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Abstract
We consider distributed computations between two parties carried out over a noisy channel that may
erase messages. Following a noise model proposed by Dani et al. (2018), the noise level observed by
the parties during the computation in our setting is arbitrary and a priori unknown to the parties.

We develop interactive coding schemes that adapt to the actual level of noise and correctly
execute any two-party computation. Namely, in case the channel erases T transmissions, the
coding scheme will take N + 2T transmissions using an alphabet of size 4 (alternatively, using
2N + 4T transmissions over a binary channel) to correctly simulate any binary protocol that takes
N transmissions assuming a noiseless channel. We can further reduce the communication to N + T

by relaxing the communication model and allowing parties to remain silent rather than forcing them
to communicate in every round of the coding scheme.

Our coding schemes are efficient, deterministic, have linear overhead both in their communication
and round complexity, and succeed (with probability 1) regardless of the number of erasures T .
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1 Introduction

Consider two remote parties that use a communication channel in order to perform some dis-
tributed computation. One main obstacle they may face is noise added by the communication
channel, corrupting their messages and ruining the computation. In the early 90’s, Schul-
man [29, 30] initiated the field of interactive coding where the parties use coding techniques
in order to complete their computation correctly despite possible communication noise.

Channels may introduce different types of noise. Among the common noise types
are substitution noise, where the channel changes the content of messages (e.g., it flips
communicated bits), insertions and deletions, where the channel may introduce a new message

1 Part of this work was done while at Bar-Ilan University and a student at Birla Institute of Technology
and Science, Pilani, India.
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or completely remove a transmission, and erasures where the channel erases transmissions,
i.e., replacing them with an erasure mark. Throughout the last several years many interactive
coding schemes were developed, allowing parties to perform computations over the various
channels and noise types, e.g., [9, 12, 32], see related work below and [17] for a survey.

Naturally, some bounds on the noise must be given. As a trivial example, it is clear that if
all the transmissions are corrupted, there is no hope to complete any distributed computation.
Braverman and Rao [9] showed that for substitution noise, a noise fraction of 1/4 is maximal.
That is, as long as the noise is limited to corrupt less than 1/4 of the communication, there
are coding schemes that will succeed in producing the correct output. However, if the noise
exceeds this level, any coding scheme for a general computation is bound to fail. Similarly,
noise rate of 1/4 is maximal (and achievable) for insertion and deletion noise [7, 32], and
noise rate of 1/2 is maximal (and achievable) for erasure noise [14, 12].

All the above schemes must know in advance the amount of noise they are required
to withstand. For instance, the scheme of [9] is given some parameter ρ < 1/4, which
stands for the (maximal) fraction of noise that instance will be able to handle. Given this
parameter and the length of the (noiseless) computation to be performedN , the coding scheme
determines how many transmissions it should take in order to perform the computation, say,
Ñ = Ñ(ρ,N) transmissions. It is then guaranteed that as long as the noise corrupts at most
ρÑ transmissions, the computation succeeds.

In a recent work, Dani et al. [11] considered the case where the noise amount may be
arbitrary and a priori unknown to the coding scheme. That is, the channel may corrupt
up to T transmissions, where T ∈ N is some fixed amount of noise which is independent
of the other parameters of the scheme and the computation to be performed. The work of
Dani et al. [11] considered substitution noise and showed a scheme that succeeds with high
probability and, if the channel corrupts T transmissions during the execution of the scheme,
then the scheme will take N +O(T +

√
TN logN) transmissions to conclude.

Again, some limitations must be placed on the noise. Indeed, assume that an uncorrupted
computation on the input (x, y) terminates in Ñ rounds, and assume T > Ñ . Then, a
substitution noise can always make Alice (wlog) believe that Bob holds y, by corrupting
the messages Alice receives in the first Ñ rounds. Note that Alice then terminates with the
wrong output, i.e., the output for (x, y). Dani et al. [11] dealt with the above impossibility
by assuming that the parties have access to some shared randomness and that the adversary
is oblivious to that randomness. This allowed them to employ cryptographic tools in order
to guarantee the authentication of communicated messages.

In this work we focus on erasure noise, where the channel either transmits the message as
is, or erases the message and outputs a special ⊥ symbol that indicates this event. Erasure
noise naturally appears in many practical situations, e.g., when an Ethernet packet gets
corrupted yet this corruption is detected by the CRC checksum mechanism [25]. In this
case the packet is considered invalid and will be dropped. This situation is equivalent to an
erasure of that transmission. We note that this type of noise is weaker than substitution
noise. This allows us to obtain coding schemes without further assumptions, mainly, without
the need for shared randomness and without requiring the adversary to be oblivious.

Our main result is an efficient and deterministic coding scheme that withstands an
arbitrary and a priori unknown T erasures with probability 1.

I Theorem 1 (main, informal). Given any two-party binary interactive protocol π of length N ,
there exists an efficient and deterministic noise-resilient protocol Π4 of length N + 2T that
simulates π over a 4-ary channel in the presence of an arbitrary and a priori unknown
number T of erasures.
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Alternatively, there exists an efficient, deterministic, binary noise-resilient protocol Π2 of
length 2N + 4T that simulates π assuming an arbitrary and a priori unknown number T of
erasures. It holds that

CC(Π4) = CC(Π2) = 2N + 4T.

