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Abstract
We focus on a uniform partition problem in a population protocol model. The uniform partition
problem aims to divide a population into k groups of the same size, where k is a given positive
integer. In the case of k = 2 (called uniform bipartition), a previous work clarified space complexity
under various assumptions: 1) an initialized base station (BS) or no BS, 2) weak or global fairness,
3) designated or arbitrary initial states of agents, and 4) symmetric or asymmetric protocols, except
for the setting that agents execute a protocol from arbitrary initial states under weak fairness in
the model with an initialized base station. In this paper, we clarify the space complexity for this
remaining setting. In this setting, we prove that P states are necessary and sufficient to realize
asymmetric protocols, and that P + 1 states are necessary and sufficient to realize symmetric
protocols, where P is the known upper bound of the number of agents. From these results and the
previous work, we have clarified the solvability of the uniform bipartition for each combination of
assumptions. Additionally, we newly consider an assumption on a model of a non-initialized BS and
clarify solvability and space complexity in the assumption. Moreover, the results in this paper can
be applied to the case that k is an arbitrary integer (called uniform k-partition).
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1 Introduction

1.1 The Background
A population protocol model [6, 9] is an abstract model for devices with heavily limited
computation and communication capability. The devices are represented as passively moving
agents, and a set of agents is called a population. In this model, if two agents approach,
an interaction happens between them. At the time of the interaction, the two agents
update their states. By repeating such interactions, agents proceed with computation. The
population protocol model has many application examples such as sensor networks and
molecular robot networks. For example, one may construct a network to investigate the
ecosystem by attaching sensors to a flock of wild small animals such as birds. In this system,
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8:2 Uniform Partition in Population Protocol Model Under Weak Fairness

Table 1 The minimum number of states to solve the uniform bipartition problem under global
fairness.

BS initial states of agents symmetry upper bound lower bound paper

initialized BS
designated asymmetric 3 3

[32]

symmetric 3 3

arbitrary asymmetric 4 4
symmetric 4 4

non-initialized BS
designated asymmetric 3 3

symmetric 3 3

arbitrary asymmetric unsolvable this
symmetric unsolvable paper

no BS
designated asymmetric 3 3

[32]symmetric 4 4

arbitrary asymmetric unsolvable
symmetric unsolvable

Table 2 The minimum number of states to solve the uniform bipartition problem under weak
fairness.

BS initial states of agents symmetry upper bound lower bound paper

initialized BS
designated asymmetric 3 3 [32]

symmetric 3 3

arbitrary asymmetric P P this
symmetric P + 1 P + 1 paper

non-initialized BS
designated asymmetric 3 3 [32]

symmetric 3 3

arbitrary asymmetric unsolvable this
symmetric unsolvable paper

no BS
designated asymmetric 3 3

[32]symmetric unsolvable

arbitrary asymmetric unsolvable
symmetric unsolvable

sensors exchange information with each other when two sensors approach sufficiently close.
By repeating such information exchange, the system eventually grasps the entire environment
of the flock. Another example is a system of molecular robots [26]. In this system, a large
number of robots cooperate in a human body to achieve an objective (e.g. carrying medicine).
To realize such systems, various fundamental protocols have been proposed in the population
protocol model [11]. For example, there are leader election protocols [5, 14, 15, 17, 23, 28],
counting protocols [10, 12, 13], majority protocols [7, 20], naming protocols [16], and so on.

In this paper, we study a uniform k-partition problem, which divides a population into k
groups of the same size, where k is a given positive integer. The uniform k-partition problem
has some applications. For example, we can save the battery by switching on only some
groups. Another example is to execute multiple tasks by assigning different tasks to each
group simultaneously. Protocols for the uniform k-partition problem can be used to attain
fault-tolerance [18].

As a previous work, Yasumi et al. [32, 33] studied space complexity of uniform partition
when the number of partitions is two (called uniform bipartition). In the paper, they
considered four types of assumptions: 1) an initialized base station (BS) or no BS, 2)
designated or arbitrary initial states of agents, 3) asymmetric or symmetric protocols, and 4)
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Table 3 The minimum number of states to solve the uniform k-partition problem.

fairness BS initial states of agents symmetry upper bound lower bound

weak fairness single arbitrary asymmetric P P

symmetric P + 1 P + 1
global fairness no designated symmetric 3k − 2 [30] k (truism)

global or weak fairness. A BS is a special agent that is distinguishable from other agents and
has powerful capability. An initialized BS means that the BS has a designated initial state
in the initial configuration. The BS enables us to construct efficient protocols, though it is
sometimes difficult to implement. The assumption of initial states bear on the requirement of
initialization and the fault-tolerant property. If a protocol requires designated initial states, it
is necessary to initialize all agents to execute the protocol. Alternatively, if a protocol solves
the problem with arbitrary initial states, we do not need to initialize agents other than the
BS. This implies that, when agents transit to arbitrary states by transient faults, the protocol
can reach the desired configuration by initializing the BS. Symmetry of protocols is related
to the power of symmetry breaking in the population. Asymmetric protocols may include
asymmetric transitions that make agents with the same states transit to different states. This
needs a mechanism to break symmetry among agents and its implementation is not easy with
heavily limited devices. Symmetric protocols do not include such asymmetric transitions.
Fairness is an assumption of interaction patterns. Though weak fairness guarantees only that
every pair of agents interact infinitely often, global fairness makes a stronger assumption on
the order of interactions.

