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—— Abstract

We consider space-efficient algorithms and conditional time lower bounds for finding cycles and walks
in graphs. We give a reduction that connects the running time of undirected 2k-cycle to finding

directed odd cycles, s-t connectivity in directed graphs, and Max-3-SAT. For example, we show that
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if 2k-cycle on O(n)-edge graphs can be solved in O(n time for some € > 0 then, a 27(1=<) time

algorithm exists for Max-3-SAT for some ¢ > 0. Additionally, we give a tight combinatorial lower
bound for 2k-cycle detection, specifically when k is odd, of m2k/ (k1) +o(1)

k-Clique Hypothesis.

given the Combinatorial

On the algorithms side, we present a randomized algorithm for directed s-t connectivity using
O(lg(n)?) space and O(n'8(™/2+o(e(m)y expected time, giving a time improvement over Savitch’s
famous algorithm, which takes at least n'8(™)~°08(™) time. Under the conjecture that every O(lg(n)?)-
space algorithm for directed s-¢ connectivity requires nf2(8(™) time, we show that undirected 2k-cycle
in O(Ig(n)) space requires n*'&") time.
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1 Introduction

The k-cycle problem, determining whether a graph on n nodes and m edges contains a cycle
of length k, is a fundamental subgraph detection problem. Past work has explored efficient
algorithms for detecting/counting, odd/even, directed/undirected cycles in both sparse and
dense graphs (e.g. [17, 5, 2, 8, 18]). In this paper, we explore k-cycle algorithms using small
space, e.g., poly(logn).

When k > Q(n), for example, k = n/2, detecting a k-cycle is well-known to be NP-hard [9].
When k is constant and algorithms are given O(n?) space, odd cycles can be detected in
matrix multiplication time [3, 5]. When k is constant and algorithms are given O(n) space,
even cycles can be detected in O(n?) time [17]. Given an undirected sparse graph, detecting
a 2k-cycle can be done faster, specifically O(m?*/(¥+1)) time [5]. However, this work leaves
open the question of what happens in the very small space regime.

When algorithms are allowed O(lg(n) - 1g(k)) space, the Savitch algorithm can be used
to solve k-cycle detection in time n'8*)+o(&(k)) time. In particular, the Savitch algorithm
can be used to detect if two nodes s and ¢t are connected by a path of length at most £ in a
? Andrea Lincoln an.d Nikhil Vyas; .
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directed graph, using n®U#*)) time and O(Ig(n) - 1g(k)) space. We explore the relationship
between small space k-cycle detection and algorithms for s-t connectivity, and show that the
complexities of the two problems are tightly connected. To the best of our knowledge, no s-t
connectivity algorithms have been reported running in O(lg2 n) space and n0-99918(n) time,

Our Results

The primary contribution of this paper is a reduction from directed k’-cycle to undirected
2k-cycle for constant k' and k such that k = k’polylg(k). We use this reduction to show
hardness for even cycle detection in both small space and in sparse graphs.

We prove that, for small-space algorithms, the time complexities of k-cycle detection and
k-path detection are equivalent up to constant factors in the exponent. We show that an
n°U8() time and O(lg(n)) space algorithm for the 2k-cycle detection problem would imply
an algorithm for s-¢ running in n°(&(") time and O(lg?(n)) space, a significant improvement
over Savitch’s algorithm.

We propose two natural lower bound hypotheses, and derive interesting consequences
from them. The first hypothesis is that s-¢ connectivity in O(lg?(n)) space requires n2(8(")
time. The second (stronger) hypothesis is that s-¢ connectivity in poly lg(n) space requires
nf212(") time. We call these hypotheses the Weak Savitch Hypothesis (WSH) and the Strong
Savitch Hypothesis (SSH) respectively.

» Definition 1. The Weak Savitch Hypothesis (WSH) states that given a directed graph G
with n nodes and two specified nodes s and t determining if a path exists from s to t requires
n0&(M) time if the algorithm can only use O(1g%(n)) space.

» Definition 2. The Strong Savitch Hypothesis (SSH) states that given a directed graph G
with n nodes and two specified nodes s and t determining if a path exists from s to t requires
n20e(™) time if the algorithm can only use O(polylg(n)) space.

Both of our Hypotheses are about the s-t connectivity problem, two well known algorithms
for s-t connectivity are:

Savitch’s algorithm [12] running in time O(n'¢™) and space O(Ig?n).

Depth-First search running in polynomial time and space O(n)
The only improvement over these for any space greater than lg? n is the algorithm of Barnes,
Buss, Ruzzo and Schieber [4] who gave a space O(n/ 2\/@)7 polynomial time algorithm.
They are also able to give a time space tradeoff of space s where s > lg?n and time
QO(IgZ("/S))poly(n). This time space tradeoff would require n'=°()
time. Our hypotheses are much weaker and only claim the non-existence of n°(8™) time
algorithms for O(lg*(n)) space and O(polylg(n)) space respectively.

We prove the following hardness for 2k-cycle under Weak Savitch Hypothesis.

space to achieve n°(18m)

» Theorem 3. Assuming Weak Savitch Hypothesis (WSH) solving k-cycle in undirected
graphs in O(lgn) space requires n*18*) time.

Could we strengthen the hypotheses (Weak Savitch Hypothesis (WSH) and the Strong
Savitch Hypothesis (SSH)) to state that there are no n!=918(") time algorithms for any
constant € > 0, instead of merely saying there is no n°1(™) time algorithms? We prove that
such a hypothesis would actually be false for randomized algorithms.

