In this section we first provide an introduction to the concept of MapReduce, then present
the related work, and finally describe our contribution. In Section 2, we will formally define
the traditional models of parallel computing and the MapReduce model. In Section 3, we
then derive our main results. Section 4 concludes the paper with a short summary and a
discussion of our findings, outlining opportunities for future research.

1.1 Background and Motivation
In recent years the amount of data available and demanding analysis has experienced an
astonishing growth. The amount of memory in commercially available servers has also grown
at a remarkable pace over the past decade; it is now exceeding tera- and even peta-bytes.
Despite the considerable advances in the availability of computational power, traditional
approaches remain insufficient to cope with such huge amounts of data. A new form of
parallel computing has become necessary to deal with these enormous quantities of available
data. The MapReduce framework has been attracting great interest due to its suitability for
processing massive data-sets. This framework was originally developed by Google [5], but
an open source implementation called Hadoop has recently been developed and is currently
used by over a hundred companies, including Yahoo!, Facebook, Adobe, and IBM [19].

MapReduce differs substantially from previous models of parallel computation in that
it combines aspects of both parallel and sequential computation. Informally, a MapReduce
computation can be described as follows.

The input is a multiset of key-value pairs 〈k; v〉. In a first step, the map step, each of
these key-value pairs is separately and independently transformed into an entire multiset of
key-value pairs by a map function µ. In the next step, the shuffle step, we collect all key-value
pairs from the multisets that have been produced in the previous step, group them by their
keys, and collapse each group {〈k; v1〉, 〈k; v2〉, . . .} of pairs containing the same key into a
single key-value pair 〈k; {v1, v2, . . .}〉 consisting of said key and a list of the associated values.
In a third step, the reduce step, a reduce function ρ transforms the list of values in each
key-value pair 〈k; {v1, v2, . . .}〉 into a new list {v′1, v′2, . . . }. Again, this is done separately
and independently for each pair. The final output consists of the pairs {〈k; v′1〉, 〈k; v′2〉, . . .}
for each key k. The different instances that implement the reduce function for the different
groups of pairs are called reducers. Analogously, mappers are instances of the map function.

The three steps described above constitute one round of the MapReduce computation and
transform the input multiset into a new multiset of key-value pairs. A complete MapReduce
computation consists of any given number of rounds and acts just as the composition of
the single rounds. The shuffle step works the same way every time; the map and reduce
functions, however, may change from round to round. A MapReduce computation with
R rounds is therefore completely described by a list µ1, ρ1, µ2, ρ2, . . . , µR, ρR of map and
reduce functions. In both the map step and the reduce step, the input pairs can be processed
in parallel since the map and reduce functions act independently on the pairs and groups
of pairs, respectively. These steps therefore capture the parallel aspect of a MapReduce
computation, whereas the shuffle step enforces a partial sequentiality since the shuffled pairs
can be output only once the previous map step is completed in its entirety.

The MapReduce paradigm has been introduced in [5] in the context of algorithm design
and analysis. A treatment as a formal computational model, however, was missing in
the beginning. Later on, a number of models have emerged to deal more rigorously with
algorithmic issues [7, 10, 12, 14, 15]. In this paper, our interest lies in studying the MapReduce
framework from a standpoint of parallel algorithmic power by comparing it to standard
models of parallel computation such as Boolean circuits and parallel random access machines

F. Frei and K. Wada 52:3

(PRAMs). A PRAM can be classified by how far simultaneous access by processors to its
memory is restricted; it can be CRCW, EREW, CREW, or ERCW, where R, W, C, and
E stand for Read, Write, Concurrent, and Exclusive, respectively [4]. If concurrent writing
is allowed, we need to further specify how parallel writes by multiple processors to a single
memory cell are handled. The most natural choice is arguably that every memory cell contains
after each time step the total of all numbers assigned to it by different processors during that
step. In fact, all constructions in this paper work with this treatment of simultaneous writes;
we thus generally assume this model. If the context warrants it, we speak of a Sum-CRCW
to make this assumption explicit.

1.2 Related Work
We briefly present and discuss the following known results on the comparative power of the
MapReduce framework and PRAM models.

1. A T -time EREW-PRAM algorithm can be simulated by an O(T)-round MapReduce
algorithm, where each reducer uses memory of constant size and an aggregate memory
proportional to the amount of shared memory required by the PRAM algorithm [10, 12].

2. A P -processor,M -memory, T -time EREW-PRAM algorithm can be simulated by an O(T)-
round, (P +M)-key MUD algorithm with a communication complexity of O(log(P +M))
bits per key, where a MUD (massive, unordered, distributed) algorithm is a data-streaming
MapReduce algorithm in the following sense: The reducers do not receive the entire list of
values associated with a given key at once, but rather as a stream to be processed in one
pass, using only a small working memory determining the communication complexity [7].

3. When using MapReduce computations to simulate a CRCW-PRAM instead, again with
P processors and M memory, we incur an O(logm(P +M)) slowdown compared to the
simulations above, where m is an upper bound on each reducer’s input and output [10].

These results imply that any problem solved by a PRAM with a polynomial number of
processors and in polylogarithmic time T can be simulated by a MapReduce computation
with an amount of memory equal to the number of PRAM processors, and in a number
of rounds equal to the computation time of even the powerful CRCW-PRAM. Since the
class of problems solved by CRCW-PRAMs in time T ∈ O(logi n) is equal to the class of
problems solved by families of polynomial-sized combinational circuits consisting of gates
with unbounded fan-in and fan-out and depth T ∈ O(logi n) (often denoted ACi) [1], these
circuits can be simulated in a MapReduce computation with a number of rounds equal to
the time required by these circuits.

Since the publication of the seminal paper by Karloff et al. [12], extensive effort has been
spent on developing efficient algorithms in MapReduce-like frameworks [3, 6, 13, 11, 17]. Only
few relationships between the theoretical MapReduce model by [12] and classical complexity
classes have been established, however; for example, any problem in SPACE(o(logn)) can be
solved by a MapReduce computation with a constant number of rounds [8].

Recently, Roughgarden et al. [16, Theorem 6.1] described a short and simple way of
simulatingNC1 circuits with a certain class of models of parallel computation. The constraints
of these models, namely the number of machines and the memory restrictions, are exactly
tailored to allow for this general simulation method, however. In particular, it crucially relies
on the fact that all models of this class are more powerful than the MapReduce model in
that they all grant us a number of machines that is polynomial in the input size; this makes
it possible to just dedicate one machine to each of the circuit gates. Such a simple simulation
is impossible with MapReduce computations since the standard model due to Karloff only
allows for a sublinear number of machines with sublinear memory.

ISAAC 2019

52:4 Efficient Circuit Simulation in MapReduce

1.3 Contribution

We prove that NCi+1 ⊆ DMRCi for all i ∈ {0, 1, 2, . . . }, where DMRCi is the set of
problems solvable by a deterministic MapReduce computation in O(logi n) rounds. In the
case of NC1 ⊆ DMRC0, which already opens up a plethora of applications on its own, the
result holds for every possible choice of ε, that is, for 0 < ε ≤ 1/2. The higher levels of the
hierarchy require an entirely different proof method, which yields the result for 0 < ε < 1/2.

This is a substantial improvement over the previous results that only imply, as outlined
above, the far weaker claim ACi ⊆MRCi. The case i = 1 is of particular practical interest
since NC1 \ AC0 contains plenty of relevant problems such as integer multiplication and
division, the parity function, and the recognition of Dyck languages; see [1]. Our results show
how to solve all of these problems with a deterministic MapReduce program in a constant
number of rounds.

2 Preliminaries

We denote by N = {0, 1, 2, . . .} the natural numbers including zero and let N+ = N \ {0}.
Moreover, we let [i] = {0, 1, . . . , i− 1} denote the i first natural numbers for any i ∈ N+.

2.1 Models of Parallel Computation

In this section, we define the common complexity classes capturing the power of parallel
computation; most prominently the NC hierarchy.

A finite set B = {f0, . . . , f|B|−1} of Boolean functions fi : {0, 1}ni → {0, 1} with ni ∈ N
for every i ∈ [|B|] is called a basis. For every n,m ∈ N+, a (Boolean) circuit C over the basis
B with n inputs and m outputs is a directed acyclic graph that contains n sources (nodes
with no incoming edges), called the input nodes, and m sinks (nodes with no outgoing edges).
The fan-in of a node is the number of incoming edges, the fan-out is the number of outgoing
edges. Nodes that are neither sources nor sinks are called gates. Each gate is labeled with a
function fi ∈ B and has fan-in ni. It computes fi on the input given by the incoming edges
and outputs the result (either 0 or 1) to each of the outgoing edges. A basis B is said to be
complete if for every Boolean function f , we can construct over the basis B a circuit of the
described form that computes f . In the following, we use the complete basis B = {∨,∧,¬}.

The size of a circuit C, denoted by size(C), is the total number of edges it contains. The
level of a node v in a circuit C, denoted level(v), is defined recursively: The level of a sink is 0,
and the level of a node v with nonzero fan-out is one greater than the maximum of the levels of
the outgoing neighbors of v. The depth of C, denoted depth(C), is the maximum level across
all nodes in C. A function f : {0, 1}∗ → {0, 1}∗ is implicitly logspace computable if the two
mappings (x, i) 7→ χi≤|f(x)|, where χ denotes the characteristic function, and (x, i) 7→ (f(x))i
are computable using logarithmic space. A circuit family {Cn}∞n=0 is logspace-uniform if
there is an implicitly logspace computable function mapping 1n to the description of the
circuit Cn. It is known that the class of languages that have logspace-uniform circuits of
polynomial size equals P [1, Thm. 6.15].

For any i ∈ N, the complexity class NCi contains a language L exactly if there is a
constant c and a logspace-uniform family of circuits {Cn}∞n=0 recognizing L such that Cn has
size O(nc), depth O(logi n), and all nodes have fan-in at most 2. The union is Nick’s class
NC =

⋃∞
i=0NCi. We mention that there is an analogous definition of classes Nonuniform-NCi

that do not require logspace uniformity from the circuits; they constitute a different hierarchy.

F. Frei and K. Wada 52:5

The complexity classes ACi and AC =
⋃∞
i=0ACi are defined exactly as NCi and NC,

except that the restriction of the maximal fan-in to at most 2 is omitted. Nevertheless, the
restriction on the circuit size imply that the fan-in of a node is bounded by a polynomial
in n. The OR gates and AND gates in such a circuit can therefore be replaced by trees of
gates of fan-in at most 2 with a depth in O(logn). It follows that ACi ⊆ NCi+1 for all i ∈ N
and thus NC = AC. (Analogously, we see why Nick’s class can also be defined, as it often
is, by upper-bounding the fan-in by an arbitrary constant greater than 2.) The inclusion
NCi ⊆ ACi for every i ∈ N is immediate from the definition. The first two inclusions of the
resulting chain are known to be strict – namely, we have NC0 (AC0 (NC1; see [1].

Finally, we summarize the known results on how the classes of languages recognized
by different PRAMs fit into the two hierarchies of NC and AC. Let EREWi, CREWi and
CRCWi denote the sets of problems of size n computed by EREW-PRAMs, CREW-PRAMs,
and CRCW-PRAMs, respectively, with a polynomial number of processors in O(logi n) time.
For every i ∈ N, we have NCi ⊆ EREWi ⊆ CREWi ⊆ CRCWi = ACi ⊆ NCi+1; see [1].

2.2 The MapReduce Model
In this section we describe the standard MapReduce model as proposed by [12]. It defines
the notions of map functions and reduce functions, which are summarized under the term
primitives. Roughly speaking, a MapReduce computing system executes primitives, inter-
leaved with so-called shuffle operations. The basic data unit in these computations is an
ordered pair 〈key; value〉, called key-value pair. In general, keys and values are just binary
strings, allowing us to encode all the usual entities.

A map function is a (possibly randomized) function that takes as input a single key-value
pair and outputs a finite multiset of new key-value pairs. A reduce function (again, possibly
randomized) takes instead an entire set of key-value pairs {〈k; vk,1〉, 〈k; vk,2〉, . . .}, where all
the keys are identical, and outputs a single key-value pair 〈k; v′〉 with that same key.

A MapReduce program is nothing else than a sequence µ1, ρ1, µ2, ρ2, . . . , µR, ρR of map
functions µr and reduce functions ρr. The input of this program is a multiset U0 of key-value
pairs. For each r ∈ {1, . . . , R}, a map step, a shuffle step and a reduce step are successively
executed as follows:

1. Map step: Each pair 〈k; v〉 in Ur−1 is given as input to an arbitrary instance of the map
function µr, which then produces a finite sequence of pairs. The multiset of all produced
pairs is denoted by Vr.

2. Shuffle step: For each key k, let Vk,r be the multiset of all values vi such that 〈k, vi〉. The
MapReduce system automatically constructs the multiset Vk,r from Vr in the background.

3. Reduce step: For each key k, a reducer (i.e., an instance calculating the reduce function
ρr) receives k and the elements of Vk,r in arbitrary order. We usually write such an input
as a set of key-value pairs that all have key k. The reducer calculates, for each key k
independently, from Vk,r a set Uk,r of key-value pairs. The output will then consist of all
key-value pairs computed in this reduce step; that is, Ur is the union over all sets Uk,r.

Fix any ε with 0 < ε ≤ 1/2 and denote the size of the MapReduce program’s input by
N . For every i ∈ N, a problem is inMRCi if and only if if there is a MapReduce program
µ1, ρ1, µ2, ρ2, . . . , µR, ρR satisfying the following properties:
1. It outputs a correct answer to the problem with probability at least 3/4.
2. The number of rounds of the MapReduce program, R, is in O(logiN).
3. The potentially randomized primitives (i.e., all map and reduce functions) are computable

by a RAM with O(logN)-bit words using O(N1−ε) space and time polynomial in N .
4. The pairs produced by the map functions can be stored in O(N2(1−ε)) space.

ISAAC 2019

52:6 Efficient Circuit Simulation in MapReduce

A MapReduce program satisfying these conditions is called anMRCi-algorithm. Note
that due to the last condition it is impossible to even store the input unless 2(1− ε) ≥ 1,
which explains the restriction 0 < ε ≤ 1/2. As with NC, we define the union classMRC =⋃∞
i=0MRCi. Requiring all primitives to be deterministic yields the analogous hierarchy of
DMRC =

⋃∞
i=0DMRCi. Note that we obviously have DMRCi ⊆MRCi for all i ∈ N. We

will often refer to the single rounds of such MapReduce algorithms as MRC-rounds and
DMRC-rounds, respectively.

3 Simulating Parallel Computations in MapReduce

We are now going to prove our two main results NC1 ⊆ DMRC0 for 0 < ε ≤ 1/2 and
NCi+1 ⊆ DMRCi for all i ∈ N+ and 0 < ε < 1/2 in Sections 3.2 and 3.3, respectively. In
both cases, we will be making use of a technical tool derived in Section 3.1 and obtain the
results by showing how to use MapReduce computations for two different, delicate simulations.
For the inclusion NC1 ⊆ DMRC0, we simulate width-bounded branching programs that are
equivalent to the respective circuits by Barrington’s classical theorem [2], whereas for the
higher levels of the hierarchy, we directly simulate the combinational circuits themselves.

3.1 A Technical Tool
Goodrich et al. [10] parametrize MapReduce algorithms, on the one hand, by the memory limit
m for the input/output buffer of the reducers and, on the other hand, by the communication
complexity Kr of round r, that is, the total size of inputs and outputs for all mappers and
reducers in round r. We state a useful result from [10].

I Theorem 1. Any CRCW-PRAM algorithm using M total memory, P processors and T
time can be simulated in O(T logm P) deterministic MapReduce-rounds with communication
complexity Kr ∈ O((M + P) logm(M + P)).

We denote by N the size of the smallest circuit representation of the CRCW-PRAM
algorithm (i.e., its number of edges) plus the size of its input. Taking into account our
requirements m ∈ O(N1−ε) and Kr ∈ O(N2(1−ε)), we obtain the following a technical tool,
which will prove to be useful in our endeavor.

I Corollary 2. Any CRCW-PRAM algorithm usingM total memory, P processors and T time
can be simulated in O(T logN1−ε P) DMRC-rounds if (M+P) logN1−ε(M+P) ∈ O(N2(1−ε)).

3.2 Simulating NC1

It is known that Nonuniform-NC1 is equal to the class of languages recognized by nonuniform
width-bounded branching programs. A careful inspection of the proof due to Barrington [2]
– crucially relying on the non-solvability of the permutation group on 5 elements – reveals
that it naturally translates to the uniform analogue: Our uniform class NC1 is identical
with the class of languages recognized by uniform width-bounded branching programs. In
order to prove NC1 ⊆ DMRC0, it therefore suffices to show how to simulate such branching
programs by appropriate MapReduce computations with a constant number of rounds.

We first define what a width-bounded branching program is. Let n,w ∈ N+. The input to
the program is an assignment α to n Boolean variables X = {x0, . . . , xn−1}. An instruction
or line of the program is a triple (xi, f, g), where i is the index of an input variable xi ∈ X
and f and g are endomorphisms of [w]. An instruction (xi, f, g) evaluates to f if α(xi) = 1
and to g if α(xi) = 0. A width-w branching program of length t is a sequence of instructions

F. Frei and K. Wada 52:7

(xij , fj , gj) for j ∈ [t]. We also refer to the t instructions as the lines of the program. Given
an assignment α to X , a branching program B yields a function B(α) that is the composition
of the functions to which the instructions evaluate.

To recognize a language L ⊆ {0, 1}∗, we need a family (Bn)∞n=0 of width-w branching
programs with Bn taking n Boolean inputs. We say that L is recognized by Bn if there is,
for each n ∈ N, a set Fn of endomorphisms of [w] such that for all α ∈ {0, 1}n, α ∈ L if
and only if Bn(α) ∈ Fn. If fi and gi are automorphisms, that is, permutations of [w] for all
i ∈ [t], then Bn is called a width-w permutation branching program, or w-PBP for short.

I Theorem 3 ([2]). If L ∈ NC1, then L is recognized by a logspace-uniform 5-PBP family.

Due to Theorem 3 it is sufficient for our purposes to simulate the w-PBPs with constant
w instead of the circuit families provided by the definition of NC1. In order to do this, we
need to encode the given w-PBP and the possible assignments in the right form, namely we
express them as sets of key-value pairs. A w-PBP of length t can be described as the set
{〈 p; (xip , fp, gp) 〉 | p ∈ [t]}, where we call p the line number of line (xip , fp, gp). Similarly, an
assignment α : X → {0, 1}, xi 7→ vi to the input variables X = {x0, x1, . . . , xn−1} is described
by the set of key-value pairs {〈i; (xi, vi)〉 | i ∈ [n]}, letting the mappers divide the information
by the indices of the input variables. Let NO and NI be the total size of the encodings of the
w-PBP and the input assignment α, respectively. Let N = NO +NI and let d = dN1−ε

O e and
` = dNε

Oe. We denote by ÷ the integer division. For every q ∈ [t÷d], let w-PBPq be the qth of
the subprogram blocks of w-PBP of length d, that is {〈p; (xip , fp, gp)〉 | qd ≤ p ≤ (q+1)d−1}.
For ease of readability, we assume from now on without loss of generality that d` = t, so
that w-PBP can be partitioned into exactly ` such subprograms.

For every q ∈ [`], we denote by Xq the subset of variables from X appearing in the
instructions of subprogram w-PBPq. An assignment αq : Xq → {0, 1} to these variables is
represented as a set of key-value pairs in the following way. Recall that the subprogram
w-PBPq is a list of lines, each of which requires the assignment of a value, either 0 or 1, for
exactly one variable. Let xq,j be the jth variable to which a value is assigned in w-PBPq,
let pq,j denote the number of the line in which this assignment occurs for the first time in
w-PBPq, and let vq,j denote the value that is assigned to xq,j in this line. Now, we represent
αq by {〈q; (pq,j , xq,j , vq,j)〉 | j ∈ [|Xq|]}. Note that despite the dependence of Xq on q, we
always have |Xq| ≤ d. Having seen how to express w-PBP, α, and both w-PBPq and αq for
all q ∈ [`] as a set of key-value pairs, we are ready to state and prove the following lemma.

I Lemma 4 (Proof in Appendix A [9]). Let L be a w-PBP-recognized language. If the
representations of w-PBP and, for every q ∈ [`], αq are given, then we can decide in a
2-round DMRC-computation whether α ∈ L or not.

In the following four lemmas, we show that αq can be computed in a constant number
of rounds from w-PBP and α for every q ∈ [`]. The challenge lies in designing an interface
between the different reducers to bridge the gap between the ` program blocks w-PBPq
and the given assignments, initially cut into ` block based solely on the indices of the input
variables, without exceeding the memory limits. We begin with a brief overview of the
four steps.

1. For each xi, where i ∈ [n], we compute the number of subprograms in which xi appears,
and denote this number by #S(xi). Note that #S(xi) ≤ ` and that #S(xi) is the number
of all those reducers for which the value assignment of xi is generally required to compute
the resulting permutations in the corresponding subprograms.

ISAAC 2019

52:8 Efficient Circuit Simulation in MapReduce

2. We compute the prefix sums of #S(xi). For i ∈ [n], let yi =
∑i
j=0 #S(xj). Note that yi

is the number of assignment triples (pq,j , xq,j , vq,j) with 0 < j ≤ i needed to compute the
action of the first i subprograms and that yn−1 =

∑`−1
q=0 |αq|.

3. Based on the prefix sums, we will compute a separation of the input variables into `
contiguous blocks such that, for each q ∈ [`], it is feasible for reducerq to produce from
the qth block the input value assignments that it needs to contribute for the next step.
This is nontrivial since the number of input assignments must not exceed O(d) due to
the memory limitation of reducerq. A separation of the input variables {x0, . . . , xn−1}
is a list of `− 1 split values σ1, . . . , σ`−1 such that we have ` ordered, contiguous blocks
{x0, . . . , xσ1}, {xσ1+1, . . . , xσ2}, . . . , {xσ`−1+1, . . . , xn−1}. For notational convenience, we
let σ0 = −1 and σ` = n − 1. Let σq = max{j ∈ [n] | yj ≤ qd} for q ∈ {1, . . . , ` − 1}.
Using these split values each reducerq can provide all value assignments needed for the
computation of all subprograms in the next step without violating the memory limitations.

4. We compute αq for q ∈ [`] by using w-PBP, the input assignment α, and the split values.

I Lemma 5 (Proof in Appendix A [9]). Calculating #S(xi) is in DMRC0. That is, for each
i ∈ [n], #S(xi) is computable from w-PBP in a constant number of DMRC-rounds.

I Lemma 6 (Proof in Appendix A [9]). Computing the prefix-sums of #S(xi) is in DMRC0.

I Lemma 7 (Proof in Appendix A [9]). Each of the split values σ1, . . . , σ`−1 can be computed
in one reducer with the required prefix-sums being made available in one more DMRC-round.

I Lemma 8 (Proof in Appendix A [9]). Given w-PBP, α, and the split values σ0, . . . , σ`, we
can, for each q ∈ [`], compute αq in a constant number of DMRC-rounds.

We finally obtain the desired inclusion by applying Theorem 3 and Lemmas 4 through 8.

I Theorem 9. We have NC1 ⊆ DMRC0.

3.3 Simulating NCi For All i ≥ 2
For the higher levels in the hierarchy of Nick’s class, we show how to simulate the involved
circuits directly. We begin with a short outline of the proof.

Let Cn = (Vn, En) be a NCi+1 circuit with an input of size n, given as a set of nodes
and a set of directed edges, together with an input assignment α. The total size of Cn in
bits is NO, the total size of the input assignment in bits is NI, and N = NO +NI. Note that
size(Cn) is polynomial in n and depth(Cn) ∈ O(logi n). We will take the following steps to
simulate the circuit Cn with deterministic MapReduce computations:

1. We compute the level of each node in Cn.
2. The nodes and edges are sorted by their level.
3. Both the circuit Cn and the input assignment α are divided equally among the reducers.
4. We split the circuit into subcircuits computable in a constant number of rounds.
5. A custom communication scheme collects and constructs the complete subcircuits.
6. The entire circuit is evaluated via evaluation of the subcircuits.

Note that equal division of Cn in the third step is very different from the split in the
forth one, where the parts may differ radically in size. Great care must be taken so as to
no violate any of the memory and time restrictions, necessitating the two unlike partitions.
The subsequent steps then need to mediate between these dissimilar divisions. We will
show that the steps (1) to (6) can be computed in O(logn), O(1), O(1), O(1), O(logn), and
O(depth(Cn)/ logn) rounds, respectively, yielding the desired theorem.

I Theorem 10. We have NCi+1 ⊆ DMRCi for all i ∈ N+ and all 0 < ε < 1/2.

F. Frei and K. Wada 52:9

3.3.1 Computing The Levels
We begin by showing how to compute the level of each node in the circuit in O(logn)
DMRC-rounds by simulating a CRCW-PRAM algorithm. (We mention in passing that this
step requires more than a constant number of rounds, which prevents us from obtaining the
result for NC1 ⊆ DMRC0 by simulating the circuits directly; the separate approach from
Subsection 3.2 via Barrington’s theorem is thus required for this case.)

In [18], an algorithm is presented that computes the levels of all nodes in a directed acyclic
graph and can be computed on a CREW-PRAM with O(n + m) processors in O(log2 m)
time, where n and m are the numbers of nodes and edges in the graph, respectively. The
first stage of this algorithm relies partly on the computation of prefix-sums, which can be
computed much more efficiently when switching to a CRCW-PRAM, as we will show below.
A straightforward adaptation of the analysis in [18], taking into account the maximum
in-degree and out-degree and separating out the computation of prefix-sums, yields the
following result.

I Lemma 11. Let G = (V,E) be a directed acyclic graph with n nodes, m edges, maximum
in-degree din, and maximum out-degree dout. The level of each node in G can then be
computed on a CRCW-PRAM with P ∈ O(m + PP-Sum(O(m))) processors in time T ∈
O((logm) · (TP-Sum(O(m)) + log max{din, dout})), where PP-Sum(q) and TP-Sum(q) denote,
respectively, the number of processors and the computation time to compute the prefix-sums
of q numbers on a CRCW-PRAM.

In the following lemma, we aim to lower the time and memory requirements for computing
prefix-sums on a CRCW-PRAM as far as possible.

I Lemma 12 (Proof in Appendix A [9]). The prefix-sums of q numbers can be computed on a
CRCW-PRAM with P ∈ O(q log q) processors and memory M ∈ O(q) in constant time.

We plug in the result of Lemma 12 into Lemma 11 and then apply it to the graph Cn.
Since its in-degrees and out-degrees are bounded by a constant ∆, we have m ≤ ∆n/2 ∈ O(n).
Hence we can compute the levels of the nodes of Cn on a CRCW-PRAM with P ∈ O(N logN)
processors in time T ∈ O(logn). By Corollary 2, we obtain the following result.

I Lemma 13 (Proof in Appendix A [9]). Computing the levels of all nodes in Cn is in
DMRC1.

3.3.2 Sorting By Levels
Once the levels of all nodes are computed, each node in the circuit can be represented as
(level(xi), xi). Recall that the depth of Cn is just the maximum level. Since depth(Cn) ∈
O(logk n) for some k ∈ N+ and the number of nodes is bounded by the number of edges,
which is size(Cn) ∈ O(N), we can encode each pair (level(xi), xi) by appending to a bit
string of length log(c1 logk n) another one of length log(c2N), for appropriate constants c1
and c2, which results in a bit string of length log(cN logk n) for c = c1c2 ∈ N. This enables
us to identify each pair (level(xi), xi) with a different bit string, which can interpreted as an
integer bounded by cN logk n. We call this integer the sorting index of node xi. Crucially, we
chose the bit string to start with the encoding of the level. Sorting the sorting indices thus
means to sort the nodes of Cn by their level. The following lemma shows how prefix-sums
can be used to perform such a sort so efficiently on a CRCW-PRAM that we can apply
Corollary 2 to simulate it in a constant number of DMRC-rounds.

ISAAC 2019

52:10 Efficient Circuit Simulation in MapReduce

I Lemma 14 (Proof in Appendix A [9]). A CRCW-PRAM with P ∈ O(D logD) processors
and memory M ∈ O(D) can sort any subset I ⊆ {1, . . . , D} of integers in constant time.

Combining Lemma 14 and Corollary 2 we obtain, by a careful analysis using ε 6= 1/2, the
promised result.

I Corollary 15 (Proof in Appendix A [9]). Let c ∈ N and 0 < ε < 1/2. Any set of distinct
integers from {1, . . . , dcN logk ne} can be sorted in a constant number of DMRC-rounds.

Once all the nodes are sorted by their sorting index (and therefore implicitly by their
level), we can enumerate them in ascending order using the sorting index j; that is, we
represent each node as the key-value pair 〈j; (level(v), v)〉. Clearly, we obtain an analogous
representation of the edges of the form 〈i; ((j, (level(v), v), (j′, (level(v′), v′))〉, which will
prove useful later on.

3.3.3 Division of Circuit And Assignment Among Reducers
As we have already seen when discussing the branching programs, an assignment α to
input variables X = {x0, x1, . . . , xn−1} can be represented as a set {〈i; (xi, vi)〉 | i ∈ [n]} of
key-value pairs, where α(xi) = vi ∈ {0, 1}.

The circuit Cn is now divided into ` = Nε
O subsets of edges according to the sorting

indices and input values that are assigned to each subset as in the case of branching programs.
For every q ∈ [`], let Cqn = {((j, level(v), v), (j′, level(v′), v′)) | qd ≤ j ≤ (q + 1)d − 1},
where d = N1−ε

O , be the qth subset. Note that |Cqn| ∈ O(d). For every q ∈ [`], the set of
variables appearing in Cqn is denoted as Xq and the assignment αq to Xq is represented as
{〈j;xq,j , vq,j〉 | j ∈ [|αq|]}, where xq,j is the jth variable that appears as an input in Cqn, and
vq,j is its assignment value. Just as seen in Lemma 8 for the case of a branching program,
we can now, for all q ∈ [`], compute αq from Cn and α, yielding the following lemma.

I Lemma 16. Computing αq from Cn and α is in DMRC0 for every q ∈ [`].

We can therefore assume that each input node is represented by 〈j; (level(xji), xji , vji)〉,
a key-value pair that is computed from Cqn and αq for q ∈ [`] in a single DMRC-round.

3.3.4 Division Into Subcircuits By Levels
We divide Cn = (Vn, En) into as few subcircuits as possible such that the simulation of each
subcircuit is in DMRC0 and we can evaluate Cn by evaluating the subcircuits sequentially.

Given v ∈ Vn and δ ∈ N, we define the v-down-circuit Cdown
δ (v) = (V down

δ (v), Edown
δ (v))

of depth δ to be the subcircuit of Cn induced by V down
δ (v) = {u | level(v) ≤ level(u) ≤

level(v)+δ, u→∗ v}, where u→∗ v means that there is a directed path of any length (including
0) from u to v in Cn. The v-up-circuit Cup

δ (v) = (V up
δ (v), Eup

δ (v)) of depth δ is analogously
the subcircuit of Cn induced by V up

δ (v) = {u | level(v)− δ ≤ level(u) ≤ level(v), v →∗ u}.
When dividing Cn into subcircuits we have two conflicting goals. On the one hand, we

want as few of them as possible, which implies that they have to be of great depth. On the
other hand, we need to simulate them in MapReduce without exceeding the memory bounds.
A depth in Θ(logn) turns out to be the right choice. Let s = (γ logn)/ log ∆, where ∆ ≥ 2
is a constant bounding the maximum degree of Cn and γ is an arbitrary constant satisfying
0 < γ < 1− 2ε. (Note that such a γ exists exactly if ε < 1/2.) Since a tree of depth s and
maximum degree bounded by a constant ∆ contains at most

∑s
i=1 ∆i edges, its size is in

O(∆s) = O(nγ) ⊆ O(Nγ). Hence each reducer may contain up to N1−ε/Nγ such subcircuits
without exceeding the memory constraint of O(N1−ε); see Figure 2 in Appendix B [9]. We
denote this number of allowed subcircuits per reducer by β = N1−ε−γ .

F. Frei and K. Wada 52:11

For each i ∈ [ddepth(Cn)/se + 1], we define Li = i · s. For every node v on level Li –
that is, with level(v) = Li – we call the v-down-circuit (v-up-circuit, resp.) of depth s an
Li-down-circuit (Li-up-circuit, resp.). We will construct in each reducer the v-down-circuits
and v-up-circuits of depth 1 of all its nodes. From those we then construct all Li-down-circuits
and Li-up-circuits for every i. Note that we can evaluate all Li-down-circuits if the values of
the nodes of level Li+1 are given. The values of the nodes v of level Li+1 that are necessary
to compute the Li-up-circuits are then known from the Li+1-down-circuits.

When the circuit Cn is divided into Li-down-circuits, there may exist edges of Cn that are
not contained in any Li-down-circuit. If an edge ((ju, level(u), u), (jv, level(v), v)) satisfies
Liu ≤ level(u) ≤ Liu+1 and Liv ≤ level(v) ≤ Liv+1 for iu 6= iv, then this edge is not included
in any Liu-down-circuit nor any Liv -down-circuit. We call such edges level-jumping edges;
see Figure 3 in Appendix B [9] for an example. We would like to replace every level-jumping
edge (u, v) by a path from u to v that consists only of edges that will be part of the respective
Li-down-circuits and Li-up-circuits in the resulting, augmented circuit. The following lemma
states that this is possible without increasing the size by too much.

I Lemma 17 (Proof in Appendix A [9]). We can subdivide the jumping edges in Cn in a way
that renders the subcircuit-wise evaluation possible without increasing the size beyond O(N).

3.3.5 Construction of Subcircuits in Reducers

Having described the subcircuits on which the evaluation of the entire circuits will be based,
we now need to show how to split and construct them in the ` different reducers. In each
reducer, we start with the nodes v contained in it that satisfy level(v) = Li for any i and
the associated v-down-circuits and v-up-circuits of depth 1. We then iteratively increase
the depth one by one, until the full Li-down-circuits and Li-up-circuits of depth up to s
are constructed. Note that the nodes of any level Li and their corresponding circuits may
be scattered across multiple reducers since edges were split equally among them according
to their the sorting index and not depending on the level. We therefore need to carefully
implement a communication scheme that allows each reducer to encode requests for missing
edges required in the construction, which are then delivered to them in multiple rounds,
without exceeding any of the memory or time bounds. Taking care of all these details, we
obtain the following lemma.

I Lemma 18 (Proof in Appendix A [9]). Given Cn, all Li-down-circuits and Li-up-circuits
can be constructed in O(logn) DMRC-rounds whenever 0 < ε < 1/2.

3.3.6 Evaluation Via Subcircuits

The main idea in the proof of the following lemma is to compute the evaluation values
subcircuit-wise, starting with the deepest ones, and then iteratively moving up the circuit in
depth(Cn)/s rounds, passing on the newly computed values to the right reducers, until the
value of the unique output node is known.

I Lemma 19. If all up-circuits and down-circuits are constructed in the proper reducers, Cn
can be evaluated in O(depth(Cn)/ logn) DMRC-rounds.

ISAAC 2019

52:12 Efficient Circuit Simulation in MapReduce

4 Conclusion and Research Opportunities

In a substantial improvement over all previously known results, we have shown that NCi+1 ⊆
DMRCi for all i ∈ N. In the case of NC1 ⊆ DMRC0, we have proved this result for every
feasible choice of ε in the model, that is, for 0 < ε ≤ 1/2. For i > 0, we have shown the
result to hold for all but one value, namely ε = 1/2.

Achieving these two results required a detailed description of two different, delicate
simulations within the MapReduce framework. For the case of NC1, which is particularly
relevant in practice, we applied Barrington’s theorem and simulated width-bounded branching
programs [2], whereas we directly simulated the circuits for the higher levels of the hierarchy.
We emphasize that none of the two approaches can replace the other: Barrington’s theorem
only gives a characterization for the first level of the NC hierarchy and the second approach
does not even yield NC1 ⊆MRC0. (Recall that DMRC is just the deterministic variant of
MRC, so we have DMRCi ⊆MRCi for all i ∈ N.)

We would like to briefly address the small question that immediately arises from our
result, namely whether it possible to extend the inclusion NCi+1 ⊆ DMRCi of Theorem 10
to the case ε = 1/2. Going through all involved lemmas, we see that the two reasons that
our proof does not work in this corner case are the sorting of the nodes using Lemma 15 and
the construction of the up-circuits and down-circuits in Lemma 18. Regarding the former,
we can avoid the restriction by allowing randomization. For the latter, it is not clear that
this can be achieved, however. If there was any way to construct the levels for ε = 1/2 as
well, then Theorem 10 would immediately extend to the full range 0 < ε ≤ 1/2 of feasible
choices for ε.

Besides dealing with the small issue mentioned above, the natural next step for future
research is to take the complementary approach and address the reverse relationship: Having
shown in this paper how to obtain efficient deterministic MapReduce algorithms for par-
allelizable problems, we now aim to include DMRCi into NCi+1 for all i ∈ N, thus finally
settling the long-standing open question of how exactly the MapReduce classes correspond
to the classical classes of parallel computation.

References
1 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University

Press, 2009.
2 D.A. Barrington. Bounded-Width Polynomial-Size Branching Programs Recognize Exactly

Those Languages in NC1. J. of Computer and System Sciences, 38:150–164, 1989.
3 C.-T. Chu, S.K. Kim, Y.-A. Lin, Y. Yu, G.R. Bradski, A.Y. Ng, and K. Olukotum. Map-

Reduce for machine learning on multicore. In Advances in neural information processing
systems (NIPS), pages 281–288, 2006.

4 T.H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1990.
5 J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. Commun.

ACM, 51(1):107–113, 2008.
6 A.K. Farahat, A. Elgohary, A. Ghodsi, and M. S. Kamel. Distributed Column Subset Selection

on MapReduce. In International Conference on Data Mining (ICDM), pages 171–180, 2013.
7 J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina. On Distributing

Symmetric Streaming Computations. ACM Trans. on Algorithms, 6(4):66:1–66:15, 2010.
8 B. Fish, J. Kun, Á.D. Lelker, L. Reyzin, and G. Turán. On the Computational Complexity of

MapReduce. In International Symposium on Distributed Computing (DISC), pages 1–15, 2015.
9 F. Frei and K. Wada. Efficient Circuit Simulation in MapReduce. Technical Report arXiv.org,

cs(arXiv:1907.01624):1–20, 2019. arXiv:1907.01624.

http://arxiv.org/abs/1907.01624

F. Frei and K. Wada 52:13

10 M. Goodrich, N. Sichinava, and Q. Zhang. Sorting, Searching, and Simulation in the MapReduce
Framework. In 22nd Int. Symp. on Algorithms and Computation (ISAAC), pages 374–383,
2011.

11 S. Kamara and M. Raykova. Parallel Homomorphic Encryption. In Financial Cryptography
Workshops, pages 213–225, 2013.

12 H. Karloff, S. Suri, and S. Vassilvitskii. A Model of Computation for MapReduce. In 21st
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 938–948, 2010.

13 R. Kumar, B. Moseley, and S. Vassilvitskii. Fast Greedy Algorithms in MapReduce and
Streaming. In ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pages
1–10, 2013.

14 M.F. Pace. BSP vs MapReduce. In 12th Int. Conf. on Computational Science (ICCS), pages
246–255, 2012.

15 A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, and E. Upfal. Space-Round Tradeoffs for
MapReduce Computations. In 26th ACM Int. Conf. on Supercomputing (ICS), pages 235–244,
2012.

16 T. Roughgarden, S. Vassilvitskii, and J. R. Wang. Shuffles and Circuits (On Lower Bounds for
Modern Parallel Computation). Journal of the ACM (JACM), 65(6):41:1–66:24, 2018.

17 A.D. Sarma, F.N. Afrati, S. Salihoglu, and J.D. Ullman. Upper and Lower Bounds on the
Cost of a Map-Reduce Computation. In Proceedings of the VLDB Endowment (PVLDB),
pages 277–288, 2013.

18 A. Tada, M. Migita, and R. Nakamura. Parallel Topological Sorting Algorithm. J. of the
Information Processing Society of Japan (IPSJ), 45(4):1102–1111, 2004.

19 T. White. Hadoop: The Definitive Guide, 4th edition. O’Reilly, 2015.

A Deferred Proofs

In this appendix, we provide all proofs that had to be deferred due to the space constraints.
For the reader’s convenience, we reprint all statements.

I Lemma 4 (Reprint of Lemma 4 on page 7). Let L be a w-PBP-recognized language. If the
representations of the w-PBP and, for every q ∈ [`], αq are given, then we can decide in a
2-round DMRC-computation whether α ∈ L or not.

Proof. As already described above, let w-PBP be represented by the set {〈p; (xip , fp, gp)〉 |
p ∈ [t]} and, for every q ∈ [`], the assignment αq by {〈q, (pq,j , xq,j , vq,j)〉 | j ∈ [|Xq|]}. Note
that there are ` subprograms of length at most d and ` partial assignments that each assign
values to at most one variable per line of the corresponding partial program. The total size
of the input is thus in O(d`) ⊆ O(NO) ⊆ O(N).

We define the first map function µ1 by

µ1(〈p; (xip , fp, gp)〉) = {〈 p÷ d ; (p, xip , fp, gp) 〉}, for each p ∈ [t] and
µ1(〈q; (pq,j , xq,j , vq,j)〉) = {〈 pq,j ÷ d ; (pq,j , xq,j , vq,j) 〉} for each q ∈ [`], j ∈ [k + 1].

For any q ∈ [`], there is one subprogram w-PBPq and an associated assignment set αq. We use
the map function µ1 to find the value assignment for each variable appearing in w-PBPq and
store it in a key-value pair. This pair has the key q and is thereby designated to be processed
by reducerq, which can calculate ρ1, having all pairs with key q available. This function
simulates, for each permutation π of [w], the subprogram w-PBPq on this permutation with
the received assignment and stores the resulting permutation π′. This yields a table Tq of size
w! ∈ O(1), describing the action of w-PBPq for the given assignment on all w! permutations.
(We mention in passing that for the first reducer0 it would be sufficient to compute and store

ISAAC 2019

52:14 Efficient Circuit Simulation in MapReduce

only the permutation that results from applying w-PBP0 on the given assignment to the
identity as the initial permutation, thus saving the time and memory necessary for the rest
of the first table.) The output of ρ1 on the qth reducer is 〈q;Tq〉.

The map function µ2 of the second round is simple, it maps 〈q;Tq〉 to 〈0; (q, Tq)〉, thus
delivering all pairs (i, Ti) to a single instance of the reduce function ρ2. This first reducer
has therefore all tables T0, . . . , T`−1 at its disposal and knows which one is which. Using Tq
as a look-up table for the permutation performed by w-PBPq, reducer0 can now compute,
starting from the identity permutation id, the permutation π = T`−1 ◦ · · · ◦ T2 ◦ T1 ◦ T0(id),
and the input is accepted if and only if π ∈ Fn, where Fn is the set of accepted permutations
that is given to us alongside the program w-PBP. J

I Lemma 5 (Reprint of Lemma 5 on page 8). Calculating #S(xi) is in DMRC0. That is,
for each i ∈ [n], #S(xi) is computable from w-PBP in a constant number of DMRC-rounds.

Proof. For each q ∈ [`], the subprogram w-PBPq is stored in reducerq. The output of
reducerq – which will be the input to compute #S(xi) – is 〈q; (q, 1)〉, . . . , 〈q; (q, kq)〉, with
the variables xq,1, . . . , xq,kq appearing in the subprogram w-PBPq and kq ∈ O(d). The total
number of inputs used to compute #S(xi) is therefore at most d` ∈ O(N). We use a
Sum-CRCW-PRAM, whose concurrent writes to a single memory register are resolved by
summing up all values being written to the same register simultaneously, see [10]. We use
at most d` processors, Pq,1, . . . ,Pq,kq

for each q ∈ [`], and registers R0, . . . ,Rn−1 and let all
processors Pq,j add 1 to Rj concurrently. Thus we see that computing #S(xi) is possible in
constant time on a Sum-CRCW-PRAM and therefore, by Corollary 2, in DMRC0. J

I Lemma 6 (Reprint of Lemma 6 on page 8). Computing the prefix-sums of #S(xi) is in
DMRC0.

Proof. The input is given as 〈i; (#S(xi), i)〉 for i ∈ [n]. We compute the prefix-sums yi of
#S(xi) for all i ∈ [n] in three rounds that can be summarized as follows:
1. Each reducerq, for q ∈ [`], determines its local prefix-sums; that is, it computes the d

prefix-sums ylocaldq , . . . , ylocald(q+1)−1 of the d numbers #S(xdq), . . . ,#S(xd(q+1)−1).
2. A single reducer computes the prefix-sums z0, z1, . . . z`−1 of ylocald−1 , y

local
2d−1, . . . y

local
`d−1, which

are known from the first round. For every q ∈ [`− 1], we send zq to reducerq+1.
3. Each reducerq+1 with q ∈ [`− 1] computes yd(q+1)+j = ylocald(q+1)+j + zq for each j ∈ [d].

We now describe the three rounds in more detail at the level of the key-value pairs.
1. By defining the map function µ1(〈i; (#S(xi), i)〉) = 〈i÷ d; (#S(xi), i)〉, each reducerq, for

q ∈ [`], receives #S(xdq), . . . ,#S(xd(q+1)−1) together with the correct indices. Thus we
can compute in reducerq all local prefix-sums ylocaldq , . . . , ylocald(q+1)−1 of these number. The
output of reducerq consists of the local prefix-sums in the format 〈q; (p-sum, q, j, ylocalq,j)〉
for j ∈ [d] and the last of each group of local prefix-sums in the format 〈q; (last, ylocald(q+1)−1)〉,
where p-sum = 0 and last = 1 is a simple binary identifier.

2. By defining the map function µ2(〈q; (last, ylocald(q+1)−1)〉) = 〈0; (last, ylocald(q+1)−1)〉, all last
parts of the local prefix-sums can be gathered in reducer0. Thus, the prefix-sums
z0, z1, . . . z`−1 of ylocald−1 , . . . , y

local
d`−1 can be computed in it and the output of the reducer is

〈0; (last, i+ 1, zi)〉 for every i ∈ [`− 1]. All other key-value pairs – that is, those of the
form 〈q; (p-sum, q, j, ylocalq,j)〉 – are passed on unaltered.

3. The input of the third round consists of the output pairs 〈q; (p-sum, q, j, ylocalq,j)〉 for all
j ∈ [d] and q ∈ [`] passed on from the first round and the pairs 〈0; (last, q+1, zq)〉 for all q ∈
[`− 1] from the second round. Defining the map function as µ3(〈q; (p-sum, q, j, ylocalq,j)〉) =

F. Frei and K. Wada 52:15

〈q; (p-sum, q, j, ylocalq,j)〉 and µ3(〈0; (last, q + 1, zq)〉) = 〈q + 1; (last, q + 1, zq)〉, we can, for
each j ∈ [d] and each q ∈ {1, . . . , `− 1}, compute yq,j = ylocalq,j + zj in reducerq.

The memory limitations of the mappers and reducers are clearly respected. J

I Lemma 7 (Reprint of Lemma 7 on page 8). Each of the split values σ1, . . . , σ`−1 can be
computed in one reducer with the required prefix-sums being made available in one more
DMRC-round.

Proof. If there is a k ∈ [` − 1] such that yn−1 ≤ kd, then it is clear from the definition
σq = max{j ∈ [n] | yj ≤ qd} of the split values that σk = σk+1 = . . . = σ`−1. We can
therefore assume that yn−1 > (`− 1)d and characterize, for each q ∈ {1, . . . , `− 1}, the split
value σq as the unique integer satisfying (q− 1)d < yσq

≤ qd and qd < yσq+1; see Figure 1 in
Appendix B [9].

This characterization is well defined since 0 < #S(xi) ≤ ` < d for each i ∈ [n] and
yn−1 ≤ d` ∈ O(NO). For each q ∈ [`], in order to determine the split value σq, it is therefore
sufficient to have available in the respective reducer a sequence of consecutive prefix-sums
such that the first one is at most qd and the last one is greater than qd. This condition is
satisfied if reducerq has the d+ 2 consecutive prefix-sums yqd−1, yqd, . . . , y(q+1)d−1, y(q+1)d
available. (For the first and the last reducer, the d + 1 prefix-sums y0, . . . , yd−1, yd and
y(`−1)d−1, y(`−1)d, . . . , y`d−1, respectively, will suffice.) Slightly extending the sequence of
available prefix-sums in each reducer by copying the overlapping prefix-sums from another
reducer thus enables us to compute all split values in the ` reducers. Since for each q ∈ [`],
there are the d prefix-sums yqd, . . . , y(q+1)d−1 in reducerq, each reducer can have the d+ 2
prefix-sums made available after one more round by having each neighboring reducer copy
one more prefix-sum into it. We have σ0 = −1 and σ` = n− 1; it is thus immediately verified
that, for every q ∈ [`], the total number of subprograms in which input variables between
xσq+1 and xσ(q+1) appear is at most 2d, showing that all the memory restrictions on the
reducers are observed. J

I Lemma 8 (Reprint of Lemma 8 on page 8). Given w-PBP, α, and the split values σ0, . . . , σ`,
we can, for each q ∈ [`], compute αq in a constant number of DMRC-rounds.

Proof. We can assume that, for each κ ∈ [`], the reducerκ has the subprogram w-PBPκ, the
κth block of input assignments {(xj , vj) | κ · d ≤ j ≤ (κ + 1)d − 1}, and the split values
σ0, . . . , σ` available. The output of reducerκ then consists of the following:
1. 〈κ; (q, p, xip , fp, gp)〉 for each line (p, xip , fp, gp) in w-PBPκ, where σq + 1 ≤ ip ≤ σq+1.
2. 〈κ; (q, xj , vj)〉 for each value assignment (xj , vj) with σq + 1 ≤ j ≤ σq+1.
For any κ ∈ [`], we need to bound the total number of outputs with key κ from above. From
the definition of the split values we see that this number is in O(d) since it is bounded by the
number of lines, which is at most 2d, plus the number of assignments, which is at most d.

Naturally, the map function µ of the next round is defined by
1. µ(〈κ; (q, p, xjp , fp, gp)〉) = 〈q; (p, xjp , fp, gp)〉 and
2. µ(〈κ; (q, xj , vj)〉) = 〈q; (xj , vj)〉.
For any κ ∈ [`], the assignment variables αq can be computed by the subsequent reduce
function using the key-value pairs produced above. For each q ∈ [`], the reducerq has now
available the lines of w-PBP and the value assignments for the input variables between xσq+1
and xσq+1 . It can therefore go through all the program lines and determine, on the one
hand, which value assignments they require and, on the other hand, to which subprogram
they belong. The required assignment information is then sent to the respective reducers by
outputting 〈q; (p÷ d, p, xip , vip)〉. J

ISAAC 2019

52:16 Efficient Circuit Simulation in MapReduce

I Lemma 12 (Reprint of Lemma 12 on page 9). The prefix-sums of q numbers can be computed
on a CRCW-PRAM with P ∈ O(q log q) processors and memory M ∈ O(q) in constant time.

Proof. We use a Sum-CRCW-PRAM, where concurrent writes to the same memory reg-
ister are resolved by adding up all simultaneously assigned numbers [10]. Let q numbers
x0, x1, . . . , xq−1 be given as input. Without loss of generality, we assume q to be a power
of 2 and calculate si(j) =

∑
j2i≤p<(j+1)2i xp for all i ∈ [1 + log q] and all j ∈ [q/2i + 1]; see

Figure 4 in Appendix B [9] for an illustrating example.
Since each of the q/2i elements in si is the sum of 2i elements, we can – by allocating

q processors for each i ∈ [1 + log q] – compute every si(j) in a Sum-CRCW-PRAM with
O(q log q) processors and O(1) time.

We now describe how the prefix-sums y(0), y(1), . . . , y(q− 1) are computed from the si(j).
Assume first that j + 1 is a power of 2, that is, j + 1 = 2p. Then we have y(j) = sp(0),
so the value has already been computed. If j + 1 = 2p + 1 for some p, then we have
y(j) = sp(0) + s0(2p), so we need to add two summands. In general, y(j) can be calculated
as the sum of at most log q − 1 known summands.

Let ajlog qa
j
(log q)−1 . . . a

j
0 be the binary representation of j + 1. Now, we can see that

y(j) = slog q(0) · ajlog q

+ s(log q)−1((j + 1− 2(log q)−1)÷ 2(log q)−1) · aj(log q)−1

+ . . .

+ s1((j + 1− 21)÷ 21) · aj1
+ s0((j + 1− 20)÷ 20) · aj0;

that is, y(j) can be computed as the sum of all sp((j + 1− 2p)÷ 2p) such that ajp = 1. Thus,
it is sufficient to supply a maximum of (log q)− 1 processors for the calculation of each y(j)
in a second time step, and the prefix-sums can be computed on a Sum-CRCW-PRAM with
O(q log q) processors in constant time. J

I Lemma 13 (Reprint of Lemma 13 on page 9). Computing the levels of all nodes in Cn is
in DMRC1.

Proof. From Lemmas 11 and 12 we know that the level of each node in Cn can be computed
in T ∈ O(logn) time on a Sum-CRCW-PRAM with P ∈ O(N +N logN) processors. Now,
Corollary 2 yields a MapReduce simulation of this Sum-CRCW-PRAM. We need to check that
the conditions of Corollary 2 are indeed all satisfied: From T ∈ O(logn), P ∈ O(N+N logN),
and M ∈ O(N) follows M + P ∈ O(N logN) and logN1−ε(M + P) ∈ O(1), hence we have
(M +P) logN1−ε(M +P) ∈ O(N2(1−ε)). Thus, the level of each node in Cn can be computed
in O(logn) DMRC-rounds. J

I Lemma 14 (Reprint of Lemma 14 on page 10). A CRCW-PRAM with P ∈ O(D logD)
processors and memory M ∈ O(D) can sort any subset I ⊆ {1, . . . , D} of integers in constant
time.

Proof. Recall that we use a Sum-CRCW-PRAM that sums up concurrent writes. Assume
that the input and output are stored in the arrays x[0], . . . , x[p− 1] and y[0], . . . , y[p− 1],
respectively. We will use two auxiliary arrays z[0], . . . , z[D] and ẑ[0], . . . , ẑ[D] of size D + 1.
The algorithm works in four steps:

F. Frei and K. Wada 52:17

1. Initialize z by using D + 1 ≤ P processors to set z[k]← 0 for all k ∈ [D + 1].
2. Use p ≤ P processors in parallel to set z[x[k]]← 1 for all k ∈ [p].
3. Compute the prefix-sums of the array z and save them into ẑ.
4. Use D processors to set, for all k ∈ {1, . . . , D} in parallel, y[ẑ[k]] ← k if and only if

ẑ[k] 6= ẑ[k − 1].

Since the prefix-sums of D numbers can be computed by the Sum-CRCW PRAM with
P ∈ O(D logD) processors and memory M ∈ O(D) in constant time by Lemma 12, the
above algorithm stays within these bounds as well.

We now prove that this algorithm is correct. First we observe that after step 2, for every
k ∈ {1, . . . , D}, we have z[k] = 1 if and only if one of the p integers to be sorted is k. Because
ẑ contains the prefix-sums of z, the value stored in ẑ[k] hence tells us how many of the p
integers in x are at most k. (Note that accordingly we always have z[0] = ẑ[0] = 0.) Thus k
is one of the integers in x if and only if ẑ[k] = ẑ[k− 1] + 1; otherwise, we have ẑ[k] = ẑ[k− 1].
As a consequence, the array ẑ contains exactly the indices of x, namely [p], as values in
non-decreasing order, that is, 0 = ẑ[0] ≤ ẑ[1] ≤ · · · ≤ ẑ[D − 1] ≤ ẑ[D] = p. Stepping through
ẑ from start to end, that is, from k = 0 to k = D, we therefore observe an increment of
1 from ẑ[k − 1] to ẑ[k] exactly if k is one of the integers to be sorted. This means that in
step 4 the integers contained in x are detected from left to right in ascending order and
subsequently stored into y in the same order. J

I Corollary 15 (Reprint of Lemma 15 on page 10). Let c ∈ N and 0 < ε < 1/2. Any
set of distinct integers from {1, . . . , dcN logk ne} can be sorted in a constant number of
DMRC-rounds.

Proof. We apply Lemma 14 with D ∈ O(N logk n). We have D ∈ O(N logkN) ⊆ O(N1+ζ)
and thus also D logD ∈ O(N1+ζ) for any constant ζ > 0. Choose any ζ < 1 − 2ε, which
is possible for ε < 1/2. The sorting is then possible on a CRCW-PRAM with O(N1+ζ)
processors and O(N1+ζ) memory in constant time. By Corollary 2, this CRCW-PRAM can be
simulated in a constant number of DMRC-rounds because logN1−ε(N1+ζ) = (1+ζ)/(1−ε) ∈
O(1) and O(N1+ζ) ⊆ O(N2(1−ε)). J

I Lemma 17 (Reprint of Lemma 17 on page 11). We can subdivide the jumping edges in
Cn in a way that renders the subcircuit-wise evaluation possible without increasing the size
beyond O(N).

Proof. Let ((ju, level(u), u), (jv, level(v), v)) be a jumping edge, where Liu ≤ level(u) ≤
Liu+1, Liv ≤ level(v) ≤ Liv+1, and iu < iv. If iu = iv − 1, then this edge is divided into
two edges ((ju, level(u), u),dummy) and (dummy, (jv, level(v), v)), introducing a new node
dummy of the id kind with level(dummy) = iv. If iu ≤ iv − 2, then this edge is divided into
three edges ((ju, level(u), u),dummy1), (dummy1,dummy2), and (dummy2, (jv, level(v), v)),
introducing two new nodes with level(dummy1) = iu + 1, level(dummy2) = iv. Having
divided the jumping edges in this way, the newly created edges are all part of some dummy-
down-circuit or dummy-up-circuit, except for edges of the form (dummy1,dummy2). Note
that we cannot further subdivide the edges of the form (dummy1,dummy2) because we
would exceed the size limit on the circuit otherwise. The most convenient way to deal
with this is to adjust our definition of down-circuits and up-circuits such that every edge
of the form (dummy1,dummy2) is considered to be both a dummy1-down-circuit and a
dummy2-up-circuit on its own. This way, every edge in the augmented circuit is included in

ISAAC 2019

52:18 Efficient Circuit Simulation in MapReduce

some down-circuit or up-circuit. Note that this augmentation can be performed in a single
round and that the size of the augmented circuit is in O(N). In what follows, we consider
Cn to be this augmented circuit. J

I Lemma 18 (Reprint of Lemma 18 on page 11). Given Cn, all Li-down-circuits and Li-up-
circuits can be constructed in O(logn) DMRC-rounds whenever 0 < ε < 1/2.

Proof. In the first round, the map function µ1 is defined such that each reducerq is assigned
(via the choice of the key) β nodes of the form 〈j; (level(v), v)〉 and directed edges adjacent
to these nodes. Note that one edge can thus be assigned to two different reducers, once as
an outgoing and once as an incoming edge. Specifically, we define

µ1(〈 j ; (level(v), v) 〉) = {〈 j ÷ β ; (j, level(v), v) 〉}

for the key-value pairs representing nodes and

µ1(〈i; ((j, level(v), v), (j′, level(v′), v′))〉) = { 〈j ÷ β; ((j, level(v), v), (j′, level(v′), v′))〉,
〈j′÷ β; ((j, level(v), v), (j′, level(v′), v′))〉 }

for the key-value pairs representing edges.
In the subsequent execution of ρ1, each reducer can therefore directly construct the

v-up-circuits and v-down-circuits of depth 1 for its β assigned nodes. We will now describe
how some of these initial circuits, namely those on levels Li for any i ∈ [r], can be extended
to full Li-up-circuits and Li-down-circuits by iteratively increasing the circuit depth one by
one in the following way:

Let v be a node with level(v) = Li in reducerq for any i ∈ [r] and q ∈ [`]. We want
to extend Cdown

1 (v) and Cup
1 (v) to Cdown

2 (v) and Cup
2 (v), respectively. Let uin (uout, resp.)

be any node of in-degree (out-degree, resp.) 0 in it, that is, any node that potentially
needs to be extended by one or multiple edges. These extending edges are not necessarily
available in reducerq, however. We need to find out which reducer stores them – if there
are any – and then request these edges from it in some way. To determine the right
reducer, we make use of the sorting index stored alongside each node, even when part of an
edge. Any edge (uin, v) that we need to check for possible extensions is in fact represented
as 〈q , ((juin , level(uin), uin) , (jv, level(v), v)) 〉 in reducerq. The number of the reducer
containing the downward extending edges is now retrieved as to(uin) = juin ÷β. Analogously,
the upward extending edges for an edge (v, uout) are to be found in reducerto(uout), where
to(uout) = juout ÷ β. We now know whom to ask for edges extending the subcircuit beyond
node u, namely reducer number to(u). Let from(v) = q denote the number of the reducer
sending the request, which we encode in form of the key-value pair 〈q; (u, to(u), from(v))〉.

Each reducerq does the above for every node with possible extending edges and also
passes along to the mapper all v-up-circuits and v-down-circuits constructed so far unaltered.
This concludes the first round. In the second round, the map function µ2 naturally re-
assigns 〈q; (u, to(u), from(v))〉 to reducerto(u), and returns the v-up-circuits and v-down-
circuits to the reducers that sent them. Having received the edge request of the form
〈to(u); (u, to(u), from(v))〉 while executing ρ2, reducerto(u) now sends all edges potentially
useful to reducerfrom(v) – that is, the entire u-up-circuit and the entire u-down-circuit of
depth 1 – to the next mapper in the form of a pair (from(v), e) for every edge containing
node u. As before, all other circuits constructed so far get passed along without modification
as well.

F. Frei and K. Wada 52:19

In the third round, the map function µ3 routes the requested edges to the requesting
reducer by generating the key-value pairs 〈from(v); (from(v), e)〉. In the reducing step, which
implements the same reduce function ρ1 as in the first round, reducerfrom(v) now finally has
all v-up-circuits and v-down-circuits fully extended to depth 2.

Since performing the two rounds µ2, ρ2, µ3, ρ1 deepens the Li-up-circuits and Li-down-
circuits by one level in the way just seen, the complete Li-up-circuits and Li-down-circuits
can be constructed by repeating these two rounds s times.

It is again clear that the memory and I/O requirements of the reducers are all met in
every round since the input size and output size are in O(d) for each reducer. Moreover, the
total memory for storing the v-up-circuits and v-down-circuits is β ·N ∈ O(N1+γ) because
Cn has at most NO ∈ O(N) nodes. Since the constant γ was chosen such that 0 < γ ≤ 1−2ε,
we have N1+γ ∈ O(N2(1−ε)) and thus all up-circuits and down-circuits can be stored in the
respective reducers. J

I Lemma 19 (Reprint of Lemma 19 on page 11). If all up-circuits and down-circuits are
constructed in the proper reducers, Cn can be evaluated in O(depth(Cn)/ logn) DMRC-
rounds.

Proof. Without loss of generality, let depth(Cn) be divisible by s and let r = depth(Cn)/s.
Once all Li-down-circuits and Li-up-circuits for all i ∈ {1, . . . , r} have been constructed, we
can evaluate Cn on the given input assignment. We begin by evaluating the Lr−1-down-
circuits. Since every input node has its value assigned in a v-down-circuit, the Lr−1-down-
circuits can be computed in the reducers containing these v-down-circuits. With the values
of all nodes at level Lr−1 determined, we can send the necessary values to the Lr−2-down-
circuits and, in the case of edges that were divided using two dummy nodes, to lower-level
down-circuits. Nodes at level Lr−1 that are necessary to compute Lr−2-down-circuits are
described in the Lr−1-up-circuits. Any node v at level Lr−1 that is necessary to compute
Lr−2-down-circuits is described in the v-up-circuit. Therefore, the output of the reducerq is
as follows: Let v be at level Lr−1 and let ui, for i ∈ {1, . . . , kv}, be the nodes at level Lr−2
in the v-up-circuit. For each v in reducerq, it outputs (to(ui), v, val(v)), where to(ui) is the
index of the reducer containing the ui-down-circuit and val(v) is the value of v determined
in the computation of the v-down-circuit. The reducerq also passes on all v-down-circuits
and v-up-circuits contained in it.

In the next round, the map function sends each (to(uin), v, val(v)) to the reducer containing
the uin-down-circuit; that is, it generates the key-value pair 〈to(uin); (v, val(v))〉. Of course,
the map function also passes along all v-down-circuits and v-up-circuits to the proper reducers.

Since now each Lr−2-down-circuit is contained completely in a reducer that has gathered
all values of nodes at level Lr−1 necessary to compute this subcircuit, all Lr−2-down-circuits
can be computed in their reducers. Now we can compute the values of nodes higher and
higher up in the circuit, by iterating the last mapping-reducing function pair, until the value
is finally known for the unique output node. As before, we clearly stay within the memory
and I/O buffer limits of each reducer. J

ISAAC 2019

52:20 Efficient Circuit Simulation in MapReduce

B Illustrating Figures

xn−1 = xσ`

xn−2

xσ`−1

xσ2

xσ1+1

xσ1

x2

x1

x0 = xσ0+1

y0 y1 yσ1 yσ1+1 · · · yn−2 yn−1

reducer0

reducer1

reducer`−1

Figure 1 Separation of the input variables x0, . . . , xn−1 into ` blocks for the ` reducers, in
dependence of the values of yi.

β edg
es

reducerq

For every key-value pair 〈q; (jv, level(v), v)〉
such that there is an i ∈ N with level(v) = Li:

v-up-circuit of
depth Li−1 − Li

v

v-down-circuit of
depth Li − Li+1

For every key-value pair 〈q; (jv, level(v), v)〉
such that level(v) 6= Li for all i ∈ N:

v

v-up-circuit of depth 1

v-down-circuit of depth 1

Figure 2 The up-circuits and down-circuits constructed in reducerq, comprising up to β edges.

F. Frei and K. Wada 52:21

Li

Li+1

Li+2

Li

Li+1

Li+2

v

u

v

u

v′

u′

v′

u′

dummy dummy′1

dummy′2

Figure 3 Two jumping edges on the left and their resolving division on the right.

x0

s0(0)

x1

s0(1)

x2

s0(2)

x3

s0(3)

x4

s0(4)

x5

s0(5)

x6

s0(6)

x7

s0(7)

+s1(0) +s1(1) + s1(2) + s1(3)

+
s2(0)

+
s2(1)

+

s3(0)

y0 = s0(0)

y1 = s1(0)

y2 = s1(0) + s0(2)

y3 = s2(0)

y4 = s2(0) + s0(4)

y5 = s2(0) + s1(2)

y6 = s2(0) + s1(2) + s0(6)

y7 = s3(0)

Figure 4 Calculation of the prefix-sums si(j) =
∑

p∈[(j+1)2i]\[j2i] xp for every i ∈ [1 + log q] and
j ∈ [q/2i] for the example of q = 8.

ISAAC 2019

Concurrent Distributed Serving with Mobile
Servers
Abdolhamid Ghodselahi
Institute of Telematics, Hamburg University of Technology, Germany
abdolhamid.ghodselahi@tuhh.de

Fabian Kuhn
Department of Computer Science, University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Volker Turau
Institute of Telematics, Hamburg University of Technology, Germany
turau@tuhh.de

Abstract

This paper introduces a new resource allocation problem in distributed computing called distributed
serving with mobile servers (DSMS). In DSMS, there are k identical mobile servers residing at the
processors of a network. At arbitrary points of time, any subset of processors can invoke one or more
requests. To serve a request, one of the servers must move to the processor that invoked the request.
Resource allocation is performed in a distributed manner since only the processor that invoked the
request initially knows about it. All processors cooperate by passing messages to achieve correct
resource allocation. They do this with the goal to minimize the communication cost.

Routing servers in large-scale distributed systems requires a scalable location service. We
introduce the distributed protocol Gnn that solves the DSMS problem on overlay trees. We prove that
Gnn is starvation-free and correctly integrates locating the servers and synchronizing the concurrent
access to servers despite asynchrony, even when the requests are invoked over time. Further, we
analyze Gnn for “one-shot” executions, i.e., all requests are invoked simultaneously. We prove that
when running Gnn on top of a special family of tree topologies – known as hierarchically well-
separated trees (HSTs) – we obtain a randomized distributed protocol with an expected competitive
ratio of O

(
logn

)
on general network topologies with n processors. From a technical point of view, our

main result is that Gnn optimally solves the DSMS problem on HSTs for one-shot executions, even
if communication is asynchronous. Further, we present a lower bound of Ω(max{k, logn/ log logn})
on the competitive ratio for DSMS. The lower bound even holds when communication is synchronous
and requests are invoked sequentially.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Distributed algorithms; Theory of computation → Graph algorithms analysis; Theory of
computation → Discrete optimization

Keywords and phrases Distributed online resource allocation, Distributed directory, Asynchronous
communication, Amortized analysis, Tree embeddings

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.53

Related Version A full version of this paper is available at https://arxiv.org/abs/1902.07354
[14].

Funding This work is supported by the Deutsche Forschungsgemeinschaft (DFG), under grant DFG
TU 221/6-3.

© Abdolhamid Ghodselahi, Fabian Kuhn, and Volker Turau;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 53; pp. 53:1–53:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abdolhamid.ghodselahi@tuhh.de
mailto:kuhn@cs.uni-freiburg.de
mailto:turau@tuhh.de
https://doi.org/10.4230/LIPIcs.ISAAC.2019.53
https://arxiv.org/abs/1902.07354
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Concurrent Distributed Serving with Mobile Servers

1 Introduction

Consider the following family of online resource allocation problems. We are given a metric
space with n points. Initially, a set of k ≥ 11 identical mobile servers are residing at different
points of the metric space. Requests arrive over time in an online fashion, that is, one or
several requests can arrive at any point of time. A request needs to be served by a server at
the requesting point sometime after its arrival. The goal is to provide a schedule for serving
all requests. This abstract problem lies at the heart of many centralized and distributed
online applications in industrial planning, operating systems, content distribution in networks,
and scheduling [3, 7, 8, 16, 21]. Each concrete problem of this family is characterized by
a cost function. We study this abstract problem in distributed computing and call it the
distributed serving with mobile servers (DSMS) problem. A distributed protocol Alg that
solves the DSMS problem must compute a schedule for each server consisting of a queue of
requests such that consecutive requests are successively served, and all requests are served.
The k schedules are distributedly stored at the requesting nodes: each node knows for each
of its requests the node which invoked the subsequent request in the schedule so that a server
after serving one request can subsequently move to the next node (not necessarily a different
node). As long as new requests are invoked the schedule is extended. Therefore, in response
to the appearance of a new request at a given processor, Alg must contact a processor that
invoked a request but yet has no successor request in the global schedule, to instruct the
motion of the corresponding server. This will result in the entry of a server to the requesting
processor. Sending a server from a processor to another one is done using an underlying
routing scheme that routes most efficiently. The goal is to minimize the ratio between the
communication costs of an online and an optimal offline protocols that solve DSMS. We
assume that an optimal offline DSMS protocol Opt knows the whole sequence of requests in
advance. However, Opt still needs to send messages from each request to its predecessor
request. The DSMS problem has some interesting applications. We state two of them:

Distributed k-server problem

The k-server problem [5, 18], is arguably one of the most influential research problems in the
area of online algorithms and competitive analysis. The distributed k-server was studied in
[8] where requests arrive sequentially one by one, but only after the current request is served.
The cost function for this problem is defined as the sum of all communication costs and the
total movement costs of all servers. A generalization of the k-server problem where requests
can arrive over time is called the online service with delay (OSD) problem [4, 9]. The OSD
cost function is defined as the sum of the total movement costs of all servers and the total
delay cost. The delay of a request is the difference between the service and the arrival times.

Distributed queuing problem

This problem is an application of DSMS with k = 1 , i.e., only one server or shared object
[10, 15, 16]. The distributed queuing problem is at the core of many distributed problems
that schedule concurrent access requests to a shared object. The goal is to minimize the sum
of the total communication cost and the total “waiting time”. The waiting time of a request
is the difference between the times when the request message reaches the processor of the
predecessor request and when the predecessor request is invoked. Note that in this problem,

1 Table 1 provides an index for the essential notations used throughout the paper.

A. Ghodselahi, F. Kuhn, and V. Turau 53:3

the processor of a request must only send one message to the processor of the predecessor
request in the global schedule. Two well-known applications for this problem are distributed
mutual exclusion [19, 21, 22] and distributed transactional memory [24].

Next, we explain why DSMS is also interesting from a theoretical point of view even for
one-shot executions, that is, when all requests are simultaneously invoked. Figure 1 shows a
rooted tree T , where the lengths of all edges of each level are equal. Further, the length of
every edge is shorter than the length of its parent edge by some factor larger than one. A set
of six requests arrive at the leaves of T at the same time. Two servers s0, s1 are initially
located at the points that invoked requests r1

0 and r2
0. Serving the requests r1

0 and r2
0 does

not require communication, and these two requests are the current tails of the queues of s0
and s1. The requests r1

0 and r2
0 are at the heads of the two queues. An optimal solution

for serving the remaining requests is that s0 consecutively serves the requests rb, rc, and ra
after serving r1

0, while s1 serves rd after having served r2
0. Next, consider an asynchronous

network where, in contrast with a synchronous network where there is a global clock, message
latencies are arbitrary and protocols have no control over these latencies. A possible schedule,
in this case, is shown in Figure 1: Request ra is scheduled after r1

0, rb after ra, and rd after
rb, since the message latency of a request further away can be much less than the latency of
a closer request. This can lead to complications with regard to improving the locality as it is
met in the above optimal solution.

T

rd r20 r10 rb

T ′′

ra

T ′

rc

Figure 1 A distributed protocol may lead to complications with regard to improving locality.

GNN protocol

We devise the generalized nearest-neighbor (Gnn) protocol that greedily solves the DSMS
problem on overlay trees. An overlay tree T is a rooted tree that is constructed on top
of the underlying network. The processors of the original network are in a one-to-one
correspondence with the leaves of T . Hence, only T 's leaves can invoke requests, and the
remaining overlay nodes are artificial. The k servers reside at different leaves of T . Initially,
all edges of T are oriented such that from each leaf there is a directed path to a leaf, where a
server resides. This also implies that every leaf node with a server has a self-loop. Roughly
speaking, the main idea of Gnn is to update the directions of edges with respect to future
addresses of a server. A leaf invoking a request forwards a message along the directed links,
the orientations of all these links are inverted. When a message reaches a node and finds
several outgoing (upward/downward) links, it is forwarded via an arbitrary downward link
to find the current or a future address of a server. We show that in Gnn a processor holding
a request always sends a message through a direct path to the processor of the predecessor
request in the global schedule. We refer to Section 3 for a formal description of Gnn.

ISAAC 2019

53:4 Concurrent Distributed Serving with Mobile Servers

1.1 Our Contribution
This paper introduces the DSMS problem as a distributed online allocation problem. We
devise the greedy protocol Gnn that solves the DSMS problem on overlay trees. We prove
that even in an asynchronous system Gnn operates correctly, that is, it does not suffer
from starvation, nor livelocks, or deadlocks. To the best of our knowledge, Gnn is the first
link-reversal-based protocol that supports navigating more than one server.

I Theorem 1. Suppose the overlay tree T is constructed on top of a distributed network.
Consider the DSMS problem on T where a set of k ≥ 1 identical mobile servers are initially
located at different leaves of T . Further, a sequence of requests can be invoked at any time by
the leaves of T . Then Gnn schedules all requests to be served by some server at the requested
points in a finite time despite asynchrony.

While Gnn itself solves any instance of the DSMS problem, we analyze Gnn for the
particular case that the requests are simultaneously invoked. We consider general distributed
networks with n processors. We model such a network by a graph G. A hierarchically
well-separated tree (HST) is an overlay tree with parameter α > 1, that is, an α-HST is a
rooted tree where every edge weight is shorter by a factor of α from its parent edge weight.
A tree is an HST if it is an α-HST for some α > 1. There is a randomized embedding of
any graph into a distribution over HSTs [6, 11]. We sample an HST T according to the
distribution defined by the embedding. We consider an instance I of the DSMS problem
where the communication is asynchronous, and the requests are simultaneously invoked by
the nodes of G. When running Gnn on T , we get a randomized distributed protocol on G
that solves I with an expected competitive ratio of O

(
logn

)
against oblivious adversaries2.

I Theorem 2. Let I denote an instance of the DSMS problem consisting of an asynchronous
network with n processors and a set of requests that are simultaneously invoked by processors
of the network. There is a randomized distributed protocol that solves I with an expected
competitive ratio of O(logn) against an oblivious adversary.

Consider an instance I of DSMS that consists of an HST T where communication is
asynchronous and a set of requests that are simultaneously invoked by the leaves of T .
Analyzing Gnn for I turns out to be involved and non-trivial. The fact that the Gnn (as
any other protocol) has no control on the message latencies bears a superficial resemblance
to the case where the requests are invoked over time. Hence, when analyzing Gnn for I, one
faces the following complications: 1) A server may go back to a subtree of T after having left
it. 2) A request in a subtree of T that initially hosts at least one server can be served by a
server that is initially outside this subtree. 3) Different servers can serve two requests in a
subtree of T that does not initially host any server. Theorem 2 is derived from our main
technical result for HSTs.

I Theorem 3. Consider an instance I of DSMS that consists of an HST T where even the
communication is asynchronous and a set of requests that are simultaneously invoked by the
leaves of T . The Gnn protocol optimally solves I.

One-shot executions of the distributed queuing problem for synchronous communication
were already considered in [16]. The following corollary follows from Theorem 3.

I Corollary 4. Gnn optimally solves the distributed queuing problem on HSTs for one-shot
executions even when the communication is asynchronous.

2 This assumes that the sequence of requests is statistically independent of the randomness used for
constructing the given tree.

A. Ghodselahi, F. Kuhn, and V. Turau 53:5

We provide a simple reduction form the distributed k-server problem to the DSMS
problem. Our following lower bound is obtained using this reduction and an existing lower
bound [8] on the competitive ratio for the distributed k-server problem.

I Theorem 5. There is a network topology with n processors – for all n – such that there is no
online distributed protocol solving DSMS with a competitive ratio of o(max{k, logn/ log logn})
against adaptive online adversaries where k is the number of servers. This result even holds
when requests are invoked one by one by processors in a sequential manner and even when
the communication is synchronous.

2 Model, Problem Statement, and Preliminaries

2.1 Communication Model
We consider a point-to-point communication network that is modeled by a graph G = (V,E),
where the n nodes in V represent the processors of the network and the edges in E represent
bidirectional communication links between the corresponding processors. We suppose that
the edge weights are positive and are normalized such that the weight of each edge will be at
least 1. If G is unweighted, then we assume that the weight of an edge is 1. We consider the
message passing model [20] where neighboring processors can exchange messages with each
other. The communication links can have different latencies. These latencies are not even
under control of an optimal offline distributed protocol. We consider both synchronous and
asynchronous systems. In a synchronous system, the latency for sending a message over an
edge equals the weight of the edge. In an asynchronous system, in contrast, the messages
arrive at their destinations after a finite but unbounded amount of time. Messages that
take a longer path may arrive earlier, and the receiver of a message can never distinguish
whether a message is still in transit or whether it has been sent at all. For our analysis,
however, we adhere to the conventional approach where the latencies are scaled such that
the latency for sending a message over an edge is upper bounded by the edge weight in the
“worst case” (for every legal input and in every execution scenario) (see Section 2.2 in [20]
for more information).

2.2 Distributed Serving with Mobile Servers (DSMS) Problem
The input for DSMS problem for a graph G consists of k ≥ 1 identical mobile servers that
are initially located at different nodes of G and a set R of requests that are invoked at the
nodes at any time. A request ri ∈ R is represented by (vi, ti) where node vi invoked request
ri at time ti ≥ 0. A distributed protocol Alg that solves the DSMS problem needs to serve
each request with one of the k servers at the requested node. Hence, Alg must schedule
all requests that access a particular server. Consequently, Alg outputs k global schedules.
Let πzAlg where z ∈ {1, . . . , k} denote the z-th schedule generated by Alg, and sz be the
z-th server. The request sets of these k schedules form a partition of R, and all requests of
the schedule πzAlg consecutively access the server sz. We assume that at time 0, when an
execution starts, the tail of schedule πzAlg is at a given node vz0 ∈ V that hosts sz. Formally,
this is modeled as a “dummy request” rz0 = (vz0 , 0) that has to be scheduled first in the
schedule πzAlg by Alg. Consider two requests ri and rj that are consecutively served by sz
where ri is scheduled after rj . To schedule request ri the protocol needs to inform node vj ,
the predecessor request rj in the constructed schedule. As soon as rj is served by sz, node
vj sends the server to vi for serving ri using an underlying routing facility that efficiently
routes messages. The goal is to minimize the total communication cost, i.e., the sum of the
latencies of all messages sent during the execution of Alg.

ISAAC 2019

53:6 Concurrent Distributed Serving with Mobile Servers

2.3 Preliminaries
Consider a distributed protocol Alg for the DSMS problem when requests can arrive at
any time. Let R denote the set of requests, including the dummy requests. Assume that
Alg partitions R into k sets R1

Alg, . . . ,RkAlg, and that it schedules the requests in set RzAlg
according to permutation πzAlg. Denote the request at position i of πzAlg by rπz

Alg(i). The
dummy request rz0 of πzAlg is represented by rπz

Alg(0). Consider a message denoted by µ. Let
`Alg(µ) denote the latency of message µ as routed by Alg. For every i ∈ {1, . . . , |R| − 1}, if
ri belongs to RzAlg, the communication cost cAlg

(
rπz

Alg(i−1), rπz
Alg(i)

)
incurred for scheduling

rπz
Alg(i) as the successor of rπz

Alg(i−1) is the sum of the latencies of all messages sent by Alg
to schedule rπz

Alg(i) immediately after rπz
Alg(i−1). The total communication cost of Alg for

scheduling all requests in RzAlg is defined as

CAlg(πzAlg) :=
|Rz

Alg|−1∑
i=1

cAlg

(
rπz

Alg(i−1), rπz
Alg(i)

)
. (1)

The total communication cost of Alg for scheduling all requests in R, therefore, is

CAlg :=
k∑
z=1

CAlg(πzAlg). (2)

2.4 Hierarchically Well-Separated Trees (HSTs)
Embedding of a metric space into probability distributions over tree metrics have found
many important applications in both centralized and distributed settings [4, 5, 13]. The
notion of a hierarchically well-separated tree was defined by Bartal in [6].

I Definition 6 (α-HST). For α > 1 an α-HST of depth h is a rooted tree with the following
properties: The children of the root are at a distance αh−1 from the root and every subtree of
the root is an α-HST of depth h− 1. A tree is an HST if it is an α-HST for some α > 1.

The definition implies that the nodes two hops away from the root are at a distance αh−2

from their parents. The probabilistic tree embedding result of [11] shows that for every metric
space (X, d) with minimum distance normalized to 1 and for every constant α > 1 there is
a randomized construction of an α-HST T with a bijection f between the points in X and
the leaves of T such that a) the distances on T are dominating the distances in the metric
space (X, d), i.e., ∀x, y ∈ X : dT

(
f(x), f(y)

)
≥ d(x, y) and such that b) the expected tree

distance is E
[
dT
(
f(x), f(y)

)]
= O(α log |X|/ logα) · d(x, y) for every x, y ∈ X. The length

of the shortest path between any two leaves u and v of T is denoted by dT (u, v). An efficient
distributed construction of the probabilistic tree embedding of [11] has been given in [12].

3 The Distributed GNN Protocol

In this section the Gnn protocol is introduced.

3.1 Description of GNN
Gnn runs on overlay trees and outputs a feasible solution for the DSMS problem. Consider
a rooted tree T = (VT , ET) whose leaves correspond to the nodes of the underlying graph
G = (V,E), i.e., V ⊆ VT . Let n = |V |. The k ≥ 1 identical mobile servers are initially at
different leaves of T . Further, there is a dummy request at every leaf that initially hosts a

A. Ghodselahi, F. Kuhn, and V. Turau 53:7

server. The leaves of T can invoke requests at any time. A leaf node can invoke a request
while it is hosting a server and a leaf can also invoke a request while its previous requests
have not been served yet. Initially, a directed version of T is constructed and denoted by
H, the directed edges of H are called links. During an execution of Gnn, Gnn changes the
directions of the links. Denote by v.links the set of neighbors of v that are pointed by v.
After a leaf u has invoked a request it sends a find-predecessor message denoted by µ(u)
along the links to inform the node of the predecessor request in the global schedule. The
routing of µ(u) is explained below. At the beginning before any message is sent and for any
server, all the nodes on the direct path from the root of T to the leaf that hosts the server,
point to the server. Further, the host points to itself and creates a self-loop. Hence, we
have k directed paths with downward links from the root of T to the points of the current
tails of the schedules. Any other node points to its parent with an upward link. Therefore,
the sets v.links for all v ∈ VT are non-empty at the beginning of the executing the protocol.
Figure 2a shows the directed HST at the beginning as an example.

Algorithm 1 Gnn Protocol.

Input :The rooted tree T , k identical mobile servers that are initially at distinct
leaves of T , and a set of requests that are invoked over time

Output : k schedules for serving all requests
Upon requesting a service: Algorithm 2

Upon receiving a find-predecessor message: Algorithm 3

Upon u invoking a new request

Consider the leaf node u when it invokes a new request r. If u has a self-loop, then r is
scheduled immediately after the last request that has been invoked at u. Otherwise, the leaf
u atomically sends µ(u) to its parent through an upward link, u points to itself, and the
link from u to its parent is removed. We suppose that messages are reliably delivered. The
details of this part of the protocol are given by Algorithm 2. See Figure 2b as an example.

Algorithm 2 Upon u invoking a new request r.

1 do atomically
/* suppose u.links = {v} (u as a leaf always points either to itself or

to its parent) */
2 if u = v then
3 r is scheduled immediately after the last request that has been invoked by u
4 else
5 u sends µ(u) to v
6 u.links := {u}
7 end
8 end

Upon w receiving µ(u) from node v

Suppose that node w receives a find-predecessor message µ(u) from node v. The node w
executes the following steps atomically. If w has at least one downward link, then µ(u) is
forwarded to some child of w through a downward link (ties are broken arbitrarily). Then,
w removes the downward link and adds a link to v – independently of whether v is the

ISAAC 2019

53:8 Concurrent Distributed Serving with Mobile Servers

v

z w

u1 u2 u3 u4 u5

s s′

(a) initial system state.

v

z w

u1 u2 u3 u4 u5

µ2 µ4 µ5

s s′

(b) step 1.

v

z w

u1 u2 u3 u4 u5

µ2

µ4

µ5
s s′

(c) step 2.

Figure 2 Gnn protocol: (a) The servers s and s′ serve requests in schedules π and π′, respectively.
The dummy requests at u1 and u3 are the initial tails of π and π′, respectively. (b) Nodes u2, u3, u4,
and u5 respectively issue requests r2, r3, r4, and r5 at the same time and send the find-predecessor
messages µ2, µ3, µ4, and µ5, respectively, along the arrows. (c) The request r3 is the current tail of
π′. Both µ4 and µ5 reach w at the same time. First, the message µ4 is arbitrarily processed by w
and w forwards µ4 towards v and therefore µ5 is deflected towards u4.

parent or a child of w. If w does not have a downward link, it either points to itself, or it
has an upward link. In the latter case, µ(u) is atomically forwarded to the parent of w, the
upward link from w to its parent is removed and then w points to v using a downward link.
Otherwise, w is a leaf and points to itself. The request r invoked by u is scheduled after
the last request that has been invoked by w. Then, w removes the link that points to itself
and points to v using an upward link. The details of this part of the protocol are given by
Algorithm 3. Also, see Figure 2c and Figure 3.

Algorithm 3 Upon w receiving µ(u) from node v (w 6= v).

1 do atomically
2 if there exists a child node in w.links then
3 z =: an arbitrary child node in w.links
4 else
5 z =: the only node in w.links
6 end
7 w.links := w.links− {z}
8 w.links := w.links ∪ {v}
9 if z 6= w then

10 w sends µ(u) to z
11 else
12 the corresponding request to µ(u) is scheduled immediately after the last

request that has been invoked by w
13 end
14 end

3.2 Correctness of GNN
Regarding the description of Gnn, we need to show two invariants for Gnn. The first is that
Gnn eventually schedules all requests. The second one is that Gnn is starvation-free so that
a scheduled request is eventually served.

