
Toward Linearizability Testing for Multi-Word
Persistent Synchronization Primitives
Diego Cepeda
Department of Electrical and Computer Engineering, University of Waterloo, Canada
dcepeda@uwaterloo.ca

Sakib Chowdhury
Department of Electrical and Computer Engineering, University of Waterloo, Canada
sm6chowd@uwaterloo.ca

Nan Li
Department of Electrical and Computer Engineering, University of Waterloo, Canada
n69li@uwaterloo.ca

Raphael Lopez
Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada
rwlopez@uwaterloo.ca

Xinzhe Wang
Department of Electrical and Computer Engineering, University of Waterloo, Canada
x793wang@uwaterloo.ca

Wojciech Golab
Department of Electrical and Computer Engineering, University of Waterloo, Canada
wgolab@uwaterloo.ca

Abstract

Persistent memory makes it possible to recover in-memory data structures following a failure instead
of rebuilding them from state saved in slow secondary storage. Implementing such recoverable data
structures correctly is challenging as their underlying algorithms must deal with both parallelism
and failures, which makes them especially susceptible to programming errors. Traditional proofs of
correctness should therefore be combined with other methods, such as model checking or software
testing, to minimize the likelihood of uncaught defects. This research focuses specifically on
the algorithmic principles of software testing, particularly linearizability analysis, for multi-word
persistent synchronization primitives such as conditional swap operations. We describe an efficient
decision procedure for linearizability in this context, and discuss its practical applications in detecting
previously-unknown bugs in implementations of multi-word persistent primitives.

2012 ACM Subject Classification Software and its engineering → Synchronization; Theory of
computation → Shared memory algorithms; Computer systems organization → Reliability

Keywords and phrases Shared memory, persistent memory, synchronization, multi-word primitives,
concurrency, correctness, software testing

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.19

Funding Diego Cepeda: Consejo Nacional de Ciencia y Tecnología
Raphael Lopez: University of Waterloo President’s Research Award
Xinzhe Wang: University of Waterloo President’s Research Award
Wojciech Golab: Natural Sciences and Engineering Research Council (NSERC) of Canada, Discovery
Grants Program; Ontario Early Researcher Award; Google Faculty Research Award

© Diego Cepeda, Sakib Chowdhury, Nan Li, Raphael Lopez, Xinzhe Wang, and Wojciech Golab;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 19; pp. 19:1–19:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dcepeda@uwaterloo.ca
mailto:sm6chowd@uwaterloo.ca
mailto:n69li@uwaterloo.ca
mailto:rwlopez@uwaterloo.ca
mailto:x793wang@uwaterloo.ca
https://orcid.org/0000-0002-8891-256X
mailto:wgolab@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.OPODIS.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

1 Introduction

Persistent memory makes it possible to recover in-memory data structures following a failure
instead of rebuilding them from state saved in slow secondary storage. Implementing such
recoverable data structures correctly is challenging as their underlying algorithms must
provide both effective concurrency control to harness multi-core parallelism, and recovery
procedures to ensure that failures (e.g., process or system crashes) do not corrupt data. The
complex states and state transitions of these algorithms make recoverable structures much
harder to analyze using traditional means such as rigorous proofs of correctness, particularly
with the consideration of failures and subsequent recovery adding a new dimension of difficulty.
Automated model checking tools such as PlusCal/TLA+ [23, 24] can be helpful in this context
but are difficult to use due to lack of native support for modeling access to persistent memory.

This research aims to augment traditional analysis of correctness with a gray-box software
testing approach in which execution histories of synchronization primitives are generated
empirically and checked for correctness using a rigorous decision procedure. The correctness
criterion under consideration is Herlihy and Wing’s widely-adopted linearizability property
[19], which states that operations applied to an object by a collection of threads must behave
as though they take effect instantaneously at some point between their invocation and
response events. Deciding linearizability given a history of operations is NP-hard for many
data structure types, and often becomes tractable under certain simplifying assumptions [15].
Notably, this holds for histories of primitive read, write, and swap (i.e., Fetch-And-Store)
operations if the reads-from mapping is known, meaning that the value returned by each
operation is either the initial value or the value assigned by a unique write or swap operation,
which makes the problem solvable in quasilinear time.

This paper extends and enhances prior work on deciding linearizability for synchronization
primitives, such as swaps and atomic counters, as follows:
1. We extend the algorithmic foundations of linearizability testing to multi-word read and

conditional swap (i.e., Compare-And-Swap) operations, which are important building
blocks of practical data structures for persistent memory.

2. Our techniques take into account operations that are interrupted by failures and do not
produce a response, which makes it difficult to deduce their effect.

3. We present an empirical study of a software tool that implements our analysis techniques.
The tool is applied to two codebases, and successfully detects previously unknown bugs
in both, including one bug that is related directly to the use of persistent memory. We
also evaluate the scalability of the tool, and demonstrate that its running time grows
nearly linearly with the size of the input history.

2 Model

The model is based closely on Herlihy and Wing’s [19]. There are n asynchronous processes,
labeled p1, . . . , pn, that interact by applying operations on a shared memory with a well-
defined initial state. Two types of operations are permitted: an atomic multi-word Read
(MwR), and an atomic multi-word Compare-And-Swap (MwCAS) operation. MwCAS is the
atomic execution of the pseudocode shown in Figure 1. We assume somewhat unconventionally
that the return value of an unsuccessful MwCAS indicates the responsible memory location,
which is a crucial piece of information exploited by our gray-box technique (see Section 5.2).
Software simulations of multi-word CAS (e.g., [12, 18, 30]) that return a Boolean can be
modified easily to meet this specification.

