
A Characterization of Consensus Solvability for
Closed Message Adversaries
Kyrill Winkler
TU Wien, Vienna, Austria
kwinkler@ecs.tuwien.ac.at

Ulrich Schmid
TU Wien, Vienna, Austria
https://ti.tuwien.ac.at/ecs/people/schmid
s@ecs.tuwien.ac.at

Yoram Moses
Technion, Haifa, Israel
moses@ee.technion.ac.il

Abstract
Distributed computations in a synchronous system prone to message loss can be modeled as a
game between a (deterministic) distributed algorithm versus an omniscient message adversary. The
latter determines, for each round, the directed communication graph that specifies which messages
can reach their destination. Message adversary definitions range from oblivious ones, which pick
the communication graphs arbitrarily from a given set of candidate graphs, to general message
adversaries, which are specified by the set of sequences of communication graphs (called admissible
communication patterns) that they may generate. This paper provides a complete characterization
of consensus solvability for closed message adversaries, where every inadmissible communication
pattern has a finite prefix that makes all (infinite) extensions of this prefix inadmissible. Whereas
every oblivious message adversary is closed, there are also closed message adversaries that are not
oblivious. We provide a tight non-topological, purely combinatorial characterization theorem, which
reduces consensus solvability to a simple condition on prefixes of the communication patterns. Our
result not only non-trivially generalizes the known combinatorial characterization of the consensus
solvability for oblivious message adversaries by Coulouma, Godard, and Peters (Theor. Comput.
Sci., 2015), but also provides the first combinatorial characterization for this important class of
message adversaries that is formulated directly on the prefixes of the communication patterns.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Dynamic networks, Consensus, Message Adversary

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.17

Funding Kyrill Winkler : Austrian Science Fund (FWF): ADynNet (P28182) and RiSE/SHiNE
(S11405)

1 Introduction

With the increasing pervasiveness of mobile wireless devices that are subject to energy
constraints and unreliable communication, there is a growing need for a profound theoretical
understanding of what can and what cannot be computed in such dynamic networks [15].

One popular way to model these systems is by assuming a set of n synchronous, infallible1
agents (called processes in the sequel), which communicate by exchanging messages over
directed links whose behavior is under the control of a message adversary (MA) [1]. Whereas

1 Of course, the typical behavior exhibited by a crashed process (i.e., no messages sent after it failed) can
easily be mimicked by an appropriate message adversary as well.

© Kyrill Winkler, Ulrich Schmid, and Yoram Moses;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7310-1748
mailto:kwinkler@ecs.tuwien.ac.at
https://orcid.org/0000-0001-9831-8583
https://ti.tuwien.ac.at/ecs/people/schmid
mailto:s@ecs.tuwien.ac.at
mailto:moses@ee.technion.ac.il
https://doi.org/10.4230/LIPIcs.OPODIS.2019.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 A Characterization of Consensus Solvability for Closed Message Adversaries

the power of such a message adversary must be restricted somehow, as it may otherwise simply
suppress all messages and make any distributed task trivially impossible, it is considered
omniscient and may hence seek to actively foil the success of any given solution algorithm
within its constraints. We stress that an algorithm that has been proved to solve some task,
like consensus, under a certain message adversary MA provides a correct result, irrespective
of whether erroneous communication stems from random faults or malicious interference, as
long as it remains within the specification of the MA.

Even more fundamental than solution algorithms are characterizations of message ad-
versaries with respect to certain tasks, that is, statements about when a message adversary
becomes too powerful for solving a task: If a message adversary can be shown to cause
any solution algorithm to fail under some admissible communication pattern, there is no
hope to find a correct algorithm. In this paper, we provide a complete characterization of
the important class of closed message adversaries (see below for its definition) with respect
to the classic deterministic consensus problem, where each process starts with some input
value and, eventually, every process has to decide the same value that was the input of some
process. Thanks to the close relation between the solvability of consensus and variants of
common knowledge in epistemic reasoning [13], our findings are also relevant for the latter
(c.f. Section 5.2).

Classes of Message Adversaries
The fundamental objects in the message adversary model are communication graphs Gr,
which, for a given round r, determine which messages are delivered and which are lost
(see Section 2 for details). A communication pattern is a sequence G1, G2, . . . of such
communication graphs for round 1, 2, . . . ; a message adversary (MA) is just the set of its
admissible communication patterns MA.

One important and well-studied class of message adversaries are oblivious ones [6], where
the MA may pick every Gr arbitrarily, i.e., without restrictions, from a given set D of
candidate graphs. We can hence write MA = Dω for an oblivious message adversary. A
prominent example is the message adversary that allows a certain number of mobile link
failures per round, which was studied in the seminal work by Santoro and Widmayer [23].
Consensus has been shown to be impossible if D contains all communication graphs where
6 n− 1 edges are missing (excluding self-loops).

Oblivious message adversaries do not allow to change the set of candidate graphs over
time, however, which makes them unsuitable to model transient performance variations in
real-world dynamic networks. In wireless mobile ad-hoc networks, for example, there may
be substantial periods of time where some nodes are outside the communication range of
others, e.g. in disaster-relief applications [18] or under strong interference by other radio
transmitters [14]. Another source of time-varying communication conditions are mode
switches, caused by the nodes themselves, due to reasons such as energy-saving, boot-up
completion or fault recovery.

In this paper, we therefore focus on the class of limit-closed message adversaries (subse-
quently called closed2 MAs for brevity), which are a proper superset of oblivious message
adversaries. Their characterizing property is that every sequence (σi)i≥1, such that each σi

2 In the topological framework of [21], which follows-up on [2], a closed message adversary corresponds
to a compact space, which is why, in a topological context, the term “compact message adversary” is
preferable. Because we do not use topological reasoning in this paper, we stick to the terminology of [19]
in this paper and use the term “closed message adversary” instead.

K. Winkler, U. Schmid, and Y. Moses 17:3

is the prefix of an admissible communication pattern and each σi is a prefix of σi+1, has a
limit σ ∈ MA. Equivalently, for every communication pattern σ that is inadmissible under
a closed message adversary, there exists a round r such that all extensions of the round r
prefix of σ are inadmissible as well. Note that this definition makes the set of admissible
sequences of the MA closed and hence a safety property in the spirit of [2]. Thus, for
closed message adversaries, reliable message delivery implies that the message delivery is
reliable and bounded and fairness implies bounded fairness. Even though this is a very strict
requirement, our characterization is more general than the previously existing combinatorial3
characterizations of consensus solvability under message adversaries with an arbitrary number
of processes [6, 23].

More specifically, it follows directly from its definition that an oblivious message adversary
is closed, but there are also closed message adversaries that are not oblivious. An important
example are MAs that ensure bounded instability. Such message adversaries guarantee some
“global stabilization round” rGST , which must be bounded (with some known bound), such
that the communication graphs become “nice” from round rGST onwards. The latter could
occur in a myriad of ways, however: For example, starting from rGST , a benign dynamic
graph structure (like a vertex-stable source component [3] that persists for sufficiently many
rounds) could appear. Alternatively, the number of rounds it takes for some processes to
reach all other processes could be bounded, analogous to partially synchronous systems [9]4
or MAs corresponding to the ones from [16,17]. A different example are MAs that assemble
communication patterns by concatenating finite sequences of communication graphs, picked
from a set of communication graph sequences with a fixed maximal length. Such a MA can
either be allowed to choose an arbitrary combination of elements from this set, similar to
oblivious message adversaries, or be subject to constraints, such as bounded instability.