3.2.1 Scheduling Guarantee
I Theorem 7. Gnn guarantees that the find-predecessor message of any node that invokes a
request always reaches a leaf node v in a finite time such that v.links = {v}.

A. Ghodselahi, F. Kuhn, and V. Turau 53:9

v

z w

u1 u2 u3 u4 u5

µ4

s s′s′

(a) step 3.

v

z w

u1 u2 u3 u4 u5

µ4

s s′

(b) step 4.

v

z w

u1 u2 u3 u4 u5

ss′

(c) step 5.

Figure 3 Gnn protocol: (a) The request r2 is scheduled after the current tail of π and now r2 is
the current tail of π and u2 obtains the server s. The request r5 is scheduled after r4 while µ4 is
still in transit. (b) µ4 still follows arrows, reversing the directions of arrows along its way. (c) The
request r4 is scheduled after r2 and s moves to u4. After r4 served by s, then s moves from u4 to u5

since r5 has already been scheduled after r4. Figure 2–Figure 3 illustrates that there is always at
least one connected path with purple arrows from the root to some leaf.

We prove the scheduling guarantee stated in Theorem 7 using the following properties of
Gnn. First, we need to show that any node always has at least one outgoing edge in Gnn.

I Lemma 8. In Gnn, v.links is never empty for any node v ∈ VT .

Proof. At the beginning of any execution, v.links is not empty for any v ∈ VT . The set
v.links changes only when there is a (find-predecessor) message at v (see Line 6 of Algorithm 2
and Line 7 and Line 8 of Algorithm 3). During an execution, every time v receives a message,
a node is removed from v.links while a new node is added to v.links. This also covers the
case when at least two messages are received by v at the same time. The node v atomically
processes all these messages in an arbitrary order. Therefore, v.links never gets empty. J

I Lemma 9. Gnn always guarantees that on each edge of H, there is either exactly one link
or exactly one message in transit.

Proof. Initially, either a node points to its parent with an upward link or a node points to its
children with downward links in the Gnn protocol. Consider the edge (u, v) where v ∈ u.links.
Further, consider the first time in which a message is in transit on (u, v). Immediately before
this transition occurs, u must point to v, and there is not any message in transit on the edge.
Therefore, w.r.t. the protocol description, the message must be sent by u to v, and the link
that points from u to v has been removed. Since there is not any link while the message
is in transit, it is not possible to have a second message to be in transit at the same time.
When the message arrives at v, the node v points to u, and the message is removed from the
edge. The next time, if a message will be transited on the edge, then v must have sent it to
u and removed the link that points from v to u. J

I Lemma 10. The directed tree H always remains acyclic during an execution, hence a path
from a node to another node in H is always the direct path.

Proof. The Gnn protocol runs on the directed tree H in which the underlying tree – that
is, T – is fixed, and the directions of links on H are only changed. Therefore, H is acyclic
because the tree is always fixed, and w.r.t. Lemma 9 that shows that it never occurs a state
where on the edge (u, v), u and v point to each other at the same time. J

The following lemma implies that a find-predecessor message always reaches the node of
its predecessor using a direct path constructed by Gnn.

I Lemma 11. Gnn guarantees that there is always at least one direct path in H from any
leaf node u to a leaf node v where v.links = {v}.

ISAAC 2019

53:10 Concurrent Distributed Serving with Mobile Servers

Proof. If the leaf node u points to itself, we are done. Otherwise, w.r.t. Lemma 8 there
must be a path from u to a leaf node v since the tree H is acyclic. This path must be a
direct path w.r.t. Lemma 10. The leaf node v must point to itself w.r.t. Lemma 8. J

Proof of Theorem 7. Using Lemma 11, it remains to show that any message traverses in
finite time a direct path between two leaves. The number of edges on the direct path between
any two leaves of T is upper bounded by the diameter of the tree. Further, any message that
is in transit at edge (u, v) from u to v is delivered reliably at v in a finite time. Therefore,
to show that a request is eventually scheduled in a finite time, it remains to show that a
message will never be at a node for the second time. To obtain a contradiction, assume that
the message µ is the first message that visits a node twice, and the first node visited twice by
µ denoted by v ∈ VT . With respect to Lemma 10, there is never a cycle in H. Therefore, the
edge e = (u, v) must be the first edge that is traversed by µ first from v to u and immediately
from u to v for the second time, and µ must be the first message that traverses an edge twice.
This implies that immediately before u receives µ, the node u points to v, and µ is in transit
on e at the same time. This contradicts Lemma 9. J

3.2.2 Serving Guarantee
I Theorem 12. Gnn is starvation-free. In other words, any scheduled request is eventually
served by some server.

Consider any of k global schedules that produced by Gnn, say πwGnn. Assume that there is
more than one request scheduled in πwGnn. For any two requests ri = (vi, ti) and rj = (vj , tj)
in πwGnn where ri is scheduled immediately before rj , we see e = (ri, rj) as a directed edge
where rj points to ri. This edge is actually simulated by the direct path – by Lemma 11, a
message always finds the node of its predecessor using a direct path on H – between the
leaves vi and vj that is traversed by the message sent from vj to vi. Let FwAlg denote the
graph constructed by the messages of all requests in RwAlg.

I Lemma 13. FwAlg is a directed path towards the head of the schedule, that is, rw0 = rπw
Gnn(0).

Proof. The proof has three parts.
1) Any node of Fw

Alg, except the dummy request, has exactly one outgoing edge:
This is obvious since any node that invokes a request sends exactly one message.

2) Any node in Fw
Alg has at most one incoming edge: For the sake of contradiction,

assume that there is a node contained in FwAlg denoted by r = (v, t) with at least two
incoming edges in FwAlg. This implies that two messages must reach v in H before v
invokes any other request after r. However, when the first message reaches v – if any
other message does not reach v before these two messages – v removes the link that points
to itself and adds a link that points to its parent w.r.t. Line 7 and Line 8 of Algorithm 3.
The second message cannot reach v as long as at least one request is invoked by v after
invoking r. This contradicts our assumption in which two messages reach v before the
time when v invokes another request after invoking r.

3) Fw
Alg is connected: To obtain a contradiction, assume that the graph FwAlg is not

connected. Hence, w.r.t. the first and second parts, we have at least one connected
component with at least two requests in RwAlg that form a cycle, and the connected
component does not include the dummy request in rw0 . Let Rw,cAlg denote the requests in
the connected component Fw,cAlg that forms a cycle. Consider the node z in VT that is the
lowest common ancestor of those leaves of H that invoke the requests in Rw,cAlg. Further,
let the subtree Hw,c of H denote the tree rooted at z. All messages of requests in Rw,cAlg
must traverse inside Hw,c since Fw,cAlg is disconnected with any request in RwAlg \ R

w,c
Alg.

A. Ghodselahi, F. Kuhn, and V. Turau 53:11

Assume that at least one message of requests in Rw,cAlg reaches z. Consider the first
message µ by r that reaches z at time t. If there is not any downward link at z at t,
then µ is forwarded to the parent of z. This is a contradiction with the fact that Fw,cAlg
is disconnected with any request in RwAlg \ R

w,c
Alg. Hence, there must be at least one

downward link at z at t. On the other hand, since µ is the first message of requests
in Rw,cAlg that reaches z, all downward links at z at time t must have been created by
some messages of requests in Hw,c that are not in Rw,cAlg. Note that if a downward link
at z is there since the beginning, then we assume that, w.l.o.g., it has been created by
a “virtual message” sent by the node of the corresponding dummy request. Suppose µ
is forwarded through one of these downward links that was created by the message of
r′ – as mentioned, r′ can be a dummy request – that is in Hw,c but not in Rw,cAlg. The
original downward path from z to the leaf node of r′ can be changed by the message of
a request in Hw,c – can be a request in Rw,cAlg. Thus, either r is scheduled immediately
after some request in Hw,c that is not in Rw,cAlg or some other request in Rw,cAlg. In either
case, we get a contradiction with our assumption in which Fw,cAlg is disconnected with any
request in RwAlg \ R

w,c
Alg.

If there is not any message of a request in Rw,cAlg that can reach z, then there must be
at least two downward links during the execution at z that have been created by some
messages of requests that are not in Rw,cAlg – this holds because if there is at most one
downward link at z, then a message of some request in Rw,cAlg must reach z w.r.t. the
definition of z. However, the existence of at least two downward links at z implies that
Fw,cAlg is not connected. This is true because there are at least two downward paths that
partition the requests in Rw,cAlg into two disjoint components in FwAlg w.r.t. the definition of
z and our assumption in which there is not any message of request in Rw,cAlg that can reach
z. This is a contradiction with our assumption in which Fw,cAlg is a connected component.

The above three parts all altogether show that FwAlg is indeed a directed path that points
towards the dummy request in RwAlg. J

Proof of Theorem 12. Consider any of the k global schedules resulting from Gnn, say πwGnn.
If there is only one request in πwGnn – there must be at least one request, that is the dummy
request rw0 – then we are done. Otherwise, w.r.t. Lemma 13 there is a path of directed
edges such as e = (ri, rj) over the requests in RwAlg. When vi obtains a server, and after
ri is served, vi sends the server to vj for serving rj using an underlying routing scheme.
Consequently, all requests in RwAlg are served. J

Proof of Theorem 1. Theorem 7 and Theorem 12 together prove the claim of the theorem.
J

4 Analysis in a Nutshell

From a technical point of view, we achieve our main result on HSTs. In this section, we
provide an analysis of Gnn on HSTs in a nutshell. The complete analysis, including all
proofs appears in Section 5 of [14]. Our analysis of Gnn for general networks appears in
Section 5.4 of [14]. The lower bound claimed in Theorem 5 is proved in Section 6 of [14].

Let Alg denote a particular distributed DSMS protocol that sends a unique message
from the node of a request to the node of the predecessor request for scheduling the request
(the message can be forwarded by many nodes on the path between the two nodes of the
predecessor and successor requests). Consider a one-shot execution of Alg where requests
are invoked at the same time 0. Let G = (V,E) denote the input graph. Further, let

ISAAC 2019

53:12 Concurrent Distributed Serving with Mobile Servers

B =
(
VB = R, EB =

(R
2
))

be the complete graph, and consider two requests r = (v, 0) and
r′ = (v′, 0) in R where v, v′ ∈ V . Assume that r′ is scheduled as the successor of r by Alg in
the global schedule, and w.r.t. the DSMS problem definition Alg informs v by sending the
(find-predecessor) message µ′ from v′ to v. Therefore, the communication cost for scheduling
r′ equals the latency of µ′. Formally,

cAlg(r, r′) = `Alg(µ′). (3)

Let rsrc(µ′) = r′ denote the request corresponding with µ′. Further, let rdes(µ′) = r denote
the predecessor request r in the global schedule. We see e = (r, r′) as an edge in EB that is
constructed by µ′. Let us add µ(e) and e(µ) to the notation where µ(e) is the message that
constructs the edge e and e(µ) is the edge that is constructed by µ. For instance, here, µ(e)
refers to µ′ and e(µ′) refers to the edge (r, r′).

Representing the solution of ALG as a forest

We observe that any of the k resulting schedules π1
Alg, . . . , π

k
Alg can be seen as a TSP path

that spans all requests in the corresponding schedule as follows (see Lemma 13). The TSP
path F zAlg starts with the dummy request rz0 that is the head of πzAlg, and a request on
the TSP path F zAlg is connected using an edge to its successor in the schedule πzAlg. As
mentioned, the edge is constructed by the message sent by the requesting node to the node
of its predecessor request. Therefore, an edge of any TSP path – that is an edge in EB – is
actually a path on the input graph that is traversed by the corresponding message. For any
F ⊆ FAlg, we define the total communication cost of F as follows.

LAlg(F) :=
∑
e∈F

`Alg
(
µ(e)

)
. (4)

Therefore, the total communication cost of a TSP path equals the sum of latencies of
all messages that construct the TSP path. The k TSP paths represent a forest of B. Let
FAlg be the forest that consists of the k TSP paths F 1

Alg, F
2
Alg, . . . , F

k
Alg constructed by

Alg. We slightly abuse notation and identify a subgraph F of B =
(
R,
(R

2
))

with the set of
edges contained in F . The total communication cost of FALG equals the sum of total
costs of the k TSP paths F 1

Alg, F
2
Alg, . . . , F

k
Alg. For the input graph G = (V,E), we denote

the weight of edge e = (r, r′) ∈ EB by wG(e) := dG(v, v′) where v, v′ ∈ V (recall r = (v, t)
and r′ = (v′, t′)). Note that dG(v, v′) is the weight of the shortest path between v and v′ on
the input graph G. Generally, the total weight of the subgraph F of B w.r.t. the input
graph G equals the sum of weights of all edges in F . Formally,

WG(F) :=
∑
e∈F

wG(e). (5)

I Definition 14 (S-Respecting m-Forest). Let G = (V,E) be a graph and m ≤ |V |. A
forest F of G is called an m-forest if F consists of m trees. Further, let S ⊆ V , |S| ≤ m be
a set of at most m nodes. An m-forest F of G is S-respecting if the nodes in S appear in
different trees of F .

Let RD denote the set of k dummy requests in R. W.r.t. the Definition 14, FAlg is an
RD-respecting spanning k-forest of B =

(
R,
(R

2
))
. From now on, we consider the HST T as

the input graph.

A. Ghodselahi, F. Kuhn, and V. Turau 53:13

Locality-based forest

For any subtree T ′ of T and any subgraph F of B, let F (T ′) denote the subgraph of F that
is induced by those requests contained in F that are also in T ′. Further, let F 1, F 2, . . . , F k

denote the k trees of the spanning k-forest F of B. Let FGrd be any RD-respecting spanning
k-forest of B with the following basic locality properties.

I. [Intra-Component Property] For any subtree T ′ of T and for any w ∈ {1, . . . , k},
the component FwGrd(T ′) is a tree.

II. [Inter-Component Property] For any subtree T ′ of T , suppose that there are at least
two non-empty components F zGrd(T ′) and FwGrd(T ′) where w 6= z and w, z ∈ {1, . . . , k}.
Any of these components includes a dummy request.

We call such a forest a locality-based forest. Any locality-based forest is denoted by FGrd.
The following theorem provides a general version of Theorem 3.

I Theorem 15. Let I denote an instance of DSMS that consists of an HST T where the
communication is asynchronous and a set R of requests that are simultaneously invoked at
leaves of T . The protocol Alg is optimal if the total cost of the resulting forest by Alg is
upper bounded by the total weight of FGrd.

4.1 Optimality of GNN on HSTs
Consider a one-shot execution of Gnn, and suppose that FGnn is the resulting forest when
running Gnn on the given HST T w.r.t. the input sequence R. With respect to Theorem 15,
and the fact that Gnn only sends one unique message for scheduling a request to its
predecessor, it is sufficient to show that the forest FGnn can be transformed into a locality-
based forest such that the total cost of FGnn is upper bounded by the total weight of FGrd.
During an execution of Gnn, the Intra or Inter-Component property can be violated (see
Figure 1). Consider the following situations:
1. A server goes back to a subtree after the time when it leaves the subtree.
2. A request in a subtree of T that initially hosts at least one server is served by a server

that is not initially in the subtree.
3. Two requests in a subtree of T that does not initially host any server, are served by

different servers.
The first situation violates the Intra-Component property. Any of the second and the
third situation violates the Inter-Component property. In the following, we characterize
the Intra-Component and the Inter-Component properties by considering a timeline for the
messages that enter and leave a subtree of T . Consider a message µ that enters the subtree
T ′ of T . Another message can enter T ′ only after some message µ′ has left T ′ after µ entered
T ′ – the arrival times of messages µ and µ′ at the root of T ′ can be the same (cf. Lemma
5.3 and Lemma 5.6 of [14]). Similarly, a message can leave T ′ after µ′ left T ′ only after some
message has entered T ′ after µ′ left T ′. We refer to Lemma 5.6 for more details. Consider a
message µ that enters T ′. The fact that µ enters T ′ implies that a server will leave T ′ for
serving rsrc(µ). Let µ′ denote the first message that leaves T ′ after µ entered T ′. Leaving µ′
from T ′ implies that a server will enter T ′ for serving rsrc(µ′). If rsrc(µ′) is in the same TSP
path of FGnn with rdes(µ), then the server that had served rdes(µ) goes back to T ′ for serving
rsrc(µ′) after it left T ′, and therefore the Intra-Component property is violated. Otherwise,
the Inter-Component property is violated since two requests in T ′ are served by two different
servers in which at least one of the servers is initially outside of T ′. We say Gnn makes
an Inter-Component gap (µ, µ′) on T ′ in the latter case and an Intra-Component gap
(µ, µ′) on T ′ in the former case.

ISAAC 2019

53:14 Concurrent Distributed Serving with Mobile Servers

Transformation

We transform FGnn through closing the gaps that are made by Gnn on all subtrees of T .
A message µ′ can leave from several subtrees of T such that different messages enter the
subtrees before µ′. Therefore, Gnn can make different gaps with the same message µ′ on
this set of subtrees of T . We especially refer to Lemma 5.9 and Lemma 5.11 of [14] for more
details on the gaps of the subtrees of T . We consider the lowest subtree in this set and let
(µ, µ′) be a gap on that. We close the gap (µ, µ′) by removing e(µ′) and by adding the new
edge

(
rdes(µ), rsrc(µ′)

)
. In the example of Figure 1, for instance, the red edges are removed

and the new edges (r1
0, rb) and (rb, rc) are added. When we close the gap (µ, µ′), all other

gaps (µ′′, µ′) that are on higher subtrees are also closed. Therefore, we transform FGnn into
a new forest Fmdf by means of closing all gaps. The following lemma shows that Fmdf is
indeed the locality-based forest.

I Lemma 16. Fmdf is an RD-respecting spanning k-forest of B that satisfies the Intra-
Component and the Inter-Component properties.

It remains to show that the total cost of FGnn is upper bounded by the total weight
of the new forest Fmdf . Formally, we want to show that LGnn(FGnn) ≤ WT (Fmdf). Using
Lemma 11, a message always finds the node of its predecessor using a direct path on T in
any execution of Gnn. Regarding to our communication model described in Section 2.1,
therefore, for every edge e ∈ FGnn we have

`Gnn
(
µ(e)

)
≤ wT (e) (6)

Let (µ, µ′) be the gap on the lowest subtree of T among all subtrees of T with gaps (µ′′, µ′)
for any message µ′′ that makes a gap with µ′. By closing the gap (µ, µ′), we remove
eold :=

(
rsrc(µ′), rdes(µ′)

)
and add the new edge enew :=

(
rsrc(µ′), rdes(µ)

)
. Using (6), we

are immediately done if the latency of µ′ is upper bounded by the weight of enew. However,
the latency of µ′ can be larger than the weight of enew. By contrast, the weight of enew is lower
bounded by the latency of µ (cf. Corollary 5.10 and Lemma 5.15 of [14]). This lower bound
gives us the go-ahead to show that the weight of enew can be seen as an “amortized” upper
bound for `Gnn(µ′). In the following, we provide an overview of our amortized analysis
that appears in Section 5.3.3 of [14]. Let Enew := Fmdf \ FGnn and Eold := FGnn \ Fmdf
be the sets of all edges that are added and removed during the transformation of FGnn,
respectively. Further, we consider a set of edges that provides enough “potential” for our
amortization.

Epot :=
{
e ∈ FGnn :

(
µ(e), µ(e′)

)
is a gap for some e′ ∈ Eold

}
.

For every edge e ∈ Eold, let Epot(e) :=
{
e′ ∈ Epot :

(
µ(e′), µ(e)

)
is a gap

}
. Further, for

every edge e ∈ Epot, let Eold(e) :=
{
e′ ∈ Eold :

(
µ(e), µ(e′)

)
is a gap

}
. In this overview, we

consider the simple case where 1) |Eold(e)| = 1 for every edge e ∈ Epot and |Epot(e)| = 1
for every edge e ∈ Eold. Further, 2) the sets Eold and Epot do not share any edge. The
execution provided by Figure 1 represents an example of the above simple case. We define
the potential function Φ(F) for a subset F of FGnn as follows Φ(F) := WT (F)−LGnn(F).
W.l.o.g., we assume that the edges in Eold are sequentially replaced with the edges in Enew.
Hence, assume that eoldi is replaced with enewi during the i-th replacement. Let also epoti be
the only edge in Epot(eoldi).

I Lemma 17. If |Eold(e)| = 1 for every edge e ∈ Epot, |Epot(e)| = 1 for every edge e ∈ Eold,
and Eold ∩ Epot = ∅, then

wT (eoldi) ≤ wT (enewi) + Φ
(
Epot \

{
epot1 , . . . , epoti−1

})
− Φ

(
Epot \

{
epot1 , . . . , epoti

})
(7)

for every i ≥ 1.

A. Ghodselahi, F. Kuhn, and V. Turau 53:15

Proof. Using the definition of the potential function Φ and the definitions of the total weight
and the total communication cost of a subset of edges in FGnn, we have

Φ
(
Epot \

{
epot1 , . . . , epoti−1

})
− Φ

(
Epot \

{
epot1 , . . . , epoti

})
= wT (epoti)− `Gnn(epoti).

Therefore, we need to show that wT (eoldi) ≤ wT (enewi) + wT (epoti) − `Gnn(epoti). Let the
subtree T ′ of T be the lowest subtree such that

(
µ(epoti), µ(eoldi)

)
is a gap on T ′. This

implies that wT (enewi) = δ(T ′). On the other hand, using Lemma 5.15 of [14] we have
`Gnn(epoti) ≤ δ(T ′) = wT (enewi). It remains to show that wT (eoldi) ≤ wT (epoti). Let T ′′j
be the highest subtree of T such that

(
µ(epoti), µ(eoldi)

)
is a gap on T ′′j and T ′′j is a child

subtree of T ′′. The message µ(eoldi) does not leave T ′′ since Epot(eoldi) =
{
epoti

}
. Hence,

wT (eoldi) = δ(T ′′). On the other hand, the fact that the message µ(epoti) enters T ′′j indicates
that wT (epoti) ≥ δ(T ′′). Consequently, wT (epoti) ≥ wT (eoldi) and we are done. J

When we sum up (7) for all i, we get

WT (Eold) ≤WT (Enew) + Φ
(
Epot

)
. (8)

Using the definition of the potential function Φ and using LGnn(Eold) ≤ WT (Eold) w.r.t
(6), therefore we get LGnn(Epot) + LGnn(Eold) ≤ WT (Enew) + WT (Epot). Hence, we have
LGnn(FGnn) ≤WT (Fmdf) since Fmdf = FGnn\Eold∪Enew and LGnn

(
FGnn\(Eold∪Epot)

)
≤

WT

(
FGnn \ (Eold ∪ Epot)

)
w.r.t (6).

I Lemma 18. The total cost of FGnn is upper bounded by the total weight of Fmdf .

I Theorem 19. The forest FGnn can be transformed into the locality-based forest FGrd such
that the total cot of FGnn is upper bounded by the total weight of FGrd.

5 Further Related Work

Distributed k-server problem

In Section 1, we have seen that the distributed k-server problem is an application of the
DSMS problem. In [8], a general translator that transforms any deterministic global-control
competitive k-server algorithm into a distributed competitive one is provided. This yields
poly(k)-competitive distributed protocols for the line, trees, and the ring synchronous network
topologies. In [8], a lower bound of Ω(max{k, (1/D) · (logn/ log logn)}) on the competitive
ratio for the distributed k-server problem against adaptive online adversaries is also provided
where n is the number of processors. D is the ratio between the cost to move a server and
the cost to transmit a message over the same distance in synchronous networks. [4] and [9]
study OSD on HSTs and lines, respectively. [4] provides an upper bound of O

(
log3 n

)
and

[9] provides an upper bound of O
(
logn

)
on the competitive ratio for OSD where n is the

number of leaves of the input HST as well as the number of nodes of the input line.

Distributed queuing problem and link-reversal-based protocols

A well-known class of protocols has been devised based on link reversals to solve distributed
problems in which the distributed queuing problem is at the core of them [2, 17, 19, 21, 22,
23, 24]. In a distributed link-reversal-based protocol nodes keep a link pointing to neighbors
in the current or future direction of the server. When sending a message over an edge to
request the server, the direction of the link flips. We devise the Gnn protocol that is –
to the best of our knowledge – the first link-reversal-based protocol that navigates more

ISAAC 2019

53:16 Concurrent Distributed Serving with Mobile Servers

than one server. A well-studied link-reversal-based protocol is called Arrow [19, 21, 22].
Several other tree-based distributed queueing protocols that are similar to Arrow have
also been proposed. They operate on fixed trees. The Relay protocol has been introduced
as a distributed transactional memory protocol [24]. It is run on top of a fixed spanning
tree similar to Arrow; however, to more efficiently deal with aborted transactions, it does
not always move the shared object to the node requesting it. Further, in [2], a distributed
directory protocol called Combine has been proposed. Combine like Gnn runs on a fixed
overlay tree, and it is in particular shown in [2] that Combine is starvation-free.

The first paper to study the competitive ratio of concurrent executions of a distributed
queueing protocol is [16]. It shows that in synchronous executions of Arrow on a tree T for
one-shot executions, the total cost of Arrow is within a factor O

(
logm

)
compared to the

optimal queueing cost on where m is the number of requests. This analysis has later been
extended to the general concurrent setting where requests are invoked over time. In [15], it is
shown that in this case, the total cost of Arrow is within a factor O(logD) of the optimal
cost on T where D is the diameter of T . Later, the same bounds have also been proven
for Relay [24]. Typically, these protocols are run on a spanning tree or an overlay tree on
top of an underlying general network topology. In this case, the competitive ratio becomes
O(s · logD), where s is the stretch of the tree. Finally, [13] has shown that when running
Arrow on top of HSTs, a randomized distributed online queueing protocol is obtained with
expected competitive ratio O(logn) against an oblivious adversary even on general n-node
network topologies. The result holds even if the queueing requests are invoked over time and
even if communication is asynchronous. The main technical result of the paper shows that
the competitive ratio of Arrow is constant on HSTs.

Online tracking of mobile users

A similar problem to DSMS is the online mobile user tracking problem [3]. In contrast
with DSMS where a request r results in moving a server to the requesting point, here the
request r can have two types: find request that does not result in moving the mobile user
and move request. A request in DSMS that is invoked by v can be seen as a combination of
a find request that is invoked at v in the mobile user problem and a move request invoked
at the current address of the mobile user. The goal is to minimize the sum of the total
communication cost and the total cost incurred for moving the mobile user. [3] provides
an upper bound of O

(
log2 n

)
on the competitive ratio for the online mobile user problem

for one-shot executions. Further, [1] provides a lower bound of Ω(logn/ log logn) on the
competitive ratio for this problem against an oblivious adversary.

References
1 N. Alon, G. Kalai, M. Ricklin, and L. Stockmeyer. Lower bounds on the competitive ratio for

mobile user tracking and distributed job scheduling. In FOCS, 1992.
2 H. Attiya, V. Gramoli, and A. Milani. A provably starvation-free distributed directory protocol.

In SSS, 2010.
3 B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the ACM, 1995.
4 Y. Azar, A. Ganesh, R. Ge, and D. Panigrahi. Online Service with Delay. In STOC, 2017.
5 N. Bansal, N. Buchbinder, A. Madry, and J. S. Naor. A Polylogarithmic-Competitive Algorithm

for the k-Server Problem. In FOCS, 2011.
6 Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In

FOCS, 1996.

A. Ghodselahi, F. Kuhn, and V. Turau 53:17

7 Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management.
In STOC, 1992.

8 Y. Bartal and A. Rosen. The distributed k-server problem-a competitive distributed translator
for k-server algorithms. In FOCS, 1992.

9 M. Bienkowski, A. Kraska, and P. Schmidt. Online Service with Delay on a Line. In SIROCCO,
2018.

10 M. J. Demmer and M. Herlihy. The arrow distributed directory protocol. In DISC, 1998.
11 J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics

by tree metrics. In STOC, 2003.
12 M. Ghaffari and C. Lenzen. Near-optimal distributed tree embedding. In DISC, 2014.
13 A. Ghodselahi and F. Kuhn. Dynamic Analysis of the Arrow Distributed Directory Protocol

in General Networks. In DISC, 2017.
14 Abdolhamid Ghodselahi, Fabian Kuhn, and Volker Turau. Concurrent Distributed Serving

with Mobile Servers. arXiv, 2019. arXiv:1902.07354.
15 M. Herlihy, F. Kuhn, S. Tirthapura, and R. Wattenhofer. Dynamic analysis of the arrow

distributed protocol. Theoretical Computer Science, 2006.
16 M. Herlihy, S. Tirthapura, and R. Wattenhofer. Competitive concurrent distributed queuing.

In PODC, 2001.
17 P. Khanchandani and R. Wattenhofer. The Arvy Distributed Directory Protocol. In SPAA,

2019.
18 M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for on-line problems. In

STOC, 1988.
19 M. Naimi and M. Trehel. An Improvement of the logn Distributed Algorithm for Mutual

Exclusion. In ICDCS, 1987.
20 D. Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
21 K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Transactions on

Computer Systems, 1989.
22 J. L. van de Snepscheut. Fair mutual exclusion on a graph of processes. Distributed Computing,

1987.
23 J. Welch and J. Walter. Link reversal algorithms. Synthesis Lectures on Distributed Computing

Theory, 2011.
24 B. Zhang and B. Ravindran. Dynamic analysis of the relay cache-coherence protocol for

distributed transactional memory. In IPDPS, 2010.

ISAAC 2019

http://arxiv.org/abs/1902.07354

53:18 Concurrent Distributed Serving with Mobile Servers

Table 1 The essential notations used throughout the paper.

Notation Definition Page
n

k

R
ri = (vi, ti)
πz

Alg
rz

0 = (vz, 0)
sz

Rz
Alg

πz
Alg(i)
`Alg(µ)
cAlg(ri, rj)
CAlg(πz

Alg)
CAlg

dG(u, v)
H

µ(v)
B

rsrc(µ)
rdes(µ)
e(µ)
µ(e)
T

FAlg

F z
Alg
LAlg(F)
wG

(
e = (ri, rj)

)
WG(F)
RD

F (T ′)
FGrd

(µ, µ′)
Fmdf

Eold

Enew

Epot

Epot(e)
Eold(e)
Φ(F)

number of pints/nodes/processors
number of servers
input requests
request ri that is invoked by node vi at time ti
z-th schedule as one of the k resulting schedules by Alg
dummy request z as the tail of πz

Alg
z-th server that serves all requests in πz

Alg
request set of πz

Alg
index of the request scheduled at the i-th position of πz

Alg
latency of message µ in an execution of Alg
cost incurred by Alg for scheduling rj as the successor of ri

total cost incurred by Alg for scheduling requests in z-th schedule
total cost incurred by Alg
weight of the shortest path between u and v on the input graph G
directed version of T that is changing during a Gnn execution
find-predecessor message sent by v
complete graph on requests in R
corresponding request with message µ
predecessor request of rsrc(µ)
edge constructed by message µ
message that constructs the edge e
input HST
resulting forest by Alg; also, set of edges of the forest
z-th TSP path of FAlg; also, set of edges of the z-th TSP path
total cost of F such that F ⊆ FAlg

weight of the shortest path between vi and vj on the input graph G
total weight of F w.r.t. measurements on the input graph G
set of k dummy requests; RD ⊆ R
subgraph of F induced by the requests contained in F and T ′

locality-based forest
gap
resulting forest by the transformation of FGnn

set of edges removed throughout the transformation of FGnn

set of edges added throughout the transformation of FGnn{
e ∈ FGnn :

(
µ(e), µ(e′)

)
is a gap for some e′ ∈ Eold

}
subset of Epot filtered out by e ∈ Eold

subset of Eold filtered out by e ∈ Epot

potential of F

2
2
5
5
5
5
5
6
6
6
6
6
6
6
7
7
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
14
14
14
14
14
14
14

Tracking Paths in Planar Graphs
David Eppstein
Department of Computer Science, University of California, Irvine, USA
eppstein@uci.edu

Michael T. Goodrich
Department of Computer Science, University of California, Irvine, USA
goodrich@uci.edu

James A. Liu
Department of Computer Science, University of California, Irvine, USA
jamesal1@uci.edu

Pedro Matias
Department of Computer Science, University of California, Irvine, USA
pmatias@uci.edu

Abstract
We consider the NP-complete problem of tracking paths in a graph, first introduced by Banik et
al. [4]. Given an undirected graph with a source s and a destination t, find the smallest subset of
vertices whose intersection with any s− t path results in a unique sequence. In this paper, we show
that this problem remains NP-complete when the graph is planar and we give a 4-approximation
algorithm in this setting. We also show, via Courcelle’s theorem, that it can be solved in linear time
for graphs of bounded-clique width, when its clique decomposition is given in advance.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Computational complexity and cryptography; Theory of computation → Design and analysis
of algorithms

Keywords and phrases Approximation Algorithm, Courcelle’s Theorem, Clique-Width, Planar,
3-SAT, Graph Algorithms, NP-Hardness

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.54

Acknowledgements We thank Nil Mamano for suggesting the problem of tracking paths on a graph.

1 Introduction

Motivated by applications in surveillance and monitoring, Banik et. al. [4, 3] introduced the
problem of tracking paths in a graph. In essence, the goal is to uniquely determine the path
traversed by a moving subject or object, based on a sequence of vertices sampled from that
path. Examples of surveillance applications include the following: (i) vehicle tracking in road
networks; (ii) habitat monitoring; (iii) intruder tracking and securing large infrastructures;
(iv) tracing back of illicit Internet activities by tracking data packets. Another application
would be to determine the nodes in a network that have been compromised by a spreading
infection, given an incomplete transmission history of a pathogen. This information can
be helpful in identifying and attenuating the negative impact caused by biological and
non-biological infectious agents, such as:

Highly-contagious diseases (e.g. Severe Acute Respiratory Syndrome) which could lead
to epidemics [17].
Fake news and hate speech being disseminated in social networks, as well as violations of
privacy (e.g. sharing without permission highly sensitive content owned by a user, such
as intimate pictures).
Computer viruses, which spread throughout servers scattered across the Internet.

© David Eppstein, Michael T. Goodrich, James A. Liu, and Pedro Matias;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 54; pp. 54:1–54:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
https://orcid.org/0000-0002-8943-191X
mailto:goodrich@uci.edu
mailto:jamesal1@uci.edu
https://orcid.org/0000-0003-0664-9145
mailto:pmatias@uci.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.54
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Tracking Paths in Planar Graphs

Some of these applications have been studied empirically or using heuristics in [6, 18, 25, 28]
or, in the case of infections, [22, 23, 27, 1]. To the best of our knowledge, Banik et. al. were
the first to approach the problem of tracking paths from a theory perspective. In this work,
we extend some of their work and give new algorithms. Our main results apply to graphs
that can: be embedded on the plane (of interest to surveillance in road networks and similar
infrastructures) or that have bounded clique-width (mainly of theoretical interest).

Preliminaries. In the tracking paths problem, we are given an undirected graph G = (V,E)
with no self loops or parallel edges and a source s ∈ V and a destination t ∈ V . The goal is
to place trackers on a subset of the vertices in a way that enables us to reconstruct exactly
the path traversed from s to t. Let T ⊆ V be a set of vertices (where we wish to place
trackers) and let STP be the sequence of vertices in T visited during the traversal of a path1
P . Let u− v denote a path from u to v. We say that T is a tracking set if every s− t path
yields a unique sequence of observed vertices in T , that is, STP1

6= STP2
for all distinct s− t

paths P1 and P2. We consider the following problem.

Planar-Tracking (G, s, t)
Input: Undirected planar graph G = (V,E) and two vertices s ∈ V and t ∈ V .
Question: What is the smallest tracking set for G?

We denote by Tracking the problem of tracking paths when the input graph is not
restricted to be planar. Due to space constraints, we defer proofs of Lemmas/Theorems
marked with ? to the appendix.

Related work. Banik et. al. first introduced Tracking in [3], where it is shown to be
NP-hard by reducing from Vertex Cover, which seems unlikely to work in the planar case.
Although not immediately obvious, they also show that Tracking is in NP, by observing
that every tracking set is also a feedback vertex set, i.e. a set of vertices whose removal
yields an acyclic graph. Finally, they present a fixed-parameter tractable (FPT) algorithm
(parameterized by the solution size) for the decision version of the problem, where they
obtain a kernel of size O(k7) edges.

The concept of tracking set, however, first appeared in Banik et. al. [4], where they
considered a variant of Tracking that only concerns shortest s−t paths, essentially modeling
the input as a directed acyclic graph (DAG). Using a similar reduction from Vertex Cover,
they show that this variant cannot be approximated within a factor of 1.3606, unless P=NP.
They also give a 2-approximation for the planar version of tracking shortest paths, but they
omit any hardness results for this variant.

More recently, Bilò et. al. [7] generalized the version of the problem concerning shortest
s− t paths, into the case of multiple source-destination pairs, for which they claim the first
O(
√
n logn)-approximation algorithm for general graphs. They also study a version of this

multiple source-destination pairs problem in which the set of trackers itself (excluding the
order in which they are visited) is enough to distinguish between s− t shortest paths2. In this
setting, they claim a O(

√
n)-approximation algorithm and they show that it is NP-hard even

for cubic planar graphs. The hardness construction intrinsically relies on the multiplicity of
source-destination pairs and, therefore, cannot be adapted to the problem studied in this

1 Some authors use the terms “path” and “walk” interchangeably, where vertices may be repeated, but in
this paper, paths are required to have distinct vertices.

2 Notice that when tracking shortest paths only and using a single source-destination pair, these two
versions of the problem are the same.

D. Eppstein, M.T. Goodrich, J. A. Liu, and P. Matias 54:3

Figure 1 Entry-exit pair illustration, with entry vertex s′ and exit vertex t′.

paper. They also give an FPT algorithm (w.r.t to the maximum number of vertices at the
same distance from the source) for the problem concerning a single source-destination pair
that was introduced in [4].

In [2], Banik and Choudhary generalize Tracking into a problem on set systems3, which
are characterized by a universe (e.g. vertex set) and a family of subsets of the universe (e.g.
s − t paths). They show that this generalized version of the problem is fixed-parameter
tractable, by establishing a correspondence with the well known Test Cover problem.

Our results. In this paper, we give a 4-approximation for Planar-Tracking (Section 3)
and prove that it is NP-complete (Section 4). In addition, we show that Tracking can
be solved in cubic time for graphs of bounded clique-width and linear time if the clique
decomposition of bounded width is given in advance (Section 5).

2 Definitions

I Definition 1 (Entry-exit pair). Let (G, s, t) be an instance of Tracking. An entry-exit
pair is, with respect to some simple cycle C in G = (V,E), an ordered pair (s′, t′) of vertices
in C that satisfy the following conditions:
1. There exists a path s− s′ from s to the entry vertex s′
2. There exists a path t′ − t from the exit vertex t′ to t
3. Paths s− s′ and t′ − t are vertex-disjoint
4. Path s− s′ (resp. t′ − t) and C share exactly one vertex: s′ (resp. t′).

Essentially, an entry-exit pair (s′, t′) with respect to a cycle C (see Figure 1) represents
two alternative s− t paths and, thus, requires tracking at least one of them. We say that
(s′, t′) is tracked with respect to C if and only if C \ {s′, t′} contains a tracker. In addition, C
is tracked if and only if there is no entry-exit pair with respect to C that is untracked. If a
cycle contains either (i) 3 trackers or (ii) s or t and 1 tracker in a non-entry/non-exit vertex,
then it must be tracked. We say that these cycles are trivially tracked.

An alternative characterization of a tracking set, first given by Banik et al [3, Lemma 2],
is the following.

I Lemma 2 ([3]). For a graph G = (V,E), a subset T ⊆ V is a tracking set if and only if
every simple cycle C in G is tracked with respect to T .

3 Approximation algorithm

I Theorem 3. There exists a 4-approximation algorithm for Planar-Tracking.

The overall idea for the approximation algorithm builds on the following two insights:
1. The cardinality of the optimal solution cannot be much smaller than the number of faces

in the graph.
2. The average number of trackers per face does not need to be very large.

3 Also called hypergraphs.

ISAAC 2019

54:4 Tracking Paths in Planar Graphs

The first idea gives us a lower bound on OPT , the cardinality of an optimal solution. The
second gives us an upper bound on ALG, the cardinality of our approximation algorithm.

3.1 Lower bound on OPT
We consider the following reduction, which takes care of disconnected components, or
components that are “attached” to the graph by a cut vertex that is not in an s− t path.
We say that a reduction is safe, if it does not eliminate any untracked cycles.

Reduction 1. While there exists an edge or vertex that does not participate in any s − t
path, remove it from the graph.

I Lemma 4 ([3]). ? Reduction 1 is safe and can be done in polynomial time.

I Lemma 5. After Reduction 1, every simple cycle in the graph contains at least one
entry-exit pair. This holds for non-planar graphs as well.

Proof. Let C by some simple cycle in the graph. After Reduction 1, there must exist an
s− t path that shares an edge with C. The first and last vertices on this path that belong to
C correspond to an entry-exit pair. J

I Lemma 6. In an embedded undirected planar graph G that results from Reduction 1,
OPT ≥ (|F | − 1)/2, where F is the set of faces of G.

On a high level, the proof of Lemma 6 is done by keeping a set of “active” trackers while
reconstructing a planar embedding E of G: we start, as a base case, with any simple s− t
path in E and iteratively add faces to it until it matches E . Given a fixed, optimal tracking
set T ∗, the addition of each face requires either (i) adding a new tracker from T ∗ to the
active set, or (ii) deactivating an active tracker, rendering it useless for distinguishing paths
on future faces. As a consequence, each tracker charges at most two faces: the one adding
the tracker and the one deactivating it. This demonstrates that |T ∗| ≥ (|F | − 1)/2.

Let outer(Eτ) be the set of outer-edges of our planar reconstructing embedding Eτ at
time τ . At time τ = 0, our embedding corresponds to an s−t path and, for all 0 ≤ τ ≤ |F |−1,
we add exactly one face C from E to Eτ , by connecting two vertices u and v in outer(Eτ)
with a simple path p (see Figure 8 in the appendix). In doing so, we erase an u− v path p′
in outer(Eτ), so we have that outer(Eτ+1) = outer(Eτ) \ p′ ∪ p. In the end, E |F | = E .

By Lemma 5, there is at least one entry-exit pair in E with respect to face C, so any
tracking set must contain a tracker on some vertex of C. During the reconstruction process,
we maintain a list of trackers in sets A and A′, such that (A ∪A′) ⊆ T ∗, where A contains
active trackers and A′ contains inactive ones. A tracker in vertex v is active at time τ if and
only if it meets both of the following conditions:

Condition (i) v ∈ outer(Eτ)
Condition (ii) There is no s− v path in Eτ that traverses vertices in outer(Eτ)

Intuitively, an active tracker can be used to track future faces, although no more than
one (see below). An inactive tracker, on the other hand, either cannot be used to track
future faces (Condition (i)), or its corresponding vertex is entry/exit for some future face
(Condition (ii)), in which case we require yet another tracker on that face (see Figure 2).
Condition (ii) is necessary for dealing with embeddings of G where at least one of s and t is
not in the outer face.

D. Eppstein, M.T. Goodrich, J. A. Liu, and P. Matias 54:5

(a) Tracker on x (red) is inactive due to the
violation of Condition (i).

(b) Tracker on x (red) is inactive due to the
violation of Condition (ii). Notice that x is
entry for exit vertices u and v (with respect to
C), therefore C needs another tracker.

Figure 2 Examples of inactive trackers used in the proof of Lemma 6.

Proof of Lemma 6.
First, we argue that each time we add a face during the reconstruction process described

above, we either (i) need to increase the number of active trackers (by adding it to either A
or A′), or (ii) we can get away by re-using and, therefore, deactivating an active tracker.

We assume for the rest of the argument that t is on the outer face, because such a planar
embedding is always possible to construct.

Let C be the face added a time τ by connecting vertices u and v in outer(Eτ), as
specified above. In addition, let T ∗ be any optimal solution (i.e. |T ∗| = OPT). We consider
two cases, depending on the existence of a tracker in C at time τ :

Case 1: C ∩ A = ∅ at time τ .
By Lemma 5, there exists a vertex x ∈ C such that x ∈ T ∗. We place a tracker on x. If
x ∈ outer(Eτ+1) we add x to A, otherwise we add it to A′.

Case 1: C ∩ A 6= ∅ at time τ .
Let y ∈ C ∩A be a vertex of C with a tracker. We again consider two cases:
(i) y /∈ {u, v}. Then, y ∈ outer(Eτ) but y /∈ outer(Eτ+1), which amounts to moving y

from A to A′.
(ii) y ∈ {u, v}. If (u, v) is an entry-exit pair with respect to C, or if the tracker in y is

not active, then there exists x′ ∈ C \ {u, v} such that x′ ∈ T ∗. Similarly to Case 1, we
place a tracker on x′, which corresponds to adding x′ either to A or A′.
Otherwise, the tracker in y is active and (u, v) is not an entry-exit pair with respect
to C. Let us assume without loss of generality that y = u. Then, the addition of
C deactivates the tracker in u by definition of active tracker (Condition (ii) is now
violated), so we move u from A to A′.

Every tracker in A′ is charged by at most two faces: one for adding an active tracker to
A and another for deactivating it and moving it to A′. Therefore, |F | − 1 ≤ |A|+ 2|A′|.
Since |A|+ |A′| ≤ |T ∗|, it follows that |F | − 1 ≤ 2OPT . J

A tight example for the lower bound on OPT is illustrated in Figure 3a.

3.2 Upper bound on ALG
We say that an undirected planar graph is reduced if it cannot be further reduced by
Reduction 1 or any of the following reductions.

Reduction 2. While there exist two adjacent vertices of degree 2, remove one of them (and
its edges) and add an edge connecting its neighbors.

ISAAC 2019

54:6 Tracking Paths in Planar Graphs

(a) Example of a planar graph where
OPT = |F |/2 (in red).

(b) Example of a planar graph where ALG = 2(|F |−
2) (in red).

Figure 3 Tight examples for the lower bound on OPT (left) and the upper bound on ALG (right)
in planar graphs.

Reduction 3. While there exists vertex v /∈ {s, t} of degree 2 in a 3-cycle, place a tracker on
v and remove it and its edges from the graph.

Reduction 4. While there exist non-adjacent vertices u, v /∈ {s, t} of degree 2 in a 4-cycle,
place a tracker on either u or v and remove it and its edges from the graph.

Notice that all reduction rules are valid for general graphs, not only planar ones. In
addition, Reductions 2, 3 and 4 can be applied interchangeably and in any order until none
of them is applicable, but we will see that they need to be carried out after Reduction 1.
Fortunately, we will not be required to re-apply Reduction 1 after performing the remaining
reductions.

We denote the degree of a vertex v by deg(v), where the underlying graph can be
determined from its context.

B Claim 7. If vertex v is on an entry-exit pair, then deg(v) > 2.

Proof. Trivial by Definition 1. C

B Claim 8. Reductions 2, 3 and 4 maintain the property that every cycle in G contains at
least one entry-exit pair (see Lemma 5).

Proof. Reductions 2, 3 and 4 only erase faces and vertices of degree 2, which cannot be in
entry-exit pairs (by Claim 7), so every simple cycle of the graph still contains an entry-exit
pair. C

(a) Illustration of Reduction 2, where deg(u) =
deg(v) = 2.

(b) Illustration of Reduction 3, where deg(s′) ≥
3, deg(t′) ≥ 3 and deg(v) = 2.

(c) Illustration of Reduction 4, where deg(s′) ≥
3, deg(t′) ≥ 3 and deg(u) = deg(v) = 2.

Figure 4 Illustration of Reductions 2, 3 and 4.

D. Eppstein, M.T. Goodrich, J. A. Liu, and P. Matias 54:7

I Lemma 9. ? Reduction 2 is safe and can be done in polynomial time, if done after
Reduction 1.

I Lemma 10. ? Reduction 3 is safe and can be done in polynomial time, if done after
Reduction 1.

I Lemma 11. ? Reduction 4 is safe and can be done in polynomial time, if done after
Reduction 1.

I Remark 12. None of Reductions 2, 3 and 4 compromise planarity.

Algorithm 1 A.

Input :Undirected planar graph G = (V,E) and vertices s ∈ V and t ∈ V
Output :Tracking set

1 Perform Reduction 1 in G
2 Perform Reductions 2, 3 and 4 repeatedly until G is reduced.
3 Output remaining vertices of degree at least 3 (except s or t)

I Lemma 13. Algorithm A outputs a tracking set for the input graph G.

Proof. By Lemmas 4, 9, 10 and 11, Reductions 1-4 are safe, so let us assume without loss of
generality that G is reduced. Then, every cycle of G of 5 or more vertices is trivially tracked,
because it must contain at least 3 vertices of degree at least 3 (by Reduction 2). Similarly,
every 3- or 4-cycle must contain at least 3 vertices of degree at least 3 by Reduction 2 and
Reductions 3 and 4 (respectively). J

I Lemma 14. Algorithm A outputs a tracking set of size at most 2(|F | − 2), where F is the
set of faces of the input graph G.

Proof. Notice that each tracker added during Reductions 3 and 4 is associated with the
removal of one face from G. Therefore, it is enough to show that the lemma holds with
respect to a reduced graph G. Let us partition V into V = (V2 ∪ V≥3), where V2 and V≥3
consist of the vertices of degree 2 and degree at least 3, respectively (notice that there
cannot be vertices of degree 1). The lemma statement follows from Lemma 13 and the
fact that |F | ≥ |V≥3|

2 + 2. This inequality can be derived by plugging in the inequality
2|E| ≥ 3|V≥3|+ 2|V2| in Euler’s formula for planar graphs: |V | − |E|+ |F | = 2, where E is
the set of edges of G. J

A tight example is illustrated in Figure 3b.

Proof of Theorem 3. By Lemmas 6 and 14, Algorithm A is a 4-approximation to Planar-
Tracking. J

4 Hardness of tracking paths

We show that Planar-Tracking is NP-hard, by reducing from Planar-3-sat, a special
version of the satisfiability problem, shown to be NP-complete by Lichtenstein [21].

In 3-sat, we are given a set X = {x1, . . . , xp} of variables and a 3-CNF formula φ, where
each clause in φ is a disjunction of exactly three distinct literals with respect to X . The goal
is to find a boolean assignment to all variables in X that satisfies φ. Consider the bipartite

ISAAC 2019

54:8 Tracking Paths in Planar Graphs

Figure 5 Illustration of xi’s gadget, containing mi vertices for xi (in blue) and mi vertices for xi

(in red). Vertices colored black require trackers in any minimum tracking set. The dashed edges are
added to force trackers in si and ti.

graph with a vertex for each clause C in φ and each variable xi ∈ X , and edges (xi, C) if and
only if C contains xi or its negation xi. Lichtenstein [21] showed that Planar-3-sat, the
subset of instances of 3-sat whose underlying bipartite graph is planar, remains NP-complete.
In particular, the definition of Planar-3-sat requires that a cycle can be drawn connecting
all of the variables while maintaining planarity. Later, Knuth and Raghunatan [20] exploited
this condition to show that we can always draw the underlying bipartite graph of a Planar-
3-sat instance in a rectilinear fashion without crossings (example in Figure 10a): variables
are arranged in a horizontal line and clauses are horizontal line segments with vertical legs to
represent the literals present in the clause. Vertical legs attach to the appropriate variables
and are labeled red for negated literals and blue, otherwise. In particular, a given clause is
drawn completely above or below the line of variables.

We convert a planar rectilinear drawing D of an instance of Planar-3-sat, with formula
φ and a set X of variables, into a planar drawing G corresponding to the instance of
Planar-Tracking. The reduction is straightforward:

(i) transform each variable xi in D into a gadget containing mi copies of literal vertices xi
and xi;

(ii) transform each 3-legged clause into a face containing corresponding literals vertices and
an entry-exit pair;

(iii) choose the boolean assignment according to the placement of trackers, such that a
clause is satisfied if and only if its corresponding face is tracked.

The union of all the variable and clause gadgets constitutes G (see example in Figure 10
in the appendix). Details of each gadget are given below. For simplicity, we avoid introducing
too many subscripts and we rely on pictures to describe the gadgets.

Variable gadget. Each variable gadget converts a variable xi in D into a connected subgraph
corresponding to Figure 5, with length parameterized by mi. We refer to the set {hk, µk, lk}
as column k and we refer to the vertices {h1, . . . , hmi} ∪ {l1, . . . , lmi} as literal vertices.

Each variable gadget is linked with the next one by setting ti = si+1, to form a horizontal
chain of gadgets, where s = s1 and t = tp. For convenience, we force trackers in all the si
(except s), by drawing edges between the α′ (β′) of a variable gadget and the α (β) of the
next variable gadget in the chain. We refer to the resulting drawing as the spine.

There are exactly two minimum tracking sets associated with the variable gadget with
source si and destination ti. One of them corresponds to a true assignment of xi and
the other one to a false assignment. Both of them require tracking the vertices in R =

D. Eppstein, M.T. Goodrich, J. A. Liu, and P. Matias 54:9

{α, α′, β, β′, µ1, µmi
}, as well as the remaining µk. In addition, the true assignment tracks

the even-indexed hk and odd-indexed lk, while the false assignment tracks the odd-indexed
hk and even-indexed lk. This requires 2mi + 4 trackers in total.

I Lemma 15. ? The true and false assignments are the only minimum tracking sets.

Clause gadget. Let C = (`a ∨ `b ∨ `c) be a clause in φ with literals corresponding to
variables xa, xb, xc ∈ X . Its gadget, depicted in Figure 6, is a face FC consisting of:

literal vertex α from xa’s gadget, corresponding to literal `a;
adjacent literal vertices β1, β1, β2, β2, β3 from xb’s gadget, corresponding to literals al-
ternating between `b and `b;
literal vertex γ from xc’s gadget, corresponding to literal `c;
edges (α, γ), (α, β1), (β3, γ) and the edges from xb’s gadget connecting all of the βk and
βk.

We can increase the lengths of the variable gadgets to any polynomial that provides
enough literal vertices for all clauses. Since D is planar, there are no crossings between
clauses. We also impose the following restrictions:
1. α cannot be one of {h1, lma}; this ensures that the only faces in xa’s gadget that do not

require 3 trackers do not become untracked. We apply the equivalent restriction to β1, β3
and γ.

2. The α′k/α′k, (see Figure 6) cannot belong to any other clause gadget; these correspond to
the 4 literal vertices following α in xa’s gadget and reserving them ensures that non-clause
faces, between nested clauses, are tracked. We apply the equivalent restriction to the
γ′k/γ

′
k.

3. All literal vertices in a clause need to be on the same side of the spine; this restriction is
trivial because D is rectilinear, but it simplifies the analysis.

I Lemma 16. ? Clause C is satisfied if and only if its corresponding gadget face FC is
tracked.

I Theorem 17. ? There exists a polynomial time reduction from Planar-3-sat to Planar-
Tracking.

I Corollary 18. Planar-Tracking is NP-hard.

It remains to show that Planar-Tracking is in NP; Banik et. al. [3] prove this in the
more general case of Tracking.

Figure 6 Illustration of the gadget for clause C = (`a∨ `b∨ `c), where the vertices in each variable
gadget are all adjacent. The entry-exit (β1, β2) are responsible for satisfying C.

ISAAC 2019

54:10 Tracking Paths in Planar Graphs

5 Bounded clique-width graphs

We show that Tracking can be solved in linear time when the input graph has bounded
clique-width, by applying Courcelle’s theorem [9, 12, 14], a powerful meta-theorem that
establishes fixed-parameter tractability of any graph property that is expressible in monadic
second order logic.

Clique-width, first introduced by Courcelle et. al. [13] and revisited by Courcelle and
Olariu [16], is an important graph parameter that, intuitively, measures the closeness of
a graph to a cograph – a graph with no induced 4-vertex paths. It is closely related to
tree-width, another influential graph parameter that measures closeness of a graph to a tree
and that was first introduced by Bertelé and Brioschi [5] and later rediscovered by Halin [19]
and Robertson and Seymour [26]. While both parameters are determined based on specific
hierarchical decompositions of a graph, the clique-width is strictly more powerful in the sense
that the class of graphs of bounded clique-width includes all graphs of bounded tree-width,
but not vice-versa. Details on the relationship between these parameters can be found in
Courcelle and Engelfriet [12]. Graphs of bounded clique-width include series-parallel graphs,
outerplanar graphs, pseudoforests, cographs, distance-hereditary graphs, etc.

MSO1 vs MSO2. Second order logic extends first order logic, by allowing quantification
over relations (of any fixed arity) on the elements of the domain of discourse. Monadic second
order logic itself only allows quantification over unary relations (subsets of the domain of
discourse) and, in the logic of graphs, it comes in two flavors: MSO1 and MSO2. The only
distinction between these is that the latter allows edges to be elements of the domain of
discourse (and thus be quantified over), while the former does not. Besides the quantifiers
(∀ and ∃) and the standard logic operations ¬,∧,∨,→, both logics include predicates for
equality (=) and relation membership (∈). In addition, MSO1 includes a predicate (∼) that
determines vertex adjacency and MSO2 includes a predicate for vertex-edge incidence. MSO2
is more expressive, for example: Hamiltonicity can be expressed using MSO2, but not using
MSO1. Details on the distinction between the two logics can be found in [12].

Courcelle’s theorem. Courcelle et. al. [9, 14] showed that any graph property expressed in
MSO1 and MSO2 is FPT under clique-width and tree-width (respectively). More specifically,
they showed that any MSO1-, MSO2-expressible property can be tested in f(k, l) · n and
g(k′, l′) · (n+m) time (respectively) for graphs of clique-width k and tree-width k′, where: f
and g are computable functions, l and l′ are the lengths of the logic formulas, n is the number
of vertices and m is the number of edges. The result for MSO2 is valid in optimization
problems with linear evaluation functions [15]. Later, Courcelle, Makowsky and Rotics
[14] extended these results for MSO1. Examples of constructing FPT graph algorithms
parameterized by clique-width or tree-width, which are based on automata, are given in
[10, 11]. While it is possible to construct tree decompositions of width k′ in linear time
[8], there is no FPT algorithm for finding clique decompositions of clique-width k > 3.
Fortunately, it is possible to construct a clique decomposition of width exponential in k in
cubic time [24]. In this section, we will take advantage of the latter.

We give an alternative definition for tracking set that is easier to express using the logic
of graphs.

I Lemma 19 (Tracking set). For an undirected graph G = (V,E), a subset T ⊆ V is a
tracking set if and only if there is no s − t path Pst = Pss′ ∪ Ps′t′ ∪ Pt′t for s′, t′ ∈ V and
corresponding s− s′, s′ − t′ and t′ − t paths, such that:
1. There exists an alternative s′ − t′ path P ′s′t′ 6= Ps′t′ and
2. T ∩ (Ps′t′ ∪ P ′s′t′) ⊆ {s′, t′}.

D. Eppstein, M.T. Goodrich, J. A. Liu, and P. Matias 54:11

Figure 7 Illustration of variable sets P , Q, Q′ and R as well as vertex variables s, s′, t′ and t
used in expressing IsTrackingSet using MSO1.

Proof. This follows directly from Lemma 2. J

In the logic formulas presented below, we use lowercase letters to quantify over vertices
and uppercase letters to quantify over sets of vertices. We use s and t as free variables and,
for convenience, we also use set intersection (∩), union (∪) and containment (⊆), without
explicitly expressing these operations using MSO1.

IsTrackingSet(T, s, t)
⇐⇒ @P,Q,R [∃s′, t′ [HasPath(P, s, s′) ∧ HasPath(Q, s′, t′) ∧ HasPath(R, t′, t)

∧ P ∩Q = {s′} ∧ Q ∩R = {t′} ∧ P ∩R = ∅
∧ ∃Q′ 6= Q [HasPath(Q′, s′, t′) ∧ T ∩ (Q ∪Q′) ⊆ {s′, t′}]]]

The first two lines of the above equivalence establish that P , Q and R form an s− t path.
The last line restricts s′ and t′ to be an entry-exit pair with respect to the cycle Q ∪Q′ (see
Figure 7) and, in addition, establishes that the cycle Q ∪Q′ is not tracked.

The primitive HasPath(X, a, b), whose input consists of a set X ⊆ V and vertices
a, b ∈ V , verifies the existence of a simple path between a and b that only uses vertices in X.
We define it as follows:

HasPath(X, a, b)
⇐⇒ @X1, X2 ⊆ X [X1 ∪X2 = X ∧ a ∈ X1 ∧ b ∈ X2 ∧ ¬ (∃u ∈ X1 ∧ ∃v ∈ X2 [u ∼ v])]

I Remark 20. HasPath(X, a, b) is correctly expressed under MSO1 and it correctly verifies
that there exists an a− b path using only vertices in X.
I Remark 21. IsTrackingSet is correctly expressed under MSO1 and it correctly verifies
that the given subset of vertices is a tracking set.

I Theorem 22. Tracking(G, s, t) can be solved in polynomial time if G has bounded clique-
width. Moreover, if a clique decomposition of bounded width is given, it can be solved in
linear time.

Proof. This follows directly from Lemma 19, Remarks 20 and 21, and the linear time
algorithm given by Courcelle [14] for any optimization problem on graphs of bounded
clique-width, whose decomposition is given in advance. J

6 Conclusion and open questions

We showed that Planar-Tracking is NP-complete and we give a 4-approximation algorithm.
We also show that, for graphs of bounded-clique width, Tracking can be solved in linear
time by applying Courcelle’s theorem, as long as its clique decomposition is given in advance.
A natural direction of future study would be to improve the approximation ratio of Planar-
Tracking or establish constant approximation factors for graphs of larger genus or, more

ISAAC 2019

54:12 Tracking Paths in Planar Graphs

generally, for Tracking. Another open question is to establish the difficulty of Tracking
on directed graphs: on one side planar directed acyclic graphs are not known to be NP-hard
and, on the other side, it is not known whether its general or planar versions are in NP.
Finally, it would be interesting to find efficient algorithms for graphs of bounded tree-width or
clique-width without resorting to the finite automaton approach used in Courcelle’s theorem.

References
1 Norman TJ Bailey. The Mathematical Theory of Infectious Diseases and its Applications.

Charles Griffin & Company Ltd, High Wycombe, United Kingdom, 2nd edition, 1975.
2 Aritra Banik and Pratibha Choudhary. Fixed-Parameter Tractable Algorithms for Tracking Set

Problems. In B. S. Panda and Partha P. Goswami, editors, Algorithms and Discrete Applied
Mathematics - 4th International Conference, CALDAM 2018, Guwahati, India, February
15-17, 2018, Proceedings, volume 10743 of Lecture Notes in Computer Science, pages 93–104.
Springer, 2018. doi:10.1007/978-3-319-74180-2_8.

3 Aritra Banik, Pratibha Choudhary, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh.
A polynomial sized kernel for tracking paths problem. In Latin American Symposium on
Theoretical Informatics, volume 10807 of Lecture Notes in Computer Science, pages 94–107.
Springer, 2018. doi:10.1007/978-3-319-77404-6_8.

4 Aritra Banik, Matthew J Katz, Eli Packer, and Marina Simakov. Tracking paths. In
International Conference on Algorithms and Complexity, volume 10236 of Lecture Notes in
Computer Science, pages 67–79. Springer, 2017. doi:10.1007/978-3-319-57586-5_7.

5 Umberto Bertele and Francesco Brioschi. Nonserial Dynamic Programming. Academic Press,
1972. URL: https://www.elsevier.com/books/nonserial-dynamic-programming/bertele/
978-0-12-093450-8.

6 Sania Bhatti and Jie Xu. Survey of target tracking protocols using wireless sensor network. In
2009 Fifth International Conference on Wireless and Mobile Communications, pages 110–115.
IEEE, 2009. doi:10.1109/ICWMC.2009.25.

7 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Tracking Routes in Com-
munication Networks. In Keren Censor-Hillel and Michele Flammini, editors, Structural
Information and Communication Complexity - 26th International Colloquium, SIROCCO
2019, L’Aquila, Italy, July 1-4, 2019, Proceedings, volume 11639 of Lecture Notes in Computer
Science, pages 81–93. Springer, 2019. doi:10.1007/978-3-030-24922-9_6.

8 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

9 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

10 Bruno Courcelle and Irène Durand. Automata for the verification of monadic second-order
graph properties. J. Applied Logic, 10(4):368–409, 2012. doi:10.1016/j.jal.2011.07.001.

11 Bruno Courcelle and Irène Durand. Computations by fly-automata beyond monadic second-
order logic. Theor. Comput. Sci., 619:32–67, 2016. doi:10.1016/j.tcs.2015.12.026.

12 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/knowledge/isbn/
item5758776/?site_locale=fr_FR.

13 Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph
grammars. Journal of Computer and System Sciences, 46(2):218–270, 1993. doi:10.1016/
0022-0000(93)90004-G.

14 Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000. doi:10.1007/s002249910009.

https://doi.org/10.1007/978-3-319-74180-2_8
https://doi.org/10.1007/978-3-319-77404-6_8
https://doi.org/10.1007/978-3-319-57586-5_7
https://www.elsevier.com/books/nonserial-dynamic-programming/bertele/978-0-12-093450-8
https://www.elsevier.com/books/nonserial-dynamic-programming/bertele/978-0-12-093450-8
https://doi.org/10.1109/ICWMC.2009.25
https://doi.org/10.1007/978-3-030-24922-9_6
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/j.jal.2011.07.001
https://doi.org/10.1016/j.tcs.2015.12.026
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1007/s002249910009

D. Eppstein, M.T. Goodrich, J. A. Liu, and P. Matias 54:13

15 Bruno Courcelle and Mohamed Mosbah. Monadic second-order evaluations on tree-
decomposable graphs. Theoretical Computer Science, 109(1-2):49–82, 1993. doi:10.1016/
0304-3975(93)90064-Z.

16 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

17 Kee-Tai Goh, Jeffery Cutter, Bee-Hoon Heng, Stefan Ma, Benjamin KW Koh, Cynthia Kwok,
Cheong-Mui Toh, and Suok-Kai Chew. Epidemiology and control of SARS in Singapore.
Annals of the Academy of Medicine, Singapore, 35(5):301, 2006. PMID:16829997.

18 Rahul Gupta and Samir R Das. Tracking moving targets in a smart sensor network. In 2003
IEEE 58th Vehicular Technology Conference. VTC 2003-Fall, volume 5, pages 3035–3039.
IEEE, 2003. doi:10.1109/VETECF.2003.1286181.

19 Rudolf Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976. doi:
10.1007/BF01917434.

20 Donald E Knuth and Arvind Raghunathan. The problem of compatible representatives. SIAM
Journal on Discrete Mathematics, 5(3):422–427, 1992. doi:10.1137/0405033.

21 David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–
343, 1982. doi:10.1137/0211025.

22 Cristopher Moore and Mark EJ Newman. Epidemics and percolation in small-world networks.
Physical Review E, 61(5):5678, 2000. doi:10.1103/PhysRevE.61.5678.

23 Mark EJ Newman. Spread of epidemic disease on networks. Physical Review E, 66(1):016128,
2002. doi:10.1103/PhysRevE.66.016128.

24 Sang-Il Oum. Approximating rank-width and clique-width quickly. ACM Transactions on
Algorithms, 5(1):10, 2008. doi:10.1145/1435375.1435385.

25 Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of network-based defense
mechanisms countering the DoS and DDoS problems. ACM Computing Surveys, 39(1):3, 2007.
doi:10.1145/1216370.1216373.

26 Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

27 Devavrat Shah and Tauhid Zaman. Rumors in a network: Who’s the culprit? IEEE
Transactions on Information Theory, 57(8):5163–5181, 2011. doi:10.1109/TIT.2011.2158885.

28 Alex C Snoeren, Craig Partridge, Luis A Sanchez, Christine E Jones, Fabrice Tchakountio,
Stephen T Kent, and W Timothy Strayer. Hash-based IP traceback. ACM SIGCOMM
Computer Communication Review, 31(4):3–14, 2001. doi:10.1145/383059.383060.

A Deferred proofs on the approximation algorithm

(a) Valid. (b) Invalid. (c) Invalid.

Figure 8 Illustration of valid and invalid choices of vertices u and v in the proof of Lemma 6.
Cycle C must correspond to a face in the fixed embedding E .

ISAAC 2019

https://doi.org/10.1016/0304-3975(93)90064-Z
https://doi.org/10.1016/0304-3975(93)90064-Z
https://doi.org/10.1016/S0166-218X(99)00184-5
http://www.ncbi.nlm.nih.gov/pubmed/16829997
https://doi.org/10.1109/VETECF.2003.1286181
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BF01917434
https://doi.org/10.1137/0405033
https://doi.org/10.1137/0211025
https://doi.org/10.1103/PhysRevE.61.5678
https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1145/1435375.1435385
https://doi.org/10.1145/1216370.1216373
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1109/TIT.2011.2158885
https://doi.org/10.1145/383059.383060

54:14 Tracking Paths in Planar Graphs

(a) Illustration of Reduction 2, where deg(u) =
deg(v) = 2.

(b) Illustration of Reduction 3, where deg(s′) ≥
3, deg(t′) ≥ 3 and deg(v) = 2.

(c) Illustration of Reduction 4, where deg(s′) ≥
3, deg(t′) ≥ 3 and deg(u) = deg(v) = 2.

Figure 9 Illustration of Reductions 2, 3 and 4.

I Lemma 4 ([3]). ? Reduction 1 is safe and can be done in polynomial time.

Proof. See proof in [3]. J

I Lemma 9. ? Reduction 2 is safe and can be done in polynomial time, if done after
Reduction 1.

Proof. Banik et. al. [3, Lemma 16] showed that having three adjacent vertices of degree 2
is redundant. Here, we extend their proof and show that we can also get rid of the second
adjacent vertex of degree 2. Let u and v be the two adjacent vertices of degree 2, and let
u′ be the other neighbor of u. Notice that v, u′ are not adjacent, otherwise the u, v edge
would then not belong to an s − t path and thus be removed by Reduction 1. Hence, no
parallel edges are added to the graph after this reduction. We argue that this reduction is
safe by showing that there exists a minimum tracking set that does not include u and v

simultaneously. Take any minimum tracking set T that includes u and v. We can always
move the tracker from u to u′; this remains a tracking set, because u immediately follows or
precedes u′ on any s− t path. This can only decrease T ’s cardinality. This reduction can
be done in O(poly(n)) time, by repeatedly checking for the existence of adjacent vertices of
degree 2. J

I Lemma 10. ? Reduction 3 is safe and can be done in polynomial time, if done after
Reduction 1.

Proof. Let v /∈ {s, t} be the vertex of degree 2 in the triangle ∆vs′t′ (see Figure 9b). Then,
it must be the case that s′ and t′ form an entry-exit pair. This follows from (i) the fact that
there exists an entry-exit pair in ∆vs′t′ (by Lemma 5) and (ii) the fact that v cannot be
in an entry-exit pair (by Claim 7). Then, by Lemma 2, any feasible solution must place a
tracker on v. Therefore, v and its edges can be removed, since v is neither a cut-vertex, nor
in any entry-exit pair, so that its removal does not eliminate an untracked cycle. Clearly,
this reduction can be done in O(poly(n)) time. J

I Lemma 11. ? Reduction 4 is safe and can be done in polynomial time, if done after
Reduction 1.

Proof. Let u, v /∈ {s, t} be the two vertices of degree 2 that connect the same pair of vertices
s′ and t′. Similarly to the proof of Lemma 10, s′ and t′ must form an entry-exit pair. So, by
Lemma 2, any feasible solution must place a tracker in either u or v. By symmetry, we can
track and remove u and its edges. Therefore, Reduction 4 is safe by Claim 7 and the facts
that u is neither a cut-vertex nor in an entry-exit pair. J

D. Eppstein, M.T. Goodrich, J. A. Liu, and P. Matias 54:15

B Deferred proofs on NP-completeness

To prove Lemma 15, we first prove a couple of helpful lemmas and make a few observations:

Each vertex in R belongs to a triangle, such that the other two vertices form an entry-exit
pair, so must be tracked.
Each square face, besides the two including h2 and lmi−1, requires 3 tracked vertices.
Two adjacent vertices cannot both be untracked.

I Lemma 23. The true/false assignments of xi correspond to tracking sets with respect to
xi’s gadget with source si and destination ti.

Proof. In a true/false assignment of xi, every face of the gadget is trivially tracked, except
the faces including si/ti (which are clearly tracked) and the faces including h2 and lmi−1.
Though the latter faces may only contain 2 trackers (depending on xi’s truth value and/or
mi’s parity), they are nevertheless tracked because one of these trackers cannot be in an
entry-exit pair. The remaining cycles, i.e. the ones which are not faces, are also trivially
tracked: since these cycles must have size at least 6, they must contain 3 trackers given the
observation that no adjacent vertices are untracked. J

I Lemma 24. In a minimum tracking set, each column has exactly 2 trackers.

Proof. Since the true/false assignments achieve this property, we only have to show that
each column requires at least two trackers. Assume that a minimum tracking set has only
one tracker in column 1 < k < mi; it must be on µk. Then all vertices on columns k−1, k+ 1
must be tracked. For the average number of trackers per column to be at most 2, the number
of trackers per column must be an alternating sequence of . . . 3, 1, 3, 1, . . . , with column 1
and/or column mi only having 1 tracker, which contradicts the square face property. J

I Lemma 15. ? The true and false assignments are the only minimum tracking sets.

Proof. Assume that some µk is not tracked in a minimum tracking set, for 1 < k < mi. By
Lemma 24, we only have to show that this causes a column to have 3 trackers. If k = mi − 1
then column mi must have three trackers. Otherwise, µk+1, hk+1, hk+2 must be tracked,
since they share a square face with µk. If lk+1 is tracked we are done, otherwise, lk+2 must
be tracked. Additionally, µk+2 must be tracked, either by the square face property, or in the
case where k = mi − 2, because it is in R. Then, column k + 2 has 3 trackers.

Now, if all the µk are tracked, then the only minimum tracking sets are the true and false
assignments, by the observation that two adjacent vertices cannot both be untracked and
Lemma 23. J

I Lemma 16. ? Clause C is satisfied if and only if its corresponding gadget face FC is
tracked.

Proof. The entry-exit (β1, β2) is the only one, with respect to FC , that is tracked if and
only if C is satisfied. The remaining entry-exit pairs are tracked by either a βk or a βk. J

I Theorem 17. ? There exists a polynomial time reduction from Planar-3-sat to Planar-
Tracking.

Proof. Let (G,G) be an instance of Planar-Tracking that results from applying the
transformation described above to an instance (φ,D) of Planar-3-sat, where G and D
are the underlying planar embeddings. We show that φ is satisfiable if and only if G has a
tracking set of size T = (

∑p
i=1 2mi + 4) + p− 1.

ISAAC 2019

54:16 Tracking Paths in Planar Graphs

(⇐). Choose the truth assignment of each variable according to the given tracking set. The
implication follows from Lemma 15 and the fact that if some clause in φ was not satisfied,
then its gadget face would have been untracked, a contradiction.

(⇒). Place T trackers on the literal vertices that correspond to the satisfiable truth assign-
ment of every variable and on all non-literal vertices (except s and t). We show that
this corresponds to a tracking set by arguing that every cycle C in G is tracked. We
distinguish between two cases:

Case 1: C contains no clause edges.
Then C is tracked by (almost) the same argument given in Lemma 23 that shows that
a truth assignment of xi corresponds to a tracking set with respect to xi’s gadget.
Notice that, because of Restriction 1, clause edges are only added to faces that require
3 trackers, so this does not change the argument for the faces which do not require 3
trackers. The only differences are: (i) the addition of the edges that force trackers in
every si, which only helps the argument, and (ii) the fact that C may span multiple
variable gadgets, in which case C must traverse at least 3 trackers on the non-literal
vertices between two variable gadgets.

Case 2: C contains clause edges.
Notice that, by construction of G, C must have at least one spine edge. If C corresponds
to a clause face, then it must be tracked by Lemma 16. Otherwise, we show that
C contains at least 3 trackers and, thus, is trivially tracked. Let us think of C as
alternating non-empty paths of two types: clause paths, which only contain clause
edges and spine paths, which only contain spine edges. To avoid dealing with complex
cycles, we observe that each spine path in C must contain at least 1 tracker; this
follows from the fact at least one of the 2 vertices sharing a spine edge must have a
tracker (see variable gadget). Thus, let us assume that C contains no more than 2
spine/clause paths, or otherwise C immediately contains 3 trackers. Notice that if one
of the spine paths spans 2 or more variable gadgets, then it must traverse at least 3
trackers on the non-literal vertices between two variable gadgets. Since every clause in
φ contains exactly 3 distinct literals and C is simple, the only cases where none of the
spine paths span multiple variable gadgets are the following:
(i) C contains exactly 2 clause paths in different sides of the spine.

Then, the 2 spine paths connecting the two sides of the spine must traverse 2 trackers
each (see variable gadget). Therefore, C contains at least 4 trackers.

(ii) C contains exactly 2 clause paths on the same side of the spine, which both start or
both end at the same variable gadget, one nested in the other.
Then, by Restriction 2 one of the spine paths contains at least 6 vertices, half of
which must be tracked. J

D. Eppstein, M.T. Goodrich, J. A. Liu, and P. Matias 54:17

(a) Example of a Planar-3-sat instance drawn in a rectilinear fashion with clauses A = (x1 ∨ x2 ∨ x3),
B = (x1 ∨ x4 ∨ x5), C = (x2 ∨ x3 ∨ x4), D = (x1 ∨ x2 ∨ x5).

(b) Example of a Planar-Tracking instance. The orange vertices ensure that no cycle is untracked (see
Figure 6).

Figure 10 Illustration of a Planar-3-sat instance (above) and the corresponding Planar-
Tracking instance associated with the reduction described in Section 4 (below).

ISAAC 2019

Distance Measures for Embedded Graphs
Hugo A. Akitaya
Department of Computer Science, Tufts University, Medford, MA, USA
hugo.alves_akitaya@tufts.edu

Maike Buchin
Department of Mathematics, Ruhr University Bochum, Bochum, Germany
Maike.Buchin@rub.de

Bernhard Kilgus
Department of Mathematics, Ruhr University Bochum, Bochum, Germany
Bernhard.Kilgus@rub.de

Stef Sijben
Department of Mathematics, Ruhr University Bochum, Bochum, Germany
Stef.Sijben@rub.de

Carola Wenk
Department of Computer Science, Tulane University, New Orleans, LA, USA
cwenk@tulane.edu

Abstract
We introduce new distance measures for comparing straight-line embedded graphs based on the
Fréchet distance and the weak Fréchet distance. These graph distances are defined using continuous
mappings and thus take the combinatorial structure as well as the geometric embeddings of the
graphs into account. We present a general algorithmic approach for computing these graph distances.
Although we show that deciding the distances is NP-hard for general embedded graphs, we prove that
our approach yields polynomial time algorithms if the graphs are trees, and for the distance based
on the weak Fréchet distance if the graphs are planar embedded. Moreover, we prove that deciding
the distances based on the Fréchet distance remains NP-hard for planar embedded graphs and show
how our general algorithmic approach yields an exponential time algorithm and a polynomial time
approximation algorithm for this case. Our work combines and extends the work of Buchin et al. [13]
and Akitaya et al. [7] presented at EuroCG.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Fréchet distance, graph comparison, embedded graphs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.55

Related Version A full version of the paper is available at https://arxiv.org/pdf/1812.09095.pdf.

Funding Hugo A. Akitaya: Supported by National Science Foundation grants CCF-1422311 and
CCF-1423615, and the Science Without Borders scholarship program.
Bernhard Kilgus: Supported by the Deutsche Forschungsgemeinschaft (DFG), project BU 2419/3-1.
Carola Wenk: Supported by National Science Foundation grant CCF-1618469.

1 Introduction

There are many applications that work with graphs that are embedded in Euclidean space.
One task that arises in such applications is comparing two embedded graphs. For instance,
the two graphs to be compared could be two different representations of a geographic network
(e.g., roads or rivers). Oftentimes these networks are not isomorphic, nor is one interested
in subgraph isomorphism, but one would like to have a mapping of one graph to the other,
and ideally such a mapping would be continuous. For instance, this occurs when we have a
ground truth of a road network and a simplification or reconstruction of the same network

© Hugo A. Akitaya, Maike Buchin, Bernhard Kilgus, Stef Sijben, and Carola Wenk;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hugo.alves_akitaya@tufts.edu
mailto:Maike.Buchin@rub.de
mailto:Bernhard.Kilgus@rub.de
mailto:Stef.Sijben@rub.de
mailto:cwenk@tulane.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.55
https://arxiv.org/pdf/1812.09095.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Distance Measures for Embedded Graphs

and we would like to measure the error of the latter. In this case, a mapping would identify
the parts of the ground truth that are reconstructed/simplified and would allow to study the
local error.

We present new graph distance measures that are well-suited for comparing such graphs.
Our distance measures are natural generalizations of the Fréchet distance [10] to graphs
and require a continuous mapping, but they don’t require graphs to be homeomorphic. One
graph is mapped continuously to a portion of the other, in such a way that edges are mapped
to paths in the other graph. The graph distance is then defined as the maximum of the
strong (or weak) Fréchet distances between the edges and the paths they are mapped to.
This results in a directed or asymmetric notion of distance, and we define the corresponding
undirected distances as the maximum of both directed distances. The directed distances
naturally arise when seeking to measure subgraph similarity, which requires mapping one
graph to a subgraph of the other.

For comparing two not necessarily isomorphic graphs only few measures were known
previously. One such measure is the traversal distance suggested by Alt et al. [9] and another
is the geometric edit distance suggested by Cheong et al. [14]. The traversal distance converts
graphs into curves by traversing the graphs continuously and comparing the resulting curves
using the Fréchet distance. It is also a directed distance that compares the traversal of one
graph with the traversal of a part of the other graph. However, an explicit mapping between
the two graphs is not established, and part of the connectivity information of the graphs
is lost due to the conversion to curves. The geometric edit distance minimizes the cost of
edit operations from one graph to another, where cost is measured by Euclidean lengths and
distances. But again, connectivity is not well maintained. Figure 1 shows some examples of
graphs where our graph distances, the traversal distance, and the geometric edit distance
differ. In particular, only our graph distances capture the difference in connectivity between
graphs G1 and G2, as well as between H1 and H2.

Our graph distances map one graph onto a subgraph of the other and they measure the
Fréchet distance between the mapped parts (see Section 2.1 for a formal definition). Hence
connectivity information is preserved and an explicit mapping between the two (sub-)graphs
is established. One possible application of these new graph distances is the comparison
of geographic networks, for instance evaluating the quality of map reconstructions and
map simplification. In Section 5, we show first experimental results on graphs of map
reconstructions that illustrate that our approach considers both, geometry and connectivity.

(a) (b) (c)

G1 G2 H2H1 I1 I2

Figure 1 Examples where our graph distances, the traversal distance, and the geometric edit
distance differ. For clarity the graphs are shown side-by-side, but in the embedding they lie on top
of each other. (a): Graphs G1 and G2 have large graph distance (because G1 needs to mapped to
one side of G2), large edit distance (because a long edge needs to be added), but small traversal
distance. (b): Graphs H1 and H2 have large graph distance (because all of H1 needs to mapped to
only one side of H2), but small traversal distance and small edit distance. (c): Graphs I1 and I2

have small graph distance and small traversal distance, but a large edit distance (because a long
edge needs to be added).

H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk 55:3

Related work

A few approaches have been proposed in the literature for comparing geometric embedded
graphs. Subgraph-isomorphism considers only the combinatorial structure of the graphs
and not its geometric embedding. It is NP-hard to compute in general, although it can be
computed in linear time if both graphs are planar and the pattern graph has constant size [17].
If we consider the graphs as metric spaces, the Gromov-Hausdorff distance (GH) between two
graphs is the minimum Hausdorff distance between isometric embeddings of the graphs into a
common metric space. While it is unknown how to compute GH for general graphs, recently
Agarwal et al. [1] gave a polynomial time approximation algorithm for the GH between a
pair of metric trees. We are however interested in measuring the similarity between two
specific embeddings of the graphs. Armiti et al. [11] suggest a probabilistic approach for
comparing graphs that are not required to be isomorphic, using spatial properties of the
vertices and their neighbors. However, they require vertices to be matched to vertices, which
can result in a large graph distance when an edge in one graph is subdived in the other graph.
Furthermore, the spatial properties used are invariant to translation and rotation, whereas
we consider a fixed embedding. Cheong et al. [14] proposed the geometric edit distance for
comparing embedded graphs, however it is NP-hard to compute. Alt et al. [9] defined the
traversal distance, which is most similar to our graph distance measures, but it does not
preserve connectivity. comparison with the traversal distance.

For assessing the quality of map construction algorithms, several approaches have been
proposed. One approach is to compare all paths [2] or random samples of shortest paths [18].
However, these measures ignore the local structure of the graphs. In order to capture more
topological information, Biagioni and Eriksson developed a sampling-based distance [12]
and Ahmed et al. introduced the local persistent homology distance [3]. The latter distance
measure focuses on comparing the topology and does not encode geometric distances between
the graphs. The sampling-based distance is not a formally defined distance measure, and it
crucially depends on parameters (in particular matched_distance, to decide if points are
sufficiently close to be matched); in practice it is unclear how these parameters should be
chosen. However, it captures the number of matched edges, which is useful when comparing
reconstructed road networks. In contrast to these measures, our graph distances capture
more topology than the path-based distance [2], and capture differences in geometry better
than the local persistent homology distance [3]. Also our graph distances are well-defined
distance measures that do not require specific parameters to be set, unlike [12].

Contributions

We present new graph distance measures that compare graphs based on their geometric
embeddings while respecting their combinatorial structure. To the best of our knowledge,
our graph distances are the first to establish a continuous mapping between the embedded
graphs. In Section 2 we define several variants of our graph distances (weak, strong, directed,
undirected) and study their properties. In Section 3 we develop an algorithmic approach
for computing the graph distances. On the one hand, we prove that for general embedded
graphs, deciding these distances is NP-hard. On the other hand, we also show that our
algorithmic approach gives polynomial time algorithms in several cases, e.g., when one graph
is a tree. The most interesting case is when both graphs are plane. Here, we show that our
algorithmic approach yields a quadratic time algorithm for the weak Fréchet distance. In
Section 4 we focus on plane graphs and the strong Fréchet distance. For this case, we show
that the problem is NP-hard, even though it is polynomial time solvable for the weak Fréchet

ISAAC 2019

55:4 Distance Measures for Embedded Graphs

distance. Furthermore, we show how to obtain an approximation, that depends on the angle
between incident edges, in polynomial time and an exact result in exponential time. For this
version, we omit some of the proofs or present only proof sketches. Detailed proofs can be
found within the version published on arXiv [8].

2 Graph Distance Definition and Properties

Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs with vertices embedded as
points in Rd (typically R2) that are connected by straight-line edges. We refer to such graphs
as (straight-line) embedded graphs. Generally, we do not require the graphs to be planar. We
denote a crossing free embedding of a planar graph shortly as a plane graph. Note that for
plane graphs G1 and G2, crossings between edges of G1 and edges of G2 are still allowed.

2.1 Strong and Weak Graph Distance
We define distance measures between embedded graphs that are based on mapping one graph
to the other. We consider a particular type of graph mappings, as defined below:

I Definition 1 (Graph Mapping). We call a mapping s : G1 → G2 a graph mapping if
1. it maps each vertex v ∈ V1 to a point s(v) on an edge of G2, and
2. it maps each edge {u, v} ∈ E1 to a simple path from s(u) to s(v) in the embedding of G2.

Note that a graph mapping results in a continuous map if we consider the graphs as
topological spaces. To measure similarity between edges and mapped paths, our graph
distances use the Fréchet distance or the weak Fréchet distance, which are popular distance
measures for curves [10]. For two curves f, g : [0, 1]→ Rd their Fréchet distance is defined as

δF (f, g) = inf
σ : [0,1]→[0,1]

max
t∈[0,1]

||f(t)− g(σ(t))||,

where σ ranges over orientation preserving homeomorphisms. The weak Fréchet distance is

δwF (f, g) = inf
α,β : [0,1]→[0,1]

max
t∈[0,1]

||f(α(t))− g(β(t))|| ,

where α, β range over all continuous onto functions that keep the endpoints fixed.
Typically, the Fréchet distance is illustrated by a man walking his dog. Here, the Fréchet

distance equals the shortest length of a leash that allows the man and the dog to walk on
their curves from beginning to end. For the weak Fréchet distance man and dog may walk
backwards on their curves, for the Fréchet distance they may not. The Fréchet distance and
weak Fréchet distance between two polygonal curves of complexity n can be computed in
O(n2 logn) time [10]. Now, we are ready to define our graph distance measures.

