Report from Dagstuhl Seminar 19442
Programming Languages for Distributed Systems and
Distributed Data Management

Edited by
Carla Ferreira!, Philipp Haller?, and Guido Salvaneschi®

1 Universidade NOVA de Lisboa, PT, carla.ferreira@fct.unl.pt

2 KTH Royal Institute of Technology — Stockholm, SE, phaller@kth.se
3 TU Darmstadt, DE, salvaneschi@st.informatik.tu-darmstadt.de

—— Abstract

Programming language advances have played an important role in various areas of distributed
systems research, including consistency, communication, and fault tolerance, enabling automated
reasoning and performance optimization. However, over the last few years, researchers focusing
on this area have been scattered across different communities such as language design and im-
plementation, (distributed) databases, Big Data processing and IoT/edge computing — resulting
in limited interaction. The goal of this seminar is to build a community of researchers interested
in programming language techniques for distributed systems and distributed data management,
share current research results and set up a common research agenda. This report documents the
program and the outcomes of Dagstuhl Seminar 19442 “Programming Languages for Distributed
Systems and Distributed Data Management.”

Seminar October 27-31, 2019 — http://www.dagstuhl.de/19442

2012 ACM Subject Classification Software and its engineering — General programming lan-
guages, Computer systems organization — Distributed architectures, Information systems —
Data management systems, Computer systems organization — Embedded and cyber-physical
systems

Keywords and phrases Programming Languages, Distributed Systems, Data Management

Digital Object Identifier 10.4230/DagRep.9.10.117

1 Executive Summary

Carla Ferreira
Philipp Haller
Guido Salvaneschi

License) Creative Commons BY 3.0 Unported license
© Carla Ferreira, Philipp Haller, and Guido Salvaneschi,

Developing distributed systems is a well-known, decades-old problem in computer science.
Despite significant research effort dedicated to this area, programming distributed systems
remains challenging. The issues of consistency, concurrency, fault tolerance, as well as
(asynchronous) remote communication among heterogeneous platforms naturally show up
in this class of systems, creating a demand for proper language abstractions that enable
developers to tackle such challenges.

Over the last years, language abstractions have been a key for achieving the properties
above in many industrially successful distributed systems. For example, MapReduce takes
advantage of purity to parallelize task processing; complex event processing adopts declarative

Except where otherwise noted, content of this report is licensed
oy

under a Creative Commons BY 3.0 Unported license
Programming Languages for Distributed Systems and Distributed Data Management, Dagstuhl Reports, Vol. 9,
Issue 10, pp. 117-133
Editors: Carla Ferreira, Philipp Haller, and Guido Salvaneschi

\\v oagsTunL Dagstuhl Reports
ReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/19442
http://dx.doi.org/10.4230/DagRep.9.10.117
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

118

19442 — Programming Languages for Distributed Systems & Distributed Data Mgmt

programming to express sophisticated event correlations; and Spark leverages functional
programming for efficient fault recovery via lineage. In parallel, there have been notable
advances in research on programming languages for distributed systems, such as conflict-
free replicated data types, distributed information-flow security, language support for safe
distribution of computations, as well as programming frameworks for mixed IoT/cloud
development.

However, the researchers that have been carrying out these efforts are scattered across
different communities which include programming language design, type systems and theory,
database systems and database theory, distributed systems, systems programming, data-
centric programming, and web application development. This Dagstuhl Seminar brought
together researchers from these different communities.

The seminar focused on answering the following major questions:

Which abstractions are required in emergent fields of distributed systems, such as mixed

cloud/edge computing and IoT?

How can language abstractions be designed in a way that they provide a high-level

interface to programmers and still allow fine-grained tuning of low-level properties when

needed, possibly in a gradual way?

Which compilation pipeline (e.g., which intermediate representation) is needed to address

the (e.g., optimization) issues of distributed systems?

Which research issues must be solved to provide tools (e.g., debuggers, profilers) that are

needed to support languages that target distributed systems?

Which security and privacy issues come up in the context of programming languages for

distributed systems and how can they be addressed?

What benchmarks can be defined to compare language implementations for distributed

systems?

The seminar accomplished the goal of bringing together the research communities of
databases, distributed systems, and programming languages. The list of participants includes
24 academic and industrial researchers from Austria, Belgium, France, Germany, Portugal,
Sweden, Switzerland, UK, and USA, with complementary expertise and research interests.
The group had a balanced number of senior researchers and junior researchers, as well as a
strong industrial representation.