» Theorem 4. There is a randomized algorithm for directed st-connectivity which runs in
expected time n'8"/2+008n) and O(1g?(n)) space.
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Our randomized algorithm works as follows. First, for sufficiently short path lengths (up
to lg(n)) we run Savitch’s algorithm as usual. For longer path lengths, instead of trying
to find the middle vertex of the path we look for any vertex which is approximately in the
middle. We show that this minor modification can actually speed up Savitch’s algorithm by
a quadratic factor. Similar ideas were used by Zwick [19] to give algorithms for All pairs
shortest paths problem in arbitrary space regime.

Other Implications

Our k'-cycle to 2k-cycle reduction (k = k'polylg(k)) has many more implications. We give
lower bounds for sparse even-cycle detection by reducing Max-3-SAT to sparse even-cycle
detection and give a tight combinatorial lower bound for sparse even-cycle. We achieve this
by combining our reduction and previous hardness results for directed k-cycle [10].

» Theorem 5. If undirected 2k-cycle, for any large enough constant k can be solved in a graph
G with m = O(n) in time O(m'5~¢) then maz-3-SAT can be solved in time O*(2(1=¢)m),

We additionally present a very simple reduction from detecting odd k-cycles to detecting
2k-cycles. This reduction is inspired by a reduction from Dahlgaard et al. [5]. Our
results here are tight, but only in the “combinatorial” regime. The notion of combinatorial
algorithms is not formally defined, however, it is a commonly used notion (e.g. [10, 1]) which
informally just excludes fast matrix multiplication as a subroutine (e.g. [6, 15]). The category
of combinatorial algorithms considered generally assumes boolean matrix multiplication
requires n3~°(1) time, and attempts to capture algorithms that are fast in practice [16]. We
can obtain a combinatorial lower bound for the undirected 2k-cycle detection of ©(m?~°())
time, for all large enough constants k, if the Combinatorial k-Clique Hypothesis is true.

Additionally for odd k we show a tight bound for combinatorial 2k-cycle detection. If
you can detect 2k-cycles combinatorially in time m(~92k/(k+1) for some € > 0 then you
violate the Combinatorial k-Clique Hypothesis. Dahlgaard et al. present an algorithm for
all 2k-cycles that runs in time m?*/(*+1  So for odd k, we have a tight combinatorial lower
bound for 2k-cycles.

Previous Work

Over the years, there have been many algorithmic results for the cycle detection problem. In
arbitrary space, 2k-cycle can be solved in O(n?) space as long as k is a constant [17]. This
beats the matrix multiplication (n®) time algorithms for odd k-cycle detection assuming
the matrix multiplication constant is larger than two (w > 2) [2]. Dahlgaard et al. give an
algorithm for sparse even 2k-cycle detection which runs in O(m?*/(**1)) time, where m is the
number of edges in the input graph [5]. These algorithms require 2(m) space to run. In very
small space finding a k-cycle takes much longer, and as we show in this paper has a strong
relationship to s-t connectivity in small space. Savitch’s algorithm solves s-t connectivity
in space lg?(n) in time n'8(")—0(8(") [12]. In this paper we present a randomized algorithm
which runs in space 1g?(n) in time n'8(")/2+°(8(") "improving over the Savitch algorithm. The
problem of solving s-t connectivity in less than lg?(n) space has also been explored. Gopalan
et al. present a randomized time space tradeoff for the s-t connectivity problem where given
lg%(n)/1g(d) space they acheive a running time of O(n418("/18(d) for d € [2,n] [7].

While we provide a reduction from directed k-cycle for arbitrarily large k to even cycle,
a previous paper reduced 3-cycle specifically to even cycle [5]. Their reduction technique
inspired ours. They give a lower bound of m3/27°(1) for even cycle relying on a combinatorial
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conjecture for the running time of 3-cycle detection. Notably, they assume no combinatorial
n3=°(1) algorithm exists for 3-cycle detection. We give a matching lower bound of m3/2~°(1)
using a non-combinatorial hypothesis.

Furthermore, our reduction gives an improved lower bound of m?~°(1) using a combinat-
orial assumption. Giving a tight combinatorial lower bound for the even cycle problem. We
give a combinatorial lower bound of m*r1 M) for the undirected 2k-cycle detection problem
for odd k. This is closely related to the running time of O(m?2*/(*+1)) for the algorithm
detecting even k cycles combinatorially by Dahlgaard et al. [5]. We can additionally use a
simple reduction inspired by Dahlgaard et al. [5] and a reduction from k-clique to sparse
k-cycle from previous work [10] to givegz: tight combinatorial lower bound for the 4k + 2-cycle
problem. to give a lower bound of m#Fr1—°M) for detecting 2k = 4k’ + 2 cycles. This shows
optimality of the Dahlgaard et al algorithm for half of all even k-cycle detection problems.

By giving a reduction from directed k’-cycle to 2k-cycle we can show n*(£()) hardness
for 2k-cycle in O(lg(n)) space. However, one can not show this hardness using the 3-cycle
reduction of Dahlgaard et al., because 3-cycle has an O(n?)-time logspace algorithm.

In the weaker model of ACy formulas a n?(&(%) lower bound is known unconditionally
for the < k connectivity problem [11].

Improving low-space algorithms for directed st-connectivity is a longstanding open
problem [14]. Barnes, Buss, Ruzzo and Schieber [4] gave a sublinear space O(n/ 2\/@),
polynomial time algorithm. Even their results only give (lg n)o(lg ") factor improvements over
Savitch if we restrict to polylog space. Hence for polylog space they require n'&™(1=0(1) time,
Melkebeek and Prakriya [13] gave a unambiguous algorithm running in polynomial time and
O(lg3/ 2 n) space. The time and space here are both better than the ones in our hypotheses
but unambiguous Turing machines are possibly much more powerful then deterministic ones.