D. Cepeda, S. Chowdhury, N. Li, R. Lopez, X. Wang, and W. Golab 19:3

Procedure MwCAS(m1, . . . , mk: memory locations; e1, . . . , ek: expected values;
n1, . . . , nk; new values)

1 oldi := ∗mi for all i, 1 ≤ i ≤ k

2 if oldi = ei for all i, 1 ≤ i ≤ k then
3 ∗mi := ni for all i, 1 ≤ i ≤ k

// successful CAS
4 return 0
5 else

// unsuccessful CAS
6 return mi such that oldi 6= ei

Figure 1 Sequential specification of multi-word Compare-And-Swap (MwCAS).

Actions of processes are represented using a history, which is a sequence of steps. Each
step is either the invocation of a shared memory operation, or the response of a previously
invoked operation. An invocation step is of the form INV(pi, op, args) where pi is a process,
op is the name of an operation, and args are its arguments including the set of memory
locations accessed. A response step is of the form RES(pi, ret) where pi is a process, and
ret is the return value of the operation. A response step sr is matching with respect to an
invocation step si in a history H if the following criteria are met: (i) sr and si refer to the
same process; (ii) si precedes sr in H; and (iii) no other step by pi occurs between si and sr

in H. Given a history H, its projection onto the steps of a process pi is denoted by H|pi. A
history is sequential if it is either empty, or a non-empty sequence of alternating invocation
and response steps where each invocation is followed immediately by a matching response. A
history H is well-formed if, for every process pi, the projection H|pj is sequential.

An operation in a history H is a pair of steps comprising an invocation and a matching
response. Given distinct operations op1 and op2, we say that op1 happens before op2 in H

(denoted op1 <H op2) if the response step of op1 precedes the invocation step of op2 in H.
Operations op1 and op2 are concurrent if neither op1 <H op2 nor op2 <H op1. A well-formed
history H is linearizable if there exists a sequential history S, called the linearization of H,
satisfying the following properties: (i) for each process pi, H|pi = S|pi; (ii) for any distinct
operations op1 and op2 in H, if op1 <H op2 then op1 <S op2; and (iii) S is legal, meaning that
operations in S produce responses according to their sequential specification (e.g., Figure 1).

For simplicity of presentation and due to lack of space, we omit from the model the more
general definition of linearizability for pending or incomplete operations (i.e., ones lacking
responses), and its extensions for persistent memory [2, 7, 17, 21]. In Section 5.3, we will
adopt the approach of transforming a given history H to a well-formed history H ′ such that
H has the consistency property under consideration if and only if H ′ does.

3 Background

The problem of deciding linearizability given a history of operations has been studied widely
in the context of atomic read/write registers, and is known to be NP-complete in the general
case [15]. It is solvable in polynomial time for reads, writes, and swaps under the assumption
that a reads-from mapping is known, meaning that each read returns either the initial value
at a memory location or the value assigned to this location by a unique write. Such a relation
can be established easily for the purpose of software testing by generating execution histories

OPODIS 2019

19:4 Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

using a driver program that embeds distinct tags (e.g., based on process IDs and per-process
counters) in the values written to shared memory.

Assuming that the reads-from relation exists for a history H, our goal is to first decide
whether H is linearizable, and if it is not, identify specific anomalies – small subsets of
the operations in H that conspire to violate linearizability. Consider the example history
illustrated in Figure 2 (a), where a shared register object x is accessed by three writes that
assign values 1,2,3, followed by two reads that return 1 and 3. The barbell symbols represent
the time intervals of operations, and process IDs are omitted. The history shown is not
linearizable because x is overwritten twice between the write and read of value 1, which are
denoted by W (x, 1) and R(x)→ 1.

W(x, 1) R(x)→1

W(x, 2)

W(x, 3)
R(x)→3

time

Z(x, 1)

Z(x, 2) Z(x, 3)

1 3

2

(a)

(b) (c)

Figure 2 Example execution history (a), its zone-based representation (b), and its graph-theoretic
representation (c).

Procedures for deciding linearizability come in two flavours: graph-based, and zone-based.
In both cases, the history is first checked for obvious anomalies such as dangling reads, which
return a value that was never written and is different from the initial value, and read-write
inversions, where the read of some value v happens before the write of v. Once such cases
are ruled out, more subtle anomalies are analyzed. In the graph-based approach inspired
by Misra’s Axioms for memory access [26], a precedence graph G(V, E) is defined whose
vertices represent the values read or written, and where an edge (v1, v2) exists whenever
some operation op1 that accesses v1 happens before an operation op2 that accesses a different
value v2. The input history is linearizable if and only if G has no directed cycles. The graph
for our example history is shown in Figure 2 (c), and exhibits several such cycles.

In the zone-based approach of Gibbons and Korach [15], each value v is represented
using a time interval called a zone, which spans from the time of the earliest response step
to the time of the latest invocation step of any operation that reads or writes v. If the
earliest response precedes the latest invocation, a forward zone occurs, otherwise a backward
zone occurs. Intuitively, a forward zone for v is a minimal interval of time for which v is
continuously the current value, and a backward zone for v is an interval of time containing at
least one point at which v is the current value. The history is linearizable if no two forward
zones overlap, and no backward zone is contained entirely within a forward zone. The zones
for our running example are shown in Figure 2 (b). The overlap between forward zones
Z(x, 1) and Z(x, 3), and similarly the containment of backward zone Z(x, 2) within Z(x, 1),
indicate that the history is not linearizable.