I Definition 2 (Graph Distances). We define the directed (strong) graph distance ~δG as
~δG(G1, G2) = inf

s:G1→G2
max
e∈E1

δF (e, s(e))

and the directed weak graph distance ~δwG as
~δwG(G1, G2) = inf

s:G1→G2
max
e∈E1

δwF (e, s(e)) ,

where s ranges over graph mappings from G1 to G2, and e and its image s(e) are interpreted
as curves in the plane. The undirected graph distances are

δG(G1, G2) = max(~δG(G1, G2), ~δG(G2, G1)) and

δwG(G1, G2) = max(~δwG(G1, G2), ~δwG(G2, G1)).

H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk 55:5

According to Definition 1, a graph mapping s maps each edge of G1 to a simple path s(e)
in G2. This is justified by the following observation: Mapping e to a non-simple path s′(e),
where s(e) and s′(e) have the same endpoints and s(e) ⊂ s′(e), does not decrease the (weak)
graph distance because δ(w)F (e, s(e)) ≤ δ(w)F (e, s′(e)). From this observation also follows
that we cannot decrease ~δG(G1, G2) by adding additional vertices to subdivide an edge e of
G1: While the concatenation of the resulting mapped paths in G2 may not be simple, it can
be replaced by the image of the entire edge e, which by the observation has to be simple.

We state a first important property of the graph distances:

I Lemma 3. For embedded graphs, the strong graph distances and the weak graph distances
fulfill the triangle inequality. The undirected distances are pseudo-metrics. For plane graphs
they are metrics.

Proof. Symmetry follows immediately for the undirected distances. The directed distances
fulfill the triangle inequality because we can concatenate two maps and use the triangle
inequality of Rd: Let G1, G2 and G3 be three embedded graphs. An edge e of G1 is mapped
to a simple path p in G2. The segments of p are again mapped to a sequence of simple
paths in G3. Thus, when concatenating two maps, one possible mapping maps each edge e
of G1 to a sequence S of simple paths in G3. Note, that S need not be simple. However,
in that case we can instead map e to a shortest path p̂ in S from beginning to end. As
δ(w)F (e, p̂) ≤ δ(w)F (e, S) for each edge of G1, we have ~δG(G1, G2) +~δG(G2, G3) ≥ ~δG(G1, G3)
and ~δwG(G1, G2) + ~δwG(G2, G3) ≥ ~δG(G1, G3) by definition of the directed (weak) graph
distance as the maximum Fréchet distance of an edge and its mapping. Analogously, the
undirected distances fulfill the triangle inequality as well.

For plane graphs, their (weak) graph distance is zero iff their embeddings are the same,
hence the distances are metrics. If the (weak) graph distance is zero, every edge needs to be
mapped to itself, hence the embeddings are the same. If on the other hand, the embeddings
are the same, a graph mapping may map every edge to itself in the embedding. Since there
are no intersections or overlapping vertices, this mapping is continuous in the target graph,
and the distance is zero. J

Note that for non-plane graphs the (weak) graph distance does not fulfill the identity of
indiscernibles. For example, if G1 consists of two crossing line segment edges, and G2 has
visually the same embedding but consists of four edges and includes the intersection point as
a vertex, then both, ~δG(G1, G2) = ~δwG(G1, G2) = 0 and ~δG(G2, G1) = ~δwG(G2, G1) = 0, and
therefore δG(G1, G2) = δwG(G1, G2) = 0. Also note that we do not require graph mappings
to be injective or surjective. And an optimal graph mapping from G1 to G2 may be very
different from an optimal graph mapping from G2 to G1. See Figure 2 for examples of graphs
and their graph distances.

In [8], we show that the traversal distance between a graph G1 and a graph G2 is a
lower bound for ~δwG(G1, G2), which follows from the observation that the traversal distance
captures the combinatorial structure of the graphs to a lesser extent than our graph distances.
Furthermore, we apply the graph distances to measure the similarity between two polygonal
paths to examine how these new definitions are generalizations of the (weak) Fréchet distance
for curves to graphs.

3 Algorithms and Hardness for Embedded Graphs

Throughout this paper, let G1 = (V1, E1) and G2 = (V2, E2) be two straight-line embedded
graphs, and let n1 = |V1|, m1 = |E1|, n2 = |V2| and m2 = |E2|.

ISAAC 2019

55:6 Distance Measures for Embedded Graphs

G2
G1

G2G1

u2 u′2

u1
v1

(a) (b)

u2 v2u1

u3

v1

v2

ε1ε1

G1G2

(c)

u1 v1

u3 u2

v2v3
u1

u2

u3

u4

v1

u′2

v2

u′3

(d)

ε3

ε5
v3

ε2

G1
G2

v4

ε6

ε4 u′

Figure 2 Examples of graph mappings s1 : G1 → G2 and s2 : G2 → G1, and the resulting graph
distances. Mapped vertices are drawn with crosses and are not graph vertices. (a) ~δG(G1, G2) =
~δG(G2, G1) = ε1. s1(u1) = v1, s1(u2) = u′2, s1(u3) = v2 and s2 = s−1

1 . (b) ~δG(G1, G2) = ε1 < ε2 =
~δG(G2, G1). The mapping s1(u1) = v1 and s1(u2) = v2 is not surjective, and s2(v1) = s2(v3) = u1

and s2(v2) = u2 is not injective. (c) ~δG(G1, G2) = ε3 > ε4 = ~δG(G2, G1). s1(ui) = vi and s2(vi) = ui

for i = 1, 2, 3; s2(v4) = u1. (a)-(c) The weak graph distances equal the strong graph distances.
(d) ~δG(G1, G2) = ~δwG(G1, G2) = ~δwG(G2, G1) = ε5 < ε6 = ~δG(G2, G1). Here, the mappings that
attain the strong graph distances are s1(u1) = v1, s1(u2) = u′2, s1(u3) = u′3, s1(u4) = v2 and
s2(v1) = u1, s2(v2) = u4, where s2 in the limit maps u′ to all points on the edge from u2 to u3. The
mappings attaining the weak graph distances are sw

1 = s1 and sw
2 = s−1

1 .

First, we consider the decision variants for the different graph distances defined in
Definition 2. Given G1 and G2 and a value ε > 0, the decision problem for the graph
distances is to determine whether ~δG(G1, G2) ≤ ε (resp., ~δwG(G1, G2) ≤ ε). Equivalently,
this amounts to determining whether there exists a graph mapping from G1 to G2 realizing
~δG(G1, G2) ≤ ε (resp., ~δwG(G1, G2) ≤ ε). Note that the undirected distances can be decided
by answering two directed distance decision problems. As we show in Section 3.3, the value
of ε can be optimized by parametric search.

In Section 3.1 we describe a general algorithmic approach for solving the decision problems
by computing valid ε-placements for vertices. We show that for general embedded graphs
the decision problems for the strong and weak directed graph distances are NP-hard, see
Section 3.2. However, we prove in Section 3.3 that our algorithmic approach yields polynomial-
time algorithms for the strong graph distance if G1 is a tree, and for the weak graph distance
if G1 is a tree or if both are plane graphs. In the latter scenario (G1 and G2 plane graphs),
deciding if ~δG(G1, G2) ≤ ε remains NP-hard, see Section 4.1.

3.1 Algorithmic Approach
Recall, that a (directional) graph mapping that realizes a given distance ε maps each vertex
of G1 to a point in G2 and each edge of G1 to a simple path in G2 within this distance. In
order to determine whether such a graph mapping exists, we define the notion of ε-placements
of vertices and edges; see Figures 3 and 4 (a).

I Definition 4 (ε-Placement). An ε-placement of a vertex v is a maximally connected part
of G2 restricted to the ε-ball Bε(v) around v. An ε-placement of an edge e = {u, v} ∈ E1 is a
path P in G2 connecting placements of u and v such that δF (e, P) ≤ ε. In that case, we say
that Cu and Cv are reachable from each other. An ε-placement of G1 is a graph mapping
s : G1 → G2 such that s maps each edge e of G1 to an ε-placement.

A weak ε-placement of an edge e = {u, v} is a path P in G2 connecting placements of u
and v such that δwF (e, P) ≤ ε. A weak ε-placement of G1 is a graph mapping s : G1 → G2
such that s maps each edge e of G1 to a weak ε-placement.

H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk 55:7

ε ε
u v

e

(a) An ε-placement of e.

ε ε
u v

e

(b) Not an ε-placement.

ε ε
u v

e

(c) A weak ε-placement.

Figure 3 (a) Illustration of ε-placements of an edge e. (b) Not an ε-placement because the path
leaves the ε-tube around e. (c) The Fréchet distance is too large, but e can be mapped to the path
if backtracking is allowed. Thus, it is a weak ε-placement.

ε ε
u v
u1

u2
u3

v1

v2 v3
e(a)

ε ε
u v
u1 v1

e(b)

Figure 4 Illustration of valid and invalid vertex placements. (a) Placements u3 (resp. v3) are
invalid because they are not connected to a placement of v (resp. u) by an ε-placement of the edge
e. Placement v2 is valid when considering e in isolation, but it cannot connect to a placement for
the edge that leaves v to the right. Thus, it is also invalid. As a result of pruning v2 (right), u2

becomes invalid as well, leaving only u1 and v1 as potentially valid placements of u and v (b).

Note that an ε-placement of a vertex v consists of edges and portions of edges of G2,
depending whether Bε(v) contains both, one or zero endpoint(s) of the edge, see Figure 4.
Also note that each vertex has O(m2) ε-placements, since an ε-placement is defined as a
connected part of G2 of maximal size inside Bε(v). Furthermore, we consider two graph
mappings s1 and s2 from G1 to G2 to be equivalent in terms of the directed (weak) graph
distance if for each vertex v ∈ V1, s1(v) and s2(v) are points on the same ε-placement of v.

General Decision Algorithm

Our algorithm consists of the following four steps, which we describe in more detail below.
We assume ε is fixed and use the term placement for an ε-placement.

Observe that each connected component of G1 needs to be mapped to a connected
component of G2, and each connected component of G1 can be mapped independently of the
other components of G1. Hence we can first determine the connected components of both
graphs, and then consider mappings between connected components only. In the following
we present an algorithm for determining if a mapping from G1 to G2, that realizes a given
distance ε, exists, where both G1 and G2 are connected graphs.

Algorithm 1 General Decision Algorithm.

1: Compute vertex placements.
2: Compute reachability information for vertex placements.
3: Prune invalid placements.
4: Decide if there exists a placement for the whole graph G1.

1. Compute vertex placements

We iterate over all vertices v ∈ V1 and compute all their placements. Each vertex has O(m2)
placements, so the total number of vertex-placements is O(n1 ·m2), and they can be computed
in O(n1 ·m2) time using standard algorithms for computing connected components.

ISAAC 2019

55:8 Distance Measures for Embedded Graphs

2. Compute reachability information of vertex placements

Next, we iterate over all edges e = {u, v} ∈ E1 to determine all placements of its vertices
that allow a placement of the edge. That is, we search for all pairs of vertex-placements
Cu, Cv that are reachable from each other according to Definition 4.

For the weak graph distance, we need to find all pairs of placements of u and placements
of v that can reach one another using paths contained in the ε-tube Tε(e) around e, i.e., the
set of all points with distance ≤ ε to a point on e, see Figure 3 (c). If we restrict G2 to its
intersection with the ε-tube, all placements in the same connected component are mutually
reachable. Thus, each edge is processed in time linear in the size of G2 using linear space per
edge: For each connected component a pair of lists containing the placements of u and v in
that component, respectively, is computed. So, all reachability information can be computed
in O(m1 ·m2) time and space. Note that the weak Fréchet distance between a straight line
edge e ∈ E1 and a simple path s(e) in G2 is the maximum of the Hausdorff distance between
e and s(e) and the distances of the endpoints of e and s(e).

For the strong graph distance, existence of a path inside the ε-tube is not sufficient to
describe the connectivity between placements. We must ensure that the Fréchet distance
between e and P is at most ε, i.e., a continuous and monotone map s must exist from
e to P such that δF (t, s(t)) ≤ ε for all t ∈ e. This can be decided in O(|P |) time using
the original dynamic programming algorithm for computing the Fréchet distance [10]. In
order to determine whether such a path P exists, every placement of u stores a list of all
placements of v that are reachable. The connectivity information can be computed by
running a graph exploration, starting from each placement, which prunes a branch if the
search leaves the ε-tube or backtracking on e is required to map it. This method runs a
search for every placement of the start vertex and thus needs O(m2

2) time per edge of G1.
Since the connectivity is explicitly stored as pairs of placements that are mutually reachable,
it also needs O(m2

2) space per edge. Hence, in total over all edges, O(m1 ·m2
2) time and

space are needed. Summing up, we have:

I Lemma 5. To run step 1 and step 2 of Algorithm 1, we need O(m1 ·m2) time and space
for the weak graph distance and O(m1 ·m2

2) time and space for the strong graph distance.

3. Prune invalid placements

Now, after having processed all vertices and edges, it still needs to be decided whether G1 as
a whole can be mapped to G2. To this end, we delete invalid placements of vertices.

I Definition 6 (Valid Placement). An ε-placement Cv of a vertex v is (weakly) valid if for
every neighbor u of v there exists an ε-placement Cu of u such that Cv and Cu are connected
by a (weak) ε-placement of the edge {u, v}. Otherwise, Cv is (weakly) invalid.

See Figure 4 for an illustration of (in)valid placements. As shown in the Figure, deleting
an invalid placement possibly sets former valid placements to be invalid. Thus, we need to
process all placements recursively until all invalid placements are deleted and no new invalid
placements occur. Note that the ordering of processing the placements does not affect the
final result. To decide which placements of vertices u and v incident to an edge e are valid,
we use the reachability information computed in Step 2.

Initially there are O(n1 ·m2) vertex-placements, each of which may be deleted once. For
the weak graph distance, connectivity is stored using connected components inside the ε-tube
surrounding an edge {u, v}. On deleting a placement Cv of v, it is removed from the list
containing placements of v. If a component no longer contains placements of v (i.e. its list
becomes empty), then all placements of u in that component become invalid. A placement

H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk 55:9

Cv is deleted at most once and upon deletion it must be removed from one list for every edge
incident to v. Thus, the time for pruning Cv is O(deg(v)). Since the sum of all degrees is
2m1, all invalid placements can be pruned in O(m1 ·m2) time. For the strong graph distance,
every placement has a list of placements to which it is connected. On deleting Cv, it must be
removed from the lists of all placements Cu to which Cv is connected. Each vertex has O(m2)
placements which have to be removed from a list for each neighbor of v. Thus, pruning a
placement runs in O(deg(v) ·m2) time and pruning all invalid placements in O(m1 ·m2

2) time.

I Lemma 7. Pruning all invalid placements takes O(m1 · m2) time for the weak graph
distance and O(m1 ·m2

2) time for the strong graph distance.

Note that after the pruning step all remaining vertex placements are (weakly) valid.
However, the existence of a (weakly) valid placement for each vertex is not a sufficient
criterion for ~δG(G1, G2) (~δwG(G1, G2)) in general, see Figure 6.

4. Decide if there exists a placement for the whole graph G1

After pruning all invalid placements, we want to decide if the remaining valid vertex-
placements allow a placement of the whole graph G1. The complexity of this step depends
on the graph and the distance measure: for plane graphs we show that we can concatenate
weakly valid placements of two adjacent faces (Lemma 12), whereas this is not possible for
the directed strong graph distance in this setting (Theorem 15) or for general graphs for both
distances (Theorem 10). Although deciding the directed (weak) graph distance is NP-hard for
general graphs, there are two settings which may occur after running steps 1-3 of Algorithm 1,
making step 4 of the algorithm trivial. Clearly ~δG(G1, G2) > ε (~δwG(G1, G2) > ε) if there is
a vertex that has no (weakly) valid ε-placement. Furthermore, we have the following:

I Lemma 8. If, after running steps 1-3 of Algorithm 1, each internal vertex (degree at least
two) has exactly one valid ε-placement (resp., weakly valid ε-placement) and each vertex of
degree one has at least one valid ε-placement (resp., weakly valid ε-placement), then G1 has
an ε-placement (resp., weak ε-placement). Thus, ~δG(G1, G2) ≤ ε (resp., ~δwG(G1, G2) ≤ ε).

Lemma 5, Lemma 7 and Lemma 8 imply the following Theorem.

I Theorem 9. If there is a vertex that has no valid ε-placement or if each vertex has exactly
one valid ε-placement after running steps 1-3 of Algorithm 1, the directed strong graph
distance can be decided in O(m1 ·m2

2) time and space. Analogously, if there is a vertex that
has no weakly valid ε-placement or if each vertex has exactly one weakly valid ε-placement
after running steps 1-3 of Algorithm 1, the directed weak graph distance can be decided in
O(m1 ·m2) time and space.

3.2 NP-Hardness for the General Case
Notwithstanding the special cases in Theorem 9, deciding the (weak) graph distance is not
tractable for general graphs.

I Theorem 10. Deciding whether ~δG(G1, G2) ≤ ε and deciding whether ~δwG(G1, G2) ≤ ε

for two graphs G1 and G2 embedded in R2 is NP-hard.

Proof Sketch. We show NP-hardness reducing from binary constraint satisfaction problem
(CSP) by identifying each variable xi with a vertex vi of G1 and each constraint on two
variables xi, xj with an edge incident to vi and vj . Furthermore, for every possible value

ISAAC 2019

55:10 Distance Measures for Embedded Graphs

for a variable, we add one vertex to G2 and embed the vertex inside an ε-ball around the
variable. We connect two of such vertices corresponding to two different variables with an
edge iff the two values satisfy the constraint. Now, deciding the CSP is equivalent to decide
if every edge of G1 can be mapped to a path of G2 consisting of a single edge. J

3.3 Efficient Algorithms for Plane Graphs and Trees
Here, we show that that Algorithm 1 yields polynomial-time algorithms for deciding the
strong graph distance if G1 is a tree (Theorem 14), and the weak graph distance if G1 is a tree
or if both are plane graphs (Theorem 13). More precisely, we show that the existence of at
least one (weakly) valid placement for each vertex is a sufficient condition for ~δG(G1, G2) ≤ ε
or ~δwG(G1, G2) ≤ ε.

I Lemma 11. If G1 is a tree and every vertex of G1 has at least one (weakly) valid ε-
placement after running steps 1-3 of Algorithm 1, then G1 has a (weak) ε-placement. Thus,
~δG(G1, G2) ≤ ε (or ~δwG(G1, G2) ≤ ε).

Proof Sketch. We view G1 as a rooted tree, selecting an arbitrary vertex as the root. Now
we can greedily map all vertices of G1 from the root outwards because all placements are
valid and no cycle exists where we need to ensure that we start and end in the same valid
placement when traversing the cycle. J

I Lemma 12. If G1 and G2 are plane graphs and every vertex of G1 has at least one weakly
valid ε-placement after running steps 1-3 of Algorithm 1, then G1 has a weak ε-placement.
Thus, ~δwG(G1, G2) ≤ ε.

Proof. A tree-substructure of G1 is a tree T = (VT , ET) induced by the vertex set VT ⊂ V1
with a root vertex r ∈ VT , such that for all vertices v ∈ VT , v 6= r, v is not an endpoint of an
edge e ∈ E1\ET and such that T is maximal, in the sense that when adding one additional
vertex, T contains a cycle. We first remove all tree-substructures of G1 and map these as in
the proof of Lemma 11. Next, we consider all faces of the remainder of G1 and show how to
iteratively map them.

Consider a cycle C bounding a face F and let e1 and e2 be two edges of C incident to
a vertex v. Let b be the line segment of the bisector of e1 and e2 inside Bε(v). We define
the outermost placement of v as the placement which intersects b at maximum distance to
the endpoint of b inside F , see Figure 5 (a). Furthermore, we define an outermost path in
G2 of an edge e = {u, v} of G1 as the path Pout with maximum distance to F connecting
the outermost placements of u and v. That is, no subpath Q of Pout can be replaced by a
path R such that δH(R,B) ≤ δH(Q,B), where δH is the Hausdorff distance and B is the
boundary of the tube Tε(e) which lies inside the face F . Note that if an edge is shorter than
2ε, and hence the ε-balls around the vertices overlap, then so possibly do the placements. In
particular, in this case the outer placements may overlap, in which case the edge placements
degenerate, see Figure 5 (a). Finally, we define an outer placement O of C in G2 as the
concatenation of all outermost paths of edges of C.

Note that if C is sufficiently convex the outer placement is simply the cycle that bounds
H. See Figure 5 (b) for an example, where the red outer placement bounds the outer face
of G2 restricted to red and pink vertices and edges. The outer placement of C is a weak
ε-placement of C.

Now, consider two cycles C1 and C2 bounding adjacent faces of G1, which share a
single (possibly degenerate) path P between vertices u and v. Let O1 and O2 be the outer
placements of C1 and C2, respectively. By definition of an outermost placement, O1 and O2

H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk 55:11

F

F

b

e1

e2v

(a) A vertex with its
placement.

(b) A cycle with its outer placement.

P

u

v

C1
C2

O1
O2

o2 o1

(c) Merging two outer placements.

Figure 5 Illustration of outer placements and how to merge them. In (c) the outer placements of
cycles C1 and C2 can be merged by mapping the shared path P through o1.

must intersect inside the intersection of the ε-tubes of C1 and C2. Let o1 and o2 of O1 and
O2 be the parts between the intersections of O1 and O2 containing the respective images of
P . Again, by definition of an outermost placement, it holds that o1 is completely inside O2
and o2 is completely inside O1.

This is illustrated in Figure 5 (c). By planarity there must be a vertex at the intersections
of O1 and O2. Thus, we can construct a mapping O′2 of C2 that consists of o1 and O2 \ o2.
This is a weak ε-placement of C2 for which the image of the shared path P is identical to
its image in O1. Thus, we can merge O1 and O′2 to obtain a weak ε-placement of these
two adjacent cycles. Note that the mapping of C1 is not modified in this construction.
Additionally, the image of the cycle bounding the outer face is its outer placement. The
same argument can be applied iteratively when C1 and C2 share multiple paths.

If there are two cycles C1 and C2 which are connected by a path P such that one endpoint
u of P lies on C1, the other endpoint v of P lies on C2 and all other vertices of P are no
vertices of C1 or C2, we can still construct a common placement for C1, C2 and P : Let Cu,
Cv be the outermost placements of u and v, respectively and let Dv be a vaild placement of
v which is connected by a path Q in G2 to Cu such that δwF (Q,P) ≤ ε. Such a placement
Dv must exist as Cu is a valid placement. If Dv = Cv we have found a common valid
placement for C1, C2 and P . If Dv 6= Cv, by definition of an outermost placement, the path
Q must intersect the outermost placement O of C2 inside the intersection of the tubes Tε(P)
and Tε(C2). As G2 is plane, there is a vertex w at the intersection and the resulting path
R = QCu→w +Ow→Cv

with δwF (R,P) ≤ ε connects Cu and Cv.
Now, we iteratively map the cycles bounding faces of G1 until G1 is completely mapped.

Let 〈F1, F2, . . . , Fk〉 be an ordering of the faces of G1 such that each Fi, for i ≥ 2 is on
the outer face of the subgraph Gi−1 := C1 ∪ C2 ∪ . . . ∪ Ci−1 of G1, where Cj is the cycle
bounding face Fj . Thus, let F1 be an arbitrary face of G1 and subsequently choose faces
adjacent to what has already been mapped. Hence when adding a cycle Ci, we have already
mapped Gi−1 such that the cycle bounding its outer face is mapped to its outer placement.
Thus, we can treat Gi−1 as a cycle, ignoring the part of it inside this cycle, and merge its
mapping with Ci using the procedure described above. This leaves the mapping of Gi−1
unchanged, hence this is still a weak ε-placement of Gi−1. However, the mapping of Ci is
now modified to be identical to that of Gi−1 in the parts where they overlap. Thus, we
can merge these mappings to obtain a weak ε-placement of Gi. After mapping Fk we have
completely mapped G1. J

ISAAC 2019

55:12 Distance Measures for Embedded Graphs

Lemma 5 and Lemma 7 together with Lemma 11 and Lemma 12 directly imply the
following theorems. Note, that m1 = O(n1) for plane graphs and trees, in particular.

I Theorem 13 (Decision Algorithm for Weak Graph Distance). Let ε > 0. If G1 is a tree,
or if G1 and G2 are plane graphs, then Algorithm 1 decides whether ~δwG(G1, G2) ≤ ε in
O(n1 ·m2) time and space.

I Theorem 14 (Decision Algorithm for Graph Distance). Let ε > 0. If G1 is a tree, then
Algorithm 1 decides whether ~δG(G1, G2) ≤ ε in O(n1 ·m2

2) time and space.

Computing the Distance

To compute the graph distance, we proceed as for computing the Fréchet distance between
two curves: We search over a set of critical values and employ the decision algorithm in each
step. The following types of critical values can occur:
1. A new vertex-placement emerges: An edge in G2 is at distance ε from a vertex in G1.
2. Two vertex-placements merge: The vertex in G2 where they connect is at distance ε from

a vertex in G1.
3. The (weak) Fréchet distance between a path and an edge is ε: these are described in [10].

There are exponentially many paths in G2, but each value the Fréchet distance may
attain is defined by either a vertex and an edge, or two vertices and an edge.

There are O(n1 · m2) critical values of the first two types, and O(m1 · n2
2) of type three.

Parametric search can be used to find the distance as described in [10], using the decision
algorithms from Theorems 13 and 14. This leads to a running time of O(n1 ·m2 · log(n1 +n2))
for computing the weak graph distance if G1 is a tree or both are plane graphs. And the total
running time for computing the graph distance if G1 is a tree is O(n1 ·m2

2 · log(n1 + n2)).

4 Hardness Results and Algorithms for Plane Graphs

Lemma 12 does not hold for plane graphs and the directed strong graph distance because in
general outer placements of cycles cannot be combined to a placement of G1 as shown in the
proof of Lemma 12 , see Figure 6 for a counterexample. In fact we show that deciding the
directed strong graph distance for plane graphs is NP-hard.

4.1 NP-Hardness for the Strong Distance for Plane Graphs
I Theorem 15. For plane graphs G1 and G2, deciding whether ~δG(G1, G2) ≤ ε is NP-hard.

Proof Sketch. We prove the NP-hardness by a reduction from Monotone-Planar-3-Sat.
In this 3-Sat variant, the associated graph with edges between variables and clauses is planar
and each clause contains only positive or only negative literals. We construct two graphs
G1 and G2 where each vertex of G1 has at least two valid placements. The equivalence of a
Monotone-Planar-3-Sat solution and a valid mapping is obtained by zig-zag shapes of
G2 inside the ε-Ball of some of the vertices of G1. See Figure 6 for an illustration. J

The following stronger result follows from the observation that characteristics of the
subgraphs we constructed in the proof of Theorem 15 still hold for a slightly larger ε value.

I Theorem 16. It is NP-hard to approximate ~δG(G1, G2) within a 1.10566 factor.

H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk 55:13

ee1 e2F1 F2

Figure 6 An example of plane graphs G1 (blue) and G2 (red) where every vertex of G1 has two
valid placements, but there is no ε-placement of G1: If the central edge e is mapped to a path
through e1, there is no way to map the cycle bounding face F2 on the right, and if e is mapped to a
path through e2, the cycle bounding F1 cannot be mapped.

4.2 Deciding the Strong Graph Distance in Exponential Time
A brute-force method to decide the directed strong graph distance is to iterate over all
possible combinations of valid vertex placements, which takes O(m1 ·mn1

2). time. Another
approach is to decompose G1 into faces and merge the substructures bottom-up. This
approach is exponential in the number of faces. For more details, see [8].

I Theorem 17. For plane graphs, the strong graph distance can be decided in O(Fm2F−1
2)

time and O(m2F−1
2) space, where F is the number of faces of G1.

Thus, this method is superior to the brute-force method if 2F − 1 ≤ n1.

4.3 Approximation for Plane Graphs
For plane graphs, Algorithm 1 yields an approximation depending on the angle between the
edges for deciding the strong graph distance. The decision is based on the existence of valid
placements. Therefore, the runtime is the same as stated in Theorem 14.

I Theorem 18. Let G1 := (V1, E1) and G2 := (V2, E2) be plane graphs. Assume that for all
adjacent vertices v1, v2 ∈ V1, Bε(v1) and Bε(v2) are disjoint. Let αv be the smallest angle
between two edges of G1 incident to vertex v with deg(v) ≥ 3, and let α := 1

2 minv∈V1(αv). If
there exists at least one valid ε-placement for each vertex of G1, then ~δG(G1, G2) ≤ 1

sin(α)ε.

Proof Sketch. For ε̂ := 1
sin(α)ε the union of all ε-placements of a vertex v with deg(v) ≥ 3

form a single connected component of G2 inside Bε̂. Thus, when mapping two adjacent
cycles separated by a path P , we ensure that for both mappings the same ε̂-placements of
the start and endpoints of P are used. J

5 Experiments on Road Networks

In the last decade several algorithms have been developed for reconstructing maps from
the trajectories of entities moving on the network [4, 5]. This naturally asks to assess the
quality of such reconstruction algorithms. Recently, Duran et al [16] compared several of

ISAAC 2019

55:14 Distance Measures for Embedded Graphs

these algorithms on hiking data, and found that inconsistencies often arise due to noise and
low sampling of the input data, for example unmerged parallel roads or the addition of short
off-roads.

When assessing the quality of a network reconstruction from trajectory data, several
aspects have to be taken into account. Two important aspects are the geometric and
topological error of the reconstruction. Another important aspect is the coverage, i.e., how
much of the network is reconstructed from the data. We believe our measures to be well
suited for assessing the geometric error while still maintaining connectivity information.

We have used the weak graph distance for measuring the distance between different
reconstructions and a ground truth of a part of the road network of Chicago. Figure 7 (a)
shows two reconstructed road map graphs R (red) and B (blue), overlayed on the underlying
ground truth road map G from OpenStreetMap. The reconstruction R in red resulted from
Ahmed et al.’s algorithm [6], whereas the reconstruction B in blue from Davies et al.’s [15]
algorithm. Our directed graph distance from B to G is 25 meters, and from R to G it is 90
meters. This reflects the local geometric error of the reconstructions (note that it does not
evaluate the difference in coverage). Figure 7 (b) shows an example where the topology of R
and G differs (blue circle), affecting for instance navigation significantly. This is captured
by our distance. Although the reconstruction approximates the geometry well, our measure
computes a directed distance of 200 m from G (restricted to the part covered by R) to R.

(a) Two partial map reconstructions of Chicago. (b) Different topology.

Figure 7 Two reconstructed road map graphs R (red) and B (blue), overlayed on the underlying
ground truth road map G from OpenStreetMap.

6 Conclusion

We developed new distances for comparing straight-line embedded graphs and presented
efficient algorithms for computing these distances for several variants of the problem, as well
as proving NP-hardness for other variants. Our distance measures are natural generalizations
of the Fréchet distance and the weak Fréchet distance to graphs, without requiring the
graphs to be homeomorphic. Although graphs are more complicated objects than curves,
the runtimes of our algorithms are comparable to those for computing the Fréchet distance
between polygonal curves. A large-scale comparison of our approach with existing graph
similarity measures is left for future work.

H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk 55:15

References
1 Pankaj K. Agarwal, Kyle Fox, Abhinandan Nath, Anastasios Sidiropoulos, and Yusu Wang.

Computing the Gromov-Hausdorff Distance for Metric Trees. ACM Trans. Algorithms,
14(2):24:1–24:20, April 2018. doi:10.1145/3185466.

2 Mahmuda Ahmed, Brittany T. Fasy, Kyle S. Hickmann, and Carola Wenk. Path-based distance
for street map comparison. ACM Transactions on Spatial Algorithms and Systems, 28 pages,
2015.

3 Mahmuda Ahmed, Brittany Terese Fasy, and Carola Wenk. Local Persistent Homology Based
Distance Between Maps. In 22nd ACM SIGSPATIAL GIS, pages 43–52, 2014.

4 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. A comparison
and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica,
19(3):601–632, 2015.

5 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. Map Construction
Algorithms. Springer, 2015.

6 Mahmuda Ahmed and Carola Wenk. Constructing Street Networks from GPS Trajectories.
In Proceedings of the 20th Annual European Conference on Algorithms, ESA’12, pages 60–71,
Berlin, Heidelberg, 2012. Springer-Verlag.

7 Hugo Akitaya, Maike Buchin, and Bernhard Kilgus. Distance Measures for Embedded Graphs
- Revisited. In 35th European Workshop on Computational Geometry (EuroCG), 2019.

8 Hugo A. Akitaya, Maike Buchin, Bernhard Kilgus, Stef Sijben, and Carola Wenk. Distance
Measures for Embedded Graphs. CoRR, abs/1812.09095, 2018. arXiv:1812.09095.

9 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal of
Algorithms, 49(2):262–283, 2003.

10 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(1&2):75–91, 1995.

11 Ayser Armiti and Michael Gertz. Geometric graph matching and similarity: A probabilistic
approach. ACM International Conference Proceeding Series, June 2014.

12 James Biagioni and Jakob Eriksson. Inferring Road Maps from Global Positioning System
Traces: Survey and Comparative Evaluation. Transportation Research Record: Journal of the
Transportation Research Board, 2291:61–71, 2012.

13 Maike Buchin, Stef Sijben, and Carola Wenk. Distance Measures for Embedded Graphs. In
Proc. 33rd European Workshop on Computational Geometry (EuroCG), pages 37–40, 2017.

14 Otfried Cheong, Joachim Gudmundsson, Hyo-Sil Kim, Daria Schymura, and Fabian Stehn.
Measuring the similarity of geometric graphs. In International Symposium on Experimental
Algorithms, pages 101–112, 2009.

15 Jonathan J. Davies, Alastair R. Beresford, and Andy Hopper. Scalable, Distributed, Real-Time
Map Generation. IEEE Pervasive Computing, 5(4):47–54, 2006.

16 David Duran, Vera Sacristán, and Rodrigo I. Silveira. Map Construction Algorithms: An
Evaluation Through Hiking Data. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Mobile Geographic Information Systems, MobiGIS ’16, pages 74–83, 2016.

17 David Eppstein. Subgraph Isomorphism in Planar Graphs and Related Problems. In Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95, pages 632–640,
Philadelphia, PA, USA, 1995. Society for Industrial and Applied Mathematics.

18 Sophia Karagiorgou and Dieter Pfoser. On vehicle tracking data-based road network generation.
In 20th ACM SIGSPATIAL GIS, pages 89–98, 2012.

ISAAC 2019

https://doi.org/10.1145/3185466
http://arxiv.org/abs/1812.09095

Online Algorithms for Warehouse Management
Philip Dasler
Department of Computer Science, University of Maryland, College Park, USA
daslerpc@cs.umd.edu

David M. Mount
Department of Computer Science, University of Maryland, College Park, USA
mount@umd.edu

Abstract
As the prevalence of E-commerce continues to grow, the efficient operation of warehouses and
fulfillment centers is becoming increasingly important. To this end, many such warehouses are
adding automation in order to help streamline operations, drive down costs, and increase overall
efficiency. The introduction of automation comes with the opportunity for new theoretical models
and computational problems with which to better understand and optimize such systems.

These systems often maintain a warehouse of standardized portable storage units, which are
stored and retrieved by robotic workers. In general, there are two principal issues in optimizing
such a system: where in the warehouse each storage unit should be located and how best to retrieve
them. These two concerns naturally go hand-in-hand, but are further complicated by the unknown
request frequencies of stored products. Analogous to virtual-memory systems, the more popular
and oft-requested an item is, the more efficient its retrieval should be. In this paper, we propose a
theoretical model for organizing portable storage units in a warehouse subject to an online sequence
of access requests. We consider two formulations, depending on whether there is a single access
point or multiple access points. We present algorithms that are O(1)-competitive with respect to an
optimal algorithm. In the case of a single access point, our solution is also asymptotically optimal
with respect to density.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Warehouse management, online algorithms, competitive analysis, robotics

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.56

Funding David M. Mount: Research supported by NSF grant CCF–1618866.

1 Introduction

Online shopping has grown rapidly in recent years and, as such, the efficiency of the
warehouses and fulfillment centers that support it plays an increasingly important role.
Several companies have developed automated systems to help streamline operations in these
warehouses, drive down the costs of order fulfillment, and increase overall efficiency. The
introduction of automation comes with the opportunity for new theoretical models and
computational problems with which to better understand and optimize such systems.

These systems often maintain a warehouse of standardized portable storage units, which
are stored and retrieved by robots [12, 14]. For example, Amazon’s Kiva robots and Alibaba’s
Quicktron robots help to streamline the order-fulfillment process. The Amazon robots are 16
inches tall, weigh almost 145 kilograms, can travel at 5 mph, and carry a payload weighing
up to 317 kilograms. These robots maneuver themselves under standardized shelving units,
lift them from below, and carry them to a location in the warehouse where a human waits to
complete an order with items from the shelf.

The frequency with which each storage unit is accessed varies, and so, intuitively, units
that are accessed more often should be placed closer to the access points than those that are
less frequently accessed. As access probabilities vary over time, there is a natural question of

© Philip Dasler and David M. Mount;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 56; pp. 56:1–56:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7442-7216
mailto:daslerpc@cs.umd.edu
https://orcid.org/0000-0002-3290-8932
mailto:mount@umd.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.56
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Online Algorithms for Warehouse Management

how to dynamically organize the warehouse’s placement of storage units in order to guarantee
efficient access at any time. In this paper we will develop a simple computational model
for a “self-organizing warehouse,” and we present online algorithms for solving them. We
demonstrate that our algorithms are competitive with optimal algorithms in our model. Our
work can be viewed as a geometric variant of online algorithms for self-organizing lists and
virtual memory management systems [1, 19].

From a practical perspective there are many ways in which to model objects residing in
a warehouse. In order to obtain meaningful theoretical results without imposing irrelevant
technical details, we propose a very simple and general model, which encapsulates the most
salient aspects of efficient self-organizing behavior. We model storage units, or boxes, as
movable unit squares on a grid in the plane. In addition to the boxes, there are designated
fixed points, called access points, where boxes are brought on demand. The input consists of
a sequence of access requests, each specifying that a particular box in the system be moved
to a given access point.

There are two natural ways in which to move boxes in a planar setting, picking them
up (like cargo containers by an overhead crane) and sliding them along the ground (like the
aforementioned robotic systems). The former is simpler to describe and analyze. The latter
is more realistic and is consistent with other motion-planning models [11, 10]. Another issue
is the geometrical configuration of the warehouse and the locations of the access points. We
present clean and simple models based on infinite and semi-infinite grids and show how to
generalize our solutions to rectangular warehouses.

We consider two versions of the problem: the attic problem, where there is a single access
point and the warehouse problem, where there are multiple access points. In each version
and for each motion type, we present an online algorithm that is competitive with respect to
an optimal solution that has knowledge of the entire access sequence. Details of the problem
formulations and results are given in the next section.

1.1 Model and Results
We model a warehouse as a rectangular subset Ω of Z2, the square grid in the plane.
Throughout, distances are measured in the `1 metric (the sum of absolute differences in x
and y coordinates). We are given a finite set A = {a1, . . . , am} ⊆ Ω of stationary access
points and a (significantly larger) finite set B = {b1, . . . , bn} of portable storage units, called
boxes. Each box is a unit square. At any time, its lower left corner coincides with a grid
point in Ω, called its location. A point of Ω that contains a box is said to be occupied, and
otherwise it is unoccupied. No two boxes may occupy the same location at the same time.

The initial layout of the boxes is specified in the input. This is followed by a sequence of
access requests, each being a pair (b, a), which involves moving box b ∈ B from its current
location to access point a ∈ A. Access requests are processed sequentially, meaning that
each request is completed before the next one is started. Since the access point may already
be occupied, it will be necessary to reorganize box locations. This reorganization should be
performed with care, keeping frequently accessed boxes near the access point and moving less
frequently accessed boxes to the periphery. The challenge is that we do not know the future
access sequence, and yet we wish to be competitive with an optimal algorithm that does.

In general, the reorganization following each access request will involve a sequence of
box movements. The box at the access point is displaced to a nearby location, the box at
this location is then displaced to a new location, and so on. This chain of box movements
continues until the last box in the chain arrives at an unoccupied square of the grid, possibly
the original location of the requested box. More formally, let p0 denote the original location

P. Dasler and D.M. Mount 56:3

of b, and let p1 denote the location of a. If a is not occupied, b is simply moved here, and
we are done. Otherwise, the algorithm determines a chain p2, . . . , pk of locations, where
p2, . . . , pk−1 are occupied and pk is unoccupied (see Fig. 1(a)). (Note that p0 is considered
to be unoccupied, because its box has been moved to the access point.) We call this a
reorganization chain. If pk 6= p0, this is an open chain (see Fig. 1(b)), and otherwise it is a
closed chain (see Fig. 1(c)).

(a) (c)

Request

(b)

Open chain

b p0

p1

p2
p3

p4

p5

a

Closed chain

p0

p1

p2
p3

p4

Figure 1 Processing a request.

For the sake of presenting our algorithms, it will be useful to describe the relocation
process in terms of a sequence of motion primitives. In the case where boxes can be picked up
(as by an overhead crane), the primitive operation is a swap, which exchanges the contents of
two grid squares. The cost of the operation is the `1 distance between the two locations. The
aforementioned reorganization involving a chain 〈p0, . . . , pk〉 (whether open or closed) can be
executed by swapping boxes in reverse order along the chain, that is, pk ↔ pk−1 ↔ · · · ↔ p0
(see Fig. 2(a)).

(a) (b)

p1

p2
p3

p4
p1

p2
p3

p4

p0 p0

SlidingSwapping

p1
p2

p3

p4

p0

p1
p2

p3

p4

p0

Figure 2 Motion primitives.

Alternatively, when boxes are moved along the ground the associated primitive operation
is called sliding. As with swapping, the contents of two grid locations are swapped, but the
boxes are moved along a rectilinear path of unoccupied grid locations (see Fig. 2(b)). The
cost of the operation is the `1 length of the path, which may generally be much higher than
the `1 distance between the two locations.

Sliding motion is more relevant in contexts where the boxes are being moved by robots,
but it is complicated by the need to create empty space in which to move boxes. Our solutions
will be based on first presenting a simple swapping-based solution and then showing how to
adapt this to sliding motion without significantly increasing the cost. These two primitives
provide a conceptually clear and simple model of motion costs. Of course, in practice, many
other realistic issues would need to be considered.

ISAAC 2019

56:4 Online Algorithms for Warehouse Management

Our problem formulations involve a problem instance, which consists of a specification
of the domain Ω and the locations of the m access points A. An input to a given instance
consists of the initial locations of the n boxes followed by a sequence S of access requests.
For each access request, the output consists of the sequence 〈p0, . . . , pk〉 along which motion
primitives are applied (either swapping or sliding, depending on the model). Since our focus
is on reorganization strategies, we ignore a number of issues needed for a complete model,
such as how to coordinate the movement of multiple robots. We focus on two versions of the
problem depending on the number of access points (see Fig. 3):

Attic Problem: Ω is an axis-aligned rectangle containing a single access point.

Warehouse Problem: Ω is an axis-aligned rectangle with access points on its bottom side.

boxes

a1 a2 a3 a4 a5 access points

access point

Attic Problem Warehouse Problem
Ω

Ω

Figure 3 Problem versions.

We consider the above problems in an online setting, which means that each access request
is processed without knowledge of future requests. In contrast, in an offline setting the entire
access sequence is known in advance. An online algorithm is said to be c-competitive for a
constant c ≥ 1, called the competitive ratio, if for all sufficiently long access sequences S, the
total cost of this algorithm is at most a factor c larger than the cost of an optimal offline
solution for the same sequence. We say that an algorithm is competitive if it is c-competitive
for some constant c, independent of m, n, the size of the domain, and the length of the
access sequence. (The competitive ratios that result from our analyses are relatively high,
and we suspect that they are far from tight. Reducing them will involve establishing better
lower bounds on the optimum algorithm, and this seems to be quite challenging.) The notion
of “sufficiently long access sequence” allows us to ignore start-up issues, such as the initial
locations of the boxes.

Our main results are competitive online algorithms for these two problems in both
the swapping- and sliding-motion models (presented in Theorems 1, 9, 10, and 12). Our
result for the attic problem has the additional feature of being asymptotically optimal
with respect to box density. (The precise definition will be given in Section 2.3.) These
online algorithms exploit an intriguing connection between these problems and the task of
maintaining hierarchical memory systems [1]. Hierarchical memory systems are linear in
nature, and the geometric context of the our problems introduces novel challenges, since the
reorganization must take into account the 2-dimensional locations of the boxes. Also, when
sliding is involved, it is necessary to manage the set of unoccupied squares to guarantee short
access paths.

P. Dasler and D.M. Mount 56:5

1.2 Prior Work
There have been a number of papers devoted to the problem of organizing storage units
in warehouses. Much of the prior work has focused on solving the various engineering
challenges involved.

For example, Amato et al. [2] study control algorithms for the warehouse robots, assuming
a continuous distribution of item locations throughout the warehouse and ignoring the
benefits of intelligent item placement. In a similar vein, Chang et al. [5] attempt to minimize
unnecessary task repetition using genetic algorithms, thus shortening robot travel times, but
assume a fixed storage scheme regardless of differing access frequencies. Sarrafzadeh and
Maddila [17] use a discrete grid-based model, as we will, but their focus is still an engineering
one, concerned primarily with robot path-finding and constructing clearings through which
to move. Closer to our work, Pang and Chan [16] address the question of where certain
items should be stored in the warehouse, proposing a data-mining approach to determine
the relationships between products and co-locating those that are often purchased together.
Experimental analysis shows that their methodology outperforms a simple greedy policy, but
they do not present any proofs on the performance of their approach.

The word “warehouse” has been used for various optimization problems. In the context
of operations research, the warehouse problem was proposed by Cahn [3] and later refined
and extended by Charnes and Cooper [6] and Wolsey and Yaman [20]. This work may sound
related to ours, but its focus is on the logistics of managing a warehouse’s stock in the face of
changing demand. The word is also used in the context of coordinated motion planning under
the name of the warehouseman’s problem. This is a multi-agent motion planning problem
amidst obstacles. It has been shown to be PSPACE-hard [11, 10], but efficient solutions exist
for restricted versions (see, e.g., [18]).

While our approach is theoretical in nature, we avoid the high complexity of the ware-
houseman’s problem by restricting shapes of boxes (to unit squares) and the allowed layout of
boxes (by introducing additional empty working space throughout to facilitate easy motion).
The problems we study are less focused on motion planning and more on how to organize
the warehouse’s contents to ensure efficient processing of a series of access requests.

More closely related to our work is the dial-a-ride problem [7]. In this problem, a set
of users must be conveyed from source locations to specified destinations in a metric space.
The goal is to plan a route (or routes, in the case of multiple vehicles or the more general
k-server problem [13]) that satisfies all transportation requests while minimizing total distance
traveled. One key difference is that the source locations are fully specified by the problem
input, whereas in the warehouse problem the location of requested boxes can be adjusted
according to need, and how best to do so is central to the problem.

As mentioned earlier, our work is similar in spirit to online algorithms for self-organizing
memory structures [1, 19]. Another example is the work of Fekete and Hoffmann [8], who
consider the online problem of packing variously sized squares into a dynamically sized
square container.

2 Online Solution to the Attic Problem

In this section we present an online algorithm for the attic problem (single access point).
We will show that the resulting scheme is competitive with respect to an optimal algorithm.
As mentioned above, we exploit ideas from hierarchical memory systems. In such systems,
memory consists of objects called pages, which are organized into blocks, called caches.
Successive caches have higher storage capacity but higher access times. A common method

ISAAC 2019

56:6 Online Algorithms for Warehouse Management

for organizing such memory structures involves a block-based version of the least-recently
used (LRU) policy, called Block-LRU of Aggarwal et al. [1]. In this policy, whenever a page
is accessed it is brought to the lowest level cache, and the page that has resided in this
cache for the longest time is evicted to the next higher level cache. The process is repeated
until reaching the lowest cache that has space to hold this page, possibly the cache that
contained the originally requested page. We next describe how the Block-LRU algorithm
can be adapted to our geometric setting.

2.1 Hierarchical Model
In hierarchical memory systems, the cost of accessing an object is purely a function of
each cache’s speed. In our geometric context, the cost depends on the total cost of the
motion primitives, which depends on the `1 distances between the locations of the boxes in
the reorganization chain. The principal challenge is adapting the cache-based cost to the
geometric setting. Our approach to the attic problem is based on surrounding the access point
by collection of nested regions, called containers. Analogous to caches in the hierarchical
memory systems, containers that are closer to the access point provide faster access but have
lower storage capacity compared with those farther out.

It will simplify matters to describe the solution first for the infinite grid. We define a
hierarchical model, which is based on an infinite sequence of nested containers, C0, C1, . . .,
where C0 consists only of the origin (the access point), and for k ≥ 1, Ck consists of the
points of Z2 that whose `1 distance from the origin varies from 2k−1 + 1 to 2k (see Fig. 4
below). Whenever a box b is requested, it is first moved to the access point, and then a
series of evictions takes place, where, for k = 0, 1, . . . a box from container Ck is moved to
container Ck+1. The precise manner in which this is done for swapping and sliding motions
is explained in Sections 2.2 and 2.3, respectively.

2.2 Online Algorithm for Swapping Motion
In this section we present an online algorithm solving the attic problem in the case of
swapping motion, called Block-LRUA. Consider a request for a box b. If the access point
is unoccupied, we simply move the box there. Otherwise, in order to make space for b, we
evict the least-recently accessed box from C0, C1, and so on until we encounter the first
container Ck that has at least one unoccupied location (including possibly b’s location at
the time of the request). More formally, let pb denote b’s location, let p0 denote the access
point (origin), and let p1, . . . , pk−1 denote the locations of the least-recently used boxes of
containers C1 through Ck−1, respectively. Finally, let pk ∈ Ck denote the final unoccupied
location (possibly the former location of b). As described in Section 1.1, we achieve this by
performing swaps in reverse order pk ↔ pk−1 ↔ · · · ↔ p0 ↔ pb (see Fig. 4(a)). The cost is
the sum of the `1 distances between consecutive pairs.

In order to apply this for a rectangular domain Ω, we simply clip the boundary of the
containers at the limits of Ω (see Fig. 4(b)). We show next that this is competitive.

I Theorem 1. For any instance of the attic problem and any sufficiently long access sequence
R, the cost of Block-LRUA(S) is within a constant factor of the cost of an optimal solution,
assuming swapping motion.

Due to space limitations, the full proof and competitive analysis appear in Appendix A.1.
In essence, the containers are treated as the caches of a memory hierarchy and then the
standard LRU analysis of [19] and the Block-LRU analysis of [1] are adapted to our case.

P. Dasler and D.M. Mount 56:7

C1

C3
C2

C4 C5
pb

(a) (b)

C1

C5pk

pk−1

pk

pk−1

pb
C4

C3
C2

p0 p0

Figure 4 (a) Nested containers for the attic problem and (b) restriction to a rectangular domain.

2.3 Online Algorithm for Sliding Motion
In order to accommodate the added constraints involved in sliding boxes around the space,
we constrain the manner in which boxes are arranged throughout the domain in order to
retrieve them efficiently. An obvious solution would be to arrange the boxes in rows connected
by empty corridors, as in typical warehouses. However, this is not efficient asymptotically,
because it implies that the number of unoccupied squares in any region of space is at least
a constant fraction of the available space. We will adopt a more space-efficient approach
by packing distant boxes more densely. While these distant boxes will require more cost
to access, this cost can be amortized against the cost incurred by their distance from the
access point.

To make this formal, we define a layout scheme to be a subset of the integer grid Z2,
which we will think of as a subset of the unit squares. For each integer s, define n(s) to be
the number of squares of the layout that lie within an s× s square that is centered about
origin. Define the asymptotic density to be the limiting ratio of the fraction of squares in the
layout lying within such origin-centered squares, that is, lims→∞ n(s)/s2. For example, the
layout that places boxes at every point of the grid has an optimal asymptotic density of 1,
and a layout that places boxes only on the white squares of an infinite chessboard has an
asymptotic density of 1/2.

In this section, we describe a layout that achieves the optimal asymptotic density of 1
and show how to convert our swapping-based Block-LRUA algorithm to the sliding context
at the expense of an additional constant factor in cost.

2.3.1 The Nicomachus Layout
Out layout scheme inspired by a well-known visual proof of Nicomachus’s Theorem [15],
which is shown in Fig. 5(a).1 The grid is partitioned into expanding concentric rings of
square regions, denoted r1, r2, The innermost ring, r1, consists of 4 unit squares. Ring
r2 consists of eight copies of a 2× 2 square region surrounding r1. In general, rk consists of
4k copies of a k × k square region surrounding rk−1.

1 Nicomachus’s Theorem states that
∑n

k=1 k3 =
(∑n

k=1 k
)2. If both sides of the equation are multiplied

by 4, the layout of Fig. 5(a) provides a proof, where the left side arises by summing the number of
blocks ring-by-ring (the kth ring has 4k blocks, each with k2 squares) and the right side comes from the
overall area (since the side length of the nth ring is n(n + 1) = 2

∑n

k=1 k).

ISAAC 2019

56:8 Online Algorithms for Warehouse Management

(a) (b) (c)

Figure 5 (a) A geometric tiling based on Nicomachus’s Theorem, (b) the associated layout
scheme, and (c) restricted to a rectangular domain.

Our layout for the warehouse problem, called the Nicomachus layout, is constructed as
follows. For each ring rk of the aforementioned structure and for each k × k square region
of this ring, we include the (k − 1) × (k − 1) unit squares in the upper left corner in the
layout (shaded in Fig. 5(b).) Each of these is called a block. We designate the upper-left
cell of ring r1 to be the access point. Finally, to accommodate a rectangular domain Ω, we
clip the layout to the boundary of the rectangle and remove the layout squares touching the
domain’s boundary, thus creating corridors along the domain walls (see Fig. 5(c)). Observe
that each block is surrounded by corridors that are one square wide. We show next that this
layout achieves an optimal asymptotic density.

I Lemma 2. The Nicomachus layout achieves an asymptotic density of 1.

Proof. It suffices to show that the asymptotic wastage, that is, the asymptotic density of the
complement of the Nicomachus layout is equal to zero. To see this, consider the first ` ≥ 1
rings of the layout. Each ring rk, 1 ≤ k ≤ `, consists of 4k blocks, each of size (k−1)×(k−1).
The unused space per block is k2− (k− 1)2 = 2k− 1. Thus, the total wasted space for ring k
is 4k(2k− 1). Summing over all rings, the total wastage is

∑`
k=1 4k(2k− 1) = 8`3/3 +O(`2).

The first ` rings fill an origin-centered square of side length `(` + 1), which yields a total
area of at least `4. Therefore, ignoring lower-order terms, the wastage for these rings is at
most (8`3/3)/`4 = 8/3`. Clearly, this tends to zero in the limit. (Expressed as a function of
n, the asymptotic density is the limit of 1− 8/(3n1/4).) J

2.3.2 Accessing a Box
In order to access a box in the warehouse a robot must first travel to the block in which that
box resides, retrieve it from the block, and then return it to the access point. The depth d of
a box is defined to be the minimum number of boxes between it and the boundary of the
block that contains it. So, a box on the perimeter of a block has depth d = 0, while one at
the center of a block in ring ri has depth d =

⌊
i−2

2
⌋
. (When the domain Ω is bounded, this

is an upper bound since peripheral blocks may be clipped.)
In the Nicomachus layout, the cost of reaching a box in the arrangement and retrieving

it from a block are both a function of the ring in which it resides. Let M(ri) denote the
maximum cost of moving the robot from the access point to any cell adjacent to a block of
ring ri, and let C(ri) be the maximum cost of retrieving a box from a block in ring ri. First,
let us consider the travel cost of reaching a cell on the perimeter of a block of boxes.

P. Dasler and D.M. Mount 56:9

I Lemma 3. Travelling from the access point to any cell adjacent to a block in ring ri

requires at most i2 + i steps.

Proof. To reach a box on the perimeter of a block in ring ri from the access point a robot
must traverse each ring k ≤ i by circumnavigating one of its blocks. It is easy to see that a
robot can move between any two cells adjacent to a (k − 1)× (k − 1) block of ring rk in 2k
steps, from which we conclude that the total travel time is

M(ri) ≤
i∑

k=1
2k = i(i+ 1) ≤ i2 + i. J

An equivalent distance is traveled to return the requested box to the access point.
Next, let us define a primitive Replace(d) that allows for the swapping of a box bi placed

in the aisle adjacent to a block B with a box bj ∈ B at depth d. For now we will use this
primitive to establish an upper bound on the cost of accessing a box, while the need for
actually swapping boxes will not become apparent until later. Conceptually, the Replace
primitive must unbury the target box by moving the d boxes in the way. It does so by moving
them each d+ 1 spaces away, retrieving the target box, and then replacing them for a total
cost O(d2). A more careful analysis yields the following.

Agent box movement agent movement

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

2

1

2 2

1 1 2 1

2

2 1 2 1 2 1 1

2

1

2 1

Figure 6 Swapping a pair of boxes, where the original box is at depth d = 2 within a 7× 7 block
in ring r8.

I Lemma 4. The cost of Replace(d) is at most 4d2 + 8d+ 6, where d is the depth of box bj .

Proof. First, number the boxes inward from box bj ’s nearest boundary from 1 to d. We
assume that the robot begins adjacent to box 1 and that box bi is adjacent to the robot.
Next, we iteratively move each of the d+ 1 boxes (the d labeled boxes plus bj) to a location
that is d + 2 units away along the side of the block (see Fig. 6). Accounting for the time
to reach each box, pick it up, move it, put it down, and return to a position adjacent
to the next box to be moved, each iteration has a total cost of 2d + 3, except the last
which does not require moving to the next box and so only costs d + 2. In total, moving
these boxes costs d(2d+ 3) + (d+ 2) = 2d2 + 4d+ 2. Next, we reverse the process at the
same cost, replacing box bj with box bi and restoring boxes 1 through d to their original
positions. This process is briefly interrupted to move box bj out of the way, adding a cost of
2 (Fig. 6(h)). Thus, in total, swapping a new box with an interior box comes at a cost of
2(2d2 + 4d+ 2) + 2 = 4d2 + 8d+ 6. J

ISAAC 2019

56:10 Online Algorithms for Warehouse Management

The depth of a box is bounded by the radius of the block in which it resides. Specifically,
a box in ring ri has a depth d ≤ i−2

2 and so, along with Lemma 4, we have the following
corollary:

I Corollary 5. Retrieving a box from a block in ring ri has a cost of C(ri) ≤ i2 + 2.

Combining this corollary and Lemma 3, the total cost to move to a box in ring ri, retrieve
it, and return to the access point is at most

(i2 + i) + (i2 + 2) + (i2 + i) = 3i2 + 2i+ 2 (1)

Next, let us consider retrieval cost as a function of distance from the access point.

I Lemma 6. If a box is at `1 distance δ from the access point then it lies in a ring ri, such
that i ≤

√
3δ.

Proof. To reach the highest ring level possible at a distance δ, travel orthogonally in a
straight line, traversing each ring’s width in turn. As ring ri has width i, the farthest ring
that can be reached is the first ring ri such that

δ ≤
i∑

j=0
j = i2 + i

2
(2)

Solving for i yields i ≥
√

2δ + 1
4 −

1
2 .

It is easily seen that for all δ ≥ 1,
√

3δ ≥
√

2δ + 1
4 −

1
2 , thus i =

√
3δ suffices as an upper

bound for the greatest ring index at a distance no more than δ. J

By combining Eq. (1) and Lemma 6, we obtain the following.

I Lemma 7. In the Nicomachus layout, retrieving a box at `1 distance δ from the access
point is O(δ).

Proof. Eq. (1) shows that retrieving a box in ring ri has a maximum total cost of 3i2 + 2i+ 2
and Lemma 6 shows that a box at distance δ will be in some ring ri, where i ≤

√
3δ. So,

retrieving a box at distance δ incurs at most a cost of 3(
√

3δ)2 + 2
√

3δ + 2 = 9δ + 2
√

3δ + 2,
which is O(δ). J

From this we find that trading the positions of two boxes can be done at a cost proportional
to the sum of their `1 distances from the access point. A simple, naive algorithm could use
the access point as an intermediary, accessing both boxes at cost O(δ), and returning them
to their opposing rather than original positions. Thus, we have the following:

I Corollary 8. If two boxes bi and bj are at `1 distances δi and δj from the access point,
respectively, then the cost of swapping them is no more than c(δi + δj), for some constant c.

Given this corollary, we can now show that Block-LRUA is competitive in the sliding
model. From the proof of Theorem 1 and the structure of Block-LRUA, it suffices to bound
the cost of evictions from each of the containers. For any k ≥ 0, consider an eviction from
container Ck to Ck+1. The contribution of this eviction to Wlru(S) is 2k. By Corollary 8,
the cost of sliding one to the other is at most c(2k−1 + 2k) < 2c2k, implying that the sliding
cost is within a constant factor of the eviction cost (roughly 4). From the proof of Theorem 1
the eviction cost can be used as a proxy for its actual cost, and therefore the sliding cost is

P. Dasler and D.M. Mount 56:11

at most a constant factor more than the actual cost of Block-LRUA in the case of swapping
motion. This implies that the cost of Block-LRUA in the sliding motion model is competitive
with the optimum solution in the swapping motion model. The actual cost of the optimum
algorithm in the sliding model cannot be lower than the actual cost of the optimum algorithm
in the swapping model. With a roughly factor-4 cost ratio between the sliding and swapping
models, the overall ratio is roughly 128. While this competitive ratio may be rather high, the
analysis thus far has assumed worst case scenarios across multiple factors and the focus has
been to prove the general competitiveness rather than finding the best competitive ratio. We
are confident that an empirical experiment would likely show that the average case scenario
has a much more favorable competitive ratio. Regardless, as a consequence of the above
discussion, we have:

I Theorem 9. For any instance of the attic problem and any sufficiently long access sequence
S, the cost of Block-LRUA(S) is within a constant factor of the cost of an optimal solution,
assuming sliding motion.

3 Online Solution to the Warehouse Problem

In this section we present an online algorithm for the warehouse problem. As before, we will
present the algorithm for swapping motion and then generalize to sliding motion. Recall
that the warehouse problem differs from the attic problem in that there are multiple access
points, all of which lie on the bottom side of the rectangular domain Ω, which we may assume
lies on the x-axis. Our algorithm, which we call Block-LRUW , will be similar in spirit to
online algorithms for hierarchical memory systems, but the combination of spatial locations
and multiple access points adds considerable complexity. As with the attic problem, it will
simplify matters to describe the algorithm first in an infinite context, where boxes may be
placed anywhere above the x-axis, and then adjust the solution to the case of a rectangular
domain. Our approach will be to define containers based on a quadtree-like structure above
the x-axis, and to evict boxes up the quadtree from child to parent. We will treat each
quadtree cell as if it were a cache in the memory hierarchy, with the least-recently used box
evicted whenever more space is needed.

3.1 Quadtree Model
As mentioned above, our online solution to the warehouse problem employs a quadtree
subdivision over the positive-y halfspace. The leaves of the quadtree, or level 0, consist of
the unit squares whose lower left corners are the grid points on the x-axis, that is, (x, 0) for
x ∈ Z. Level 1 consists of the 2× 2 squares lying immediately above whose lower left corners
are located at (2x, 1) for x ∈ Z. In general, for k ≥ 0, level-k consists of the 2k × 2k squares
whose lower left corners lie on (2kx, 2k − 1), for x ∈ Z. Each level-k node u has a parent
p(u) of twice the side length lying immediately above on level k + 1 (see Fig. 7(a)), and two
children each of half the side length lying immediately below on level k − 1. The set of unit
squares associated with each node of the quadtree is called its cell. This structure covers
the infinite grid lying above the x-axis. Given a rectangular domain Ω whose lower side lies
along the x-axis, we clip the above structure to this rectangle (see Fig. 7(b)).

To simplify the analysis of our solution, we first define a variant of the warehouse problem
with an alternate cost function based on this quadtree structure, which we call the quadtree
model. Of course, an optimal solution does not need to follow this model, and later, we will

ISAAC 2019

56:12 Online Algorithms for Warehouse Management

a1 a2 a3 a4 a5

u

p(u)

(a)

aj

(c)

bi

Quadtree model Processing a request

(b)

a1 a2 a3 a4 a5

Restriction to Ω

Figure 7 Quadtree layout.

relate the cost of the standard solution to this variant. The processing of requests in this
model differs from the standard model (described in Section 1.1) in that, after moving the
box to the desired access point, the reorganization chain is allowed to move a box within its
current quadtree cell, or it may move the box to the quadtree cell of an ancestor, but no
other movements are allowed (see Fig. 7(c)).

More formally, consider a request for a box b to access point a. Let Q0(a) denote the
quadtree cell containing a, and let Q1(a), Q2(a), . . . denote the successive quadtree ancestor
cells of Q0(a). If a is unoccupied, we simply move the box there. Otherwise, in order to make
space for bi, we perform a chain of swaps along some locations p0, p1, . . . , pk such that p0 = a,
pk is either unoccupied (possibly the former location of b), and if pi ∈ Qj(a), then pi+1 is
the same cell or an ancestor, that is, pi+1 ∈ Qj′(a) for j′ ≥ j. As described in Section 1.1,
we perform swaps (in reverse order) along the resulting chain. Each swap that moves a box
out of its current quadtree cell is called eviction.

Costs are defined as follows in this model. A box may be moved within its quadtree cell
free of charge, but when it is moved to an ancestor cell, it is charged 2k, where k is the level
of the quadtree cell into which the box is moved. (The analogy with hierarchical memory
systems should be evident, where we think of each quadtree cell as a cache, and eviction to
an ancestor is analogous to moving a page to a larger cache in slower memory.)

3.2 Online Algorithm for Swapping Motion
Let us now present our algorithm for the warehouse problem, which we call Block-LRUW .
Consider a request (b, a) to bring box b to access point a. If this access point is unoccupied,
we simply move the box there. Otherwise, in order to make space for b, we will perform a
sequence of evictions from Q0(a), Q1(a), and so on until we encounter the first quadtree
ancestor Qk(a) that has at least one unoccupied location (possibly b’s location at the time of
the request). More formally, let pb denote b’s location, let p0 = a denote the access point,
and let p1, . . . , pk−1 denote the locations of the least-recently used boxes of quadtree cells
Q0(a) through Qk−1(a), respectively. Finally, let pk ∈ Qk(a) denote the final unoccupied
location (or former location of b). As described in Section 1.1, we perform swaps (in reverse
order) along the chain 〈pb, p0, . . . , pk〉. The main result of this section is showing that this
algorithm is competitive.

I Theorem 10. For any instance of the warehouse problem and any sufficiently long access
sequence S, the cost of Block-LRUW (S) is within a constant factor of the cost of an optimal
solution, assuming swapping motion.

P. Dasler and D.M. Mount 56:13

Due to space limitations, the full proof and competitive analysis appear in Appendix A.2.
It is a nontrivial extension of the single-container structure from the attic problem to a
hierarchical container structure based on the quadtree, and showing how a general solution
in the standard model can be transformed competitively into the quadtree model.

3.3 Online Algorithm for Sliding Motion
In this section, we show that the competitiveness of Block-LRUW in the case of swapping
motion can be used to prove that the sliding version of the same algorithm is competitive.
As in the attic problem, our approach will be to describe a layout of boxes that is amenable
to efficient sliding motion.

We make use of a Nicomachus-like box layout. Rather than rings centered about the
access point, we flatten these rings into layers stacked above the x-axis. As before, we begin
with a layer of 1× 1 cell regions. Above this is a row of 2× 2 regions, then 3× 3, and so on,
with each i× i region containing a block of (i− 1)× (i− 1) boxes (see Fig. 8). We call this
the flattened Nicomachus layout.

δ

yi yjx

Figure 8 A flattened version of the Nicomachus layout for the warehouse problem, with a
conceptual example of swapping two boxes. Pathfinding is ignored in this illustration, but accounted
for in the supporting lemma.

Once again, we make use of a simple naive algorithm that can efficiently trade the
positions of two boxes in the sliding model. More formally, we prove the following:

I Lemma 11. If two boxes bi and bj are at `1 distances δ from each other and at vertical
distances yi and yj from the x-axis, respectively, then the cost of swapping them in the
flattened Nicomachus layout is no more than c(δ + yi + yj), for some constant c.

Proof. A naive algorithm can swap the two boxes bi and bj by: (1) bringing them to the
x-axis, (2) swapping their positions along the x-axis, and (3) returning them to their new
vertical positions. Notice that the cost of retrieving/replacing a box and bringing it to the
x-axis is equivalent to the retrieval cost of a box positioned directly above the access point in
the Attic Problem with Sliding Motion. As per Lemma 7, this access cost in both contexts is
O(y), where y is the distance to the x-axis or singular access point, respectively. Given this,
both steps (1) and (3) of the algorithm occur at a constant factor of (yi + yj). Clearly the
horizontal distance traveled along the x-axis x ≤ δ, therefore, the total cost of swapping the
two boxes must be no greater than c(δ + yi + yj), for some constant c. J

We can use this lemma to related the cost of swapping two elements in the swapping and
sliding models. The following summarizes our main result.

ISAAC 2019

56:14 Online Algorithms for Warehouse Management

I Theorem 12. For any instance of the warehouse problem and any sufficiently long access
sequence S, the cost of Block-LRUW (S) is within a constant factor of the cost of an optimal
solution, assuming sliding motion.

Proof. From Theorem 10 and the structure of Block-LRUW , it suffices to bound the cost
of evictions from one quadtree node to its parent. Assuming that the node is at quadtree
level k − 1, and its parent is at level k, this swap incurs a cost of 2k in the quadtree
model. Letting y1 and y2 denote the vertical distances of these locations from the x-
axis, we have y1 ≤ 2k and y2 ≤ 2k+1. Also, they are separated from each other by an
`1 distance of δ ≤ 2k+2. By Lemma 11, the cost of sliding one to the other is at most
c(δ + yi + yj) ≤ c(2k+2 + 2k + 2k+1) = 7c2k, implying that sliding cost is within a constant
factor of the quadtree cost. From the proof of Theorem 10 and the structure of Block-LRUW ,
the quadtree cost of Block-LRUW can be used as a proxy for its actual cost, and therefore the
sliding cost is at most a constant factor more than the actual cost of Block-LRUW assuming
swapping motion. This implies that the cost of Block-LRUW in the sliding motion model
is competitive with the optimum solution in the swapping motion model. The actual cost
of the optimum algorithm in the sliding model cannot be lower than the actual cost of the
optimum algorithm in the swapping model. With a roughly factor-7 cost ratio between the
sliding and swapping models, the overall ratio is roughly 112. As before, this is based on
many worst-case assumptions and can likely be improved upon. J

4 Concluding Remarks

In this paper we have presented a model for an automated warehouse management system
containing a set of standardized portable storage units or boxes, a robot that moves these
boxes around the warehouse in one of two ways (swapping or sliding), and a set of access
points where requested boxes must be delivered. We then presented online algorithms for
two natural instances of the warehouse problem, one involving a single access point within a
rectangular domain and the other involving a sequence of access points along the bottom
side of a rectangular domain. We prove that our algorithms are competitive with respect to
an optimal (offline) algorithm with full knowledge of the access sequence. Our competitive
ratios are relatively high, and we suspect that they are far from tight, but tightening these
bounds will involve either significantly more complex algorithms or better lower bounds.

We leave for future work some interesting open problems. Recall that our model assumes
that access requests are processed sequentially. This simplifying assumption allowed us to
ignore the extremely difficult issue of motion coordination, which arises when multiple robots
are present [11, 10, 18]. Clearly, any realistic solution should consider an environment with
multiple robots where requests are processed concurrently. Because we control the layout
of boxes in the domain, it may be possible insert additional slack space into the layout to
facilitate efficient motion coordination. Another interesting question in this vein is how
to handle the insertion/deletion of boxes from the collection. Perhaps we could further
leverage memory management schemes such as [9], which efficiently handle the reallocation
of 2D memory.

Also, how does the competitiveness of our schemes change, if at all, when the model
becomes less uniform. In our current model, all actions taken by the robot are of unit cost,
regardless of factors like whether or not the robot is laden or what sort of path a robot
takes to retrieve a box. Çelik and Süral [4], for example, show that the number of turns a
robot makes in a parallel-aisle warehouse can have a significant impact on retrieval efficiency.
Fekete and Hoffmann [8] look at the online problem of packing differently sized squares into

P. Dasler and D.M. Mount 56:15

a dynamically sized square container, and applying this work to a warehouse which does
not use standardized containers would be a natural continuation of the work presented here.
Further generalizing our model to account for differing action costs and box dimensions
would increase its real-world applicability and may lead to some interesting insights.

References
1 A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A Model for Hierarchical Memory. In

Proc. 19th Annu. ACM Sympos. Theory Comput., STOC ’87, pages 305–314, New York, NY,
1987. ACM. doi:10.1145/28395.28428.

2 F. Amato, F. Basile, C. Carbone, and P. Chiacchio. An approach to control automated
warehouse systems. Control Eng. Pract., 13(10):1223–1241, October 2005. doi:10.1016/j.
conengprac.2004.10.017.

3 A. S. Cahn. The summer meeting in Madison. Bull. Amer. Math. Soc., 54(11):1073, November
1948. doi:10.1090/S0002-9904-1948-09093-0.

4 M. Çelik and H. Süral. Order picking in a parallel-aisle warehouse with turn penalties. Internat.
J. Production Res., 54(14):4340–4355, July 2016. doi:10.1080/00207543.2016.1154624.

5 F.-L. Chang, Z.-X. Liu, Z. Xin, and D.-D. Liu. Research on Order Picking Optimization
Problem of Automated Warehouse. Sys. Eng. - Theory & Pract., 27(2):139–143, February
2007. doi:10.1016/S1874-8651(08)60015-0.

6 A. Charnes and W. W. Cooper. Generalizations of the Warehousing Model. OR: Oper.
Research Quarterly, 6(4):131–172, 1955. doi:10.2307/3006550.

7 J.-F. Cordeau and G. Laporte. The dial-a-ride problem: Models and algorithms. Ann. Oper.
Res., 153(1):29–46, 2007. doi:10.1007/s10479-007-0170-8.

8 S. P. Fekete and H.-F. Hoffmann. Online Square-into-Square Packing. Algorithmica, 77(3):867–
901, 2017. doi:10.1007/s00453-016-0114-2.

9 S. P. Fekete., J.-M. Reinhardt, and C. Scheffer. An Efficient Data Structure for Dynamic
Two-dimensional Reconfiguration. J. Syst. Archit., 75(C):15–25, April 2017. doi:10.1016/j.
sysarc.2017.02.004.

10 R. A. Hearn and E. D. Demaine. PSPACE-completeness of sliding-block puzzles and other
problems through the nondeterministic constraint logic model of computation. Theo. Comp.
Sci., 343(1-2):72–96, 2005. doi:10.1016/j.tcs.2005.05.008.

11 J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the Complexity of Motion Planning
for Multiple Independent Objects: PSPACE-Hardness of the “Warehouseman’s Problem”.
Internat. J. Robotics Res., 3(4):76–88, 1984. doi:10.1177/027836498400300405.

12 D. Jain. Adoption of next generation robotics: A case study on Amazon. Perspectiva: A Case
Research Journal, III:15, 2017.

13 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.
doi:10.1016/j.cosrev.2009.04.002.

14 C. K. M. Lee. Development of an Industrial Internet of Things (IIoT) based Smart Robotic
Warehouse Management System. In CONF-IRM 2018 Proceedings, page 14, 2018.

15 R. B. Nelsen. Proofs without words: Exercises in visual thinking. Number no. 1 in Classroom
resource materials. The Mathematical Association of America, Washington, D.C, 1993.

16 K.-W. Pang and H.-L. Chang. Data mining-based algorithm for storage location assignment
in a randomised warehouse. Internat. J. Production Res., 55(14):4035–4052, July 2017.
doi:10.1080/00207543.2016.1244615.

17 M. Sarrafzadeh and S. R. Maddila. Discrete warehouse problem. Theo. Comp. Sci., 140(2):231–
247, April 1995. doi:10.1016/0304-3975(94)00192-L.

18 R. Sharma and Y. Aloimonos. Coordinated motion planning: The warehouseman’s problem
with constraints on free space. IEEE Transactions on Systems, Man, and Cybernetics,
22(1):130–141, February 1992. doi:10.1109/21.141317.

ISAAC 2019

https://doi.org/10.1145/28395.28428
https://doi.org/10.1016/j.conengprac.2004.10.017
https://doi.org/10.1016/j.conengprac.2004.10.017
https://doi.org/10.1090/S0002-9904-1948-09093-0
https://doi.org/10.1080/00207543.2016.1154624
https://doi.org/10.1016/S1874-8651(08)60015-0
https://doi.org/10.2307/3006550
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/s00453-016-0114-2
https://doi.org/10.1016/j.sysarc.2017.02.004
https://doi.org/10.1016/j.sysarc.2017.02.004
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1177/027836498400300405
https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1080/00207543.2016.1244615
https://doi.org/10.1016/0304-3975(94)00192-L
https://doi.org/10.1109/21.141317

56:16 Online Algorithms for Warehouse Management

19 D. D. Sleator and R. E. Tarjan. Amorized Eficiency of List Update and Paging Rules. Commun.
ACM, 28(2):202–208, February 1985. doi:10.1145/2786.2793.

20 L. Wolsey and H. Yaman. Convex hull results for the warehouse problem. Disc. Optimization,
30:108–120, 2018. doi:10.1016/j.disopt.2018.06.002.

A Full Proofs

A.1 Competitiveness of Block-LRUA (Attic Problem) with Swapping
I Theorem 1. For any instance of the attic problem and any sufficiently long access sequence
R, the cost of Block-LRUA(S) is within a constant factor of the cost of an optimal solution,
assuming swapping motion.

Proof. Consider an input S consisting of the initial box placement and a sequence of access
requests. Let Topt(S) and Tlru(S) denote the total cost of the optimum and Block-LRUA

solutions, respectively, on this input. We will show that there exists a constant c and
quantity f(S) that does not grow with the length of the access sequence, such that Tlru(S) ≤
cTopt(S) + f(S). Since f(S) does not grow with the length of the access sequence, for all
sufficiently long access sequences its impact on the total cost will be negligible compared to
Topt(S).

Our analysis will be based on an auxiliary statistic. Given any container Ck, define an
eviction to be an event in which a box lying within this container is moved to a location
in an enclosing container Ck′ , for k′ > k. For the given access request sequence S, define
Elru(S, k) to be the total number of evictions from container Ck performed by Block-LRUA.
Let Wlru(S) =

∑
k≥0 2kElru(S, k) denote the weighted cost of these evictions. We will show

that there exist constants c1 and c2 and quantities f1(S) and f2(S) that do not grow with
the length of the access sequence, such that the following two inequalities hold:

(1) Tlru(S) ≤ c1Wlru(S) + f1(S) and (2) Wlru(S) ≤ c2Topt(S) + f2(S).

We first prove inequality (1). Observe that the cost of processing a request involving a
box b in Block-LRUA consists of two parts, the cost of moving b to the access point (that is,
the `1 distance of b to access point) plus the cost of performing the evictions caused by this
move. We assert that it suffices to bound only the latter quantity. To see why, consider two
consecutive requests to b. Just after the first request, b is located at the access point. When
the second request occurs, if b is not at the access point, it has been moved away due to
various evictions involving b that have occurred due to intervening access requests. By the
triangle inequality, the sum of the costs of these evictions involving b is at least as large as
the `1 distance of b from the access point at the time of the second request. Thus, the cost
of moving b to the access point for the second request is not greater than cost of evictions
involving b due to intervening requests. This allows us to account for all the requests for b
except the first. Define f1(S) to be the sum of the `1 of every box’s initial location to the
access point. Clearly, f1(S) depends only on the initial box placements.

It remains to bound the cost needed to process the evictions. Each time Block-LRUA evicts
a box from some container Ck to the enclosing container Ck+1, the cost is bounded above by
the maximum distance between any point of Ck to any point in Ck+1. Clearly, this is not
greater than the diameter of Ck+1, which is 2k+2. Summing over all accesses and all containers,
it follows that the total cost of Block-LRUA evictions is at most

∑
k≥0 2k+2Elru(S, k) =

4Wlru(S). By our earlier observation that the cost of bringing boxes back to the access
point is bounded above by the sum of f1(S) and the total eviction cost, it follows that
Tlru(S) ≤ c1Wlru(S) + f1(S), where c1 = 2 · 4 = 8, thus establishing (1).

https://doi.org/10.1145/2786.2793
https://doi.org/10.1016/j.disopt.2018.06.002

P. Dasler and D.M. Mount 56:17

To prove inequality (2), we will apply a technique similar to one given by Sleator and
Tarjan [19] and Aggarwal et al. [1] for hierarchical memory systems. For any k ≥ 0, define
Ck =

⋃
j≤k Cj (that is, the set of points within distance 2k of the origin). Also define

mk = |Ck| and mk = |Ck| denote the total capacities of these sets. For each k ≥ 2, we will
relate the weighted eviction cost of Block-LRUA on container Ck with respect to the cost
of box movements by the optimal solution within container Ck. The overall analysis comes
about by summing over all container levels.

Fix any k ≥ 2. Partition the access request sequence into contiguous segments, such
that within any segment (except possibly the last), Block-LRUA performs mk evictions from
container Ck. (The last segment will not be analyzed, but since there is only one such
segment for each k from which an eviction was performed, it follows that for all sufficiently
long access segments, the impact on the overall cost of these segments be negligible. See
[19] for more details.) Consider any complete segment. The contribution of the evictions of
this segment from Ck to the weighted eviction cost Wlru(S) is 2kmk. In Block-LRUA every
container Cj for j ≤ k evicts the least recently accessed box, and this implies that any box
evicted from container Ck is the least recently accessed box not only from Ck, but from Ck

as well. We assert that during this segment, the number of distinct boxes accessed must be
at least mk. To see why, observe that either all of the boxes evicted during this segment
are distinct, or some box was evicted twice during the sequence. If there are mk distinct
evictions, then there are at least least mk distinct boxes requested. On the other hand, if a
box is evicted twice, then by the nature of Block-LRUA, between these two evictions, every
one of the mk boxes in Ck must have been accessed in order for this box to transition from
the most recent to the least recent.

Now, let us consider how the optimum algorithm deals with the mk distinct box requests
that have occurred during this segment. Intuitively, because of the exponential increase in
container sizes, most of the mk distinct accessed boxes cannot fit within Ck−1, and hence
they must spill out into the surrounding region. We will charge for the work needed for the
spillover but limited to Ck (to avoid double counting).

It will simplify matters to ignore boundary issues for now and consider the unbounded
case where Ω = Z2. Define Ĉk to be the set of points of the infinite grid that lie within
`1 distance (3/4)2k of the access point. Since k ≥ 2, we have Ck−1 ⊂ Ĉk ⊂ Ck. Let
m̂k = |Ĉk|. We have m̂k ≤ c′mk, where c′ ≈ (3/4)2 ≤ 2/3. Thus, a fraction of 1 − c′ or
roughly one-third of the mk distinct boxes accessed during this sequence must spill out from
Ck−1 to an `1 distance of at least (3/4)2k − 2k−1 = (1/2)2k−1 = 2k−2 beyond Ck−1’s outer
boundary. It follows that the contribution of to the cost of Topt(S) of these boxes is at least
(mk/3)2k−2 = 2kmk/12. Because all of these box motions are contained within Ck, there is
no double counting of this cost between containers.

The generalization to the case of a bounded rectangular domain Ω is straightforward but
tedious. The key difference is that, due to the bounded nature of Ω, the sizes of consecutive
containers may grow only linearly, not quadratically with the `1 radius of the container.
(This happens, for example, if the domain is a long, thin strip.) Further, the size of the last
container may even be smaller than its predecessor as we approach the outer edges of the
domain. However, the key is that, since the radius value grows exponentially, consecutive
container sizes differ by a constant factor for all but a constant number containers, and this
is all that the above analysis requires.

Let sk denote the number of complete segments for level k. Summing all the segments
and all the levels of the hierarchy, we obtain

Topt(S) ≥
∑
k≥2

sk2k−2mk.

ISAAC 2019

56:18 Online Algorithms for Warehouse Management

Adding in a term f2(S) to account for the final (incomplete) segments, noting that m0 and
m1 are both constants, and combining with our earlier bound on Wlru(S), we obtain the
following, for a suitable constant c3.

Wlru(S) ≤
∑
k≥0

sk2kmk + f2(S) = s0m0 + s12m1 +
∑
k≥2

sk2kmk + f2(S)

≤ c3(s0 + s1) + 4Topt(S) + f2(S).

The term c3(s0 + s1) is just a constant times the total number of access requests and is
not dominant. It follows that there is a constant c2 such that Wlru(S) ≤ c2Topt(S) + f2(S),
which establishes inequality (2). Note that f2(S) does not grow with the length of the access
sequence.

Finally, by combining inequalities (1) and (2), we obtain

Tlru(S) ≤ c1Wlru(S) + f1(S) ≤ c1(c2Topt(S) + f2(S)) + f1(S)
≤ c1c2Topt(S) + (c1f2(S) + f1(S)) ≤ cTopt(S) + f(S),

for some constant c ≥ c1c2 ≥ 32 and quantity f(S) that does not grow with the length of the
access sequence. For all sufficiently long access sequences, this final term will be negligible.
This completes the proof. J

A.2 Competitiveness of Block-LRUW (Warehouse) with Swapping

I Theorem 10. For any instance of the warehouse problem and any sufficiently long access
sequence S, the cost of Block-LRUW (S) is within a constant factor of the cost of an optimal
solution, assuming swapping motion.

Observe that Block-LRUW satisfies the requirements in quadtree model. For the sake
of the above theorem, its cost is computed in the standard manner, as the sum of the `1
distances of all swaps performed. Later, we will show that this is proportional to its cost in
the quadtree model.

The remainder of this section is devoted to proving this theorem. First, let us consider
how we can simulate the behavior of a general solution to the warehouse problem in the
quadtree model. Rather than focusing on individual access requests, we will do this on a
box-by-box basis. Consider input sequence S and any box b. Let S′ denote a contiguous
segment of S, which starts and ends at two consecutive access requests involving b. Let us
denote these access points by a1 and a2, respectively. (For the segment prior to b’s first
access, set a1 the closest access point to b’s initial location, and for the segment following b’s
last access, a2 can be set arbitrarily to any access point.)

When the standard solution completes the processing of the first access request, b will
reside at a1. As a result of subsequent access requests in S′, b may be moved to new locations
in the domain as a result of swap operations. Let 〈p0, . . . , pk〉 denote the sequence of locations
through which b moves during S′, so that p0 = a1, and pk is the location of b just prior to
the upcoming access request at a2. Since this is in the standard model, the points of this
sequence are arbitrary. To perform the simulation, we will define a function π that maps the
location of b at any time to the cell of some quadtree ancestor of a1 in a manner such that,
under this function, b will move in accordance with the quadtree model. We present this
mapping in the next section.

P. Dasler and D.M. Mount 56:19

A.2.1 Container Structure for the Warehouse Problem
Before giving the details of the aforementioned mapping, let us start with an intuitive
explanation. For each access point a let Qk(a) denote the quadtree cell associated with
a’s ancestor at level k. We define a collection of nested regions of exponentially increasing
sizes called containers surrounding a, denoted C0(a) ⊂ C1(a) ⊂ · · · (see Fig. 9(a)). (Note
that, unlike the containers of Section 2.1, which were pairwise disjoint, here each container
includes all the squares of its predecessors.)

a

(a)

a

(b)

Containers

C2(a)
Q3(a)

Q2(a)

Q4(a)

C1(a)

C0(a)

π2

π1

π0

Figure 9 Intuitive structure of containers for the warehouse quadtree model.

