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Abstract
We give the first Congested Clique algorithm that computes a sparse hopset with polylogarithmic
hopbound in polylogarithmic time. Given a graph G = (V,E), a (β, ε)-hopset H with “hopbound”
β, is a set of edges added to G such that for any pair of nodes u and v in G there is a path with
at most β hops in G ∪ H with length within (1 + ε) of the shortest path between u and v in G.
Our hopsets are significantly sparser than the recent construction of Censor-Hillel et al. [6], that
constructs a hopset of size Õ(n3/2)1, but with a smaller polylogarithmic hopbound. On the other
hand, the previously known construction of sparse hopsets with polylogarithmic hopbound in the
Congested Clique model, proposed by Elkin and Neiman [10, 11, 12], all require polynomial rounds.

One tool that we use is an efficient algorithm that constructs an `-limited neighborhood cover,
that may be of independent interest. Finally, as a side result, we also give a hopset construction in a
variant of the low-memory Massively Parallel Computation model, with improved running time over
existing algorithms.
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1 Introduction

In the Congested Clique model of distributed computing, we are given a graph with n nodes,
where all nodes can send a (possibly different) message with O(log(n))-bits to every other
node in the graph in each round. In the context of distributed graph algorithms, the input
graph is a subset of the communication graph. In addition to theoretical interest in this
model, it has also recently gained a lot of attention, due to its connections to practical
distributed and big data platforms such as MapReduce (e.g. [14]) and related platforms such
as Spark and Hadoop (e.g. [5]).

Distance problems, such as single-source shortest path (SSSP) and multi-source shortest
path (MSSP), have been widely studied in different models. A fundamental structure that has
been used for solving these problems is a hopset. Given a graph G = (V,E), a (β, ε)-hopset
H with hopbound β, is a set of edges added to G such that for any pair of nodes u and v in G,
there is a path with at most β hops in G ∪H with length within (1 + ε) of the shortest path
between u and v in G. The approximation ratio is also referred to as distortion or stretch.
We generally want to have sparse hopsets with small hopbound. Intuitively, a hopset can
be seen as adding a number of “shortcut edges” that serve as reducing the graph diameter
at the expense of a small loss of accuracy. Once a hopset is preprocessed, we can use it as
many times as needed for distance queries, and the query time will be the hopbound.

1 The Õ(f(n)) notation is used to hide O(log(f(n))) factors.
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34:2 Sparse Hopsets in Congested Clique

There is a natural tradeoff between the size and the hop-bound (or the query time) of a
hopset. In an extreme-case one could store the complete adjacency list-or equivalently add
O(n2) edges, and then query distance in constant time. Other than the fact that computing
all-pairs shortest-path is generally slow, we often do not have enough space to store the
whole adjacency list for large-scale graphs. There is a line of work that focuses on designing
data structures with small size, say Õ(n1+1/k), in which distances can be estimated up to
O(k) stretch in small query time. Examples of such structures are Thorup-Zwick distance
oracles [24] or k-spanners. Hopsets offer a different tradeoff: a hopset gives an accuracy of
1 + ε (rather than O(k)) at the expense of a larger query time (polylogarithmic instead of a
small constant). It is therefore crucial to keep the hopbound as small as possible, since the
hopbound will basically determine the query time and is more important than preprocessing
time. However, even in centralized settings there are existential limitations in this tradeoff.
There is a lower bound argument by [1] stating that there are graphs for which we can not
have a hopbound of o(log(k)/ε)log(k) and size O(n1+1/k)), for arbitrary 0 < ε < 1.

In a recent result, Censor-hillel et al. [6] gave a fast Congested Clique algorithm that
constructs a hopset with hopbound O(log2(n)/ε) and size Õ(n3/2). While we can use their
hopsets to compute distances efficiently, one shortcoming of such a construction is the large
space. In particular, if the original graph has size o(n3/2), we would be storing more edges
than the initial input. This is undesirable due to the large scale nature of data in modern
distributed platforms. It is therefore natural to find algorithms that use less space, possibly
in exchange for a slightly weaker hopbound (but still polylogarithmic). This is our main
goal in this paper. We extend the result of [6] by constructing sparse hopsets with size
Õ(n1+1/k) for a constant k ≥ 2 and polylogarithmic hopbound in polylogarithmic time in
Congested Clique. This is the first Congested Clique construction of sparse hopsets with
polylogarithmic hopbound that uses only polylogarithmic number of rounds. This implies
that we can store a sparse auxiliary data structure that can be used later to query distances
(from multiple sources) in polylogarithmic time.

Our hopset construction is based on a combination of techniques used in Cohen [8] (with
some modifications) and the centralized construction of Huang and Pettie [16]. We also use
another result of [6] that allows us to efficiently compute (1 + ε)-approximate multi-source
shortest path distances from O(

√
n) sources.

One tool that we use in our construction is a hop-limited neighborhood cover construction,
which may be of independent interest. Roughly speaking, a W -neighborhood cover is a
collection of clusters, such that there is a cluster that contains the neighborhood of radius W
around each node, and such that each node overlaps with at most O(log(n)) clusters. In an
`-limited W -neighborhood cover only balls with radius W using paths with at most `-hops
are contained in a cluster.

We note that many of the techniques we use in our construction are borrowed from the
PRAM literature. We hope that this paper provides some insight into connections between
these different but relevant models.

1.1 Our contribution
Congested Clique. The state-of-the-art construction of sparse hopsets in Congested Clique
is the results of Elkin and Neiman [12] (and similar results in [10, 11]), but these algorithms
requires polynomial number of rounds for constructing hopsets with polylogarithmic hopbound.
The construction of Censor-Hillel et al. [6] is a special case of hopsets of [10]. They construct
hopsets of size Õ(n3/2) with O(log2(n)/ε) hopbounds. They can construct such a hopset
in O(log2(n)/ε) rounds of Congested Clique using sparse matrix multiplication techniques.