D. Cepeda, S. Chowdhury, N. Li, R. Lopez, X. Wang, and W. Golab 19:5

4 Graph-Theoretic Formulation

Our approach to analyzing the linearizability of persistent synchronization primitives is
based on precedence graphs, similarly to the technique described informally in Section 3
based on Misra’s Axioms [26]. The key advantage of the graph-based approach is that it
represents the constraints on the linearization order in an intuitive way, and (as we show in
this paper) can be generalized beyond single-word read/write registers to accommodate a
variety of multi-word synchronization primitives. On the other hand, its main weakness is
the potentially large number of edges required to construct the graph. For example, given a
sequential history with n operations, the precedence graph has Θ(n) vertices and Θ(n2) edges
in the worst case since every pair of operations is related by the happens before relation;
this can make linearizability analysis quite slow for large execution histories. In comparison,
the zone-based algorithm of Gibbons and Korach [15] runs in O(n log n) time, but is more
difficult to analyze and does not generalize easily to multi-word primitives.

Our graph-theoretic approach builds on the simple algorithm described in Section 3, and
is inspired by [3, 26]. Given a history H, we construct a precedence graph G(V, E) whose
vertices represent individual operations rather than the values accessed, and the directed
edges represent constraints on the order in which certain pairs of operations must appear in
all possible linearizations. A special genesis vertex is added to V to represent the initial state
of shared memory, and can be regarded as a multi-word write (MwW) operation that creates
this state. The precedence graph G is a multigraph, meaning that each pair of vertices can be
connected by more than one directed edge. The edge multiset E includes an edge (op1, op2)
in the following scenarios:
1. Happens-before edge: indicates that op1 <H op2.
2. Reads-from edge: indicates a read-after-write dependency, meaning that op1 is a multi-

word write (genesis vertex) or a successful MwCAS that writes a value v to some memory
location m, and op2 is a multi-word read or successful MwCAS that reads v from m.

3. Auxiliary edge: indicates any other precedence constraint on op1 and op2.
As explained later on in Section 5, we use two types of auxiliary edges. If op2 is a successful
MwCAS that changes the value at some memory location m from v to v′, then the edge
(op1, op2) indicates a write-after-read dependency where op1 is a multi-word read that reads
v from m. If op2 is an unsuccessful MwCAS that expects to read a value v at some memory
location m and instead encounters a value that is different from v (see Figure 1), then
the edge (op1, op2) indicates a special type of read-after-write dependency where op1 is a
successful MwCAS that overwrites v at m with a different value.

Our graph-theoretic analysis technique is based on the following assumptions:

I Assumption 1. For every history H, for every memory location m, and for every successful
MwCAS operation op that writes some value v to m, v is different from the initial value at
m and from any value written to m by another successful MwCAS operation.

I Assumption 2. For every history H, for every memory location m, and for every MwCAS
operation op that accesses m, the value expected by op at m is a value that was read from m

by some MwR or successful MwCAS operation op′ such that op′ <H op.

Assumption 1 helps to establish a reads-from mapping, and Assumption 2 simplifies reasoning
about unsuccessful MwCAS operations. Both assumptions can be enforced by the tool
(e.g., a benchmark program) used to generate histories for testing, without changing the
implementation of the synchronization primitive under consideration.

OPODIS 2019

19:6 Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

Under the above assumptions, the problem of deciding linearizability given the precedence
graph G(V, E) is reduced to the problem of verifying the following structural properties of G:
(i) G is acyclic;
(ii) Every multi-word read or successful MwCAS operation has exactly one incoming reads-

from edge for each memory location accessed, and every unsuccessful MwCAS operation
has exactly one incoming auxiliary edge; and

(iii) For every memory location m, there exists a directed path of reads-from edges for
m that starts at the genesis vertex, and visits every vertex representing a successful
MwCAS operation that accesses m. (This path is unique when property i holds.)

Property i is necessary to ensure that all constraints on the linearization order are met, but
is not sufficient by itself because operations that return incorrect responses can generate
other types of structural anomalies (see Section 6.2). Properties ii–iii compensate for this by
ensuring that the state observed by an operation can be attributed to a unique sequence
of state transitions starting from the initial state. All three properties can be checked in
time linear in the size of G (i.e., O(|V |+ |E|)), assuming an adjacency list representation
where each reads-from edge is labeled with the corresponding memory location m. Property i
is established by running depth-first-search (DFS) on the entire graph, and ensuring that
no back edges are present. Property ii is established by counting in-edges for the relevant
vertices. Property iii is decided using a greedy algorithm that, for each memory location m,
repeatedly follows reads-from edges for m starting from the genesis vertex. Supposing that
properties i–ii have already been checked, the greedy algorithm either discovers the required
path, or else reaches a fork, which proves that such a path does not exist because each vertex
under consideration has exactly one incoming reads-from edge for m.

Procedure ReduceHB (H: input history)

7 Edges := ∅
8 S := set of operations in H

9 for any operation op in H, define Start(op) and Fin(op) as the position in H of op’s
invocation and response event, respectively

10 L := operations in S sorted in ascending order by Start(op)
11 for op in L do
12 if op is the last operation in L then
13 return Edges
14 op′ := earliest operation in L such that op <H op′

15 f :=∞
16 L′ := suffix of L from op′ (inclusive) onward
17 for op′′ in L′ do
18 if Start(op′′) > f then
19 break from inner for loop
20 else
21 Edges := Edges ∪ {(op, op′′)}
22 f := min(f, Fin(op′′))

23 return Edges

Figure 3 Computation of a minimal subset of happens-before edges.

D. Cepeda, S. Chowdhury, N. Li, R. Lopez, X. Wang, and W. Golab 19:7

Before presenting the specifics of read-from and auxiliary edges in Section 5 of the paper,
we first describe a general optimization that can reduce the number of edges required to
decide linearizability. This optimization is particularly relevant in our work for two reasons.
First, our precedence graph uses vertices to represent operations rather than the values
accessed by these operations, and tends to generate more edges than the technique presented
earlier in Figure 2 (c) because several operations may access one value. Second, because our
research emphasizes multi-word primitives, linearizability cannot be checked independently
for each memory word, and this puts additional pressure on the algorithm to deal efficiently
with large inputs.