For each container Ck(a) we will define a 1–1 function πk that maps each of point in
Ck(A) to a point within the cell of some quadtree ancestor of a. (For example, in Fig. 9(a),
πk maps boxes from Ck(a) to Qk+2(a).) In order to simulate the movement of a box that
has been accessed most recently by a, we will track its movement through these containers.
On first entering a container Ck(a) at some point p, we map the box to the associated point
πk(p) in the quadtree cell. When the box moves to a new point p′ within the same container,
we move the box to πk(p′). Observe that because the containers are nested, even if the box
moves into a location in a smaller container, it will still be considered as lying within Ck

and so will remain in the same quadtree cell in the simulation. Recall that in the quadtree
model, movements within the same quadtree cell are free of charge, and hence there is no
need to account for movements within a given container. Whenever the box is first moved
into a new larger container Ck′ , it will be charged the eviction cost of 2k′′ , where Qk′′(a) is
the associated quadtree cell.

Let us now define the containers and the associated functions more formally. One
complication that arises is that the functions πk associated with two nearby access points
may map locations to the same quadtree cell. When this happens, we must guarantee that
two distinct locations in their containers are not mapped to the same location in this quadtree
cell. To handle this, we will design our container structure carefully so that access points that
map to the same quadtree cell will share the same container and the same mapping function.

To make this precise, consider any access point a and any quadtree ancestor of a at level
k. The function πk for a will map points from a’s container Ck(a) to Qk+2(a). This implies
that the four grandchildren of Qk+2(a) at level k will do the same. So, we will give them all
a common container and a common function. (In Fig. 10(a), the container C2(a) is shared
by four 4× 4 quadtree cells drawn in heavy black lines.) The associated container is defined
as follows. First, imagine a square grid of side length 2k covering the plane that is aligned
with the quadtree cells. The container consists of the 16 grid cells that are `1 neighbors
of the four grandchildren. (In Fig. 10(a), this container C2(a) is shaded in dark gray and

ISAAC 2019

56:20 Online Algorithms for Warehouse Management

includes the squares of C0(a) and C1(a). Note that the lowest tier of these grid squares falls
one unit below the x-axis, but we simply ignore these nonexistent squares in our mapping.)
The number of squares is at most 16 · 2k = 2k+2, and so there is sufficient space to map
the squares of the container into Qk+2(a) (see Fig. 10(b)). We define πk for this container
to be any such function. (We do not require that this function preserve distances because,
according to the quadtree model, movements within a quadtree cell are free.)

Q4(a)

Q3(a)

Q2(a)

C2(a)

C1(a)C0(a)

(a) (b)

a a

π2

π1

π0

Figure 10 Actual structure of containers for the warehouse quadtree model.

A.2.2 Proving Competitiveness
In this section, we present a proof of Theorem 10. Given a access sequence S, define Topt(S),
Tlru(S) to be the (standard) costs for Opt and Block-LRUW , respectively. Define Wlru(S) to
be the cost of Block-LRUW in the quadtree cost model, and define Wopt(S) to be the cost of
the quadtree-simulated version of Opt in the quadtree cost model.

The analysis follows a similar structure to the one given in Theorem 1, and so we will
focus on just the major differences. The analysis is based on three inequalities, where c1, c2,
and c3 are constants and f2(S) and f3(S) are quantities that do not grow with the length of
the access sequence:

(1)Tlru(S) ≤ c1Wlru(S) (2)Wlru(S) ≤ c2Wopt(S)+f2(S) (3)Wopt(S) ≤ c3Topt(S)+f3(S)

Tlru(S) ≤ c1Wlru(S): Block-LRUW is running in the quadtree model, but it uses the
standard (`1) costs, not the eviction costs. Also, it evicts from child to parent, never
skipping ancestors. When moving a box from quadtree cell Qk−1 to Qk the actual cost is
at most the worst-case `1 distance between these cells, which is at most 2 · 2k = 2k+1, and
the quadtree model assesses a charge of 2k. Thus, setting c1 = 2 yields the desired bound.
Wlru(S) ≤ c2Wopt(S) + f2(S): Let mk = 22k denote the number of boxes in a quadtree
cell Qk at level k. Let mk the sum of mj for a quadtree cell and all its descendants (which
is roughly 2mk). Let us focus on a single quadtree cell at level k, call it Qk. Consider
the two child cells at level k − 1, Q′k−1 and Q′′k−1. Let A′ and A′′ denote the subsets of

P. Dasler and D.M. Mount 56:21

access points descended from these two quadtree nodes, respectively. Now, break up the
access sequence into contiguous segments, such that Qk witnesses mk evictions in the
running of Block-LRUW . Let us consider a single segment S′. Observe that, with respect
to access points A′ ∪A′′, Block-LRUW is effectively running an LRU algorithm on the
union of Qk and the cells of all its children. (To see why, observe that the least-recently
used boxes of each descendent are evicted to their parents and eventually up to to Qk,
and the least-recently used box within Qk is evicted.)
We assert that over segment S′, at least mk distinct box accesses have been processed by
the access points A′ ∪A′′ combined. Now, let us consider how Wopt(S) handles the same
requests, but from the perspective of Q′k−1 and Q′′k−1. These two together (and their
descendant cells) have a total capacity of mk−1 +mk−1 ≈ mk/2. Thus, the remaining
roughly mk/2 boxes must be evicted from these children by Opt. They may be evicted
up one level to Qk or up multiple levels. For the sake of simplicity, let us consider the
case where they are evicted up just one level to Qk. (The other case involves splitting the
charge among the nodes along the path according to a geometric series.) Each evicted
box is assessed a charge of 2k, for a total of roughly 2kmk/2 = 2k−1mk. Therefore,
the total charge assessed to Wopt(S) during this segment is at least 2k−1mk, while the
total charge assessed to Qk in Wlru(S) is 2k+1mk. Summing over all the levels (and
letting f2(S) account for the charges in the partial segment at the end of S) we have
Wlru(S) ≤ c2Wopt(S) + f2(S), where c2 is roughly 4.
Wopt(S) ≤ c3Topt(S) + f3(S): We focus on the activity involving a single box b between
two consecutive accesses to a and a′, say. (The additional f3(S) term handles the cost
prior to the initial request for b and after the final request.) Observe that Wopt(S) does
not charge for movements within a quadtree cell, and (since we are in the quadtree model)
it never demotes a box to a lower level of the quadtree. It charges an eviction cost of
2k whenever the box enters a quadtree cell at level k. This event corresponds to an
event in standard Opt when this box enters Ck(a) \ Ck−1(a) for the first time. Let k∗
denote the highest container index into which Opt moves this box (formally, the highest
k such that the box enters Ck(a) \ Ck−1(a)). Since this box might be evicted into all
the containers from level 1 up to k∗, this box contributes at most

∑k∗

k=1 2k ≤ 2k∗+1 to
Wopt(S). On the other hand, Opt has to move this box from the access point to some
point in Ck∗(a) \ Ck∗−1(a). It is easy to see that this involves a distance of at least
2k∗ + 1. It follows that this box contributes more than 2k∗ to Topt(S) and at most 2k∗+1

to Wopt(S). Therefore, setting c3 = 2 yields the desired result.

Together, the three inequalities imply that

Tlru(S) ≤ c1Wlru(S) ≤ c1(c2Wopt(S) + f2(S))
≤ c1(c2(c3Topt(S) + f3(S)) + f2(S)) ≤ cTopt(S) + f(S),

where c = c1c2c3 = 16 and f(S) = c1c2f3(S) + c1f2(S). This completes the proof of
Theorem 10.

ISAAC 2019

On Approximate Range Mode and Range
Selection
Hicham El-Zein
Cheriton School of Computer Science, University of Waterloo, Canada
helzein@uwaterloo.ca

Meng He
Faculty of Computer Science, Dalhousie University, Canada
mhe@cs.dal.ca

J. Ian Munro
Cheriton School of Computer Science, University of Waterloo, Canada
imunro@uwaterloo.ca

Yakov Nekrich
Department of Computer Science, Michigan Technological University, USA
yakov@mtu.edu

Bryce Sandlund
Cheriton School of Computer Science, University of Waterloo, Canada
bcsandlund@uwaterloo.ca

Abstract

For any ε ∈ (0, 1), a (1+ ε)-approximate range mode query asks for the position of an element whose
frequency in the query range is at most a factor (1+ε) smaller than the true mode. For this problem,
we design a data structure occupying O(n/ε) bits of space to answer queries in O(lg(1/ε)) time.
This is an encoding data structure which does not require access to the input sequence; the space
cost of this structure is asymptotically optimal for constant ε as we also prove a matching lower
bound. Furthermore, our solution improves the previous best result of Greve et al. (Cell Probe
Lower Bounds and Approximations for Range Mode, ICALP’10) by saving the space cost by a
factor of lgn while achieving the same query time. In dynamic settings, we design an O(n)-word
data structure that answers queries in O(lgn/ lg lgn) time and supports insertions and deletions in
O(lgn) time, for any constant ε ∈ (0,1); the bounds for non-constant ε = o(1) are also given in the
paper. This is the first result on dynamic approximate range mode; it can also be used to obtain
the first static data structure for approximate 3-sided range mode queries in two dimensions.

Another problem we consider is approximate range selection. For any α ∈ (0,1/2), an α-
approximate range selection query asks for the position of an element whose rank in the query range
is in [k−αs, k+αs], where k is a rank given by the query and s is the size of the query range. When
α is a constant, we design an O(n)-bit encoding data structure that can answer queries in constant
time and prove this space cost is asymptotically optimal. The previous best result by Krizanc et al.
(Range Mode and Range Median Queries on Lists and Trees, Nordic Journal of Computing, 2005)
uses O(n lgn) bits, or O(n) words, to achieve constant approximation for range median only. Thus
we not only improve the space cost, but also provide support for any arbitrary k given at query time.
We also analyse our solutions for non-constant α.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases data structures, approximate range query, range mode, range median

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.57

© Hicham El-Zein, Meng He, J. Ian Munro, Yakov Nekrich, and Bryce Sandlund;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 57; pp. 57:1–57:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:helzein@uwaterloo.ca
mailto:mhe@cs.dal.ca
mailto:imunro@uwaterloo.ca
mailto:yakov@mtu.edu
mailto:bcsandlund@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ISAAC.2019.57
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 On Approximate Range Mode and Range Selection

1 Introduction

The mode and median of a data set are important statistics, widely used across many
disciplines. Thus, they are frequently computed in applications for data mining, information
retrieval and data analytics. The range mode and median problems further aim at speeding
up the computation of the mode and median in an arbitrary subrange of the given sequence of
elements, and thus have been studied extensively [17, 1, 19, 20, 12, 13, 16, 2, 15, 4, 11, 5, 14, 7].
In these problems, we preprocess a sequence of elements c1, c2, . . . , cn to answer queries. Given
two indices a and b with 1 ≤ a ≤ b ≤ n, a range mode query asks for a position of the most
frequent element in ca..b (ca..b denotes ca, . . . , cb), while a range median query asks for the
position of the median element in ca..b. A generalization of range median is the range selection
query, which asks for the position of the kth smallest element in ca..b for any given k. Thus a
range selection query becomes range median if k = ⌈(b − a + 1)/2⌉.

Due to the massive amounts of electronic data available, linear space data structures are
often preferred by modern applications. The following are the best solutions to these query
problems that use O(n) words of space. In static settings, Chan et al. [4] showed how to
answer a range mode query in O(

√
n/ lgn) time. By proving a conditional lower bound, they

also gave strong evidence that, if linear space is required, this query time cannot be improved
significantly using purely combinatorial methods with current knowledge. When updates
to elements are allowed, El-Zein et al. [7] showed how to support both range mode queries
and updates in O(n2/3) time. For range selection, the solution of Chan and Wilkinson [5]
answers queries in O(lg k/ lg lgn + 1) time, matching the lower bound of Jørgensen and
Larsen [16] under the cell probe model. He et al. [15] showed how to support range selection
in O((lgn/ lg lgn)2) worst-case time and updates in O((lgn/ lg lgn)2) amortized time.

The query times for range mode in both linear space data structure solutions and
conditional lower bounds are much larger than that for many other query problems, including
range median. To provide faster support for queries, researchers have studied approximate
range mode [13]. To define this query, let Fx(ca..b) denote the frequency of an element x in
ca..b and F (ca..b) denote the frequency of the mode of ca..b (F (ca..b) =maxxFx(ca..b)). Then
a (1+ε)-approximate range mode query asks for the position of an element x in ca..b such that
(1 + ε) ⋅ Fx(ca..b) ≥ F (ca..b) for some positive ε. This element is called a (1 + ε)-approximate
mode of ca..b. Previously, the best result on this problem is that of Greve et al. [13], which
uses O(n/ε) words of space to support queries in O(lg(1/ε)) time, for any ε ∈ (0,1).

Approximate range median can be defined similarly. We say that the ith smallest element
in the query range ca..b has rank i. Then, for an approximation ratio α ∈ (0,1/2), an
α-approximate range median query asks for the position of an element x whose rank in ca..b
is between ⌈s/2⌉ − αs and ⌈s/2⌉ + αs, where s = b − a + 1. Bose et al. [1] studied this problem,
for which they proposed a data structure occupying O(n/α) words of space that answers
queries in constant time. An α-approximate range selection query can also be defined, which,
for any given k, asks for the position of an element x whose rank in ca..b is between k − αs
and k + αs. However, this problem has not been formally studied previously.

To further improve the space efficiency of data structures, researchers have recently
studied various query problems in the encoding model [8, 14]. Under this model, a data
structure is not allowed to store or assume access to the original data set. Instead, it should
occupy as little space as possible while providing support for queries. For example, in this
model, Fischer and Heun [8] studied the range minimum query problem, which asks for
the position of the smallest element in ca..b. They proposed a data structure occupying
only 2n + o(n) bits with constant query time. The range selection problem has also been

H. El-Zein, M. He, J. I. Munro, Y. Nekrich, and B. Sandlund 57:3

Table 1 Static and Dynamic Range Mode Query History. In this table, δ is an arbitrary constant
in (0,1/2) and m = min(n lgn/ε, n/ε2

).

Query Type Query Time Update Time Space in Bits Source

Exact

O(nδ logn) - O(n2−2δ lgn) [17]
O(1) - O(n2 log logn/ lgn) [20]
O(

√
n/ logn) - O(n lgn) [4]

O(n3/4 logn/ log logn) O(n3/4 log logn) O(n lgn) [4]
O(n2/3 logn/ log logn) O(n2/3 logn/ log logn) O(n4/3 lgn) [4]
O(n2/3

) O(n2/3
) O(n lgn) [7]

O(lg lgn + lg(1/ε)) - O(n lgn/ε) [1]
(1 + ε)− O(lg(1/ε)) - O(n lgn/ε) [13]

Approximation O(lg(1/ε)) - O(n/ε) new
O(lgm/ lg lgm) O(lgn/ε2

) O(m lgm) new

considered in this model: Grossi et al. [14] proposed an encoding data structure occupying
O(n lgκ) bits for any fixed positive integer κ, using which a range selection query can be
answered in O(lg k/ lg lgn + 1) time for any k given in the query with 1 ≤ k ≤ κ.

Naturally, encoding data structures are only relevant when their space occupancy is
asymptotically less than the input data, at least for certain choices of parameters. The space
costs of previous results on approximate range mode or median, however, match the size of the
input sequence asymptotically when ε or α is a constant and become superlinear when ε or α
is in o(1). Thus, we study the problem of designing encoding data structures of approximate
range mode, median and selection queries, to improve the space efficiency of previous solutions.
Furthermore, previously no research has been done on dynamic approximate range mode,
while the dynamic exact data structures for range mode require polynomial query and update
times. Therefore, we also study approximate range mode queries under dynamic settings, to
provide substantially faster support for queries and updates.

Our Results. For (1 + ε)-approximate range mode, where 0 < ε < 1, we design an encoding
data structure using O(n/ε) bits that can answer a query in O(lg(1/ε)) time. This is an
improvement upon the previous best result of Greve et al. [13], since we match their query
time while saving the space cost by a factor of lgn; we assume a word RAM model in which
each word has Θ(lgn) bits. We also prove a lower bound to show that any data structure
supporting (1+ε)-approximate range mode must use Ω(n/(1+ε)) bits for any positive ε. This
means that our space cost is asymptotically optimal for constant ε. When ε is not necessarily
a constant, as long as ε = ω(1/ lgn), our data structure uses o(n lgn) bits, i.e., o(n) words,
which is asymptotically less than the space needed to encode the original sequence itself.

For α-approximate range selection, where 0 < α < 1/2, we design encoding data structures
for two variants of this problem. If k is fixed and given in advance, either as a constant or as
a function of the size, s, of the query range satisfying certain reasonable constraints (e.g.,
k = ⌈s/2⌉ for range median), we have a solution occupying O(n/α2) bits that can answer a
query in constant time. If k is not known beforehand and different values of k could be given
with each query, we have another encoding structure in O(n/α3) bits with constant query
time. Our query time matches that of the previous best data structure of Bose et al. [1]
which supports range median only, while we decrease the space cost by a factor of lgn when
α is a constant. As we also show that any approximate range selection data structure must
use at least Ω(n) bits, our data structures are asymptotically optimal for constant α.

ISAAC 2019

57:4 On Approximate Range Mode and Range Selection

Table 2 Static and Dynamic Range Median and Selection Query History.

Query Type Query Time Update Time Space in Bits Source

Exact

O(1) - O((n lg lgn)2
/ lgn) [20]

O(lgn/ lg lgn) - O(n logn) [2]
O(lg k/ lg lgn + 1) - O(n lgn) [5]

O(lg2 n) O(lg2 n) O(n lg2 n) [12]
O((lgn/ lg lgn)2

) O((lgn/ lg lgn)2
) O(n lg2 n/ lg lgn) [2]

O((lgn/ lg lgn)2
) O((lgn/ lg lgn)2

) O(n lgn) [15]
α −Approximation O(1) - O(n lgn/α) [1]

(with fixed k) O(1) - O(n/α2
) new

α −Approximation O(1) - O(n/α3
) new

In dynamic settings, for any ε ∈ (0,1), we present an O(m lgm)-bit structure where
m = min(n lgn/ε, n/ε2). It supports (1+ ε)-approximate range mode in O(lgm/ lg lgm) time
and insertions/deletions in O(lgn/ε2) time. When ε is an arbitrary constant in (0,1), this
data structure uses O(n) words, answers queries in O(lgn/ lg lgn) time, and supports updates
in O(lgn) time. As the best result on dynamic exact range mode [7] requires O(n2/3) time
for both queries and updates, this approximate solution is much faster for constant ε. It is
also the first result on dynamic approximate range mode. Finally, we apply the technique to
solve static (1+ε)-approximate three-sided range mode in two dimensions, achieving O(lgm)
time query and occupying O(m lgm) words of space, where again m = min(n lgn/ε, n/ε2).
This is another new approximate query problem.

Tables 1 and 2 compare our results to previous work to be surveyed in Section 2.

2 Previous Work

Range Mode. Krizanc et al. [17] first studied the static range mode problem and showed
that, for any δ ∈ (0,1/2), there is an O(n2−2δ)-word solution that answers queries in
O(nδ logn) time. Setting δ = 1/2 yields an O(n)-word data structure supporting range
mode in O(

√
n logn) time. They also presented a data structure using O(n2 log logn/ logn)

words, or O(n2 log logn) bits, to support queries in constant time. Chan et al. [4] further
provided a better linear word solution with O(

√
n/ logn) query time. They also proved a

conditional lower bound to show that, with current knowledge, either the query time must
be polynomial, or the construction time must be polynomially larger than n. Later, Greve
et al. [13] gave an (unconditional) lower bound in the cell probe model, showing that any
structure using S memory cells of w-bit words requires Ω(logn

log(Sw/n)) time to answer a range
mode query. On the other end of the spectrum, there has been work [19, 20] on improving the
constant-time query structure of Krizanc et al., and the best solution uses O(n2 lg lgn/ lg2 n)
words, or O(n2 lg lgn/ lgn) bits [20].

In dynamic settings, Chan et al. [4] provided a tradeoff among space cost, query time
and update time. This tradeoff implies two important results: using linear space in words,
range mode can be supported in O(n3/4 logn/ log logn) worst-case time while updates can be
performed in O(n3/4 log logn) amortized expected time. Alternatively, they can use O(n4/3)
words to improve the query and update efficiency to O(n2/3 logn/ log logn) worst-case time
and amortized expected time, respectively. They also proved a conditional lower bound to
show that, with current knowledge, either queries or updates must require polynomial time.
Very recently, El-Zein et al. [7] further improved these solutions by designing an O(n)-word
structure supporting both queries and updates in O(n2/3) time.

H. El-Zein, M. He, J. I. Munro, Y. Nekrich, and B. Sandlund 57:5

Bose et al. [1] were the first to study approximate range mode. They showed how to provide
constant-time support for 4-approximate mode, 3-approximate mode and 2-approximate
mode using data structures occupying O(n), O(n lg lgn) and O(n lgn) words, respectively.
For (1 + ε)-approximation, they designed an O(n/ε)-word solution that can answer a query
in O(lg lg1+ε n) = O(lg lgn + lg(1/ε)) time. Greve et al. [13] further improved these results
by using O(n/ε) words of space to support queries in O(lg(1/ε)) time.

Range Median and Selection. The study of range median also has a rich history. It
was also Krizanc et al. [17] who initially proposed this problem. There have been several
solutions with near-quadratic space and constant query time [17, 19, 20], the best of which
uses O((n lg lgn/ lgn)2) words [20]. For linear-space solutions, following a series of earlier
work [17, 10, 12, 3], Brodal et al. [2] first achieved an O(n)-word solution that answers
range median and selection queries in O(lgn/ lg lgn) time. Jørgensen and Larsen [16] further
improved the query time of range selection to O(lg lgn+ lg k/ lg lgn), where k is the specified
query rank. They also proved that, under the cell probe model, Ω(lg k/ lg lgn + 1) time
is necessary for any range selection data structure using O(n lgO(1) n) space. Chan and
Wilkinson [5] were then the first who designed a linear word solution with O(lg k/ lg lgn + 1)
optimal query time for range selection. More recently, Grossi et al. [14] proposed an encoding
data structure occupying O(n lgκ) bits for any fixed positive integer κ, using which a range
selection query can be answered in O(lg k/ lg lgn + 1) time for any k given in the query with
1 ≤ k ≤ κ. Gawrychowski and Nicholson [11] presented a space-optimal encoding of range
selection which uses even less space, and proved its space cost is optimal within an o(n)
additive term in bits, though no support for queries is provided. All of the above results for
range selection assume the selection rank k is specified at query time.

In the dynamic case, Gfeller and Sanders [12] proposed a data structure that uses O(n lgn)
words of space to support range median in O(lg2 n) time and insertions and deletions in
O(lg2 n) amortized time. The structure of Brodal et al. [2] occupies O(n lgn/ lg lgn) words
of space, answers queries in O((lgn/ lg lgn)2) worst-case time and supports insertions and
deletions in O((lgn/ lg lgn)2) amortized time. Later He et al. [15] improved the space cost
to O(n) words while providing the same support for queries and updates. The work of Bose
et al. [1] is the only work on α-approximate range median, for which they proposed a data
structure occupying O(n/α) words of space that answers queries in constant time.

3 Approximate Range Mode

Before we proceed, we give a few preliminaries. We will at times refer to elements (of c1..n
or otherwise) as colors. This is because their data type has no significance in frequency
applications and thus the term color standardizes the data type. Furthermore, at times we
create indexing such as a value ri for when the mode in some range csi..ri exceeds a given
threshold. It is possible the mode never exceeds such a threshold. To avoid dealing with such
corner cases in the rest of this exposition, we make the assumption that our list of elements
c1..n is padded at the beginning and end with a sufficient number of one arbitrary color.

We allow non-constant ε. However, in our upper bounds, we make the restriction ε ≤ 1,
to allow simplification in the runtime and space analyses.

I Theorem 1. Any one-dimensional (1 + ε)-approximate range mode data structure requires
Ω(n/(1 + ε)) bits.

Proof. Using a simple proof we show that Ω(n/(1+ε)) bits are required for any data structure
that answers one-dimensional approximate range mode queries. Here we allow arbitrary ε.

ISAAC 2019

57:6 On Approximate Range Mode and Range Selection

Given an approximation factor 1 + ε, divide the sequence S of size n into ⌊n/(2k)⌋ full
blocks each of size 2k, where k = ⌈1+ε⌉+1, and, if n is not a multiple of 2k, a non-full block of
size n mod 2k. Denote by t1, . . . , tk+1 k + 1 arbitrary, distinct colors. We say that S satisfies
property (∗) if for each full block b in S one of the following two conditions hold:

either b consists of t1 repeated k times followed by t2, . . . , tk+1,
or b consists of t2, . . . , tk+1 followed by t1 repeated k times.

Clearly, the number of sequences that satisfy (∗) is at least 2⌊n/(2k)⌋, since there exist
⌊n/(2k)⌋ full blocks in a sequence of size n and each of them can have one of two different
values. Moreover, for any two distinct sequences S1 and S2 satisfying (∗) differing at full
block b, there exists at least one approximate range mode query, namely the query that
asks for an approximate mode of b, that will return different values (either a value from
the first k position in the block or from the last k positions of the block). Thus, the
information theoretic lower bound for storing an approximate range mode data structure is
Ω(lg 2⌊n/(2k)⌋) = Ω(⌊n/(2k)⌋) = Ω(n) bits. J

We now proceed with our new upper bound. Our data structure consists of two parts.
The first part answers low frequency queries ca..b with F (ca..b) ≤ ⌈1/ε⌉, and is exact. The
second part answers high frequency queries ca..b with F (ca..b) > ⌈1/ε⌉, and makes use of the
approximation factor.

Low Frequencies: O(n/ε)-Bits O(lg(1/ε)) Query Time. Similar to the data structure
of Greve et al. [13], for k = 0, . . . , ⌈1/ε⌉ let Qk be an increasing sequence of size n such that
Qk[i] is the largest integer j ≥ i satisfying F (ci..j) = k. Since Qk is an increasing sequence
whose largest element is n, we store it in 2n +O(n/ lg2 n) bits [18] while still accessing its
ith element in constant time1. The total space used is O(n/ε) bits. Given a query range
ca..b, F (ca..b) > k iff b > Qk[a]. Thus, using binary search, we can determine if F (ca..b) < 1/ε
and K = F (ca..b) in that case. If F (ca..b) < 1/ε we return index Q(K−1)[a] + 1; otherwise we
query the high frequency structure. The total time is O(lg(1/ε)).

High Frequencies: O(n/ε)-Bits O(lg lg n + lg(1/ε)) Query Time. We first present an
O(n/ε)-bit structure that answers high frequency (1 + ε)-approximate range mode queries in
O(lg lgn+ lg(1/ε)) time. We start by developing a tool to binary search the frequency of the
mode, with the goal of locating a (1 + ε)-approximate mode.

I Lemma 2. There exists a data structure using O(k ⋅ ε ⋅ n/(1 + ε)k + n/ lg2 n) bits that can
find in constant time, for any query range ca..b, one of the following that holds:
1. F (ca..b) < (1 + ε)k/ε,
2. F (ca..b) > (1 + ε)k/ε, or
3. ((1 + ε)k−1/2)/ε < F (ca..b) < ((1 + ε)k+1/2)/ε.
In case 2, we find an element with frequency greater than (1 + ε)k/ε in range ca..b. In case 3,
we find an element with frequency greater than ((1 + ε)k−1/2)/ε in range ca..b.

When this structure is present for all k in range 0, . . . , ⌊lg1+ε εn⌋, the above trichotomy is
sufficient to binary search for an approximate mode of frequency at least 1/ε. If we ever land
in case 3, the encoding gives an approximate mode, and otherwise, we find the k satisfying

1 We store Qk[1] and (Qk[i]−Qk[i−1]) in unary with a 0 separator between each two consecutive values
in a 2n-bit vector ψ with rank and select structures. To access Qk[i] we count the number of 1s before
the ith 0 in ψ.

H. El-Zein, M. He, J. I. Munro, Y. Nekrich, and B. Sandlund 57:7

(1 + ε)k/ε < F (ca..b) < (1 + ε)k+1/ε, which represents case 2 for value k and case 1 for value
k + 1. Since case 2 provides an element with frequency greater than (1 + ε)k/ε, this element
is an approximate mode.

Proof. Let 1 + ∆ =
√

1 + ε and fj = (∆/ε) ⋅ (1 + ∆)j . For each integer i in [0, n/⌈f2k−1⌉]
let si = i ⋅ ⌈f2k−1⌉ + 1 and denote by ri the smallest value such that F (csi..ri) ≥ (1 +∆)2k/ε.
Notice that cri is the unique mode of csi..ri . Similarly, for each integer i in [0, n/⌈f2k⌉], let
s′i = i ⋅ ⌈f2k⌉ + 1 and denote by r′i the smallest value such that F (cs′i..r′i) ≥ (1 +∆)2k+1/ε.

Given a query range ca..b, we find the biggest indices si, s′j preceding or equal to a. We
proceed as follows.
1. If b < ri, then F (ca..b) ≤ F (csi..ri−1) < ((1 +∆)2k/ε) = ((1 + ε)k/ε).
2. If b ≥ r′j , then Fr′j(ca..b) > Fr′j(cs′j ..r′j)−f2k, since there are at most ⌈f2k⌉−1 < f2k elements

between s′j and a. Then:

Fr′j(ca..b) > Fr′j(cs′j ..r′j) − f2k ≥ ((1 +∆)2k+1/ε) − (∆/ε) ⋅ (1 +∆)2k = (1 +∆)2k/ε

= (1 + ε)k/ε.

3. Suppose b ≥ ri and b < r′j . Since there are at most ⌈f2k−1⌉ − 1 < f2k−1 elements between si
and a and since b ≥ ri, we have that

Fri(ca..b) > Fri(csi..ri) − f2k−1 ≥ ((1 +∆)2k/ε) − (∆/ε) ⋅ (1 +∆)2k−1 = ((1 +∆)2k−1)/ε

= ((1 + ε)k−1/2)/ε.

Finally, since b < r′j , then F (ca..b) ≤ F (cs′j ..r′j−1) < ((1 +∆)2k+1)/ε = ((1 + ε)k+1/2)/ε.
To store the values {ri}, we construct a bit vector of length O(n) as follows. In the bit vector,
there are n 0s. For each ri, we insert a 1 bit after the rith 0 bit in the bit vector. Thus ri is
equal to the number of 0s before the ith 1 bit in the bit vector. A second bit vector of length
O(n) is used to encode the values {r′i} in a similar way. We then represent these two bit
vectors in the succinct data structure of Patrascu [18]. This data structure provides constant
time rank and select, which allow us to locate ri and r′j , and thus determine whether case 1,
2, or 3 applies, in constant time.

For a bit vector of size n with m ones, the space cost can be made O(m lg(n/m)+n/ lg2 n)
bits [18]. For vector r, m lg(n/m) = O((n/f2k−1) lg f2k−1), and for vector r′, m lg(n/m) =
O((n/f2k) lg f2k). The cost is dominated by vector r. Let us first consider the O(m lg(n/m))
term. We have

n/f2k−1 lg f2k−1 =
εn

∆(1 +∆)2k−1 lg((∆/ε) ⋅ (1 +∆)2k−1). (1)

Rationalizing the denominator, we can show 1
∆ = 1√

1+ε−1 = 1+
√

1+ε
ε

and so 1
∆ = Θ(1

ε
) and

∆/ε = O(1). Thus, with ε ≤ 1, we can bound (1) with O ((k−1/2)n
(1+ε)k−1/2 lg(1 + ε)). Finally, since

we restrict ε ≤ 1, we can do a Taylor series expansion to give lg(1 + ε) = O(ε). Thus our final
space bound is O((n/f2k−1) lg f2k−1 + n/ lg2 n) = O(k ⋅ ε ⋅ n/(1 + ε)k + n/ lg2 n). J

To make the above lemma useful, we must apply it to all k in range 0, . . . , ⌊lg1+ε εn⌋. We
first analyze the total space cost of all the O(k ⋅ε ⋅n/(1+ε)k) terms. Summing up these terms,
we have O (∑⌊lg1+ε n⌋

k=1 (k ⋅ ε ⋅ n/(1 + ε)k)) = O (n ⋅ ε∑∞k=1(k/(1 + ε)k)) = O(n/ε) bits. The other

term comes out to O(lg1+ε(ε ⋅n) ⋅n/ lg2 n) ⊆ O (n
lgn lg(1+ε)) bits. Again applying Taylor series

for 1/ lg(1 + ε) = O(1/ε) gives O(n/(ε lgn)) bits. Thus the total space cost is O(n/ε) bits.

ISAAC 2019

57:8 On Approximate Range Mode and Range Selection

The time complexity of the binary search is different from a typical binary search. The
number of values of k in the entire range is O(lg1+ε n), so the complexity of the binary search
is O(lg(lg1+ε n)) = O(lg (lgn

lg(1+ε))) = O(lg (lgn
ε

)) = O(lg lgn + lg(1/ε)).

I Lemma 3. There exists an O(n/ε)-bit data structure that supports one-dimensional
(1 + ε)-approximate range mode queries in O(lg lgn + lg(1/ε)) time.

High Frequencies: O(n/ε)-Bits O(lg(1/ε)) Query Time. The bottleneck of the approach
described in the previous section is the binary search on k. To speed up queries, we store an
additional data structure that uses O(n) bits but returns a 4-approximate range mode.

I Lemma 4. There exists an O(n)-bit data structure that supports one-dimensional approx-
imate range mode queries in constant time with approximation factor 4.

Proof. We assume n is a power of 2. We construct a network of fusion trees [9]. At the
top level, we store two fusion trees Fn/2,l and Fn/2,r. The tree Fn/2,l contains the values
e1, . . . , elgn, where ej is the largest index satisfying F (cej ..n/2) = 2j . Fn/2,r contains the
values e1, . . . , elgn, where ej is the smallest index satisfying F (cn/2..ej) = 2j . If a query crosses
the middle index n/2, we query Fn/2,l to get p1, the smallest value greater than or equal
to a, and we query Fk,r to get p2, the largest value less than or equal to b. We return p1
if F (cp1..n/2) > F (cn/2..p2) and p2 otherwise. Clearly, p1 is a 2-approximate mode for ca..n/2
and p2 is a 2-approximate mode for cn/2..b. The true mode has at least half its occurrences
in one of these regions, so the value we return is a 4-approximate mode for ca..b.

If the query does not cross the middle, it falls entirely in one of the two sides. We may
therefore repeat our fusion tree scheme in a divide and conquer fashion, recursing on the two
halves. Eventually, there will be a level of the recursion that intersects the query.

To analyze the total space used, we use the recurrence S(n) = 2S(n/2) +O(lg2 n), which
solves to S(n) = O(n) bits.

To analyze the time complexity of the query, observe that the fusion trees on O(lgn)
elements with word size O(lgn) support the necessary predecessor/ successor queries in
constant time. However, we must know which fusion trees to query. This involves finding
the level of recursion in which the query range intersects the midpoint. This is equivalent to
the highest set bit in the XOR of a and b, which can be determined in constant time in the
word RAM model. With this information, we can do the necessary arithmetic to find the
appropriate fusion trees to query, and thus query takes constant time. J

We now return to the (1 + ε)-approximation. To answer a query ca..b, we first query the
4-approximation structure of Lemma 4, which returns a corresponding frequency x. We now
know x ≤ F (ca, . . . , cb) ≤ 4x. We have thus shrunk the number of values of k from Lemma 2
that need be tested for the (1 + ε)-approximation from ⌈lg1+ε n⌉ to ⌈lg1+ε(4x/x)⌉ = ⌈lg1+ε 4⌉.
Thus our binary search now takes time O(lg (2

lg(1+ε))) = O(lg(1/ε)).

I Theorem 5. There exists an O(n/ε)-bit data structure that supports one-dimensional
approximate range mode queries in O(lg(1/ε)) time with approximation factor 1 + ε.

4 Dynamic Approximate Range Mode

In this section we consider the dynamic variant of the approximate range mode problem. We
maintain our sequence ca..b under insertions and deletions, so that for an arbitrary query
range ca..b an approximate range mode can be found efficiently.

H. El-Zein, M. He, J. I. Munro, Y. Nekrich, and B. Sandlund 57:9

The high-level approach is as follows. Similar to Section 3, for each j ≤ lg1+ε n, our goal
is to maintain a set of intervals Ij such that the mode of a query range ca..b occurs more
than (1 + ε)j times if and only if ca..b contains an interval in Ij . Then, for all j and each
interval cl..r in Ij we maintain the points (l, r, j) in a data structure D that supports the
following range queries: given a query point (a, b), return the highest j such that a ≤ l and
r ≤ b for at least one point (l, r, j) in D.

However, unlike the sets of intervals maintained in Section 3, our construction in this
section satisfies the property that a single update affects only a small number of intervals in
the sets Ij for all j. We now proceed with the technical argument.

Let Sx denote the set of positions of the element x in the sequence c1..n. We will denote
by Sx[i] the position of the ith occurrence of element x. Let Ix(l, r) denote the interval
cSx[l]..Sx[r].

Now let δ = 1 + ε′ = (1 + ε)1/3 and fix x. There are f = Fx(c1..n) occurrences of element
x in the full range c1..n. We will maintain a subset of the (f2) possible intervals Ix(l, r) in
sets Ij,x, 1 ≤ j ≤ ⌈lgδ n⌉. We will not have need for nested intervals in Ij,x; therefore, we can
number each interval of Ij,x from left to right with sk the start of interval k and ek the end
of interval k, satisfying sk ≤ sk+1, ek ≤ ek+1. We maintain the following two invariants on the
intervals of Ij,x: (1) δj ≤ ek − sk ≤ δj+1, and (2) (ε′/2)δj ≤ sk+1 − sk ≤ ε′δj , and the number
of positions of Sx not covered by an interval of Ij,x at either end is at most (ε′/2)δj (so
s1 ≤ (ε′/2)δj and f − r∣Ij,x∣ ≤ (ε′/2)δj). From our invariants we get the following proposition.

I Proposition 6. An interval Ix(l, r) intersects at most 2(r− l+1)/(ε′δj)+O(1/ε′) intervals
of Ij,x.

Proof. By Invariant (2), we have a gap size of between (ε′/2)δj and ε′δj elements between
consecutive starting points of intervals of Ij,x. Since each interval has size at most δj+1, the
total number of intervals intersecting Ix(l, r) is at most 2(r − l + 1 + 2δj+1)/(ε′δj). J

For each interval Ix(sk, ek) of Ij,x, let pot(Ix(sk, ek)) = ek − sk + 1 denote the number of
elements of Sx (and thus positions in the original sequence c1..n) that fall between sk and ek.
When we insert or delete an element x, by Proposition 6, we must update the pot values of
O(1/ε′) intervals of Ij,x. Across all j, 1 ≤ j ≤ ⌈logδ n⌉, O((1/ε′) lgδ n) intervals are affected.

During the updates, each affected pot(Ix(sk, ek)) value is incremented or decremented
by one. If, for an interval Ix(sk, ek) in Ij,x, Invariant (1) is violated by the update, then we
rearrange the intervals in the neighborhood of Ix(sk, ek) as follows. Consider all intervals
of Ij,x that intersect with Ix(sk, ek+1). By Proposition 6, there are O(1/ε′) such intervals.
We remove said intervals and create new intervals in their place with exactly ⌈(1 + ε′/2)δj⌉
positions of x that fall in each interval. Furthermore, we space them so that Invariant (2)
holds when the new intervals are inserted into Ij,x.

To build these intervals, we must be able to efficiently search for elements by rank
in Sx. As this will not dominate the update cost, we can use a typical order statistic
tree, with O(lg f) = O(lgn) query and update time. We may construct the new intervals
satisfying invariants (1) and (2) with a constant number of queries on Sx per interval, thus
in O((1/ε′) lgn) time overall.

We can analyze the total cost of rebuilds as follows. On each update, we affect O(1/ε′)
intervals at each level. However, the affect on pot is the same for each interval, and when we
rebuild, we rebuild a superset of the intervals affected on update. It follows that the total
amortized cost of rebuilds is ∑⌈logδ n⌉

j=1 (1/δj) ⋅O((1/ε′) lgn) = O((lgn)/ε′2) per update.

ISAAC 2019

57:10 On Approximate Range Mode and Range Selection

Further, in each update we must update Sx and update the pot values. These take time
O(lgn) and O((1/ε′) lgδ n) = O(lgn/ε′2), respectively. So far we pay O(lgn/ε′2) per update,
but we have yet to describe the data structure that holds each Ij,x, which will also need to
be updated during rebuilds.

Consider each interval Ix(sk, ek) of Ij,x as a point (sk, ek, j). We store each interval of
Ij,x, across all 1 ≤ j ≤ ⌈lgδ n⌉ and all x, in a data structure D that supports the following
range queries: given a query point (a, b), return the highest j such that a ≤ l and r ≤ b for at
least one point (l, r, j) in D. Associated with each point, we keep the element x from which
it originated.

We first must consider the number of intervals (and thus points) stored in D. As before,
we assume element x occurs f = Fx(c1..n) times in c1..n. Then ∣Ij,x∣ = O(f/⌈ε′δj⌉). Across all
levels, we can bound the total number of intervals at O(f lgδ n) = O(f lgn/ε′) or O(f/ε′2).
Accounting for all x, the number of intervals in D will be O(m) = O(min(n lgn/ε′, n/ε′2)).

I Lemma 7. Data structure D can be stored in O(n lgn) bits, where n is the number of
elements in D. Queries and updates can be supported in O(lgn/ lg lgn) time.

Proof. Let P denote the set of points to be stored in our data structure. Here we use ε > 0
independently of the rest of the section. We start by considering the special case when the
second coordinate is bounded by lgε n, i.e., r ≤ lgε n for all (l, r, j) ∈ P . In this case it is
sufficient to store lgn points for every possible value of b: let maxr,j denote the biggest
first coordinate of a point (l′, r′, j′) in P with r′ = r, j′ = j (maxr,j = max{ l′ ∣ (l′, r′, j′) ∈
P and r′ = r, j′ = j}. The answer to a query (a, b) is the largest j that satisfies a ≤ maxr,j
for some r ≤ b. We keep all values maxr,j such that P contains at least one point (l, r, j)
for some l, and store them in increasing order. We group them in blocks of size Θ(lg1−ε n)
and we keep a global lookup table of size o(n) bits that allows answering queries within any
possible block.

Also, in a local lookup table of size O(lg3ε n) bits we store for each block and every
possible value of r the index of the block preceding it which maximizes the value of j given
r. We also store a fusion tree on the values maxr,j so that we can compute the rank of a
within these values in constant time. Given a query, we compute in constant time the block
which the predecessor of a belongs to and use table lookup on that block and one other block
preceding it to get the answer. Updates also take constant time since the size of individual
blocks and the local lookup table fit in a single word.

A general query can be reduced to the above described special case by using a range
tree with node degree lgε n that splits the points on the value of their second coordinate.
Although every point is stored in O(lgn/ lg lgn) nodes, our data structure uses linear space.
Let P (u) denote the set of points stored in a node u. We replace the second coordinate of
each point p ∈ P (u) with the index i of the child node ui such that p ∈ P (ui). We keep the
above described special case data structure in every node P (u), but we do not store the set
P (u) itself. A query interval can be fully covered by O(lgn/ lg lgn) tree nodes. We query
the data structure in each one of them and return the maximum value j in O(lgn/ lg lgn)
time. Similarly, an update affects the special case data structure in O(lgn/ lg lgn) nodes
and requires O(lgn/ lg lgn) time.

The total space usage is O(n logn) bits because we spend O(min(log2+ε n, ∣P (u)∣ lgn)
bits in each node u of the range tree. To prove this bound, we classify nodes into low and
high nodes. Low nodes are the nodes in the lowest (1 + 2/ε) levels of the tree and the rest of
the nodes are high nodes. We also store the set of points P (u) in every low node u. Thus
we spend O(∣P (u)∣ lgn) bits in every low node, so the total space consumed by all low nodes

H. El-Zein, M. He, J. I. Munro, Y. Nekrich, and B. Sandlund 57:11

is O((1/ε)n lgn) bits. We spend O(lg2+ε n) = O(∣P (u)∣) bits in every high node because
∣P (u)∣ ≥ lg2+ε n. Since the total number of points in all P (u) is O(n(lgn/ lg lgn)), the total
space consumed by high nodes is O(n(lgn/ lg lgn)) bits. J

Now suppose we are given a query range ca..b. We find the largest j such that some
interval from Ij,x for some x is contained in ca..b. Using data structure D from Lemma 7, we
can compute the index j in O(lgn/ lg lgn) time. We return the element x associated with j.

I Lemma 8. The element x returned is a (1 + ε)-approximate mode of query range ca..b.

Proof. If ca..b contains an interval from Ij,x, then x occurs at least δj times in ca..b. On
the other hand, we can show that if some y occurs δj+3 times in ca..b, then ca..b contains
an interval from Ij+1,y. Recall δj+3 = (1 + ε′)δj+2. Each interval of Ij+1,y has size at most
δj+2 and there is a gap of at most ε′δj elements of y between the start of every interval in
Ij+1,y. Then since ε′δj+1 + δj+2 < (1 + ε′)δj+2, it must be that an interval of Ij+1,y falls in
the query range ca..b. We therefore know δj ≤ F (ca..b) < δj+3 = (1 + ε)δj . It follows that x is
a (1 + ε)-approximate mode of query range ca..b. J

This gives us the main theorem for the section.

I Theorem 9. There exists an O(m lgm)-bit data structure, where m = min(n lgn/ε, n/ε2)
that answers (1+ ε)-approximate range mode queries in O(lgm/ lg lgm) time. Insertions and
deletions are supported in O(lgn/ε2) time.

Proof. We have (1 + ε′)3 = (1 + ε) and (1 + ε)3 = ε3 + 3ε2 + 3ε + 1. The smallest exponent
dominates O(1/ε′) since ε ≤ 1 and thus ε′ < ε ≤ 1. Thus we have 1/ε′ = O(1/ε). As previously
stated, the number of intervals in D is O(m), where m = min(n lgn/ε, n/ε2). The space
bound for D is thus O(m lgm) = Ω(n lgn) bits, which dominates the total space cost. The
query time is O(lgm/ lg lgm).

The update cost has four components: Updating D, updating Sα, and updating pot
values for all affected intervals. As previously mentioned, the latter three are dominated by
O(lgn/ε′2) = O(lgn/ε2). Via Lemma 7, the cost of updating D is O(lgm/ lg lgm). Since m
is no more than n/ε2, lgm/ lg lgm is dominated by O(lgn/ε2). In total, the cost of updates
is O(lgn/ε2). J

We can use our dynamic data structure to obtain a result for approximate range mode
queries on two-dimensional points. Our data structure can find approximate mode in the
case when the query range is bounded on three sides.

I Corollary 10. There exists a data structure that supports three-sided two-dimensional
approximate range mode queries in O(logm) time and uses O(m logm) words of logn bits,
where m = min(n lgn/ε, n/ε2).

Proof. Using the technique introduced by Dietz in [6], we can transform a data structure that
supports updates in u(n) time and queries in q(n) time into an offline partially persistent
data structure that answers queries in O(q(n) ⋅ log logn) time and uses O(n ⋅ u(n)) words
of space. Using sweep line technique, we can transform an offline partially persistent data
structure for one-dimensional queries into a static data structure for three-sided queries with
the same time and space bounds. J

ISAAC 2019

57:12 On Approximate Range Mode and Range Selection

5 Approximate Range Median and Range Selection

In this section we present solutions to approximate range selection queries. As discussed
previously, a range selection query takes two indices a, b of a sequence c1, . . . , cn and must
return the index of an element x whose rank in ca..b is between k−α(b−a+1) and k+α(b−a+1).
We study two variants. In the first variant, the rank k is supplied prior to construction of the
data structure. In the second variant, we allow k to be specified at query time. Here rank
is defined so the ith smallest element in the range has rank i. We also support a specific
k depending on the size of the range, i.e. f(b − a + 1) = ⌈(b − a + 1)/2⌉, which is the range
median problem. We make the restrictions f(x) ≤ f(x + 1) ≤ f(x) + 1 and 1 ≤ f(x) ≤ x.

I Theorem 11. Any one-dimensional approximate range median data structure requires
Ω(n) bits.

Proof. Assume n is even. Divide the sequence S of size n to n/2 blocks each of size 2. We say
that S satisfies property (∗) if for each block b in S one of the following two conditions hold:

either b consists of {1,2},
or b consists of {2,1}.

Clearly, the number of sequences that satisfy (∗) is 2(n/2) since there exists n/2 blocks in
a sequence of size n and each block can have one of two different values. Moreover for
any two distinct sequences S1 and S2 satisfying (∗) differing at block b, the approximate
range selection query must be exact on block b, and therefore must return different values.
Thus, the information theoretic lower bound for storing an approximate range median data
structure is Ω(lg 2(n/2)) = Ω(n/2) = Ω(n) bits. J

Fixed Rank f(b − a + 1) = k Selection. We first address the range selection variant with a
fixed rank f(b − a + 1) = k. We use a similar approach to the one in Lemma 4. We again
assume n is a power of 2. At the top level, we store values mn/2,i,j (1 ≤ i, j ≤ ⌈lg1+α n⌉). Let
ri = n/2−(1+α)i and sj = n/2+1+(1+α)j . Then mn/2,i,j is the element of rank f(sj −ri+1)
in the range c⌊ri⌋..⌈sj⌉. We then build the structure recursively on the left and right halves of
the full range.

Given a query range ca..b, we find the appropriate element mt,i,j where a ≤ t, t + 1 ≤ b,
and i and j are largest possible satisfying a ≤ ri and sj ≤ b. We return mt,i,j .

I Lemma 12. The above data structure returns an α-approximate fixed-rank k element of
any query range ca..b.

Proof. Let x = ri − a and y = b − sj . Consider the size of x. If we let z = (1 + α)i, then
x + z < (1 + α)z. It follows x < αz. Since z ≤ (t − a + 1), and applying similarly for y, we can
show x < α(t − a + 1) and y < α(b − t). The elements in the ranges represented by x and y
shift the true rank k element of ca..b at most x + y < α(b − a + 1) ranks from mt,i,j . It follows
that mt,i,j is an α-approximate rank k element for range sa, . . . , sb. J

As for Theorem 4, to find the level to query, we find the highest set bit of a XOR b, then
find the appropriate index mt,i,j via arithmetic. In total, the query takes constant time.

We now analyze the space required. At the top level, we use O(lg2
1+α(n) ⋅ lgn) bits, which

is equal to O(lg3 n
lg2(1+α)) = O(lg3 n/α2) bits. Therefore our recurrence is S(n) = 2S(n/2) +

O(lg3 n/α2). The recursion tree is leaf-heavy, with total space amounting to O(n/α2) bits.

I Theorem 13. There exists an O(n/α2)-bit data structure that supports one-dimensional
α-approximate fixed-rank f(b − a + 1) = k selection queries in constant time.

H. El-Zein, M. He, J. I. Munro, Y. Nekrich, and B. Sandlund 57:13

Online Rank k Selection. Our data structure from the previous section can be adapted to
support queries that specify the rank k at query time. We again assume n is a power of 2.
Let δ = 1+α/2. At the top level we now store values mn/2,i,j,l (1 ≤ i, j,≤ ⌈lgδ n⌉, 0 ≤ l ≤ ⌊1/α⌋).
Again, we let ri = n/2 − δi and sj = n/2 + 1 + δj . However, this time, mn/2,i,j,l represents the
element of rank ql = lα ⋅ (sj − ri + 1) + 1 in cri..sj . As ql may be fractional, for simplicity
we just store both rank ⌊ql⌋ and ⌈ql⌉ elements. We build this structure recursively on both
halves of the full range.

Given a query sa..b, we again find the appropriate element mt,i,j,l where a ≤ t, t + 1 ≤ b, i
and j are largest possible satisfying a ≤ ri and sj ≤ b, and l is chosen so ql is as close to k as
possible. We return mt,i,j,l.

I Lemma 14. The above data structure returns an α-approximate rank k element of any
query range ca..b and specified rank k.

Proof. Again let x = ri − a and y = b− sj . For the same reasons as in the proof of Lemma 12,
we have x + y < α(b − a + 1)/2.

There are no more than α ⋅ (sj − ri + 1) ≤ α ⋅ (b − a + 1) ranks between each consecutive ql
and ql+1. Thus our chosen ql satisfies ∣ql − k∣ < ⌊α(b − a + 1)/2⌋. It follows that mt,i,j,l is no
more than α ⋅ (b − a + 1) ranks away from the true rank k element in range ca..b. J

The query time follows as in the previous section. However, we must account for the
additional space usage. Our recurrence is now T (n) = 2T (n/2) + O(lg3 n/α3), from the
additional 1/α factor in the space cost at each level. This totals to O(n/α3) bits.

I Theorem 15. There exists an O(n/α3)-bit data structure that supports one dimensional
α-approximate online rank k selection queries in constant time.

References
1 Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Approximate Range Mode

and Range Median Queries. In Proceedings of the 22nd Annual Symposium on Theoretical
Aspects of Computer Science, pages 377–388, 2005.

2 Gerth Stølting Brodal, Beat Gfeller, Allan Grønlund Jørgensen, and Peter Sanders. Towards
optimal range medians. Theoretical Computeer Science, 412(24):2588–2601, 2011.

3 Gerth Stølting Brodal and Allan Grønlund Jørgensen. Data Structures for Range Median
Queries. In Proceedings of the 20th International Symposium on Algorithms and Computation,
pages 822–831, 2009.

4 Timothy M Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T
Wilkinson. Linear-space data structures for range mode query in arrays. Theory of Computing
Systems, 55(4):719–741, 2014.

5 Timothy M. Chan and Bryan T. Wilkinson. Adaptive and Approximate Orthogonal Range
Counting. ACM Trans. Algorithms, 12(4):45:1–45:15, 2016.

6 Paul F. Dietz. Fully Persistent Arrays (Extended Array). In Proceedings of Workshop on
Algorithms and Data Structures (WADS), pages 67–74, 1989. doi:10.1007/3-540-51542-9_8.

7 Hicham El-Zein, Meng He, J. Ian Munro, and Bryce Sandlund. Improved Time and Space
Bounds for Dynamic Range Mode. In Proceedings of the 26th Annual European Symposium
on Algorithms, pages 25:1–25:13, 2018.

8 Johannes Fischer and Volker Heun. Space-Efficient Preprocessing Schemes for Range Minimum
Queries on Static Arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

9 M. L. Fredman and D. E. Willard. BLASTING Through the Information Theoretic Barrier
with FUSION TREES. In Proceedings of the Twenty-second Annual ACM Symposium on
Theory of Computing, STOC ’90, pages 1–7, 1990.

ISAAC 2019

https://doi.org/10.1007/3-540-51542-9_8

57:14 On Approximate Range Mode and Range Selection

10 Travis Gagie, Simon J. Puglisi, and Andrew Turpin. Range Quantile Queries: Another Virtue
of Wavelet Trees. In Proceedings of the 16th International Symposium on String Processing
and Information Retrieval, pages 1–6, 2009.

11 Pawel Gawrychowski and Patrick K. Nicholson. Optimal Encodings for Range Top- k k ,
Selection, and Min-Max. In Proceedings of the 42nd International Colloquium on Automata,
Languages, and Programming, pages 593–604, 2015.

12 Beat Gfeller and Peter Sanders. Towards Optimal Range Medians. In Proceedings of the 36th
International Colloquium on Automata, Languages and Programming, pages 475–486, 2009.

13 Mark Greve, Allan Grønlund Jørgensen, Kasper Dalgaard Larsen, and Jakob Truelsen. Cell
Probe Lower Bounds and Approximations for Range Mode. In Proceedings of the 37th
International Colloquium on Automata, Languages and Programming, pages 605–616, 2010.

14 Roberto Grossi, John Iacono, Gonzalo Navarro, Rajeev Raman, and S. Srinivasa Rao. Asymp-
totically Optimal Encodings of Range Data Structures for Selection and Top-k Queries. ACM
Transactions on Algorithms, 13(2):28:1–28:31, 2017.

15 Meng He, J. Ian Munro, and Patrick K. Nicholson. Dynamic Range Selection in Linear Space.
In Proceedings of the 22nd International Symposium, pages 160–169, 2011.

16 Allan Grønlund Jørgensen and Kasper Green Larsen. Range Selection and Median: Tight
Cell Probe Lower Bounds and Adaptive Data Structures. In Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 805–813, 2011.

17 Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range Mode and Range Median Queries
on Lists and Trees. Nord. J. Comput., 12(1):1–17, 2005.

18 M. Patrascu. Succincter. In 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, pages 305–313, 2008.

19 Holger Petersen. Improved Bounds for Range Mode and Range Median Queries. In Proceedings
of the 34th Conference on Current Trends in Theory and Practice of Computer Science, pages
418–423, 2008.

20 Holger Petersen and Szymon Grabowski. Range mode and range median queries in constant
time and sub-quadratic space. Information Processing Letters, 109(4):225–228, 2009.

External Memory Planar Point Location with Fast
Updates
John Iacono
Université Libre de Bruxelles, Belgium
New York University, USA
http://www.johniacono.com
john@johniacono.com

Ben Karsin
Université Libre de Bruxelles, Belgium
https://www.benkarsin.com
bkarsin@gmail.com

Grigorios Koumoutsos
Université Libre de Bruxelles, Belgium
http://homepages.ulb.ac.be/~gkoumout
gregkoumoutsos@gmail.com

Abstract
We study dynamic planar point location in the External Memory Model or Disk Access Model
(DAM). Previous work in this model achieves polylog query and polylog amortized update time. We
present a data structure with O(log2

B N) query time and O(1
B1−ε logB N) amortized update time,

where N is the number of segments, B the block size and ε is a small positive constant, under the
assumption that all faces have constant size. This is a B1−ε factor faster for updates than the fastest
previous structure, and brings the cost of insertion and deletion down to subconstant amortized
time for reasonable choices of N and B. Our structure solves the problem of vertical ray-shooting
queries among a dynamic set of interior-disjoint line segments; this is well-known to solve dynamic
planar point location for a connected subdivision of the plane with faces of constant size.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Computational geometry; Theory of computation → Models of computa-
tion

Keywords and phrases point location, data structures, dynamic algorithms, computational geometry

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.58

Funding This work was supported by the Fonds de la Recherche Scientifique-FNRS under Grant no
MISU F 6001 1 and by NSF Grant CCF-1533564.

1 Introduction

The dynamic planar point location problem is one of the most fundamental and extensively
studied problems in geometric data structures, and is defined as follows: We are given a
connected planar polygonal subdivision Π with N edges. For any given query point p, the
goal is to find the face of Π that contains p, subject to insertions and deletions of edges. Here
we focus on subdivisions Π such that each face has constant number of edges. An equivalent
formulation, which we use here is as follows: given a set S of N interior-disjoint line segments
in the plane, for any given query point p, report the first line segment in S that a vertical
upwards-facing ray from p intersects, subject to insertions and deletions of segments.

Dynamic planar point location has many applications in spatial databases, geographic
information systems (GIS), computer graphics, etc. Moreover it is a natural generalization
of the dynamic dictionary problem with predecessor queries; this problem can be seen as the
one dimensional variant of planar point location.

© John Iacono, Ben Karsin, and Grigorios Koumoutsos;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 58; pp. 58:1–58:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.johniacono.com
mailto:john@johniacono.com
https://www.benkarsin.com
mailto:bkarsin@gmail.com
http://homepages.ulb.ac.be/~gkoumout
mailto:gregkoumoutsos@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2019.58
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 External Memory Planar Point Location with Fast Updates

In this paper we focus on the External Memory model, also known as the Disk Access
Model (DAM) [2]. The DAM is the standard method of designing algorithms that efficiently
execute on large datasets stored in secondary storage. This model assumes a two-level
memory hierarchy, called disk and internal memory and it is parameterized by values M and
B; the disk is partitioned into blocks of size B, of whichM/B can be stored in memory at any
given moment. The cost of an algorithm in the DAM is the number of block transfers between
memory and disk, called Input-Output operations (I/Os). The quintessential DAM-model
data structure is the B-Tree [11]. See [25, 26] for surveys. Many applications of dynamic
planar point location, such as GIS problems, must efficiently process datasets that are too
massive to fit in internal memory, thus it is of great relevance and interest to consider the
problem in the DAM and to devise I/O efficient algorithms.

1.1 Previous Work
RAM Model. In the RAM model (the leading model for applications where all data fit
in the internal memory) the dynamic planar point location problem has been extensively
studied [4, 10,15,18,19,21]. It is a major and long-standing open problem in computational
geometry to design a data structure that supports queries and updates in O(logN) time [16,
17,24], i.e., to achieve the same bounds as for the dynamic dictionary problem. In a recent
breakthrough, Chan and Nekrich in FOCS’15 [15] presented a data structure supporting
queries in O(logN(log logN)2) time and updates in O(logN(log logN)) time. They also
showed the tradeoff of supporting queries in O(logN) time and updates in O((logN)1+ε)
time or vice-versa for ε > 0.

Recently Oh and Ahn [23] presented the first data structure for a more general set-
ting where the polygonal subdivision Π is not necessarily connected; their data structure
supports queries in O(logN(log logN)2) time and updates in O(

√
N logN(log logN)3/2)

amortized time.

External Memory model. (See Table 1). Several data structures have been presented over
the years which support queries and updates in polylog(N) I/Os [1, 5, 7]. Table 1 contains a
list of results of prior work. The best update bound known is by Arge, Brodal and Rao [5]
and achieves O(logB N) amortized I/Os. The query time of their data structure is O(log2

B N).
Very recently, the first data structure that supports queries in o(log2

B N) I/Os was announced
by Munro and Nekrich [22]. In particular they support queries in O(logB N(log logB N)3)
I/Os. However their update time is slightly worse than logarithmic, O(logB N(log logB N)2).
In all those works the bounds are obtained by solving the problem of vertical ray-shooting.

Fast Updates in External Memory. One of the most intriguing and practically relevant
features of the external memory model is that it allows fast updates. For the dynamic
dictionary problem with predecessor queries, the optimal update bound in the RAM model is
O(logN). In external memory, however, B-trees achieve the optimal query time of O(logB N)
and typical update time of O(logB N), although substantially faster update times are possible.
Brodal and Fagerberg [14] showed that O(1

B1−ε logB N) amortized I/Os per update can be
supported, for small positive constant, ε, while retaining O(logB N)-time queries; they further
showed that this is an asymptotically optimal tradeoff between updates and queries. Observe
that this update bound is a huge speedup from O(logB N) and that for reasonable choices of
parameters, e.g. B ≥ 1000, N < 1093, ε = 1

2 , this yields a subconstant amortized number of
I/Os per update. A similar update bound was later achieved for other dynamic problems
like three-sided range reporting and top-k queries [13].

J. Iacono, B. Karsin, and G. Koumoutsos 58:3

Table 1 Overview of results on dynamic planar point location in external memory. Results
marked with M are for monotone subdivisions and G for general ray-shooting among non-intersecting
segments. Query bounds are worst-case and update bounds are amortized. Space usage is measured
in words. Here ε is a constant such that 0 < ε ≤ 1/2.

Reference Space Query Time Insertion Time Deletion Time

Agarwal et al. [1] O(N) O(log2
B N) O(log2

B N) O(log2
B N) M

Arge and Vahrenhold [7] O(N) O(log2
B N) O(log2

B N) O(logB N) G

Arge et al. [5] O(N) O(log2
B N) O(logB N) O(logB N) G

Munro and Nekrich [22] O(N) O(logB N log3 logB N) O(logB N log2 logB N) O(logB N log2 logB N) G

This paper O(N) O(log2
B N) O((logB N)/B1−ε) O((logB N)/B1−ε) G

Given this progress and the fact that in the RAM model the bounds achieved for planar
point location and the dictionary problem are believed to coincide, it is natural to conjecture
that a similar update bound can be achieved for the dynamic planar point location problem.
However, to date no result has been presented that achieves sublogarithmic insertion or
deletion time.

1.2 Our Results
We consider the dynamic planar point location problem in the external memory model and
present the first data structure with sublogarithmic amortized update time of O(1

B1−ε logB N)
I/Os. Prior to our work, the best update bound for both insertions and deletions was
O(logB N), achieved by Arge et al. [5]. Our main result is:

I Theorem 1 (Main result). For any constant 0 < ε ≤ 1/2, there exists a data structure which
uses O(N) space, answers planar point location queries in O((1/ε)2 · log2

B N) = O(log2
B N)

I/Os and supports insertions and deletions in O(logB N/(ε · B1−ε)) = O((logB N)/B1−ε)
amortized I/Os. The data structure can be constructed in O((N/B) logB N) I/Os.

To obtain this result, several techniques are used. Our primary data structure is an
augmented interval tree [20]. We combine both the primary interval tree and two auxiliary
structures described below with the buffering technique [3, 14] to improve insertion and
deletion bounds. In Section 2 we prove Theorem 1 using our auxiliary structures as black
boxes and omit some technical details relating to rebuilding; these details are deferred to
Appendix 5.

Similarly to previous work, we focus on solving the problem of vertical ray-shooting
queries. Our first auxiliary structure answers vertical ray-shooting queries among non-
intersecting segments whose right (left) endpoints lie on the same vertical line. This is called
the left (right) structure (in Section 2 it will be clear why we choose this terminology and not
vice-versa). Left/Right structures of Agarwal et al. [1], which support queries and updates
in O(logBK) I/Os, are used by several prior works [1, 5, 7]. Our structure improves on their
result by reducing the update bound by a factor of B1−ε. We obtain the following result,
the proof of which is the topic of Section 3:

I Theorem 2 (Left/right structure). For a set of K non-intersecting segments whose right
(left) endpoints lie in the same vertical line and any constant 0 < ε ≤ 1/2, we can create a
data structure which supports vertical ray-shooting queries in O((1/ε) · logBK) = O(logBK)

ISAAC 2019

58:4 External Memory Planar Point Location with Fast Updates

I/Os and insertions and deletions in O((logBK)/(ε ·B1−ε)) = O((logBK)/B1−ε) amortized
I/Os. This data structure uses O(K) space and it can be constructed in O((K/B) logBK)
I/Os. If the segments are already sorted, it can be constructed in O(K/B) I/Os.

Our second auxiliary structure answers vertical ray-shooting queries among non-inter-
secting segments whose endpoints lie in a set of Bε/2 + 1 vertical lines. These vertical lines
define Bε/2 vertical slabs, hence the structure is called a multislab structure. We obtain the
following result, the proof of which is the topic of Section 4:

I Theorem 3 (Multislab structure). For any constant 0 < ε ≤ 1/2 and set of K non-
intersecting segments whose endpoints lie in Bε/2 + 1 vertical lines, we can create a data
structure which supports vertical ray-shooting queries in O((1/ε) · logBK) = O(logBK) I/Os
and insertions and deletions in O((logBK)/(ε ·B1−ε)) = O((logBK)/B1−ε) amortized I/Os.
This data structure uses O(K) space and it can be constructed in O((K/B) logBK) I/Os. If
the segments are already sorted according to a total order, it can be constructed in O(K/B)
I/Os.

A major challenge faced by previous multislab structures is how to efficiently support
insertions. At a high-level, it is hard to deal with insertions in cases where a total order is
maintained: each time a new segment gets inserted we need to determine its position in the
total order, which cannot be done quickly. Arge and Vitter [7] developed a deletion-only
multislab data structure and then used the so-called logarithmic method [12] which allowed
them to handle insertions in O(log2

BK) I/Os. Later Arge, Brodal and Rao [5] developed a
more complicated multislab structure supporting insertions in amortized O(logBK) I/Os by
performing separate case analysis depending on the value of B.

Here, we support insertions in a much simpler way by breaking each inserted segment
into smaller unit segments whose endpoints lie on two consecutive vertical lines and can be
compared easily to the segments already stored. This way, we are able to support insertions
easily in O(logBK) I/Os. Finally, we add buffering and obtain sublogarithmic update
bounds.

1.3 Notation and Preliminaries
External Memory Model. Throughout this paper we focus on the external memory model
of computation. N denotes the number of segments in the planar subdivision, B the block
size and M the number of elements that fit in internal memory. We assume that M � N and
2 ≤ B ≤

√
M (the tall cache assumption). It is well-known that sorting K elements requires

Θ((K/B) logM/B(K/B)) I/Os [2]. Given that B ≤
√
M , this bound is O((K/B) logBK).

We use this bound for sorting in many places without further explanation.

Ray-shooting Queries. In the rest of this paper, we focus on answering vertical ray-shooting
queries in a dynamic set of non-intersecting line segments. Let S be the set of segments of
the polygonal subdivision Π. Given a query point p, the answer to a vertical ray-shooting
query is the the first segment of S hit by a vertical ray emanating from a query point in
the (+y) direction. Based on standard techniques (see e.g. [7]), for connected polygonal
subdivisions Π with faces of size O(1), a planar point location query for a point p can be
answered in O(logB N) I/Os after answering a vertical ray-shooting query for p.

Bε-Trees. All tree structures that we will use are variants of the Bε-Trees [14] which are
B-trees except that the internal nodes have at most Bε (and not B) children; the leaves still
store Θ(B) data items. For constant ε, this does not change the asymptotic height of the
tree or the search cost, both remain O((1/ε) · logB N) = O(logB N).

J. Iacono, B. Karsin, and G. Koumoutsos 58:5

s1 s2 s3 s4 s5 s6

σ

v1 v2 v3 v5v4 v6

v

Figure 1 The slab of node v of the interval tree I is divided into slabs s1, . . . , s6 corresponding
to its children v1, . . . , v6. Segment σ is assigned to node v, with left subsegment in slab s2, right
subsegment in s5 and the middle subsegment crosses slabs s3, s4.

2 Overall Structure

In this Section we prove Theorem 1, using the data structures of Theorems 2 and 3 (detailed
in Sections 3 and 4, respectively). Given N non-intersecting segments in the plane and a
constant 0 < ε ≤ 1/2, we construct a O(N)-space data structure which answers vertical
ray-shooting queries in O((1/ε)2 · log2

B N) = O(log2
B N) I/Os and supports updates in

O((logB N)/(ε · B1−ε)) = O((logB N)/B1−ε) amortized I/Os. Throughout this section we
let ε′ = ε/2.

The Data Structure. As in the previous works on planar point location, our primary data
structure is based on the interval tree (the external interval tree defined in [9]). Our interval
tree I is a Bε′-tree which stores the x-coordinates of segment endpoints in its leaves. Here
we assume for clarity of presentation that the interval tree is static, i.e. all new segments
inserted share x-coordinates with already stored segments; in Appendix 5 we remove this
assumption and extend our data structure to accommodate new x-coordinates and achieve
the bounds of Theorem 1.

Each node of I is associated with several secondary structures, as we explain later, and
each segment is stored in the secondary structures of exactly one node of I. Each node v
of I is associated with a vertical slab sv. The slab of the root is the whole plane. For an
internal node v, the slab sv is divided into Bε′ vertical slabs s1, . . . , sBε′ corresponding to
the children of v, separated by vertical lines called slab boundaries, such that each slab si
contains the same number of vertices of Π from slab sv.

Let S be the set of segments that compose Π. Each segment σ ∈ S is assigned to a node
v of I. This is the highest node v of I such that σ is completely contained in slab sv and
intersects at least one slab boundary partitioning sv; if such an internal node v does not exist,
then σ is assigned to a leaf v such that σ is completely contained in its slab sv. Segments
assigned to internal nodes are stored in the secondary structures of those nodes, whereas
segments assigned to leaves are stored explicitly in the corresponding leaf. By construction
of the slab boundaries, each leaf stores O(B) segments in O(1) blocks.

Consider a segment σ assigned to a node v of I. Let s` and sr be the children slabs of sv
where the left and right endpoints of σ lie. We call the segment σ ∩ s` the left subsegment of
σ, the segment σ ∩ sr the right subsegment of σ and the rest of σ (which spans children slabs
s`+1, . . . , sr−1) is its middle subsegment. See Figure 1 for an illustration. In this example,
the left subsegment is σ ∩ s5, the right subsegment is σ ∩ s2, and the portion of σ in s3 and
s4 is the middle subsegment.

ISAAC 2019

58:6 External Memory Planar Point Location with Fast Updates

Let Sv be the set of segments assigned to a node v of I. To store segments of Sv, node v
of I contains the following secondary structures:

1. A multislab structureM which stores the set of middle segments.

2. Bε′ left structures Li, for 1 ≤ i ≤ Bε′ , storing the left (sub)segments of slab si.

3. Bε′ right structures Ri, for 1 ≤ i ≤ Bε′ , storing the right (sub)segments of slab si.

In addition, each internal node v contains an insertion buffer Iv and deletion buffer Dv,
each storing up to B segments.

Construction and Space Usage. For every node v, the buffers Iv and Dv fit in O(1) blocks,
since they store at most B segments. By Theorems 2 and 3, a secondary structure storing
K segments uses O(K) space. Since each segment of Sv is stored in at most 3 secondary
structures, overall secondary structures of v use O(|Sv|) space. Thus each node v uses
O(|Sv|) space. We get that our data structure uses overall O(

∑
v∈I |Sv|) = O(N) space.

The interval tree can be constructed in O((N/B) logB N) I/Os. This can be done by sorting
the segments by their endpoints’ x-coordinates and then determining all slab boundaries to
create a balanced interval tree. By Theorems 2 and 3, all secondary structures of a node v of
I can be constructed in O((|Sv|/B) logB |Sv|) I/Os . Thus, all secondary structures of the
tree can be constructed in O((

∑
v∈I |Sv|/B) · logB N) = O((N/B) logB N) I/Os.

Queries. To answer a vertical ray-shooting query for a point p, we traverse the root-to-leaf
path of I based on the x-coordinate of p, while maintaining a segment σ (initialized to null)
which is the answer to the query among segments assigned to nodes we have traversed so far.
At each node v visited along this path, we first update buffers Iv and Dv by removing from
both of them all segments (if any) of Iv ∩Dv. Then, we perform a vertical ray-shooting on
the secondary structures of v; in particular we ray-shoot on the multislab structure and the
left and right structures Li and Ri, for i such that the query point p is in slab si1. After
checking the secondary structures, we update σ if a closer segment above p is found as a
result. Next, we ray-shoot among segments stored in Iv and update σ if necessary. Finally,
we determine which child vi of v to visit, and flush any segments of Dv that are contained
in the slab of vi to Dvi ; this way we make sure that information about deleted segments is
updated throughout the root-to-leaf path and no deleted segment can be considered as an
answer to the query. We then continue the process at vi. Once a leaf node is reached, we
simply compare the B segments it contains with p and return the closest segment above p
among them and σ.
Bounding the query cost: Since any root-to-leaf path of I has length O((1/ε′) · logB N),
each secondary data structure supports ray-shooting queries in O((1/ε′) · logB N) I/Os (due
to Theorems 2 and 3) and we check O(1) secondary structures per node, we get that a
query is answered in O((1/ε′)2 · log2

B N) = O(log2
B N) I/Os. Note that in each node v of the

root-to-leaf path visited, the operations involving Iv and Dv require O(1) I/Os, thus they
increase the total cost by at most a O(1) factor.

1 Minor detail: For each secondary structure considered, we first perform insertions/deletions of the
corresponding segments from buffers Iv and Dv.

J. Iacono, B. Karsin, and G. Koumoutsos 58:7

Insertions. To handle insertions, we use the insertion buffers stored in nodes of I. When a
new segment σ is inserted, we insert it in the insertion buffer of the root. Let v be an internal
node with children v1, . . . , vBε′ . Whenever Iv becomes full, it is flushed. Segments of Iv that
cross at least one slab boundary partitioning sv are inserted in the secondary structures of
v; segments that are contained in the slab si of vi are inserted in Ivi , for 1 ≤ i ≤ Bε

′ . In
case Iv becomes full for some node v whose children are leaves, we insert those segments
explicitly at the corresponding leaves. When a leaf becomes full, we restructure the tree
using split operations on full nodes.

Bounding the insertion cost: We compute the amortized cost of an insertion by considering
three components:

(i) The cost for moving segments between insertion buffers. Whenever an insertion buffer Iv
gets full, it forwards segments to the buffers of its Bε′ children performing O(Bε′) I/Os.
Since a flushing occurs every B insertions in Iv, the amortized cost of such operations
is O(Bε′/B) = O(1/(B1−ε′)). Each segment will move in at most O((1/ε′) logB N)
insertion buffers before it is inserted in the secondary structures of a node (or in a leaf).
Thus the amortized cost for moving between buffers is O((logB N)/(ε′ ·B1−ε′)).

(ii) The insertion cost in the secondary structures. By Theorems 2 and 3 we get that
insertions in secondary structures require O((logB N)/(ε ·B1−2ε′)) I/Os.

(iii) The cost of restructuring the tree after insertions when a leaf becomes full. We show
in Section 5 that the restructuring requires O(logB N

ε′·B1−ε′) amortized I/Os, by slightly
modifying our primary interval tree data structure.

We conclude that our data structure supports insertions in amortizedO(logB N/(ε′·B1−2ε′)) =
O(logB N/B1−ε) I/Os.

Deletions. To support deletions, we use the deletion buffers stored in all nodes of I. To
delete a segment σ, we first check whether σ is in the insertion buffer Ir of the root r and
in that case we delete it; otherwise we store it in Dr. Similar to insertions, whenever Dv

gets full for some internal node v with children v1, . . . , vBε′ , we flush Dv. The segments of
Dv crossing at least one slab boundary partitioning sv are deleted from the corresponding
secondary structures associated with v; the other segments of Dv are moved to buffers Dvi ;
in case a segment σ inserted in Dvi ∩ Ivi , we delete it from both buffers. In case Dv becomes
full for some v parent of leaves, we delete those segments explicitly from the corresponding
leaves.

Bounding the deletion cost: The deletion cost has three components:

(i) Moving segments between the deletion buffers. Using the same argument as for
insertions, we get that this requiresO(logB N/(ε′ ·B1−ε′)) I/Os, amortized.

(ii) The cost of deletion in the secondary structures. By Theorems 2 and 3 we get that
deletions in secondary structures require amortized O(logB N/(ε′ ·B1−2ε′)) I/Os.

(iii) The cost of restructuring the tree. Every N/2 deletions, we rebuild the structure using
O((N/B) logB N) I/Os, to get and amortized restructuring cost of O((logB N)/B)
I/Os.

Overall deletions are supported in amortized O(logB N/(ε′ · B1−2ε′)) = O(logB N/(B1−ε))
I/Os.

ISAAC 2019

58:8 External Memory Planar Point Location with Fast Updates

3 Left and Right Structures

In this section we prove Theorem 2. Given K points all of whose right (left) endpoints lie
on a single vertical line, we construct a data structure which answers vertical ray-shooting
queries on those segments in O(logBK) I/Os and supports insertions and deletions in
O((logBK)/B1−ε) amortized I/Os for a constant 0 < ε ≤ 1/2.

We describe the structure for the case where we are given a set L ofK segments whose right
endpoints have the same x-coordinate (left structure)2. The case where the left endpoints of
the segments have the same x-coordinate (right structure) is completely symmetric. For a
segment σ, we will refer to the y-coordinate of its right endpoint as the y-coordinate of σ.
Conversely we define the x-coordinate of σ to be the x-coordinate of its left endpoint.

Total Order. We assume that the segments in L are ordered according to their y-coordinates.
We can always order the segments according to this total order in O((K/B) logBK) I/Os.

The Data Structure. We store all segments of L in an augmented Bε-tree T which supports
vertical ray-shooting queries, insertions and deletions. The degree of each node is between
Bε/2 and Bε, except the root which might have degree in the range [2, Bε], and leaves
store Θ(B) elements. For a node v ∈ T , let Tv be the subtree rooted at v. Since the
segments are sorted according to their y-coordinates, each subtree Tv corresponds to a range
of y-coordinates, which we call the y-range of node v. Let v be an internal node of T with
children v1, . . . , vBε . Node v stores the following information:

1. A buffer of segments Sv of capacity B which contains segments in the y-range of v whose
left endpoints have the smallest x-coordinates (i.e., segments that extend the farthest
from the vertical line) and are not stored in any buffer Sw for an ancestor w of v. In
other words, T together with segments of buffers Sv form an external memory priority
search tree [6].

2. An insertion buffer Iv and a deletion buffer Dv, each storing up to B segments.

3. A listMv that contains, for each child vi, the segment with minimum x-coordinate stored
in Svi . We call this the minimal segment for child vi.

The data structure satisfies the following invariants: For each node v ∈ T , either
|Sv| ≥ B/2 or if |Sv| < B/2, then Iv and Dv are empty and all buffers stored in descendants
v are empty. Also, for each node v, buffers Sv, Iv and Dv are disjoint. Finally, for a leaf v,
Iv and Dv are empty.

Construction and Space Usage. Overall buffers and lists of each node contain O(B)
segments, i.e. they can be stored in O(1) blocks. Thus T can be stored in O(K/B) blocks,
i.e. it requires O(K) space. Construction of T requires O(KB logBK) I/Os, since we need
to sort all K segments according to their y-coordinates. If the segments are already sorted
according to their y-coordinate, then T can be created in O(K/B) I/Os.

2 Recall from Section 2 that we call left structures the ones storing the left subsegment of a segment σ,
thus all subsegments stored in a left structure have the same x-coordinate of right endpoints.

J. Iacono, B. Karsin, and G. Koumoutsos 58:9

range(v)

σ5

σ6

σ8

σ4

σ2

σ7

σ6, σ8

σ1, σ2 σ3, σ4 σ5, σ7

T

ρ

p

σ1

σ3

range(u)

range(w) Sr

Su Sv Sw

Figure 2 Example of the query algorithm in the left structure: Left column shows the segments
stored in T , the query point p and the vertical ray ρ emanating from p. Right column shows buffers
S of the nodes of T . Red segments are stored in the root. For nodes u, v, w, the green segment is
their minimal segment, i.e., the one stored in listMr. By ray-shooting on ρ among green segments,
the first segment hit upwards is σ5, which is stored in Sw, thus we set v+ = w. Note that σ2 (the
correct answer for the query) is not stored in Sw, i.e., maintaining only v+ produces an incorrect
answer. Thus, our algorithm ray-shoots downwards as well, hitting σ1, which is stored in u, and
setting v− = u. Then, by ray-shooting on ρ among Su and Sw, the first segment we hit upwards
of p is σ2.

Queries in the static structure. To get a feel for how our structure supports queries, we
first show how to perform queries in the static case, i.e., assuming there are no insertions
and deletions and all buffers Iv and Dv are empty. Later we will give a precise description of
performing queries in the fully dynamic structure.

Let ρ+ be the ray emanating from p in the (+y) direction and ρ− the ray emanating from
p in the (−y) direction. We query the structure by finding the first segment hit by both ρ+

and ρ−. We keep two pointers, v+ and v−, initialized at the root. We also keep the closest
segments σ+ and σ− seen so far in the (+y) and (−y) direction respectively (initialized to
+∞ and −∞). At each step, we update both v+ and v− to move from a node of depth i to a
node of depth i+ 1. While at level i, v− and v+ might coincide, or one of them might be
undefined (set to null).

We now describe the query algorithm. We start at the root of T and advance down, while
updating v+, v−, and σ+,σ−. When at depth i, we find the first segment σi hit by ρ+ among
Sv− and Sv+ and update σ+ if necessary (i.e. if σi is the first segment hit by ρ+ among all
segments seen so far). Similarly, we ray-shoot on ρ− among Sv− and Sv+ and update σ− if
necessary. To determine in which nodes of depth i+ 1 to continue the search, we ray-shoot on
ρ+ amongMv− andMv+ and also ray-shoot on ρ− amongMv− andMv+ (i.e., all minimal
segments of children of v− and v+). Let σm+ be the first segment in Mv+ ∪Mv− hit by ρ+

(if such a segment exists) and vs be the node containing σm+ (if σm+ exists). If the y-range
of vs is higher than the y-coordinate of σ+ or if σm+ does not exist, we leave v+ undefined
for level i + 1. Otherwise, we set v+ = vs. Similarly, call σm− the first minimal segment
of Mv+ ∪Mv− hit by ρ− and vp be the node containing σm− (if such a segment exists). If
the y-range of vp is lower than the y-coordinate of σ− or if σm− does not exist, we leave v−
undefined for level i+ 1. Otherwise we set v− = vp.

If both v+ and v− are undefined for the next level i+ 1, we stop the procedure and output
σ+ as the result to the vertical ray-shooting query. Otherwise we repeat the same procedure
in the next level. When we reach a leaf level, we find the first segment hit by ρ+ among Sv−
and Sv+ , update σ+ if necessary, and output σ+ as the result of the query.

ISAAC 2019

58:10 External Memory Planar Point Location with Fast Updates

Remark: The reader might wonder why we answer vertical ray-shooting queries in both
directions and keep two pointers v− and v+. Isn’t it sufficient to answer queries in one
direction and keep one pointer at each step? Figure 2 shows an example where this is not
true and maintaining only the v+ pointer would result in an incorrect answer.

The formal proof of correctness of this query algorithm is deferred to Appendix A.
Bounding the query cost: To count the cost, observe that in each step we move down the

tree by one level and perform operations that require O(1) I/Os, as we check O(B) segments
stored in the current nodes v− and v+. Since the height of the tree is O((1/ε) logBK), a
query is answered in O((1/ε) logBK)) = O(logBK) I/Os.

Insertions. Assume we want to insert a segment σ into the left structure L. If the x-value
of σ is smaller than the maximum x-value of a segment stored in the buffer of the root Sr,
we insert σ into Sr. Otherwise we store σ in the insertion buffer of the root Ir. Note that
insertion of σ in Sr might cause Sr to overflow (i.e., |Sr| = B + 1); in that case we move the
segment of Sr with the maximum x-value into the insertion buffer of the root Ir.

Let v be an internal node with children v1, . . . , vBε . Whenever the insertion buffer Iv
becomes full, we flush it, moving the segments to buffers of the corresponding children. For
a segment σ that should be stored in child vi, we repeat the same procedure as in the root:
Check whether σ has smaller x-value than the maximum x-value of a segment stored in Svi
and if yes, store σ in Svi , otherwise store it in Ivi . If Svi overflows, we move its last segment
(i.e. the one with maximum x-value) into Ivi . Also, if σ gets stored in Svi and its x-value is
smaller than all previous segments of Svi , we update the minimal segment of vi,Mv.

When Sv overflows for some leaf v, we split v into two leaves v1 and v2, as in standard
B-trees. Note that this might cause recursive splits of nodes at greater height.
Bounding the insertion cost: To flush a buffer Iv and forward segments to buffers Svi and Ivi ,
for 1 ≤ i ≤ Bε we perform O(Bε) I/Os. Since Iv becomes full after at least B insertions, the
amortized cost of moving a segment from Iv to buffers of a child of v is O(Bε/B) = O(1/B1−ε).
Each inserted segment moves between buffers in a root-to-leaf path of length O((1/ε) logBK),
thus the total amortized cost for moves between buffers is O(logBK/(ε ·B1−ε)) I/Os. The
restructuring of T due to splitting nodes requires amortized O(1/B) I/Os, as in standard
B-trees. Thus, insertions are supported in O(logBK/(ε ·B1−ε)) amortized I/Os.

Deletions. To delete a segment σ, we first check whether it is stored in the buffers of the
root Sr or Ir; in this case we delete it. Otherwise, we insert σ in the deletion buffer of
the root Dr.

Let v be an internal node with children v1, . . . , vBε . Whenever Dv becomes full we flush
it and move the segments to the corresponding children and repeat the same procedure: For
a segment σ which moves to child vi, we check whether it is stored in Svi or Ivi : if yes, we
delete it and update the minimal segment of vi inMv if necessary. Otherwise, we store σ
in the deletion buffer Dvi . If segment buffer Sv underflows (i.e., |Sv| < B/2), we refill it
using segments stored in buffers Svi ; the segments moved to Sv are deleted from Svi and all
necessary updates inMv are performed. This might cause underflowing segment buffers Svi
for children of vi; we handle those in the same way. In case all buffers Svi become empty
and |Sv| < B , we move the segments from Iv to Sv until either |Sv| = B or |Iv| = 0.
Bounding the deletion cost: Deletion cost consists of three components:

(i) Cost for moving segments between buffers: Using the same analysis as for insertions we
get that this requires O(logBK/(ε ·B1−ε)) amortized I/Os.