Organization

In Section 2 we cover definitions and preliminaries. In Section 3 we present a faster s-t
connectivity algorithm. In Section 4 we give our reduction between directed k-cycle and even
k-cycle. In Section 5 we cover the implications of our reduction.

2 Preliminaries

We will always assume k in the k-cycle/walk problems to be a constant unless stated otherwise.

Notation

We will use the notation O(f(n)) to suppress sub-polynomial factors (f(n)eM).

Definitions
» Definition 6. A k-cycle in a graph G is a set of k distinct vertices, x1, ...,z in G such
that the edges (x1,x2), ..., (Tk-1,2k), (Tk, 1) all exist in G.

A k-walk in a graph G is a set of k not necessarily distinct vertices, x1, ...,z in G such

that the edges (x1,x2), ..., (xK—1,2k) all exist in G.

Throughout the paper we will take k to be a large enough constant. We will have runtimes
of the form n®8(%) where © hides a constant independent of k; such notation only makes
sense for k that can grow unboundedly.



A. Lincoln and N. Vyas

We will assume throughout that all graphs are presented in adjacency list format. This is
done for simplicity and not assuming this has no effect on our results.

» Reminder of Definition 1. The Weak Savitch Hypothesis (WSH) states that given a
directed graph G with n nodes and two specified nodes s and t determining if a path exists
from s to t requires n®U&(™) time if the algorithm can only use O(lg*(n)) space.

» Reminder of Definition 2. The Strong Savitch Hypothesis (SSH) states that given a
directed graph G with n nodes and two specified nodes s and t determining if a path exists
from s to t requires n*(8(™) time if the algorithm can only use O(polylg(n)) space.

Currently the best known algorithms for directed s t connectivity which run in time
n°U8(m) require n'=°() space[4].

3 Making Savitch run faster

3.1 Savitch’s Algorithm

We begin by recalling Savitch’s classical algorithm.

Algorithm 1 Savitch’s Algorithm.

Input: Graph G = (V, E), vertices s,t, k > 0

Output: If there exists a path of length at most k from s to ¢.
1: function SA(G, s,t, k)

2 if k=1 then

3 Output TRUE if (s,t) € E, otherwise FALSE
4: Let |V| =n.

5. for v € [n] do
6

7

8

if SA(G,s,v,|k/2]) ANSA(G,v,t,[k/2]) = TRUE then
Output TRUE
Output ret

» Lemma 7 ([12]). Savitch’s algorithm solves directed < k-reachability in time Ts(n,k) =
O(n'8®) using space O(1g(k)lg(n)).

Savitch’s Algorithm [12] solves the directed s — ¢ connectivity problem as follows. It
considers the more general problem of < k connectivity. k = n is equivalent to s — ¢
connectivity. For determining if there is a path of length at most k between s and ¢, we
guess the middle vertex v in such a path, then recursively try to solve < k/2 connectivity for
(s,v) and (v,t). This gives us the recurrence:

T(n,k) <n(2-T(n,k/2)) + poly(n)

with the base case T'(n,1) = O(poly(n)). This base case is unaffected by being in adjacency
list format or adjacency matrix format. This solves to T'(n,n) = O(n'8™).
We now turn improving the running time of s-t connectivity in O(lg?(n)) space.
Similarly to the Savich’s algorithm we will be guessing a node in the middle of the
hypothetical path. However, Savich’s algorithm requires the node that is exactly in the
middle of the path. In our algorithm we will accept a node that is approximately in the middle.
There is a trade-off with approximating. By approximating we improve the probability of
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an accept. Consider if we accepted any node that was with € - k nodes of the true middle
of a k length path, then we have a 2¢,/n probability of correctly guessing such a node.
However, this approximation factor trades off how much progress we make with a correct
guess. In Savich’s Algorithm each correct guess halves the path length. In contrast, with an
approximation factor of €, we divide the path into the less favorable 1/2 — ¢; and 1/2 + ¢,
split. This trade-off is optimal when ¢, is approximately 1/1g(n), so we accept any node
that is in the middle 1/1g(n) fraction of a k length path.

Our square-root speedup intuitively comes from improving the probability of correctly
guessing from 1/n to k/(lg(n) - n). This approaches n as k approaches lg(n), but achieves a
huge savings when k is much larger than lg(n).

» Reminder of Theorem 4. There is a randomized algorithm for directed st-connectivity
which runs in expected time n'&™/2+°08m) gnd O(1g*(n)) space.

Proof. For sufficiently short path lengths (up to lg(n)) we run Savitch’s algorithm as usual.
For longer path lengths, instead of trying to find the middle vertex of the path we look for
any vertex which is approximately in the middle. We describe the algorithm in full detail
below.

Algorithm 2 Improved Savitch’s Algorithm.

Input: Graph G = (V, E), vertices s,t

Output: If there exists a path from s to ¢t in G.
1: function ISA(G, s,t)
2 Output ISAs(G, s,t,n)
3: function ISA5(G, s,t, k)
4
5

if k£ <lg(n) then

Output SA(G, s, t, k)
let V, be a list of randomly sampled nodes from V.

6 for v e V,. do

7: if ISAS(G,s,v,k/24k/1g(n))) NISA2(G,v,t,k/2+ k/lg(n)) = TRUE then
8: Output TRUE

9 Output FALSE

In Savitch’s algorithm we try to guess the middle vertex in a path. Our improvement
derives from the fact that we only look for a vertex which is approximately in the middle.

Savitch’s algorithm considers the subproblem of < k connectivity. We consider a more
relaxed notion described below.

ISAs5(G, s,t, k) returns YES if there exists a path of length at most k between s and ¢
and returns NO if there is no path between s and t. IS A; as implemented may return either
YES or NO if there is a path from s to ¢ but no path of length at most k. Returning YES
on larger length paths does not affect correctness as in st-connectivity we are only concerned
about existence of a path, not a bounded length path.