Since T , the amount of noise, is unknown to begin with, the length of the coding scheme
must adapt to the actual noise that the parties observe. Such coding schemes are called
adaptive [3]. Adaptivity raises several issues that must be dealt with appropriately. The main
issue is termination. Since the coding scheme adapts its length to the observed noise, and
since the different parties observe different noise patterns, their termination is not necessarily
synchronized. As a matter of fact, obtaining synchronized termination is impossible.

I Lemma 2. Let Π be a protocol for exchanging messages between Alice and Bob, that is
resilient to an unbounded amount T of erasures. Then, there always exists a noise pattern
for which Alice and Bob terminate in different rounds.

This can be seen as a variant of the famous “coordinated attack problem” [24], where reaching
full synchronization between two parties is known to be impossible. See [18] for a proof and
an elaborated discussion about unsynchronized termination.

Unsynchronized termination means that one party may terminate while the other party
continues to send (and receive) transmissions as dictated by its protocol. In this case, the
communication model should specify what happens in those rounds where only one party is
active and the other has terminated. Specifically, it should specify what messages the active
party receives in this case.

In our setting we define a special symbol we call silence (cf. [3]). We assume that silence
is (implicitly) communicated by a terminated party. That is, the still-active party hears
silence in every round it is set to listen and the other party has already terminated. We
note that silence is corruptible – the channel may erase silent transmissions, and the active
party will see an erasure mark instead. On the other hand, these implicit silent transmissions
are not considered part of the communication of the protocol (i.e., we do not count them
towards the communication complexity). Hearing a silence is a univocal indication that the
other side has terminated, allowing the other party to terminate as well and bypassing the
impossibility of synchronized termination.

In the setting of Theorem 1 we do not allow the parties to remain silent before termination
– in each timestep a party is set to speak it must communicate a valid message. However,
in today’s networks, especially in networks with multiple parties, it is very common that
parties send messages only if they have information to send, and keep silent otherwise.

Our second result extends Theorem 1 to the setting where parties are allowed to either
speak or remain silent at every timestep (called the AGS setting hereinafter, see [3]). In this
case, termination becomes even more tricky. Recall that the coding scheme of Theorem 1
uses silence as an indicator for termination. We can do the same in the AGS setting and
avoid using silence throughout the protocol, keeping it as an indicator towards termination
only. However, this would effectively reduce the AGS setting to the one of Theorem 1, and
lead to a suboptimal scheme.

Instead, we take a different approach that requires parties to remain silent during the
protocol in certain cases. This has the effect of reducing the communication at the expense
of not being able to identify termination at times. In particular, one of the parties may
remain active indefinitely. However, that party will remain silent after the other party has
terminated, and moreover, it will hold the correct output of the computation. We call this
situation semi-termination.

OPODIS 2019
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I Definition 3. We say that a protocol has semi-termination if there exists a round t after
which both the following conditions hold:
1. Both parties have computed the correct output, and
2. Both parties remain silent indefinitely (whether they terminate or not)

Our result for this setting is as follows.

I Theorem 4 (AGS setting, informal). Given any binary two-party interactive protocol π of
length N , there exists an efficient and deterministic protocol Π4 in the AGS setting with
semi-termination, of length N + 4T sending at most N + T symbols from alphabet of size 4,
that simulates π assuming an arbitrary and a priori unknown number T of erasures.

Alternatively, there exists an efficient and deterministic protocol Π1 in the AGS setting
with semi-termination, with length 4N + 16T that communicates at most N + T unary (i.e.,
non-silent) symbols and simulates π assuming an arbitrary and a priori unknown number T
of erasures.

In this setting, it is significant to bound the round complexity since silence is not counted
towards the communication complexity, yet it can be used to transfer information. As stated
in the above theorem, the round complexity of the resilient protocols Π4 and Π1 until the
event of semi-termination, is linear in the round complexity of the noiseless protocol π,
namely, RC(Π4) = O(N + T ) and RC(Π1) = O(N + T ).

Organization. In the next part we overview the techniques used to obtain Theorem 1 and
Theorem 4. Section 2 formally defines the communication and noise model, and fixes some
notations used throughout. In Section 3 we describe the noise resilient protocol of Theorem 1
and analyze its correctness. The coding scheme of Theorem 4 along with its correctness is
deferred to the full version of this paper (see [18] for a preliminary version). Further, in [18]
we discuss the issue of unsynchronized termination and prove that it is impossible to obtain
synchronized termination when the noise is unbounded.

1.1 Coding Schemes Overview
Erasure noise has two attractive properties we utilize towards our scheme. The first is that,
if there was a corruption, the receiver is aware of this event; the second property is that,
if there was no corruption, the received message is the correct one. Our scheme follows a
technique by Efremenko et al. [12], where the parties simulate the noiseless protocol π bit
by bit. As long as there is no noise, they can carry out the computation identically to π.
However, in the case of an erasure, the receiver needs to signal the other side that it did not
receive the last message and request a retransmission. The main problem is that this request
message may get erased as well, making both sides confused regarding to what should be
sent next.

In [12] this issue is solved by extending each message by two bits that indicate the
round currently being simulated. It is proven that the parties may simulate different rounds,
however, the discrepancy in the round number is bounded by 1. Hence, a round number
modulus 3 is required in [12] to indicate whether Alice is ahead, Bob is ahead, or they are at
the same round.

Our scheme combines the above technique with a challenge-response technique employed
by Dani et al. in [11], in order to obtain resilience against an unbounded number of erasures.
Our coding scheme is not symmetric, but rather Alice always begins a round by sending
a “challenge” message, followed by Bob replying with a response. Alice then determines
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whether the challenge-response round was successful: if both messages were not erased, Alice
would see the correct response from Bob and would deduce that both messages were received
correctly. If Alice received an erasure, or if she received the wrong response, she would
deduce that an erasure has occurred during this round and the round should be re-simulated.

