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Abstract
Temporal graphs (or evolving graphs) are time-varying graphs where time is assumed to be discrete.
In this paper, we consider for the first time the problem of exploring temporal graphs of arbitrary
unknown topology. We study the feasibility of exploration, under both the Fsync and Ssync
schedulers, focusing on the number of agents necessary and sufficient to explore such graphs.

We first consider the minimal (i.e., less restrictive) assumption on the dynamics of the graph
under which exploration is still feasible: temporal connectivity. Let H be the class of temporally
connected graphs; we show that for any temporal graph G ∈ H the number of agents sufficient
to perform exploration is related to the number of its transient edges, a parameter η(G) we call
evanescence of the graph. More precisely, any G ∈ H can be explored by a team of k ≥ 2η(G) + 1
agents; this bound is tight as we prove there are G ∈ H that cannot be explored by 2η(G) agents.

We then turn our attention to the well-known stronger assumption on the dynamics of the graph,
called 1-interval connectivity: the graph is connected at any time step. Let W ⊂ H be the class
of these always-connected temporal graphs. For this class, we prove the existence of a difference
between Fsync and Ssync when there is a bound ` on the number of edges missing at each time.
In fact, we show a tight bound of 2`+ 1 on the number of agents necessary and sufficient in Ssync,
and a smaller tight bound of 2` in Fsync. As a corollary, we re-establish two recently published
bounds for 1-interval connected rings.
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1 Introduction

1.1 Framework and Background
The graph exploration problem (Exploration), first introduced by Shannon [34], is a
fundamental problem in theoretical computer science, in particular in the field of distributed
computing by mobile entities. It requires each node of the graph to be visited by one or more
entities, called agents, a finite number of times (exploration with termination) or infinitely
often (perpetual exploration). In addition to its theoretical importance, Exploration is
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22:2 Tight Bounds on Distributed Exploration of Temporal Graphs

relevant from a practical viewpoint in networks with mobile entities (e.g., software agents,
vehicles, or robots): by visiting all nodes, agents can check whether there are some nodes
with problems in the network, propagate some data across the network, or collect (or search)
specific information from the whole network.

This problem has been extensively studied over a variety of assumptions and settings
depending on whether the nodes have distinct labelings or are anonymous, on the type of
communication mechanisms available to the agents, on the degree of synchronization of the
network, on the level of knowledge the agents have about the graph, on their memory, etc.
(e.g., see [1, 8, 7, 10, 13, 14, 21, 22, 33, 35], and [9] for a recent survey). In spite of all the
differences, the existing literature has until very recently made a common assumption: the
graph is static, i.e., the link structure does not change during the exploration.

Recently, researchers in the distributed computing community have started to investigate
highly dynamic graphs that are graphs where the topological changes are not sporadic or
anomalous, but rather inherent in the nature of the network. Various models have been
proposed to describe highly dynamic networks, under a variety of names. A model that
describes them in a simple and natural way is the one of time-varying graphs, formally
defined in [6], where main classes of systems studied in the literature and their computational
relationship were identified. When time is assumed to be discrete, the evolution of these
systems can be equivalently described as a sequence of static graphs, called evolving graph or
temporal graph, a model suggested in [25], formalized in [17].

If the dynamics of the changes is arbitrary and unrestricted, clearly any non-trivial
computation is unfeasible and any non-trivial problem is unsolvable. Hence, all the studies
are carried out under some assumptions restricting the arbitrariness of the dynamics. The
minimal (i.e., less restrictive) assumption is temporal connectivity: starting at any time, there
is temporal reachability between any two nodes (e.g., [5]). Stronger assumptions include
1-interval connectivity : the graph is always connected (e.g., [24, 30, 31]); and T-interval
connectivity : the graph is always connected and every T > 1 consecutive rounds contain the
same spanning-tree (e.g., [28, 30]). A classification of the most common assumptions was
done in [6].

While there are several studies on computations by mobile agents moving in temporal
graphs (for a recent survey see [11]), the results on the exploration of temporal graphs are
rather limited. On the probabilistic side, there is an early seminal work on random walks [2].
On the deterministic side there are: the study of the complexity of computing a foremost
exploration schedule under the 1-interval-connectivity assumption [32], generalized and
extended in [15] and then in [16]; the computation of an exploration schedule for rings under
the stronger T-interval-connectivity assumption [28]; the computation of an exploration
schedule for cactuses under the 1-interval-connectivity assumption [26]. These studies are
however centralized (or off-line); that is, they assume that the exploring agents have complete
a priori knowledge of the topological changes and the times of their occurrence. Distributed
approaches have been studied under particular constraints on the network connectivity and on
its underlying topology. Exploration with termination by a single agent of periodic temporal
networks, including carrier networks, has been studied in [18, 19, 27, 28]. Exploration with
termination of 1-interval connected rings by two and three agents under both synchronous
and semi-synchronous schedulers has been considered in [12]. Perpetual exploration by three
agents on temporally connected rings has been studied in [4, 5]. Exploration with termination
by O(n) agents of n×m dynamic tori (n ≤ m), where each column and row is a 1-interval
connected ring, has been investigated in [23].
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All the existing results on distributed exploration of time-varying graphs have been
obtained for temporal graphs with very specific topologies (rings, tori, or collections of cycles
in the case of carrier networks). In this paper we start the investigation of the exploration of
temporal graphs with arbitrary and unknown topologies.