Y. Nazari 34:3

However, [6] does not give any explicit results for constructing sparser hopsets. It is possible
that their techniques will also lead to faster Congested Clique algorithms for constructing
general (sparse) hopsets of [10, 12]. But here we use a new hopset construction that has a
very different structure than hopsets of [10] and with improved guarantees. Not only does
our hopset construction run in polylogarithmic rounds, but it also yields a better size and
hopbound tradeoff over the state-of-the-art Congested Clique construction of [12]. Prior to
[11] and [6] the hopsets proposed for Congested Clique had superpolylogarithmic hopbound
of 2Õ(

√
log(n)) [15] or polynomial [22] hopbound. More formally, we provide an algorithm

with the following guarantees:

I Theorem 1. Given a weighted2 graph G = (V,E,w), for any k ≥ 2, 0 < ε ≤ 1, there is a
Congested Clique algorithm that computes a (β, ε)-hopset of size O(n1+ 1

2k log(n) + n log2(n))
with hopbound β = O( log2(n)

ε ( log(n) log(k)
ε )log(k+1)−1) with high probability in O(β log2(n))

rounds.

To comapre this with the efficient variant of the Congested Clique hopsets of [11], we
note that for a hopset of size O(n1+ 1

k log(n)), for a constant k, we get a hopbound
O( log2(n)

ε ( log(n) log(k)
ε )log(k+1)−2), whereas [11] gets hopbound of Ω(( log(n) log(k)

ε )log(k)+2).
Thus our hopbound guarantee is a factor of Θ(log2−o(1)(n)( log(k)

ε )4−o(1)) improvement over
construction [11]. Also, their more efficient algorithm runs in Õ(nρ) rounds of Congested
Clique, where 0 < ρ ≤ 1

2 is a parameter that impacts the hopbound (ρ is a constant when their
hopbound is polylogarithmic). They have another algorithm that uses an extra polynomial
factor in running time to obtain constant hopbound3. We note that the construction of
[12] has similar guarantees to [11], with two differences: it eliminates a log(n) factor (or
more generally the dependence on aspect ratio) in the hopset size, but has a slightly worse
hopbound in their fastest regime.

Our construction is mainly based on the ideas of [8] with a few key differences that take
advantage of the power of Congested Clique. While the hopsets of [11] significantly improve
over hopsets of [8] in centralized settings, the construction of [8] has certain properties that
makes it adaptable for a better Congested Clique algorithm. In particular, [8] uses a notion
of small and big clusters, and we can utilize this separation in Congested Clique. We change
the algorithm of [8], in such a way that leads to adding fewer edges for small clusters. This
leads to sparser hopsets and improves the overall round complexity. The key idea is that by
using the right parameter settings, in Congested Clique we can send the whole topology of a
small cluster to a single node, the cluster center, and then compute the best known hopset
locally. It is possible to perform these operations specifically in Congested Clique due to
a well-known routing algorithm by Lenzen [18]. We can then combine Theorem 1 with a
source detection algorithm by [6] (formally stated in Lemma 6) to get the following result for
computing multiple-source shortest path queries.

I Corollary 2. Given a weighted graph G = (V,E,w) there is a Congested Clique algorithm
that constructs a data structure of size O(m + n1+ 1

2k ) in O(β log2(n)) rounds, where β =
O( log2(n)

ε ( log(n) log(k)
ε )log(k+1)−1), such that after construction we can query (1 + ε)-stretch

distances from O(
√
n) sources to all nodes in V in O(β) rounds with high probability.

2 For simplicity, we assume that the weights are polynomial. This assumption can be relaxed using
standard reductions that introduce extra polylogarithmic factors in time (and hopbound) (e.g. see
[17],[20], [11]).

3 If we allow extra polynomial factors in the running time we may also get a constant hopbound (we would
need to change the parameters of the neighborhood cover construction, and change how we iteratively
use smaller scales). However this is inconsistent with our main motivation of getting polylogarithmic
round complexity.
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34:4 Sparse Hopsets in Congested Clique

In a related result, the problem of single-source shortest path (SSSP) in Congested
Clique was also studied in [4], where they use continuous optimization techniques for solving
transshipment. Firstly, their algorithm takes a large polylogarithmic round complexity, and
has a high dependence on ε. But we can have a significantly smaller running time depending
on the hopset size. In other words, for hopsets with a reasonable density (e.g. with size n1+µ,
where µ < 0.1) we get a much smaller polylogarithmic factor for computing (1 + ε)-SSSP.
This can be further reduced if we allow denser hopsets.

More importantly, an approach such as [4] is mainly suited for SSSP. One limitation
with their approach is that for computing multiple distance queries we need to repeat the
algorithm for each query. For example, for computing the shortest path from s sources to all
nodes, we have to repeat the whole algorithm s times. But constructing a hopset will let us
run many such queries in parallel in O(β + s) rounds, where β is the hopbound. Moreover,
we can compute multi-source shortest path from O(

√
n) sources in parallel for all the sources

using the source detection algorithm of [6].

Neighborhood and Pairwise Covers. In Section 4, we focus on an efficient construction of
a limited pairwise cover (or neighborhood cover) in the CONGEST model, which is a tool
that we use in our hopset construction. Given a weighted graph G = (V,E), a W -pairwise
cover, as defined by [7], is a collection C of subsets of V with the following properties. 1) the
diameter of each cluster is O(W logn), 2)

∑
C∈C |C| = O(n),

∑
C∈C E(C) = Õ(m). In other

words, the sum of the sizes of all clusters is O(n), and the sum of all edge occurrences in
the clusters is Õ(m), 3) for every path p with (weighted) length at most W , there exists a
cluster C where p ⊆ C.

Pairwise covers are similar to neighborhood covers of Awerbuch and Peleg [2] with two dif-
ferences: in a W -neighborhood cover, there must be a cluster that contains the neighborhood
of radius W around each node rather than only paths of length W . Neighborhood covers also
need an additional property that each node is in at most O(log(n)) clusters. While for our
purposes the path covering property is enough, in distributed settings we need the property
that each node overlaps with few clusters to ensure that there is no congestion bottleneck.
The main subtlety in constructing a general W -pairwise (or neighborhood) cover is that we
may need to explore paths of Ω(n) hops, and thus it is not clear how this can be done in
polylogarithmic time. To resolve this, [7] proposed a relaxed construction called `-limited
W -pairwise cover. This structure has all the above properties but only for paths with at
most `-hops. More formally, the third property will be relaxed to require that for every path
p of weight at most W with at most ` hops there exists a cluster C where p ⊆ C. We can
define an `-limited W -neighborhood cover similarly.

