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Abstract
This paper concerns itself with the question of list decoding for general adversarial channels, e.g.,
bit-flip (XOR) channels, erasure channels, AND (Z-) channels, OR ( Z-) channels, real adder channels,
noisy typewriter channels, etc. We precisely characterize when exponential-sized (or positive rate)
pL´ 1q-list decodable codes (where the list size L is a universal constant) exist for such channels.
Our criterion essentially asserts that:

For any given general adversarial channel, it is possible to construct positive rate pL´ 1q-list
decodable codes if and only if the set of completely positive tensors of order-L with admissible
marginals is not entirely contained in the order-L confusability set associated to the channel.

The sufficiency is shown via random code construction (combined with expurgation or time-sharing).
The necessity is shown by
1. extracting approximately equicoupled subcodes (generalization of equidistant codes) from any

sequence of “large” codes using hypergraph Ramsey’s theorem, and
2. significantly extending the classic Plotkin bound in coding theory to list decoding for general

channels using duality between the completely positive tensor cone and the copositive tensor
cone.

In the proof, we also obtain a new fact regarding asymmetry of joint distributions, which may be of
independent interest.

Other results include
1. List decoding capacity with asymptotically large L for general adversarial channels;
2. A tight list size bound for most constant composition codes (generalization of constant weight

codes);
3. Rederivation and demystification of Blinovsky’s [9] characterization of the list decoding Plotkin

points (threshold at which large codes are impossible) for bit-flip channels;
4. Evaluation of general bounds ([43]) for unique decoding in the error correction code setting.
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1 Warmup

In favour of motivating general problems, introducing general notions and stating our general
theorems, we first go through concrete numerical examples that are special cases of our
results.

Suppose Alice can transmit a length-n bit string (codeword) to Bob and an adversary
James can flip np (0 ď p ď 1) of these bits. Consider first the classic coding theory question.
1. Error correction. For what values of p, can one construct a code (collection of codewords)

of positive rate (i.e., codebook size at least 2Rn for some constant 1 ě R ą 0) such that
Bob can uniquely decode? The classic Plotkin bound [33] tells us that this is impossible
for p ą 1{4,1 and the classic Gilbert–Varshamov (GV) bound [22, 42] tells us that this is
possible for p ă 1{4.

2. List decoding. For what values of p, can one construct a code of positive rate such
that it is 3-list decodable (i.e., regardless of which np bits James flips, Bob can always
decode the received word to a list of at most 3 codewords, one of which is the codeword
transmitted by Alice)?2 Due to work by Blinovsky, it is known that this is possible if
and only if p ď 5{16.3

In this work, not only are we are able to rederive all the above thresholds, but are also able
to derive the corresponding thresholds for a vast variety of general adversarial channels such
as bit-flip channels, erasure channels, AND (Z-) channels, OR ( Z-) channels, adder channels,
noisy typewriter channels, etc..

In this section, let us revisit the answers to questions 1 and 2 in the technical language
we develop in this paper.
1. Error correction. Consider any pair of codewords x1, x2 that are resilient to np bit-flips.

They must therefore be at a Hamming distance larger than 2np. Said differently, the
joint type (i.e., the 2ˆ 2 matrix whose px1, x2q-th, x1, x2 P t0, 1u, entry is the fraction of

locations i of px1, x2q such that x1piq “ x1 and x2piq “ x2) τx1,x2
“

„

tp0, 0q tp0, 1q
tp1, 0q tp1, 1q



of

these two codewords must satisfy the condition that
C1 tp0, 1q ` tp1, 0q ě 2p.

1 Actually for p “ 1{4 this is still impossible.
2 Note that a 1-list decodable code is exactly a uniquely decodable code (or more commonly called an
error correction code).

3 In fact Blinovsky identified the threshold p up to which positive rate pp, L ´ 1q-list decodable codes
exist for any integer L ě 2. This, in particular, recovers the Plotkin bound.
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a. In [9, 34, 2]4 and [43], it was shown that: if a code C of size 2Rn exists, then there
must exist a positive rate subcode C1 Ă C such that for every pair of codewords x1, x2
in C1, their joint type is approximately the same (as, say, Px1,x2).

b. In [43], it was shown that: it is possible to construct positive rate codes with joint
types (close to) Px1,x2 if and only if Px1,x2 is a completely positive (CP) distribution,
i.e., Px1,x2 can be written as a convex combination of products of independent and
identical distributions,

Px1,x2 “

k
ÿ

i“1
λiPxiP

J
xi ,

for some positive integer k, convex combination coefficients tλiu1ďiďk and probability
vectors tPxiu1ďiďk. For example,

λ

„

1{2 0
0 1{2



` p1´ λq
„

1{4 1{4
1{4 1{4



(1)

is CP for λ P r0, 1s since it can be written as λ
2

„

1
0



“

1 0
‰

` λ
2

„

0
1



“

0 1
‰

` p1 ´

λq

„

1{2
1{2



“

1{2 1{2
‰

. One can check that for λ ă 0, matrix (1) is not CP. For condition

C1 to be satisfied by some CP distribution, it must be the case that 2p ď 2¨p1´λq¨p1{4q
for some λ P r0, 1s. This is impossible if p ą 1{4. As a consequence, the classic Plotkin
bound is recovered in this convex geometry language, since the non-CP matrices of
the form (1) with negative λ correspond to codes with minimum pairwise fractional
distance 1`|λ|

2 (hence correspond to p “ 1`|λ|
4 ą 1{4), which, by the Plotkin bound,

cannot have positive rate.

2. List decoding. Now let us move to the list decoding question in hands. For a code to
be 3-list decodable, it must be the case that for any quadruple x1, x2, x3, x4, there is no
y such that the Hamming distance from xi to y is at most np for every i P t1, 2, 3, 4u. In
this case, the appropriate object is therefore a 2ˆ 2ˆ 2ˆ 2 tensor (or a joint distribution
of px1,x2,x3,x4q) Px1,x2,x3,x4 such that

C2 any of its extension Px1,x2,x3,x4,y (i.e., a coupling of px1,x2,x3,x4q and y, or a
2 ˆ 2 ˆ 2 ˆ 2 ˆ 2 tensor such that Px1,x2,x3,x4 “ Px1,x2,x3,x4,y“0 ` Px1,x2,x3,x4,y“1)
satisfies the condition that Pxi,yp0, 1q ` Pxi,yp1, 0q ą p for at least one i P t1, 2, 3, 4u.

a. Again, by [9, 34, 2] and our work, we can restrict our attention to codes in which every
4-tuple of codewords has joint type close to some Px1,x2,x3,x4 , since we can find such a
subcode which is sufficiently large in any positive rate code.

b. Generalizing [43], we show that codes with order-4 joint types (close to) Px1,x2,x3,x4 exist
if and only if Px1,x2,x3,x4 is a completely positive tensor of order-4, i.e., Px1,x2,x3,x4

can be written as a convex combination of products of independent and identical
distributions,

Px1,x2,x3,x4 “

k
ÿ

i“1
λiP

b4
xi .

4 Their and our work showed that it is also possible to find a positive rate subcode such that every L-tuple
of codewords has joint type close to some Px1,¨¨¨ ,xL . This, as we shall see momentarily, is useful for list
decoding.

ITCS 2020
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One can check that distributions of the form

λ diagp1{2q ` p1´ λq
„

1{2
1{2

b4

“
λ

2

„

1
0

b4

`
λ

2

„

0
1

b4

` p1´ λq
„

1{2
1{2

b4

is CP if and only if λ P r0, 1s. On the other hand, for condition C2 to be satisfied by
some tensor like that, it turns out, as shown by Blinovsky [9] and us, that p has to be
no larger than 5{16.

Of course, bit-flips are just one of the simplest models of corruption that may occur in real-
world communication/storage systems. Perhaps, under certain circumstances, in the system
of interest, we are allowed to transmit length-n codewords taking values from t0, 1, 2, 3, 4, 5u,
but each legitimate codeword x has to satisfy the following constraints inherently associated
to this communication system

$

’

’

&

’

’

%

τxp1q `3τxp3q ď 1.2
τxp2q ´τxp3q ě 0.05

τxp0q ´τxp4q ´0.2τxp5q ď 0.7
,

where τxpxq denotes the fraction of x P t0, 1, ¨ ¨ ¨ , 5u in x P t0, 1, ¨ ¨ ¨ , 5un. An adversary is
allowed to change symbols in the transmitted codeword only from small values to large
values; the cost he pays by changing every i to j (0 ď i ă j ď 5) is j´ i dollars, and he has a
budget of 2.3n dollars in total. Among others, one of the fundamental questions we are able
to answer in this paper is the following: is it possible for us to design exponentially large
codes such that no matter which codeword is transmitted and no matter how an adversary
corrupts it via a legitimate action, the decoder is always able to output a list of at most (say)
10 codewords which contains the correct one?

The answer to the above question is affirmative and can be stated in a similar manner: it
is possible if and only if there is a CP tensor of order 11 and dimension 6 which does not lie
inside the confusability set determined by the channel. In particular, the confusability set is
the set of joint distributions which fail to meet the conditions similar to C1 or C2 that are
determined by the channel.

Our results tell us that if one only aims to search for exponentially large pL ´ 1q-list
decodable codes (instead of optimizing its size) for a given general adversarial channel, then
it is sufficient (and obviously necessary) to restrict our attention to codes that are chunk-wise
random-like. Such codes correspond to some CP distribution

řk
i“1 λiP

bL
xi . If a random code

of positive rate, where the λin (1 ď i ď k) components in the i-th chunk of each codeword
are sampled from distribution Pxi , does not “work” with high probability (w.h.p.), then we
can never find positive rate codes of any other form that “work” for the underlying channel.

By setting the list size L´ 1 “ 1, results in [43] are recovered by our work.

2 Introduction

While the main contribution of this work is to strictly generalize notions that have been
primarily studied for “Hamming metric” channels, before we precisely define general channels,
let us reprise what is known for Hamming metric channels in this section.
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2.1 Error correction and the Plotkin bound
The theory of error correction codes is about protecting data from errors. In classic coding
theory, a code, say C, is just a collection of binary codewords (which are usually just binary
length-n sequences, where n is called the blocklength). The most well-studied error model is
bit-flip. When a certain codeword is transmitted, an adversary can arbitrarily flip at most
np (0 ď p ď 1) bits. It is easy to see that two codewords are not confusable if and only if
their Hamming distance (number of locations where they differ, denoted dH p¨, ¨q) is at least
2np` 1. Let

dminpCq :“ min
x,x1PC
x‰x1

dH
`

x, x1
˘

denote the minimum pairwise distance of codewords in C. The goal is to pack as many
codewords as possible in the Hamming space Fn2 while ensuring that the minimum distance is
at least 2np` 1. By a simple volume argument (Gilbert–Varshamov (GV) bound [22, 42]), it
is known that exponentially many such vectors can be packed when p ă 1{4. The fundamental
quantity that coding theorists are seeking when faced with any communication model is the
largest achievable rate, i.e., capacity. The rate RpCq of a code C is its normalized cardinality,
i.e., RpCq :“ log|C|

n . The capacity C measures, asymptotically as the blocklength grows, the
largest fraction of bits (out of n) that can be reliably transmitted despite np adversarial
bit-flips. C is formally defined as5

C :“ lim sup
nÑ8

max
CĂFn2 : dminpCqą2np

RpCq.

For the aforementioned bit-flip model, as said, the problem of finding the capacity can be
also cast as determining the sphere packing density. This problem is notoriously difficult
and is still open to date. However, we do know that p “ 1{4 is the threshold below which
exponential-sized packing exists (as suggested by the GV bound) and above which it is
impossible. The latter fact is the famous Plotkin bound. More formally,

I Theorem 1 (Plotkin bound [33]). If p “ 1{4` ε, ε ą 0, then any code C of distance larger
than 2np has cardinality at most 1` 1

4ε (and hence has zero rate).

We will call the value of p at which the capacity hits zero, the Plotkin point. Note that the
Plotkin bound actually tells us that above the Plotkin point, not only does every code/packing
have a size 2opnq (and hence, rate zero), but also that its size should be at most a constant
(independent of the blocklength n). Coupled with the achievability result given by the GV
bound, the phase transition threshold for exponential-sized packing is thereby identified
precisely.

2.2 List decoding and the list decoding Plotkin bound
We now introduce another important notion: list decoding. List decodability still requires
codewords to be separated out, but in a more relaxed sense; only a few codewords (instead
of exactly one under unique decoding discussed earlier) can be captured by a ball of certain
radius, no matter where it is located.

5 It turns out that allowing vanishing probability of decoding error does not change the problem.

ITCS 2020
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(a) An pL ´ 1q-packing for L “ 2, i.e., disjoint
packing.

(b) An pL´1q-packing for L “ 3, i.e., packing with
multiplicity 2.

Figure 1 Packing (uniquely decodable codes) vs. multiple packing (list decodable codes). The
geometry depicted in the above figures may be misleading compared with the truth in binary
Hamming space.

I Definition 2 (List decodability [21, 46]). A code C is pp, L´1q-list decodable (or pp,ă Lq-list
decodable) if for all y P Fn2 ,

ˇ

ˇC X BH
`

y, np
˘ˇ

ˇ ă L, where BHpy, npq denotes a Hamming ball
centered at y of radius np.

Of course we want the list size L to be as small as possible. In particular, the problem is
trivial when L “ |C|. (The decoder ignores the received word and outputs the whole code.)
When L “ 2, the problem precisely becomes packing. As the admissible L grows, the problem
is expected to become easier.

Introduced by Elias [21], list decoding is an important and well-studied subject in coding
theory. It is a natural mathematical question to pose towards understanding high-dimensional
geometry in discrete spaces. It also serves as a primitive that is useful within and beyond the
scope of coding theory. For instance, in many communication problems (e.g., [1, 13]), one
proof technique is to let the decoder list decode to a short list (usually polypnq-sized suffices)
of candidate messages, then use other information to disambiguate the list and get a unique
message. List decoding also finds applications in complexity theory, cryptography, etc. [25].
For instance, it is used for amplifying hardness and constructing extractors, pseudorandom
generators and other pseudorandom objects [20]. The idea of relaxing the problem by asking
the solver to just output a list (ideally as small as possible) of solutions that is guaranteed
to contain the correct one, instead of insisting on a unique answer, is also adopted in many
other fields in computer science [19, 35, 28]. In the context of high-dimensional geometry
over finite fields, list decoding is equivalent to multiple packing, just like error correction
codes are equivalent to sphere packing. Multiple packing is a natural generalization of the
famous sphere packing problem in which, instead of insisting on disjoint alignment, overlap
with bounded multiplicity is allowed.

I Definition 3 (Multiple packing). A subset C Ă Fn2 is a pp, L´1q-multiple packing if when we
put Hamming balls of radii np around each vector in C, no point in the space simultaneously
lies in the intersection of at least L balls.

See Fig. 1 for examples of packing and multiple packing in the Hamming space.
Surprisingly, list decoding capacity is known if we allow L to be asymptotically large.

In some sense, list decoding makes us information-theoretic since in many (though not all)
cases the list decoding capacity coincides with the capacity of the corresponding Shannon
channels in which the noise is random with the same “power” (e.g., in the bit-flip/bit-erasure
case, each component of the random noise is independently and identically distributed (i.i.d.)
according to a Bernoulli distribution with mean p).
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I Theorem 4 (List decoding capacity (folklore) [47]). Given any δ ą 0, there exists an infinite
sequence of pp,Op1{δqq-list decodable codes tCnun, each of rate 1´Hppq ´ δ. Indeed, for any
sufficiently large n, a random code (each codeword sampled uniformly at random from Fn2 ) of
rate 1´Hppq ´ δ is pp,Op1{δqq-list decodable w.h.p..

On the other hand, any infinite sequence of codes of rate 1´Hppq ` δ is
`

p, 2Ωpnδq˘-list
decodable.

We call 1 ´ Hppq the p-list decoding capacity (without specifying a specific L). In
particular, the Plotkin point for p-list decoding when L is sufficiently large is 1{2.

Though the fundamental limit for the relaxed problem for large constant L is essentially
understood, pp, L´ 1q-list decodability for small L (e.g., absolute constant, say 3, 8, 100, etc.;
or sublinear in 1{δ, say p1{δq1{2, p1{δq1{3 logp1{δq, log logp1{δq) is far from being understood.
Indeed, it is believed (at least for absolute constant L) to be equivalently hard as the sphere
packing problem. Formally, the question of understanding the role of L can be cast as
follows. Note first that when L “ 2, the (unknown) capacity lies somewhere between the
Gilbert–Varshamov bound and the Linear Programming bound ([18, 30, 44, 31, 32]). When
L “ Op1{δq, the list decoding capacity 1´Hppq is much larger than the unique decoding
capacity. As we increase L, the pp, L´ 1q-list decoding capacity should be gradually “lifted”
and the corresponding Plotkin point (the value of p where the capacity is zero) should
somehow move rightwards from 1{4 to 1{2. The principal goal is to completely understand
the dynamics of this evolution.
I Remark 5. In this paper, we explicitly distinguish the list decoding capacity for large
L and for small L. When we say that L is asymptotically large, we refer to L “ Ωp1{δq
which suffices to approach the p-list decoding capacity within gap δ. When we say that L is
small without further specification, we refer to absolute constant L. For large L, the p-list
decoding capacity, denoted by C (recall that we do not explicitly specify L for this regime,
see Theorem 4), is fully characterized; however, the pp, L´ 1q-list decoding capacity for small
L, denoted by CL´1, is widely open.

Again, for any absolute constant L, the pp, L ´ 1q-list decoding capacity is poorly
understood. We only have non-matching lower and upper bounds. To our knowledge, the
current best bounds are due to Blinovsky from the 80s [9, 10, 11], except for sporadic
values of L in some regimes of p. Specifically, for L “ 3, Ashikhmin–Barg–Litsyn [3] can
uniformly improve Blinovsky’s upper bound for all values of p. For even L’s that are at least
4, Polyanskiy [34] can partially beat Blinovsky’s upper bounds in the low rate regime.

Though how CL´1 approaches C as L increases is not exactly known, Blinovsky’s bounds
do resolve the dynamics of the Plotkin point evolution! Let PL´1 denote the Plotkin point
for pp, L´ 1q-list decoding. Let L “ 2k or 2k ` 1 (k ě 1). Then Blinovsky’s results imply
that PL´1 is precisely given by the following formula

PL´1 “
k
ÿ

i“1

`2pi´1q
i´1

˘

i
2´2i.

Later, Alon–Bukh–Polyanskiy [2] recovered this result with a simpler-looking formula

PL´1 “
1
2 ´ 2´2k´1

ˆ

2k
k

˙

,

For instance, P1 “ P2 “ 1{4, P3 “ P4 “ 5{16, etc. As can be noted, the Plotkin point moves
periodically! The fact that the above two formulas always evaluate to the same value is
implicit in [2] and is formally established in Appendix D.

ITCS 2020
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3 Our contributions

Our motivation comes from a well-known connection between list decodability and reliability
of communication over adversarial channels. A binary code is pp, L´ 1q-list decodable if and
only if it has zero error when used over the following adversarial bit-flip channel (Fig. 2).

m P r2nRs x P Fn2
Enc

XOR y P Fn2

s P Fn2
wtH psq ď np

L Q m
|L| “ Op1{δq

Dec

Figure 2 Adversarial bit-flip channels.

The above system depicts a one-way point-to-point communication scenario in which the
encoder (Alice) randomly picks a message m from 2nR of them and encodes it into an n-bit
string. The adversary (James) stares at this entire codeword and maliciously flips at most
np bits of it. Then, the decoder (Bob) receives the corrupted word and is required to output
a short list of messages which is guaranteed to contain m with probability 1.

In the above model, the adversary is power constrained in the sense that he only has a
budget of np bit-flips. But the encoder is not constrained – she can encode the message into
any vector in Fn2 . In some scenarios, codewords are also weight constrained. It makes sense
to pose the same question (understanding the list decoding capacity) for input constrained
channels. Indeed, this question was also studied in the literature [26].

Motivated by this connection, we significantly generalize the bit-flip model and define
list decodability for general adversarial channels. We consider a large family of channels
in which the encoder is allowed to encode the message into a length-n sequence x over any
alphabet X of constant size, the adversary is allowed to design an adversarial noise pattern
s over any alphabet S and the channel can be any deterministic component-wise function
taking as input a pair of strings from Xn ˆ Sn, outputting a sequence y over any alphabet
Y of the same length. The system designer can incorporate a large family of constraints on
x and s in terms of their types (i.e., empirical distributions). The above family of adversarial
channels we consider includes but is not limited to
1. The standard adversarial bit-flip channels and adversarial erasure channels;
2. Z-channels in which the adversary can only flip 1 to 0 but not the other way around;
3. Adder channels in which the output is the sum of inputs over the reals rather than modulo

the input alphabet size;
4. Channels equipped with Lee distance instead of the Hamming metric.
Indeed, our framework covers most well-studied error models and more that potentially have
not been studied in the literature.

However, since we require the channel transition function to act on each component
of the inputs independently, a well-studied family of channels is excluded: the adversarial
deletion channels (cf. [12]). In this model, the adversary can delete at most np entries of
the transmitted codeword and the decoder receives a vector of smaller length (but at least
p1´ pqn) without knowing the original locations of the symbols he got6. Determining the

6 We want to emphasize the difference between deletions and erasures. When symbols in the codeword
are deleted, the rest of the symbols are concatenated and the receiver has no idea which symbols were
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Plotkin point for this channel is a long standing open problem. It is known [12] that for
binary channels the Plotkin point lies between

?
2´ 1 « 0.414 and 0.5; for q-ary channels, it

lies between 1´ 2
q`
?
q and 1´ 1

q . The capacity of this channel is even less understood.
For technical simplicity, we also assume that the channel transition function is determin-

istic, i.e., the output symbol y is a deterministic function of the codeword symbol x and the
error symbol s.7

We can assume, without any loss of generality, that none of the encoder, decoder and
adversary has private randomness to randomize their strategy. This is because there are
reductions showing that, given stochastic encoder/decoder, we can construct a deterministic
coding scheme with essentially the same rate. Similarly, given a stochastic adversarial
error function, we can turn it into a deterministic one which is equivalently malicious in
terms of rate. Therefore, for the encoder, it suffices to only consider deterministic codes
where each message is mapped to a unique codeword with probability 1. For the adversary,
we can assume the error pattern is a deterministic function of the transmitted codeword.
Nevertheless, note that the error function does not have to be component-wise independent.
The i-th component spiq of the noise pattern s can depend on every entry of x, not only on
the corresponding xpiq. Moreover, the decoder’s decision on the estimated message given the
received word can also be assumed to be deterministic. That is, we can require the decoder
to output the correct message with zero error probability. Hence, the problem is purely
combinatorial and all desirable events should happen with probability one.

In this work, we precisely characterize the Plotkin point for list decoding over any channel
from the above family of general adversarial channels. That is, we essentially provide a
criterion (sufficient and necessary condition) for the existence of positive rate pL´ 1q-list
decodable codes for such channels.

In the context of high-dimensional geometry over finite fields, the result can be also cast
as pinning down the location of the phase transition threshold for the optimal density of
pL´ 1q-multiple packing using general shapes (not necessarily Hamming balls) corresponding
to the defining constraints on codewords and errors of the channel. Above the threshold,
exponential-sized multiple packing exists while below that, it is impossible to have such
exponential-sized multiple packings.

This criterion can be summarized in one sentence:

exponential-sized pL ´ 1q-list decodable codes for general adversarial channels (or
pL ´ 1q-multiple packings using general shapes) essentially exist if and only if the
completely positive tensor cone of order-L is not entirely contained in the confusability
set of the channel for pL´ 1q-list decoding.

Jargon in the above informal statement will become understandable once we formalize
the problem setup and present rigorous claims. The proof consists of the sufficiency part and
the necessity part. At a very high level, the sufficiency part follows from a random coding
argument and its generalization inspired by the time-sharing argument frequently used in
Network Information Theory. The necessity part builds upon and significantly generalizes the
classic Plotkin bound, which goes by first extracting an equicoupled subcode using Ramsey
theory and then applying a generalized double counting trick.

deleted. However, when symbols are erased, they are replaced by erasure symbols erasure at the same
locations and the receiver seeing them knows exactly which symbols were erased. Hence the erasure
case is much simpler than the deletion case.

7 The general case in which the channel law is given by a conditional distribution Wy|x,s (with not
necessarily only singleton atoms) is more technical and is left as one of our future directions.
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Our other results include the following:
1. For any given general adversarial channel, we pin down the list decoding capacity for

asymptotically large L. This generalizes the classic list decoding capacity in the bit-flip
case. The lower bound is achieved by a purely random code. The upper bound follows
from a volume packing argument.

2. For any given general adversarial channel, we determine the exact order (in terms of δ) of
the list sizes of a large fraction (exponentially close to one) of constant composition codes
(in which all codewords have the same type) achieving the list decoding capacity within
gap δ. It turns out that if we pick a constant composition code from the set of all such
codes uniformly at random, with high probability, it is exactly Θp1{δq-list decodable.

3. For any given general adversarial channel and any L ě 2, we give a lower bound on
the pL´ 1q-list decoding capacity. It coincides with the generalized Gilbert–Varshamov
bound obtained by [43] when L´ 1 is equal to 1. Our bound follows from a random code
construction assisted by expurgation, generalizing a classic construction for pp, L´ 1q-
list decoding in the bit-flip case [24]. Note that this construction differs from [43]’s
construction for unique decoding using greedy packing.

4. In the special case where L “ 2, i.e., the unique decoding setting and under the bit-flip
model, we evaluate the Gilbert–Varshamov-type bound and an achievable rate expression
of cloud codes (codes constructed from CP distributions) obtained by [43]. In particular,
we show that the Gilbert–Varshamov-type bound for general adversarial channels matches
the classic GV bound in coding theory. We also provide an explicit convex program for
evaluating achievable rates of cloud codes.

5. By evaluating our general criterion under the bit-flip model, we numerically recover
Blinovsky’s [9] characterization of the Plotkin points for pp, L´ 1q-list decoding. This
boils down to checking the feasibility of an explicit linear program with structured
coefficient matrix. Though the LP has size exponential in L, its feasibility can be
checked in constant time since our results are tailored for constant L independent of the
blocklength n (which needs to approach infinity for many of our results to hold).

6. By utilizing facts discovered in this paper, we rigorously recover Blinovsky’s [9] character-
ization of the Plotkin points for pp, L´1q-list decoding. Our proof avoids the complicated
calculations Blinovsky did and demystifies the formula by Blinovsky8. In particular, our
lower bound on the Plotkin point explains why, in the low rate regime, average-radius9
list decoding is equivalent to the classic notion of list decoding. We believe that this
fact was first observed and rigorously justified by Blinovsky. It was later rediscovered
many times and became one of the basic starting points of many papers, especially those
regarding list decoding random q-ary linear codes. Our upper bound relates the Plotkin
point PL´1 to the expected translation distance of a one-dimensional unbiased random
walk after L steps. In summary, using connections between codes and random variables,
we are able to re-interpret the results by Blinvosky [9] and Alon–Bukh–Polyanskiy [2]
within the framework we established by providing a more intuitive formula which matches
known results.

8 In fact, he provided upper and lower bounds on the pp, L´ 1q-list decoding capacity which happen to
vanish at the same value of p.

9
pp, L ´ 1q-average-radius list decodability requires that the average distance (instead of maximum
distance required by the classic notion of pp, L´ 1q-list decodability) from any L-tuple of codewords to
their centroid is larger than np. Average-radius list decodability is a more stringent requirement since it
implies the classic list-decodability. However, it is easier to analyze since the problem is linearized from
infinity norm to one norm. Indeed it plays a useful role in a long line of work towards understanding
the list decodability of random linear codes [26, 45, 36, 37, 38].
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4 Overview of techniques

Our paper is highly correlated to a sister paper [43] which a subset of the authors are
involved in. That paper provides generalized Plotkin bound for unique decoding over general
adversarial channels. The authors showed that exponential-sized uniquely decodable codes
or hard packings exist if and only if the set of completely positive matrices is not entirely
contained in the confusability set associated to the given channel. This answers the question
we posed in the beginning of the paper for the L “ 2 case. We generalize their results to
any universal constant L. Almost all results in [43] can be recovered by setting L “ 2 in
our paper.