For most combinations of assumptions, Yasumi et al. [32] clarified the solvability of the
uniform bipartition problem and the minimum number of states to solve the problem. Tables
1 and 2 show the solvability of the uniform bipartition. These tables show the number of
states to solve the uniform bipartition problem under various assumptions, where P is the
known upper bound of the number of agents. The remaining case for an initialized BS and
no BS is a protocol with an initialized BS and arbitrary initial states under weak fairness.
For this case, they proved only that P − 2 states are necessary. In this paper, we will give
tight lower and upper bounds of the number of states for this case. In addition, recently
Burman et al. [16] have considered the case with a non-initialized BS, which is distinguished
from other agents but has an arbitrary initial state, for a naming problem. Because Yasumi
et al. [32] did not consider the case, we also consider the case in this paper.

For the general case of an arbitrary number of partitions, Yasumi et al. [32] proposed
a symmetric protocol with no BS and designated initial sates under global fairness. The
protocol uses 3k − 2 states for an agent to construct k groups of the same size. However, no
protocol has been proposed for other combinations of assumptions.

1.2 Our Contributions

Our main contribution is to clarify the solvability of the uniform bipartition problem with
arbitrary initial states under weak fairness in the model with an initialized BS. A previous
work [32] proved only that P − 2 states are necessary for each agent, where P is the known
upper bound of the number of agents. In this paper, we improve the lower bound from
P − 2 states to P states for asymmetric protocols and from P − 2 states to P + 1 states for
symmetric protocols. Additionally, we propose an asymmetric protocol with P states, and
obtain a symmetric protocol with P + 1 states by a scheme proposed in [12].
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8:4 Uniform Partition in Population Protocol Model Under Weak Fairness

Another contribution is to clarify the solvability in case of a non-initialized BS for the
uniform bipartition problem. For designated initial states, the protocol with an initialized
BS, which is proposed in [32] can still work even if the BS is non-initialized. In this paper,
we prove the impossibility with arbitrary initial states in case of non-initialized BS.

By combining these results with the previous work [32], we have clarified the tight upper
and lower bounds on the number of states for an agent to solve the uniform bipartition
problem for all combinations of assumptions (see Tables 1 and 2).

For the case of an initialized BS, arbitrary initial states, and weak fairness, it is interesting
to compare these results with those of naming protocols [16]. A naming protocol aims to
assign different states to all agents, and hence it can be regarded as a uniform P -partition
protocol (the size of each group is zero or one). Burman et al. [16] prove that, to realize
naming protocols in the same setting, P states are necessary and sufficient for asymmetric
protocols and P + 1 states are necessary and sufficient for symmetric protocols. That is,
naming protocols have the same space complexity as uniform k-partition protocols. Clearly
naming protocols (or uniform P -partition protocols) require P states to assign different
states to P agents. Interestingly uniform bipartition protocols still require P states in this
setting. On the other hand, the number of states is reduced to three or four when we assume
designated initial states or global fairness.

Protocols proposed in this paper are available for the uniform k-partition problem, where
k is a given integer. That is, P states and P +1 states are sufficient to realize asymmetric and
symmetric protocols, respectively, to solve the uniform k-partition problem from arbitrary
initial states under weak fairness in the model with an initialized BS. Since the uniform
bipartition is a special case of the uniform k-partition, the lower bound for the uniform
bipartition problem can be applied to the uniform k-partition problem. That is, P states
and P + 1 states are necessary to realize asymmetric and symmetric protocols, respectively,
under the assumption. Therefore, we have clarified the tight upper and lower bounds of the
number of states for the uniform k-partition problem under the assumption (see Table 3).

Due to space constraints, we have omitted some proofs. See [31] for the full version of
this paper.

1.3 Related Works
The population protocol model was first introduced in [6, 8]. In those papers, the class of
computable predicates in this model was studied. After that, many fundamental tasks have
been studied such as leader election, counting, and majority. Those problems have been
studied under various assumptions such as existence of a base station, fairness, symmetry of
protocols, and initial states of agents. Many researchers have considered the leader election
problem for both designated and arbitrary initial states. For designated initial states, leader
election protocols have been studied intensively to minimize the time and space complexity
[1, 3, 14, 15, 19, 21, 22, 27]. Alistarh et al. [3] proposed an algorithm that solves the problem
in polylogarithmic stabilization time with polylogarithmic states. In [19], it was clarified that
Ω(n) parallel time is necessary (i.e., Ω(n2) interactions are necessary) to solve the problem
with probability 1. After that, many researchers focused on solving the problem with high
probability and shrink the time and space complexity [14, 15, 21, 22, 27]. On the other
hand, for arbitrary initial states, self-stabilizing and loosely-stabilizing protocols are proposed
[9, 17, 23, 28]. The counting problem, which aims to count the number of agents in the
population, was introduced by [13]. After that, some researchers have studied the protocol to
minimize the space complexity of the counting protocols [12, 24]. In [10], a time and space
optimal protocol was proposed. The majority problem is also a fundamental problem that
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aims to decide majority of initial states. For the majority problem, many protocols have been
studied [1, 2, 4, 7, 15, 20]. Although there are some difference in the model (existence of
failure, deterministic or probabilistic solution, and so on), these works also aim to minimize
the time and space complexity. Moreover, in recent years, Burman et al. [16] proposed a
naming protocol which assigns a different state (called name) to each agent. In the paper,
they completely clarify the solvability of the naming protocol under various assumptions.

The uniform k-partition problem and a similar problem have been considered in [16, 25,
29, 30]. Lamani et al. [25] studied a group composition problem, which aims to divide a
population into groups of designated sizes. They assume that half of agents make interactions
at the same time and that all agents know n. Therefore the protocol does not work in our
setting. In [30], Yasumi et al. proposed a uniform k-partition protocol that requires 3k − 2
states without the BS under global fairness. Moreover, some of the authors extended the
result of [30] to the R-generalized partition problem, where the protocol divides all agents into
k groups whose sizes follow a given ratio R [29]. Since they assume designated initial states
and global fairness, the protocol does not work in our setting. In addition, Delporte-Gallet
et al. [18] proposed a protocol solving the k-partition problem with less uniformity. This
protocol guarantees that each group includes at least n/(2k) agents, where n is the number
of agents. This protocol requires k(k + 3)/2 states under global fairness.