A randomized algorithm that constructs `-limited pairwise covers with high probability in
O(`) depth in the PRAM model was given by [7]. The ideas used in [20] for constructing work-
efficient PRAM hopsets, can also be used to construct `-limited pairwise and neighborhood
covers in PRAM. However, they do not explicitly construct limited pairwise covers. In
distributed settings, a recent construction for sparse neighborhood covers in unweighted
graphs in the CONGEST model was given by [23]. However, even by generalizing their result
to weighted graphs, in order to cover distances for large values of W the algorithm would
take Ω̃(W ) rounds for reasons described above.

To the best of our knowledge, an efficient algorithm for constructing `-limited pairwise-
covers (or limited neighborhood covers) is not directly studied in the CONGEST and
Congested Clique literature. Our first contribution is such an algorithm: we use the low-
diameter decomposition construction of Miller et al. [20] for weighted graphs, combined with
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a rounding technique due to [17] to construct `-limited W -pairwise covers in O(` log2(n))
rounds in the CONGEST model. Importantly, ` is a parameter independent of W , which we
will set to a polylogarithmic value throughout our hopset construction. Our algorithm is
similar to the algorithm of [20], but with some adaptations needed for implementation in the
CONGEST model. Formally, we get the following result:

I Theorem 3. Given a weighted graph G = (V,E,w), there is an algorithm that constructs
an `-limited W -pairwise cover in O(` log2(n) log(W )) rounds in the CONGEST model, with
high probability. Moreover, a pairwise cover for paths with `-hops with length in [W, 2W ] 4

can be constructed in O(` log2(n)) rounds with high probability.

MPC. As a side result5, we note that pairwise covers can also be constructed efficiently
in the Massively Parallel Computation model (MPC) (even when memory per machine is
strictly sublinear). This in turn leads to a better running time for (1 + ε)-MSSP from O(

√
n)

sources (and consequently SSSP), in O(log2(n)/ε) rounds in a variant of the model where we
assume the overall memory of Õ(m

√
n) (equivalently, we have more machines than in the

standard MPC model). We consider this variant since in practice it is plausible that there
are more machines, while due to the large-scale nature of data in these settings, using less
memory per machine is often more crucial.

Dinitz and Nazari [9] construct (β, ε)-hopsets (based on hopsets of [11]) with polylogar-
ithmic hopbound when the overall memory is Õ(m), but they argue that using the existing
hopset constructions, this would take polynomial number of rounds in MPC. They further
show that if the overall memory is by a polynomial factor larger (i.e. if the overall memory
is Θ̃(mnρ) for a constant 0 < ρ ≤ 1/2), then hopsets with polylogarithmic hopbound can be
constructed in polylogarithmic time. We can also use this extra-memory idea, first to argue
that using the hopsets of [8] instead of the hopsets of [11] we can get a smaller hopbound
when the overall memory is O(m

√
n). Then we observe that if we use a faster `-limited

pairwise cover algorithm (based on the construction of [20]) instead of the pairwise covers that
[8] uses, we can shave off a polylogarithmic factor in the construction time. This `-limited
W -pairwise cover construction may also be of independent interest in MPC. More formally,
we get faster algorithms for (1 + ε)-MSSP:

I Theorem 4. Given an undirected weighted graph G, we can compute (1 + ε)-MSSP from
O(n1/2) sources in O( log2(n)

γε ) rounds of MPC, when memory per machine is Õ(nγ), 0 < γ ≤ 1
and the overall memory is Õ(mn1/2) (i.e. there are Θ(mn1/2−γ) machines).

The difference between this result and [9] is that they give a more general result where the
overall memory is Õ(mnρ) for a parameter ρ > 0. But in the special case of ρ = 1/2, we get
a hopbound of O( log2(n)

ε ), whereas in this case they get a hopbound of O(( log(n)
ε )3). We also

note that the main focus of [9] is constructing Thorup-Zwick distance sketches. As explained
earlier, these structures offer a different tradeoff: much weaker accuracy (O(k)-stretch),
but better query time (constant rounds rather than polylogarithmic) and less space after
preprocessing (Õ(n1+1/k) instead Õ(m) in the case of hopsets). More details on the MPC
algorithm can be found in Section 6.

4 The algorithm and analysis can easily be extended to paths with length [W, cW ] for any constant c.
5 Our MPC results can be seen as a straight-forward combination of results of [8], [20], [9] and simulation
of [13]. But since both the construction and the model are closely relevant to our Congested Clique
algorithms, we find it useful to include this discussion.
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34:6 Sparse Hopsets in Congested Clique

1.2 Overview of techniques
Our hopset has a similar structure to hopsets of [8], but with some changes both in construction
and the analysis. We also take advantage of multiple primitives that are specific to Congested
Clique such as Lenzen’s routing and a recent result of [6]. First, we explain the `-limited
W -neighborhood cover construction and then we explain the hopset algorithm.

`-limited neighborhood covers. As described earlier, our algorithm for constructing a
W -neighborhood cover is based on a combination of the low-diameter decomposition of [20],
and a rounding technique originally proposed by [17]. At a high level, in the low-diameter
decomposition algorithm of [21, 20], each node u chooses a radius ru based on an exponential
random variable. Then each node u joins the cluster of node v that minimizes the shifted
distance from u, which is defined as d(u, v) − rv. This leads to a partition of the graph,
and we can show that by repeating this process we will get a W -neighborhood cover. Since
partitions for constructing a W -neighborhood covers directly will be slow for large values of
W , we focus on the `-limited W -pairwise covers. To construct these, consider all pairs of
nodes within distance [w, 2w], w ≤ W in each iteration. We round up the weights of each
edge in the graph based on values w and `. We then construct a low-diameter-decomposition
based on the new weights, such that the diameter of each cluster is O(` log(n)) (rather than
O(W log(n)) based on the original weights). The rounding scheme is such that the `-limited
paths with length [w, 2w] in the original graph will be explored. Intuitively, this means that
on the rounded graph we need to explore a neighborhood with fewer hops, which will lead
to a faster construction. We can then repeat this process for O(log(W )) times for different
distance intervals. The details of this rounding scheme can be found in Section 4.

