
37th International Symposium
on Theoretical Aspects of
Computer Science

STACS 2020, March 10–13, 2020, Montpellier, France

Edited by

Christophe Paul
Markus Bläser

LIPIcs – Vo l . 154 – STACS 2020 www.dagstuh l .de/ l ip i c s



Editors

Christophe Paul
CNRS, Université de Montpellier, France
christophe.paul@lirmm.fr

Markus Bläser
Universität des Saarlandes, Saarbrücken, Germany
mblaeser@cs.uni-saarland.de

ACM Classification 2012
Mathematics of computing → Combinatorics; Mathematics of computing → Graph theory; Theory of
computation → Formal languages and automata theory; Theory of computation → Logic; Theory of
computation → Design and analysis of algorithms; Theory of computation → Computational complexity
and cryptography; Theory of computation → Models of computation

ISBN 978-3-95977-140-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-140-5.

Publication date
March, 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.STACS.2020.0

ISBN 978-3-95977-140-5 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0001-6519-975X
mailto:christophe.paul@lirmm.fr
mailto:mblaeser@cs.uni-saarland.de
https://www.dagstuhl.de/dagpub/978-3-95977-140-5
https://www.dagstuhl.de/dagpub/978-3-95977-140-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.STACS.2020.0
https://www.dagstuhl.de/dagpub/978-3-95977-140-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

STACS 2020

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics




Contents

Preface
Christophe Paul and Markus Bläser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:ix–0:x

Conference organization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xi–0:xii

Invited Talk

Statistical Physics and Algorithms
Dana Randall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:6

Weisfeiler and Leman’s Unlikely Journey from Graph Isomorphism to Neural
Networks

Martin Grohe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:1

Computability, Complexity and Programming with Ordinary Differential
Equations

Olivier Bournez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:13

Tutorial

Graphical Models: Queries, Complexity, Algorithms
Martin C. Cooper, Simon de Givry, and Thomas Schiex . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:22

Regular Paper

Inapproximability Results for Scheduling with Interval and Resource Restrictions
Marten Maack and Klaus Jansen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:18

An Automaton Group with PSPACE-Complete Word Problem
Jan Philipp Wächter and Armin Weiß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6:1–6:17

A Trichotomy for Regular Trail Queries
Wim Martens, Matthias Niewerth, and Tina Trautner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:1–7:16

Descriptive Complexity on Non-Polish Spaces
Antonin Callard and Mathieu Hoyrup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:16

NP-Completeness, Proof Systems, and Disjoint NP-Pairs
Titus Dose and Christian Glaßer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:18

String Indexing with Compressed Patterns
Philip Bille, Inge Li Gørtz, and Teresa Anna Steiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:13

An FPT Algorithm for Minimum Additive Spanner Problem
Yusuke Kobayashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:16

New Bounds for Randomized List Update in the Paid Exchange Model
Susanne Albers and Maximilian Janke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:17

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:vi Contents

On Covering Segments with Unit Intervals
Dan Bergren, Eduard Eiben, Robert Ganian, and Iyad Kanj . . . . . . . . . . . . . . . . . . . . . . 13:1–13:17

Decidability and Periodicity of Low Complexity Tilings
Jarkko Kari and Etienne Moutot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:12

The Tandem Duplication Distance Is NP-Hard
Manuel Lafond, Binhai Zhu, and Peng Zou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15:1–15:15

Existential Length Universality
Paweł Gawrychowski, Martin Lange, Narad Rampersad, Jeffrey Shallit, and
Marek Szykuła . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1–16:14

On the Termination of Flooding
Walter Hussak and Amitabh Trehan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:13

Generalised Pattern Matching Revisited
Bartłomiej Dudek, Paweł Gawrychowski, and Tatiana Starikovskaya . . . . . . . . . . . . . 18:1–18:18

Parameterized Pre-Coloring Extension and List Coloring Problems
Gregory Gutin, Diptapriyo Majumdar, Sebastian Ordyniak, and Magnus Wahlström 19:1–19:18

Oracle Complexity Classes and Local Measurements on Physical Hamiltonians
Sevag Gharibian, Stephen Piddock, and Justin Yirka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:37

Secret Key Agreement from Correlated Data, with No Prior Information
Marius Zimand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:12

Using Statistical Encoding to Achieve Tree Succinctness Never Seen Before
Michał Gańczorz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22:1–22:29

Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model
Taisuke Izumi, François Le Gall, and Frédéric Magniez . . . . . . . . . . . . . . . . . . . . . . . . . . 23:1–23:13

Lower Bounds for Arithmetic Circuits via the Hankel Matrix
Nathanaël Fijalkow, Guillaume Lagarde, Pierre Ohlmann, and Olivier Serre . . . . . 24:1–24:16

Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs
Thomas Bläsius, Philipp Fischbeck, Tobias Friedrich, and Maximilian Katzmann . 25:1–25:14

Domino Problem Under Horizontal Constraints
Nathalie Aubrun, Julien Esnay, and Mathieu Sablik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26:1–26:15

Computing Maximum Matchings in Temporal Graphs
George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and
Philipp Zschoche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27:1–27:14

Tight Bounds for the Cover Times of Random Walks with Heterogeneous Step
Lengths

Brieuc Guinard and Amos Korman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28:1–28:14

Solving Connectivity Problems Parameterized by Treedepth in Single-Exponential
Time and Polynomial Space

Falko Hegerfeld and Stefan Kratsch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29:1–29:16

Non-Rectangular Convolutions and (Sub-)Cadences with Three Elements
Mitsuru Funakoshi and Julian Pape-Lange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30:1–30:16



Contents 0:vii

Maximum Matchings in Geometric Intersection Graphs
Édouard Bonnet, Sergio Cabello, and Wolfgang Mulzer . . . . . . . . . . . . . . . . . . . . . . . . . . . 31:1–31:17

Unambiguous Separators for Tropical Tree Automata
Thomas Colcombet and Sylvain Lombardy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32:1–32:13

Asymptotic Quasi-Polynomial Time Approximation Scheme for Resource
Minimization for Fire Containment

Mirmahdi Rahgoshay and Mohammad R. Salavatipour . . . . . . . . . . . . . . . . . . . . . . . . . . . 33:1–33:14

Streaming Complexity of Spanning Tree Computation
Yi-Jun Chang, Martín Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai . . . 34:1–34:19

Shortest Reconfiguration of Colorings Under Kempe Changes
Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta,
Moritz Mühlenthaler, Akira Suzuki, and Kunihiro Wasa . . . . . . . . . . . . . . . . . . . . . . . . . . 35:1–35:14

Elimination Distances, Blocking Sets, and Kernels for Vertex Cover
Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse . . . . . . . . . . . . . . . . . . . . . . . . . 36:1–36:14

Near-Optimal Complexity Bounds for Fragments of the Skolem Problem
S. Akshay, Nikhil Balaji, Aniket Murhekar, Rohith Varma, and Nikhil Vyas . . . . . . 37:1–37:18

Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths
Stefan Kratsch and Florian Nelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38:1–38:15

Relational Width of First-Order Expansions of Homogeneous Graphs with
Bounded Strict Width

Michał Wrona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39:1–39:16

Succinct Population Protocols for Presburger Arithmetic
Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich, and Stefan Jaax 40:1–40:15

A Sub-Quadratic Algorithm for the Longest Common Increasing Subsequence
Problem

Lech Duraj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41:1–41:18

Fixed-Parameter Algorithms for Unsplittable Flow Cover
Andrés Cristi, Mathieu Mari, and Andreas Wiese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42:1–42:17

Identifiability of Graphs with Small Color Classes by the Weisfeiler-Leman
Algorithm

Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky . . . . . . . . . . . . . . . . . . . . . . . . . . . 43:1–43:18

Better Approximations for General Caching and UFP-Cover Under Resource
Augmentation

Andrés Cristi and Andreas Wiese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44:1–44:14

Improved Bounds on Fourier Entropy and Min-Entropy
Srinivasan Arunachalam, Sourav Chakraborty, Michal Koucký, Nitin Saurabh, and
Ronald de Wolf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45:1–45:19

Information Distance Revisited
Bruno Bauwens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46:1–46:14

On Computing Multilinear Polynomials Using Multi-r-ic Depth Four Circuits
Suryajith Chillara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47:1–47:16

STACS 2020



0:viii Contents

Observation and Distinction. Representing Information in Infinite Games
Dietmar Berwanger and Laurent Doyen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48:1–48:17

How Fast Can You Escape a Compact Polytope?
Julian D’Costa, Engel Lefaucheux, Joël Ouaknine, and James Worrell . . . . . . . . . . . . 49:1–49:11

The SDP Value for Random Two-Eigenvalue CSPs
Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes . . . . . . . . . . . . . . . . . . . . . . . . . 50:1–50:45

Asymptotic Divergences and Strong Dichotomy
Xiang Huang, Jack H. Lutz, Elvira Mayordomo, and Donald M. Stull . . . . . . . . . . . . 51:1–51:15

Perfect Resolution of Conflict-Free Colouring of Interval Hypergraphs
S. M. Dhannya and N. S. Narayanaswamy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52:1–52:16

Constant-Time Dynamic (∆ + 1)-Coloring
Monika Henzinger and Pan Peng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53:1–53:18

Cryptocurrency Mining Games with Economic Discount and Decreasing Rewards
Marcelo Arenas, Juan Reutter, Etienne Toussaint, Martín Ugarte,
Francisco Vial, and Domagoj Vrgoč . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54:1–54:16

Randomness and Initial Segment Complexity for Probability Measures
André Nies and Frank Stephan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55:1–55:14

Computing Shrub-Depth Decompositions
Jakub Gajarský and Stephan Kreutzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56:1–56:17

Typical Sequences Revisited – Computing Width Parameters of Graphs
Hans L. Bodlaender, Lars Jaffke, and Jan Arne Telle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57:1–57:16

Grundy Coloring & Friends, Half-Graphs, Bicliques
Pierre Aboulker, Édouard Bonnet, Eun Jung Kim, and Florian Sikora . . . . . . . . . . . . 58:1–58:18

Lower Bounds Against Sparse Symmetric Functions of ACC Circuits: Expanding
the Reach of #SAT Algorithms

Nikhil Vyas and R. Ryan Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59:1–59:17

Reversible Pebble Games and the Relation Between Tree-Like and General
Resolution Space

Jacobo Torán and Florian Wörz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60:1–60:18



Preface

The International Symposium on Theoretical Aspects of Computer Science (STACS) confer-
ence series is an internationally leading forum for original research on theoretical aspects of
computer science. Typical areas are:

algorithms and data structures, including: design of parallel, distributed, approximation,
parameterized and randomized algorithms; analysis of algorithms and combinatorics
of data structures; computational geometry, cryptography, algorithmic learning theory,
algorithmic game theory;
automata and formal languages, including: algebraic and categorical methods, coding
theory; complexity and computability, including: computational and structural complexity
theory, parameterized complexity, randomness in computation;
logic in computer science, including: finite model theory, database theory, semantics,
specification verification, rewriting and deduction;
current challenges, for example: natural computing, quantum computing, mobile and net
computing, computational social choice.

STACS is held alternately in France and in Germany. This year’s conference (taking place
March 10-13 in Montpellier) is the 37th in the series. Previous meetings took place in Paris
(1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989),
Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg (1993), Caen (1994), München
(1995), Grenoble (1996), Lübeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden
(2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006),
Aachen (2007), Bordeaux (2008), Freiburg (2009), Nancy (2010), Dortmund (2011), Paris
(2012), Kiel (2013), Lyon (2014), München (2015), Orléans (2016), Hannover (2017), Caen
(2018), Berlin (2019).

The interest in STACS has remained at a very high level over the past years. The STACS
2020 call for papers led to 242 submissions with authors from 43 countries. Each paper
was assigned to three program committee members who, at their discretion, asked external
reviewers for reports. For the sixth time within the STACS conference series, there was
also a rebuttal period during which authors could submit remarks to the PC concerning the
reviews of their papers. The committee selected 56 papers during a three-week electronic
meeting held in November/December 2019. This means an acceptance rate of only 23%.
As co-chairs of the program committee, we would like to sincerely thank all its members
and the 448 external reviewers for their valuable work. In particular, there were intense
and interesting discussions inside the PC committee. The overall very high quality of the
submissions made the selection an extremely difficult task.

We would like to express our thanks to the three invited speakers: Dana Randal (Georgia
Technical Institute, Atlanta, USA), Olivier Bournez (LIX, École Polytechnique, Palaiseau,
France), and Martin Grohe (RWTH Aachen University, Germany). Since 2011, the conference
program includes tutorials. This year, we are pleased to invite Thomas Schiex (INRAE,
Toulouse, France) and Stéphan Thomassé (LIP, ENS Lyon, France) to the tutorial session.

Special thanks go to the local organizing committee for continuous help throughout the
conference organization. In particular, we wish to thank the colleagues and student from the
ALGCO, ECO and ESCAPE resarch groups for their help as well as Mégane Miquel and
Virginie Fèche from LIRMM laboratory staff for her permanent organisation support.

Moreover, we thank Michael Wagner from the Dagstuhl/LIPIcs team for assisting us
in the publication process and the final production of the proceedings. These proceedings
37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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contain extended abstracts of the accepted contributions and abstracts of the invited talks
and the tutorials. The authors retain their rights and make their work available under a
Creative Commons license. The proceedings are published electronically by Schloss Dagstuhl
– Leibniz-Center for Informatics within their LIPIcs series. Finally we would like to thank
our sponsors for their financial supports: Occitanie Region District, Institut des Sciences de
l’Information et leurs Interaction (INS2I) of CNRS; the University of Montpellier and the
I-Site MUSE project; the LabEx NUMEV and the LIRMM Laboratory.

Montpellier and Saarbrücken, March 2020 Christophe Paul and Markus Bläser
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Statistical Physics and Algorithms
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Abstract
The field of randomized algorithms has benefitted greatly from insights from statistical physics. We
give examples in two distinct settings. The first is in the context of Markov chain Monte Carlo
algorithms, which have become ubiquitous across science and engineering as a means of exploring
large configuration spaces. One of the most striking discoveries was the realization that many natural
Markov chains undergo phase transitions, whereby they are efficient for some parameter settings
and then suddenly become inefficient as a parameter of the system is slowly modified. The second is
in the context of distributed algorithms for programmable matter. Self-organizing particle systems
based on statistical models with phase changes have been used to achieve basic tasks involving
coordination, movement, and conformation in a fully distributed, local setting. We briefly describe
these two settings to demonstrate how computing and statistical physics together provide powerful
insights that apply across multiple domains.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Mathematics of computing → Stochastic processes; Theory of computation → Self-organization

Keywords and phrases Markov chains, mixing times, phase transitions, programmable matter

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.1

Category Invited Talk

Funding Funded in part by NSF awards CCF-1526900, CCF-1637031, CCF-1733812 and ARO
MURI award #W911NF-19-1-0233.

1 Introduction

Statistical physics employs probabilistic techniques to study systems consisting of large
populations. The underlying principles explain numerous physical phenomena, such as
magnetism, changes in states of matter, thermal radiation, noise in electronic devices, and
more (see, e.g., [16]). In addition, these scientific insights help explain collective behavior
across disciplines, including interacting biological systems [22], colloidal mixtures from
chemistry [3, 21], segregation models from economics [5, 25], and random graph models in
combinatorics [9].

Throughout theoretical computer science, we also find many examples where a statistical
physics perspective has enriched the design and analysis of algorithms. A significant example
concerns the role of phase transitions, showing how micro-scale behavior can induce global,
macro-scale changes to a system (see, e.g., [4, 7, 26]). For example, phase transitions in
random structures allow us to identify emergent characteristics of a configuration space,
such as the birth of the giant component [19]. Moreover, Markov chains have been shown
to undergo phase changes in their convergence times, transitioning from disordered phases,
where they converge to (near) stationarity in polynomial time, to ordered phases that require
exponential time [7, 10, 26]. More recently, algorithms exhibiting particular phase changes
from disordered gaseous or liquid phases to ordered solid phases have proven effective for the
design of distributed algorithms for robot swarms and active matter, where we seek collective
organization achieving certain tasks [1, 11, 12].
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Physical systems define probability measures favoring configurations that minimize energy.
Each configuration σ has energy determined by a Hamiltonian H(σ) and a corresponding
weight w(σ) = e−B·H(σ), where B = 1/T is inverse temperature. The Gibbs (or Boltzmann)
distribution assigns probabilities proportional to their weight w(σ), where configurations with
the least energy H(σ) have the highest weight and are most likely. However, if there are few
of these higher weight configurations, the sample space may be dominated instead by those
with small weight, simply because there are many more of them (i.e., there is higher entropy),
giving these configurations much higher probability overall, even if they are individually less
probable. The thermodynamic properties of a physical system, such as specific heat and free
energy, are derived from statistical properties of these distributions, and discontinuities in
any of these quantities indicate a phase transition between states of matter.

We will provide a small window into the rich marriage between statistical physics and
algorithms in the context of Markov chains and programmable matter. Markov chains can
become prohibitively slow once the energy from the Hamiltonian outweighs the effects of
entropy and the system transitions to an ordered state. In contrast, for programmable
matter, we purposefully design algorithms that achieve distinct collective behaviors in their
disordered and ordered phases, leading to robust distributed algorithms for self-organizing
particle systems.

2 Local Markov Chains

Markov chain Monte Carlo (MCMC) algorithms are ubiquitous throughout science and
engineering, providing useful tools for approximate counting, combinatorial optimization
and modeling. The main idea is to perform a random walk among a set of configurations
so that samples drawn from the limiting distribution are meaningful. For this to be useful,
these algorithms need to be efficient, and indeed bounding the converence time of a Markov
chain is often the critical step in establishing the efficiency of approximation algorithms
based on random sampling. For example, if G = (V1, V2, E) is a bipartite graph with
E ⊆ V1 × V2, then sampling perfect matchings on G allows us to estimate the permanent
of the adjacency matrix [20]. Calculating the permanent of a matrix was shown by Valiant
to be #P -complete [27], or as hard as counting solutions to any NP-complete problem, so
solutions that efficiently produce estimates approximating the exact count are the best we
can expect.

Markov chains based on local moves, known as Glauber dynamics, are common in practice,
primarily because of ther simplicity. As an example, consider the following chain that can
be used to sample from the set of independent sets in a given graph, known in statistical
physics as the hard-core lattice gas model. Given a graph G, the state space Ω is the set
of independent sets. We are also given an input parameter λ, known as the fugacity (or
activity). Our goal is to sample from the Gibbs distribution

π(I) = λ|I|/Z,

where |I| is the size of independent set I and Z =
∑
J∈Ω λ

|J| is the normalizing constant
known as the partition function. We define the Glauber dynamics so that we can move
between pairs of configurations that differ by a single vertex, and the celebated Metropolis
Algorithm tells us how to implement these moves so that we converge to the Gibbs distribution
π, as follows. Starting at any configuration σ ∈ Ω, say the empty independent set (with
no vertices), we repeat the following: choose a vertex v at random; if v is in the current
independent set, remove it with probability min(1, λ−1)/2; if it is not in the independent
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set, add it with probability min(1, λ)/2, if possible; in all other cases, the independent set
remains unchanged. It is simple to show that this chain is ergodic and converges to π, so our
goal is to determine if it is efficient.

An interesting phenomenon occurs as λ is varied. For small values of λ, Glauber dynamics
converge quickly to stationarity, while for large values it is prohibitively slow. To see why,
imagine the underlying graph G is an n× n region of Z2. Large independent sets dominate
the stationary distribution π when λ is sufficiently large and lie on one of the two sublattices
(corresponding to each of the two colors of the checkerboard coloring on the dual lattice).
When λ is large, it will take exponential time to move from an independent set that lies
mostly on the odd sublattice to one that is mostly even. Currently, the best known rigorous
bounds verify the the Markov chain converges in polynomial time whenever λ < 2.538 [26]
and requires exponential time when λ > 5.365 [7, 8].

This type of dichotomy is well known in the statistical physics community, where many
models have been shown to abruptly transition from a disordered state to a predominantly
ordered one. Physicists observe phase transitions when extending Gibbs distributions to
infinite lattices and studying whether there is a unique limiting Gibbs measure, known as a
Gibbs state (see, e.g., [14]). For the hard-core model on Z2, is believed that there exists a
critical value λc such that for λ < λc there is a unique Gibbs state, while for λ > λc there
are multiple Gibbs states. This has been verified for small and large values of λ bounded
away from the conjectured critical point λc ≈ 3.79 in both the computational and physics
settings [7, 26].

Fortunately, insights from statistical physics can also allow us to design alternative
approaches to sampling in the slow regimes, in some cases. One approach that has proven
fruitful far below the critical point (in the slow regime) is based on the cluster expansion [18];
at sufficiently low temperatures, configurations have long-range order, and can be precisely
defined as small, randomized perturbations from some ground state, or highest probability
state. Then configurations can be sampled by first randomly picking a ground state, and
then inserting random defects with the appropriate conditional probabilities. A second
approach uses simulated tempering or parallel tempering to sample at low temperatures by
dynamically adjusting temperatures up and down during each simulation. These algorithms
can be effective when we can (i) generate random samples from a family of temperatures
so that low temperature configurations of interest arise often enough, and with the correct
conditional probabilities, and (ii) the composite Markov chain on the larger state space
(including configurations at all temperatures) converges quickly, even if it is prohibitively slow
at low temperatures [6]. Finally, in some contexts it may be possible to rewrite the partition
function as a sum over a different family of configurations, and this new representation may
suggest alternative Markov chains that are quickly converging, even at low temperatures
(see, e.g., [17, 28]).

3 Programmable Matter

Systems of programmable matter can be viewed as collections of simple interacting components
with constant-size memory and limited computational capacity. We are interested in how these
systems can be made to self-organize to produce emergent behaviors, such as coordination
and collective movement.

Using a stochastic approach based on Markov chains, we can design rigorous and robust
distributed algorithms for programmable matter exhibiting various desirable properties. For
example, for the compression problem, our goal is to design an algorithm that allows an

STACS 2020
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interacting particle system to self-organize and gather together compactly. We say a connected
particle system on a planar lattice is α-compressed if the perimeter of the ensemble is at
most α times the minimum perimeter possible for the n particles, pmin = Θ(

√
n). In [12], we

gave a distributed, local Markov chain-based algorithm that solves the compression problem
for connected particle systems under the geometric amoebot model [13], a formal distributed
model in which particles move on the triangular lattice.

Our approach to this and other basic tasks proceeds as follows. We first choose a Hamilto-
nian H(σ) over particle configurations that assigns lower values to preferable (compressed)
configurations. The transitions of the Markov chain are then defined to favor configurations
with small Hamiltonians. For compression, we let H(σ) = −e(σ), where e(σ) is the number
of edges induced by configuration σ, i.e., the number of lattice edges with both endpoints
occupied. Setting λ = eB, we get w(σ) = λe(σ). It is easy to verify that the number of
induced edges negatively correlated with the size of the perimeter, so the more induced edges,
the more compressed a configuration will be.

Using a Metropolis filter, we design a Markov chainM that performs local moves and
converges to a distribution that generates configurations proportional to their weight w(σ).
In particular, the probability of a configuration σ is w(σ)/Z, where Z =

∑
σ′ w(σ′) is the

normalizing constant known as the partition function. Using tools from both statistical
physics and Markov chain analysis, we prove that, if we wait long enough, non-compressed
configurations occupy an exponentially small fraction of probability distribution when λ is
sufficiently large.