Suppose there exists an at most k length path between s and t. We guess a vertex v
hoping that v is one of the middle 20, = 2k/lg(n) vertices in this path. We will guess v
uniformly at random. The probability of a correct guess is e = 2Jx/n.

If our guess is correct distance between (s,v) and (v,t) are at most k/2 + 5 hence we
can recurse on ISA5(G,s,v,k/2 4+ 6) and 1SAs(G,v,t,k/2 + o).

Let T'(n, k, s,t) be the random variable which denotes the time for solving IS A5 (G, s, t, k)
using Algorithm 2.
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Let Tg(n, k) = max, . E[T(n, k, s,t)].
Setting 6 = max(k/(Ign),1) gives us the following recurrence for k > lg(n):

Pr[i'" guess was the first correct guess] - i - (2T (n, k/2 + 0x)) + poly(n))

[M]#

TE(n, ]f) S

1

<
Il

Te(n, k) < ((1 —ex) ep i (2Te(n, k/2 4 61)) + poly(n)) .

[M]#

1

7

We can rewrite this equation as:

Tg(n, k) < <iz (1- ek)i_lek)> - (2Tg(n, k/2 4 ;) + poly(n))

< (1/ex) - (2T (m, /2 + 84) + poly(n))
<2(1/ex) T (n,k/2 + 6x) + poly(n).

Now we can plug in €, = 20, /n and 6, = max(k/(Ign),1) to get the following:

TE(TL, k)

IA

(n/dx) - Tr (n,k/2 + i) + poly(n)

ME) 7y (/2 + B g) + poly ().

IA

For k > 1g(n), at each recursion step k gets multiplied by (1/2+41/1g(n)). Let k; denote

its value after j steps and ko denotes its initial value. For directed st connectivity kg = n.

For kg =n and for j < b= [—%1 we have k; = ko(1/2+1/1g(n))? =n(1/2+
1/1g(n))? as for j < b, n(1/2 +1/1g(n))? > lg(n). Note that b is positive (Ig(1/2 + 1/1g(n))
is negative). Note that k, = n(1/2 + 1/1g(n))? <lg(n).

b—1
Tg(n,n) < H %(n) “(Te(n, ky) + poly(n)).
j=0

As kj =n(1/2+1/1g(n))? for j < b and k;, < lg(n)

b—1
Te(nn) < | 1 P80y, lg(n) + poly(n)).
=0

n(1/2 + 1/1g(n))?

When we are looking for paths of length at most lg(n) we will call the original Savitch’s

algorithm. So, Tr(n,lg(n)) = Ts(n,lg(n)) = O(n'8'8") = n°(e(") by Lemma 7. Recalling

that b is positive and b = f—%]'

- 1/2+ 1/1g( )’

lg”(n) o(lg(n
< <(1/2+1/1g(n))b2/2> - (noUs())

Tp(n,n) < - (n°18M) 4 poly(n))

=3I

11:7

ITCS 2020



11:8 Algorithms and Lower Bounds for Cycles and Walks: Small Space and Sparse Graphs

As b= [filg(llg/(gﬁ%(g)()n))], lgb(n) = n°U8(M) we have

Te(n,n) < (1/2+1/1g(n))~"/2 . nolet)

_lg(1/241/1g(n) 182 (n)
2 21g(1/24+1/1g(n))2 . no(lg("))

IA

_ 152 (n) 1
9" T/2F1/ 5 . pole(n)

IN

1g2 (n)
22(1_1g(%+2n/ iz . pols()

IN

1g2 (n)
22(172/13’(71,))) . pole(n))

IN

9B o(lg(n)

n(18(n)/2+o(lg(n)))

IN

IN

So Tr(n,n) < ns()/2+e(e(m) " giving the desired result. <

4 Reductions Between k-cycle Problems

In this section we will give a reduction from directed k' cycle to 2k cycle, where k' is odd
and k' < k/1g°M (k). This will allow us to give lower bounds for even cycle as well as odd
cycle in the sparse setting. First, we will need a helper lemma about the existence of primes
with appropriate properties.

» Lemma 8. There exists a constant k* such that Vk > k* we can write 2k = Z?:o Zir;
where z; € N,y <1g°W(k), Y|ziri — 2k /5| < 1g°Y (k) and any four of 7;’s together have a
common prime factor which does not divide k.

Proof. Let p; for 0 < i < 4 be distinct prime numbers which do not divide k. By the prime
number theorem we can take p; < lgz(k) for large enough constant k. Define r; = Hj# Dj-
This allows us to satisfy the requirements that r; < 1g°% (k) and any four of r;’s together
have a common prime factor which does not divide k.

As the ged(r;) = 1, by Eulid’s ged algorithm there exists integers y; such that 1 =" y;r;
hence there exists integers z; for which 2k = Y z;r;. Choose z;’s such that Y |z;r; — 2k/5|
is minimized. Assume Y|z — 2k/5| > 101g'! (k). This implies that there exists a 7, j/
such that zjr; — 2k/5 > 1g'' (k) and zjr; — 2k/5 < —lg'' (k). We can substitute z; with
z; — p; and z;, with 2zj; 4+ p;/. This maintains the sum ) z;r; = 2k as rjp; = ryp;r. The
substitution decreases z;r; — 2k/5 by [[p: < lg'°(k) < 1g''(k) and increases z;mj — 2k/5
by [Ipi < 1g'°(k) < lg'! (k). Hence both |z;r; — 2k/5| and |zj7j — 2k/5| decrease while
|ziri — 2k/5| for ¢ # j,j’ remain the same. This gives a contradiction as we chose z;’s to
minimize |z — 2k/5|. So we can assume that Y|z — 2k/5| < 101g (k). This also
implies that for all 4, z;r; > 2k/5 — lgo(l)(k:) hence z; > 0 for large enough k. <