Hopset Construction. First we describe the sequential hopset construction and will then
choose the parameters appropriately for our distributed construction. Let µ be a a parameter
that we will set later. The (sequential) structure of the hopset is as follows: In each iteration
we consider pair of nodes u, v ∈ V such that R ≤ d(u, v) < 2R, and we call the interval
[R, 2R) a distance scale. Then for distance scales [R, 2R) we set W = O(εR/(logn)) and
construct a W -pairwise cover. We let big clusters be the clusters that have size at least nµ
and small clusters have size less than nµ, where 0 < µ < 1 is a constant parameter. Then
we construct a hopset with small hopbound on each of the small clusters. This is the main
structural difference with the construction of [8] that adds a clique for the smallest hopsets.
We then add a star from the center node of each big cluster to every other node in that
cluster, and add a complete graph at the center of large clusters. Whenever we add an
edge, we set the weight to be the distance between the two endpoints. In the distributed
construction, the weight will be an estimate of this distance that we will describe later.

Roughly speaking, constructing a hopset on small clusters rather than constructing a
clique as [8] does, allows us to set the size threshold of small clusters larger, while keeping
the number of edges added small. This in turn reduces the number of big cluster centers
we have to deal with. Such a modification can be very well tuned to the Congested Clique
model. By setting µ = 1/2, we will have small clusters that will have at most O(n) edges.
Then a well-known routing algorithm by Lenzen [18] can be used to send all these edges to
the cluster center. The cluster center can then compute a hopset locally. For this we use
current best-known centralized construction by [16]. The other challenge is that we need to
compute pairwise distances between all big cluster centers. In [8] this step is done by running
Bellman-Ford instances from different sources in parallel. But directly implementing this in
distributed settings would need Ω(

√
n) rounds due to congestion. This is where we use a
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recent result by [6] stating that we can compute (1 + ε)-approximate distances from O(
√
n)

sources in O(log2(n)/ε) time. We point out that in [8], in order to get sparse hopsets, they
use a recursive construction for small clusters. Such a recursion would introduce significant
overhead in the hopbound guarantee. Here we show that in Congested Clique by using the
tools described above we can avoid using the recursive construction and still compute sparse
hopsets.

We explain briefly why the constructed hopset has the size and hopbound properties
stated in Theorem 1. To see this, we use similar arguments as in [8]: for a distance scale
[R, 2R) consider a shortest path of length at most 2R, and consider O(log(n)/ε) segments of
length W on this path. By definition of a W -pairwise cover, each such segment is contained
in a cluster. If this segment is in a small cluster, there is a corresponding path with at most
β′ edges, where β′ is the hopbound of the local construction. For big clusters, we either
add a single edge, or if there is more than one big cluster, the whole segment between these
clusters has a corresponding edge in the hopset. By similar considerations and by the triangle
inequality we can show that the stretch of the replaced path is (1 + ε). We need a tighter
size analysis than the one used in [8] to prove the desired sparsity. We use a straight-forward
bucketing argument as follows: for each cluster of size Θ(s), Θ(s1+1/k) edges will be added.
Then by noting that are at most O(n/s) clusters with this size we can bound the overall size.

Bounding the exploration depth. For large values of R, the shortest path explorations up
to distance R could take Ω(n) rounds in distributed settings. To keep the round complexity
small, we use the following idea from [8] (also used in [11] and [6]): we can use the hopset
edges constructed for smaller distance scales for constructing hopset edges for larger distance
scales more efficiently. The intuition behind this idea is that any path with length [R, 2R)
can be divided into two segments, such that for each of these segments we already have a
(1 + ε)-stretch path with β hops using the edges added for smaller distance scales. This
allows us to limit the explorations only to paths with 2β + 1 hops in each iteration. This
process will impact the accuracy, and so in order to keep the error small we have to construct
the hopsets for a fixed scale at a higher accuracy. This is where a factor polylogarithmic
in n will be introduced in the hopbound, which can generally be avoided in the centralized
constructions (e.g. see [8, 11]). This idea is formalized in Lemma 5.

2 Models and Notation

Given a weighted undirected graph G = (V,E,w), and a pair u, v ∈ V we denote the
(weighted) shortest path distance by d(u, v). We denote by d`(u, v) the length of the shortest
path between u and v among the paths that use at most ` hops, and call this the `-hop
limited distance between u and v. For each node v ∈ V , we denote the (weighted) radius r
neighborhood around v by B(v, r), and we let B`(v, r) be the set of all nodes u ∈ V such
that there is path π of (weighted) length at most r between u and v such that π has at most
` hops.

For parameter β > 0, ε > 0, a graph GH = (V,H,wH) is called a (β, ε)-hopset for
the graph G, if in graph G′ = (V,E ∪ H,w′) obtained by adding edges of GH , we have
dG(u, v) ≤ dβG′(u, v) ≤ (1 + ε)dG(u, v) for every pair u, v ∈ V of vertices. The parameter β is
called the hopbound of the hopset.

Models. We construct limited neighborhood covers in the more classical CONGEST model,
in which we are given an undirected graph G = (V,E), and in each round nodes can send

OPODIS 2019



34:8 Sparse Hopsets in Congested Clique

a message of O(log(n))-bits to each of their neighbors in G (different messages can be sent
along different edges). In the Congested Clique model, we are given a graph with n nodes,
where all nodes can send a message with O(log(n))-bits to every other node in the graph in
each round [19]. In other words, this is a stronger variant of the CONGEST model, in all
nodes can communicate with each other directly.

We also consider the Massively Parallel Computation, or MPC model [3]. In this model,
an input of size N which is arbitrarily distributed over N/S machines, each of which has
S = Nγ memory for some 0 < γ < 1. In the standard MPC model, every machine can
communicate with every other to at most S other machines arbitrarily. Generally, for graph
problems the total memory N is O(m),m = |E| words. But here we a consider a variation of
the model in which the total memory can be larger, while the memory per machine is strictly
sublinear in n. In other words, each machine has O(nγ), γ < 1 memory, where n = |V |.

Even though we do not give any new PRAM results, we use multiple tools from PRAM
literature. In the PRAM model6, a set of processors perform computations by reading and
writing on a shared memory in parallel. The total amount of computation performed by all
processors is called the work, and the number of parallel rounds is called the depth.

3 Algorithmic Tools.

In this section we describe several algorithmic tools from previous work that we will be using.

Bounding the shortest path exploration. As explained earlier, for an efficient hopset
construction, we need to first compute hopsets for smaller distance scales and then use the
new edges for computing future distances. This will let us limit the shortest path explorations
to a logarithmic number of hops in each round. More formally,

I Lemma 5 ([8, 11]). Let Hk be the hopset edges for distance scale [2k−1, 2k) with hopbound
β. Then for any pair u, v where d(u, v) ∈ [2k, 2k+1), there is a path with 2β + 1 hops in
G ∪ (∪ki=log(β)H

i) with length (1 + ε)-approximate of the shortest path between u and v.