2 Definitions

2.1 Population Protocol Model
A population is a collection of pairwise interacting agents, denoted by A. A protocol P(Q, δ)
consists of Q and δ, where Q is a set of possible states of agents and δ is a set of transitions on
Q. Each transition in δ is denoted by (p, q)→ (p′, q′), which means that, when an agent with
state p and an agent with state q interact, they transit their states to p′ and q′, respectively.
Transition (p, q)→ (p′, q′) is null if both p = p′ and q = q′ hold. We omit null transitions in
descriptions of algorithms. Transition (p, q)→ (p′, q′) is asymmetric if both p = q and p′ 6= q′

hold; otherwise, the transition is symmetric. Protocol P(Q, δ) is symmetric if every transition
in δ is symmetric. Protocol P(Q, δ) is asymmetric if every transition in δ is symmetric or
asymmetric. Protocol P(Q, δ) is deterministic if, for any pair of states (p, q) ∈ Q×Q, exactly
one transition (p, q)→ (p′, q′) exists in δ. We consider only deterministic protocols in this
paper. A global state of a population is called a configuration, defined as a vector of (local)
states of all agents. A state of agent a in configuration C, is denoted by s(a,C). Moreover,
when C is clear from the context, we simply denote s(a). Transition of configurations is
described in the form C → C ′, which means that configuration C ′ is obtained from C by a
single transition of a pair of agents. For configurations C and C ′, if there exists a sequence
of configurations C = C0, C1, . . . , Cm = C ′ such that Ci → Ci+1 holds for any i (0 ≤ i < m),
we say C ′ is reachable from C, denoted by C ∗−→ C ′. An infinite sequence of configurations
E = C0, C1, C2, . . . is an execution of a protocol if Ci → Ci+1 holds for any i (i ≥ 0). An
execution E is weakly-fair if every pair of agents a and a′ interacts infinitely often. An
execution segment is a subsequence of an execution.

In this paper, we assume that a single BS exists in A. The BS is distinguishable from
other non-BS agents, although non-BS agents cannot be distinguished. That is, state set Q
is divided into state set Qb of a BS and state set Qp of non-BS agents. The BS has unlimited
resources, in contrast with resource-limited non-BS agents. That is, we focus on the number
of states |Qp| for non-BS agents and do not care the number of states |Qb| for the BS. For
this reason, we say a protocol uses x states if |Qp| = x holds. Throughout the paper, we
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assume that non-BS agents have arbitrary initial states. On the other hand, as for the
BS, we consider two cases, an initialized BS and a non-initialized BS. When we assume an
initialized BS, the BS has a designated initial state while all non-BS agents have arbitrary
initial states. When we assume a non-initialized BS, the BS also has an arbitrary initial
state. For simplicity, we use agents only to refer to non-BS agents in the following sections.
To refer to the BS, we always use the BS (not an agent). In the initial configuration, the BS
and non-BS agents do not know the number of agents, but they know the upper bound P of
the number of agents.

2.2 Uniform k-Partition Problem

Let Ap be a set of all non-BS agents. Let f : Qp → {color1, color2, . . . , colork} be a function
that maps a state of a non-BS agent to colori(1 ≤ i ≤ k). We define a color of a ∈ Ap as
f(s(a)). We say agent a ∈ Ap belongs to the i-th group if f(s(a)) = colori holds.

Configuration C is stable if there is a partition {G1, G2, . . . , Gk} of Ap that satisfies the
following condition:

1. ||Gi| − |Gj || ≤ 1 for any i and j, and
2. For all C∗ such that C ∗−→ C∗, each agent in Gi belongs to the i-th group at C∗ (i.e., at

C∗, any agent a in Gi satisfies f(s(a)) = colori).

An execution E = C0, C1, C2, . . . solves the uniform k-partition problem if E includes a
stable configuration Ct. If every weakly-fair execution E of protocol P solves the uniform
k-partition problem, we say protocol P solves the uniform k-partition problem under weak
fairness.

3 Impossibility Results for Initialized BS and Weak Fairness

In this section, we give impossibility results of asymmetric and symmetric protocols for the
uniform bipartition problem (i.e., k = 2). Clearly these impossibility results can be applied
to the uniform k-partition problem for k > 2. Recall that, for an initialized BS, we assume
weak fairness and arbitrary initial states.

Since we consider the case of k = 2, function f is defined as f : Qp → {color1, color2}. In
this section, we assign colors red and blue to color1 and color2, respectively, and we define f
as function f : Qp → {red, blue} that maps a state of a non-BS agent to red or blue. We
say agent a ∈ Ap is red (resp., blue) if f(s(a)) = red (resp., f(s(a)) = blue) holds. We say s
is a c-state if f(s) = c holds. For c ∈ {red, blue}, we define c-agent as an agent that has a
c-state. We define red = blue and blue = red.

3.1 Common Properties of Asymmetric and Symmetric Protocols

First, we show basic properties that hold for both asymmetric and symmetric protocols. Let
Alg be a protocol that solves the uniform bipartition. Recall that P is the known upper
bound of the number of agents. Hence, Alg must solve the uniform bipartition when the
actual number of agents is at most P . In the remainder of this subsection, we consider the
case that the actual number of agents is P − 2.

Lemma 1 shows that, in any execution for P − 2 agents, eventually all agents continue to
keep different states.
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I Lemma 1. In any weakly-fair execution E = C0, C1, C2, . . . of Alg with P − 2 agents and
an initialized BS, there exists a configuration Ch such that 1) Ch is a stable configuration,
and, 2) all agents have different states at Ch′ for any h′ ≥ h.