On the other hand, relaxing the above requirement of rGST being bounded to being
unbounded but finite provides an illustrative example for a general message adversary. A MA
that guarantees stability only eventually, i.e., after unbounded5 instability, is not closed. In
fact, the communication pattern where stability never occurs does not have a finite prefix such
that all extensions are inadmissible, as any such finite prefix could still be made admissible
by attaching a stability phase. Whereas we do not aim at a combinatorial characterization
of consensus solvability for non-closed MAs in this paper (a topological characterization can
be found in [21]), we believe that research on this challenging problem might benefit from
our result.

An example for n = 2

In order to illustrate the different message adversary classes, we consider the case where the
set of processes is Π = {◦, •}, i.e., n = 2, and the communication graphs are ◦←•, ◦↔•, ◦→•,
and ◦ • (in the last graph, there is no edge between the processes).

3 We use the term “combinatorial” to distinguish classic approaches that essentially enumerate combi-
natorial objects (like execution prefixes) from the topological characterization provided in [21], which
is more general but rests on fairly abstract topological concepts like connected subspaces of infinite
executions. Among the advantages of combinatorial characterizations is that they are often directly
amenable to algorithmic implementations and hence more operational.

4 In contrast to [9], message adversaries allow us to restrict precisely which processes may communicate
with each other and which may not.

5 Note that finite but unbounded rGST is equivalent in terms of task solvability to rGST being bounded
with an unknown bound: The code of a solution algorithm A for the latter cannot depend on any bound
on rGST , yet must work for every finite value of rGST .

OPODIS 2019

17:4 A Characterization of Consensus Solvability for Closed Message Adversaries

In this example, an oblivious message adversary is represented by a subset of these
communication graphs and considers all sequences admissible that consist exclusively of graphs
from this subset. Thus, every oblivious message adversary that permits the communication
graph ◦ • makes solving consensus trivially impossible. Furthermore, the oblivious message
adversary that permits the communication graphs ◦←•, ◦↔•, and ◦→• is known to make
consensus impossible at least since [23]. However, removing only one graph from this set of
possible communication graphs already makes consensus solvable: If the message adversary
permits ◦←• and ◦↔•, both processes may decide the input of • after the first round. If it
permits ◦←• and ◦→•, a process may decide on the other’s input if it received the other’s
message in the first round and on its own input otherwise.

We get an example of a closed message adversary by allowing the communication graphs
◦←•, ◦↔•, and ◦→•, provided there is some known round rGST by which it is guaranteed
that the same communication graph has occurred consecutively, in rounds r and r + 1. This
message adversary is closed, because every limit of a sequence (σi)i≥1 of admissible prefixes,
s.t. σi is a prefix of σi+1, is admissible here: Intuitively, the reason is that every prefix in
the sequence that is longer than rGST rounds, in order to be admissible, must have rounds
r, r + 1 ≤ rGST that satisfy the property described above, and every continuation of such
a sequence, which corresponds to a limit sequence, is also admissible. We can hence use
Algorithm 1 introduced in Section 4 for solving consensus.

The same message adversary, however with the property that rGST is finite but unbounded,
provides an example of a non-closed message adversary. Consensus is solvable even under
this message adversary; a suitable algorithm has been provided in [25]. Still, our Algorithm 1
does not work anymore, since the MA is not closed: Since the repetition of the same graph
twice in a row may occur arbitrarily late, there is a limit sequence (σi)i≥1 that consists
entirely of admissible prefixes where it never occurs. This is an inadmissible communication
pattern for this message adversary, however.

Contributions and Paper Organization
In this paper, we provide a complete combinatorial characterization of consensus solvability
under closed message adversaries. Compared to the topological characterization provided
in [21] (see the related work below), it is considerably less abstract and, more importantly,
also fully operational: it utilizes an easy to check property of (finitely many) prefixes of
admissible communication patterns, rather than properties of (uncountably many) infinite
communication patterns. Compared to the combinatorial characterization for oblivious
message adversaries developed in [6], our characterization applies to the larger class of
closed MAs, and relies on checking the simple dynamic graph property “non-empty kernel
intersection” (see Theorem 1 below), rather than on an involved algorithm that exploits
certain properties of the so-called “β-classes”.

In more detail, we present a condition on the admissible communication patterns of a
message adversary, which we prove to be both necessary and sufficient for solving consensus.
The condition, given in Theorem 1 below, rests on two main ingredients:
(i) An equivalence relation σ|r ∼ ρ|r on the r-round prefixes of the communication patterns

σ, ρ, which is the transitive closure of the per-process equivalence relations σ|r ∼pi ρ|r;
the latter holds if process pi cannot distinguish σ|r from ρ|r, in every round up to r.

(ii) The set of processes (called the kernel of σ|r, denoted by Ker(σ|r)) that influence every
process in the system within σ|r. The processes in Ker(σ|r) are the ones that manage
to broadcast their initial value to all processes within σ|r, and are hence sometimes
called broadcasters.

K. Winkler, U. Schmid, and Y. Moses 17:5

Whereas it is not too difficult to prove (see Theorem 2) that solving consensus within
r rounds under a communication pattern σ requires the existence of a broadcaster in σ|r,
i.e., Ker(σ|r) 6= ∅, this is only a necessary condition. What needs to be added to also make
it sufficient is that actually all transitively indistinguishable prefixes ρ|r must have some
common element(s) in their kernels Ker(ρ|r): With [σ|r] denoting the equivalence class w.r.t.
∼ containing σ|r, which can be computed from the message adversary specification, our main
result is the following:

I Theorem 1. Consensus is solvable under a closed message adversary MA if and only if
for each σ ∈ MA there is a round r such that

⋂
x∈[σ|r] Ker(x) 6= ∅.

Theorem 1 is not only interesting from a theoretical point of view, but may also have
practical implications in that it allows to avoid attempts to develop consensus algorithms for
dynamic networks that do not allow any solution. The remainder of this paper is devoted
to the proof of Theorem 1 and is organized as follows: In Section 2, we present our system
and computation model, the definition of our message adversaries and their properties,
and the specification of the consensus problem. In Section 3, we use indistinguishability
arguments and König’s Infinity Lemma to prove that consensus is impossible if the condition
in Theorem 1 does not hold. In Section 4, we prove the sufficiency of our condition, by
specifying an algorithm that solves consensus under a message adversary that satisfies
Theorem 1. A comparison to other approaches in Section 5 and some conclusions in Section 6
round-off our paper.