The Markov chainM for compression is defined as follows. Starting with an arbitrary
configuration σ0 of n simply connected particles, we define local rules that maintain con-
nectivity throughout the algorithm. There is a bias parameter λ given as input, where
λ > 1 corresponds to particles prefering more neighbors and λ < 1 corresponds to particles
prefering fewer neighbors. The moves of the Markov chainM are carefully designed so that
the particle system always remains simply connected, preventing the chain to disconnect or
form holes, which still keeping the state space connected via allowable transitions (soM is
ergodic). Moreover, the moves are defined locally so that they can be implemented in a fully
distributed setting. Maintaining connectivity makes the analysis of the limiting distribution
simpler, but showing ergodicity is more challenging.

Particles individually execute a distributed algorithm defined byM, using Poisson clocks
to define when to attempt local moves. We prove that for all λ > 2 +

√
2, there is a constant

α = α(λ) > 1 such that at stationarity, with all but exponentially small probability, the
particle system will be α-compressed. In fact, we show that for any α > 1, there exists λ
such that our algorithms achieve α-compression. Moreoever, when λ is small we achieve the
inverse property of expansion. For all 0 < λ < 2.17, there is a constant β < 1 such that at
stationarity, with all but exponentially small probability, the perimeter will be β-expanded,
i.e., the perimeter will be within a β fraction of the maximum perimeter pmax = Θ(n). This
implies that for any 0 < λ < 2.17, the probability that the particle system is α-compressed is
exponentially small for any constant α > 1.

The key ingredient used to establish compression and expansion is a careful Peierls
argument, used in statistical physics to study non-uniqueness of limiting Gibbs measures
and in computer science to establish slow mixing of Markov chains. Because we enforce
connectivity throughout the Markov process, our Peierls arguments are significantly simpler
than many standard arguments on configurations that are not required to be connected. In
subsequent work, we extended these results to the disconnected setting where, in contrast,
verifying ergodicity becomes trivial but analyzing the stationary distribution requires more
sophisticated tools [15].
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One appeal of such a stochastic, distributed algorithm is its robustness. The system
can recover from deviations in Poisson clocks waking particles to perform moves, anomalies
in our individual particle’s movements, and even some particle failures. Moreoever, this
stochastic approach provides a general framework that is applicable beyond compression –
it has the potential to solve any problem where the objective can be described in terms of
minimizing some energy function, provided changes in that energy function can be calculated
using only local information. One example is an optimization problem inspired by ant
behavior [23] known as shortcut bridging where particles maintain bridge structures that
balance a efficiency-cost tradeoff [1, 2]. A second example is a self-organizing system achieving
separation, where particles of different colors can be shown to either intermingle or segregate
depending on the settings of parameters [11]. Distributed algorithms based on Markov chains
also have provided a theoretical explanation of phototaxing, or directed collective motion
towards or away from a light source, in an experimental system of swarm robots [24]. Finally,
we have promising directions for alignment and flocking, where oriented particles coordinate
to determine a preferred direction of movement. In many of these cases, the collective
behavior can be controlled by adjusting whether a physical system is in a disordered (gaseous)
or an ordered (solid) state by exploring the physical properties of these systems.
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Abstract
The Weisfeiler-Leman algorithm is a well-known combinatorial graph isomorphism test going back to
work of Weisfeiler and Leman in the late 1960s. The algorithm has a surprising number of seemingly
unrelated characterisations in terms of logic, algebra, linear and semi-definite programming, and
graph homomorphisms. Due to its simplicity and efficiency, it is an important subroutine of all
modern graph isomorphism tools. In recent years, further applications in linear optimisation,
probabilistic inference, and machine learning have surfaced. In the first part of my talk, I will give
an introduction to the Weisfeiler-Leman algorithm and its various characterisations. In the second
part I will speak about its applications, in particular about recent work relating the algorithm to
graph neural networks.
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Abstract
Ordinary Differential Equations (ODEs) appear to be a universally adopted and very natural way
for expressing properties for continuous time dynamical systems. They are intensively used, in
particular in applied sciences. There exists an abundant literature about the hardness of solving
ODEs with numerical methods.

We adopt a dual view: we consider ODEs as a way to program or to describe our mathematic-
al/computer science world. We survey several results considering ODEs under this computational
perspective, with a computability and complexity theory point of view. In particular, we provide
various reasons why polynomial ODEs should be considered as the continuous time analog of Turing
machines for continuous-time computations, or should be used as a way to talk about mathematical
logic.

This has already applications in various fields: determining whether analog models of computation
can compute faster than classical digital models of computation; solving complexity issues for
computations with biochemical reactions in bioinformatics; machine independent characterizations
of various computability and complexity classes such as PTIME or NPTIME, or proof of the
existence of a universal polynomial ordinary differential equation whose solutions can approximate
any continuous function if provided with a suitable well-chosen initial condition.
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1 Back to the history of analog models of computation

In 1941, Claude Shannon introduced in [42] the General Purpose Analog Computer (GPAC)
model as a model for the Differential Analyzer [13], on which he worked as an operator.

Differential Analysers were mechanical (and later on electronics) continuous time analog
machines. First ever built machine was built under the supervision of V. Bush 1931 at MIT:
Applications were from gunfire control up to aircraft design. First differential analyzers, such
as the ones at the time of Shannon, were mechanical. Electronic versions were used from
late 40s until 70s. Nowadays, company Analog paradigm is selling some modern differential
analyzers based on operational amplifiers.
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integrator: e0 = −
∫ t

0 (e1(u)du+ e(0))

Figure 1 Presentation of the 4 types of units: constant, adder, multiplier, and integrator.

−1

cos(t) −sin(t)

x y

Figure 2 Example of GPAC circuit: computing sine and cosine with two variables.

Basically, a GPAC is any circuit that can be build from the 4 basic units of Figure 1,
that is to say from basic units realizing constants, additions, multiplications and integrations,
all of them working over analog real quantities (that were corresponding to angles in the
mechanical Differential Analysers, and later on to voltage in the electronic versions).

Actually, not all kinds of interconnections must be allowed since this may lead to some
undesirable behavior (e.g. non-unique outputs. For further details, refer to [29]).

Figures 2 illustrates for example how the sine function can generated using two integrators,
with suitable initial state, as being the solution of ordinary differential equation{

y′(t)= z(t)
z′(t)= −y(t)

with suitable initial conditions.
Shannon, in his original paper, already mentioned that the GPAC generates polynomi-

als, the exponential function, the usual trigonometric functions, their inverses, and their
composition. More generally, Shannon claimed that all functions generated by a GPAC are
differentially algebraic in the sense of the following definition.

I Definition 1. A unary function y is differentially algebraic (d.a.) on the interval I if there
exists an n ∈ N and a nonzero polynomial p with real coefficients such that

p
(
t, y, y′, ..., y(n)

)
= 0, on I. (1)

As a corollary, and noting that the Gamma function Γ(x) =
∫∞

0 tx−1e−tdt is not d.a.
[38], we get that

I Proposition 2. The Gamma function cannot be generated by a GPAC.

Another famous example of not d.a. function is Riemann’s Zeta function ζ(x) =
∑∞
k=0

1
kx .
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2 Polynomial Ordinary Differential Equations (pODEs)

Following corrections and refinements [37, 34, 29, 27] of some statements from Shannon,
GPACs can be identified with polynomial Ordinary Differential Equations (pODE), i.e.
dynamics of type y′ = p(y) where y(t) = (y1(t), . . . , yd(t)) ∈ Rd is a (vectorial) function of
time, and p : Rd → Rd is a (vector of) polynomials, where d is some integer.

Hence, one can consider that a GPAC is a polynomial ordinary differential equation of
fixed dimension, or a polynomial initial value (pIVP) if some initial condition y(t0) = y0 is
added.

Following Shannon,

I Definition 3 ([42]). A function f : R→ R is GPAC-generable if it corresponds to some
(coordinate) projection of a solution of an pIVP: that is there exists a pODE (i.e. some p, t0,
i0 ∈ {1, 2, . . . , d} and y0 over Rd for some d) such that f(t) = yi0(t) for all t ∈ R.

The concept can naturally be extended to function f : Rm → Rm [42, 2]. From definition,
a GPAC-generable function is necessarily (real) analytic.

In modern terms, this concept is strongly related to the so-called class of Noetherian
functions [36] (and hence also to Pfaffian or differentially algebraic functions: see e.g. [24]).

The class of generable functions is particularly robust: Several variations on the GPAC
circuits were explored and proven to be all equivalent. This essentially shows that the above
notion is probably the right definition to be considered [27]. Furthermore, it has very strong
closure properties: For example.

I Proposition 4 ([28]). The class of functions generated by GPACs is closed under the
operations +,−,×,÷, under composition, derivation, and compositional inverses (i.e. if f is
generated by a GPAC, then so is f−1).

The following result states that the solution of an initial-value problem defined with
functions generated by GPACs is also generated by a GPAC.

I Proposition 5 ([28]). Consider the initial value problem (IVP){
x′ = f(t, x),
x(t0) = x0,

(2)

where f : Rn+1 → Rn and each component of f is a composition of polynomials and functions
generated by GPACs. Then there exist m ≥ n, a polynomial p : Rm+1 → Rm and a y0 ∈ Rm
such that the solution of (2) is given by the first n components of y = (y1, ..., ym), where y is
the solution of the polynomial IVP{

y′ = p(t, y),
y(t0) = y0.

(3)

A digression in order to possibly help with intuition: Let us authorize ourselves in this
single paragraph to leave the world of formal mathematical statements, to possibly help
for intuition: It follows from all these closure properties that “most” “common” analytic
functions fall in the class of generable functions and turn out to be GPAC-generable, i.e.
generable with a differential analyzer. Of course, this last statement is not referring to a
well-defined concept of “most” and “common”, but to some well-known fact to engineers
at the time of analog machines: Repeating Shannon [42], “When the Differential Analyzers
was first built it was thought that all functional relationships between terms of the equation
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being solved would have to be introduced into the machine by means of input tables. Soon
it was found that practically all the important simple functions could be ’generated’ using
only integrators and adders.”. This phenomenon has similarities with the class of computable
functions in classical computability which include all “most” “common” functions, even if
we can build some non-computable functions (e.g. by diagonalization).

Back to the mathematical world: From Shannon’s analysis, as we know some (analytic)
Turing computable (in the sense of computable analysis) non-differentially algebraic functions
(e.g. Euler’s ζ and Riemann’s Γ) it was deduced that the model is not Turing complete, and
the model was mainly forgotten.
I Remark 6. Observe that the proofs of the non-differential algebraicity of ζ and Γ by
respectively Hilbert and Hölder [31] can consequently be seen as a proof of uncomputability
(ungenerability to be more precise) really different from usual methods of (un)computability
such as diagonalization.

3 Revisiting computability with polynomial ordinary differential
equations

We proved in 2007 [6] that this statement about the limitation of the computational power
of the GPAC model comes mainly from a misconception of what was called computable at
the time of Shannon with respect to what would be called such today: If the input is given
as some initial data, and if we allow the machine not to produce its output in real-time,
but after some delay (i.e. after some computation time (encoded by the delay required
for yj to be less than required precision in Theorem 9 which follows)), as in all modern
models of computations, then the model can compute any function that is classically (Turing)
computable.

Call this notion GPAC-computability by opposition to GPAC-generability: GPAC-
computability does correspond to classical (i.e. Turing) computability [5]. Consequently, the
class of GPAC-computable does inherit from all the closure and robustness properties of
computable functions and does include all GPAC-generable functions, as well as functions
such as Γ, ζ and many others, as soon as we know that there are (Turing) computable.

Formally (see Figure 3 for illustration).

IDefinition 7. A function f : [a, b]→ R is GPAC-computable iff there exist some polynomials
with polynomial coefficients p : Rn+1 → Rn, p0 : R→ R, and n− 1 computable real values
α1, ..., αn−1 such that:
1. (y1, ..., yn) is the solution of the Cauchy problem y′ = p(y, t) with initial condition

(α1, ..., αn−1, p0(x)) set at time t0 = 0
2. There are i, j ∈ {1, ..., n} such that limt→∞ yj(t) = 0 and |f(x) − yi(t)| ≤ yj(t) for all

x ∈ [a, b] and all t ∈ [0,+∞).

We remark that α1, . . . , αn−1 are auxiliary parameters needed to compute f .
The following is true with this notion of computation:

I Proposition 8 ([27]). The Gamma function Γ is GPAC-computable.

And more generally:

I Theorem 9. Let a and b be computable reals. A function f : [a, b]→ R is computable in
the sense of computable analysis iff it is GPAC-computable.



O. Bournez 3:5

Time (t)

Input (x0)
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f(x0)
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Figure 3 Graphical illustration of Definition 7.

t

θ1(t)

t

φ1(t)

Figure 4 A continuous system before and after an exponential time speed-up.

More importantly, to prove so, we developed some ad hoc techniques to program with
pODEs: how to realize assignments, iterations, loops, etc. with differential equations. This
led us to understand that pODEs play a very particular role, in particular, if one wants to
go to complexity theory, and not only computability theory.

4 Complexity theory with polynomial ordinary differential equations

This connection between Turing computability and the GPAC was recently refined [9, 8] at
the level of complexity, with a characterization of the class PTIME and polynomial time
computable real functions.

Defining a robust time complexity notion for continuous time systems was a well-known
open problem [4], with several attempts, but with no generic solution provided. In short, the
difficulty is that the naive idea of using the time variable of the ODE as a measure of “time
complexity” is problematic, since time can be arbitrarily contracted in a continuous system
due to the “Zeno phenomena” (here time-contraction). For example, consider a continuous
system defined by an ODE y′ = f(y) where f : R→ R and with solution θ : R→ R. Now
consider the following system y′ = f(y)z, z′ = z with solution φ : R2 → R2. This system
re-scales the time variable and that its solution φ = (φ1, φ2) is given by φ2(t) = et and
φ1(t) = θ(et) (see Figure 2). Therefore, the second ODE simulates the first ODE, with an
exponential acceleration. Similarly, it is also possible to present an ODE which has a solution
with a component ϕ1 : R→ R such that ϕ1(t) = φ(tan t), i.e. it is possible to contract the
whole real line into a bounded set. Thus any language computable by the first system (or, in
general, by a continuous system) can be computed by another continuous system in time
O(1). This problem appears not only for PIVPs (or, equivalently, GPACs), but also for many
continuous models (see e.g. [40], [41], [35], [3], [14], [21], [18], [19]). We illustrated here time
contraction, but a space contraction (or both simultaneously) is also possible, using a change
of variable on space variable y.

We solved the above mentioned open problem for time complexity and proved that a
robust notion of computation time for a pIVP is provided by the length of the solution (up
to polynomial time) in [9, 8].

This has been established by proving that a time t Turing machine can be simulated (we
established this direction using ad hoc suitable pODE programming) in a length poly(t),
and conversely that pODE can be solved (we established this direction using an original
numerical method) by a Turing machine in a time polynomial in the length of the solution.
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leny
f(x)

x

y1

e−0

L(0)

e−1

L(1)

Figure 5 Graphical representation of Theorem 2: on input x, starting from initial condition
(x, 0, . . . , 0), the pODE y′ = p(y) ensures that yi(t) gives f(x) with accuracy better than e−µ as
soon as the length of y (from 0 to t) is greater than L(µ). Other variables y1, . . . , yi−1, yi+1, . . . , yn
are not plotted and the horizontal axis measures the length of y (instead of time t).

Formally: We recall that the length of a curve y ∈ C1(I,Rn) defined over some interval
I = [a, b] is given by leny(a, b) =

∫
I
‖y′(t)‖2 dt.

I Theorem 10 ([8], Equivalence between GPAC and CA (Complexity)). A function f : [a, b]→
R is computable in polynomial time (in the sense of Computable Analysis) if and only if
there exists a polynomial L : R+ → R+, an integer d, i ∈ {1, 2, . . . , d} and a vector of
polynomials p : Rd → Rd with coefficients in Q, such that for any x ∈ [a, b], the unique
solution y : R+ → Rd to

y(0) = (x, 0, . . . , 0), y′(t) = p(y(t))

satisfies for all t ∈ R+:
for any µ ∈ R+, if leny(0, t) > L(µ) then |f(x)− yi(t)| 6 e−µ,
‖y′(t)‖ > 1.

In other words, the precision of yi increases with the length of the curve. More precisely,
as soon as the length between 0 and t is at least L(µ), the precision is at least e−µ. Notice
how rescaling the curve would not help here since it does not change the length of y. The
second condition on the derivative of y prevents some pathological cases and ensures that
curve has infinite length, and thus that yi indeed converges to f(x). It is possible to extend
this equivalence to multivariate functions and unbounded input domains such as R, by
making L take into account the norm of x.

Previous statement is a characterization of functions computable in polynomial time, i.e.
FPTIMER over the reals. If one wants to talk about decision problems over alphabet {0, 1},
it possible to define the class PTIME directly in terms of differential equations, by encoding
words with rational numbers. Again the length plays a crucial role, but since a differential
equation does not “stop”, the component yi is used to signal that it accepts (yi > 1) or
rejects (yi 6 −1).

I Theorem 11 ([8], Analog characterization of PTIME). A language L ⊆ {0, 1}∗ belongs
to PTIME, the class of polynomial time decidable languages, if and only if there exist a
polynomial L : N→ N, an integer d, i ∈ {1, 2, . . . , d} and a vector of polynomials p : Rd → Rd
with coefficients in Q, such that for all words w ∈ {0, 1}∗, the unique solution y : R+ → Rd
to

y(0) = (0, . . . , 0, |w|, ψ(w)), y′(t) = p(y(t))

where ψ(w) =
∑|w|
i=1 wi2−i, satisfies for all t ∈ R+:

if |yi(t)| > 1 then |yi(u)| > 1 for all u > t > 0 (and similarly for |yi(t)| 6 −1),
if w ∈ L (resp. /∈ L) and leny(0, t) > L(|w|) then yi(t) > 1 (resp. 6 −1),
‖y′(t)‖ > 1.
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One clear interest of the previous statements is that they provide a way to define
classical concepts from the theory of computation (computable function, polynomial time
computable functions) only using concepts from analysis, namely polynomial ordinary
differential equations.

This has many consequences: This provides a way to define classical concepts from the
theory of computation using only concepts from analysis: Theorem 10 provides a definition
of computability for functions more natural than the classical digression through type 2
computability (see e.g. [43]), in particular when presenting the concept to people working in
analysis. This transforms the question whether analog models can solve faster problems (even
about the discrete) than classical means to a question about lengths of solutions. This proves
that pODE solving is (PTIME-)complete in its length and solves the issue of avoidance of
the so-called Zeno’s phenomenon in the verification community in models of hybrid and
cyberphysical systems [8]. This also brings new perspectives on some philosophical concepts
such as time for systems of our physical world.

5 Some applications of pODE programming

Actually, more generally, ODEs is universal language in many domains, in particular in
applied fields (physics, biology, . . . ). We already used our “ODE programming technology”
to solve several open problems in various fields. We illustrate this with several examples in
the rest of this article.

5.1 A universal ordinary differential equation
In computer algebra, a well-known surprising result is due to L. A. Rubel who proved in
1981 in [39] that there exists a fixed non-trivial fourth-order polynomial differential algebraic
equation (DAE)

p(y, y′, . . . , yd) = 0

such that for any continuous positive function ϕ on the reals, and for any continuous positive
function ε(t), it has a C∞ solution with |y(t)− ϕ(t)| < ε(t) for all t. Lee A. Rubel provided
an explicit example of such a polynomial DAE [39]. Other examples of universal DAE have
later been proposed by other authors.

However, while this result may seem very surprising, its proof is quite simple, is frustrating,
and is mainly an indication that DAE is too loose a model for modeling purpose:

First, the involved notions of universality is far from usual notions of universality in
computability theory because the proofs heavily rely on the fact that constructed DAE
does not have unique solutions for a given initial data. Indeed, in general a DAE may
not have a unique solution, given some initials conditions. But Rubel’s DAE never has a
unique solution, even with a countable number of conditions of the form y(ki)(ai) = bi.
This is very different from usual notions of universality where one would expect that
there is clear unambiguous notion of evolution for a given initial data, for example as in
computability theory.
Second, the proofs usually rely on solutions that are piecewise defined. Hence they cannot
be analytic, while analycity is often a key expected property in experimental sciences.
Third, the proofs of these results can be interpreted more as the fact that (fourth-order)
polynomial algebraic differential equations is a too loose a model compared to classical
ordinary differential equations. In particular, one may challenge whether the result is
really a universality result.
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The question whether one can require the solution that approximates ϕ to be the unique
solution for a given initial data was a well-known open problem [39, page 2], [1, Conjecture
6.2]. In [10], using ODE programming, we solved it and showed that Rubel’s statement holds
for polynomial ordinary differential equations, and since polynomial ODEs have a unique
solution given an initial data, this positively answers Rubel’s open problem:

I Theorem 12 ([11], Universal PIVP). There exists a fixed polynomial vector p in d variables
with rational coefficients such that for any functions f ∈ C0(R) and ε ∈ C0(R,R∗+), there
exists α ∈ Rd such that there exists a unique solution y : R → Rd to y(0) = α, y′ = p(y).
Furthermore, this solution satisfies that |y1(t)− f(t)| 6 ε(t) for all t ∈ R, and it is analytic.

Furthermore, α can be computed from f and ε (in the sense of Computable Analysis).

Using the fact that polynomial ODEs can be transformed into differentially algebraic
equations (see [15]), the following then follows.

I Theorem 13 ([11], Universal DAE). There exists a fixed polynomial p in d+ 1 variables
with rational coefficients such that for any functions f ∈ C0(R) and ε ∈ C0(R,R∗+), there
exists α0, . . . , αd−1 ∈ R such that there exists a unique analytic solution y : R → R to
y(0) = α0, y

′(0) = α1, . . . , y
(d−1)(0) = αd−1, p(y, y′, . . . , yd) = 0. Furthermore, this solution

satisfies that |y(t)− f(t)| 6 ε(t) for all t ∈ R.
Furthermore, α can be computed from f and ε (in the sense of Computable Analysis).

5.2 Strong Turing completeness of biochemical reactions
Ordinary differential equations is a well-used models for modeling the dynamics of chemical
reactions. In particular, the Turing completeness of kinetic reactions was an open problem
(see e.g. [17, Section 8]) that we solved using previous polynomial ODE programming
technology: we prove the Turing completeness of chemical reaction networks over a finite set
of molecular species under the differential semantics in [23].

A biochemical reaction system is a positive dynamical system living in the cone Rn+, where
the state is defined by the positive concentration values of the molecular species. We restrict
to elementary reaction systems, governed by the mass-action-law kinetics and where each
reaction has at most two reactants.

In short, letM be a finite set of n molecular species {y1, . . . , yn}.

I Definition 14 ([22]). A reaction is a triple (R,P, f), where R :M→ N is a multiset of
reactants, P :M→ N is a multiset of products and f : Rn+ → R+, called the rate function,
is a partially differentiable function verifying R(yi) > 0 iff ∂f

∂yi
(y) > 0 for some y ∈ Rn+.

A reaction system is a finite set of reactions.
A mass-action-law reaction is a reaction in which the rate function f is a monomial of

the form k ∗Πy∈My
R(y) where k is called the rate constant.

An elementary reaction is a mass-action-law reaction with at most two reactants.

I Definition 15 ([22]). The differential semantics of a reaction system {(Ri, Pi, fi)}i∈I is
the ODE system

{y′ = Σi∈I(Ri(y)− Pi(y)) ∗ fi}y∈M.

The dynamics given by the law of mass action leads to a polynomial ODE system of
the form y′(t) = p(y(t)) with p(y)i =

∑
j(Pj(yi) − Rj(yi) ∗ kj ∗ Πn

i=1yi
Rj(yi). There are

thus additional constraints, compared to general polynomial ordinar differential equations:
the components yi must always be positive, and the monomials of pi whose coefficient is
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negative must have a non-zero yi exponent. These constraints are necessary conditions for the
existence of a set of biochemically realizable reactions that react according to the dynamics
y′ = p(y).