J. Iacono, B. Karsin, and G. Koumoutsos 58:11

(ii) Cost due to refilling of buffers Sv: For a node v with children vi, while refilling buffer
Sv from Svi we perform O(Bε) I/Os and we move Θ(B) segments one level higher.
Thus the amortized cost of moving a segment up by one level is O(1/B1−ε). Since the
tree has height O((1/ε) · logBK), over a sequence of K deletions the total number of
moves of segments by one level is O((1/ε) ·K · logBK). Thus the total cost due to
refilling is at most O((1/εB1−ε)K · logBK), which implies that the amortized cost is
O(logBK/(ε ·B1−ε)).
A corner case that we did not take into account above is when the total number of
segments stored in buffers Svi are less than B/2. In this case it is not valid that the
amortized cost of updating Sv is O(Bε/B). To take care of this, we use a simple
amortization trick: we double charge all I/Os performed relating to insertions. This
way, for each buffer Svi there is a saved I/O from the time when segments move from Iv
to node vi. We use this additional saved I/O when Svi gets emptied due to the refilling
of Sv.

(iii) Restructuring requires O(logB K
B) amortized I/Os, by rebuilding the structure after K/2

deletions.

Overall, the amortized deletion cost is O(logBK/(ε ·B1−ε)) = O(logBK/B1−ε) I/Os.

Queries in the dynamic structure. We now describe how to extend our query algorithm
to the dynamic case. In order to ensure that all nodes visited are up-to-date and we do not
miss any updates in the insertion/deletion buffers, when moving a pointer from a node u to
its child vi, we flush any deletes in Du to vi, i.e. delete segments of Du that are stored in Svi ,
store the other segments in Dvi and updateMu if necessary. We then delete any segments
found in both Ivi and Dvi . Finally, we compare segments in Ivi with σ+ (recall this is the
first segment hit by ρ+ among segments considered so far) and, if any segment in Ivi would
be hit by ρ+ before σ+ we replace σ+ with it. Clearly this increases the total cost by at
most a O(1) factor compared to the static case, thus the query cost is O((1/ε) logBK) I/Os.

4 Multislab Structure

In this section we prove Theorem 3. Assume that we are given a set of K non-intersecting
segments with endpoints on at most Bε/2 + 1 vertical lines l1, . . . , lBε/2+1, for some constant
O < ε ≤ 1/2. We show that those segments can be stored in a data structure which uses
O(K) space, supports vertical ray-shooting queries in O(logBK) I/Os, and updates in
O(logBK/B1−ε) amortized I/Os, for 0 < ε ≤ 1/2. This data structure can be constructed in
O((K/B) logBK) I/Os. We call this data structure a multislab structure.

For notational convenience we set ε′ = ε/2. This way endpoints of the segments lie on
at most Bε′ + 1 vertical lines l1, . . . , lBε′+1. For 1 ≤ i ≤ Bε′ , let si denote the vertical slab
defined by vertical lines li and li+1. We will show that queries are supported in O(logBK)
I/Os and updates in O((logBK)/B1−2ε′) I/Os. Theorem 3 then follows.

Total Order. In order to implement the multislab structure we need to maintain an ordering
of the segments based on their y-coordinates. Using standard approaches (see e.g. [5, 7]) we
can define a partial order for segments that can be intersected by a vertical line. Arge et.
al. [8] showed how to extend a partial order into a total order on K segments (not necessarily
all intersecting the same vertical line) in O((K/B) logM/B

K
B) = O((K/B) logBK) I/Os. We

use this total order to create our multislab structure.

ISAAC 2019

58:12 External Memory Planar Point Location with Fast Updates

The Data Structure. We store the ordered segments in an augmented B-tree T which
supports queries, insertions and deletions. The degree of each node is between Bε′/2 and Bε′ ,
except the root which might have degree in the range [2, Bε′]. Leaves store Θ(B) elements.
For a node v ∈ T , let Tv be the subtree rooted at v. Let v1, . . . , vBε′ be the children of an
internal node v. Node v stores the following information:

1. A buffer Sv of capacity B which contains the highest (according to the total order)
segments stored in Tv which are not stored in any buffer Sw for an ancestor w of v. In
other words, T together with segments of buffers Sv form an external memory priority
search tree [6].

2. An insertion buffer Iv and a deletion buffer Dv, both storing up to B segments.
3. A list Lv which contains, for each slab si, 1 ≤ i ≤ Bε

′ , and each child vj , 1 ≤ j ≤ Bε
′ ,

the highest segment (according to the total order) ti,j crossing slab si stored in Tvj .

The data structure satisfies the following invariants: i) for each node v ∈ T , either
|Sv| ≥ B/2 or if |Sv| < B/2, then Iv and Dv are empty and all buffers of descendants w of v
are empty, ii) for each node v, buffers Sv, Iv and Dv are disjoint, and iii) for every leaf v, Iv
and Dv are empty.

Construction and Space Usage. Overall buffers of each node contain O(B) segments and
list Lv contains at most B2ε′ = O(B) segments, i.e., they can be stored in O(1) blocks.
Thus T can be stored in O(K/B) blocks, i.e. it requires O(K) space. The structure can be
constructed in O(KB logBK) I/Os. If segments are already sorted according to a total order,
construction requires O(K/B) I/Os.

Insertions. To insert a new segment σ we need to determine its position in the total
order. Clearly, we can not afford to produce a new total order from scratch, as this costs
O((K/B) logBK) I/Os. Thus, we break σ into at most Bε′ unit segments, where each
segment crosses exactly one slab. In particular, if σ crosses slabs s`, . . . , sr, we break it into
unit segments σ`, . . . , σr, where segment σi crosses slab si. We call all such unit segments
stored in T new segments. The rest of the segments stored in T are called the old segments
of T . Now we can easily update the total order: segment σi needs to be compared only with
segments crossing slab si; if σp and σs are the predecessor and successor of σi within slab si,
we locate σi in an arbitrary position between σp and σs in the total order. This way a valid
total order is always maintained.

We now describe the insertion algorithm. When segment σ needs to be inserted, we
first break it into unit segments σ`, . . . , σr. For each segment σj , ` ≤ j ≤ r, we first check
whether it should be inserted in the buffer Sr of the root: if this is the case we store it
there; otherwise we store it in the insertion buffer of the root Ir. In case Sr overflows (i.e.
|Sr| = B + 1) we move its last segment (according to the total order) to Ir. Let v be an
internal node with children v1, . . . , vBε′ . Each time Iv becomes full, we flush it and move
the segments to its children vi, for 1 ≤ i ≤ Bε′ . For a segment moving from v to vi, we first
check whether it is greater (according to the total order) than the minimum segment stored
in Svi and if so we store it in Svi ; otherwise we store it in buffer Ivi . In case Svi overflows
(i.e. |Svi | = B + 1) we move its last segment to Ivi . Also we update information in list Lv if
necessary. In case Ivi becomes full, we repeat the same procedure recursively.

When Sv overflows for some leaf v, we split v into two leaves v1 and v2, as in standard
B-trees. Note that this might cause recursive splits of nodes at greater height.

J. Iacono, B. Karsin, and G. Koumoutsos 58:13

Bounding the insertion cost: To flush a buffer Iv and move segments to buffers of child
nodes Svi and Ivi , we need to perform O(Bε′) I/Os. Since each segment breaks into at most
Bε
′ unit segments, a buffer of size B becomes full after at least B/Bε′ = B1−ε′ insertions.

Thus the amortized cost of moving a segment from a buffer of depth i to depth i + 1 is
O(Bε′/B1−ε′) = O(1/B1−2ε′). Since each segment will be eventually stored in a node of
depth O((1/ε′) · logBK), the amortized cost until it gets inserted is O(logBK/(ε′ ·B1−2ε′)).
The restructuring of T due to splitting full nodes requires amortized O(1) I/Os, as in
standard B-trees. Overall insertions require O(logBK/(ε · B1−2ε′)) = O((logBK)/B1−ε)
amortized I/Os.
Linear space usage: To avoid increases in space usage due to unit segments, whenever
there are K/Bε′ new segments, we rebuild the structure. This way the space used is
O(K + (K/Bε′) · Bε′) = O(K). This rebuilding requires O((K/B) logBK) I/Os, i.e.,
O(logBK/B1−ε′) amortized I/Os, thus it does not violate the insertion time bound.

Deletions. The process of deleting a segment, σ, is similar to insertion: we break σ into
at most Bε′ unit segments σ`, . . . , σr where s` and sr are the leftmost and rightmost slabs
spanned by σ and apply the deletion procedure for each of those unit segments separately.

The deletion algorithm for a unit segment σi is analogous to the one of the left (right)
structure of Section 3. For completeness we describe it here. To delete a unit segment σi, we
first check whether it is stored in the buffers of the root Sr or Ir; in this case we delete it.
Otherwise, we insert σi in the deletion buffer of the root Dr. Let v be an internal node with
children v1, . . . , vBε′ . Whenever Dv becomes full we flush it and forward the segments to
the corresponding children and repeat the same procedure: For a segment σ which moves to
child vi, we check whether it is stored in Svi or Ivi and if this is the case, we delete it and
update list Lv if necessary. Otherwise, we store σi in the deletion buffer Dvi .

In case segment buffer Sv underflows (i.e., |Sv| < B/2), we refill it using segments from
buffers Svi ; segments moved to Sv are deleted from Svi and Lv gets updated (if needed).
This might cause underflowing segment buffers Svi ; we handle those in the same way. In
case all buffers Svi become empty and |Sv| < B , we move to Sv the segments from Iv until
either |Sv| = B or |Iv| = 0. After K/Bε′ deletions we rebuild our data structure.

Remark: Note that here we split all segments σ into unit segments σ`, . . . , σr. However,
the old segments σ are not unit segments and are stored manually in the data structure.
However this does not affect our algorithm: whenever the first unit segment σi which is a
part of σ reaches the node v such that σ ∈ Sv, we delete σ from Sv and remove σi from
deletion buffers. The remaining segments σj will eventually reach node v and realize that σ
is already deleted from Sv; at this point σj gets deleted.
Bounding the deletion cost: The analysis of the deletion cost is identical to the analysis of
deletions in the structure of Section 3. Since each segment breaks into at most Bε′ unit
segments, we get an amortized deletion cost of O(logBK/B1−2ε′) = O(logBK/B1−ε).
Linear space usage: Similar to insertions, we need to make sure that the total space used is
not increasing asymptotically due to the use of at most Bε′ unit segments in deletion buffers
for each deleted segment σ. The total capacity of deletion buffers is O(K). Since we rebuild
the structure after K/Bε′ deletions, there are at most O(K) segments stored in deletion
buffers, i.e., deletion buffers never get totally full and total space used is O(K)

Queries. Let p be the query point and ρ+ be the the vertical ray emanating from p in the
(+y) direction. Let also sp be the slab containing p. We can find sp in O(1) I/Os by storing
all slab boundaries in a block. We perform a root-to-leaf search and we keep the first segment

ISAAC 2019

58:14 External Memory Planar Point Location with Fast Updates

sp
tp,j+1

tp,j

tp,j−1

p

ρ

Figure 3 Vertical ray-shooting queries in the multislab structure: Query point p is in slab sp.
ρ is the vertical ray emanating from p. While being at node v of T , to decide in which child to
continue our search we examine all minimal segments tp,1, . . . , tp,Bε′ stored in list Lv. Among them,
the first one hit by ρ is tp,j . Thus the search continues at child vj of v.

σ hit by ρ+ among segments seen so far. While visiting a node v we do the following: (i)
perform a vertical ray-shooting query from p among segments stored in buffers Sv and Iv,
and update σ if necessary (ii) move to the child vi which contains the successor segment tp,j
of p in list Lv (see Figure 3) and (iii) find in Iv (resp. Dv) the segments crossing slab sp and
should be stored (according to the total order) in Tvi and move them to Svi or Ivi (resp.
delete them from Svi or store it in Dvi). If a segment inserted in Dvi is also stored in Ivi ,
we delete it from both buffers. Once we reach a leaf v, we first delete from Sv the segments
that are in the deletion buffer of its parent and then we perform ray-shooting query among
the segments stored in Sv and update σ if necessary.

Bounding the query cost: Since we follow a root-to-leaf path, and at each level we need
to perform O(1) I/Os, a ray-shooting query is answered in O((1/ε′) · logBK) I/Os.

5 Counting the Restructuring Cost

In Section 2 we proved the Theorem 1 (query and update bounds of the overall structure)
without taking into account the cost of restructuring the interval tree I due to insertions
that cause leaves to become full. In this section we show that Theorem 1 holds while taking
into account the restructuring of I as well.

When a leaf becomes full we need to split it. This split in turn might cause the split of
the parent and possibly continue up the tree, thus causing some part of the tree I to need
rebalancing. While rebalancing, we need to perform updates in the secondary structures so
that they are adjusted with the updated nodes of the interval tree I. In this section, we show
that we can slightly modify our data structure such that all updates in secondary structures
can be performed in O(logB N

B1−ε) amortized I/Os. This implies that Theorem 1 holds.

Our Approach. We use a variant of the weight-balanced Bε-tree of [9]. Each leaf stores at
most B segment endpoints. Let v be a node at height h − 1 with parent p(v). Node p(v)
stores wv = Θ(B ·Bεh) elements in its subtree Ip(v). We will show that if node v splits, then
we can perform all updates needed in the secondary structures in O(wv/B1−ε) I/Os. This
implies that a split requires amortized O(1/B1−ε) I/Os, since after a restructuring, there
should be at least Ω(wv) insertions in Ip(v) until the next split is needed. Since each insertion
can cause O(logB N) splits, we get an amortized restructuring cost of O(logB N

B1−ε) I/Os for
insertion.

J. Iacono, B. Karsin, and G. Koumoutsos 58:15

u v w u wv1 v2

su sv sw su sv1
b

sv2 sw

p(v)p(v)

Figure 4 Splitting a node v into v1 and v2: slab sv is divided into slabs sv1 and sv2 with
boundary b.

Splitting a node. Node v splits into two new nodes v1 and v2. The slab sv of v is divided
into two slabs sv1 , sv2 with slab boundary b; see Figure 4. To capture this change and
update our data structure, we need to perform updates in the secondary structures of p(v)
and construct the secondary structures for v1, v2. We describe these updates in detail and
show that they can be performed in O(wv/B1−ε) I/Os. In our analysis we use the fact that
all secondary structures (multislab and left/right) storing K segments can be scanned in
O(K/B) I/Os.

Updates in secondary structures of p(v). We begin with the construction of left/right
structures for v1 and v2 using the previous left/right structures for v. We describe the
creation of left structures Lv1 and Lv2 for v1 and v2, respectively, and the right structures are
symmetric. Segments that were stored in Lv and do not cross b (like segment σ1 in Figure 5)
are stored in Lv2 ; segments of Lv that cross b (see segment σ2 in Figure 5) are stored in
Lv1 . To identify if a segment is stored in Lv1 or Lv2 we just need to scan Lv, which takes
O(wv/B) I/Os. Moreover, there are some additional segments that need to be stored in
left/right structures of p(v): the segments that are strictly inside the slab of v (i.e. they were
stored in secondary structures of v) and cross b; see e.g. segment σ3 in Figure 5. For those
segments, their left subsegments are stored in Lv1 and their right subsegments in Rv2 . To
find such segments we need to scan all secondary structures stored at v. Since each secondary
structure can be scanned in O(wv/B) I/Os and there are O(Bε) structures stored in each
node, all this takes O((wv/B) ·Bε) = O(wv/B1−ε) I/Os.

We now proceed to the updates of the multislab structure of p(v). Here, we just need to
add some segments to the previous multislab structure. The new segments are the segments
of Lv that cross b which are not already stored in the multislab (and symmetrically, the
segments of Rv that cross b and are not yet in the multislab). For an example, see segment σ2
in Figure 5; before it was not stored in the multislab and now we store its middle subsegment.
Note that the middle subsegment is a unit segment (i.e. crosses exactly one slab) thus we
don’t need to compute a new total order; we can find its position in the total order by
comparing it only with segments that cross slab sv2 . All those segments that need to be
added can be found by scanning Lv and Rv in O(wv/B) I/Os. Insertions in the multislab
of p(v) require O((logB wv)/B1−ε) = O(wv/B) I/Os. Also, all information stored in nodes
of the multislab structure can be updated in O(wv/B) I/Os. Overall, all updates in the
multislab structure of v are performed in O(wv/B) I/Os.

ISAAC 2019

58:16 External Memory Planar Point Location with Fast Updates

su sv sw su sv1
b
sv2 sw

σ3 σ3

σ1 σ1

σ2σ2

Figure 5 Example of segments that get stored in different secondary structures after a split.
Segment σ1 was stored in Lv and, after the split, gets stored in Lv2 . Segment σ2 was stored in Lv;
following the split its left subsegment is stored in Lv1 and its middle subsegment in the multislab
structure of p(v). Segment σ3 was previously stored in secondary structures of v, and after the split
it should be stored in structures Lv1 and Rv2 of p(v).

Construct secondary structures for v1 and v2. The left and right structures for each child
slab of v1 and v2 will be based on the left/right structure of the same slab in v just by
removing the segments that cross b (which are assigned to p(v) as we explained above).
Similarly, segments that cross b are excluded from the multislab structure.

We start with the construction of left/right structures of v1 and v2. We describe the
left and the right is symmetric. For each slab sk of v, 1 ≤ k ≤ Bε we scan the left list Lk;
the segments that do not cross b remain in Lk and the others are deleted. All this takes
O((wv/B) ·Bε) = O(wv/B1−ε) I/Os.

Finally we create the multislab structures for v1 and v2. Again, we need to scan the
multislab of v and delete the segments that cross b, which takes O(wv/B) I/Os. Then we
need to build the multislabs of v1 and v2 out of the remaining segments. Since all segments
are already sorted according to a total order, this can be done in O(wv/B) I/Os.

References

1 Pankaj K. Agarwal, Lars Arge, Gerth Stølting Brodal, and Jeffrey Scott Vitter. I/O-Efficient
Dynamic Point Location in Monotone Planar Subdivisions. In Proceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 11–20, 1999. URL:
http://dl.acm.org/citation.cfm?id=314500.314525.

2 Alok Aggarwal and Jeffrey Scott Vitter. The Input/Output Complexity of Sorting and Related
Problems. Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.

3 Lars Arge. The Buffer Tree: A Technique for Designing Batched External Data Structures.
Algorithmica, 37(1):1–24, 2003. doi:10.1007/s00453-003-1021-x.

4 Lars Arge, Gerth Stølting Brodal, and Loukas Georgiadis. Improved Dynamic Planar Point
Location. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 305–314, 2006. doi:10.1109/FOCS.2006.40.

5 Lars Arge, Gerth Stølting Brodal, and S. Srinivasa Rao. External Memory Planar Point
Location with Logarithmic Updates. Algorithmica, 63(1-2):457–475, 2012. doi:10.1007/
s00453-011-9541-2.

6 Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On Two-Dimensional Indexability and
Optimal Range Search Indexing. In PODS, pages 346–357. ACM Press, 1999.

http://dl.acm.org/citation.cfm?id=314500.314525
https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/s00453-003-1021-x
https://doi.org/10.1109/FOCS.2006.40
https://doi.org/10.1007/s00453-011-9541-2
https://doi.org/10.1007/s00453-011-9541-2

J. Iacono, B. Karsin, and G. Koumoutsos 58:17

7 Lars Arge and Jan Vahrenhold. I/O-efficient dynamic planar point location. Comput. Geom.,
29(2):147–162, 2004. doi:10.1016/j.comgeo.2003.04.001.

8 Lars Arge, Darren Erik Vengroff, and Jeffrey Scott Vitter. External-Memory Algorithms for
Processing Line Segments in Geographic Information Systems. Algorithmica, 47(1):1–25, 2007.
doi:10.1007/s00453-006-1208-z.

9 Lars Arge and Jeffrey Scott Vitter. Optimal External Memory Interval Management. SIAM
J. Comput., 32(6):1488–1508, 2003. doi:10.1137/S009753970240481X.

10 Hanna Baumgarten, Hermann Jung, and Kurt Mehlhorn. Dynamic Point Location in General
Subdivisions. J. Algorithms, 17(3):342–380, 1994. doi:10.1006/jagm.1994.1040.

11 Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large Ordered
Indices. Acta Inf., 1:173–189, 1972. doi:10.1007/BF00288683.

12 Jon Louis Bentley. Decomposable Searching Problems. Inf. Process. Lett., 8(5):244–251, 1979.
doi:10.1016/0020-0190(79)90117-0.

13 Gerth Stølting Brodal. External Memory Three-Sided Range Reporting and Top-k Queries
with Sublogarithmic Updates. In 33rd Symposium on Theoretical Aspects of Computer Science
(STACS), pages 23:1–23:14, 2016. doi:10.4230/LIPIcs.STACS.2016.23.

14 Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external memory dictionaries. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 546–554, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644201.

15 Timothy M. Chan and Yakov Nekrich. Towards an Optimal Method for Dynamic Planar Point
Location. In IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS),
pages 390–409, 2015. doi:10.1109/FOCS.2015.31.

16 Bernard Chazelle. Computational Geometry for the Gourmet: Old Fare and New Dishes.
In Automata, Languages and Programming, 18th International Colloquium (ICALP), pages
686–696, 1991. doi:10.1007/3-540-54233-7_174.

17 Bernard Chazelle. Computational geometry: a retrospective. In Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing (STOC), pages 75–94, 1994. doi:
10.1145/195058.195110.

18 Siu-Wing Cheng and Ravi Janardan. New Results on Dynamic Planar Point Location. SIAM
J. Comput., 21(5):972–999, 1992. doi:10.1137/0221057.

19 Yi-Jen Chiang and Roberto Tamassia. Dynamization of the trapezoid method for planar point
location in monotone subdivisions. Int. J. Comput. Geometry Appl., 2(3):311–333, 1992.

20 Herbert Edelsbrunner and Hermann A. Maurer. On the Intersection of Orthogonal Objects.
Inf. Process. Lett., 13(4/5):177–181, 1981. doi:10.1016/0020-0190(81)90053-3.

21 Michael T. Goodrich and Roberto Tamassia. Dynamic Trees and Dynamic Point Location.
SIAM J. Comput., 28(2):612–636, 1998.

22 J. Ian Munro and Yakov Nekrich. Dynamic Planar Point Location in External Memory.
In SoCG, volume 129 of LIPIcs, pages 52:1–52:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2019.

23 Eunjin Oh and Hee-Kap Ahn. Point Location in Dynamic Planar Subdivisions. In 34th
International Symposium on Computational Geometry, SoCG 2018, pages 63:1–63:14, 2018.
doi:10.4230/LIPIcs.SoCG.2018.63.

24 Jack Snoeyink. Point Location. In Handbook of Discrete and Computational Geometry, Second
Edition, pages 767–785. Chapman & Hall/CRC, 2004. doi:10.1201/9781420035315.pt4.

25 Jeffrey Scott Vitter. External memory algorithms and data structures. ACM Comput. Surv.,
33(2):209–271, 2001. doi:10.1145/384192.384193.

26 Jeffrey Scott Vitter. Algorithms and Data Structures for External Memory. Foundations and
Trends in Theoretical Computer Science, 2(4):305–474, 2006. doi:10.1561/0400000014.

ISAAC 2019

https://doi.org/10.1016/j.comgeo.2003.04.001
https://doi.org/10.1007/s00453-006-1208-z
https://doi.org/10.1137/S009753970240481X
https://doi.org/10.1006/jagm.1994.1040
https://doi.org/10.1007/BF00288683
https://doi.org/10.1016/0020-0190(79)90117-0
https://doi.org/10.4230/LIPIcs.STACS.2016.23
http://dl.acm.org/citation.cfm?id=644108.644201
https://doi.org/10.1109/FOCS.2015.31
https://doi.org/10.1007/3-540-54233-7_174
https://doi.org/10.1145/195058.195110
https://doi.org/10.1145/195058.195110
https://doi.org/10.1137/0221057
https://doi.org/10.1016/0020-0190(81)90053-3
https://doi.org/10.4230/LIPIcs.SoCG.2018.63
https://doi.org/10.1201/9781420035315.pt4
https://doi.org/10.1145/384192.384193
https://doi.org/10.1561/0400000014

58:18 External Memory Planar Point Location with Fast Updates

A Queries in the Left and Right Structures

In this Section we give further details on the left (right) structure which were omitted
from Section 3.

Queries. We begin with the queries and we show the correctness of the query algorithm of
the static left (right) structure.

Correctness: The correctness of the query algorithm follows from the next lemma. For a
node v ∈ T let Sv be the set of segments stored in buffers S in Tv .

I Lemma 4. Assume that at the end of the ith step of the query algorithm, either v+ or v−
is defined. Then σ+ is the first segment hit by ρ+ among the segments of L − (Sv− ∪ Sv+).

Proof. We prove the lemma by induction.
Induction Base: At the end of the first step, v+ and v− are children of the root r and σ+

is the first segment hit by ρ+ among all segments stored at the root (in Sr andMr). By
definition of vs = v+, for any child of the root v with higher y-range than v+, σ+ is below
all segments of Sv. Similarly, for any child of the root v′ with smaller y-range than v− (if
v− exists), there is no segment in Sv′ hit by ρ+ (since there exists a segment in Sv− hit by
ρ−). Finally, for any child v′′ of the root whose y-range is between the range of v− and v+,
by definition of v+, there is no segment in Sv′′ hit by ρ+. We conclude that σ+ is the first
segment hit by ρ+ among the segments in L − (Sv− ∪ Sv+).

Inductive Step: Assume the lemma holds at the end of step i, i.e. we have at least
one of v+ and v− at level i and σ+ is the first segment hit by ρ+ among all segments in
L − (Sv+ ∪ Sv+).

During (i+ 1)th step we ray-shoot on ρ+ among segments stored in Sv+ ,Sv− ,Mv+ and
Mv− , and update σ+ if necessary. Let vs be the node containing the first segment hit by ρ+

amongMv+ andMv− (if such a segment exists). Let also vp be the node containing the
first segment hit by ρ− amongMv+ andMv− (if such a segment exists).

By definition of vs, for any node v which is a child of v− or v+ with higher y-range than
vs, σ+ is below all segments of Sv. Similarly, for a node v′ which is a child of v− or v+ with
smaller y-range than vp (if vp exists), there is no segment of Sv′ hit by ρ+ (since there exists
a segment in Svp hit by ρ−). Finally, for any child v′′ of v− or v+ whose y-range is between
the range of v− and v+, by definition of v+, there is no segment in Sv′′ hit by ρ+.

Recall that by the induction hypothesis σ+ at the end of the previous step was the first
segment hit by ρ+ among segments of L− (Sv+ ∪Sv+). Now we updated σ+ and showed that
there is no segment hit by ρ+ before σ+ in any subtree other than Tvs or Tvp . We conclude
that σ is the first segment hit by ρ+ among the segments in L − (Svs ∪ Svp). Since at the
end of the (i+ 1)th step we set v− = vp and v+ = vs, the lemma follows. J

We now explain how Lemma 4 implies the correctness of the query algorithm. To see
that, let i be the last level where either v+ or v− is defined; at the beginning of the query
algorithm at level i, σ+ is the first segment hit by ρ+ among segments of L − (Sv− ∪ Sv+).
Moreover at the end of this step, both vs and vp are not defined, i.e., for each child v of v− or
v+ there is no segment in Sv hit by ρ+ before σ+. Since Sv− ∪Sv+ = Sv− ∪Sv+ ∪ (∪vSv), we
get that σ+ is the first segment hit by ρ+ among segments of L − (Sv− ∪ Sv+). By checking
all segments of Sv− ∪ Sv+ and updating σ+ if necessary, we make sure that σ+ is the first
segment hit by ρ+ among segments of L.

Minimizing and Computing the Inverse Geodesic
Length on Trees
Serge Gaspers
UNSW Sydney, Australia
Data61, CSIRO, Sydney, Australia
sergeg@cse.unsw.edu.au

Joshua Lau1

UNSW Sydney, Australia
joshua.lau@unsw.edu.au

Abstract
For any fixed measure H that maps graphs to real numbers, the MinH problem is defined as follows:
given a graph G, an integer k, and a target τ , is there a set S of k vertices that can be deleted, so
that H(G− S) is at most τ? In this paper, we consider the MinH problem on trees.

We call H balanced on trees if, whenever G is a tree, there is an optimal choice of S such
that the components of G− S have sizes bounded by a polynomial in n/k. We show that MinH
on trees is Fixed-Parameter Tractable (FPT) for parameter n/k, and furthermore, can be solved
in subexponential time, and polynomial space, whenever H is additive, balanced on trees, and
computable in polynomial time.

A particular measure of interest is the Inverse Geodesic Length (IGL), which is used to gauge the
efficiency and connectedness of a graph. It is defined as the sum of inverse distances between every
two vertices: IGL(G) =

∑
{u,v}⊆V

1
dG(u,v) . While MinIGL is W [1]-hard for parameter treewidth,

and cannot be solved in 2o(k+n+m) time, even on bipartite graphs with n vertices and m edges, the
complexity status of the problem remains open in the case where G is a tree. We show that IGL is
balanced on trees, to give a 2O((n log n)5/6) time, polynomial space algorithm.

The distance distribution of G is the sequence {ai} describing the number of vertex pairs distance
i apart in G: ai = |{{u, v} : dG(u, v) = i}|. Given only the distance distribution, one can easily
determine graph parameters such as diameter, Wiener index, and particularly, the IGL. We show that
the distance distribution of a tree can be computed in O(n log2 n) time by reduction to polynomial
multiplication. We also extend the result to graphs with small treewidth by showing that the first
p values of the distance distribution can be computed in 2O(tw(G))n1+ε√p time, and the entire
distance distribution can be computed in 2O(tw(G))n1+ε time, when the diameter of G is O(nε′) for
every ε′ > 0.

2012 ACM Subject Classification Mathematics of computing → Trees; Mathematics of computing
→ Graph algorithms

Keywords and phrases Trees, Treewidth, Fixed-Parameter Tractability, Inverse Geodesic Length,
Vertex deletion, Polynomial multiplication, Distance distribution

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.59

Related Version A full version of the paper is available: https://arxiv.org/abs/1811.03836.

Funding Serge Gaspers: Serge Gaspers is the recipient of an Australian Research Council (ARC)
Future Fellowship (FT140100048).

Acknowledgements We thank David Harvey and Ray Li for fruitful discussions and feedback.

1 Corresponding author

© Serge Gaspers and Joshua Lau;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 59; pp. 59:1–59:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6947-9238
mailto:sergeg@cse.unsw.edu.au
https://orcid.org/0000-0001-7490-633X
mailto:joshua.lau@unsw.edu.au
https://doi.org/10.4230/LIPIcs.ISAAC.2019.59
https://arxiv.org/abs/1811.03836
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Minimizing and Computing the Inverse Geodesic Length on Trees

1 Introduction

The Inverse Geodesic Length (IGL) is a widely-used measure for quantifying the connectedness
and efficiency of a given graph or network. In mathematical chemistry, it is also known as
the Harary Index [39], and in network science as the (global) efficiency [14].

To test the resilience of a graph to vertex failures, the problem of minimizing a particular
measure by deleting a fixed number of vertices has been studied extensively [29, 25, 20]. In
these cases, heuristics have been used to choose which vertices to delete, and their effect has
been assessed using the chosen measure. In particular, Szczepánski et al. [34] chose IGL as
the measure to be minimized when examining this problem. Nonetheless, only recently has
the exact optimization problem itself (MinIGL) been studied.

Veremyev et al. [36] formulated MinIGL as a special case of the Distance-Based Critical
Node Detection Problem (DCNP), and reduced the problem to Integer Linear Programming.
Aziz et al. [4] observed that MinIGL is NP-complete, since it corresponds to Vertex
Cover when τ = 0, but it is also both NP-complete, and W [1]-hard for parameter k, on
both split and bipartite graphs. Najeebullah [30] showed that, under the Exponential Time
Hypothesis of Impagliazzo and Paturi [22], MinIGL cannot be solved in 2o(k+n+m) time,
even on bipartite graphs. On the positive side, it was shown that MinIGL is Fixed-Parameter
Tractable (FPT) for parameter twin (or vertex) cover number, and also for ω + k, where ω
is the neighbourhood diversity of the graph. In another paper, Aziz et al. [3] showed that
MinIGL is W [1]-hard for parameter treewidth. The complexity status of MinIGL when
the input graph is a tree was stated as an open question by Aziz et al. [4, 3], and in open
problem sessions of IWOCA 2017 and the Sydney Algorithms Workshop 2017.

In Section 3, we examine MinIGL on trees, giving the following results.

I Theorem 1.1. MinIGL is FPT for parameter n/k on trees.

I Theorem 1.2. There is a 2O((n logn)5/6) time, O(n3) space algorithm for MinIGL on trees,
on a real RAM.

To do so, we prove more general versions of these results, for the MinH problem in the case
when H is additive, balanced on trees, and computable in polynomial time.

We give a Dynamic Programming (DP) algorithm that solves MinIGL by matching
ordered trees to the structure of the given tree, to give a forest with n − k vertices and
minimum IGL. The running time of this algorithm is exponential in L, but polynomial in n,
where L is the size of the largest tree in this forest. Since H is balanced, L is bounded by a
polynomial in n/k, so MinH is FPT for parameter n/k. Proving that IGL is balanced on
trees then gives Theorem 1.1. Choosing this DP algorithm when k is large compared to n,
and a simple brute-force algorithm otherwise, gives Theorem 1.2.

IGL has been used to identify key protein residues [9], compare the robustness of botnet
structures [16], and assess the impact of attacks on power grids [40]. Thus, the ability to
compute the IGL of a graph efficiently serves practical purpose in identifying characteristics
of real-world networks.

Since the IGL of a graph can easily be computed from its distance distribution, we examine
the problem of computing the distance distribution of trees. By combining the relatively
well-known techniques of centroid decomposition and fast polynomial multiplication, we
obtain the following result on trees.

I Theorem 1.3. The distance distribution of a tree with n vertices can be computed in
O(n log2 n) time on a log-RAM.

S. Gaspers and J. Lau 59:3

We extend this result to graphs with small treewidth. This is of practical note, as
real-world graphs for which IGL is an indicator of strength – such as electrical grids [2] and
road transport networks [27] – have been found to have relatively small treewidth.

The distance distribution of a graph can be trivially computed from the All Pairs Shortest
Paths (APSP). The output of APSP is of size n2, so any APSP algorithm requires Ω(n2)
time. On graphs with treewidth k, APSP can be computed in O(kn2) time [31], so we seek
algorithms that find the distance distribution with a subquadratic dependence on n. Abboud
et al. [1] proved that, under the Orthogonal Vectors Conjecture (OVC), there is no algorithm
that distinguishes between graphs of diameter 2 and 3 in 2o(k)n2−ε time. Williams [38]
showed that the OVC is implied by the Strong Exponential Time Hypothesis (SETH) of
Impagliazzo, Paturi and Zane [22, 23]. Since the distance distribution of a graph immediately
gives its diameter, this hardness result also applies to computing the distance distribution.
We prove the following result.

I Theorem 1.4. The prefix a1, . . . , ap of the distance distribution of a graph with n vertices
and treewidth k can be computed in 2O(k)n1+ε√p time on a log-RAM, for any ε > 0.

In particular, the number of relevant values of p is at most the graph’s diameter, so when
the diameter is O(nε′) for every ε′ > 0, we obtain a 2O(k)n1+ε time algorithm to compute
the distance distribution. This matches the known hardness bounds above, in the sense
that under the OVC, (or the stronger SETH), the dependence on k must be 2Ω(k) when the
dependence on n is subquadratic.

Cabello and Knauer [12] reduced the problem of computing the Wiener index [37] (the
sum of distances between every two vertices) to orthogonal range queries in k− 1 dimensions.
They did so by applying a divide-and-conquer strategy that divides the graph with small
separators that are found efficiently. Abboud et al. [1] adapted this approach to find radius
and diameter. We take a similar approach, but reduce computing the distance distribution
to the following problem rather than to orthogonal range queries.

If v and w are vectors in Rd, write v < w if each coordinate of w is strictly greater than
the corresponding coordinate in v. In this case, we say that w (strictly) dominates v. We
define the RedBluePolynomial problem as follows.

RedBluePolynomial
Input: r red points R1, . . . Rr, and b blue points B1, . . . , Bb in Rd, along with corresponding

non-negative integer values r1, . . . , rr, and b1, . . . , bb, respectively.
Question: Determine the non-zero coefficients of the polynomial

∑
(p,q):Rp<Bq

xrp+bq , as a
list of (exponent, coefficient) pairs.

This problem can be solved naively in quadratic time, but we seek a more efficient solution
in the case when the value of each point is bounded.

To our knowledge, this problem is new, and a variant of a well-known counting problem,
which asks for the number of red points dominated by each blue point. Chan and Pǎtraşcu
[13] showed that this variant can be solved in O(n

√
logn) time on a Word RAM, using

word operations to facilitate efficient counting. Bentley [6] gave a multidimensional divide-
and-conquer approach for a similar problem, which Monier [28] showed had complexity
O(dn ·B(n, d)) where B(n, d) =

(
d+dlogne

d

)
.

Bringmann et al. [11] used this fact to show that the method employed by Cabello and
Knauer [12], and Abboud et al. [1] can, in fact, be used to compute the Wiener index, radius,
and diameter of graphs with treewidth k in 2O(k)n1+ε time for any ε > 0, by proving that
B(n, k) = 2O(k)nε. Furthermore, Husfeldt [21] gave an improved 2O(k)n time algorithm for

ISAAC 2019

59:4 Minimizing and Computing the Inverse Geodesic Length on Trees

computing diameter and radius in the case where the graph also has constant diameter.
However, it was noted that this result only pertains to the existence of pairs of vertices at
certain distances, and not to counting the number of such pairs. Thus, the result does not
directly give further insight to computing distance distributions.

We follow Bentley’s method, where it suffices to consider the one-dimensional case, d = 1.
We resolve this case using square-root decomposition and fast polynomial multiplication.
Applying the approach of Bringmann et al. to analyse the running time of this approach
gives Theorem 1.4. A detailed discussion of this algorithm is given in Section 4.

Due to space constraints, we omit and abbreviate proofs to some of the more straightfor-
ward results, and refer the reader to the full version of this paper for more details.

2 Preliminaries

Let G = (V,E) be a graph and suppose u, v, w ∈ V . We define the distance dG(u, v) between
u and v to be the fewest number of edges in any path from u to v, or ∞ if no such path
exists, with the convention that 1

∞ = 0.
In Section 3, we consider the problem when the provided graph is a tree T . In this case,

precisely one simple path exists between every pair {u, v} ⊆ V . Define PT (u, v) to be the
set of vertices along the simple path from u to v in T , including the endpoints u and v.

Observe that dT (u,w) + dT (w, v) = dT (u, v) if and only if w ∈ PT (u, v). For a vertex
w, we also define P−1

T (w) to be the set of all (unordered) pairs of vertices whose path in T
passes through w. Formally, P−1

T (w) = {{u, v} ⊆ V : w ∈ PT (u, v)}.
A vertex u is a centroid of T if the maximum size of a connected component in T − u is

minimized. We will use the following results, concerning centroids.

I Lemma 2.1 (Jordan [24]). Every tree has either one centroid or two adjacent centroids. If
a centroid is deleted from a tree, each tree in the remaining forest contains no more than n

2
vertices, where n is the number of vertices in the original tree.

I Lemma 2.2. Let u be a centroid of a tree T with n ≥ 2 vertices. Then, |P−1
T (u)| ≥ n2

4 .

Proof. See the full version of the paper. J

In Section 4 we also consider the problem of computing the IGL, using the tree decompos-
itions of graphs with small treewidth. A tree decomposition of G is a tree T whose vertices
(called nodes) are {1, . . . , I} and a sequence V1, . . . ,VI of subsets of V (called bags) such that

1. V =
⋃I
i=1 Vi;

2. If uv ∈ E, then {u, v} ⊆ Vi for some i;
3. Va ∩ Vc ⊆ Vb whenever b ∈ PT (a, c).
The width of such a tree decomposition is maxIi=1|Vi| − 1. The treewidth tw(G) of G is the
minimum width among all tree decompositions of G.

2.1 Model of computation
We establish our results on models of computation that closely reflect what is available to
programmers of high-level languages on physical computing devices today.

In Section 3, we solve MinIGL by explicitly computing the minimum IGL that can
be obtained by deleting k vertices from the given tree. We perform this on the real RAM
formulated by Shamos [33], which allows addition, subtraction, multiplication, division and

S. Gaspers and J. Lau 59:5

comparisons of real numbers in constant time, but does not support rounding a value to
the nearest integer, or modulo as native operations. This permits efficiently adding and
comparing contributions of distances between vertices to the IGL.

In Section 4, we reduce the problem of computing the IGL of a graph to finding its
distance distribution. We solve this on a log-RAM introduced by Fürer [19], which is a
Word RAM that also supports constant time arithmetic operations (including multiplication,
integer modulo, and division) on words of length O(logn). Fürer showed that on a log-RAM,
multiplication of two n-bit integers can be done in O(n) time, using either the approach of
Schönhage and Strassen [32] (performing a complex polynomial-based Fast Fourier Transform
(FFT) and maintaining sufficient precision), or that of Fürer [18] (performing an FFT over a
ring of polynomials).

We extend this to integer polynomials with bounded coefficients, as follows.

I Lemma 2.3. Suppose P and Q are integer polynomials of degree n whose coefficients
are non-negative integers, such that their product PQ has coefficients not exceeding some
integer m. Then, the coefficients of PQ can be computed from the coefficients of P and Q in
O(n logm) time on a log-RAM.

Proof. This can be done using Kronecker substitution [26]. See the full version of the paper
for further details. J

3 MinIGL on Trees

In this section, we give a new subexponential time, polynomial space algorithm for MinH on
trees, when H satisfies the following properties. We use this to prove Theorems 1.1 and 1.2,
by showing that IGL also satisfies these properties.

I Definition 3.1 (Additivity). We say that a measure H on graphs is additive if H(G1⊕G2) =
H(G1) + H(G2) for any vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), where
G1 ⊕G2 is the graph (V1 ∪̇ V2, E1 ∪̇ E2).

Call a forest L-trimmed if none of its trees contain more than L vertices. In the same
way, call a subset of vertices in a tree L-trimming if their deletion gives an L-trimmed forest.

I Definition 3.2 (Balanced on trees). We say that a measure H is balanced (on trees) if
there exist positive constants cH and tH , such that, for any Yes-instance (T, k, τ) of MinH
on a tree T with n vertices, there exists a witness that is cH (n/k)tH -trimming.

Hereafter, we will assume that the value of H on a forest is computable in O(nα) time,
and O(nβ) space, on a real RAM, where α, β ≥ 1 are constants. We also assume that such a
value can be stored in a constant number of words on a real RAM.

We prove Theorems 1.1 and 1.2 by giving compatible algorithms for MinH on trees, then
complete the proof by showing that IGL satisfies the same properties that H does. Now it is
easy to see that there is a naïve, brute-force algorithm for MinH.

I Lemma 3.3. There is an O(nk+α) time, O(nβ) space algorithm for MinH on a tree, on a
real RAM.

Proof. We simply try all
(
n
k

)
= O(nk) subsets of k vertices. The value of H on the forest

that remains after each subset has been removed can be computed in O(nα) time and O(nβ)
space. J

ISAAC 2019

59:6 Minimizing and Computing the Inverse Geodesic Length on Trees

T ′ T
1

2 3

4 5 6

1

2 3

4 5 6

m

Figure 1 Mapping the vertices of T ′ to T in Lemma 3.4. Note that T ′ is an ordered tree, and
that children (and their subtrees) must be mapped in order. Shaded vertices will be deleted, and we
recursively solve for the subtrees rooted at their children.

If k is small, this algorithm may be efficient. When k is large, the vertices forming an
optimal solution will leave a forest of relatively small trees after they are deleted, since H is
balanced. We use this property to develop an alternate, more efficient algorithm for MinH
in this case. Let L = cH (n/k)tH . Our algorithm minimizes H, considering only L-trimming
subsets of k vertices. The running time of this algorithm is exponential in L, but polynomial
in n, so it is fast when k is large, relative to n.

I Lemma 3.4. Let T = (V,E) be a tree with n vertices. There is an O
(

4L
√
L

(
n2 + Lα−1))

time, O
(
nkL+ Lβ

)
space algorithm on a real RAM, which finds the minimum value of

H(T − S), among all L-trimming subsets S of k vertices.

Proof. We root T arbitrarily and employ DP to compute this minimum value for every
subtree and budget, in two cases: the case where the root of the subtree is deleted, and the
case where it is not. Denote these minimum values by f(u, b) and g(u, b), respectively, for
the subtree rooted at u and budget b. The leaves of the tree form the base cases for this
algorithm, and the final answer is derived from the minimum of f(root, k) and g(root, k). It
remains to give recurrences for f and g.

In the case where u is deleted, we simply need to distribute the remaining b− 1 deletions
among the subtrees rooted at each child of u. Let the children of u be v1, . . . , vchT (u) in a
fixed order. Our recurrence takes the form of another DP algorithm: let f ′(u, i, b′) be the
minimum value of f distributing a budget of b′ deletions among the subtrees rooted at the
first i children of u. Our recurrence is as follows:

f ′(u, i, b′) = min
0≤b′′≤b′

(min(f(vi, b′′), g(vi, b′′)) + f ′(u, i− 1, b′ − b′′))

and we have that f(u, b) = f ′(u, chT (u), b− 1).
If u is not deleted, it will be the root of some tree with no more than L vertices after

our chosen subset has been deleted. We fix the structure (formally, an ordered tree) for this
rooted tree, and attempt to match the vertices in this structure to vertices in the subtree
rooted at u. Formally, let the structure be an ordered tree T ′ over L′ ≤ L vertices. Let its
vertex set be V ′ = {1, . . . , L′} and, without loss of generality, suppose 1 is its root. We seek
a total, injective mapping m : V ′ → V satisfying the following conditions.
1. m(1) = u;
2. Suppose p and p′ are the parents of q and q′ in T and T ′, respectively. If m(q′) = q then

m(p′) = p;
3. Let p and p′ be vertices in T and T ′ such that their children are, in order, q1, . . . , qchT (p)

and q′1, . . . , q′chT ′ (p′)
, respectively. If m(q′j1

) = qi1 , m(q′j2
) = qi2 and j1 ≤ j2, then i1 ≤ i2.

That is, children are matched in order.

S. Gaspers and J. Lau 59:7

Note that the structure of the chosen ordered tree uniquely characterises the value of H on
the component containing u, since H is only defined on unlabelled graphs, and is additive,
so this value is independent of the structure of other components.

Let v be some vertex in T . If v is mapped to by m, then v is a part of this component.
Otherwise, if v is not mapped to by m but its parent is, then v must be a vertex chosen for
deletion, and so we should recursively consider each of its childrens’ subtrees.

This implies a DP approach to determine the optimal choice of m, similar to that of f ′.
We let g′(u, i, b′, u′, j) be the minimum value (of H) induced by a mapping which maps u′ to
u and maps the first j children of u′ among the first i children of u with a total budget of b′
deletions in the subtree rooted at u. This value does not include the contributions of vertex
pairs in T which both end up in the current component (are mapped to by m).

We have a choice to either delete the ith child vi of u, or map it to the jth child v′j of u′.
In both cases, we allocate a budget of b′′ ≤ b′ deletions to the subtree rooted at vi. This
gives the following recurrence:

g′(u, i, b′, u′, j) = min
0≤b′′≤b′

min

{
g′(u, i− 1, b′ − b′′, u′, j) + f(vi, b

′′),
g′(u, i− 1, b′ − b′′, u′, j − 1) + g′(vi, chT (vi), b′′, v′j , chT ′(v′j))

and g(u, b) = minT ′(H(T ′) + g′(u, chT (u), b, 1, chT ′(1))). This concludes the description of
the algorithm.

A detailed analysis of the time and space complexity of this algorithm is given in the full
version of the paper, using the key result that there are O

(
4L

L
√
L

)
unlabelled, ordered trees

on L or fewer vertices [17, 35]. J

Since n2 + Lα−1 = O
(
nmax(2,α−1)), and L ≤ cH (nk)tH , it follows that MinH is FPT for

parameter n
k .

I Corollary 3.5. Suppose H is a measure on graphs, that is additive, balanced on trees, and
computable in polynomial time on trees, on a real RAM. Then MinH is FPT for parameter
n/k on trees.

With an appropriate threshold, we can combine the approaches of Lemma 3.3 and
Lemma 3.4 to give a subexponential time, polynomial space algorithm for MinH.

I Corollary 3.6. Suppose H is a measure on graphs, that is additive, balanced on trees, and
computable in polynomial time on trees, on a real RAM. Then there is a 2O

(
(n logn)tH /(tH +1)

)
time, polynomial space algorithm for MinH on trees, where tH is the constant given in
Definition 3.2.

Proof. Lemma 3.3 gives us an O(nk+α) = 2O(k logn) time algorithm for MinH on a tree.
Lemma 3.4 gives us an alternate O

(
4cH(n/k)tH nmax(2,α−1)

)
= 2O((n/k)tH +logn) time al-

gorithm for the same problem. Note that the memory consumption of both algorithms is
bound by O(nmax(3,β)), so they are both polynomial in space.

Let k∗ = ntH/(tH+1) log−1/(tH+1) n. We select the former algorithm when k ≤ k∗, and the
latter algorithm otherwise. In both cases, our running time is bound by 2O

(
(n logn)tH /(tH +1)

)
,

as required. J

We now prove that IGL satisfies the requirements of Corollary 3.5 and Corollary 3.6.
IGL is clearly additive, since pairs of vertices belonging to different components contribute
1
∞ = 0 to the IGL. We can easily compute the IGL in O(n2) time, and O(n) space, on the

ISAAC 2019

59:8 Minimizing and Computing the Inverse Geodesic Length on Trees

real-RAM by traversing from each vertex. Hence, it remains to show that IGL is balanced
on trees: it suffices to show that there is a constant tIGL, such that any subset of vertices
whose deletion minimizes the IGL is O

(
(n/k)tIGL

)
-trimming.

To do so, we choose to reason about the decrease in IGL caused by the removal of a
subset of k vertices, rather than the IGL itself. Maximizing this decrease (which we call
utility) is equivalent to minimizing the IGL of the graph after removal.

I Definition 3.7 (Utility). Let G = (V,E) be a graph. Then the utility of some S ⊆ V is:

UG(S) = IGL(G)− IGL(G− S).

If S = {v}, we write UG(v) instead of UG({v}), which we call the utility of v in G.

Suppose S = S′∪̇{v} is a subset of k vertices in a tree T with maximum utility. Necessarily,
v must have maximum utility in T − S′. This means that v has no less utility than any
vertex in its component in T − S′, and that it also has no less utility than the optimal vertex
in any other component. In this vein, we would like to consider the case when k = 1 so we
can reason about the individual optimality of each vertex in an optimal solution.

We use the following upper and lower bounds on the utility of the optimal choice of vertex
in this case. The proofs of these bounds are straightforward, and provided in the full version
of the paper.

I Lemma 3.8. Let T = (V,E) be a tree with n ≥ 2 vertices. Then, maxv∈V UT (v) ≥ n/2.

I Lemma 3.9. Let G = (V,E) be a tree with n vertices. Then UG(v) ≤ IGL(G) ≤ 1
2n(n−1)

for any vertex v ∈ V .

Next, we show that the removal of a vertex with maximum utility leaves the remaining forest
somewhat balanced. Specifically, it is never the case that one tree in this forest is so large
that it contains all but o(n1/4) vertices.

I Theorem 3.10. Let T = (V,E) be an unweighted tree with n ≥ 3 vertices and suppose
v ∈ V minimizes IGL(T − v). Further, suppose C is a connected component in T − v

containing l vertices and let r = n− l− 1 be the number of vertices in T − v not in C. Then,
there is a constant 0 < c < 1 independent of n such that r ≥ cn1/4.

Proof. We may assume l ≥ 1, since the case when l = 0 is trivial. We may also assume that
r ≥ 1, since if r = 0, v is a leaf, which contradicts its optimality since n ≥ 3.

Since T is a tree, each neighbour of v belongs to a different component in T − v. Suppose
xC is the neighbour of v in C and let C ′ be the subtree T [V (C) ∪ {v}]. Thus, v is a leaf of
C ′. We use this structure (pictured in Figure 2) to give two different, but related, upper
bounds for the utility UT (v) of v in T .

B Claim 3.11. UT (v) ≤ 1
2r(r + 1) + (r + 1)UC′(v).

Proof. Let us upper bound UT (v) by considering the utility of v in C ′ and also in T − V (C).
There are n − l vertices in T − V (C), so by Lemma 3.9, we have that UT−V (C)(v) ≤
1
2 (n− l)(n− l − 1) = 1

2r(r + 1). This accounts for the pairs of vertices disconnected by the
deletion of v in T − V (C).

We still need to consider such pairs where one vertex is in C, and the other is in T −V (C)
(this includes v). Since v is a leaf in C ′, the only pairs of vertices connected in C ′ that
are disconnected in C = C ′ − v are those of the form {v, vC}, where vC ranges over V (C).

S. Gaspers and J. Lau 59:9

v xC vA

TA vertices of B

C′

C, containing l verticesr vertices

Figure 2 Layout of the vertices of T , in Theorem 3.10. Shaded vertices are in A, and are no
more than D = 5 away from v. The value of D here has chosen for example’s sake, and is not the
true value constructed in the proof.

Now let u be a vertex in V \ V (C). The path from u to vC must pass through v, and thus
dT (u, vC) ≥ dT (v, vC). Hence, the contribution of each disconnected {u, vC} pair is at most
that of {v, vC} towards UT (v). Putting these inequalities together gives us

UT (v) =
∑

{p,q}∈P−1
T

(v)

1
dT (p, q)

= UT−V (C)(v) +
∑

u∈V \V (C)
vC∈V (C)

1
dT (u, vC)

≤ 1
2r(r + 1) + |V \ V (C)|

∑
vC∈V (C)

1
dT (v, vC)

≤ 1
2r(r + 1) + (r + 1)

∑
vC∈V (C)

1
dT (v, vC)

= 1
2r(r + 1) + (r + 1)UC′(v),

as required. C

B Claim 3.12. UT (v) ≤ rn.

Proof. Since v is a leaf of C ′, it is distance 1 away from its sole neighbour, and only this
neighbour, in C ′. Also, the only pairs disconnected by v’s removal in C ′ are those containing
v itself. Now there are l− 1 other vertices in C ′, each at least distance 2 away from v. Hence,
UC′(v) ≤ 1 + l−1

2 = l+1
2 = n−r

2 .
Since r ≥ 1, we know that r + 1 ≤ 2r. Hence, by Claim 3.11

UT (v) ≤ r2 + 2rUC′(v)
≤ r2 + r(n− r)
= rn,

as required. C

Since the utility of deleting v is maximal among all vertices, and n ≥ 2, we know UT (v) ≥ n/2
from Lemma 3.8. Combining this with Claim 3.11 and rearranging gives

UC′(v) ≥ n− r(r + 1)
2(r + 1) . (1)

ISAAC 2019

59:10 Minimizing and Computing the Inverse Geodesic Length on Trees

Suppose, for a contradiction, that r < 1
15n

1/4. Since r is purported to be relatively small,
UC′(v) must be rather large (note it is proportional to n). Intuitively, this implies that many
vertices in C ′ are close to v, and hints towards a more central choice of vertex to delete. We
will formally show that such a vertex exists, and is a more optimal choice.

Fix some distance D. We can divide the vertices of C into two groups, A and B: those
at most distance D from v in C ′ (and thus, also in T) and those that are not, respectively.
Suppose that |A| = t and that |B| = |V (C)| − t. We have the following upper bound:

UC′(v) ≤ t+ |V (C)| − t
D + 1 ≤ t+ n− t

D + 1 , (2)

because each vertex in B is at least distance D + 1 away from v, and |V (C)| ≤ n. Note that
we do not account for v itself, since the distance to itself does not contribute to its utility.

Recall that r < 1
15n

1/4. It is easy to see that r(r + 1) ≤ n/2. Combining this with (1)
and (2) gives us the following inequality:

n

4(r + 1) ≤ UC
′(v) ≤ t+ n− t

D + 1 ,

from which we can obtain

tD ≥ n(D + 1)
4(r + 1) − n.

If we choose D = 8(r + 1)− 1, it holds that t ≥ n
D = n

8r+7 ≥
n

15r .
Consider the subgraph (a tree) TA induced by the vertex set A∪̇{v}. TA contains at least

two vertices as v and xC both must be in A. Also, since TA is a tree, by Lemma 2.1 it must
have a centroid. Let one of the centroids of TA be vA. The diameter of TA is at most 2D,
since every vertex in TA is at most distance D from v. Combining this with Lemma 2.2,
we have

UTA
(vA) ≥ t2

8D ≥
n2

8D3 ≥
n2

8(15)3r3 .

Now every pair in TA that is disconnected by the deletion of vA is also disconnected in T by
the deletion of vA, so UTA

(vA) ≤ UT (vA). Also, by the optimality of v in T , we have that
UT (vA) ≤ UT (v). Hence, using the result of Claim 3.12, we can conclude that

n2

8(15)3r3 ≤ UTA
(vA) ≤ UT (v) ≤ rn.

Thus, we have that r4 ≥ n
8(15)3 ≥ n

154 , so r ≥ 1
15n

1/4, which is a contradiction. The result
follows with a choice of c = 1

15 . J

We can use this result to finally upper bound the number of vertices in any component
after an optimal set of vertices has been removed.

I Theorem 3.13. Let T = (V,E) be a tree with n vertices, and let S ⊆ V be some subset of
vertices such that |S| = k ≥ 1. There exists a positive constant c′, independent of T and k,
such that whenever S minimizes IGL(T − S), S is

(
c′ (n/k)5

)
-trimming.

Proof. We will call the components of T −S remaining components and denote each of them
by their vertex set. Suppose the remaining components are R = {R1, R2, . . . , R|R|}, where
Ri ⊆ V and S∪̇R1∪̇ . . . ∪̇R|R| = V . We need to show that |Ri| ≤ c′ (n/k)5 for each Ri.

S. Gaspers and J. Lau 59:11

Rr

Rp(s)

s

Rs1 Rs2 Rs3

Figure 3 Bounding the size of the largest remaining component in Theorem 3.13. In this case,
the parent of s is not the root and s has ch(s) = 3 children in T ′. The shaded vertices are those in S.

We first construct a new graph T ′ = (V ′, E′) by collapsing each of the remaining
components. Formally, V ′ = R∪̇S, and, for each Ri ∈ R and s ∈ S, {Ri, s} ∈ E′ if and only
if there exists some r ∈ Ri such that {r, s} ∈ E. It can be seen that T ′ is necessarily a tree,
and that every Ri is only incident to elements in S. For the remainder of the proof, we
further assume that every element in S is only incident to remaining components in T ′: if
this is not the case, one can add a “dummy” remaining component with cardinality zero
between every pair of adjacent elements of S in T ′.

Let Rr be a remaining component containing at least as many vertices as any other
remaining component. Note that |Rr| > 0: it is never a “dummy”. It suffices to show the
upper bound holds for Rr. We root T ′ at Rr. Since k > 0, there are strictly fewer than n
vertices among the remaining components R. Hence, by the Pigeonhole Principle, there must
be some s ∈ S such that the children Rs1 , Rs2 , . . . , Rsch(s) of s in T ′ together contain fewer
than n/k vertices. Let the parent of s in T ′ be Rp(s). See Figure 3.

Since S is optimal, s must be an optimal choice of vertex to delete in an instance of
MinIGL with graph T − (S \ {s}) and a budget of 1 deletion. In particular, it must also be
the optimal choice of vertex to delete in the component containing s in T − (S \ {s}). Hence,
we may apply Theorem 3.10 to T − (S \ {s}), in that component to give

n

k
>

ch(s)∑
i=1
|Rsi | ≥ c(|Rp(s)|+ |Rs1 |+ · · ·+ |Rsch(s) |)

1/4 ≥ c|Rp(s)|1/4,

since c > 0, where c is the constant in Theorem 3.10. Thus, we have |Rp(s)| ≤ c−4 (n/k)4.
We now have two cases: if the parent Rp(s) of s in T ′ is the root, Rr, or if it is not the

root. If Rp(s) is the root, then p(s) = r, so |Rr| ≤ c−4 (n/k)4. Otherwise, s is not a child
of the root, and so s must have been a more optimal choice than the best choice in the
component induced by Rr in T − (S \ {s}). Since this component contains |Rr| vertices, the
best choice had utility at least |Rr|

2 , by Corollary 3.8. Now the paths that pass through s in
T − (S \ {s}) must have one endpoint in some Rsj and the other either in another Rs′

j
or in

Rp(s). This is the case since no path can have both endpoints in Rp(s). Hence, there are at
most (n/k+ 1)(n/k+ |Rp(s)|) such pairs, accounting also for those paths starting at s. Since
each of these paths have length at least 1, we have that

|Rr|
2 ≤ UT−(S\{s})(s) ≤

(n
k

+ 1
)(n

k
+ |Rp(s)|

)
≤ 2n

k

(n
k

+ |Rp(s)|
)
,

ISAAC 2019

59:12 Minimizing and Computing the Inverse Geodesic Length on Trees

because k ≤ n. Thus

|Rr|
2 ≤ 2n

k

(
n

k
+ c−4

(n
k

)4
)
≤ 4c−4

(n
k

)5
,

because 0 < c < 1. Hence, |Rr| ≤ 8c−4 (n/k)5 and the result follows with a choice of
c′ = 8c−4. J

Thus, we can choose cIGL = c′ and tIGL = 5, showing that IGL is indeed balanced on trees.
This gives Theorem 1.1 and Theorem 1.2.

4 Computing the IGL

Computing the IGL of a graph is trivial once its distance distribution has been determined.
In this section, we describe algorithms for efficiently computing the distance distribution of
trees, and extend these ideas to graphs with small treewidth.

4.1 Trees
To compute the distance distribution on trees, we present a divide-and-conquer method
(commonly known as the centroid decomposition, as used in [7]) as follows. We pick a vertex
and compute the contribution to the distance distribution of all paths passing through that
vertex, using fast polynomial multiplication. Then, we delete the vertex from the tree, and
recurse on the remaining connected subtrees. We first provide a method that efficiently
computes this contribution.

I Lemma 4.1. Let T = (V,E) be an unweighted tree with n vertices and suppose r ∈ V .
Then, the contribution to the distance distribution of all pairs in P−1

T (r) can be found in
O(n logn) time on a log-RAM.

Proof. We begin by rooting the tree at r. Suppose the children of r are s1, . . . , sch(r) and
let S1, . . . , Sch(r) denote the set of vertices in the subtrees rooted at each child, respectively.
With the addition of S0 = {r}, the sets Si form a partition of V .

We perform a depth-first search from r, to find dT (r, u) = dT (u, r) for each vertex
u and construct a sequence of distance polynomials P0, P1, . . . , Pch(r), where Pi(x) =∑
w∈Si

xdT (r,w). This takes O(n) time, storing each distance polynomial in coefficient
form: there are at most n terms overall. Now let

P (x) =

 ∑
0≤i≤ch(r)

Pi(x)

2

−

 ∑
0≤i≤ch(r)

P 2
i (x)

 =
∑

0≤j≤n
bjx

j .

We observe that

bj = 2|{{u, v} ∈ P−1
T (r) : u 6= v and dT (u, v) = j}|, (3)

that is, bj is twice the number of pairs of distinct vertices which have a path of length
j passing through r. Thus, the required contribution to the distance distribution can be
read off from the coefficient form of P (x). The result follows by computing this efficiently
from the coefficients of each Pi by applying Lemma 2.3, and observing that the degree of∑

0≤i≤ch(r) Pi(x), and the sum of the degrees of the Pi’s are both at most n. J

S. Gaspers and J. Lau 59:13

If we always pick r in Lemma 4.1 to be a centroid of the tree, Lemma 2.1 ensures
that each vertex can appear in at most log2 n + 1 trees throughout the execution of our
divide-and-conquer algorithm. A centroid must always exist (also by Lemma 2.1), and we
can find one in linear time by recursively computing, then examining, subtree sizes. This
gives Theorem 1.3.

I Theorem 1.3. The distance distribution of a tree with n vertices can be computed in
O(n log2 n) time on a log-RAM.

If we only wish to determine the first p values of the distance distribution of T , we can
modify Lemma 4.1 to run in O(n+ p logn) time, by discarding all terms with degree greater
than p when constructing the polynomials. Thus, the expensive multiplication step costs
O(p logn) time by Lemma 2.3, and we obtain Theorem 4.2 as a corollary.

I Theorem 4.2. The prefix a1, . . . , ap of the distance distribution of a tree with n vertices
can be computed in O(n logn+ p log2 n) time on a log-RAM.

4.2 Graphs with small treewidth
Here, we extend the ideas used in the previous section to prove Theorem 1.4.

Let G = (V,E) be an undirected graph with n vertices, whose edges each have a non-
negative weight. We describe a modification of the method of Cabello and Knauer [12], to
recursively reduce the task of computing the distance distribution of G to solving instances
of RedBluePolynomial over points in O(tw(G)) dimensions, with values at most p.

In time 2O(k)n, we can compute a tree decomposition of G of width at most k = 5·tw(G)+4
containing at most O(kn) nodes [10]. Using a common technique, we can transform this
decomposition into a nice tree decomposition with N = O(kn) nodes (see, for example [15]).
The nodes of a nice tree decomposition form a rooted binary tree.

Let A be a subset of vertices. A portal of A is a vertex in A which has, as a neighbour,
some vertex outside A. If these portals are contained in some set S ⊆ A, we can partition
the vertices of the graph into three sets: A \ S, S and V \ A, such that every path from a
vertex in A to a vertex in V \A passes through some vertex in S.

Since the nice tree decomposition is a binary tree, there is some edge ij in the decompos-
ition whose removal splits the decomposition’s tree into two components I and J (containing
nodes i and j, respectively), each containing between N

3 and 2N
3 nodes. Let A be the set

of vertices that appear in component I, and let S be the intersection Bi ∩ Bj of the bags
corresponding to nodes i and j. Necessarily, S must contain all the portals of A due to
properties of the tree decomposition. Moreover, |Bi ∩Bj | ≤ min(|Bi|, |Bj |) ≤ k + 1.

Given this fixed A, recursively find the distance distribution among all pairs of vertices
in A as follows. First, perform Dijkstra’s algorithm from all vertices in S. For every pair of
vertices in S, add an edge whose weight equals the length of the shortest path between them.
After these edges are added, the length of the shortest path in G between any pair of vertices
in A can be found by only considering paths passing through the vertices of A. Hence, we
remove all vertices in V \A, and recurse on this smaller graph. Note that I is a valid tree
decomposition for this new graph, since i ∈ I, and all the added edges have their endpoints
in Bi. Thus, we do not need to find another tree decomposition for this new graph, and its
treewidth does not exceed k.

In the same way, we recursively find the distance distribution induced by the pairs of
vertices in (V \A)∪̇S. Between these two sets of pairs, we have counted pairs of vertices in
S twice, so we subtract the distance distribution induced by these pairs using the shortest
paths already computed.

ISAAC 2019

59:14 Minimizing and Computing the Inverse Geodesic Length on Trees

Finally, we must compute the distance distribution among shortest paths between the
remaining pairs of vertices: these are the pairs in (A \ S)× (V \A). Let the vertices in S be
s1, . . . , s|S|. For every a in A \ S and every b in V \A, we associate (a, b) with precisely one
vertex in s through which some shortest path between the vertices passes. More formally, we
will associate (a, b) with the only si such that

dG(a, si) + dG(si, b) < dG(a, sj) + dG(sj , b) for all j < i, and
dG(a, si) + dG(si, b) ≤ dG(a, sj) + dG(sj , b) for all j > i.

By rearranging, and observing that all distances are integers, we deduce that this is precisely
when

dG(a, si)− dG(a, sj) < dG(sj , b)− dG(si, b) for all j < i, and
dG(a, si)− dG(a, sj) < dG(sj , b)− dG(si, b) + 1 for all j > i.

Note that all these distances are known from our application of Dijkstra’s algorithm from
each vertex in S. Since any path from a to b must pass through S, it follows from these
inequalities that dG(a, si) + dG(si, b) = dG(a, b). For each vertex si in turn, we will compute
the contribution of all pairs of vertices associated with si to the distance distribution. We do
so by reducing this task to an instance of RedBluePolynomial.

Our instance will have points in |S| − 1 dimensions: one dimension for each j 6= i. For
each a ∈ A \ S, create a red point with coordinate dG(a, si) − dG(a, sj) in the dimension
corresponding to j, and value dG(a, si), corresponding to each sj 6= si. Similarly, for each
b ∈ V \ A, create a blue point with coordinate dG(sj , b) − dG(si, b), for each j < i, and
dG(sj , b)− dG(si, b) + 1 for each j > i, with value dG(si, b). Importantly, we omit any points
with value greater than p: these cannot contribute to the prefix we are trying to compute.
Hence, we have created no more than n points in all, each with a non-negative integer value
no greater than p. The coefficient of xl produced by our instance of RedBluePolynomial
corresponds to the number of pairs associated with si that are distance l apart. This
concludes the description of our reduction.

Naturally, we now turn our attention to solving RedBluePolynomial. Naively, this
can be done in quadratic time by considering every pair of points. However, when values are
bounded – such as in our instance – we can solve the problem more efficiently.

For a given instance of RedBluePolynomial, let n = r + b be the total number of
points and suppose the value of each point does not exceed some integer v ≥ 0. Below,
we give solutions with time complexity parameterized by both n and v. We consider the
1-dimensional case, then extend this result to higher dimensions recursively.

I Lemma 4.3. When d = 1, there is an algorithm that solves RedBluePolynomial in
O(n
√
v logn+ n logn) time on a log-RAM.

Proof. Sort the red and blue points together in non-decreasing order of the coordinate,
placing blue points earlier in the order when there are ties. Let t be a positive integer no
greater than n. Assign points to groups of size no more than t by placing the first t points,
in order, into a group G1, followed by the next t points in order into a group G2, and so on,
so we create dnt e groups in all. An example is given in Figure 4.

We will separately consider pairs of points that both belong to the same group, and those
that belong to different groups. In each group, consider every pair of points, and check if
they contribute a term to the polynomial. This takes O(nt) time over all groups.

S. Gaspers and J. Lau 59:15

×

G1 G2 G3 G4

Figure 4 Square root decomposition in Lemma 4.3. The empty dots represent red points, and
the shaded dots represent blue points. When processing G3, we consider pairs of points within the
group where the red point precedes the blue point. We then consider cross-group pairs whose blue
point is in G3 using fast polynomial multiplication.

It remains to consider pairs that belong to different groups: call these cross-group pairs.
For each blue point in Gi, we must add an extra term for each red point among G1, . . . , Gi−1.
Thus, the total cross-group contribution of all pairs with a blue point in Gi can be written
as the following product of two polynomials.

∑
Bq∈Gi

∑
Rp∈G1∪···∪Gi−1

xrp+bq =

 ∑
Rp∈G1∪···∪Gi−1

xrp

 ∑
Bq∈Gi

xbq

To compute these contributions, iterate over each group in order, maintaining the coefficient
form of the polynomial representing all red points in groups processed thus far. This
corresponds to the first multiplicand on the right hand side. We can quickly construct the
second multiplicand directly from the elements in this group. Note that the degree of both
multiplicands does not exceed v, and that the coefficients of the product do not exceed
n2. Hence, we can compute the product of these two polynomials in O(v logn) time by
Lemma 2.3, so we can compute the cross-group contributions in O(nt v logn) time.

Combining these parts with an appropriate choice of t gives the required result. J

I Theorem 4.4. There is an algorithm that solves RedBluePolynomial in 2O(d)n1+ε√v
time on a log-RAM, for every ε > 0.

Proof. When d = 1, we use Lemma 4.3. Otherwise, we will use the divide-and-conquer
method of Bentley [6] to reduce the problem to smaller dimensions.

First, combine the red and blue points into one list and apply divide-and-conquer as
follows. Let xm be the median value among the first coordinate of all points. This can be
found in O(n) time [8]. We divide the list into two halves as follows. First assign those
points with first coordinate less than xm into the first half, and those with first coordinate
greater than xm into the second half. Among those with first coordinate precisely xm, assign
blue points to the first half until the first half has n

2 points. Assign the remaining points
to the second half. This assignment can be done in O(n) time and has the property that if
Rp < Bq, then either both points belong to the same half, or they belong to the first and
second half, respectively.

Next, recursively compute the contribution of both groups to the final polynomial. The
remaining pairs that may contribute terms to the result must have a red point in the first
half, and a blue point in the second half. Since the ordering guarantees that all points in
the first half have a first coordinate no greater than those in the second half, we project
the red points in the first half together with the blue points in the second half onto a
(d − 1)-dimensional space by simply ignoring the first coordinate of each point. We then
solve RedBluePolynomial for this set of points in d− 1 dimensions recursively.

ISAAC 2019

59:16 Minimizing and Computing the Inverse Geodesic Length on Trees

The time and space complexity of this algorithm follows from the results of Monier [28]
and Bringmann et al. [11], and applying an additional multiplicative factor of

√
v. A full

analysis can be found in the full version of this paper. J

An analysis of the algorithm we have described in this section gives Theorem 1.4.

I Theorem 1.4. The prefix a1, . . . , ap of the distance distribution of a graph with n vertices
and treewidth k can be computed in 2O(k)n1+ε√p time on a log-RAM, for any ε > 0.

Proof. To find the contribution of pairs in (A \ S)× (V \A), we solve |S| ≤ k + 1 instances
of RedBluePolynomial in |S| − 1 ≤ k dimensions, using the result of Theorem 4.4.
As our algorithm performs divide-and-conquer over the nodes of the tree decomposition,
each vertex induces the creation of a point in O((k + 1) log(kn)) = O(k logn) instances of
RedBluePolynomial. Hence, since the time complexity of Theorem 4.4 is superadditive
with respect to n, the total running time over all instances of RedBluePolynomial is
2O(k)n1+ε logn√p = 2O(k)n1+ε′√p for any ε′ > 0.

Since we are working on a (nice) tree decomposition with O(kn) nodes, the running time
of finding an appropriate dividing edge in the tree, and performing k Dijkstra’s per instance
are negligible compared to that of solving our instances of RedBluePolynomial. The
result follows from the fact that k = O(tw(G)). J

This result can easily be extended to directed graphs, and graphs with bounded edge
weights, with some modifications, and a suitable choice of p. On graphs with unit weight
edges, setting p = n− 1 determines the entire distance distribution.

I Corollary 4.5. The distance distribution of an undirected graph G with n vertices, edges
of unit weight and treewidth tw(G) can be computed in 2O(tw(G))n3/2+ε time on a log-RAM.

5 Conclusion

We have provided a general method to solve MinH on trees in subexponential time and
polynomial space, whenever H is additive, balanced on trees, and computable in polynomial
time. We used this to give a 2O((n logn)5/6) time, polynomial space algorithm for MinIGL,
by proving that IGL is balanced on trees. Our proof ideas can be used to show that other
measures (such as the Wiener index), are also balanced on trees.

For graphs with treewidth k, we have shown that in 2O(k)n3/2+ε time, one can compute the
entire distance distribution of the input graph. Compared to the O(kn2) time algorithm for
computing APSP [31], our dependence on n is a factor of O(

√
n) less, though our dependence

on k is exponential. Our algorithm is a O(
√
n) factor slower than the current best-known

2O(k)n1+ε time algorithm for diameter [1]. For graphs with diameter O(nε′) for all ε′ > 0,
including graphs with polylogarithmic diameter, the extra factor becomes O(nε) for any
ε > 0, when compared to the current best-known 2O(k)n time algorithm for diameter [21] in
this setting. This might be expected, as the distance distribution implies the diameter, and
is implied by the APSP, but we find it somewhat surprising that the distance distribution
can be computed faster than APSP on graphs with small treewidth.

Our results can be immediately applied to compute any measure of a graph that is a
function of the distance distribution. However, they are difficult to adapt to measures that
compute properties of individual vertices in the graph, as we exploit properties exclusive to
counting pairs that are certain distances apart, without expressly considering which vertices
belong to such pairs. In particular, this means that our results are unlikely to directly
provide further insight into the efficient computation of related measures, such as the task of
computing closeness centrality [5] of every vertex in a given graph.

S. Gaspers and J. Lau 59:17

References
1 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and

Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs. In
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016),
pages 377–391. SIAM, 2016. doi:10.1137/1.9781611974331.ch28.

2 Karla Atkins, Jiangzhuo Chen, V. S. Anil Kumar, and Achla Marathe. The structure of
electrical networks: a graph theory based analysis. International Journal of Computational
Intelligence Systems, 5(3):265–284, 2009. doi:10.1504/IJCIS.2009.024874.

3 Haris Aziz, Serge Gaspers, Edward J. Lee, and Kamran Najeebullah. Defender Stackelberg
Game with Inverse Geodesic Length as Utility Metric. In Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018), pages 694–702.
ACM, 2018.

4 Haris Aziz, Serge Gaspers, and Kamran Najeebullah. Weakening Covert Networks by Minimiz-
ing Inverse Geodesic Length. In Proceedings of the 26th International Joint Conference on Arti-
ficial Intelligence, (IJCAI 2017), pages 779–785. IJCAI, 2017. doi:10.24963/ijcai.2017/108.

5 Alex Bavelas. Communication Patterns in Task-Oriented Groups. The Journal of the Acoustical
Society of America, 22(6):725–730, 1950. doi:10.1121/1.1906679.

6 Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the ACM,
23(4):214–229, 1980. doi:10.1145/358841.358850.

7 Davide Bilò, Feliciano Colella, Luciano Gualà, Stefano Leucci, and Guido Proietti. A faster com-
putation of all the best swap edges of a tree spanner. In Proceedings of the 22nd International
Colloquium on Structural Information and Communication Complexity (SIROCCO 2015),
volume 9439 of LNCS, pages 239–253. Springer, 2015. doi:10.1007/978-3-319-25258-2_17.

8 Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.
doi:10.1016/S0022-0000(73)80033-9.

9 Csaba Böde, István A. Kovács, Máté S. Szalay, Robin Palotai, Tamás Korcsmáros, and Péter
Csermely. Network analysis of protein dynamics. FEBS Letters, 581(15):2776–2782, 2007.
doi:10.1016/j.febslet.2007.05.021.

10 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

11 Karl Bringmann, Thore Husfeldt, and Måns Magnusson. Multivariate Analysis of Orthogonal
Range Searching and Graph Distances. In 13th International Symposium on Parameterized
and Exact Computation (IPEC 2018), volume 115 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2018.4.

12 Sergio Cabello and Christian Knauer. Algorithms for graphs of bounded treewidth via
orthogonal range searching. Computational Geometry: Theory and Applications, 42(9):815–
824, 2009. doi:10.1016/j.comgeo.2009.02.001.

13 Timothy M. Chan and Mihai Pǎtraşcu. Counting inversions, offline orthogonal range counting,
and related problems. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2010), pages 161–173. SIAM, 2010. doi:10.1137/1.9781611973075.15.

14 Paolo Crucitti, Vito Latora, Massimo Marchiori, and Andrea Rapisarda. Efficiency of scale-free
networks: error and attack tolerance. Physica A: Statistical Mechanics and its Applications,
320:622–642, 2003. doi:10.1016/S0378-4371(02)01545-5.

15 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

16 David Dagon, Guofei Gu, Christopher P. Lee, and Wenke Lee. A Taxonomy of Botnet
Structures. In Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSAC 2007), pages 325–339. IEEE Computer Society, 2007. doi:10.1109/ACSAC.2007.44.

ISAAC 2019

https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1504/IJCIS.2009.024874
https://doi.org/10.24963/ijcai.2017/108
https://doi.org/10.1121/1.1906679
https://doi.org/10.1145/358841.358850
https://doi.org/10.1007/978-3-319-25258-2_17
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/j.febslet.2007.05.021
https://doi.org/10.1137/130947374
https://doi.org/10.4230/LIPIcs.IPEC.2018.4
https://doi.org/10.1016/j.comgeo.2009.02.001
https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1016/S0378-4371(02)01545-5
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/ACSAC.2007.44

59:18 Minimizing and Computing the Inverse Geodesic Length on Trees

17 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
1st edition, 2009.

18 Martin Fürer. Faster Integer Multiplication. SIAM Journal on Computing, 39(3):979–1005,
2009. doi:10.1137/070711761.

19 Martin Fürer. How fast can we multiply large integers on an actual computer? In Proceedings
of the 11th Latin American Symposium on Theoretical Informatics (LATIN 2014), volume
8392 of LNCS, pages 660–670. Springer, 2014. doi:10.1007/978-3-642-54423-1_57.

20 Murad Hossain, Sameer Alam, Tim Rees, and Hussein Abbass. Australian Airport Network
Robustness Analysis : A Complex Network Approach. In Proceedings of the 36th Australasian
Transport Research Forum (ATRF 2013), pages 1–21, 2013.

21 Thore Husfeldt. Computing Graph Distances Parameterized by Treewidth and Diameter. In
Proceedings of the 11th International Symposium on Parameterized and Exact Computation
(IPEC 2016), volume 63 of LIPIcs, pages 16:1–16:11. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016. doi:10.4230/LIPICS.IPEC.2016.16.

22 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/JCSS.2000.1727.

23 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

24 Camille Jordan. Sur Les Assemblages des Lignes. Journal für die Reine und Angewandte
Mathematik, 70:185–190, 1869.

25 István A. Kovács and Albert-László Barabási. Destruction perfected. Nature, 524(7563):38–39,
2015. doi:10.1038/524038a.

26 Leopold Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. G.
Reimer, 1882.

27 Silviu Maniu, Pierre Senellart, and Suraj Jog. An Experimental Study of the Treewidth of
Real-World Graph Data. In 22nd International Conference on Database Theory (ICDT 2019),
volume 127 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:18,
2019. doi:10.4230/LIPIcs.ICDT.2019.12.

28 Louis Monier. Combinatorial solutions of multidimensional divide-and-conquer recurrences.
Journal of Algorithms, 1(1):60–74, 1980. doi:10.1016/0196-6774(80)90005-X.

29 Flaviano Morone and Hernán A. Makse. Influence maximization in complex networks through
optimal percolation. Nature, 524(7563):65–68, 2015. doi:10.1038/nature14604.

30 Kamran Najeebullah. Complexity of Optimally Attacking and Defending a Network. PhD
thesis, UNSW Sydney, 2018.

31 Léon Planken, Mathijs de Weerdt, and Roman van der Krogt. Computing All-Pairs Shortest
Paths by Leveraging Low Treewidth. Journal of Artificial Intelligence Research, 43:353–388,
2012. doi:10.1613/jair.3509.

32 A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7(3-4):281–
292, 1971. doi:10.1007/BF02242355.

33 Ian Michael Shamos. Computational geometry. PhD thesis, Yale University, 1978.
34 Piotr L. Szczepański, Tomasz P. Michalak, and Talal Rahwan. Efficient algorithms for game-

theoretic betweenness centrality. Artificial Intelligence, 231:39–63, 2016. doi:10.1016/j.
artint.2015.11.001.

35 Kevin Topley. Computationally Efficient Bounds for the Sum of Catalan Numbers. Technical
Report 1601.04223, ArXiv, 2016. arXiv:1601.04223.

36 Alexander Veremyev, Oleg A. Prokopyev, and Eduardo L. Pasiliao. Critical nodes for distance-
based connectivity and related problems in graphs. Networks, 66(3):170–195, 2015. doi:
10.1002/net.21622.

37 Harry Wiener. Structural Determination of Paraffin Boiling Points. Journal of the American
Chemical Society, 69(1):17–20, 1947. doi:10.1021/ja01193a005.

https://doi.org/10.1137/070711761
https://doi.org/10.1007/978-3-642-54423-1_57
https://doi.org/10.4230/LIPICS.IPEC.2016.16
https://doi.org/10.1006/JCSS.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1038/524038a
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.1016/0196-6774(80)90005-X
https://doi.org/10.1038/nature14604
https://doi.org/10.1613/jair.3509
https://doi.org/10.1007/BF02242355
https://doi.org/10.1016/j.artint.2015.11.001
https://doi.org/10.1016/j.artint.2015.11.001
http://arxiv.org/abs/1601.04223
https://doi.org/10.1002/net.21622
https://doi.org/10.1002/net.21622
https://doi.org/10.1021/ja01193a005

S. Gaspers and J. Lau 59:19

38 Ryan Williams. A New Algorithm for Optimal Constraint Satisfaction and Its Implications. In
Proceedings of the 31st International Colloquium on Automata, Languages and Programming
(ICALP 2004), volume 3142 of LNCS, pages 1227–1237. Springer, 2004. doi:10.1007/
978-3-540-27836-8_101.

39 Bo Zhou, Xiaochun Cai, and Nenad Trinajstić. On Harary index. Journal of Mathematical
Chemistry, 44(2):611–618, 2008. doi:10.1007/s10910-007-9339-2.

40 Yihai Zhu, Jun Yan, Yan Sun, and Haibo He. Revealing cascading failure vulnerability
in power grids using risk-graph. IEEE Transactions on Parallel and Distributed Systems,
25(12):3274–3284, 2014. doi:10.1109/TPDS.2013.2295814.

ISAAC 2019

https://doi.org/10.1007/978-3-540-27836-8_101
https://doi.org/10.1007/978-3-540-27836-8_101
https://doi.org/10.1007/s10910-007-9339-2
https://doi.org/10.1109/TPDS.2013.2295814

Result-Sensitive Binary Search with Noisy
Information
Narthana S. Epa
School of Computing and Information Systems, The University of Melbourne, Victoria, Australia
nepa@student.unimelb.edu.au

Junhao Gan
School of Computing and Information Systems, The University of Melbourne, Victoria, Australia
junhao.gan@unimelb.edu.au

Anthony Wirth
School of Computing and Information Systems, The University of Melbourne, Victoria, Australia
awirth@unimelb.edu.au

Abstract
We describe new algorithms for the predecessor problem in the Noisy Comparison Model. In this
problem, given a sorted list L of n (distinct) elements and a query q, we seek the predecessor of q

in L: denoted by u, the largest element less than or equal to q. In the Noisy Comparison Model, the
result of a comparison between two elements is non-deterministic. Moreover, multiple comparisons of
the same pair of elements might have different results: each is generated independently, and is correct
with probability p > 1/2. Given an overall error tolerance Q, the cost of an algorithm is measured
by the total number of noisy comparisons; these must guarantee the predecessor is returned with
probability at least 1−Q. Feige et al. showed that predecessor queries can be answered by a modified
binary search with Θ(log n

Q
) noisy comparisons.

We design result-sensitive algorithms for answering predecessor queries. The query cost is related
to the index, k, of the predecessor u in L. Our first algorithm answers predecessor queries with
O(log log∗(c) n

Q
+ log k

Q
) noisy comparisons, for an arbitrarily large constant c. The function log∗(c) n

iterates c times the iterated-logarithm function, log∗ n. Our second algorithm is a genuinely result-
sensitive algorithm whose expected query cost is bounded by O(log k

Q
), and is guaranteed to terminate

after at most O(log log n
Q

) noisy comparisons.
Our results strictly improve the state-of-the-art bounds when k ∈ ω(1) ∩ o(nε

), where ε > 0 is
some constant. Moreover, we show that our result-sensitive algorithms immediately improve not only
predecessor-query algorithms, but also binary-search-like algorithms for solving key applications.

2012 ACM Subject Classification Theory of computation → Sorting and searching; Theory of
computation → Predecessor queries

Keywords and phrases Fault-tolerant search, random walks, noisy comparisons, predecessor queries

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.60

Funding Anthony Wirth: Funded by the Melbourne School of Engineering.

Acknowledgements We thank our anonymous reviewer for directing us to the work of Karp and
Kleinberg [8].

1 Introduction

Let U be a totally ordered universe of elements. Consider a sorted (abstract) list L of n
(distinct) elements from U , in ascending order, and indexed starting from 1. Denote by L[j]
the jth element in L for j = 1, 2, . . . , n. Given a query element q, the predecessor problem on L
is to return the index k = max{j ∣ L[j] ≤ q}; if the set {j ∣ L[j] ≤ q} is empty, return 0. As
the 0 case can be identified easily, without loss of generality, we assume that the predecessor
always exists in L. The predecessor query is one of the most fundamental and important

© Narthana S. Epa, Junhao Gan, and Anthony Wirth;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 60; pp. 60:1–60:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nepa@student.unimelb.edu.au
https://orcid.org/0000-0001-9101-1503
mailto:junhao.gan@unimelb.edu.au
https://orcid.org/0000-0003-3746-6704
mailto:awirth@unimelb.edu.au
https://doi.org/10.4230/LIPIcs.ISAAC.2019.60
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Result-Sensitive Binary Search with Noisy Information

primitives in computer science; it is a crucial building block for a large number of data
structures and algorithms. Any improvements (even a small constant) in the efficiency of
answering predecessor queries would immediately benefit all these algorithms, improving
practicality. In fact, the predecessor query has been widely studied in various computation
models. For example, it is well known that a predecessor query can be answered with
Θ(logn) comparisons by binary search in the (usual, non-noisy) Comparison Model.