Bob, similarly but not identically, gets the challenge message from Alice and verifies that
it belongs to a new round (that is, the challenge differs from the previous round). If this is
the case, he replies with the next bit. Otherwise, i.e., if Alice’s challenge was erased, or if
Bob receives the challenge of the previous round, he replies with the response of the previous
round. Note that if Alice did send a new challenge and it was erased, she will now get the
response of the previous round and realize there is a mismatch.

It is not too difficult to see that the “challenge” suffices to be a single bit – the current
simulated round number in π, modulus 2 (which we call the parity from now on). Since the
scheme is not symmetric, it can never happen that Alice has advanced to the next round
while Bob has not. The other case, where Bob is ahead of Alice by a single round is still
possible. Therefore, one bit of information suffices to distinguish between these two cases.

In more details, Alice begins a round by sending Bob the next bit of the simulation of π,
along with the parity of the round number (in π) of that bit. If Bob receives this message
and the parity matches the round number he expects, he records the bit sent by Alice and
replies with the next bit of π using the same parity. If this message reaches Alice correctly,
she knows the round is over and advances to the next round. If Bob does not receive Alice’s
message (i.e., it gets erased), or if the parity is incorrect, Bob replies with the bit of the
previous round along with the parity of that round. Similarly, if Alice receives a message
with a wrong parity or an erased message, she keeps re-simulating the same round, until she
gets the proper reply from Bob.

Note that a single erasure delays the progress of the simulation by a single round
(2 transmissions). However, once there is a round in which both messages are not erased,
the simulation correctly continues, and the succeeding two bits of π are correctly simulated.
That is, as long as there is noise, the simulation just hangs, and when the noise ceases, the
simulation continues from exactly the same place it stopped.

Once Alice completed simulating the last round of π, she quits. Recall that Bob is always
ahead of Alice, thus if Alice completes the simulation, so does Bob. After Alice terminates,
Bob receives silence unless erased by the channel. When Bob hears a silence, he learns
that Alice has terminated and quits the scheme as well. The noise may delay Bob’s time of
termination by corrupting the silence, however, once the noise is over, Bob will learn that
the simulation has completed and will quit as well.

Coding schemes for parties who may keep silent

Our second scheme works in the communication model where parties are allowed to remain
silent if they wish (the AGS setting). The main advantage in being able to remain silent
is allowing the parties to communicate information in an optimized manner which reduces
their communication complexity. Specifically, consider the above idea of challenge-response,
where a party replies with the wrong response in order to indicate there was an error and
that a round should be re-simulated. In the AGS setting we can instead keep silent in order
to signal this retransmission request.

The idea is as follows. Similar to the scheme above Alice begins a round by sending her
bit to Bob (along with the parity). If the transmission is received correctly, Bob replies with
his next bit. If Bob receives an erasure instead, he remains silent. This signals Alice that an
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error has happened and that she should re-simulate the last round. Similarly, if Alice sees
an erasure she keeps silent. In all other cases, i.e., receiving a silence or receiving a wrong
parity, the parties re-transmit their last message as before.

The effect of a party keeping silent for asking a retransmission is reducing the communi-
cation complexity. Note that each erasure causes the recipient to remain silent for one single
round, instead of sending a message that indicates an erasure. Then, the simulation continues
from the point it stopped. On the other hand, the analysis becomes slightly more difficult in
this case since silence may be erased as well, causing the other side to remain silent and signal
there was an erasure. This may cause the first party to repeat its message while the other
side should have actually resent its message in order to advance the simulation. Luckily, this
issue does not falsify the correctness of the simulation – as a result of sending the parity, the
extra retransmission is simply ignored. Furthermore, such a superfluous transmission does
not increase the communication overhead since it can only happen when multiple erasures
have occurred in the same round or in consecutive rounds.

When silence has a meaning of requesting a retransmission, we cannot use it anymore
to indicate termination. Note that whatever Alice sends Bob to inform him she is going to
terminate may get erased, so if Alice terminates Bob will not be aware of this fact and will
remain active. If Alice waits to hear a confirmation from Bob that he received the indication
and learned that Alice is about to terminate – this confirmation may get erased. Bob never
learns if Alice has received his acknowledgment or not; then, if Bob assumes that Alice has
terminated and terminates himself, it will be Alice who hangs in the protocol waiting for
Bob’s confirmation, and so on. Our approach to this conundrum is to allow the parties not
to terminate as long as there exists a point in time beyond which the parties remain silent
and both hold the correct output. In our scheme, Alice will actually terminate once she
learns that the simulation is done2 (recall that if Alice completed the simulation then Bob
completed it as well, but the other direction does not necessarily hold). Bob’s actions in
the final part of the protocol are slightly different from his normal behaviour. Once Bob
completed simulating π, but he is unaware whether or not Alice completed simulating π, he
keeps silent unless he hears a message from Alice that re-simulates the final round. In this
case, he replies with his final bit. In all other cases he remains silent.