We give an overview of the techniques used in this paper and highlight the similarities
and differences between [43]10 and our work.
1. The general adversarial channel models that both papers are concerned with belong to a

larger family of channels known as Arbitrarily Varying Channels (AVC) in Information
Theory community; these were first studied by Blackwell et al. [8] (see [29] for a detailed
survey). We want to emphasize that the bulk of the literature on AVCs deals with
oblivious adversary channels in which the adversary has to pick his malicious noise pattern
before the codeword is chosen from the codebook (and hence, oblivious of the transmitted
codeword) by the encoder. This makes the problem significantly easier and the capacity of
such channels is precisely known (cf. [17]). The channels that [43] and we are considering
are such that the adversary gets to design the error pattern with the complete knowledge
of the transmitted codeword; these are called omniscient adversaries in [43]. This problem
is much more difficult and the capacity is, again, widely open even for simple models
such as the bit-flip channels. Indeed, the subclass of AVCs that [43] and we defined is
motivated by the bit-flip channels and its various variants, e.g., q-ary channels, weight
constrained channels, asymmetric channels, etc..

2. The connection between codes and random variables/distributions is classic in Theoretical
Computer Science. The idea of realizing binary error correction codes using t´1, 1u-
valued random variables or functions supported on the Boolean hypercube t´1, 1un is
spread out in the literature explicitly or in disguise. Such a trick allows one to borrow
tools from other fields of Theoretical Computer Science, e.g., the theory of expander
graphs, randomness extractors, small-bias distributions, discrete Fourier analysis, etc.,
(cf. [40, 5, 41, 7]) to understand, construct and analyze codes.

3. With respect to (w.r.t.) codes for general adversarial channels, the specific idea of collect-
ing admissible types of good codes and studying the set of corresponding distributions was
used in [43]. In particular, they defined similar notions of self-couplings and confusability
sets which are submanifolds of matrices corresponding to joint distributions. Such objects
only take care of pairwise interaction of codewords, which is insufficient for understanding
list decoding. We generalize their notions to tensors which capture the (empirical) joint
distributions of lists of codewords. While some properties in [43] continue to hold when
objects in the matrix case are extended to their tensor versions, others fail to hold, as
we will see in the rest of the paper. We also encounter issues which do not arise in the
unique decoding setting. As is well-known, tensors are much more delicate [27] to handle
compared to matrices.

10Though the work by Wang–Budkuley–Bogdanov–Jaggi [43] has been accepted to ISIT 2019, the
conference version is limited to 5 pages and contains essentially no proof. At the time this paper is
written, we do not have a publicly available full version of [43] and the following comparison is w.r.t.
the current status of a draft of [43] that the authors kindly shared with us.
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4. To prove upper bounds on capacity, it is also an old idea to extract structured subcodes
from any infinite sequence of good codes. Depending on the applications, the nature of
structures and techniques used to extract them may vary. To the best of our knowledge, in
coding theory, the use of Ramsey theory for obtaining symmetric subcodes dates back to as
least as early as Blinovsky [9]. His techniques were applied in a similar manner in followup
works by Polyanskiy [34] and Alon–Bukh–Polyanskiy [2]. The work in [43] generalized
this idea and managed to extract structured subcodes from arbitrary codes for general
adversarial channels. Since they dealt with unique decoding, pairwise equicoupledness
suffices. In our setup, we would like a sequence of subcodes which are L-wise equicoupled
in the sense that the (empirical) joint distribution of any L-tuple of codewords from
the extracted subcode is approximately the same and is close to some pPx1,¨¨¨ ,xL . This
resembles but generalizes Polyanskiy’s [34] techniques. One of the downsides of invoking
Ramsey theory is that the reduction usually causes terrible detriment to the rate of the
code, since the smallest size for a combinatorial object to contain abundant structures is
generally poorly understood in combinatorics. However, we are fine to tolerate such a
rate loss since we only care about the positivity of the pL´ 1q-list decoding capacity.

5. To show lower bounds on capacity, we use the random coding argument aided by
expurgation. In the prior work [43], the achievability result is obtained by greedy packing.
This is reminiscent of a classic technique in coding theory for proving the existence of good
codes of certain size. Since in the unique decoding (hard packing) setting, goodness of a
code relies merely on pairwise statistics, the size of a greedy packing can be lower bounded
using a standard volume counting argument. Indeed, this idea can be implemented in
the general setting by counting the volume of the “forbidden region” of any codeword
[43]. However, in list decoding setting, the notion of confusability is defined for tuples
of codewords and translates to bounded multiplicity of intersection of forbidden regions
of codewords. It is thus not clear how to pack codewords in a greedy manner while
ensuring non-existence of local dense clusters. Instead, our code construction is more
information-theoretic. We apply ideas of random coding with expurgation which is
commonly used in the study of error exponent in Information Theory. A random code
may be mildly locally clustered, but this only occurs at rare locations in the space of
all length-n input sequences. Indeed, we are able to show that, with high probability, a
random code carefully massaged by shoveling off a small number of codewords attains a
GV-type bound for general channels.

6. The most difficult part of our work is the converse.
a. First assume that the distribution pPx1,¨¨¨ ,xL associated to the subcode obtained by

Ramsey reduction is symmetric. To show that no large pL´1q-list decodable code exists
for general adversarial channels when pPx1,¨¨¨ ,xL is not completely positive, we provide
upper and lower bounds on the average (over all L-tuples in the equicoupled subcode)
inner product between the empirical distribution of an L-tuple and a copositive witness
of non-complete positivity of pPx1,¨¨¨ ,xL . The bounds contradict each other if the code
size exceeds certain constant (independent of the blocklength). We review this double
counting trick (for unique and list decoding under special settings that appeared in
prior work) in Section 5. The L “ 2 case is proved in [43]. The existence of the witness
of non-complete positivity is guaranteed by the duality of certain matrix cones. We
generalize calculations in [43] to joint distributions of ą 2 random variables. Similar
notions of complete positivity and copositivity for tensors exist in the literature and
the duality continues to hold.
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b. If pPx1,¨¨¨ ,xL is asymmetric, we use a completely different argument. We reduce the
claim, in a nontrivial way, to the L “ 2 case which is known to be true [43]. The L “ 2
case itself is proved [43] by viewing the task of constructing a long sequence of random
variables with prescribed asymmetric pairwise marginals as a zero sum game and using
discrete Fourier analysis to provide conflicting bounds on the value of the game, if the
sequence is longer than certain constant (again independent of the blocklength).

5 Prior work

Among various ideas, our results are built upon prior work which applies a double counting
trick to obtain upper bounds on code sizes. We first review this technique which can be
found in the proof of the classic Plotkin bound and its generalizations.

5.1 Plotkin [33]
One way to prove Theorem 1 is by lower and upper bounding the expected pairwise distance
of any given code C with minimum distance larger than 2np (p “ 1{4` ε)

E
px,x1q„CˆC

“

dH
`

x, x1
˘‰

, (2)

where x, x1 are uniformly and independently picked from C. First note that pairs x “ x1 do
not contribute to the expectation. On the one hand, the expectation is clearly at least

|C|p|C| ´ 1q
|C|2

dmin ą |C|´1
p|C| ´ 1q2np “ |C|´1

p|C| ´ 1q2np1{4` εq.

On the other hand, if we stack codewords into a 2nRˆn matrix and let Sj denote the number
of 1’s in the j-th column, then from the column’s perspective, the above expectation is at
most

1
|C|2

n
ÿ

j“1
2Sjp|C| ´ Sjq.

The coefficient 2 is because we need to count px, x1q and px1, xq separately. This bound is at
most n{2 by concavity of the summands in Sj . Comparing the upper and lower bounds we
have that |C| ď 1` 1

4ε , as claimed in Theorem 1.

5.2 Blinovsky [9]
The above double counting argument can be generalized to the setting of list decoding. For
the pp, L ´ 1q-list decoding setup we introduced in Definition 2, the earliest work we are
aware of following this idea is the one by Blinovsky [9].

Unlike Theorem 1, not only did Blinovsky show that any pp, L´ 1q-list decodable code
has to be small as long as p ą PL´1, he even gave an upper bound (it is still essentially the
best as far as we know) on the pp, L ´ 1q-list decoding capacity for any L. We sketch his
idea below but omit the complicated calculations.

First note that proving upper bounds on CL´1 for fixed p is equivalent to proving upper
bounds on p for fixed rate R. We then define the following three quantities

rLD “ min
LPpC

Lq
min
yPFn2

max
xPL

dH
`

y, x
˘

, (3)
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ravg “ min
LPpC

Lq
min
yPFn2

E
x„L

“

dH
`

y, x
˘‰

, (4)

rDC “ E
L„pC

Lq
min
yPFn2

E
x„L

“

dH
`

y, x
˘‰

. (5)

All expectations are over uniform selections from the corresponding sets. Namely,

E
L„pC

Lq
r¨s “

1
`

|C|
L

˘

ÿ

LPpC
Lq

r¨s , E
x„L

r¨s “
1
L

ÿ

xPL
r¨s .

Let us parse what these quantities are measuring.
1. rLD is known as the list decoding radius of a given code C. The minimax expression

associated to a set L of vectors

rCheb :“ min
yPFn2

max
xPL

dH
`

y, x
˘

is known as the Chebyshev radius of L. It is the radius of the smallest circumscribed ball
of L. And

p˚pRq :“ lim sup
nÑ8

max
CĂFn2 : |C|ě2nR

rLDpCq

is precisely the largest allowable p for pp, L´ 1q-list decodable codes of a fixed rate R to
exist. Note that p˚p0q “ PL´1.

2. ravg is known as the average list decoding radius and the min-average expression

min
yPFn2

E
x„L

“

dH
`

y, x
˘‰

is the average radius of a list. It is not hard to see that the average radius center of L is
the component-wise majority of vectors in L, i.e., the minimizer y˚ has MAJ pxpiq : x P Lq
as its i-th component. Define plurality as

PLUR : FL2 Ñ r0, 1s
px1, ¨ ¨ ¨ , xLq ÞÑ 1

L |ti P rLs : xi “ MAJpx1, ¨ ¨ ¨ , xLqu| ,

which is the fraction of the most frequent symbol. Then the average radius of L can be
explicitly written as

min
yPFn2

E
x„L

“

dH
`

y, x
˘‰

“

n
ÿ

j“1
p1´ PLUR pxpjq : x P Lqq .

3. rDC is a further variant of rLD – the ultimate quantity we are looking for. It is the object
that Blinovsky was really dealing with. Note that it is in the same spirit as the quantity
(2) considered in the double counting argument in the proof of the classic Plotkin bound.
Blinovsky used rDC as a proxy to finally bound rLD.

By extracting a constant weight subcode and applying the double counting trick (and using
the convexity of a certain function), Blinovsky showed the following

I Lemma 6. Let λ P r0, 1{2s and fix R “ 1´Hpλq. Then

rDC ď

rL{2s
ÿ

i“1

`2i´2
i´1

˘

i
pλp1´ λqqi.
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Apparently, by definition, we have

rLD ě ravg, rDC ě ravg.

So Lemma 6 automatically holds for ravg. However, a priori the relation between rLD and
rDC is unclear. Surprisingly, Blinovsky showed that it is “okay” to replace the first and third
optimization in rLD with averaging in the sense that the following holds.

I Lemma 7. For any infinite sequence of codes tCnun, there exists an infinite sequence of
subcodes C1n Ď Cn such that rLDpC1q “ ravgpC1q ` opnq.

The proof involves an equidistant subcode extraction step using Ramsey theory. Lemma 7
implies that the same bound in Lemma 6 holds for rLD as well!

5.3 Cohen–Litsyn–Zémor [15]
Similar ideas were used to provide upper bounds on the erasure list decoding capacity. A
binary code is said to be pp, L ´ 1q-erasure list decodable if for any T P

`

rns
np1´pq

˘

and any
y P Fp1´pqn2 ,

ˇ

ˇ

 

x P C : x|T “ y
(
ˇ

ˇ ď L´ 1, where x|T denotes the restriction of x to T , i.e., a
vector of length |T | only consisting of components from x indexed by elements in T . The
erasure list decoding radius rLD,eras and the pp, L´1q-erasure list decoding capacity CL´1,eras
are defined in the same manner. Cohen–Litsyn–Zémor [15] showed that

I Theorem 8 ([15]). CL,eras ď 1 ´ Hpλq, where λ is the unique root of the equation
λL`1 ` p1´ λqL`1 “ 1´ p in r0, 1{2s.

The idea is essentially still double counting. Here, it turns out that the right object to be
counted is the erasure radius of a list L,

reras :“ |ti P rns : xpiq are the same @x P Lu| .

Extracting a subcode living on a sphere (followed by shifting out the center to get a constant
weight subcode C1) and conducting similar calculations on

E
L„pC1

Lq

rreraspLqs ,

allow the authors to conclude Theorem 8.
I Remark 9. The original paper [15] was stated for generalized distance which is equivalent
to erasure list decoding radius via a well-known connection. The above version was presented
in Guruswami’s PhD thesis [24].

5.4 Wang–Budkuley–Bogdanov–Jaggi [43]
As mentioned, our work is a continuation of the prior work [43] which a subset of the authors
were involved in. We refer the readers to the corresponding paragraphs in Sec. 1 and Sec. 3
for a review of their work along with a comparison with this work.

6 Organization of the paper

In Sec. 1 we have seen numeric examples that illustrate our results. In Sec. 2 we properly
motivated the problem and introduced relevant background in coding theory. Our contribu-
tions in this paper were listed in details in Sec. 3. In Sec. 4 we reviewed various techniques
used in this paper and highlighted our innovations. Prior works that our results build up on
and push forward were surveyed in Sec. 5.
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The rest of the paper is organized as follows. We fix our notational conventions in
Sec. 7 and provide necessary preliminaries, especially the method of types in Information
Theory, in Sec. 8. We develop basic notions that will be used throughout the paper in
Sec. 9. In particular, general adversarial channels and objects associated to them will be
introduced in this section. In Sec. 10 we prove the list decoding capacity theorem for general
adversarial channels when L is asymptotically large. Furthermore, we obtain tight list size
bounds for most capacity-achieving constant composition codes in Sec. 11. In Sec. 12 and
Sec. 13 we show sufficiency and necessity, respectively, of the criterion for the existence of
exponential-sized pL´ 1q-list decodable codes (where L is an arbitrary universal constant)
for general adversarial channels. In Sec. 14 we make two remarks on the converse, which is
technically the most challenging piece of our work. In Sec. 15 we verify the correctness of our
characterization obtained in Sec. 12 and Sec. 13 by running it on the problem specialized
to the bit-flip model which has been understood in prior works [9, 2]. In Sec. 16, utilizing
tools developed and facts proved in this paper, we rigorously rederive Blinovsky’s [9] results.
We obtain more intuitive expressions and demystify his calculations. In Sec. 17 we evaluate
bounds on the unique decoding capacity (L “ 2) in [43] under the bit-flip model. We conclude
the paper and list several open questions and future directions in Sec. 18. Some calculations
and background knowledge are deferred to Appendices A, B, C and D.

7 Notation

Conventions. Sets are denoted by capital letters in calligraphic typeface, e.g., C, I, etc..
Random variables are denoted by lower case letters in boldface or capital letters in plain
typeface, e.g., m,x, s, U,W , etc.. Their realizations are denoted by corresponding lower case
letters in plain typeface, e.g., m,x, s, u, w, etc.. Vectors (random or fixed) of length n, where
n is the blocklength without further specification, are denoted by lower case letters with
underlines, e.g., x, s, x, s, etc.. The i-th entry of a vector x P Xn is denoted by xpiq since
we can alternatively think of x as a function from rns to X . Same for a random vector x.
Matrices are denoted by capital letters in boldface, e.g., P,Σ, etc.. Similarly, the pi, jq-th
entry of a matrix G P Fnˆm is denoted by Gpi, jq. We sometimes write Gnˆm to explicitly
specify its dimension. For square matrices, we write Gn for short. Letter I is reserved for
identity matrix. Tensors are denoted by capital letters in plain typeface, e.g., T, P , etc..

Functions. We use the standard Bachmann–Landau (Big-Oh) notation for asymptotics of
real-valued functions in positive integers.

For x P R, let rxs` :“ max tx, 0u.
For two real-valued functions f, g on the same domain Ω, let fg and f{g denote the

functions obtained by multiplying and taking the ratio of the images of f and g point-wise,
respectively. That is, for ω P Ω,

pfgqpωq :“ fpωqgpωq, pf{gqpωq :“ fpωq{gpωq.

In particular, for types or distributions, we can write τx,y “ τxτy|x, τy|x “ τx,y{τx, or
Px,y “ PxPy|x, Py|x “ Px,y{Px and so on.

For two real-valued functions fpnq, gpnq in positive integers, we say that fpnq asymptot-
ically equals gpnq, denoted fpnq — gpnq, if

lim
nÑ8

fpnq

gpnq
“ 1.
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For instance, 2n`logn — 2n`logn ` 2n, 2n`logn ffi 2n. We write fpnq .“ gpnq (read fpnq dot
equals gpnq) if the coefficients of the dominant terms in the exponents of fpnq and gpnq

match,

lim
nÑ8

log fpnq
log gpnq “ 1.

For instance, 23n .
“ 23n`n1{4 , 22n ­

.
“ 22n`logn . Note that fpnq — gpnq implies fpnq .“ gpnq,

but the converse is not true.
For any q P Rą0, we write logqp¨q for the logarithm to the base q. In particular, let logp¨q

and lnp¨q denote logarithms to the base two and e, respectively.

Sets. For any two sets A and B with additive and multiplicative structures, let A` B and
A ¨ B denote the Minkowski sum and Minkowski product of them which are defined as

A` B :“ ta` b : a P A, b P Bu , A ¨ B :“ ta ¨ b : a P A, b P Bu ,

respectively. If A “ txu is a singleton set, we write x` B and x ¨ B for txu ` B and txu ¨ B.
For any finite set X and any integer 0 ď k ď |X |, we use

`X
k

˘

to denote the collection of
all subsets of X of size k.

ˆ

X
k

˙

:“ tY Ď X : |Y| “ ku .

For M P Zą0, we let rM s denote the set of first M positive integers t1, 2, ¨ ¨ ¨ ,Mu.
For any A Ď Ω, the indicator function of A is defined as, for any x P Ω,

1Apxq :“
#

1, x P A
0, x R A

.

At times, we will slightly abuse notation by saying that 1A is 1 when event A happens and 0
otherwise. Note that 1Ap¨q “ 1t¨PAu.

Geometry. For any x P Fnq , let wtH pxq denote the Hamming weight of x, i.e., the number
of nonzero entries of x.

wtH pxq :“ |ti P rns : xpiq ‰ 0u| .

For any x, y P Fnq , let dH
`

x, y
˘

denote the Hamming distance between x and y, i.e., the
number of locations where they differ.

dH
`

x, y
˘

:“ wtH
`

x´ y
˘

“
ˇ

ˇ

 

i P rns : xpiq ‰ ypiq
(
ˇ

ˇ .

Balls and spheres in Fnq centered around some point x P Fnq of certain radius r P t0, 1, ¨ ¨ ¨ , nu
w.r.t. the Hamming metric are defined as follows.

BnHpx, rq :“
 

y P Fnq : dH
`

x, y
˘

ď r
(

, SnHpx, rq :“
 

y P Fnq : dH
`

x, y
˘

“ r
(

.

We will drop the subscript and superscript for the associated metric and dimension when
they are clear from the context.
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Probability. The probability mass function (p.m.f.) of a discrete random variable x or a
random vector x is denoted by Px or Px. Here we use the following shorthand notation to
denote the probability that x or x distributed according to Px or Px takes a particular value.

Pxpxq :“ Pr
x„Px

rx “ xs , Pxpxq “ Pr
x„Px

rx “ xs ,

for any x P X or x P Xn. If every entry of x is independently and identically distributed
(i.i.d.) according to Px, then we write x „ Pbnx , where Pbnx is a product distribution
defined as

Pxpxq “ Pbnx pxq :“
n
ź

i“1
Pxpxpiqq.

For a finite set X , ∆pX q denotes the probability simplex on X , i.e., the set of all probability
distributions supported on X ,

∆pX q :“
#

Px P r0, 1s|X | :
ÿ

xPX
Pxpxq “ 1

+

.

Similarly, ∆ pX ˆ Yq denotes the probability simplex on X ˆ Y,

∆ pX ˆ Yq :“
#

Px,y P r0, 1s|X |ˆ|Y| :
ÿ

xPX

ÿ

yPY
Px,ypx, yq “ 1

+

.

Let ∆pY|X q denote the set of all conditional distributions,

∆pY|X q :“
!

Py|x P R|X |ˆ|Y| : Py|xp¨|xq P ∆pYq, @x P X
)

.

The general notion for multiple spaces is defined in the same manner.
Let UnifpΩq denote the uniform distribution on some probability space Ω.
For a joint distribution Px,y P ∆pX ˆ Yq, let rPx,ysx P ∆pX q denote the marginalization

onto the variable x, i.e., for x P X ,

rPx,ysx pxq :“
ÿ

yPY
Px,ypx, yq.

Sometimes we simply write it as Px when the notation is not overloaded.

Algebra. Let } ¨ }p denote the standard `p-norm. Specifically, for any x P Rn,

}x}p :“
˜

n
ÿ

i“1
|xpiq|

p

¸1{p

.

For brevity, we also write } ¨ } for the `2-norm.
An order-k dimension-pn1, ¨ ¨ ¨ , nkq tensor T is a multidimensional array. It can be thought

as a function on the product space rn1s ˆ ¨ ¨ ¨ ˆ rnks which identifies the value of each of its
entries.

T : rn1s ˆ ¨ ¨ ¨ ˆ rnks Ñ R
pi1, ¨ ¨ ¨ , ikq ÞÑ T pi1, ¨ ¨ ¨ , ikq,

where, as usual, we use T pi1, ¨ ¨ ¨ , ikq to denote its pi1, ¨ ¨ ¨ , ikq-th entry.
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Without specification, all matrices and tensors are over the real number field. The space
of nˆm matrices is denoted by

Matnˆm :“
 

M P Rnˆm
(

– Rn¨m.

When n “ m, we write Matn for the space of square matrices of dimension n. The space of
order-k dimension-pn1, ¨ ¨ ¨ , nkq tensors is denoted by

Tenbkn1,¨¨¨ ,nk
:“

 

T P Rn1ˆ¨¨¨ˆnk
(

– Rn1¨¨¨nk .

If every dimension of T is the same, n1 “ ¨ ¨ ¨ “ nk “ n, then we write Tenbkn for the space
of equilateral tensors of order k and dimension n. Definitions of the sets of symmetric (Sym),
non-negative (NN), doubly non-negative (DNN), positive semidefinite (PSD), completely
positive (CP), copositive (coP), etc., matrices and tensors are deferred to the corresponding
sections where we need them. Note that Matn,m “ Tenb2

n,m. When the order of the tensors is
k “ 2, namely matrices, we drop the superscript b2.

For a tensor T P Tenbkn1,¨¨¨ ,nk
, we use }T }F to denote the Frobenius norm of T , which is

the `2 norm when T is vectorized into a length-n1 ¨ ¨ ¨nk vector.

}T }F :“

¨

˝

ÿ

pi1,¨¨¨ ,ikqPrn1sˆ¨¨¨ˆrnks

T pi1, ¨ ¨ ¨ , ikq
2

˛

‚

1{2

.

We use }T }sav to denote the sum-absolute-value norm of T which is the `1 norm after
vectorization.

}T }sav :“
ÿ

pi1,¨¨¨ ,ikqPrn1sˆ¨¨¨ˆrnks

|T pi1, ¨ ¨ ¨ , ikq| .

Similarly, define

}T }mav :“ max
pi1,¨¨¨ ,ikqPrn1sˆ¨¨¨ˆrnks

|T pi1, ¨ ¨ ¨ , ikq|

to be the max-absolute-value norm of T , which is the `8 norm when viewed as a vector.
Note that the Frobenius norm, sum-absolute-value norm and max-absolute-value are

different from the matrix/tensor 2-norm, 1-norm and 8-norm. Though they do trivially
coincide with the corresponding vector norm when the order of the tensor is one.

We endow the matrix/tensor space with an inner product. For tensors T1 and T2 both in
Tenbkn1,¨¨¨ ,nk

,

xT1, T2y :“
ÿ

pi1,¨¨¨ ,ikqPrn1sˆ¨¨¨ˆrnks

T1pi1, ¨ ¨ ¨ , ikqT2pi1, ¨ ¨ ¨ , ikq.

When T1, T2 are matrices, the above definition agrees with the Frobenius inner product, which
is alternatively defined as Tr

`

TJ1 T2
˘

. When T1, T2 are vectors, this inner product becomes
the standard inner product associated to Rn as a Hilbert space, which is denoted by the
same notation without confusion.

Let Sn denote the symmetric group of degree n consisting of n! permutations on rns.
Permutations are typically denoted by lower case Greek letters.
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Information theory. We use Hp¨q to interchangeably denote the binary entropy function
and the Shannon entropy; the exact meaning will be clear from the context. In particular,
for any p P r0, 1s, Hppq denotes the binary entropy

Hppq “ p log 1
p
` p1´ pq log 1

1´ p .

For a distribution P P ∆pX q on a finite alphabet X or a random variable x „ P distributed
according to P , the Shannon entropy of P or x is defined similarly as

HpP q “ Hpxq :“
ÿ

xPX
P pxq log 1

P pxq
.

For two distributions P,Q P ∆pX q on the same alphabet X , the Kullback–Leibler (KL)
divergence between them is defined as

DpP }Qq :“
ÿ

xPX
P pxq log P pxq

Qpxq
.

If x,y are jointly distributed according to Px,y P ∆pX ˆ Yq, then their joint entropy is
defined as

Hpx,yq “ HpPx,yq :“
ÿ

xPX

ÿ

yPY
Px,ypx, yq log 1

Px,ypx, yq
;

their mutual information is defined as

Ipx; yq :“D pPx,y}PxPyq

“
ÿ

xPX

ÿ

yPY
Px,ypx, yq log Px,ypx, yq

PxpxqPypyq

“
ÿ

yPY
Pypyq

ÿ

xPX
Px|ypx|yq log

Px|ypx|yq

Pxpxq
.

If the conditional distribution of y given x is Py|x P ∆pY|X q, then the conditional entropy
of y given x is defined as

Hpy|xq :“
ÿ

xPX
PxpxqHpy|x “ xq

“
ÿ

xPX

ÿ

yPX
Px,ypx, yq log Pxpxq

Px,ypx, yq
.

It is easy to check that different definitions above for the same quantities are consisted
with each other.

8 Preliminaries

I Lemma 10 (Stirling’s approximation). For any n P Zą0, n! —
?

2πn pn{eqn.

I Corollary 11 (Asymptotics of multinomials). For any positive integers n ě q and any
q-partition pn1, ¨ ¨ ¨ , nqq of n (n1 ` ¨ ¨ ¨ ` nq “ n, ni ě 0 for every i),

`

n
n1,¨¨¨ ,nq

˘ .
“ 2nHpP q,

where P P ∆prqsq is an empirical distribution such that for i P rqs, P piq “ ni{n. More
precisely, we have

`

n
n1,¨¨¨ ,nq

˘

— νpnq´12nHpP q, where νpnq is a polynomial defined as

νpnq :“ p2πnq
q´1

2

˜

q
ź

i“1
P piq

¸
1
2

.
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I Fact 12 (Approximation of binomials). For any positive integers n ě k,
´n

k

¯k

ď

ˆ

n

k

˙

ď

´en

k

¯k

, (6)

pn´ kqk ď pn´ k ` 1qk ď
ˆ

n

k

˙

ď nk. (7)

Without loss of generality, we write X “ t1, ¨ ¨ ¨ , |X |u. For x P Xn and x P X , let

Nxpxq :“ |ti P rns : xpiq “ xu| ,

which counts the number of occurrences of a symbol x in a vector x. Similarly, define

Nx,y
`

x, y
˘

:“
ˇ

ˇ

 

i P rns : xpiq “ x, ypiq “ y
(
ˇ

ˇ .