Related Work
Dynamic networks have been studied in a wide variety of different forms in the distributed
computing literature, e.g. as predicates on “heard-of” sets [5], in the form of dynamic
connectivity constraints (T -interval connectivity) [16, 17], as time-varying graphs [4], and
many more (c.f. the overview in [15]). The term message adversary was introduced in [1],
as an intuitive way to understand message loss in distributed computing systems. [22]
investigated the relation between message adversaries and failure detectors, whereas [3, 25]
studied eventually stabilizing message adversaries.

Perhaps one of the earliest characterizations of consensus solvability in synchronous
distributed systems prone to communication errors is the seminal work by Santoro and
Widmayer [23], where it was shown that consensus is impossible if up to n− 1 messages may
be lost in each round. This classic result was refined in [24] and, more recently, by Coulouma
et al. in [6], where a property of an equivalence relation on the sets of communication graphs
was found that captures exactly the source of consensus impossibility under an oblivious
message adversary. The authors also showed how this property can be exploited in order to
develop a generic consensus algorithm.

The first characterization of consensus solvability under general message adversaries was
provided in [11], albeit only for systems that consist of two processes. A bivalence argument
was used there to show that certain communication patterns, namely, a fair or a special pair
of unfair communication patterns, must be excluded by the MA for consensus to become
solvable. In [21], Nowak et al. provided a complete topological characterization for systems
of arbitrary size, which relies on non-trivial extensions of the seminal work by Alpern and
Schneider [2]. It focuses on the space of communication patterns (actually, the corresponding
infinite sequences of process-time graphs resp. configurations), and defines topologies based
on variants of the well-known common-prefix metric. The authors show that consensus is
solvable for a given MA if and only if this space partitions into multiple components PS(v)

OPODIS 2019

17:6 A Characterization of Consensus Solvability for Closed Message Adversaries

consisting of the executions with decision value v. For closed message adversaries, these sets
are shown to be compact and hence closed, while for non-closed MAs they are only relatively
compact. The existence of this partitioning is tied to the non-empty kernel intersection of
every individual PS(v) in both cases. For closed MAs, it has been shown that PS(v) can be
replaced by some approximation PSε(v), which consist of the k-prefixes of the sequences in
PS(v) for ε = 2−k. In a way, the condition given in Theorem 1 can hence be viewed as the
combinatorial counterpart of this topological characterization.

Regarding the study of closed message adversaries, the seminal works by Dolev et al. [8]
and Dwork et al. [9] on partially synchronous systems introduced important abstractions like
eventual stabilization and eventually bounded message delays, and provided a characterization
of consensus solvability under various combinations of synchrony and failure models (including
byzantine-faulty processes).

In [19], Lubitch and Moran provided a general consensus impossibility result for asyn-
chronous distributed systems. For this purpose, they studied the configuration tree of an
asynchronous system, in which each node corresponds to a configuration and a node is the
child of another, if the corresponding configuration is a successor configuration of the other.
They focused on closed subsets of runs of asynchronous distributed algorithms, defined by
the property that every path in the configuration tree corresponds to an admissible execution
(which is equivalent to limit-closure). Using a model-independent construction of closed
schedulers that generate closed sets of runs, they provided a unified impossibility proof for
consensus using a bivalence argument. The simplicity of their approach rests on the fact
that the forever bivalent run so constructed belongs to the closed set of runs, and is hence
admissible. This convenient property of closed sets of communication patterns is also used
in our paper, albeit we use König’s Infinity Lemma rather than a bivalence argument for
constructing a non-deciding run. We briefly explain at the end of Section 3 why our model is
not suitable for a bivalence argument like the one in [19].

2 Model of Computation

We consider a finite set Π = {p1, . . . , pn} of deterministic network-coupled state machines
(processes) with unique identifiers (for brevity we assume the identifier of pi is its index i),
unlimited memory and infinite computational power. Processes, which are assumed to be
fault-free, operate in lock-step synchronous rounds where they can exchange messages with
each other via unidirectional pairwise links. A message can only arrive at the destination in
the same round in which it is sent. However, not all messages are guaranteed to reach their
recipient. Instead, a message adversary controls which messages arrive and which get lost in
a round. The message adversary is omniscient, yet restricted by a set of rules that are known
to the processes. The processes need to cooperate to solve the distributed consensus problem
(to be defined later), which the message adversary, in turn, seeks to foil. Throughout this
paper, we study the conditions under which there is a winning strategy for either side.

Message Adversaries
A round r communication graph Gr is a directed graph in which each vertex corresponds
to a process and there is an edge (pi → pj) in Gr if and only if a message sent by pi to pj
in round r is not lost. We denote by InGr

(pi) the incoming edges of pi in Gr. We assume
that every process always receives a message from itself, hence Gr contains self-loops at
all nodes. A finite sequence of consecutive communication graphs Gr, Gr+1, . . . , Gr+k is
called a finite communication pattern. We say that a finite communication pattern of the

K. Winkler, U. Schmid, and Y. Moses 17:7

form σ = Gr, . . . , Gr+k, has length |σ| = k + 1 and range [r, r + k]. Infinite communication
patterns σ = G1, G2, G3, . . . are called communication patterns for brevity. If σ is an infinite
or finite communication pattern of range at least [1, r], then σ|r denotes the r-round prefix of σ,
i.e., the first r graphs G1, G2, . . . , Gr of σ. A message adversary is a set of communication
patterns MA, (the specification of) which is assumed to be common knowledge.

For a given communication pattern σ = G1, G2, . . ., we define influence in the usual way
(see e.g. [17]): we say process pi at round r influences pj in round r′, written as (pi, r) σ

(pj , r′), if there is a chain of messages, starting at pi no earlier than the beginning of round r+1
and ending at pj no later than at the end of r′. Formally, influence is just the transitive closure
(over rounds) of the relation (pi, r)→σ (pj , r + 1), which holds if the edge (pi → pj) ∈ Gr+1.
The view of a process in round r for communication pattern σ is a graph viewσ|r (pi) = 〈V,E〉,
such that V is the collection of process-round pairs that have influenced pi by round r, i.e., V =
{(pj , r′) : (pj , r′) σ (pi, r)} and there is an edge in E ⊆ V × V precisely if a corresponding
message was successfully delivered and subsequently the recipient of this message influenced
pi, i.e., E = {((pj , r′)→ (pk, r′ + 1)) : (pj → pk) ∈ Gr′+1 ∧ (pk, r′ + 1) σ (pi, r)}.