The scientific program comprised 28 sessions. The sessions devoted to individual presenta-
tions included 16 short talks with a maximum duration of 15 minutes and 6 long contributed
talks with a maximum duration of 35 minutes. In addition, the seminar included 2 plenary
sessions and 4 group sessions. The first two days of the seminar were dedicated to research
talks, but it was ensured that each talk had allocated time for discussions and exchange
of ideas. In the two following mornings there were 3 plenary sessions and 2 parallel group
sessions. The topics for these sessions were proposed and selected after a lively discussion
between participants, where the most popular sessions were promoted to plenary and the
remaining occurred in two parallel sessions. The scientific sessions discussed and collected
open questions on the topics of: programming models and abstractions; security and pri-
vacy; static guarantees, type systems, verification; distributed computing for the edge; time,
synchrony, and consistency; and persistency and serialization. There was also a social topic
discussing further actions to bring the three communities together. Even though there are
overlapping research interests, there is a difference of values between communities that needs
to be acknowledged and tackled. Participants agreed on the goal of organizing follow-up
events to further strengthen the connection among the database, the distributed systems
and the programming languages communities. In particular, the importance of extending
future events to Ph.D. students, for instance with an integrated Summer School, has been
discussed.

Carla Ferreira, Philipp Haller, and Guido Salvaneschi 119

2 Table of Contents

Executive Summary
Carla Ferreira, Philipp Haller, and Guido Salvaneschi, 117

Overview of Talks

Aggregation # Replication

Carlos Baquero e e 121
Stateful serverless programming

Sebastian Burckhardt e 122
Programming for autonomy

Amit Chopra 122
Access control for highly-available transactional data stores

Annette Bieniusao e 123
Automating the deployment of complex distributed systems

Uwe Breitenbiicher e 123
Scaling distributed systems reliably

Natalia Chechina o e 124
Cloud + Big Data: Implications for structured data platforms

Surafit Chaudhurto e e 124
Programming elastic services with AEON and PLASMA

Patrick Eugster e 125
Verification of message-passing programs

Damien Zufferey e 125
Selected challenges in concurrent and distributed programming

Philipp Haller 126
HipHop.js

Manuel Serrano L e 126

Distributed systems — The next level
Schahram Dustdar e 126

Actors revisited for predictable systems
Edward A. Lee e e e 127

Toward high-level programming for distributed systems
Laurent Prospert e e e e e e 127

Engineering distributed data-intensive applications
Guido Salvaneschi 128

Just-right consistency & The programming continuum
Marc Shapiro e 128

Debugging of actor programs using Rebeca model checking tool
Marjan Sirjanio e 129

Designing distributed systems with piecewise relative observable purity
Peter Van Roy e 129

19442

120 19442 — Programming Languages for Distributed Systems & Distributed Data Mgmt

How can concurrent data structures inspire distributed data structures and how to
implement efficient language prototypes “for free”

Aleksandar Prokopec e 130
Invariant-preserving applications for weakly consistent replicated databases

Carla Ferreira o e 130
The global object tracker (GoT)

Rohan Achar e 131

Data programming for ML and Data Science — Challenges for data management,
compilers, and distributed systems
Volker Markl. e 131

Participants 133

Carla Ferreira, Philipp Haller, and Guido Salvaneschi 121

3 Overview of Talks

3.1 Aggregation # Replication
Carlos Bagquero (University of Minho — Braga, PT, cbm@di.uminho.pt)

License @@ Creative Commons BY 3.0 Unported license
© Carlos Baquero

Both distributed aggregation and replication for high availability are techniques that can help
tackle geo-replication, offline operation and edge/fog computing. Distributed aggregation
often shares many properties in common with CRDT style convergent replication, but they
are not the same concept. The main difference is that in replication there is an abstraction
of a single replicated state that can be updated in the multiple locations where a replica
is present. This state is not owned by any given replica, but any replica can evolve it by
applying operations that transform the shared state. This notion applies both in strong
consistency and high availability settings. The difference being that in highly available
replication the replicas are allowed to diverge and later reconcile. Another factor is that
operations that lead to state changes are often the result of the activity an external user
that interacts with the system, e.g. adjusting the target room temperature up by 2 degrees.
As such, different users, can do conflicting actions, either concurrently or in sequence (most
of us did in their childhood on/off light switching fights with other kids and adults).

Distributed data aggregation refers to several data aggregation techniques that are
common in sensor network settings and datacenter infrastructure monitoring. In contrast to
replication, each node/location has access to its own local data, e.g. CPU utilisation or a
local measurement of humidity levels, and typically this data can evolve continuously. Also,
the data to be aggregated is often not directly controlled by users, it usually results from
an external physical process or the result of complex system evolutions. Thus, each sensing
node usually has exclusive access to a local input value that evolves in time. The aggregation
process is then tasked with collecting and transforming this information, e.g. calculating
the average or the maximum value, and making it available at a specified location (sink) or
disseminating it back to the nodes (by broadcasting the aggregate result). In aggregation
the source of truth for each individual measurement is in the actual node that provided it.

Sometimes the two concepts have in common the notion of data merging. In state-based
CRDTs operations are reflected in a semi-lattice state that can be combined with others with
a join function. In data aggregation there is also often a notion of joining data together, but
there is an additional aspect of data reduction and summarisation that is usually not present
in CRDT designs. To add to the confusion, it’s is possible to combine the two concepts
in a single system, as we did in the design of Scalable Eventually Consistent Counters,
that combines a hierarchical CRDT design with a global aggregation and reporting facet.
However, ignoring corner cases, the difference can be quite clear and recognising it can help
in selecting the right tools. A final take-away example is to consider the control of room
temperature: The plus/minus control that sets the set point temperature can be captured
by a CRDT; The combining of different temperature sensors across the room to obtain the
average temperature is distributed aggregation.