Interestingly, we prove that the previous computability and complexity results can be
generalized to elementary biochemical reaction systems. First, the restriction to positive
systems is shown complete, by encoding each component yi by the difference between two
positive components y+

i and y−i , which can be normalized by a mutual annihilation reaction,
y+
i + y−i ⇒ _, so that one variable is null.

I Definition 16. A function f : R+ → R+ is chemically-computable if there exist a mass-
action-law reaction system {(Ri, Pi, fi)}i∈I over some molecular species {y1, ..., yn}, and a
polynomial q ∈ R+

n[R+] defining the initial concentration values, such that f is GPAC-
computed by q and its (polynomial) differential semantics p ∈ R+

n[R+
n].

A function f : R+ → R is chemically-computable if there exists a chemically computable
function f+ : R+ → R+

2over {y+
1 , ..., y

+
n , y

−
1 , ..., y

−
n } such that f = f+

1 − f
−
2 .

In this definition, to compute f(x), one has thus to design a reaction system over a finite
set of molecular species, initialized to some values defined by a vector of polynomials q(x)
(e.g. following [12, 16]), which guarantees that the result is obtained in the concentration
of one distinguished molecular species, with a precision indicated by another distinguished
molecular species (see Definition 7).

We prove.

I Theorem 17 ([23]). Any GPAC-computable function can be computed by a mass-action-law
reaction system under the differential semantics preserving the polynomial length complexity.

I Theorem 18 ([23]). Elementary reaction systems on finite universes of molecules are
Turing-complete under the differential semantics.

5.3 Revisiting classical computability theory with discrete ODEs
We also came to a discrete counterpart of classical continuous ODEs: discrete ODEs: Its
associated derivative notion, called finite differences, has been widely studied in numerical
optimization for function approximation [25] and is reminiscent in discrete calculus [30, 26,
32, 33] for combinatorial analysis. Similarities between discrete and continuous statements
have also been historically observed, under the terminology of umbral or symbolic calculus as
early as in the 19th century. However, even if the underlying computational content of finite
differences theory is clear and has been pointed out many times, no fundamental connections
with algorithms and complexity have been exhibited so far.

We started to demonstrate that discrete ODEs is a very natural tool for algorithm
design and to prove that complexity and computability notions can be elegantly and simply
captured using discrete ordinary differential equations. We illustrated this by providing a
characterization of FPTIME, the class of polynomial time computable functions, and of
its non deterministic analog FNP. To this aim, we also demonstrated how some notions
from the analog world such as linearity of differential equations or derivatives along some
particular functions (i.e. changes of variables) are representative of a certain computational
hardness and can be used to solve efficiently some (classical, digital) problems.

More concretely, we focus on functions over the integers of type f : Np → Zd, or functions
of type f : Zp → Zd, for some integers p, d. The basic idea is to consider the following concept
of derivative, introduced here for the case where p = 1. We will later on consider more
general functions, with partial derivatives instead of derivatives (defined then as expected).
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I Definition 19 (Discrete Derivative). The discrete derivative of f(x) is defined as ∆f(x) =
f(x + 1) − f(x). We will also write f ′ for ∆f(x) to help to understand statements with
respect to their classical continuous counterparts.

We proposed to introduce the following variation on the notion of derivation: derivation
along some function L(x, y).

I Definition 20 (L-ODE). Let L : Np+1 → Z. We write

∂f(x, y)
∂L

= ∂f(x, y)
∂L(x, y) = h(f(x, y), x, y), (4)

as a formal synonym for f(x+ 1, y) = f(x, y) + (L(x+ 1, y)− L(x, y)) · h(f(x, y), x, y).

I Remark 21. This is motivated by the fact that the latter expression is similar to classical
formula for classical continuous ODEs:

δf(x, y)
δx

= δL(x, y)
δx

· δf(x, y)
δL(x, y) .

This allows us to simulate suitable changes of variables using this analogy. We talk about
L-Initial Value Problem (IVP) when some initial condition is added. An important special
case is when L(x, y) corresponds to the bit length L(x, y) = `(x) function: we call this special
case length-ODEs. Let sg(x) : Z→ Z denotes the function that takes value 1 for x > 0 and
0 in the other case.

I Definition 22. A sg-polynomial expression P (x1, ..., xh) is an expression built-on +,−,×
(often denoted ·) and sg() functions over a set of variables V = {x1, ..., xh} and integer
constants. The degree deg(x, P ) of a term x ∈ V in P is defined inductively as follows:

deg(x, x) = 1 and for x′ ∈ X ∪ Z such that x′ 6= x, deg(x, x′) = 0
deg(x, P +Q) = max{deg(x, P ),deg(x,Q)}
deg(x, P ×Q) = deg(x, P ) + deg(x,Q)
deg(x, sg(P )) = 0

A sg-polynomial expression P is essentially constant in x if deg(x, P ) = 0.

Compared to the classical notion of degree in polynomial expression, all subterms that
are within the scope of a sign function contributes 0 to the degree. A vectorial function (resp.
a matrix or a vector) is said to be a sg-polynomial expression if all its coordinates (resp.
coefficients) are. It is said to be essentially constant if all its coefficients are.

I Definition 23. A (possibly vectorial) sg-polynomial expression g(f(x, y), x, y) is essentially
linear in f(x, y) if it is of the form g(f(x, y), x, y) = A[f(x, y), x, y] · f(x, y) +B[f(x, y), x, y]
where A and B are sg-polynomial expressions essentially constant in f(x, y).

I Example 24. The expression P (x, y, z) = x · sg((x2 − z) · y) + y3 is linear in x, essentially
constant in z and not linear in y. The expression P (x, 2`(y), z) = sg(x2 − z) · z2 + 2`(y) is
essentially constant in x, essentially linear in 2`(y) (but not essentially constant) and not
essentially linear in z. The expression: if(x, y, z) = y+ s̄g(x) · (z−y) = y+ (1− sg(x)) · (z−y)
is essentially constant in x and linear in y and z.

I Definition 25. Function f is linear L-ODE definable (from u, g and h) if it corresponds
to the solution of L-IVP

∂f(x,y)
∂L = u(f(x, y), h(x, y), x, y) f(0, y) = g(y) (5)

where u is essentially linear in f(x, y). When L(x, y) = `(x), such a system is called linear
length-ODE.
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I Definition 26 (DL). Let DL be the smallest subset of functions, that contains 0, 1,
projections πpi , the length function `(x), the addition function x+y, the subtraction function
x−y, the multiplication function x × y (often denoted x · y), the sign function sg(x) and
closed under composition (when defined) and linear length-ODE scheme.

I Theorem 27 ([7]). DL = FPTIME

Previous ideas used here for FPTIME can also be extended to provide a characterization
of other complexity classes. This includes the possibility of characterizing the class FNP
as we did in [7]. Our current investigations concern PTIME[0,1] of functions computable in
polynomial time over the reals in the sense of computable analysis, or more general classes
of classical discrete complexity theory such as FPSPACE.

More generally, it is also very instructive to revisit classical algorithmic under this
viewpoint, and for example one may realize that even inside class PTIME, the Master
Theorem (see e.g. [20, Theorem 4.1] for a formal statement) can be basically read as a
result on (the growth of) a particular class of discrete time length ODEs. Several recursive
algorithms can then be reexpressed as particular discrete ODEs of specific type.
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Abstract
Graphical models (GMs) define a family of mathematical models aimed at the concise description of
multivariate functions using decomposability. We restrict ourselves to functions of discrete variables
but try to cover a variety of models that are not always considered as “Graphical Models”, ranging
from functions with Boolean variables and Boolean co-domain (used in automated reasoning) to
functions over finite domain variables and integer or real co-domains (usual in machine learning and
statistics). We use a simple algebraic semi-ring based framework for generality, define associated
queries, relationships between graphical models, complexity results, and families of algorithms, with
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1 Introduction

Graphical models are descriptions of decomposable multivariate functions. A variety of
famous frameworks in Computer Science, Logic, Constraint Satisfaction/Programming,
Machine Learning, Statistical Physics and Artificial Intelligence can be considered as specific
sub-classes of graphical models. In this paper, we restrict ourselves to models describing
functions of variables having each a finite (therefore discrete) domain with a totally ordered
co-domain, that may be finite or not. This excludes, for example, “Gaussian Graphical
Models” which are used in statistics, describing continuous probability densities.
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4:2 Graphical Models

A graphical model over a set of variables is defined by a finite set of small functions
which are combined together using a binary associative and commutative operator, defining
a joint multivariate function. The combined functions may be small because they involve
few variables or because they are described using a restricted language.

As an example, propositional logic (PL) is organized around the idea of describing logical
properties as functions over Boolean variables. From the values of these variables, one should
be able to determine if a property is true or not. A usual way to achieve this is to use clauses
(disjunction of variables or their negation) as “small functions” and combine them with
conjunction, defining the Conjunctive Normal Form. The resulting joint function defines the
truth value of the formula. Various queries on such graphical models have been considered:
existence of a variable assignment that optimizes the joint function, the SAT/PL problem,
model counting (the #P-complete #-SAT/PL problem), etc.

If we instead use tensors to describe Boolean functions over sets of variables of bounded
cardinality and combine these functions with conjunction again, we obtain a constraint
network (CN) and the existence of an assignment that optimizes the joint function is the
Constraint Satisfaction Problem (CSP/CN).

In the extreme, we may use tensors to describe small real (in R) functions combined
using addition or multiplication, enabling the description of discrete probability distributions,
as done with Markov Random Fields (MRFs) and Bayesian Networks (BNs) [74, 16]. The
associated optimization problem is the Maximum A Posteriori (MAP/MRF) problem and
weighted counting allows to compute the partition function [74] (or normalizing constant),
another #P-complete problem with important applications in statistical physics and machine
learning. The terminology of “graphical models” comes from the stochastic facet of GMs.
Stochastic graphical models are of specific interest because they can be learned (or estimated)
from data. Assuming that an i.i.d. sample of an unknown probably distribution is available,
one may look for a graphical model that gives maximum probability to the sample. This
maximum-likelihood approach has attractive asymptotic properties [74]. Efficient approximate
estimation algorithms based on convex optimization exist [95]. Because of the unavoidable
sampling noise, exact optimization algorithms are usually not sought. In this paper, we
assume that the graphical models are known, either because they describe known rules or
functions or have been previously estimated from data.

In this stochastic case, algorithms that provide some form of guarantee remain desirable,
especially if the considered graphical model combines logical (deterministic) information,
describing known/required properties, with probabilistic information learned from data.
Indeed, logical information cannot be approximated without a complete loss of semantics.

In the rest of this paper, we first give an algebraic definition of what a graphical
model is and consider the most usual queries. We then introduce the two main families of
algorithms that can be used to exactly solve such queries: tree search and non-serial dynamic
programming. Restricted to small sub-problems, we show how dynamic programming can
provide fast approximate algorithms, called message-passing or local consistency enforcing
algorithms, including associated polynomial classes. We then consider some empirically
useful hybrid algorithms, with associated solvers, based on these approaches and recent
applications in structural biology.

2 Notations, Definition

Variables are denoted as capital variables X,Y, Z, . . . that may be optionally indexed (Xi or
just i). Variables can be assigned values from their domain. The domain of a variable X
is denoted as DX or Di for variable Xi. Actual values are represented as a, b, c, g, r, t, 1 . . .
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and an unknown value denoted as u, v, w, x, y, z . . . . Sequences or sets of objects are denoted
in bold. A sequence of variables is denoted as X,Y ,Z, . . . A sequence of values is denoted as
u,v,w,x,y, z . . .. The domain of a sequence of variables X is denoted as DX , the Cartesian
product of the domains of all the variables in X. An assignment uX is an element of DX

which defines an assignment for all the variables in X. Finally, we denote by uX [Y ] (or uY )
the projection of uX on Y ⊆X: the sequence of values that the variables in Y takes in uX .

I Definition 1 (Graphical Model). A Graphical ModelM = 〈V ,Φ〉 with co-domain B and a
combination operator ⊕ is defined by:

a sequence of n variables V , each with an associated finite domain of size less then d.
a set of e functions (or factors) Φ. Each function ϕS ∈ Φ is a function from DS → B.
S is called the scope of the function and |S| its arity.

M defines a joint function:

ΦM(v) =
⊕

ϕS∈Φ
ϕS(v[S])

In this definition we assume that the co-domain B is totally ordered (by ≺) with a
minimum and maximum element. Arbitrary elements of B will be denoted by Greek letters
(α, β, . . .). The combination operator ⊕ is required to be associative, commutative, monotonic
and has an identity element 0 ∈ B, the minimum element of B. The maximum element > of B
is required to be absorbing (α⊕> = >). This set of axioms defines what is called a valuation
structure [104], introduced in AI to represent graded beliefs or costs in Constraint Networks.
It is closely related to triangular co-norms, often using B = [0, 1] [72]. It is also known as
a tomonoid in algebra and includes tropical algebra [56]. Commutativity and associativity
make the combination insensitive to the order of application of ⊕. Monotonicity captures
the fact that adding more information can only strengthen it. Finally, the specific roles of
the maximum and minimum elements of B are here to express deterministic information: 0
represents the fact that a function has reached an absolute minimum and this has no effect
on the value of the joint function value Φ. Instead, any combined function taking value >
will lead to a joint function that is also equal to >. For simplicity, we assume that elements
of B can be represented in constant space and that a⊕ b can be computed in constant time.
An important additional property of ⊕ is often considered: idempotency (α⊕ α = α). As
section 6.1 will show, it has strong algorithmic implications. Finally, such valuation structures
are said to be fair if, for any elements of B such that β 4 α, there exists a maximum γ such
that β ⊕ γ = α (such a γ may not exist in infinite structures). This element γ is denoted
α	 β and defines a pseudo-inverse operator 	 (we have β ⊕ (α	 β) = α).

Table 1 Some valuation structures. Idemp. indicates the idempotency of ⊕. See [33] for details.

Structure (GM) B a⊕ b ≺ 0 > Idemp. a	 b
Boolean (PL,CN) {t, f} a ∧ b t<f t f yes a

Additive (GAI) N̄ a+ b < 0 +∞ no a− b
Weighted (CFN) {0,1, . . . , k} min(k, a+b) < 0 k no (a=k ? k : a−b)
Probabilistic (MRF,BN) [0, 1] a× b > 1 0 no a/b

Possibilistic (PCN) [0, 1] max(a, b) < 0 1 yes max(a, b)
Fuzzy (FCN) [0, 1] min(a, b) > 1 0 yes min(a, b)

Valuation structures have been analyzed in detail [33, 31]. We know that any fair
and countable valuation structure can be viewed as a stack of additive/weighted valuation
structures, which interact with each other as an idempotent structure (thus using ⊕ = max).
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The case ⊕ = max being very close to the case of classical Constraint Networks [88, page
293], most of the work has since then focused on the weighted and probabilistic cases.

The mathematical definition of graphical models above needs to be further refined by
defining how the functions ϕS ∈ Φ are represented. Thanks to the assumption of finite
domains, a universal representation of functions can be obtained using tensors (or multi-
dimensional tables) that map any sequence of values uS ∈ DS to an element of B. This
representation requires O(d|S|) space where d is the maximum domain size. When useful,
alternative specialized representations may be used, with possibly different complexities for
various elementary operations and queries.

Altogether, this definition of graphical models covers a variety of well-studied frameworks,
including constraint networks [101] (tensors + Boolean), propositional logic [14] (Boolean
domains, clauses + Boolean), generalized additive independence models [7] (tensors + addi-
tive), weighted propositional logic (Boolean domains, clauses + additive), Markov Random
Fields [71, 74] (tensors + Probabilistic), Bayesian networks [74] (MRFs with normalized
tensors describing conditional probabilities, organized according to a directed acyclic graph),
Possibilistic and Fuzzy Constraint Networks [48] (tensors + Possibilistic/Fuzzy). There are
various related models, such as Ceteris Paribus networks (or CP-nets [47]) that could be
covered using a weaker set of axioms, possibly too weak to prove interesting results.

We are biased in the paper towards the family of Cost Function Networks (CFN) which
are GMs using tensors (extended with so-called “global functions”, see e.g. [81, 3]) and the
Weighted structure. This combines the ability of combining additive finite weights with a
finite upper bound cost that appears naturally in many situations.

I Definition 2. Two graphical models M = 〈V ,Φ〉 and M′ = 〈V ,Φ′〉, with the same
variables and valuation structure are equivalent iff they define the same joint function:
∀v ∈ DV ,ΦM(v) = ΦM′(v).

CFNs have a tight relationship with stochastic graphical models. Since log(a × b) =
log(a) + log(b), a −log transform applied to elements of B followed by suitable scaling,
shifting and rounding can transform any stochastic graphical model into a Cost Function
Network defining a joint function that represents a controlled approximation of the −log() of
the joint function of the stochastic model. The function log being monotonic, MAP/MRF
and WCSP/CFN are essentially the same problems.

I Definition 3. Given two graphical modelsM = 〈V ,Φ〉 andM′ = 〈V ,Φ′〉, with the same
variables and valuation structure,M is a relaxation ofM′ iff ∀v ∈ DV ,ΦM(v) 4 ΦM′(v).

In a graphical model, the set of variables V and the set of scopes S of the different
functions ϕS ∈ Φ define a hyper-graph whose vertices are the variables of V and the
hyper-edges the different scopes. In the case in which the maximum arity is limited to 2,
this hyper-graph is a graph, called the constraint graph or problem graph (hence the name
graphical model). When larger arities are present, one can use the 2-section of the hypergraph
as an approximation of it, often called the primal or moral graph of the GM. The bipartite
incidence graph of this hypergraph has elements of V and Φ as vertices, an edge connecting
X ∈ V to ϕS iff X ∈ S and is often called the factor graph [1] of the graphical model.
This hyper-graph or its incidence graph only captures the overall structure of the model but
neither the domains nor the functions. Therefore, a more fine-grained representation, known
as the micro-structure graph, is often used to represent (pairwise) graphical models, vertices
representing values and weighted edges the value of functions on pairs of values.



M.C. Cooper, S. de Givry, and T. Schiex 4:5

3 Queries

A query over a graphical model asks to compute simple statistics over the function such
as its minimum or average value. Such queries already cover a wide range of practical
usages. Assuming that true ≺ false, the SAT/PL [14] and CSP/CN [101] problems
are equivalent to finding the minimum of the joint function, which is also the case for
(Weighted) Max-SAT, WCSP/CFN, MAP/MRF (or MPE/BN aka Maximum Probability
Explanation in Bayesian Networks). In these optimization problems, we want to compute
minv∈DV

Φ(v). Alternatively, for numerical B, counting problems require to compute∑
v∈DV

Φ(v). A relatively general situation can be captured by introducing a so-called
“elimination” operator ⊗, assumed to be associative, commutative and such that ⊕ distributes
over ⊗: α ⊕ (β ⊗ γ) = (α⊕ β)⊗ (α ⊕ γ). The two operations (⊗,⊕) and their associated
properties have been studied, with some variations, under a variety of names, often in relation
with non-serial dynamic programming [110, 17, 1, 73, 72, 56]. The query to answer becomes⊗

v∈DV
⊕ϕS∈ΦϕS(v[S]).

A powerful toolbox on graphical models can be built from three simple operations:
assignment (or conditioning), combination and elimination.

Given a function ϕS , it is possible to assign a variable Xi ∈ S with a value a ∈ Di. We
obtain a function on T = S − {Xi} defined by ϕT (v) = ϕS(v ∪ {Xi = a}). If we assign all
the variables of a function, we obtain a function with an empty scope, denoted ϕ∅. This
operation has negligible complexity (we directly access a part of the original cost function).

The second operation is the equivalent of the relational join operation in databases:
it combines two functions ϕS and ϕS′ into a single function, which is equivalent to their
combination by ⊕. The resulting function has the scope S ∪ S′ and is defined by (ϕS ⊕
ϕS′)(v) = ϕS(v[S])⊕ ϕS′(v[S′]). The calculation of the combination of the two functions is
exponential in time and space (O(d|S∪S′|)). Observe that we can replace a set of functions
by their combination without changing the joint function defined by the graphical model
(preserving equivalence).

Finally, the elimination operation consists in summarising the information from a function
ϕS on a subset of variables T ⊂ S. The elimination of the variables of S − T in ϕS leads
to its so-called projection (or marginal) onto T , the function ϕT (u) =

⊗
v∈DS−T

ϕS(u ∪ v).
Since elimination requires enumerating the whole domain DS of ϕS , it has time complexity
O(d|S|). The resulting function requires O(d|T |) space. If S − T is a singleton {Xi}, we will
denote by ϕS [−Xi] = ϕS [S − {Xi}] the result of the elimination of the single variable Xi.

These complexities are given for functions represented as tensors. They may change if
other languages such as clauses, analytic representation or compact data structures such as
weighted automata or decision diagrams [38, 51] are used to represent functions.

We close this section by expressing simple graph problems as WCSP/CFNs.
Given an undirected graph G = 〈V ,E〉 with vertex set V and edge set E, we can define

the following WCSP/CFNM = 〈V ,Φ〉 problems, having one variable per vertex:
s−tMin-Cut: ∀i ∈ V \{s, t}, Di = {a, b}, Ds = {a}, Dt = {b}, and Φ = {ϕij | (i, j) ∈ E},
with ϕij(a, a) = ϕij(b, b) = 0 and ϕij(a, b) = ϕij(b, a) = 1.
Max-Cut: ∀i ∈ V , Di = {a, b}, Φ = {ϕij | (i, j) ∈ E}, with ϕij(a, a) = ϕij(b, b) = 1 and
ϕij(a, b) = ϕij(b, a) = 0.
Vertex Cover: ∀i ∈ V , Di = {a, b}, Φ = {ϕi | i ∈ V }

⋃
{ϕij | (i, j) ∈ E}, with ϕi(a) = 0,

ϕi(b) = 1, ϕij(a, b) = ϕij(b, a) = ϕij(b, b) = 0 and ϕij(a, a) = >.
Max-Clique: ∀i ∈ V , Di = {a, b}, Φ = {ϕi | i ∈ V }

⋃
{ϕij | (i, j) 6∈ E}, with ϕi(a) = 0,

ϕi(b) = 1, ϕij(a, b) = ϕij(b, a) = ϕij(b, b) = 0 and ϕij(a, a) = >.
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Figure 1 Simple graph example (from Wikipedia DSATUR). Optimum value and corresponding
solution for Min-Cut (s=1, t=8): ΦM(aaaabbbb)=2, Max-Cut: ΦM(aabbbbaa)=2 (i.e., a maximum
cut involving 12−2=10 edges), Vertex Cover: ΦM(bbaaaabb)=4, Max-Clique: ΦM(aaabbbbb)=5
(i.e., a maximum clique of size 8−5=3), 3-Coloring: ΦM(abccccab)=0, and Min-Sum 3-Coloring:
ΦM(bcaaaabc)=14.

Graph Coloring with 3 colors: ∀i ∈ V , Di = {a, b, c}, Φ = {ϕij | (i, j) ∈ E}, with ∀u, v,
ϕij(u, v) = 0 if u 6= v and ϕij(u, v) = > otherwise.
Min-Sum Coloring with 3 colors: ∀i ∈ V , Di = {a, b, c}, Φ = {ϕi | i ∈ V }

⋃
{ϕij |

(i, j) ∈ E}, with ϕi(a) = 1, ϕi(b) = 2, ϕi(c) = 3, and ∀u, v, ϕij(u, v) = 0 if u 6= v and
ϕij(u, v) = > otherwise.

An example of optimal solution for each problem is given in Fig.1.