We say that two finite communication patterns ρ, σ are indistinguishable for pi, written
as ρ ∼pi σ, if viewρ(pi) = viewσ(pi). We note that viewρ(pi) = viewσ(pi) implies that
|ρ| = |σ| because we assume that every communication graph contains self-loops. We
use ρ ∼ σ to denote the transitive closure of the above relation, over all processes and
sequences, i.e., w.r.t. a set of finite communication patterns S, we write ρ ∼ σ if, for
some multiset of processes {pi1 , . . . , pik} of Π and some set {τ1, . . . , τk−1} ⊆ S, we have
ρ ∼pi1

τ1 ∼pi2
. . . ∼pik−1

τk−1 ∼pik
σ. We note that ∼ is an equivalence relation and, given

the set S (usually, a set of prefixes of admissible communication patterns), we denote by [σ]
the equivalence class of σ over the set S. Given S′ ⊆ S with σ ∈ S′, the subclass [σ]S′ of σ is
the equivalence class of σ on S′; we will sloppily write [σ]S′ ⊆ [σ] in this case. Note carefully
that the transitive closure ∼ of [σ]S′ runs over sequences in S′ only. Hence, there may be
ρ ∈ S′ with ρ ∈ [σ] but ρ 6∈ [σ]S′ , namely, when every path between σ and ρ contains some
sequence in S \ S′. Finally, we extend ∼p (resp. ∼) to infinite communication patterns σ, ρ,
by writing σ ∼p ρ (resp. σ ∼ ρ) if and only if σ|r ∼p ρ|r (resp. σ|r ∼ ρ|r), for every finite
r ≥ 1.

We define the kernel of a prefix σ|r by Ker(σ|r) = {pi ∈ Π | ∀pj ∈ Π: (pi, 0) σ (pj , r)}
to be the set of those processes that reach every other process, directly or via transitive
messages by the end of round r. The kernel intersection KI[σ|r] of an equivalence class [σ|r]
is defined as KI[σ|r] =

⋂
x∈[σ|r] Ker(x). For an infinite communication pattern σ, we define

Ker(σ) =
⋃
r>0 Ker(σ|r).

Executions
Starting from its initial state state0(pi), the state of pi at the end of its round r computation is
denoted as stater(pi). The collection of all round r states is called a round r configuration Cr.
The state transition function that guides the evolution of stater(pi) to stater+1(pi) (which
also depends on InGr+1(pi)), as well as the message sending function that computes (from
stater(pi)) the message to be broadcast6 in round r + 1, are specified by an algorithm
in pseudo-code. Note that if (pj , r) σ (pi, s) then states(pi) may depend on stater(pj)
but not necessarily on stater+1(pj). An execution is an infinite sequence of configurations

6 We assume that the same message is sent to every receiver for simplicity, which makes sense since the
algorithm does not necessarily know even n.

OPODIS 2019

17:8 A Characterization of Consensus Solvability for Closed Message Adversaries

C0, C1, . . . that is in accordance with the state transition and message sending function of some
deterministic algorithm. Since the processes are deterministic, the initial configuration C0,
together with the communication pattern, uniquely determines the execution, hence we write
〈C0, σ〉 for the run that results when executing a given algorithm that starts from C0 and is
subject to an infinite communication pattern σ.

We say that two executions ε, ε′ are indistinguishable to process pi, written as ε ∼pi ε
′,

if pi goes through the same sequence of states in both executions. We note that, from
the previous arguments, we immediately have that two executions 〈C0, σ〉 ∼pi

〈C ′0, σ′〉
are indistinguishable for pi if the corresponding communication patterns σ ∼pi σ′ are
indistinguishable for pi and, for all pj that influence pi in σ, we have that state0(pj) is the
same in C0 and in C ′0. Intuitively, this holds because a process can only be certain about the
(successful and unsuccessful) message exchanges and initial states that it has either observed
directly (by itself) or indirectly (by being influenced accordingly).

Consensus
In the classic distributed consensus problem, each process pi ∈ Π holds an input value xi ∈ N
and an output or decision value yi, initialized to yi = ⊥, that can be written to at most
once. In an execution of a consensus algorithm, the initial configuration C0 is usually just an
assignment of input values to each process. We say that pi decides v if pi assigns v to yi. An
algorithm that correctly solves consensus ensures the following:

(Decision) Every process pi decides on a value yi eventually.
(Agreement) If yi 6= ⊥ and yj 6= ⊥, then yi = yj .
(Validity) If yi = v and v 6= ⊥, then v = xj for some process pj .

We commence by identifying a crucial relation between decision values and Ker(σ).

I Theorem 2. Let MA be an arbitrary message adversary, let C0 be an initial configuration,
let σ ∈ MA, and let pi ∈ Π. The decision yi in execution ε = 〈C0, σ〉 of any correct consensus
algorithm A satisfies yi = xj for some pj ∈ Ker(σ).

Proof. Suppose that there is an initial configuration C0 and a σ ∈ MA, such that, in some
correct consensus algorithm A, some process decides v in execution 〈C0, σ〉 where v 6= xi for
any pi ∈ Ker(σ). By validity, the set K = {pi ∈ Π\Ker(σ) | xi = v} is non-empty. Assuming
some arbitrary ordering on K = {pi1 , . . . , pik}, let C0

0 = C0 and for 0 < m 6 |K| = k, let Cm0
be the same as Cm−1

0 except that xim 6= v in Cm0 . We show by induction that, for any ` ≥ 0,
some process decides v in the computation of A with execution ε` = 〈C`0, σ〉. But then, A
violates validity, because in Ck0 , xi 6= v for every process pi ∈ Π.

The induction base for ` = 0 follows from the initial assumption. For the induction step
from ` − 1 ≥ 0 to `, we observe that since K ⊆ Π \ Ker(σ), there is some process pi such
that, for any round r, (pi` , 0) 6 σ (pi, r).

By construction, therefore, ε`−1 ∼pi ε`. The induction hypothesis asserts that some
process decides v in ε`−1 and thus, by agreement, pi decides v in ε`−1 and hence in ε` as
well. J

Because of Theorem 2, it makes sense to only consider message adversaries MA where for
each σ ∈ MA we have Ker(σ) 6= ∅. Perhaps not surprisingly, though, this requirement alone
is insufficient for solving consensus. Investigating precisely what is additionally required is
the goal of the remaining paper.

K. Winkler, U. Schmid, and Y. Moses 17:9

3 Necessity of an Eventually Common Kernel

In this section, we prove the “only if”-direction of Theorem 1, showing that consensus
is impossible under a message adversary that contains a communication pattern σ with
KI[σ|r] =

⋂
x∈[σ|r] Ker(x) = ∅ for all rounds r.

Our general proof strategy, as realized in Lemma 7, is to show that, because of the
above condition, there is a particular subclass X ⊆ [σ] of communication patterns with⋂
x∈X Ker(x) = ∅. In Lemma 8, we show that this makes consensus impossible because it

would mean that there are two indistinguishable executions with a different decision value.
To prove Lemma 7, we apply König’s Infinity Lemma to a tree that can be described as
follows: At level r, the nodes are the subclasses of [σ|r] that consist of prefixes ρ such that
Ker(ρ) is a subset of an “associate kernel” in some fixed set S of kernels. We then apply
König’s Infinity Lemma to show that there exists an infinite path in the tree that corresponds
to a non-empty subclass X of [σ]. Because the associate kernels satisfy

⋂
K∈S K = ∅, this

implies
⋂
x∈X Ker(x) = ∅, as required.

I Lemma 3 (König’s Infinity Lemma, cf. [7, Chapter 6]). Let V1, V2, . . . be an infinite sequence
of disjoint non-empty finite sets, and let G be a graph on their union. Assume that every
vertex v in a set Vr with r > 1 has a neighbor f(v) in Vr−1. Then G contains an infinite
path v1v2 . . . with vr ∈ Vr for all r.