1.2 Contributions

In this paper we consider perpetual exploration of time varying graphs whose topology is
arbitrary and unknown to the agents. We focus on solvability of the exploration of such
dynamic graphs and we determine the number of agents that are necessary and sufficient for
exploration under the Fsync and Ssync activation schedulers.

Clearly, if the graph is not temporally connected, perpetual exploration is trivially im-
possible to achieve. We thus start our investigation with the class H of temporally connected
temporal graphs. We show that for the graphs G ∈ H, the number of agents sufficient to
perform exploration is related to the evanescence η(G) of the graph, that is the number of
transient edges. More precisely, any G ∈ H can be explored by a team of k ≥ 2η(G) + 1
agents; this bound is tight as we prove there are G ∈ H that cannot be explored by 2η(G)
agents. The impossibility holds under very strong conditions (Fsync scheduler, agents and
nodes with distinct IDs, knowledge on n and k). On the other hand, the proposed exploration
algorithm, based on the rotor router technique, works under very weak conditions (Ssync
scheduler, anonymous agents, no knowledge of topological parameters).

We then turn our attention to the stronger assumption on the dynamics of the graph,
1-interval connectivity: the graph is always connected. Let W(`) ⊂ H be the class of these
always-connected temporal graphs where the number of missing edges at each time is at most
`. For this class, we first show a tight bound of 2`+ 1 under the Ssync scheduler on the
number of agents. We then prove the existence of a difference between Fsync and Ssync
if the network size and the number of agents are known. In fact, in this case, while the
bound for Ssync remains unchanged, we prove a tight bound of 2` for Fsync. Moreover,
we show that if 2` + 1 agents are available in Ssync, the exploration with termination
is possible. As a corollary of these results, we re-establish a recently published bound for
temporally-connected rings [5] and one for 1-interval connected rings [12].

Note that, when considering the class H(`) of temporally connected graphs with at most `
transient edges and the class W(`) ⊂ H(`) of `-bounded 1-interval connected graph, we have
that the bound on the number of agents for H(`) is the same as the one for W(`) for Ssync,
while the two differs in the case of Fsync, showing that the stronger connectivity assumption
of W does not influence the solvability bound in case of semi-synchronous schedulers, but
does have an impact for fully synchronous ones.

2 The Model

2.1 The Network

The system is modeled as a time-varying graph (TVG), G = (V,E,T, ρ), where V is a set of
nodes, E is a set of edges, T is the temporal domain, and ρ : E ×T→ {0, 1}, called presence
function, indicates whether a given edge is available at a given time. The graph G = (V,E)
is called underlying graph (or footprint) of G, with |V | = n and |E| = m. Let E(v) denote
the set of edges incident on node v in the footprint, let δv = |E(v)| be the degree of node v
in the footprint, and let ∆ = Maxv{δv} be the maximum degree of G.
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22:4 Tight Bounds on Distributed Exploration of Temporal Graphs

In this paper we consider discrete time; that is, T = Z+. Since time is discrete, the
dynamics of the system can be viewed also in terms of a sequence of static graphs: SG =
G0, G1, . . . , Gt, . . ., where Gt = (Vt, Et) is the graph of the edges present at time t (also
called snapshot at time t). The TVG in this case is called temporal graph (or evolving graph).
We denote by Ēt = E \ Et (⊆ E) the set of edges that do not appear in the snapshot at
time t.

In a temporal graph, the edge set E can be partitioned into the set of recurrent edges
E∗, and the one of transient edges E−. Formally, a recurrent edge e∗ ∈ E∗ is such that
∀t ∈ Z+,∃t′ > t : ρ(e∗, t′) = 1. In other words, a recurrent edge appears infinitely often. On
the other hand, a transient edge e− ∈ E− is such that ∃t ∈ Z+,∀t′ ≥ t : ρ(e−, t′) = 0. In
other words, a transient edge eventually ceases to exist forever.

The solidity of G is defined as the number σ(G) of recurrent edges, and the evanescence
of G, denoted by η(G), as the number of transient edges (i.e., η(G) = |E| − σ(G)).

A journey is a temporal walk in G and it is defined as a sequence of couples J = {(e1, t1),
(e2, t2) . . . , (ek, tk)}, such that {e1, e2, ..., ek} is a walk in G and ∀i, 1 ≤ i < k, ρ(ei, ti) = 1
and ti+1 > ti. Let J(u, v, t) denote the set of journeys from u to v starting at time t′ ≥ t.

A particularly important class of temporal graphs are temporally connected ones:

I Definition 1 (Temporally connected). A TVG G is temporally connected (or connected over
time) if ∀t ∈ Z+, ∀u, v ∈ V , J(u, v, t) 6= ∅.

Note that temporal connectivity is the minimal condition to be able to perform any global
tasks; in particular, perpetual exploration (i.e., requiring every node to be visited infinitely
often) is trivially impossible if the graph is not temporally connected. Let H denote the class
of temporally connected TVGs.

A variety of stronger assumptions have been studied in the literature. In this paper we
are interested in a particular temporally connected graph, where connectivity is actually
guaranteed at every time (always connected or 1-interval connected temporal graphs); in
particular, when the number of missing edges at any given time is bounded.