Proof. (Sketch) For contradiction, we assume that there exist two agents with the same
state s in a stable configuration of some execution E with P − 2 agents. Next, consider an
execution with P agents such that two additional agents have s as their initial states and
other agents behave similarly to E. In the execution, two additional agents do not join the
interactions until P − 2 agents converge to a stable configuration in E. At that time, two of
the P − 2 agents have state s and additional two agents also have state s. We can prove
that, from this configuration, P − 2 agents cannot recognize the two additional agents and
hence they make the same behavior as in E. In addition, the two additional agents can keep
state s. Since the numbers of red and blue agents are balanced without the two additional
agents and the two additional agents have the same state, the uniform bipartition problem
cannot be solved. This is a contradiction. J

In the next lemma, we prove that there exists a configuration C such that, in any
configuration reachable from C, all agents have different states. In addition, we also show
that the system reaches C in some execution.

I Definition 2. Configuration C is strongly-stable if 1) C is stable, and, 2) for any config-
uration C ′ with C ∗−→ C ′, all agents have different states at C ′.

I Lemma 3. When the number of agents other than the BS is P −2, there exists an execution
of Alg that includes a strongly-stable configuration.

Proof. (Sketch) For contradiction, we assume that such execution does not exist. First,
consider a weakly-fair execution E of Alg. By Lemma 1, after some configuration Ct in E,
all agents have different states. From the assumption, Ct is not strongly-stable. That is,
there exists a configuration Cu reachable from Ct such that two agents have the same state.
Hence, we can construct another weakly-fair execution E′ of Alg such that E′ is similar
to E until Ct and Cu occurs after that. By Lemma 1, after some configuration Ct′ in E′,
all agents have different states. Observe that Ct′ occurs after Cu. From the assumption,
there exists a configuration Cu′ reachable from Ct′ such that two agents have the same state.
Hence, similarly to E′, we can construct another weakly-fair execution E′′ of Alg such that
E′′ is similar to E′ until Ct′ and Cu′ occurs after that. By repeating this construction, we
can construct a weakly-fair execution such that two agents have the same state infinitely
often. From Lemma 1, this is a contradiction. J

3.2 Impossibility of Asymmetric Protocols
Here we show the impossibility of asymmetric protocols with P − 1 states.

I Theorem 4. In the model with an initialized BS, there is no asymmetric protocol that
solves the uniform bipartition problem with P − 1 states from arbitrary initial states under
weak fairness, if P is an even integer.

To prove the theorem by contradiction, we assume that such protocol Algasym exists. Let
Qp = {s1, s2, . . ., sP−1} be a state set of agents other than the BS. Let Qblue = {s ∈ Qp |
f(s) = blue} be a set of blue states and Qred = {s ∈ Qp | f(s) = red} be a set of red states.
Without loss of generality, we assume that |Qblue| < |Qred| holds. Recall that Lemmas 1 and
3 can be applied to both symmetric and asymmetric algorithms. Hence, the properties of
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8:8 Uniform Partition in Population Protocol Model Under Weak Fairness

the lemmas hold even in Algasym. In this proof, based on the properties, we construct an
execution of P agents such that the BS does not recognize the difference from the execution
of P − 2 agents. We show contradiction by proving that this execution does not achieve
uniform bipartition.

By Lemma 1, clearly Algasym requires P/2 − 1 blue states and P/2 − 1 red states.
Consequently, we have the following two corollaries.

I Corollary 5. |Qblue| = P/2− 1 and |Qred| = P/2 hold.

I Corollary 6. For any weakly-fair execution of Algasym with P − 2 agents and an initialized
BS, any strongly-stable configuration includes all states in Qblue.

To prove the main theorem, we focus on the following weakly-fair execution of Algasym
with P − 2 agents.

I Definition 7. Consider a population A = {a0, a1, . . . , aP−2} of P − 2 agents and an
initialized BS, where a0 is the BS. We define Eα = C0, C1, C2, . . . as a weakly-fair execution
of Algasym for population A that satisfies the following conditions.

Eα includes a strongly-stable configuration Ct, and,
for any u ≥ 0, agents that interact at Ct+2u → Ct+2u+1 also interact at Ct+2u+1 →
Ct+2(u+1).

Note that, in Eα, the system reaches a strongly-stable configuration Ct (this is possible
from Lemma 3), and after Ct agents always repeat the same interaction twice.

I Definition 8. We define Qt as a set of states that appear after Ct in Eα.

Note that, since Ct is strongly-stable, Qt includes at least P − 2 states. This implies
that Qt includes all states in Qp or does not include one state in Qp. From Corollary 6,
Qblue ⊂ Qt holds.

The following lemmas give key properties of Algasym to prove Theorem 4. We will present
proofs of these lemmas later.

I Lemma 9. For any distinct states p and q (p 6= q) such that p ∈ Qblue and q ∈ Qt hold,
transition rule (p, q)→ (p′, q′) satisfies the following conditions.

If q ∈ Qred or q ∈ Qb (i.e., q is a state of the BS) holds, p′ = p holds.
If q ∈ Qblue holds, either (p′, q′) = (p, q) or (p′, q′) = (q, p) holds.

I Lemma 10. There is a non-empty state set Q∗ ⊆ Qblue that satisfies the following
conditions.

For any state p ∈ Q∗, transition rule (p, p)→ (p′, q′) satisfies p′ ∈ Q∗ and q′ ∈ Q∗.
Assume that, in a configuration C, there exists a subset of agents A∗ such that all agents
in A∗ have states in Q∗ and |A∗| = |Q∗|+1 holds. In this case, for any agent ar ∈ A∗ and
any state q ∈ Q∗, there exists an execution segment such that 1) the execution segment
starts from C, 2) ar has state q at the last configuration, 3) only agents in A∗ join
interactions, and 4) all agents in A∗ have states in Q∗ at the last configuration.