We start with the definition of kernel-restricted classes [σ]K (resp. [σ]⊆K), where all
members must have a kernel that is equal to (resp. a subset of) an element of the non-empty
set of kernels K = {K1, . . . ,Kk}:

I Definition 4 (Kernel-restricted classes). Given the equivalence class [σ]S of a communi-
cation pattern σ over the set S, and some non-empty set of non-empty kernels ∅ 6= K =
{K1, . . . ,Kk}, the kernel-restricted class [σ]K ⊆ [σ]S of σ is defined to be the class [σ]S′ of σ
over the set S′ = {ρ ∈ S : Ker(ρ) ∈ K}. Similarly, [σ]⊆K ⊆ [σ]S is the class [σ]S′′ over the
set S′′ = {ρ ∈ S : ∃Ki ∈ K s.t. Ker(ρ) ⊆ Ki}.

Note that [σ]K = ∅ if Ker(σ) 6∈ K (although this does not happen in Lemmas 5 to 7 below),
and that there may be ρ ∈ [σ] with Ker(ρ) ∈ K but ρ 6∈ [σ]K, which happens if every path
connecting σ ∼ ρ in [σ] contains at least one prefix not in S′.

I Lemma 5. Let MA be a message adversary that contains some σ s.t. KI[σ|r] = ∅ holds
for all rounds r. Then, there is a non-empty set K = {K1, . . . ,Kk} of kernels, such that⋂k
i=1 Ki = ∅ and [σ|r] = [σ|r]K for infinitely many rounds r = r1, r2,

Proof. For an arbitrary round r > 0, let g([σ|r]) = {κ ⊆ Π: ∃ρ ∈ [σ|r] with Ker(ρ) = κ}.
Since Π is a finite set, the power set P(Π) is a finite set as well. By the pigeonhole principle,
there is some set K = {K1, . . . ,Kk} ⊆ P(Π) such that, for infinitely many rounds r,
g([σ|r]) = K, hence [σ|r] = [σ|r]K. Note that, since obviously σ|r ∈ [σ|r] for every r > 0,
we have Ker(σ|r) ∈ K. By the assumption that, for all r, KI[σ|r] = ∅, we also have⋂k
i=1 Ki = ∅. J

I Lemma 6. Let MA be a message adversary. If there exist a σ ∈ MA and a set K =
{K1, . . . ,Kk} ⊆ P(Π) with [σ|r] = [σ|r]K for infinitely many rounds r, then there is an
infinite sequence V = V1, V2, . . . of sets Vi ⊆ [σ|i]⊆K, such that, for all i ≥ 1, each of the
following holds:
(1) Vi 6= ∅
(2) Vi =

{
ν1, . . . , νm(i)

}
for a finite m(i) > 0 s.t., for 1 6 j 6 m(i): σ|i ∈ νj ⊆ [σ|i]⊆K

OPODIS 2019

17:10 A Characterization of Consensus Solvability for Closed Message Adversaries

(3) Each ν ∈ Vi+1 has a neighbor ν′ = fi+1(ν) ∈ Vi

Proof. Initializing Vi = ∅ for every i ≥ 1, we construct Vi, starting from i = 1, as follows:
For each of the infinitely many indices i = r where [σ|r] = [σ|r]K, we set Vi =

{
[σ|i]K

}
; note

that Ker(σ|r) ∈ K in this case, so (1) and (2) hold for Vi. Moreover, for all 1 6 j < i, we
add to Vj the set {ρ|j : ρ ∈ [σ|i]K}. As Ker(ρ|j) ⊆ Ker(ρ), and since ρ ∼ τ implies also
ρ|j ∼ τ |j , (1) and (2) continue to hold for Vj . Moreover, for ν ∈ Vi+1, we define f(ν) = ν|i,
which secures (3). Thus, the infinite sequence of sets V with properties (1)–(3) exists, as
claimed. J

I Lemma 7. Let MA be a message adversary that contains some σ ∈ MA such that, for
all r, we have KI[σ|r] = ∅. Then there is a nonempty set of kernels K = {K1, . . . ,Kk} with⋂k
i=1 Ki = ∅ and a non-empty kernel-restricted subclass X ⊆ [σ]⊆K with

⋂
x∈X Ker(x) = ∅.

Proof. We take σ and apply to it Lemma 5 and then Lemma 6. In this manner, we obtain
the nonempty set of kernels K and an infinite tree spanning the members of the infinite
sequence of sets V1, V2, . . . via the neighbor functions fi : Vi → Vi−1. König’s Infinity Lemma
ensures that there is an infinite path in this tree, which yields X = limi→∞ Vi: For every
ρ ∈ X, we have ρ|r ∼ σ|r for every r ≥ 1, and hence ρ ∼ σ. J

I Lemma 8. Consensus is impossible under a message adversary MA with σ ∈ MA such
that some non-empty subclass X ⊆ [σ] satisfies

⋂
x∈X Ker(x) = ∅.

Proof. We show that the existence of some algorithm A that solves consensus under MA
would lead to a contradiction. Since X 6= ∅, for some k > 0, there is a multiset of processes
{pi1 , . . . , pik−1}, which may be empty (if k = 1), and a non-empty multiset of communication
patterns Y = {σ1, . . . , σk} ⊆ X with σj ∈ [σ] for 1 6 j 6 k and

⋂
ρ∈Y Ker(ρ) = ∅, such that

σ1 ∼pi1
σ2 . . . σk−1 ∼pik−1

σk.
Let Cv0 be the input assignment where xi = v for all processes pi and let Cv0 be the

input assignment where xi = v for all processes pi, for some v 6= v. By validity, in execution
〈Cv0 , σ1〉 every process running A decides v, while in 〈Cv0 , σ1〉 they decide v. Since input
assignments are not restricted in any way, toggling the input values of p1, p2, . . . from v to v,
one after the other, reveals that there are input assignments C ′0, C ′′0 that differ only in the
input value of a single process pi, yet every process running A decides v in εv1 = 〈C ′0, σ1〉
and v in εv1 = 〈C ′′0 , σ1〉.

A simple induction shows that v is decided in εvj = 〈C ′0, σj〉 and v is decided in εvj =
〈C ′′0 , σj〉 for 1 6 j 6 k. The base case, ` = 1, was already shown above. For the step from `

to `+ 1 with 1 6 ` < k, we have by hypothesis that v was decided in εv` and v was decided
in εv` . Since σ` ∼pi`

σ`+1, we have εv` ∼pi`
εv`+1 and v is also decided in εv`+1. A similar

argument shows that v is decided in εv`+1.
We conclude the proof by showing that pi ∈ Ker(σj) for 1 6 j 6 k, and hence pi ∈ Ker(ρ)

for any ρ ∈ Y , which contradicts
⋂
ρ∈Y Ker(ρ) = ∅. Suppose, for some j, pi /∈ Ker(σj).