In this paper, we focus on the Noisy Comparison Model, which was proposed by Feige et
al. [7]. It has two parameters: (i) the probability of a correct comparison, p > 1/2, and (ii)
the overall error tolerance Q ∈ (0,1/2]. In this model, each comparison between a pair of
elements is “noisy”, in the sense that the comparison result is not deterministic. Instead, each
comparison is answered correctly by a comparison oracle independently with probability p.
In other words, for two different comparisons queries between the same pair of elements, the
oracle may return different results, completely independently. The correct answer is returned
with probability p, the incorrect answer with probability 1 − p.

In this paper, we seek algorithms that minimize the number of calls to the comparison
oracle. The cost of an algorithm is measured by the total number of noisy comparisons.
We require that the algorithm solves the predecessor problem correctly with probability at
least 1 −Q.

1.1 Applications

The Noisy Comparison Model is particularly useful for modelling application scenarios where
comparisons between elements are difficult and costly. For example, in a crowd-sourcing
scenario, a human worker may make mistakes when comparing two given objects such as
images, and each such comparison incurs some cost, e.g., a dollar. As a result, an efficient
algorithm in the Noisy Comparison Model nicely trades off budget with accuracy. Another
example is in employee recruitment, where the comparison result between two applicants
may be noisy (“incorrect”) due to lack of familiarity with or even bias in relation to certain
applicants. Potentially, a noisy comparison algorithm could help guide a process to improve
fairness with limited resources.

1.2 Previous Innovation

To answer a predecessor query under the Noisy Comparison Model, we must return the
correct answer with probability 1 −Q. To achieve this, a naive approach is to replace each
deterministic comparison in an algorithm (in the usual model) with a sequence of repeated
comparisons between the same two elements in the Noisy Comparison Model. If we want the
probability of each such comparison being correct to be 1 − δ, each such sequence comprises
O(logp(1/δ)) repeated noisy comparisons and returns the majority answer. Moreover, to
account for the O(logn) comparisons in traditional binary search, by setting δ = O(Q

logn),
we solve the predecessor problem with probability at least 1−Q, making O(logn ⋅ log(logn

Q
))

noisy comparisons.
While the traditional binary search is optimal under the (deterministic) Comparison

Model, this naive adaptation of binary search is actually far from optimal under the Noisy
Comparison Model. As Feige et al. show [7], the worst-case lower bound on answering a
predecessor query under the Noisy Comparison Model is only Ω(log(n/Q)). Indeed, Feige
et al. introduce a binary-search based algorithm whose noisy comparison cost matches this
lower bound. Some of our methods build on this algorithm, which we hence refer to as Feige.

N. S. Epa, J. Gan, and A. Wirth 60:3

1.3 The Open Question
In general, Feige is worst-case optimal. However, when the index k of the predecessor
is O(1), the brute-force algorithm which compares q naively with elements of L one-by-one,
in ascending order, performs better. The total number of noisy comparisons is bounded
by O(log(1/Q)). Hence the state-of-the-art result is O(log 1

Q
) when k = O(1), and O(log n

Q
)

when k = ω(1). The subtle, but crucial, question is: Can we bridge these two bounds
smoothly over the entire spectrum k ∈ {1, . . . , n}?

With this motivation, in this paper, we design result-sensitive algorithms for answering
predecessor queries, and solving related problems, in the Noisy Comparison Model. That is,
the costs of the algorithms should depend on the result index, k.

1.4 Our Contributions
We develop result-sensitive algorithms for the predecessor problem under noisy comparisons,
then apply these to Range Count, Stabbing Count, and Shortlisting problems. We start
with a function definition. The function log∗(c) n iterates the iterated-logarithmic function c
times. That is, log∗(1) n = log∗ n and log∗(c) n = log∗(log∗(c−1) n).

I Theorem 1. Let c ≥ 1 be an arbitrarily large integer constant. There exists an algorithm
that, on every predecessor query, answers correctly with probability at least 1 −Q, and makes
O(log log∗(c) n

Q
+ log k

Q
) noisy comparisons.

Of course, log∗ n grows very slowly, e.g., log∗ n = 6 for n = 2232
. However, log∗(c) n, the

bound in Theorem 1, is unfortunately not genuinely result sensitive as it depends on n,
not k. Nonetheless, the analysis of this algorithm, supporting Theorem 1, is relatively simple,
building on the Feige algorithm [7]. With a more careful algorithm design and analysis, we
show that:

I Theorem 2. There exists an algorithm that, on every predecessor query, answers correctly
with probability at least 1 −Q, and makes O(log k

Q
) noisy comparisons in expectation.

As a result, our algorithm in Theorem 2 has bridged the noisy-comparison bounds, of
O(log 1

Q
) for k = O(1), and of O(log n

Q
) for k = ω(1), over the whole spectrum of k. Moreover,

we highlight that for k ∈ ω(1)∩o(nε), with ε being an arbitrarily small constant, our algorithm
strictly improves both of the two state-of-the-art bounds; for the O(1) and Ω(nε) ranges
of k, our algorithm matches the better of the two bounds.

Our Contribution to Applications

Our result-sensitive algorithm also immediately improves two types of noisy-comparison
algorithms for solving certain problems:

Type-I. algorithms that include predecessor search as a black box; and
Type-II. algorithms that generalise the comparison oracle in predecessor search

Type-I algorithms. We consider the following two example problems:

I Problem 1 (Range Count Query). Given a sorted list L of n elements from U , and a query
range (a, b], a range count query returns the number of elements in L falling into (a, b].

I Problem 2 (Stabbing Count Query). Consider a set S of n closed intervals, each of which
appears in two sorted lists. One list comprises S sorted by left endpoints; the other list
comprises S sorted by right endpoints. Given a query value q, a stabbing count query returns
the number of intervals of S that contain q.

ISAAC 2019

60:4 Result-Sensitive Binary Search with Noisy Information

In addition, by Theorem 2, we have:

I Corollary 3. There exists an algorithm that, on every range count query, answers correctly
with probability at least 1 − Q, and makes O(log ka+1

Q
+ log count+1

Q
) noisy comparisons in

expectation. The value ka is the index of the predecessor of a in L, while count is the number
of elements in L falling in (a, b].

I Corollary 4. There exists an algorithm that, on every stabbing count query, answers
correctly with probability at least 1−Q, and makes O(log kr+1

Q
+ log count+1

Q
) noisy comparisons

in expectation. The value kr is the number of right endpoints no larger than q, while count
is the number of intervals in S stabbed by q.

When ka, kr, count ∈ ω(1)∩ o(nε), the algorithms in these two corollaries strictly improve
the results implied by the state-of-the-art Feige algorithm.

Type-II algorithms. We consider this problem:

I Problem 3 (Shortlisting). Given two sorted lists, A and B, with nA and nB elements,
respectively, that are disjoint, and a value m, 1 ≤m ≤ nA+nB, return the m smallest elements
(i.e., a shortlist of size m) from the conceptual merged sorted list of A and B.

By generalising the comparisons in a predecessor search, we prove:

I Theorem 5. There exists an algorithm for the Shortlisting problem that, on every input,
with probability at least 1−Q, returns a set of the m smallest elements, not necessarily sorted,
and makes O(log min{k,m−k}+1

Q
) noisy comparisons in expectation, where k is the number of

elements from A being in the shortlist.

2 Related Work

An early model for computing with errors was the Rényi-Ulam game, where the player must
identify an element of a finite set of integers by asking questions from an adversary who may
lie a bounded number of times [15, 18]. Variants have been considered where the errors were
bounded, either globally or as a running total. Binary-search style algorithms to play this
game under such models where put forward by Rivest et al. [16], Saks and Wigderson [17],
and Borgstrom and Kosaraju [4].

The Noisy Comparison Model used in this paper is different, but related to the Rényi-
Ulam game [11, 7]. In this model, errors are random, independent and transient, meaning
that repeated comparisons can be used to bound the correctness probability for the result.
Feige et al. [7] consider the problems of binary search, sorting, merging, and ranked selection
under this model. Their algorithm for binary search is a basic result that we rely on for much
of this paper. Algorithms for the problems of sorting, merging and ranked selection with
related error models have been more recently considered by Ravikumar for merge sorting
with bounded errors [14], Luecci and Liu for minimum selection with noisy errors [10], and
Chen et al. for ranked selection with noisy errors [5]. For a more complete history and
summary of the various error models for fault tolerant searching, refer to the survey paper
by Pelc [12] or the book of Cicalese [6].

Karp and Kleinberg [8] pursued an alternative comparison model. There, the oracle’s
probability of reporting “less than” is an increasing function of the index in the list L. In that
the probability p is fixed, the model presented here is a special case of that model. Unlike
Karp and Kleinberg [8], however, we succeed only if we find the exact predecessor; they
permit an approximately close answer. Applying the algorithm of Karp and Kleinberg [8] to
our scenario would find an approximate predecessor with probability at least 3/4.

N. S. Epa, J. Gan, and A. Wirth 60:5

The predecessor problem may be solved with an unbounded search algorithm to achieve
a result-sensitive comparison bound. It is straightforward to apply an unbounded search
algorithm to solve the predecessor problem with an output-sensitive running time of O(log k),
where k is the index of the predecessor. The unbounded search problem was established,
for the deterministic case, by Bentley and Yao [3]. Further lower and upper bounds have
been established due to the work of Raoult and Vuilleman [13], Knuth [9], and Beigel [2].
Pelc [11] also addresses the problem of unbounded search in the Noisy Comparison Model
that is used in this paper. However, if we treat the tolerance, Q, as a constant, letting k
be the index of the result, when the probability of an correct individual comparison, p, is
in [1

3 ,
1
2), these algorithms make O(log2 k) comparisons [11]. However, in a survey article [12],

Pelc notes that for the case of linearly bounded errors, Aslam and Dhagat [1] improved the
comparison bound to O(log k) for all p < 1

2 . Furthermore, Pelc observed that this implies the
existence of an unbounded search algorithm in the Noisy Comparison Model that performs
O(log k) for every p < 1

2 . However this asymptotic result on the number of comparisons is
due to varying the tolerance, Q. In our algorithms, we add a log(1/Q) term to the number
of comparisons; the algorithms Pelc refers to have a 1/(1 −

√
1 −Q) term, which grows much

faster than log(1/Q) as Q→ 0.

3 Almost Result-Sensitive Algorithms

The predecessor index of a query element q is k: we denote the actual predecessor, L[k],
by u. Moreover, we assume that k ≠ 0. For simplicity, we also assume that n is a tower-of-two
number, namely, n = 22⋰

2

. Otherwise, we could pad L with dummy elements of value ∞,
increasing n to be a tower-of-two. As a result, for every integer i with 1 ≤ i ≤ log∗ n, log(i) n
is an integer, where log(1) n = logn and log(i) n = log(log(i−1) n).

In this section, we prove Theorem 1, showing an almost result-sensitive predecessor
algorithm, with

O(log log∗(c) n
Q

+ log k

Q
)

noisy comparisons. The basic idea is to incorporate Feige as a black box. As the first step, in
Section 3.1 we describe an algorithm with a slightly worse asymptotic bound on the number
of noisy comparisons.

3.1 An O(log log∗ n

Q
+ log k

Q
)-Algorithm

Denote by L[a, b) the sub-list of L of a contiguous index range {a, . . . , b−1} with 1 ≤ a ≤ b ≤ n.
Suppose we identify a sub-list L[a, b) that contains the predecessor u and whose length, b−a,
is bounded by O(kc′), for some constant c′. By applying Feige, we can answer the query
on L[a, b) with O(log k

Q
) noisy comparisons. The basic idea of the algorithm proposed in this

subsection is to use binary search with noisy comparisons to identify such a sub-list L[a, b)
with length bounded by O(k).

To ease the presentation, setting L0 ≡ L, we let Li[j] denote the item in location j of
list Li, while Ii[u] is the dual, the index of item u in list Li. Meanwhile, Predi[q] is the
index of the predecessor of q in list Li. For this purpose, we define two conceptual lists:

ISAAC 2019

60:6 Result-Sensitive Binary Search with Noisy Information

L2

L1[p1, p2)

L[p3, p4)

q

k2

k1

k0

k2 + 1

k1 + 1

p1 p2

p3 p4

Figure 1 Our three-level binary search with noisy comparisons. Searching for q in L2 first, we
then “zoom in” to a sub-list of L1, i.e., L1[p1, p2). Then, via the predecessor of q in L1[p1, p2), we
further “zoom in” to a sub-list of L, i.e., L[p3, p4), in which we can find the predecessor of q in L.

Power-of-two List L1: This is the sorted sub-list of L comprising the elements at indexes
that are powers of 2. It has 1 + logn elements:

L[1], L[2], L[4], L[8], . . . , L[n] = L[2logn] .

Iterated-log List L2: This is the sorted sub-list of L comprising the elements at the iterated-
logarithmic indexes. It has 1 + log∗ n elements:

L[1] = L[log(log∗ n) n], L[log(log∗ n−1) n], L[log(log∗ n−2) n], . . . ,
L[log(2) n], L[logn], L[n] = L[log(0) n] .

Our algorithm adopts a three-level binary search with noisy comparisons, in which the search
range is narrowed, by searching at finer and finer granularities. Figure 1 illustrates this
principle: while L2 has O(log∗ n) elements, both the lengths of L1[p1, p2) and L[p3, p4)
are bounded by O(k). As a result, the total number of noisy comparisons is bounded by
O(log log∗ n

Q
+log k

Q
), as claimed. At each level, the noisy binary search has error tolerance Q/3;

by the union bound, the overall error tolerance is Q.
The details of the algorithm are as follows. Observe that the indexes p1, p2, p3, p4, and k2

are in some sense absolute, whereas the indexes k0 and k1 are relative to the sublist in which
they are defined.

Feige on L2: Let k2 = Pred2[q]. If k2 = 1 + log∗ n, then return n as the answer, as the
largest element of L2 is in fact L[n]. Otherwise, let u2 = L2[Pred2[q]] and let p′1 = I0[u2].
Then p′1 = log(α+1) n, where α = log∗ n − k2. Let p′2 = log(α) n. Furthermore, define
p1 = ⌈log p′1⌉ + 1 and p2 = ⌊log p′2⌋ + 1. It can be verified that the elements in the sub-list
L1[p1, p2) consists of all the elements in L1 whose indices in L are in [p′1, p′2).

Feige on L1[p1, p2): Denote by k1 the (relative) index of the predecessor u1 of q in sublist
L1[p1, p2). Let p3 = I0[u1], so we have p3 = 2k1+p1−2, and also let p4 = 2 ⋅ p3.

Feige on L[p3, p4): Let k0 be the (relative) index of the predecessor u of q in sublist L[p3, p4).
Finally, return k = p3 + k0 − 1 as the index of u in L.

N. S. Epa, J. Gan, and A. Wirth 60:7

Number of Noisy Comparisons

The first search, in L2, makes O(log log∗ n
Q

) noisy comparisons, as the length of L2 is bounded
by O(log∗ n). In the second search, L1[p1, p2) contains at most O(log p′2

p′1
) elements. Since p′1 =

log p′2, the length of L1[p1, p2) is bounded by O(log p′2) = O(p′1) = O(k). Hence the second
search makes O(log k

Q
) noisy comparisons. Finally, as L[p3, p4) has length at most p4 − p3 =

p3 ≤ k, the number of noisy comparisons in the third search is bounded by O(log k
Q
).

Therefore, the overall number of comparisons is O(log log∗ n
Q

+ log k
Q
).

3.2 An O(log log∗(c) n

Q
+ log k

Q
)-Algorithm

Observe that when k ∈ Ω(log∗ n), the comparison cost of the three-level algorithm be-
comes O(log k

Q
); but when k ∈ o(log∗ n), the most expensive part, asymptotically, is Feige

on L2. To improve the log∗ n term in the bound, we bootstrap our algorithm, replacing
Feige on L2 with our three-level binary search algorithm itself, setting the tolerance Q/6 for
each run of Feige. That is, we treat L2 as an input to a new predecessor query of q, and
solve it with O(log log∗ ∣L2∣

Q
+ log k2

Q
) noisy comparisons. Combining with the search costs on

sub-lists L1 and L, the overall bound is improved to O(log log∗ log∗ n
Q

+ log k
Q
).

In fact, we can repeat this process, bootstrapping c times. By setting the tolerance of
each run of Feige to Q/(3c), by the union bound, the tolerance of the overall algorithm is still
at most Q. The total number of noisy comparisons is bounded by O(log log∗(c) n

Q
+ c ⋅ log c⋅k

Q
).

As long as c is a constant, the bound is O(log log∗(c) n
Q

+ log k
Q
), proving Theorem 1.

4 Genuinely Result-Sensitive Algorithms

Incorporating Feige as a black box, as we did in Section 3, admits clean analysis. Unfortunately,
the bound on the number of noisy comparisons is not quite result sensitive. In this section, we
introduce truly result-sensitive asymptotic behavior, by describing an algorithm comprising
two phases:

Phase 1: Find u1 = L1[Pred1[q]], with tolerance Q′ = Q/2.
Phase 2: Let p1 = I0[u1]. Find the predecessor of q in the sub-list L[p1,2 ⋅ p1) with

tolerance Q/2. Let k0 be the (relative) index, and return k = p1 + k0 − 1.

By the union bound, the overall tolerance of this two-phase algorithm is at most Q. Moreover,
since k ≥ p1, the length of L[p1,2 ⋅ p1) is at most k. Hence the cost of Feige in Phase 2
is O(log k

Q
) noisy comparisons. Therefore, in the rest of this section, we focus on designing

an algorithm which completes Phase 1 with O(log k
Q
) noisy comparisons in expectation.

As the first step, we propose a Phase-1 method that can, with probability at least 1 −Q,
find the correct predecessor of q in L1, with O(log k

Q
) noisy comparisons (for convenience,

we write Q, rather than Q′, locally). Unfortunately, there is no guarantee that this method
terminates, and hence there is no worst-case bound on the number of noisy comparisons.
Nonetheless, in Section 4.2 we refine the method so that it always halts, has error toler-
ance Q, and in expectation makes at most O(log k

Q
) noisy comparisons. For convenience, we

assume (logn)/Q is an integer.

ISAAC 2019

60:8 Result-Sensitive Binary Search with Noisy Information

e1 e2 ei ei+1 elog n+1

depth− 1

depth− 2

depth− logn
Q

Figure 2 Comparison tree T , including directed edges displayed for oriented comparison tree T o
q ,

with item ei = L1[Pred1[q]].

(−∞, ei) [ei+1,∞)

ei

[ei, ei+1)

Figure 3 The horizontal node of ei: its
three edges partition the search space.

[ei, ei+1)

(−∞, ei) ∪ [ei+1,∞)

Figure 4 Non-leaf vertical node of ei:
its two edges partition the search space.

4.1 A Random-Walk Phase-1 Algorithm

The algorithm proposed in this subsection is based on random walks on a conceptual
comparison tree, denoted by T , which is defined as follows and shown in Figure 2 (ignoring
the edge directions).

There is a horizontal path with 1 + logn nodes in T , where the ith node, i ∈ [1, logn + 1],
corresponds to ei = L1[i], i.e., L0[2i−1]. Each node in this path is called a horizontal
node.
For each ei, linked to its horizontal node, there is a vertical extended path with (logn)/Q
nodes. The jth node of this vertical extended path (j ∈ [1, logn

Q
]) is at depth-j. Each node

in this extended path is called a vertical node of ei.
For each ei, its horizontal node has three edges which correspond to a partition of the
search space, as shown in Figure 3. Specifically, (i) the left edge (in fact, a self loop
for e1) corresponds to (−∞, ei); (ii) the right edge corresponds to [ei+1,∞); and (iii) the
downward edge corresponds to [ei, ei+1) (in fact, for e1+logn, the right and downward
edges are the same). When a walk (with respect to query q) is at the horizontal node ei,
if the noisy comparisons indicate that q falls in one of the three partitions, then the walk
should move along the corresponding edge.
A vertical node at depth-(logn)/Q has only an upward edge. Every other vertical node has
two edges, corresponding to a partition of the solution space, as shown in Figure 4. The
upward edge corresponds to (−∞, ei) ∪ [ei+1,∞), while the downward edge corresponds
to [ei, ei+1). As with the horizontal nodes, when a walk for a query q is at the current
vertical node, it should move along the edge corresponding to the range where q falls, as
indicated by the comparisons.

N. S. Epa, J. Gan, and A. Wirth 60:9

Consider the query q in the Deterministic Comparison Model. Each edge in T can be
conceptually oriented according to the result of a deterministic comparison on query q. We
call this the oriented comparison tree with respect to q, denoted by T oq , as shown in Figure 2.
We emphasize that both T and T oq are conceptual: neither is materialized.

Analysis

Referring to Figure 2, starting at an arbitrary node s in T oq , the walk that follows the edge
directions, reaches the deepest vertical node t, the leaf at depth-(logn)/Q, of the predecessor
of q in L1. Moreover, such a walk is the shortest path (in terms of the number of moves)
from s to t in T oq .

Our first Phase-1 method, Algorithm 4.1, performs a random walk on T oq , starting at
the horizontal node of e1. It comprises a sequence of moves, each of which the result of the
appropriate number of repeated noisy comparisons so that with probability, 2/3, the move
follows the direction of the edge in T oq . Such a move is called forward, whereas a move in the
oppositve direction is backward. (Given p > 1/2, we can boost the probability of a forward
move to at least 2/3 with a constant-factor blowup in noisy comparisons [7].)

Algorithm 4.1 A Random-Walk Phase-1 Algorithm.

Let c be some constant to be fixed.
r ← 1 ▷ r is the number of rounds
Perform c ⋅ log3

1
Q

moves, starting from the horizontal node of e1
while true do

5: for j ← 1; j ≤ c; j ← j + 1 do
move
if The walk is at a vertical node of ei at depth-(r + log3

1
Q
) then

Return I1[ei]
r ← r + 1 ▷ Increase the round number

I Lemma 6. For every r, the probability of Algorithm 4.1 returning a wrong answer in
round r is at most Q/3r. Overall, the algorithm returns a wrong answer with probability at
most Q/2.

Proof. Observe that Algorithm 4.1 stops only when the random walk reaches a vertical
node at depth-(r + log3

1
Q
). If the answer is wrong in round r, the walk must have made at

least r + log3
1
Q

backward moves in some vertical path. The probability of this, in round r, is
at most (1/3)r+log3(1/Q) ≤ Q/3r. Summing over all rounds and applying a union bound, the
overall failure probability at most ∑∞r=1Q/3r ≤ Q/2. J

I Theorem 7. With probability at least 1 −Q, Algorithm 4.1 halts, having made O(log k
Q
)

noisy comparisons, and returns Pred1[q].

Proof. Let ei∗ be L1[Pred1[q]]. By Lemma 6, the probability of Algorithm 4.1 returning a
wrong answer is at most Q/2. Next, we show the algorithm returns a correct answer with
probability at least 1 −Q/2 and makes O(log k

Q
) noisy comparisons. Then by the union

bound, the theorem holds.
Consider the round r = i∗, where the random walk has made c ⋅(i∗+log3

1
Q
) moves. Among

these, let mf and mb be the numbers of forward moves and backward moves, respectively. In
order to return a correct answer in this round, the random walk must satisfy

mf −mb ≥ i∗ + i∗ + log3
1
Q
. (1)

ISAAC 2019

60:10 Result-Sensitive Binary Search with Noisy Information

Here, the first i∗ arises from horizontal forward moves to the horizontal node of ei∗ , while
the i∗ + log3

1
Q

component is the condition of returning an answer in round r = i∗. By the
Chernoff-Bound argument of Feige et al. [7], c′ ⋅ (2 ⋅ i∗ + log3

1
Q
) moves suffice to satisfy

inequality (1) with probability at least 1 −Q/2. Therefore, by setting c = 2 ⋅ c′, we have
c ⋅ (i∗ + log3

1
Q
) ≥ c′ ⋅ (2 ⋅ i∗ + log3

1
Q
) and thus, the algorithm returns the correct answer in

round i∗ with probability at least 1 −Q/2. Moreover, the total number of noisy comparisons
is O(i∗ + log 1

Q
) = O(log 2i∗

Q
) = O(log k

Q
), from the definition of ei∗ . J

Although Theorem 7 shows that Algorithm 4.1 is result sensitive with error tolerance at
most Q/2, it is a Las Vegas algorithm. That is, for every integer K, there is a non-zero (albeit
negatively exponential in K), probability that the query cost of Algorithm 4.1 exceeds K.
Nonetheless, we show in the next subsection that Algorithm 4.1 can be refined such that it
always terminates with at most O(log logn

Q
) noisy comparisons, while the expected number

of noisy comparisons is O(log k
Q
).

4.2 The Ultimate Phase-1 Algorithm
The refined algorithm, which we call our Ultimate Phase-1 Algorithm, is as simple as this:

Algorithm 4.2 The Ultimate Algorithm.

Run Algorithm 4.1 for at most R = log logn rounds
if Algorithm 4.1 has not yet returned an answer then

Run Feige on L1, with tolerance Q

Since Feige algorithm always terminates, Algorithm 4.2 always terminates. Observe that
after R rounds of Algorithm 4.1, O(log logn + log 1

Q
) = O(log logn

Q
) comparisons are made.

Running Feige on L1, the cost is bounded by O(log logn
Q

). As a result, in the worst case,
Algorithm 4.2 makes O(log logn

Q
) noisy comparisons. For those queries whose correct result k

satisfies k = Ω(logn), this bound is within O(log k
Q
). We next show that for k = o(logn), the

expected number of noisy comparisons is bounded by O(log k
Q
).

We state explicitly the Chernoff-Hoeffding bound that is the backbone of our proof.

I Fact 1 (Chernoff-Hoeffding Bound). Let X1,X2, . . . ,XN be random variables such that α ≤
Xi ≤ β for all i ∈ [1,N]. Let X = ∑Ni=1Xi and set µ = E(X). Then for all δ > 0, we have:

Pr[X ≤ (1 − δ) ⋅ µ] ≤ exp(− δ2µ2

N(β − α)2) .

In our application of the bound, Xi is a random variable ∈ {+1,−1} indicating the ith
move is forward (Xi = 1) or backward (Xi = −1), so that X = mf −mb. As a result, we
have α = −1, β = 1, µ = N/3, and by setting δ = 1−τ/µ, with τ being the threshold for mf −mb

signifying termination, we have:

Pr[X ≤ τ] ≤ exp(−(µ − τ)2

4N
) .

Consider a query q with ei∗ = L1[Pred1[q]]. Let M = i∗ + log 1
Q

and τ = 2 ⋅ i∗ + log 1
Q
. As

shown in the proof of Theorem 7 and by this Chernoff-Hoeffding Bound, for some sufficiently
large constant c, when N = c ⋅M ,

N. S. Epa, J. Gan, and A. Wirth 60:11

Pr[X ≤ τ] ≤ exp(−(µ − τ)2

4N
) ≤ Q,

and so Algorithm 4.1 stops in the (r∗ = i∗)th round with probability at least 1 −Q.
Next, we show the expectation of the cost of running all R = log logn rounds in Al-

gorithm 4.1, plus the cost for Feige is bounded by O(N) = O(M) = O(log k
Q
).

I Lemma 8. Let τ (0) = τ , µ(0) = µ and N (0) = N be the parameters in the r∗th round. In
the (r∗ + i)th round for i ∈ [1,R − r∗], the probability of Algorithm 4.1 not terminating is at
most Q1+i⋅ε, where ε = 1/M .

Proof. In round r∗ + i, we denote the correct-stop threshold by τ (i), the number of moves
by N (i), and the expected value of X by µ(i). According to Algorithm 4.1, in each round,
the “correct-stop” threshold, τ , gets increased by 1 and N gets increased by c. Therefore, we
have:

τ (i) = τ (0) + i = τ (0) + i

M
⋅M ≤ (1 + i

M
) ⋅ τ (0) = (1 + i ⋅ ε) ⋅ τ (0) ,

N (i) = N (0) + i ⋅ c = N (0) + i

M
⋅ c ⋅M = (1 + i

M
) ⋅N (0) = (1 + i ⋅ ε) ⋅N (0) ,

µ(i) = (1/3)N (i) = (1 + i ⋅ ε) ⋅ (1/3)N (0) = (1 + i ⋅ ε) ⋅ µ(0) .

Substituting into the Chernoff-Hoeffding Bound, we have the probability of not stopping
and returning the correct value being

Pr[X ≤ τ (i)] ≤ exp(−(µ(i) − τ (i))2

4N (i)
)

≤ exp(−(1 + i ⋅ ε) ⋅ (µ
(0) − τ (0))2

4N (0)
)

≤ Q1+i⋅ε . J

Denote by E[Cost] the expectation of the cost of Algorithm 4.2: that is, running all R rounds
of Algorithm 4.1, plus the cost of Feige on L1.

I Lemma 9. If the predecessor of a query q in L is at index k = o(logn), the expected query
cost of Algorithm 4.2, i.e., E[Cost], is O(log k

Q
).

Proof. We partition E[Cost] into three parts, and bound each:
CostA: the expected cost of the first r∗ rounds of Algorithm 4.1,
CostB : the expected cost of the rounds from r∗ + 1 to R of Algorithm 4.1,
CostC : the expected cost of Feige on L1.

As the comparisons in the first r∗ rounds are mandatory, CostA = N , where N is the number
of comparisons in the first r∗ rounds. In order to bound CostB , let us consider the following
conceptual process, which starts after r∗ rounds:

Algorithm 4.3 A Conceptual Batch Process.

r ← r∗

while r < R = log logn do
run the next M rounds as a batch, without stopping
if the depth-based stopping condition has been met in one of these M rounds then

5: return the answer corresponding to when the stopping condition was first met
r ← r +M

ISAAC 2019

60:12 Result-Sensitive Binary Search with Noisy Information

Clearly, the cost of this conceptual batch process, Algorithm 4.3, is no less than Al-
gorithm 4.1. The latter executes each round separately and terminates immediately when
the stopping condition is met. By Lemma 8, for the `th batch of M rounds, the probability
of the algorithm not stopping during that batch is at most Q1+`, for ` = 1, 2, . . . , z = ⌈R−r∗+1

M
⌉.

That is, the probability of the `th batch running is Q`.
Since the cost of each batch of M rounds is c ⋅M = N , the expected cost of the whole

conceptual batch process, which is an upper bound on CostB, is (because Q ≤ 1/2 and
E[Y] = ∑∞i=1 Pr[Y ≥ i]):

CostB ≤
z

∑
`=1

Q` ⋅N ≤ N ⋅
z

∑
l=1

1
2l

< N .

Finally, the probability that Algorithm 4.2 has not stopped in the first R = log logn
rounds is at most Q1+z. So we have: CostC ≤ Q1+z ⋅ γ ⋅ log logn

Q
, for some constant γ.

In total, the expected cost of the first R = log logn rounds is at most 2N . Moreover, the
probability of Feige on L1 occurring is at most Q1+z, which is at most the probability of each
noisy comparison made in the first R = log logn rounds. Therefore the expected value of CostC
is at most the expected value of CostA +CostB , up to a constant factor. Putting everything
together, we have E[Cost] = CostA +CostB +CostC ≤ O(N) = O(M) = O(log k

Q
). J

Proof of Theorem 2. Since the correctness of Algorithm 4.2 is easy to verify, combining
with Lemma 9, Theorem 2 holds. J

5 Conclusion

In this paper, we have designed result-sensitive algorithms under the Noisy Comparison
Model for answering predecessor queries. Specifically, our algorithm in Section 3 correctly
answers with probability at least 1 −Q, and makes O(log log∗(c) n

Q
+ log k

Q
) noisy comparisons

in the worst case, where k is the index of the predecessor in the sorted list. Incorporating
Feige as a black box leads to a clean analysis of this algorithm.

In Section 4, we present a genuinely result-sensitive algorithm such that for the queries
with k = Ω(logn), the cost is O(log k

Q
) in the worst case, and for those queries with

k = o(logn), its expected query cost is bounded by O(log k
Q
). Our algorithm nicely bridges

the state-of-the-art known bounds – O(log 1
Q
) for k = O(1) and O(log n

Q
) for k = ω(1) – over

the whole spectrum of k = 1, . . . , n. In particular, for k ∈ ω(1) ∩ o(nε), our algorithm strictly
improves the better of the two bounds.

Finally, by solving some key range-query and shortlisting problems, we illustrate how the
benefit of our result-sensitive algorithm.

References
1 Javed A Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors. In

STOC, pages 486–93, 1991.
2 R. Beigel. Unbounded Searching Algorithms. SIAM Journal on Computing, 19(3):522–537,

1990.
3 Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded

searching. Information Processing Letters, 5(3):82–7, 1976.
4 Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based Search in the Presence of Errors.

In STOC, pages 130–6, 1993.
5 Xi Chen, Sivakanth Gopi, Jieming Mao, and Jon Schneider. Competitive analysis of the top-K

ranking problem. In SODA, pages 1245–64, 2017.

N. S. Epa, J. Gan, and A. Wirth 60:13

6 Ferdinando Cicalese. Fault-Tolerant Search Algorithms. Springer, 2016.
7 U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with Noisy Information. SIAM

Journal on Computing, 23(5):1001–1018, 1994.
8 Richard M. Karp and Robert Kleinberg. Noisy Binary Search and Its Applications. In Pro-

ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07,
pages 881–890, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

9 Donald E. Knuth. Supernatural Numbers. In David A. Klarner, editor, The Mathematical
Gardner, pages 310–25. Springer US, 1981.

10 Stefano Leucci and Chih-Hung Liu. A Nearly Optimal Algorithm for Approximate Minimum
Selection with Unreliable Comparisons. arXiv, 2018. arXiv:1805.02033.

11 Andrzej Pelc. Searching with known error probability. Theoretical Computer Science, 63(2):185–
202, 1989.

12 Andrzej Pelc. Searching games with errors—fifty years of coping with liars. Theoretical
Computer Science, 270(1):71–109, 2002.

13 J. C. Raoult and J. Vuillemin. Optimal unbounded search strategies. In Jaco de Bakker and
Jan van Leeuwen, editors, ICALP, pages 512–530, 1980.

14 B. Ravikumar. A Fault-Tolerant Merge Sorting Algorithm. In Oscar H. Ibarra and Louxin
Zhang, editors, Computing and Combinatorics, pages 440–447, 2002.

15 Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl. B, 6:505–516,
1961.

16 R.L. Rivest, A.R. Meyer, D.J. Kleitman, K. Winklmann, and J. Spencer. Coping with errors
in binary search procedures. Journal of Computer and System Sciences, 20(3):396–404, 1980.

17 M. Saks and A. Wigderson. Probabilistic Boolean decision trees and the complexity of
evaluating game trees. In FOCS, pages 29–38, 1986.

18 Stanisław M Ulam. Adventures of a Mathematician. Univ of California Press, 1991.

A Appendix: Applications

As mentioned in the Introduction, our result-sensitive algorithm for predecessor queries
immediately improves two types of algorithms for related problems. We provide details here,
proving Corollaries 3 and 4 and Theorem 5.

A.1 Direct Applications of Predecessor Search
Predecessor search appears as a black box in this type of application. We discuss two example
problems: (i) Range Count Query, and (ii) Stabbing Count Query. Specifically, we prove
Corollaries 3 and 4.

Proof of Corollary 3 for Range Count Query. For the given query range (a, b], we can first
apply our Algorithm 4.2 to find the index ka of the predecessor of a in L, with error
tolerance Q/2. Then apply Algorithm 4.2 again on the sub-list L(ka, n] to find the (relative)
index of kb of the predecessor of b, with error tolerance Q/2. Since all the elements in L[1, ka]
must not be in the range (a, b], it can be verified that kb is exactly the number count of
elements of L falling in (a, b]. The correctness of the algorithm is obvious and, allowing
for count = 0, the cost is bounded by O(log ka+1

Q
+ log count+1

Q
) in expectation. J

Proof of Corollary 4 for Stabbing Count Query. Denote by L` (respectively, Lr) the list of
the intervals of S sorted by their left (respectively, right) endpoints. Let k` and kr be the
indexes of the predecessors of the query value q in L` and Lr, respectively. Observe that
the number of intervals stabbed by q can be computed as count = k` − kr. Thus, we can first
apply Algorithm 4.2 on Lr to find the index kr of Predr[q], and then apply the algorithm

ISAAC 2019

http://arxiv.org/abs/1805.02033

60:14 Result-Sensitive Binary Search with Noisy Information

on the sub-list L`[kr + 1, n] to find the index k′` of Pred`[q]. Thus, k′` = k` − kr = count.
By setting the error tolerances of each search to Q/2, the correctness of the algorithm is
straightforward, and the cost is bounded by O(log kr+1

Q
+ log count+1

Q
) in expectation. J

A.2 Predecessor Search with Generalised Comparison Oracle
In this subsection, we illustrate how our result-sensitive algorithm can be applied to improve
Type-II algorithms by generalising the comparison oracle. As an example, we solve the
Shorlisting Problem.

Recall that in the Shortlisting Problem, there are two disjoint sorted lists LA and LB , the
goal is to return the set of m smallest elements (the “shortlist”) in the conceptual merged
sorted list of LA and LB . Obviously, actually merging A and B Feige– making O(N log N

Q
)

noisy comparisons (where N = nA+nB) – immediately solves the problem. However, our goal
is to solve the problem with significantly fewer comparisons (in expectation) than this merge
sledgehammer. Instead, we aim for O(log k

Q
) noisy comparisons, where k is the number of

elements from LA in the shortlist.
The crucial observation is that if we can determine the number k, then we can output the

whole shortlist without further comparisons. As we illustrate below, we can compute k with
a binary-search-like algorithm. Without loss of generality, we assume nA = nB =m since all
the elements with indices greater than m in either of the lists can be safely pruned.

The Comparison Oracle for Shortlisting

I Observation 1. For 1 ≤ i ≤m, LA[i] is in the shortlist if and only if LA[i] < LB[m− i+1].

Proof. First, suppose that LA[i] is in the shortlist; then there are at most m − i elements
from LB in the shortlist. Thus, LB[m − i + 1] cannot be in the shortlist and therefore,
LA[i] < LB[m − i + 1].

Conversely, suppose that LA[i] < LB[m − i + 1]. As a result, if LB[m − i + 1] is in the
shortlist, then LA[i] must be in the shortlist. However, this forces the shortlist to have size
at least m + 1. Therefore, there are no more than m − i elements from LB in the shortlist,
implying that there are at least i elements from LA in the shortlist. Hence, LA[i] is in the
shortlist. J

By Observation 1, we can decide whether LA[⌊m/2⌋] is in the shortlist by comparing it
with LB[m − ⌊m/2⌋ + 1]. We thus determine which half of the list LA should be further
considered, which is a binary-search-like algorithm. Since checking the condition in Observa-
tion 1 only takes one (deterministic) comparison, by the same analysis of Feige [7], we know
that we can identify the largest element LA[k] from LA in the shortlist with O(log m

Q
) noisy

comparisons, with an error tolerance Q.

The Comparison Oracle for Our Result-Sensitive Algorithm

We adapt the two-phase algorithm proposed in Section 4 to obtain a result-sensitive algorithm
for the Shortlisting Problem. Again, the second phase can be solved by binary search, which
we just designed efficiently. We focus on Phase 1, where our goal is to identify the largest
element in the power-of-two list of LA, denoted by LA1, which should be in the shortlist.
We simply design the search-space partitions for both the horizontal nodes and the vertical
nodes, as shown in Figures 3 and 4. The subsequent analysis follows immediately.

N. S. Epa, J. Gan, and A. Wirth 60:15

For a horizontal node ei = LA1[i] = LA[2i−1], the space partition for its edges is as follows:
the left edge corresponds to the case that ei is not in the shortlist: ei > LB[m − 2i−1 + 1];
the right edge corresponds to the case that ei+1 is in the shortlist: ei+1 < LB[m − 2i + 1];
the downward edge corresponds to the case that ei is in the shortlist, but ei+1 is not.

For a vertical node of ei, the space partition for its two edges is as follows:
the downward edge corresponds to the case that ei is in the shortlist, but ei+1 is not;
the upward edge corresponds to the other case.

By plugging the above comparison oracle to Algorithm 4.2, we have a result-sensitive Phase-1
algorithm for the Shortlisting Problem.

Proof of Theorem 5. By the above analysis, and allowing for k = 0, we obtain an algorithm
to find k in LA with O(log k+1

Q
) noisy comparisons in expectation. By symmetry, we can

find the dual index, m − k, for LB with an expected cost O(log m−k+1
Q

). Therefore, by
running both of the algorithms for LA and LB simultaneously and stopping as soon as
either terminates, the Shortlisting Problem can be solved with O(log min{k,m−k}+1

Q
) noisy

comparisons in expectation. The answer is correct with probability at least 1 −Q. J

ISAAC 2019

Improved Algorithms for Clustering with Outliers
Qilong Feng
School of Computer Science and Engineering, Central South University, P.R. China
csufeng@csu.edu.cn

Zhen Zhang
School of Computer Science and Engineering, Central South University, P.R. China
csuzz@foxmail.com

Ziyun Huang
Department of Computer Science and Software Engineering, Penn State Erie,
The Behrend College, Erie, PA, USA
zxh201@psu.edu

Jinhui Xu
Department of Computer Science and Engineering, State University of New York at Buffalo, USA
jinhui@cse.buffalo.edu

Jianxin Wang
School of Computer Science and Engineering, Central South University, P.R. China
jxwang@csu.edu.cn

Abstract
Clustering is a fundamental problem in unsupervised learning. In many real-world applications,

the to-be-clustered data often contains various types of noises and thus needs to be removed from
the learning process. To address this issue, we consider in this paper two variants of such clustering
problems, called k-median with m outliers and k-means with m outliers. Existing techniques for
both problems either incur relatively large approximation ratios or can only efficiently deal with a
small number of outliers. In this paper, we present improved solution to each of them for the case
where k is a fixed number and m could be quite large. Particularly, we gave the first PTAS for the
k-median problem with outliers in Euclidean space Rd for possibly high m and d. Our algorithm
runs in O(nd(1

ε
(k+m))(k

ε
)O(1)

) time, which considerably improves the previous result (with running
time O(nd(m+ k)O(m+k) + (1

ε
k logn)O(1))) given by [Feldman and Schulman, SODA 2012]. For the

k-means with outliers problem, we introduce a (6 + ε)-approximation algorithm for general metric
space with running time O(n(β 1

ε
(k +m))k) for some constant β > 1. Our algorithm first uses the

k-means++ technique to sample O(1
ε
(k +m)) points from input and then select the k centers from

them. Compared to the more involving existing techniques, our algorithms are much simpler, i.e.,
using only random sampling, and achieving better performance ratios.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Clustering with Outliers, Approximation, Random Sampling

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.61

Funding This work is supported by the National Natural Science Foundation of China under
Grants (61672536, 61420106009, 61872450, 61828205), National Science Foundation (CCF-1716400,
IIS-1910492), Hunan Provincial Science and Technology Program (2018WK4001).

1 Introduction

Clustering is a fundamental problem in computer science and finds applications in a wide
range of domains. Depending on the objective function, it has many different variants. Among
them, k-median and k-means are perhaps the two most commonly considered versions. For
a given set P of n points in some metric space, the k-median problem aims to identify a
set of centers C = {c1 · · · ck} that minimizes the objective function

∑
x∈P minci∈C d(x, ci),

© Qilong Feng, Zhen Zhang, Ziyun Huang, Jinhui Xu, and Jianxin Wang;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 61; pp. 61:1–61:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:csufeng@csu.edu.cn
mailto:csuzz@foxmail.com
mailto:zxh201@psu.edu
mailto:jinhui@cse.buffalo.edu
mailto:jxwang@csu.edu.cn
https://doi.org/10.4230/LIPIcs.ISAAC.2019.61
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Improved Algorithms for Clustering with Outliers

where d(x, ci) denotes the distance from x to ci. The k-means problem is very similar to the
k-median problem, except that the clustering cost is measured by the squared distance from
each point to its corresponding center.

Both the k-median and the k-means problems have shown to be NP-hard [6, 21]. Thus,
most of the previous efforts have concentrated on obtaining approximation solutions. In
the metric space settings, Charikar, Guha, and Shmoys [9] gave the first constant factor
approximation solution to the k-median problem. Arya et al. [8] later showed that a simple
local search heuristic yields a (3 + ε)-approximation. Li and Svensson [26] gave a (1 +

√
3 + ε)-

approximation based on a pseudo-approximation. Byrka et al. [23] further improved the
approximation ratio to (2.671 + ε). This is the current best known result for the k-median
problem. For the k-means problem, Gupta and Tangwongsan [18] demonstrated that local
search can achieve a (25 + ε)-approximation in metric spaces. The approximation ratio has
been recently improved to (9 + ε) by Ahmadian et al. [3] using a primal-dual algorithm.

All the above results allow the number k of clusters to be any integer between 1 and
n. A common way to relax the problem is to assume that k is a fixed number and the
space is Euclidean (instead of general metric). For this type of clustering problem, better
results have already been achieved. Kumar, Sabharwal, and Sen [25] gave a linear time
(i.e., O(2(k/ε)O(1)

nd)) (1 + ε)-approximation algorithms for either problem in any dimensions.
Chen [11] later improved the running time to O(ndk + 2(k/ε)O(1)

d2nσ) by using coresets,
where σ is an arbitrary positive number. Feldman, Monemzadeh, and Sohler [15] further
demonstrated that one can construct a coreset for the k-means problem with size independent
of n and d. With this, they showed that a (1 + ε)-approximation can be obtained in
O(ndk + d · poly(k, ε) + (kε)O(k/ε)) time. Moreover, both the k-median and the k-means
problems admit (1 + ε)-approximations for the case where the dimensionality of the space is
a constant [17, 13].

The clustering problem has an implicit assumption that all input points can be clustered
into k distinct groups, which may not always hold in real-world applications. Data from
such applications are often contaminated with various types of noises, which need to be
excluded from the solution. To deal with such noisy data, Charikar et al. [10] introduced the
clustering with outliers problem. The problem is the same as the ordinary clustering problem,
except that a small portion of the input data is allowed to be removed. The removed outlier
points are ignored in the objective function. By discarding the set of outliers, one could
significantly reduce the clustering cost and thus improve the quality of solution.

For the k-median with outlier problem, Charikar et al. [10] gave a (4(1+ 1
ε))-approximation

for metric space, which removes a slightly more than m (i.e., O((1 + ε)m)) outliers. Chen
[12] later obtained an algorithm which does not violate either k or m, but has a much large
constant approximation ratio. Recently, Krishnaswamy, Li, and Sandeep [24] improved the
approximation ratio to 7.08 + ε [24] using an elegant iterative rounding algorithm. For
Euclidean space, better results have also been achieved. Friggstad et al. [16] presented a
(1 + ε)-approximation algorithm that uses (1 + ε)k centers and runs in O((nk)1/εO(d)) time.
Their algorithm is efficient only in fixed dimensional space. Feldman and Schulman [14]
gave a (1 + ε)-approximation algorithm without violating the number of the centers. Their
algorithm runs in O(nd(m+ k)O(m+k) + (1

εk logn)O(1)) time, but needs to assume that both
k and m are small constants to ensure a polynomial time solution. There has also been work
on obtaining coresets for the problem [20].

For the k-means with outliers problem, Friggstad et al. [16] designed a bi-criteria algorithm
that uses (1 + ε)k centers and has an approximation ratio of (25 + ε). Krishnaswamy, Li,
and Sandeep [24] subsequently presented a (53 + ε)-approximation algorithm. This is the
best existing approximation ratio for the problem.

Q. Feng, Z. Zhang, Z. Huang, J. Xu, and J. Wang 61:3

1.1 Our Contributions
In this paper, we consider two variants of the clustering problem with outliers, k-median
with outliers in Euclidean Rd space (where d could be very high) and k-means with outliers
in metric space. For both problems, we assume that k is a fixed number and m is a variable
less than n.

For the Euclidean k-median with m outliers problem, we give the first PTAS for
non-constant m, based on a simple random sampling technique. Our algorithm runs in
O(nd(1

ε (k+m))(kε)O(1)) time, which significantly improves upon the previously known (1 + ε)-
approximation algorithm for the problem [14, 16].

I Theorem 1. Given an instance of the Euclidean k-median with m outliers problem and a
parameter 0 < ε ≤ 1, there is a (1 + ε)-approximation algorithm that runs in O(nd(1

ε (k +
m))(kε)O(1)) time.

For the k-means with m outliers problem, we give a (6 + ε)-approximation. Our algorithm
first uses k-means++ [7] to sample O(1

ε (k+m)) points from the input and then select k points
from them as centers. k-means++ is an algorithm proposed for resolving the sensitivity issue
of Lloyd’s k-means algorithm [27] to the locations of its initial centers. Since the k-means
with outliers problem needs to discard m outliers, which may cause major changes in the
topological structure and clustering cost of the solution, it could greatly deteriorate the
performance of many classical clustering algorithms [19, 24]. However, several studies on
k-means++ for noisy data seem to suggest that it is an exception and can actually yield
quite good solutions [5, 19]. As far as we know, there is no known theoretical analysis that
tries to explain the performance of k-means++ on noisy data. The following theorem takes
the first step in this direction.

I Theorem 2. Given a point set P in a metric space and a parameter 0 < ε ≤ 1, let C be a
set of O(1

ε (k +m)) points sampled from P using k-means++. Then, C contains a subset of
k centers that induces a (6 + ε)-approximation for k-means with m outliers with constant
probability.

As a corollary to Theorem 2, it is easy to see that O(1
ε (k+m))k sets of candidate centers

for the problem can be generated in O(n(k +m) 1
ε) time. A (6 + ε)-approximation can then

be obtained by an exhaustive search over the candidate sets.

I Corollary 3. Given an instance of the k-means clustering problem with m outliers and
a parameter 0 < ε ≤ 1, there is a (6 + ε)-approximation algorithm that runs in time
O(n(β 1

ε (k +m))k) for some constant β > 1.

1.2 Other Related Work
Most of the aforementioned results are mainly for theoretical purpose. There are also more
practical solutions available for clustering. The most popular one for k-means is probably
the heuristic technique introduced by Lloyd [27], which iteratively assigns the points to their
nearest centers and updates the centers as the means of their corresponding newly generated
clusters. It is known that Lloyd’s algorithm is sensitive to the locations of the initial centers.
An effective remedy for this undesirable issue is the use of an initialization algorithm called
k-means++, which generates an initial set of cluster centers close to the optimal solution.
Arthur and Vassilvitskii [7] showed that the k centers generated by k-means++ induce an
O(log k)-approximation in an expected sense. Ostrovsky et al. [29], Jaiswal and Garg [22],

ISAAC 2019

61:4 Improved Algorithms for Clustering with Outliers

and Agarwal, Jaiswal, and Pal [1] further revealed that these k centers can lead to O(1)-
approximations under some data separability conditions. Ailon, Jaiswal, and Monteleoni [4]
demonstrated that a bi-criteria constant factor approximation can be obtained by sampling
O(k log k) points using k-means++. Aggarwal, Deshpande, and Kannan [2] and Wei [30] later
discovered that O(k) points are actually sufficient to ensure a constant factor approximation.

2 Preliminaries

The clustering with outliers problem can be formally defined as follows.

I Definition 4 (k-median/k-means clustering with outliers). Let P be a set of n points in
a metric space (X,d), and k,m > 0 be two integers. The k-median or k-means clustering
problem with outliers is to identify a subset Z ⊆ P of size m and a set C ⊆ X of k
centers, such that the clustering cost Φ(P \ Z,C) is minimized among all possible choices
of Z and C, where Φ(P \ Z,C) =

∑
x∈P\Z minc∈C d(x, c) for k-median and Φ(P \ Z,C) =∑

x∈P\Z minc∈C d2(x, c) for k-means.

In Euclidean space, the clustering with outliers problem is identical, except that the
points lie in Rd, and the centers can be k arbitrary points in Rd.

We will use the following result to find the approximate centers, which is known as
Chernoff bound.

I Theorem 5 ([28]). Let A1 . . . Am be 0 − 1 independent random variables with Pr(Ai =
1) = pi. Let A =

∑m
i=1Ai and u =

∑m
i=1E(Ai). Let 0 < α < 1 be an arbitrary real number.

Then, Pr[A ≤ (1− α)u] ≤ e−α
2u
2 .

Given a cluster A ⊆ Rd, let Γ(A) denote the optimal 1-median center of A. The following
result says that a good approximation to Γ(A) can be obtained using a small set of points
randomly sampled from A.

I Lemma 6 ([25]). Given a set R of size 1
λ4 randomly sampled from a set A ⊆ Rd, where

λ > 0, there exists a procedure Construct(R) that yields a set of 2(1/ε)O(1) points core(R),
and there exists at least one point r ∈ core(R), such that the inequality

d(r,Γ(A)) ≤ λ∆(A)
|A|

holds with probability at least 1
2 . The procedure Construct(R) runs in O(2(1/ε)O(1) · d) time.

3 k-Median Clustering with Outliers in Euclidean Space

In this section, we present a new algorithm for the k-median clustering problem with outliers
in the geometric settings. Let Φ(x,C) = minc∈C d(x, c) denote the cost of clustering a point
x ∈ Rd using a set C ⊆ Rd of centers. The clustering cost of a point set P ⊆ Rd induced by
C is denoted by Φ(P,C) =

∑
p∈P Φ(p, C). For a singleton C = {c}, we also write Φ(P,C) as

Φ(P, c). The minimum 1-median cost of a set S ⊆ Rd is denoted by ∆(S) =
∑
x∈S d(x,Γ(S)),

where Γ(S) denotes the optimal center of S.

Q. Feng, Z. Zhang, Z. Huang, J. Xu, and J. Wang 61:5

3.1 The Algorithm
The general idea of our algorithm solving the k-median clustering problem with outliers is as
follows. Assume that {P1, ..., Pk} is the optimal partition of the k-median clustering problem
with outliers, where |P1| ≥ |P2| ≥ . . . ≥ |Pk|. The objective of our algorithm is to find the
approximate centers of Pi(i = 1, . . . , k). Assume that Pi(1 ≥ i ≥ k) is the largest cluster
whose approximate center has not yet been found. In our algorithm, two strategies are
applied to find the approximate center of Pi. It is possible that the points in Pi are far away
from the approximate centers already found. For this case, by randomly sampling points in
the remaining data set, with large probability, a large portion of Pi is in the sampled set.
By enumerating all possible certain size of subsets of the sampled set, there must exist one
subset that an approximate center of Pi can be obtained from this set by Lemma 6. On the
other hand, if the points in Pi are close to the set of the approximate centers already found
(denoted by C), then one center in C can be used to approximate the center of Pi, and the
points close to the approximate centers in C can be deleted from the point set. The specific
algorithm for the k-median clustering problem with outliers is described in Algorithm 1. The
algorithm Random-sampling has eight parameters Q, g, k, C, ε, U,N, and M , where Q is the
input dataset, g is the number of centers not yet found, k is the total number of clusters, C
is the multi-set of obtained approximate centers, ε is a real number (0 < ε ≤ 1), U is the
collection of candidate solutions, N = (20k10 + 4mk8)/ε5, and M = k8/ε4.

Algorithm 1 The algorithm for k-median with outliers in Euclidean space.

Algorithm Find-k-centers

Input: a point set P , integers k,m > 0, and an approximation factor 0 < ε ≤ 1.
Output: a point set C = {c1, . . . , ck}.

1. let N = (20k10 + 4mk8)/ε5, M = k8/ε4, U = ∅;
2. loop 2k times do
3. Random-sampling(P , k, k, ∅, ε, U);
4. return the set of centers C ∈ U with the smallest cost for k-median with m outliers.

Algorithm Random-sampling(Q, g, k, C, ε, U)

1. S = ∅;
2. if g = 0 then
3. U = U ∪ {C};
4. return.
5. sample a set S of size N from Q independently and uniformly;
6. for each subset S′ ⊆ S of size M do
7. for each point c ∈ core(S′) do
8. Random-sampling(Q, g − 1, k, C ∪ {c}, ε, U);
9. find the median value β of all values in {Φ(x,C) | x ∈ Q};
10. Q′ = {x ∈ Q | Φ(x,C) ≤ β};
11. Random-sampling(Q′, g, k, C, ε, U).

3.2 Analysis
In this section we show the correctness of Theorem 2. Given an instance of the k-median
clustering problem with m outliers (P, k,m), let Z = {z1 . . . zm} be the set of outliers in the
optimal solution, and P = {P1 . . . Pk} be the k-partition of the remaining (inliers) points
in P that minimizes the k-median objective function. Without loss of generality, assume
that |P1| ≥ |P2| ≥ . . . |Pk|. Denote by ∆k =

∑k
i=1 ∆(Pi) the clustering cost induced by the

optimal solution.

ISAAC 2019

61:6 Improved Algorithms for Clustering with Outliers

We now give an outline of the proof. In order to prove the correctness of Algorithm
Find-k-centers, we need to get that there exists a set of centers in U that achieves the desired
approximation for the centers of clusters P1, . . . , Pk. Assume that a set C = {c1, . . . , ci−1}
of centers has been found. The key point is to prove that the ci obtained by Algorithm
Random-sampling based on C can get a good approximation for Pi. The general idea of
proving that ci is a good approximate center of Pi is as follows. A set B of points that are
close to C by a fixed value r can be obtained, where the possible value of r can be enumerated
efficiently. The following two cases are discussed: (1) Pi ∩B 6= ∅, and (2) Pi ∩B = ∅. For
the first case, we show that Γ(Pi) is close to a previously sampled point, and there exists a
center in C that achieves the desired approximation for Γ(Pi). For the second case, we prove
that P\B contains a substantial part of Pi. We show that by randomly sampling from P\B,
a subset of points from Pi can be found, and a good approximate center for Pi is obtained
by Lemma 6.

I Lemma 7. With a constant probability, there exists a set of approximate centers C∗ in
the list U generated by the algorithm Find-k-centers, such that for any constant 1 ≤ j ≤ k,
we have

d(cj ,Γ(Pj)) ≤
ε∆(Pj) + 3(j − 1)ε∆k

k2|Pj |
,

where cj denotes the nearest point to Γ(Pj) in C∗.

Before proving Lemma 7, we first show its implication. Let C∗ denote the center set
given in Lemma 7. Given a cluster Pj ∈ P, we have

Φ(Pj , C∗) ≤ Φ(Pj , cj) =
∑
x∈Pj

d(x, cj) ≤
∑
x∈Pj

(d(x,Γ(Pj)) + d(Γ(Pj), cj))

= ∆(Pj) + |Pj |d(cj ,Γ(Pj)) ≤ ∆(Pj) + ε∆(Pj) + 3(j − 1)ε∆k

k2

≤ ∆(Pj) + ε∆(Pj)
k2 + 3(k − 1)ε∆k

k2 , (1)

where the third step is due to triangle inequality, and the fifth step follows from the assumption
that Lemma 7 is true. Summing both sides of inequality (1) over all Pj ∈ P, we have

k∑
j=1

Φ(Pj , C∗) ≤ ∆k + ε∆k

k2 + 3(k − 1)ε∆k

k
≤ (1 + 3ε)∆k. (2)

This implies that Lemma 7 is sufficient to ensure the approximation guarantee for our
algorithm. We now prove the correctness of Lemma 7.

Proof. (of Lemma 7) We prove the lemma by induction on j. We first consider the case
of j = 1. Our algorithm initially samples a set of N points from P . Let S = {s1, . . . , sN}
denote the set of N points sampled from P . Define N random variables A1, . . . , AN , such
that if si ∈ P1, Ai = 1. Otherwise, Ai = 0. Since |P1| ≥ |P2| ≥ . . . ≥ |Pk|, it is easy to know
that for any constant 0 < i ≤ N , we have

Pr[Ai = 1] = |P1|
|P |
≥ |P1|
|Z|+ k|P1|

≥ 1
m+ k

.

Let A =
∑N
i=1Ai and u =

∑N
i=1E(Ai). We have u ≥ N

m+k ≥
2k8

ε4 . Using Lemma 5, we
get

Pr(A ≥ k8

ε4
) ≥ Pr(A ≥ 1

2u) = 1− Pr(A ≤ 1
2u) ≥ 1− e−u8 ≥ 1− e−k

8/4ε4
>

1
2 .

Q. Feng, Z. Zhang, Z. Huang, J. Xu, and J. Wang 61:7

This implies that with probability at least 1
2 , the set of N points sampled from P contains

more than k8

ε4 points from Pi. By feeding λ = k2

ε into Lemma 6, we know that the inequality
d(c1,Γ(P1)) ≤ ε∆(P1)

k2|P1| holds with probability at least 1
2 , which implies that Lemma 7 holds

for the case j = 1.
We now assume that Lemma 7 holds for j ≤ i− 1 and consider the case of j = i. Define

a multi-set C∗i−1 = {c1, . . . ci−1}, where ct is the nearest point to Γ(Pt) from C∗i−1 for any
1 ≤ t ≤ i − 1. Define Bi = {x ∈ P | Φ(x,C∗i−1) ≤ ri}, where ri = ε∆k

k2|Pi| . It is easy to see
that Bi is a subset of P that consists of the points close to C∗i−1. We distinguish the analysis
into the following two cases.

Case (1): Pi ∩Bi 6= ∅. In this case, Pi contains some points close to C∗i−1. We prove that
one center from C∗i−1 can be used to approximate Γ(Pi).

Case (2): Pi ∩ Bi = ∅. In this case, all the points from Pi are far from the centers in
C∗i−1. We prove that Pi contains a substantial part of P \B. Thus, a subset of Pi can be
randomly sampled from P \B with high probability. By enumerating this subset, a center
can be obtained to approximate Γ(Pi) .

Case (1): Pi ∩ Bi 6= ∅. Let p be an arbitrary point from Pi ∩ Bi and cf be the nearest
point to p in C∗i−1. Let Pf denote the cluster in {P1, . . . , Pi−1} such that d(cf ,Γ(Pf)) is
the smallest value in {d(cf ,Γ(Pj)) | 1 ≤ j ≤ i− 1}. We now prove that cf can be used
to approximate Γ(Pi) by triangle inequality and induction assumption. Observe that

d(Γ(Pi), cf) ≤ d(Γ(Pi), p) + d(p, cf) ≤ d(Γ(Pi), p) + ri ≤ d(Γ(Pf), p) + ri

≤ d(Γ(Pf), cf) + d(cf , p) + ri ≤ d(Γ(Pf), cf) + 2ri

≤ ε∆(Pf) + 3(f − 1)ε∆k

k2|Pf |
+ 2ri

= ε∆(Pf) + 3(f − 1)ε∆k

k2|Pf |
+ 2ε∆k

k2|Pi|
, (3)

where the first step and the fourth step are due to triangle inequality, the second step
follows from the fact that p ∈ Bi, the third step is derived from the fact that p ∈ Pi, the
sixth step follows from the assumption that Lemma 7 holds for j ≤ i− 1, and the last
step follows from the definition of ri. Since f < i, we have |Pf | > |Pi|. This implies that

ε∆(Pf) + 3(f − 1)ε∆k

k2|Pf |
= ε∆(Pf)

k2|Pf |
+ 3(f − 1)ε∆k

k2|Pf |
≤ ε∆(Pf)

k2|Pi|
+ 3(f − 1)ε∆k

k2|Pi|

≤ ε∆k

k2|Pi|
+ 3(i− 1)ε∆k

k2|Pi|
= (3i− 2)ε∆k

k2|Pi|
. (4)

Combining inequalities (3) and (4) together, we get

d(Γ(Pi), cf) ≤ (3i− 2)ε∆k

k2|Pi|
+ 2ε∆k

k2|Pi|
= 3iε∆k

k2|Pi|
≤ ε∆(Pi) + 3iε∆k

k2|Pi|
.

This completes the proof of Lemma 7 in case (1).
Case (2): Pi ∩ Bi = ∅. For this case, we will show that Pi contains a large fraction of

P\Bi. Furthermore, algorithm Random-sampling can find a set Q such that P\Bi ⊆ Q
and |Q| ≤ 2|P\Bi|. Thus, a set S randomly sampled from Q contains a certain number
of points from Pi. By enumerating the subsets of S, we can obtain a subset S′ ⊆ Pi of
size M , which can be used to find the approximate center for Pi by Lemma 6.
We now show that the proportion of the points of Pi in P\Bi is large. We achieve this by
dividing P\Bi into three portions: Z\Bi,

∑i−1
j=1 Pj \Bi, and

∑k
j=i Pj\Bi, and comparing

their sizes with |Pi| respectively.

ISAAC 2019

61:8 Improved Algorithms for Clustering with Outliers

B Claim 8. |Pi|
|P\Bi| ≥

ε
5k2+mε .

Proof. It is easy to show that |Z\Bi| ≤ m. By the definitions of Bi and ri, we know that
Φ(Pj , C∗i−1) ≥ ri|Pj\Bi| for any 1 ≤ j ≤ i− 1, which implies that

i−1∑
j=1
|Pj\Bi| ≤

1
ri

i−1∑
j=1

Φ(Pj , C∗i−1) ≤ (1 + 3ε)∆k

ri
= k2|Pi|(1 + 3ε)|

ε
,

where the second step is due to our induction assumption and a similar argument in obtaining
(2), and the last step is due to the definition of ri.

By the fact that |P1| ≥ . . . ≥ |Pk|, we have
∑k
j=i |Pj\Bi| ≤ (k − i)|Pi|. Thus,

|Pi|
|P\Bi|

= |Pi|
|Z\Bi|+

∑i−1
j=1 |Pj\Bi|+

∑k
j=i |Pj\Bi|

≥ |Pi|
m+ k2|Pi|(1+3ε)|

ε + (k − i)|Pi|

≥ 1
m+ k2(1+3ε)

ε + (k − i)
≥ ε

5k2 +mε
, (5)

where the last inequality is due to the fact that 0 < ε ≤ 1. C

Claim 8 implies that Pi contains a large fraction of P\Bi. The algorithm finds the set
P\Bi by guessing the number of points from P\Bi. Given an integer 1 ≤ j ≤ logn, let
βj denote the n

2j−1 -th largest value in {Φ(x,C∗i−1) | x ∈ P}, and let Qj denote the set of
points x ∈ P with Φ(x,C∗i−1) ≤ βj . We know that there exists a constant l, such that
P\Bi ⊆ Ql and P\Bi * Ql−1. It is easy to know that |P\Bi| ≥ 1

2 |Ql|. By Claim 8, we have
|Pi|
|Ql| ≥

ε
10k2+2mε . Using Lemma 5, we know that with probability at least 1

2 , the set of N
points randomly sampled from Ql contains more than k8

ε4 points from Pj . Using Lemma 6,
we can find an approximate center ci such that d(ci,Γ(Pi)) ≤ ε∆(Pi)

k2|Pi| with probability at least
1
2 . This implies that with probability more than 1

2k , Algorithm Random-sampling identifies
a set C∗ of k centers, such that for any constant 1 ≤ j ≤ k, we have

d(cj ,Γ(Pj)) ≤
ε∆(Pj) + 3(j − 1)ε∆k

k2|Pj |
.

The probability can boosted to a constant by repeatedly running Random-sampling for 2k
times. This completes the proof of Lemma 7. J

We are now ready to prove the correctness of Theorem 1.

I Theorem 1. Given an instance of the Euclidean k-median with m outliers problem and a
parameter 0 < ε ≤ 1, there is a (1 + ε)-approximation algorithm that runs in O(nd(1

ε (k +
m))(kε)O(1)) time.

Proof. Lemma 7 implies that our algorithm gives a (1 + ε)-approximation for the problem.
We focus on the running time of the algorithm. Let T (n, g) be the running time of algorithm
Random-sampling on input (P , g, k, C, ε, U). It is easy to show that T (n, 0) = O(1) and
T (0, g) = 0. In the algorithm, step 5 takes (k+m

ε)O(1) time, step 8 takes (k+m
ε)(kε)O(1) · d time

and yield (k+m
ε)(kε)O(1) candidate centers, and step 9 takes O(ndk) time. Thus we get the

following recurrence.

T (n, g) = (k +m

ε
)O(kε) ·T (n, g−1)+T (n2 , g)+(k +m

ε
)O(1) +(k +m

ε
)(kε)O(1)

·d+O(ndk).

Q. Feng, Z. Zhang, Z. Huang, J. Xu, and J. Wang 61:9

Choose λ = (k+m
ε)(kε)O(1) to be large enough such that

T (n, g) ≤ λT (n, g − 1) + T (n2 , g) + λ(nd).

We claim that T (n, g) ≤ ndλg · 22g2 . This claim holds in the base case. We suppose that the
claim holds for T (n′, g′) ∀n′ < n, ∀g′ < k. It is easy to verify that

ndλg · 22g2
≤ ndλ · λg−1 · 22(g−1)2

+ n

2 dλ
g · 22g2

+ λnd,

which implies that the claim T (n, g) ≤ ndλg · 22g2 holds. Thus our algorithm runs in
nd(1

ε (k +m))(kε)O(1) time. J

4 k-Means Clustering with Outliers in Metric Space

Our approach for the k-means clustering with m outliers problem first samples a set of
O(1

ε (k + m)) points with k-means++. Then, it enumerates all the subset of size k of the
sampled set and finds the one with the minimal clustering cost. We prove that the subset with
minimal clustering cost can achieve (6 + ε)-approximation to the k-means clustering with m
outliers problem. The k-means++ algorithm samples a point with probability proportional
to its squared distance to the nearest previously sampled point, as detailed in Algorithm 2.
For t sampled points, the algorithm runs in O(nt) time.

The notations for k-means follows from that of k-median except for a few modifications.
We use the squared distances from the points to their corresponding centers to measure the
clustering cost. Let (X,d) be a metric space, where d is the distance function defined over
all points in X. Given a point x ∈ X and a set C ⊆ X of cluster centers, let Φ(x,C) =
minc∈C d(x, c)2. Given an instance (P, k,m) of the k-means clustering problem with outliers,
let Z = {z1 . . . zm} be the set of outliers in the optimal solution, and P = {P1 . . . Pk} be
the k-partition of the remaining points in P that minimizes the k-means objective function.
Given a cluster Pi ∈ P and a point c, let Γ(Pi) denote its optimal center. The definitions of
Φ(Pi, C), Φ(Pi, c), and ∆(Pi) stay unchanged. Let b(Pi, α) = {x ∈ Pi | d(x,Γ(Pi))2 ≤ αri}
be the closed ball centered at Γ(Pi) of radius αri, where ri = ∆(Pi)

|Pi| .
We first give an outline of the proof of Theorem 3. Given a cluster Pj ∈ P, it is easy

to see that if the value of α is small enough, then any point from b(Pj , α) can be used to
approximate the centroid of Pj . This implies that we can achieve the desired approximation
ratio through finding a point from b(Pj , α) for each cluster Pj ∈ P. For the points in Pj ,
outliers, and the set of previously sampled points, there are only two possible relations: either
the points in Pj and outliers are far away from the set of previously sampled points, or the
points in Pj and outliers are close to the previously sampled points. For the case when the
points in Pj and outliers are far away from the set of previously sampled points, by applying
k-means++, the points in Pj and outliers can be sampled with high probability, and we
prove that b(Pj , α) contains a substantial portion of the sampled points from Pj . For the
case when the points in Pj and outliers are close to the previously sampled points, we prove
that the probability of sampling a point from b(Pj , α) and outliers is small, and a previously
sampled point can be used to approximate the centroid of Pj .

Let Ci denote the set of points sampled with k-means++ in the first i iterations. Define
Oi = {Pj ∈ P | cost(Pj , Ci) ≤ (6 + ε

2)∆(Pj)}, where cost(Pj , Ci) = minc∈Ci Φ(Pj , c). Let
T be union of the set of points outside Oi and Z. The following lemma shows that if the
proportion of the cost from the points in T to Ci in Φ(P,Ci) is small enough, then the points
in Ci give the desired approximation for the problem.

ISAAC 2019

61:10 Improved Algorithms for Clustering with Outliers

Algorithm 2 The k-means++ algorithm.

Input: a point set P and an integer t > 0.
Output: a point set C = {c1, . . . , ct}.

1. Sample a point x ∈ P uniformly at random, initialize C1 to {x};
2. for i = 2 to t do:
3. Sample a point x ∈ P with probability Φ(x,Ci)

Φ(P,Ci) ;
4. Ci ← Ci−1 ∪ {x};
5. i← i+ 1;
6. return C ← Ci.

I Lemma 9. If
∑
Pj∈P\Oi Φ(Pj , Ci) + Φ(Z,Ci) ≤ ε

53Φ(P,Ci), then
∑k
j=1 cost(Pj , Ci) ≤

(6 + ε)∆k.

We now give two useful properties of the closed ball b(Pj , α). The first property says
that any point in such ball is close to Γ(Pj), which can be derived from triangle inequality
easily. The second property says that the points in the closed ball b(Pj , α) are quite far from
the centers in Ci.

I Lemma 10. For any cluster Pj ∈ P \Oi, we have
(i) For any point c ∈ b(Pj , α), Φ(Pj , c) ≤ (2 + 2α)∆(Pj).
(ii) Let dj denote the squared distance between Γ(Pj) and its nearest point in Ci. Let β =

dj
rj

and 1 < α < β. Then β > 2+ ε
2 and Φ(b(Pj ,α),Ci)

Φ(Pj ,Ci) ≥ 1
2(β+1) (4

√
βj√
α

+βj+lnα−4
√
βj− βj

α).

By feeding α = 2 + ε
4 into Lemma 10, we get that any point from b(Pj , 2 + ε

4) can give a
(6 + ε

2)-approximation for the optimal centroid of Pj . Now we show that Φ(b(Pj ,2+ ε
4),Ci)

Φ(Pj ,Ci) is
bounded by a constant.

I Lemma 11. For any cluster Pj ∈ P\Oi,
Φ(b(Pj ,2+ ε

4),Ci)
Φ(Pj ,Ci) ≥ 3

500 .

Proof. Define Q(α, β) = 1
2(β+1) (4

√
β√
α

+ β + lnα− 4
√
β− β

α). It is easy to verify that Q(2, β)
increases monotonously with increasing value of β for β ≥ 2. Therefore,

∆(Ci,b(Pj , 2 + ε
4))

∆(Ci, Pj)
≥ ∆(Ci,b(Pj , 2))

∆(Ci, Pj)
≥ Q(2, βj) > Q(2, 2) > 3

500 ,

where the first step is derived from the fact that b(Pj , 2 + ε
4) ⊆ b(Pj , 2), the second step

is due to Lemma 10, and the third step follows from the fact that βj > 2, which is derived
from Lemma 10. J

We now prove the correctness of Theorem 2.

I Theorem 2. Given a point set P in a metric space and a parameter 0 < ε ≤ 1, let C be a
set of O(1

ε (k +m)) points sampled from P using k-means++. Then, C contains a subset of
k centers that induces a (6 + ε)-approximation for k-means with m outliers with constant
probability.

Proof. By Lemma 9, we know that if the current set of the points (sampled with k-means++)
does not give the desired approximation ratio, the set of outliers Z or a cluster outside Oi
will be sampled with high probability. In the worst case scenario, we have to pick out k
approximate centers for the clusters in P and all the m outliers.

Q. Feng, Z. Zhang, Z. Huang, J. Xu, and J. Wang 61:11

At each iteration of k-means++, we define a variable Ai. If the algorithm samples a
point from Z or

⋃
Pj∈P\Oi b(Pj , 2 + ε

4), then Ai = 1; otherwise, Ai = 0. By the argument
above, Ai = 1 implies that the algorithm succeeds in finding an outlier or a (6 + ε

2)-
approximation for the optimal center of a cluster in P \Oi. By Lemma 9 and Lemma 11,
we have E[Ai] ≥ 3

500 ·
ε

53 = 3ε
26500 . Let N = 53000(k+m)

3ε , A =
∑N
i=1Ai, and u =

∑N
i=1E(Ai).

Using Lemma 5, we have Pr(A ≥ k +m) ≥ 1− Pr(A ≤ 1
2u) ≥ 1− e−k/4 ≥ 1− e−1/4. This

implies that the set of O(1
ε (k + m)) points sampled with D2-sampling contains a subset

of k points that induces a (6 + ε)-approximation with a high constant probability, which
completes the proof of Theorem 2. J

References
1 Manu Agarwal, Ragesh Jaiswal, and Arindam Pal. k-means++ under Approximation Stability.

Theoretical Computer Science, 588:37–51, 2015.
2 Ankit Aggarwal, Amit Deshpande, and Raivi Kannan. Adaptive sampling for k-means cluster-

ing. In Proc. 12nd Int. Workshop and 13rd Int. Workshop on Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 15–28, 2009.

3 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better Guarantees for
k-Means and Euclidean k-Median by Primal-Dual Algorithms. In Proc. 58th IEEE Symposium
on Foundations of Computer Science, pages 61–72, 2017.

4 Nir Ailon, Ragesh Jaiswal, and Clairire Monteleoni. Streaming k-means approximation. In
Proc. 23rd Annual Conference on Neural Information Processing Systems, pages 10–18, 2009.

5 Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed J Zaki. Robust partitional
clustering by outlier and density insensitive seeding. Pattern Recognition Letters, 30(11):994–
1002, 2009.

6 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

7 David Arthur and Sergei Vassilvitskii. k-means++: the adavantage of careful seeding. In Proc.
18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035, 2007.

8 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristic for k-median and facility location problems. In Proc.
33rd Annual ACM Symposium on Theory of Computing, pages 21–29, 2001.

9 Moses Charikar, Sudipto Guha, and David B. Shmoys. A constant-factor approximation
algorithm for the k-median problem. In Proc. 31st Annual ACM Symposium on Theory of
Computing, pages 1–10, 1999.

10 Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proc. 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 642–651, 2001.

11 Ke Chen. On k-Median clustering in high dimensions. In Proc. 17th ACM-SIAM Symposium
on Discrete Algorithm, pages 1177–1185, 2006.

12 Ke Chen. A constant factor approximation algorithm for k-median clustering with outliers. In
Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms, volume 8, pages 826–835,
2008.

13 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local Search Yields Approximation
Schemes for k-Means and k-Median in Euclidean and Minor-Free Metrics. In Proc. 57th IEEE
Annual Symposium on Foundations of Computer Science, pages 353–364, 2016.

14 Feldman Dan and Leonard J. Schulman. Data reduction for weighted and outlier-resistant
clustering. In Proc. 31st Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1343–1354, 2012.

15 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proc. 23rd Annual Symposium on Computational Geometry, pages
11–18, 2007.

ISAAC 2019

61:12 Improved Algorithms for Clustering with Outliers

16 Zachary Friggstad, Kamyar Khodamoradi, Mohsen Rezapour, and Mohammad R Salavatipour.
Approximation schemes for clustering with outliers. In Proc. 37th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 398–414, 2018.

17 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local Search Yields a
PTAS for k-Means in Doubling Metrics. In Proc. 57th IEEE Annual Symposium on Foundations
of Computer Science, pages 365–374, 2016.

18 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for
facility location. arXiv, 2008. arXiv:0809.2554.

19 Shalmoli Gupta, Ravi Kumar, Kefu Lu, Benjamin Moseley, and Sergei Vassilvitskii. Local
search methods for k-means with outliers. Proceedings of the VLDB Endowment, 10(7):757–768,
2017.

20 Huang ingxiao, Jiang Shaofeng, Li Jian, and Wu Xuan. ε-Coresets for Clustering (with
Outliers) in Doubling Metrics. In Proc. 59th IEEE Annual Symposium on Foundations of
Computer Science, pages 814–825, 2018.

21 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proc. 34th Annual ACM Symposium on Theory of Computing, pages
731–740, 2002.

22 Ragesh Jaiswal and Nitin Garg. Analysis of k-means++ for separable data. In Proc. 15th
Int. Workshop and 16th Int. Workshop on Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 591–602, 2012.

23 Byrka Jaroslaw, Pensyl Thomas, Rybicki Bartosz, Srinivasan Aravind, and Trinh Khoa. An
Improved Approximation for k-Median and Positive Correlation in Budgeted Optimization.
ACM Transactions on Algorithms, 13(2):23, 2017.

24 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant Approximation for k-Median
and k-Means with Outliers via Iterative Rounding. In Proc. 50th Annual ACM Symposium on
Theory of Computing, pages 646–659, 2018.

25 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, 2010.

26 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM Journal
on Computing, 45(2):530–547, 2012.

27 Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

28 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University
Press, 1995.

29 Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The effectiveness
of Lloyd-type methods for the k-means problem. J. ACM, 59(6):28:1–28:22, 2013.

30 Dennis Wei. A constant-factor bi-criteria approximation guarantee for k-means++. In Proc.
30th Annual Conference on Neural Information Processing Systems, pages 604–612, 2016.

http://arxiv.org/abs/0809.2554

Unbounded Regions of High-Order Voronoi
Diagrams of Lines and Segments in Higher
Dimensions
Gill Barequet
Dept. of Computer Science, The Technion – Israel Inst. of Technology, Haifa 3200003, Israel
barequet@cs.technion.ac.il

Evanthia Papadopoulou
Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
evanthia.papadopoulou@usi.ch

Martin Suderland
Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
martin.suderland@usi.ch

Abstract
We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line
segments or lines in a d-dimensional Euclidean space. The unbounded parts of these diagrams can
be encoded by a Gaussian map on the sphere of directions Sd−1. We show that the combinatorial
complexity of the Gaussian map for the order-k Voronoi diagram of n line segments or lines
is O(min{k, n−k}nd−1), which is tight for n−k = O(1). All the d-dimensional cells of the farthest
Voronoi diagram are unbounded, its (d−1)-skeleton is connected, and it does not have tunnels.
A d-cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented
as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi
diagram of lines has exactly n2−n three-dimensional cells, when n ≥ 2. The Gaussian map of the
farthest Voronoi diagram of line segments or lines can be constructed in O(nd−1α(n)) time, while
if d = 3, the time drops to worst-case optimal O(n2).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Voronoi diagram, lines, line segments, higher-order, order-k, unbounded,
hypersphere arrangement, great hyperspheres

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.62

Funding Gill Barequet: BSF Grant 2017684
Evanthia Papadopoulou: Swiss National Science Foundation, project SNF-200021E-154387
Martin Suderland: Swiss National Science Foundation, project SNF-200021E-154387

1 Introduction

The Voronoi diagram of a set of n geometric objects, called sites, is a well-known space-
partitioning structure with numerous applications in diverse fields of science. The nearest
variant partitions the underlying space into maximal regions such that all points within one
region have the same nearest site. The Euclidean Voronoi diagram of points in Rd has been
studied thoroughly, see, e.g., [7, 9, 13, 17]. This not the case, however, for non-point sites,
which have been much less considered.

In the plane, many algorithmic paradigms, such as plane sweep, incremental construction,
and divide-and-conquer have been applied to construct the Voronoi diagram of line segments
in the plane [7]. However, in higher-dimensional spaces, results are quite sparse. Already in
a three-dimensional space, the algebraic description of the features, such as the edges, of
the Voronoi diagram of lines become very complicated [14]. As a result, the combinatorial

© Gill Barequet, Evanthia Papadopoulou, and Martin Suderland;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 62; pp. 62:1–62:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barequet@cs.technion.ac.il
https://orcid.org/0000-0003-0144-7384
mailto:evanthia.papadopoulou@usi.ch
https://orcid.org/0000-0002-6604-6381
mailto:martin.suderland@usi.ch
https://doi.org/10.4230/LIPIcs.ISAAC.2019.62
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 Gaussian Map of order-k Voronoi Diagrams

complexity of this diagram has been a major open problem in computational geometry [21].
There is a gap of an order of magnitude between the Ω(n2) lower bound [3] and the only
known upper bound of O(n3+ε) [25], where n is the number of sites. The gap carries
over (and expands) to the Voronoi diagram of lines in d-space, d ≥ 3, where the known
bounds are Ω(nb d

2 c) [4] and O(nd+ε) [25]. The lower bound is derived from n parallel lines
whose Voronoi diagram has the same complexity as the Voronoi diagram of n points in d−1
dimensional space. For points in Rd, the bound is Θ(nd d

2 e) [7], and for (d−2)-dimensional
hyperplanes, the lower bound is Ω(nd−1) [3]. To the best of our knowledge, no other lower
bound, other than Ω(nd d

2 e), is available for line segments in Rd, d > 3. Better combinatorial
bounds are known only for some restricted cases [6, 10, 18, 19]. A numerically robust algorithm
for computing the Voronoi diagram of lines in 3D has been given by Hemmer et al. [16].

The order-k (resp., farthest) Voronoi diagram of a set of sites is a partition of the
underlying space into regions, such that the points of one region have the same k nearest
sites (resp., same farthest site). Seidel [24] derived exact bounds on the maximal complexity
of the Euclidean farthest Voronoi diagram of points in Rd. Asymptotically, the worst-case
complexity of the latter diagram remains Θ(nd d

2 e). Edelsbrunner and Seidel [13] pointed out
that the order-k Voronoi diagram of points in Rd can be derived from the ≤ k-level of an
arrangement of hyperplanes in Rd+1. Agarwal and Mulmuley provided an algorithm which
computes the ≤k-level of n hyperplanes in Rd in expected O(nb d

2 ckb
d
2 c) time [1, 22]. For

non-point sites, the problems have been mostly considered in the plane.

The farthest Voronoi diagram of n segments in the plane was first studied by Aurenhammer
et al. [5], who gave results on its structure and an algorithm to compute it in O(n logn)
time. The order-k counterpart of this diagram was then considered by Papadopoulou and
Zavershynskyi [23], who showed that its complexity is O(k(n− k)), if segments are disjoint
or touch only at endpoints, and that it can be constructed iteratively in O(k2n logn) time. If
segments intersect, then the number of intersections affects the complexity only if k < n

2 [23].
These diagrams illustrate fundamental structural differences from their counterparts of
points, such as disconnected Voronoi regions and no relation to convex hulls. Naturally, these
differences carry over to higher dimensions, which is the subject of study in this paper.

In three dimensions, the Euclidean farthest-site Voronoi diagram of lines or line segments
has the property that all its three-dimensional cells are unbounded [8]. Barequet and
Papadopoulou [8] used a structure on the sphere of directions, called the Gaussian map,
which reflects the directions under which the cells of this diagram are unbounded.

In this paper, we study the Gaussian map of order-k and farthest Voronoi diagrams
of n line segments and lines as sites in Rd, and characterize the unbounded directions
of the cells in these diagrams. The dimension d is assumed a constant. We derive the
bound O(min{k, n − k}nd−1) on the complexity of the Gaussian map of order-k Voronoi
diagrams for these sites. This implies the same upper bound on the complexity of the
unbounded features of the corresponding order-k Voronoi diagrams. For the farthest-site
diagram (k = n− 1), this is O(nd−1). For segments as sites, we prove that the complexity of
the Gaussian map is Ω(kd−1), which is tight when n − k = O(1). In fact, the complexity
bound is derived by the number of vertices on the Gaussian map. This leads to a lower
bound of Ω(kd−1) on the complexity of the entire order-k Voronoi diagram for line segments.
For the farthest-site Voronoi diagram, this bound becomes Ω(nd−1), which also holds for
lines as sites. As a byproduct, we derive a bound on the complexity of the arrangement of n
great hyperspheres on Sd−1.

G. Barequet, E. Papadopoulou, and M. Suderland 62:3

Table 1 Worst-case complexities of structures induced by a set S of n lines or segments in Rd.

Structure Lower bound Upper bound
GM(VDk(S)) Ω(kd−1)* O(min{k, n−k}nd−1)
GM(FVD(S)) Ω(nd−1) O(nd−1)

VDk(S) Ω(kd−1)* O(min{k, n−k}nd+ε)
FVD(S) Ω(nd−1) O(nd+ε)

∗Only for segments.

s1

s2
s3

reg2({s1, s2})

reg2({s1, s3})

reg2({s2, s3})

reg2({s1, s3})

Figure 1 The order-2 Voronoi diagram (in red) of three segments s1, s2, s3 in the plane.

Further, we describe a transformation that maps a set of lines to a set of segments, such
that the two respective Gaussian maps of order-k Voronoi diagrams are identical. This
transformation can be used to carry lower bounds from lines to segments and upper bounds
from segments to lines. Table 1 summarizes most of the complexity results derived in
this paper.