4 Tree search

One of the most basic algorithms to answer the query
⊗

v∈DV
⊕ϕS∈Φ relies on conditioning

and can be described as brute force tree-search. It relies on the fact that if all variables in a
graphical model are assigned (all variables have domain size 1), the answer can be obtained
by just computing Φ on the assignment. If a given model has a variable Xi ∈ V with a larger
domain, the query can be reduced to solving two queries on simpler models, one where Xi is
assigned to some value a ∈ Di and the other where a is removed from Di. The result of these
queries is then combined using ⊗. This can be understood as the exploration of a binary
tree whose root is the original graphical model and where leaves are fully assigned models
on which the query can be answered. This tree can be explored using various strategies
(Depth-First, Breadth-First, Iterative [94],. . . ), DFS has O(nd) space and θ(exp(n)) time.

In the case of optimization (⊗ = min) on a GMM it is possible to exploit any available
lower bound on the values of the leaves below a given node in the tree for pruning. If this
lower bound is larger than or equal to the value of the joint function on a best known leaf,
then the sub-tree can be pruned. IfM contains a constant function ϕ∅ with empty scope,
then the value of this function provides such a lower bound, thanks to monotonicity and
non-negativity. With pruning, the order in which this tree is explored (the choice of the
branching variable Xi and value a) becomes crucial for empirical efficiency.

5 Non-serial Dynamic Programming

An alternative approach for answering the query above consists in using non-serial dynamic
programming (DP) [11], also called Variable-Elimination (VE), bucket elimination [44],
among other names [74, 110, 1]. The process relies on the distributivity of ⊗ over ⊕ and has
also been described as the Generalized Distributive Law[1]. To our knowledge, its axiomatic
requirements in a general situation were first studied in [110]. The fundamental idea itself is
reminiscent of famous elimination algorithms (e.g. Gaussian elimination) and was already
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described in 1972 under the name of Non-Serial Dynamic Programming [11], which we use.
This book also defines a graph parameter (Dimension), and is the same as tree-width [19].

In its simplest variable elimination variant, non serial DP works variable per variable,
replacing a variable X and all functions that involve it by a function on the neighbors of
X. Following the stochastic GMs terminology, this new function will be called a “message”.
Given a graphical model M = 〈V ,Φ〉, a variable X ∈ V , let ΦX be the set of functions
ϕS ∈ Φ such that X ∈ S and T the neighbors of X in the graph of the problem, we define
the message mΦX

T from ΦX to T as:

mΦX

T = (
⊕

ϕS∈ΦX

ϕS)[−X] (1)

By distributivity, it is now possible to rewrite our query as:⊗
v∈DV

⊕
ϕS∈Φ

ϕS(v[S]) =
⊗

v∈DV−{X}

⊕
ϕS∈Φ−ΦX∪{mΦX

T
}
ϕS(v[S])

This equality shows that our initial query can be answered by solving a similar query on
a graphical model that has one variable less and where all functions involving this variable
have been replaced by a new function (or message) mΦX

T . This operation can be applied
to every variable successively until a final graphical model with no variable and a constant
function ϕ∅ is obtained. The value of this function is the answer to the initial query.

When tensors are used to represent functions, the successive applications of combination
and elimination show that computing mX

T is O(d|T +1|) time and space but space can be
easily reduced to O(d|T |) if elimination is performed incrementally. This can be different
with other representations. In propositional logic, if ` is a literal over variable X and if ΦX

contains the two clauses ϕS = (`∨L) and ϕS′ = (¬`∨L′), where L and L′ are clauses, then
the message mX

T obtained by combining the two clauses and eliminating X is the function
represented by the clause L ∨ L′: the resolution principle [99] performs efficient variable
elimination [45].

It is well-known that the order in which the variables are eliminated can have a strong
influence on the complexity of the whole process. Each elimination creates a new function
whose scope is known. As each step is exponential in the number of variables in the
neighbourhood of the eliminated variable X which come after X in the elimination order,
one may prefer to simulate the process (play the elimination game) and get an estimate of
the global complexity without actually performing the calculations. It is the step for which
the number w of future neighbors is maximum which determines the complexity (spatial and
temporal): this complexity is exponential in w. The parameter w is called the induced width
of the graph of the GM but is better known as its tree-width for the given elimination order.
Minimizing w is known to be NP-hard, but useful heuristics exist [18].

This algorithm defines the first non-trivial tractable class for the query above: graphical
models with a bounded tree-width graph.

5.1 Message passing
The bounded tree-width class is specifically interesting for pairwise modelsM with an acyclic
graph (tree-width one). In this case, the query above can be solved by rooting the tree in
any variable X ∈ V and iteratively eliminating the leaves of this graph until only the root
remains. In this case, messages mX

T are such that |T | = 1 and the message that corresponds
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Figure 2 The graph of a GM with three pairwise functions. The marginal of Φ on X2 can be
computed by combining all three incoming messages: m3

2,m
1
2,m

4
2.

to the elimination of variable Xi with parent Xj through edge ϕij is just denoted mi
j (a

message from i to j). Denoting by neigh(X) the set of neighbor variables of X in the tree,
the message computed by applying Eq. 1 is:

mi
j = ⊗

Xi

(ϕi ⊕ ϕij ⊕
Xo∈neigh(Xi),o 6=j

mo
i )

In the end, one variable X remains and the joint function Φ it defines describes the
so-called marginal of the joint function defined byM. This is a function of X that answers
the query for every possible assignment of X.

These marginal functions are of specific interest in counting queries over stochastic models
as they provide marginal probabilities. Specific algorithms have therefore been developed to
compute the marginals over all the variables of acyclic models. This requires only two steps
(instead of one per variable). In this algorithm, messages are computed and kept aside and no
function is removed from the graphical model. We therefore have an initially empty, growing
list L of computed messages. If a variable has received messages from all its neighbors but
one, it becomes capable of computing the message for this variable and adds it to the list of
computed messages. The algorithm therefore starts by computing messages from leaves and
ultimately computes two messages mi

j and mj
i for every edge ϕij . For any variable Xi, the

marginal of the joint function Φ on Xi is directly accessible as ϕi⊕o∈neigh(Xi)m
o
i . It is easy

to check that the gathered messages for every vertex X are exactly those that would have
been done if the tree had been rooted in X.

If the initial graph is cyclic, a tree decomposition of the graph can be identified and
the algorithm above used to send messages mC

S by combining all functions in cluster C

and projecting to separator S. The resulting algorithms similarly computes marginals
over clusters which can be further projected onto every variable inside [74]. This has two
advantages over the pure variable elimination algorithm above: the space complexity is
O(exp(s)) where s is the size of the largest separator in the tree decomposition and all the
marginals are accessible. In its “one-pass” variant, this algorithm is the “block-by-block”
elimination introduced in 1972 by Bertelé and Brioschi [11]. Despite the improved space
complexity (but unchanged time complexity), this algorithm is restricted to problems with
very small tree-width (especially with large domain sizes).
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6 Loopy Belief propagation and Local Consistency

The Loopy Belief Propagation heuristic can be used when the algorithm above cannot finish
in reasonable time. In a pairwise model, the list L is initialized with all possible constant
empty messages mj

i = mi
j = 0 for all ϕij ∈ Φ. Every message is then updated using the

same equation as above: mi
j = ⊗Xi

(ϕi⊕ϕij ⊕Xo∈neigh(Xi),o6=j m
o
i ). These updates can be

done synchronously (new versions are all computed simultaneously and replace those of the
previous iteration) or asynchronously. This is repeated until quiescence or after a finite
number of iterations as the algorithm has no guarantee of termination in general. Loopy
BP was introduced by Pearl [96] and later used for signal coding and encoding defining
Turbo-decoding [10]. Despite its limited theoretical properties, it is one of the most used
algorithms over stochastic graphical models, probably the most cited (implemented in every
GSM phone). It has been the object of intense study [117]. It can be used to get heuristic
answers for optimization or counting queries under the name of the max-sum, min-sum or
sum-prod algorithm [1].

6.1 Local consistency and Filtering
For optimization (⊗ = min), if ⊕ is either idempotent or fair, these algorithms can be
transformed into well-behaved polytime reformulation techniques that provide incremental
lower bounds, for Branch and Bound algorithms.

I Theorem 4. Suppose that ⊕ is idempotent, and considerM = 〈V ,Φ〉 andM′ = 〈V ,Φ′〉
a relaxation ofM. ThenM′′ = 〈V ,Φ ∪ Φ′〉 is equivalent toM.

Proof. From the axioms of an idempotent valuation structure, consider two valuations
0 4 β 4 α ∈ B. Then α = α ⊕ 0 4 α ⊕ β 4 α ⊕ α = α by identity, monotonicity and
idempotency successively. Then ΦM′′ = ΦM ⊕ ΦM′ . The results follows from the fact that
M′ is a relaxation ofM. J

I Theorem 5. If ⊗ = min, any message mX
T computed by elimination is a relaxation of ΦX

and therefore ofM.

This follows directly from the definition of a message and the fact that ⊗ = min.
Together, these results show that any message (computed by Eq. 1) can be added to an
idempotent graphical model, without changing its meaning. This result applies to the
Boolean, Possibilistic and Fuzzy cases. In the Boolean case, we recover the trivial fact that
a logical consequence (relaxation) of a formula can be added to it without changing its
semantics (as achieved by the resolution principle [99] and the seminal Davis and Putnam
algorithm [40]). It also immediately provides algorithms for Possibilistic and Fuzzy graphical
models [49].

These observations are very useful in the context of message passing algorithms. If ⊕
is idempotent, it becomes possible to add the generated messages to the set of functions
Φ of the graphical model with the guarantee that equivalence will be preserved. This idea
underlies all the “(Boolean) constraint propagation” algorithms (e.g., unit propagation in PL
and arc consistency filtering in CNs) that have been actively developed in the last decades.
We now give a non-standard definition of Arc Consistency in binary idempotent graphical
models to illustrate this:

I Definition 6. A graphical modelM = 〈V ,Φ〉 with idempotent ⊕ is arc-consistent iff every
variable X ∈ V is arc consistent w.r.t. every function ϕS s.t. X ∈ S. A variable Xi is
arc-consistent w.r.t. a function ϕij iff the message mj

i is a relaxation of ϕi.
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4:10 Graphical Models

This local consistency property can be satisfied (or not) by an idempotent graphical model.
When it’s not satisfied, there is an obvious brute force algorithm that can transform the non
AC model into an equivalent AC model: it suffices to apply message passing and directly
combine all messages mj

i inM until the ϕi do not change. One can show that this algorithm
must stop in polytime and that the process is confluent (there is only one fixpoint). This
algorithm is not optimal however and several generations of AC algorithms for e.g. Constraint
Networks have been proposed until the first time optimal algorithm (AC4 [89]), the first
space and time optimal (AC6 [13]) and the simplest empirically most efficient time/space
optimal variant (AC2001 aka AC3.1) came out [12, 118].

Arc consistency and Unit Propagation in SAT are fundamental in efficient CSP and
SAT provers. Adding messages (new unary functions) to the problem makes these unary
functions increasingly tight. Ultimately, it may be the case that some ϕi ∈ Φ becomes such
that ∀a ∈ Di, ϕi(a) = >. Because equivalence is preserved, it is then known that the joint
function of the original graphical model is always equal to > (it is inconsistent in logical
terminology). Naturally, being a polytime process, arc consistency enforcing cannot provide
such an inconsistency proof in all cases (assuming P 6= NP). Stronger, more expensive,
messages can be obtained using messages mC

T combining functions in C projected onto
T . In pairwise GMs, when C is defined by all functions whose scope is included in any
set of cardinality less than i projected on any sub-scope of cardinality i− 1, this is called
i-consistency enforcing [30, 5], which solves idempotent GMs with tree-width less than i in
polynomial time.

6.2 The non idempotent fair case
When optimizing, if ⊕ is not idempotent, it becomes impossible to simply add messages
to the graphical model being processed and preserve equivalence. However, the pseudo-
difference operator 	 of fair structures makes it possible to add the message to the model and
compensate for this by subtracting the message from its source [103]. Such a generalization
may lead to loss of guaranteed termination since information can both increase and decrease
at different local levels. While usual local consistency enforcing takes a set of functions and
adds the message m obtained by eliminating a subset of variables in the problem, what has
been called an Equivalence Preserving Transformation (EPT) combines a set of functions
into a new function ϕ, computes the associated message (or any relaxation of it) and replaces
the original set of functions by m and ϕ	m. When scopes are unchanged, this has been
called reparameterizations in MRFs [115].

If the problem of computing an optimal sequence of EPTs (in the sense that applying
these messages reformulate the GM into another one that has a maximum ϕ∅) is NP-hard
for integer costs, finding an optimal set of messages using rational costs can be reduced to
a linear programming instance of polynomial size [32], a reduction which was previously
published in 1976 [109], in Russian. Schlesinger’s team has produced a variety of results on
GMs that have been reviewed in English [116]. The LP-based algorithm has the ability to
exactly optimize additive or weighted [29] GMs with a tree-structure or with only submodular
functions but solving the LP is empirically too slow to be of practical use in most cases. This
LP has been shown to be universal, in the sense that any reasonable LP can be reduced to
(the dual of) such an LP in linear time, with a constructive proof [97].

I Definition 7. Function ϕS is submodular if ∀u,v ∈ DS , ϕS(min(u,v))+ϕS(max(u,v)) ≤
ϕS(u) + ϕ(v).



M.C. Cooper, S. de Givry, and T. Schiex 4:11

This assumes that domains are ordered, max and min being applied pointwise. If it exists, a
witness order for submodularity can be easily found [108] defining the polynomial class of
weighted GMs with permutated submodular functions [107].

The best known general algorithm for Boolean submodular function minimization is
O(en3 logO(1) n) [82]. For CFNs, practical algorithms can be obtained by exploiting a
connection with idempotent GMs (here CNs). Any weighted function ϕS can be transformed
into a Boolean function Bool(ϕS) which is true iff ϕS is non 0.

I Definition 8 ([34, 29]). Given a weighted GM (or CFN) M = 〈V ,Φ〉, Bool(M) =
〈V , {Bool(ϕS) | |S| > 0}) (a constraint network).

I Definition 9 (Virtual Arc Consistency (VAC)[34]). A weighted GMM = 〈V ,Φ〉 is Virtual
Arc Consistent iff enforcing AC on Bool(M) does not prove inconsistency.

If enforcing AC on Bool(M) yields an inconsistency proof, it is possible to extract a
minimal sub-proof and transform it in a set of EPTs that will increase ϕ∅ when applied on
M. The repeated application of this principle leads to an O(ed2m/ε) time, O(ed) space VAC
enforcing algorithm (where ε is a required precision). It can be seen as a sophistication of
max-flow algorithms using “augmenting proofs” [77, 116]. On Min-Cut problems, proofs can
have the expected augmenting path structure. Related algorithms, using a Block Coordinate
Descent approach to approximately solve the LP above have also been investigated in Image
processing: the TRW-S algorithm [75] fixpoints satisfy the VAC property (called Weak Tree
Agreement in MRFs) which can be exploited to detect strongly persistent assignments [57]
(subsets of variables having the same value in all optimal solutions). On GMs with Boolean
variables, the bound ϕ∅ is related to the max-flow roof-dual lower bound of Quadratic
Pseudo-Boolean Optimization [20].

All these algorithms ultimately produce strengthened lower-bounds ϕ∅. In the con-
text of Branch & Bound, looser approximations of the dual are often used because of
their high incrementality. One of the most useful is existential directional arc consistency,
with O(ed2 max(nd,m)), O(nd) space complexity on pairwise models [80], that solves tree-
structured problems.

7 Hybrid algorithms

In this section, we rapidly review a subset of the large number of hybrid algorithms that have
been designed to rigorously answer optimization queries over graphical models. The arena of
existing algorithms is currently clearly dominated by a family of algorithms that combines
tree search with local consistency enforcing. Local consistency enforcing strengthens the
obvious lower bound defined by ϕ∅. It reformulates the graphical model associated with
each node of the search-tree incrementally. It provides improved information with tightened
unary ϕi. This information can be used in cheap variable and value ordering heuristics, to
decide which variable to explore first, along which value. These heuristics are crucial for
the empirical efficiency of the algorithms (as evaluated on large sets of benchmarks, which
are increasingly available in this data era). They have have become adaptive [90, 21]: they
are parameterized and these parameters change during tree search, trying to identify and
favor the selection of variables that belong to the regions of the graphical model that contain
strong information, variables which once assigned would lead to rapid backtracking.

These algorithms can be (empirically) enhanced by hybrid branching strategies mixing
depth and best-first, restarts (preserving information not invalidated by restart), stronger
message passing at the root node, dominance analysis (showing a value a can always be
replaced by value b without degrading Φ allows us to remove a).
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In the idempotent ⊕ case, conflict analysis [15] is a powerful technique that allows to
produce a new informative relaxation (or logical consequence) of the model when a conflict
occurs during tree search (a backtrack must occur). Initially developed [42] and improved [106]
for Constraint Networks, this has been adapted to SAT and is now a fundamental ingredient
of the modern CDCL (Conflict Directed Clause Learning) SAT provers that obsoleted the
90’s generation of advanced DPLL (Davis, Putnam, Logemann, Loveland) provers [39].

At this point, one may note that for optimization at least, the empirically most efficient
algorithms are algorithms that have O(exp(n)) worst-case complexity while algorithms with
better worst-case complexity (based on non-serial dynamic programming) are restricted to
a small subset of problems having (small) bounded tree-width (depending on d). A series
of proposals tried to define algorithms that combined the empirical efficiency of enhanced
tree-search algorithms with tree-width based bounds. To the best of our knowledge, the first
algorithm along this line is the Pseudo-Tree search algorithm [53], for solving the CSP in
constraint networks. Defined in 1985, this algorithm relies on a so-called pseudo-tree (defined
below). It is shown to have a complexity which is exponential in the height of the pseudo-tree
and uses only linear space. This pseudo-tree height was later shown to be related by a log(n)
factor to induced width (a synonymous of tree-width) in 1995 [9, 105]. Pseudo-tree height
seems to be the exact equivalent of tree-depth [92].

I Definition 10 (pseudo-tree, pseudo-tree height [53]). A pseudo-tree arrangement of a graph
G is a rooted tree with the same vertices as G and the property that adjacent vertices in G
reside in the same branch of the tree. The pseudo-tree height of G is the minimum, over all
pseudo-tree arrangements of G of the height of the pseudo-tree arrangement.

The idea was revived in the context of counting problems in the “Recursive Conditioning”
algorithm, relying on the related notion of d-tree [37]. This was quickly followed by the
proposal of two algorithms for CSP/CN, WCSP/CFN and MAP/MRF relying either on
pseudo-trees, leading to the family of AND-OR tree and graph search algorithms [84, 86,
85, 87] or tree-decompositions, leading to the Backtrack Tree-Decomposition algorithm
(BTD [66, 67, 41]) . These algorithms enhance the original pseudo-tree search along two lines:
they add some form of local consistency enforcing to prune the search tree, with associated
non trivial per-cluster lower-bound management and may also memorize information, leading
to algorithms with worst-case time/space complexity that reach those of the best elimination
algorithms, with much better empirical complexity, thanks to pruning and variable ordering
heuristics.

These algorithms take as input a graphical model (we assume a pairwise GM for simplicity)
and a tree decomposition of its graph. The tree decomposition is rooted in a chosen cluster.
Then a usual (hybrid) tree-search algorithm is used but the variable assignment order is
constrained by a rule that forbids to assign a variable from a cluster if all the variables of
its parent cluster have not already been assigned. When this happens, the variables in the
separators between the parent cluster and any of its sons are assigned: the functions that
connect the parent and son clusters can be cheaply eliminated, the clusters disconnect and
can be solved independently given the current assignment of the separator. This principle
is applied recursively on sub-problems. For every first visit of a given assignment of a
separator, it is possible to memorize the value of the query for this assignment. When the
same assignment is revisited later, it can be directly reused. This is what the AND/OR
graph search and BTD algorithms do, at the cost of an O(ds) space complexity. Their time
complexity, in the simplest case of the CSP problem, is just exponential in the tree-width
instead of the pseudo-tree height. Alternatively, no space is used in the AND/OR tree search
algorithm and the worst-case space and time complexity become those of the Pseudo-Tree
Search algorithm (but with improved empirical complexity thanks to mini-bucket elimination,
a specific form of message passing that provides the bounds required for pruning [43, 46]).
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Thanks to the bounds and reformulations provided by local consistency enforcing, these
algorithms will typically explore a tiny fraction of the separators, empirically requiring
much less space than a pure non-serial dynamic programming algorithm. The constraint
that the rooted tree decomposition imposes on variable assignment ordering will however
play a possibly negative role. Finally, because space is an abrupt constraint in practice,
tree-decompositions with large separators may be unexploitable in practice if a space-intensive
approach is used. One usual way to deal with space constraints is to use a bounded amount
of space for caching separator assignments and corresponding query answers and have some
dedicated cache management strategy. In the end, the best tree-decompositions for hybrid
algorithms such as BTD or Pseudo-Tree Search will usually not be minimum tree-width
decompositions (if they could be computed). The usual approach here is to rely on simple
heuristics such as min-degree, Maximum Cardinality Search [100] or min-fill to heuristically
build a decomposition. This may be randomized and iterated [70]. The result may then be
improved by cluster-merging operations, trying to minimize separator sizes while preserving
sufficient cluster size so that variable ordering heuristics do not get too constrained. Not
only we do not have any final definition of what is an optimal tree decomposition but
even a simple min-fill heuristics may be too long in practice to be useful (on large GMs,
executing the polytime min-fill algorithm on the GM graph may take more time than solving
the later NP-hard query on the GM). For this reason, new approaches that directly and
efficiently build empirically useful decompositions for GM optimization queries are now being
introduced [64, 63]. To better exploit the fact that different assignments may lead to different
subproblems, with different graphs at the micro-structure level, dynamic decomposition is
also explored. Some of these strategies rely on iterated (hyper)graph-partitioning using
large-graphs dedicated heuristics such as Metis [69] or PaToH [24, 79], in the spirit of the
seminal Nested Dissection algorithm [54].

Table 2 Time and space complexities of exact methods for a CFN with tree-width w, s maximum
separator size (s ≤ w ≤ n), and initial problem upper bound k.

Exact Method Time Space
Depth First Branch & Bound O(exp(n)) O(n)
Hybrid Best-First Search [4] O(exp(n)) O(exp(n))
Variable elimination [11] O(n exp(w)) O(n exp(w))
Block-by-block elimination [11] O(n exp(w)) O(n exp(s))
Pseudo-Tree Search [53, 9] O(n exp(w log(n))) O(n)
AND/OR tree search [84, 86] O(n exp(w log(n))) O(n)
AND/OR graph search [85, 87] O(n exp(w)) O(n exp(s))
BTD and variants [66, 112, 41, 102, 4] O(k n exp(w)) O(n exp(s))

In the idempotent cases, the exploitation of tree-decompositions is implicit in algorithms
relying on a combination of clause/constraint learning and restarts (confirmed in practice [62]).

I Theorem 11 ([6, 62]). A standard randomized CDCL SAT-solver with a suitable learning
strategy will decide the consistency of any pairwise Constraint Network instance with tree-
width w with O(n2wd2w) expected restarts.

8 Additional complexity results

Although NP-hard in general, under certain restrictions, calculating the global value of a GM
can be achieved in polynomial time. We have seen that this is the case when the tree-width
of the primal graph is bounded by a constant. In terms of graph structure, the family of GMs
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with bounded tree-width has been clearly the most exploited in practice (with the closely
related branch-width [98]). In the non-pairwise case, parameters such as hypertree-width are
implicitly exploited by hybrid algorithms such as BTD [65].