I Definition 13 (Types). For a length-n vector x over a finite alphabet X , the type τx of x
is a length-|X | (empirical) probability vector (or the histogram of x), i.e., τx P r0, 1s|X | has
entries τxpxq :“ Nxpxq{n for all x P X .

I Definition 14 (Joint types and conditional types). The joint type τx,y P r0, 1s|X |ˆ|Y| of two
vectors x P Xn and y P Yn is defined as τx,ypx, yq “ Nx,ypx, yq{n for x P X and y P Y.

The conditional type τy|x P r0, 1s|X |ˆ|Y| of a vector y P Yn given another vector x P Xn is
defined as τy|xpy|xq “ Nx,y

`

x, y
˘

{Nx pxq.

I Remark 15 (Types vs. distributions). Types are empirical distributions of length-n vectors.
They can only take rational values, in particular, a{n for a P t0, 1, ¨ ¨ ¨ , nu. For finite alphabets
and a fixed n, there are only polypnq many types. However, there are uncountably infinitely
many distributions on any finite alphabets and they form a probability simplex.
I Remark 16. We will also write τx, τx,y, τy|x, τy|x, etc., for generic types that are taken
from the corresponding sets of types even if they do not come from instantiated vectors. For
instance, τx is a type in PpnqpX q corresponding to any x P Txpτxq. The particular choice of
x is not important and will not be specified. These notations are for explicitly distinguishing
types from distributions.

I Definition 17 (Set of types). We use PpnqpX q to denote the set of types of all length-n
vectors over X .

PpnqpX q “
 

τx : x P Xn
(

.

Similarly, define

PpnqpX ,Yq “
!

τx,y : x P Xn, y P Yn
)

,

PpnqpY|xq “
!

τy|x : y P Yn
)

,

PpnqpY|X q “
!

τy|x : x P Xn, y P Yn
)

to be
1. the set of all joint types;
2. the set of all conditional types of y given a particular x;
3. the set of all conditional types of y given some x,
respectively.
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I Lemma 18 (Types are dense in distributions). The union of the sets of types of all possible
blocklengths is dense in the set of distributions, i.e.,

8
ď

n“1
PpnqpX q

is dense in ∆pX q. This holds true for joint types and conditional types as well.

I Lemma 19 (Number of types). When alphabet sizes are constants, the number of types of
length-n vectors is polynomial in n. To be precise, the number of types of length-n vectors
over X is

ˇ

ˇ

ˇ
PpnqpX q

ˇ

ˇ

ˇ
“

ˆ

n` |X | ´ 1
|X | ´ 1

˙

. (8)

For a vector x P Xn of type τx, the number of conditional types of length-n vectors over Y
given x is

ˇ

ˇ

ˇ
PpnqpY|xq

ˇ

ˇ

ˇ
“

ź

xPX

ˆ

τxpxqn` |Y| ´ 1
|Y| ´ 1

˙

. (9)

The number of conditional types of Y-valued vectors given some X -valued vector is

PpnqpY|X q “
ÿ

τxPPpnqpX q

ź

xPX

ˆ

τxpxqn` |Y| ´ 1
|Y| ´ 1

˙

. (10)

The following elementary bounds from [16] are sufficient for the purposes of this paper.
ˇ

ˇ

ˇ
PpnqpX q

ˇ

ˇ

ˇ
ďpn` 1q|X |,

ˇ

ˇ

ˇ
PpnqpY|xq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
PpnqpY|X q

ˇ

ˇ

ˇ
ďpn` 1q|X |¨|Y|.

I Definition 20 (Type classes). Define type class Txpτxq w.r.t. a type τx P PpnqpX q as

Txpτxq :“
 

x P Xn : τx “ τx
(

.

Similarly, the joint type class Tx,y pτx,yq w.r.t. a joint type τx,y P PpnqpX ˆ Yq is defined as

Tx,y pτx,yq :“
!

`

x, y
˘

P Xn ˆ Yn : τx,y “ τx,y

)

.

The conditional type class Ty|x
`

τy|x
˘

w.r.t. a conditional type τy|x P PpnqpY|xq given a vector
x P Xn is defined as

Ty|x
`

τy|x
˘

:“
!

y P Yn : τy|x “ τy|x

)

.

The conditional type class Ty|x
`

τy|x
˘

w.r.t. a conditional type τy|x P PpnqpY|X q is defined as

Ty|x
`

τy|x
˘

:“
ď

τxPPpnqpX q

Ty|x1
`

τy|x
˘

(11)

“

!

y P Yn : Dx1 P Xn, τy|x1 “ τy|x

)

, (12)

where in Eqn. (11) x1 can be chosen arbitrarily from Tx pτxq.
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I Lemma 21 (Size of type classes).
1. For any type τx P PpnqpX q,

ˇ

ˇTxpτxq
ˇ

ˇ

.
“ 2nHpPxq.

2. For any vector x P Xn and any conditional type τy|x P PpnqpY|xq,
ˇ

ˇ

ˇ
Ty|x

`

τy|x
˘

ˇ

ˇ

ˇ

.
“ 2nHpy|xq,

where the conditional entropy is evaluated w.r.t. the joint type τxτy|x.
3. For any conditional type τy|x P PpnqpY|X q,

ˇ

ˇ

ˇ
Ty|x

`

τy|x
˘

ˇ

ˇ

ˇ

.
“ 2nmax

τxPPpnqpXqHpy|xq,

where the conditional entropy is evaluated w.r.t. the joint type τxτy|x.

Proof.
1. The number of sequences x P Xn of type τx is precisely

ˆ

n

nτxp1q, ¨ ¨ ¨ , nτxp|X |q

˙

and the claim follows from Lemma 10.
2. Given x P Xn, the number of sequences y P Yn of conditional type τy|x is precisely

ź

xPX

ˆ

nτxpxq

nτy|xp1|xq, ¨ ¨ ¨ , nτy|xp|Y| |xq

˙

,

and the lemma follows from 10.
3. Note that

Ty|x˚
`

τy|x˚
˘

ď

ˇ

ˇ

ˇ
Ty|x

`

τy|x
˘

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
PpnqpX q

ˇ

ˇ

ˇ
Ty|x˚

`

τy|x˚
˘

,

where x˚ is chosen arbitrarily from Tx pτ
˚
x q and11

τ˚x “ argmax
τxPPpnqpX q

ˇ

ˇ

ˇ
Ty|x

´

τy|x

¯
ˇ

ˇ

ˇ
.

The claim follows from Eqn. (8) and the previous claim.
J

I Lemma 22. If x is generated using the product distribution Pbnx , then for any x P TxpPxq,

Pr rx “ xs “ 2´nHpPxq.

Moreover,

Pr
“

x P TxpPxq
‰

— νpnq´1.

Proof. Both claims follow from elementary calculations. For the first one,

Pr rx “ xs “
ź

xPX
Pxpxq

Nxpxq

“2
ř

xPX Nxpxq logPxpxq

“2n
ř

xPX Pxpxq logPxpxq (13)

“2´nHpPxq,

where Eqn. (13) is because τx “ Px and hence Nxpxq{n “ Pxpxq for any x P X .

11 In the argmax, x P Tx pτxq is arbitrary as well.
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For the second one,

Pr
“

x P TxpPxq
‰

“Pr
“

τx “ Px
‰

“

ˆ

n

nPxp1q, ¨ ¨ ¨ , nPxp|X |q

˙

ź

xPX
Pxpxq

nPxpxq

—νpnq´12nHpP q2´nHpP q (14)
“νpnq´1,

where Eqn. (14) is by Corollary 11. J

I Lemma 23 (Markov). For any non-negative random variable X and any positive number
x,

Pr rX ě xs ď
E rXs
x

.

I Lemma 24 (Chernoff). Let X1, ¨ ¨ ¨ , Xn be independent (not necessarily identically distrib-
uted) t0, 1u-valued random variables. Let

X :“
n
ÿ

i“1
Xi.

Then

Pr rX ě p1` εqE rXss ďe´ ε
2
3 ErXs,

Pr rX ď p1´ εqE rXss ďe´ ε
2
2 ErXs,

Pr rX R p1˘ εqE rXss ď2e´ ε
2
3 ErXs.

I Lemma 25 (Sanov). Let Q Ă ∆ pX q be a subset of distributions such that it is equal to
the closure of its interior. Let x „ Pbnx be a random vector whose components are i.i.d.
according to Px. Clearly x is expected to have type E

“

τx
‰

“ Px. Sanov’s theorem determines
the first-order exponent of the probability that the vector empirically looks like coming from
some distribution Q P Q.

Pr
“

τx P Q
‰ .
“ 2´n infQPQ DpQ}Pxq.

I Remark 26. One can view Sanov’s theorem as a particular form of the Chernoff bound.
Since xpiq’s are independent, it gives the correct exponent of Pr

“

τx P Q
‰

(up to lower order
terms) rather than being merely a bound.

I Lemma 27 (Anti-concentration). Let X be a non-negative random variable. Then

Pr rX “ 0s ď Var rXs
E rXs2

.

I Fact 28 (Binomial identities). For any non-negative integers n,K and 0 ď k ď n, we have
ˆ

n

k

˙

“

ˆ

n

n´ k

˙

, (15)
ˆ

n

k

˙

“
n

k

ˆ

n´ 1
k ´ 1

˙

, (16)
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ˆ

n

k

˙

`

ˆ

n

k ` 1

˙

“

ˆ

n` 1
k ` 1

˙

, (17)

2K “
K
ÿ

i“0

ˆ

n

i

˙

. (18)

We list several basic (in)equalities concerning information measures that we will frequently
refer to.

I Fact 29 (Information (in)equalities). The following inequalities hold for any random
variables/distributions over finite sets.

Hpx,yq “Hpxq `Hpy|xq
“Hpyq `Hpx|yq
“Hpx|yq `Hpy|xq ` Ipx; yq
“Hpxq `Hpyq ´ Ipx; yq,

Ipx; yq “Hpxq ´Hpx|yq
“Hpyq ´Hpy|xq
“D pPx,y}PxPyq .

9 Basic definitions

I Definition 30 (Adversarial channels). An adversarial channel A “ pX , λx,S, λs,Y,Wy|x,sq

(Fig. 3) is a sextuple consisting of
1. an input alphabet X ;
2. a set of input constraints λx Ď PpnqpX q;
3. a noise alphabet S;
4. a set of noise constraints λs Ď PpnqpSq;
5. an output alphabet Y;
6. a channel law given by a transition probability Wy|x,s P ∆pY|X ˆ Sq.

m P r2nRs x P Λx
Enc

Wbn
y|x,s y P Yn

s P Λs

L Q m
|L| “ Op1{δq

Dec

Figure 3 General adversarial channels.

I Remark 31. In this paper, we are only concerned with finite alphabets of constant size
independent of the blocklength n.

Specifically,
Though the alphabets X ,S and Y can be arbitrary finite sets, it is without loss of generality
to realize them using the first |X |, |S| and |Y| positive integers, i.e., X “ r|X |s ,S “ r|S|s
and Y “ r|Y|s.12

12Under such realizations, these sets are not necessarily equipped with real arithmetic or modular
arithmetic. The metric, if one cares, would be specified by the channel function.
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The input and noise constraint sets λx and λs are subsets of types PpnqpX q and PpnqpSq
respectively. In this paper we assume they are convex sets. Since there are polynomially
many types in total, we can also think of these collections of types as defined by inter-
sections of hyperplanes or halfspaces, that is, types satisfying a certain finite number of
linear (in the entries of the types) (in)equality constraints.
In this paper, for technical simplicity, we assume that the channel transition function
has only singleton mass. That is, for each x P X , s P S, Wy|x,spy|x, sq “ 1 only for one
y P Y and is zero for all other outputs. Equivalently, such degenerate distributions can
be alternatively thought of as deterministic functions

W : X ˆ S Ñ Y
px, sq ÞÑ y,

where y is the unique output which is assigned the full probability, Wy|x,spy|x, sq “ 1.
Here we slightly abuse the notation and use the same letter for the channel transition
distribution and the channel transition function (when the distribution is degenerate).
Moreover, we use y “ W px, sq (with the superscript bn being dropped) to denote the
output of n uses of the channel, or equivalently, the n-letter output of the function which
acts on px, sq component by component.
It seems this is a severe restriction (and turns out indeed to be so). Nevertheless, it is still
a very first and significant step towards understanding general adversarial channels in full
generality. The case where Wy|x,s is an arbitrary conditional distribution, or equivalently,
the function W is non-deterministic, is interesting as well and is left as a future direction.
For notational convenience, let

Λx :“
 

x P Xn : τx P λx
(

“
ď

τxPλx

Tx pτxq ,

Λs :“
 

s P Sn : τs P λs
(

“
ď

τsPλs

Ts pτsq ,

be sets of codewords and error patterns of admissible types.

I Example 32. Our framework covers a large family of channel models, including most of
the popular and well-studied ones.
1. The standard bit-flip channels. X “ F2, λx “ PpnqpF2q,S “ F2,

λs “
!

τs P PpnqpF2q : τsp1q ď p
)

,

Y “ F2, y “W px, sq “ xXOR s.
2. The standard q-ary channels. X “ Zq, λx “ PpnqpZqq, S “ Zq,

λs “
!

τs P PpnqpZqq : τsp1q ` ¨ ¨ ¨ ` τspq ´ 1q ď p
)

,

Y “ Zq, y “W px, sq “ x` s mod q.
3. The standard erasure channels. S “ Zq, λx “ PpnqpZqq,S “ F2,

λs “
!

τs P PpnqpF2q : τsp1q ď p
)

,
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Y “ Zq Y terasureu,

y “W px, sq “

#

x, s “ 0
erasure, s “ 1

.

4. Weight constrained channels. Any of the above channels with

λx “
!

τx P PpnqpX q : 1´ τxp0q ď w
)

.

5. Z-channels (or multiplier/AND channels). X “ F2, λx “ PpnqpF2q,S “ F2,

λs “
!

τs P PpnqpF2q : τsp1q ď p
)

,

Y “ F2,

y “W px, sq “

#

0, s “ 0 or x “ 0
x, s “ 1 and x “ 1

,

or equivalently y “W px, sq “ xAND s.
6. Adder channels. X “ t0, 1, ¨ ¨ ¨ , q ´ 1u , λx “ PpnqpX q,S “ t0, 1, ¨ ¨ ¨ , q ´ 1u,

λs “
!

τs P PpnqpSq : τsp1q ` ¨ ¨ ¨ ` τspq ´ 1q ď p
)

,

Y “ t0, 1, ¨ ¨ ¨ , 2pq ´ 1qu , y “W px, sq “ x` s, where the addition is over R.
7. Noisy typewriter channels. X “ Zq, λx “ PpnqpZqq,S “ F2, λs “ PpnqpF2q,Y “ Zq, y “

W px, sq “ x` s mod q.
8. OR channels (or Z-channels). X “ F2, λx “ PpnqpF2q,S “ F2,

λs “
!

τs P PpnqpF2q : τsp1q ď p
)

,

Y “ F2, y “W px, sq “ xOR s,
9. Channels under Lee distance. X “ Zq, λx “ PpnqpZqq,

S “
 

´
X

q
2
\

,´
X

q
2
\

` 1, ¨ ¨ ¨ ,
X

q
2
\

´ 1,
X

q
2
\(

,

λs “

$

&

%

τs P PpnqpSq :
tq{2u
ÿ

s“1
pτspsq ´ τsp´sqq ¨ s ď p

,

.

-

,

Y “ Zq, y “W px, sq “ x` s over the reals.
10. Other more complicated channels, e.g., the one we defined in Sec. 1.

I Definition 33 (Self-couplings). A joint distribution Px1,¨¨¨ ,xL P ∆pXLq is said to be a
pPx, Lq-self-coupling for some Px P ∆pX q if all of its marginals equal Px, i.e., rPx1,¨¨¨ ,xLsxi “

Px for all i P rLs. The set of all pPx, Lq-self-couplings is denoted by J bL pPxq.

I Definition 34 (Codes). In general, a code C is a subset of Xn. A code C for an adversarial
channel A “ pX , λx,S, λs,Y,Wy|x,sq is a subset of Λx; n is called the blocklength. Elements
in C are called codewords. The rate RpCq of C is defined as RpCq :“ plog |C|q {n.

I Definition 35 (Constant composition codes). A code C Ă Xn is said to be Px-constant
composition for some Px P ∆pX q if the type of each codeword is Px, i.e., τx “ Px for every
x P C.
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(a) Bit-flip channels.
(b) Erasure channels.

(c) Z-channels (or multiplier-
/AND channels).

(d) Adder channels.

(e) OR channels.

(f) Ternary noisy typewriter
channels.

Figure 4 Examples of various well-studied channel models.

I Lemma 36. For any code C Ă Xn of rate R, there is a constant composition subcode
C1 Ď C of asymptotically the same rate.

Proof. Let C1 “ C X Tx pτ
˚
x q, where

τ˚x “ argmax
τxPPpnqpX q

ˇ

ˇC X Tx pτxq
ˇ

ˇ

is the most common type in C. By Lemma 8 and Lemma 23,
ˇ

ˇC1
ˇ

ˇ ě
|C|

pn` 1q|X |
“ 2nR`|X | logpn`1q,

which implies that RpC1q — RpCq as n grows. J

I Definition 37 (Confusability of tuples of vectors). A list of L distinct codewords x1, ¨ ¨ ¨ , xL P

Xn is said to be L-confusable if there are y P Yn and s1, ¨ ¨ ¨ , sL P Λs such that W pxi, siq “ y

for all i P rLs.

I Definition 38 (Confusability of joint distributions). A pPx, Lq-self-coupling Px1,¨¨¨ ,xL P

J bLpPxq is said to be L-confusable if it has some extension given by Px1,¨¨¨ ,xL,s1,¨¨¨ ,sL,y P

∆
`

XL ˆ SL ˆ Y
˘

such that
1. rPx,¨¨¨ ,xL,s1,¨¨¨ ,sL,ysx1,¨¨¨ ,xL “ Px1,¨¨¨ ,xL ;
2. Psi P λs for all i P rLs;
3. Pxi,si,y “ PxPsi|xiWy|xi,si for all i P rLs.

I Definition 39 (Confusability set). The pPx, Lq-confusability set KbL pPxq of a channel
A “

`

X , λx,S, λs,Y,Wy|x,s
˘

is defined as

KbL pPxq :“
 

Px1,¨¨¨ ,xL P J bLpPxq : Px1,¨¨¨ ,xL is L-confusable
(

.

I Remark 40. In the above definitions, we overload the notion of confusability for types and
distributions.

KbL pPxq “

8
ď

n“1

 

τx1,¨¨¨ ,xL
: px1, ¨ ¨ ¨ , xLq is L-confusable; xi P TxpPxq, @i P rLs

(

.
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I Definition 41 (List decodable codes). A code C Ă Xn is said to be pL´ 1q-list decodable
if no size-L list is confusable, i.e., for any L P

`C
L

˘

, L is non-L-confusable.

I Definition 42 (Achievable rate and list decoding capacity). A rate R is said to be achievable
under pL´1q-list decoding if there is an infinite sequence of pL´1q-list decodable codes tCiuiě1
of blocklength ni P Zą0 (such that tniu is a non-vanishing sequence) and rate RpCq ě R.

The pL´ 1q-list decoding capacity is defined as the maximal achievable rate.

C :“ lim sup
nÑ8

max
CĎΛx

pL´1q-list decodable

RpCq.

10 List decoding capacity

I Theorem 43 (List decoding capacity). For any adversarial channel A “ pX , λx,S, λs,Y,W q,
let13

C :“ max
PxPλx

min
Ps|xPλs|x

Ipx; yq, (19)

which can be viewed as a generalized sphere-packing bound. The mutual information is
evaluated w.r.t.

Px,y “
“

PxPs|xWy|x,s
‰

x,y .

Then
1. (Achievability) For any δ ą 0 and sufficiently large n, there exists C of rate C ´ δ such

that it can be Op1{δq list decoded.
2. (Converse) For any C of rate C ` δ, C is 2Ωpnδq-list decodable.

Proof. We follow the idea used in the proof of list decoding theorem 4 under the standard
bit-flip model but conduct the calculations under our generalized setting [39].
1. (Achievability) Let R “ C ´ δ. Fix P˚x P λx to be a maximizer of expression (19).

Generate a random code by sampling 2nR codewords independently and uniformly from
TxpP

˚
x q. We will actually show that

I Lemma 44. For any δ ą 0 and sufficiently large n, a random P˚x -constant composition
code of rate R “ C ´ δ as defined above is

´

1`log |Y|
δ ´ 1

¯

-list decodable with probability
at least 1´ 2´np1´Rq.
For every y P Yn, define conditional typical set

Ax|y :“
 

x P Tx pP
˚
x q : Ds P Λs, y “W px, sq

(

to be the set of all x of type P˚x that can reach y via allowable s P Λs. Note that Ax|y is
precisely the list of codewords around y whose size we would like to bound. In favour of
proceeding calculations, we write Ax|y in terms of types and estimate its size. We say
that a type τx,s,y P PpnqpX ˆ S ˆ Yq is valid if
a. rτx,s,ysx “ P˚x ;
b. rτx,s,yss P λs;
c. τx,s,y “ P˚x τs|xWy|x,s.

13 It can be easily seen that the set λs|x is immediately specified given Px, λx and λs.
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Then it is not hard to see that

Ax|y “
ď

τx,s,y valid
Tx|y

´

τx|y

¯

,

where τx|y is obtained from τx,s,y. Note that there is only a polynomial number of types

and the volume of each Tx|y

´

τx|y

¯

is dot equal to 2nHpx|yq, where Hpx|yq is evaluated

w.r.t.
”

τx,s,y

ı

x,y
“ τyτx|y. Hence the volume of Ax|y is

1
n

log
ˇ

ˇ

ˇ
Ax|y

ˇ

ˇ

ˇ

nÑ8
ÝÝÝÑ max

τx,s,y valid
Hpx|yq (20)

“ max
P˚x τs|xWy|x,s :

rP˚x τs|xWy|x,sssPλs

Hpx|yq (21)

Ñ max
Ps|xPλs|x

Hpx|yq. (22)

In Eqn. (20) and (21), the conditional entropy is evaluated w.r.t. rτx,s,ysx,y and
“

P˚x τs|xWy|x,s
‰

x,y, respectively. In Eqn. (22), the conditional entropy is evaluated
w.r.t.

“

P˚x Ps|xWy|x,s
‰

x,y. This equality holds in the limit as n approaches infinity since
types are asymptotically dense in distributions. Note that Ax|y Ă TxpP

˚
x q. We have that

the probability q that a random codeword x is able to result in y via some admissible
s P Λs is

1
n

log q :“ 1
n

log Pr
”

x P Ax|y

ı

“
1
n

log

ˇ

ˇ

ˇ
Ax|y

ˇ

ˇ

ˇ

ˇ

ˇTxpP˚x q
ˇ

ˇ

(23)

nÑ8
ÝÝÝÑ max

Ps|xPλs|x
Hpx|yq ´Hpxq (24)

“´ max
PxPλx

min
Ps|xPλs|x

Ipx; yq (25)

“´ C.

Eqn. (23) follows since codewords are picked uniformly from TxpP
˚
x q. Eqn. (24) is by

Eqn. (22) and Eqn. (21). Eqn. (25) is by the choice of P˚x . The probability that there is
a large list clustered around y is given by

Pr
C

”
ˇ

ˇ

ˇ
Ax|y X C

ˇ

ˇ

ˇ
ě L

ı

.
“

2nR
ÿ

i“L

ˆ

2nR

i

˙

qip1´ qq2
nR
´i.

Let Si denote the summand

Si :“
ˆ

2nR

i

˙

qip1´ qq2
nR
´i.

Note that
Si
Si`1

“
i` 1

2nR ´ i
1´ q
q

ě
2

2npC´δq
1´ 2´nC

2´nC (26)
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“2 ¨ 1
2 ¨ 2

nδ (27)

ą1,

where Eqn. (26) follows since i ě L ě 1 and Eqn. (27) follows since 1 ´ 2´nC ě 1
2

when n ě 1
C . The largest summand is the first term. Therefore we can bound the error

probability by replacing each term with the first one.

Pr
C

”
ˇ

ˇ

ˇ
Ax|y X C

ˇ

ˇ

ˇ
ě L

ı

ď2nR
ˆ

2nR

L

˙

qLp1´ qq2
nR
´L

ď2nR2nRL2´nCL

“2´nppL`1qδ´Cq.

Finally taking a union bound over all y P Yn, we know that the probability of list decoding
error is at most

Pr
”

Dy P Yn,
ˇ

ˇ

ˇ
Ax|y X C

ˇ

ˇ

ˇ
ě L

ı

ď |Y|n 2´nppL`1qδ´Cq

“2´nppL`1qδ´C´log |Y|q,

which is 2´Ωpnq if L ą 1`log |Y|
δ ´ 1. Specifically, taking L “ 1`log |Y|

δ , we have that the
list decoding error probability is at most 2´np1`δ´Cq “ 2´np1´Rq, as desired.

2. (Converse) Given any code C of rate C`δ, choose the τ˚x P PpnqpX q such that |CXTxpτ
˚
x q|

is maximized. By Lemma 36, RpC1q — RpCq. For this τ˚x , choose legitimate τ˚s|x P λs|x
such that

τ˚s|x :“ argmin
τs|xPλs|x

Ipx; yq,

where Ipx; yq is evaluated according to
“

τ˚x τs|xWy|x,s
‰

x,y. Now define τ˚x,s,y :“ τ˚x τ
˚
s|xWy|x,s,

τ˚x,y :“
“

τ˚x,s,y
‰

x,y and τ˚y :“
“

τ˚x,y
‰

y. Over the randomness of selecting y uniformly from
Ty

`

τ˚y
˘

, the average number of codewords in Ax|y is dot equal to

E
y

”
ˇ

ˇ

ˇ
Ax|y X C1

ˇ

ˇ

ˇ

ı

“E
y

»

–

ÿ

xPC1
1!Ax|yQx

)

fi

fl

“
ÿ

xPC1
Pr
y

”

Ax|y Q x
ı

(28)

“
ÿ

xPC1
Pr
y

”

Tx|y

´

τ˚x|y

¯

Q x
ı

(29)

“
ÿ

xPC1
Pr
y

”

τx|y “ τ˚x|y

ı

(30)

“
ÿ

xPC1

1
ˇ

ˇ

ˇ
Ty

`

τ˚y
˘

ˇ

ˇ

ˇ

ź

xPX

ˆ

τ˚x pxqn

τ˚y p1qn ¨ τ˚x|ypx|1q, ¨ ¨ ¨ , τ˚y p|Y|qn ¨ τ
˚
x|ypx||Y|q

˙

.

(31)

Eqn. (28) is linearity of expectation. Note that by our choice of τ˚x and τ˚s|x (hence

τ˚x,s,y and τ˚x,y), Ax|y only contains one type class Tx|y

´

τ˚x|y

¯

, where τ˚x|y is computed
from τ˚x,y. Eqn. (29) then follows. Eqn. (30) follows from the definition of type classes
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(Definition 20). Eqn. (31) is by analyzing the sampling procedure from the first principle.
The product is exactly, given x P C1, the number of ways to pick y from Tx|y

`

τ˚y
˘

such
that τx|y “ τ˚x|y. We compute the exponent of the above expectation.

1
n

logE
y

”
ˇ

ˇ

ˇ
Ax|y X C1

ˇ

ˇ

ˇ

ı

nÑ8
ÝÝÝÑR1 ´H

`

τ˚y
˘

`
ÿ

xPX
τ˚x pxq

ÿ

yPY

τ˚y pyqτ
˚
x|ypx|yq

τ˚x pxq
log τ˚x pxq

τ˚y pyqτ
˚
x|ypx|yq

(32)

“R´H
`

τ˚y
˘

`
ÿ

xPX
τ˚x pxqHpy|x “ xq (33)

“R´Hpyq `Hpy|xq (34)
“R´ Ipx; yq
ěR´ C (35)
“δ.

Since codewords in the subcode C1 are τ˚x -constant composition, the summand in Eqn.
(31) is independent of particular choices of x. Eqn. (32) then follows from Stirling’s
approximation (Lemma 10). In Eqn. (33), Hpy|x “ xq is drawn according to the
conditional type

τ˚y|xp¨|xq “
τ˚y p¨qτ

˚
x|ypx|¨q

τ˚x pxq
.