Given a sparse graph G there are many possible ways for the input to be formatted.
Given an adjacency list format there exist two different efficient algorithms for returning
if (u,v) is an edge in the graph. If one is worried about space and not time (as we are in
our O(lg(n)) space lower bounds) there is a O(lg(n)) space O(lg(n)) time algorithm. Simply
binary search through the adjacency list input to find (u,v). If one is worried about time
and not space then one can hash the adjacency list giving a O(n) space data structure that
has lookup time O(1). We don’t care about lg(n) factors in our time and thus default to the
O(lg(n)) space and time algorithm.
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» Theorem 9. There exists a constant k* such that Yk > k*, there exists k' > k/(lgo(l) k)
such that a n-node, m edge instance of directed k' cycle can be reduced to O(m) node, O(m)
edge instance of 2k cycle on graph G. Further any bit in the description of G can be produced
by a O(1g(n)) space and O(lg(n)) time.

Proof. Take z;,r;’s satisfying Lemma 8 for k. Set &' = >_ z;. Let G be a instance of directed
k' cycle with n nodes and m edges. We will first apply color coding using Lemma 20, to
produce a k' partite graph. This graph will only have edges between “adjacent” partitions.
As explained in Lemma 20.

Let s; = j<i?j- We create a new graph G’ by replacing each directed edge in between
the s; to the s(;41 moa 5)(cyclically) parts by a r; length path with undirected edges. As we
are replacing z; partitions of edges by an r; length path this gives a natural partition of G’
with " z;r; = 2k parts.

Number of nodes and edges in G’ < max(r;) - m
<1g°Y(k)-m [By Lemma 8]
< O(m) [As k is a constant]

We will now show that the new graph G’ has a 2k-cycle iff G had a directed k’-cycle.

Figure 1 Depicting the edge transformation from G to G’. The dotted oval contains 21 edge sets.
The dashed oval contains z2 edge sets. Every edge in the dotted oval is turned into r; edges by
replacing the edge with a path. Every edge in the dashed oval is turned into r2 edges by replacing
the edge with a path.

Each edge in the graph G’ is part of one of the introduced r; length paths. If one of the
edges from an 7; length path is used for a 2k cycle then all the edges in the path must be
used as intermediate vertices in the path have no other edges that the edges in the path
itself. Hence we can think of our 2k cycle as composed of meta-edges of lengths r;. Suppose
for constructing the 2k cycle we only use at most 4 out of the 5 possible r; lengths. Then we
cannot construct a 2k cycle as these four r;’s share a common prime factor which does not
occur in 2k. Hence we need to use all 5 possible r; lengths. Wlog we can assume that we
start from 0 partition. There are 2 approaches to hitting all 5 possible r; length paths:

11:9
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1. Go around all the 2k partitions.

2. Do not go around all partitions.

For type 1, note that we can never back-track as otherwise we will have more than 2k edges.
If we find a 2k cycle using type 1 without backtracking this exactly corresponds to a directed
k' cycle in G by replacing all meta-edges by the corresponding edge of G.

For type 2 paths note that we must hit all of the 5 possible lengths.

Let group i be the set of edges produced in G’ from the edges between the s; and
sfiﬁl mod 5 Partitions in G. To pass from one side of group 7 to the next requires passing
through at least z; paths of length ;. So passing from one side of group i to the other
requires a path of length at least z;r;.

To hit all possible lengths we must have at least one edge from all five groups. To pass
through all five groups at minimum requires doubling back through three groups. To double
back through a group requires two paths each of length z;r;. See Figure2 for a depiction.

20

SN

Figure 2 In bold we depict a path passing through partitions, reaching at least one r; length
path of each of the 5 possible lengths. Each oval represents a partition of s;. Between each partition
is a path of one of the lengths r;. Note that to reach all five the path must “double back” through
three partitions.

For simplicity understand 7;1. and z;;. in the next equation to be r(y¢ mod 5) and
Z(i+c mod 5) respectively. So the minimum length of a type two cycle is

m_in (27’1 + 22i+17'i+1 + 22i+2Ti+2 + 2Zi+37"7;+3 + 27"Z‘+4) .
%

By Lemma 8 »|z;r; — 2k/5] < 18°M (k), so 3|22 — 4k /5] < 21g°W (k).
Thus, Z;Jjﬂpzjrj — 4k /5| < 21g°M (k). Finally giving

i+3 12
ST 2m; > k= 218°M (k) = 24k — 218°M (k) > 2k
j=i+1

A type 2 2k-cycle, which doesn’t form a cycle through all partitions, must have length
greater than 2k. So, no such cycle exists.

Thus, the only 2k-cycles in this graph correspond exactly to a directed k’-cycle in the
original graph. |



A. Lincoln and N. Vyas

5 Implications of k-Cycle Reductions

We now discuss the implications of the reduction from directed k’-cycle to undirected 2k-
cycle. We will start by showing that the algorithms for 2k-cycle in 1g(n) space are tight
up to constant factors in the exponent. Next, we will give lower bounds for 2k-cycle from
Max-3-SAT.

5.1 2k-Cycle lg(n) Space Algorithms are Tight

Given the Weak Savitch Hypothesis we can show that undirected 2k-cycle problems have
nearly optimal algorithms.

In this section we give a reduction that, for all large enough k, reduces directed k’-cycle to
undirected 2k-cycle. That is, there is some constant k* such that for all £ > k* we can reduce
directed k’-cycle to undirected 2k-cycle. Furthermore, in our reduction &' = ©(k/1g(k)). So,
for all k > k* we have that 2k-cycle reduces from directed ©(k/1g(k))-cycle.