Hence there is some pk with pi 6 σj pk. Since C ′0 and C ′′0 are the same except for the input
of pi, εvj ∼pk

εvj , and pk decides the same in εvj and in εvj . This, however, contradicts our
previous statement that v is decided in εvj and v is decided in εvj for some v 6= v. J

A note on bivalence arguments
At this point, the reader might wonder why we did not resort to a bivalence argument,
as introduced in [12] and used heavily in the literature (e.g. in the very closely related
papers [6, 11, 19, 20, 23, 24]) to establish our impossibility result. In a nutshell, in the case
of binary consensus, bivalence proofs establish impossibility by inductively constructing a

K. Winkler, U. Schmid, and Y. Moses 17:11

run where every reached configuration is bivalent. Reachable configurations are classified
according to whether only 0-decided (resp. 1-decided) configurations are reachable from it, in
which case the configuration is called 0-valent (resp. 1-valent), or whether both a 0-decided
and a 1-decided configuration are reachable from it, in which case the configuration is called
bivalent. Note carefully that the agreement property implies that no process can have decided
in a bivalent configuration, as a single decision, say, to 0, would make the configuration
already 0-valent.

In the bivalence induction proof, it is first established that not all initial configurations can
be 0-valent or 1-valent. Then, under the hypothesis that the reached round r configuration is
bivalent, it is shown that not all round r + 1 configurations can be univalent. This results in
a forever bivalent run, in which no process can have decided. Care must be taken, however,
to also prove that the run so constructed is also admissible, as the processes must decide
only in an admissible run.

The reason why we cannot use such an argument in our setting, and need to resort to
König’s Lemma instead, is that the induction step might lead to a dead end later on: there
is no a priori guarantee that the bivalent successor chosen in some step is one that allows
the construction of an infinite admissible suffix. Technically, what would be needed in the
induction step to ensure this is that two configurations that are currently indistinguishable
for some process can be extended in a way that remains indistinguishable forever for this
process. As the only thing we know about our message adversary is that it is closed and
eventually guarantees a non-empty kernel intersection, however, it is not clear how to infer
sufficient information on the possible communication graphs generated in all admissible
suffixes to guarantee this.

4 Sufficiency of an Eventually Common Kernel

Lemma 8 established the “only if”-direction of Theorem 1. We now show the “if”-direction
of Theorem 1, by introducing Algorithm 1. This algorithm solves consensus under any
message adversary MA that guarantees, for every σ ∈ MA, that there is a round r and a
non-empty set K ⊆ Π such that K = KI[σ|r] =

⋂
x∈[σ|r] Ker(x). Note that this algorithm

could stop operating immediately after decision, as the decision happens in the same round
at all processes.

Essentially, each process pi executing the algorithm attempts to send a local estimation
of the communication pattern, stored in array E, along with its own input value x[i] to all
other processes. Here, the kth entry of E, E[k], contains the local estimate of the round k
communication graph. On reception of a round r message from some process pj , including
pj = pi, pi stores the input of pj in x[j] and adds the edge (pj → pi) to E[r] since it could
only have received the message if (pj → pi) ∈ Gr. Note that this implies that in every
round r, the edge (pi → pi) is added to E[r], as we assumed that every process receives a
message from itself in each round. Process pi then proceeds to merge its local estimates E
with the ones received and then calculates the set S of all communication patterns G1, . . . , Gr
that it considers possible. It does this by checking which communication pattern prefixes,
allowed by MA, are in accordance with what pi observed so far. Finally, pi picks an arbitrary
prefix ρ of S and checks whether all members of the equivalence class of ρ have a non-empty
intersection K of their kernels. If this is the case, pi decides on the input of the process in K
with the largest identifier. We note that the equivalence class of ρ can be computed from the
specification of MA, which is, according to the system model, known to the processes. Note
that there are only finitely many communication graphs and hence finitely many round r
prefixes at any finite r.

OPODIS 2019

17:12 A Characterization of Consensus Solvability for Closed Message Adversaries

Algorithm 1 Consensus algorithm, code for process pi.
Initialization:

1 x[i]← xi

2 x[j]← ⊥ for j 6= i

3 E[0]← ∅
4 r ← 1

Transmit round r messages:
5 Attempt to send 〈E, x〉 to all
6 Receive 〈Ej , xj〉 from all pj with (pj → pi) ∈ Gr

Round r computation:
7 foreach pj from which pi received a message in round r do
8 foreach k with xj [k] 6= ⊥ do
9 x[k]← xj [k]

10 Add (pj → pi) to E[r]
11 if r > 1 then
12 for r′′ ∈ {1, . . . r − 1} do
13 E[r′′]← E[r′′] ∪ Ej [r′′]
14 for r′ ∈ {1, . . . r} do
15 Vr′ ← {pj ∈ Π: ∃pk ∈ Π s.t. (pk → pj) ∈ E[r′]}
16 Let InGr′ (Vr′) denote the edges (u→ v) ∈ Gr′ with v ∈ Vr′

17 S←
{
σ|r = G1, . . . , Gr : σ ∈ MA and InGr′ (Vr′) = E[r′] for all 1 6 r′ 6 r

}
18 Pick an arbitrary ρ ∈ S
19 if yi = ⊥ and there exists K 6= ∅ s.t. K = KI[ρ] then
20 m← max {j : pj ∈ K}
21 yi ← x[m] /* decide */
22 r ← r + 1

In the following proof of the correctness of Algorithm 1, we use varri ∈ stater(pi) to denote
the value of variable var, held by process pi at the end of its round r computation. This is
clearly the same as the value of var after it was written to the last time in round r, so if the
last write to var occurs in line `, varri is the value of var at process pi after pi finished line `
for the last time in round r.

We start with a few technical results, which essentially assert the correctness of the local
estimates. Lemma 9 establishes that the set E approximates edges in the communication
graph faithfully if there was an appropriate influence.

I Lemma 9. (pj , r′) σ (pi, r)⇔ InGr′ (pj) ⊆ Eri [r′].

Proof. For the “⇒” direction, we show inductively for r′ < ` 6 r that (pj , r′) σ (pk, `)
implies InGr′ (pj) ⊆ E`k[r′].

For ` = r′ + 1, (pj , r′) σ (pk, `) implies, by definition of the σ relation, (pj → pk) ∈
Gr′+1, i.e., pk receives the round r′ + 1 message of pj . By Line 10, InGr′ (pj) ⊆ Er

′

j [r′].
Since pk received Er

′

j [r′] from pj via its round r′ + 1 message, pk incorporates Er
′

j [r′] into its
own Er

′+1
k [r′] in Line 13.

For r′ + 1 < ` 6 r, we assume that (pj , r′) σ (pk, ` − 1) implies InGr′ (pj) ⊆ E`−1
k [r′].

If for some pm, (pj , r′) σ (pm, `), by definition, (pk → pm) ∈ G` for some pk with
(pj , r′) σ (pk, ` − 1). By hypothesis, InGr′ (pj) ⊆ E`−1

k [r′], hence pm receives E`−1
k [r′] at

the beginning of round ` and incorporates InGr′ (pj) into E`m[r′] in Line 13 of its round `
computation.