Roughly speaking, the above lemma implies that we can use previously added edges and
only run Bellman-Ford for 2β + 1 rounds for each iteration of our algorithm.

Lenzen’s routing. Given a set of messages such that each node is source and destination of
at most O(n) messages, these messages can all be routed to their destination in O(1) time in
Congested Clique [18].

Multi-source shortest path and source detection in Congested Clique. We use the fol-
lowing two results by [6]. First result is a multi-source shortest path algorithm that we use
as a subroutine in our hopset construction:

I Lemma 6 (MSSP, [6]). Given a weighted and undirected graph, there is an algorithm that
computes (1 + ε)-approximate distances distances from a set of O(

√
n) sources in O( log2(n)

ε )
rounds in the Congested Clique model.

The second result solves a special case of the so-called source-detection problem that we use
to prove Corollary 2:

6 We just use a simple abstraction without details of the exact parallel model (EREW, CRCW, etc),
since PRAM is not our focus and there are reductions with small overhead between these variants.
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I Lemma 7 (Source detection, [6]). Given a fixed set of O(
√
n) sources S, we can compute

`-hop limited distances from all nodes to each of the nodes in S in O(`) rounds in the
Congested Clique model.

4 Neighborhood covers using low-diameter decomposition

In this section, we describe an algorithm for constructing pairwise covers in the CONGEST
model. We first give an algorithm for W -pairwise covers in weighted graphs that runs
in O(W log2(n)) rounds. We then provide an `-limited W -pairwise cover that runs in
O(` log2(n)) rounds. Clearly, the CONGEST algorithm can also be used in Congested Clique
with the same guarantees. We will use the low-diameter decomposition algorithm that was
proposed in [21] and extended (to weighted graphs) in [20] for computing pairwise covers in
PRAM. First we state their PRAM result:

I Theorem 8 (MPX [20, 21]). Given a weighted an undirected graph G = (V,E,w), there is
a randomized parallel algorithm that partitions V into clusters X1,X2, ... such that w.h.p. the
(strong) diameter of each cluster Xi is at most O( log(n)

α ). This algorithm has O(α−1 log(n))
depth7 w.h.p. and O(m) work.

We denote the algorithm of [20] for a parameter 0 < α < 1 by LDD(α), which is as follows:
each node u ∈ V first chooses a random radius ru based on an exponential distribution
exp(α). Each node v ∈ V joins the cluster of node u = arg minx∈V (d(v, x)− dx). Ties can
be broken aribtrarily. It is easy to see that based on simple properties of exponential random
variables the weak diameter of each cluster is O(α−1 log(n)) with high probability. But it can
be shown that the clusters also have strong bounded diameter of O(α−1 log(n)) (as argued in
[21, 20]). This means the diameter of the subgraph induced by each cluster is O(α−1 log(n))
as opposed to the weak diameter guarantee, which bounds the diameter with between each
pair of nodes in the cluster based on distaces in G. The second property is that we can lower
bound the probability that the neighborhood around each node is fully contained inside one
cluster by a constant. This was shown in [20], but we give a proof sketch for completeness.

I Lemma 9 (Padding property8, [20]). Let X be a partition in support of the LDD(α) algorithm.
For each node u ∈ V , the probability that there exists C ∈ X such that B(u, r) ⊆ C is at
least exp(−2rα).

Proof sketch. For each node u we will consider the subgraph induced by B(u, r). For each
node v ∈ V , consider the random variable Yv := rv − d(u, v). Let Y1 denote the largest Yv
over v ∈ B(u, r), and let Y2 denote the second largest value. We argue that the probability
that B(u, r) intersects more than one cluster is at most 1− exp(−2rα). This event occurs
when Y1 and Y2 are within 2r of each other. Therefore we only need to bound the probability
that Y1−Y2 < 2r. This now follows from Lemma 4.4. of [21] that claims the following: given
a sequence of exponential random variables r1, r2, ..., rn, and arbitrary values d1, d2, ..., dn
the probability that largest and second largest values ri − di are within δ of each other is at
most 1−exp(−δα). This implies the probability that B(u, r) intersects more than one cluster
is at most 1− exp(−2rα) and this proves the claim. For more details see [21], [20]. J

7 Depending on the exact PRAM model considered the depth may have a small extra factor of O(log∗(n)).
8 Lemma 2.2 in [20] upper bounds the probability that a ball overlaps with k or more clusters, but Lemma
9 is a straightforward corollary of this claim.
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In order to compute W -neighborhood covers sequentially, we can use the above theorem
by setting α = 1/W and repeating the partition algorithm O(log(n)) times. It follows
from a standard Chernoff bound that the desired properties hold with high probability.
Implementing this algorithm in distributed settings may take Ω(n) rounds for large values of
W . To resolve this, we use a relaxed notion similar to the notion of `-limited W -pairwise
cover proposed in [8]. This structure has all the properties of a W -pairwise cover but the
path covering property only holds for paths with at most `-hops. More formally, the third
property will be relaxed to require that for every path p of weight at most W with at most `
hops there exists a cluster C where p ⊆ C. We define an `-limited W -neighborhood cover
similarly: for each node u, there is a cluster C such that B`(u,W ) ⊆ C. In [8], Cohen shows
that we can construct `-limited W -pairwise covers in O(`) parallel depth, independent of
W . We will show that this concept can also be utilized to limit the number of rounds for
LDD(α) partitions to O(`).

`-limited W -pairwise cover. Since running LDD(α) by setting α = 1/W will require many
rounds, we cannot directly use the weighted variant of LDD(α). Instead we use a rounding
idea that allows us to run LDD(α) on the graph obtained from rounded weights, only for
α = O(1/`), at the cost of a small loss in accuracy. This idea was proposed by [17] and is
used widely in PRAM literature (e.g. [8], [20]). In the context of distributed algorithms a
similar approach was used by [22] in CONGEST, but directly applying the result of [22]
to our settings will require a polynomial running time, since we would need to run the
algorithm from many (polynomial) sources. The idea is based on the following observation:
consider a path π with at most ` hops, such that R ≤ w(π) ≤ 2R for a fixed R > 0. Then
by slightly changing the weights of each edge e ∈ π by a small additive factor such that for
the new weight ŵ it holds w(e) ≤ ŵ(e) ≤ w(e) + ε0R

` for an arbitrary ε0 > 0. We then get
ŵ(π) ≤ w(π) +Rε0 ≤ (1 + ε0)w(π). This can be achieved by setting ŵ(e) = dw(e)

η e, where
η = ε0R

` .