I Definition 2 (`-Bounded 1-Interval Connected). A temporal graph G is 1-interval connected
(or always connected) if ∀Gi ∈ SG, Gi is connected. Moreover, G is `-bounded 1-interval
connected if it is always connected and |Ēt| ≤ `.

Let W(`) ⊂ H denote the class of `-bounded 1-interval connected temporal graphs.
The nodes of G are anonymous (i.e., they have no IDs) and each node provides a constant

amount of local memory called whiteboard. Each edge incident to node v is locally labeled
by a bijection λv : E(v)→ {0, . . . , δv − 1}; no other assumptions are made about the labels.
Every node v has ports pi for 0 ≤ i ≤ δv − 1 which are used to store at most one agent trying
to move through e such that λv(e) = i.

2.2 Mobile agents
A set A = {a0, a1, . . . , ak−1} of k agents operate on the network, initially occupying arbitrary
positions. Agents are anonymous and have access to their private notebook (local memory)
and to whiteboards (memory of nodes).

The agents operate in synchronous rounds, and each round is composed by three phases:
Look , Compute , and Move , during which they execute the following actions [20]:

Look : Agent ai observes the content of its own notebook and of the whiteboard of the
node it occupies, and it checks, for each port of the node, if there are other agents at the
same node.
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Compute : On the basis of the information obtained in the Look phase, ai decides
whether to move or not. It can write information on the whiteboard1 and if it decides
to move, it places itself in correspondence of the selected port (if it is not occupied by
another agent).

Move : If ai occupies a port, it tries to move. If the corresponding edge exists, ai reaches
the other side, otherwise it stays on the port. If ai does not occupy a port, it does not
move.

We distinguish between the fully-synchronous activation scheduler (Fsync), when all
the agents are activated in every round, and the semi-synchronous one (Ssync), when an
arbitrary subset of the agents is activated at each round. In Ssync, the scheduler is an
adversary which knows the algorithm of the agents, has infinite computing capacity, and
tries to prevent agents from completing their task; however, it must activate every agent
infinitely often. An agent which is not activated at round t is said to be sleeping at that
round. The length of the sleeping time is finite but unbounded.

Under the semi-synchronous scheduler, we need to specify the behavior of the agents
that fall asleep on a port when the corresponding edge is missing. In this paper, we assume
the weakest rule, called eventual transport rule [12], in which the agent sleeping at a port
will eventually be activated at a time when the edge corresponding to the port is present.
This prevents the adversary from using semi-synchronicity to block an agent forever on a
recurrent edge.

2.3 Configuration and execution
A configuration Ct is defined by: the contents of the whiteboards, the local memory of the
agents, and the locations of the agents.An execution EA = C0C1 . . . of an algorithm A is an
infinite sequence of configurations such that C0 is an initial configuration (i.e., a configuration
at round 0) and Ct+1 is obtained from Ct by executing one round of algorithm A. This
execution is subject to two types of adversarial actions: those by the activation scheduler
deciding which agents are activated in that round, and those of the topological scheduler
deciding which edges are missing in that round. When no ambiguity arises, we use E instead
of EA.

2.4 The Exploration problem
We say that a node v is visited by round t if there exists a round t′ (0 ≤ t′ < t) such that an
agent occupies v at time t′. We say that the network is explored by round t if every node
has been visited by round t.

A perpetual exploration algorithm is one where, in every execution, every node is visited
infinitely often. An exploration with termination algorithm is one where all the agents
terminate after all nodes have been visited at least once. In this paper we are concerned
with perpetual exploration.

3 Exploration of temporally connected TVGs

In this section, we show that the feasibility of exploration of temporally connected TVGs is
related to their evanescence.

1 Access to the whiteboard is done in fair mutual exclusion.
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3.1 Impossibility
Let H(`) = {G ∈ H : η(G) ≤ `} be the class of temporally connected TVGs with evanescence
at most `. In this section we show that it is impossible to perform perpetual exploration
of all G ∈ H(`) with 2` agents. The result is quite strong as it applies also to TVGs
that are connected at every time step, with uniquely labeled nodes and agents, under a
fully-synchronous scheduler, and in presence of topological knowledge.

I Theorem 3. There exist temporally connected time-varying graphs G ∈ H(`) that cannot
be explored by k = 2` agents. The result holds even if nodes and/or agents have distinct IDs,
the network is always connected, the agents have some topological knowledge (n, m or k),
and the scheduler is fully-synchronous.

Proof. We show the theorem by constructing a graph G ∈ H(`) that cannot be explored by
2` agents by any algorithm. The main point of this proof is that an agent can eventually have
only one of these two behaviors when wishing to traverse an edge that is missing: (i) the
agent stays permanently on the chosen port, waiting for the appearance of the continuously
missing edge; (ii) the agent eventually chooses a different edge. The former type of agents
are called (with respect to the number of changes of a selected edge) finite and the latter
infinite.

The components for constructing the graph are as follows. For 0 ≤ i ≤ 2`− 1 (= k − 1),
let S inf

i be a star with center node cinfi and 3 leaf nodes {binf(i,0), b
inf
(i,1), b

inf
(i,2)} and Sfin

i be a star
with center node cfini and 3 leaf nodes {bfin(i,0), b

fin
(i,1), b

fin
(i,2)}. We construct the graph using S inf

i ,
Sfin

i and an additional node u.
Each component is connected as follows. For S inf

i (0 ≤ i ≤ 2` − 1) and u, each binf(i,j)
(0 ≤ j ≤ 2) is connected with u by edge (binf(i,j), u). For Sfin

i (0 ≤ i ≤ 2`− 1) and u, each bfin(i,j)
(j = 0 or 1) is connected with u by edge (bfin(i,j), u). In addition to that, for 0 ≤ i ≤ l − 1,
bfin(2i,2) and bfin(2i+1,2) are connected by (bfin(2i,2), b

fin
(2i+1,2)). A graph for l = 2 (k = 4) is depicted

in Figure 1.