Lemma 10 means that, if |Q∗|+ 1 agents have states in Q∗, we can make an arbitrary
agent with a state in Q∗ transit to an arbitrary state in Q∗. Using these lemmas, we show
the theorem by constructing a weakly-fair execution of Algasym with P agents that cannot
be distinguished from execution Eα.
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Proof of Theorem 4
Consider a population A′ = {a′0, . . ., a′P } of P agents and an initialized BS, where a′0 is the
BS. Let C ′0 be an initial configuration such that initial states of a′0, . . ., a′P are s(a0, C0), . . .,
s(aP−2, C0), s∗, s∗, where s∗ is a state in Q∗.

For A′ we construct an execution Eβ = C ′0, C ′1, . . ., C ′t, . . . using execution Eα as follows.

For 0 ≤ u ≤ t− 1, when ai and aj interact at Cu → Cu+1 in Eα, a′i and a′j interact at
C ′u → C ′u+1 in Eβ .

Clearly, s(a′i, C ′t) = s(ai, Ct) holds for any i (0 ≤ i ≤ P −2). Since s(a′P−1, C
′
t) = s(a′P , C ′t) =

s∗ holds, the difference in the numbers of red and blue agents remains two and consequently
C ′t is not a stable configuration.

To construct the remainder of Eβ , first let us consider the characteristics of C ′t. Let
Aq ⊆ A be a set of agents that have states in Q∗ at Ct, and let Āq = A − Aq. Since all
agents have different states and all states in Qblue appear in Ct by Corollary 6, we have
|Aq| = |Q∗| from Q∗ ⊆ Qblue. Let A′q ⊆ A′ be a set of agents that have states in Q∗ at C ′t,
and let Ā′q = A′ −A′q. Note that, for i ≤ P − 2, ai ∈ Aq holds if and only if a′i ∈ A′q holds.
Since a′P−1 and a′P are also in A′q, we have |A′q| = |Q∗|+ 2. In the following, we construct
the remainder of execution Eβ that includes infinitely many configurations similar to Eα. we
define similarity of configurations in Eβ and Eα as follows.

I Definition 11. We say configuration C ′u (u ≥ t) in Eβ is similar to Cv (v ≥ t) in Eα if
the following conditions hold:

For any agent ai ∈ Aq, s(ai, Cv) ∈ Q∗ holds.
For any agent a′i ∈ A′q, s(a′i, C ′u) ∈ Q∗ holds.
For any agent a′i ∈ Ā′q (i.e., ai ∈ Āq), s(a′i, C ′u) = s(ai, Cv) holds.

Let us focus on an execution segment e = Ct+2u, Ct+2u+1, Ct+2(u+1) of Eα for any u ≥ 0,
and consider a configuration C ′x of A′ such that C ′x is similar to Ct+2u. From now, we explain
the way to construct an execution segment e′ = C ′x, . . . , C

′
y of Eβ that guarantees that C ′y is

similar to Ct+2(u+1). Since C ′t is similar to Ct, we can repeatedly apply this construction and
construct an infinite execution Eβ . As a result, for any u ≥ 0, Eβ includes a configuration
C ′ that is similar to Ct+2u. Since C ′ includes P − 1 red agents and P + 1 blue agents, Eβ
does not include a stable configuration. Note that Eβ is not necessarily weakly-fair, but later
we explain the way to construct a weakly-fair execution from Eβ .

Consider configuration C ′x that is similar to Ct+2u. Assume that, in Eα, agents ai and aj
interact in Ct+2u → Ct+2u+1. Recall that ai and aj also interact in Ct+2u+1 → Ct+2(u+1).
We construct execution segment e′ as follows:

Case that ai ∈ Aq ∧ aj ∈ Aq holds. Since s(ai, Ct+2u) ∈ Q∗ ⊆ Qblue and s(aj , Ct+2u) ∈
Q∗ ⊆ Qblue hold, s(ai, Ct+2(u+1)) ∈ Q∗ and s(aj , Ct+2(u+1)) ∈ Q∗ also hold from Lemma
10 (the first condition) and Lemma 9. Since other agents do not change their states, C ′x
is similar to Ct+2(u+1). Hence, in this case, we consider that the constructed execution
segment e′ is empty.
Case that either ai ∈ Aq ∧ aj ∈ Āq or ai ∈ Āq ∧ aj ∈ Aq holds. Without loss of generality,
we assume that ai ∈ Aq ∧ aj ∈ Āq holds. In this case, s(a′i, C ′x) ∈ Q∗ is not necessarily
equal to α = s(ai, Ct+2u) ∈ Q∗. Hence, in the execution segment e′, we first make
some agent a′r ∈ A′q enter state α by interactions among agents in A′q. By Lemma
10 (the second condition) and |A′q| = |Q∗| + 2, such interactions exist and all agents
in A′q have states in Q∗ after the interactions. Let C ′z be the resultant configuration.
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Clearly C ′z is similar to Ct+2u and s(a′r, C ′z) = s(ai, Ct+2u) ∧ s(a′j , C ′z) = s(aj , Ct+2u)
holds. After that, a′r and a′j interact twice. We regard the resultant configuration as
C ′y (i.e., the last configuration of the constructed execution segment e′). Clearly both
s(a′r, C ′y) = s(ai, Ct+2(u+1)) and s(a′j , C ′y) = s(aj , Ct+2(u+1)) hold. Since C ′z is similar to
Ct+2u and s(a′j , C ′y) = s(aj , Ct+2(u+1)), it is sufficient to prove s(a′r, C ′y) ∈ Q∗ to guarantee
that C ′y is similar to Ct+2(u+1). Observe that s(aj , Ct+2u) /∈ Q∗. This is because, since
Ct+2u is strongly-stable, all agents have different states and agents in Aq occupy all
states in Q∗ (the first condition of Definition 11). Hence, s(a′r, C ′z) = s(ai, Ct+2u) ∈ Q∗ is
not equal to s(a′j , C ′z) = s(aj , Ct+2u) /∈ Q∗. Consequently, from s(a′r, C ′z) ∈ Q∗ ⊆ Qblue,
s(a′r, C ′y) = s(a′r, C ′z) ∈ Q∗ holds by Lemma 9. Therefore, C ′y is similar to Ct+2(u+1).
Case that ai ∈ Āq ∧ aj ∈ Āq holds. In this case, since s(a′i, C ′x) = s(ai, Ct+2u) and
s(a′j , C ′x) = s(aj , Ct+2u) hold, a′i and a′j simply interact twice consecutively. We regard
the resultant configuration as C ′y (i.e., the last configuration of the constructed execution
segment e′). Clearly, since a′i and a′j change their states similarly to ai and aj , C ′y is
similar to Ct+2(u+1).