19442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

122

19442 — Programming Languages for Distributed Systems & Distributed Data Mgmt

3.2 Stateful serverless programming
Sebastian Burckhardt (Microsoft Research Lab — Redmond, US, sburckha@microsoft.com,)

License @ Creative Commons BY 3.0 Unported license
© Sebastian Burckhardt

Serverless programming models, such as AWS Lambdas or Azure Functions, simplify the
development of elastic cloud services by automating low-level aspects of deployment, VM
management, and monitoring. However, building a stateful application from stateless
functions still poses some challenges for developers, such as handling partial execution
failures, or enforcing proper synchronization of conflicting operations. In Azure Durable
Functions we offer several features to aid developers in that regard: orchestrations provide
reliable workflows, entities provide reliable application objects, and critical sections provide
reliable multi-object synchronization. The resulting programming model combines aspects of
both the actor model and shared memory, but can execute reliably in a distributed serverless
context, and is guaranteed to not deadlock.

3.3 Programming for autonomy
Amit Chopra (Lancaster University, UK, amit.chopra@lancaster.ac.uk)

License) Creative Commons BY 3.0 Unported license
© Amit Chopra

How do we program systems that involve multiple autonomous principals?

To address the question, we must understand what autonomy means. Autonomy means
decentralization: principals in a system exercise independent decision making and engage via
arms-length communications. However, not all engagements can be correct (if they were, we
would have no system). This motivates the notion of norms as the basis for determining the
correctness of their engagements. Norms act as a counterbalance to autonomy: do what you
please but not everything goes.

Norms must be operationalized in a decentralized setting via information protocols. An
information protocol specifies the ordering and occurrence of events in a decentralized setting
by specifying causality and integrity constraints. An information protocol can be correctly
enacted by endpoints over an asynchronous, unordered communication infrastructure based
only upon local knowledge. This is a significant departure from existing work in computing,
which typically does not specify causality and instead relies on stronger infrastructure
assumptions (e.g., pairwise FIFO or causal delivery).

In a nutshell, any specification of a system of autonomous principals must be based upon
norms and information protocols. A rigorous study of these ideas and programming based
upon them will enable exciting novel kinds of systems, e.g., based upon agreements and
contracts — what most business on our planet is based upon.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Carla Ferreira, Philipp Haller, and Guido Salvaneschi 123

3.4 Access control for highly-available transactional data stores
Annette Bieniusa (TU Kaiserslautern, DE, bieniusa@cs.uni-kl.de)

License @ Creative Commons BY 3.0 Unported license
© Annette Bieniusa

Access control systems for data stores regulate which users are allowed to read or update
a specific item. For long term deployments, it is typically required that these policies
can dynamically change as the system and its user base evolves. In this talk, we discuss
the challenges these adaptable security policies raises in highly available data stores that
allow for concurrent modifications and tolerate partial network partitions. By formally
deriving the consistency guarantees for access control and data modifications, we formulate
the requirements on the involved system components and their interplay. We further
present ACGreGate, a Java framework for implementing correct access control layers for the
transactional CRDT store AntidoteDB. This is joint work with Mathias Weber and Arnd
Poetzsch-Heffter.

3.5 Automating the deployment of complex distributed systems
Uwe Breitenbiicher (Universitdt Stuttgart, DE, uwe.breitenbuecher@iaas.uni-stuttgart.de)

License) Creative Commons BY 3.0 Unported license
© Uwe Breitenbiicher

The automation of application deployment is critical because deploying systems manually
is too error-prone, time-consuming, and costly. Therefore, several deployment automation
technologies have been developed in recent years. However, to deploy complex distributed
systems, it is often necessary to combine several of these deployment technologies as their
capabilities differ considerably. Unfortunately, such an integration is a complex technical
issue as each technology has its own deployment metamodel and API. Our first step to tackle
this issue was the introduction of the Essential Deployment Metamodel (EDMM), which is a
normalized metamodel for deployment models that can be mapped to the 13 most important
deployment technologies including, e. g., Terraform, CloudFormation, and TOSCA. However,
the current EDMM Transformation Framework only supports transforming an EDMM model
into one certain deployment technology, which restricts its applicability, as typically multiple
deployment technologies need to be combined for deploying complex systems. Therefore, we
are working on an extension that is capable of automatically splitting and transforming one
EDMM model to several deployment models supported by different deployment technologies.
Moreover, the extension also generates an imperative workflow model that invokes the
different deployment technologies involved with the corresponding deployment models. This
enables to fully automate the deployment of complex distributed systems.