Figure 1 Example of a graph for ` = 2 and k = 2` = 4. There are four stars Sfin
i (S inf

i ) for
0 ≤ i ≤ 3 on the top (bottom) of the figure. Each star Sfin

i (S inf
i ) has one center node cfini (cinfi ) and

three leaf nodes {bfin(i,0), b
fin
(i,1), b

fin
(i,2)} ({binf(i,0), b

inf
(i,1), b

inf
(i,2)}).

For the constructed graph, we first show that, given any exploration algorithm using 2`
agents, the adversary can construct an execution for the algorithm such that in the execution
G cannot be explored while the adversary may violate the restriction of H(`), i.e., η(G) may
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be more than `. Then, we give a way to convert the execution into another execution such
that η(G) is at most ` in the new execution and the agents cannot distinguish these two
executions and thus cannot explore G also in the new execution.

We start by showing that, given any exploration algorithm, say A, using 2` agents, the
adversary can construct an execution E1 of A in which the agents cannot explore G. The
adversary puts agent ai on cinfi for 0 ≤ i ≤ 2`− 1 in the initial configuration of E1. During
execution E1 of A, the adversary deletes edge (binf(i,j), u) whenever ai is on binf(i,j). Clearly, this
prevents any agent executing A to visit u and thus G is not explored permanently while the
adversary violates the restriction for the number of transient edges (it is at most 2` in E1).

We now show how the adversary converts E1 into another execution, say E2, so that
the agents cannot distinguish E1 and E2 and η(G) is at most ` in E2. To decide the initial
configuration of E2, the adversary first separates the agents into two groups: finite agents
and infinite agents depending on their behavior when faced with a missing edge during E1.
Let f (0 ≤ f ≤ k − 1) be the number of finite agents. In the following, finite agents are
denoted by afin0 , . . . , a

fin
f−1, and the infinite agents are denoted by ainf0 , . . . , a

inf
k−f−1. W.l.o.g.,

we assume that afini = ai, i.e, afini is the agent starting from cinfi in E1.
The adversary decides the initial configuration of E2 as follows: each ainfi (0 ≤ i ≤ k−f−1)

is put on the same node as in the initial configuration of E1, while each afini (0 ≤ i ≤ f − 1)
is put on cfini .

Then, the adversary changes the assignment of the port labels and the node ID (if any)
of cfini , bfin(i,0), bfin(i,1), and bfin(i,2) in Sfin

i so that afini cannot distinguish E1 and E2. Let vi = binf(i,x)
be the node where ai = afini finally waits a missing edge permanently in E1. For bfin(i,2), the
assignment of the port labels and the node ID (if any) are copied from vi. The ones of cfini

are copied from cinfi . The ones of bfin(i,0) and bfin(i,1) are copied from each of binf(i,y) for y 6= x.
Execution E2 with the initial configuration, the node ID, and the assignment of port

labels is constructed similarly to E1: the adversary deletes the edge leading to u (resp, u or
Sfin

i′ for i′ 6= i) when ainfi′′ = ai (resp, afini ) exists on binf(i,j) (resp, bfin(i,j)). Obviously, every agent
cannot distinguish E1 and E2: for all the agents, the node IDs and the port labeling observed
in E2 is the same as E1. Thus, G cannot be explored since u is not visited by any agent also
in E2.

Finally, we show that, in E2, η(G) is at most `. To prevent infinite agents, no transient
edge is necessary; in fact, an infinite agent eventually changes its selected edge if it is kept
missing, and no two infinite agents wait on the same edge (otherwise, the edge may be
transient). For finite agents, by construction, afin2i and afin2i+1 for 0 ≤ i ≤ (f − 1)/2 eventually
wait for the same edge (bfin(2i,2), b

fin
(2i+1,2)) (when f is odd, only af−1 waits for (bfin(f−1,2), b

fin
(f,2))).

Since f is at most k = 2`, at most ` edges are necessary to prevent finite agents. J

3.2 Semi Synchronous Exploration by 2η(G) + 1 agents

In this section, we show that every temporally connected time-varying network G ∈ H can be
explored by 2η(G) + 1 anonymous agents that do not know the topology. In fact, we propose
an exploration algorithm for 2η(G) + 1 anonymous agents in an anonymous network, which
works under the semi-synchronous scheduler with eventual transport.

The strategy is simple and it is based on the classical rotor router mechanism, which was
introduced as a deterministic alternative to random walk and was studied in a variety of
contexts, including static graph exploration (e.g., [3, 29, 35]).

In rotor router, each node v has a variable written on its whiteboard, pointerv, indicating
one of its incident ports. When an agent a visits node v, a checks each port in ascending
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22:8 Tight Bounds on Distributed Exploration of Temporal Graphs

order from the port pointed by pointerv. If a finds some unoccupied port p, a moves to that
port and sets pointerv to p+ 1. If a finishes to check all the ports and they all are occupied,
a does nothing.