1.2 Related Work
The field of interactive coding was initiated by the seminal work of Schulman [29, 30]
focusing on two parties that communicate over a binary channel with either substitution
noise (random or adversarial) or with erasure noise. Followup work (for substitution noise)
developed coding schemes with optimal resilience [9, 6, 20] efficiency [31, 8, 19, 4, 20, 16], or
good rate [26, 22, 16]. Coding schemes for different channels and noise types were developed
in [28, 12, 15] for channels with feedback, in [7, 32, 23, 13] for insertions and deletions noise,
and in [5, 27] for quantum channels. Interactive coding over channels that introduce erasure
noise was explored in [30, 28, 14, 15, 12, 3]. In particular, Efremenko et al. [12] developed
efficient coding schemes for optimal erasure rates, and Gelles and Haeupler [15] developed
efficient coding schemes with optimal rate assuming a small fraction of erasures. Adaptive
models were considered in [3, 21, 20]. See [17] for a survey on the field of interactive coding.

2 It is possible to let Alice send Bob a “termination message” right before she quits in order to signal Bob
she is about to terminate. In case this message is not erased, Bob will terminate as soon as he hears
this special message. Otherwise, he will keep running the scheme but remain silent. In either case, the
protocol satisfies the semi-termination requirements.
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Closest to our work is the work of Dani et al. [11] who considered the case of an arbitrary
noise amount that is unknown to the scheme. Their coding scheme assumes substitution noise
which is oblivious to the randomness used by the parties as well as to the bits communicated
through the channel. An AMD code [10] is used to fingerprint each transmitted message,
allowing the other side to detect corruptions with high probability. Aggrawal et al. [2] use
similar techniques to develop a robust protocol for message transfer, assuming bi-directional
channel that suffers from an arbitrary (yet finite) and unknown amount of bit flips. Aggarwal
et al. [1] extended this setting to the multiparty case, where n parties, rather than two,
perform a computation over a noisy network with an arbitrary and unknown amount of noise.

2 Model Definition

Standard notations. For an integer i ∈ N we denote by [i] the set {1, 2, . . . , i}. All
logarithms are taken to base 2. The concatenation of two strings x and y is denoted x ◦ y.
We let λ denote the empty string.

Interactive computation. In our setting, two parties, Alice and Bob, possess private inputs
x ∈ {0, 1}n and y ∈ {0, 1}n, respectively, and wish to compute some predefined function
f(x, y). The computation is performed by exchanging messages over a channel with fixed
alphabet Σ. The computation is specified by a synchronous interactive protocol π. An
interactive protocol π = (πA, πB) is a pair of algorithms that share a common clock, and
specify, for each timestep and each one of the parties, the following details: (1) which party
speaks and which party listens in this time-step; (2) if the party is set to speak, which symbol
to communicate; (3) whether the party terminates in this timestep, and if so, what the
output is.

Without loss of generality, we assume that the (noiseless) protocol π is alternating, i.e.,
Alice and Bob speak in an alternating manner, Alice speaks in odd rounds and Bob in even
rounds. If this is not the case, it can be made so while increasing the communication by a
factor of at most 2. We define a round of the noiseless protocol to be a sequence of two time
steps in which two consecutive messages are sent: the first is sent by Alice and the second
by Bob. For example, the first round consists of the first message sent by Alice and the
subsequent message from Bob. In general for r ≥ 1, after r − 1 rounds have elapsed, the rth
round consists of the rth message sent by Alice and Bob’s subsequent message. For the sake
of convenience, we assume that the last message of the protocol is sent by Bob; this can be
ensured by padding the protocol by at most one bit. Since the protocol is alternating we can
also think of rounds being associated with timesteps. More formally, in the rth round, Alice
and Bob send messages corresponding to the (2r − 1)th and the 2rth timestep respectively.
We say that a protocol has length N if Alice and Bob exchange N messages in the protocol.

Given a specific input (x, y) the transcript π(x, y) is the concatenation of all the messages
received during the execution of π on (x, y).

Erasures. The communication channel connecting Alice and Bob is subject to erasure noise.
In each timestep, the channel accepts a symbol s ∈ Σ and outputs either s or a special
erasure mark (⊥ /∈ Σ). The noise is assumed to be worst-case (adversarial), where up to T
symbols may be replaced with erasure marks. The value of T is unbounded and unknown to
the parties – their protocol should be resilient to any possible T ∈ N. A noise pattern is a
bit-string E ∈ {0, 1}∗ that indicates erasures in a given execution instance of the protocol.
Specifically, there is an erasure in the i-th timestep if and only if Ei = 1. Given a specific
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instance where both parties terminate before its s-th transmission, the number of erasures
that are induced by E on that instance is the Hamming weight of E1, . . . , Es, i.e., the number
of 1’s in the bit-string. We sometime allow E to be of infinite length, however our protocols
will be resilient only against noise patterns with bounded amount of noise (i.e., if E is infinite,
then its suffix is required to be the all-zero string; we call such noise finite noise).

Coding scheme: Order of speaking, silence and termination. A coding scheme is a
protocol Π that takes as an input another protocol π (that assumes noiseless channels) and
simulates π over a noisy channel. By saying that Π simulates π over an erasure channel with
(unbounded) T corruptions, we mean the following. For any pair of inputs (x, y) given to
Alice and Bob, after executing Π in the presence of T erasures, Alice and Bob will produce
the transcript π(x, y). The above should hold for any T ∈ N, independent of π, x, y and
unknown to Π (i.e., to the parties).

We assume that the protocol Π, at any given timestep, exactly one party can be the
sender and the other party is the receiver. That is, it is never the case that both parties send
a symbol or both listen during the same timestep. On the other hand we do not assume that
the parties terminate together, and it is possible that one party terminates while the other
does not. In this case, whenever the party that hasn’t yet terminated is set to listen, it hears
some default symbol �, which we call silence.