19442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

124

19442 — Programming Languages for Distributed Systems & Distributed Data Mgmt

3.6 Scaling distributed systems reliably
Natalia Chechina (University of Bournemouth — Poole, UK, nchechina@bournemouth.ac.uk)

License @ Creative Commons BY 3.0 Unported license
© Natalia Chechina

Erlang is a well-known programming language in the areas of distributed databases and
large-scale messaging applications, e.g., WhatsApp with 1.5Bn monthly users. However,
when it comes to safety critical systems and robotics in particular, people who never worked
with Erlang are sceptical regarding its usefulness and the applicability of its principles. In
this talk I will share research and findings of applying Erlang’s non-defensive programming
approach and “let it crash” philosophy to enable fault tolerance and scalability of robots. I
will also share findings regarding Communication Scaling Limit Volume (CSLV) which states
that in a team of robots the volume of data remains constant and is in direct proportion
with the number of nodes, size and number of messages.

3.7 Cloud + Big Data: Implications for structured data platforms
Surajit Chaudhuri (Microsoft Research Lab — Redmond, US, surajitc@microsoft.com)

License) Creative Commons BY 3.0 Unported license
© Surajit Chaudhuri

The combination of the Cloud and Big Data has led to significant architectural rethinking
in the database community because of the need to accommodate requirements of Compute
Elasticity and the diversity of the Big Data Platforms that encompass SQL Data Warehousing,
Spark, and other emerging platforms that support distributed ML. There is also increased
urgency to support Approximate Data Analysis as data volumes continue to grow expo-
nentially. Another long standing pain point further amplified by Big Data is data cleaning
and data transformation, an essential pre-processing step for querying as well as advanced
analytics to generate valuable insight. Despite much research activities, we don’t yet have a
DSL that has both broad applicability and helps lower the complexity of this important step
for the programmers. In this talk, we will review these disruptions and challenges and sketch
a few of the promising directions. Specifically, we will discuss the progress we have made
in approximate query processing through injection of two new sampling operators in the
query language and incorporating them in the Query Optimization step. However, leveraging
such operators require sophistication and so we are still far from democratizing approximate
query processing. In the area of data cleaning and transformation, we will examine the
promise of Program Synthesis. For many of these problems, there is a unique opportunity
for Programming Language researchers and database researchers to work together to address
the open challenges.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Carla Ferreira, Philipp Haller, and Guido Salvaneschi 125

3.8 Programming elastic services with AEON and PLASMA
Patrick Eugster (University of Lugano, CH, patrick.thomas.eugster@usi.ch,)

License @ Creative Commons BY 3.0 Unported license
© Patrick Eugster

Implementing distributed services that automatically scale in and out in response to workload
changes in order to run efficiently in third-party cloud datacenters is a hard task for
programmers. In this talk we present two contributions towards simplifying the development
of such elastic services. The first contribution is a variant of the actor programming model
which provides strong consistency (i.e., serializability) without hampering the actor model’s
strong potential for scalability — a prerequisite for elasticity. That is, programmers can
perform calls across multiple actors in so-called “events” without interference with other
events. Our model leverages a DAG-based arrangement of actors with a novel corresponding
synchronization protocol in order to efficiently execute such events, showing substantial
speedups over traditional 2-phase locking while similarly avoiding races and deadlocks. The
second, independent, contribution consists in augmenting the actor programming model with
a second “layer” of programming to support fine-grained elasticity. That is, this layer allows
programmers to specify high-level program conditions hinting to scalability bottlenecks (e.g.,
CPU usage beyond a certain threshold, too high rate of messages between certain actors),
and corresponding mitigation actions (e.g., migrate certain actors to hosts with available
CPU cycles, co-locate actors with other actors they interact with). As we show, policies
expressed in this way consisting in only a few lines allow applications to substantially reduce
resource usage and/or improve performance by better distributing load.

3.9 \Verification of message-passing programs
Damien Zufferey (MPI-SWS — Kaiserslautern, DE, zufferey@mpi-sws.org)

License @ Creative Commons BY 3.0 Unported license
© Damien Zufferey

In this talk, I will show how we can harness the synergy between programming languages and
verification methods to help programmers build reliable software. Often there is a mismatch
between what the programming model allows and its applications. Better programming
models can (1) remove unneeded expressive power and (2) make it easy, for a verifier, to
decompose the program into smaller parts which can be verified separately. I will first
look at fault-tolerant distributed algorithms where we integrate a scoping mechanism for
communication as part of the program syntax. The key insight is the use of communication-
closure (logical boundaries in a program that messages should not cross) to structure
the code. This structure element greatly simplify the programming and verification of
fault-tolerant distributed algorithms. Then I will explain how we can use session types
to reason about cyber-physical systems in combination with assume-guarantee reasoning.
Assume-guarantee reasoning is designed to compose the behaviors of multiple components
(bottom-up composition). On the other hand, session types are carefully designed to make
a global specification projectable on the individual components in the systems (top-down
decomposition).