The edge set of the precedence graph G tends to be dominated by happens-before edges,
whose number in the worst case (i.e., when the input history is nearly sequential) grows
quadratically with the number of operations. In contrast, the number of reads-from and
auxiliary edges tends to grow linearly under Assumption 1. Our optimization aims to reduce
the number of happens-before edges by exploiting the transitivity of the happens-before
relation, which makes it possible to derive some precedence constraints indirectly from
others. For example, if the input history H contains three operations op1, op2, op3 such
that op1 <H op2 and op2 <H op3, then there is no need to explicitly represent op1 <H op3.
Applying this observation, it is possible to compute a minimal subset of edges whose transitive
closure is the entire happens before relation. The algorithm for selecting such a subset of
edges is shown in Figure 3 as procedure ReduceHB. Its correctness properties are captured in
Theorems 1–2, whose proofs are omitted due to lack of space.

I Theorem 1. For any history H, let G(V, E) be the graph whose vertices represent the
operations in H, and where E is the set of edges output by ReduceHB(H). Then for every
pair of operations op1, op2 in H, op1 <H op2 if and only if there is a directed path in G from
op1 to op2. Furthermore, if H contains three operations op1, op2, op3 such that op1 <H op2
and op2 <H op3, then E does not contain the edge (op1, op3).

I Theorem 2. Let C be the point contention for a given history H, which is the maximum
number of operations that overlap at a single point in time. Then procedure ReduceHB(H)
returns a set of O(Cn) edges where n is the number of operations in H, and it has an
implementation with time complexity O(n log n + Cn).

Intuitively, procedure ReduceHB iterates over all operations in the input history H in
increasing order of their start time (outer loop), and for each such operation op it identifies
a maximal subset Eop of operations that succeed op directly in the partial order <H (inner
loop). It suffices to create happens-before edges from op to each element of Eop, as any
other operation op′ that succeeds op in <H also succeeds some operation in Eop. The size
of Eop is bounded by the point contention parameter C referred to by Theorem 2 because
all pairs of operations in Eop are concurrent. For practical purposes, C is a small constant,
for example the number of parallel threads used in an experiment to generate an execution
history. Supposing that C ∈ O(1), Theorem 2 implies O(n log n) running time (same as
sorting) and a graph with O(n) happens-before edges. As we will explain later on in Section 5,
the precedence graph contains O(kn) reads-from and auxiliary edges for k-word operations,
and so our selection of happens-before edges ensures that the entire edge set has size O(kn).

5 Constructing the Precedence Graph

In this section, we describe in more detail the formation of the precedence graph, focusing
on the reads-from and auxiliary edges. We begin with a discussion of different variations of
the multi-word swap, and assume initially that every operation has both an invocation and

OPODIS 2019

19:8 Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

matching response. In Subsection 5.3, we finally discuss how to handle operations that are
interrupted by failures. We do not discuss (multi-word) write operations, but note that they
can be incorporated into our framework fairly easily, and leave the details to future work.

5.1 Multi-Word Reads and Successful MwCAS Operations
For didactic purposes, we first describe the details of dealing with k-word reads and successful
swaps only, where k ≥ 1. Consider an operation MwR(m1 . . . mk)→ r1 . . . rk that returns
ri from memory location mi. The reads-from and auxiliary edges required are derived by
generalizing Misra’s Axioms [26] to multi-word operations. Specifically, the operation must
satisfy the following criteria for each memory location mi in any linearization L of the given
history H, where opR denotes the above multi-word read:
1. There exists a single operation op (possibly the one represented by the genesis vertex)

that writes ri to mi, and such that op <L opR.
2. For any operation op′ that writes a value wi 6= ri to mi, either op′ <L op or opR <L op′.

Criteria 1 and 2 are both needed to ensure that L is legal, particularly that opR returns
a correct value for location mi. In other words, opR must return a value that was written
to mi, and moreover this must be the value assigned by the most recent update to mi that
precedes opR in L. For criterion 1, structural property ii of the graph ensures that op exists,
Assumption 1 ensures that op is unique, and the reads-from edge (op, opR) encodes the
constraint op <L opR. For criterion 2, we add auxiliary edges according to the following
procedure: we identify for each memory location m the source vertex op of the incoming
reads-from edge for m, and its immediate successor s on the path of reads-from edges referred
to by structural property iii. If s exists, we insert an auxiliary edge (opR, s), which ensures
that op′ in criterion 2 cannot be linearized between op and opR.

For a successful MwCAS operation opC , we have analogous criteria where opR is replaced
with opC , and criterion 2 is relaxed to handle the case when op′ = opC . Reads-from edges
are inserted as for MwR operations, but auxiliary edges are not used as otherwise one could
form a loop from opC back to itself. In this case, structural property iii compensates for the
lack of auxiliary edges by ensuring that opC has sufficient outbound reads-from edges.

An example of the dependency graph for a linearizable history is shown in Figure 4. For
the sake of clarity, some edges as well as some operations required by Assumption 2 are
omitted. This example satisfies structural properties i–iii. A non-linearizable example is
then shown in Figure 5, where the swap operation for the state change B : 1→ 2 happens
before the read, which makes the response of the read operation stale with respect to memory
location B (but not A). In this second example, the swap and the read lie on a cycle, which
violates structural property i.

MwCAS ✓MwCAS ✓ MwCAS ✓

B: 1  2

C: 0  1

READ

A: 1  2

B: 2  3

A  1

B  1

A: 0  1

B: 0  1

A:0 B:0 C:0

(genesis)

Reads-From

Auxiliary

✓ Successful

Figure 4 Simplified precedence graph for a linearizable history.