There are several ways to treat silence. One option, taken in [3], is to treat the silence
similar to any other symbol of Σ. That is, as long a party has not terminated and is set to
speak, it can either send a symbol or remain silent (“send �”) at that round.3 A different
approach would be to require the parties to speak a valid symbol from Σ while they haven’t
terminated. That is, a party cannot remain silent if it is set to speak; this prevents the
parties from using silence as a means of communicating information during the protocol.
Once a party terminates, and only then, silence is being heard by the other party. This
mechanism makes it easier for the parties to coordinate their termination. In particular, the
event of termination of one party transfers (limited) information to the other party. We take
this approach in the scheme of Section 3.

Another subtlety stems from the fact that the length of the protocol is not predetermined.
That is, the length of the protocol depends on the actual noise in the specific instance. Such
protocols are called adaptive [3]. In this case it makes sense to measure properties of the
protocol with respect to a specific instance. For instance, given a specific instance of the
protocol Π on inputs (x, y) with some given noise pattern, the communication complexity
CC(Π(x, y)) is the number of symbols sent by both parties in the specific instance. The
communication is usually measured in bits by multiplying the number of symbols by log |Σ|.
The noise in a given instance is defined to be the number of corrupted transmissions until
both parties have terminated, including corruptions that occur after one party has terminated
and the other party has not. Corruptions made after both parties have terminated cannot
affect the protocol, and we can assume such corruptions never happen.

3 A coding scheme for an unbounded number of erasures

In this section we provide a coding scheme that takes as an input any noiseless protocol π
and simulates it over a channel that suffers from an unbounded and unknown number of
erasures T . The coding scheme uses an alphabet Σ of size 4; in this setting parties are not
allowed to be silent (unless they quit the protocol) and in every round they must send a
symbol from Σ.

3 We take this approach in the coding scheme designed to prove Theorem 4, see [18].
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3.1 The Coding Scheme
The coding scheme for Alice and Bob, respectively, is depicted in Algorithms 1 and 2.

Inspired by the simulation technique of [12], our simulation basically follows the behavior
of the noiseless protocol π step by step, where Alice and Bob speak in alternating timesteps.
In each timestep, the sending party tries to extend the simulated transcript by a single bit.
To this end, the parties maintain partial transcripts T A for Alice (and T B for Bob) which is
the concatenation of the information bits of π that the parties have simulated so far and are
certain of. Then, if Alice is to send a message to Bob, she generates the next bit of π given
her partial simulated transcript, i.e., π(x | T A), and sends this information to Bob.

In addition to the information bit, Alice also sends a parity of the round number she is
currently simulating. That is, Alice holds a variable rA which indicates the round number
she is simulating. Recall that each round contains two timesteps, where Alice communicates
in the first timestep and Bob in the second. Alice sends Bob the next bit according to
her T A and waits for Bob’s reply to see if this round was successfully simulated. If Bob’s
reply indicates the same parity (i.e., the same round), Alice knows her message arrived to
Bob correctly and hence the round was correctly simulated. In this case Alice increases rA.
Otherwise, she assumes there was a corruption and she keeps rA as is; this causes the same
round of π to be re-simulated in the next round of the simulation protocol.

Bob holds a variable rB which again holds the (parity of) the latest round in π he has
simulated. In a somewhat symmetric manner (but not identical to Alice!), he expects to
receive from Alice the bit of the next round of π, rB + 1. If this is the case he responds with
his bit of that same round, or otherwise he re-transmits his bit of round rB .

Our coding scheme assumes a channel with alphabet Σ = {0, 1}×{0, 1}, where every non-
silent message can be interpreted as m = (Info,Parity), where Info ∈ {0, 1} is the information
bit (simulating π) and Parity ∈ {0, 1} is the parity of the round of π simulated by the sender.

The above continues until Alice has simulated the entire transcript of π, i.e, when rA
reaches the number of rounds in π. At this point, Alice exits the protocol. Bob, however,
cannot tell whether Alice has completed the simulation or not and waits until he sees a
silence, which indicates that Alice has terminated, only then does he exit the protocol. As
regards the correctness, we prove that in any round of the simulation, Bob has seen at least
as much of the noiseless protocol that Alice herself has seen. In particular, when Alice exits,
Bob must have seen the entire transcript of the noiseless protocol.

3.2 Analysis
Preliminaries. Recall that in our terminology a round consists of two timesteps, where at
every timestep one party sends one symbol from Σ. Alice sends symbols in odd timesteps and
Bob in even ones. The above applies for both the noiseless protocol π (where the alphabet is
binary) and for the coding scheme Π given by Algorithms 1 and 2 (where Σ = {0, 1}×{0, 1}).

We think of the communication transcript as a string obtained by the concatenation of
symbols sent during the course of the protocol run. Given a noiseless protocol π and inputs
x, y, we denote by mπ

A(i) (respectively, mπ
B(i)) the message sent by Alice (respectively, Bob)

in the i-th round in the noiseless protocol π. Let T π(r) be the transcript of the players after
r rounds in π. The length of π is denoted N and without loss of generality we will assume
that N is even.

We start our analysis by fixing a run of the coding scheme Π, specified by fixing an
erasure pattern and inputs (x, y). Let k be the number of timesteps in the given run, and
note that k is always odd. We define rounds in the coding scheme Π in the same way as we
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Algorithm 1 Simulation over Erasure Channel with Unbounded Noise (Alice).
Data: An alternating binary protocol π of length N and an input x.