Now we have constructed infinite execution Eβ , but Eβ is not necessarily weakly-fair. In
the following, we construct a weakly-fair execution Eγ of population A′ by slightly modifying
Eβ . To guarantee that Eγ is weakly-fair, for any pair of agents (a′i, a′j), a′i and a′j should
interact infinite number of times in Eγ . For pair of agents (a′i, a′j) with a′i ∈ Ā′q and a′j ∈ Ā′q,
a′i and a′j interact infinite number of times in Eβ because Eα is weakly-fair and a′i interacts
with a′j in Eβ when ai interacts with aj in Eα. For pair of agents (a′i, a′j) with a′i ∈ A′q
and a′j ∈ A′q, we can arbitrarily add interactions of them because, by Lemma 10 (the first
condition) and Lemma 9 (the second condition), they keep their states in Q∗ and consequently
do not influence similarity of configurations.

Hence, we consider the remaining pair (a′i, a′j), that is, either a′i ∈ A′q ∧ a′j ∈ Ā′q or
a′i ∈ Ā′q ∧ a′j ∈ A′q holds. Without loss of generality, we assume that a′i is in A′q and a′j is
in Ā′q. Since Eα is weakly-fair, aj interacts with an agent in Aq infinite number of times in
Eα. Recall that these interactions correspond to interactions of a′j and a′r in Eβ , and a′r can
be arbitrarily selected from A′q. For this reason, we can choose a′r in a round-robin manner
so that a′j interacts with any agent in A′q infinite number of times. For example, when aj
and an agent in Aq first interact (after Ct), we choose an agent in A′q as a′r, and then in the
next interaction of aj and an agent in Aq we can choose another agent in A′q as a′r. By this
construction, a′j can interact with any agent a′i in A′q infinite number of times.

From this way, we can construct a weakly-fair execution Eγ similarly to Eβ . However,
for any u ≥ 0, Eγ includes a configuration C ′′ that is similar to Ct+2u. Since C ′′ includes
P − 1 red agents and P + 1 blue agents, Eγ does not include a stable configuration. This is
a contradiction.

The Proof Sketch of Lemma 9
Consider the case that transition (p, q)→ (p′, q′) occurs at a strongly-stable configuration
with P − 2 agents. By Corollary 6, since any strongly-stable configuration includes all states
in Qblue, (p, q)→ (p′, q′) can occur at the configuration.

First, consider the case that q ∈ Qred or q ∈ Qb holds. For contradiction, assume that
p′ 6= p holds. By Corollary 6, since an agent with p′ exists in the strongly-stable configuration,
two agents with p′ exist after transition (p, q)→ (p′, q′). By the definition of strongly-stable
configuration, this is a contradiction.

Next, consider the case that q ∈ Qblue holds. For contradiction, assume that (p′, q′) 6= (p, q)
and (p′, q′) 6= (q, p) hold. By the definition of stable configuration, p′ and q′ are blue.
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Hence, by Corollary 6, since an agent with any state in Qblue exists in the strongly-stable
configuration, two agents with the same state in Qblue exist after transition (p, q)→ (p′, q′).
By the definition of strongly-stable configuration, this is a contradiction.

The Proof Sketch of Lemma 10
First, to show the proof sketch, we give some definitions.

I Definition 12. For states q and q′, we say q  q′ if there exists a sequence of states
q = q0, q1, · · · , qk = q′ such that, for any i(0 ≤ i < k), transition rule (qi, qi)→ (qi+1, xi) or
(qi, qi)→ (xi, qi+1) exists for some xi.

I Definition 13. For states q and q′, we say q ∗ q′ if x  q′ holds for any x such that
q  x holds.

Note that, in these definitions, we consider only interactions of agents with the same state.
We say two agents are homonyms if they have the same state. Intuitively, q  q′ means
that an agent with state q can transit to q′ by only interactions with homonyms. Also,
q
∗
 q′ means that, even if an agent with state q transits to any state x by interactions with

homonyms, it can still transit from x to q′ by interactions with homonyms.
Let Qp∗ = {q | p∗ ∗ q}. In this proof, we show that Qp∗ satisfies the conditions of Q∗

of Lemma 10. Clearly, if homonyms with states in Qp∗ interact, they transit to states in
Qp∗. This implies that Qp∗ satisfies the first condition of Q∗ of the lemma. To prove the
second condition, we first show that, when |Qp∗| agents have states in Qp∗ initially, for any
s ∈ Qp∗, there exists an execution such that only homonyms in the |Qp∗| agents interact and
eventually some agent transits to state s. To show this, we define a potential function Φ(C, s)
for configuration C and state s ∈ Qp∗. Intuitively, Φ(C, s) represents how far configuration
C is from a configuration that includes an agent with state s. To define Φ(C, s), we define
DtQ(si, s) as follows.