D. Cepeda, S. Chowdhury, N. Li, R. Lopez, X. Wang, and W. Golab 19:9

MwCAS ✓MwCAS ✓ MwCAS ✓

B: 1  2

C: 0  1
A: 1  2

B: 2  3

A: 0  1

B: 0  1

A:0 B:0 C:0

(genesis)

READ

A  1

B  1

Reads-From

Auxiliary

Happens-Before

✓ Successful

Figure 5 Simplified precedence graph for a non-linearizable history.

5.2 Incorporating Unsuccessful MwCAS Operations

Conditional swap operations present unique challenges that do not exist with unconditional
swaps because they can take effect without modifying the state of shared memory. Depending
on the implementation, such unsuccessful operations either return the (unexpected) values
read, or simply signal that the swap failed. In the former case, the unsuccessful MwCAS is
treated like a multi-word read, and so the technique from Subsection 5.1 is sufficient. In the
latter case, we assume (as in Figure 1) that the response indicates a memory location mi

for which the observed value was different from the expected value ei. Also, we require (see
Assumption 2) that ei was read from mi before the MwCAS. Thus, given some operation
op that writes ei at mi, the unsuccessful MwCAS(m1 . . . mk, e1 . . . ek, n1 . . . nk) denoted by
opU requires that there exists some operation op′ that writes wi 6= ei at mi and satisfies
op <L op′ <L opU in any linearization L of the given history H. For the purpose of building
the dependency graph, we identify op′ as the unique successor s to the vertex representing op

on the path of reads-from edges for memory location mi referred to by structural property iii,
and insert an auxiliary edge (s, opU). Intuitively, this encodes the unsuccessful MwCAS
reading the value wi assigned by op′, or a newer value.

Figures 6 and 7 illustrate the technique of interpreting an unsuccessful MwCAS in this
manner. In Figure 6, the unsuccessful MwCAS takes effect after B is swapped from 1 to 2,
and before A is swapped from 1 to 2. Thus, it fails because of B. This is captured by the
auxiliary edge from the MwCAS that swapped 2 into B, to the unsuccessful MwCAS. If the
unsuccessful MwCAS instead takes effect after A is swapped from 1 to 2 then, as shown in
Figure 7, the auxiliary edge closes a cycle, violating structural property i.

MwCAS ✓MwCAS ✓ MwCAS ✓

B: 1  2

C: 0  1

READ

A: 1  2

B: 2  3

A  1

B  1

A: 0  1

B: 0  1

Reads-From

Auxiliary
A:0 B:0 C:0

(genesis)

MwCAS

A: 1  4

B: 1  4 ✗

✓ Successful

✗ Unsuccessful

Happens Before

Figure 6 Simplified precedence graph for a linearizable history with an unsuccessful MwCAS
that fails because of memory location B.

OPODIS 2019

19:10 Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

MwCAS ✓

READ

A  1

B  1

A: 0  1

B: 0  1

A:0 B:0 C:0

(genesis)

MwCAS

A: 1  4 ✗

B: 1  4

MwCAS ✓ MwCAS ✓

B: 1  2

C: 0  1
A: 1  2

B: 2  3

Reads-From

Auxiliary

✓ Successful

✗ Unsuccessful

Happens-Before

Figure 7 Simplified precedence graph for a non-linearizable history with an unsuccessful MwCAS
that fails because of memory location A.

5.3 Operations Interrupted by Crashes
Herlihy and Wing [19] deal with incomplete operations by adding (judiciously chosen)
matching responses to a subset of such operations and ignoring the rest. This technicality
complicates the analysis of linearizability substantially, and so we have elected to assume
in Section 2 that all operations are complete. We now describe how to transform the input
history to achieve this property without affecting its linearizability. Regardless of which
flavor of linearizability one considers [2, 7, 17, 19, 21], the following rules apply to histories
of multi-word reads and MwCAS operations:
1. Incomplete reads can be excluded from the history as they cannot violate linearizability

because their responses are not known.
2. An incomplete MwCAS can also be excluded provided that none of the new values it was

attempting to swap in has been read by another operation. This holds whether or not
the MwCAS actually succeeded and took effect.

3. An incomplete MwCAS whose effect was observed by another operation must be given a
matching response. Moreover, the response must indicate that the MwCAS was successful.

The exact placement of the response step stipulated in clause 3 depends on the specific
correctness property at hand. For strict linearizability [2], the matching response is placed
immediately before the crash. For recoverable linearizability [7], the matching response
is inserted at the end of the history, and an auxiliary edge is added from the completed
operation to the next operation of the same process, if one exists.1 For durable linearizability
[21], only the matching response is added at the end of the history.

6 Evaluation

This section presents our evaluation of the linearizability analyzer’s performance (Subsec-
tion 6.1) and effectiveness (Subsection 6.2). All experiments are conducted using a commodity
server equipped with four Xeon E5-4620 2.20GHz CPUs. The system has 32 cores total and
256GB of DRAM, 17GB of which are reserved for emulating persistent memory. (The system
lacks persistent memory.) The software environment includes Ubuntu Linux 18.04 LTS with
kernel version 4.15.0-58-generic, gcc 7.4.0, and OpenJDK 11. Java is used to implement the
linearizability analyzer, which comprises 1680 lines of single-threaded code, and can process

1 Technically speaking, the auxiliary edge should be directed to the next operation applied by the same
process on the same object. However, given that we are dealing with multi-word operations over a flat
address space, we treat the entire collection of memory locations as one shared object.

D. Cepeda, S. Chowdhury, N. Li, R. Lopez, X. Wang, and W. Golab 19:11

execution histories obtained by instrumenting persistent synchronization primitives written
in any programming language. The C++ compiler is used to compile two implementations
of persistent atomic multi-word swap for linearizability analysis.