Algorithm 1 Computation at node v.

1: if not on a port then
2: i← 0
3: p← pointerv

4: while i < δv ∧ port p is occupied do
5: p← (p+ 1) mod δv

6: i← i+ 1
7: if i < δv then
8: pointerv ← (p+ 1) mod δv

9: move to port p

We first show that in any round, there exists at least one agent succeeding to move within
finite time (Lemma 4). We then show that, 2l+ 1 agents achieve perpetual exploration using
Algorithm 1 (Theorem 5).

I Lemma 4. For any round t, if 2η(G) + 1 agents execute Algorithm 1 in a temporally
connected temporal graph G, at least one of them eventually moves within finite time after t.

Proof. By contradiction, assume that there exists a round t such that every agent never
succeeds to move after t. We consider two cases: (i) there exists a node v containing more
than δv − 1 agents, and (ii) there does not exist such a node.

In the first case, every agent on v is activated within finite time after t because of the
fairness of the scheduler, which means that every port of v is eventually occupied by an agent.
Since at least one of the edges incident to v is a recurrent edge, say e, the agent sleeping on
the corresponding port of e eventually succeeds to move because of the eventual transport
rule. This is a contradiction.

Also in the second case, every agent on v is activated within finite time after round t
because of the fairness of the scheduler. Since there is no node containing more agents than
its degree, every agent eventually stays on a port. When this happens, at least one of the
agents is sleeping at the port of a recurrent edge since the number of agents is 2η(G) + 1
and there exist at most 2η(G) ports corresponding to transient edges. This means that, by
the eventual transport rule, the agent sleeping at the port of a recurrent edge eventually
succeeds to move after t; a contradiction. J

Then, the following theorem holds.

I Theorem 5. Any G ∈ H can be explored by 2η(G) + 1 anonymous agents under the
semi-synchronous scheduler.

Proof. Consider Algorithm 1. By definition of transient edges, there exists a time step te
such that, for any transient edge e, ρ(e, t) = 0 for all t > te. Let tE be maxe∈E te, i.e., a
time when all the transient edges have ceased to exist and all the edges that appear from
this moment are recurrent. Let x(t) be the sum of the number of visits over all the nodes
from the beginning of the execution up to time t.

We now show that, from an arbitrary initial configuration, 2η(G) + 1 agents following
Algorithm 1 visit all the nodes infinitely often.
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First, note that there exists a node, say v, that is visited infinitely often (for t → ∞)
because x(t) goes to infinity (for t→∞) by Lemma 4.

We now show that every neighbor of v connected by a recurrent edge is also visited
infinitely often. We prove it by contradiction. Suppose that a neighbor u of v connected by
a recurrent edge is visited only a finite number of times and let t′ be the last round when u
is visited. Since v is visited infinitely often and the agents execute Algorithm 1 perpetually,
some agent a visiting v eventually chooses (v, u) as the edge from which a moves out of
v after time t′. Recall that (v, u) is a recurrent edge and the agents are activated by the
eventual transport rule. It follows that a eventually visits u after round t′; a contradiction.

Since Gr is temporally connected, we can apply inductively the claim (e.g., the neighbors
of a neighbor of v is also visited infinitely often) to all the nodes, proving the theorem. J

From Theorems 3 and 5, the following Theorem holds.

I Theorem 6. Exploration of all temporal graphs in H(`) is possible iff

k ≥ 2`+ 1

Note that, if a graph is temporally connected, then its solidity σ(G) ≥ n − 1; as a
consequence, we have:

I Theorem 7. Every temporally connected temporal graph can be explored by 2(m− n) + 3
agents.

4 Exploration of 1-interval connected temporal graphs with bounded
missing edges

In this Section, we turn our attention to the class W(`) of 1-interval connected temporal
graphs where the number of missing edges is bounded in each round by a constant `. In
other words, at any time t the TVG is connected, and no more than ` edges are missing. We
establish tight bounds for the exploration of this class of temporal graphs, in Ssync and in
Fsync.

4.1 Semi-synchronous model
We first consider `-bounded, 1-interval connected TVGs operating under a semi-synchronous
scheduler and we show that there exists TVGs that cannot be explored by 2` agents.

I Theorem 8. There exist 1-interval connected time-varying graphs G ∈ W(`) that cannot
be explored by k = 2` anonymous agents. The result holds even if the agents have some
topological knowledge (n, m or k).

Proof. We use the same graph G constructed for the proof of Theorem 3. The construction
is omitted in this proof.

We first show that, given any exploration algorithm, say A, using 2` agents, the adversary
can construct an execution E1 of A, possibily violating the eventual transport rule, in which
the agents cannot explore G. We then show that it is always possible to convert this execution
into another execution E2 that does not violate the eventual transport rule, and where the
agents cannot explore G.