In the case of CFNs, restrictions on the language of cost functions can also define tractable
classes. Restrictions which are not exclusively concerned with the graph, nor exclusively
concerned with the language of cost functions define what are known as hybrid classes. We
consider language-based tractable classes first.

The characterisation of all tractable languages of cost functions was a long-standing
problem which has recently been solved thanks to the characterisation of tractable languages
in the last remaining (and most difficult) case of Boolean valuation structures [22, 119]. This
latter result resolved positively the so-called Feder and Vardi Conjecture [52] that there is
a P/NP-complete dichotomy for the constraint satisfaction problem parameterized by the
language of possible constraint relations [23].

There is only one non-trivial class of cost functions defining a tractable subproblem of
CFNs which comes out of the study of Max-SAT: the class of submodular functions (see
Definition 7). The class of submodular functions includes all unary functions, the binary
functions

√
x2 + y2, ((x ≥ y)?(x−y)t : k) (for t ≥ 1), K−xy, the cut function of a graph and

the rank function of a matroid [55]. Efficient algorithms have been developed in Operations
Research to minimize submodular functions [82, 25]. Another approach [34] consists in
establishing virtual arc consistency (which preserves the submodularity of the cost functions).
By the definition of VAC, the arc-consistency closure Q of Bool(P) is non-empty and, by
definition of submodularity, its cost functions are both min-closed and max-closed [61]; to
find a solution of Q (which is necessarily an optimal solution of P), it suffices to assign
always the minimum (or always the maximum) value in each domain of Q.

A CFN can be coded as an integer programming problem (whose variables include
via ∈ {0, 1} which is equal to 1 if and only if Xi = a in the original CFN instance [60]). The
linear relaxation of this integer programming problem (in which via is now a real number
in the interval [0, 1]) has integer optimal solutions if all cost functions are submodular,
meaning that the CFN can be solved by linear programming. The dual of this relaxation
is exactly the linear program used by OSAC [29] to find an optimal transformation (set of
EPTs) [116]. CFNs restricted to a language of finite-valued cost functions over the valuation
structure Q≥0 ∪ {∞} is tractable if and only if it is solved by this linear program [113].
This notably includes languages of cost functions that are submodular on arbitrary lattices.
State-of-the-art results concerning the tractability of languages of cost functions are covered
in detail in a recent survey article [78].

These theoretical results demonstrate the importance of submodularity and linear pro-
gramming in the search for tractable subproblems of the CFN. However, we should mention
that there are tractable languages of cost functions other than the class of submodular func-
tions. For example, replacing the functions min and max in the definition of submodularity
by any pair of commutative conservative functions f, g (where conservative means that ∀x, y,
f(x, y), g(x, y) ∈ {x, y}) gives rise to a tractable class [28].

Hybrid classes [36] may be defined by restrictions on the micro-structure of the CFN. To
illustrate this, we describe the hybrid tractable class defined by the joint winner property
(JWP) [35]. A class of binary CFNs satisfies the JWP if for any three variable-value
assignments (to three distinct variables), the multiset of pairwise costs imposed by the binary
cost functions does not have a unique minimum. If there is no cost function explicitly defined
on a pair of variables, then it is considered to be a constant-0 binary cost function. Note
that the unary cost functions in a CFN that satisfies the JWP can be arbitrary. It has been
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shown that there is a close link between the JWP and M]-convex functions studied in [91].
Indeed, a function satisfying the JWP can be transformed into a function represented as the
sum of two quadratic M-convex functions, which can be minimized in polynomial time via an
M-convex intersection algorithm. This leads to a larger tractable class of binary finite-valued
CFNs, which properly contains the JWP class [59].

9 Solvers and applications

Thanks to a simple algebraic formulation of graphical models and queries over GMs, this
review covers a very large variety of algorithms and approaches that have been developed
in probabilistic reasoning, propositional logic and constraint programming. On the non
stochastic side, SAT and CSP solvers have had a significant impact in several areas such
as Electronic Design Automation (where SAT solvers are used as oracles to solve complex
Bounded Model Checking problems), Software Verification (where suitable Abstraction
Refinement Strategies are used to manage possibly very large instances [27, 58]) or for task
scheduling [8] or planning [114] among many others. Stochastic variants are one of many
modeling tools available in Machine Learning [16], but Markov Random Fields have been
more specifically applied in Image processing for tasks such as segmentation [83]. In most
Image Processing applications, a variable of the GM is associated with a single pixel, leading
to very large MAP/MRF optimization problems that are never solved exactly (with a proof
or theoretical guarantee), using instead heuristic or primal/dual approaches offering a final
optimality gap [68]. However, the class of submodular problems with Boolean domains,
solvable in polytime using a min-cut (max-flow) algorithm has been exploited intensely under
the name of the “Graph-Cut” algorithm [76, 120].

In this final section, we rapidly describe recent results we obtained using an exact
WCSP/CFN solver. Toulbar2 implements most of all the algorithms we have described above
to solve the WCSP/CFN problem, which is essentially equivalent (up lo a − log transform
and bounded precision description of real numbers) to MAP/MRF. Toulbar2 is becoming
increasingly famous for its ability to solve “Computational Protein Design” problem instances.
Proteins are linear polymers made of elementary bricks called amino acids. Each amino
acid a in a protein can be chosen among a fixed alphabet of 20 natural amino acids and
each choice in this alphabet is defined by the combination of a fixed “backbone” part and
a variable side-chain, a highly flexible part on the molecule. The computational protein
design problem starts from the three-dimensional description of a protein backbone and
asks to determine the nature and orientation of all side-chains that minimizes the energy of
the resulting molecule (a minimum of energy defining a most stable choice for a given rigid
backbone). The combination of dedicated pairwise separable (non-convex) energy functions
with a discretization of orientations in side chains (so-called rotamer libraries) allows to
reduce this problem to a pure WCSP/CFN problem. On such problems, Toulbar2 has been
used to bring to light the limitations of dedicated highly optimized Simulated annealing
implementations [111], being capable of providing guaranteed optimal solutions for problems
with search space larger than 400100 in reasonable time on a single core, on problems that
cannot be tackled by state-of-the-art ILP, Weighted MaxSAT or quadratic boolean solvers,
even those based on powerful SDP-based bounds [2]. The instances are not permutated
submodular [108] and do not have a sparse graph that would make dynamic programming
feasible. This has enabled the design of a real new self-assembling protein [93].
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Conclusion

Algorithms for processing graphical models have been explored mostly independently in
the stochastic and deterministic cases. In this review, we have tried, using simple algebra,
to cover a large set of modeling frameworks with associated NP-hard queries and showed
that there is a strong common core for several algorithms in either case: non serial dynamic
programming. Restricted to sub-problems, combined with tree-search, learned heuristics,
and other tricks, these bricks have generated impressive algorithmic progress in the exact
solving of SAT/PL, CSP/CN, WCSP/CFN aka MAP/MRF or MPE/BN problems and even
for #P-complete problems [26, 50].
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Abstract
In the restricted assignment problem, the input consists of a set of machines and a set of jobs each
with a processing time and a subset of eligible machines. The goal is to find an assignment of
the jobs to the machines minimizing the makespan, that is, the maximum summed up processing
time any machine receives. Herein, jobs should only be assigned to those machines on which they
are eligible. It is well-known that there is no polynomial time approximation algorithm with an
approximation guarantee of less than 1.5 for the restricted assignment problem unless P=NP. In this
work, we show hardness results for variants of the restricted assignment problem with particular
types of restrictions.

For the case of interval restrictions – where the machines can be totally ordered such that jobs
are eligible on consecutive machines – we show that there is no polynomial time approximation
scheme (PTAS) unless P=NP. The question of whether a PTAS for this variant exists was stated as
an open problem before, and PTAS results for special cases of this variant are known.

Furthermore, we consider a variant with resource restriction where the sets of eligible machines
are of the following form: There is a fixed number of (renewable) resources, each machine has a
capacity, and each job a demand for each resource. A job is eligible on a machine if its demand is at
most as big as the capacity of the machine for each resource. For one resource, this problem has
been intensively studied under several different names and is known to admit a PTAS, and for two
resources the variant with interval restrictions is contained as a special case. Moreover, the version
with multiple resources is closely related to makespan minimization on parallel machines with a low
rank processing time matrix. We show that there is no polynomial time approximation algorithm
with a rate smaller than 48/47 ≈ 1.02 or 1.5 for scheduling with resource restrictions with 2 or 4
resources, respectively, unless P=NP. All our results can be extended to the so called Santa Claus
variants of the problems where the goal is to maximize the minimal processing time any machine
receives.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness;
Theory of computation → Scheduling algorithms

Keywords and phrases Scheduling, Restricted Assignment, Approximation, Inapproximability, PTAS

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.5

Related Version A full version of the paper is available at http://arxiv.org/abs/1907.03526.

Funding Marten Maack: German Academic Exchange Service (DAAD) scholarship
Klaus Jansen: German Research Foundation (DFG) project JA 612/15-2

Acknowledgements We thank Malin Rau and Lars Rohwedder for helpfull discussions on the
problem.

© Marten Maack and Klaus Jansen;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7918-6642
mailto:mmaa@informatik.uni-kiel.de
https://orcid.org/0000-0001-8358-6796
mailto:kj@informatik.uni-kiel.de
https://doi.org/10.4230/LIPIcs.STACS.2020.5
http://arxiv.org/abs/1907.03526
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Inapproximability Results for Scheduling with Interval and Resource Restrictions

1 Introduction

Consider the restricted assignment problem: Given a set of machinesM and a set of jobs J
with a processing time or size pj and a subset of eligible machinesM(j) ⊆M for each job j,
the goal is to find a schedule σ : J →M with σ(j) ∈M(j) for each job j and minimizing
the makespan Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pj .

In a seminal work, Lenstra, Shmoys and Tardos [19] presented a 2-approximation for
restricted assignment and also showed that there is no polynomial time approximation
algorithm with rate smaller than 1.5 for the problem, unless P=NP. Closing this gap is
a prominent open problem in approximation and scheduling theory [26, 33]. If there are
no restrictions, i.e.,M(j) =M for each job j, we have the classical problem of makespan
minimization on identical parallel machines (machine scheduling) which is already strongly
NP-hard. On the other hand, machine scheduling is well-known to admit a polynomial time
approximation scheme (PTAS) due to a classical result by Hochbaum and Shmoys [10]. In
recent years, the approximability of special cases of restricted assignment has been intensively
studied (see, e.g., [3, 7, 12, 14]) with one line of research focusing on the existence of
approximation schemes (see, e.g., [8, 13, 23, 24]). The present work seeks to contribute in
this research direction. Omitted details and proofs can be found in the long version of the
paper [22].

Interval Restrictions. Arguably one of the most natural variants of the restricted assignment
problem is the case of scheduling with interval restrictions (RAI). In this variant, the machines
are totally ordered and each job is eligible on consecutive machines. More precisely, we
have M = {M1, . . . ,Mm}, and for each job j we have some indices `, r ∈ [m] such that
M(j) = {M`, . . . ,Mr}. Several special cases of RAI are known to admit a PTAS: the
hierarchical case [24], where for each job the interval of eligible machines starts with the first
machine; the nested case [23, 8], whereM(j) ⊆M(j′),M(j′) ⊆M(j) orM(j)∩M(j′) = ∅
for each pair of jobs (j, j′); and the inclusion-free case [27, 17], whereM(j) ⊆M(j′) implies
that j and j′ share either their first or last eligible machine. Furthermore, for general RAI, a
2−2/(maxj∈J pj)-approximation due to Schwarz [27] is known (assuming integral processing
times); and the special case with two distinct processing times is even polynomial time
solvable [32]. Note that the problem has also been studied in the context of online algorithms
(see [18, 21]).

The question of whether there is a PTAS for RAI has been posed by several authors
[15, 27, 32]. As the main result of the present work, we resolve this question in the negative:

I Theorem 1. There is no PTAS for scheduling with interval restrictions unless P=NP. 1

We prove this theorem in Section 2.

Resource Restrictions. The second variant considered in this work, is the problem of
scheduling with resource restrictions with R resources (RAR(R)). Herein, a set R of R
(renewable) resources is given, each machine i has a resource capacity cr(i) and each job j
has a resource demand dr(j) for each r ∈ R. Job j is eligible on machine i if dr(j) ≤ cr(i) for
each resource r. For R = 1, the problem is equivalent to the mentioned hierarchical case and

1 There is a paper [16] claiming to have found a PTAS for RAI. However, according to [29], the result is
not correct and the authors published a revised version of the paper [17] claiming a less general result,
namely, a PTAS for the inclusion-free case.



M. Maack and K. Jansen 5:3

has been studied intensively [20, 21]. Furthermore, it is not hard to see that RAI is properly
placed between RAR(1) and RAR(2) and hence there is a close relationship between the
two problems. For arbitrary R, the problem was mentioned in a work by Bhaskara et el. [1]
under the name of geometrically restricted scheduling2 but to the best of our knowledge it
has not been further studied up to now. There is, however, a close relationship to the low
rank version of makespan minimization on unrelated parallel machines (unrelated scheduling)
introduced in [1]. For scheduling with resource restrictions, we show:

I Theorem 2. There is no approximation algorithm with rate less than 48/47 ≈ 1.02 or 1.5
for scheduling with resource restrictions with 2 or 4 resources, respectively, unless P=NP.

We prove this theorem in Section 3. In the long version of the paper [22], we provide more
details concerning RAR(R), e.g., a comparative analysis of RAR(R), RAI and low rank
unrelated scheduling.

Santa Claus. The problems of restricted assignment and unrelated scheduling are also stud-
ied with the reverse objective of maximizing the minimal machine load mini∈M

∑
j∈σ−1(i) pij .

Machine scheduling problems with this objective are sometimes called the Santa Claus version
of the respective problem. We remark that all our results can be transferred to the Santa
Claus versions of the considered problems in a straight-forward fashion.

Further Related Work. First note that if the number of machines is constant, there is a
fully polynomial time approximation scheme (FPTAS) already for unrelated scheduling [11].
Furthermore, for some broad overview concerning parallel machine scheduling with different
kinds of restrictions in the context of online and approximation algorithms, we refer to the
surveys by Lee et al. [18] and Leung and Li [20, 21].

We already discussed many variants of restricted assignment that admit a PTAS. In
particular, Ou, Leung and Li [24] presented a PTAS for the hierarchical case; Epstein and
Levin [8] and Muratore, Schwarz and Woeginger [23] for the nested case; and Schwarz [27]
and Khodamoradi et al. [17] for the inclusion-free case. Another case that has been studied
in the literature is the tree-hierarchical case, where the machines can be arranged in a rooted
tree such that for each job the set of eligible machines corresponds to a path starting at
the root. It was shown to admit a PTAS by Epstein and Levin [8] and Schwarz [28]. It is
not hard to see that all of the above cases contain the hierarchical case as a subcase, and
that the tree-hierarchical, nested and inclusion-free case are distinct. There is, however, a
variant admitting a PTAS that covers both the nested and the tree-hierarchical case: For
each instance of the restricted assignment problem the corresponding incidence graph is a
bipartite graph whose nodes are given by the jobs and machines and a job j is adjacent to a
machine i if j is eligible on i. Jansen, Maack and Solis-Oba [13] showed that there is PTAS
for restricted assignment for the case that the clique- or rank-width of the incidence graph is
constant. Furthermore, if the incidence graph is a bi-cograph the clique-width is well-known
to be small and this case covers the nested and tree-hierarchical case. The inclusion-free
case, on the other hand, is equivalent to the case that the incidence graph is a bipartite
permutation graph [17] which does not have a bounded clique-width [2]. Note that RAR(1)
or RAI are equivalent to the cases that the incidence graph is a chain [9] or convex graph [16],
respectively.

2 The demands d(j) and capacities c(i) may be interpreted as points in R-dimensional space.

STACS 2020



5:4 Inapproximability Results for Scheduling with Interval and Resource Restrictions

Preliminaries. We consider polynomial time approximation algorithms: Given an instance
I of an optimization problem, an α-approximation A for this problem produces a solution in
time poly(|I|), where |I| denotes the input length. For the objective function value A(I) of
this solution it is guaranteed that A(I) ≤ αopt(I), in the case of an minimization problem,
or A(I) ≥ (1/α)opt(I), in the case of an maximization problem, where opt(I) is the value
of an optimal solution. We call α the approximation guarantee or rate of the algorithm. In
some cases a polynomial time approximation scheme (PTAS) can be achieved, that is, an
(1 + ε)-approximation for each ε > 0. If for such a family of algorithms the running time is
polynomial in both 1/ε and |I| it is called fully polynomial (FPTAS).

Nearly all the reductions in this work follow the same pattern: Given an instance I of
the starting problem, we construct an instance I ′ of the variant of the restricted assignment
problem considered in the respective case. For I ′, all job sizes are integral and upper bounded
by some constant T such that the overall size of the jobs equals |M|T . Obviously, if for such
an instance a machine receives jobs with overall size more or less than T , the makespan of the
schedule is greater than T . Then we show that that there exists a schedule with makespan T
for I ′, if and only if I is a yes-instance. This rules out the existence of an approximation
algorithm with rate smaller than (T + 1)/T (or T/(T − 1) for the Santa Claus version) and
a PTAS in particular.

2 Interval Restrictions

The sole goal of this section is to prove Theorem 1, that is, the non-existence of a PTAS for
RAI (given P6=NP). Our starting point for the reduction is a satisfiability problem 3-SAT∗
that we tailor to our needs. We show that 3-SAT∗ is NP-hard via a straight forward reduction
from the 1-in-3-SAT problem, which is well-know to be NP-complete [25] and discussed in
more detail below. Next, we provide a reduction from 3-SAT∗ to the classical restricted
assignment problem (with arbitrary sets of eligible machines). This reduction introduces some
of the needed gadgets and ideas for the main result which is discussed in detail thereafter.

Starting Point. An instance of 1-in-3-SAT is a conjunction of clauses with 3 literals each.
Each clause is a formula depending on 3 literals that is satisfied if and only if exactly one
of its literals takes the value >. We call such formulas 1-in-3-clauses in the following and
define 2-in-3-clauses correspondingly. Note that we denote the truth values “true” and “false”
by > and ⊥ in the following. An instance of the problem 3-SAT∗ also is a conjunction of
clauses with exactly 3 literals each. However, each of the clauses is either a 1-in-3-clause or a
2-in-3-clause and there are as many clauses of the first as of the second type. Furthermore,
we require that each literal occurs exactly twice. In the following, we denote a 1-in-3-clause
or 2-in-3-clause with literals z1, z2 and z3 by (z1, z2, z3)1 or (z1, z2, z3)2, respectively.

To see that 3-SAT∗ is NP-hard, consider an instance of 1-in-3-SAT with n variables
x1, . . . , xn andm clauses. We now construct an equivalent 3-SAT∗ instance. Let di be the num-
ber of times the variable xi occurs in the given 1-in-3-SAT formula. For each variable xi, we in-
troduce new variables xi,1, . . . , xi,di and yi,1, . . . , yi,di along with clauses (xi,1,¬xi,2, yi,1)2, . . . ,
(xi,di−1,¬xi,di

, yi,di−1)2, (xi,di
,¬xi,1, yi,di

)2 and clauses (yi,j ,¬yi,j ,¬yi,j)1 for each j ∈ [di].
Note that each variable yi,j has to take the value > in a satisfying assignment, due to
the clause (yi,j ,¬yi,j ,¬yi,j)1. The remaining clauses ensure, that for each i the variables
xi,1, . . .xi,di

have the same value in a satisfying assignment. Furthermore, for each of the
clauses of the original problem, we introduce one 1-in-3-clause and one 2-in-3-clause. The
1-in-3-clauses are obtained by exchanging the j-th occurrence of each variable xi with xi,j .
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Table 1 The sizes and sets of eligible machines of the jobs in the simple reduction. The entry for
CMachi,s marks the private load of the machine. The target makespan is given by T = 322.

Job Size Eligible Machines

CMachi,s 111 CMachi,s
CJob>i,s′ 100 CMachi,1, CMachi,2, CMachi,3
CJob⊥i,s′ 101 CMachi,1, CMachi,2, CMachi,3
TJob>j 100 TMachj,1, TMachj,2
TJob⊥j 102 TMachj,1, TMachj,2
VJob>j,t 111 TMachj,dt/2e, CMachκ(j,t)

VJob⊥j,t 110 TMachj,dt/2e, CMachκ(j,t)

Moreover, the 2-in-3-clauses are obtained by copying the new 1-in-3-clauses, negating all the
literals and turning them into a 2-in-3-clause. Hence, each 2-in-3-clauses evaluates to >, if
and only if its corresponding 1-in-3-clause does. It is not hard to verify the correctness of the
reduction. Similar constructions are widely used, see, e.g., [31] or [5]. The remarkable aspect
of the present construction lies in its symmetrical structure which helps to avoid additional
dummy gadgets in the following reductions.

Simple Reduction. In the following, we assume that an instance of 3-SAT∗ with m 1-in-
3-clauses C1, . . . , Cm, m 2-in-3-clauses Cm+1, . . . , C2m and n variables x1, . . . , xn is given.
Note that we have 2m clauses with 3 literals each, and 4n occurring literals in total, hence
3m = 2n. In addition to the ordering of the variables and clauses, we fix an ordering of
the literals belonging to each clause, and an ordering of the occurrences of each variable
by assigning an index t ∈ [4] to each of them. In particular, for each variable xj , t = 1, 2
correspond to the first and second positive and t = 3, 4 to the first and second negative
occurrence of xj . Furthermore, let κ : [n]× [4]→ [2m]× [3] be the bijection defined as follows:
κ(j, t) = (i, s) implies that the t-th occurrence of xj is positioned in clause Ci on position s.

We now define the restricted assignment instance. For some of the machines, we introduce
private loads which is a synonym for jobs of the corresponding size that have to be scheduled
on the respective machine because its the only eligible one. The sizes and sets of eligible
machines of the introduced jobs are presented in Table 1 and the target makespan is given
by T = 322.

For each clause Ci, there are three clause machines CMachi,s with s ∈ [3] corresponding to
its three literals, as well as three clause jobs CJob◦s′

i,s′ with s′ ∈ [3] and ◦s′ ∈ {>,⊥}. We
have ◦1 = > and ◦3 = ⊥, as well as ◦2 = ⊥ if Ci is a 1-in-3 clause, and ◦2 = > otherwise.
Furthermore, each clause machine has a private load of 111.
For each variable xj , there are two truth assignment machines TMachj,q with q ∈ [2]
corresponding to the positive (q = 1) and negative (q = 2) literal of xj , as well as 2 truth
assignment jobs TJob◦j with ◦ ∈ {>,⊥}.
For each variable xj , there are eight variable jobs VJob◦j,t with t ∈ [4] and ◦ ∈ {>,⊥}
corresponding to the two occurrences of the positive (t ∈ {1, 2}) and negative (t ∈ {3, 4})
literal of xj .

Counting the different machines and jobs and adding up the job sizes yields:

B Claim 3. The overall size of all the jobs is exactly |M|T .

We will show that there is a satisfying truth assignment for the 3-SAT∗ instance if and only
if there is a schedule in which each machine receives jobs with load exactly T .
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Table 2 Each set indicates one of the possible job assignments for each machine in a schedule
with makespan T .