In Eqn. (34), we pass types to distributions by the fact that types are dense in distributions
asymptotically in n. Hpyq and Hpy|xq are evaluated using distribution

”

τ˚xP
˚
s|xWy|x,s

ı

x,y
,

where

P˚s|x :“ argmin
Ps|xPλs|x

Ipx; yq,

and the objective function Ipx; yq is evaluated using
“

τ˚xPs|xWy|x
‰

x,y. Eqn. (35) is by
the definition of C (Eqn. (19)). τ˚x always gives rise to mutual information no larger
than the maximizer in C.
Therefore, we have shown that there exists at least one y P Yn such that the corresponding
list around y has size at least 2npδ´op1qq. J

11 List sizes of random codes

In this section, we show that, if L has order lower than 1{δ, then the code used in the
proof of achievability (part 1) of the list decoding capacity theorem (Theorem 43) is list
decodable with vanishingly small probability. This coupled with Theorem 43 implies that,
for the majority (an exponentially close to 1 fraction) of random constant composition
capacity-achieving (within gap δ) codes, Θp1{δq is actually the correct order of their list sizes.

I Corollary 45. For δ ą 0 and sufficiently large n, at least a 1 ´ 2´np1´Rq ´ 2´nδ` 2
δ log 1

δ

fraction of P˚x -constant composition codes (P˚x as defined in Eqn. (36)) of rate R “ C ´ δ is
pL´ 1q-list decodable, where L “ Θ p1{δq lies within the following range

L P

„

C

δ
,

1` log |Y|
δ



.
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I Theorem 46. For an adversarial channel A “
`

X , λx,S, λs, ,Y,Wy|x,s
˘

, take an optimizing
input distribution Px which attains the list decoding capacity C,

P˚x :“ argmax
PxPλx

min
Ps|xPλs|x

Ipx; yq. (36)

For any δ ą 0, for each sufficiently large blocklength n, sample a random code C of rate
R “ C ´ δ whose codewords are selected independently and uniformly from Tx pP

˚
x q. Then C

is ă pC{δ ´ 1q-list decodable with probability at most 2´nδ` 2
δ log 1

δ .

The theorem follows from second moment calculations and generalizes similar theorems
for list decodability of random error/erasure correction codes over Fq [26].

Proof. Let M :“ 2nR. Define typical set

Ay :“
 

W px, sq P Yn : x P Tx pP
˚
x q , s P Λs

(

.

Put in the language of types, it can also be written as

Ay “
ď

τx,s,y valid
Ty pτyq ,

where τy “ rτx,s,ysy. Define random variable W as a witness for non-list decodability of C

W :“
ÿ

yPAy

ÿ

tm1,¨¨¨ ,mLuPp
rMs
L q

1!!xm1
,¨¨¨ ,xmL

)

ĂAx|y

).

Then by Chebyshev’s inequality,

Pr rC is pL´ 1q-list decodables “Pr

»

–

č

yPYn

!ˇ

ˇ

ˇ
Ax|y X C

ˇ

ˇ

ˇ
ă L

)

fi

fl (37)

ďPr

»

–

č

yPAypPyq

!
ˇ

ˇ

ˇ
Ax|y X C

ˇ

ˇ

ˇ
ă L

)

fi

fl

“Pr

»

–

¨

˝

ď

yPAy

!
ˇ

ˇ

ˇ
Ax|y X C

ˇ

ˇ

ˇ
ě L

)

˛

‚

cfi

fl

“Pr rW “ 0s (38)

ď
Var rW s
E rW s2

,

where Eqn. (38) follows since W “ 0 if and only if none of the events
!
ˇ

ˇ

ˇ
Ax|y X C

ˇ

ˇ

ˇ
ě L

)

(y P Ay) happens. In what follows, we will obtain an upper bound on Var rW s and a lower
bound on E rW s, and hence an upper bound on the probability (37).

Lower bounding E rW s. We can get a lower bound on the expected value of W from a
straightforward calculation.

E rW s “
ÿ

yPAy

ÿ

tm1,¨¨¨ ,mLuPp
rMs
L q

Pr
”

 

xm1
, ¨ ¨ ¨ ,xmL

(

Ă Ax|y

ı

“
ÿ

yPAy

ÿ

tm1,¨¨¨ ,mLuPp
rMs
L q

Pr
”

x P Ax|y

ıL

(39)
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.
“

ˇ

ˇ

ˇ
Ay

ˇ

ˇ

ˇ

ˆ

M

L

˙

2´nCL (40)

ě

ˇ

ˇ

ˇ
Ay

ˇ

ˇ

ˇ

ˆ

M

L

˙L

2´nCL

“

ˇ

ˇ

ˇ
Ay

ˇ

ˇ

ˇ
2´nδL´L logL.

Eqn. (39) follows since codewords are independent. Eqn. (40) is by Eqn. (25).

Upper bounding Var rW s. Define, for any y P Yn and L P
`

rMs
L

˘

,

I
`

y,L
˘

:“1!
txmumPL

ĂAx|y

)

“
ź

mPL
1!x

m
PAx|y

),

as the indicator function of the event
Ş

mPL

!

xm P Ax|y

)

that the list L is L-confusable
w.r.t. y.

Now the variance of W can be upper bounded as follows.

Var rW s “E
“

W 2‰´ E rW s2 (41)

“
ÿ

y
1
,y

2
PAy

ÿ

L1,L2Pp
rMs
L q

E
”

I
´

y1,L1

¯

I
´

y2,L2

¯ı

´ E
”

I
´

y1,L1

¯ı

E
”

I
´

y2,L2

¯ı

(42)

ď
ÿ

L1,L2Pp
rMs
L q

L1XL2‰H

ÿ

y
1
,y

2
PAy

E
”

I
´

y1,L1

¯

I
´

y2,L2

¯ı

(43)

“

ˇ

ˇ

ˇ
Ay

ˇ

ˇ

ˇ

2 L
ÿ

`“1

ÿ

|L1XL2|“`

Pr
y

1
,y

2
,C
rEs . (44)

Eqn. (41) follows from the definition of variance and Eqn. (42) follows from linearity of
expectation. Note that I

´

y1,L1

¯

and I
´

y2,L2

¯

are independent if and only if L1XL2 “ H.
When they are independent, the first expectation factors and the summand vanishes. The
inequality (43) follows by dropping the negative term in the summand. In Eqn. (44), we
rewrite the summation by randomizing the centers y1, y2 of the lists L1,L2. The probability
is taken over y1 and y2 chosen uniformly at random from Ay and over the random code
sampling procedure. We use E to denote the event that the lists L1 and L2 are simultaneously
L-confusable w.r.t. y1 and y2, respectively,

E :“
č

m1PL1

!

xm1
P Ax|y

1

)

X
č

m2PL2

!

xm2
P Ax|y

2

)

.

It then suffices to bound Pr rEs. To this end, first define conditional typical set, for
x P Xn,

Ay|x :“
 

W px, sq P Yn : s P Λs
(

“
ď

τx,s,y valid
Ty

`

τy|x
˘

,

where τy|x is computed from τx,s,y and τx, τy|x “ rτx,s,ysx,y {τx. Then define the following
events in favour of bounding Pr rEs.

E1 :“
!

y1 P Ay|x
m

)

X

!

y2 P Ay|x
m

)

,
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Figure 5 E Ă E1 X E2 X E3. We upper bound Pr rEs by neglecting the fact that codewords xi for
i P pL1 X L2q z tmu are simultaneously y

1
-confusable and y

2
-confusable, or equivalently, neglecting

that y
1
,y

2
should simultaneously belong to Ay|xm1 for all m

1
P L1 X L2, not only the particular m

we have chosen.

E2 :“
č

m1PL1ztmu

!

xm1
P Ax|y

1

)

,

E3 :“
č

m2PL2zL1

!

xm2
P Ax|y

2

)

,

where m P L1 X L2 is any message that appears in both L1 and L2. It is easy to verify that
E Ă E1 X E2 X E3 (see Fig. 5). Note that E2 and E3 are independent conditioned on E1 since
L1z tmu and L2zL1 are disjoint. The probabilities of the above events can be computed
precisely.

Pr rE1s “Pr
”

y P Ay|xm

ı2
(45)

“

¨

˝

ˇ

ˇ

ˇ
Ay|xm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ay

ˇ

ˇ

ˇ

˛

‚

2

, (46)

where Eqn. (45) is because y1 and y2 are independent, and Eqn. (46) follows since y is
chosen uniformly from Ay. We now compute the exponent of Pr rEs.

1
n

log
ˇ

ˇ

ˇ
Ay

ˇ

ˇ

ˇ

nÑ8
ÝÝÝÑ max

τx,s,y valid
Hpyq (47)

“ max
Ps|xPλs|x

Hpyq, (48)

where in Eqn. (47) the entropy is computed w.r.t. τy “ rτx,s,ysy; Eqn. (48) follows
from similar calculations as done for Ax|y (Eqn. (20)) and the entropy is evaluated using
“

P˚x Ps|xWy|x,s
‰

y.
Similarly,

1
n

log
ˇ

ˇ

ˇ
Ay|x

m

ˇ

ˇ

ˇ

nÑ8
ÝÝÝÑ max

τx,s,y valid
Hpy|xq (49)

“ max
Ps|xPλs|x

Hpy|xq, (50)

where the conditional entropies in Eqn. (49) and (50) are evaluated w.r.t. τxτy|x and
“

P˚x Ps|xWy|x,s
‰

x,y (since τx Ñ P˚x as n approaches infinity), respectively. Continuing with
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Eqn. (46), putting Eqn. (48) and Eqn. (50) together, we have

Pr rE1s
.
“

´

2nmaxPs|xPλs|x Hpy|xq´Hpyq
¯2

“2´2nminPs|xPλs|x Ipx;yq

“2´2nC , (51)

where Eqn. (51) is by the choice of P˚x (Eqn. (36)).
We also have

Pr rE2|E1s “Pr
”

x P Ax|y
1

ˇ

ˇ

ˇ
E1

ıL´1 .
“ 2´nCpL´1q, (52)

Pr rE3|E1s “Pr
”

x P Ax|y
1

ˇ

ˇ

ˇ
E1

ıL´` .
“ 2´nCpL´`q, (53)

where Eqn. (52) and Eqn. (53) follow since |L1| “ |L2| “ L and |L1 X L2| “ `. We thus
have, from Eqn. (51), (52) and (53), that

Pr rEs ďPr rE1 X E2 X E3s

“Pr rE1sPr rE2|E1sPr rE3|E1s
.
“2´nCp2L´``1q. (54)

Note that the number of pairs of lists L1 and L2 with intersection size ` is
ˆ

M

`

˙ˆ

M ´ `

L´ `

˙ˆ

M ´ `

L´ `

˙

ďM `ML´`ML´`

ďM2L´`. (55)

Therefore, the variance of W can be bounded as follows.

Var rW s ď
ˇ

ˇ

ˇ
Ay

ˇ

ˇ

ˇ

2 ÿ

1ď`ďL
M2L´`2´nCp2L´``1q (56)

“

ˇ

ˇ

ˇ
Ay

ˇ

ˇ

ˇ

2
2´nC

ÿ

1ď`ďL
2´nδp2L´`q (57)

ď

ˇ

ˇ

ˇ
Ay

ˇ

ˇ

ˇ

2
2´nC2´nδp2L´`q`logL, (58)

where Eqn. (56) is by Eqn. (44), (55) and (54); Eqn. (57) is by the definition of M and the
choice of R; Eqn. (58) is by replacing each term with the largest one in the summation.

Putting them together.

Pr rC is pL´ 1q-list decodables ďVar rW s
E rW s2

ď2´nC`nδL`p2L`1q logL.

The above probability vanishes in n if L ă C{δ. Say L “ C{δ ´ 1, then it is at most

2´nδ`p2pC{δ´1q`1q logpC{δ´1q ď 2´nδ` 2
δ log 1

δ . J
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12 Achievability

In this section, we are going to show, via concrete random code constructions, that as long as
some completely positive pPx, Lq-self-coupling of order L lies outside the order-L confusability
set of the channel, the pL´ 1q-list decoding capacity is positive.

Let CPbL
|X |pPxq :“ CPbL

|X | X J bL pPxq.

I Theorem 47 (Achievability). For any given general adversarial channel A “pX , λx,S, λs,Y,
Wy|x,sq, its pL´ 1q-list decoding capacity is positive if there is a completely positive pPx, Lq-
self-coupling Px1,¨¨¨ ,xL P CPbL

|X |pPxq outside KbLpPxq for some Px P λx.

We first state a lemma concerning the rate of a random constant composition code.

I Lemma 48 (Constant composition codes). Let C “ txiu
2nR
i“1 be a random code of rate R in

which each codeword is selected according to product distribution Pbnx independently. Let C1
be the Px-constant composition subcode of C, C1 “ C X TxpPxq. Then

Pr
„

ˇ

ˇC1
ˇ

ˇ R p1˘ 1{2q 2nR

νpnq



ď 2 exp
ˆ

´
2nR

12νpnq

˙

.

Proof. The lemma is a simple consequence of concentration of measure (Lemma 24).

Pr
„

ˇ

ˇC1
ˇ

ˇ R p1˘ 1{2q 2nR

νpnq



“Pr

»

–

2nR
ÿ

i“1
1tτx

i
“Pxu

R p1˘ 1{2q 2nR

νpnq

fi

fl

ď2 exp
ˆ

´
p1{2q2

3 µ

˙

(59)

“2 exp
ˆ

´
2nR

12νpnq

˙

.

where in Eqn. (59), we note that

E

»

–

2nR
ÿ

i“1
1tτx

i
“Pxu

fi

fl “2nR Pr
“

x P TxpPxq
‰

“
2nR

νpnq

“:µ. J

12.1 Low rate codes
Let us proceed gently. We first show that a purely random code with each entry i.i.d. w.r.t.
some distribution Px is pL´ 1q-list decodable w.h.p. as long as PbLx is not L-confusable.

I Lemma 49. For any general adversarial channel A “ pX , λx,S, λs,Y,Wy|x,sq, if there
exists a legitimate input distribution Px P λx such that PbLx R KbL pPxq, then the pL´ 1q-list
decoding capacity of A is positive.

Proof. Let M “ 2nR for some rate R to be specified momentarily. Sample a code C “
tx1, ¨ ¨ ¨ ,xMu where each xi

i.i.d.
„ Pbnx . The expected joint type τx

i1
,¨¨¨ ,x

iL
(1 ď i1 ă ¨ ¨ ¨ ă

iL ďM) of any list xi1 , ¨ ¨ ¨ ,xiL is PbLx . (See Fig. 6.)
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Figure 6 Low rate codes from product distribution. If the product distribution PbLx is strictly
separated away from KbLpPxq, then we could hope for a positive rate achieved by a random code
with each entry sampled from Px. This is because w.h.p. the joint types of all (ordered) lists are
contained in a }¨}mav-ball which is completely outside the confusability set.

Let C1 “ C X TxpPxq be the Px-constant composition subcode of C. Let

ρ :“ inf
Px1,¨¨¨ ,xLPKbLpPxq

›

›PbLx ´ Px1,¨¨¨ ,xL
›

›

mav

be the max-absolute-value tensor distance from the product distribution to the confusability
set. Let R “ log e

12
ρ2

L ´ δ for some small constant δ ą 0. We will show that

I Lemma 50. The random Px-constant composition code C1 as constructed above has rate
R “ log e

12
ρ2

L ´ δ and is pL´ 1q-list decodable with probability at least 1´ 2 exp
`

´2nR{νpnq
˘

´

2´nδ`L log |X |`1.

Let ε :“ ρ{2. Define error events

E1 :“
"

ˇ

ˇC1
ˇ

ˇ R p1˘ 1{2q 2nR

νpnq

*

,

E2 :“
 

C1 is not pL´ 1q-list decodable
(

.

By Lemma 48,

Pr rE1s ď 2 exp
ˆ

´
2nR

νpnq

˙

.

Hence the rate R1 of C1 is asymptotically equal to R w.h.p.
By Chernoff bound,

Pr
”
›

›

›
τx
i1
,¨¨¨ ,x

iL
´ PbLx

›

›

›

mav
ě ε

ı

“Pr
”

D px1, ¨ ¨ ¨ , xLq P XL,
ˇ

ˇ

ˇ
τxi1 ,¨¨¨ ,xiL

px1, ¨ ¨ ¨ , xLq ´ Px px1q ¨ ¨ ¨Px pxLq
ˇ

ˇ

ˇ
ě ε

ı

(60)

ď|X |L Pr
«
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1
1!´x

i1
pjq,¨¨¨ ,x

iL
pjq

¯

“px1,¨¨¨ ,xLq
) ´ nPxpx1q ¨ ¨ ¨PxpxLq

ˇ

ˇ

ˇ

ˇ

ˇ

ě nε

ff

(61)
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“|X |L Pr
«

n
ÿ

j“1
1!´x

i1
pjq,¨¨¨ ,x

iL
pjq

¯

“px1,¨¨¨ ,xLq
) R

ˆ

1˘ nε

µ

˙

µ

ff

(62)

ď|X |L ¨ 2 exp
˜

´
1
3

ˆ

nε

µ

˙2
µ

¸

(63)

“|X |L ¨ 2 exp
ˆ

´
nε2

3PbLx px1, ¨ ¨ ¨ , xLq

˙

(64)

ď|X |L ¨ 2 exp
ˆ

´
n

3

´ρ

2

¯2
˙

(65)

“2 ¨ |X |L ¨ exp
ˆ

´
ρ2

12n
˙

.

Eqn. (60) follows from the definition of max-absolute-value norm. Eqn. (61) is obtained by
taking a union bound and expanding the type using definition. In Eqn. (62), we define

µ :“ nPbLx px1, ¨ ¨ ¨ , xLq,

which equals

E

«

n
ÿ

j“1
1!´x

i1
pjq,¨¨¨ ,x

iL
pjq

¯

“px1,¨¨¨ ,xLq
)

ff

.

Eqn. (63) is by Chernoff bound (Lemma 24). Eqn. (64) is by the definition of µ. Eqn. (65)
is by the choice of ε and that PbLx px1, ¨ ¨ ¨ , xLq ď 1 for any px1, ¨ ¨ ¨ , xLq P XL. Taking a
union bound over all lists pi1, ¨ ¨ ¨ , iLq P

`M
L

˘

,

Pr
„

D pi1, ¨ ¨ ¨ , iLq P

ˆ

M
L

˙

,
›

›

›
τxi1 ,¨¨¨ ,xiL

´ PbLx

›

›

›

8
ě ε



ď

ˆ

M

L

˙

2 ¨ |X |L ¨ exp
ˆ

´
ρ2

12n
˙

ď2´n
´

ρ2 log e
12 ´RL

¯

`L log |X |`1
.

We therefore get that C is pL´ 1q-list decodable with probability at least 1´ 2´nδ`L log |X |`1

as long as

R “
log e
12

ρ2

L
´ δ.

Overall, we have that

Pr rE1 Y E2s ďPr rE1s ` Pr rE2s

ď2 exp
ˆ

´
2nR

νpnq

˙

` Pr rC is not pL´ 1q-list decodables

ď2 exp
ˆ

´
2nR

νpnq

˙

` 2´nδ`L log |X |`1. J

12.2 Random codes with expurgation
In the previous section, we only got an pL´ 1q-list decodable code of positive rate without
making the effort to optimize the rate. In this section, we provide a lower bound on the
pL´ 1q-list decoding capacity. It is achieved by a different code construction (random code
with expurgation). However, we can only show the existence of such codes instead of showing
that they attain the following bound w.h.p.
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I Lemma 51. The pL´ 1q-list decoding capacity of a channel A is at least

CL´1 ě max
PxPλx

min
Px1,¨¨¨ ,xLPKbLpPxq

1
L´ 1D

`

Px1,¨¨¨ ,xL}P
bL
x

˘

. (66)

Proof. Fix any Px P λx to be the maximizer of Eqn. (66). Let M “ 2nR for some rate R
to be determined. Generate a random code C of size 2M by sampling each entry of the
codebook independently from Px.

For any x P C, by Lemma 22,

Pr
“

τx “ Px
‰

“1{νpnq.

Hence the expected number of codewords with type Px is 2M{νpnq.
For any px1, ¨ ¨ ¨ ,xLq P

`C
L

˘

,

Pr
“

τx1,¨¨¨ ,xL P KbL pPxq
‰ .
“ sup
Px1,¨¨¨ ,xLPKbLpPxq

2´nDpPx1,¨¨¨ ,xL}P
bL
x q,

by Sanov’s theorem 25. Let P˚ P KbLpPxq be the extremizer for the above supremum. Hence
the expected number of confusable lists is at most

ˆ

2M
L

˙

2´nDpP
˚
}PbLx q ď p2MqL 2´nDpP

˚
}PbLx q.

Pick M such that

p2MqL 2´nDpP
˚
}PbLx q ďM{νpnq,

i.e.,

L` nRL´ nD
`

P˚}PbLx
˘

ď nR´ log νpnq.

That is, R can be taken arbitrarily close to 1
L´1D

`

P˚}PbLx
˘

.

R ď
D
`

P˚}PbLx
˘

L´ 1 ´
log νpnq
pL´ 1qn ´

L

pL´ 1qn
nÑ8
Ñ

D
`

P˚}PbLx
˘

L´ 1 .

Now, we remove all codewords of types different from Px. We also remove one codeword from
each of the confusable lists. In expectation, this process reduces the size of the code by at most
2M ´ 2M{νpnq (due to the first expurgation) plus p2MqL 2´nDpP

˚
}PbLx q ďM{νpnq (due to

the second expurgation). After expurgation, we get an pL´ 1q-list decodable Px-constant
composition code C1 of size at least

2M ´ p2M{νpnq ´ 2M{νpnqq ´M{νpnq “M{νpnq.

The rate R1 of C1 is asymptotically the same as R.

R1 “R´
log νpnq

n
nÑ8
Ñ R.

This finishes the proof. J
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Figure 7 Low rate codes from CP distribution. If there is a CP distribution strictly outside
KbLpPxq, then we can get a positive rate from random code using time-sharing. The only variation
is that we divide codebook into chunks according to Pu and construct random codes of shorter
length for each chunk u using distribution Px|u“u.

12.3 Cloud codes
I Lemma 52. If there is a pPx, Lq-self-coupling (Px P λx) Px1,¨¨¨ ,xL P J bL pPxq zKbL pPxq

which can be decomposed into

Px1,¨¨¨ ,xL px1, ¨ ¨ ¨ , xLq

“
ÿ

uPU
Pu puqP

bL
x|u px1, ¨ ¨ ¨ , xL|uq

“
ÿ

uPU
Pu puq

L
ź

i“1
Px|u pxi|uq .

for some distributions Pu P ∆pUq of finite support |U | and Px|u P ∆pX |Uq (see Fig. 7), then
there exist positive rate pL´ 1q-list decodable codes.

Proof. The proof follows from a time-sharing argument combined with the previous low rate
code construction (Lemma 49).

Fix R to be determined later. Sample 2nR codewords in C independently from the
following distribution. Divide each length-n codeword into |U | chunks 1, ¨ ¨ ¨ , |U |. For the
u-th (u P U) chunk, sample Pupuqn components in the chunk independently using distribution
Px|u“u. Let Pu,x “ PuPx|u and Px “ rPu,xsx. Let C1 be all codewords in C of type Px. (See
Fig. 8.) Define

ρ :“ inf
P 1x1,¨¨¨ ,xLPKbLpPxq

›

›Px1,¨¨¨ ,xL ´ P
1
x,¨¨¨ ,xL

›

›

mav .

Let

u˚ :“ argmin
uPU

Pupuq.

Note that Pu pu
˚q ą 0 since |U | is the support of Pu. Let R “ Pupu

˚
q log e

12
ρ2

L ´ δ. We will
show that

ITCS 2020



51:42 Generalized List Decoding

Figure 8 An example of cloud code construction in which U “ t1, 2, 3u. The codebook is divided
into 3 chunks and symbols in the i-th chunk are sampled independently from Px|u“i (i “ 1, 2, 3).

I Lemma 53. A random Px-constant composition cloud code as constructed above has rate
R “ Pupu

˚
q log e

12
ρ2

L ´ δ and is pL´ 1q-list decodable with probability at least

1´ 2 exp
ˆ

´
2nR

12
ś

uPU νpPupuqnq

˙

´ 2´nδ`L log |X |`log |U |`1.

We write a length-n codeword as the concatenation of |U | chunks,

x “
´

xp1q, ¨ ¨ ¨ ,xp|U |q
¯

.

First we argue that w.h.p. the code C is almost Px-constant composition. The expected
size of C1 is

E
“
ˇ

ˇC1
ˇ

ˇ

‰

“E
“
ˇ

ˇC X TxpPx|uq
ˇ

ˇ

‰

“
ÿ

iPrMs

Pr
“

xi P TxpPx|uq
‰

(67)

“
ÿ

iPrMs

Pr
«

č

uPU

!

xpuqi P TxpuqpPx|u“uq
)

ff

“
ÿ

iPrMs

ź

uPU
Pr

”

xpuq P TxpuqpPx|u“uq
ı

(68)

—M
ź

uPU
νpPupuqnq

´1, (69)

where Eqn. (67) is by linearity of expectation; Eqn. (68) follows since different chunks are
independent; Eqn. (69) follows from Lemma 22. Then by Lemma 48

Pr
“
ˇ

ˇC1
ˇ

ˇ R p1˘ 1{2qE
“
ˇ

ˇC1
ˇ

ˇ

‰‰

ď2 exp
ˆ

´
2nR

12
ś

uPU νpPupuqnq

˙

.

Secondly, for any list 1 ď i1 ă ¨ ¨ ¨ ă iL ďM of distinct ordered messages,

Pr
„

Du P U ,
›

›

›

›

τxpuq
i1
,¨¨¨ ,xpuq

iL

´ PbLx|u“u

›

›

›

›

mav
ě ε



ď
ÿ

uPU
2 ¨ |X |L ¨ exp

ˆ

´
ρ2

12nPupuq

˙

(70)

ď2|U ||X |L exp
ˆ

´
ρ2

12nPu pu
˚q

˙

, (71)
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(a) “Below Plotkin point”, positive pL ´ 1q-list
decoding rate is possible. In this case, for some
input distribution Px P λx, the slice of Px-self-
coupling CP tensors is not entirely contained in the
confusability set KbLpPxq.

(b) “Above Plotkin point”, no positive rate for
pL ´ 1q-list decoding is achievable. In this case,
for every input distribution Px P λx, the slice of
Px-self-coupling CP tensors is entirely contained in
the confusability set KbLpPxq.

Figure 9 A characterization of when positive rate generalized list decodable codes exist.

where the first inequality (70) follows from a union bound and same calculations as in Lemma
49. The second inequality (71) follows from the definition of u˚.

Finally, by taking another union bound over lists L P
`

rMs
L

˘

, we get

Pr
«

Dpi1, ¨ ¨ ¨ , iLq P

ˆ

M
L

˙

, Du P U ,
›

›

›

›

τxpuq
i1
,¨¨¨ ,xpuq

iL

´ PbLx|u“u

›

›

›

›

mav
ě ε

ff

ď 2
´n

˜

ρ2 log ePupu˚q
12 ´RL

¸

`L log |X |`log |U |`1
.

Therefore, we have that the probability that the random Px-constant composition cloud
code C1 constructed above has rate R “ Pupu

˚
q log e

12
ρ2

L ´ δ and is pL´ 1q-list decodable with
probability at least

1´ 2 exp
ˆ

´
2nR

12
ś

uPU νpPupuqnq

˙

´ 2´nδ`L log |X |`log |U |`1,

which completes the proof. J

The above lemma apparently implies Theorem 47.