Following Lemmas 10 and 11 are very similar to lemmas in previous work and are roughly
folklore. We present their proofs for completeness.

» Lemma 10. If the Weak Savitch Hypothesis is true then < k—connectivity in an directed
graph G with n nodes requires n*8%) time if we are restricted to O(lgn) space.

Proof. We can consider the Savitch algorithm for determining if there is a path of length
< ¢ between two nodes in a graph with n nodes. The Savitch algorithm [12] as described in
Section 3 has the following recurrence :

T(n,?) < 2nT(n,£/2) + poly(n).

Where the standard base case is T'(n, 1) = O(lg(n)). This gives an algorithm running in time
O(n(89 poly(n)).

If Weak Savitch Hypothesis is true then there exists some constant € > 0 such that no
algorithm solving st connectivity (equivalent to < n connectivity) in lg?(n) space runs in
time nel&lel),

If an algorithm for k-path runs in n°(&(*)) and O(lgn) space then we can repeatedly use
it to find an < £ length path. Specifically, we will run the k-path algorithm where we treat
an edge as existing if there is an ¢/k walk between two nodes. To determine if such an edge
exists we will recurse. This gives us the following recurrence:

T(n,0) < n°UEDT(n, 0/k) + O(1).

For ¢ = n, this recurrence gives us T(n,n) < neUe(k)lgx (") This running time can be
simplified to O(n°(&k)1e(n)/1e(k)),

For all € there exists some sufficiently large but constant k such that o(lg(k))/lg(k) < e
which contradicts the Weak Savitch Hypothesis. |

» Lemma 11. Assuming Weak Savitch Hypothesis (WSH) directed, k-cycle cannot be solved
in O(lgn) space and n°8*) time.

Proof. Suppose directed k-cycle is in O(lgn) space and n°(g k) time. Suppose we are given
an instance of k — l-walk (G = (V, E),a,b). Construct a new graph G’ with k copies of
each vertex v named vy, vs,...,vk. Add u;, u;r1 as an edge. Add (u;,v;41) as an edge in
G’ if (u,v) was an edge in G. Also add (ak,b;) as an edge. Now there is a k-cycle in G’
iff there was a k — 1-walk from a to b in G. As the number of vertices in G’ is kn and k
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is a constant hence we have a O(lgn) space and n°8%) time algorithm for (un)directed
k-walk. By Lemma 10 this contradicts Weak Savitch Hypothesis (WSH). Note that we will
not actually construct G’ instead we use O(lgn) space and have a O(lgn) time algorithm
that serves as an oracle for G. <

» Reminder of Theorem 3. Assuming Weak Savitch Hypothesis (WSH) solving k-cycle in
undirected graphs in O(lgn) space requires nS208k) time.

Proof. By Lemma 11 we know that k’-cycle in directed graphs cannot be solved in O(lgn)
space and n°(g K,

Suppose we have a O(lgn) space and n°(8*) time algorithm for k-cycle in undirected
sparse graphs for even k. Then let k¥’ be the largest integer satisfying the definition in
Theorem 9. Then by Theorem 9 we can reduce directed k’-cycle to k-cycle and solve it
in time n°Ugk) = posk) hecause K > k/1g°Y (k). Note that as in the reduction we can
produce each bit in O(Ig(n)) space and time O(lg(n)) our space and running time bounds
are not affected. The reduction only increases the number of vertices by a constant factor
and k is large enough. Using Lemma 11 gives a contradiction. <

» Corollary 12. Assuming Weak Savitch Hypothesis (WSH) detecting k-cycles in undirected

sparse graphs in O(lg(n)) space takes n®U8¥%) time.

Proof. By Theorem 3 we have that k-cycle in log space requires n2(&%) time. By Lemma 21
we have that k-cycle can be solved in log space and n®(2%) time. Thus, the k-cycle problem
requires n®(8%) time, conditioned on WSH.

<

Note that we can replace the Weak Savitch Hypothesis with the Strong Savitch Hypo-
thesis in these proofs. They will in fact make the statements stronger. If the Strong Savitch
Hypothesis is true then k-cycle in undirected graphs cannot be solved in O(poly lg(n)) space
and n°(8*) time.

5.2 Even Cycle Lower Bounds From Max-CSP

Previous work [10] has connected efficiently detecting directed k-cycles in sparse graphs with
solving the Max-L-SAT problem [10]. In fact, this work connects directed k-cycle detection to
Max-L-CSP problems, where every clause is representable by a L degree Boolean polynomial.
In this section we will limit our focus to the Max-3-SAT and Max-L-SAT problems.

If, for some particular constant L, one believes that the Max-L-SAT problem requires
27(1=0(1) time, then from this we get a super linear lower bound for constant length even
cycle. In fact, we get a super linear lower bound for constant length undirected even cycle in
sparse graphs where m = O(n). Such a super linear linear lower bound for undirected even
cycle has not previously been obtained.

Our reduction provides a lower bound for sparse undirected even cycle from assumptions
made about difficult exponential time Constraint Satisfaction Problems (CSPs). Notably, we
are able to provide super linear lower bounds for even cycles from assumptions stated in the
paper of Lincoln, Vassilevska Williams and Williams [10].

» Theorem 13 (Sparse Directed k-Cycle is Hard [10]). If directed k-cycle, for any large
enough k, can be solved in a graph G in time O(m®~¢), where ¢y, = k/(k — [k/3] + 1) then
maz-3-SAT can be solved in time O*(2(=<)n),
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Using our reduction and the above theorem we can provide a lower bound for undirected
sparse cycle.