A.1 Initialize T A ← λ, rA ← 0.
A.2 while (rA < N

2 ) do
// Send a Message (odd time-step)

A.3 rA ← rA + 1
A.4 bsend ← π(x | T A)
A.5 T A ← T A ◦ bsend

A.6 send (bsend, rA mod 2)

// Receive a Message (even time-step)
A.7 Obtain m′ = (brec, rrec)
A.8 if m′ 6= ⊥ and rrec = rA mod 2 then
A.9 T A ← T A ◦ brec

else
A.11 Delete last symbol of T A

A.12 rA ← rA − 1
end

end
A.13 Output T A

define rounds in the noiseless protocol. That is, for i ∈ {1, 2, . . . , dk2 e}, round i (in the coding
scheme) corresponds to the timesteps 2i − 1 and 2i. Throughout this section by round i
we refer to the round in the coding scheme unless it is specified otherwise. For the sake of
clarity, we maintain that round i begins at the start of the (2i− 1)-th timestep and ends at
the ending of the 2i-th timestep. Since Π is alternating, Alice begins a round by sending a
message and the round ends after Alice receives Bob’s response.

We define tA (and tB) to be the termination round of Alice (and respectively, Bob).
Observe that tA < tB = dk2 e since Bob terminates only once he hears silence, which can
happen only if Alice has already terminated in a previous round. For any round i and
variable v we denote by v(i) the value of v at the beginning of round i. In particular, rA(i)
and rB(i) are the values of rA and rB at the beginning of round i. Since rA is not defined
after Alice exits in Algorithm 1, for all tA < i ≤ tB, we set rA(i) to be the value of rA at
the end of round tA, that is, its value just before Alice quits. We similarly define T A(i) for
tA < i ≤ tB . Finally, let mA(i) = (bA(i), ρA(i)) and mB(i) = (bB(i), ρB(i)) be the messages
sent by Alice and Bob (see Lines A.6 or B.13 or B.15) respectively in round i.

Technical lemmas and proof of correctness. The main technical claim of this part is
Lemma 7, which we will now prove. We begin with the simple observation that, in every
round, the parties’ transcripts (and the respective round number the parties believe they
simulate) either increase by exactly the messages exchanged during the last round, or they
remain unchanged.

I Lemma 5. For any i ∈ [tB ], the following holds.
1. rA(i+ 1) ∈ {rA(i), rA(i) + 1} and T A(i+ 1) ∈

{
T A(i), T A(i) ◦ bA(i) ◦ bB(i)

}
and,

2. rB(i+ 1) ∈ {rB(i), rB(i) + 1} and T B(i+ 1) ∈
{
T B(i), T B(i) ◦ bA(i) ◦ bB(i)

}
.

Furthermore, rA (rB) changes if and only if T A (T B) changes.
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Algorithm 2 Simulation over Erasure Channel with Unbounded Noise (Bob).
Data: An alternating binary protocol π of length N and an input y.

B.1 Initialize T B ← λ, rB ← 0, err ← 0, m← (0, 0)
B.2 while m′ 6= � do // while Silence isn’t heard

// Receive a Message (odd time-step)
B.3 Obtain m′ = (brec, rrec)
B.4 if m′ = ⊥ or r = rB mod 2 then
B.5 err ← 1 // error detected
B.6 else
B.7 T B ← T B ◦ brec

B.8 err ← 0
end

// Send a Message (even time-step)
B.9 if err = 0 then

B.10 bsend ← π(y | T B)
B.11 T B ← T B ◦ bsend

B.12 rB ← rB + 1
B.13 m← (bsend, rB mod 2)
B.14 else // err = 1: keep rB and m unchanged.
B.15 send m

end
end

B.16 Output T B

Proof. Consider Algorithm 2. It is immediate that rB can increase by at most 1 in every
round. In round i Bob starts by either appending brec = bA(i) to T B(i) and setting err = 0; or
keeping T B(i) unchanged and setting err = 1. In the former case, Bob appends bsend = bB(i)
to T B(i) ◦ bA(i) and increases rB. Otherwise, he keeps T B(i) unchanged, and rB remains
the same as well.

In Algorithm 1 Alice may decrease her rA, but note that she always begins round i ≤ tA
by increasing it (Line A.3) and appending bsend = bA(i) to T A(i) (Line A.5). She then either
decreases rA back to what it was and in this case she erases bA(i) (see Lines A.12 and A.11),
or she keeps it incremented and appends brec = bB(i) to T A(i) ◦ bA(i). For i > tA, i.e., after
Alice terminates, the above trivially holds. J

I Corollary 6. For any two rounds i ≤ j, T A(i) = T A(j) if and only if rA(i) = rA(j).
Similarly, T B(i) = T B(j) if and only if rB(i) = rB(j).

Proof. Note that T A, rA are non-decreasing. Lemma 5 proves that these two variable
increase simultaneously, which proves this corollary. The same holds for T B , rB . J

I Lemma 7. For i ∈ [tA + 1], one of the following conditions holds:
1. rB(i) = rA(i) and T B(i) = T A(i) or,
2. rB(i) = rA(i) + 1 and T B(i) = T A(i) ◦ bA(i− 1) ◦ bB(i− 1).
Furthermore, in either case, T A and T B are prefixes of T π.