19442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

126

19442 — Programming Languages for Distributed Systems & Distributed Data Mgmt

3.10 Selected challenges in concurrent and distributed programming
Philipp Haller (KTH Royal Institute of Technology — Stockholm, SE, phaller@kth.se)

License @ Creative Commons BY 3.0 Unported license
© Philipp Haller

We present three challenges in concurrent and distributed programming, as well as recent
results addressing them. The first challenge consists of ensuring fault-tolerance properties in
typed programming languages. The main question is how to enforce fault-tolerance properties
for well-typed programs, as opposed to specific algorithms or systems. Towards addressing
this question, we present the first correctness results for a typed calculus with first-class
lineages. The second challenge consists of using data with different consistency properties
safely within the same distributed application. To address this challenge, we propose a novel
type system which provides a noninterference guarantee: mutations of potentially-inconsistent
data cannot be observed via access to consistent data types. As a third challenge we propose
the design of a concurrent domain-specific language for parallelizing static analysis problems.

3.11 HipHop.js
Manuel Serrano (INRIA Sophia Antipolis, FR, Manuel.Serrano@inria.fr)

License) Creative Commons BY 3.0 Unported license
© Manuel Serrano

HipHop is a synchronous reactive language for the web and IoT. It adds synchronous
concurrency and preemption to Hop, which is itself an asynchronous multitier extension
of JavaScript. Inspired from Esterel, HipHop simplifies the programming of non-trivial
temporal behaviors as found in complex web interfaces or IoT controllers and the cooperation
between synchronous and asynchronous activities. HipHop is compiled into plain sequential
JavaScript and executes on unmodified runtime environments. In this presentation we show
two examples to present and discuss HipHop: a simple web login form to introduce the
language and show how it differs from JavaScript, and a real life example, an interactive
music system that show why concurrency and preemption help programming such temporal
applications. A live demo of the musical application will be given.

3.12 Distributed systems — The next level
Schahram Dustdar (TU Wien, AT, dustdar@dsg.tuwien.ac.at)

License) Creative Commons BY 3.0 Unported license
© Schahram Dustdar

As humans, things, software and Al continue to become the entangled fabric of distributed
systems, systems engineers and researchers are facing novel challenges. In this talk, we
analyze the role of Edge, Cloud, and Human-based Computing as well as Al in the co-
evolution of distributed systems for the new decade. We identify challenges and discuss a
roadmap that these new distributed systems have to address. We take a closer look at how
a cyber-physical fabric will be complemented by Al operationalization to enable seamless
end-to-end distributed systems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Carla Ferreira, Philipp Haller, and Guido Salvaneschi 127

3.13 Actors revisited for predictable systems
Edward A. Lee (University of California — Berkeley, US, eal@berkeley.edu)

License @ Creative Commons BY 3.0 Unported license
© Edward A. Lee

Concurrent and distributed software based on publish-and-subscribe and actors are sometimes
used to realize distributed cyber-physical systems. Broadly, these mechanisms compose
software components that have private state and communicate with each other via message
passing. However, the underlying message-passing mechanisms are less deterministic than
they could be. In this talk, I described some simple challenge problems that are common
in distributed cyber-physical systems and extremely difficult to solve using either actors or
publish-and-subscribe. I offered an alternative model of computation that we call “reactors”
that solves these problems simply and elegantly and that is able to leverage decades of
results from the real-time systems community. The reactors model is being implemented in
a coordination language called Lingua Franca. A key feature is that extends messages with
logical timestamps that provide a semantic ordering and a semantic notion of simultaneity.
By leveraging synchronized clocks, an efficient distributed implementation guarantees de-
terminacy when network latencies and clock synchronization error remain below assumed
bounds.

3.14 Toward high-level programming for distributed systems
Laurent Prosperi (Panthéon-Sorbonne University — Paris, FR, laurent.prosperi@inria.fr)

License @@ Creative Commons BY 3.0 Unported license
© Laurent Prosperi

Programming distributed systems is arduous because of failures, asynchrony and trade-offs
(e.g. CAP). Moreover, requirements will depend on the audience, for instance ranging
from productivity to control. Our work aims at mastering the complexity of building
distributed systems while keeping fine-grain control and enhancing dependability. Distributed
abstractions will help mastering the complexity, a distributed abstraction is composed of
specifications and a set of implementations having their own patterns of distribution. Fine-
grain control will be achieved by allowing the programmer to create new abstractions
(or use a custom implementation of an existing one) and by exposing runtime behaviors
(e.g. fault-tolerance) as a first class citizen, by expressing them as distributed abstractions.
Dependability will be ensured at the level of distributed abstractions, by providing, and
dynamic checking, formal specifications (internal behaviors, ports, concurrent interactions
and consistency) of each of them and of their composition. We believe that the situation
is ripe for a new programming environment composed of i) a specification language and
ii) a related programming language with embedded dynamic checking of the specifications.
Moreover, we will enable the reusability of existing code base (by implementing our approach
as a DSL) and of existing systems by allowing assembling pre existing distributed components
(e.g. a datastore) as an implementation of a distributed abstraction.