» Reminder of Theorem 5. If undirected 2k-cycle, for any large enough constant k can be
solved in a graph G with m = O(n) in time O(m">~¢) then maz-3-SAT can be solved in time
O*(2(176,)7’L)‘

Proof. By applying Theorem 9 we transform an input graph into one that has m = O(n).
Furthermore, it shows that if undirected 2k-cycle, for all constant k, can be solved in time
O(m*'®~¢) then, there exists an infinite sequence of increasing odd cycle lengths solved in
time O(m!>7¢).

Given an infinite increasing sequence of odd cycle lengths they solve the same length of

directed cycle. Then, there exists some k > 13 > 19 which, if solved in O(m!'®~¢) time is
solved faster than O(m®~¢), where ¢, = k/(k — [k/3] + 1) time.
Thus, undirected even cycle can not be solved in time O(m!57¢) <

We can give a more precise result due to our reduction’s tight relationship between
k' =1g°M (k)k. Note that 2k-cycle can be reduced to k'-cycle where &’ = ©(2k/1g%™ (2k))
then. Given this 2k-cycle requires Q(m (M), where ¢jr = k' /(K — [k'/3] 4+ 1). Thus we
have that 2k- cycle requires at least Q(nl'f”o(lgo(l)(k)/k)) time.

We would like to note that no super-linear hardness was known for even cycles prior to
this. And, here, we have connected the hardness of even cycles to that of Max-3-SAT.

We would further like to note that we can combine our reduction with the more general
result of [10], which gets super linear hardness for directed cycle from Max-L-SAT. Max-
L-SAT is more believably 2"~°(") hard the larger L is. From Max-L-SAT we continue to
show super-linear hardness for undirected 2k-cycle problems. However, instead of showing
O(m!>~9W) hardness the result is instead O(mﬁ_o(l)) hardness.

5.3 Combinatorial Even Cycle Lower Bounds From the Combinatorial
K-Clique Conjecture

Abboud, Backurs and, Vassilevska Williams present the Combinatorial k-Clique Hypo-
thesis (CKCH) [1]. First, what is a combinatorial algorithm? In her survey Vassilevska
Williams defines it as follows: “The desire for more practical algorithms motivates the notion
of “combinatorial” algorithms. This notion is not well-defined, however it roughly means
that the runtime should have a small constant in the big-O, and that the algorithm is feasibly
implementable.[16]” Generally, combinatorial assumptions assume that matrix multiplication
requires n3~°1) time, that is there is no fast matrix multiplication allowed. Given this
context, we now re-produce the Combinatorial k-Clique Hypothesis from [1].

» Definition 14 (Combinatorial k-Clique Hypothesis [1]). Let C' be the smallest constant such
that a combinatorial algorithm running in O(an/ 3) time exists for detecting a k-clique in a
n node O(n?) edge graph, for all sufficiently large constants k.

The Combinatorial k-Clique Hypothesis states that C = 3!,

More informally, no O(n"“‘(l’e) combinatorial algorithm exists for the k-clique problem.

We can once again use the k-clique to k-cycle reduction of Lincoln, Vassilevska Williams
and Williams [10]. Their reduction is itself combinatorial.

! See the discussion on page 2 of Abboud, Backurs and, Vassilevska Williams [1]. For a short formal
statement see Hypothesis 1.3 in Lincoln, Vassilevska Williams and Williams [10].
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» Theorem 15 (Combinatorial Sparse k-Cycle Lower Bound [10]). Detecting a directed odd k-
cycle in a graph with n nodes and m = nFtD/E=D Gn time O((nm)1=9) =
O(mU=92k/(k+1)) = O(n(1=92k/(k=1)) for any constant ¢ > 0 wviolates the Combinator-
ial k-Clique Hypothesis 2.

» Corollary 16. Detecting a directed k-cycle in a graph with n nodes and m = n*/+=2) ip

time O(nm(1=9)) = O(m®*=2/k) for any constant € > 0 violates the Combinatorial k-Clique
Hypothesis.

Proof. There is an immediate reduction from directed k-cycle to directed k 4 1-cycle that
adds O(n) edges to the graph to get a lower bound for even k. For odd k we have a better
lower bound. <

Recall that Dahlgaard et al. have an algorithm for even 2k-cycle detection that runs in
0] (m%/ (k'“)) time [5]. We will show that this algorithm is optimal for even k > 3 that are
twice an odd number. That is, the half of even numbers represented by 4k + 2 for integer
k>1.

» Theorem 17. Let 2k = (4K’ 4 2) for some constant integer k'.
Detecting 2k-cycles combinatorially requires time m—0x(W2K/(E+1) it the Combinatorial
k-Clique Hypothesis is true.

Proof. We will start with Theorem 15. Note that 2k’ 4+ 1 is odd. Take the directed instance
and use color coding to produce a 2k’ + 1-partite undirected instance. Furthermore, this graph
is a 2k’ + 1-cycle graph. That is, partition P;y only has edges to partitions P;_1 mod (k'+1))
and P41 mod (2k41))-

To solve an undirected odd 2k’ + 1-cycle problem in a 2k’ + 1-cycle graph we will create
an instance of 4k’ 4+ 2-cycle by replacing every edge (u,v) with a node, z,, and two edges
(U, Typ) and (20, 0).

Any 4k’ + 2-cycle in this new graph with contain 2k’ + 1 z, type nodes. In fact these
Typ type nodes will be every other node. If an x,, type node is in a cycle so are v and v.
So, a 4k’ + 2 length path will look like v1, Ty, vy, V2, Tygvgs V3 - - -, U2k, Ty vgp iy s U2k +1- The
existence of a 4k’ + 2 length path in our new graph corresponds exactly to there being a
2k’ 4+ 1 length path in the original graph.