All the d-dimensional cells of the farthest Voronoi diagram of both lines and segments
are unbounded, its (d−1)-skeleton is connected, and it does not have tunnels. In three
dimensions, the farthest Voronoi diagram of lines has exactly n2−n many 3-dimensional cells,
when n ≥ 2.

We show that we can compute the Gaussian map of this diagram in O(nd−1α(n)) time
by using the algorithm of Edelsbunner et al. [12], which extends to higher dimensions [2, 15],
for computing the envelope of piecewise-linear functions in Rd. In fact, we conjecture that
this bound can be improved to O(nd−1). In three dimensions, we can compute the Gaussian
map of the farthest Voronoi diagram of lines or segments in O(n2) time, which is optimal in
the worst-case.

2 Preliminaries

2.1 Order-k Voronoi Diagrams

Let S be a set of sites in Rd. In this paper, we consider as sites n (possibly intersecting) line
segments or n lines in Rd. The dimension d is considered constant. We denote by d(x, y) the
Euclidean distance between two points x, y ∈ Rd. The distance d(x, s) from a point x ∈ Rd
to a site s ∈ S is defined as d(x, s) = min{d(x, s)|y ∈ s}.

I Definition 1. For a subset of sites H ⊂ S of cardinality |H| = k, the order-k region of H
is the set of points in Rd whose distance to any site in H is smaller than to any site not
in H. It is denoted as regk(H) = {p ∈ Rd | ∀h ∈ H ∀s ∈ S \H : d(p, h) ≤ d(p, s)}.

ISAAC 2019

62:4 Gaussian Map of order-k Voronoi Diagrams

T−1(p)a

b

T (b)

T (a)

T (b)

T (a)p

Figure 2 Point-hyperplane duality applied to segments: (left) Segments in primal space; and
(right) their corresponding wedges in dual space.

The order-k regions of S induce a subdivision in Rd. The induced cell complex is called the
order-k Voronoi diagram of S, denoted by VDk(S). A maximally connected i-dimensional
set of points, which is on the boundary of the same set of order-k regions, is called an
i-dimensional cell of the cell complex. We call the i-dimensional cells of the order-k Voronoi
diagram “i-cells.”

When k = 1, this diagram is the well-known nearest-neighbor Voronoi diagram, denoted
by VD(S). For k = n− 1, it is the farthest site Voronoi diagram, denoted by FVD(S). Its
farthest regions can also be defined directly as freg(h) = {p ∈ Rd | s ∈ S \ {h} : d(p, h) ≥
d(p, s)}.

2.2 Point-Hyperplane Duality
Under the well-known point-hyperplane duality T in Rd, a point p ∈ Rd is transformed
to a non-vertical hyperplane T (p), and vice versa. The transformation maps a point with
coordinates (p1, p2, ..., pd) to the hyperplane T (p) which satisfies the equation
xd = −pd +

∑d−1
i=1 pixi. The transformation is an involution, i.e., T = T−1.

For a segment s = uv, the hyperplanes T (u) and T (v) partition the dual space into four
wedges, among which the lower wedge (resp., the upper wedge) is the one that lies below (resp.,
above) both T (u) and T (v). The apex of the wedge is the intersection of T (u) and T (v).

Let S be a set of n segments, which in dual space corresponds to an arrangement of
lower wedges. Let Lk be the k-th level of that arrangement. Let p be a point on Lk, which
touches the dual wedge of segment s = ab, and let H be the set of segments whose wedges
are below p, see Figure 2. Then, the point p corresponds to a hyperplane T−1(p) which
touches the segment s. The closed halfspace above T−1(p) has a non-empty intersection
with the segments in H. The open halfspace above T−1(p) does not intersect any segment
in S \H. We will use this property when we study the Gaussian map, which is defined in
the next section. Symmetrically for the arrangement of upper wedges.

2.3 Levels in an arrangement of hyperplanes
This section reviews the definition of levels of an arrangement of surfaces, where those
surfaces satisfy some mildness conditions (A1)-(A3) as given in [2]. We will use Theorem 2
by Clarkson and Shor several times in this paper.

The level of a point p ∈ Rd in an arrangement A(Γ) of a set Γ of surface patches is the
number of surfaces of Γ lying vertically below p. For 0 ≤ k < n, the k-level (resp. ≤k-level),
denoted by Ak(Γ) (resp. A≤k(Γ)), is the closure of all points on the surface of Γ whose level
is k (resp. at most k). A face of Ak(Γ) or A≤k(Γ) is a maximal connected portion of a face
of A(Γ) consisting of points having a fixed subset of surfaces lying below them. Let ψk(Γ)
(resp. ψ≤k(Γ)) be the total number of faces in Ak(Γ) (resp. A≤k(Γ)). [2]

G. Barequet, E. Papadopoulou, and M. Suderland 62:5

c1 c2

Figure 3 A cell complex in which none of the cells is unbounded in a specific direction.

I Theorem 2 (Clarkson and Shor [11]). Let G be an infinite family of surfaces satisfying
some mildness assumptions (A1)-(A3) described in [2]. Then for any 0 ≤ k < n− d,

ψ≤k(n, d,G) = O

(
(k + 1)dκ

(
n

k + 1 , d,G
))

,

where κ(n, d,G) is the maximum complexity of the lower envelope of n surfaces in G.

It obviously holds that ψk(Γ) ≤ ψ≤k(Γ).

2.4 Defining the Gaussian Map
Let M be a cell complex in Rd. The complexity of M is the total number of its cells of all
dimensions. The Gaussian map of M encodes information about the unbounded cells of M .
This structure is of particular interest when all cells of M are unbounded. For example, all
the d-dimensional cells of the farthest Voronoi diagram of segments or lines are unbounded.

I Definition 3. A cell c of M is unbounded in direction −→v if in the limit λ → 0, the
intersection of the scaled cell λ · c and the unit sphere Sd−1 is non-empty in direction −→v .

The scaling of cell c can be done with an arbitrary center. The limit limλ→0
(
λc ∩ Sd−1)

should be understood with the concept of the Kuratowski convergence [20], which we briefly
review. For any point x ∈ Rd and subset S ⊂ Rd let d(x,S) = inf{d(x, s)|s ∈ S} be
the distance between x and S. Let Sλ ⊂ Rd be a sequence of compact sets. We say
that Sλ converges to S for λ → 0 iff S = {x ∈ Rd| lim supλ→0 d(x,Sλ) = 0} = {x ∈
Rd| lim infλ→0 d(x,Sλ) = 0}.

Note that the Kuratowski limit does not always need to exist [20]. Consider a cell complex
consisting of 2 cells circling around each other, see Figure 3. The unbounded directions of the
cells of this cell complex would not be defined in this case, because for any cell c ∈ {c1, c2} the
sets {x ∈ Rd| lim supλ→0 d(x, λc ∩ S1)} = ∅ and {x ∈ Rd| lim infλ→0 d(x, λc ∩ S1) = 0} = S1

are not the same. In this paper we only consider cell complexes, where the unbounded
directions of cells are well defined.

It might be tempting to use an alternative simpler definition: A cell c of M is unbounded
in direction −→v if it contains a ray with direction −→v . However, this could cause problems
for cells of dimension < d. For example, the trisector of three lines is in general a non-
linear curve [14], containing no ray, therefore, it would not be unbounded in any direction.
Thus Definition 3 is stronger in that sense and also defines unbounded directions for smaller
dimensional cells.

ISAAC 2019

62:6 Gaussian Map of order-k Voronoi Diagrams

s1 s2

s3
s4

s5

reg2({s1, s2})

reg2({s1, s3})

reg2({s3, s4})

reg2({s2, s3})

reg2({s4, s5})

reg2({s1, s2})

reg2({s1, s3})

reg2({s3, s4}) reg2({s3, s4})

reg2({s4, s5})

reg2({s2, s3})

Figure 4 An order-2 Voronoi diagram VD2({s1, s2, ..., s5}) (left) and its Gaussian map (right).

I Definition 4. The Gaussian map of M , denoted by GM(M), maps each cell in M to its
unbounded directions, which are encoded on the unit sphere Sd−1, see Figure 4. Let c be a
cell of M ; the set of directions, in which c is unbounded, is called the region of c on GM(M).
The part of GM(M) where the d-th coordinate is ≥ 0 (resp., ≤ 0) is called the upper (resp.,
lower) Gaussian map.

The Kuratowski limit is a closed set, if it exists, and therefore, cells of the Gaussian map
are closed. In this paper, we focus on cell complexes, such as the farthest Voronoi diagram
and the order-k Voronoi diagram of lines and segments, where cells have unbounded directions
and the Gaussian map is the respective partition of Sd−1. This partition induces a cell
complex on Sd−1. The collection of cells on the Gaussian map of a Voronoi diagram VDk(S),
which correspond to the same set of sites H ⊂ S, is called the region of H on GM(VDk(S)).

A Gaussian map region of a set of sites may consist of several (d−1)-cells for two reasons:
A region of a set of sites of VDk may split into many d-cells, which all have unbounded
directions on the Gaussian map. Moreover the Gaussian map region of just one d-cell of VDk
can consist of several cells, e.g., reg2({s3, s4}) in Fig. 4.

I Definition 5. A d-cell of the order-k Voronoi diagram is called a tunnel if its set of
unbounded directions, represented as points on its Gaussian map, is not connected.

In Figure 4, one cell forms a tunnel in VD2(S).
The Gaussian map essentially replaces the role of the convex hull in characterizing the

unbounded regions the higher-order Voronoi diagram of VDk(S)), for k > 1.

3 Properties of the Farthest and Order-k Voronoi Diagram

3.1 Combinatorial Properties
It has already been stated [8] that the complexity of the farthest Voronoi diagram is O(n3+ε)
by following the general bound of Sharir [25]. This bound generalizes for the order-k Voronoi
diagram in Rd.

I Theorem 6. The order-k Voronoi diagram of segments and lines in Rd has complex-
ity O(min{k, n− k}nd+ε).

G. Barequet, E. Papadopoulou, and M. Suderland 62:7

t

s

q p

freg(s)
Bp

t

s

q p

freg(s)

Figure 5 The farthest regions contain rays (left) and no farthest region can split the d−1 skeleton
of the farthest Voronoi diagram into 2 parts (right).

Proof. Each site induces a distance function, which maps every point in Rd to its distance
to that site. The general framework of Sharir [25] shows that the complexity of the 0-level
(resp., (n−1)-level) of those distance functions is O(nd+ε). Applying Theorem 2 by Clarkson
and Shor [11], the complexity of the ≤k-level is O(knd+ε) and O((n− k)nd+ε). J

In Section 4 we will prove the following lower bounds. These bounds are meaningful
when k is comparable to n.

I Theorem 7. The complexity of the order-k Voronoi diagram of segments in Rd is Ω(kd−1)
in the worst case. For the farthest Voronoi diagram (k = n−1), this is Ω(nd−1).

3.2 Structural Properties
I Lemma 8. Let S be a set of lines or segments, and let p ∈ freg(s) be a point in the farthest
region of site s. Let t be the point on s, which realizes the distance between s and p. Then,
the entire ray −→r , which emanates from p with direction −→tp, is contained in freg(s).

Proof. The ball Bp, centered at p and of radius |pt|, touches s. Its interior intersects all
other sites in S. In addition, any hyperball centered at any point q 6= p along −→r and of
radius |qt| must be properly enclosing Bp while touching s at t, see Figure 5. Thus, it must
also intersect all sites in S except s. Therefore, freg(s) must contain the entire ray −→r . J

I Corollary 9. Let S be a set of lines and segments. All d-cells of FVD(S) are unbounded.

I Remark 10. The VDk of segments can have bounded regions if d ≤ k ≤ n− 2.

I Definition 11. The i-skeleton of a cell complex M is the union of all j-cells in M with
dimension j ≤ i.

I Theorem 12. Let S be a set of lines or segments in Rd. The (d−1)-skeleton of FVD(S)
is connected.

Proof. Assume, for the sake of contradiction, that the diagram is not connected. Then,
there exists a d-cell c that splits the (d−1)-skeleton into at least two parts. Let s be the
farthest site corresponding to c. The site s does not touch freg(s). Let q be a point, which is
separated from s by c. Let t be a point on s, which realizes the distance between q and s.
Let p be a point on the segment qt in freg(s), see Fig. 5. Then, by Lemma 8, the entire
ray −→r , emanating from p in direction −→pq, is contained in freg(s). In particular, q ∈ freg(s),
which is a contradiction. J

I Remark 13. The (d−1)-skeleton of VDk(S) need not be connected for k ≤ n−2 and S ⊂ R2.

ISAAC 2019

62:8 Gaussian Map of order-k Voronoi Diagrams

P

−→v

HS \H

P+P−

(a) A supporting hyperplane P (in dashed black)
of sites H (in red) in direction −→v .

s

p1

p2

ξ

x

q

GM(FVD(S))

ξ̂

x̂

(b) Construction of the path ξ̂.

Figure 6

4 Line Segments as Sites

Let S be a set of line segments in Rd. We assume that the segments are in general position, i.e.
no (d+1) segment endpoints lie on the same hyperplane. First, we characterize the segments
that induce unbounded regions in the order-k Voronoi diagram in a given direction −→v .

I Definition 14. Let S be a set of segments, and let H be a subset of S. A hyperplane P is
called a supporting hyperplane of H in direction −→v if
1. P is orthogonal to −→v ;
2. The closed halfspace P+, bounded by P and unbounded in direction −→v , intersects each of

the sites in H; and
3. The sites in S \H do not intersect the interior of P+, and at least one site in S \H

touches P .
Figure 6a illustrates a hyperplane supporting three segments.

The following theorem is a generalization of results for the plane [5, 23].

I Theorem 15. A set of segments H, with |H| = k, induces an unbounded region in
direction −→v in the order-k Voronoi diagram of segments S, if and only if there exists a
supporting hyperplane of H in direction −→v .

Proof. Let H be a set of k segments, which has an unbounded d-cell c in direction −→v in the
order-k Voronoi diagram of a set of segments S. Each point in the cell corresponds to the
center of a closed ball which has non-empty intersection with the segments in H, and does
not intersect any of the other segments. By definition, there exists a curve unbounded in
direction −→v , which is contained in c. Any point p on that curve is the center of a closed ball,
which has a non-empty intersection with the segments in H and does not intersect any of the
other segments in its interior. When p moves along the curve to infinity, the ball around p
becomes a halfspace which is orthogonal to −→v . By moving the bounding hyperplane in
direction −−→v until it hits a segment in S \H, we can make it a supporting hyperplane.

Let P be a supporting hyperplane of segments H in direction −→v . Let H ′ ⊆ H be the
subset of segments in H, which touch P . Let x be a point on P , which is closer to all
endpoints of segments in H ′ than those which belong to other segments. Consider the ray r
which emanates from x and is unbounded in direction −→v . On that ray, we find a point y,
which is the center of a closed ball, which touches x and intersects only the segments in H.
Every point z on r beyond the point y has the same properties because the ball keeps growing
on the side P+ and shrinks on the other side. This means that all those points on r beyond y
belong to the order-k region of the set H. J

G. Barequet, E. Papadopoulou, and M. Suderland 62:9

s1
s2

s3

reg3({s1, s2, s3})

Figure 7 An instance of 5 segments (left), which has one region reg3({s1, s2, s3}), shown in blue,
on the Gaussian map of the order-3 Voronoi diagram (right) with high complexity.

I Corollary 16. A supporting hyperplane of H in direction −→v , which touches i segments (at
least one of which is in H), corresponds to a (d−i+1)-cell in VDk(S), which is unbounded
in direction −→v , and to a (d−i)-cell in GM(VDk(S)).

I Theorem 17. Let S be a set of segments. Then, FVD(S) does not have tunnels.

Proof. Let p1, p2 ∈ GM(FVD(S)) be two points representing unbounded directions of a
farthest cell of segment s. These two points represent directions −→r1 ,

−→r2 along which there exist
points x1, x2 ∈ freg(s), for which −→ri = −−→qixi with (i = 1, 2), where qi is the point on s realizing
the distance between xi and s. Since x1 and x2 are contained in the same cell freg(s), there
exists a continuous path ξ connecting the points and being fully contained in freg(s). We
can map every point x ∈ ξ to the direction −→r = −→qx, with q realizing the distance between x
and s. We represent direction −→r as a point p ∈ GM(FVD(S)). Note that p is contained in
a farthest cell of the Gaussian map corresponding to segment s. By continuity, mapping
the whole path ξ to GM(FVD(S)) draws a continuous path ξ̂ between p1 and p2 consisting
solely of points that belong to s. Therefore, the points p1 and p2 belong to the same cell of
the Gaussian map. J

I Remark 18. The order-k Voronoi diagram of segments S can have tunnels, for k ≤ n− d.

The next theorem provides a lower bound on the complexity of the Gaussian map of
order-k Voronoi diagrams. This bound is meaningful if k is comparable to n.

I Theorem 19. Let S be a set of n line segments in Rd. A single region of the Gaussian
map of the order-k Voronoi diagram of S can have Ω(kd−1) many vertices. In particular,
the GM(VDk(S)) has Ω(kd−1) complexity in the worst-case.

Proof. The bound is shown by a generalization of examples provided for R2 [5, 23]. Place k
long segments connecting almost antipodal points on a (d−1)-dimensional hypersphere
and n−k additional short segments near the center of the hypersphere, see Figure 7.
Any (d−1)-tuple of long segments, together with one specific short segment, define a sup-
porting hyperplane corresponding to an unbounded edge of the order-k Voronoi diagram
of S. The supporting hyperplane is spanned by an endpoint of each of the d segments.
An unbounded edge of the diagram manifests itself as a vertex in GM(VDk(S)). All these
vertices are on the boundary of the Gaussian map region of the long segments. J

We can now prove Theorem 7.

ISAAC 2019

62:10 Gaussian Map of order-k Voronoi Diagrams

Proof of Thm. 7. Let S be a set of n line segments in Rd. In Theorem 19, it was stated
that there can be Ω(kd−1) vertices in GM(VDk(S)) in the worst-case. Each vertex of the
Gaussian map corresponds to an edge in the VDk(S). On the other hand, an edge of the
diagram corresponds to at most two vertices in the Gaussian map. Therefore, the diagram
contains Ω(kd−1) edges. J

I Theorem 20. The complexity of the Gaussian map of the order-k Voronoi diagram of n
segments in Rd is O(min{k, n−k}nd−1).

Proof. We use the point-hyperplane duality transformation T , which establishes a 1-1
correspondence between the upper Gaussian map of the order-k Voronoi diagram and
the k-th level of the arrangement of d-dimensional wedges. (The lower Gaussian map is
constructed in the same manner.) Each segment is mapped to a lower wedge in the dual
space, which is bounded by two half-hyperplanes. Let p be a point in dual space. Each wedge
below p corresponds to a segment in primal space, which has a non-empty intersection with
the open halfspace above T−1(p). Each wedge touching p corresponds to a segment in primal
space, which is touching the closed halfspace above T−1(p). Each wedge above p corresponds
to a segment in primal space, whose intersection with the closed halfspace above T (p) is empty.
Therefore, every point on the k-th level of the arrangement of the lower wedges corresponds
to a hyperplane in primal space, which supports k segments. The upper or lower envelope of
those wedges, each composed of two half-hyperplanes, has complexity O(nd−1) [12].

Using the bound on the lower envelope, we can now also bound the complexity of
the ≤k-level of the arrangement of lower wedges. We apply Theorem 2 by Clarkson and
Shor [11] to derive a complexity of O((k+ 1)d(n

k+1)d−1) = O(knd−1). We can derive a similar
upper bound of O((n − k)nd−1) by using the complexity of the upper envelope of lower
wedges as a basis. The upper Gaussian map of the order-k Voronoi diagram corresponds to
the k-level of the lower wedges. Combining the two bounds completes the proof. J

The bounds in Theorems 19 and 20 are tight for n−k = O(1). In this case, the complexity
of the Gaussian map of VDk of n segments is Θ(nd−1) in the worst case.

I Theorem 21. Let S be a set of n line segments in R3. Then, GM(FVD(S)) can be
constructed in worst-case optimal O(n2) time.

Proof. We dualize the segments into lower wedges. The upper Gaussian map of the segments
corresponds to the upper envelope of the lower wedges in dual space (recall the proof
of Thm. 20). The upper envelope of those wedges, each composed of two halfplanes, is
constructed in O(n2) time [12]. The lower Gaussian map is constructed in the same way. J

The algorithm of Edelsbrunner et al. [12] for piecewise-linear functions can be extended
to higher dimensions, running in O(α(n)nd−1) time [2, 15]. In fact, the complexity of the
upper envelope of half-hyperplanes is only O(nd−1) [12]. We suspect that the same algorithm
runs in O(nd−1) time when it computes the upper envelope of half-hyperplanes, as in R3,
since the complexity of the envelope does not contain the α(n) factor. If so, the Gaussian
map of the farthest Voronoi diagram can be constructed in O(nd−1) time.

5 Lines as Sites

Let S be a set of lines in Rd. We assume that the lines are in general position, i.e., the lines
are non-intersecting and the directions of any d lines are linearly independent. In this section
we derive similar conditions for the order-k Voronoi diagram of lines to have unbounded cells
in some direction. We omit proofs whose principles are similar to the ones of segments.

G. Barequet, E. Papadopoulou, and M. Suderland 62:11

s

−→v
6 (−→v , s)

(a) (b)

Figure 8 (a) The angular distance ∠(−→v , s) between line s and direction −→v .
(b) GM(FVD) of four lines in R3. The farthest regions of the lines are colored in different colors.
Vertices of anomaly are shown with squared boxes; proper vertices with disks.

I Definition 22. For a line s and a direction −→v , the angular distance ∠(−→v , s) is the smallest
angle between −→v and the direction of s, see Figure 8a.

I Definition 23. Let S be a set of lines, and let H be a subset of S. An angle β is a
supporting angle of H in direction −→v if
1. The angular distance between −→v and any of the lines in H is at most β; and
2. The angular distance between −→v and any of the lines in S \H is at least β, and at least

one site in S \H realizes the angular distance β.

I Theorem 24. A set of lines H, with |H| = k, induces an unbounded region in direction −→v
in VDk(S) if and only if there exists a supporting angle of H in direction −→v .

The proof of the above theorem is essentially the same as that of Theorem 15, with a
supporting hyperplane replaced by a supporting angle, and intersections with a halfspace
replaced by angular distances.

I Corollary 25. A supporting angle of H, which is realized by i lines (at least one of which
is in H), corresponds to an unbounded (d−i+1)-cell in the order-k Voronoi diagram of S.

All d-cells, which are unbounded in the same direction −→v , touch at a common cell. This
cell is determined by the lines, which have the same angular distance to −→v . A cell, which is
equidistant to i lines, is d−i+1-dimensional.

I Theorem 26. A supporting angle β of H in direction −→v , which is realized by i lines
(of which, at least one belongs to H), corresponds to a (d−i)-cell (resp., (d−i−1)-cell)
in GM(VDk(S)) if β < π/2 (resp., β = π/2).

Typically, i-cells of the Gaussian map correspond to (i+1)-cells of the corresponding
Voronoi diagram. The only exceptions are cells whose supporting angle is π/2, and, thus,
they correspond to (i+2)-cells of VDk.

I Definition 27. The i-cells of the Gaussian map, i < d−1, which correspond to a supporting
angle of π/2, are called cells of anomaly. All other cells are called proper.

ISAAC 2019

62:12 Gaussian Map of order-k Voronoi Diagrams

s1
s2

s3

s4

s1
s2

s3

s4
O

r = 0.5

Figure 9 (Left) Lines S and their (center) transformed segments τ(S) have identical (right)
Gaussian maps GM(VD2(S)) = GM(VD2(τ(S))).

In R3, the only cells of anomaly are vertices, see Figure 8b. Such a vertex corresponds to
a direction in which the bisector of two lines seems to be self-intersecting. The bisector of two
lines s, s′ is a hyperbolic paraboloid. Seen ”from infinity“ this hyperbolic paraboloid looks
like two intersecting planes. The intersection of those planes is a line l, which is unbounded
in two antipodal directions −−→v ,−→v , which are the vertices of anomaly on the Gaussian map.
One of the lines s, s′ is actually strictly closer to direction −→v than the other. Only ”at
infinity“ both lines seem to have equal distance in direction −→v .

In general space Rd, the i-cells of anomaly on the Gaussian map correspond to (i+2)-cells
in the order-k Voronoi diagram. Looking at the Gaussian map, these (i+2)-cells seem as if
they intersect, however, they do not intersect in the actual diagram. Let −→v be the direction
of a cell of anomaly. The lines, which are orthogonal to −→v , can actually be ordered along
direction −→v . Let j be the number of lines that are not orthogonal to −→v . The region of
those j lines, together with the closest k−j orthogonal lines, is unbounded in direction −→v
and, moreover, is not split by an (i+1)-cell in direction −→v .

We define a transformation τ that maps lines to segments. Each line ` is mapped to a
unit segment τ(`) that has the same direction as the line and the origin O as midpoint, see
Figure 9. When applied to a set of lines, the result of the transformation is a set of segments
in non-general position, but this does not affect the upper bound on the complexity of the
Gaussian map.

I Theorem 28. Let S be a set of lines. Then, GM(VDk(S)) = GM(VDk(τ(S))).

As a consequence, lower bounds on the worst-case complexity of the Gaussian map,
derived for lines as sites, carry over to segments as sites. In the same manner, all upper
bounds on the worst-case complexity on the Gaussian map for segments also apply to lines.
In addition, the algorithm of Theorem 21 to construct the Gaussian map of the farthest
Voronoi diagram extends to lines as sites. (Note that the algorithm does not require the
segments to be in general position.)

I Corollary 29. The Gaussian map of the order-k Voronoi diagram of n lines in Rd
has O(min{k, n−k}nd−1) complexity. The Gaussian map can be constructed in O(nd−1α(n))
time, while if d = 3, the time drops to O(n2).

I Theorem 30. Let S be a set of lines. Then, FVD(S) does not have tunnels.

A similar construction, as in Remark 18, can be used for showing that VDk(S) can have
tunnels for a set of lines S and k ≤ n− d.

The following result stands by its own and will be used to analyze the number of d-cells
in the farthest Voronoi diagram of lines and its Gaussian map. We look at an arrangement
of great spheres with same center and radius on a (d−1)-sphere. For example, consider

G. Barequet, E. Papadopoulou, and M. Suderland 62:13

O

x2 = 1

x2 = −1

Figure 10 Example for d = 2 and n = 3: Three 0-dimensional unit spheres (blue, green, red)
split the unit circle into 6 arcs.

the 2-dimensional unit sphere S2 in R3 and n great circles on it. We answer the following
question: “Into how many 2-dimensional faces the unit sphere is split by the great circles?”
We assume that no d great spheres have a point in common.

I Theorem 31. Let S be a set of n many (d−2)-dimensional unit hyperspheres in Rd, centered
at the origin. Then, the arrangement of S on the (d−1)-dimensional unit hypersphere Sd−1

contains
(
n−1
d−1
)

+
∑d−1
k=0

(
n
k

)
many (d−1)-cells.

Theorem 31 can be proven by bijectively mapping the upper and lower hemisphere
of Sd−1 to two parallel hyperplanes, see Figure 10. The (d−2)-dimensional hyperspheres
become hyperplanes of the same dimension. We add the (d−1)-cells of each arrangement of
(d−2)-dimensional hyperplanes, while making sure that we do not count any cell twice.

I Theorem 32. Let S be a set of n lines. The Gaussian map of FVD(S) has Θ(nd−1)
many (d−1)-cells.

Proof. We consider, for each line, the orthogonal directions. We get n many (d−2)-
dimensional hyperspheres in total. Each of those hyperspheres is partitioned into

(
n−2
d−2
)

+∑d−2
k=0

(
n−1
k

)
parts by the other (n−1)-hyperspheres due to Theorem 31. A direction

in one of those parts is orthogonal to exactly one line in S and, hence, is also part
of the farthest Voronoi region of that line. In total, all n hyperspheres are split into
n
((
n−2
d−2
)

+
∑d−2
k=0

(
n−1
k

))
= Θ(nd−1) parts. Now, consider a direction −→v not on any hyper-

sphere but in the farthest region of s. The shortest path on the Gaussian map from −→v to
the hypersphere corresponding to line s contains only directions of freg(s). Therefore, there
are no additional (d−1)-cells not containing a part of a hypersphere. J

It is easy to prove that all cells of GM(FVD(S)) are convex, in the sense that the shortest
path between any two points of a cell is contained in that cell.

For a set of lines S in R3, we count the number of 2-cells of GM(FVD(S)) and subtract
the number of vertices of anomaly to derive the exact number of 3-cells in FVD(S).

I Theorem 33. Let S be any set of n ≥ 2 lines in R3. Then, FVD(S) has exactly (n2−n)
many 3-cells.

An unbounded i-cell of a cell complex M may correspond to many (i−1)-cells in the
Gaussian map of M . Therefore, we need to study carefully the Gaussian map in order to
derive a lower bound on the complexity of M .

I Theorem 34. The worst-case complexity of FVD of n lines is Ω(nd−1).

Proof. We bound the number of proper vertices (not those of anomaly) of GM(FVD(S)) from
below. Those vertices correspond to unbounded edges of the farthest Voronoi diagram. The
set of orthogonal directions to a line is a hypersphere of dimension d−2 in GM(FVD(S)). By

ISAAC 2019

62:14 Gaussian Map of order-k Voronoi Diagrams

Theorem 31, the hyperspheres of all lines partition GM(FVD(S)) into
(
n−1
d−1
)

+
∑d−1
k=0

(
n
k

)
=

Ω(nd−1) many (d−1)-dimensional parts. If n ≥ d (which is the case in the asymptotic
analysis), each of those parts contains at least one proper vertex. Then, FVD(S) has an
unbounded edge in that direction. Each edge is unbounded in at most two directions. Hence,
the number of edges can be bounded from below by half of the number of proper vertices of
the Gaussian map. Thus, the number of edges in FVD(S) is Ω(nd−1). J

6 Conclusion and Open Problems

We derived bounds on the complexity of the order-k Voronoi diagram and its Gaussian map,
listed in Table 1. The results are tight for large values of k such as k = n− 1. Moreover we
provided an algorithm to compute the Gaussian map of the farthest Voronoi diagram in three
dimensional space in worst-case optimal time. It remains an open problem to determine
whether or not the lower bounds on the complexity of VDk and GM(VDk) for segments, as
listed in Table 1, extend also to lines, when k < n− 1.

There is a gap between our lower and upper bounds on the complexity of the Gaussian
map of the order-k Voronoi diagram. What is the correct bound and how can the diagram
be constructed efficiently? This question is related to problem 3 in [21]: ”What is the
combinatorial complexity of the Voronoi diagram of a set of lines (or line segments) in three
dimensions“?

We believe that knowing the structure of the Gaussian map of the order-k Voronoi
diagram can help in analyzing the whole diagram. It may also be useful in constructing the
full diagram. We leave this question for further research.

References
1 Pankaj K. Agarwal, Mark de Berg, Jirí Matousek, and Otfried Schwarzkopf. Constructing

Levels in Arrangements and Higher Order Voronoi Diagrams. SIAM J. Comput., 27(3):654–667,
1998. doi:10.1137/S0097539795281840.

2 Pankaj K. Agarwal and Micha Sharir. Arrangements and their applications. In Handbook of
computational geometry, pages 49–119. Elsevier, 2000.

3 Boris Aronov. A lower bound on Voronoi diagram complexity. Inf. Process. Lett., 83(4):183–185,
2002. doi:10.1016/S0020-0190(01)00336-2.

4 Boris Aronov. Personal communication, 2019.
5 Franz Aurenhammer, Robert L. S. Drysdale, and Hannes Krasser. Farthest line segment

Voronoi diagrams. Information Processing Letters, 100(6):220–225, 2006. doi:10.1016/j.ipl.
2006.07.008.

6 Franz Aurenhammer, Bert Jüttler, and Günter Paulini. Voronoi diagrams for parallel halflines
and line segments in space. In Yoshio Okamoto and Takeshi Tokuyama, editors, 28th Inter-
national Symposium on Algorithms and Computation, ISAAC 2017, December 9-12, 2017,
Phuket, Thailand, volume 92 of LIPIcs, pages 7:1–7:10. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. doi:10.4230/LIPIcs.ISAAC.2017.7.

7 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi diagrams and Delaunay triangu-
lations. World Scientific Publishing Company, 2013.

8 Gill Barequet and Evanthia Papadopoulou. On the Farthest-Neighbor Voronoi Diagram of
Segments in Three Dimensions. In 10th International Symposium on Voronoi Diagrams in
Science and Engineering (ISVD), pages 31–36. IEEE, 2013.

9 Bernard Chazelle. An Optimal Convex Hull Algorithm and New Results on Cuttings (Extended
Abstract). In 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto
Rico, pages 29–38. IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.185345.

https://doi.org/10.1137/S0097539795281840
https://doi.org/10.1016/S0020-0190(01)00336-2
https://doi.org/10.1016/j.ipl.2006.07.008
https://doi.org/10.1016/j.ipl.2006.07.008
https://doi.org/10.4230/LIPIcs.ISAAC.2017.7
https://doi.org/10.1109/SFCS.1991.185345

G. Barequet, E. Papadopoulou, and M. Suderland 62:15

10 L. Paul Chew, Klara Kedem, Micha Sharir, Boaz Tagansky, and Emo Welzl. Voronoi diagrams
of lines in 3-space under polyhedral convex distance functions. J. Algorithms, 29(2):238–255,
1998. doi:10.1006/jagm.1998.0957.

11 Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in computational
geometry, II. Discrete & Computational Geometry, 4(5):387–421, 1989.

12 Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. The Upper Envelope of Piecewise
Linear Functions: Algorithms and Applications. Discrete & Computational Geometry, 4:311–
336, 1989. doi:10.1007/BF02187733.

13 Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements. Discrete &
Computational Geometry, 1:25–44, 1986. doi:10.1007/BF02187681.

14 Hazel Everett, Daniel Lazard, Sylvain Lazard, and Mohab Safey El Din. The Voronoi Diagram
of Three Lines. Discrete & Computational Geometry, 42(1):94–130, 2009.

15 Dan Halperin and Micha Sharir. Arrangements. Handbook of discrete and computational
geometry, third edition, pages 723–762, 2017.

16 Michael Hemmer, Ophir Setter, and Dan Halperin. Constructing the Exact Voronoi Diagram of
Arbitrary Lines in Three-Dimensional Space - with Fast Point-Location. In Mark de Berg and
Ulrich Meyer, editors, Algorithms - ESA 2010, 18th Annual European Symposium, Liverpool,
UK, September 6-8, 2010. Proceedings, Part I, volume 6346 of Lecture Notes in Computer
Science, pages 398–409. Springer, 2010.

17 Victor Klee. On the complexity of d-dimensional Voronoi diagrams. Archiv der Mathematik,
34(1):75–80, 1980.

18 Vladlen Koltun and Micha Sharir. Three dimensional Euclidean Voronoi diagrams of lines
with a fixed number of orientations. In Ferran Hurtado, Vera Sacristán, Chandrajit Bajaj, and
Subhash Suri, editors, Proceedings of the 18th Annual Symposium on Computational Geometry,
Barcelona, Spain, June 5-7, 2002, pages 217–226. ACM, 2002.

19 Vladlen Koltun and Micha Sharir. Polyhedral Voronoi Diagrams of Polyhedra in Three
Dimensions. Discrete & Computational Geometry, 31(1):83–124, 2004. doi:10.1007/
s00454-003-2950-5.

20 Kazimierz Kuratowski. Topology. Academic Press, 1966.
21 Joseph S. B. Mitchell and Joseph O’Rourke. Computational Geometry Column 42. In-

ternational Journal of Computational Geometry & Applications, 11(5):573–582, 2001. doi:
10.1142/S0218195901000651.

22 Ketan Mulmuley. On levels in arrangements and Voronoi diagrams. Discrete & Computational
Geometry, 6(3):307–338, 1991.

23 Evanthia Papadopoulou and Maksym Zavershynskyi. The Higher-Order Voronoi Diagram of
Line Segments. Algorithmica, 74(1):415–439, 2016. doi:10.1007/s00453-014-9950-0.

24 Raimund Seidel. On the Number of Faces in Higher-Dimensional Voronoi Diagrams. In
D. Soule, editor, Proceedings of the Third Annual Symposium on Computational Geometry,
Waterloo, Ontario, Canada, 1987, pages 181–185. ACM, 1987. doi:10.1145/41958.41977.

25 Micha Sharir. Almost Tight Upper Bounds for Lower Envelopes in Higher Dimensions.
Discrete & Computational Geometry, 12:327–345, 1994. doi:10.1007/BF02574384.

ISAAC 2019

https://doi.org/10.1006/jagm.1998.0957
https://doi.org/10.1007/BF02187733
https://doi.org/10.1007/BF02187681
https://doi.org/10.1007/s00454-003-2950-5
https://doi.org/10.1007/s00454-003-2950-5
https://doi.org/10.1142/S0218195901000651
https://doi.org/10.1142/S0218195901000651
https://doi.org/10.1007/s00453-014-9950-0
https://doi.org/10.1145/41958.41977
https://doi.org/10.1007/BF02574384

Neighborhood Inclusions for Minimal Dominating
Sets Enumeration: Linear and Polynomial Delay
Algorithms in P7-Free and P8-Free Chordal Graphs
Oscar Defrain
Université Clermont Auvergne, France
oscar.defrain@uca.fr

Lhouari Nourine
Université Clermont Auvergne, France
lhouari.nourine@uca.fr

Abstract
In [M. M. Kanté, V. Limouzy, A. Mary, and L. Nourine. On the enumeration of minimal dominating
sets and related notions. SIAM Journal on Discrete Mathematics, 28(4):1916–1929, 2014.] the
authors give an O(n + m) delay algorithm based on neighborhood inclusions for the enumeration
of minimal dominating sets in split and P6-free chordal graphs. In this paper, we investigate
generalizations of this technique to Pk-free chordal graphs for larger integers k. In particular, we
give O(n + m) and O(n3 ·m) delays algorithms in the classes of P7-free and P8-free chordal graphs.
As for Pk-free chordal graphs for k ≥ 9, we give evidence that such a technique is inefficient as a key
step of the algorithm, namely the irredundant extension problem, becomes NP-complete.

2012 ACM Subject Classification Mathematics of computing → Graph enumeration

Keywords and phrases Minimal dominating sets, enumeration algorithms, linear delay enumeration,
chordal graphs, forbidden induced paths

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.63

Acknowledgements The authors are supported by the ANR project GraphEn ANR-15-CE40-0009.

1 Introduction

We consider the problem of enumerating all inclusion-wise minimal dominating sets of a given
graph, denoted by Dom-Enum. A dominating set in a graph G is a set of vertices D such that
every vertex of G is either in D or is adjacent to some vertex of D. It is said to be minimal
if it does not contain any dominating set as a proper subset. To this date, it is open whether
Dom-Enum admits an output-polynomial time algorithm. An enumeration algorithm is said
to be running in output-polynomial time if its running time is bounded by a polynomial in the
combined size of the input and the output. It is said to be running in incremental-polynomial
time if the running times between two consecutive outputs and after the last output are
bounded by a polynomial in the combined size of the input and already output solutions. If
the running times between two consecutive outputs and after the last output are bounded
by a polynomial in the size of the input alone, then the algorithm is said to be running
with polynomial delay; see [6, 10]. Recently, it has been proved in [12] that Dom-Enum
is equivalent to the problem of enumerating all inclusion-wise minimal transversals of a
hypergraph, denoted by Trans-Enum. The best known algorithm for this problem is due to
Fredman and Khachiyan [8] and runs in incremental quasi-polynomial time. Nevertheless,
several classes of graphs were shown to admit output-polynomial time algorithms. For
example, it has been shown that there exist output-polynomial time algorithms for log(n)-
degenerate graphs [7], triangle-free graphs [3], and recently for Kt-free for any fixed t ∈ N,
diamond-free and paw-free graphs [2]. Incremental-polynomial time algorithms are known

© Oscar Defrain and Lhouari Nourine;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 63; pp. 63:1–63:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

oscar.defrain@uca.fr
lhouari.nourine@uca.fr
https://doi.org/10.4230/LIPIcs.ISAAC.2019.63
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Neighborhood Inclusions for Minimal Dominating Sets Enumeration

for chordal bipartite graphs [9] and graphs of bounded conformality [4]. Polynomial-delay
algorithms are known for degenerate graphs [7], line graphs [14], and chordal graphs [13].
Linear-delay algorithms are known for permutation and interval graphs [11], graphs with
bounded clique width [5], split and P6-free chordal graphs [12].

In this paper, we investigate the enumeration of minimal dominating sets from their
intersection with redundant vertices, i.e., vertices that have an inclusion-wise non-minimal
neighborhood in the graph. This technique was first introduced in [12] for the enumeration of
minimal dominating sets in split and P6-free chordal graphs. We investigate generalizations of
this technique to Pk-free chordal graphs for larger integers k. In particular, we give O(n+m)
and O(n3 ·m) delays algorithms in the classes of P7-free and P8-free chordal graphs, where n
and m respectively denote the number of vertices and edges in the graph. Our algorithms rely
on two main properties. The first one is that the intersections of minimal dominating sets
with redundant vertices form an independence system and an accessible set system in P7-free
and P8-free chordal graphs. The second is that the connected components obtained after
removing redundant vertices in P7-free and P8-free chordal graphs are respectively P3-free
and P4-free chordal. As for Pk-free chordal graphs for k ≥ 9, we give evidence that such
a technique is inefficient as a key step of the algorithm, namely the irredundant extension
problem, becomes NP-complete.

The rest of the paper is organized as follows. In Section 2 we introduce definitions
and preliminary notions. In Section 3 we describe the general algorithm that we consider
throughout the paper and that can be decomposed into two distinct parts: redundant parts
enumeration, and irredundant extensions enumeration. In Section 4 we prove properties on
chordal graphs that depend on the size of a longest induced path in the graph. Section 5 is
devoted to the complexity analysis of the first part of the algorithm, while Section 6 consider
the second. We conclude in Section 7 by discussing the outlooks of such a technique.

2 Preliminaries

In this paper, all graphs are considered finite, undirected, simple, and loopless. For a graph
G = (V (G), E(G)), V (G) is its set of vertices and E(G) ⊆ {{x, y} | x, y ∈ V (G), x 6= y} is
its set of edges. Edges may be denoted by xy (or yx) instead of {x, y}. Two vertices x, y of G
are called adjacent if xy ∈ E(G). A clique in a graph G is a set of pairwise adjacent vertices.
An independent set in a graph G is a set of pairwise non-adjacent vertices. The subgraph of
G induced by X ⊆ V (G), denoted by G[X], is the graph (X,E ∩ {{x, y} | x, y ∈ X, x 6= y});
G − X is the graph G[V (G) \ X]. An induced path (resp. induced cycle) in G is a path
(resp. cycle) that is an induced subgraph of G. We denote by Pk an induced path on k

vertices. We call hole (or chordless cycle) an induced cycle of size at least four. A graph G is
split if its vertex set can be partitioned into a clique and an independent set. It is chordal if
it has no chordless cycle. It is called Pk-free if it has no induced path on k vertices.

Let G be a graph and x ∈ V (G) be a vertex of G. The neighborhood of x is the set
N(x) = {y ∈ V (G) | xy ∈ E(G)}. The closed neighborhood of x is the set N [x] = N(x)∪{x}.
For a subset X ⊆ V (G) we define N [X] =

⋃
x∈X N [x] and N(X) = N [X] \X. In case of

ambiguity or when several graphs are considered, we shall note NG[x] the neighborhood of
x in G. The degree of x is defined by deg(x) = |N(x)|. We say that x is complete to X if
X ⊆ N(x), and that it is partially adjacent to X if it is adjacent to an element of X but not
complete to X. Let D,X ⊆ V (G) be two subsets of vertices of G. We say that D dominates
X if X ⊆ N [D]. It is inclusion-wise minimal if X 6⊆ N [D \ {x}] for any x ∈ D. We say
that D dominates x if it dominates {x}. A (minimal) dominating set of G is a (minimal)

O. Defrain and L. Nourine 63:3

dominating set of V (G). The set of all minimal dominating sets of G is denoted by D(G),
and the problem of enumerating D(G) given G by Dom-Enum. Let x be a vertex of D.
A private neighbor of x w.r.t. D in G is a vertex u of G that is only adjacent to x in D, that
is, such that N [u] ∩D = {x}. Note that x can be its own private neighbor (in that case
we say that x is self-private). The set of all private neighbors of x w.r.t. D is denoted by
Priv(D,x). It is well known that a subset D ⊆ V (G) is a minimal dominating set of G if
and only if it dominates G, and for every x ∈ D, Priv(D,x) 6= ∅.

Let x be a vertex of G. We say that x is irredundant if it is minimal with respect to
neighborhood inclusion. In case of equality between minimal neighborhoods, exactly one
vertex is considered as irredundant. We say that x is redundant if it is not irredundant.
Then to every redundant vertex y corresponds at least one irredundant vertex x such that
N [x] ⊆ N [y], and no vertex y is such that N [y] ⊂ N [x] whenever x is irredundant. The
set of irredundant vertices of G is denoted by IR(G), and the set of redundant vertices by
RN(G). We call irredundant component a connected component of G[IR(G)]. For a subset
D of vertices of G we note DRN = D ∩RN(G) its intersection with redundant vertices, and
DIR = D ∩ IR(G) its intersection with irredundant vertices. Then DRN and DIR form a
bipartition of D. For a subset D and a vertex x ∈ D, we call irredundant private neighbors of
x w.r.t. D the elements of the set PrivIR(D,x) = Priv(D,x) ∩ IR(G). In the remaining of
the paper we shall note DRN (G) = {DRN | D ∈ D(G)} and refer to this set as the redundant
parts of minimal dominating sets of G. We call irredundant extension of A ∈ DRN (G) a set
I ⊆ IR(G) such that A ∪ I ∈ D(G), and note DIR(A) the set of all such sets. Observe that
|DRN (G)| ≤ |D(G)| and that this inequality might be sharp (take a star graph), or strict
(take a path on six vertices). We end the preliminaries stating general properties that will be
used throughout the paper.

I Proposition 1. Let G be a graph. Then IR(G) dominates G, hence ∅ ∈ DRN (G).

Proof. Take any vertex x of G. Either it is irredundant, or not. If it is then it is dominated
by IR(G). If not then by definition there exists y ∈ IR(G) such that N [y] ⊆ N [x], and it is
dominated by IR(G). Consequently, IR(G) dominates G and thus there exists D ⊆ IR(G)
such that D ∈ D(G) and DRN = ∅. Hence ∅ ∈ DRN (G). J

I Proposition 2. Let G be a graph and D ⊆ V (G). Then D is a minimal dominating set of
G if and only if it dominates IR(G) and PrivIR(D,x) 6= ∅ for every x ∈ D.

Proof. We prove the first implication. Let D ∈ D(G). Clearly D dominates IR(G). Let
us assume for contradiction that PrivIR(D,x) = ∅ for some x ∈ D. We first exclude the
case where x is self-private. If x is self-private then it is redundant and it has a neighbor
y ∈ IR(G) such that N [y] ⊆ N [x]. Since by hypothesis PrivIR(D,x) = ∅, y is dominated by
some z ∈ D, x 6= z. However, since N [y] ⊆ N [x] then zx ∈ E(G) and x is not self-private, a
contradiction. Consequently x has a neighbor u ∈ D, and a private neighbor v in RN(G).
Let w ∈ IR(G) such that N [w] ⊆ N [v]. Such a vertex exists since v is redundant. Two cases
arise depending on whether w = x or w 6= x. In the first case we conclude that uv ∈ E(G),
hence that v is not a private neighbor of x, a contradiction. In the other case, observe that
since w is irredundant it cannot be a private neighbor of x (if ever it was adjacent to x).
Hence it must be dominated by some z ∈ D, z 6= x (possibly z = w). Since N [w] ⊆ N [v], z
is adjacent to v, hence v is not a private neighbor of x, a contradiction.

As for the other implication, observe that if an irredundant neighborhood N [x], x ∈ IR(G)
is intersected by some set D ⊆ V (G), then every neighborhood N [y] such that N [x] ⊆ N [y]
is also intersected by D. Now if D dominates IR(G), then it intersects every irredundant

ISAAC 2019

63:4 Neighborhood Inclusions for Minimal Dominating Sets Enumeration

neighborhood. As for every y ∈ RN(G) there exists x ∈ IR(G) such that N [x] ⊆ N [y] we
conclude that D dominates G whenever it dominates IR(G). Minimality follows from the
inclusion PrivIR(D,x) ⊆ Priv(D,x), recalling that a dominating set D is minimal if and
only if Priv(D,x) 6= ∅ for every x ∈ D. J

A corollary of Proposition 2 is the following, observing for A ⊆ RN(G) and I ⊆ IR(G)
that if I dominates IR(G) \ N(A) but not PrivIR(A, a) for any a ∈ A, then I can be
arbitrarily reduced into a minimal such set.

I Corollary 3. Let G be a graph and A ⊆ RN(G). Then A ∈ DRN (G) if and only if every
a ∈ A has an irredundant private neighbor, and there exists I ⊆ IR(G) such that I dominates
IR(G) \N(A) but not PrivIR(A, x) 6= ∅ for any a ∈ A. Furthermore, I ∈ DIR(A) whenever
it is minimal with this property.

3 The algorithm

We describe a general algorithm enumerating the minimal dominating sets of a graph from
their intersection with redundant vertices. See Algorithm 1. The first step is the enumeration
of such intersections, Line 2. The second step is the enumeration of their irredundant
extensions, Line 3. The correctness of the algorithm follows from the bipartition induced by
RN(G) and IR(G) in G.

The next sections are devoted to the complexity analysis of these two steps in the restricted
case of P7-free and P8-free chordal graphs.

Algorithm 1 An algorithm enumerating the minimal dominating sets of a graph G from
their intersection with the set RN(G) of redundant vertices of G.

1 Procedure DOM(G)
2 for all A ⊆ RN(G) such that A ∈ DRN (G) do
3 for all I ⊆ IR(G) such that I ∈ DIR(A) do
4 output A ∪ I;
5 end
6 end

4 Properties on Pk-free chordal graphs

We give structural properties on redundant vertices and irredundant components of G
whenever G is chordal, and depending on the size of a longest induced path in G.

I Proposition 4. Let G be a graph and u, v be two adjacent irredundant vertices of G. Then
there exist u′ ∈ N [u] \N [v], u′′ ∈ N [u′] \N [u], v′ ∈ N [v] \N [u] and v′′ ∈ N [v′] \N [v]. In
particular if G is chordal, then u′′u′uvv′v′′ induces a P6.

Proof. Let us assume for contradiction that no such u′ exists. Then either N [u] ⊂ N [v],
or N [u] = N [v]. In the first case v is redundant, a contradiction. In the other case only
one of u and v should be irredundant by definition, a contradiction. Hence u′ exists. By
symmetry, v′ exists. Let us now assume for contradiction that no such u′′ exists. Then either
N [u′] ⊂ N [u], or N [u′] = N [u]. In the first case u is redundant, a contradiction. In the other
case vu′ ∈ E(G), a contradiction. Hence u′′ exists. By symmetry, v′′ exists. Now if G is
chordal, u′′u′uvv′v′ induces a P6. J

O. Defrain and L. Nourine 63:5

Figure 1 The situation of Proposition 5, case one. Circles denote private neighborhoods.

N [I]

a b c

u v z
w x

y

U V

u′u′′

An accessible set system is a family of sets in which every non-empty set X contains an
element x such that X \ {x} belongs to the family. If x is of largest index in X such that
X \ {x} belongs to the family, then it is called maximal generator of X. An independence
system is a family of sets such that for every non-empty set X of the family, and every
element x ∈ X, X \ {x} belongs to the family. In particular, every independence system is
an accessible set system. Note that the maximal generator of X in that case is always the
vertex of maximal index in X. Accessible set systems and independence systems play an
important role in the design of efficient enumeration algorithms [1,12]. The next theorem
suggests that the enumeration of DRN (G) is tractable in P7-free and P8-free chordal graphs.

I Proposition 5. Let G be a chordal graph. Then DRN (G) is an independence system
whenever G is P7-free, and it is an accessible set system whenever G is P8-free.

Proof. LetG be a chordal graph. We first assume thatDRN (G) is not an independence system
to exhibit a P7, and then assume that DRN (G) is not an accessible system to exhibit a P8. So
suppose thatDRN (G) is not an independence system and let A ∈ DRN (G) and a ∈ A such that
A \ {a} 6∈ DRN (G). By Proposition 1, |A| ≥ 2. Let I ∈ DIR(A). Clearly PrivIR(A, a) 6⊆ I.
Let A′ = A\{a} and I ′ = I∪PrivIR(A, a). Then I ′ dominates IR(G)\N(A′). By Corollary 3
there must be some b ∈ A′ such that I ′ dominates PrivIR(A′, b), hence PrivIR(A, b) as
PrivIR(A, b) ⊆ PrivIR(A′, b). Let b be one such vertex. We put U = PrivIR(A, a) \N [I]
and V = PrivIR(A, b) \ N [I]. Then neither of U nor V is empty, U ∩ V = ∅, and U

dominates V . Let u ∈ U and v ∈ V be such that uv ∈ E(G) (such u and v exist since U
dominates V). Since u and v are private neighbors of a and b, av, bu 6∈ E(G). Since G is
chordal, ab 6∈ E(G). Then auvb induces a P4. By Proposition 4 since u, v are irredundant,
there exists u′′ and u′ such that u′′u′uvb induces a P5. Consider an irredundant vertex w
such that N [w] ⊆ N [b]. Such a vertex exists since b is redundant. Two cases arise depending
on whether w ∈ PrivIR(A, b) or w 6∈ PrivIR(A, b).

Let us consider the case w ∈ PrivIR(A, b). It is illustrated in Figure 1. Since U dominates
V and N [w] ⊆ N [b] we know that w 6∈ V (as otherwise b is adjacent to a vertex of U , i.e.,
a private neighbor of a). Hence w ∈ PrivIR(A, b) ∩N [I]. Note that w 6∈ I as N [w] ⊆ N [b]
(w cannot be part of an irredundant extension if it has no private neighbors). Accordingly,
consider x ∈ I such that wx ∈ E(G). Since N [w] ⊆ N [b], xb ∈ E(G). Since v 6∈ N [I],
xv 6∈ E(G). Now, since x belongs to I it has a private neighbor y ∈ N [x] \N [w]. As G is
chordal u′′u′uvbxxy induces a P7, concluding the first part of the proposition in this case.
Let us now assume that DRN (G) is not an accessible set system, that is A \ {c} 6∈ DRN (G)
for any c ∈ A. Observe that if replacing x by PrivIR(A′ ∪ I ′, x) in I ′ for all x ∈ N(w) ∩ I ′
does not dominate PrivIR(A′, c) for any c ∈ A′ \ {b}, then w becomes a private neighbor
of b, and A \ {a} ∈ DRN (G), a contradiction. Consequently there must exist x ∈ I such that

ISAAC 2019

63:6 Neighborhood Inclusions for Minimal Dominating Sets Enumeration

wx ∈ E(G) and y ∈ PrivIR(A′ ∪ I ′, x), c ∈ A and z ∈ PrivIR(A′, c) such that yz ∈ E(G).
Also yb, zx, cy 6∈ E(G) as y and z are private neighbors of x and c. Since G is chordal,
u′′u′uvbxyzc induces P9, concluding the second part of the proposition in this case.

Let us now consider the other case w 6∈ PrivIR(A, b). Then there must exist c ∈ A \ {b}
such that wc ∈ E(G). Since N [w] ⊆ N [b], we have bc ∈ E(G). Consequently a 6= c.
Furthermore since v is a private neighbor of b, cv 6∈ E(G). Since c ∈ A it has a private
neighbor z, and bz 6∈ E(G). As G is chordal u′′u′uvbcz induces a P7, concluding the first
part of the proposition in this second case. Let us now assume that DRN (G) is not an
accessible set system. Then A \ {c} 6∈ DRN (G). Observe that if every private neighbor z of c
is such that N [z] ⊆ N [c], then replacing c by every such private neighbors in A ∪ I yields a
minimal dominating set D of G such that DRN = A \ {c}, a contradiction. Hence there exist
z ∈ N [c] \N [b] and z′ ∈ N [z] \N [c]. As G is chordal u′′u′uvbczz′ induces a P8, concluding
the second part of the proposition in this case, and the proof. J

I Proposition 6. Let G be a chordal graph and C be an irredundant component of G. Then
the graph G[C] is Pk−4-free chordal whenever G is Pk-free, k ≥ 6.

Proof. We proceed by contradiction. Let G be a Pk-free graph, k ≥ 6 and C be an
irredundant component of G. Suppose that G[C] is not Pk−4-free, and let Puv be an induced
path of length at least k− 4 in G[C] with endpoints u and v. Let u∗ and v∗ be the neighbors
of u and v in Puv (possibly u∗ = v and v∗ = u, or u∗ = v∗). By Proposition 4 since u, u∗ and
v, v∗ are irredundant and adjacent, there exist u′′, u′, v′, v′′ such that u′′u′Puvv

′v′′ induces a
path of length at least k in G, a contradiction. J

I Proposition 7. Let G be a chordal graph, a ∈ RN(G), C be an irredundant component
of G, and u, v be two vertices in C ∩N(a). Then N(a) contains every induced path from u

to v. In particular G[N(a) ∩ C] is connected.

Proof. Clearly the proposition holds if uv ∈ E(G). Let u, v be two non-adjacent vertices in
C ∩N(a). Let Puv be an induced path from u to v in G[C]. One such path exists since G[C]
is connected. Let us assume for contradiction that there exists x ∈ Puv such that x 6∈ N(a).
Consider u∗ and v∗ to be the first elements of Puv respectively in the way from x to u, and
from x to v, such that u∗, v∗ ∈ N(a) (possibly u∗ = u and v∗ = v). Consider the path Pu∗v∗

obtained from Puv and shortened at endpoints u∗ and v∗. Then Pu∗v∗ is an induced path
with only its endpoints adjacent to a, inducing a hole in G, a contradiction. J

I Proposition 8. Let G be a chordal graph and a ∈ RN(G). Then a is partially adjacent to
at most one irredundant component of G (it is either disconnected or complete to all other
irredundant components of G) whenever G is P9-free chordal.

Proof. We proceed by contradiction. Let us assume that G is P9-free chordal and that there
exist two irredundant components C1, C2 such that C1 ∩ N(a) 6= ∅, C2 ∩ N(a) 6= ∅, and
C1, C2 6⊆ N(a). Let u ∈ C1 ∩ N(a), u′ ∈ C1 \ N(a), v ∈ C2 ∩ N(a) and v′ ∈ C2 \ N(a).
Consider a shortest path Pu′u in G[C1] from u′ to u, and one Pvv′ in G[C2] from v to v′.
These paths are induced. Let u∗ and v∗ be the neighbors of u′ and v′ in Pu′u and Pvv′ ,
respectively (possibly u∗ = u and v∗ = v). By Proposition 4 since u′, u∗ and v′, v∗ are
irredundant and adjacent, there exist u′′, u′′′, v′′ and v′′′ such that u′′′u′′u′u∗ and v∗v′v′′v′′′
induce paths of length four in G. Consider x the last vertex in Pu′u starting from u which is
adjacent to a, and y the last vertex in Pvv′ starting from v which is adjacent to a (possibly
x = u∗ and y = v∗ but x 6= u′, y 6= v′). Consider the paths Pu′x and Pyv′ obtained from Pu′u

and Pvv′ and shortened at endpoints x and y. Then u′′′u′′Pu′xaPyv′v
′′v′′′ induces a path of

length at least nine in G, a contradiction. J

O. Defrain and L. Nourine 63:7

In the following, for a set A ⊆ RN(G) we consider the following bipartition. The part
B(A) contains the elements of A having an irredundant private neighbor in some irredundant
component C such that C ⊆ N(A). Observe that no irredundant extension of A can steal
these private neighbors, as only IR(G) \ N(A) has to be dominated by such extensions,
and C is disconneced from IR(G) \N(A). The part R(A) contains all other elements of A.
We call red and blue vertices the elements of R(A) and B(A), respectively. If Ci is an
irredundant component of G, then Ri(A) denote the red elements of A having at least one
private neighbor in Ci. Recall that by Proposition 8, the elements of A are partially adjacent
to at most one irredundant component whenever G is P9-free chordal. In particular in such
class, the red elements have their private neighbors in at most one irredundant component.
The next theorem follows.

I Theorem 9. Let G be a P9-free chordal graph, A ∈ DRN (G) and I ⊆ IR(G). Then I

is an irredundant extension of A if and only if for every irredundant component Ci of G,
Di = I ∩ Ci is minimal such that

Di dominates Ci \N(A), but
Di does not dominate PrivIR(A, x) for any x ∈ Ri(A).

We immediately derive the next two corollaries, observing for the first one that a minimal
set I as described in Theorem 9 can be greedily obtained from a non-minimal such set,
and for the second that by Proposition 6, every irredundant component C of G is a clique
whenever G is P7-free chordal.

I Corollary 10. Let G be a P9-free chordal graph and A ⊆ RN(G). Then A ∈ DRN (G) if
and only if every a ∈ A has an irredundant private neighbor, and, for every irredundant
component Ci of G there exists Di ⊆ Ci such that

Di dominates Ci \N(A), but
Di does not dominate PrivIR(A, x) for any x ∈ Ri(A).

I Corollary 11. Let G be a P7-free chordal graph. Then DRN (G) = {A ⊆ RN(G) | every
x ∈ A has a private neighbor in some irredundant component C ⊆ N(A), i.e., R(A) = ∅}.

5 Enumerating the redundant part of minimal dominating sets

This section is devoted to the complexity analysis of Line 2 of Algorithm 1. More precisely,
we show that enumerating the redundant part of minimal dominating sets can be done with
linear and polynomial delays in P7-free and P8-free chordal graphs.

Recall that by Proposition 5, the set DRN (G) is an accessible set system whenever G is
P8-free chordal. Hence, it is sufficient to be able to decide whether (i) a given set A ⊆ RN(G)
belongs to DRN (G), and (ii) a given vertex c of A ∈ DRN is a maximal generator of A, in
order to get an algorithm enumerating DRN (G) without repetitions in such class. We call
irredundant extension problem the first decision problem (denoted by IEP), and maximal
generator problem the second (denoted by MGP). The algorithm proceeds as follows. See
Algorithm 2. Given A ∈ DRN (G) (starting with A = ∅ according to Proposition 1) it checks
for every candidate vertex c ∈ RN(G)\A whether A∪{c} belongs to DRN (G), whether c is a
maximal generator of A∪{c}, and if so, makes a recursive call on such a set. The correctness
of the algorithm follows from the fact that DRN (G) being an accessible set system, every
set in DRN (G) is accessible by such a procedure. In particular, every set A received by the
algorithm belongs to DRN (G). Repetitions are avoided by the choice of c.

ISAAC 2019

63:8 Neighborhood Inclusions for Minimal Dominating Sets Enumeration

Algorithm 2 An algorithm enumerating the set DRN (G) of a P8-free chordal graph G,
relying on the fact that DRN (G) is an accessible set system on such class.

1 Procedure RNDom(G)
2 RecRNDom(G, ∅);
3 Procedure RecRNDom(G,A)
4 output A;
5 for all c ∈ RN(G) \A do
6 if A ∪ {c} ∈ DRN (G) and c is a maximal generator of A ∪ {c} then
7 RecRNDom(G,A ∪ {c});
8 end
9 end

5.1 Linear delay implementation in P7-free chordal graphs
We show that there is a linear-delay implementation of Algorithm 2 in P7-free chordal graphs.
The proof is technically involved and makes use of preprocessed arrays that are maintained
throughout the computation.

I Theorem 12. There is an O(n + m) delay, O(n2) space and O(n2) preprocessing-time
implementation of Algorithm 2 whenever G is P7-free chordal, where n and m respectively
denote the number of vertices and edges in G.

Proof. Let C1, . . . , C` denote the ` irredundant components of G. For every a ∈ RN(G),
and according to Proposition 8, we note Ca = Ci the unique irredundant component Ci to
which a is partially adjacent, if it exists, and Ca = ∅ otherwise. Note that the computation
of such components, and the identification of Ca for every a ∈ RN(G) can be done in
O(n2) preprocessing time and takes O(n2) space. Consider A ∈ DRN (G) as received by
the algorithm. Let c ∈ RN(G) \A. First observe that the condition of c being a maximal
generator of A ∪ {c} Line 6 can be implicitly verified by selecting c of index greater than
those in A. This can be done by computing the maximal index ρ in A before the loop in O(n)
time, and iterating on c such that c > ρ with no extra cost on the complexity of the loop.
We shall show using preprocessed arrays maintained at each step of the loop that testing
whether A ∪ {c} ∈ DRN (G) is bounded by O(deg(c)). Note that by Corollary 11, A ∪ {c}
belongs to DRN (G) if and only if (i) every a ∈ A has a private neighbor in some irredundant
component Cj ⊆ N(A∪{c}), j ∈ [`], and (ii) there exists Ci, i ∈ [`] such that Ci 6⊆ N(A) and
Ci ⊆ N(A ∪ {c}). Also, recall that by Proposition 6 every component C1, . . . , C` is a clique.
Let T1 be an array of size ` such that T1[i] = |Ci| for every i ∈ [`]. This array will be used to
know the number of vertices that are yet to be dominated in every component. Let T2 be
an array of size n such that T2[y] = i if y ∈ Ci, and T2[y] = 0 otherwise (if y is redundant).
Using these two arrays, one can access in constant time to the number of vertices that are yet
to be dominated in the unique clique Ci in which y belongs, by checking T1[T2[y]]. Let M1
be a two dimensional array of size n× 2 such that M1[a][0] = |PrivIR(A, a) ∩ Ca| if Ca 6= ∅,
M1[a][0] = −1 otherwise, and M1[a][1] = |PrivIR(A, a) \ Ca|. Let M2 be an array of size n
such thatM2[y] = a if y ∈ PrivIR(A, a), andM2[y] = 0 otherwise. LetM3 be an array of size
n such that M3[y] = 0 if furthermore y ∈ Ca, M3[y] = 1 otherwise. Using these three arrays,
one can access in constant time to the number of irredundant private neighbors a vertex a
such that y ∈ PrivIR(A, a) has by checking M1[M2[y]][0] and M1[M2[y]][1]. The size of the
set PrivIR(A, a)∩Ca in case where y ∈ Ca, and PrivIR(A, a)\Ca in case where y 6∈ Ca can
be accessed by M1[M2[y]][M3[y]]. Finally, consider an array W of size n initialized to zero.

O. Defrain and L. Nourine 63:9

This array will be used to know if a vertex y is dominated by A∪ {c}, by setting W [y] = x if
y is connected to some x ∈ A ∪ {c} and W [y] = 0 otherwise. Note that these six arrays can
be computed in O(n2) preprocessing time and O(n2) space.

We are now ready to detail each iteration of the loop Line 5. When considering a new
candidate vertex c ∈ RN(G) \ A, we do the following. For each y ∈ N(c) ∩ IR(G), we set
W [y] := c, M2[y] := c and T1[T2[y]] := T1[T2[y]] − 1 whenever W [y] = 0 (i.e., if y is not
dominated by A). Note that T1[T2[y]] is decreased to zero if and only if c verifies Ci 6⊆ N(A)
and Ci ⊆ N(A ∪ {c}) for i = T2[y]. The next claim follows.

B Claim 13. Deciding whether there exists Ci, i ∈ [`] such that Ci 6⊆ N(A) and Ci ⊆
N(A ∪ {c}) takes O(deg(c)) time.

If W [y] 6= 0 then y was already dominated by A, and in particular it might have been the
private neighbor of some a ∈ A given by both M2[y] and W [y]. In that case (i.e., whenever
M2[y] 6= 0) we set M1[M2[y]][M3[y]] := M1[M2[y]][M3[y]]− 1, and M2[y] := n+ 1 (this value
is set temporarily). Note that M1[M2[y]][0] (resp. M1[M2[y]][1]) is decreased to zero if and
only if c steals all the private neighbors of a ∈ A that are in irredundant components that
are partially adjacent (resp. complete) to a. Also, observe that we still have W [y] = a for all
such y in that case. We prove the following

B Claim 14. Deciding whether every a ∈ A has a private neighbor in some irredundant
component Cj ⊆ N(A ∪ {c}), j ∈ [`] takes O(deg(c)) time.

Proof. Consider some y ∈ N(c) ∩ IR(G) and let a = M2[y], j = M3[y]. Observe that if
both M1[a][0] and M1[a][1] have value zero after updating M1[a][j] := M1[a][j]− 1, then we
answer negatively (a lost all its private neighbors). If M1[a][1] does not equal zero, then
we answer positively (a has a private neighbor in a dominated irredundant component). If
M1[a][1] equals zero and M1[a][0] does not equal zero, then we need to check whether Ca is
dominated or not, that is whether T1[T2[y]] equals zero or not. We answer positively if it is
the case, and negatively otherwise. This covers all possibilities and the claim follows. C

A consequence of Claims 13 and 14 is that A∪{c} ∈ DRN (G) can be decided in O(deg(c))
time in the condition of Line 6. Now, if A ∪ {c} ∈ DRN (G) then we set M2[y] = 0 whenever
M2[y] = n+ 1 (y is adjacent to some a ∈ A and c, it is not a private neighbor anymore), for
every y ∈ N(c) ∩ IR(G) and in a time which is also bounded by O(deg(c)). Let us overview
the case where c does not satisfy the conditions of Claims 13 and 14, or when a backtrack
is executed. First, we undo the changes by setting W [y] = 0 and T1[T2[y]] := T1[T2[y]] + 1
for every y ∈ N(c) ∩ IR(G) such that W [y] = c (such a y was not adjacent to any a ∈ A
and no other modifications occurred). If W [y] 6= c and M2[y] = n + 1 (in that case
y was the private neighbor of some a ∈ A, a = W [y]) then we set M2[y] = W [y] and
M1[M2[y]][M3[y]] = M1[M2[y]][M3[y]] + 1. If W [y] 6= c and M2[y] 6= n + 1 then y was not
adjacent to c and no modification occurred. This undo process also takes O(deg(c)) time.
Since the sum of degrees of G is bounded by O(n+m), the time spent in the loop Line 5 is
bounded by O(n+m).

Let us finally consider the case when consecutive backtracks are executed. Observe that
in that case, it could be that n times O(n + m) steps are computed without output. In
order to avoid this, a common trick is to output half of the solutions while going down the
recursive tree, and the other half when going up the tree. This is done by moving the output
of Line 4 after the loop Line 9 on odd depths of the recursive tree. J

ISAAC 2019

63:10 Neighborhood Inclusions for Minimal Dominating Sets Enumeration

Figure 2 A P4-free chordal graph H and the Hasse diagram of its poset tree. On such instance
p = 4, X1 = {t1, 1, 4}, X2 = {5, t3, t4}, X3 = {t6}, X4 = {t7} and Y = {3}. Then F = {t2, 2, t5}
and a set D such that D dominates C \ (X ∪ Y) but not X1, . . . , X4 is given by D = {t2, t3, t5}.

r

1 2 3

4 5

r

1 2

4 5

Y

X1

X2

t1

t2 t3 t4

t1

t2 t3 t4

t6 t7 t6 t7

3

t5t5

X3 X4

5.2 Polynomial delay implementation in P8-free chordal graphs
We show that IEP and MGP can be solved in polynomial time in P8-free chordal graphs.
This yields a polynomial-delay implementation of Algorithm 2 in the same class.

From now on and until the end of the section, let G be a P8-free chordal graph. Recall
that by Proposition 6, every irredundant component C of G induces a graph H = G[C] that
is P4-free chordal. It is known that every P4-free chordal graph is the comparability graph of
a tree poset [17], where two vertices of the graph are made adjacent if they are comparable
in the poset. To H we associate T (H) its tree poset. Note that in particular, the root of
T (H) is universal in H, and that x ≤ y implies NH [y] ⊆ NH [x]. An example of a P4-free
chordal graph and its tree poset is given in Figure 2.

In the following, let A ⊆ RN(G) and C be an irredundant component of G. Let x1, . . . , xp

denote the p elements of R(A) having a private neighbor in C, Xj = PrivIR(A, xj) for every
j ∈ [p], X = X1 ∪ · · · ∪Xp and Y = (N(A) ∩C) \X (this last set correponds to the vertices
in C that are already dominated by A, but that are not private for any xi, i ∈ [p]). By
Corollary 10, IEP can be tested independently on every such component by checking whether
X1, . . . , Xp are non-empty, and, whether there exists D ⊆ C such that

D dominates C \ (X ∪ Y), but
D does not dominate any of X1, . . . , Xp.

We will show that such a test can be conducted in linear time whenever X1, . . . , Xp and Y are
given by lists and arrays, a condition that can be fulfilled at low cost as in the implementation
of Theorem 21. In the remaining of this section, we note r the root of T (H), and F the
maximal elements of T (H) which are neither in X1, . . . , Xp nor in Y (hence no two elements
of F are comparable in T (H)). One such instance is given in Figure 2.

I Lemma 15. Let D be a subset of vertices of H. Then D dominates C \ (X ∪ Y) if and
only if it dominates F .

Proof. The first implication trivially holds since F is selected in C \ (X ∪ Y). Now since
every vertex of C \ (X ∪ Y) belongs to a path in T (H) from r to some x ∈ F , F dominates
C \ (X ∪ Y). Consider any x ∈ F and some dominating set D of F . Since D dominates F ,
either x ∈ D, or there exists y ∈ D such that either x < y, or x > y. In all such cases, the
unique path from r to x in T (H) is dominated. Hence D dominates C \ (X ∪ Y). J

I Lemma 16. There exists a set D dominating C \ (X ∪ Y) and not X1, . . . , Xp if and only
if for every x ∈ F there exists a leaf t of T (H) such that x ≤ t and Xi 6⊆ NH [t], i ∈ [p].

O. Defrain and L. Nourine 63:11

Proof. We show the first implication. Let D be a dominating set of C \ (X ∪ Y) which
does not dominate X1, . . . , Xp. By Lemma 15, every x ∈ F is dominated by some y ∈ D.
Consider some such x and y. Then one of x ≤ y or y < x holds. Let t be a leaf of T (H) such
that y ≤ t and x ≤ t. Then t does not dominate any of X1, . . . , Xp as y does not, and y ≤ t
hence NH [y] ⊇ NH [t]. Since x ≤ t the first implication follows. As for the other implication,
is it a consequence of Lemma 15 observing that every leaf t such that x ≤ t for some x ∈ F
dominates x. J

The next lemma shows that the characterization of Lemma 16 can be checked for each
element x ∈ F independently.

I Lemma 17. Consider Xj, j ∈ [p]. Then, either
Xj ⊆ {y ∈ C | x < y} for some unique x ∈ F , or
Xj ⊆ {y ∈ C | y < x for some x ∈ F} and IEP can be answered negatively, or
Xj 6⊆ NH [F] and it can be ignored when checking the characterization of Lemma 16.

Proof. Let Xj , j ∈ [p]. First note that if Xj ⊆ {y ∈ C | x < y} then such a x is unique
or else T (H) is not a tree. Let us assume that Xj ⊆ {y ∈ C | y < x for some x ∈ F}.
Observe that these two cases are disjoint as otherwise there exist two elements of F that
are comparable, a contradiction. Recall that by Proposition 15 every dominating set D of
C \ (X ∪ Y) dominates F . Now if D dominates F then it dominates every y ∈ C such that
y < x for some x ∈ F , and Xj consequently. In that case IEP can be answered negatively.

Let us now assume that Xj is not of the first two cases. We first show by contradiction
that there is no x ∈ F such that x < y for some y ∈ Xj . Suppose that there exist two such
x and y. Since Xj is not of the first case there must be some y′, y′ 6= y such that x 6< y′.
Consider a ∈ R(A) such that Xj = PrivIR(A, a). Note that x belongs to a shortest path
from y to y′ in C (the common ancestor of y and y′ in T (H) must be smaller than x). By
Proposition 7, x belongs to N(a)∩C. Hence it either belongs to Xj , or Y , contradicting the
fact that x ∈ F . Consequently, and since Xj is not of the second case, Xj 6⊆ NH [F]. Now,
since the leaves of T (H) selected in Lemma 16 are of neighborhood included in that of F ,
Xj can be ignored. J

I Lemma 18. There is an O(n + m) time algorithm solving IEP whenever G is P8-free
chordal, where n and m respectively denote the number of vertices and edges in G, whenever

the leaves of T (H = G[C]),
the predecessors and the successors of every x ∈ T (H), and
each of the sets X1, . . . , Xp and Y

are given by lists and arrays for every irredundant component C of G.

Proof. Let us first focus on an irredundant component C of G, and H = G[C] its induced
subgraph. We want to decide whether F can be dominated without dominating X1, . . . , Xp.
Note that by assumption, the leaves of T (H), the predecessors and the successors of every
x ∈ T (H), and each of the sets X1, . . . , Xp and Y can be iterated in a time which is bounded
by their size. Furthermore, deciding whether a vertex belongs to one given set takes constant
time. The same assumptions hold for the set Z = C \ (X ∪ Y) which can be computed in
O(nH) time iterating on X1, . . . , Xp and Y .

The algorithm proceeds as follows. First it computes F by checking for every x ∈ Z
whether it has a successor in Z. It computes the set F− = {y ∈ C | y < x for some x ∈ F}
in a n-element array by adding predecessors of every x ∈ F at a time. Since the sum of
degrees of H is bounded by O(nH +mH), this takes O(nH +mH) time. Then it tests for

ISAAC 2019

63:12 Neighborhood Inclusions for Minimal Dominating Sets Enumeration

every set X1, . . . , Xp whether it is included in F− within the same time. At this stage if we
find an inclusion then we can answer negatively according to the second item of Lemma 17,
and can consider X1, . . . , Xp to be of the first type in the following.

For every set Xj , j ∈ [p] we check whether it has two non-adjacent vertices. This is done
in O(nH + mH) time by testing for every vertex in Xj whether it has a neighbor in Xj ,
recalling that every such Xj is disjoint (we iterate through vertices and their neighborhood
only once). If Xj has no two non-adjacent vertices, then it is a path in T (H) and we mark
in a nH -element array the indexes of leaves that are greater that its maximal element (each
of these leaves dominates Xj). Similarly, computing the maximal element of every such
Xj , and the indexes of leaves that are greater that their maximal element, can be done in
O(nH +mH) time. If a set Xj , j ∈ [p] has two non-adjacent vertices then no leaf t of T (H)
dominates Xj and it can be ignored for the next step. We now proceed as follows according
to Lemma 17. We check independently for every x ∈ F if it has a descendant leaf t (to each
x ∈ F corresponds disjoint sets of such leaves) which was not indexed previously. If it has
then we answer positively. If not then x (hence F) cannot be dominated without dominating
one of X1, . . . , Xp and we can answer negatively.

We now need to conduct this test for every irredundant component C of G independently.
Since irredundant components are subgraphs of G we have that n and m are respectively
bounded by the sums of nH ’s and mH ’s for every irredundant component C of G where
H = G[C], and the complexity follows. J

A corollary of Lemma 18 is the following, observing that x is a maximal generator of A
if and only if A \ {y} 6∈ DRN (G) for any y ∈ A of index greater than x, and that n times
O(n+m) is bounded by O(n ·m) since G is connected.

I Corollary 19. There is an O(n ·m) time algorithm solving MGP whenever G is P8-free
chordal, where n and m respectively denote the number of vertices and edges in G, and
assuming the conditions of Lemma 18.

We can thus conclude the section with the following result.

I Theorem 20. There is an O(n2 ·m) delay and O(n2) space implementation of Algorithm 2
whenever G is P8-free chordal, where n and m respectively denote the number of vertices and
edges in G.

Proof. By Lemma 18 and Corollary 19, there is an O(n2 · m) delay implementation of
Algorithm 2 whenever the assumptions of Lemma 18 can be fulfilled at every step of the loop
Line 5. Clearly, the representation T (H) of H = G[C] can be computed for every irredundant
component C of G in O(n2) preprocessing time, and O(n2) space. The lists and arrays
containing the leaves of T (H), the predecessors and the successors of every x ∈ T (H), and
that will contain the sets X1, . . . , Xp, Y and Z = C \ (X ∪Y) at each step of loop Line 5 can
also be computed within these preprocessing-time and space complexities. Furthermore, the
sets X1, . . . , Xp and Y can be maintained at each step of loop as in the proof of Theorem 12,
and in a time which is clearly upper-bounded by O(n ·m) for each c ∈ RN(G) \ A. We
proceed as in the proof of Theorem 12 to maintain an O(n2 ·m) delay in case of consecutive
backtrack. The theorem follows. J

6 Enumerating irredundant extensions

This section is devoted to the complexity analysis of Line 3 of Algorithm 1. More precisely,
we show that irredundant extensions can be enumerated with linear and polynomial delays
in P7-free and P8-free chordal graphs. This allows us to conclude with the two main results
of this paper.

O. Defrain and L. Nourine 63:13

6.1 Irredundant extensions in P7-free chordal graphs
Let G be a P7-free chordal graph and A ∈ DRN (G). Recall that by Corollary 11, every x ∈ A
has a private neighbor in some irredundant component C ⊆ N(A). Let C1, . . . , Ck denote
the k irredundant components of G that are not dominated by A. By Proposition 6, every
such component is a clique. Consequently we have that

DIR(A) = {{x1, . . . , xk} | xi ∈ Ci, i ∈ [k]}.

Now, such a set can clearly be enumerated with O(n + m) delay given A and C1, . . . , Ck.
Furthermore, a track of these irredundant components is maintained at each step of the loop
Line 5 of Algorithm 2 in the implementation of Theorem 12. We conclude with the following
theorem which improves a previous result of Kanté et al. in [12] on P6-free chordal graphs.

I Theorem 21. There is an O(n + m) delay, O(n2) space and O(n2) preprocessing-time
algorithm enumerating D(G) whenever G is P7-free chordal, where n and m respectively
denote the number of vertices and edges in G.

6.2 Irredundant extensions in P8-free chordal graphs
Let G be a P8-free chordal graph and A ∈ DRN (G). By Theorem 9, the intersection of an
irredundant extensions of A with an irredundant component C of G is a minimal set D ⊆ C
such that

D dominates C \ (X ∪ Y), and
D does not dominate any of X1, . . . , Xp,

where x1, . . . , xp denote the p elements of R(A) having a private neighbor in C, where
Xj = PrivIR(A, xj) for every j ∈ [p], X = X1 ∪ · · · ∪Xp and Y = (N(A) ∩ C) \X. In the
following, to A and C we associate DIR(A,C) the set of all such minimal sets. Then, if
C1, . . . , Ck denote the k irredundant components of G that are not dominated by A, we
have that

DIR(A) = {D1 ∪ · · · ∪Dk | Di ∈ DIR(A,Ci), i ∈ [k]}.

Clearly, such a set can be enumerated with O(n3 ·m) delay given an algorithm enumerating
DIR(A,Ci) with O(n2 ·m) delay for every irredundant component C1, . . . , Ck, where n and
m respectively denote the number of vertices and edges in G. We shall show that such an
algorithm exists.

Consider C, X1, . . . , Xp and Y as described above. Let H = G[C]. Recall that by
Proposition 6, H is P4-free chordal. In the remaining of this section, we rely on the notations
of Section 5 and note r the root of T (H) and F the maximal elements of T (H) which are
neither in X1, . . . , Xp nor in Y . One such instance is given in Figure 2. We call irredundant
component extension problem, denoted by ICEP, the following decision problem. Given
S,Q ⊆ C, is there a solution D ∈ DIR(A,C) such that S ⊆ D and D ∩Q = ∅? We shall
show that this problem can be solved in O(n ·m) time, which, using the backtrack search
technique, leads to an O(n2 ·m) algorithm enumerating irredundant extensions in P8-free
chordal graphs.

I Lemma 22. There is an algorithm solving ICEP in O(n ·m) time, assuming the conditions
of Lemma 18.

Proof. Observe that IEP restricted to a single component and ICEP only differ on the
fact that the set D ⊆ C should in addition satisfy D ∩ Q = ∅ and should not dominate
PrivH(S, s) \ (X ∪ Y) for any s ∈ S, where PrivH(S, s) denotes the private neighborhood

ISAAC 2019

63:14 Neighborhood Inclusions for Minimal Dominating Sets Enumeration

of s ∈ S in H. In that case, D can be reduced to a minimal set D∗ such that S ⊆ D∗

and D∗ ∩ Q = ∅. We show that these additional conditions can be handled at the cost
of an increasing complexity, relying on the proof of Lemma 18. Clearly, we can first
answer negatively if PrivH(S, s) \ (X ∪ Y) is empty for some s ∈ S. Otherwise, the
condition that D does not dominate PrivH(S, s) \ (X ∪ Y) for any s ∈ S can be handled
by adding extra sets Xp+i = PrivH(S, si) \ (X ∪ Y) for every s1, . . . , sq ∈ S, and updating
X := X ∪Xp+1 ∪ · · · ∪Xp+q. Since these sets are connected Lemma 17 still applies. As for
D satisfying D∩Q = ∅, we proceed as follows. For every x ∈ F , and instead of only checking
descendant leaves of x, we iterate through all the descendants of x and check whether it
has a successor y such that y 6∈ Q, and such that y does not dominate any of X1, . . . , Xp+q.
This can be done in O(n ·m) time as we iterate through every such y in O(n+m) time, and
check for each of these y’s whether it has some Xj in its neighborhood in O(n) time. At this
stage, and according to Lemmas 16, 17 and 18, we can answer yes if and only every x has
such a neighbor y. J

We can now conclude using the backtrack search technique that we briefly recall now.
Formal proofs are omitted. The enumeration is a depth-first search of a tree whose nodes
are partial solutions and leaves are solutions. The algorithm constructs partial solutions by
considering one vertex xi at a time (following some linear ordering x1, . . . , xn of the vertices),
checking at each step whether there is a final solution D1 ∈ DIR(A) containing S ∪{xi} and
not intersecting Q, and one D2 ∈ DIR(A) containing S and not intersecting Q ∪ {xi}. This
step is called the extension problem. The algorithm recursively calls on such sets each time
the extension is possible. At first, S and Q are empty. The delay time complexity is bounded
by the depth of the tree (the number of vertices) times the time complexity of solving the
extension problem, i.e., ICEP. For further details on this technique, see for instance [15, 16].

We conclude to the next lemma and theorem, noting that the conditions of Lemma 18
can be fulfilled as in the proof of Theorems 12 and 20.

I Lemma 23. There is an algorithm enumerating DIR(A,C) with O(n2 ·m) delay, assuming
the conditions of Lemma 18.

I Theorem 24. There is an O(n3 ·m) delay and O(n2) space algorithm enumerating D(G)
whenever G is P8-free chordal, where n and m denote the number of vertices and edges in G.

7 Discussions

We investigated the enumeration of minimal dominating sets from their intersection with
redundant vertices. This technique was first introduced in [12] and led to linear-delay
algorithms in split and P6-free chordal graphs. We investigated generalizations of this
technique to Pk-free chordal graphs for larger integers k. In particular, we gave O(n+m)
and O(n3 ·m) delays algorithms in the classes of P7-free and P8-free chordal graphs, where
n and m respectively denote the number of vertices and edges in the graph.

As for Pk-free chordal graphs for k ≥ 9, we now give evidence that the enumeration of
DRN (G) might need other techniques for k ≥ 9, as IEP becomes NP-complete.

I Theorem 25. IEP is NP-complete even when restricted to P9-free chordal graphs.

Proof. First notice that IEP belongs to NP: a polynomial certificate is given by an irredundant
set I ⊆ IR(G) such that A ∪ I ∈ D(G), and which can be verified in polynomial time.

Given an instance ϕ of 3SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, we
construct a P9-free chordal graph G and a set A ⊆ RN(G) such that A admits an irredundant
extension if and only if there exists a truth assignment of the variables of ϕ that satisfies all

O. Defrain and L. Nourine 63:15

Figure 3 The construction of G in Theorem 25. Irredundant vertices are represented in black
while redundant ones are in white. The vertices in the rectangle induce a clique and H a split graph.

...

c1 c2 cm

x1 ¬x1 ¬xn

y1 ¬y1 ¬yn

z1 ¬z1 ¬zn

u1

¬u1

w1

v1
...

H

b1

a1

the clauses. In the following, we assume that the degenerate cases where a literal intersects
every clause, where two clauses are equal, or where the number of variables and clauses is
lesser than three are excluded. Then, the construction is the following.