Machine Possible Schedules

TMachj,1 {TJob>j , VJob>j,1, VJob>j,2}, {TJob⊥j , VJob⊥j,1, VJob⊥j,2}
TMachj,2 {TJob>j , VJob>j,3, VJob>j,4}, {TJob⊥j , VJob⊥j,3, VJob⊥j,4}
CMachi,s (1-in-3-clause) {VJob>κ−1(i,s), CJob>i,1}, {VJob⊥κ−1(i,s), CJob⊥i,2}, {VJob⊥κ−1(i,s), CJob⊥i,3}
CMachi,s (2-in-3-clause) {VJob>κ−1(i,s), CJob>i,1}, {VJob>κ−1(i,s), CJob>i,2}, {VJob⊥κ−1(i,s), CJob⊥i,3}

For any job Job◦ with ◦ ∈ {>,⊥}, we refer to ◦ as its truth configuration and say that
Job◦ has ◦-configuration. The rationale of the reduction is as follows: Each clause machine
CMachi,s should receive exactly one variable job corresponding to the literal placed in position
s in the clause. The truth configuration of this variable job should correspond to the truth
value the variable contributes to the clause. To ensure that the jobs VJob>j,t belonging to
variable xj contribute consistent truth values, the truth assignment jobs and machines are
introduced. In the following, we sometimes talk about the truth assignment gadget and thus
refer to these jobs and machines. Similarly, the clause machines and jobs are sometimes
called the clause gadget. Note that the basic approach of using some kind of truth assignment
and clause gadget for reductions in the context of restricted assignment has been used before,
see, e.g., [7, 4, 5].

Next, we present a sequence of easy claims concerning the properties of a schedule for
the above instance with makespan T . Due to Table 1 and Claim 3, we have:

B Claim 4. Each machine receives exactly 3 jobs (including private loads).

Since each digit of each occurring size is upper bounded by 2, the above claim implies that
there can be no carryover when adding up job sizes of jobs scheduled on each machine. Hence
the digits of the numbers involved can be considered independently, e.g., there can be at
most two jobs with a 1 in the third (or second) digit of its size scheduled on any machine.
This together with the given job restrictions already implies:

B Claim 5. Each truth assignment machine receives exactly one truth assignment and two
variable jobs; and each clause machine receives exactly one clause and one variable job.

B Claim 6. The jobs scheduled on a truth assignment or clause machine all have the same
truth configuration (excluding private loads).

B Claim 7. Let j ∈ [n]. The truth configuration of any job scheduled on TMachj,1 is distinct
from the truth configuration of any job scheduled on TMachj,2.

The resulting possible schedules for each machine are summed up in Table 2, and Figure 1
depicts the resulting two possible schedules for each pair of truth assignment machines.
Lastly, we have:

B Claim 8. For each i ∈ [2m], the three clause machines corresponding to i receive exactly
one variable job with >-configuration if Ci is a 1-in-3-clause and exactly two such jobs if Ci
is a 2-in-3-clause.

Using the above claims, we can easily show:

I Proposition 9. There is a satisfying truth assignment for the given 3-SAT∗ instance if and
only if there is a schedule with makespan T for the described restricted assignment instance.
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TMachj,1 TMachj,2

TJob>j

VJob>j,1

VJob>j,2

TJob⊥j

VJob⊥j,3

VJob⊥j,4

VJob⊥j,1
VJob⊥j,2

VJob>j,3
VJob>j,4

TMachj,1 TMachj,2

TJob⊥j

VJob⊥j,1

VJob⊥j,2

TJob>j

VJob>j,3

VJob>j,4

VJob>j,1
VJob>j,2

VJob⊥j,3
VJob⊥j,4

Figure 1 The truth assignment gadget: There are two possible schedules of the truth assignment
machines TMachj,1 and TMachj,2 that already determine the schedule of the variable jobs.

Refined Reduction. When trying to adapt the above reduction to the more restricted
problem of RAI, we obviously have less leeway defining the restrictions. To deal with this,
we introduce additional gadgets and encode much more information into the job sizes. The
idea of the reduction can be described as follows. We arrange the truth assignment gadgets
on the left and the clause gadgets on the right. Consider the case that a truth assignment
decision is made in the left most truth assignment gadget. Information about this decision
– called signal in the following – has to be passed on to the proper clause gadgets passing
multiple other truth assignment and clause gadgets on the way. This signal in the simple
reduction simply corresponds to a variable job that is to be scheduled on its corresponding
clause machine, and in order to prevent interaction with other gadgets, we could encode
information about the corresponding variable into the size of the variable job. However, this
would lead to a super constant number of job sizes. To avoid this, we introduce a new gadget
called the bridge and highway gadget. Very roughly speaking, the signal is passed on to
the highway via gateways; the highway passes each following truth assignment gadget using
bridges and carries the signal to the proper clauses. Next, we give a detailed description and
analysis of the refined reduction.

We adopt all the machines and jobs introduced in the simple reduction, but change the
sizes and sets of eligible machines and introduce additional jobs and machines as well as
private loads for every machine. We introduce the following jobs and machines:

For each j ∈ [n] and t ∈ [4], we introduce one gateway machine GMachj,t.
For each j ∈ [n], t ∈ [4] and j′ ∈ {j + 1, . . . n}, we introduce two bridge machines
BMachInj,t,j′ and BMachOutj,t,j′ . Furthermore, we introduce two bridge jobs BJob>j,t,j′
and BJob⊥j,t,j′ .
For each j ∈ [n], t ∈ [4] and j′ ∈ {j, . . . n}, we introduce two highway jobs HJob>j,t,j′ and
HJob⊥j,t,j′ .

In order to define the intervals of eligible machines, we first need a total order of the machines.
We partition the machines into blocks, define an internal order for each block, and then define
an order of the blocks. Remember that κ : [n]× [4]→ [2m]× [3] is a bijection indicating the
positions of the occurrences of variables in the clauses. In particular, κ(j, 1) = (i, s) indicates
that the first positive occurrence of variable xj is in clause Ci on position s, and κ(j, 2),
κ(j, 3), and κ(j, 4) indicate analogue information for the second positve, first negative, and
second negative occurrence of xj .

For each j ∈ [n], we have a truth assignment block Tj containing the truth assignment
machines TMachj,1 and TMachj,2 in this order.
For each i ∈ [2m], we have a clause block Ci containing the clause machines CMachi,s for
each s ∈ [3] and ordered increasingly by s.
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For each j ∈ [n], we have a successor block Sj containing the gateway machines GMachj,t
for each t ∈ [4] and the bridge machines BMachOutj′,t,j for each t ∈ [4] and j′ < j. For each
machine, we define an index, namely κ(j, t) for GMachj,t and κ(j′, t) for BMachOutj′,t,j , and
order the machines by the decreasing lexicographical ordering of their indices. For example,
if BMachOutj1,t1,j , BMachOutj2,t2,j , GMachj,t3 ∈ Sj and κ(j1, t1) = (1, 2), κ(j2, t2) = (1, 1)
and κ(j, t3) = (2, 3), then GMachj,t3 precedes BMachOutj1,t1,j which in turn precedes
BMachOutj2,t2,j .
For each j ∈ [n] with j > 1, we have a predecessor block Pj containing the bridge
machines BMachInj′,t,j for each t ∈ [4] and j′ < j. Machine BMachInj′,t,j has index κ(j′, t)
and the machines are ordered by the increasing lexicographical ordering of their indices.

The blocks are ordered as follows:

(T1,S1,P2, T2,S2, . . . ,Pn, Tn,Sn, C1, . . . , C2m)

The sets of eligible machines are specified in Table 3, and in Table 4 the job sizes as well as
the target makespan T are given3. Figure 2 gives some intuition on the overall structure.
Due to counting and basic arithmetic, we have:

B Claim 10. The overall size of the jobs is exactly |M|T .

Like for the simple reduction, we prove a sequence of easy claims concerning the properties
of a schedule for the constructed instance with makespan T . First note:

B Claim 11. Each machine receives exactly 4 jobs if it is a truth assignment machine and
exactly 3 jobs otherwise (including private loads).

Since each machine receives at most 4 jobs and each digit in the job sizes is bounded by 2,
we may consider each digit of the involved numbers independently, e.g., if two jobs and the
makespan have a 1 at the `-th digit, we already know that these jobs cannot be scheduled on
the same machine. This already implies a series of claims:

B Claim 12. The jobs TJob>j and TJob⊥j can exclusively be scheduled on TMachj,1 and
TMachj,2, for each j ∈ [n], and each of the two machines receives exactly one of the two jobs.

B Claim 13. The jobs VJob>j,t and VJob⊥j,t can exclusively be scheduled on TMachj,dt/2e and
GMachj,t, for each j ∈ [n] and t ∈ [4], and each of the two machines receives exactly one of
the two jobs.

B Claim 14. Bridge jobs can exclusively be scheduled on bridge machines and each bridge
machine receives exactly one bridge job.

B Claim 15. Highway jobs can exclusively be scheduled on bridge, gateway and clause
machines and each such machine receives exactly one highway job.

B Claim 16. Each clause machine CMachi,s receives exactly one of the corresponding clause
jobs CJob◦s′

i,s′ with s′ ∈ [3].

At this point, we already know that variable (and truth assignment) jobs can exclusively be
scheduled on the first or last machine of their respective interval of eligible machines. The
next step is to show that the same holds for highway and bridge jobs. To do so, the ordering
of the bridge and highway machines is of critical importance.

3 Note that we have prioritized comprehensibility over small sizes. For instance, it is not hard to see that
the columns in Table 4 corresponding to the highway and clause jobs could be deleted and the reduction
would still work.



M. Maack and K. Jansen 5:9

Table 3 The sets of eligible machines for each job or job type, defined by the first and last eligible
machine in the ordering. Note that in case of the highway jobs all four combinations of first and last
machine are possible.

Job First machine Last machine

Clause job CJob◦s
i,s CMachi,1 CMachi,3

Truth assignment job TJob◦j TMachj,1 TMachj,2
Variable job VJob◦j,t TMachj,dt/2e GMachj,t
Bridge job BJob◦j,t,j′ BMachInj,t,j′ BMachOutj,t,j′
Highway job HJob◦j,t,j′ BMachOutj,t,j′ , if j′ > j,

GMachj,t, if j′ = j

BMachInj,t,j′+1 if j′ < n,
CMachκ(j,t), if j′ = n

Table 4 Table of job and machine types with job sizes and private loads and the makespan. The
second column states the number of jobs and machines of the respective types. Each horizontal
sequence of numbers following the second column indicates the size of the respective job or private
load. Each of the corresponding columns serves a function in the reduction: the first bounds the
number of jobs on each machines; the following eight implement restrictions for the bridge, highway,
clause, truth assignment and variable jobs; and the last encodes truth values.

# B H C T V V V V
CJob>i,s 3m = 2n 1 0 0 1 0 0 0 0 0 0
CJob⊥i,s 3m = 2n 1 0 0 1 0 0 0 0 0 1
TJob>j n 1 0 0 0 1 0 0 0 0 2
TJob⊥j n 1 0 0 0 1 0 0 0 0 0
VJob>j,1 n 1 0 0 0 0 1 0 0 0 0
VJob>j,2 n 1 0 0 0 0 0 1 0 0 0
VJob>j,3 n 1 0 0 0 0 0 0 1 0 0
VJob>j,4 n 1 0 0 0 0 0 0 0 1 0
VJob⊥j,1 n 1 0 0 0 0 1 0 0 0 1
VJob⊥j,2 n 1 0 0 0 0 0 1 0 0 1
VJob⊥j,3 n 1 0 0 0 0 0 0 1 0 1
VJob⊥j,4 n 1 0 0 0 0 0 0 0 1 1
BJob>j,t,j′ 2n(n− 1) 1 1 0 0 0 0 0 0 0 0
BJob⊥j,t,j′ 2n(n− 1) 1 1 0 0 0 0 0 0 0 1
HJob>j,t,j′ 2n(n+ 1) 1 0 1 0 0 0 0 0 0 1
HJob⊥j,t,j′ 2n(n+ 1) 1 0 1 0 0 0 0 0 0 0
CMachi,s 6m = 4n 1 1 0 0 1 1 1 1 1 1
TMachj,1 n 0 1 1 1 0 0 0 1 1 0
TMachj,2 n 0 1 1 1 0 1 1 0 0 0
GMachj,1 n 1 1 0 1 1 0 1 1 1 1
GMachj,2 n 1 1 0 1 1 1 0 1 1 1
GMachj,3 n 1 1 0 1 1 1 1 0 1 1
GMachj,4 n 1 1 0 1 1 1 1 1 0 1
BMachInj,t,j′ 2n(n− 1) 1 0 0 1 1 1 1 1 1 1
BMachOutj,t,j′ 2n(n− 1) 1 0 0 1 1 1 1 1 1 1
Makespan T 3 1 1 1 1 1 1 1 1 2
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Sn−1 Pn Tn Sn C1 C2m

VJob◦
n,3

VJob◦
n,2

Figure 2 The bridge and highway gadget. The intervals of eligible machines of highway, bridge
and variable jobs are depicted in blue, red and orange, respectively. In this example, variable xn
occurs for the second time in its positive form in the last clause at the first position, and for the
first time in its negative form in the first clause at the first position.

B Claim 17. The jobs BJob>j,t,j′ and BJob⊥j,t,j′ can exclusively be scheduled on BMachInj,t,j′
and BMachOutj,t,j′ , for each j ∈ [n], j′ ∈ {j + 1, . . . , n} and t ∈ [4], and each of the two
machines receives exactly one of the two jobs.

Proof. The claim can be proved with a simple inductive argument: Let j′ ∈ {2, . . . , n} and,
furthermore, (j`, t`) ∈ [j′ − 1]× [4] denote the `-th element from [j′ − 1]× [4] when ordering
the pairs (j, t) ∈ [j′ − 1]× [4] by the increasing lexicographical ordering of the pairs κ(j, t).
Considering the ordering of the machines and the job restrictions, BJob>j1,t1,j′

and BJob⊥j1,t1,j′

are the only bridge jobs that can be scheduled on BMachInj1,t1,j′ and BMachOutj1,t1,j′ (see
Figure 2). Hence, the claim has to hold for (j1, t1). But then again BJob>j2,t2,j′

and
BJob⊥j2,t2,j′

are the only remaining bridge jobs that can be scheduled on BMachInj2,t2,j′ and
BMachOutj2,t2,j′ , and so on. C

B Claim 18. The jobs HJob>j,t,j′ and HJob⊥j,t,j′ can exclusively be scheduled on machine X and
Y, for each j ∈ [n], j′ ≥ j, and t ∈ [4]; where X = BMachOutj,t,j′ if j′ > j, and X = GMachj,t
otherwise, and Y = BMachInj,t,j′+1 if j′ < n, and Y = CMachκ(j,t) otherwise. Furthermore,
each of the two machines receives exactly one of the two jobs.

Proof. We can use the same argument (with reversed orderings) as we did in the last claim.
It is only slightly more complicated, because more machine types are involved. C

Summing up, each job except for clause jobs may only be scheduled on the first or last
machine of their interval of eligible machines, and each of these machines receives either the
respective job in >- or ⊥-configuration. Considering this distribution of the jobs and the
last digit of the size vectors, we get the following two claims:

B Claim 19. For any machine, the jobs assigned to this machine all have the same truth
configuration (excluding private loads).

B Claim 20. For each i ∈ [2m], the three clause machines corresponding to i receive exactly
one highway job with >-configuration, if Ci is a 1-in-3-clause, and exactly two such jobs, if
Ci is a 2-in-3-clause.

The former property together with the possible job distribution determined so far implies
that there are only few possible schedules for each machine. We summarize these schedules
in Table 5. Furthermore, we can infer that the truth assignment gadget works essentially the
same as before (see Figure 1):

B Claim 21. Let j ∈ [n]. The truth configuration of any job scheduled on TMachj,1 is distinct
from the truth configuration of any job scheduled on TMachj,2.
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Table 5 For each machine there are only few possible jobs that may be assigned to it in a schedule
with makespan T . Each set corresponds to one of the possible schedules.

Machine Possible Schedule

TMachj,1 {TJob>j , VJob>j,1, VJob>j,2}, {TJob⊥j , VJob⊥j,1, VJob⊥j,2}
TMachj,2 {TJob>j , VJob>j,3, VJob>j,4}, {TJob⊥j , VJob⊥j,3, VJob⊥j,4}
GMachj,t {VJob>j,t, HJob>j,t,j}, {VJob⊥j,t, HJob⊥j,t,j}
BMachInj,t,j′ {BJob>j,t,j′ , HJob>j,t,j′−1}, {BJob⊥j,t,j′ , HJob⊥j,t,j′−1}
BMachOutj,t,j′ {BJob>j,t,j′ , HJob>j,t,j′}, {BJob⊥j,t,j′ , HJob⊥j,t,j′}
CMachi,s (1-in-3) {CJob>i,1, HJob>κ−1(i,s),n}, {CJob⊥i,2, HJob⊥κ−1(i,s),n},{CJob⊥i,3, HJob⊥κ−1(i,s),n}
CMachi,s (2-in-3) {CJob>i,1, HJob>κ−1(i,s),n}, {CJob>i,2, HJob>κ−1(i,s),n},{CJob⊥i,3, HJob⊥κ−1(i,s),n}

Lastly, we can show that the bridge and highway gadget works as well:

B Claim 22. Let j ∈ [n] and t ∈ [4]. The variable job scheduled on TMachj,dt/2e and the
highway job scheduled on CMachκ(j,t) have the same truth configuration.

Proof. Note that the truth configuration of the variable job scheduled on GMachj,t compared
with the one of the variable job scheduled on TMachj,dt/2e is reversed. Hence, the highway
job scheduled on GMachj,t also has the reversed truth-configuration while the highway job
that is passed on again has the original truth-configuration. This argument can be repeated
with the bridge and highway jobs in the following, yielding the asserted claim. C

Using the above claims, we can conclude the proof of Theorem 1 via the following Lemma:

I Lemma 23. There is a satisfying truth assignment for the given 3-SAT∗ instance, if and
only if there is a schedule with makespan T for the constructed RAI instance.

Proof. First, we consider the case that a schedule with makespan T for the constructed
RAI instance is given. For each variable xj and occurrence t ∈ [4], let HJob◦j,t

j,t,n be the
highway job scheduled on CMachκ(j,t) (see Table 5). We choose the truth value of xj to be
◦j,1. Considering the distribution of jobs on the truth assignment machines (see Table 5), as
well as Claim 21 and 22, we know that for each variable xj and occurrence t ∈ [4], the truth
configuration ◦j,t corresponds exactly to the truth value xj contributes to the clause given
by κ(j, t). Furthermore, we know that for each clause Ci, there are exactly three variable
jobs scheduled on the corresponding clause machines, and exactly one or two of these has
>-configuration, if Ci is a 1-in-3-clause or 2-in-3-clause, respectively (Claim 20). Hence, Ci
is satisfied.

Now, let there be a satisfying truth assignment, and /j be the corresponding truth value
of variable xj and .j its negation. We set 4j,t = /j for t ∈ {1, 2} and 4j,t = .j for t ∈ {3, 4}
and assign HJob4j,t

j,t,n to CMachκ(j,t). Let 5jt be the negation of 4jt. All the other jobs are
assigned as indicated by the claims and Table 5 in particular: Each machine receives its
private load; CMachκ(j,t) additionally receives one of the eligible remaining clause jobs with
4j,t-configuration (this can be done because the truth assignment is satisfying); BMachOutj,t,j′
receives HJob5j,t

j,t,j′ and BJob5j,t

j,t,j′ ; BMachInj,t,j′ receives HJob4j,t

j,t,j′−1 and BJob4j,t

j,t,j′ ; GMachj,t
receives HJob5j,t

j,t,j and VJob5j,t

j,t ; TMachj,1 receives VJob4j,1
j,1 , VJob4j,2

j,2 and TJob4j,1
j ; and

TMachj,2 receives VJob4j,3
j,3 , VJob4j,4

j,4 as well as TJob4j,3
j . It is easy to verify, that all jobs are

assigned and each machine has a load of T . J
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Figure 3 The left picture visualizes that each RAI instance can be seen as a RAR(2) instance
and the right one depicts an RAR(2) instance that is not a RAI instance. In both pictures, each
dimension corresponds to a resource, the squares mark the capacities of machines and the circles
the demands of jobs. If the capacity of a machine is at least as big as the demand of a job in both
dimension, the job is eligible on the machine.

3 Resource Restrictions

In this section, we briefly discuss scheduling with resource restrictions and provide the proof
of Theorem 2 in particular. First note that RAI is properly placed between RAR(1) and
RAR(2), that is, with a slight abuse of notation, RAR(1) ⊂ RAI ⊂ RAR(2). The ideas
needed to see RAI ⊂ RAR(2) are given in Figure 3.

The result in Theorem 2 concerning 4 resources is proven by showing that the restrictions
in a reduction due to Ebenlendr et al. [7] can be modeled using 4 resources. Concerning the
result for 2 resources, we first discuss the corresponding result for 3 resources. The reduction
is based on the classical result by Lenstra et al. [19] and very similar to a reduction by
Bhaskara et al. [1] for rank four unrelated scheduling. However, there is a problem with the
choice of processing times in the latter reduction (see [22]), and the present result can be
used to fix it. Combining the ideas in that reduction with a result by Chen et al. [6] yields
the result for 2 resources.

Four Resources. In the classical 3-SAT problem, a conjunction of m clauses is given and
each clause is a disjunction of at most three literals of variables x1, . . . , xn. In the result due
to Ebenlendr et al. [7], the modified 3-SAT problem, where each variable occurs exactly three
and each literal at most two times in the formula, is reduced to the graph balancing problem,
that is, restricted assignment with the additional property that each job is eligible on at most
two machines. To show that the modified 3-SAT problem is NP-hard, we can use techniques
already applied in Section 2: We may replace the dj occurrences of variable xj with new
variables zj1, . . . , zjdj

and add new clauses (zj1 ∧ ¬zj2), . . . (zjdj−1 ∧ ¬zjdj
), (zjdj

∧ ¬zj1).

I Theorem 24 ([7]). There is no polynomial time approximation algorithm with rate smaller
than 1.5 for the graph balancing problem unless P=NP.

Proof. Given an instance of modified 3-SAT, we introduce clause machines vi corresponding
to the clauses Ci, and literal machines uj,1 and uj,0 corresponding to the literals xj and ¬xj .
Furthermore, we introduce truth assignment jobs ej for each variable xj with size 2 and
eligible on uj,1 and uj,0; and clause jobs fi,j,α for each clause Ci and literal yj occurring in
Ci with α = 1 if yj = xj and α = 0 if yj = ¬xj . The job fi,j,α has size 1 and is eligible on
vi and uj,α. Lastly, we introduce a dummy job di for each clause Ci with less then three
literals. Its size is 1 if Ci contains two literals, and 2 if Ci contains only one literal.
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In a schedule with makespan 2, there is at least one clause job fi,j,α for each vi that is
scheduled on uj,α and not on vi. Hence, the job ej has to be scheduled on uj,|α−1|. Now, it
is easy to see that there is a schedule with makespan 2, if and only if there is a satisfying
assignment. The construction works as follows: Given a schedule with makespan 2, we set
variable xj to > if ej is scheduled on uj,0, and to ⊥ otherwise. Moreover, given a satisfying
truth assignment we assign the truth assignment jobs correspondingly, and the machines uj,α
that did not receive a truth assignment job receives all eligible clause jobs (at most two). J

We reproduce the restrictions in the above reduction using four resources and get:

I Corollary 25. There is no polynomial time approximation algorithm for RAR(4) with rate
smaller than 1.5 unless P=NP.