In execution E1, the adversary puts agent ai on cinfi for 0 ≤ i ≤ k − 1 = 2`− 1 in initial
configuration of E1. During E1, exactly one agent is activated at each round: ai is activated
at round t when t ≡ i(mod k). When the adversary activates ai and ai exists on binf(i,j), the
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adversary deletes (binf(i,j), u) whereas all the other edges are present. Note that the agents and
the nodes are anonymous and thus either they are all finite (i.e., every agent permanently
waits for appearance of its selected edge if the edge is permanently missing) or they are all
infinite (i.e., every agent eventually changes its selected edge if the edge remains missing)
in E1. If the agents are infinite, the eventual transport rule is not violated even in E1 and
thus the adversary can prevent the agents from completing the exploration in E1. If the
agents are finite, the adversary converts E1 into another execution, say E2, as follows. The
adversary first puts ai (0 ≤ i ≤ k − 1) on cfini in the initial configuration of E2. Then, the
adversary changes the assignment of the port labels and the node ID (if any) of cfini , bfin(i,0),
bfin(i,1), and bfin(i,2) in the same way explained in the proof of Theorem 3 (also omitted in this
proof). In E2, the adversary activates each agent in the same order as in E1 and deletes an
edge leading to u or Sfin

i′ for i′ 6= i whenever ai is on bfin(i,j). After some round t from when
every agent ai does not change its selected edge at bfin(i,2) for 0 ≤ i ≤ 2l, the adversary deletes
(bfin(2j,2), b

fin
(2j+1,2)) for 0 ≤ j ≤ l − 1 at every round. Obviously, every agent cannot distinguish

E2 from E1 and G cannot be explored since u is not visited by any agent in E2. It is also clear
that the eventually transport rule is not violated in E2. J

Clearly, W(`) ⊂ H(`), thus any G ∈ W(`) can be explored by Algorithm 1; that is:

I Theorem 9. Any G ∈ W(`) can be explored by 2` + 1 anonymous agents under the
semi-synchronous scheduler.

From Theorems 8 and 9 it follows that:

I Theorem 10. Under a semi-syncrhonous scheduler, exploration of all `-bounded 1-interval
connected TVG G is possible iff

k ≥ 2`+ 1

4.2 Fully-synchronous model
In this section, we show that, if the network size and the number of agents are known, there
exists a difference between Fsync and Ssync in the exploration of `-boundend 1-interval
TVGs. In fact, we show that, G ∈ W(`) can be explored if k ≥ 2`, while there exist graphs
that cannot be explored with 2`− 1 agents.

4.2.1 Impossibility
We now consider `-bounded, 1-interval connected TVGs operating under a fully-synchronous
scheduler and we show that there exists TVGs that cannot be explored by 2` − 1 agents,
even if the agents know n,m, and k.

I Theorem 11. There exist `-bounded 1-interval time-varying graphs G ∈ W(`) that cannot
be explored by k = 2`− 1 anonymous agents in Fsync. The result holds even if the agents
have some topological knowledge (n, m, k).

Proof. Let K2` = (V2`, E2`) be the complete graph with 2` nodes where V2` = {v0, v1, . . . ,

v2`−1}. It is well known that the edges of K2` can be colored with 2` − 1 colors, that is,
E2` can be partitioned into 2`− 1 disjoint independent edge sets (or complete matchings):
E

(0)
2` , E

(1)
2` , . . . , E

(2`−2)
2` . For example, the following separation leads to disjoint independent

edge sets: each E(i)
2` has ` edges, (vi, v2`−1), (vi−1, vi+1), (vi−2, vi+2), . . . , (vi−l+1, vi+l−1),

see Figure 2 (for simplicity, mod 2` is omitted).
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Figure 2 Example of coloring for the proof of Lemma 11. The bold lines are the edges of E(0)
8 .

The execution where v2l−1 remains unvisited is constructed as follows. For 0 ≤ i ≤ 2`− 1,
the adversary places each agent ai on vi and for 0 ≤ j ≤ 2`− 2 assigns a label j to the port
of vi corresponding to e, if e ∈ E(j)

2` . Note that, since agents and nodes are anonymous, all
the agents select the port with the same label to move at each round. Thus, the adversary
can prevent any agent from moving by deleting all the edges of E(i)

2` when the agent selects
port i; as a consequence, none of the agents can move out of their current nodes. This means
that v2`−1 remains unvisited forever.

In this execution, the number of missing edges is always ` and the network is obviously
kept connected. Thus, the theorem holds. J

4.2.2 Bound on Exploration time
Let G ∈ W(`). Since W(`) ⊂ H(`), we can clearly execute Algorithm 1 in graph G.
Interestingly, when executed on G ∈ W(`), it can be shown that the time complexity of
exploration can be bounded under the fully-synchronous scheduler. More specifically, we
show that within ∆n(∆ + 1)k(n− 1)k rounds, all nodes of the graph have been visited at
least once by a team of k = 2`+ 1 agents.

We prove the theorem by a sequence of lemmas. First of all, we can easily show that
2`+ 1 agents executing Algorithm 1 cannot be all prevented from moving at any given round.

I Lemma 12. If 2`+1 agents activated fully-synchronously execute Algorithm 1 in `-bounded
1-interval TVGs, at least one of them succeeds to move at every round.

Proof. There exist two cases as in the proof of Lemma 4: at round t, (i) there exists a node
v containing more than δv − 1 agents, and (ii) there does not exist such a node.

In the first case, since there are more than δv − 1 agents at v, every port is occupied
by one agent at t since every agent is activated. In addition to that, v has at least one
adjacent edge present at t by the connectivity of the TVG. This implies that at least one
agent succeeds to move at round t.