6.1 Performance Experiments
This section discusses the performance of the analyzer through empirical analysis along two
dimensions. First, we assess scalability by measuring the running time of the analyzer on
inputs of varying size. Then, we quantify the speed-up due to our optimized method of
selecting happens-before edges (Figure 3).

Given the high performance of the synchronization primitives being analyzed, our gray
box testing approach has a tendency to generate large execution histories. For example,
experiments lasting only one minute can produce histories with millions of operations (n).
As a result, it is imperative that running time of the analyzer grows nearly linearly with n, as
opposed to a higher-degree polynomial. Naive generation of edges and their selection would
instead result in running time and graph size growing quadratically (or worse) with n. As we
show through experiment, judicious use of hash tables instead of nested loops, combined with
the optimized happens-before edge selection algorithm from Section 4, avoids this problem.

Figure 8 shows the performance of the analyzer with the above optimizations. The analyzer
was run repeatedly on increasingly long prefixes of a 1GB execution history log generated using
a third-party multi-word Compare-And-Swap implementation (see CodebaseA in Section 6.2).
Each run was performed 5 times. The average running times and standard deviations are
shown in Figure 8. The entire log was deemed linearizable by the analyzer in this case, and
same for its prefixes, as expected. Log size is measured in bytes rather than number of
operations because both are highly correlated for uniform workloads (approx. 100 bytes per
event, two events per operation). Figure 8 shows a definitively linear dependency of both
the running time and number of edges on the log size, and hence on n. Minor variations are
visible in the running times despite our attempts to control the environment, for example
by disabling turbo-boost, which is expected for Java code due to factors such as garbage
collection. The trendline still falls within a standard deviation of the runtime for all prefixes.

Figure 8 Running time of the analyzer in seconds over prefixes of a 1GB log file (left), and
number of edges in the dependency graph constructed by the analyzer (right).

In the next experiment, we compare our optimized implementation of the analyzer against
a naive baseline implementation that inserts all possible happens-before edges. Running
time is measured over shorter prefixes of the input log used in the scalability experiment
presented earlier in Figure 8. The new results are presented in Figure 9, which shows that
the ReduceHB optimization from Section 4 indeed reduces the total number of edges in the
dependency graph from quadratic to linear in the number of operations n. Similarly, the

OPODIS 2019

19:12 Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

Figure 9 Running time comparison of analyzer with and without the ReduceHB optimization
from Section 4 (left), and the size of the resulting dependency graphs (right).

running time is reduced to nearly linear. The 1 MB log file, for example, takes 100x longer
to process without the optimization. Due to the nonlinearly increasing running time, testing
the naive implementation on larger logs quickly became unfeasible.

In a third experiment, we measured the performance penalty due to the logging of
execution histories. The results indicate a slowdown of roughly 10%.

6.2 Effectiveness
In this section, we comment on the effectiveness of our linearizability analyzer in the field.
To that end, we present a case study in which the analyzer is applied to two implementations
of atomic-multi-word swap primitives, in both cases revealing previously unknown bugs.

To test our analyzer, we selected two codebases for analysis: CodebaseA is an industrial-
grade persistent multi-word compare-and-swap with an open-source implementation [30], and
CodebaseB is a persistent multi-word unconditional swap developed by a research assistant.
We first used a benchmark to generate failure-free single-threaded executions, and discovered
no linearizability violations. Next, we considered failure-free concurrent executions with two
threads, and detected linearizability violations in CodebaseB. As shown in Figure 10, thread
t0 applies an operation that successfully swaps the value i2 into address A. After that, t0
performs another swap on the same address A, changing its value successfully from i2 to i3.
Thread t1 attempts to swap address A concurrently, but the changes made by t0 are not
reflected in the value read by t1, which is the previous value i2 set by t0 in its first operation.
Figure 11 shows a section of the corresponding precedence graph, which violates structural
property iii (see Section 4) as no path of reads-from edges for memory location A passes
through all the vertices due to a fork.

Figure 10 CodebaseB, non-linearizable execution history indicating a bug.

CodebaseA, showed no linearizability issues in failure-free runs with two threads, but
generated non-linearizable histories with three threads. We found spurious events where a
previously invoked unsuccessful MwCAS operation interferes with another MwCAS operation
that should have succeeded (i.e., causes the latter to become unsuccessful). To further

D. Cepeda, S. Chowdhury, N. Li, R. Lopez, X. Wang, and W. Golab 19:13

Figure 11 CodebaseB, section of precedence graph for the history shown in Figure 10.

understand the spurious events, refer to Figure 12. In this scenario, t0 begins an operation
on addresses B and A, and before t0 finishes, t1 begins an operation on addresses C and
A. As t0 finishes the multiword operation, we expect t1’s operation to be unsuccessful due
to address A being changed by t0. Prior to t0 and t1 completing their operations, t2 begins
an operation on C and D. Since the completed operation of t0 does not interfere with the
addresses accessed by t2, and since the operation by t1 which shares an address in common
with t2 is unsuccessful, we would expect t2’s operation to succeed, but this is not the case.
Figure 13 shows a section of the corresponding precedence graph, which violates structural
property ii (see Section 4) because the vertex for t2’s unsuccessful MwCAS is disconnected
from the rest of the graph.

Figure 12 CodebaseA, non-linearizable execution history indicating a bug.

Figure 13 CodebaseA, section of precedence graph for the history shown in Figure 12.