13 Converse

Let CPbL
|X |pPxq :“ CPbL

|X | X J bL pPxq and SymbL
|X |pPxq :“ SymbL

|X | X J bLpPxq.
We have shown in the previous section that if CPbL

|X |pPxq X KbL pPxq
c
‰ H, then the

pL´ 1q-list decoding capacity is positive. In this section we are going to prove the converse.
That is, such a condition is also necessary for positive rate being possible. Indeed, we will
show that
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Figure 10 Equicoupled subcode extraction using hypergraph Ramsey’s theorem. The union
of green and blue dots represents the set of all joint types of ordered L-lists in C. The blue dots
correspond to joint types of its subcode C1. (Note that they are all non-confusable.) They are
clustered within a small ball (w.r.t. sum-absolute-value norm) centered at some distribution pPx1,¨¨¨ ,xL .
Since the hypergraph Ramsey number is finite, there exists such C1 which is suitably large.

I Theorem 54 (Converse). Given a general adversarial channel A “
`

X , λx,S, λs,Y,Wy|x
˘

,
if for every admissible input distribution Px P λx, CPbL

|X |pPxq Ď KbLpPxq, then the pL´1q-list
decoding capacity of A is zero.

13.1 Equicoupled subcode extraction
I Definition 55 (Equicoupledness and ε-equicoupledness). A code C is said to be Px1,¨¨¨ ,xL-
equicoupled if for all ordered lists pxi1 , ¨ ¨ ¨ , xiLq P

`C
L

˘

where 1 ď i1 ă ¨ ¨ ¨ ă iL ď |C|,
τxi1 ,¨¨¨ ,xiL

“ Px1,¨¨¨ ,xL . A code C is said to be pζ, Px1,¨¨¨ ,xLq-equicoupled if for all ordered

lists pxi1 , ¨ ¨ ¨ , xiLq P
`C
L

˘

, where 1 ď i1 ă ¨ ¨ ¨ ă iL ď |C|,
›

›

›
τx1,¨¨¨ ,xiL

´ Px1,¨¨¨ ,xL

›

›

›

sav
ď ε.

I Remark 56. The above definition can also be overloaded for sequences of random variables
or their joint distributions. We say a sequence of random variables w1, ¨ ¨ ¨ ,wM or the
joint distribution Pw1,¨¨¨ ,wM

is Px1,¨¨¨ ,xL-equicoupled (or pζ, Px1,¨¨¨ ,xLq-equicoupled) if every
order-L marginal Pwi1 ,¨¨¨ ,wiL

(1 ď i1 ă ¨ ¨ ¨ ă iL ď M) equals (or is ζ-close to in }¨}sav)
Px1,¨¨¨ ,xL .

Using the hypergraph Ramsey’s theorem, we first show that any infinite sequence of codes
of positive rate has an infinite sequence of subcodes which are ζ-equicoupled.

I Lemma 57 (Equicoupled subcode extraction). For any infinite sequence of codes tCiuiě1 of
blocklengths ni’s and positive rate, where tniuiě1 is an infinite increasing integer sequence,
for any ζ ą 0 and any M P Zą0, there is an N P Zą0 such that if |Ci| ě N then C1 contains
a subcode C1i satisfying that

|C1i| ěM ;
C1i is pζ, Px1,¨¨¨ ,xLq-equicoupled for some Px1,¨¨¨ ,xL .

See Fig. 10.
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Again, this lemma is a consequence of the hypergraph Ramsey’s theorem. Let us denote
by Rpmqc pn1, ¨ ¨ ¨ , ncq the smallest integer n such that the complete m-uniform hypergraph on
n vertices with any c-colouring of hyperedges contains at least one of a clique of colour 1
and size n1, ..., a clique of colour c and size nc. It is known that Rpmqc pn1, ¨ ¨ ¨ , ncq is finite
(Lemma 101), i.e., independent of the size n of the hypergraph.

Proof of Lemma 57. Recall that we assume CPbL
|X |pPxq XKbLpPxq

c “ H. Let ρ be the gap
between CPbL

|X |pPxq and KbLpPxq,

ρ :“ inf
PPCPbL

|X |pPxq

P 1PJbLpPxqzKbLpPxq

›

›P ´ P 1
›

›

sav .

I Definition 58 (ε-net). For a metric space pX , dq, an ε-net N Ă X is a subset which is a
discrete ε-approximation of X in the sense that for any x P X , there is an x1 P N such that
dpx, x1q ď ε.

We claim that

I Lemma 59 (Bound on size of ε-net). There is an ε-net N of J bLpPxqzKbLpPxq equipped

with `1 metric of size at most
´

|X |L
2ε ` 1

¯|X |L

.

Proof. The following construction is by no means optimal, but its size has a finite upper
bound which is enough for our purposes. Indeed, it suffices to take N to be the coordinate-
quantization net of J bLpPxqzKbLpPxq. Note that for any P P J bLpPxq, each entry of P
lies in r0, 1s. Take δ :“ 2ε

|X |L . Divide r0, 1s into sub-intervals of length δ (possibly except the
last sub-interval that may have length less than δ). For each entry of P , there are at most
1
δ ` 1 sub-intervals. Quantize each component of P to the nearest middle point of these
sub-intervals. The set of all representatives whose components take values from the set of
middle points of the sub-intervals form a net N . In total, there are at most

` 1
δ ` 1

˘|X |L such
representatives. For any P P J bLpPxqzKbLpPxq, let QN pP q denote the quantization of P
using N , i.e.,

QN pP q :“ argmin
P 1PN

›

›P ´ P 1
›

›

sav .

The quantization error is at most

}P ´QN pP q}sav ď
ÿ

px1,¨¨¨ ,xLqPXL

|P px1, ¨ ¨ ¨ , xLq ´QN pP qpx1, ¨ ¨ ¨ , xLq|

ď|X |L δ2
ďε.

We thus have shown that N constructed as above is an ε-quantizer of small cardinality. J

Let

λ :“ ´ sup
pPPpJbLpPxqzKbLpPxqqXSymbL

|X |pPxq

inf
QPcoPbL

|X |

A

pP ,Q
E

. (72)
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We know that CP cone and coP cone are dual (Theorem 96) in the space of symmetric tensor
cone. Thus, for any non-CP symmetric tensor pP P SymbL

|X |pPxqzCPbL
|X |pPxq, there must be a

witness Q with strictly negative inner product with pP . The infimum

inf
QPcoPbL

|X |

A

pP ,Q
E

ă 0.

λ is the absolute value of the smallest inner product among all symmetric non-CP tensors.
We know that λ ą 0, since CPbL

|X |pPxq is strictly contained in KbLpPxq.
Let

ζ :“ 1
2 min

#

ρ,
λ

|X |L

+

. (73)

Take a ζ-net of
`

∆
`

XL
˘

, `1
˘

as constructed in Lemma 59. Such a net has cardinality at

most K :“
´

|X |L
ρ ` 1

¯|X |L

.
Build an L-uniform complete hypergraph H “ pC, Eq on C. The vertices of H are codewords

in C. For every tuple
`

xi1 , ¨ ¨ ¨ , xiL
˘

P
`C
L

˘

(where the indices 1 ď i1 ă ¨ ¨ ¨ ă iL ď |C| are
sorted in ascending order) of distinct codewords, there is a hyperedge connecting them. There
are totally

`

|C|
L

˘

hyperedges in E . We now label hyperedges using distributions in N . For
each hyperedge

`

xi1 , ¨ ¨ ¨ , xiL
˘

P E , label it using the unique element QN

´

τx
i1
,¨¨¨ ,x

iL

¯

from
N . This can be viewed as an edge colouring of H using at most K colours.

By hypergraph Ramsey’s theorem (Theorem 101), there is a constant N such that if the
size |C| of the hypergraph is at least N , then there is a monochromatic (each hyperedge in the
sub-hypergraph has the same colour) clique C1 Ă C of size at least M . Indeed, we can take
N to be the hypergraph Ramsey number N “ R

pLq
K pM, ¨ ¨ ¨ ,Mq. By Theorem 102, there is a

constant c1 ą 0 such that N ă tLpc
1 ¨K logKq, where tLp¨q is the tower function of height

L. Put in another way, there exists a subcode C1 Ă C of size at least M such that for some
distribution pPx1,¨¨¨ ,xL P N , the joint type of every ordered tuple of L distinct codewords in
C1 is ζ-close to pPx1,¨¨¨ ,xL . I.e., for every L “ px1, ¨ ¨ ¨ , xLq P

`C1
L

˘

,
›

›

›
τx1,¨¨¨ ,xL

´ pPx1,¨¨¨ ,xL

›

›

›

sav
ď ζ.

This completes the proof of Lemma 57. J

Before proceeding with the proof of converse, we first list several corollaries that directly
follow from the above lemma. They are concerned with basic properties of pζ, Px1,¨¨¨ ,xLq-
equicoupled codes.

I Corollary 60. Any two lists of L (ordered) codewords from C1 have joint types 2ζ close to
each other in sum-absolute-value distance.

Proof. For any L1 “ pxi1 , ¨ ¨ ¨ , xiLq and L2 “ pxj1
, ¨ ¨ ¨ , xjLq in

`C1
L

˘

,
›

›

›
τx
i1
,¨¨¨ ,x

iL
´ τx

j1
,¨¨¨ ,x

jL

›

›

›

sav
ď

›

›

›
τx
i1
,¨¨¨ ,x

iL
´ pPx1,¨¨¨ ,xL

›

›

›

sav
`

›

›

›

pPx1,¨¨¨ ,xL ´ τxj1
,¨¨¨ ,x

jL

›

›

›

sav

ďζ ` ζ

“2ζ. (74)

J
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Figure 11 Two ways to complete the size-` list i1, ¨ ¨ ¨ , i` to size-L lists L1,L2, respectively.
Triangles ∆, circles ˝ and stars ‹ represent indices j’s, k’s and l’s, respectively.

I Corollary 61. Any two size-` (1 ď ` ď L) lists in C1 have joint type 2ζ close to each other
in sum-absolute-value distance, provided |C1| ą 2L.

Proof. For any L11 “ pxi1 , ¨ ¨ ¨xiL´1
q and L12 “ pxj1

, ¨ ¨ ¨ , xjL´1
q in

` C1
L´1

˘

, take xι P C1zpL11 Y
L12q. (This can be done as long as |C1| ą 2L.) Without loss of generality, assume ι ą
maxtiL´1, jL´1u. Let L1 :“ L11 Y txιu,L2 :“ L12 Y txιu. We know that

2ζ ě
›

›

›
τxi1 ,¨¨¨ ,xiL´1

,xι
´ τxj1

,¨¨¨ ,xjL´1
,xι

›

›

›

sav

“
ÿ

px1,¨¨¨ ,xL´1,xqPXL

ˇ

ˇ

ˇ
τx
i1
,¨¨¨ ,x

iL´1
,x
ι
px1, ¨ ¨ ¨ , xL´1, xq ´ τx

j1
,¨¨¨ ,x

jL´1
,x
ι
px1, ¨ ¨ ¨ , xL´1, xq

ˇ

ˇ

ˇ

ě
ÿ

px1,¨¨¨ ,xL´1qPXL´1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPX

´

τx
i1
,¨¨¨ ,x

iL´1
,x
ι
px1, ¨ ¨ ¨ , xL´1, xq ´ τx

j1
,¨¨¨ ,x

jL´1
,x
ι
px1, ¨ ¨ ¨ , xL´1, xq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

px1,¨¨¨ ,xL´1qPXL´1

ˇ

ˇ

ˇ
τxi1 ,¨¨¨ ,xiL´1

px1, ¨ ¨ ¨ , xL´1q ´ τxj1
,¨¨¨ ,xjL´1

px1, ¨ ¨ ¨ , xL´1q
ˇ

ˇ

ˇ

“

›

›

›
τxi1 ,¨¨¨ ,xiL´1

´ τx
j1
,¨¨¨ ,x

jL´1

›

›

›

sav
.

Similarly we can see that Eqn. (74) holds also for size-` (` ď L) lists. J

For a subset B Ă rns, we let PxB denote the marginalization of Px1,¨¨¨ ,xL onto the random
variables indexed by elements in B, rPx1,¨¨¨ ,xLstxi : iPBu.

I Corollary 62. For any 1 ď ` ă L and any subsets L11,L12 P
`

rns
`

˘

, PxL11
and PxL12

are 3ζ
close to each other in sum-absolute-value distance, given |C1| ą 2L.

Proof. Given two subsets L11,L12 Ă rns both of cardinality ` ă L, as long as the code size
M is larger than 2L, we can always find a tuple 1 ď i1 ă ¨ ¨ ¨ ă i` ďM such that it can be
completed to L-tuples L1,L2 in two different ways

L1 “ pi1, ¨ ¨ ¨ , i`´`1 , i`´`1`1, ¨ ¨ ¨ , i`, j1, ¨ ¨ ¨ , j`´`1 , l1, ¨ ¨ ¨ , lL´p2`´`1qq,

L2 “ pk1, ¨ ¨ ¨ , k`´`1 , i1, ¨ ¨ ¨ , i1`, i`1`1, ¨ ¨ ¨ , i`, l1, ¨ ¨ ¨ , lL´p2`´`1qq,

for some 1 ď k1 ă ¨ ¨ ¨ ă k`´`1 ă i1 ă ¨ ¨ ¨ ă i` ă j1 ă ¨ ¨ ¨ ă j`´`1 ă l1 ă ¨ ¨ ¨ ă lL´p2`´`1q ď

M , where `1 “ |L11 X L12|. See Fig. 11. We know that

}τL1 ´ Px1,¨¨¨ ,xL}sav ďζ,

}τL2 ´ Px1,¨¨¨ ,xL}sav ďζ.
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Note that

ζ ě
›

›

›
τxL1

´ Px1,¨¨¨ ,xL

›

›

›

sav

“
ÿ

L1Pt0,1uL

ˇ

ˇ

ˇ
τxL1

pL1q ´ Px1,¨¨¨ ,xLpL1q
ˇ

ˇ

ˇ

ě
ÿ

i1,¨¨¨ ,i`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

L1zti1,¨¨¨ ,i`uPt0,1uL´`
τxL1

pi1, ¨ ¨ ¨ , i`,L1z ti1, ¨ ¨ ¨ , i`uq

´ Px1,¨¨¨ ,xLpi1, ¨ ¨ ¨ , i`,L1z ti1, ¨ ¨ ¨ , i`uq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

i1,¨¨¨ ,i`

ˇ

ˇ

ˇ
τx
i1
,¨¨¨ ,x

i`
pi1, ¨ ¨ ¨ , i`q ´ PxL11

pi1, ¨ ¨ ¨ , i`q
ˇ

ˇ

ˇ

“

›

›

›
τxi1 ,¨¨¨ ,xi`

´ PxL11

›

›

›

sav
.

Similarly,
›

›

›
τx
i1
,¨¨¨ ,x

i`
´ PxL12

›

›

›

sav
ď ζ.

By triangle inequality,
›

›

›
PxL11

´ PxL12

›

›

›

sav
ď

›

›

›
PxL11

´ τx
i1
,¨¨¨ ,x

i`

›

›

›

sav
`

›

›

›
τx
i1
,¨¨¨ ,x

i`
´ PxL12

›

›

›

sav

ď2ζ. J

I Corollary 63. A pζ, Px1,¨¨¨ ,xLq-equicoupled code C1 is p3ζ, Px1,¨¨¨ ,x`q-equicoupled for any
1 ď ` ď L, as long as |C1| ą 2L.

Proof. For any list of codewords xi1 , ¨ ¨ ¨ , xi` , we can always find a completion of pi1, ¨ ¨ ¨ , i`q
to an L-tuple. Let T denote the set of locations of i1, ¨ ¨ ¨ , i` in the completion. We know
that

›

›

›
τx
i1
,¨¨¨ ,x

i`
´ PxT

›

›

›

sav
ď ζ.

By the previous corollary,
›

›

›
τx
i1
,¨¨¨ ,x

i`
´ Px1,¨¨¨ ,x`

›

›

›

sav
ď

›

›

›
τx
i1
,¨¨¨ ,x

i`
´ PxT

›

›

›

sav
` }PxT ´ Px1,¨¨¨ ,x`}sav

ďζ ` 2ζ
“3ζ. J

Now we apply the double counting trick used in the Plotkin-type bound for list decoding.
We want to show that if pPx1,¨¨¨ ,xL is not completely positive, then any pL´ 1q-list decodable
code cannot be large.

I Definition 64 (Symmetry of tensors). A tensor T P Tenbmn is said to be symmetric if
its components are invariant under permutation of indices, i.e., for any σ P Sm and any
pt1, ¨ ¨ ¨ , tmq P rns

m,

T pt1, ¨ ¨ ¨ , tmq “ T
`

tσp1q, ¨ ¨ ¨ , tσpmq
˘

.

The set of dimension-n order-m symmetric tensors is denoted by Symbmn .



Y. Zhang, A. J. Budkuley, and S. Jaggi 51:49

13.2 Symmetric case
In this subsection, assume pPx1,¨¨¨ ,xL is symmetric as a dimension-|X | order-L tensor. We are
going to show that

I Lemma 65 (Converse, symmetric case). For a general adversarial channel given by
A “

`

X , λx,S, λs,Y,Wy|x,s
˘

and an admissible input distribution Px P λx, if CPbL
|X |pPxq Ď

KbLpPxq, the any pζ, Px1,¨¨¨ ,xLq-equicoupled pL´ 1q-list decodable code C1 has size at most

|C1| ď max
"

2pL´ 1q, 2L`1L!
λ

*

,

where pPx1,¨¨¨ ,xL P SymbL
|X |pPxqzKbLpPxq is a symmetric, non-confusable joint distribution.

Proof. Since pPx1,¨¨¨ ,xL P SymbL
|X |pPxqzCPbL

|X | , by duality (Theorem 96) between the CP tensor
cone and coP tensor cone, there is a copositive tensor Q P coPbL

|X | such that }Q}F “ 1 (by
normalization) and

xPx1,¨¨¨ ,xL , Qy “ ´η (75)

for some η ą 0. Note that, by definition of λ, η ą λ. We will bound
ÿ

pi1,¨¨¨ ,iLqPr|C1|sL

A

τxi1 ,¨¨¨ ,xiL
, Q

E

from above and below and argue that if |C1| is larger than some constant14, then we get a
strictly negative upper bound and a non-negative lower bound. Such a contradiction implies
that no positive rate is possible for pL´ 1q-list decoding if pPx1,¨¨¨ ,xL is a non-CP symmetric
distribution.

Upper bound.
Case when i1, ¨ ¨ ¨ , iL P r|C1|s are not all distinct. For i1 ď ¨ ¨ ¨ ď iL P r|C1|s not all distinct,

A

τx
i1
,¨¨¨ ,x

iL
, Q

E

ď

›

›

›
τx
i1
,¨¨¨ ,x

iL

›

›

›

F
}Q}F (76)

ď

›

›

›
τx
i1
,¨¨¨ ,x

iL

›

›

›

sav
}Q}F (77)

ď1. (78)

Eqn. (76) is by Cauchy–Schwarz inequality. Eqn. (77) is because q-norm of a vector is
non-increasing in q. Eqn. (78) is because a probability/type vector has one-norm 1 and Q is
normalized to have F -norm 1.

Thus
ÿ

pi1,¨¨¨ ,iLqPr|C1|sL
not all distinct

A

τx
i1
,¨¨¨ ,x

iL
, Q

E

ď |C1|L ´
ˆ

|C1|
L

˙

L!.

14Note that we will actually show that the size of the code is upper bounded by a constant (independent
of blocklength n), not just that the rate of the code is vanishing.
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Case when i1, ¨ ¨ ¨ , iL P r|C1|s are all distinct. By Lemma 57, for any xi1 , ¨ ¨ ¨ , xiL P C1 distinct,
›

›

›
τx
i1
,¨¨¨ ,x

iL
´ pPx1,¨¨¨ ,xL

›

›

›

mav
ď

›

›

›
τx
i1
,¨¨¨ ,x

iL
´ pPx1,¨¨¨ ,xL

›

›

›

sav

ďζ.

For any pi1, ¨ ¨ ¨ , iLq P
`|C1|
L

˘

distinct, let ∆i1,¨¨¨ ,iL :“ τx
i1
,¨¨¨ ,x

iL
´ pPx1,¨¨¨ ,xL . Immediately,

}∆i1,¨¨¨ ,iL}mav ď ζ.
Now,
A

τxi1 ,¨¨¨ ,xiL
, Q

E

“ x∆i1,¨¨¨ ,iL , Qy `
A

pPx1,¨¨¨ ,xL , Q
E

.

Note that

|x∆i1,¨¨¨ ,iL , Qy| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

px1,¨¨¨ ,xLqPXL

∆i1,¨¨¨ ,iLpx1, ¨ ¨ ¨ , xLqQpx1, ¨ ¨ ¨ , xLq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

px1,¨¨¨ ,xLqPXL

|∆i1,¨¨¨ ,iLpx1, ¨ ¨ ¨ , xLq| (79)

ď |X |L ¨ ζ, (80)

where Eqn. (79) follows from triangle inequality and }Q}mav ď }Q}sav ď }Q}F “ 1.
Hence
A

τx
i1
,¨¨¨ ,x

iL
, Q

E

ď´ η ` |X |L ζ (81)

ď´ λ`
λ

2 (82)

“´
λ

2 ,

where Eqn. (81) follows from Eqn. (75) and Eqn. (80), Eqn. (82) is by the definition of λ
(Eqn. (72)) and the choice of ζ (Eqn. (73)).

Therefore,

ÿ

pi1,¨¨¨ ,iLqPr|C1|sL distinct

A

τxi1 ,¨¨¨ ,xiL
, Q

E

ď´
λ

2

ˆ

|C1|
L

˙

L!.

Overall,

ÿ

pi1,¨¨¨ ,iLqPr|C1|sL

A

τx
i1
,¨¨¨ ,x

iL
, Q

E

ď|C1|L ´
ˆ

|C1|
L

˙

L!´ λ

2

ˆ

|C1|
L

˙

L!

ă0 (83)

if |C1| is sufficiently large. To see this, note that p p|C1|q :“ |C1|L ´
`|C1|
L

˘

L! is a polynomial in
|C1| of degree L´ 1, while ´λ

2
`|C1|
L

˘

L! is a polynomial in |C1| of degree L. To give an explicit
bound on |C1|, note that the RHS of (83) equals

p
`
ˇ

ˇC1
ˇ

ˇ

˘

´
λ

2
ˇ

ˇC1
ˇ

ˇ

`
ˇ

ˇC1
ˇ

ˇ´ 1
˘

¨ ¨ ¨
`
ˇ

ˇC1
ˇ

ˇ´ pL´ 1q
˘

ďL ¨ pL´ 1q! ¨
ˇ

ˇC1
ˇ

ˇ

L´1
´
λ

2
`
ˇ

ˇC1
ˇ

ˇ´ pL´ 1q
˘L

“L! ¨
ˇ

ˇC1
ˇ

ˇ

L´1
´
λ

2
`
ˇ

ˇC1
ˇ

ˇ´ pL´ 1q
˘L
.
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In the above inequality, to upper bound p p|C1|q, we replace each term of p with a monomial
with the largest possible coefficient in absolute value and the largest possible degree. To
make the RHS negative, we want

pL!q 1
L

ˇ

ˇC1
ˇ

ˇ

1´ 1
L ă

ˆ

λ

2

˙
1
L
ˇ

ˇC1
ˇ

ˇ´

ˆ

λ

2

˙
1
L

pL´ 1q.

One can easily check that when |C1| ą 2pL´ 1q,

1
2

ˆ

λ

2

˙
1
L
ˇ

ˇC1
ˇ

ˇ ă

ˆ

λ

2

˙
1
L
ˇ

ˇC1
ˇ

ˇ´

ˆ

λ

2

˙
1
L

pL´ 1q.

Moreover, when |C1| ą 2L`1L!
λ ,

pL!q
ˇ

ˇC1
ˇ

ˇ

1´ 1
L ă

1
2

ˆ

λ

2

˙
1
L
ˇ

ˇC1
ˇ

ˇ

is satisfied, so is the original inequality (83).
Overall, we have that

ÿ

pi1,¨¨¨ ,iLqPr|C1|sL

A

τx
i1
,¨¨¨ ,x

iL
, Q

E

ă 0

as long as

ˇ

ˇC1
ˇ

ˇ ą max
"

2pL´ 1q, 2L`1L!
λ

*

. (84)

Though the bound (84) is crude, it is a constant not depending on the blocklength n.

Lower bound.
ÿ

pi1,¨¨¨ ,iLqPr|C1|sL

A

τxi1 ,¨¨¨ ,xiL
, Q

E

“
ÿ

pi1,¨¨¨ ,iLqPr|C1|sL

ÿ

px1,¨¨¨ ,xLqPXL

τxi1 ,¨¨¨ ,xiL
px1, ¨ ¨ ¨ , xLqQpx1, ¨ ¨ ¨ , xLq

“
ÿ

px1,¨¨¨ ,xLqPXL

ÿ

pi1,¨¨¨ ,iLqPr|C1|sL

1
n

n
ÿ

j“1
1!
xi1
pjq“x1,¨¨¨ ,xiL

pjq“xL

)Qpx1, ¨ ¨ ¨ , xLq

“
1
n

ÿ

px1,¨¨¨ ,xLqPXL

n
ÿ

j“1

ÿ

pi1,¨¨¨ ,iLqPr|C1|sL
1!
x
i1
pjq“x1

) ¨ ¨ ¨1!
x
iL
pjq“xL

)Qpx1, ¨ ¨ ¨ , xLq

“
1
n

ÿ

px1,¨¨¨ ,xLqPXL

n
ÿ

j“1

¨

˝

ÿ

iPr|C1|s

1txipjq“x1u

˛

‚¨ ¨ ¨

¨

˝

ÿ

iPr|C1|s

1txipjq“xLu

˛

‚Qpx1, ¨ ¨ ¨ , xLq

“
|C1|L

n

ÿ

px1,¨¨¨ ,xLqPXL

n
ÿ

j“1
P pjqx px1q ¨ ¨ ¨P

pjq
x pxLqQpx1, ¨ ¨ ¨ , xLq (85)

“
|C1|L

n

n
ÿ

j“1

B

´

P pjqx

¯bL

, Q

F

ě0. (86)
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To see equality (85), let P pjqx be the empirical distribution of the j-th column of C1 as a
|C1| ˆ n matrix, i.e., for x P X ,

P pjqx pxq :“ 1
|C1|

|C1|
ÿ

i“1
1txipjq“xu

.

The last inequality (86) follows since
´

P
pjq
x

¯bL

is a completely positive tensor.
The lower bound and the upper bound are contradicting each other, which completes the

proof. J

13.3 Asymmetric case
In this section, we handle the asymmetric case of the converse.

I Definition 66 (Asymmetry of tensors). For a joint distribution Px1,¨¨¨ ,xL P ∆
`

XL
˘

, altern-
atively a tensor Px1,¨¨¨ ,xL P TenbL

|X |, define its asymmetry as

asymmpPx1,¨¨¨ ,xLq :“ max
px1,¨¨¨ ,xLqPXL

max
σPSLztidu

ˇ

ˇPx1,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq ´ Px1,¨¨¨ ,xLpxσp1q, ¨ ¨ ¨ , xσpLqq
ˇ

ˇ .

I Remark 67. If asymmpPx1,¨¨¨ ,xLq “ 0, then Px1,¨¨¨ ,xL is symmetric in the sense of Defini-
tion 64.

We will show that

I Lemma 68 (Converse, asymmetric case). If Px1,¨¨¨ ,xL P TenbL
|X |pPxq is asymmetric as a tensor

in TenbL
|X |pPxq and has asymmetry α, then for any 0 ă ζ ă α, any pζ, Px1,¨¨¨ ,xLq-equicoupled

(w.r.t. max-absolute-value distance)15 code C1 has size at most

|C1| ď exp
˜

c

α{
`

L
2
˘

´ ζ

¸

` L´ 2

for some absolute constant c ą 0.

Lemma 68 is shown by reducing the problem, in a nontrivial way, from general values of
L to L “ 2 in which case it is known [43] that such codes cannot be large.

I Lemma 69 (Reduction from general L to L “ 2). If Px1,¨¨¨ ,xL P TenbL
|X | has asymmetry

asymmpPx1,¨¨¨ ,xLq “ α, then among the following distributions

Py1,z1 , Py2,z2 , ¨ ¨ ¨ , PyL´1,zL´1 ,

there is at least one distribution Pyi˚ ,zi˚ (i˚ P rL´ 1s) with asymmetry at least

asymm
`

Pyi˚ ,zi˚
˘

“
α
`

L
2
˘ .