I Lemma 10 ([17]). Given a weighted graph G = (V,E,w), and a parameter R, there is
a rounding scheme that constructs another graph Ĝ = G = (V,E, ŵ) such that any path π
with at most ` hops and weight R ≤ w(π) ≤ 2R in G, has ŵ(π) ≤ d2`/ε0e in Ĝ. Moreover,
w(π) ≤ η(R, `) · ŵ(π) ≤ (1 + ε)w(π), where η(R, `) = ε0R/`.

We can now run LDD(α) for α = O(`) on Ĝ, and each path π with at most ` hops will
be fully contained in some cluster with probability at least exp(−` · O(1/`)) = Ω(1). We
can then recover an estimate to the original length w(π) by setting w̃(π) = η(R, `) · ŵ(π),
and we have w(π) ≤ w̃(π) ≤ (1 + ε0) ≤ w(π). Same as before, by repeating the LDD(α)
algorithm O(log(n)) times we will get an `-limited W -neighborhood cover. We first argue
that this algorithm can be implemented O(α log2(n)) rounds of the CONGEST model. A
similar construction was used in [23] for W -neighborhood covers in CONGEST. But the
result of [23] only focuses on unweighted graphs, and would take O(W log(n)) rounds.

I Theorem 11. Given a weighted graph G = (V,E,w), there is an algorithm that constructs
an `-limited W -pairwise cover in O(` log2(n) log(W )) rounds in the CONGEST model, with
high probability. Moreover, a pairwise cover for paths with `-hops with length in [W, 2W ] can
be constructed in O(` log2(n)) rounds with high probability.

Proof. As we argued by using the rounding technique of [17], for any pair of nodes u, v
such that d`(u, v) ∈ [W, 2W ) we can restrict our attention to another graph Ĝ with rounded
weights. We construct a pairwise cover on Ĝ by running the LDD(α), α = ε0/2` = Θ(1/`)
algorithm O(log(n)) times independently.
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We argue that each run of LDD(O(1/`)) takes O(`) rounds in the CONGEST model.
First we observe that each node u only needs to broadcasts the value ru to all the nodes
within its ru neighborhood, since a node x will not join the cluster of u if ru−d(u, x) < 0. We
can now use a simple induction to prove the claim. In each round, each node u will forward
the radius and distances corresponding to the node umax that maximizes rumax − d(u, umax)
among over all the messages that u has received. We now argue that each node u will
receive the message from the node c = arg maxv∈V rv − d(u, v) in rc rounds. Consider any
path π = {c = u0, u1, ..., uj = u}, where j ≤ rc. If j = 1 then in one single round c sends
(rc, w(c, u1)) to u1. Assume now that ui receives the message (rc, d(u, ui−1)) in round i.
Then ui will compute d(u, ui) (after receiving distance estimates from all neighbors), and
forwards (rc, d(c, ui)) to all neighbors including ui+1. Therefore in round i = j ≤ rc, uj
has received the message rc − d(u, c), and can compute d(u, c). Therefore this algorithm
will terminate after maxv∈V rv rounds. Since ru is an exponential random variable with
parameter O(1/`), we know that maximum of these O(n) exponential random variables is
O(` log(n)) with high probability. Now we need to repeat the partition algorithm O(log(n))
times and will pipeline the broadcasts for different runs. Clearly, each node is in at most in
O(log(n)) clusters. A standard Chernoff bound in combination with Lemma 9 implies that
with high probability after O(log(n)) repetition of the `-limited LDD(O(1/`)) algorithm, for
each path π with at most ` hops and length w(π) ∈ [R, 2R], there will be a cluster C such
that π ⊆ C. We then repeat this process for O(log(W )) distance scales to get an `-limited
W -pairwise cover. J

As we will see, since in our hopset construction we consider different distance scales and need
to compute pairwise for a fixed scale, this step takes only O(` log(n)) rounds.

Diameter guarantee. For constructing pairwise covers, we need the diameter guarantee
of O(W log(n)) for all clusters. While running LDD(O(1/`)) gives a diameter guarantee
of O(` log(n)) on Ĝ, we note that the construction ensures that clusters have diameter
O(W log(n)) on G. Since we argued that every ` hop path with length W will fall into a
cluster with high probability, the diameter guarantee of O(` log(n)) on Ĝ will imply that
the corresponding cluster in G will have length O(W log(n)). More formally, for any pair of
nodes there is a path with length O(` log(n)) in Ĝ. Let C denote the cluster that contains
this path. Consider each segment of length O(`) in Ĝ is in C and will be have length O(W )
in G (by Lemma 10), and thus there will be a path of length O(W log(n)) based on weights
in G in C.

Extension to neighborhood covers. While Cohen shows that for the parallel construction
of hopsets pairwise covers are enough, for the distributed implementation we need one
more property: each vertex should overlap with at most O(log(n)) clusters. Moreover, the
algorithm used in Theorem 11 provides the stronger guarantee that there will be a cluster that
contains the neighborhood of (weighted) radius W from each vertex with high probability,
rather than only containing paths of length W . In other words, a similar analysis shows
that with high probability an `-limited neighborhood cover can be constructed in O(` log(n))
rounds of the CONGEST model. That is, for each node u, the `-limited W -neighborhood of
u will be fully contained in a cluster with high probability. However, for our purposes the
path covering property suffices.
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5 Congested Clique Hopset Construction.

In this section we describe our main algorithm. Similar to the sequential construction
described we consider different distance scales [R, 2R), and handle each scale separately. In
each iteration, we construct a sparse `-limited 2R-neighborhood cover as described in Section
4. Then the clusters will be divided into small and big clusters, and each case will be handled
differently. So far the construction is similar to [8]. The key new idea is that for Congested
Clique, by setting the parameters carefully we can send the topology corresponding to a small
cluster to the cluster center, and build a hopset locally. Here we need to use the fact that each
node is in at most O(log(n)) clusters, which is a property that we get from our neighborhood
cover construction. We will also need to compute pairwise distances between big clusters
centers. For this step, we use the algorithm of [6] that computes (1 + ε)-multi-source shortest
path from O(

√
n) sources (Lemma 6). We note that while during our construction we

construct the denser hopsets of [6] as auxiliary structure, these extra edges will be removed
at the end of each distance scale.