Proof. We prove the lemma by induction on the round i. In the first round, rA(1) = rB(1) = 0
and T B(1) = T A(1) = λ (see Lines A.1, B.1), thus Item 1 is satisfied. Note that T A and
T B are trivially the prefixes of T π. Now assume that the conditions hold at (the beginning
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of) round i ≤ tA and consider what happens during this round. Note that both parties are
active during round i.

Case 1: rA(i) = rB(i). Suppose Alice receives an (uncorrupted) message from Bob that
carries the parity rA(i) + 1 (i.e., when Alice executes Line A.8 and not the else part of
Lines A.11–A.12). This means that Bob sends a message with parity rA(i)+1 = rB(i)+1.
Since rB(i) = rA(i), this can only happen if Bob executed Lines B.13 and B.12, hence,
rB(i+ 1) = rB(i) + 1. If Alice receives a corrupted message, she decrements rA (that she
had increased at the beginning of the round) and also deletes the last message from her
transcript. Bob however may have received Alice’s message correctly and in that event,
he will increment his value of rB and update his transcript.
Note that if rB(i + 1) = rA(i + 1), then by the induction hypothesis and Lemma 5
both transcripts either remained the same in round i (so they are still the same at the
beginning of round i + 1), or both transcripts increased by appending bA(i) ◦ bB(i) to
each, so they are still equal. Here, bA(i) = π(x | T A(i)) and bB(i) = π(y | T B(i) ◦ bA(i)).
Similarly, if rB(i+ 1) = rA(i+ 1) + 1, Lemma 5 establishes that T A(i) hasn’t changed in
round i, while T B(i+ 1) = T B(i) ◦ bA(i) ◦ bB(i), which by the induction hypothesis gives
Item 2. Since bA(i) and bB(i) are the correct continuations of T A(i) from π, the above
discussion proves that T A(i+ 1) and T B(i+ 1) are prefixes of T π.

Case 2: rB(i) = rA(i) + 1. In this case, whether Bob receives an erasure or an uncorrupted
message, he sets err = 1. Indeed, if Alice’s message is not erased, then the parity Bob
receives equals his saved parity (since Alice holds rA(i) = rB(i)− 1 and she increases it
by one in Line A.3 before sending it to Bob). In both cases Bob does not change rB,
i.e., rB(i+ 1) = rB(i) and he sends the message mB(i) = (bB , rB mod 2) (see Lines B.5
and B.15) from his memory. Consequently, Bob’s transcript doesn’t change in round i.
So, T B(i+ 1) = T B(i) = T A(i) ◦ bA(i− 1) ◦ bB(i− 1).
If Alice receives an erasure she sets rA(i+ 1) to be same as rA(i) (see Line A.12) and sets
T A(i+1) = T A(i). Since, rA(i+1) = rA(i) and rB(i+1) = rB(i) the claim holds. However,
if Alice receives an uncorrupted message, she notices that rrec = (rA(i) + 1) mod 2 (see
Line A.8) and she does not decrement rA. In this case, rA(i+ 1) = rA(i) + 1 = rB(i) =
rB(i + 1) and T A(i + 1) = T A(i) ◦ bA(i) ◦ bB(i). Now we prove that bA(i) = bA(i − 1)
and bB(i) = bB(i− 1), thus in the former case, T B(i+ 1) = T A(i+ 1) ◦ bA(i) ◦ bB(i) or
T A(i+ 1) = T B(i+ 1). in the latter. Since in round i, Bob sets err = 1 we have that
mB(i) = mB(i− 1) whence bB(i) = bB(i− 1). To prove that the same holds for bA we
will need the following simple claim.

B Claim 8. rA(i) = rA(i− 1).

Proof. Supposing round i− 1 satisfies Item 1, we must have that rA(i) = rA(i− 1). If
this were not true, then rB(i) = rA(i) + 1 = (rA(i− 1) + 1) + 1 = rB(i− 1) + 2 which is
a contradiction of Lemma 5. On the other hand, if round i− 1 satisfies Item 2, then we
know rB cannot increase in round i− 1, whence, rB(i) = rB(i− 1). Using this we have,
rA(i− 1) + 1 = rB(i− 1) = rB(i) = rA(i) + 1. C

Following the above claim, rA(i − 1) = rA(i), and we get that T A(i − 1) = T A(i)
(Lemma 5). Therefore, bA(i− 1) = π(x | T A(i− 1)) = π(x | T A(i)) = bA(i). From the
induction hypothesis, T B(i+ 1) = T B(i) is a prefix of T π. From the above discussion,
we know that either T A(i+ 1) = T A(i) ◦ bA(i) ◦ bB(i) = T B(i+ 1) or T A(i+ 1) = T A(i).
In the former case, it is clear that T A(i+ 1) is a prefix of T π whereas in the latter case,
since T A(i) is a prefix of T π (by the induction hypothesis) so is T A(i+ 1). J
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The following lemma implies that after Alice terminates, no matter what erasures Bob sees,
his values of rB and T B do not change.

I Lemma 9. For i such that tA < i ≤ tB, round i satisfies Item 1 of Lemma 7 and
rA(i) = N

2 .