Before explaining the root cause of the anomalous behavior, we explain briefly the design
of CodebaseA [30]. MwCAS operations use two types of structures: operation descriptors and
word descriptors. Operation descriptors record the arguments, the response of the operation
to be performed, the status of the operation (e.g., undecided, successful, unsuccessful), as
well as an array of word descriptors. The word descriptors contain the target word address,
the expected value to compare against, the new value, and a back pointer to the MwCAS
descriptor. The execution of an MwCAS has two phases. Phase1 installs a pointer to the
MwCAS descriptor in all the target addresses, provided that the current value of a word
matches the expected value. The execution path of Phase2 depends on the outcome of
Phase1. For a successful Phase1, Phase2 installs the new values to the target addresses.
For an unsuccessful Phase1, Phase2 resets any target word that points to the MwCAS
descriptor back to its old value. In addition, the algorithm embeds a “dirty bit” in each word
to mark data that has been updated but not yet flushed to persistent memory.

OPODIS 2019

19:14 Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

The bug in CodebaseA occurs when a thread attempts to install a word descriptor (see
line 5 of Algorithm 2 in [30]) using a single-word CAS instruction, and encounters the
expected value with the dirty bit set at one of the target memory locations. In Figure 12,
such a value is observed by t2 at location C, which is modified earlier and then restored
by t1. (The bug occurs when t2 reads C before t1’s unsuccessful MwCAS has a chance to
persist the restored value and clear the dirty bit.) The algorithm treats this case as reading
a value different from the expected one, and so t2 completes the MwCAS operation with an
unsuccessful status. We modified the code that installs word descriptors to retry if a dirty
value is encountered, and this revision eliminated the linearizability anomaly in our tests.

Our case study demonstrates the power of the analyzer to detect previously-unknown
bugs on codebases. Once instrumented, we can run and analyze tests with different initial
configuration parameters such as number of threads, number of words accessed by each
operation, and address space size. The analyzer elucidates subtle issues, reducing the time
required to analyze code manually. To conclude this section, we point out that the bug we
detected in CodebaseA is related directly to the mechanism used to ensure persistence of
the data, namely the dirty bit, and likely would not exist in an atomic multi-word swap
implementation designed for conventional volatile memory. Somewhat surprisingly, we were
able to catch such a bug without considering crash failures.

7 Related Work

The problems of defining and analyzing linearizability can be traced back to the seminal
papers of Lamport and Misra, who formalized the correct behavior of read/write register
objects under concurrent access. Lamport [22] introduced safe, regular, and atomic registers
in a model where processes may apply read and write operations concurrently, but writes are
sequential, and every operation has both an invocation and a response. Misra’s Axioms [26]
accommodate multi-writer registers, and assume that “all values written by write operations
are distinct,” which is a natural way to establish a “reads-from” mapping. Herlihy and
Wing’s linearizability property [19] generalizes Lamport’s atomic register in a number of
ways: it covers arbitrary typed shared objects; it does not impose restrictions on concurrency
(e.g., among writers); and it accommodates pending operations, which lack response events.
Linearizability is the gold standard for correctness of shared objects, and is compositional in
the following sense: a history involving multiple shared objects is linearizable if and only if all
the maximal single-object subhistories are individually linearizable. This property is called
locality, and can be exploited to parallelize a linearizability analyzer. Horn and Kroening
generalized the idea behind locality to operations on the same object, and defined a more
fine-grained composition property called P-compositionality [20].

Growing interest in implementing shared objects using persistent memory has exposed an
important limitation of linearizability: it does not define correct behavior in the case when
an operation is interrupted by a failure before it produces a response, and its caller then
recovers to perform additional operations on the same object. Several extensions have been
proposed to linearizability that address precisely this point, including Aguilera and Frølund’s
strict linearizability [2], Guerraoui and Levy’s persistent atomicity [17], Berryhill, Golab and
Tripunitara’s recoverable linearizability, Izraelevitz, Mendes and Scott’s durable linearizability
[21], as well as Attiya, Ben-Baruch and Hendler’s nesting-safe recoverable linearizability [4].
All of these properties are compatible with detectability [14], which is the ability to determine
the outcome of an operation interrupted by a crash during subsequent recovery.

D. Cepeda, S. Chowdhury, N. Li, R. Lopez, X. Wang, and W. Golab 19:15

The problem of deciding whether a history of invocation and response steps satisfies a
given consistency property has been studied widely in the context of ordinary linearizability.
Gibbons and Korach [15] proved that deciding linearizability is NP-complete for read/write
registers. They also introduced the efficient zone-based approach (see Section 4) for the
special case when the reads-from mapping is known, including for histories that contain
single-word Read-Modify-Write operations (e.g., successful CAS or unconditional swaps)
in addition to reads and writes. On the other hand, the graph-based approach is rooted
in the theory of database concurrency control [6], and has been used in several studies of
consistency in distributed read/write (i.e., key-value) storage systems [3, 5, 16].

Deciding linearizability for types other than read/write registers is a challenging research
problem. Automated model checking techniques based on exhaustive state space exploration
[1, 9, 10, 25, 28, 29] can accommodate arbitrary data types but are limited to small inputs
due to the state space explosion problem. Several more efficient techniques have been devised
in the context of collection types (e.g., queue, stack, map, set). Efficient reductions from
deciding linearizability to known problems have been proposed by Emmi and Enea [11]
(to Horn satisfiability), and by Bouajjani et al. [8] (to control-state reachability). Ozkan,
Majumdar and Niksic [27] proved that most histories over collection types can be analyzed
efficiently using hitting families. Feldman et al. [13] proposed local view arguments to simplify
linearizability proofs for search trees and skip lists. Our techniques are most similar to [8, 11]
in that we decide linearizability automatically in polynomial time, but we focus on a different
category of object types and we solve the problem directly rather than by a reduction.

8 Conclusion

This paper described an efficient graph-theoretic technique for deciding linearizability over
histories of multi-word read and Compare-And-Swap operations. In our case study, the
technique required only small modifications to the synchronization primitive’s implementation
to capture additional detail regarding unsuccessful Compare-And-Swap operations, and was
shown to scale well with the size of the input history. In future work, we plan to extend our
results by collecting and analyzing additional histories that include both simulated and real
crash failures on a multiprocessor equipped with persistent memory.