In the second case, each agent occupies one port by assumption and by fully-synchronous
activation, which means that 2` + 1 ports are occupied. Moreover, at most ` edges are
missing at each round, which means that at most 2` ports are blocked at each round. It
follows that at least one agent can move at round t also in this case. J

To show the upper-bound on time complexity, we introduce the notions of augmented
configuration and augmented execution.
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In an augmented configuration Caug
t , a new variable visitedv written and read only by

an external observer, is added to each node v. The initial value of visitedv is 0. When v is
visited, visitedv is set to 1 by the external observer. An augmented configuration Caug

t is
defined by configuration Ct and the value of visitedv of every node v at round t. We say that
an augmented configuration is terminal when visitedv = 1 for any node v.

An augmented execution Eaug = Caug
0 Caug

1 . . . Caug
r is a sequence of augmented configura-

tions such that Caug
0 is an initial augmented configuration; Caug

t+1 is obtained from Caug
t by

2`+ 1 agents executing one round of Algorithm 1 fully-synchronously, with the action of the
adversary deciding which edges are missing; Caug

r is a unique terminal configuration in Eaug.
Note that the agents keep executing Algorithm 1 after round r, but augmented configurations
after round r are ignored in Eaug. For Eaug, the following lemma holds.

I Lemma 13. In an augmented execution by 2`+1 agents, any two augmented configurations
are different.

Proof. First note that Lemma 12 precludes the same two consecutive augmented configura-
tions Caug

t and Caug
t+1 in an augmented execution where no agents move between Caug

t and
Caug

t+1. Suppose that there exist two augmented configurations Caug
t and Caug

t′ for t < t′ in an
augmented execution Eaug. Let Eaugt,t′ = Caug

t Caug
t+1 · · ·C

aug
t′−1 be a subsequence of Eaug. In this

case, the adversary can create an infinite augmented execution from Eaug by repeating Eaugt,t′ ,
which means that the adversary can create an (augmented) execution where 2`+ 1 agents
cannot complete the exploration forever. This contradicts Theorem 5. Thus, the lemma
holds. J

We are now ready to show an upper bound on the exploration time of Algorithm 1, which
is obtained by calculating the maximum length among all the augmented executions.

I Lemma 14. The length of any possible augmented execution by k = 2` + 1 agents is
bounded by ∆n(∆ + 1)k(n− 1)k.

Proof. Let α be the maximum length among all the possible augmented executions. By
Lemma 13, α is bounded by the number of possible augmented configurations in an execution.

The number of possible configurations on a fixed node set V ′ ⊆ V is bounded by
∆|V ′|(|V ′|(∆ + 1))k, which corresponds to all the combinations of the directions of pointers
(i.e., ∆|V ′|) and all of the the agents’ locations (i.e., (|V ′|(∆+1))k). Notice that only pointerv

of each node v is used as a variable in Algorithm 1. Since the number of visited nodes is
not decreasing during the exploration, the exploration time is smaller than or equal to the
sum of ∆|V ′|(|V ′|(∆ + 1))k for 1 ≤ |V ′| ≤ n − 1, i.e., α ≤ Σn−1

|V ′|=1∆|V ′|(|V ′|(∆ + 1))k ≤
∆n(∆ + 1)k(n− 1)k rounds. J

It then follows that:

I Theorem 15. Under a fully-synchronous scheduler, Algorithm 1 executed by k = 2`+ 1
anonymous agents explores any `-bounded 1-interval connected TVG within ∆n(∆+1)k(n−1)k

rounds.

Note that, as a consequence, we obtain a terminating exploration algorithm for `-bouned
1-interval connected TVGs.

I Theorem 16. With knowledge of n and k, exploration with termination of an arbitrary `-
bounded 1-interval connected temporal graphW(`) can be achieved in ∆n(∆+1)2`+1(n−1)2`+1

rounds by 2`+ 1 agents under the fully-synchronous scheduler.
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4.2.3 Exploration by 2` agents
The result of the previous section can be used to obtain a perpetual exploration algorithm of
`-bounded 1-interval connected graphs by 2` agents (which know n and k). The solution
(Algorithm 2 below) is obtained by applying Algorithm 1 bounding the waiting time of an
agent blocked on a missing edge.

In fact, while an agent keeps waiting for a missing edge forever in Algorithm 1, in
Algorithm 2 an agent waits for a missing edge up to kT rounds where T is calculated on the
basis of the results of Section 4.2.2.

Apart from the waiting time, the rest of the algorithm is the same as in Algorithm 1:
each node has pointerv pointing to a port. When a visits v, a checks each port in ascending
order from the port pointed by pointerv. If a finds some unoccupied port p, a moves to the
port and sets pointerv to p+ 1. If a finishes to check all the ports and they all are occupied,
a does nothing.

Variable Waiting of an agent represents the elapsed time since the last round when the
agent moved to the port.

Algorithm 2 Computation at node v

1: if on a port then
2: Waiting←Waiting + 1
3: if Waiting > kT then
4: exit the current port
5: if not on a port then
6: Waiting← 0
7: i← 0
8: p← pointerv

9: while i < δv ∧ port p is occupied do
10: p← (p+ 1) mod δv

11: i← i+ 1
12: if i < δv then
13: pointerv ← (p+ 1) mod δv

14: move to the port p

I Lemma 17. Let 2` agents execute Algorithm 2. If an agent waits at u for a missing edge
e = (u, v) for kT rounds, during this time either another agent starts to wait for e at v, or
the other 2`− 1 agents complete the exploration.