The first part concerns the construction of a split graph H which contains one vertex
for each of the literals xi and ¬xi, a copy u and ¬ui of such literals, and one vertex cj per
clause Cj . The graph induced by the ui’s, ¬ui’s and cj ’s is completed into a clique, while an
edge is added between ui and xi, between ¬ui and ¬xi, and between a literal xi (resp. ¬xi)
and a clause cj whenever the literal is contained into that clause. As for the second part, it
consists of a pendant path xiyizi and ¬xi¬yi¬zi rooted at every literal xi and ¬xi, and of
a paw aibiviwi (a triangle aiviwi with a pendant edge aibi) made adjacent to both ui and
¬ui only through vi, for every i ∈ [n]. The construction is illustrated in Figure 3. It can
be easily seen that the obtained graph G is P9-free chordal. Also that a P8 is induced by
biaiviuiujvjajbj for i 6= j ∈ [n].

Let us show that H = G[C] for an irredundant component C of G. First note that every
vertex outside of H has a neighbor that is not adjacent to H, so it cannot make a vertex
from H redundant. Now if a vertex of H makes another one of H redundant then it cannot
be a literal or some ui, ¬ui (as it has either yi, ¬yi or vi as a neighbor outside of H). Also,
it cannot be a clause as by assumption every two clauses differ on a literal, and no literal
is complete to the clique. Hence vertices of H are all irredundant. It is easily seen that
irredundant components of G include {zi}, {¬zi}, {bi} and {wi} for all i ∈ [n]. Also that
redundant vertices of G are ai’s, vi’s, yi’s and ¬yi’s. We conclude that H cannot be extended,
hence that C is indeed an irredundant component of G, as claimed.

Now, let us set A = RN(G) and show that A ∈ DRN (G) if and only if there exists a
truth assignment of the variables of ϕ that satisfies all the clauses. If A ∈ DRN (G) then
there exists an irredundant extension D ∈ DIR(A). Observe that only the ci’s are to be
dominated by D, i.e., IR(G) \ N(A) = {c1, . . . , cm}. However, D does not intersect any
element of the clique of H as otherwise it would dominate {ui,¬ui} and thus steal all the
private neighbors of the vi’s. For the same reason, it cannot contain one literal and its
negation. Consequently D corresponds to a truth assignment of the variables of ϕ that
satisfies all the clauses. Consider now any truth assignment of the variables of ϕ that satisfies
all the clauses, and D the associated set of vertices in G. By construction D dominates
all the ci’s. Furthermore it does not steal any private neighbor to any vertex of A. By
Corollary 3 we have that A ∈ DRN (G) concluding the proof. J

ISAAC 2019

63:16 Neighborhood Inclusions for Minimal Dominating Sets Enumeration

References
1 Hiroki Arimura and Takeaki Uno. Polynomial-delay and polynomial-space algorithms for

mining closed sequences, graphs, and pictures in accessible set systems. In Proceedings of the
2009 SIAM International Conference on Data Mining, pages 1088–1099. SIAM, 2009.

2 Marthe Bonamy, Oscar Defrain, Marc Heinrich, Michał Pilipczuk, and Jean-Florent Raymond.
Enumerating minimal dominating sets in Kt-free graphs and variants. arXiv preprint, 2019.
arXiv:1810.00789.

3 Marthe Bonamy, Oscar Defrain, Marc Heinrich, and Jean-Florent Raymond. Enumerating
Minimal Dominating Sets in Triangle-Free Graphs. In 36th International Symposium on
Theoretical Aspects of Computer Science, pages 16:1–16:12. Springer, 2019.

4 Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Leonid Khachiyan. Generating
maximal independent sets for hypergraphs with bounded edge-intersections. In Latin American
Symposium on Theoretical Informatics, pages 488–498. Springer, 2004.

5 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied
Mathematics, 157(12):2675–2700, 2009.

6 Nadia Creignou, Markus Kröll, Reinhard Pichler, Sebastian Skritek, and Heribert Vollmer. A
complexity theory for hard enumeration problems. Discrete Applied Mathematics, 2019.

7 Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on monotone dualization
and generating hypergraph transversals. SIAM Journal on Computing, 32(2):514–537, 2003.

8 Michael L. Fredman and Leonid Khachiyan. On the Complexity of Dualization of Monotone
Disjunctive Normal Forms. Journal of Algorithms, 21(3):618–628, 1996.

9 Petr A. Golovach, Pinar Heggernes, Mamadou M. Kanté, Dieter Kratsch, and Yngve Vil-
langer. Enumerating minimal dominating sets in chordal bipartite graphs. Discrete Applied
Mathematics, 199:30–36, 2016.

10 David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou. On generating all
maximal independent sets. Information Processing Letters, 27(3):119–123, 1988.

11 Mamadou M. Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the neighbour-
hood helly of some graph classes and applications to the enumeration of minimal dominating
sets. In International Symposium on Algorithms and Computation, pages 289–298. Springer,
2012.

12 Mamadou M. Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the Enumera-
tion of Minimal Dominating Sets and Related Notions. SIAM Journal on Discrete Mathematics,
28(4):1916–1929, 2014.

13 Mamadou M. Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and Takeaki Uno. A
polynomial delay algorithm for enumerating minimal dominating sets in chordal graphs. In
International Workshop on Graph-Theoretic Concepts in Computer Science, pages 138–153.
Springer, 2015.

14 Mamadou M. Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and Takeaki Uno.
Polynomial delay algorithm for listing minimal edge dominating sets in graphs. In Workshop
on Algorithms and Data Structures, pages 446–457. Springer, 2015.

15 Ronald C. Read and Robert E. Tarjan. Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees. Networks, 5(3):237–252, 1975.

16 Yann Strozecki and Arnaud Mary. Efficient enumeration of solutions produced by closure
operations. Discrete Mathematics & Theoretical Computer Science, 21, 2019.

17 Elliot S. Wolk. The comparability graph of a tree. Proceedings of the American Mathematical
Society, 13(5):789–795, 1962.

http://arxiv.org/abs/1810.00789

Dual-Mode Greedy Algorithms Can Save Energy
Barbara Geissmann
Department of Computer Science, ETH Zürich, Switzerland
barbara.geissmann@inf.ethz.ch

Stefano Leucci
Department of Algorithms and Complexity, Max Planck Institute for Informatics, Germany∗

stefano.leucci@mpi-inf.mpg.de

Chih-Hung Liu
Department of Computer Science, ETH Zürich, Switzerland
chih-hung.liu@inf.ethz.ch

Paolo Penna
Department of Computer Science, ETH Zürich, Switzerland
paolo.penna@inf.ethz.ch

Guido Proietti
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università dell’Aquila, Italy
Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Roma, Italy
guido.proietti@univaq.it

Abstract
In real world applications, important resources like energy are saved by deliberately using so-called
low-cost operations that are less reliable. Some of these approaches are based on a dual mode
technology where it is possible to choose between high-energy operations (always correct) and
low-energy operations (prone to errors), and thus enable to trade energy for correctness.

In this work we initiate the study of algorithms for solving optimization problems that in their
computation are allowed to choose between two types of operations: high-energy comparisons (always
correct but expensive) and low-energy comparisons (cheaper but prone to errors). For the errors
in low-energy comparisons, we assume the persistent setting, which usually makes it impossible
to achieve optimal solutions without high-energy comparisons. We propose to study a natural
complexity measure which accounts for the number of operations of either type separately.

We provide a new family of algorithms which, for a fairly large class of maximization problems,
return a constant approximation using only polylogarithmic many high-energy comparisons and only
O(n logn) low-energy comparisons. This result applies to the class of p-extendible systems [24],
which includes several NP-hard problems and matroids as a special case (p = 1).

These algorithmic solutions relate to some fundamental aspects studied earlier in different contexts:
(i) the approximation guarantee when only ordinal information is available to the algorithm; (ii) the
fact that even such ordinal information may be erroneous because of low-energy comparisons and
(iii) the ability to approximately sort a sequence of elements when comparisons are subject to
persistent errors. Finally, our main result is quite general and can be parametrized and adapted to
other error models.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases matroids, p-extendible systems, greedy algorithm, approximation algorithms,
high-low energy

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.64

Funding Research supported by the Swiss National Science Foundation (SNFS project 200021_
165524).

∗ Part of this work was completed while the author was affiliated with ETH Zürich.

© Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, Paolo Penna, and Guido Proietti;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 64; pp. 64:1–64:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9236-8798
mailto:barbara.geissmann@inf.ethz.ch
https://orcid.org/0000-0002-8848-7006
mailto:stefano.leucci@mpi-inf.mpg.de
https://orcid.org/0000-0001-9683-5982
mailto:chih-hung.liu@inf.ethz.ch
https://orcid.org/0000-0002-5959-2421
mailto:paolo.penna@inf.ethz.ch
https://orcid.org/0000-0003-1009-5552
mailto:guido.proietti@univaq.it
https://doi.org/10.4230/LIPIcs.ISAAC.2019.64
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 Dual-Mode Greedy Algorithms Can Save Energy

Acknowledgements We are grateful to Peter Widmayer for many inspiring discussions.

1 Introduction

Classical computational problems have been studied under two (somewhat extreme) settings:
the one in which every operation is always correct and the one in which operations are
prone to errors (see, e.g., [10, 28, 11, 20]). The latter scenario represents not only faults in
hardware, but also measurement errors, or even errors that are deliberately introduced in
the system in order to save important resources. For instance, several approaches to save
energy in computation consists in designing systems which are in part inaccurate but use
substantially less energy [22, 1, 21].

Here we consider the scenario in which these two types of operations coexist and they
may be combined in a clever way in order to save resources and still achieve a certain goal.
Interestingly, this is already done in some practical applications. At a hardware level, the
dual mode logic [21] allows each single gate to switch between a static mode, which uses low
energy but suffers from some performance degradation, and a dynamic mode which uses
a higher energy but reaches the better performance of standard CMOS gates. Similarly,
in probabilistic CMOS [1] one can reduce the energy spent by a single gate at the price of
increasing the probability of error in the corresponding output. In [7], the authors propose
a probabilistic adder for image processing purposes where high energy is used in the most
significant bits and lower energy in the less significant bits. In computational geometry,
[12] suggests a model in which the algorithm uses either cheap operations (floating-point
arithmetic), whose result may be erroneous in some circumstances, and expensive operations
(exact arithmetic) whose result is always correct.

In all these examples, a good solution is obtained by combining both high-energy and
low-energy (expensive and cheap) operations in a suitable way. This suggests the following
algorithmic question regarding the trade-offs between high-energy and low-energy operations:

Suppose an algorithm can use both high-energy and low-energy operations, the latter
being erroneous, according to some error model. How many such high-energy and
low-energy operations are needed to obtain a good solution for a given problem?

1.1 Our contribution

We propose to evaluate algorithms according to a simple and natural measure that we call
high-low energy complexity. In this model, algorithms can operate at low energy or at high
energy. The former mode is cheap, but introduces some errors in the result of the operation,
while the latter is more expensive but always correct. We evaluate the performance of the
algorithm by essentially distinguishing between the two types of operations on inputs of
size n:

Total number h(n) of high-energy operations;
Total number l(n) of low-energy operations.

In this case, we say that the algorithm has 〈h(n), l(n)〉-high-low energy complexity. Because
high-energy operations are more expensive, the classical notion of time complexity does
not fully capture the possible trade-offs that may result in a lower total energy. Indeed,
it may be possible to have algorithms which use significantly fewer high-energy opera-
tions, and essentially the same number of low-energy operations, and still obtain (nearly)
optimal solutions.

B. Geissmann, S. Leucci, C.-H. Liu, P. Penna, and G. Proietti 64:3

In this work, we show that such trade-offs are indeed possible for a large class of problems.
Specifically, we consider the setting in which the basic operations are comparisons between
the input weights, which is the part of the input necessary to determine if a solution is optimal
or not. For the errors in the comparisons at low energy, we assume the classical model of
persistent errors [6, 18, 15]: comparisons between distinct pairs of elements are independent
and return the wrong answer with some (small) constant probability independently across
the pairs; however, comparing the same pair of elements multiple times will always give the
same result. We consider the following setting:

The input elements that can be part of feasible solutions have a weight, but the algorithm
can only work with ordinal information meaning that it can only compare the weight of
two elements, but does not know the actual weights. The computed solution is however
evaluated with respect to the weights and it is compared with the optimum.
The ordinal information is accessible to the algorithm via two types of (comparison)
operations: low-energy operations which are cheap but may contain errors, or high-energy
operations which are always correct, though more expensive.

We study the high-low energy complexity of a wide class of optimization problems for
which greedy algorithms are guaranteed to return optimal or nearly optimal solutions: Using
only high-energy operations it is possible to find such solution, but this would require
already Θ(n logn) high-energy operations. On the other hand, with no high-energy
operations, errors during this sorting phase are likely to produce some dislocation, which in
turn may cause the greedy algorithm to have an unbounded approximation ratio. This
is true also for those problems where greedy computes the optimum like, e.g., the minimum
spanning tree (as we will further discuss in Section 2). Perhaps it may be surprising if, for
some problem, one could devise an algorithm with the following performance:

Compute a constant approximation using only O(polylog n) high-energy op-
erations and O(n logn) low-energy operations.

We show that this is indeed the case for the rich class of maximization problems in so
called p-extendible systems, a generalization of matroids introduced in [24], and recently
reconsidered in [8] (see Section 2 for a formal definition). We consider the case of additive
optimization functions, where the goal is to optimize (maximize or minimize) the sum of the
weights in the solution (basis). This class includes, among others, maximum profit scheduling
(p = 1 or 2 depending on the version), maximum weight b-matching (p = 2), maximum
asymmetric travelling salesman problem (p = 3), weighted ∆-independent set (p = ∆ =
maximum degree) [24, 8]. Interestingly, greedy (without errors) is only a constant factor
away from the actual optimum: in any p-extendible system greedy is p-approximate [24], and
it even returns the optimum if the input instance is p-stable [8], that is, if the p-extendible
system admits an unique optimal solution which remains unique even when the elements’
weights are perturbed by a factor between 1 and p. The special case of p-extendible systems
with p = 1 are matroids [24], where greedy also computes the optimum (the minimum
spanning tree is a classical example).

Our results show a direct connection between the number of high-energy operations
required to obtain a provably good solution and the ability to approximately sort a sequence
of n elements at low energy. For a given error model, suppose we can compute a sequence
of the input elements so that the maximum dislocation is at most d = d(n): each element
appears at most d positions away from its position in the sorted sequence (depending on
the weights). The results of this work are summarized in Table 1 (upper part) where for
the moment we do not account for the number of operations used to approximately sort

ISAAC 2019

64:4 Dual-Mode Greedy Algorithms Can Save Energy

Table 1 A summary of the results for a generic input with initial dislocation at most d (upper
part), and their instantiation for the case of persistent comparison errors (lower part). In the
latter case, an additional O(n logn) low-energy operations are needed to produce the sequence with
dislocation d = Θ(logn) w.h.p. [15]. The approximation guarantee of the lower part holds w.h.p.

Problem High-Energy Low-Energy Approximation
Matroids (min/max) O(d log2 d) O(n) 2 (Thm 4)
Matroids (min/max) O(d2/ε) O(n) 1 + ε (Thm 4)

p-Ext. Sys. (max, p ≥ 2) O(d+ d2

p
) O(n) p times greedy ≤ p2 (Thm 15)

Matroids (min/max) O(logn · (log logn)2) O(n logn) 2
Matroids (min/max) O(log2 n

ε
) O(n logn) 1 + ε

p-Ext. Sys. (max, p ≥ 2) O(logn+ log2 n
p

) O(n logn) p times greedy ≤ p2

the sequence (i.e., assume that such a sequence is provided in input). If such a sequence
can be constructed in time tsort(n) using only unreliable (low-energy) comparisons, then
the low-energy operations of the whole algorithm (first approximately sort and then run
our algorithms) is O(n+ tsort(n)). For the case of persistent comparison errors, [15] showed
that it is possible to approximately sort a sequence in tsort(n) = O(n logn) time so that the
maximum dislocation is d = O(logn) with high probability [15].1 This immediately yields the
bounds in Table 1 (lower part) showing that polylogarithmic high-energy operations suffice
to compute w.h.p. an approximate solution, where the approximation guarantee depends on
the problem version as shown in Table 1 (lower part).

Interestingly, since the greedy algorithm has approximation guarantee p for maximization
problems restricted to p-extendible systems [24], our results for p ≥ 2 yield a constant
approximation for any p = O(1), including the aforementioned NP-hard optimization
problems. Moreover, for the special case of matroids (p = 1) where greedy returns the
actual optimum, we show that O(log2 n

ε) high-energy operations suffice to compute a (1 + ε)-
approximation, and extend this result in two ways: we consider minimization problems
as well and algorithms which use even fewer high energy operations and still achieve an
approximation factor of 2.

Regarding problems where greedy is guaranteed to return the optimum solution, we recall
that this is also the case on p-stable instances of p-extendible systems [8]. There we show that
our algorithm will in some cases return a solution which is a factor p worse than the optimal
(greedy) solution, thus showing that the analysis in Theorem 15 is tight (see Theorem 19).

Due to space limitations, the analysis of our result concerning maximization in matroids
is omitted and will appear in the full version of the paper.

1.2 Related work
The standard greedy algorithm performs optimally or nearly optimally in several interesting
classes of problems.

Maximization of submodular optimization functions under cardinality constraint. In this
case, greedy has an approximation guarantee of e

e−1 [27, 29]. An even better guarantee
for greedy holds for modular functions and for functions that are “close” to being modular

1 Technically this requires a comparisons error probability perr < 1/16 for which the O(n logn)-time
algorithm in [15] applies. Alternatively, if low-energy operations account only for comparisons, the
same high-low energy complexity can be achieved for larger perr < 1/2 using [6] which uses O(n logn)
comparisons.

B. Geissmann, S. Leucci, C.-H. Liu, P. Penna, and G. Proietti 64:5

[9, 30]. Finally, constant approximations also hold for functions that are close to be
submodular [5].
Maximization in problems with more complex constraints has been also considered. For
p-extendible systems, greedy has an approximation of p+ 1 for submodular functions and
p for additive ones (our case). For the additive case, a small constant approximation can
be achieved using only ordinal information, i.e., without knowing the actual weights and
solely based on comparisons [3, 4]. Another line of research deals with stable instances of
p-extendible systems where greedy recovers the optimal solution [8].
Minimization problems are generally harder, with the exception of matroids, including
minimum spanning tree. Other examples are those problems where the minimum spanning
tree itself is a good approximation of the optimum, and thus greedy automatically provides
the same guarantee (see for example, the 2-approximation for the metric travelling sales-
man problem, and [17, 2] for connectivity problems in wireless networks). Bicriteria results
for supermodular functions with cardinality constraints are given in [23], which considers
extending a given solution in a greedy fashion. Finally, also for the metric travelling
salesman problem, greedy recovers the optimum in the case of stable instances [26].

Theoretical models for algorithms that use two-level operations are not completely new,
though they have been studied with different objectives. In particular, [12] distinguishes
between cheap and expensive comparisons, and errors occur only in the cheap comparisons
according to a threshold error model: a cheap comparison between two elements whose position
in the sorted sequence differ by at most τ is prone to errors, and all other comparisons
are correct. They suggested to use a suitable “concatenation” of two algorithms to sort
perfectly in this error model. In our terminology, their approach has 〈O(τn), O(n logn)〉-
high-low energy complexity (see also [16] for further results on this setting). Note that the
techniques and the results in [12, 16] are not applicable to our setting as their error model is
different (see next paragraph) and because our primary objective is not to sort. Indeed, our
results say that sorting exactly is not energy-optimal for many optimization problems (while
our algorithms use O(log2 n) high-energy operations, sorting exactly w.h.p. requires Ω(n)
high-energy complexity).

The error model with persistent errors is different from the threshold error model [12, 16],
and somewhat more difficult. In the model with persistent errors, there is no bound on τ , and
thus every comparison result is wrong with some probability perr > 0, independently of the
other results. In this case, the best bound on the maximum dislocation which is possible to
guarantee (with high probability) is d = Θ(logn) and, among the various known algorithms
that achieve this performance [6, 18, 13, 14, 15], the fastest has running time Θ(n logn) [15].

2 Preliminaries

Independence systems and matroids

An independence system is a pair M = (E, I) where E is a collection of n elements called
ground set; I ⊆ P(E) is a family of independent sets2 which is downward closed (also known
as the hereditary property): if B ∈ I and A ⊆ B, then A ∈ I; and ∅ ∈ I. A maximal (w.r.t.
inclusion) independent set is called a base or feasible solution.

2 Where P(E) denotes the power-set of E, i.e., the set of all subsets of E.

ISAAC 2019

64:6 Dual-Mode Greedy Algorithms Can Save Energy

We consider maximization and minimization problems involving independence systems
where each element e ∈ E has a non-negative weight w(e) ≥ 0. In maximization problems
(resp., minimization problems) the goal is to compute a base B maximizing (resp., minimizing)
the total weight w(B) =

∑
b∈B w(b), the so called additive case. We shall restrict our attention

to the following two important classes of independence systems, for which the simple greedy
algorithm (see below) returns either a constant approximation or even the optimum.
Matroids: A matroid is an independence system (E, I) that satisfies the augmentation

property: If A,B ∈ I and |A| < |B|, then ∃x ∈ B \A such that A ∪ {x} ∈ I.
p-extendible systems : A p-extendible system is an independence system (E, I) such that if

A ⊆ B ∈ I and A ∪ {e} ∈ I, then (B \R) ∪ {e} ∈ I for some R ⊆ B \ A of cardinality
|R| ≤ p.

It follows from the above definitions that the cardinalities of any two bases of a p-extendible
system are at most a factor p apart. Since any matroid M is a 1-extendible system [25],
it follows that all bases of M have the same cardinality, denoted by rank(M). Finally, a
circuit C of an independence system is a minimal (w.r.t. inclusion) non-independent set, i.e.,
C ∈ P(E) \ I.

Greedy algorithm

A well-known algorithm is the greedy algorithm. Starting from the empty set, it iteratively
extends the current solution A ∈ I with the “best” element x ∈ E \ A such that A ∪ {x}
is still independent; For maximization problems, greedy considers the elements from the
largest weight to the smallest one, while in minimization it follows the opposite order. The
algorithm stops and returns the current set A when no such x element can be added. In
the following we denote by greedy(M) the set returned by (an unspecified implementation
of) the greedy algorithm on M , and by greedy(M, S̃) the set returned by the variant of the
greedy algorithm that considers the elements of M as they appear in a (non necessarily
sorted) sequence S̃.

Our setting (high and low energy operations)

The greedy algorithm needs access to the ground set of M , to the function w, and to an
independence oracle O that reports whether a subset of elements of E is independent. Notice,
however, that only ordinal information about w are needed, i.e., we can replace w with a
comparison oracle CH : E × E → {≤, >}: a query CH(x, y) to CH reports whether x is
smaller than or equal to y.

In this paper we consider the scenario in which algorithms have access to an additional
comparison oracle CL that can sometimes return incorrect answers. More precisely, there is a
(small) constant probability perr < 1/16 that CL returns the wrong answer to a query. Errors
between comparisons that involve different pairs of elements are independent. However the
answers of CL are persistent, i.e., they do not change if the pair of elements is queried multiple
times. Notice that the algorithm is still allowed to query CH in order to determine with
certainty the correct order relation between two elements (even if a query to CL involving
the same pair of elements has already been performed).

I Definition 1. We say that an algorithm has high-low energy complexity 〈h(n), `(n)〉 if it
performs at most h(n) queries to CH , and at most `(n) other operations (including queries
to CL).

B. Geissmann, S. Leucci, C.-H. Liu, P. Penna, and G. Proietti 64:7

e 1 e2

e3
e 4 e5

e6
e 7 e8

e9

(a)

e 1 e2

e3
e 4 e5

e6
e 7 e8

e9

(b)

Figure 1 The graph G along with (a) its minimum spanning tree, and (b) the spanning tree
returned by greedy(M, S̃).

I Example 2. The greedy algorithm has high-low energy complexity 〈O(n logn), O(n logn)〉
as it performs O(n logn) queries to CH in order to sort the elements of E according to w.3

Greedy on nonsorted sequences

As already mentioned, the standard greedy algorithm first orders the elements in E according
to their weights, i.e., it constructs a sorted sequence

S = (e1, e2, . . . , en) where w(e1) ≥ w(e2) ≥ · · · ≥ w(en) (1)

for maximization problems (the opposite order is considered for minimization problems).
The greedy algorithm then considers the elements of S in order and iteratively maintains an
independent set. Because sorting exactly the elements requires Ω(n) high-energy operations
(see Example 2 above), we consider running greedy with respect to a different almost-sorted
sequence S̃ = (ẽ1, ẽ2, . . . , ẽn). The sequence S̃ is a permutation of the elements which has
some bound d on the dislocation: we say that S̃ has dislocation at most d if there exists a
sorted sequence S as in (1) such that4 |t(e, S)− t(e, S̃)| ≤ d, where t(e, S) and t(e, S̃) denote
the positions of e in S and in S̃, respectively.

One might wonder whether running greedy on the almost-sorted sequence S̃ already
results in good approximation guarantees. Unfortunately, this turns out not to be the
case: the solution computed by the greedy algorithm on input a sequence with very small
dislocation can be arbitrarily far from the optimum, as the following example for the minimum
spanning tree problem shows.

I Example 3 (minimum spanning tree). Let ε ∈ (0, 1
8) and consider the graph G shown in

Figure 1 (a) along with its corresponding graphic matroid M .5 The edges of G are weighted
as follows: w(ei) = iε for i = 1, . . . , 8 and w(e9) = 1, so that the sorted version of the ground
set of M w.r.t. w is S = 〈e1, e2, . . . , e9〉. The minimum-weight base of M has weight 27ε and
consists of the edges in the (unique) minimum spanning tree of G (in bold). For a sequence
S̃ of dislocation 1, in which we swap the order between e2 and e3, e5 and e6, and e8 and
e9, i.e., S̃ = 〈e1, e3, e2, e4, e6, e5, e7, e9, e8〉, greedy(M, S̃) would select the suboptimal tree
shown in Figure 1 (b). The cost of the resulting tree can be significantly higher than cost of
a MST (i.e., more than 1 = w9 as opposed to 27ε) and, for tiny ε, there is no approximation
guarantee.

Even if greedy(M,S) returns the optimal solution for a minimization/maximization
problems in matroids, the above example above shows that greedy(M, S̃) cannot approximate

3 Here, the bound on the low-energy complexity accounts for up to O(n logn) non-comparison operations.
4 For distinct elements (weights) the sorted sequence is unique. In general, we consider S and S̃ to agree

on the relative order between elements with identical weight.
5 The ground-set of M is the set of edges of G, while a subset of edges is independent in M if it induces a

forest in G.

ISAAC 2019

64:8 Dual-Mode Greedy Algorithms Can Save Energy

the greedy solution within any factor (to apply the previous example to the problem of
computing a maximum-weight base of M it suffices to exchange the roles of S and S̃).

3 The general scheme for matroids

In this section we describe a general scheme which leads to different approximation algorithms
for computing a minimum- or maximum-weight base in a matroid. In particular, we will
then be able to prove the following theorem.

I Theorem 4. Consider any maximization/minimization problem in a matroid, where
the input elements are given as a sequence with dislocation at most d. There exists an
algorithm which returns a 2-approximate solution and that has

〈
O(d log2 d), O(n)

〉
-high-low

energy complexity. Moreover, for every ε ∈ (0, 1), there exists an algorithm which returns a
(1 + ε)-approximate solution and that has

〈
O(d2/ε), O(n)

〉
-high-low energy complexity.

Our algorithm and analysis are based on standard notions of “submatroid”. If M = (E, I)
is a matroid and X ⊆ E, the restriction M |X of M to X is the matroid having X as its
ground set and {Y ∈ I : Y ⊆ X} as its independent sets. If X ∈ I, the contraction M/X of
M by X is the matroid having E \X as its ground set and {Y ∈ P(E \X) : Y ∪X ∈ I} as
its independent sets. A minor of M is matroid that can be obtained from M by a sequence
of restrictions and contractions. We denote by Opt(M) = w(greedy(M)) the weight of a
base of M having minimum (resp. maximum) weight in the case of minimization (resp.
maximization) problems.

The algorithm

The inputs of our algorithm are a matroid M , given in the form of a set E of n elements and
an independence oracle, and an approximately-sorted sequence S̃ of the elements in E having
dislocation at most d.6 If such a sequence is not readily available, one with d = O(logn) can
be computed in a pre-processing step using O(n logn) low-energy operations [15].
Our algorithm, whose pseudocode is shown in Algorithm 1, performs the following steps:
1. First, we run the greedy algorithm by considering the elements as they appear in S̃. Let

A = {a1, a2, . . . , ak} = greedy(M, S̃) be the resulting (now possibly suboptimal) base,
where ai represents the i-th element added during the execution of the algorithm and
k = rank(M).

2. Next, select a suitable subset F of elements of A that will be part of our final solution.
The exact details of this step will be specified later.

3. Let E′ be the set of all elements x ∈ E \ F such that |t(x, S̃) − t(y, S̃)| ≤ 2d for some
y ∈ A \ F . We define M ′ as the matroid having E′ as its ground set, and all the sets
X ∈ P(E′) such that X ∪F is independent in M as its independent sets. Notice that M ′
is a minor of M as it can be obtained by first contracting M by F , and then restricting
the resulting matroid M/F to E′, i.e., M ′ = (M/F)|E′.

4. Finally, we compute a minimum-weight base A′ of M ′ using the greedy algorithm and
high-energy queries to CH . We return F ∪A′.

When minimization (resp. maximization) problems are concerned, the high level intuition
is that the initial greedy solution A, which can be far from optimal, contains a “large” subset

6 Elements are (approximately) sorted in non-decreasing or non-increasing order of weights depending on
whether we are interested in a minimum-weight or maximum-weight base of M , respectively.

B. Geissmann, S. Leucci, C.-H. Liu, P. Penna, and G. Proietti 64:9

Algorithm 1 Dual-Mode Greedy Scheme(M , S̃, d).

1 A← greedy(M, S̃);

2 F ← Select a suitable subset of A;
3 E′ ← {x ∈ E \ F : ∃y ∈ A \ F, |t(x, S̃)− t(y, S̃)| ≤ 2d};
4 A′ ← greedy((M/F)|E′); // high energy part

5 return F ∪A′;

F of elements whose weight is comparable to the optimum. We fix these elements and isolate
a “small” set E′ of candidates to complete the solution. As this set is “small” we can run
greedy at high energy, and hope that it will only contribute a small (resp. large enough)
additional weight to the final solution, which is the union of the solutions of the two parts.

Some properties

For the sake of the analysis, we define S to be the (correctly) sorted sequence containing
the elements in E. Whenever ties between two elements arise they are broken by preserving
their relative order in S̃. Let B = {b1, b2, . . . , bk} = greedy(M,S) be an optimal base of M
as computed by the greedy algorithm that considers the elements in the same order as S.

I Lemma 5. For all i = 1, . . . , k we have |t(bi, S)− t(ai, S̃)| ≤ d.

Proof. Let St (resp. S̃t) be the sequence consisting of the first t elements of S (resp. S̃).
Similarly, let At = greedy(M, S̃t) (resp. Bt = greedy(M,St)) be the set of elements included
in the independent set maintained by greedy(M, S̃) (resp. greedy(M,S)) at time t, i.e.,
immediately after the t-th element of S̃ (resp. S) is considered.

Notice that, for every t = 0, . . . , n, each element in St must also be contained in S̃min{t+d,n}

due to the bound on the dislocation of S̃. This implies that |Bt| ≤ |Amin{t+d,n}|. By choosing
t = t(bi, S) we obtain i = |Bt(bi,S)| ≤ |Amin{t(bi,S)+d,n}| and therefore the i-th element
ai of A must have been added at a time (i.e., position in S) of at most t(bi, S) + d, i.e.,
t(ai, S̃) ≤ t(bi, S) + d, or equivalently t(bi, S) ≥ t(ai, S̃)− d.

Similarly, for t = 0, . . . , n, St is a superset of S̃max{0,t−d}, implying |Bt| ≥ |Amax{0,t−d}|.
By choosing t = t(bi, S) we obtain i = |Bt(bi,S)| ≥ |Amax{0,t(bi,S)−d}|, implying that the i-th
element ai in A has been added at a time of at least t(bi, S)− d, i.e., t(ai, S̃) ≥ t(bi, S)− d,
or equivalently t(bi, S) ≤ t(ai, S̃) + d. J

The above lemma, together with the bound on the dislocation of S̃, immediately implies:

I Corollary 6. |t(bi, S)− t(ai, S)| ≤ 2d and |t(bi, S̃)− t(ai, S̃)| ≤ 2d.

Next, we show that, regardless of the choice of F , Algorithm 1 returns a base of M .

I Lemma 7. The set A′ ∪ F returned by Algorithm 1 is a base of M .

Proof. We start by defining M ′′ as the matroid having E as its ground set and such that
X ∈ P(E \ F) is an independent set of M ′′ iff X ∪ F is independent in M . Notice how M ′′

is closely related to the contraction of M by F (which is an independent set of M since
F ⊆ A): the only difference is that the ground set of M ′′ still contains the elements in F ,
even though they do not belong to any independent set.

Since F and B are, respectively, an independent set and a base of M , we can iteratively
invoke the augmentation property of matroids to select a set B′′ ⊂ B \F of k− |F | elements

ISAAC 2019

64:10 Dual-Mode Greedy Algorithms Can Save Energy

0 6 7 8 9 11 12 16 18 21

0 6 7 8 9 11 12 16 18 21

t̃

t̃

Figure 2 Top: an example of a 〈τ, λ〉-min-mapping with τ = 4 and λ = 3. The elements in the set
X are depicted as dots and the horizontal axis represents the function t̃. Filled (resp. hollow) dots
correspond to mapped (resp. unmapped) elements. Three intervals of size τ whose union contains
the values t̃(x) of all unmapped elements x are shown in red. The mapping has been obtained by
greedily assigning each element of X to the first suitable element, in increasing order of t̃(·). Bottom:
A 〈4, 2〉-min-mapping for the same set of elements X and values of t̃(·).

such that F ∪B′′ is an independent set of M . This implies that B′′ is also an independent
set in M ′′. In particular, since all the independent sets X of M ′′ are such that X ∩ F = ∅
and X ∪ F is independent in M , it follows that |X| ≤ k − |F | = |B′′| therefore that B′′ is
maximal w.r.t. inclusion in M ′′ and hence it is a base.

Notice thatM ′ is exactly the restriction ofM ′′ to the set E′, and that the set greedy(M ′′, S̃)
coincides with A\F . By Corollary 6, the position in S̃ of each element in B′ = greedy(M ′′, S)
differs by at most 2d from the position of a suitable element in A\F , implying thatB′ ⊆ E′. To
summarize, we have: (i) B′ = greedy(M ′′, S) = greedy(M ′, S) = A′, (ii) B′∪F is independent
in M , (iii) |B′ ∪ F | = |B′|+ |F | = rank(M ′) + |F | = |B′′|+ |F | = (k − |F |) + |F | = k. J

4 Minimization in Matroids

In this section, we instantiate our general scheme in order to prove Theorem 4 in the case of
minimization in matroids (the maximization counterpart will appear in the full version of
the paper). Recall that S̃ has dislocation d w.r.t. a sequence S in which elements are sorted
in non-decreasing order of weight.

We start by proving the following lemma, which will hold for all our choices of F .

I Lemma 8. w(A′) ≤
∑k
i=|F |+1 w(bi) ≤ Opt(M).

Proof. Let M ′′, and B′′ be defined as in Lemma 7. We have that |A′ ∪ F | = k and hence
|A′| = k − |F | as A ∩ F = ∅. Since A′ = greedy(M ′, S) is a minimum-weight base of M ′ and
M ′′ while B′′ ⊆ B is a base of M ′′, we have w(A′) = Opt(M ′′) ≤ w(B′′).

By definition, B′′ is a subset of B and, since |B′′| = rank(M ′′) = |A′| = k − |F |, we can
upper bound the total weight of the k− |F | elements in B′′ with that of the k− |F | elements
of B of largest weight, i.e., w(B′′) ≤

∑k
i=|F |+1 w(bi). Combining all the previous inequalities,

we can write: w(A′) ≤ w(B′′) ≤
∑k
i=|F |+1 w(bi) ≤ w(B) = Opt(M). J

4.1 A 2-Approximation (for Minimization in Matroids)
To instantiate the general scheme of Algorithm 1, we need to specify how the subset F of
elements of Step 2 is selected. To this aim we map some of the elements of the initially
computed solution A into some other elements of A. The set of mapped elements will be our
set F , while the mapping shall satisfy the following definition.

B. Geissmann, S. Leucci, C.-H. Liu, P. Penna, and G. Proietti 64:11

︸ ︷︷ ︸ ︸ ︷︷ ︸
Xi Xi+1

︸ ︷︷ ︸ ︸ ︷︷ ︸
Xi Y

=⇒
µ′ µ

Figure 3 A graphical representation of the local transformation that allows us to assume that
|Xi| > |Xi+1|. Function µ′ (whose domain does not include the elements in Xi) is shown on the
left, while function µ is shown on the right. Recall that Y ⊆ Xi+1 is chosen arbitrarily such that
|Y | = |Xi|. The differences between µ′ and µ are highlighted in bold. The newly-added mappings
µ(x) for x ∈ Xi are shown in red.

I Definition 9 (〈τ, λ〉-min-mapping). A 〈τ, λ〉-min-mapping of a set of elements X w.r.t. an
injective function t̃ : X → N is an injective partial function µ : X → X such that:

For every element x in the domain D(µ) of µ it holds t̃(µ(x)) ≥ t̃(x) + τ ;
The integers in {t̃(x) : x ∈ X \D(µ)} are all contained in the union of at most λ intervals
of contiguous integers, each of size at most τ .

In other words, if we think of t̃() as a function that associates a time to each element
of X, the above definition guarantees that an element x of X is either mapped to some
other element y ∈ X that appears sufficiently later in time, or it belongs to a small set
of at most λ time intervals, each of size τ . Figure 2 shows an example of a 〈4, 3〉- and a
〈4, 2〉-min-mapping.

Finding a 〈τ, 4 log τ + 4〉-min-mapping

We now show how a 〈τ, λ〉-min-mapping with λ = O(log τ) can be found, which will turn out
to be the best asymptotic trade-off between τ and λ one can hope to obtain. In particular,
we will set λ = 4 log τ + 4.

To this aim, it is useful to consider a relaxed variant of the problem. Intuitively, we
get rid of t̃() by grouping the elements of X into a collection of sets 〈X1, X2, . . . , Xm〉.
Instead of requiring t̃(µ(x)) ≥ t̃(x) + τ , it will be enough for x ∈ Xi to be mapped to some
element µ(x) ∈ Xj with j > i. Moreover, we allow up to 2 log τ + 2 sets Xi to contain
unmapped elements.

Formally, we are given a sequence of m pairwise-disjoint sets 〈X1, X2, . . . , Xm〉 each
containing at most τ elements, as we want to find:

A subset N of {X1, X2, . . . , Xm} of size at most 2 log τ + 2.
An injective function µ :

⋃
Xi 6∈N Xi →

⋃
iXi such that x ∈ Xi =⇒ µ(x) ∈ Xj for a j > i.

W.l.o.g. we can restrict ourselves to the case in which the cardinalities of the sets Xi are
monotonically decreasing and |Xm| > 0. Indeed, if i is an index such that |Xi| ≤ |Xi+1|,
we can consider the modified instance consisting of the sets {X1, . . . , Xi−1, Xi+1, . . . , Xm}
instead. Any solution (N ′, µ′) to this modified instance yields a solution (N,µ) for the original
instance. Indeed, if Xi = {x1, x2, . . . }, it suffices to pick N = N ′, select an arbitrary subset
Y = {y1, y2, . . . } of |Xi| elements from Xi+1, and define µ as follows (see also Figure 3):

µ(x) =

yj if x ∈ Xi, where j is such that x = xj ,

xj if x 6∈ Xi and µ′(x) ∈ Y , where j is such that µ′(x) = yj ,

µ′(x) otherwise.

ISAAC 2019

64:12 Dual-Mode Greedy Algorithms Can Save Energy

0 8 9 11 16

t̃
1 2 3 5 19 2321

X1 X1 X2 X2 X3 X3

Figure 4 Decomposition of a set X into the families of sets X1, X2, . . . and X1, X2, . . . used
in the relaxed version of our mapping problem for τ = 4. The elements in the set X are depicted
as dots and the horizontal axis represents the function t̃. Filled (resp. hollow) dots correspond
to elements that belong to (resp. do not belong to) D(µ). The solution (N1, µ1) is shown with
solid lines, while the solution (N2, µ2) is shown with dashed lines. Their combination yields the
〈τ, λ〉-min-mapping µ with λ = 4 log τ + 4. The (at most λ) red intervals span all the elements in
N1 ∪N2 = X \ D(µ).

We henceforth assume that |Xi| > |Xi+1| for all i = 1, . . . ,m − 1. Our algorithm starts
by letting i = 1 and N = ∅, then it iteratively looks for the largest index j ≥ i such that
|Xj | ≥ |Xi|/2 and performs one of the following two steps, depending on the value of j:

If j = i, then Xi is added to N .

If j > i, we assign consecutive indices 1, 2, . . . , to the elements inXi, . . . , Xj (in order). Let
xh be the element with index h. We define µ(xh) = xh+|Xi| for all h = 1, . . . ,

∑j−2
`=1 |X`|.

Notice that, for every xh ∈
⋃j−2
`=i X`, we have that µ(xh) ∈

⋃j
`=i+1 X`, that µ(xh) is

necessarily in a successive set, and that the mapping is injective. Finally, we add Xj and
Xj−1 to N .

If j < m we set i = j + 1 and continue with the next iteration, otherwise we return the pair
(N,µ).

Observe that, in every iteration, the cardinality of N increases by at most 2. Moreover, if
j < m, the set Xi has cardinality least twice the one of the set Xj+1, i.e., the set considered
at the next iteration. This means that there will be at most log |X1| + 1 iterations, thus
|N | ≤ 2 log |X1|+ 2 ≤ 2 log τ + 2.

We now argue that a 〈τ, 4 log τ + 4〉-min-mapping of a set X w.r.t. t̃ : X → N can be
found by solving two instances of the relaxed problem. Namely, for i = 1, 2, . . . , we define
Xi = {x ∈ X : 2(i− 1)τ ≤ t̃(x) < (2i− 1)τ} and Xi = {x ∈ X : (2i− 1)τ ≤ t̃(x) < 2iτ}. Let
(N1, µ1) and (N2, µ2) be two solutions to the instances of the above problem consisting of
the sets Xi and Xi, respectively. Then, the mapping µ defined as µ(x) = µ1(x) if x ∈ D(µ1)
and µ(x) = µ2(x) if x ∈ D(µ2) is a 〈τ, 4 log τ + 4〉-min-mapping. Notice indeed that each
element in X \ D(µ) is contained in one of the at most 4 log τ + 4 sets in N1 ∪N2, and – by
our definition of Xi and Xi – all the elements in a set Y ∈ N1 ∪N2 are such that all t̃(x)
for x ∈ Y belong to a single interval of size τ . Moreover, since each element in x ∈ Xi 6∈ N1
is mapped to an element µ(x) in some Xj with j ≥ i + 1, we know that t̃(x) < (2i − 1)τ
while t̃(µ(x)) ≥ 2iτ , i.e., t̃(µ(x))− t̃(x) > τ , as desired (a symmetrical arguments holds for
x ∈ Xi 6∈ N2). See Figure 4 for an example.

It is not hard to see that such a mapping can be computed in O(|X|) time if a sorted
version of X w.r.t. t̃(·) is known, as it will be the case in the sequel.

B. Geissmann, S. Leucci, C.-H. Liu, P. Penna, and G. Proietti 64:13

There is no 〈τ, o(log τ)〉-min-mapping

We point out that the above construction of a 〈τ, λ〉-min-mapping essentially achieves the
best attainable trade-off between τ and λ,

I Lemma 10. In general, there exists no 〈τ, o(log τ)〉-min-mapping.

Proof. Let h = blog τc and consider a set X of 2h+1 − 1 elements which is partitioned
into h + 1 sets X0, . . . , Xh where Xi = {x(i)

1 , x
(i)
2 , . . . } contains 2h−i elements. We define

t̃(x(i)
j) = 2i + j + iτ − 1.
Let µ be any 〈τ, h〉-min-mapping of X w.r.t. t̃. We say that a set Xi is covered by

µ if Xi ⊆ D(µ). We claim that, in µ, no set can be covered. Indeed, assume towards a
contradiction that at least one set Xi is covered. Since the value of t̃ for any two elements
in Xi differs by at most |Xi| − 1 ≤ 2h−i − 1 ≤ 2h − 1 ≤ τ − 1, we have that, for every
x

(i)
j ∈ Xi, µ(x(i)

j) ∈ X` for some ` > i. However, |
⋃h
`=i+1 X`| =

∑h−i−1
`=0 2` = 2h−i − 1 and,

since |Xi| = 2h−i this contradicts the fact that µ is an injective function.
To conclude the proof it suffices to notice that h + 1 = blog τc+ 1 > log τ intervals of

length at most τ are necessary for their union to include all the integers in X \ D(µ). J

Analysis for the 2-Approximation

In order to obtain a 2-approximate minimum-weight base ofM , we compute a 〈2d, 4 log d+8〉-
min-mapping µ ofA w.r.t. t̃(x) = t(x, S̃) and we choose F as the domainD(µ) of µ. Intuitively,
for τ = 2d, the first condition of Definition 9 gives an implicit partial injective mapping into
elements of B of non smaller weight, thus yielding w(F) ≤ Opt(M). The second condition
can be used to show that the set F can be extended in an optimal way by looking at a “small”
subset of elements (Steps 3 and 4 of Algorithm 1), and thus the number of high-energy
operations is not too large. As this part of the solution also contributes at most another factor
Opt(M), we get a 2-approximation. We formalize this intuition in the following lemmas:

I Lemma 11. The set returned by Algorithm 1 with F = D(µ) has weight at most 2 Opt(M).

Proof. We associate each ai ∈ A ∩ D(µ) = D(µ) to an element bj ∈ B, where j is the
index such that aj = µ(ai). By definition of 〈2d, 4 log d + 8〉-min-mapping we know that
t̃(aj) ≥ t̃(ai) + 2d and, by Lemma 5, t̃(aj) = t(aj , S̃) ≤ t(bj , S) + d. Combining the previous
inequalities we have t(bj , S) ≥ t̃(aj)− d ≥ t̃(ai) + d = t(ai, S̃) + d ≥ t(ai, S), thus implying
that w(bj) ≥ w(ai), as bj appears no earlier than aj in S (which is sorted in nondecreasing
order of weights). Moreover, since µ is injective, our mapping between D(µ) and B is also
injective. Therefore: w(D(µ)) ≤ w(B) = Opt(M). We can now use the above inequality
together with Lemma 8 to conclude that w(F ∪A′) = w(D(µ)) + w(A′) ≤ 2 Opt(M). J

I Lemma 12. The high-low energy complexity of Algorithm 1 when F = D(µ) and the
elements of E are given in a almost-sorted sequence S̃ having dislocation at most d is
〈O(d · log2 d), O(n)〉.

Proof. Once the base A of M is found using O(n) low-energy operations, both the function
µ and the set F = D(µ) can be computed in linear time w.r.t. |A| without requiring access
to the oracle CH , as we discussed in Section 4.1. This, in turn, allows to construct E′ using
O(n) additional low-energy operations.

Finally, finding the set A′ = greedy(M ′) requires O(d · log2 d) high- and low-energy
operations. Indeed, since µ is a 〈2d, 4 log d+ 8〉-min-mapping, the set E′ will contain at most
6d+1 elements for each of the 4 log d+8 unmapped intervals, i.e., |E′| ≤ (4 log d+8)·(2d+1) =

ISAAC 2019

64:14 Dual-Mode Greedy Algorithms Can Save Energy

O(d log d) implying that E′ can be sorted using O(d log d · log(d log d)) = O(d · log2 d) high-
energy queries to CH . J

4.2 A (1 + ε)-Approximation (for Minimization in Matroids)

In order to improve the approximation guarantee from 2 to 1 + ε, for any ε ∈ (0, 1), we shall
define the set F in Step 2 of Algorithm 1 as the first k− cd elements of the initially computed
solution A, for c = d2/εe. The approximation guarantee and the high-low energy complexity
are given by the next two lemmas, respectively. Recall that ai (resp. bi) is the i-th element
added to the independent set maintained by greedy(M, S̃) (resp. greedy(M,S)).

I Lemma 13. The set returned by Algorithm 1 with F = {a1, . . . , ak−cd} has weight at most
(1 + ε) Opt(M).

Proof. By Corollary 6, t(ai, S) ≤ t(bi, S) + 2d ≤ t(bi+2d, S), which implies w(ai) ≤ w(bi+2d)
(notice that c ≥ 2, therefore i+ 2d ≤ k − (c− 2)d ≤ k and bi+2d always exists). We thus get
the following bound: w(F) =

∑k−cd
i=1 w(ai) ≤

∑k−(c−2)d
i=1+2d w(bi).

From Lemma 8 we also have w(A′) ≤
∑k
i=k−cd+1 w(bi) and, combining the above inequal-

ities, we obtain:

w(F ∪A′) ≤
k−(c−2)d∑
i=1+2d

w(bi) +
k∑

i=k−cd+1
w(bi) =

k∑
i=1+2d

w(bi) +
k−(c−2)d∑
i=k−cd+1

w(bi)

≤ Opt(M) + 2
c

k∑
i=k−cd+1

w(bi) ≤ (1 + ε) Opt(M). J

I Lemma 14. For any ε > 0, the high-low energy complexity of Algorithm 1 when F =
{a1, . . . , ak−cd} and the elements of E are given in a almost-sorted sequence S̃ having
dislocation at most d is 〈O(ε−1d2), O(n)〉.

Proof. Similarly to the proof of Lemma 12, A can be computed using at most O(n) low-
energy operations. Notice that F can trivially be found in linear time in |A| and that the set
E′ contains at most |A \ F | · d = O(1

εd
2) elements.

We now simulate the greedy algorithm in order to compute an optimal base A′ of M ′
as follows: We start with A′ = ∅ and we consider the elements x in A \ F in increasing
order of t(x, S̃) until we find an element x′ such that A′ ∪ {x′} is independent. We then
perform a linear search for the minimum-weight element x∗ among the ones in {y ∈ E :
A′ ∪ {y} is independent in M ′ and t(x′, S̃) ≤ t(y, S̃) ≤ t(x′, S̃) + d} using O(d) high-energy
queries to CH , we add x∗ to A′ and we resume considering the elements x in A \D(µ) such
that t(x, S̃) ≥ t(x′, S̃).7

Since rank(M ′) = k − |F | = cd, the total number of high-energy operations is O(cd2) =
O(d

2

ε). J

To conclude this section, we remark that Lemmas 7, 11, 12, 13, and 14 together prove
Theorem 4 when minimization problems are concerned.

7 Notice how the next element to be considered will again be x′.

B. Geissmann, S. Leucci, C.-H. Liu, P. Penna, and G. Proietti 64:15

Algorithm 2 Dual-Mode p-Extendible-System Maximization(M , p, S̃, d).

1 γ ← 1 +
⌈

2d
p−1

⌉
;

2 B∗ ← First γ elements included in the independent set maintained by greedy(M);
3 A← greedy(M/B∗, S̃);
4 return A ∪B∗;

5 Maximization in p-Extendible Systems

In this section we show the following theorem which yields a p2-approximation for the
general problem of computing a maximum-weight base of a p-extendible system M , and a
p-approximation if M is p-stable.

I Theorem 15. Consider any maximization problem in p-extendible systems, with p ≥ 2,
where the input elements are given as a sequence with maximum dislocation at most d.
There exists an algorithm which returns a p-approximation of the base returned by the greedy
algorithm and that has

〈
O(d+ d2

p), O(n)
〉
-high-low energy complexity.

Similarly to matroids, we define the contraction M/X of M = (E, I) by X ∈ I as
the independence system having E \X as its ground set and all Y ∈ P(E \X) such that
Y ∪X ∈ I as its independent sets. It is easy to check that M/X is a p-extendible system.

Our Algorithm, whose pseudocode is shown in Algorithm 2, computes an independent
set B∗ consisting of the first γ = 1 + d 2d

p−1e elements that greedy(M) would select, and then
completes the solution with the base A of M ′ = M/B∗ obtained by greedily adding the
elements in S̃. We start our analysis by proving a generalization of Lemma 5 to p-extendible
systems.

I Lemma 16. Let M be a p-extendible system and k = | greedy(M,S)|. Let St (resp.
S̃t) be the sequence containing the first t elements of S (resp. S̃), At = {a1, a2, . . . } =
greedy(M, S̃t), and Bt = {b1, b2, . . . } = greedy(M,St). For all i = 1, . . . , bk/pc it holds
t(ai, S̃) ≤ t(bi·p, S) + d.

Proof. For any time t = 0, . . . , n we have St ⊆ S̃min{n,t+d}. This implies that |Amin{t+d,n}| ≥
|Bt|/p. By choosing t = t(bi·p, S) we obtain |Amin{t(bi·p,S)+d,n}| ≥ |Bt(bi·p,S)|/p = ip/p = i,
meaning that greedy(M, S̃) must have already considered ai by the time it finished considering
the (t(bi·p, S) + d)-th element of S̃, i.e., t(ai, S̃) ≤ t(bi·p, S) + d. J

We can now lower bound the weight of the base returned by Algorithm 2. Since if p = 1
the results of the previous sections apply, we henceforth assume p ≥ 2.

I Lemma 17. Algorithm 2 returns a base A ∪B∗ of M of weight at least 1
pw(greedy(M)).

Proof. Let B = greedy(M,S), M ′ = M/B∗, and B′ = {b′1, . . . , b′k} = greedy(M ′, S). Since
a contraction of a p-extendible system is again a p-extendible system and |A| ≥ k/p, we can
invoke Lemma 16 on M ′ to write:

w(A) =
∑
ai∈A

w(ai) ≥
b k−2d

p c∑
i=1

w(ai) ≥
b k−2d

p c∑
i=1

w(b′ip+2d) ≥
1
p

k∑
i=p+2d

w(b′i).

ISAAC 2019

64:16 Dual-Mode Greedy Algorithms Can Save Energy

Notice that B = B∗ ∪B′ and that all the elements in B∗ weigh at least w(b′1), therefore:
p+2d−1∑
i=1

w(b′i) ≤ (p+2d−1)w(b′1) ≤ (p+2d−1)· 1
γ
w(B∗) ≤ p+ 2d− 1

1 + 2d
p−1

w(B∗) = (p−1)w(B∗).

Combining the above inequalities:

w(A ∪B∗) = w(A) + w(B∗) ≥ 1
p

k∑
i=p+2d

w(b′i) + w(B∗)

= 1
p

k∑
i=1

w(b′i)−
1
p

p+2d−1∑
i=1

w(b′i) + w(B∗) ≥ 1
p
w(B′)− p− 1

p
w(B∗) + w(B∗)

= 1
p

(w(B′) + w(B∗)) = 1
p
w(B).

To conclude the proof we need to show that A ∪B∗ is a base of M . Since A ∪B∗ is an
independent set of M by construction, we only need to show that it is maximal. In order
to do so suppose towards a contradiction that there exists an element x ∈ E \ (A ∪ B∗)
such that A ∪B∗ ∪ {x} is independent. If we let A′ be the independent set maintained by
greedy(M/B∗, S̃) immediately before x is considered, then we have that A′∪{x} ⊆ A∪{x} ⊆
A ∪B∗ ∪ {x} must also be independent, contradicting x 6= A. J

We now bound the high-low energy complexity of Algorithm 2 which, when combined
with Lemma 17, immediately yields Theorem 15.

I Lemma 18. The high-low energy complexity of Algorithm 2 when the elements of E are
given in a almost-sorted sequence S̃ having dislocation at most d is 〈O(d+ d2

p), O(n)〉.

Proof. Since the overall number of the low-energy operations is O(n) we only need to bound
the number of high-energy operations, i.e., the ones needed to select B∗. By using a technique
similar to the one described in the proof of Lemma 14, we can select the first γ = O(1 + d

p)
elements of greedy(M,S) by performing O(d) high-energy queries to CH per element. The
overall high-energy complexity is therefore O(d+ d2

p). J

Since in any p-extendible system, the greedy algorithm recovers the optimum whenever
the instance is p-stable, Lemma 17 implies that Algorithm 2 computes a p-approximation.
The next result, whose proof will appear in the full version of this paper, shows that our
analysis is actually tight whenever d ≥ p (we recall that the best dislocation that sorting
algorithms can achieve with high probability is Ω(logn)).

I Theorem 19. For every d ≥ p ≥ 2, there exists a p-stable instance of a p-extendible system
for which Algorithm 2 is no better than p-approximate.

One might wonder whether our techniques can be extended to larger classes of independ-
ence system, e.g., to p-systems [19] (i.e., independence system such that the ratio between
the cardinality of any two maximal independent sets is at most p). Unfortunately, the answer
is negative: our analysis uses the fact that p-extendible systems are closed under restrictions
and contractions. This is no longer true when p-systems are considered, as the following
counterexample shows: Fix any n ≥ 2 and let A = {a1, . . . , an} and B = {b1, . . . , bn} be
two disjoint sets. We define the independence system M = (E , I) where E = A ∪ B and
I = P(A) ∪ P(B). Notice that M is a 1-system as the only two maximal independent sets
of M are A and B. Consider now M ′ = M |(A ∪ {b1}). The only two maximal independent
sets of M ′ are A and {b1}, showing that M ′ is a n-system but not a (n− 1)-system.

B. Geissmann, S. Leucci, C.-H. Liu, P. Penna, and G. Proietti 64:17

References
1 Bilge ES Akgul, Lakshmi N Chakrapani, Pinar Korkmaz, and Krishna V Palem. Probabilistic

CMOS technology: A survey and future directions. In Very Large Scale Integration, 2006
IFIP International Conference on, pages 1–6. IEEE, 2006.

2 Christoph Ambühl. An optimal bound for the MST algorithm to compute energy efficient
broadcast trees in wireless networks. In Proc. of International Colloquium on Automata,
Languages, and Programming (ICALP), pages 1139–1150. Springer, 2005.

3 Elliot Anshelevich and Shreyas Sekar. Blind, Greedy, and Random: Algorithms for Matching
and Clustering Using Only Ordinal Information. In Proc. of the Thirtieth AAAI Conference
on Artificial Intelligence, pages 390–396, 2016.

4 Elliot Anshelevich and Shreyas Sekar. Truthful mechanisms for matching and clustering in an
ordinal world. In International Conference on Web and Internet Economics, pages 265–278.
Springer, 2016.

5 Andrew An Bian, Joachim M. Buhmann, Andreas Krause, and Sebastian Tschiatschek.
Guarantees for Greedy Maximization of Non-submodular Functions with Applications. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 498–507,
International Convention Centre, Sydney, Australia, 06–11 August 2017. PMLR.

6 Mark Braverman and Elchanan Mossel. Noisy Sorting Without Resampling. In Proc. of the 19th
Annual Symposium on Discrete Algorithms (SODA), pages 268–276, 2008. arXiv:0707.1051.

7 Lakshmi N. B. Chakrapani, Jason George, Bo Marr, Bilge E. S. Akgul, and Krishna V. Palem.
Probabilistic Design: A Survey of Probabilistic CMOS Technology and Future Directions
for Terascale IC Design. In Giovanni De Micheli, Salvador Mir, and Ricardo Reis, editors,
VLSI-SoC: Research Trends in VLSI and Systems on Chip, pages 101–118, Boston, MA, 2008.
Springer US.

8 Vaggos Chatziafratis, Tim Roughgarden, and Jan Vondrák. Stability and Recovery for
Independence Systems. In Proc. of the 25th Annual European Symposium on Algorithms
(ESA), volume 87 of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.26.

9 Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy
algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem.
Discrete applied mathematics, 7(3):251–274, 1984.

10 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with Noisy Informa-
tion. SIAM Journal on Computing, 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

11 Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. Optimal resilient sorting and
searching in the presence of memory faults. Theor. Comput. Sci., 410(44):4457–4470, 2009.
doi:10.1016/j.tcs.2009.07.026.

12 Stefan Funke, Kurt Mehlhorn, and Stefan Näher. Structural filtering: a paradigm for efficient
and exact geometric programs. Comput. Geom., 31(3):179–194, 2005.

13 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Sorting with Recurrent
Comparison Errors. In ISAAC, volume 92 of LIPIcs, pages 38:1–38:12. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

14 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal Dislocation
with Persistent Errors in Subquadratic Time. In Proc. of the 35th Symposium on Theoretical
Aspects of Computer Science (STACS), volume 96 of LIPIcs, pages 36:1–36:13, 2018.

15 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal Sorting
with Persistent Comparison Errors. In 27th Annual European Symposium on Algorithms,
ESA 2019, September 9-11, 2019, Munich/Garching, Germany., pages 49:1–49:14, 2019.
doi:10.4230/LIPIcs.ESA.2019.49.

16 Barbara Geissmann and Paolo Penna. Inversions from Sorting with Distance-Based Errors.
In Proc. of the 44th InternationalConference on Current Trends in Theory and Practice of

ISAAC 2019

http://arxiv.org/abs/0707.1051
https://doi.org/10.4230/LIPIcs.ESA.2017.26
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1016/j.tcs.2009.07.026
https://doi.org/10.4230/LIPIcs.ESA.2019.49

64:18 Dual-Mode Greedy Algorithms Can Save Energy

Computer Science (SOFSEM), volume 10706 of Lecture Notes in Computer Science, pages
508–522. Springer, 2018. doi:10.1007/978-3-319-73117-9_36.

17 Lefteris M Kirousis, Evangelos Kranakis, Danny Krizanc, and Andrzej Pelc. Power consumption
in packet radio networks. Theoretical Computer Science, 243(1-2):289–305, 2000.

18 Rolf Klein, Rainer Penninger, Christian Sohler, and David P. Woodruff. Tolerant Algorithms.
In Proc. of the 19th Annual European Symposium on Algorithm (ESA), pages 736—-747, 2011.

19 Bernhard Korte and Dirk Hausmann. An Analysis of the Greedy Heuristic for Independence
Systems. In B. Alspach, P. Hell, and D.J. Miller, editors, Algorithmic Aspects of Combinatorics,
volume 2 of Annals of Discrete Mathematics, pages 65–74. Elsevier, 1978. doi:10.1016/
S0167-5060(08)70322-4.

20 Stefano Leucci, Chih-Hung Liu, and Simon Meierhans. Resilient Dictionaries for Randomly
Unreliable Memory. In 27th Annual European Symposium on Algorithms, ESA 2019, September
9-11, 2019, Munich/Garching, Germany., pages 70:1–70:16, 2019. doi:10.4230/LIPIcs.ESA.
2019.70.

21 Itamar Levi and Alexander Fish. Dual mode logic—Design for energy efficiency and high
performance. IEEE access, 1:258–265, 2013.

22 Sven Leyffer, Stefan M. Wild, Mike Fagan, Marc Snir, Krishna V. Palem, Kazutomo Yoshii,
and Hal Finkel. Doing Moore with Less - Leapfrogging Moore’s Law with Inexactness for
Supercomputing. CoRR, abs/1610.02606, 2016. arXiv:1610.02606.

23 Edo Liberty and Maxim Sviridenko. Greedy Minimization of Weakly Supermodular Set
Functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM-17), volume 81 of LIPIcs, pages 19:1–19:11, 2017.
doi:10.4230/LIPIcs.APPROX-RANDOM.2017.19.

24 Julián Mestre. Greedy in approximation algorithms. In European Symposium on Algorithms,
pages 528–539. Springer, 2006.

25 Julián Mestre. Greedy in Approximation Algorithms. In Algorithms - ESA 2006, 14th Annual
European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings, pages 528–539,
2006. doi:10.1007/11841036_48.

26 Matúš Mihalák, Marcel Schöngens, Rastislav Šrámek, and Peter Widmayer. On the complexity
of the metric tsp under stability considerations. In Proc. of International Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM), pages 382–393.
Springer, 2011.

27 George L Nemhauser, Laurence AWolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions – I. Mathematical Programming, 14(1):265–294, 1978.

28 Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theor. Comput.
Sci., 270(1-2):71–109, 2002.

29 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proc. of the fortieth Annual ACM Symposium on Theory of computing (STOC),
pages 67–74. ACM, 2008.

30 Jan Vondrák. Submodularity and curvature: The optimal algorithm (combinatorial optim-
ization and discrete algorithms). Mathematical Analysis Laboratory of Kyoto University,
2010.

https://doi.org/10.1007/978-3-319-73117-9_36
https://doi.org/10.1016/S0167-5060(08)70322-4
https://doi.org/10.1016/S0167-5060(08)70322-4
https://doi.org/10.4230/LIPIcs.ESA.2019.70
https://doi.org/10.4230/LIPIcs.ESA.2019.70
http://arxiv.org/abs/1610.02606
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.19
https://doi.org/10.1007/11841036_48

	p000-Frontmatter
	Preface
	Symposium Organization

	p001-Cao
	Introduction
	Preliminaries
	Maximum cardinality search on chordal graphs
	Maximum cardinality search on weakly chordal graphs
	Lexicographic depth-first search on chordal graphs
	Breadth-first search on interval graphs
	Graph searches on general graphs

	p002-Bshouty
	Introduction
	Preliminary Results
	Lower Bound for Randomized Algorithms
	Lower Bound for Deterministic Algorithms
	Upper Bounds

	p003-Haraguchi
	Introduction
	Preliminaries
	Defining Family Tree
	Defining Base
	Defining Parent
	Generating Children

	Traversing Family Tree
	Connectors under Various Connectivity Conditions
	Transitive System Based on k-Connectivity
	Construction of Monotone Meta-weight Functions

	Concluding Remarks
	Proof of Lemma 3
	Complexity Analysis of Lemma 4 (ii)
	Complexity Analysis of Lemma 5 (ii)
	Proof of Theorem 6
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12

	p004-Bille
	Introduction
	Computational Models
	Previous work
	Our results
	Techniques
	Roadmap

	Preliminaries
	Karp-Rabin Fingerprints
	Clustering
	Top Trees
	Top Dags

	A Simple Index
	Data Structure
	Searching

	Spine Extraction
	Vertical Top Forest and Vertical Top DAG
	Spine Extraction

	An O(m + log n) Time Solution
	Spine Path Extraction with Constant Overhead
	Path Extraction in Trees
	Optimal Spine Path Extraction

	Horizontal Access
	Grammars and Random Access
	Horizontal Access in Linear Space
	Horizontal Top Tree and Horizontal Top DAGs
	Gapped Grammars and Horizontal Access

	An O(m log sigma) Solution

	p005-Zehmakan
	Introduction
	Definitions and Preliminaries
	Proof Techniques and Some Insights

	Two Phase Transitions
	Phase 1
	Phase 2
	Phase 3

	Future Work
	Appendix
	No Sharp Threshold in First Transition
	Majority Model
	Locally Dependent r-BP
	Proof of Lemma 6

	p006-Ganardi
	Introduction
	Our results
	Related work

	Sliding window property tester
	Main results
	Proofs of the upper bounds
	Deterministic logspace tester
	Randomized constant-space tester with two-sided error
	Randomized loglogspace tester with one-sided error

	Further research

	p007-Goldstein
	Introduction
	Hardness of Space-Time Tradeoff for SD and SI with Bounded Universe
	Hardness of Preprocessing-Query Time Tradeoff for SD and SI with Bounded Universe
	Applications
	Range Mode
	Distance Oracles
	3SUM-Indexing with Small Universe

	Conditional Lower Bounds for SetIntersection
	Hardness of Reporting Problems
	Range Mode Reporting
	3SUM-Indexing Reporting

	p008-Flocchini
	Introduction
	The Framework
	Main Contributions
	Related work

	Model
	Election with knowledge of both n and l
	Exact knowledge of n and l
	Inexact knowledge of n and/or l

	Election with knowledge of either n or l
	Exact knowledge of n or l
	Inexact knowledge of n or l

	Impossibility results
	Extensions and Open Questions
	Discussions and Open Problems

	Description of Karp's theorem
	Pseudocode for algorithms of Section 3.1
	Pseudocode for algorithms of Section 3.2
	Pseudocode for algorithms of Section 4.1
	Pseudocode for algorithms of Section 4.2

	p009-Hamada
	Introduction
	Strategy-Proofness
	Ties and Incomplete Lists
	Our Contributions
	Related Work

	Results for MAX SMTI
	Results for MAX SMTI-1TM
	The Man-Oriented Gale-Shapley Algorithm
	Non-Strategy-Proofness of Existing 1.5-approximation Algorithms for MAX SMTI-1TM

	p010-Naori
	Introduction
	Related Work
	Vector Generalized Assignment Problem
	 The {0,1}-VGAP

	Vector Multiple Knapsack Problem
	Lower bound
	Conclusions
	Omitted Details
	Description of Algorithm 3
	Proof of Theorem 5

	p011-Inkulu
	Introduction
	Approximate shortest path amid convex polygons
	Sketch of P
	Computing an approximate geodesic shortest path in F(P) using the sketch Omega of P

	Approximate shortest path amid simple polygons
	Two-point approximate distance queries amid convex polygons
	Preprocessing
	Shortest distance query processing

	Appendix

	p012-Jain
	Introduction
	Our Result
	Consequences of our Result
	Organization of the Paper

	Preliminaries
	Finding a Tree Decomposition of Small Depth
	Constructing a Recursive Decomposition
	Constructing a New Tree Decomposition

	Deciding Reachability using a Binary Balanced Tree Decomposition
	Constructing the Sequence SEQ_{t, d}
	Algorithm to Solve Reachability

	p013-Brokkelkamp
	Introduction
	Preliminaries
	Flow Maximization Problem
	Revenue Maximization Problem
	Changing the cost of one edge
	Changing the costs of k edges
	Changing the costs of all edges

	Conclusion

	p014-Bienkowski
	Introduction
	Previous Work
	Our Results and Paper Organization

	Hydra Game
	Randomized Algorithm Definition
	Analysis

	Improved Algorithm for Generalized k-Server Problem
	Preliminaries
	Phase-Based Approach
	Configuration Spaces
	Factorial Trees: From Hydra Game to Generalized k-Server

	Lower bound
	A Warm-Up: Deterministic Algorithms
	Extension to Randomized Algorithms

	Final remarks
	Probability Distribution and Algorithms

	p015-Hoi
	Introduction
	Preliminaries
	High-level description of algorithm
	A new measure
	The algorithm in detail
	The Simplifications and the Branchings from List 1 and List 2
	Analysis of Algorithm
	Conclusion
	Appendix

	p016-Crespelle
	Introduction
	Preliminaries
	Interval graphs
	Algorithm for Terminal Cyclability and Cycle Segment Cover
	k-Cyclability for interval graphs

	Bipartite permutation graphs
	Cographs
	Conclusion

	p017-Kulikov
	Introduction
	Problem Statement and New Results
	Commutative Case
	Non-commutative Case

	Motivation
	Organization

	Background
	Semigroups and Semirings
	Range Queries Problem and Linear Operator Problem
	Circuits

	Commutative Case
	Non-commutative Case
	Faithful semigroups
	Proof Strategy

	Open Problems

	p018-Albers
	Introduction
	Previous Work
	Our Contribution

	Preliminaries
	Algorithms
	Random Order Model
	Combinatorics

	Analysis of SINGLE-REF
	Acceptance of Dominating Items
	Non-Dominating Items

	Analysis of OPTIMISTIC for k=2
	Conclusion and Future Work
	Technical Proofs for SINGLE-REF

	p019-Bhattacharya
	Introduction
	Overview of the algorithm
	Sparsification Lemma
	Proof of the Lemmas corresponding to exact estimation
	Proof of the Lemma corresponding to coarse estimation
	The final triangle estimation algorithm: Proof of Theorem 1
	Scenario where Delta_E is bounded
	Some probability results

	p020-Becchetti
	Introduction
	Our contributions
	Further related work
	Roadmap

	Preliminaries
	Averaging dynamics
	Community-sensitive algorithms
	Volume-regular graphs

	Volume-regular graphs and lumpable Markov chains
	Averaging dynamics on clustered volume-regular graphs
	Extensions
	Bipartite Graphs
	Other non-clustered volume-regular graphs

	Conclusions
	Useful inequalities
	Length of the projection of the state vector
	Lower bound on the core contribution
	Upper bound on the error contribution

	p021-Galby
	Introduction
	Preliminaries
	The proof of Theorem 1
	The proof of Theorem 2
	The proof of Theorem 3
	Conclusion

	p022-Charalampopoulos
	Introduction
	Preliminaries
	Exists(i,j) and Report(i,j) queries
	ReportDistinct(i,j) queries
	Processing an aperiodic k-dictionary
	Processing a periodic k-dictionary

	Count(i,j) queries
	An auxiliary problem
	Recompression

	Dynamic dictionaries
	Final Remarks

	p023-Fox
	Introduction
	O(sqrt{n})-Approximation for GED
	Transformation by a random grid
	Time complexity
	Approximation ratio

	O(alpha)-Approximation for GED
	Flaws in O(sqrt{n})-algorithm to achieve tradeoff
	O(alpha)-algorithm based on grid-snapping

	Constant Approximation Algorithm AGED(P', Q', k)
	The exact O(n+k^2) string edit distance algorithm
	O(1)-approximation algorithm by modifying the string version

	Analysis for O(alpha)-approximation algorithm
	Proof of Theorem 8

	p024-Chen
	Introduction
	Related Work

	Preliminaries
	Adaptivity Gap for In-arborescence
	Adaptivity Gap for Out-arborescence
	Adaptivity Gap for One-Directional Bipartite Graphs
	Lower Bounds on the Adaptivity Gap
	Conclusion
	Missing Proof from Section 5
	Missing Proofs and Further Discussions from Section 6

	p025-Bae
	Introduction
	Preliminaries
	Minimum-Width Double-Strips
	Scenes from the dual plane

	Constrained Double-Strip Problem
	Dynamic maintenance under insertion and deletion
	Offline version under insertions only

	Minimum-Width Parallelogram Annuli
	When one side orientation is fixed
	General case

	p026-Huang
	Introduction
	Preliminaries
	Main Results
	Overview of Techniques

	Locality Based Discretization for Pattern Search
	Locality of Pattern Search
	Space Discretization and Close Regions
	Reducing the Number of Regions
	Finding (xi,mu)-dense Q for P

	Handling Close Regions
	The Algorithm and Analysis
	Constructing epsilon-net for Hypercubes for P
	Appendix
	Proof of Corollary 4
	Proof of Lemma 5

	p027-Bhattacharya
	Introduction
	Preliminaries
	Problem Definition
	The r-feasibility test
	Our Approach

	Big-Component
	Candidate Sequence
	The Big-Component Algorithm

	Vertex Pruning from a Big-Component
	The (p, S)-center Algorithm
	Conclusion

	p028-Han
	Introduction
	Preliminaries
	General&Non-removable Case
	Proportional&Non-removable Case
	Lower bounds
	Upper bounds

	General&Removable Case
	Lower bounds
	Upper bounds

	Proportional&Removable Case
	1le Rle frac1+sqrt22
	Lower bound
	Upper bound for 1le R le 10/9
	Upper bound for frac109le Rle frac1+sqrt22

	General R

	Relationship Among m, epsilon and R in Algorithm 2

	p029-Kahle
	Introduction
	Preliminaries
	Two different behaviors of edge clique number
	Insertion-only perturbation
	Edge clique numbers for the deletion-only case
	Combined Case

	Recover the shortest-path metric of {G*}(r)
	The missing proofs in Section 3.1
	The proof of Lemma 11
	Existences of constants c_2^a and c_3^a
	The missing details in case (B) of Theorem 10
	The proof of Lemma 18
	Existences of constants c_2^b and c_3^b

	p030-Ashvinkumar
	Introduction
	Building the Network
	Building a Bounded Degree Spanner
	Spanning Ratio

	Routing
	Worst Case Circles
	Routing on BDG(V)
	Unguided Face Walks
	Guided Face Walks
	Simulating the Routing Algorithm

	Lightness
	The Levcopoulos and Lingas Protocol

	Routing on the Light Graph
	Conclusion

	p031-Scheder
	Introduction
	Previous Work
	Our Contribution

	Geometric Formulation
	Sum of Square Programs
	Exploiting Symmetries
	Obvious Optimizations

	Handling Numerical Errors
	Open Questions
	Source Code and Data
	The yalmip Code for Degree 4

	p032-Kobayashi
	Introduction
	Definition of lattice puzzles and preliminaries
	NP-completeness
	GI-completeness
	Polynomial time algorithms
	Fixed ordering case
	Fixed parameter tractable algorithm

	Concluding remarks

	p033-DeStefani
	Introduction
	Preliminaries
	Hybrid matrix multiplication algorithms
	The CDAG of algorithms in {H}{}
	Maximal sub-problems and their properties
	I/O lower bounds for algorithms in {H}{} and {UH}(n_0{}){}
	Conclusion

	p034-Mazzetto
	Introduction
	Related work
	Our contribution

	Preliminaries
	Coresets construction in MapReduce
	A first approach to coreset construction for k-median
	Coreset construction for k-median
	Coreset construction for k-means
	MapReduce algorithms for k-median and k-means

	Conclusions

	p035-Fagerberg
	Introduction
	Motivation
	Our contributions
	Previous work

	Model
	Lower bound
	Mapping into array
	Counting node changes

	Upper bound
	Layout
	Rebalancing operations
	Insertion
	Achieving log squared amortized rebalancing

	Global rebalancing scheme
	Storage utilization

	p036-Kisfaludi-Bak
	Introduction
	The relationship between the stabbing number and fatness
	Algorithms
	Wiring in a blowup of the Euclidean Cube
	Lower bounds for packing isometric axis-parallel boxes
	Independent Set in subgraphs of the blown-up Euclidean cube
	Detailed construction and gadgetry

	Conclusion
	Gadgetry and further construction details for the proof of Theorem 16

	p037-DeBerg
	Introduction
	A Polynomial-Time Algorithm for d=1
	Notation and Basic Properties
	The Subproblems for a Dynamic-Programming Solution
	Computing Solutions to Subproblems
	Computing the span Function Using Gain Maps
	The Sweep-Line Based Dynamic-Programming Algorithm

	Containment in Sigma-2-Real and the Algorithm for d>1
	Sigma-2-Hardness for d>1
	Concluding Remarks

	p038-Arvind
	Introduction
	Preliminaries
	The Proof of Theorem 2
	The construction of ABP for S*_{n,k}(Y)
	The construction of ABP for rPer(Y)

	The Proof of Theorem 4
	A 2^k-explicit ABP for k x k noncommutative determinant
	A 2^k-explicit ABP weakly equivalent to S^* _{n,k}
	A 2^k-explicit ABP for k x n commutative rectangular determinant

	Hardness of Evaluating Rectangular Determinant Over Matrix Alegbras
	The Proof of Theorem 5

	Conclusion
	Computing Rectangular Permanent and Determinant over Small Dimensional Algebras

	p039-NguyenKim
	Introduction
	Our Contribution and Approach
	Further Related Works

	Preliminaries
	An O(log n/log log n)-Competitive Algorithm in Random-Order Setting
	A Simple Theta(log n/log log n)-Approximation Algorithm for Virtual Circuit Routing
	Conclusion

	p040-Fujishige
	Introduction
	Preliminaries
	Strings
	d-left-right maximality of strings
	Suffix trees
	Tools
	Computation model

	Main Result and Algorithm Outline
	Main result
	Algorithm outline

	Simplified Solution
	Implementation of Step 1
	Implementation of Step 2
	Query time and space requirement

	Space Efficient Implementation of Step 1
	Implementation of Step 1B
	Proofs of Lemmas 15 and 16
	Proof of Lemma 16
	Proof of Lemma 15

	Conclusion

	p041-Agrawal
	Introduction
	Preliminaries and Basic Tools
	Classification of 3 x 3 matrices
	Conclusion

	p042-Bar-Noy
	Introduction
	Algorithm for Solving Minimum Surgical Probing
	Minimum Surgical Probing in Trees
	Mesh graphs and Cartesian Products
	King's Graph and Strong Products
	Future directions

	p043-Papp
	Introduction
	Related work
	Definitions and background
	Models
	Preliminaries
	General tools in the constructions

	Sequential adversarial model
	Construction for benevolent models
	Recursive construction
	Further discussion of the recursive construction
	Detailed analysis of gadgets
	Notes on simulations

	p044-Bredereck
	Introduction
	Preliminaries
	Profiles and preferences
	Structural graph parameters

	Hardness Results
	Tractability Results
	Conclusion

	p045-He
	Introduction
	Previous Work
	Our Results

	Preliminaries
	Reducing to Lower Dimensions
	Space Reduction Lemma for Non-Constant Branching Factor
	Ancestor Dominance Reporting
	Path Successor

	p046-Chen
	Introduction
	Preliminaries
	A brief review of the classic 3/2-approximation algorithm
	The 21/16-Approximation Algorithm
	The Greedy Algorithm
	The TreeSearch Algorithm
	Algorithm Analysis

	Conclusion
	Further Proof for Lemma 14

	p047-Bar-Noy
	Introduction
	Preliminaries
	Main Tools
	An O(n log n) time algorithm for Graphic Certificate
	Realizable Interval Sequences
	Non-Realizable Sequences

	Most Regular Certificate in O(n^2) time
	Applications and Extensions

	p048-Cormode
	Introduction
	Streaming Interactive Proofs
	Prior Work
	Contributions and outline

	How Much Interaction Do We Want?
	Primitives
	Fingerprints
	Low Degree Extensions
	Sum-Check Protocol

	Protocols for Linear Algebra Primitives
	Inner Product
	Matrix Multiplication
	Vector-Matrix-Vector Multiplication

	Practical Analysis
	Setup
	Matrix Multiplication Results

	Concluding Remarks
	Details of Proof of Lemma 5
	Finding G_j with Convolution

	p049-Bonnet
	Introduction
	Preliminaries
	Notations
	Ramsey numbers
	FPT Turing-reductions

	Almost disconnected and almost join graphs
	Definition of the classes
	Improving and decreasing FPT Turing-reductions
	Summary and usage

	FPT algorithm in P(1,t,t,t)-free graphs
	Randomized FPT algorithms in dart-free and cricket-free graphs
	Proof of Lemma 17
	Proof of Lemma 18
	Proof of Theorem 20
	Pseudo-code for P(1,t,t,t)-free graphs

	p050-Akitaya
	Introduction
	Preliminaries
	Hardness results
	Gaining intuition: The box problem
	Reduction for the k-Fréchet distance

	Algorithms
	Preprocessing
	XP-algorithm and approximation
	Fixed-parameter tractability

	Conclusion

	p051-Mamano
	Introduction
	Prior work: NNC in hierarchical clustering
	Our Contributions

	The Soft Nearest-Neighbor Data Structure
	Soft nearest-neighbor implementation

	Multi-Fragment Euclidean TSP
	Global-local equivalence for multi-fragment TSP
	Soft nearest-neighbor chain for multi-fragment Euclidean TSP
	Steiner TSP

	Motorcycle Graphs
	Algorithm description
	Analysis

	Conclusions
	Choice of Parameters
	Proof of Global-Local Equivalence in Multi-Fragment TSP
	Motorcycle Graphs: Special Cases and Remarks

	p052-Frei
	Introduction
	Background and Motivation
	Related Work
	Contribution

	Preliminaries
	Models of Parallel Computation
	The MapReduce Model

	Simulating Parallel Computations in MapReduce
	A Technical Tool
	Simulating NC1
	Simulating NCi, i >= 2
	Computing The Levels
	Sorting By Levels
	Division of Circuit And Assignment Among Reducers
	Division Into Subcircuits By Levels
	Construction of Subcircuits in Reducers
	Evaluation Via Subcircuits

	Conclusion and Research Opportunities
	Deferred Proofs
	Illustrating Figures

	p053-Ghodselahi
	Introduction
	Our Contribution

	Model, Problem Statement, and Preliminaries
	Communication Model
	Distributed Serving with Mobile Servers (DSMS) Problem
	Preliminaries
	Hierarchically Well-Separated Trees (HSTs)

	The Distributed GNN Protocol
	Description of GNN
	Correctness of GNN
	Scheduling Guarantee
	Serving Guarantee

	Analysis in a Nutshell
	Optimality of GNN on HSTs

	Further Related Work

	p054-Eppstein
	Introduction
	Definitions
	Approximation algorithm
	Lower bound on OPT
	Upper bound on ALG

	Hardness of tracking paths
	Bounded clique-width graphs
	Conclusion and open questions
	Deferred proofs on the approximation algorithm
	Deferred proofs on NP-completeness

	p055-Akitaya
	Introduction
	Graph Distance Definition and Properties
	Strong and Weak Graph Distance

	Algorithms and Hardness for Embedded Graphs
	Algorithmic Approach
	NP-Hardness for the General Case
	Efficient Algorithms for Plane Graphs and Trees

	Hardness Results and Algorithms for Plane Graphs
	NP-Hardness for the Strong Distance for Plane Graphs
	Deciding the Strong Graph Distance in Exponential Time
	Approximation for Plane Graphs

	Experiments on Road Networks
	Conclusion

	p056-Dasler
	Introduction
	Model and Results
	Prior Work

	Online Solution to the Attic Problem
	Hierarchical Model
	Online Algorithm for Swapping Motion
	Online Algorithm for Sliding Motion
	The Nicomachus Layout
	Accessing a Box

	Online Solution to the Warehouse Problem
	Quadtree Model
	Online Algorithm for Swapping Motion
	Online Algorithm for Sliding Motion

	Concluding Remarks
	Full Proofs
	Competitiveness of {Block-LRU (Attic Problem) with Swapping
	Competitiveness of {Block-LRU (Warehouse) with Swapping
	Container Structure for the Warehouse Problem
	Proving Competitiveness

	p057-El-Zein
	Introduction
	Previous Work
	Approximate Range Mode
	Dynamic Approximate Range Mode
	Approximate Range Median and Range Selection

	p058-Iacono
	Introduction
	Previous Work
	Our Results
	Notation and Preliminaries

	Overall Structure
	Left and Right Structures
	Multislab Structure
	Counting the Restructuring Cost
	Queries in the Left and Right Structures

	p059-Gaspers
	Introduction
	Preliminaries
	Model of computation

	MinIGL on Trees
	Computing the IGL
	Trees
	Graphs with small treewidth

	Conclusion

	p060-Epa
	Introduction
	Applications
	Previous Innovation
	The Open Question
	Our Contributions

	Related Work
	Almost Result-Sensitive Algorithms
	An O(log log* n/Q + log k/Q)-Algorithm
	An O(log log*(c) n + log k/Q)-Algorithm

	Genuinely Result-Sensitive Algorithms
	A Random-Walk Phase-1 Algorithm
	The Ultimate Phase-1 Algorithm

	Conclusion
	Appendix: Applications
	Direct Applications of Predecessor Search
	Predecessor Search with Generalised Comparison Oracle

	p061-Feng
	Introduction
	Our Contributions
	Other Related Work

	Preliminaries
	k-Median Clustering with Outliers in Euclidean Space
	The Algorithm
	Analysis

	k-Means Clustering with Outliers in Metric Space

	p062-Barequet
	Introduction
	Preliminaries
	Order-k Voronoi Diagrams
	Point-Hyperplane Duality
	Levels in an arrangement of hyperplanes
	Defining the Gaussian Map

	Properties of the Farthest and Order-k Voronoi Diagram
	Combinatorial Properties
	Structural Properties

	Line Segments as Sites
	Lines as Sites
	Conclusion and Open Problems

	p063-Defrain
	Introduction
	Preliminaries
	The algorithm
	Properties on P_k-free chordal graphs
	Enumerating the redundant part of minimal dominating sets
	Linear delay implementation in P_7-free chordal graphs
	Polynomial delay implementation in P_8-free chordal graphs

	Enumerating irredundant extensions
	Irredundant extensions in P_7-free chordal graphs
	Irredundant extensions in P_8-free chordal graphs

	Discussions

	p064-Geissmann
	Introduction
	Our contribution
	Related work

	Preliminaries
	The general scheme for matroids
	Minimization in Matroids
	A 2-Approximation (for Minimization in Matroids)
	A 1+epsilon-Approximation (for Minimization in Matroids)

	Maximization in p-Extendible Systems