I Definition 14. DtQ(si, s) is a function that satisfies the following property.
If si = s holds, DtQ(si, s) = 0 holds.
If si 6= s and si ∈ Qp∗ holds, DtQ(si, s) = min{DtQ(s1

j , s), DtQ(s2
j , s)}+ 1 holds when

transition rule (si, si)→ (s1
j , s

2
j ) exists.

If si /∈ Qp∗ holds, DtQ(si, s) =∞ holds.

Intuitively, DtQ(si, s) gives the minimum number of interactions to transit from state si
to state s when allowing only interactions with homonyms. Note that, for any si ∈ Qp∗, si
can transit to s because si  p s holds.

I Definition 15. Consider configuration C such that z = |Qp∗ | agents a1, . . ., az have states
in Qp∗ . In this case, we define potential function Φ(C, s) as a multi set {DtQ(s(a1, C), s),
DtQ(s(a2, C), s), DtQ(s(a3, C), s), . . ., DtQ(s(az, C), s)}.

I Definition 16. For distinct Φ(C1, s) and Φ(C2, s), we define a comparative operator of
them as follows: Let i be the minimum integer such that the number of i-elements is different
in Φ(C1, s) and Φ(C2, s). If the number of i-elements in Φ(C1, s) is smaller than Φ(C2, s),
we say Φ(C1, s) < Φ(C2, s).

From now, we show that there exists an execution such that some agent transits to s. Let
C be a configuration with |Qp∗ | agents such that all agents have states in Qp∗ and there does
not exist an agent with s in C. Since |Qp∗ | agents have states in Qp∗ in C and there does not
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exist an agent with s in C, there exist homonyms in C. When homonyms with a state in Qp∗
interact, they transit to states in Qp∗. These imply that, when homonyms interact at C → C ′,
either an agent with s or homonyms with a state in Qp∗ exist in C ′. Thus, for contradiction,
assume that there exists an infinite execution segment e = C0, C1, C2, . . . with |Qp∗ | agents
such that only homonyms interact and any agent never has s in e, where C0 is a configuration
such that all agents have states in Qp∗. For e, Φ(C0, s) > Φ(C1, s) > Φ(C2, s) > · · · holds.
This is because, since any p ∈ Qp∗ satisfies p p∗  s, DtQ(s(a,Ci), s) > DtQ(s(a,Ci+1), s)
holds for at least one agent a that interacts at Ci → Ci+1. Hence, eventually some agent has
s in e. By the definition of e, this is a contradiction.

From now, we prove the second condition of Lemma 10. Let A∗ be a set of agents such
that |A∗| = |Qp∗ |+ 1, and assume that all agents in A∗ have states in Qp∗ . The existence
of the above execution implies that, for any agent ar ∈ A∗, we can make some agent in
A∗ − {ar} transits to state s(ar) by interactions among A∗ − {ar}. Then, we can make an
interaction with homonyms between ar and an agent with s(ar). After that, since ar has
a state in Qp∗ , all agents in A∗ keep states in Qp∗ . Hence, in the same way, by making
interaction repeatedly between ar and an agent with s(ar), ar can transit to any q ∈ Qp∗
because any p ∈ Qp∗ satisfies p p∗  q. Therefore, Qp∗ satisfies the second condition and
thus the lemma holds.

3.3 Impossibility of Symmetric Protocols
In this subsection, we show the impossibility of symmetric protocols with P states. To prove
this impossibility, we use ideas of the impossibility proof for the naming protocol [16]. This
work shows that, in the model with an initialized BS, there is no symmetric naming protocol
with P states from arbitrary initial states under weak fairness. We apply the proof of [16]
to the uniform bipartition but, since the treated problem is different, we need to make a
non-trivial modification.

I Theorem 17. In the model with an initialized BS, there is no symmetric protocol that
solves the uniform bipartition problem with P states from arbitrary initial states under weak
fairness, if P is an even integer.

In the case of naming protocols [16], the impossibility proof proves that a unique state
(called sink state) always exists. However, in the case of uniform bipartition protocols,
sometimes no sink state exists. To treat this situation, we additionally define a sink pair,
which is a pair of two states that has a similar property of a sink state. We show that either
a sink state or a sink pair exists, and, we prove that there is no symmetric protocol in both
cases.

4 Possibility Results for Initialized BS and Weak Fairness

In this section, we propose both asymmetric and symmetric protocols for the uniform k-
partition problem. The asymmetric protocol requires P states and the symmetric protocol
requires P + 1 states. By impossibility results, these protocols are space-optimal.

4.1 An Asymmetric Protocol
In this subsection, we show a P -state asymmetric protocol for the uniform k-partition
problem. The idea of the protocol is to assign states 0, 1, . . ., n− 1 to n agents one by one
and then regard an agent with state s as a member of the (s mod k)-th group. One may
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Algorithm 1 Asymmetric uniform k-partition protocol.

A variable at BS
M : The state that the BS assigns next, initialized to 0

A variable at a mobile agent a:
Sa ∈ {0, 1, 2, . . . , P − 1}: The agent state, initialized arbitrarily. Agent a belongs to the
(Sa mod k)-th group.