15Note that ζ-equicoupledness w.r.t. sum-absolute-value distance implies ζ-equicoupledness w.r.t. max-
absolute-value distance. Hence this lemma directly applies to the subcode we obtained in the previous
section.
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Here, for i P rL´ 1s, yi and zi (1 ď i ď L´ 1) are tuples of random variables defined as

yi :“ px1, ¨ ¨ ¨ , xi´1, xi, xi`2, ¨ ¨ ¨ , xLq,
zi :“ px1, ¨ ¨ ¨ , xi´1, xi`1, xi`2, ¨ ¨ ¨ , xLq,

respectively.

Proof. The proof is by contradiction. We will show that if all of tPyi,ziu1ďiďL´1 have
small asymmetry, then they do not not suffice to back propagate their asymmetry using
transpositions to result in the asymmetry α of Px1,¨¨¨ ,xL . To make this intuition clear, assume,
towards a contradiction, that all of the distributions tPyi,ziu1ďiďL´1 have asymmetry strictly
less than α1 “ α

pL2q
,

asymm pPyi,ziq ă
α
`

L
2
˘ , @i P rL´ 1s. (87)

Assume the asymmetry of Px1,¨¨¨ ,xL is witnessed by coordinates px1, ¨ ¨ ¨ , xLq P XL and
permutation π P SL, i.e.,

α “
ˇ

ˇPx1,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq ´ Px1,¨¨¨ ,xLpxπp1q, ¨ ¨ ¨ , xπpLqq
ˇ

ˇ (88)
“
ˇ

ˇPx1,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq ´ Pxπp1q,¨¨¨ ,xπpLqpx1, ¨ ¨ ¨ , xLq
ˇ

ˇ .

Note that the set of transpositions tσ1, ¨ ¨ ¨ , σL´1u forms a generator set of SL, where

σi :“
ˆ

1 ¨ ¨ ¨ i´ 1 i i` 1 i` 2 ¨ ¨ ¨ L

1 ¨ ¨ ¨ i´ 1 i` 1 i i` 2 ¨ ¨ ¨ L

˙

.

Any permutation σ P SL can be written as a product of σi’s, σ “ σi` ¨ ¨ ¨σi1 for some positive
integer ` and a subset of transpositions, ij P rL´ 1s for each j P r`s. Such a representation,
in particular the value of `, is not necessarily unique. Let

`pσq :“ min t` P Zě0 : σ “ σi` ¨ ¨ ¨σi1 transposition representationu

be the transposition length of σ, i.e., the length of the shortest representation using product
of transpositions. Let

`˚ :“ max
σPSL

`pσq.

We claim that `˚ ď
`

L
2
˘

. To see this, it suffices to bound `pσq for the worst case permutation

σ “

ˆ

1 2 ¨ ¨ ¨ L

L L´ 1 ¨ ¨ ¨ 1

˙

.

The claim follows by noting that σ can be written as

σ “
L´1
ź

j“1

ź

i“j,j´1,¨¨¨ ,1
σi, (89)

which contains
`

L
2
˘

transpositions.
I Remark 70. A potential confusion may arise from two conflicting conventions that
1. a product is usually written from left to right, i.e.,

ź̀

i“1
σi “ σ1 ¨ ¨ ¨σ`;

ITCS 2020



51:54 Generalized List Decoding

2. a composition of permutations acts like functions on an element from right to left, i.e.,
for σ, π P SL and i P rLs,

pσπqpiq “ σpπpiqq.

With this kept in mind, the representation in Eqn. (89) should be understood as

σ “pσ1qpσ2σ1q ¨ ¨ ¨ pσL´2 ¨ ¨ ¨σ2σ1qpσL´1 ¨ ¨ ¨σ2σ1q.

The product in the pL´ 1q-st parenthesis (from left to right) moves L in the initial sequence
pL,L´ 1, ¨ ¨ ¨ , 1q to the L-th position; the product in the pL´ 2q-nd parenthesis moves L´ 1
to the pL´ 1q-st position; ...; the permutation σ1 in the 1-st parenthesis moves 2 to the 2-st
position, and automatically 1 is in the 1-st position. We get the target sequence p1, 2, ¨ ¨ ¨ , Lq.
We can write

π “
ź

j“`,`´1,¨¨¨ ,1
σij , (90)

for some ` ď `˚ ď
`

L
2
˘

.
Our assumption Eqn. (87) implies that, for any px1, ¨ ¨ ¨ , xLq P XL and any transposition

σi,
ˇ

ˇ

ˇ
Px1,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq ´ Pxσip1q,¨¨¨ ,xσipLq

px1, ¨ ¨ ¨ , xLq
ˇ

ˇ

ˇ

“
ˇ

ˇPx1,¨¨¨ ,xi´1,xi,xi`1,xi`2,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq ´ Px1,¨¨¨ ,xi´1,xi`1,xi,xi`2,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq
ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

Ppx1,¨¨¨ ,xi´1,xi,xi`2,¨¨¨ ,xLq,px1,¨¨¨ ,xi´1,xi`1,xi`2,¨¨¨ ,xLq

˜

px1, ¨ ¨ ¨ , xi´1, xi, xi`2, ¨ ¨ ¨ , xLq,

px1, ¨ ¨ ¨ , xi´1, xi`1, xi`2, ¨ ¨ ¨ , xLq

¸

´ Ppx1,¨¨¨ ,xi´1,xi`1,xi`2,¨¨¨ ,xLq,px1,¨¨¨ ,xi´1,xi,xi`2,¨¨¨ ,xLq

˜

px1, ¨ ¨ ¨ , xi´1, xi, xi`2, ¨ ¨ ¨ , xLq,

px1, ¨ ¨ ¨ , xi´1, xi`1, xi`2, ¨ ¨ ¨ , xLq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“ |Pyi,zipy, zq ´ Pzi,yipy, zq|

“ |Pyi,zipy, zq ´ Pyi,zipz, yq|

ăα1, (91)

where

y :“ px1, ¨ ¨ ¨ , xi´1, xi, xi`2, ¨ ¨ ¨ , xLq,

z :“ px1, ¨ ¨ ¨ , xi´1, xi`1, xi`2, ¨ ¨ ¨ , xLq.

Now

α “
ˇ

ˇPx1,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq ´ Pxπp1q,¨¨¨ ,xπpLqpx1, ¨ ¨ ¨ , xLq
ˇ

ˇ (92)

ď

ˇ

ˇ

ˇ
Px1,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq ´ Pxσi1 p1q,¨¨¨ ,xσi1 pLq

px1, ¨ ¨ ¨ , xLq
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
Pxσi1 p1q,¨¨¨ ,xσi1 pLq

px1, ¨ ¨ ¨ , xLq ´ Pxπp1q,¨¨¨ ,xπpLqpx1, ¨ ¨ ¨ , xLq
ˇ

ˇ

ˇ
(93)

ăα1 `
ˇ

ˇ

ˇ
Pxσi1 p1q,¨¨¨ ,xσi1 pLq

px1, ¨ ¨ ¨ , xLq ´ Pxπp1q,¨¨¨ ,xπpLqpx1, ¨ ¨ ¨ , xLq
ˇ

ˇ

ˇ
(94)

ďα1 `
ˇ

ˇ

ˇ
Pxσi1 p1q,¨¨¨ ,xσi1 pLq

px1, ¨ ¨ ¨ , xLq ´ Pxσi2σi1 p1q,¨¨¨ ,xσi2σi1 pLq
px1, ¨ ¨ ¨ , xLq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
Pxσi2σi1 p1q,¨¨¨ ,xσi2σi1 pLq

px1, ¨ ¨ ¨ , xLq ´ Pxπp1q,¨¨¨ ,xπpLqpx1, ¨ ¨ ¨ , xLq
ˇ

ˇ

ˇ
(95)

ă2α1 `
ˇ

ˇ

ˇ
Pxσi2σi1 p1q,¨¨¨ ,xσi2σi1 pLq

px1, ¨ ¨ ¨ , xLq ´ Pxπp1q,¨¨¨ ,xπpLqpx1, ¨ ¨ ¨ , xLq
ˇ

ˇ

ˇ
(96)
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¨ ¨ ¨

ďp`´ 1qα1 `
ˇ

ˇ

ˇ
Pxσi`´1 ¨¨¨σi1 p1q

,¨¨¨ ,xσi`´1 ¨¨¨σi1 pLq
px1, ¨ ¨ ¨ , xLq ´ Pxπp1q,¨¨¨ ,xπpLqpx1, ¨ ¨ ¨ , xLq

ˇ

ˇ

ˇ

(97)

“p`´ 1qα1 `
ˇ

ˇ

ˇ
Pxσi`´1 ¨¨¨σi1 p1q

,¨¨¨ ,xσi`´1 ¨¨¨σi1 pLq
px1, ¨ ¨ ¨ , xLq

´ Pxσi`σi`´1 ¨¨¨σi1 p1q
,¨¨¨ ,xσi`σi`´1 ¨¨¨σi1 pLq

px1, ¨ ¨ ¨ , xLq
ˇ

ˇ

ˇ
(98)

ă`α1 (99)

ď

ˆ

L

2

˙

α1

“α. (100)

1. Eqn. (92) follows from Eqn. (88).
2. Eqn. (93), (95), etc., are by triangle inequality.
3. Eqn. (94), (96), (99), etc. , are by Eqn. (91).
4. Eqn. (97) is by recursively applying the previous calculations.
5. Eqn. (98) is by the transposition representation of π (Eqn. (90)).
6. Eqn. (100) is by the choice of α1.

We reach a contradiction that α is strictly less than itself. This finishes the proof. J

Next, we show the key lemma 68 in this section. Note that, according to the statement,
Lemma 68 is independent of the channel that the code C1 is used for. Hence we will directly
prove the random variable version of this lemma which is concerned with fundamental
properties of joint distributions. If the joint distribution of a sequence of random variables
has all of its size-L marginals being ζ-close to some asymmetric distribution, then such a
sequence cannot be infinitely long. We will prove a finite upper bound on the length of the
sequence by reducing this problem from the general L ą 2 case to the L “ 2 case. In the
L “ 2 case, prior work [43] shows that this is indeed the case.

I Lemma 71 (Converse, asymmetric case, L “ 2 [43]). Assume Px1,x2 P ∆pX 2q has asymmetry
asymm pPx1,x2q “ α. Let w1, ¨ ¨ ¨ ,wM be a sequence of M random variables supported on X
such that for every 1 ď j1 ă j2 ďM ,

›

›Pwj1 ,wj2
´ Px1,x2

›

›

mav ď ζ.

for some 0 ă ζ ă α. Then

M ď exp
ˆ

c

α´ ζ

˙

for some universal constant c ą 0.

We are now ready to prove the restated version of Lemma 68.

I Lemma 72 (Converse, asymmetric case, general L). If a joint distribution Px1,¨¨¨ ,xL P

∆
`

XL
˘

has asymmetry asymm pPx1,¨¨¨ ,xLq “ α, and a sequence of M random variables
w1, ¨ ¨ ¨ ,wM supported on X satisfies that for any 1 ď j1 ă ¨ ¨ ¨ ă jL ďM ,

›

›

›
Pwj1 ,¨¨¨ ,wjL

´ Px1,¨¨¨ ,xL

›

›

›

mav
ď ζ. (101)
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Then

M ď exp
˜

c

α{
`

L
2
˘

´ ζ

¸

` L´ 2

for some universal constant c ą 0.

Proof. Construct the following L´ 1 sequences
 

vpiq
(

1ďiďL´1 of random variables, each of
which has length M ´ L` 2,

vp1q “ pvp1q1 , vp1q2 , ¨ ¨ ¨ , vp1qM´L`2q,

vp2q “ pvp2q2 , vp2q2 , ¨ ¨ ¨ , vp2qM´L`3q,

¨ ¨ ¨

vpL´1q “ pvpL´1q
L´1 , vp1q2 , ¨ ¨ ¨ , vpL´1q

M q.

For 1 ď i ď L´ 1 and i ď j ďM ´ L` i` 1, vpiqj is defined as atuple

vpiqj :“ pw1, ¨ ¨ ¨ ,wi´1,wj ,wM´L`i`2, ¨ ¨ ¨ ,wM q .

Then, for any

v1 :“ px1, ¨ ¨ ¨ , xi´1, xi, xi`2, ¨ ¨ ¨ , xLq P XL´1,

v2 :“ px1, ¨ ¨ ¨ , xi´1, xi`1, xi`2, ¨ ¨ ¨ , xLq P XL´1,

and i ď j1 ă j2 ďM ´ L` i` 1, we have
ˇ

ˇ

ˇ

ˇ

ˇ

P
vpiq
j1
,vpiq
j2

pv1, v2q ´ Pyi,zi pv1, v2q

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
Ppw1,¨¨¨ ,wi´1,wj1 ,wM´L`i`2,¨¨¨ ,wM q,pw1,¨¨¨ ,wi´1,wj2 ,wM´L`i`2,¨¨¨ ,wM q

˜

px1, ¨ ¨ ¨ , xi´1, xi, xi`2, ¨ ¨ ¨ , xLq,

px1, ¨ ¨ ¨ , xi´1, xi`1, xi`2, ¨ ¨ ¨ , xLq

¸

´Ppx1,¨¨¨ ,xi´1,xi,xi`2,¨¨¨ ,xLq,px1,¨¨¨ ,xi´1,xi`1,xi`2,¨¨¨ ,xLq

˜

px1, ¨ ¨ ¨ , xi´1, xi, xi`2, ¨ ¨ ¨ , xLq,

px1, ¨ ¨ ¨ , xi´1, xi`1, xi`2, ¨ ¨ ¨ , xLq

¸ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
Pw1,¨¨¨ ,wi´1,wj1 ,wj2 ,wM´L`i`2,¨¨¨ ,wM px1, ¨ ¨ ¨ , xi´1, xi, xi`1, xi`2, ¨ ¨ ¨ , xLq

´ Px1,¨¨¨ ,xL px1, ¨ ¨ ¨ , xLq
ˇ

ˇ

ˇ

ďζ,

by the assumption Eqn. (101). Therefore, all sequences vpiq’s are pζ, Pyi,ziq-equicoupled,
1 ď i ď L´ 1.

Since Px1,¨¨¨ ,xL is α-asymmetric, by Lemma 69, at least one of the distributions Pyi,zi ’s
(1 ď i ď L´ 1) is at least α1-asymmetric (α1 “ α{

`

L
2
˘

). Without loss of generality, assume
Pyi0 ,zi0 is ě α1-asymmetric. Then the i0-th sequence vpi0q is short by Lemma 71,

M ´ L` 2 ď exp
ˆ

c

α1 ´ ζ

˙

,

for some universal constant c ą 0. Hence

M ď exp
˜

c

α{
`

L
2
˘

´ ζ

¸

` L´ 2,

which finishes the proof. J
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I Remark 73 (Asymmetric but projectively symmetric tensors). Lemma 69 does not follow
from naïvely marginalizing an asymmetric distribution Px1,¨¨¨ ,xL and hoping that Pxi,xj is
asymmetric for some 1 ď i ă j ď L. Just like there exist asymmetric matrices (self-couplings)
with the same column sum and row sum, we should not expect that the asymmetry of a
tensor is preserved under projections.

We say that a tensor Px1,¨¨¨ ,xL P TenbL
|X | is `-projectively symmetric (1 ď ` ă L) if all of

its order-` projections are symmetric, i.e., for any 1 ď i1 ă ¨ ¨ ¨ ă i` ď L,

Pxi1 ,¨¨¨ ,xi` :“ rPx1,¨¨¨ ,xLsxi1 ,¨¨¨ ,xi`
P Tenb`

|X |

is symmetric.
One can easily verify the following facts.

I Lemma 74. Let Px1,¨¨¨ ,xL be a tensor of dimension |X | and order L.
1. If Px1,¨¨¨ ,xL is `-projectively symmetric (1 ď ` ă L), then all of its order-`1 (1 ď `1 ă `)

marginals are the same.
2. If Px1,¨¨¨ ,xL is `-projectively symmetric (1 ď ` ă L), then it is also `1-projectively

symmetric for any 1 ď `1 ă `.
3. A symmetric tensor Px1,¨¨¨ ,xL is also `-projectively symmetric for all 1 ď ` ă L. In

particular, it is a self-coupling, i.e., Pxi is the same for all i P rLs.

We provide an example showing that the asymmetry of a tensor cannot be recovered
from all of its lower order projections. That is, there is an asymmetric tensor with every
projection of one less order being symmetric.

We now construct a concrete example. In order for a dimension-2 order-3 tensor T : r2s3 Ñ
R to be symmetric, it has to satisfy the following system E1 of linear equations,

t112 “t121, t121 “ t211, t212 “ t122, t122 “ t221.

where tijk :“ T pi, j, kq for i, j, k P r2s. On the other hand, for it to be projectively symmetric,
it has to satisfy the following system E2 of linear equations,

t122 ` t121 “t212 ` t211,

t112 ` t122 “t211 ` t221,

t121 ` t221 “t112 ` t212.

Additionally, for T to represent a joint distribution, all entries should be non-negative and
sum up to one. Note that E2 is a less determined system than E1, which means that we
should be able to find a solution to E2 which does not satisfy E1.

Indeed, consider the following explicit example of T P Tenb3
2 . (See Fig. 12.)

t111 “
1
60 , t121 “

1
4 , t112 “

1
6 , t122 “

1
20 ,

t211 “
1
60 , t221 “

1
5 , t212 “

17
60 , t222 “

1
60 .

It is asymmetric but projectively symmetric. Note that T is forced to have multiple witnesses
of asymmetry due to its projective symmetry. Indeed,

t121 ´ t112 “t212 ´ t221 “
5
60 ,

t121 ´ t211 “t212 ´ t122 “
14
60 ,

t112 ´ t211 “t221 ´ t122 “
9
60 .
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Figure 12 An asymmetric tensor T P Tenb3
2 that is 2-projectively symmetric.

Therefore asymmpT q “ 14
60 “

7
30 , given by t121 ´ t211 and t212 ´ t122. All of its order-2

projections are given by
„ 11

60
3
10

3
10

13
60



,

„ 4
15

13
60

13
60

3
10



,

„ 1
30

9
20

9
20

1
15



.

All of their margins are equal to
„ 29

60
31
60



.

In general, for any dimension-d order-L tensor, such examples can always be constructed
due to the gap of degrees of freedom between the homogeneous linear systems E1 and E2.

14 Rethinking the converse

14.1 A cheap converse

If for a general A “ pX , λx,S, λs,Wy|x,sq, for every Px P λx, the confusability set is a
halfspace defined by a single linear constraint

KbLpPxq :“
 

Px1,¨¨¨ ,xL P J bLpPxq : xPx1,¨¨¨ ,xL , Cy ď b
(

,

for some tensor C P TenbL
|X | and constant b, then the converse can be significantly simplified.

In particular, we do not have to handle symmetric and asymmetric cases separately. We
describe the proof idea below.

Proof. The proof essentially follow from the following observation. For any asymmetric
Px1,¨¨¨ ,xL , given any Px-constant composition pζ, Px1,¨¨¨ ,xLq-equicoupled code C “ txiu

M
i“1

in Xn of size M , we can construct a code C1 “ tx1iu
M
i“1 in Xn¨M ! of the same size which is

symmetric. Indeed, we can permute the rows of C using σ P SM and juxtapose all possible
(M ! of them in total) such row-permuted codes σpCq. (See Fig. 13.) The resulting code C1 is
actually not only L-wise approximately equicoupled, but M -wise exactly equicoupled! For
any L P rM s and any L-sized (not necessarily ordered) subset ti1, ¨ ¨ ¨ , iLu of rM s, the joint
type of x1i1 , ¨ ¨ ¨ , x

1
iL

is exactly equal to

τx1
i1
,¨¨¨ ,x1

iL
“

1
`

M
L

˘

ÿ

ti1,¨¨¨ ,iLuPp
rMs
L q

1
L!

ÿ

σPSL

τxσpi1q,¨¨¨ ,xσpiLq
,
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Figure 13 Construction of C1 by permuting rows of C “ tx1, x2, x3u using σ P S3 (where
S3 “ tid, σ1, ¨ ¨ ¨ , σ5u) and juxtaposing all σpCq (6 of them in total) together.

which is symmetric and independent of the choice of the list pi1, ¨ ¨ ¨ , iLq (hence let us denote
it by pPx1,¨¨¨ ,xL). In particular, letting L “M , we get that

τx11,¨¨¨ ,x1M “
1
M !

ÿ

σPSM

τxσp1q,¨¨¨ ,xσpMq .

To see the above claims, note that if we juxtapose two pairs of codewords px1, x2q and
px11, x

1
2q, we get a pair of longer codewords prx1, rx2q :“ px1 ˝ x

1
1, x2 ˝ x

1
2q (where ˝ denotes

concatenation) with joint type

τ
rx1,rx2

“
1
2 pτx1,x2

` τx11,x12q.

This still holds if two pairs of codewords of different blocklengths are juxtaposed. Say, px1, x2q

has blocklength n while px11, x12q has blocklength n1. Then

τ
rx1,rx2

“
n

n` n1
τx1,x2

`
n1

n` n1
τx11,x12 .

Back to the proof of the converse in such a spacial case, since the confusability set is
defined by a single linear constraint, any convex combinations of non-confusable joint types
is still outside the confusability set, in particular, pPx1,¨¨¨ ,xL . We hence reduce the problem to
the symmetric case and the rest of the proof is handled by Theorem 65. J

14.2 Towards a unifying converse

We feel it unusual that we have to use drastically different techniques to prove the symmetric
and the asymmetric parts of the converse. We suspect that it can be proved in a unifying
way using the duality between CP and coP tensors which is the source of contradiction in
our current proof of the symmetric case.

Note that the duality holds only in the space of symmetric tensors. To be specific,
traditionally, CP and coP tensors are defined to be symmetric. And they are dual cones
living in the ambient space Symbn . If we extend the definitions of CP and coP tensors to
the set of all (including asymmetric) tensors, then it is unclear whether duality still holds.
Indeed, there are pairs of cones which are dual to each other in a certain ambient space but
are no long dual in a larger ambient space. In a word, the ambient space that the dual cone
is computed with respect to matters much.

We provide evidence showing that the symmetric and asymmetric parts of the converse
can be potentially unified by the Plotkin-type bound since duality between CP and coP
tensors–the core of the double counting argument–fortunately holds in larger generality.
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Duality. We know that CPbL
|X | and coPbL

|X | are dual cones in the space SymbL
|X | of symmetric

tensors. However, pPx1,¨¨¨ ,xL (associated to the equicoupled subcode extracted using hyper-
graph Ramsey’s theorem) is not guaranteed to be symmetric. We claim that duality still
holds in the space TenbL

|X | of all tensors. Hence, copositive witness Q of a non-CP pPx1,¨¨¨ ,xL

exists even when pPx1,¨¨¨ ,xL is asymmetric.
B Claim 75. CPbL

|X | and coPbL
|X | are dual cones in TenbL

|X | .
Proof. By definition,

´

CPbL
|X |

¯˚

:“
!

B P TenbL
|X | : @A P CPbL

|X | , xA,By ě 0
)

.

Note that it is important that B is now taken from TenbL
|X | rather than SymbL

|X |. Also recall
that

coPbL
|X | :“

!

B P TenbL
|X | : @x P R

|X |
ě0 ,

@

B, xbL
D

ě 0
)

.

Note that this definition differs from the standard one 95 and this cone is potentially larger.16

The goal is to show
´

CPbL
|X |

¯˚

“ coPbL
|X | .

The direction coP|X | Ď
´

CPbL
|X |

¯˚

is trivial, since the definitions of CP and coP tensors
remain the same but the dual cone is computed w.r.t. a larger space. The new dual cone
we are considering is no smaller than the old one. The inclusion that used to hold in the
traditional setting should continue to hold now. Indeed, take any B P coPbL

|X |, for any
A “

ř

i x
bL
i P CPbL

|X | , where xi P R
|X |
ě0 ,

xA,By “

C

ÿ

i

xbLi , B

G

“
ÿ

i

@

B, xbLi
D

.

Since B P coPbL
|X | , by definition, all

@

B, xbLi
D

’s are non-negative, hence so is xA,By. Therefore

B P
´

CPbL
|X |

¯˚

.

Now we show
´

CPbL
|X |

¯˚

Ď coPbL
|X |. Take any B P

´

CPbL
|X |

¯˚

and any x P R|X |ě0 . Then
@

B, xbL
D

ě 0, since xbL P CPbL
|X | and B P

´

CPbL
|X |

¯˚

. This finishes the whole proof. C

I Remark 76. In general, duality does not necessarily hold in a larger ambient space. Namely,
computing dual cone w.r.t. a larger space may result in a larger cone. For instance, PSD|X |
cone is known to be self dual in Sym|X |, i.e., PSD˚|X | “ PSD|X |. However, in Mat|X |, PSD˚|X |
is strictly containing PSD|X |. To see this, note that any skew symmetric matrix B is in
PSD˚|X | since for any PSD (hence symmetric) matrix A, xA,By “ 0 ě 0; while B is not
necessarily PSD.

Define, for σ P SL, σ pPx1,¨¨¨ ,xLq :“ Pxσp1q,¨¨¨ ,xσpLq . Though duality holds for all symmetric
and asymmetric tensors, we do not have a full proof of the converse using duality, since we
have trouble bounding the term

xσ pPx1,¨¨¨ ,xLq , Qy “ xPx1,¨¨¨ ,xL , σpQqy

which does not necessarily equal xPx1,¨¨¨ ,xL , Qy for asymmetric Q.
We next show that such asymmetric witness Q does exist and is sometimes necessary in

the sense that, some asymmetric (hence non-CP) tensors have no symmetric witness. This
means that the dual cone of coP w.r.t. TenbL

|X | (instead of SymbL
|X |) is strictly larger.

16 Indeed, we will see shortly that it is strictly larger.
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Asymmetric distributions without symmetric coP witness. Let L “ 2. We construct
an asymmetric self-coupling Px1,x2 P ∆

`

r3s2
˘

without symmetric coP witness Q such that
xPx1,x2 , Qy ă 0. Indeed, let

Px1,x2 “

»

–

4
9

7
48

11
144

3
16

1
16 0

5
144

1
24

1
144

fi

fl .

Note that

Px1 “ Px2 “

»

–

2
3
1
4
1
12

fi

fl “: Px.

Then

Px1,x2 ` P
J
x1,x2

2 “

»

–

4
9

1
6

1
18

1
6

1
16

1
48

1
18

1
48

1
144

fi

fl “

»

–

2
3
1
4
1
12

fi

fl

“ 2
3

1
4

1
12
‰

“ PxP
J
x .

If there was a symmetric coP Q such that xPx1,x2 , Qy ă 0, then

@

PxP
J
x , Q

D

“
1
2
`

xPx1,x2 , Qy `
@

PJx1,x2
, Q

D˘

“
1
2
`

xPx1,x2 , Qy `
@

Px1,x2 , Q
J
D˘

“xPx1,x2 , Qy ă 0.

However, PxP
J
x is CP, so

@

PxP
J
x , Q

D

ě 0, which is a contradiction.

15 Sanity checks

Consider the bit-flip model.
In this section, we are going to verify the correctness of our characterization of the

generalized Plotkin point using the bit-flip model as a running example. For L “ 3, 4,17
we will numerically recover Blinovsky’s [9] characterization of the Plotkin point PL´1 for
pp, L´ 1q-list decoding. In particular, P2 “ 1{4 and P3 “ 5{16.

15.1 L “ 3
We first consider pL´ 1q-list decoding for L´ 1 “ 2, i.e., L “ 3. It is known that the Plotkin
point at L´ 1 “ 2 is P2 “ 1{4.

Fix any input distribution Px :“ Bernpwq “
„

1´ w
w



for 0 ă w ă 1. We first compute

J b3 pPxq, Kb3 pPxq. Let pi,j,k,` :“ Px1,x2,x3,ypi, j, k, `q where i, j, k, ` P t0, 1u.

J b3 pPxq “
!