Proof. We set R = [4]. The clause machine vi has a resource capacity vector of (2n +
1, 2n+ 1, i, (m+ 1)− i), and the literal machine uj,α has capacity vectors (2j − α, (2n+ 1)−
(2j − α),m+ 1,m+ 1). Furthermore, the truth assignment job ej has a resource demand
vector of (2j − 1, (2n+ 1)− 2j,m+ 1,m+ 1); the clause job fi,j,α has a demand vector of
(2j − α, (2n+ 1)− (2j − α), i, (m+ 1)− i); and the dummy job di has a demand vector of
(2n+ 1, 2n+ 1, i, (m+ 1)− i). It is easy to verify that the resulting sets of eligible machines
are the same as described in Theorem 24. J

Three Resources. In the 3-DM problem, the input consists of three disjoint sets A, B and C
with |A| = |B| = |C| = n ∈ N, as well as a set of triplets E ⊆

{
{a, b, c}

∣∣ a ∈ A, b ∈ B, c ∈ C}.
The goal is to decide whether there is a subset F ⊆ E that perfectly covers A, B and C,
that is, for each x ∈ A ∪B ∪ C there is exactly one triplet e ∈ F with x ∈ e. The set F is
called a 3D-matching. We assume that the elements of A, B and C are indexed, that is,
A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn}. Furthermore, we assume
that for each x ∈ A ∪B ∪ C there is at least one e ∈ E with x ∈ E.

We present a reduction from 3-DM to RAR(3). Given an instance (A,B,C,E) of 3-DM,
let E(x) = {e ∈ E |x ∈ e} for each x ∈ A ∪B ∪ C. Furthermore, we set αA = 12, αB = 13,
αC = 22, βA = 14, βB = 15 and βC = 18. Let R = {A,B,C} and M = E. For each
machine e, we define the resource capacities as follows. Let X ∈ {A,B,C} and xi ∈ X ∩ e
be the element of x with index i. We set cX(e) = i. Furthermore, for each element xi ∈ X
with index i in X ∈ {A,B,C}, we introduce one element job with size αX and |E(x)| − 1
dummy jobs with size βX . The resource demand for each of these jobs is given by d(i) with
dX(i) = i and dY (i) = 0 for Y ∈ {A,B,C} \ {X}.

B Claim 26. We have αA + αB + αC = 47 = βA + βB + βC ; any four numbers taken
from Γ = {αA, αB , αC , βA, βB , βC} = {12, 13, 22, 14, 15, 18} sum up to a value bigger than
47; any selection of less than 3 numbers sums up to a value smaller than 47; and for any
three numbers γ1, γ2, γ3 ∈ Γ with γ1 ≤ γ2 ≤ γ3 and γ1 + γ2 + γ3 = 47, we have either
(γ1, γ2, γ3) = (αA, αB , αC) or (γ1, γ2, γ3) = (βA, βB , βC).

Proof. The first three assertions are obvious, and the fourth holds due to a simple case
analysis:

If γ1 > 15, we have γ1 ≥ 18, and hence 47 = γ1 + γ2 + γ3 ≥ 3 · γ1 = 54: a contradiction.
Note that γ3 ≥ (γ2 + γ3)/2 = (47− γ1)/2. Hence, γ1 ≤ 15 implies γ3 ≥ 16 and therefore
γ3 ∈ {18, 22}.
If we have γ3 = 22 = αC , then γ1 ≤ (γ1+γ2)/2 = (47−γ3)/2 = 12.5. Hence, γ1 = 12 = αA
and γ2 = 13 = αB .
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If we have γ3 = 18 = βC , than γ2 ≥ (γ1+γ2)/2 = (47−γ3)/2 = 14.5. Hence, γ2 ∈ {15, 18}.
If γ2 = 15 = βB , then γ1 = 14 = βA, and if γ2 = 18, then γ1 = 11 /∈ Γ.

This concludes the proof of the claim. C

By brute force, it can be verified that 47 is the smallest value such that suitable numbers
αA, αB , αC , βA, βB and βC exist and the above claim holds.

B Claim 27. The summed up size of all the element and dummy jobs is 47|M|.

Proof. We have exactly n element jobs with size αA, αB and αC , respectively, yielding an
overall load of 47n. The dummy jobs have an overall load of:

βA
∑
a∈A

(|E(a)| − 1) + βB
∑
b∈B

(|E(b)| − 1) + βC
∑
c∈C

(|E(b)| − 1)

=(βA + βB + βC)(|E| − n) = 47(|M| − n)

In this equation, we used the simple fact that {E(x) |x ∈ X} is a partition of E for each
X ∈ {A,B,C}, and hence |E| =

∑
x∈X |E(x)|. C

These two claims imply:

B Claim 28. In any schedule for the constructed instance with makespan 47, each machine
receives exactly three jobs with sizes γ1, γ2, γ3 such that (γ1, γ2, γ3) = (αA, αB , αC) or
(γ1, γ2, γ3) = (βA, βB , βC).

Using these claims, we can show:

I Proposition 29. There is a perfect matching for the given 3-DM instance, if and only if
there is a schedule with makespan 47 for the constructed RAR(3) instance.

Proof. Let F be a perfect matching for the 3-DM instance. For each x ∈ A∪B∪C we assign
the corresponding element job to the machine e with x ∈ e and e ∈ F . Furthermore, the
dummy jobs corresponding to x ∈ X with X ∈ {A,B,C}, are distributed to the machines e
with x ∈ e and e /∈ F such that each machine receives exactly one job in this step. Hence,
each machine e ∈ E receives exactly three eligible jobs either with sizes αA, αB and αC (if
e ∈ F ) or βA, βB and βC (otherwise).

Next, we assume that there is a schedule with makespan 47 for the scheduling instance.
For each X ∈ {A,B,C}, there are exactly |M| many jobs with size αX or βX , and due to
the above claims, we know that each machine receives exactly one of these jobs. For each
j ∈ [n], let xj ∈ X be the element with index j in X ∈ {A,B,C}. The machines

⋃n
j=iE(xj)

are the only machines that may process jobs corresponding to xi, . . . , xn for each i ∈ [n]
and we have exactly

∑n
j=i |E(xj)| many such jobs. Hence, the machines from E(xi) receive

exactly the jobs corresponding to xi. Now, considering this and Claim 28, we get a perfect
matching by selecting the machines that process three element jobs. J

Two Resources. We are able to refine the result for three resources to work for two
resources as well by using another variant of 3-DM as the starting point of the reduction.
The problem 3-DM∗ was introduced by Chen et al. [6] to get an improved lower bound for
the approximation ratio of rank four unrelated scheduling.

In this problem, a set of six disjoint sets E = {A,A′, B,B′, C, C ′} is given. For each X ∈ E ,
we have |X| = 3n for some n ∈ N and the sets are indexed by [3n], e.g., A = {a1, a2, . . . , a3n}.
Furthermore, there are two sets of triplets E1 ⊆

{
{ai, bj , cj}, {a′i, bj , cj}

∣∣ i ∈ [3n], j ∈ [3n]
}
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Table 6 The resource demands and capacities for the different job (types) and machines.

Jobs Resources Machines Resources

ai (2i, 0) {ai, bj , cj} (2i, 3n+ j)
a′i (2i− 1, 0) {a′i, bj , cj} (2i− 1, 3n+ j)
bj (0, 3n+ j) {ai, b′i, c′i} (2i, i)
cj (0, 3n+ j) {a′i, b′i, c′ζ(i)} (2i− 1, ζ(i))
b′i (2i− 1, 0)
c′i (0, i)

and E2 =
{
{ai, b′i, c′i}, {a′i, b′i, c′ζ(i)}

∣∣ i ∈ [3n]
}
with ζ(3k + 1) = 3k + 2, ζ(3k + 2) = 3k + 3

and ζ(3k + 3) = 3k + 1 for each k ∈ {0, . . . , n− 1}. Note that the second set of triplets is
determined by the element sets in the input. Similar to the classical 3-DM problem, the goal
is to decide whether there is a subset F ⊆ E1 ∪E2 that perfectly covers the element set, that
is, for each x ∈

⋃
X∈E X there is exactly one triplet e ∈ F with x ∈ e. We assume that for

each x ∈
⋃
X∈E X there is at least one e ∈ E with x ∈ E (otherwise the problem is trivial).

Let αA = αA′ = 12, αB = αB′ = 13, αC = αC′ = 22, βA = βA′ = 14, βB = βB′ = 15
and βC = βC′ = 18. We set M = E1 ∪ E2 and R = [2]. The corresponding resource
capacity vectors are presented in Table 6. Furthermore, for each element x ∈ X in X ∈ E ,
we introduce one element job with size αX and |E(x)| − 1 dummy jobs with size βX . The
vector of resource demands for each such job is given in Table 6. Note that Claim 26-28 hold
for this reduction as well and with the same reasoning. A simple case analysis yields:

B Claim 30. For each x ∈
⋃
X∈E X, a (dummy or element) job corresponding to x is eligible

on each machine e with x ∈ e.

Using these claims, we can conclude the proof of Theorem 2:

I Lemma 31. There is a perfect matching for the given 3-DM∗ instance, if and only if there
is a schedule with makespan 47 for the constructed RAR(2) instance.

Proof. Let F be a perfect matching for the 3-DM∗ instance. For each x ∈
⋃
X∈E X, we

assign the corresponding element job to the machine e with x ∈ e and e ∈ F . Furthermore,
the dummy jobs corresponding to x ∈ X with X ∈ E , are distributed to the machines e with
x ∈ e and e /∈ F such that each such machine receives exactly one job. Hence, each machine
e ∈ E receives exactly three eligible jobs either with sizes αA, αB and αC or βA, βB and βC .

Next, we assume that there is a schedule with makespan 47 for the scheduling instance.
There are exactly |M| many jobs with size αA = αA′ or βA = βA′ corresponding to elements
of A∪A′, and due to Claim 28 we know that each machine receives exactly one of these jobs.
The machines corresponding to triplets from E(a3n) are the only ones that can process the
|E(a3n)| jobs corresponding to a3n, and hence each of these machines receives exactly one of
these jobs. Now, the machines corresponding to triplets from E(a′3n) are the only remaining
ones that can process the |E(a′3n)| jobs corresponding to a′3n. Iterating this argument, we get
that each machine e receives exactly one job corresponding to some x ∈ A ∪A′ with x ∈ e.
Note that the above argument was based on the first resource value. Considering the second
resource value yields the same result for each x ∈ C ∪ C ′. For the elements x ∈ B ∪B′ both
resource values have to be considered, namely the second for b ∈ B and the first for b′ ∈ B′,
but the argument stays the same. Summing up, each machine e = {x, y, z} receives exactly
three jobs corresponding to x, y and z. Now, considering this and Claim 28, we get a perfect
matching by selecting the triplets e that processes three element jobs. J
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4 Conclusion

In this paper we provided hardness of approximation results for scheduling with interval and
resource restrictions. We list some possible future research directions:

From the perspective of complexity, tighter hardness results seem plausible. In particular,
we have the same inapproximability results for RAR(2) and RAR(3) and it would be
interesting to find a better result for RAR(3).

From the algorithmic perspective, it remains open whether any of the studied problems
and RAI in particular admits an approximation algorithm with a rate smaller than 2. There
have been some results [32, 27] for RAI using promising linear programming relaxations
that may be useful in this context. Another possibility is the application of the local search
techniques originally used by Svensson [30] for the restricted assignment problem. This
approach recently yielded a breakthrough for the graph balancing problem [14].

Finally, while a PTAS for RAR(1) is known [24], it is unclear whether the problem
admits a so called efficient PTAS with a running time of the form f(1/ε)poly(|I|) for some
computable function f .
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Abstract
We construct an automaton group with a PSPACE-complete word problem, proving a conjecture due
to Steinberg. Additionally, the constructed group has a provably more difficult, namely EXPSPACE-
complete, compressed word problem. Our construction directly simulates the computation of a
Turing machine in an automaton group and, therefore, seems to be quite versatile. It combines
two ideas: the first one is a construction used by D’Angeli, Rodaro and the first author to obtain
an inverse automaton semigroup with a PSPACE-complete word problem and the second one is to
utilize a construction used by Barrington to simulate circuits of bounded degree and logarithmic
depth in the group of even permutations over five elements.
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1 Introduction

The word problem is one of Dehn’s fundamental algorithmic problems in group theory [10]:
given a word over a finite set of generators for a group, decide whether the word represents
the identity in the group. While, in general, the word problem is undecidable [18, 7], many
classes of groups have a decidable word problem. Among them is the class of automaton
groups. In this context, the term automaton refers to finite state, letter-to-letter transducers.
In such automata, every state q induces a length-preserving, prefix-compatible action on
the set of words, where an input word u is mapped to the output word obtained by reading
u starting in q. The group or semigroup generated by the automaton is the closure under
composition of the actions of the different states and a (semi)group arising in this way is
called an automaton (semi)group.

The interest in automaton groups was stirred by the observation that many groups
with interesting properties are automaton groups. Most prominently, the class contains the
famous Grigorchuk group (which is the first example of a group with sub-exponential but
super-polynomial growth and admits other peculiar properties, see [14] for an accessible
introduction). There is also a quite extensive study of algorithmic problems in automaton
(semi)groups: the conjugacy problem and the isomorphism problem (here the automaton is
part of the input) – the other two of Dehn’s fundamental problems – are undecidable for
automaton groups [23] . For automaton semigroups, the order problem could be proved to
be undecidable [12, Corollary 3.14]. Recently, this could be extended to automaton groups
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[13] (see also [4]). On the other hand, the undecidability result for the finiteness problem for
automaton semigroups [12, Theorem 3.13] could not be lifted to automaton groups so far.

The undecidability results show that the presentation of groups using automata is still
quite powerful. Nevertheless, it is not very difficult to see that the word problem for
automaton groups is decidable. One possible way is to show an upper bound on the length
of an input word on which a state sequence1 not representing the identity of the group acts
non-trivially. In the most general setting, this bound is |Q|n where Q is the state set of the
automaton and n is the length of the state sequence. Another viewpoint is that one can use a
non-deterministic guess and check algorithm to solve the word problem. This algorithm uses
linear space proving that the word problem for automaton (semi)groups is in PSPACE. This
approach seems to be mentioned first by Steinberg [22, Section 3] (see also [9, Proposition 2
and 3]). In some special cases, better algorithms or upper bounds are known: for example, for
contracting automaton groups (and this includes the Grigorchuk group), the witness length
is bounded logarithmically [17] and the problem, thus, is in LOGSPACE; other examples of
classes with better upper bounds or algorithms include automata with polynomial activity
[5] or Hanoi Tower groups [6]. On the other hand, Steinberg conjectured that there is an
automaton group with a PSPACE-complete word problem [22, Question 5]. As a partial
solution to his problem, an inverse automaton semigroup with a PSPACE-complete word
problem has been constructed in [9, Proposition 6]2. In this paper, our aim is to finally prove
the conjecture for groups.

In order to do so, we adopt the construction used by D’Angeli, Rodaro and the first author
from [9, Proposition 6]. This construction uses a master reduction and directly encodes a
Turing machine into an automaton. Already in [9, Proposition 6], it was also used to show
that there is an automaton group whose word problem with a rational constraint (which
depends on the input) is PSPACE-complete. To get rid of this rational constraint, we apply
an idea used by Barrington [3] to transform NC1-circuits (circuits of bounded fan-in and
logarithmic depth) into bounded-width polynomial-size branching programs. Similar ideas
predating Barrington have been attributed to Gurevich (see [15]) and given by Mal’cev [16].
Nevertheless, this paper is fully self-contained and no previous knowledge of either [9] or [3]
is needed.

In addition, we also investigate the compressed word problem for automaton groups.
Here, the (input) state sequence is given as a so-called straight-line program (a context-free
grammar which generates exactly one word). By uncompressing the input sequence and
applying the above mentioned non-deterministic linear-space algorithm, one can see that
the compressed word problem can be solved in EXPSPACE. Thus, the more interesting
part is to prove that this algorithm cannot be improved significantly: we show that there
is an automaton group with an EXPSPACE-hard compressed word problem. This result is
interesting because, by taking the direct product, we obtain a group whose (ordinary) word
problem is PSPACE-complete and whose compressed word problem is EXPSPACE-complete
and, thus, provably more difficult by the space hierarchy theorem [21, Theorem 6] (or e. g. [2,
Theorem 4.8]). To the best of our knowledge, this is the first example of a group for which
this is possible.

1 In order to avoid ambiguities, we call a word over the states of the automaton a state sequence. So, in
our case the input for the word problem is a state sequence.

2 In fact, the semigroup is generated by a partial, invertible automaton. A priori, this seems to be a
stronger statement than that the semigroup is inverse and also an automaton semigroup. That is why
the cited paper uses the term ‘automaton-inverse semigroup’. Only later, it was shown that the two
concepts actually coincide [8, Theorem 25].
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Explicit previous results on the compressed word problem for automaton groups do not
seem to exist. However, it was observed by Gillibert [11] that the proof of [9, Proposition 6]
also yields an automaton semigroup with an EXPSPACE-complete compressed word problem
in a rather straightforward manner. For the case of groups, it is possible to adapt the
construction used by Gillibert to prove the existence of an automaton group with an
undecidable order problem [13] slightly to obtain an automaton group with a PSPACE-hard
compressed word problem [11].

2 Preliminaries

Words and Alphabets with Involution. We use common notations from formal language
theory. In particular, we use Σ∗ to denote the set of words over an alphabet Σ including
the empty word. If we want to exclude the empty word, we write Σ+. For any alphabet
Q, we define a natural involution between Q and a disjoint copy Q−1 = {q−1 | q ∈ Q}
of Q: it maps q ∈ Q to q−1 ∈ Q−1 and vice versa. In particular, we have (q−1)−1 = q.
The involution extends naturally to words over Q ∪Q−1: for q1, . . . , qn ∈ Q ∪Q−1, we set
(qn . . . q1)−1 = q−1

1 . . . q−1
n . This way, the involution is equivalent to taking the group inverse

if Q is a generating set of a group.

Turing Machines and Complexity. We assume the reader to be familiar with basic notions of
complexity theory such as configurations for Turing machines, computations and reductions
in logarithmic space as well as complete and hard problems for PSPACE and the class
EXPSPACE. See [19] or [2] for standard text books on complexity theory. We only consider
deterministic, single-tape machines and write their configurations as word c1 . . . ci−1pci . . . cn
where the cj are symbols from the tape alphabet and p is a state. In this configuration, the
machine is in state p and its head is over the symbol ci.

I Fact 1 (Folklore). Consider a deterministic Turing machine with state set P and tape
alphabet ∆. After a straightforward transformation of the transition function and states, we
can assume that the symbol γ(t+1)

i at position i of the configuration at time step t+ 1 only
depends on the symbols γ(t)

i−1, γ
(t)
i , γ

(t)
i+1 ∈ Γ at position i− 1, i and i+ 1 at time step t. Thus,

we may always assume that there is a function τ : Γ3 → Γ with Γ = P ]∆ mapping the
symbols γ(t)

i−1, γ
(t)
i , γ

(t)
i+1 ∈ Γ to the uniquely determined symbol γ(t+1)

i for all i and t.

Group Theory and A5. For elements h and g of a group G, we write gh for the conjugation
h−1gh of g with h and [h, g] for the commutator h−1g−1hg. For the neutral element of a
group, we write 1. We write p =G q or p = q in G if two words p and q over the generators
(and their inverses) of a group evaluate to the same group element.

With A5 we denote the alternating group of degree five, i.e. the group of even permutations
of five elements. It was used by Barrington [3] to convert logical circuits of bounded fan-in
and logarithmic depth (so-called NC1-circuits) to bounded-width, polynomial-size branching
programs. We will not require this actual result (or knowledge of the involved concepts) in
the following, but we will make heavy use of the next lemma and the idea to use iterated
commutators, which we will outline below.

I Lemma 2 (see Lemma 1 and 3 of [3]). There are σ, α, β ∈ A5 such that σ = [σβ , σα].

From now on, σ, α and β will refer to those mentioned in Lemma 2 (unless stated otherwise).

STACS 2020



6:4 An Automaton Group with PSPACE-Complete Word Problem

Word Problem. The word problem of a group G generated by a finite set Q is the problem:
Constant: the group G
Input: q ∈ (Q ∪Q−1)∗

Question: is q = 1 in G?
In addition, if C is a class of groups, we also consider the uniform word problem for C. Here,
the group G ∈ C is part of the input (in a suitable representation).

Automata. We use the word automaton to denote what is more precisely called a letter-to-
letter, finite state transducer. Formally, an automaton is a triple T = (Q,Σ, δ) consisting of a
finite set of states Q, an input and output alphabet Σ and a set δ ⊆ Q×Σ×Σ×Q of transitions.
For a transition (p, a, b, q) ∈ Q × Σ × Σ × Q, we usually use the more graphical notation
p qa/b where a is the input and b is the output. Additionally, we use the common way of
depicting automata (see e. g. in Example 3). We will usually work with deterministic and
complete automata, i. e. automata where we have dp,a =

∣∣∣{p qa/b ∈ δ | b ∈ Σ, q ∈ Q}
∣∣∣ = 1

for all p ∈ Q and a ∈ Σ. In other words, for every a ∈ Σ, every state has exactly one
transition with input a.

A run of an automaton T = (Q,Σ, δ) is a sequence

q0 q1 . . . qna1/b1 a2/b2 an/bn

of transitions from δ. It starts in q0 and ends in qn. Its input is a1 . . . an and its output is
b1 . . . bn. If T is complete and deterministic, then, for every state q ∈ Q and every word
u ∈ Σ∗, there is exactly one run starting in q with input u. We write q ◦ u for its output and
q · u for the state in which it ends. This notation can be extended to multiple states. To
avoid confusion, we usually use the term state sequence instead of ‘word’ (which we reserve
for input or output words) for elements q ∈ Q∗. Now, for states q1, q2, . . . , q` ∈ Q, we set
q` . . . q2q1 ◦ u = q` . . . q2 ◦ (q1 ◦ u) inductively. If the state sequence q ∈ Q∗ is empty, then
q ◦ u is simply u.

This way, every state q ∈ Q (and even every state sequence q ∈ Q∗) induces a map
Σ∗ → Σ∗ and every word u ∈ Σ∗ induces a map Q→ Q. If all states of an automaton induce
bijective functions, we say it is invertible and call it a G -automaton. For a G -automaton T ,
all bijections induced by the states generate a group (with composition as operation), which
we denote by G (T ). A group is called an automaton group if it arises in this way. Clearly,
G (T ) is generated by the maps induced by the states of T and, thus, finitely generated.

I Example 3. The typical first example of an automaton generating a group is the adding
machine T = ({q, id}, {0, 1}, δ):

q id1/0
0/1 0/0

1/1

It obviously is deterministic and complete and, therefore, we can consider the map induced
by state q. We have q3 ◦ 000 = q2 ◦ 100 = q ◦ 010 = 110. From this example, it is easy to see
that the action of q is to increment the input word (which is interpreted as a reverse/least
significant bit first binary representation ←−bin(n) of a number n). The inverse is accordingly
to decrement the value. As the other state id acts like the identity, we obtain that the group
G (T ) generated by T is isomorphic to the infinite cyclic group.

Similar to extending the notation q ◦u to state sequences, we can also extend the notation
q · u. For this, it is useful to introduce cross diagrams, another notation for transitions of
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a

p q

b

(a) Cross diagrams.

a0,1 . . . a0,m
q1,0 q1,1 . . . q1,m−1 q1,m

a1,1 a1,m...
...

...
...

an−1,1 an−1,m
qn,0 qn,1 . . . qn,m−1 qn,m

an,1 . . . an,m

(b) Multiple combined cross diagrams.

u

p q

v

(c) Abbreviated cross
diagram.

Figure 1 Combined and abbreviated cross diagrams.

automata. For a transition p qa/b of an automaton, we write the cross diagram given
in Figure 1a. Multiple cross diagrams can be combined into a larger one. For example, the
cross diagram in Figure 1b indicates that there is a transition qi,j−1 qi,j

ai−1,j/ai,j for all
1 ≤ i ≤ n and 1 ≤ j ≤ m. Typically, we omit unneeded names for states and abbreviate
cross diagrams. Such an abbreviated cross diagram is depicted in Figure 1c. If we set
qn,0 . . . q1,0 = p, u = a0,1 . . . a0,m, v = an,1 . . . an,m and q = qn,m . . . q1,m, then it indicates
the same transitions as the one in Figure 1b. It is important to note here, that the right-most
state in p is actually the one to act first.