Finally, we use Lemma 5 to use the hopset edges added for smaller distance scales to
construct the larger distance scales. For this to give us a (1 + ε) for an arbitrary ε, we
first let ε′ be the error parameter. Since we use paths with error (1 + ε′) for each scale, to
compute distances for the next scale, a multiplicative factor in the stretch will be added in
each iteration. This means that after i iterations the error will be (1 + ε′)i. We can simply
rescale the error parameter by setting ε′ = O( ε

log(n) ) to get arbitrary error overall of ε > 0.
Throughout our analysis w.l.o.g we assume the minimum edge weight is one. Otherwise,

we can scale all the edge weights by the minimum edge weight. We also assume the aspect
ratio is polynomial. Otherwise we can use reductions from previous work to reduce the
aspect ratio in exchange in polylogarithmic depth (this will be preprocessing step and will
not dominate the overall running time).

Algorithm 1 Congested Clique construction (ε, β)-hopset of size Õ(n1+ 1
2k ).

1 Let Hi denote the hopset edges for scale (2i, 2i+1], and set ε′ = O( ε
log(n) ).

2 for (R, 2R], where R = 2κ, log(β) ≤ κ ≤ O(log(n)), on G ∪κ−1
i≥log(β) Hi do

3 Set W = O(ε′R/(logn)), and and build β-limited W -pairwise covers (by Theorem
11).

4 Let Cb be the set of big clusters that have size at least
√
n and Cs small clusters

to have size less than
√
n.

5 for each C ∈ Cs do
6 All the nodes in C cluster send their incident edges to the center.
7 The center locally computes a hopset of size O(n1/2+1/2k) (construction of

[16]) with (ε′, β0)-hopsets with β0 = O(log(k)/ε′)log(k+1)−1.
8 The center sends the new hopset edges to the corresponding nodes (endpoints)

in C.
9 for each C ∈ Cb do

10 Add a star by adding edges from the center node of each big cluster to every
other node in that cluster (limiting exploration to ` = 2β + 1 hops), and set
the weights based on shortest path distances.

11 Add an edge between any pair u1, u2 of centers of big clusters that are within
` = 2β + 1 hops of each other, and set the weight to d`(u1, u2).
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An overview of the algorithm is presented in Algorithm 1. By defining small clusters
to have size at most

√
n, we have that the number of edges in each small cluster C is

O(n), and hence all the nodes C can send their incident edges to the cluster center in
constant rounds using Lenzen’s routing [18]. Then the cluster center computes a hopset
with size O(n1/2+1/2k) and hopbound β0 = O(log(k)/ε′)log(k)−1 locally using Huang-Pettie
[16] centralized construction. The center of a small cluster C can send the edges incident
to each node in that clusters. Since the size of the hopset on small clusters is always
O(n 1

2 + 1
2k ) = O(n), this can also be done in constant time using Lenzen’s routing.

As explained in Lemma 5, using hopset edges added for smaller scales we can limit all
the shortest path explorations to 2β + 1. So we can add the star edges, by running 2β + 1
rounds of Bellman-Ford. For adding a clique between centers of large clusters, we will use
the (1 + ε)-MSSP algorithm of Censor-Hillel et al. 2019 [6] (using Lemma 6. This is possible
since there are at most O(

√
n) nodes. We disregard all the other edges added in this step for

computing these distances after the computation. We now analyze the algorithm and show
that it has the properties stated in Theorem 1.

Hopbound. The hopbound of hopsets constructed for small clusters, which are based on
Huang-Pettie hopsets is β′ = O((log(k)/ε′)log(k+1)−1). The path between a pair of nodes in
each distance scale has O(log(n)/ε′) segments. The properties of a neighborhood cover imply
that each of these segments are w.h.p. contained in one cluster. Each such segment has a cor-
responding path with hopbound either β′ (if it is contained in a small clusters), or one single
edge (if there is only one big cluster). If there is more than one big cluster center, then there is
a single edge between the furthest big cluster centers on the path. Hence in the worst case all
segments correspond to small clusters and will have a corresponding path of length β′. There-
fore the overall hopbound is O( log(n)

ε′ ( log(k)
ε′ )log(k+1)−1)) = O( log2(n)

ε ( log(n) log(k)
ε )log(k+1)−1).

Size. Recall that large clusters have size at least
√
n. The stars added for each big cluster

will add O(n log2(n)) edges overall since they are consisted of unions of O(log(n)) forests
for each scale. The (clique) edges added between centers of big clusters will add O(n) edges
overall. For small clusters of size s = O(

√
n), we added a hopset of size s1+1/k (this is the

guarantee we get by using Huang-Pettie hopsets), for a parameter k ≥ 2. On the other hand,
we have at most O(ns ) clusters of size within [s, 2s]. Therefore we can estimate the overall
number of edges added for these small clusters in each scale by summing over different values
s ∈ [2r, 2r+1) for small clusters as follows:

∑
s∈[
√
n]

O(n
s
· s1+1/k) =

log(
√
n)∑

r=1
O( n2r · (2

r)1+1/k) =
log(
√
n)∑

r=1
O(n · 2 r

k ) = O(n1+ 1
2k ).

Therefore, the overall size for all scales is O(n1+ 1
2k log(n) + n log2(n)).

Stretch. Fix a distance scale (R, 2R], R = 2k and consider a pair of nodes u, v ∈ V where
d(u, v) ∈ (R, 2R]. If R ≤ log β, since we assumed the minimum edge weight is one, this
implies that the shortest path has at most O(β) hops and no more edges is needed for this
pair. Otherwise, let π be the shortest path between u and v. We look at three different cases
and show d̃(u, v) = (1 + ε′)d(u, v) +O(W logn).