Px1,x2,x3 P ∆
´

t0, 1u3
¯

: Pxi “ Px, i “ 1, 2, 3
)

17For L “ 2, i.e., the unique decoding case, the work [43] already recovers the classic Plotkin bound
P1 “ 1{4.
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“

$

’

’

’

’

’

&

’

’

’

’

’

%

Px1,x2,x3 :

pi,j,k ě 0, i, j, k P t0, 1u
ř

i,j,k pi,j,k “ 1
ř

i,j pi,j,1 “ w
ř

i,k pi,1,k “ w
ř

j,k p1,j,k “ w

,

/

/

/

/

/

.

/

/

/

/

/

-

.

Kb3pPxq

“

#

Px1,x2,x3 “ rPx2,x2,x3,ysx1,x2,x3 P J b3pPxq :
Px1,x2,x3,y P ∆

´

t0, 1u4
¯

Pxi,yp0, 1q ` Pxi,yp1, 0q ď p, i “ 1, 2, 3

+

“

$

’

’

’

’

’

&

’

’

’

’

’

%

rPx1,x2,x3,ysx1,x2,x3
P J b3pPxq :

pi,j,k,` ě 0, i, j, k, ` P t0, 1u
ř

i,j,k,` pi,j,k,` “ 1
ř

j,k p0,j,k,1 ` p1,j,k,0 ď p
ř

i,k pi,0,k,1 ` pi,1,k,0 ď p
ř

i,j pi,j,0,1 ` pi,j,1,0 ď p

,

/

/

/

/

/

.

/

/

/

/

/

-

.

pJ bpL`1qpPxq and pKbpL`1qpPxq are extended formulations of J bLpPxq and KbLpPxq,
respectively.

pJ b4pPxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Px1,x2,x3,y :

pi,j,k,` ě 0, i, j, k, ` P t0, 1u
ř

i,j,k,`Pt0,1u pi,j,k,` “ 1
ř

i,j pi,j,1 “ w
ř

i,k pi,1,k “ w
ř

j,k p1,j,k “ w

,

/

/

/

/

/

.

/

/

/

/

/

-

.

pKb4pPxq “

$

’

&

’

%

Px1,x2,x3,y P
pJ b4pPxq :

ř

j,kPt0,1u p0,j,k,1 ` p1,j,k,0 ď p
ř

i,kPt0,1u pi,0,k,1 ` pi,1,k,0 ď p
ř

i,jPt0,1u pi,j,0,1 ` pi,j,1,0 ď p

,

/

.

/

-

.

To verify the value of Plotkin point PL´1 at L “ 3, it suffices to verify that, if w “ 1{2,
then Pb3

x R Kb3pPxq iff p ă 1{4, since we know that the optimizing input distribution when
codewords are weight unconstrained is uniform. To this end, define a hyperplane

H
`

Pb3
x

˘

:“
!

Px1,x2,x3,y P
pJ b4pPxq : rPx1,x2,x3,ysx1,x2,x3 “ Pb3

x

)

.

Note that Pb3
x R Kb3 pPxq is equivalent to H

`

Pb3
x

˘

X pKb4pPxq “ H. Since H
`

Pb3
x

˘

depends
on w and pKb4pPxq depends on w, p, we write them as Hpwq and pKb4pw, pq, respectively, for
simplicity.

We claim that the Plotkin point PL´1 is precisely the optimal value of the following
LP, i.e., the smallest p˚ such that the hyperplane Hp1{2q has no intersection with the
corresponding high-dimensional polytope pKb4p1{2, p˚q.

min p

subject to Hp1{2q X pKb4p1{2, pq ‰ H.

Equivalently, collecting all constraints together, we want to find the minimal p so that the
polytope (the feasible region of the LP) defined by the following constraints is nonempty.

Px1,x2,x3,y P
pJ b4pPxq
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rPx1,x2,x3,ysx1,x2,x3 “P
b3
x

ÿ

j,kPt0,1u
p0,j,k,1 ` p1,j,k,0 ďp

ÿ

i,kPt0,1u
pi,0,k,1 ` pi,1,k,0 ďp

ÿ

i,jPt0,1u
pi,j,0,1 ` pi,j,1,0 ďp.

Expanding everything out and noting that the first constraint regarding constant composition
Px1,x2,x3,yP pJb4pPxq

is redundant since it is the same as the constraint rPx1,x2,x3,ysx1,x2,x3 “

Pb3
x P J b3pPxq, we simplify the defining (in)equalities of the polytope as follows,

pi,j,k,` ě0, i, j, k, ` P t0, 1u
ÿ

i,j,k,`Pt0,1u
pi,j,k,` “1

pi,j,k,0 ` pi,j,k,1 “1{8, i, j, k P t0, 1u
ÿ

j,kPt0,1u
p0,j,k,1 ` p1,j,k,0 ďp

ÿ

i,kPt0,1u
pi,0,k,1 ` pi,1,k,0 ďp

ÿ

i,jPt0,1u
pi,j,0,1 ` pi,j,1,0 ďp,

since Pb3
x pi, j, kq “ PxpiqPxpjqPxpkq “ 1{8 for all i, j, k P t0, 1u.

Let

p :“
“

p0,0,0,0 ¨ ¨ ¨ p1,1,1,1
‰J
.

The LP can be written in a compact form as
»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

p “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
1{8
1{8
1{8
1{8
1{8
1{8
1{8
1{8

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

–

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

fi

fl p ď

»

–

p

p

p

fi

fl

p ě0.

Observe that as p increases, the linear system becomes monotonically easier to be satisfied.
Checked by Mathematica, the above LP is feasible if p ą 1{4 (and hence the distribution
„

1{2
1{2

b3

is confusable) and is infeasible if p ă 1{4 (and hence
„

1{2
1{2

b3

is not confusable).

Therefore, the pp, L´ 1q-list decoding capacity hits 0 precisely at p “ 1{4.
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15.2 L “ 4

For L “ 4, one can obtain a similar LP whose infeasibility is equivalent to H

˜

„

1{2
1{2

b4¸

and pKb5

˜

„

1{2
1{2

b4

, p

¸

being disjoint.

»

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

p “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
1{16
1{16
1{16
1{16
1{16
1{16
1{16
1{16
1{16
1{16
1{16
1{16
1{16
1{16
1{16
1{16

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

„

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



p ď

„

p
p
p
p



,

p ě0,

where

p “
“

p0,0,0,0,0 ¨ ¨ ¨ p1,1,1,1,1
‰J
.

One can numerically check that the above LP is feasible if p ą 5{16 and infeasible otherwise.
In general, to check whether

H

˜

„

1{2
1{2

bL
¸

X pKbpL`1q

˜

„

1{2
1{2

bL

, p

¸

is empty, it boils down to checking the infeasibility of a linear program with 2L`1 variables and
2L`1` 1` 2L`L constraints, 2L`1 of them for non-negativity of probability mass, 1 of them
for probability mass summing up to one, 2L of them for ensuring that Px1,¨¨¨ ,xL P J bLpPxq is
a pPx, Lq-self-coupling, L of them for the non-confusability guarantee: Px1,¨¨¨ ,xL R KbLpPxq.
The size of the program (or the number of defining constraints of the corresponding polytope)
grows exponentially in L. However, since we are concerned with absolute constant L in this
paper, for any given L, the feasibility can be certified in constant time. Observe that, since
the LP in the bit-flip setting is so structured, one can write it down explicitly by hand for
any given L.

16 Blinovsky [9] revisited

In this section, we fully recover Blinovsky’s [9] results on characterization of the Plotkin
points PL´1 for pp, L´ 1q-list decoding under the bit-flip model.

Let φ be the standard bijection between t0, 1u and t´1, 1u,

φ : F2 Ñ t´1, 1u
0 ÞÑ 1
1 ÞÑ ´1.
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We identify the type τx P PpnqpF2q of a binary length-n vector x P Fn2 using a t´1, 1u-valued
random variable x defined as

Pr rx “ ´1s “ wtH pxq

n
, Pr rx “ 1s “ 1´ wtH pxq

n
.

Indeed the distribution Px P Ppnqpt´1, 1uq of x is the type of the image φpxq of x under φ.

Pxpφp0qq “ τxp0q, Pxpφp1qq “ τxp1q.

For a collection of vectors x1, ¨ ¨ ¨ , xk P Fn2 , their joint type is now represented by a sequence
of random variables x1, ¨ ¨ ¨ ,xk with joint distribution Px1,¨¨¨ ,xk , for any x1, ¨ ¨ ¨ , xk P t´1, 1u,

Px1,¨¨¨ ,xkpx1, ¨ ¨ ¨ , xkq “Pr rx1 “ x1, ¨ ¨ ¨ ,xk “ xks

“τx1,¨¨¨ ,xk
pφ´1px1q, ¨ ¨ ¨ , φ

´1pxkqq.

It is easy to check that, for x1, x2 P Fn2 ,

dH px1, x2q

n
“

1
2

˜

1´ E
px1,x2q„Px1,x2

rx1x2s

¸

. (102)

Indeed

RHS “1
2
`

1´ τx1,x2
p0, 1q ¨ p´1q ´ τx1,x2

p1, 0q ¨ p´1q ´ τx1,x2
p0, 0q ¨ 1´ τx1,x2

p1, 1q ¨ 1
˘

“
1
2

ˆ

1` dH px1, x2q

n
´

ˆ

1´ dH px1, x2q

n

˙˙

“LHS.

Let

r :“ E
px1,¨¨¨ ,xLq„t´1,1uL

r|x1 ` ¨ ¨ ¨ ` xL|s , (103)

be the expected translation distance of a 1-dimensional unbiased random walk after L steps.
Each xi (1 ď i ď L) is independent and uniformly distributed on t´1, 1u.

I Theorem 77. The Plotkin point PL´1 for pp, L´ 1q-list decoding is given by

PL´1 “
1´ r{L

2 .

I Remark 78. Note that the formula in Theorem 77 agrees with the one by Blinovsky. To
see this, we first compute r. For odd L “ 2k ` 1, where k P Zą0 is some strictly positive
integer, it is easy to see that

r “E r|x1 ` ¨ ¨ ¨ ` xL|s

“

k
ÿ

i“0

2
`

L
i

˘

2L pL´ 2iq.

Recall that, by binomial theorem (Fact (18)),

2L “
L
ÿ

i“0

ˆ

L

i

˙

“

k
ÿ

i“0
2
ˆ

L

i

˙

.
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Now we simplify the formula in Theorem 77.

PL´1 “
1
2 ´

r

2L

“

k
ÿ

i“0

`

L
i

˘

2L ´

k
ÿ

i“0

ˆ

1´ 2i
L

˙

`

L
i

˘

2L

“

k
ÿ

i“0

2i
L

`

L
i

˘

2L

“

k
ÿ

i“1

i

L

L
i

`

L´1
i´1

˘

2L´1 (104)

“
1

2L´1

k´1
ÿ

i“0

ˆ

L´ 1
i

˙

“
1

2L´1
1
2

ˆ

2L´1 ´

ˆ

L´ 1
k

˙˙

(105)

“
1
2 ´ 2´L

ˆ

2k
k

˙

,

where Eqn. (104) is by Fact (16); Eqn. (105) follows from binomial theorem (Fact (18))
again,

2L´1 “

ˆ

2k
k

˙

` 2
k´1
ÿ

i“0

ˆ

2k
i

˙

.

I Lemma 79 (Lower bound). The Plotkin point PL´1 for pp, L ´ 1q-list decoding is lower
bounded by

PL´1 ě
1´ r{L

2 .

That is, if p ă PL´1, then the pp, L ´ 1q-list decoding capacity is positive, i.e., there is an
infinite sequence of pp, L´ 1q-list decodable codes of positive rate.

Proof. We will show that if p “ 1´ r`ηL
2 ă

1´r{L
2 for any η ą 0, then the product distribution

BernbL p1{2q lies outside the corresponding confusability set KbL pBern p1{2qq. Using the
framework developed in this paper, a random code of a suitable positive rate in which
each codeword is sampled independently and uniformly from Tx pBernp1{2qq is pp, L´ 1q-list
decodable w.h.p.

The proof is by contradiction. If Px1,¨¨¨ ,xL :“ BernbL p1{2q is confusable, then, by the
definition 37 of confusability of tuples, an L-tuple of distinct codewords x1, ¨ ¨ ¨ , xL of joint
type τx1,¨¨¨ ,xL

“ Px1,¨¨¨ ,xL can be covered by a ball of radius np centered around some y P Fn2 .
Equivalently, by the definition 38 of confusability of distributions, there is a refinement
Px1,¨¨¨ ,x,y P ∆

´

t´1, 1uL`1
¯

such that rPx1,¨¨¨ ,xL,ysx1,¨¨¨ ,xL “ Px1,¨¨¨ ,xL , and for every i P rLs,

Pxi,yp0, 1q ` Pxi,yp1, 0q ď p.

This means that for every i P rLs,

E rxiys ě
r ` η

L
,
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by the relation (Eqn. (102)) between Hamming distance between vectors and correlation of
their random variable representations. Hence

E rpx1 ` ¨ ¨ ¨ ` xLqys ě r ` η. (106)

The t´1, 1u-valued random variable y that has the largest correlation with x1 ` ¨ ¨ ¨ ` xL is
y “ MAJ px1, ¨ ¨ ¨ ,xLq, where

MAJ : t´1, 1uL Ñ t´1, 1u
px1, ¨ ¨ ¨ , xLq ÞÑ sgn px1 ` ¨ ¨ ¨ ` xLq .

is the majority function. To see this, just expand the above expectation,

E rpx1 ` ¨ ¨ ¨ ` xLqys “
ÿ

x1,¨¨¨ ,xL,yPt´1,1u
Px1,¨¨¨ ,xL,ypx1, ¨ ¨ ¨ , xL, yqpx1 ` ¨ ¨ ¨ ` xLqy

“
ÿ

x1,¨¨¨ ,xLPt´1,1u
Px1,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq

ÿ

yPt´1,1u
Py|x1,¨¨¨ ,xLpy|x1, ¨ ¨ ¨ , xLqpx1 ` ¨ ¨ ¨ ` xLqy.

Note that, each summand

Py|x1,¨¨¨ ,xLp1|x1, ¨ ¨ ¨ , xLqpx1 ` ¨ ¨ ¨ ` xLq ´ Py|x1,¨¨¨ ,xLp´1|x1, ¨ ¨ ¨ , xLqpx1 ` ¨ ¨ ¨ ` xLq

is maximized when the conditional probability mass of y is concentrated on the singleton
sgnpx1 ` ¨ ¨ ¨ ` xLq,

Py|x1,¨¨¨ ,xLpsgnpx1 ` ¨ ¨ ¨ ` xLq|x1, ¨ ¨ ¨ , xLq “ 1, Py|x1,¨¨¨ ,xLp´ sgnpx1 ` ¨ ¨ ¨ ` xLq|x1, ¨ ¨ ¨ , xLq “ 0.

In this case, each summand attains its maxima

sgnpx1 ` ¨ ¨ ¨ ` xLqpx1 ` ¨ ¨ ¨ ` xLq “ |x1 ` ¨ ¨ ¨ ` xL| .

Overall, the corresponding maximal correlation is precisely

Epx1 ` ¨ ¨ ¨ ` xLqMAJpx1, ¨ ¨ ¨ ,xLq

“
ÿ

x1,¨¨¨ ,xLPt´1,1u
Px1,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq |x1 ` ¨ ¨ ¨ ` xL|

“ E
px1,¨¨¨ ,xLq„Px1,¨¨¨ ,xL

r|x1 ` ¨ ¨ ¨ ` xL|s . (107)

Using the above observation, we get

r “ E
px1,¨¨¨ ,xLq„t´1,1uL

r|x1 ` ¨ ¨ ¨ ` xL|s (108)

“E rpx1 ` ¨ ¨ ¨ ` xLqMAJ px1, ¨ ¨ ¨ ,xLqs (109)
ěr ` η, (110)

Eqn. (108) is by the definition of r (Eqn. (103)). Eqn. (109) follows from Eqn. (107). Eqn.
(110) is by Eqn. (110). We hence reach a contradiction which finishes the proof. J

I Lemma 80 (Upper bound). The Plotkin point PL´1 for pp, L´ 1q-list decoding is upper
bounded by

PL´1 ď
1´ r{L

2 .

That is, if p ą PL´1, then no positive rate is possible, i.e, there is no infinite sequence of
pp, L´ 1q-list decodable codes of positive rate.
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Proof. Our goal is to show that if p ą PL´1, then CL´1 “ 0. Suppose p “ 1´ r´ηL
2 for a

constant η ą 0.
We are going to show that any infinite sequence of codes Cn each of positive rate is not

pp, L ´ 1q-list decodable. First, by the previous argument in last section, we can extract
a sequence of subcodes C1n Ď Cn of positive rate satisfying that, for every tuple of distinct
codewords x1, ¨ ¨ ¨ , xL P C1 and x1, ¨ ¨ ¨ , xL P F2,

ˇ

ˇ

ˇ
τx1,¨¨¨ ,xL

px1, ¨ ¨ ¨ , xLq ´ pPx1,¨¨¨ ,xLpx1, ¨ ¨ ¨ , xLq
ˇ

ˇ

ˇ
ď ζ

for some symmetric distribution pPx1,¨¨¨ ,xL P ∆
`

XL
˘

and some positive constant ζ ą 0. In
favour of the proceeding calculations, it suffices to take

ζ “
L

pL´ 1qr2L`2 η. (111)

To show non-list decodability of C1 (and hence C), we will argue that there is a list
pxi1 , ¨ ¨ ¨ , xiLq P

`C1
L

˘

that can be covered by a ball of radius np centered around the point
MAJ

`

xi1 , ¨ ¨ ¨ , xiL
˘

. The proof is by contradiction. Suppose this is not the case, i.e., no list
can be covered by the ball centered at its majority. Define, for pi1, ¨ ¨ ¨ , iLq P

“

2nR
‰L,

Qi1,¨¨¨ ,iL “ pxi1 ` ¨ ¨ ¨ ` xiLq ¨MAJ pxi1 , ¨ ¨ ¨ ,xiLq ´ r.

We will provide a strictly negative upper bound and a non-negative lower bound on

Q :“ E
pi1,¨¨¨ ,iLq„r2nRsL

E
pxi1 ,¨¨¨ ,xiL q„Pxi1 ,¨¨¨ ,xiL

rQi1,¨¨¨ ,iLs,

which is a contradiction and finishes the proof.

Upper bound on Q. By the assumption of list decodability, for every L-tuple of distinct
codewords x1, ¨ ¨ ¨ , xL P C1, there is a codeword xi (i P rLs) among them such that

dH pxi,MAJ px1, ¨ ¨ ¨ , xLqq ě np.

Equivalently,

E rxiMAJ px1, ¨ ¨ ¨ ,xLqs ď
r ´ η

L
.

Since pPx1,¨¨¨ ,xL is symmetric and C1 is
´

ζ, pPx1,¨¨¨ ,xL

¯

-equicoupled, we expect that the
term E rxjMAJ px1, ¨ ¨ ¨ ,xLqs À r´η

L for all j P rLs, potentially with some slack depending
on ζ. Indeed, for any j P rLsz tiu (without loss of generality, assume j ą i),

|E rxiMAJ px1, ¨ ¨ ¨ ,xLqs ´ E rxjMAJ px1, ¨ ¨ ¨ ,xLqs|

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x1,¨¨¨ ,xLPt´1,1u

τx1,¨¨¨ ,xL
pφ´1

px1q, ¨ ¨ ¨ , φ
´1
pxLqqxiMAJ px1, ¨ ¨ ¨ , xLq (112)

´
ÿ

x1,¨¨¨ ,xLPt´1,1u

τx1,¨¨¨ ,xL
pφ´1

px1q, ¨ ¨ ¨ , φ
´1
pxLqqxjMAJ px1, ¨ ¨ ¨ , xLq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x1,¨¨¨ ,xLPt´1,1u

τx1,¨¨¨ ,xL
pφ´1

px1q, ¨ ¨ ¨ , φ
´1
pxLqqxiMAJ px1, ¨ ¨ ¨ , xLq
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´
ÿ

xσp1q,¨¨¨ ,xσpLqPt´1,1u

τx1,¨¨¨ ,xL
pφ´1

pxσp1qq, ¨ ¨ ¨ , φ
´1
pxσpLqqqxσpjqMAJ

`

xσp1q, ¨ ¨ ¨ , xσpLq
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(113)

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x1,¨¨¨ ,xLPt´1,1u

τx1,¨¨¨ ,xL
pφ´1

px1q, ¨ ¨ ¨ , φ
´1
pxLqqxiMAJ px1, ¨ ¨ ¨ , xLq

´
ÿ

x1,¨¨¨ ,xLPt´1,1u

τx1,¨¨¨ ,xL
pφ´1

pxσp1qq, ¨ ¨ ¨ , φ
´1
pxσpLqqqxiMAJ px1, ¨ ¨ ¨ , xLq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x1,¨¨¨ ,xLPt´1,1u

»

—

—

–

ˆ

τx1,¨¨¨ ,xL
pφ´1

px1q, ¨ ¨ ¨ , φ
´1
pxLqq

´ pPx1,¨¨¨ ,xLpφ
´1
px1q, ¨ ¨ ¨ , φ

´1
pxLqq

˙

`

ˆ

pPx1,¨¨¨ ,xLpφ
´1
pxσp1qq, ¨ ¨ ¨ , φ

´1
pxσpLqqq

´τx1,¨¨¨ ,xL
pφ´1

pxσp1qq, ¨ ¨ ¨ , φ
´1
pxσpLqqq

˙

fi

ffi

ffi

fl

xiMAJ px1, ¨ ¨ ¨ , xLq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(114)

ď

¨

˚

˚

˝

ˇ

ˇ

ˇ

ˇ

τx1,¨¨¨ ,xL
pφ´1

px1q, ¨ ¨ ¨ , φ
´1
pxLqq

´ pPx1,¨¨¨ ,xLpφ
´1
px1q, ¨ ¨ ¨ , φ

´1
pxLqq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

pPx1,¨¨¨ ,xLpφ
´1
pxσp1qq, ¨ ¨ ¨ , φ

´1
pxσpLqqq

´τx1,¨¨¨ ,xL
pφ´1

pxσp1qq, ¨ ¨ ¨ , φ
´1
pxσpLqqq

ˇ

ˇ

ˇ

ˇ

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x1,¨¨¨ ,xLPt´1,1u

xiMAJ px1, ¨ ¨ ¨ , xLq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(115)

ď2ζ ¨ 2L

L
E

px1,¨¨¨ ,xLq„t´1,1uL
rpx1 ` ¨ ¨ ¨ ` xLqMAJ px1, ¨ ¨ ¨ ,xLqs (116)

“
2L`1

L
ζ E
px1,¨¨¨ ,xLq„t´1,1uL

r|x1 ` ¨ ¨ ¨ ` xL|s

“
2L`1r

L
ζ. (117)

In the above chain of equalities and inequalities, we used the following facts.
1. In Eqn. (113), σ P SL denotes the transposition which swaps the i-th and j-th element,

σ “

ˆ

1 ¨ ¨ ¨ i´ 1 i i` 1 ¨ ¨ ¨ j ´ 1 j j ` 1 ¨ ¨ ¨ L

1 ¨ ¨ ¨ i´ 1 j i` 1 ¨ ¨ ¨ j ´ 1 i j ` 1 ¨ ¨ ¨ L

˙

.

2. Eqn. (114) is due to symmetry of pPx1,¨¨¨ ,xL .
3. Inequality (115) is by triangle inequality of absolute value.
4. Eqn. (116) follows since

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x1,¨¨¨ ,xLPt´1,1u
xiMAJ px1, ¨ ¨ ¨ , xLq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2L
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
L

L
ÿ

i“1

ÿ

x1,¨¨¨ ,xLPt´1,1u

1
2LxiMAJ px1, ¨ ¨ ¨ , xLq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

and the expectation is over xi’s which are independent and uniformly distributed on
t´1, 1u.

Now, for any j P rLsz tiu,

E rxjMAJ px1, ¨ ¨ ¨ ,xLqs “E rxiMAJ px1, ¨ ¨ ¨ ,xLqs ` pE rxjMAJ px1, ¨ ¨ ¨ ,xLqs
´ E rxiMAJ px1, ¨ ¨ ¨ ,xLqsq

ď
r ´ η

L
`

2L`1r

L
ζ.

Thus we have

E rpx1 ` ¨ ¨ ¨ ` xLqMAJ px1, ¨ ¨ ¨ ,xLqs ďr ´ η `
2L`1rpL´ 1q

L
ζ.
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That is,

E rQ1,¨¨¨ ,Ls “E rpx1 ` ¨ ¨ ¨ ` xLqMAJ px1, ¨ ¨ ¨ ,xLq ´ rs

ď ´ η `
2L`1rpL´ 1q

L
ζ

“´
η

2 , (118)

where the last Eqn. (118) follows by the choice of ζ (Eqn. (111)). Since the above calculations
work for any list x1, ¨ ¨ ¨ , xL P C1 of distinct codewords, we have that for pi1, ¨ ¨ ¨ , iLq P

`

rM 1
s

L

˘

,
the same bound holds,

E rQi1,¨¨¨ ,iLs ď ´
η

2 .

For lists pi1, ¨ ¨ ¨ , iLq P rM 1s
L that are not all distinct, we use the trivial bound,

E rQi1,¨¨¨ ,iLs “E r|xi1 ` ¨ ¨ ¨ ` xiL | ´ rs
ďL´ r.

Overall we have

Q “ E
pi1,¨¨¨ ,iLq„r2nRsL

E rQi1,¨¨¨ ,iLs

“
1

2nRL

¨

˝

ÿ

i1,¨¨¨ ,iLPr2nRs distinct

Qi1,¨¨¨ ,iL `
ÿ

i1,¨¨¨ ,iLPr2nRs not distinct

Qi1,¨¨¨ ,iL

˛

‚

ď
1

2nRL

„

2nR
`

2nR ´ 1
˘

¨ ¨ ¨
`

2nR ´ L` 1
˘

´

´
η

2

¯

`
`

2nRL ´ 2nR
`

2nR ´ 1
˘

¨ ¨ ¨
`

2nR ´ L` 1
˘˘

pL´ rq



ă0. (119)

The last inequality (119) holds if

ˇ

ˇC1
ˇ

ˇ ą max
"

2pL´ 1q, 2L`1L!pL` rq
η

*

,

by similar calculations to Sec. 13.2.

Lower bound on Q. Following the calculations in the proof of generalized Plotkin bound for
list decoding, we have

Q` r

“ E
pi1,¨¨¨ ,iLq„r2nRsL

E r|xi1 ` ¨ ¨ ¨ ` xiL |s

“
1

2nRL
ÿ

i1,¨¨¨ ,iLPr2nRs

ÿ

x1,¨¨¨ ,xLPt´1,1u
τx
i1
,¨¨¨ ,x

iL
pφ´1px1q, ¨ ¨ ¨ , φ

´1pxLqq |x1 ` ¨ ¨ ¨ ` xL|

“
1

2nRL
ÿ

i1,¨¨¨ ,iLPr2nRs
x1,¨¨¨ ,xLPt´1,1u

1
n

n
ÿ

j“1
1!
xi1
pjq“φ´1px1q

) ¨ ¨ ¨1!
xiL

pjq“φ´1pxLq
) |x1 ` ¨ ¨ ¨ ` xL| (120)
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“
1
n

n
ÿ

j“1

ÿ

x1,¨¨¨ ,xLPt´1,1u

L
ź

`“1

¨

˝

1
2nR

ÿ

iPr2nRs

1txipjq“φ´1px`qu

˛

‚|x1 ` ¨ ¨ ¨ ` xL| (121)

“
1
n

n
ÿ

j“1

ÿ

x1,¨¨¨ ,xLPt´1,1u

L
ź

`“1
P pjqx pφ´1px`qq |x1 ` ¨ ¨ ¨ ` xL| (122)

“ E
j„rns

»

– E
´

xpjq1 ,¨¨¨ ,xpjq
L

¯

„

´

P
pjq
x

¯bL

”
ˇ

ˇ

ˇ
xpjq1 ` ¨ ¨ ¨ ` xpjqL

ˇ

ˇ

ˇ

ı

fi

fl . (123)

In the above calculations, we used the following definitions and facts.
1. Eqn. (120) follows from the definition of joint types.
2. Eqn. (121) is obtained by rearranging terms.
3. In Eqn. (122), as before, we let, for j P rns, x P F2,

P pjqx pxq “
1

2nR
ÿ

iPr2nRs

1txipjq“xu

denote the empirical distribution of the j-th column of C1 when viewed as an M 1 ˆ n

matrix.
In expression (123), the j-th summand can be viewed as the translation distance of a non-lazy
one-dimensional random walk after L steps. The walker moves left (x “ 1) with probability
P
pjq
x p1q and moves right (x “ 0) with probability P

pjq
x p0q. It is not hard to check that

the expected translation distance is minimized when the walker is unbiased, i.e., when
P
pjq
x p1q “ P

pjq
x p0q “ 1{2. This is formally justified in Appendix C. Hence, for every j P rns,

E
´

xpjq1 ,¨¨¨ ,xpjq
L

¯

„

´

P
pjq
x

¯bL

”
ˇ

ˇ

ˇ
xpjq1 ` ¨ ¨ ¨ ` xpjqL

ˇ

ˇ

ˇ

ı

´ r ě 0.