Proof. Recall that tA < tB. Since Alice exits in round tA, it must hold that at the end of
this round rA = N

2 , yet, rA(tA) = N
2 − 1 for otherwise, Alice would have terminated in the

end of round tA − 1. Via Lemma 7 we know that rB(tA) ∈ {N2 − 1, N2 }. If rB(tA) = N
2 − 1

we know from the proof of case 1 in Lemma 7 that since rA increases in round tA, rB also
increases. In the other case, namely, when rB(tA) = N

2 , we know from the proof of Lemma 7
(case 2) that rB does not change, i.e., rB(tA + 1) = rB(tA) = N

2 .
After Alice exits, Bob can either hear silence or an erasure and therefore for all rounds

i > tA, Bob sets err = 1 and consequently rB(i) is never incremented. It follows that for
all i > tA, rB(i) = N

2 . The second part of the claim follows from Corollary 6 and Lemma 7,
since T A(tA + 1) = T B(tA + 1) and since rA, rB do not change anymore. J

We are now ready to prove the main theorem and show that we can correctly simulate the
noiseless protocol π under the specifications of Theorem 1. We first state Lemma 10 which
will be help us bound the communication and also show that Alice eventually terminates.

I Lemma 10. In any round i ∈ [tA] where there are no erasures at all, rA(i+ 1) = rA(i) + 1.

Proof. Note that both parties are still active in round i. Consider the two cases of Lemma 7.
If T A(i) = T B(i) and both messages of round i are not erased, we showed that rA increases
(case 1). Similarly, if T B(i) = T A(i) ◦ bA(i − 1) ◦ bB(i − 1) and no erasures occur, Alice
extends her transcript and rA increases again (case 2). J

I Theorem 11. Let π be an alternating binary protocol and T ∈ N be an arbitrary integer.
There exists a coding scheme Π over a 4-ary alphabet such that for any instance of Π
that suffers at most T erasures overall, Alice and Bob both output T π. The simulation Π
communicates at most CC(π) + 2T symbols, and has CC(Π) ≤ 2CC(π) + 4T .

Proof. Lemma 7 guarantees that at every given round, Alice and Bob hold a correct prefix
of T π. Moreover, we know that by the time Alice terminates, her transcript (and hence
Bob’s transcript) is of length at least N , which follows from Lemma 9 and Lemma 5, i.e.,
from the fact that rA = N/2 at termination, and that every time rA increases by one, the
length of T A increases by two. Finally, note that if the number of erasures is bounded by T ,
then Alice will eventually reach termination because, after T erasures, rA increases by one in
every round (Lemma 10), until it reaches N/2 and Alice terminates.

Finally, we need to prove that the communication behaves as stated. Assume T ′ erasures
happen up to round tA and T ′′ = T − T ′ erasures happen in rounds [tA + 1, tB ]. Since every
round without erasures advances rA by one (again from Lemma 10), and since when Alice
terminates we have rA = N/2 (Lemma 9), then tA ≤ T ′ + N/2. Furthermore, after Alice
terminates it takes one unerased (odd) round to make Bob terminate as well. Hence, at
every round after tA and until Bob terminates, Alice’s silence must be erased. It follows that
tB − tA ≤ 1 + T ′′. Thus, tB ≤ 1 + T ′′ + tA ≤ 1 + T +N/2.

Every round i ∈ [tA] consists of two transmissions, while every round tA < i < tB contains
only a single transmission–Bob’s transmission, excluding round tB where Bob hears silence
and terminates without sending a message. The total number of transmissions is then,

tA + tB − 1 ≤ N + 2T ′ + T ′′ ≤ N + 2T.

Recall that |Σ| = 4, hence CC(Π) ≤ (N + 2T ) log 4 = 2(CC(π) + 2T ). J
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3.3 Noise Resilience and Code Rate
We can compare the above result to the case where the noise is bounded as a fraction of the
symbols communicated in the protocol [30, 14, 12]. In our setting, the noise amount can be
arbitrary. In order to compare it to the bounded-noise model, we ask the following question.
Assume an instance of Π with large amount of noise T (T � N). Then, what fraction does
the noise make out of the entire communication.

As a corollary of Theorem 11 it is easy to see that the fraction of noise is lower bounded
by T

N+2T whose limit, as T tends to infinity, is 1/2. Indeed, 1/2 is an upper bound on the
noise fraction in the bounded-noise setting [14].4 Furthermore, if the noise is bounded to be
a δ-fraction of the total communication, for some δ < 1/2 then, T ≤ δ · 2tB ≤ δ(N + 2T )
and so T ≤ δN

1−2δ . This implies a maximal asymptotic code rate of 1/2. Indeed,

R = CC(π)
CC(Π) ≥

1
log |Σ| ·

N

N + 2T ≥
1
2 ·

N

N + 2 δN
1−2δ

≥ 1
2(1− 2δ) = 1

2 − δ.

As T is unbounded relative to CC(π) and we can potentially get a zero rate, a more interesting
measure is the “waste” factor, i.e., how much the communication of Π increases per single
noise, for large T . In our scheme it is easy to see that each corruption delays the simulation
by one round, that is, it wastes two symbols (4 bits). This implies a waste factor of 4 bits
per corruption, ω = limT→∞

CC(Π)
T = 2N+4T

T = 4.
Finally, we mention that our result extends to binary alphabet by naively encoding each

symbols as two bits (this also proves the second part of Theorem 1). However, this results
in a reduced tolerable noise rate of 1

4 . Similar to the scheme in [12], the noise resilience
can be improved to 1

3 by encoding each symbol via an error correcting code of cardinality 4
and distance 2

3 , e.g., {000,011,110,101}. In this case, two bits must be erased in order to
invalidate a round. Each round (two timesteps) consists the transmission of six bits. Hence,
the obtained resilience is 2/6 = 1/3, similar to the best known resilience in the bounded-noise
setting with binary alphabet [12].
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