19442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

128

19442 — Programming Languages for Distributed Systems & Distributed Data Mgmt

3.15 Engineering distributed data-intensive applications
Guido Salvaneschi (TU Darmstadt, DE, salvaneschi@st.informatik.tu-darmstadt.de)

License @ Creative Commons BY 3.0 Unported license
© Guido Salvaneschi

Over the last few years, ubiquitous connectivity has led to data being constantly generated
at an unprecedented rate. As a result, large amounts of data are constantly being processed
in an heterogenous infrastructure which stems from the convergence of edge (IoT, mobile)
and cloud computing. This poses fundamental engineering challenges on software design,
especially with respect to fault tolerance, data consistency, and privacy.

In this presentation, we discuss recent research results we achieved in this context at various
levels. We describe an innovative programming framework that improves and simplifies the
design of data intensive applications. We also present the use of our programming framework
on real-world case studies, emphasising how to achieve fault tolerance and data consistency.
Finally, we propose how to account for privacy in the software engineering process for data
intensive distributed applications.

3.16 Just-right consistency & The programming continuum
Marc Shapiro (Panthéon-Sorbonne University — Paris, FR, marc.shapiro@acm.org)

License) Creative Commons BY 3.0 Unported license
© Marc Shapiro

Just-right consistency. In a distributed data store, the CAP theorem forces a choice
between strong consistency (CP) and availability and responsiveness (AP). To address this
issue, we take an application-driven approach, Just-Right Consistency (JRC). JRC derives
a consistency model that is sufficient to maintain the application invariants, otherwise
remaining as available as possible. JRC leverages application invariant-maintaining patterns.
Two, ordered updates and atomic grouping, are compatible with concurrent and asynchronous
updates, orthogonally to CAP. In contrast, checking a data precondition on partitioned
state is CAP-sensitive. However, if two updates do not negate each other’s precondition,
they may legally execute concurrently. Updates must synchronise only if one negates the
precondition of the other. The JRC approach is supported by the CRDT data model that
ensures that concurrent updates converge; by Antidote, a cloud-scale CRDT data store that
guarantees transactional causal consistency; and by the CISE static analyser that verifies
whether application invariants are guaranteed.

The programming continuum, from core to edge and back. Current cloud architectures,
centralised in a few massive data centres, are increasingly moving towards support of edge
resources, including localised data centres, points-of-presence, 5G tower micro-DCs, IoT
gateways, and far-edge devices. Computing models offered across this spectrum differ
vastly, from database-centric in the core, to stream- and notification based at the far edge.
When a database system supports notifications, and vice-versa, these are tacked on as an
afterthought and not well integrated. Data-sharing models themselves range from weakly
to strongly consistent, with blockchains being a bit of both. Indeed, at this scale, CAP
and the conflict between correctness and availability is inescapable. Security is often a
second-class citizen in distributed system design, as is deployment, monitoring and run-
time control. However, we argue that there is no good reason for this proliferation of

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Carla Ferreira, Philipp Haller, and Guido Salvaneschi

incompatible models. Developers need access to the full power of distributed computing; they
need a common programming model across the whole spectrum, forming a programming
continuum. For instance, data access and notifications can be designed to be mutually
consistent. Replication can be available-first (based on CRDTs) but designed to seamlessly
support stronger synchronisation when required by application semantics. A large system
being a composition of parts, composable verification techniques are a key to success. The
designer should be able to create and reason about distributed abstractions. To enforce these
abstractions, and for security reasons, requires arms-length isolation boundaries. This may
use encryption and to branching/merging consistency models, inspired by distributed version
control and blockchains. Deployment and monitoring can be programmed using the same
abstractions as ordinary computations. The above can be implemented in many different
(but mutually compatible) ways, for instance in the core vs. at the far edge.

3.17 Debugging of actor programs using Rebeca model checking tool
Marjan Sirjani (Mdlardalen University — Vasterds, SE, marjan.sirjani@mdh.se)

License @@ Creative Commons BY 3.0 Unported license
© Marjan Sirjani

Rebeca is designed as an imperative actor-based language with the goal of providing an easy
to use language for modeling concurrent and distributed systems, with formal verification
support. Timed Rebeca is an extension of Rebeca in which network and computational
delays, periodic events, and required deadlines can be expressed in the model. Model checking
and simulation tools are built based on the formal semantics of the language. For deadlock-
freedom and schedulability analysis special efficient techniques in state space exploration is
proposed by exploiting the isolation of method execution in the model. I will briefly show how
these models can be used in safety assurance and performance evaluation of different systems,
like Network on Chip architectures, sensor network applications, and network protocols.
Then I will show how Rebeca can be used for debugging and model-driven development of
distributed event-based asynchronous systems.

3.18 Designing distributed systems with piecewise relative observable
purity

Peter Van Roy (Catholic University of Lowvain, BE, pur@info.ucl.ac.be)

License @@ Creative Commons BY 3.0 Unported license
© Peter Van Roy

There exists a useful purely functional subset of distributed programming. Purely functional
distributed computations do not interact with the real world (because all inputs must be
known in advance), but they support message asynchrony and reordering, and can be used
to build networks of communicating agents. General distributed programming consists of
purely functional distributed programming plus interaction points for real-world interactions.
We are working on a design language, called PROP (Piecewise Relative Observable Purity)
to specify distributed systems explicitly as a purely functional core plus interaction points.
We aim to turn this into a practical tool that can leverage the powerful techniques available
to functional programming for distributed systems design.