Since the above bound is valid for every j P rns, it is still valid averaged over j „ rns. Hence
we have Q ě 0. J

17 GV rate vs. cloud rate

In this section, we are concerned with the question of unique decoding (special case where
L´ 1 “ 1) under the bit-flip model.

In [43], bounds on achievable rates of codes for general adversarial channels are provided.
A Gilbert–Varshamov-type expression was obtained using a purely random code construction,
and a rate lower bound (we call cloud rate) that generalizes the GV-type expression was given
by a cloud code construction. We evaluate both bounds under the bit-flip model. We show
that the Gilbert–Varshamov-type bound for general adversarial channels indeed coincide
with the classic GV bound in this particular setting. We also provide a convex program for
evaluating the cloud rate.

We use the probability vector
“

Pxp1q ¨ ¨ ¨ Pxp|X |q
‰J to denote a distribution Px P ∆pX q.

Take any input distribution

Px “ Bernpwq “
„

1´ w
w



,

from ∆pt0, 1uq, we first explicitly compute the basic objects we are concerned with in this
paper.
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∆ :“∆pt0, 1uq

“

"

Px1,x2 P R2ˆ2 : Px1,x2px1, x2q ě 0, @x1, x2
ř

x1,x2
Px1,x2px1, x2q “ 1

*

“

"„

a c

d b



P R2ˆ2 : a, b, c, d ě 0
a` b` c` d “ 1

*

“

"„

a c

1´ a´ b´ c b



P R2ˆ2 : a, b, c ě 0
a` b` c ď 1

*

.

J pwq :“J
ˆ„

1´ w
w

˙

“tPx1,x2 P ∆: Px1 “ Px2 “ Pxu

“

$

’

’

&

’

’

%

„

a c

d b



P R2ˆ2 :

a, b, c, d ě 0
a` b` c` d “ 1
d` b “ w

c` b “ w

,

/

/

.

/

/

-

“

"„

1´ w ´ d d

d w ´ d



P R2ˆ2 : 0 ď d ď mintw, 1´ wu
*

.

Kpw, pq :“K
ˆ„

1´ w
w

˙

“tPx1,x2 P J pwq : Px1,x2p0, 1q ` Px1,x2p1, 0q ď 2pu

“

"„

1´ w ´ d d

d w ´ d



P R2ˆ2 : 0 ď d ď mintw, 1´ w, pu
*

.

Since CP2 “ DNN2, we have

CP2pwq

“CP2 X J pwq

“

"„

w ´ d d

d 1´ w ´ d



: 0 ď d ď mintw, 1´ wu, pw ´ dqp1´ w ´ dq ´ d2 ě 0
*

“

"„

w ´ d d

d 1´ w ´ d



: 0 ď d ď w ´ w2
*

.

Note that to ensure CP2pwqzKpw, pq ‰ H, we need

0 ă p ă 1{4, w P
´

1´
?

1´4p
2 , 1`

?
1´4p
2

¯

.

In other words, 0 ă w ă 1 and 0 ă p ă w ´ w2. In this case,

Kpw, pq “
"„

1´ w ´ d d

d w ´ d



P R2ˆ2 : 0 ď d ď p

*

.

Actually, if the above conditions hold, then when 1{3 ď w ă 1, the boundary of Kpw, pq is p

and the boundary of CP2pwq is w´w2. Note that the right boundary
„

p1´ wq2 w ´ w2

w ´ w2 w2



“

„

1´ w
w

b2

of CP2pwq is the only distribution in CP2pwq of CP-rank-1.
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GV rate. We first state the GV-type expression given by in [43].

I Lemma 81 (Gilbert–Varshamov rate). For a general adversarial channel given by A “
 

X , λx,S, λs,Y,Wy|x,s
(

, its unique decoding capacity is at least

RGV “ max
PxPλx

min
Px1,x2PKpPxq

Ipx; x1q,

where the mutual information is calculated using Px1,x2 .

We now evaluate the above expression under the bit-flip model.

RGV “ max
PxPλx

min
Px1,x2PKpPxq

Ipx; x1q

“ max
»

–

1´ w
w

fi

flP∆

min
»

–

1´ w ´ d d

d w ´ d

fi

flPKpw,pq

D

˜

„

1´ w ´ d d

d w ´ d



›

›

›

›

›

„

1´ w
w

b2¸

“ max
0ăwă1

min
0ďdďp

pw ´ dq log w ´ d
w2 ` 2d log d

wp1´ wq ` p1´ w ´ dq log 1´ w ´ d
p1´ wq2

“ max
0ăwă1

pw ´ pq log w ´ p
w2 ` 2p log p

wp1´ wq ` p1´ w ´ pq log 1´ w ´ p
p1´ wq2

“p1{2´ pq log 1{2´ p
p1{2q2 ` 2p log p

p1{2qp1´ 1{2q ` p1´ 1{2´ pq log 1´ 1{2´ p
p1´ 1{2q2

“1´Hp2pq.

This matches the classic GV bound given a greedy volume packing argument.

Cloud rate. We now state the cloud rate expression given by [43].

I Lemma 82 (Cloud rate).

For a general adversarial channel A “
 

X , λx,S, λs,Y,Wy|x,s
(

, its unique decoding capacity
is at least

Rcloud “ max
PxPλx

max
Px1,x2PCP2pPxqzKpPxq

max
Pu,Px|u :

”

PuP
b2
x|u

ı

x1,x2
“Px1,x2

min
Pu,x1,x1PKcloudpPu,xq

D
´

Pu,x1,x2

›

›

›
PuP

b2
x|u

¯

,

where

KcloudpPu,xq :“

$

’

’

&

’

’

%

rPu,x1,x2,s1,s2,ysu,x1,x2 P ∆
`

U ˆ X 2˘ :

Pu,x1,x2,s1,s2,y P ∆
`

U ˆ X 2
ˆ S2

ˆ Y
˘

Ps1 , Ps2 P λs

Pu,x1,s1,y “ Pu,xPs1|u,x1Wy|x1,s1

Pu,x2,s2,y “ Pu,xPs2|u,x2Wy|x2,s2

,

/

/

.

/

/

-

.

I Remark 83. The reason that [43] has to define a different confusability set Kcloud when
cloud code is using is that as a part of the code design, the distributions Pu, Pu|x are revealed
to every party, including the adversary, hence he may be able to inject noise patterns that are
potentially more malicious compared with the case where he does not have such knowledge.
We refer the readers to the proof in [43].

ITCS 2020



51:74 Generalized List Decoding

In the bit-flip setting, it is easy to verify that

KcloudpPu,xq “

"

Pu,x1,x2 P ∆
`

U ˆ X 2˘ : Pu,x1 “ Pu,x2 “ Pu,x
Px1,x2p0, 1q ` Px1,x2p1, 0q ď 2p

*

“

$

’

’

’

’

’

&

’

’

’

’

’

%

p P R|U |ˆ2ˆ2 :

pu,x1,x2 ě 0, @u, x1, x2
ř

u,x1,x2
pu,x1,x2 “ 1

ř

x2
pu,x1,x2 “ pu,x1 , @u, x1

ř

x1
pu,x1,x2 “ pu,x2 , @u, x2

ř

u pu,0,1 ` pu,1,0 ď 2p

,

/

/

/

/

/

.

/

/

/

/

/

-

.

We use the notation pu,x1,x2 :“ Pu,x1,x2pu, x1, x2q and pu,x :“ Pu,xpu, xq for all u P U , x1, x2 P

t0, 1u. The third maximization is over all extensions which correspond to CP decompositions
of Px1,x2 . Note that for a CP matrix, its CP decomposition is not necessarily unique, even if we
require the decomposition to meet the CP-rank [23]. A CP decomposition of a CP distribution
can contain an arbitrarily large number of terms. Here we focus on decompositions which
meet the CP-rank of Px1,x2 . That is, |U | “ CP-rankpPx1,x2q.

Note that the objective function KL-divergence also equals

D
´

Pu,x1,x2

›

›

›
PuP

b2
x|u

¯

“ I px1; x2|uq ,

where the mutual information is w.r.t. Pu,x1,x2 .
Note that even if we could show Rcloud ď RGV, this does not mean cloud codes will never

attain a rate larger than the GV bound. It only means that the cloud rate expression we
have cannot take values larger than the GV bound. This is because our bounds are only
achievable, but we do not have matching upper bounds. Indeed, this is an extremely difficult
question even under simple models.

Actually all CP decompositions meeting the CP-rank of a CP distribution can be computed.

For a CP-rank-2 distribution
„

1´ w ´ b b

b w ´ b



P CP2 pwqzK pw, pq where b ‰ w ´ w2, we

write its CP decomposition as
„

1´ w ´ b b

b w ´ b



“α

„

1´ u
u

b2

` β

„

1´ v
v

b2

“

„

αp1´ uq2 ` βp1´ vq2 αup1´ uq ` βvp1´ vq
αup1´ uq ` βvp1´ vq αu2 ` βv2



.

Solving the equation in terms of b and u, we have

α :“αpw, b, uq “ w ´ b´ w2

u2 ` w ´ 2uw ´ b ,

β :“βpw, b, uq “ 1´ α “ pu´ wq2

u2 ` w ´ 2uw ´ b ,

v :“vpw, b, uq “ b´ w ` uw

w ´ u
,

where u P
”

0, b
1´w

ı

Y
“

w´b
w , 1

‰

.
Any such decomposition gives rise to a joint distribution PuP

b2
x|u which is a 2 ˆ 2 ˆ 2

tensor.

Pu“0P
b2
x|u“0 “

„

αp1´ uq2 αup1´ uq
αup1´ uq αp1´ uq2



, Pu“1P
b2
x|u“1 “

„

βv2 βvp1´ vq
βvp1´ vq βp1´ vq2



.
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It also induces a distribution Pu,x.

Pu,x “

„

αp1´ uq αu

βp1´ vq βv



.

Now for any CP decomposition Pu,x1,x2 of a CP distribution Px1,x2 “

„

w ´ b b

b 1´ w ´ b



,

the inner minimization can be written as minimizing a convex function over a polytope.

minp Dpp}PuP
b2
x|uq

subject to p P KcloudpPu,xq
.

It can be expanded in the following explicit form.

minp p0,0,0 log p0,0,0
αp1´uq2 ` p0,0,1 log p0,0,1

αup1´uq ` p0,1,0 log p0,1,0
αup1´uq ` p0,1,1 log p0,1,1

αu2

`p1,0,0 log p1,0,0
βp1´vq2 ` p1,0,1 log p1,0,1

βvp1´vq ` p1,1,0 log p1,0,0
βvp1´vq ` p1,1,1 log p1,1,1

βv2

subject to pi,j,k ě 0, @i, j, k
ř

i,j,k pi,j,k “ 1

*

p P ∆
´

t0, 1u3
¯

p0,0,0 ` p0,0,1 “ αp1´ uq
p0,1,0 ` p0,1,1 “ αu

p1,0,0 ` p1,0,1 “ βp1´ vq
p1,1,0 ` p1,1,1 “ βv

,

/

/

.

/

/

-

rPu,x1,x2su,x1
“ Pu,x

p0,0,0 ` p0,1,0 “ αp1´ uq
p0,0,1 ` p0,1,1 “ αu

p1,0,0 ` p1,1,0 “ βp1´ vq
p1,0,1 ` p1,1,1 “ βv

,

/

/

.

/

/

-

rPu,x1,x2su,x2
“ Pu,x

p0,0,1 ` p0,1,0 ` p1,0,1 ` p1,1,0 ď 2p.

Note that it is implied by the given constraints that pu,x1,x2 “ pu,x2,x1 . Also, the p.m.f.
constraint

ř

u,x1,x2
pu,x1,x2 “ 1 is actually redundant. Hence the problem can be simplified

as follows.
minp p0,0,0 log p0,0,0

αp1´uq2 ` 2p0,0,1 log p0,0,1
αup1´uq ` p0,1,1 log p0,1,1

αu2

`p1,0,0 log p1,0,0
βp1´vq2 ` 2p1,0,1 log p1,0,1

βvp1´vq ` p1,1,1 log p1,1,1
βv2

subject to ´pi,j,k ď 0, @i, j, k
p0,0,0 ` p0,0,1 “ αu

p0,0,1 ` p0,1,1 “ αp1´ uq
p1,0,0 ` p1,0,1 “ βv

p1,0,1 ` p1,1,1 “ βp1´ vq
p0,0,1 ` p1,0,1 ď p.

Let D˚pw, b, uq denote the optimal value of the above minimization. The final cloud rate is
given by

max
0ăwă1

max
păbďw´w2

max
uPr0, b

1´w sYr
w´b
w ,1s

D˚pw, b, uq,

where the first maximization corresponds to finding the optimal input distribution
„

1´ w
w



,

second maximization corresponds to finding the optimal CP distribution
„

1´ w ´ b b

b w ´ b



outside Kpwq, and the third optimization corresponds to finding the optimal CP-decomposition

α

„

1´ u
u

b2

` β

„

1´ v
v

b2

of the optimal CP distribution.
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18 Concluding remarks and open problems

In this paper, we study the list decoding problem on general adversarial channels for both
large and small list sizes. Given any channel, for large (yet constant) list sizes, we prove
the list decoding theorem which identifies the fundamental limit of list decoding. For small
(yet arbitrary universal constant) list sizes, we characterize when positive rate list decodable
codes are possible.

Many open questions are left after this work is done. We list some of them for future
study.
1. In this paper, we made no attempt towards understanding channels with arbitrary

transition distributions Wy|x,s (instead of only those corresponding to deterministic
bivariate functions). Pushing our results to such a general setting remains an intriguing
open question.

2. Other adversarial channels under further assumptions, e.g., online (causal) channels,
channels with feedback, channels with bounded memory, etc., are less understood. There
are results regarding each of these topics under very restricted models, e.g., bit-flips
[13, 6], deletions [12], etc..

3. We do not have any nontrivial upper bound on pL´ 1q-list decoding capacity for general
adversarial channels. Existing upper bounds for error correction codes seem tricky to
generalize. A reasonable starting point might be to extend the classic Elias–Bassalygo
bound [4] whose proof has a similar spirit as the Plotkin bound.

4. Given any adversarial channel, when we are “below the Plotkin point” (i.e., there are
non-confusable CP distributions), can we construct explicit codes of positive rate? We
know that random codes are list decodable w.h.p..
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A CP tensors and coP tensors

A.1 Tensor products

I Definition 84 (Tensor product). For two tensors A P Tenbmn , B P Tenb`n , Their tensor
product is defined as

AbB :“ rA pi1, ¨ ¨ ¨ , imqB pj1, ¨ ¨ ¨ , j`qs P Tenbpm``qn .

I Definition 85 (Frobenius inner product, Frobenius norm). For two tensors A,B P Tenbmn ,
Their inner product is defined as

xA,By :“
ÿ

i1,¨¨¨ ,imPrns

Api1, ¨ ¨ ¨ , imqBpi1, ¨ ¨ ¨ , imq.

The Frobenius norm is defined as }A}F :“
a

xA,Ay.

I Definition 86 (Hadamard product). For two tensors A,B P Tenbmn , Their Hadamard
product is defined as

A ˝B :“ rApi1, ¨ ¨ ¨ , imqBpi1, ¨ ¨ ¨ , imqs P Tenbmn .

http://arxiv.org/abs/1905.04660
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A.2 Tensor decomposition
I Definition 87 (Canonical decomposition). For a tensor A P Tenbmn , its canonical decom-
position has form

A “
r
ÿ

j“1
αj

m
â

i“1
xj,i,

where each xj,i P Sn´1
2 . The smallest r for A to admit such a decomposition is called the

rank of A. If A is symmetric, then

A “
r
ÿ

j“1
αjx

bm
j

is an analog of the eigendecomposition of symmetric matrices. The smallest r is called the
symmetric rank of A.

I Conjecture 88. For A P Symbmn , rankpAq “ sym-rankpAq.

I Remark 89. It is known to be true if rankpAq ď m.

I Definition 90 (Tucker decomposition). For a tensor A P Tenbmn , the Tucker decomposition
has form

A “
r1
ÿ

j1“1
¨ ¨ ¨

rm
ÿ

jm“1
αj1,¨¨¨ ,jm

m
â

i“1
xji,j .

It is an analogy of the singular value decomposition of matrices.

A tensor A P Tenbmn has npm´ 1qn´1 eigenvalues. A may have non-real eigenvalues even
if A is symmetric. If an eigenvector is real, then the corresponding eigenvalue is also real.
Such eigenvalues are called H-eigenvalues. They always exist for even-order tensors.

A.3 Special tensors
I Definition 91 (NN tensors). A tensor is said to be non-negative if each of its entry is
non-negative. The set of order-m dimension-n non-negative tensors is denoted by NNbmn

I Definition 92 (PSD tensors, PD Tensors). For even m, A P Tenbmn is positive semidefinite
(PSD) if xA, xbmy ě 0 for any x P Rn. A is positive definite (PD) if the above inequality is
strict for all x ‰ 0.

The sets of PSD and PD tensors is denoted by PSDbmn and PDbmn , respectively.

I Definition 93 (CP tensors, CP tensor rank). A tensor P P Tenbmn is said to be completely
positive if for some r ě 1, there are component-wise non-negative vectors p1, ¨ ¨ ¨ , pr P R

n
ě0

such that

P “
r
ÿ

j“1
pbm
j

.

The set of CP tensors is denoted by CPbmn . The least r such that P has a completely positive
decomposition is called the CP-rank of P . If span tP1, ¨ ¨ ¨ , Pru “ Rn then P is said to be
strongly CP.
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I Fact 94. Verifying if a symmetric non-negative tensor is CP is NP-hard.

I Definition 95 (coP tensors). A P Symbmn is copositive if xA, xby ě 0 for all x P Rně0. The
set of copositive tensors is denoted by coPbmn .

I Theorem 96 (Duality). CPbmn and coPbmn are closed convex pointed cones with nonempty
interior in Symbmn . For m ě 2, n ě 1, they are dual to each other.

I Definition 97 (DNN tensors). For even m, A P Symbmn is doubly non-negative (DNN)
if A is entry-wise non-negative and xA, xbmy is a sum-of-square as a polynomial in the
components of x.

I Fact 98. The double non-negativity of a tensor can be verified in polynomial time using
SDP.

I Fact 99. The following inclusion relations between different sets of special tensors hold.
1. PSDbmn Ď coPbmn .
2. CPbmn Ď DNNbmn Ď NNbmn Ď coPbmn Ď Symbmn .

B Hypergraph Ramsey numbers

Let Rprqk ps1, ¨ ¨ ¨ , skq denote the smallest size of an r-uniform hypergraph such that for any
k-colouring, there must be a monochromatic clique of size si for some i P rks.

Define tower function t1pxq “ x and ti`1pxq “ 2tipxq.

I Lemma 100 (Properties of hypergraph Ramsey numbers). 1. For any i P rks, and sj ě r

(j ‰ i),

R
prq
k ps1, ¨ ¨ ¨ , si´1, r, si`1, ¨ ¨ ¨ , skq “R

prq
k´1ps1, ¨ ¨ ¨ , si´1, si`1, ¨ ¨ ¨ , skq.

2. For any σ P Sk,

R
prq
k ps1, ¨ ¨ ¨ , skq “R

prq
k psσp1q, ¨ ¨ ¨ , sσpkqq.

I Lemma 101 (Finiteness of hypergraph Ramsey numbers). For any positive integers r, k, s1,
¨ ¨ ¨ , sk, the hypergraph Ramsey number Rprqk ps1, ¨ ¨ ¨ , skq is finite. In particular, it satisfies
the following recursive inequalities.

R
prq
k ps1, ¨ ¨ ¨ , skq ď 1`Rpr´1q

k

´

R
prq
k ps1 ´ 1, s2, ¨ ¨ ¨ , skq, R

prq
k ps1, s2 ´ 1, ¨ ¨ ¨ , skq, ¨ ¨ ¨ ,

¨ ¨ ¨ , R
prq
k ps1, s2, ¨ ¨ ¨ , sk ´ 1q

¯

,

R
prq
k ps1, ¨ ¨ ¨ , skq ď 1`

k
ÿ

i“1
R
pr´1q
k

´

R
prq
k ps1, ¨ ¨ ¨ , si´1, si ´ 1, si`1, ¨ ¨ ¨ , skq, ¨ ¨ ¨ ,

¨ ¨ ¨ , R
prq
k ps1, ¨ ¨ ¨ , si´1, si ´ 1, si`1, ¨ ¨ ¨ , skq

¯

,

R
prq
k ps1, ¨ ¨ ¨ , skq ďR

prq
k´1

´

s1, ¨ ¨ ¨ , sk´2, R
prq
2 psk´1, skq

¯

,
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I Lemma 102 (Bounds on hypergraph Ramsey numbers).
1. For any s, t,

R
prq
2 ps, tq ď2p

R
pr´1q
2 ps´1,t´1q

r´1 q.

2. For r ě 3, there are constants c, c1 ą 0 such that

tr´1pc ¨ s
2q ďR

prq
2 ps, sq ď trpc

1 ¨ sq.

3. For s ą k ě 2, there are constants c, c1 ą 0 such that

trpc ¨ kq ă R
prq
k ps, ¨ ¨ ¨ , sq ă trpc

1 ¨ k log kq.

C Expected translation distance of a one-dimensional random walk

I Lemma 103. Consider a random walk x1, ¨ ¨ ¨ ,xL of length L. Each xi (1 ď i ď L) is an
independent and identically distributed t´1, 1u-valued random variable satisfying

Pr rxi “ 1s “ p, Pr rxi “ ´1s “ 1´ p.

Without loss of generality, assume p ě 1{2. Then, we have that the expected translation
distance E r|x1 ` ¨ ¨ ¨ ` xL|s of this random walk after L steps is minimized when p “ 1{2.

Proof. Create another walk x11, ¨ ¨ ¨ ,x1L with p “ 1{2 that is coupled with x1, ¨ ¨ ¨ ,xL in the
following way.

Pr
“

xi “ 1|x1i “ 1
‰

“ 1, Pr
“

xi “ 1|x1i “ ´1
‰

“ 2p´ 1.

It is easy to see that the distribution of x1, ¨ ¨ ¨ ,xL is preserved under this coupling.

Pr rxi “ 1s “Pr
“

x1i “ 1
‰

Pr
“

xi “ 1|x1i “ 1
‰

` Pr
“

x1i “ ´1
‰

Pr
“

xi “ 1|x1i “ ´1
‰

“
1
2 ¨ 1`

1
2 ¨ p2p´ 1q

“p.

Now,

E r|x1 ` ¨ ¨ ¨ ` xL|s ´ E
“
ˇ

ˇx11 ` ¨ ¨ ¨ ` x1L
ˇ

ˇ

‰

“
ÿ

dPt´L,´L`2,¨¨¨ ,L´2,Lu

ÿ

x1,¨¨¨ ,xLPt´1,1u
řL
i“1 xi“d

Pr
“

x11 “ x1, ¨ ¨ ¨ ,x1L “ xL
‰

E

«
ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

i“1

xi

ˇ

ˇ

ˇ

ˇ

ˇ

´ |d|

ˇ

ˇ

ˇ

ˇ

ˇ

x11 “ x1, ¨ ¨ ¨ ,x1L “ xL

ff

.

For each translation distance d P t´L,´L` 2, ¨ ¨ ¨ , L´ 2, Lu and trajectory x1, ¨ ¨ ¨ , xL P

t´1, 1u such that
řL
i“1 xi “ d, let ` :“ ti P rLs : xi “ ´1u. Note 2pd` `q “ L. We have

E

«
ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

i“1
xi

ˇ

ˇ

ˇ

ˇ

ˇ

´ |d|

ˇ

ˇ

ˇ

ˇ

ˇ

x11 “ x1, ¨ ¨ ¨ ,x1L “ xL

ff

“pp2p´ 1q ¨ 1` p1´ p2p´ 1qq ¨ p´1qq`´ p´`q

“2p2p´ 1q`,

which is non-negative and attains its minima 0 when p “ 1{2. This finishes the proof. J
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D Blinovsky [9] vs. Alon–Bukh–Polyanskiy [2]

In this section we show that, though differing ostensibly, the formulas of the Plotkin points
for pp, L ´ 1q-list decoding given by Blinovsky and Alon–Bukh–Polyanskiy actually agree
with each other. The proof is essentially due to the user Sean Clark on Mathematics Stack
Exchange [14].

For L “ 2k or 2k ` 1 for some positive integer k P Zą0, Blinovsky’s formula is

PL´1 “
k
ÿ

i“1

`2pi´1q
i´1

˘

i
2´2i;

while Alon–Bukh–Polyanskiy wrote it as

PL´1 “
1
2 ´ 2´2k´1

ˆ

2k
k

˙

.

We are going to show that

I Lemma 104. For any k ě 1,

k
ÿ

i“1

`2pi´1q
i´1

˘

i
2´2i “

1
2 ´ 2´2k´1

ˆ

2k
k

˙

.

Proof. To see the above two expressions are always evaluated to the same value, we first
massage the above equation. Multiplying 22k`2 on both sides, shifting the summation index
and rearranging terms, we have

k´1
ÿ

i“0

`2i
i

˘

i` 122pk´iq “ 22k`1 ´ 2
ˆ

2k
k

˙

.

Adding p
2k
k q

k`1 on both sides, we get

k
ÿ

i“0

`2i
i

˘

i` 122pk´iq “22k`1 ´

ˆ

2´ 1
k ` 1

˙ˆ

2k
k

˙

“22k`1 ´
2k ` 1
k ` 1

ˆ

2k
k

˙

“22k`1 ´

ˆ

2k ` 1
k ` 1

˙

(124)

“22k`1 ´

ˆ

2k ` 1
k

˙

, (125)

where Eqn. (124) is by Fact (16) and Eqn. (125) is by Fact (15).
To show

k
ÿ

i“0

`2i
i

˘

i` 122pk´iq “ 22k`1 ´

ˆ

2k ` 1
k

˙

, (126)

we conduct induction on k.
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1. When k “ 0, LHS = 1 = RHS.
2. Assume (126) holds for certain k ě 1. We want to show it also holds for k ` 1.

k`1
ÿ

i“0

`2i
i

˘

i` 122pk`1´iq “22
k
ÿ

i“0

`2i
i

˘

i` 122pk´iq `

`2pk`1q
k`1

˘

k ` 2

“22
ˆ

22k`1 ´

ˆ

2k ` 1
k

˙˙

`

`2k`2
k`1

˘

k ` 2 (127)

“22pk`1q`1 ´ 2
ˆˆ

2k ` 1
k

˙

`

ˆ

2k ` 1
k ` 1

˙˙

`

`2k`2
k`1

˘

k ` 2 (128)

“22pk`1q`1 ´

ˆ

2´ 1
k ` 2

˙ˆ

2k ` 2
k ` 1

˙

(129)

“22pk`1q`1 ´
2k ` 3
k ` 2

ˆ

2k ` 2
k ` 1

˙

“22pk`1q`1 ´

ˆ

2pk ` 1q ` 1
pk ` 1q ` 1

˙

. (130)

Eqn. (127), (128), (129) and (130) follow from induction hypothesis, Fact (15), Fact (17)
and Fact (16), respectively. Hence Eqn. (126) holds for k ` 1 as well. J
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