1: while a mobile agent a interacts with BS do
2: if M ≤ Sa then
3: Sa = M

4: M = M + 1
5: end if
6: end while
7: while two mobile agent a and b interact do
8: if Sa = Sb and Sa < P − 1 then
9: Sa = Sa + 1
10: end if
11: end while

think that, to implement this idea, we can directly use a naming protocol [16], where the
naming protocol assigns different states to agents by using P states if n ≤ P holds. Actually,
if n = P holds, the naming protocol assigns states 0, 1, . . ., P − 1 to P agents one by one
and hence it achieves uniform k-partition. However, if n < P holds, the naming protocol
does not always achieve uniform k-partition. For example, in the case of (n− 1)k < P , the
naming protocol may assign states 0, k, 2k, . . ., (n − 1)k to n agents one by one, which
implies that all agents are in the 0-th group.

Algorithm 1 shows a P -state asymmetric protocol for the uniform k-partition problem.
In the protocol, the BS assigns states 0, 1, . . ., n − 1 to n agents one by one. To do this,
the BS maintains variable M , which represents the state the BS will assign next. The BS
sets M = 0 initially, and increments M whenever it assigns M to an agent. Consider an
interaction between the BS and an agent with state x. If x is smaller than M , the BS judges
that it has already assigned a state to the agent, and hence it does not update the state. If
x is M or larger, the BS assigns state M to the agent and increments M . When the BS
assigns state x to an agent, there may exist another agent with state x because of arbitrary
initial states. To treat this case, when two agents with the same state x interact, one transits
to state x + 1 and the other keeps its state x. By repeating such interactions, eventually
exactly one agent has state x. By this behavior, the BS eventually assigns states 0, 1, . . .,
n− 1 to n agents one by one, and hence the algorithm achieves uniform k-partition.

As a result, we obtain the following theorem.

I Theorem 18. Algorithm 1 solves the uniform k-partition problem. This means that, in the
model with an initialized BS, there exists an asymmetric protocol with P states and arbitrary
initial states that solves the uniform k-partition problem under weak fairness, where P is the
known upper bound of the number of agents.

I Remark 19. Interestingly, when P is odd, Algorithm 1 solves the uniform bipartition even
if the number of agent states is P − 1. Concretely, let Sa ∈ {1, 2, 3, . . . , P − 1} be a set of
agent states, and initialize variable M to 1. Then, Algorithm 1 converges to a configuration
such that there exist two agents with state P − 1 (and other states are held by exactly one
agent). This is because, in the algorithm, the BS assigns P − 1 agents to P − 1 states one by
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one, and, since the algorithm works under weak fairness, the remaining one agent shifts its
state until state P − 1. In the configuration, the difference in the numbers of red and blue
agents is one. Moreover, every agent does not change its own state after the configuration.
Hence, the uniform bipartition is solved. J

4.2 A Symmetric Protocol
In this subsection, we propose a (P + 1)-state symmetric protocol for the uniform k-partition
problem. We can easily obtain the protocol by a scheme proposed in [12]. In [12], a P -state
symmetric protocol for the counting problem is proposed. The counting protocol assigns
different states in {1, . . . , n} to n agents and keeps the configuration if n < P holds. Hence,
by regarding P + 1 as the upper bound of the number of agents and allowing P + 1 states,
the protocol assigns different states in {1, ..., n} to n agents for any n ≤ P . This implies that,
as in the previous subsection, the protocol can achieve the uniform k-partition by regarding
an agent with x as a member of the (x mod k)-th group.

I Theorem 20. In the model with an initialized BS, there exists a symmetric protocol with
P + 1 states and arbitrary initial states that solves the uniform k-partition problem under
weak fairness, where P is the known upper bound of the number of agents.

5 Results for Non-initialized BS

In this section, we show the impossibility with non-initialized BS. In the proof, we use ideas
of the impossibility proof for the uniform bipartition protocol [32]. This work shows that, in
the model with no BS, there is no protocol for uniform bipartition problem with arbitrary
initial states under global fairness.

I Theorem 21. In the model with non-initialized BS, no protocol with arbitrary initial states
solves the uniform bipartition problem under global fairness.

Proof. For contradiction, we assume such a protocol Alg exists. Moreover, we assume n is
even and at least 4. We consider the following two cases.

First, consider population A = {a0, . . . , an} of n agents and a non-initialized BS, where
a0 is the BS. For A, consider an execution E = C0, C1, · · · of Alg. From the definition of
Alg, there exists a stable configuration Ct. Hence, both the number of red agents and the
number of blue agents are n/2 at Ct. By the definition of a stale configuration, the color of
agent ai (i.e.,f(s(ai))) never changes for any ai (1 ≤ i ≤ n) after Ct even if agents interact
in any order.

Next, consider population A′ = {a′0} ∪ {a′i|f(s(ai, Ct)) = red}, where a′0 is the BS. For
A′, consider an execution E′ = C ′0, C

′
1, · · · of Alg from the initial configuration C ′0 such that

s(a′i, C ′0) = s(ai, Ct) holds for any a′i ∈ A′. Note that, since we assume a non-initialized
BS, even the BS can have s(a0, Ct) as its initial state. Since all agents are red at C ′0, some
agents must change their colors to reach a stable configuration. This implies that, after
Ct in execution E, agents change their colors if they interact similarly to E′. This is a
contradiction. J

6 Conclusion

In this paper, we clarify solvability of the uniform bipartition with arbitrary initial states
under weak fairness in the model with an initialized BS. Concretely, for asymmetric protocols,
we show that P states are necessary and sufficient to solve the uniform k-partition problem
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under the assumption, where P is the known upper bound of the number of agents. For
symmetric protocols, we show that P + 1 states are necessary and sufficient under the
assumption. Moreover, these upper and lower bounds can be applied to the k-partition
problem under the assumption. There are some open problems as follows:

Are there some relations between the uniform k-partition problem and other problems
such as counting, leader election, and majority?
What is the time complexity of the uniform k-partition problem?
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