First consider the case where all the clusters on the shortest path between u and v are
small clusters. In this case, we have replaced each segment of length W with a path of stretch
(1 + ε′). By the triangle inequality, overall we get a (1 + ε′)-stretch. Next, consider a case
where there is a single large cluster on this path. The segment corresponding to this single
cluster will just add a single additive W logn = ε′R cost to our distance estimate.
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Final case is when there are more than one large clusters. Consider the two furthest large
clusters (based on their centers) on π, and let their centers be x and y. We have added one
single edge within (1 + ε′)-stretch of d(x, y) that covers the whole segment between these
two centers. Therefore, we have shown that all segments of π have a corresponding path
within (1 + ε′)-stretch. As argued, this implies that each scale incurs a multiplicative factor
of (1 + ε′) in the stretch, and thus by setting ε′ = O(ε/ log(n)), and since we assumed that
the weights are polynomial we can get (1 + ε)-stretch for all scales.

Round Complexity. For each of the O(log(n)) distance scales, it takes O(β log2(n)) rounds
to compute 2β+ 1-limited neighborhood covers (Lemma 11). Once the covers are constructed
for small clusters we need to run a Bellman-Ford with O(β) hops from the center of each big
cluster and since each node may overlap with at most O(log(n)) clusters this phase takes
O(β log(n)) (each node can pipeline the computation over the clusters it overlaps with).
For small clusters, we argued that in O(1) rounds (using Lenzen’s routing) the whole small
cluster topology can be sent to the cluster center, and after local computation another O(1)
rounds will be enough for cluster center to send back the new hopset edges to the destination
node. Finally, using the result of [6] we can compute (1 + ε′)-approximation from big cluster
centers (O(

√
n) sources) in O( log2(n)

ε′ ) = O( log3(n)
ε ) time. Therefore the overall running time

is O(β log2(n)).

Application to multi-source queries. We can now combine our hopset construction with
Lemma 6 (source detection algorithm of [6]) to show that we can compute queries from
O(
√
n) sources in O(β) time, by maintaining a sparse hopset of size Õ(n1+ 1

2k ), while [6] has
to store a hopset of size Õ(n3/2). Corollary 2 follows from this observation.

6 Massively Parallel Hopsets and MSSP

In this section, we argue that in a variation of the MPC model where the overall memory
is O(mn1/2) we can construct hopsets with small hopbound efficiently, and this in turn
gives us a fast algorithm for multi-source shortest path in this case. This result relies on an
observation made in [9], stating that the PRAM hopset constructions (e.g. [8], [11]) that use
O(mα) processors with depth t can be implemented in MPC, even when the memory per
machine is strictly sublinear, in O(t) rounds if we assume that the overall memory available
is O(mα). Once a (β, ε)-hopset is constructed, the Bellman-Ford subroutine described in [9]
can be used to compute (1 + ε)-stretch distances from O(

√
n) nodes to all other nodes in V .

Results of [9] are based on hopsets of [11], and their constructions may use less overall
memory in general, but they get a worse hopbound than ours in the special case that the
total memory is Ω̃(m

√
n). In this case, we get an improved hopbound of O(log2(n)/ε),

whereas their result gives a hopbound of O((log(n)/ε)3). In particular, we use the PRAM
hopset construction of [8] (instead of [11]), which can be simulated in the MPC model with
strictly sublinear memory per machine (using a reduction of [13]) to construct hopsets with
hopbound O(log2(n)/ε). The only difference between our construction and [8] is using a
faster algorithm for constructing `-limited pairwise covers based on the algorithm of [20].
First we note that our `-limited W -neighborhood cover construction can be constructed
in MPC based on a very similar algorithm and analysis as in Section 4. This step can be
done only using O(m log2(n)) overall memory (or O(m log(n)) memory for a single-scale) in
O(` log(n)) rounds. Observe that the construction of W -neighborhood covers for different
scales [W, 2W ] can all be done in parallel with an extra logarithmic overhead in the total
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memory. Similarly since each of the low diameter partitions are independent, the repetitions
of the LDD algorithm can also be parallelized. This result is also implied by results in [20],
combined with goodrich [13]. We have,

I Lemma 12. There is an algorithm that runs in O( `γ ·log(n)) rounds of MPC and w.h.p. com-
putes an `-limited W -neighborhood cover, where memory per machines is O(nγ), 0 < γ ≤ 1
and the overall memory is O(m log2(n)).

(1 + ε)-MSSP. Given a pairwise cover, assuming that in MPC we have Õ(mn1/2) total
memory, we can construct a (log2(n)/ε, ε)-hopset of size O(n3/2 log(n)). This hopset is a
special case of hopsets of [8]: we add a clique for small clusters, a star centerd at each
big cluster, and a clique between big cluster centers. As stated, the main difference in our
algorithm is that we use the algorithm of Lemma 12 for constructing pairwise covers, rather
than the algorithm of [7]. This leads to a construction time of O(β log(n)), whereas a direct
reduction from [8] would have construction time of O(β log3(n)), which is how long it takes
to construct their limited pairwise covers. Hence combining Lemma 12 with simulating the
PRAM construction of [8], and the Bellman-Ford primitives described in [9], we can construct
a hopset of size O(n3/2 log(n)) in O(β log(n)) time with hopbound β = O(log2(n)/ε).

I Theorem 13. Given an undirected weighted graph G, and parameters ε > 0, 0 < γ ≤ 1,
we can w.h.p. construct an (β, ε)-hopset of size O(n3/2 log(n)) in O( log3(n)

γε ) rounds of MPC,
using O(nγ) memory per machine, and the overall memory of O(mn1/2) (i.e. there are
O(mn1/2−γ) machines), where hopbound is β = O( log2(n)

γε ).

The analysis is very similar to the arguments in previous sections and previous work. Similarly,
for (1 + ε)-MSSP we get,

I Theorem 14. Given an undirected weighted graph G, after a preprocessing step of O( log3(n)
γε )

rounds, we can w.h.p. compute (1+ ε)-multi source shortest path queries from O(n1/2) sources
in O( log2(n)

γε ) rounds of MPC, when the memory per machine is O(nγ), 0 < γ ≤ 1, and the
overall memory required for preprocessing is O(mn1/2).

At a high-level since we have overall memory of Õ(mn1/2), to each node u, we can assign a
block of memory of size O(deg(u).n1/2). Then using aggregations primitives (e.g. see [9]),
we can store and update the distances from up to O(n1/2) sources. Therefore given a hopset
with hopbound O(log2(n)/ε), we can compute distances from O(n1/2) sources by running
parallel Bellman-Ford.
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