References
1 Kiran Adhikari, James Street, Chao Wang, Yang Liu, and Shao Jie Zhang. Verifying a

quantitative relaxation of linearizability via refinement. STTT, 18(4):393–407, 2016.
2 Marcos Aguilera and Svend Frølund. Strict linearizability and the power of aborting. HP Labs

Tech. Rep. HPL-2003-241, 2003.
3 Eric Anderson, Xiaozhou Li, Mehul A. Shah, Joseph Tucek, and Jay J. Wylie. What Consistency

Does Your Key-Value Store Actually Provide? In Proc. of the Sixth Workshop on Hot Topics
in System Dependability (HotDep), 2010.

4 Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-Safe Recoverable Linearizability:
Modular Constructions for Non-Volatile Memory. In Proc. of the 37th ACM Symposium on
Principles of Distributed Computing (PODC), pages 7–16, 2018.

5 Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and Ion
Stoica. Probabilistically Bounded Staleness for Practical Partial Quorums. PVLDB, 5(8):776–
787, 2012.

6 Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

OPODIS 2019

19:16 Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

7 Ryan Berryhill, Wojciech M. Golab, and Mahesh Tripunitara. Robust Shared Objects for
Non-Volatile Main Memory. In Proc. of the 19th International Conference on Principles of
Distributed Systems (OPODIS), pages 20:1–20:17, 2015.

8 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. On Reducing Lineariz-
ability to State Reachability. Inf. Comput., 261(Part 2):383–400, 2018.

9 Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. Line-up: a complete
and automatic linearizability checker. In Proc. of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 330–340, 2010.

10 Pavol Cerný, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri, and Rajeev Alur.
Model Checking of Linearizability of Concurrent List Implementations. In Proc. of the 22nd
International Conference on Computer Aided Verification (CAV), pages 465–479, 2010.

11 Michael Emmi and Constantin Enea. Sound, Complete, and Tractable Linearizability Monit-
oring for Concurrent Collections. Proc. ACM Program. Lang., 2(POPL):25:1–25:27, 2017.

12 Steven D. Feldman, Pierre LaBorde, and Damian Dechev. A Wait-Free Multi-Word Compare-
and-Swap Operation. International Journal of Parallel Programming, 43(4):572–596, 2015.

13 Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon
Shoham. Order out of Chaos: Proving Linearizability Using Local Views. In Proc. of the 32nd
International Symposium on Distributed Computing (DISC), pages 23:1–23:21, 2018.

14 Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. A Persistent Lock-
free Queue for Non-volatile Memory. In Proc. of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 28–40, 2018.

15 Phillip B. Gibbons and Ephraim Korach. Testing Shared Memories. SIAM J. Comput.,
26(4):1208–1244, 1997.

16 Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. Analyzing consistency properties for
fun and profit. In Proc. ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), pages 197–206, 2011.

17 Rachid Guerraoui and Ron R Levy. Robust emulations of shared memory in a crash-recovery
model. In Proc. of the 24th International Conference on Distributed Computing Systems
(DISC), pages 400–407, 2004.

18 Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A Practical Multi-word Compare-and-Swap
Operation. In Proc. of the 16th International Conference on Distributed Computing (DISC),
pages 265–279, 2002.

19 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

20 Alex Horn and Daniel Kroening. Faster Linearizability Checking via P-Compositionality. In
Proc. of the International Conference on Formal Techniques for Distributed Objects, Compon-
ents, and Systems (FORTE), pages 50–65, 2015.

21 Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of Persistent
Memory Objects Under a Full-System-Crash Failure Model. In Proc. of the 30th International
Symposium on Distributed Computing (DISC), pages 313–327, 2016.

22 Leslie Lamport. On Interprocess Communication, Part I: Basic Formalism and Part II:
Algorithms. Distributed Computing, 1(2):77–101, 1986.

23 Leslie Lamport. Specifying systems: the TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

24 Leslie Lamport. The PlusCal Algorithm Language. In Proc. of the 6th International Colloquium
on Theoretical Aspects of Computing (ICTAC), pages 36–60, 2009.

25 Gavin Lowe. Testing for linearizability. Concurrency and Computation: Practice and Experi-
ence, 29(4), 2017.

26 J. Misra. Axioms for Memory Access in Asynchronous Hardware Systems. ACM Trans.
Program. Lang. Syst., 8(1):142–153, 1986.

D. Cepeda, S. Chowdhury, N. Li, R. Lopez, X. Wang, and W. Golab 19:17

27 Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic. Checking Linearizability Using
Hitting Families. In Proc. of the 24th Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 366–377, 2019.

28 Viktor Vafeiadis. Automatically Proving Linearizability. In Proc. of the 22nd International
Conference on Computer Aided Verification (CAV), pages 450–464, 2010.

29 Martin T. Vechev, Eran Yahav, and Greta Yorsh. Experience with Model Checking Linear-
izability. In Proc. of the 16th International Workshop on Model Checking Software (SPIN),
pages 261–278, 2009.

30 Tianzheng Wang, Justin J. Levandoski, and Per-Åke Larson. Easy Lock-Free Indexing in
Non-Volatile Memory. In Proc. of the 34th IEEE International Conference on Data Engineering
(ICDE), pages 461–472, 2018.

OPODIS 2019

	Introduction
	Model
	Background
	Graph-Theoretic Formulation
	Constructing the Precedence Graph
	Multi-Word Reads and Successful MwCAS Operations
	Incorporating Unsuccessful MwCAS Operations
	Operations Interrupted by Crashes

	Evaluation
	Performance Experiments
	Effectiveness

	Related Work
	Conclusion