K. Winkler, U. Schmid, and Y. Moses 17:13

The “⇐” direction holds trivially if pi = pj . If pi 6= pj , then, according to Line 13, pi can
only learn about InGr′ (pj) if there is a chain of messages, starting at pj no earlier than the
end of round r′ and ending at pi before its round r computing step. By definition, hence
(pj , r′) σ (pi, r). J

Lemma 10 shows that any Ek[r′] is an under-approximation of Gr′ , i.e., it does not contain
any fabricated edges.

I Lemma 10. If (pj → pi) ∈ Erk[r′] then (1) (pj → pi) ∈ Gr′ and (2) (pi, r′) σ (pk, r).

Proof. (1) Suppose (pj → pi) ∈ Erk[r′] but (pj → pi) /∈ Gr′ . Since (pj → pi) could only be
added to Erk[r′] through Line 10 or Line 13, we have (pj → pi) ∈ Er

′

i [r′]. Since Line 10 is
guarded by Line 7, (pj → pi) ∈ Er

′

i [r′] can only happen when pi received a message from pj
in round r′, which implies that (pj → pi) ∈ Gr′ .

(2) If (pj → pi) ∈ Erk[r′], since (pj → pi) ∈ InGr′ (pi), because during the loop of
Line 7, every in-edge is added in Line 10, InGr′ (pi) ⊆ Er

′

k [r′]. By Corollary 9 hence
(pi, r′) σ (pk, r). J

The above lemmas can be combined to the following Corollary 11, which shows that if
Erk[r′] contains some non-empty fraction of the incoming round r′ edges of some process pi,
then it actually contains all the incoming round r′ edges of pi and vice-versa. Furthermore,
this is equivalent to the existence of an influence from pi in round r′ to pk in round r.

I Corollary 11. The following are all equivalent: (1) (pj → pi) ∈ Erk[r′], (2) InGr′ (pj) ⊆
Erk[r′], (3) (pi, r′) σ (pk, r).

Corollary 11 can be used to show that Sri indeed contains all execution prefixes that are
indistinguishable from the current execution prefix, as expressed in Corollary 12.

I Corollary 12. In every round r of an execution 〈C0, σ〉, the following holds: Sri =
{ρ|r : ρ ∈ MA and ρ|r ∼pi

σ|r}.

Proof. Since we assume self-loops in every communication graph, by Corollary 11, for any
processes pi, pj , pk, an in-edge (pk → pj) to pj is present in Eri [r′] exactly when (pj , r′) σ

(pi, r). Hence, Sri contains exactly those sequences ρr = G1, . . . , Gr where each G` matches
the in-neighborhood for those nodes pm that satisfy (pm, `) σ (pi, r). By definition,
these are precisely those prefixes ρ|r of ρ ∈ MA where viewρ|r (pi) = viewσ|r (pi) and thus
ρ|r ∼pi σ|r. J

Finally, from the assumption that the specification of MA is known to the processes, and
since the finite number of processes implies a finite number of communication graphs, which,
in turn, implies a finite number of round r prefixes, we have the following Corollary 13 of
Lemmas 9 and 10.

I Corollary 13. Let r be an arbitrary round. The equivalence class [σ|r] is finite and thus
can be computed by all processes.

We are now ready to show the correctness of Algorithm 1.

I Lemma 14. Algorithm 1 solves consensus under every message adversary MA that ensures,
for all σ ∈ MA, that KI[σ|r] 6= ∅ for some round r.

OPODIS 2019

17:14 A Characterization of Consensus Solvability for Closed Message Adversaries

Proof. Pick an arbitrary sequence σ ∈ MA and fix some input assignment C0. We show that
Algorithm 1 satisfies all properties of the consensus specification in the execution 〈C0, σ〉.
Let t be the earliest round such that KI[σ|t] 6= ∅, i.e., for all t′ < t we have KI[σ|t′] = ∅. We
show that (1) no pi decides before round t and (2) there is a value v, which is the input value
of some process pj , such that every undecided pi decides v in round t.

(1) Suppose some process pi decides in some round t′ < t. This means pi passes the guard
of Line 19 in round t′. After executing Line 18, due to Corollary 12, at any process pi, ρt

′

i is
set to some prefix σ′|t′ with σ′ ∈ MA and σ′|t′ ∼pi

σ|t′ . By definition, hence σ′|t′ ∈ [σ|t′] and,
in fact, [σ′|t′] = [σ|t′]. This, taken together with Corollary 13, yields that, after performing
the computations in the guard of Line 19, at every process pi, we have Kt′

i = KI[σ|t′]. If pi
passes this guard, we have Kt′

i 6= ∅ which contradicts the assumption that t is the earliest
round for which the condition holds.

(2) By assumption, we have some set K such that KI[σ|t] = K 6= ∅. Let m be the
maximal identifier of any process in K. We show the claim for v = xm. Since we assumed
that pi has not decided yet, a similar argument as above shows that every process pi passes
the guard of Line 19 in round t and decides on xt[m] via Line 21. Since pm ∈ Ker(σ|t),
(pm, 0) ∈ viewtσ|t(pi) and hence Lines 1 and 9 ensure that xt[m] = xm = v. J

5 Relation to Other Approaches

In this section, we will complement our results by exploring some not so obvious relations to
other approaches. Moreover, we will provide some illustrating examples.

5.1 A topological view
Our combinatorial characterization of consensus for closed message adversaries given in
Theorem 1 is of course compatible with the topological one established in [21], as mentioned
already in our discussion of related work in Section 1: The requirement of broadcastability
of the connected components in the topological space of admissible executions made in [21]
is clearly enforced by our non-empty kernel intersection condition.

5.2 A knowledge-based view
Our results are also perfectly in line some well-known results of the epistemic analysis of
consensus [13]. First and foremost, it is well-known (see e.g. [13, Prop. 4]) that simultaneous
consensus can only be achieved if there is common knowledge of certain facts (in particular,
a decision taking place). And indeed, Lemma 14 reveals that in Algorithm 1 all processes
are guaranteed to decide in the same round. Furthermore, it was established in [10] that for
simultaneous consensus, common knowledge of the input values is needed. We will therefore
argue now that the processes actually establish common knowledge about the initial values
of the members of the kernel intersection guaranteed by Theorem 1, in the same round.

The first thing to mention is that our similarity relation ∼ is actually equivalent to
G-reachability in view-based interpretations in S5 models, cf. [13, p. 561]. For every σ and r,
the equivalence class [σ|r]∼, and hence also the kernel intersection Kr =

⋂
x∈[σ|r]∼ Ker(x),

can be computed by every process from the a priori common knowledge of MA. Since every
process can unambiguously determine the equivalence class [σ|r]∼ (albeit not σ|r itself) from
its local state, all the algorithm has to do is to wait for the round where Kr 6= ∅ for the first
time, which is the round r guaranteed by Theorem 1.