129

19442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

130

19442 — Programming Languages for Distributed Systems & Distributed Data Mgmt

3.19 How can concurrent data structures inspire distributed data
structures and how to implement efficient language prototypes
“for free”

Aleksandar Prokopec (Oracle Labs — Zurich, CH, aleksandar.prokopec@gmail.com)

License @ Creative Commons BY 3.0 Unported license
© Aleksandar Prokopec

Most balanced search trees use key comparisons to guide their operations, and achieve
logarithmic running time. By relying on numerical properties of the keys, interpolation search
achieves lower search complexity and better performance. Although interpolation-based data
structures were investigated in the past, their non-blocking concurrent variants have received
very little attention so far. In this talk, I describe the first non-blocking implementation
of the classic interpolation search tree data structure. For arbitrary key distributions, the
data structure ensures amortized O(log n) insertion and deletion. Furthermore, when input
key distributions are smooth, lookups run in expected O(log log n) time, and insertion and
deletion run in amortized O(log log n). I then hypothesize that the design of this data
structure can influence the design of distributed search data structures, and achieve similar
performance benefits.

In the second part of the talk, I describe how we implemented GraalWasm — an engine
for the WebAssembly language by extending GraalVM. I start by describing the GraalVM
stack, and the WebAssembly language, and I then describe the internals of GraalWasm. The
talk is meant as an inspiration for people who want to use GraalVM for rapid prototyping of
programming language implementations when high performance is required — my hope is
that this talk should be of a particular interest for people working on query languages for
databases or distributed systems.

3.20 Invariant-preserving applications for weakly consistent replicated
databases

Carla Ferreira (Universidade Nova de Lisboa — Lisbon, PT, carla.ferreira@fct.unl.pt)

License) Creative Commons BY 3.0 Unported license
© Carla Ferreira

Building trustworthy cloud applications is inherently complex and error-prone, and requires
developers with a high level of expertise. In this talk, I discuss sound analyses techniques
that leverage recent theoretical advances to avoid altogether coordinating the execution of
operations. The approach consists of modifying operations in a way that application invariants
are ensured to be always maintained. When no conflicting updates occur, the modified
operations present their original semantics. Otherwise, it uses sensible and deterministic
conflict resolution policies that preserve the invariants of the application.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Carla Ferreira, Philipp Haller, and Guido Salvaneschi

3.21 The global object tracker (GoT)
Rohan Achar (University of California — Irvine, US)

License @ Creative Commons BY 3.0 Unported license
© Rohan Achar

Object state synchronization between components of distributed applications containing
several collaborating or competing components with highly mutable, long-lived, and replicated
state is a challenging research area. As an organizing principle for such replicated objects,
we propose the Global Object Tracker (GoT) model, an object-oriented programming model
whose design and interfaces mirror those found in decentralized version control systems:
a version graph, working data, diffs, commit, checkout, fetch, push, and merge. We have
implemented GoT in a framework called Spacetime, written in Python. The advantages
offered by GoT is the communication of expressive state updates that have low latency of
propagation, and observability and thus, reasoning, over all the state changes that happen in
the application.

3.22 Data programming for ML and Data Science — Challenges for
data management, compilers, and distributed systems

Volker Markl (TU Berlin, DE)

License @ Creative Commons BY 3.0 Unported license
© Volker Markl

Over the past decade, data management has steadily grown in complexity, with scientific
institutions and enterprises building novel analytics that draw on theory and best practices
in relational database management, graph analysis, machine learning, signal processing,
statistical science, and mathematical programming. This heterogeneity of analytics problems
has spurred the development of a diverse ecosystem of data analytics engines, each tailored
to a specific paradigm and use case. Examples of such engines include relational database
systems (e.g., Postgres, MySQL, MonetDB), tools for numerical analysis (e.g., Matlab,
R, NumPy), emerging distributed data processing engines (e.g., Hadoop, Spark, Flink),
distributed key-value stores (e.g., HBase, Cassandra), as well as specialized graph-processing
systems (e.g., Neo4J, Giraph, GraphLab). Each of these engines has specific advantages and
disadvantages; however, picking the right one — or the right combination — for a given problem
can be a daunting task for a data analyst. In addition, we are observing an increase in the
diversification of the hardware landscape, promising to improve data processing performance:
(i) heterogeneous processors configurations that combine diverse architectures (e.g., CPUs,
GPUs, vector processors, FPGAs), (ii) the availability of fast, high-capacity flash storage, (iii)
the emergence of non-volatile memory technology disrupting the traditional memory hierarchy,
and (iv) the continued evolution of network interconnects. Furthermore, the growing number
of available hardware virtualization and “infrastructure-as-a-service” solutions implies that
specially-tailored hardware configurations will now be readily available to basically anyone,
at the click of a button. However, this increase in variety makes it far more difficult to
identify the hardware configuration that exploits hardware properties optimally for a target
problem. The growing heterogeneity at the model (e.g., matrices, tables, graphs) and language
(Matlab, SQL, Java), the system, and the hardware level is making efficient data analysis
increasingly formidable. Specifying and tuning data analysis programs (DAPs) requires