Theorem 15 tells us that there is a m** +2)/(2k'+2)=o(1) combinatorial lower bound if
Combinatorial k-Clique Hypothesis is true. In our new graph m has grown by a factor of
only two. If we plug in 2k = 4k’ + 2 we get the desired lower bound of m?2¥/(k+1)=0(1) from
Combinatorial k-Clique Hypothesis. <

The above result works for specific even cycles i.e. when 2k = 4k’ + 2, next we prove a
lower bound which holds for 2k cycles for all large enough k.

» Corollary 18. If there exists a constant € > 0 such that for some k > % directed k-cycle
can be detected in O(m?~€) time using a combinatorial algorithm then the Combinatorial
k-Clique Hypothesis is violated.

Proof. For k > 2, m?=¢ = O(m(®*=2/(M(1=9)) for some constant §. So, by Corollary 16
such an algorithm would violate the Combinatorial k-Clique Hypothesis. <

2 See the discussion after Hypothesis 1.3 in the introduction of Lincoln, Vassilevska Williams and Williams
[10].
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» Theorem 19. Assume the Combinatorial k-Clique Hypothesis. Then, for all constant
€ > 0 there exits a ko such that for all k > ko even 2k-cycles in an undirected graph with n
nodes and m = O(n) edges requires Q(m?2=¢) time.

Proof. By Theorem 9 there exits a k' > k/(lgo(l) k) such that if directed k' cycle requires
Q(m?2~¢) then so does undirected 2k cycle on a graph with O(m) vertices and O(m) edges.

As long as k' = k/(1g°Y k) > 2/e we know that directed k" cycle is Q(m2~¢) hard. As
for a large enough k, k/(lgo(l) k) > 2/e we have that for large enough k undirected 2k cycle
on graphs with m = O(n) requires Q(m?~¢) time. <

Note that for all constant k there exist O(n?) combinatorial algorithms for undirected
2k-cycle [17]. So, this suggests that these algorithms are optimal, for combinatorial algorithms
for all large enough k.

6 Conclusion

We present a faster algorithm for small space cycle detection. We also present lower bounds
for the efficiency of k-cycle in this small space regime. We show the running time of odd as
well as even k-cycle must grow as n*18(%) when given only O(lg*(n)) space.

There are many future directions of research. We leave open several algorithms questions
as well as questions about lower bounds.

While we get tight upper and lower bounds in the regime we consider, there are many
open questions about k-cycle outside of this regime. What is the space-time trade-off for
these k-cycle algorithms when the space available is polynomial in n? For example, how

1/8 space? Additionally, our results apply to large

efficient are algorithms when given n
constant k, but do not imply statements for specific fixed k. What are the fastest small space
algorithms for £ = 3,4,5...7 Finally, our results are not very fine-grained, we are agnostic to
the specific constants in the exponents of these algorithms. So, what is the specific constant?
Can k-cycle algorithms be solved in small space in n'8(*)/2 time? n'&(k)/100 time?

We also leave open related algorithmic questions about s ¢ connectivity in small space.
We present a s t connectivity algorithm in small space which runs in n'8(/2 expected time.
Can a deterministic algorithm have the same running time? What are the fastest randomized
and deterministic algorithms for the s ¢ connectivity problem?

We leave open lower bounds questions as well. Can we find matching, or at least non-
trivial, lower bounds for k-cycle algorithms in small polynomial space. Relatedly, we get
combinatorial lower bounds for even cycle in arbitrary space. Can one find tight non-
combinatorial lower bounds for even cycle in arbitrary space?
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A Basic Lemmas for the Paper

The ideas in various lemmas below are not novel. These are just important working lemmas
for the rest of the paper. We cite lemmas we use directly. For those lemmas that are
variations on previous work we attempt to reference where the ideas came from.

We will be using color coding to simplify many proofs. To see an example of the output
graphs from color coding look at Figure 3.

» Lemma 20 (Color Coding [3]). Let E be the edge set of the graph G. Given a graph G one
can produce ¢ = lg(n)’“2 graphs G1,...,G. in O(|E|) time such that:
each graph has k partitions Py, ..., Py and edges exist only between P; and Piy1 mod k,
each graph G; has at most |E| edges and |V| vertices,
if and only if G contains a k-cycle, at least one of the graphs G; will contains a k-cycle,
and finally if G contains a k-cycle in at least one of the graphs G; the k cycle will have
one node from every partition.

Figure 3 An example of the output of color coding with five colors. There are five partitions and
the partions are themselves in a cycle.

» Lemma 21. An algorithm exists to detect if a directed k-cycle exists using the edge (s,t)
in a graph G with n nodes and O(n?) edges in time n®8*) yusing space O(1g(k)lg(n)).

Proof. If a non-colorful cycle we start by using the color coding Lemma 20, to produce graphs
with k partitions such that our k-cycle, if it exists, uses one node from each partition in one
of these graphs. We consider only the color coded graphs where s and ¢ are in partitions V;
and Vj, respectively. If we start with colorful k-cycle then we simply use the colors themselves
for color coding.

Now, if we could detect if a k-path exists between s and ¢ which uses one node from every
partition we are done. To do this we will guess, in sequence, each of the n possible choices
of nodes that could be in the middle partition. Then, we will recursively solve this same
colorful path problem on both shorter paths. The running time of this algorithm is given by
the following recurrence with base case T'(n,2) = n®™):

T(n,k) = n2T(n,k/2) + O(1).

Solving this recurrence gives us T'(n, k) = 2'8*)n1e*)pO() When simplified we find T'(n, k) =
pleR)+ole(k)) — nOUe(k))  This gives us the desired result.

Keeping these guesses in memory requires lg(n) bits per guess of a node and we must
track O(lg(k)) guesses at a time. This gives us O(lg(k) lg(n)) space. <

The above lemma is using the same ideas as Savitch [12].
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