K. Winkler, U. Schmid, and Y. Moses 17:15

What is also worth exploring is the apparent paradox that our algorithm manages
to attain some common knowledge in systems with unreliable communication that is not
already available initially. According to [13, Thm. 5], this should be impossible. There is no
contradiction here, however, since if we translate the definition of “communication cannot
be guaranteed” [13, p. 566] into a corresponding message adversary MA, it would fail the
condition of Theorem 1: Condition NG2 says that if some pi does not receive a message in
round r in σ|r, then there is some ρ|r ∈ [σ|r]∼ where no message is delivered in round r.
NG2 thus allows the non-empty kernel intersection condition of Theorem 1 to hold only if a
simultaneous broadcast happens in round r in all prefixes in [σ|r]∼. This, in turn, violates
condition NG1, which requires that every σ|r−1 can be continued with a suffix where no
further messages are ever received. Consequently, closed message adversaries that satisfy our
condition do not qualify as “communication cannot be guaranteed”.

6 Conclusions

We have derived the, to the best of our knowledge, first combinatorial characterization of
consensus solvability in the important class of closed message adversaries: Consensus is
solvable here if and only if, for every communication pattern, eventually, the kernel-intersection
of all transitively indistinguishable communication pattern prefixes becomes non-empty. Our
consensus characterization surpasses all existing non-topological characterizations for message
adversaries known so far w.r.t. the range of message adversaries covered. Moreover, unlike
the existing topological characterization for closed message adversaries, it operates on
prefixes of communication patterns and is hence well-suited for practical implementations
as well. Moreover, our result was obtained using only very basic notions from dynamic
networks, like the kernel of a communication pattern prefix and the transitive closure of the
indistinguishability relation.

Regarding future work, a natural question is whether there is also a combinatorial
characterization of consensus solvability for general (non-closed) message adversaries. Existing
algorithms show that a simultaneous decision is sometimes impossible under such message
adversaries, which suggests that our closed algorithm is definitely not applicable there. On the
other hand, the principles exploited in Theorem 1 rest fundamentally only on the consensus
specification itself, thus it seems unlikely that they could completely disappear even in a
more general result.

References
1 Yehuda Afek and Eli Gafni. Asynchrony from Synchrony. In Davide Frey, Michel Raynal,

Saswati Sarkar, RudrapatnaK. Shyamasundar, and Prasun Sinha, editors, Distributed Com-
puting and Networking, volume 7730 of Lecture Notes in Computer Science, pages 225–239.
Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-35668-1_16.

2 Bowen Alpern and Fred B. Schneider. Defining Liveness. Information Processing Letters,
21(4):181–185, 1985.

3 Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, and Kyrill Winkler. Gracefully
degrading consensus and k-set agreement in directed dynamic networks. Theoretical Computer
Science, 726:41–77, 2018. doi:10.1016/j.tcs.2018.02.019.

4 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. IJPEDS, 27(5):387–408, 2012.

5 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distributed
systems with benign faults. Distributed Computing, 22(1):49–71, April 2009. doi:10.1007/
s00446-009-0084-6.

OPODIS 2019

https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.1016/j.tcs.2018.02.019
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6

17:16 A Characterization of Consensus Solvability for Closed Message Adversaries

6 Étienne Coulouma, Emmanuel Godard, and Joseph G. Peters. A characterization of oblivious
message adversaries for which Consensus is solvable. Theoretical Computer Science, 584:80–90,
2015. doi:10.1016/j.tcs.2015.01.024.

7 Reinhard Diestel. Graph Theory (3rd ed.). Springer, 2006.
8 Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed

for distributed consensus. Journal of the ACM, 34(1):77–97, January 1987.
9 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the Presence of Partial

Synchrony. Journal of the ACM, 35(2):288–323, April 1988.
10 Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a Byzantine

environment: Crash failures. Information and Computation, 88(2):156–186, 1990. doi:
10.1016/0890-5401(90)90014-9.

11 Tristan Fevat and Emmanuel Godard. Minimal Obstructions for the Coordinated Attack
Problem and Beyond. In 25th IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2011 - Conference Proceedings, pages 1001–1011, 2011. doi:10.1109/
IPDPS.2011.96.

12 Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of Distributed Consensus
with one Faulty Process. Journal of the ACM, 32(2):374–382, April 1985.

13 Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549–587, 1990. doi:10.1145/79147.79161.

14 Wolfgang Kiess and Martin Mauve. A Survey on Real-world Implementations of Mobile Ad-hoc
Networks. Ad Hoc Networks, 5(3):324–339, April 2007. doi:10.1016/j.adhoc.2005.12.003.

15 F. Kuhn and R. Oshman. Dynamic networks: Models and algorithms. SIGACT News,
42(1):82–96, 2011.

16 Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In STOC, pages 513–522, 2010.

17 Fabian Kuhn, Rotem Oshman, and Yoram Moses. Coordinated consensus in dynamic net-
works. In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, PODC ’11. ACM, 2011.

18 Franck Legendre, Theus Hossmann, Felix Sutton, and Bernhard Plattner. 30 Years of Wireless
Ad Hoc Networking Research: What about Humanitarian and Disaster Relief Solutions? What
are we still missing? In International Conference on Wireless Technologies for Humanitarian
Relief (ACWR 11), Amrita, India, 2011. IEEE.

19 Ronit Lubitch and Shlomo Moran. Closed Schedulers: A Novel Technique for Analyzing
Asynchronous Protocols. Distributed Computing, 8(4):203–210, June 1995. doi:10.1007/
BF02242738.

20 Yoram Moses and Sergio Rajsbaum. A Layered Analysis of Consensus. SIAM J. Comput.,
31(4):989–1021, 2002.

21 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological Characterization of Consensus
Under General Message Adversaries. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC ’19, pages 218–227, New York, NY, USA, 2019. ACM.
doi:10.1145/3293611.3331624.

22 Michel Raynal and Julien Stainer. Synchrony weakened by message adversaries vs asynchrony
restricted by failure detectors. In Proceedings ACM Symposium on Principles of Distributed
Computing, PODC’13, pages 166–175, 2013.

23 Nicola Santoro and Peter Widmayer. Time is not a healer. In Proceedings of the 6th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’89), LNCS 349, pages 304–313,
Paderborn, Germany, February 1989. Springer-Verlag.

24 Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility Results and Lower Bounds for
Consensus under Link Failures. SIAM Journal on Computing, 38(5):1912–1951, 2009.

25 Kyrill Winkler, Manfred Schwarz, and Ulrich Schmid. Consensus in rooted dynamic networks
with short-lived stability. Distributed Computing, 32(5):443–458, October 2019. doi:10.1007/
s00446-019-00348-0.

https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1109/IPDPS.2011.96
https://doi.org/10.1109/IPDPS.2011.96
https://doi.org/10.1145/79147.79161
https://doi.org/10.1016/j.adhoc.2005.12.003
https://doi.org/10.1007/BF02242738
https://doi.org/10.1007/BF02242738
https://doi.org/10.1145/3293611.3331624
https://doi.org/10.1007/s00446-019-00348-0
https://doi.org/10.1007/s00446-019-00348-0

	Introduction
	Model of Computation
	Necessity of an Eventually Common Kernel
	Sufficiency of an Eventually Common Kernel
	Relation to Other Approaches
	A topological view
	A knowledge-based view

	Conclusions