Proof. Suppose that an agent a at u starts to wait for a missing edge (u, v) at round t and
(u, v) is kept missing for the next kT rounds (including t).

We first show that there exist T successive rounds in [t, t+kT ) during which all the agents
but a do not satisfy predicate Waiting > kT even if their selected edge remains missing.

We show the claim by contradiction. We assume that in any interval of T successive
rounds in [t, t+ kT ), there is an agent that satisfies Waiting > kT .

By assumption, at least k agents other than a must satisfy Waiting > kT , since kT/T = k.
This means that at least one agent (different from a) satisfies the predicate twice since the
number of the agents (excluding a) is k−1. However, once an agent satisfies Waiting > kT at
round t′ ∈ [t, t+ kT ), the agent never satisfies the predicate in [t, t+ kT ) since the length of
the interval is kT . This is a contradiction. Thus, there exist T successive rounds in [t, t+ kT )
during which all the agents (except for a) do not satisfy Waiting > kT even if their chosen
edge is kept missing.
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Now, we show the lemma, i.e., show that another agent at v starts to wait for e = (u, v)
or the exploration is completed. Suppose that no agent at v starts to wait for e in these T
rounds. Since e is missing during these T rounds, during that time the network (without
e) can be considered as a (` − 1)-bounded 1-interval connected TVG. By Theorem 15,
2(l − 1) + 1 = 2`− 1 agents complete the exploration of the (`− 1)-bounded TVGs in these
T rounds. This means that the 2`− 1 agents other than a complete the exploration of the
network without e during those T rounds, because none of them starts to wait for e at v
during that time by assumption. Thus, the lemma holds. J

I Theorem 18. Any `-bounded 1-interval connected temporal graph G ∈ W(`) can be explored
by k = 2` anonymous agents with knowledge of n and k, under a fully-synchronous scheduler.

Proof. The proof follows the same lines of Theorem 5. We first show that, executing
Algorithm 2 , there exists at least one node v which is visited infinitely often, and we then
show that all the nodes are visited infinitely often. Let x(t) be the sum of the number of
visits over all the nodes from the beginning of the execution up to time t and V (t)

A be a node
set such that there exists at least one agent on every w ∈ V (t)

A at round t.
We show that x(t) goes to infinity (for t→∞), which leads to the existence of a node v

visited infinitely often. We consider the configuration at round t and show that after t, x(t)
eventually increases. Two cases are considered: Case 1) there exists a node v̂ ∈ V (t)

A with δv

or more agents and Case 2) there does not exist such a node.
Case 1) Suppose that there exists a node v̂ with δv̂ or more agents at round t. Note that

at least one of the edges incident to v̂ exists at round t because the network is 1-interval
connected. In this case, at least one of the agents on v̂ succeeds to move because all the
ports of v̂ are occupied. Therefore, x(t) increases.

Case 2) Suppose that there does not exist a node v̂ with δv̂ or more agents. We show
that x(t) increases within finite rounds from t by contradiction. We assume that no agent
moves out of its current node after t. Clearly, there exists a node ṽ ∈ V (t)

A which has a
neighbor ũ with no agent (otherwise, the exploration would have been completed). An agent
changes its port if it is blocked by the same missing edge for kT rounds by Algorithm 2;
an agent ã on ṽ eventually chooses (ṽ, ũ) to move from ṽ. At this round, the adversary
must prevent ã from moving by deleting (ṽ, ũ). This means that the adversary must prevent
2(`− 1) + 1 = 2`− 1 other agents from moving by deleting `− 1 edges, which is impossible.
This leads to a contradiction. Therefore, x(t) increases and goes to infinity for t→∞, and
thus a node (say v) visited infinitely often exists.

We now show that all the neighbors of v are also visited by agents infinitely often. We
prove it by contradiction. Suppose that a neighbor u of v is visited only a finite number of
times and let t′ be the last round when u is visited. Since v is visited infinitely often and the
agents execute Algorithm 2, some agent a visiting v eventually chooses (v, u) as the edge
from which a moves after t′. If (v, u) appears by the kT -th round since a chose it, a visits u
as soon as (v, u) appears. Otherwise, another agent visits u by Lemma 17. It follows that u
is eventually visited after t′ rounds, which is a contradiction.

By the connectivity assumption, we can apply inductively the claim (e.g., the neighbors
of a neighbor of v are also visited infinitely often) to all the nodes, proving the theorem. J

From Theorems 11 and 18, we have:

I Theorem 19. Under the fully-synchronous scheduler, with knowledge of n and k, the
exploration of all `-bounded 1-interval connected TVGs is possible iff k ≥ 2`.
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5 Conclusion

In this paper, we considered perpetual exploration of temporal graphs with arbitrary topology,
focusing on the number of agents that are necessary and sufficient to perform the task. We
considered two common dynamic models: temporally connected networks, and 1-interval
connected (or always connected) networks with a bounded number of missing edges at
each round. We derived tight bounds for both models under fully synchronous and semi-
synchronous settings.

This is the first study on distributed exploration of temporal graphs with arbitrary
topology and it has considered only temporally connected and 1-interval connected networks:
the investigation of other connectivity classes of temporal graphs with arbitrary topology is
the main research direction left open.

In this paper the focus was exclusively on feasibility of exploration; clearly, an important
avenue of investigation is also the design of efficent solutions, whenever they exist.
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