131

19442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

132

19442 — Programming Languages for Distributed Systems & Distributed Data Mgmt

analysts to manually find the optimal combination of programming models, runtime engines,
and hardware configurations from a vast number of possible alternatives. Therefore, today’s
data analyst must be a “jack-of-all-trades,” i.e., proficient in a multitude of different systems
and languages, comprehend data and processing models, grasp the intricacies of tuning
parameters and their corresponding performance impact, and able to map a given analysis
task to the ideal combination of systems with the most effective hardware configuration.
This rare combination of skills is one of the key reasons behind the severe shortage of capable
data analysts. Reducing the complexity of the data analysis process, the entry barrier, and
the cost of analyzing large amounts of data at scale is one of the most important goals in
data management research today. The only reasonable way to reduce this complexity is to
automate the manual design and implementation choices data scientists regularly face in this
heterogeneous environment (e.g., identifying the algorithms, system components, and tuning
parameters). Achieving this automation is the “holy grail” of data science, but it is possible,
if we combine several data processing technologies established by the scientific/systems
community, drawing from skills in programming languages, compiler technology, database
systems and distributed systems. To this end, we envision to a principled algebraic model for
scalable data science systems, akin to relational algebra in database systems, that will enable
precisely define, study, and solve in a consistent way issues pertaining to the automatic
optimization, distribution, parallelization, and hardware adaptation of entire data analysis
pipelines. To do that, we need to carry the concepts of declarative languages, optimizing
transformation rules and query optimizers and concepts over to the world of data science
with DAPs beyond relational algebra.

Carla Ferreira, Philipp Haller, and Guido Salvaneschi

Participants

= Rohan Achar
University of California —
Irvine, US

= Carlos Baquero
University of Minho, PT
- Annette Bieniusa

TU Kaiserslautern, DE

= Uwe Breitenbiicher
Universitdt Stuttgart, DE

= Sebastian Burckhardt
Microsoft Research —
Redmond, US

= Surajit Chaudhuri
Microsoft Research —
Redmond, US

= Natalia Chechina

University of Bournemouth-

Poole, GB

= Amit K. Chopra
Lancaster University, GB

= Schahram Dustdar
Technische Universitdt Wien, AT
= Patrick Thomas Eugster
University of Lugano, CH

= Carla Ferreira

New University of Lisbon, PT
= Torsten Grust

Universitdt Tiibingen, DE

= Philipp Haller

KTH Royal Institute of
Technology — Stockholm, SE
= Edward A. Lee

University of California —
Berkeley, US

= Heather Miller

Carnegie Mellon University —
Pittsburgh, US

= Aleksandar Prokopec
Oracle Labs Switzerland —
Zirich, CH

133

= Laurent Prosperi
Sorbonne University — Paris, FR

- Guido Salvaneschi
TU Darmstadt, DE

= Manuel Serrano
INRIA — Valbonne, FR

= Marc Shapiro
Sorbonne University — Paris, FR

= Marjan Sirjani
Miélardalen University —
Visteras, SE

= Peter Van Roy
UC Louvain, BE

= Nobuko Yoshida
Imperial College London, GB

= Damien Zufferey
MPI-SWS — Kaiserslautern, DE

19442

	Executive Summary Carla Ferreira, Philipp Haller, and Guido Salvaneschi,
	Table of Contents
	Overview of Talks
	Aggregation != Replication Carlos Baquero
	Stateful serverless programming Sebastian Burckhardt
	Programming for autonomy Amit Chopra
	Access control for highly-available transactional data stores Annette Bieniusa
	Automating the deployment of complex distributed systems Uwe Breitenbücher
	Scaling distributed systems reliably Natalia Chechina
	Cloud + Big Data: Implications for structured data platforms Surajit Chaudhuri
	Programming elastic services with AEON and PLASMA Patrick Eugster
	Verification of message-passing programs Damien Zufferey
	Selected challenges in concurrent and distributed programming Philipp Haller
	HipHop.js Manuel Serrano
	Distributed systems – The next level Schahram Dustdar
	Actors revisited for predictable systems Edward A. Lee
	Toward high-level programming for distributed systems Laurent Prosperi
	Engineering distributed data-intensive applications Guido Salvaneschi
	Just-right consistency & The programming continuum Marc Shapiro
	Debugging of actor programs using Rebeca model checking tool Marjan Sirjani
	Designing distributed systems with piecewise relative observable purity Peter Van Roy
	How can concurrent data structures inspire distributed data structures and how to implement efficient language prototypes ``for free'' Aleksandar Prokopec
	Invariant-preserving applications for weakly consistent replicated databases Carla Ferreira
	The global object tracker (GoT) Rohan Achar
	Data programming for ML and Data Science – Challenges for data management, compilers, and distributed systems Volker Markl

	Participants