If we have the cross diagram from Figure 1c, we set p ·u = q. This is the same, as setting
qn . . . q1 · u = [qn . . . q2 · (q1 ◦ u)](q1 · u) inductively and, with the definition from above, we
already have p ◦ u = v.

Normally, we cannot simply re-order the rows of a cross diagram as the output interferes
and we could get into different states. However, we can clearly re-order rows if they act like
the identity:

I Fact 4. Let T = (Q,Σ, δ) be a deterministic automaton, w ∈ Σ∗ and q1, . . . , q` ∈ Q∗ such
that q1 ◦ w = · · · = q` ◦ w = w.

Then, for any p = pk · · ·p1 ∈ {q1, . . . , q`}∗, we have p · w = (pk · w) · · · (p1 · w).

Balanced Iterated Commutators. We lift the notation gh for conjugation and [h, g] for
the commutator from groups to words over the generators: for an alphabet Q and words
p, q ∈ Q∗, we write pq = q−1pq and [q,p] = q−1p−1qp using the natural involution for
Q ∪ Q−1. We also need a balanced version of an iterated commutator; in fact, it will be
crucial to our constructions.3

I Definition 5. Let Q be an alphabet and α, β ∈ (Q ∪Q−1)∗. For gt, . . . , g1 ∈ (Q ∪Q−1)∗,
we inductively define the word Bβ,α[gt, . . . , g1] by

Bβ,α[g1] = g1

Bβ,α[gt, . . . , g1] =
[
Bβ,α[gt, . . . , gb t

2 c+1]β , Bβ,α[gb t
2 c, . . . , g1]α

]
.

I Lemma 6. On input of gt, . . . , g1, one can compute Bβ,α[gt, . . . , g1] in logarithmic space.

3 Here, we make an exception as α and β do not refer to the corresponding permutations from Lemma 2
but are arbitrary words. Later on, however, we will apply the definition usually in such a way that α
and β indeed are related to the ones from Lemma 2.
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I Remark 7. For readers familiar with the notions: using a more careful but tedious ana-
lysis (and appropriate padding symbols), one can see that the reduction from g1, . . . , gt to
Bβ,α[gt, . . . , g1] can not only be done in logarithmic space but actually it is a DLOGTIME-
uniform projection reduction (compare to the proof of Barrington’s result in [24, The-
orem 4.52]).

If we substitute σ, α and β by the actual elements from A5, we can see (using a simple
induction) that Bβ,α[gt, . . . , g1] works as a t-ary logical conjunction:

I Lemma 8. For all gt, . . . , g1 ∈ {id, σ} ⊆ A5, we have

Bβ,α[gt, . . . , g1] =A5

{
σ if g1 = · · · = gt = σ

1 otherwise.

I Remark 9. Something similar can be done with the free group of rank two (instead of A5)
(see [20]). This is interesting because A5 cannot be realized as an automaton group over an
alphabet with less than five elements but the free group of rank three can be generated by
an automaton with binary alphabet [1, 25].

3 Word Problem

In this section, we will show our main result:

I Theorem 10. There is an automaton group with a PSPACE-complete word problem:
Constant: a G -automaton T = (Q,Σ, δ)
Input: q ∈ Q∗

Question: is q = 1 in G (T )?

In order to prove this theorem, we are going to adapt the construction used in [9,
Proposition 6] to show that there is an inverse automaton semigroup with a PSPACE-
complete word problem and that there is an automaton group whose word problem with a
single rational constraint is PSPACE-complete. The main idea is to use a master reduction.
Our automaton operates in two modes. In the first mode, which we will call ‘TM-mode’, it
will interpret its input word as a sequence of configurations of a (suitable) PSPACE-machine
and verifies that the configuration sequence constitutes a valid computation of the Turing
machine. This verification is done by multiple states (where each state is responsible for
a different verification part) and the information whether the verification was successful is
stored in the state, not by manipulating the input word. So we have successful states and
fail states. Upon reading a special input symbol, the automaton will switch into a second
mode, the ‘A5-mode’. More precisely, successful states go into a state which acts like σ from
Lemma 2 and the fail states go into an identity state id. Finally, to extract the information
from the states, we use the iterated commutator from Definition 5.

The idea for the TM-mode is similar to the approach taken by Kozen to show PSPACE-
completeness of the DFA Intersection Problem where the input word is interpreted as a
sequence of configurations of a PSPACE Turing machine where each configuration is of length
s(n):

γ
(0)
1 γ

(0)
2 γ

(0)
3 . . . γ

(0)
s(n) # γ

(1)
1 γ

(1)
2 γ

(1)
3 . . . γ

(1)
s(n) # . . .

In Kozen’s proof, there is an acceptor for each position i of the configurations with 1 ≤ i ≤ s(n)
which checks for all t whether the transition from γ

(t)
i to γ(t+1)

i is valid. In our case, however,
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γ
(0)
1 γ

(0)
2 γ

(0)
3 . . . γ

(0)
s(n) # γ

(1)
1 γ

(1)
2 γ

(1)
3 . . . γ

(1)
s(n) # . . .

γ
(0)
1
X

γ
(0)
2 γ

(0)
3 . . . γ

(0)
s(n) # γ

(1)
1
X

γ
(1)
2 γ

(1)
3 . . . γ

(1)
s(n) # . . .

γ
(0)
1
X

γ
(0)
2
X

γ
(0)
3 . . . γ

(0)
s(n) # γ

(1)
1
X

γ
(1)
2
X

γ
(1)
3 . . . γ

(1)
s(n) # . . .

check

check

Figure 2 Illustration of the checkmark approach.

γ
X/

γ
X

γ/ γX
γ/γ
γ
X/

γ
X

#/#

Figure 3 Adding a check-mark yields a non-invertible automaton.

the automaton must not depend on the input (or its length n) and we have to handle this
a bit differently. The first idea is to use a ‘check-mark approach’. First, we check all first
positions for valid transitions. Then, we put a check-mark on all first positions, which tells
us that we now have to check all second positions (i. e. the first ones without a check-mark).
Again, we put a check-mark on all these, continue with checking all third positions and so on
(see Figure 2).

The problem with this approach is that the check-marking leads to an intrinsically
non-invertible automaton (see Figure 3). To circumvent this, we generalize the check-mark
approach: before each symbol γ(t)

i of a configuration, we add a 0k block (of sufficient length
k). In the spirit of Example 3, we interpret this block as representing a binary number.
We consider the symbol following the block as ‘unchecked’ if the number is zero; for all
other numbers, it is considered as ‘checked’. Now, checking the next symbol boils down to
incrementing each block until we have encountered a block whose value was previously zero
(and this can be detected while doing the addition). This idea is depicted in Figure 4. It would
also be possible to have the check-mark block after each symbol instead of before (which
might be more intuitive) but it turns out that our ordering has some technical advantages.

Proof of Theorem 10. Since the uniform word problem for automaton groups is in PSPACE
[22] (see also [9, Proposition 2 and 3]), so is the word problem of any (fixed) automaton
group. Therefore, we only have to show the hardness part of the result.

Consider an arbitrary PSPACE-complete problem and let M be a deterministic, polyno-

000γ(0)
1 000γ(0)

2 000γ(0)
3 . . . 000γ(0)

s(n) # 000γ(1)
1 000γ(1)

2 000γ(1)
3 . . . 000γ(1)

s(n) # . . .

100γ(0)
1 000γ(0)

2 000γ(0)
3 . . . 000γ(0)

s(n) # 100γ(1)
1 000γ(1)

2 000γ(1)
3 . . . 000γ(1)

s(n) # . . .

010γ(0)
1 100γ(0)

2 000γ(0)
3 . . . 000γ(0)

s(n) # 010γ(1)
1 100γ(1)

2 000γ(1)
3 . . . 000γ(1)

s(n) # . . .

ge
n.

ch
ec
k

ge
n.

ch
ec
k

Figure 4 The idea of our generalized check-marking approach.
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6:8 An Automaton Group with PSPACE-Complete Word Problem

mially space-bounded Turing machine deciding it4 with input alphabet Λ, tape alphabet ∆,
blank symbol , state set P , initial state p0 and accepting states F ⊆ P . Thus, for any input
word of length n, all configurations of M are of the form ∆`P∆m with `+ 1 +m = s(n)
for some polynomial s. This makes the problem

Constant: the PSPACE machine M
Input: w ∈ Λ∗

Question: does M reach a configuration with a state from F from the initial configur-
ation p0w

s(n)−n−1 ?
PSPACE-complete. From the machine M , we construct the G -automaton T and, from the
input w, we construct the state sequence q. The input words for the automaton will be
interpreted to have two parts separated by a special symbol $. The first part will represent a
computation of the machineM and the automaton will be in the TM-mode (mentioned above)
while reading it. At the separation symbol, the automaton will switch into the A5-mode and
will operate letter-wise as σ, α, β (from Lemma 2) or the identity on the second part of the
word. For the state sequence, we define q = B0[f, qs(n), . . . , q1, c

′, cs(n), . . . , c1, r] where we
use the short-hand notation B0 for the balanced commutator Bβ0,α0 from Definition 5. We will
define the individual entries f, qs(n), . . . , q1, c

′, cs(n), . . . , c1, r of the balanced commutator
in detail below. The general idea is that they are used to check different parts of the
computation. For example, r is responsible for checking that the first part of the input word
is in the correct form for a computation and qi is responsible for checking that all transitions
at position i are valid transitions of M . The individual entries do not change the first part
of the word (or – more precisely – any changes are reverted) and operate as the identity if
the check failed or as σ if the check succeeded on the second word part. This way, if a single
check fails, q as a whole will operate as the identity and, if all checks succeed, it will operate
as σ on the second word part by Lemma 8. The commutator acts as a logical conjunction
where σ is interpreted as true and the identity is interpreted as false.

Let Γ = ∆]P . From now on, we will not work with M anymore but rather only with its
corresponding τ : Γ3 → Γ from Fact 1.

Construction of the Automaton. The automaton T works in the way described above and
is the union of several simpler automata. For the alphabet, we use Σ = Γ ] {0, 1} ] {#, $}
with new letters 0, 1, # and $. The letters 0 and 1 will be used for the generalized check-mark
approach described above, the letter # is used to separate individual configurations and $
acts as an ‘end-of-computation’ symbol switching the automaton from the TM-mode to the
A5-mode. For the A5-mode, we choose a1, . . . , a5 ∈ Σ arbitrarily (but distinct) and assume
that σ, α and β (from Lemma 2) operate on {a1, . . . , a5} such that σ(a1) 6= a1. Furthermore,
we set C = Σ \ {a1, . . . , a5}. With this, the first part of the automaton T used for the
A5-mode is

σ id α β
ai/σ(ai)

idC
ai/ai
idC

ai/α(ai)
idC

ai/β(ai)
idC

where the ai-transitions exist for all i ∈ {1, . . . , 5} and we use the convention that idX
indicates x/x-transitions for all x ∈ X ⊆ Σ. Obviously, the state id acts as the identity
and the action of the state σ on a word is to apply the permutation σ letter-wise (and to
ignore letters from C), which justifies the dual use in notation as we can identify σ in the

4 Alternatively, we could also use a PSPACE-universal Turing machine for our construction.
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automaton group with σ in A5. For the intuition, it helps to see id as a ‘fail’ state and σ
as an ‘okay’ state in the following. In the end, we will implement this intuition basically
using the iterated commutator from Definition 5. For this commutator, we also need the
conjugating elements α and β, which work in the same way as σ. However, they do not have
an intuitive semantic and are mostly there for technical reasons.

Now, let us describe the part of the automaton used for the TM-mode. First, we need
two states which ignore everything in the TM-mode and then go to α or β:

α0 α β β0idΓ∪{#,0,1}
$/$

idΓ∪{#,0,1}
$/$

where dotted states refer to the states defined above.
The next part of our automaton is used to check that the input word (for the TM-mode)

is of the form (0∗Γ)+ (#(0∗Γ)+)∗:

r σ

0/0

idΓ

idΓ

#/#
0/0

$/$

Here, we use the convention that, whenever a transition is missing for some x ∈ Σ, there is
an implicit x/x-transition to the state id (as defined above). Note that we do not check that
the factors in (0∗Γ)+ correspond to well-formed configurations for the Turing machine. This
will be done implicitly by checking that the input word belongs to a valid computation of
the Turing machine, which we describe below.

Next, we need a part which checks whether the input word contains a final state (if this
is not the case, we want to ‘reject’ the word):

id f σ
$/$

id{#,0,1}∪Γ\F

idF

id{#,0,1}∪Γ

$/$

Finally, we come to the more complicated parts of T . The first one is for the generalized
check-marking as described above and is depicted in Figure 5. In fact, we need this part
twice: once for g = σ and once for g = id. Notice that, during the TM-mode phase (i. e.
before the first $), the two versions behave exactly the same way; the only difference is after
switching to the A5-mode: while Xid still always acts like the identity, Xσ acts non-trivially
on suitable input words.

Additionally, we also need an automaton part verifying that every configuration symbol
has been check-marked (in the generalized sense):

id c σ

0/0

$/$

1/1
0/0
1/1

idΓ∪{#}

$/$
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6:10 An Automaton Group with PSPACE-Complete Word Problem

Xgg

‘So far, the original input digit
block of this symbol did not con-
tain a 1.’

‘The digit block of the last symbol
contained at least one 1.’

‘Skip everything up to the next
configuration’

0/1

1/0

0/0

1/1idΓ

0/0
1/1idΓ

1/0

0/1

idΓ∪{0}

#/#
$/$

Figure 5 The automaton part used for generalized check-marking.

The last part is for checking the validity of the transition at all first so-far unchecked
positions. While it is not really difficult, this part is a bit technical. Intuitively, for
checking the transition from time step t− 1 to time step t at position i, we need to compute
γ

(t)
i = τ(γ(t−1)

i−1 , γ
(t−1)
i , γ

(t−1)
i+1 ) from the configuration symbol at positions i−1, i and i+ 1 for

time step t− 1. We store γ(t)
i in the state (to compare it to the actual value). Additionally,

we need to store the last two symbols of configuration t we have encountered so far (for
computing what we expect in the next time step later on) and whether we have seen a 1 or
only 0s in the check-mark digit block. For all this, we use the states

0 γ0,
γ−1

1 γ0,
γ−1

γ−1, γ0 γ′0

with γ−1, γ0, γ
′
0 ∈ Γ. The idea is the following. In the 0 and 1 states, we store the value we

expect for the first unchecked symbol (γ0) and the last symbol we have seen in the current
configuration (γ−1). We are in the 0 -state if we have not seen any 1 in the digit block yet and
in the 1 if we did. The latter two are used to skip the rest of the current configuration and
to compute the symbol we expect for the first unchecked position in the next configuration
(γ′0).

We use these states in the transitions schematically depicted in Figure 6. Here, the
dashed transitions exist for all γ′−1 and γ1 in Γ but go to different states, respectively, and
the dotted states correspond to the respective non-dotted states with different values for γ0
and γ−1 (with the exception of σ, which corresponds to the state defined above). We also
define qγ′ as the state on the bottom right (for every γ′ ∈ Γ, respectively).

The automaton parts depicted in Figure 5 and Figure 6 are best understood with an
example. Consider the input word

100γ(0)
1 000γ(0)

2 000γ(0)
3 # 100γ(1)

1 000γ(1)
2 000γ(1)

3 $

where we consider the γ(t)
i to form a valid computation. If we start in state q

γ
(0)
2

and read
the above word, we immediately take the 1/1-transition and go into the corresponding 1
state where we skip the rest of the digit block. Using the dashed transition, the next symbol
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0 γ0

γ−1

γ−1, γ0

γ′ = τ(γ−1, γ0, γ1)

1 γ0

γ−1
0 γ0

γ′−1

0 τ(γ−1, γ0, )

0 γ′
= qγ′

σ

0/0
1/1

γ0/γ0

0/0
1/1

γ′−1/γ
′
−1

0/0

#/#
$/$

γ1/γ1

idΓ∪{0}

$/$
#/#

Figure 6 Schematic representation of the transitions used for checking Turing machine transitions
and definition of q′γ ; the dashed transitions exist for all γ′−1 and γ1 in Γ but go to different states,
respectively

γ
(0)
1 takes us back into a 0 -state where the upper entry is still γ(0)

2 but the lower entry
is now γ

(0)
1 (i. e. the last configuration symbol we just read). We loop at this state while

reading the next three 0s and, since the next symbol γ(0)
2 matches with the one stored in

the state, we get into the states with entries γ(0)
1 , γ

(0)
2 where we skip the next three 0s again.

Reading γ(0)
3 now gets us into the state with entry γ(1)

2 since we have τ(γ(0)
1 , γ

(0)
2 , γ

(0)
3 ) = γ

(1)
2

by assumption that the γ(t)
i form a valid computation. Here, we read #/# and the process

repeats for the second configuration, this time starting in qγ(2)
2

. When reading the final $,
we are in the state with entry τ(γ(1)

1 , γ
(1)
2 , γ

(1)
3 ) and finally go to σ. Notice that during the

whole process, we have not changed the input word at all!
If we now start reading the input word again in state Xσ (see Figure 5 and also refer to

Figure 4), we turn the first 1 into a 0, go to the state at the bottom, turn the next 0 into a
1 and go to the state on the right, where we ignore the next 0. When reading γ(0)

1 , we go
back to Xσ. Next, we take the upper exit and turn the next 0 into a 1. The remaining 0s are
ignored and we remain in the state at the top right until we read γ(0)

2 and go to the state at
the top left. Here, we ignore everything up to #, which gets us back into Xσ. The second
part works in the same way with the difference that we go to σ at the end since we encounter
the $ instead of #. The output word, thus, is

010γ(0)
1 100γ(0)

2 000γ(0)
3 # 010γ(1)

1 100γ(1)
2 000γ(1)

3 $

and we have check-marked the next position in both configurations.
This concludes the definition of the automaton and the reader may verify that T is indeed

a G -automaton since all individual parts are G -automata. Furthermore, apart from the
check-marking, all states except σ, α and β (which belong to the A5-mode and are only
entered when reading $) act like the identity.

Definition of the State Sequence. To describe the actual reduction, we have to define the
state sequence q such that q depends only on the input word w for the Turing machine.
Similar to the automaton T , this sequence consists of multiple parts. Each part will verify a
certain aspect of the input word and the general idea is that, after reading a word u$, we
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6:12 An Automaton Group with PSPACE-Complete Word Problem

are either in σ (if u satisfies the criterion we are currently checking) or in id (if it does not).
Finally, using the balanced commutator from Definition 5, we can find whether any of the
criteria was not satisfied. For this to work easily, we define the individual parts in such a
way that the output will be u$ again, which will allow us to apply Fact 4.

First, we simply use the state r to verify that u is from (0∗Γ)+ (#(0∗Γ)+)∗. Thus, we
only need to consider the case that u is of the form

0`
(0)
1 γ

(0)
1 0`

(0)
2 γ

(0)
2 . . . 0`

(0)
I0 γ

(0)
I0

# . . .# 0`
(T )
1 γ

(T )
1 0`

(T )
2 γ

(T )
2 . . . 0`

(T )
IT γ

(T )
IT

(†)

with γ(t)
i ∈ Γ any further.

Next, we need to verify that, for every 1 ≤ i ≤ s(n), we can check-mark the first i
positions. For this, we use ci = X−iid XσX

i−1
id as we have the cross diagram

←−bin(0) γ
(t)
1 . . .

←−bin(0)γ(t)
i−1
←−bin(0)γ(t)

i

←−bin(0)γ(t)
i+1 . . .

←−bin(0)γ(t)
It

#/$
Xi−1

id Xi−1
id / idi−1

←−bin(i− 1)γ(t)
1 . . .

←−bin(1)γ(t)
i−1
←−bin(0)γ(t)

i

←−bin(0)γ(t)
i+1 . . .

←−bin(0)γ(t)
It

#/$
Xσ Xσ/σ

←−bin(i) γ
(t)
1 . . .

←−bin(2)γ(t)
i−1
←−bin(1)γ(t)

i

←−bin(0)γ(t)
i+1 . . .

←−bin(0)γ(t)
It

#/$
X−1

id X−1
id / id−1

←−bin(i− 1)γ(t)
1 . . .

←−bin(1)γ(t)
i−1
←−bin(0)γ(t)

i

←−bin(0)γ(t)
i+1 . . .

←−bin(0)γ(t)
It

#/$
X−(i−1)

id X−(i−1)
id / id−(i−1)

←−bin(0) γ
(t)
1 . . .

←−bin(0)γ(t)
i−1
←−bin(0)γ(t)

i

←−bin(0)γ(t)
i+1 . . .

←−bin(0)γ(t)
It

#/$

where ←−bin(z) denotes the reverse/least significant bit first binary representation of z (of
sufficient length). Here, it is useful to observe that, if the jth 0 block with j ≤ i is not long
enough to count to its required value, then we will always end up in id after reading a $. The
same happens if It < i (i. e. if one of the configurations is ‘too short’). So this guarantees,
It ≥ s(n) for all t.

On the other hand, we use c′ = X−s(n)
id cXs(n)

id to ensure that, after check-marking the
first s(n) positions in every configurations, all symbols have been check-marked (i. e. that no
configuration is ‘too long’), which guarantees It = s(n) for all t.

Now that we have ensured that the word is of the correct form and we can count high
enough for our check-marking, we need to actually verify that the γ(t)

i constitute a valid
computation of the Turing machine with the initial configuration γ′1 . . . γ′s(n) = p0w

s(n)−n−1

for the input word w. To do this, we define qi = X−(i−1)
id qγ′

i
Xi−1

id for every 1 ≤ i ≤ s(n) as
we have the cross diagram

←−bin(0) γ
(t)
1 . . .

←−bin(0)γ(t)
i−1
←−bin(0)γ(t)

i

←−bin(0)γ(t)
i+1 . . .

←−bin(0)γ(t)
It

#/$
Xi−1

id Xi−1
id / idi−1

←−bin(i− 1)γ(t)
1 . . .

←−bin(1)γ(t)
i−1
←−bin(0)γ(t)

i

←−bin(0)γ(t)
i+1 . . .

←−bin(0)γ(t)
It

#/$
qγ′

i
q
τ(γ(t)

i−1,γ
(t)
i
,γ

(t)
i+1)/σ←−bin(i− 1)γ(t)

1 . . .
←−bin(1)γ(t)

i−1
←−bin(0)γ(t)

i

←−bin(0)γ(t)
i+1 . . .

←−bin(0)γ(t)
It

#/$
X−(i−1)

id X−(i−1)
id / id−(i−1)

←−bin(0) γ
(t)
1 . . .

←−bin(0)γ(t)
i−1
←−bin(0)γ(t)

i

←−bin(0)γ(t)
i+1 . . .

←−bin(0)γ(t)
It

#/$



J. Ph. Wächter and A. Weiß 6:13

u
$

r
σ

u
$

c
1

σ

u
$

. . .
. . .

u
$

c
s
(n

)
σ

u
$

c
′

σ

u
$

q
1

σ

u
$

. . .
. . .

u
$

q
s
(n

)
σ

u
$

f
σ

u
$

B0[] , , , , , , , ,

B[] , , , , , , , ,

Figure 7 Cross diagram for q.

if γ(t)
i is the expected γ′i. Otherwise (if γ(t)

i 6= γ′i), we always end in state id after reading the
$. Finally, to ensure that the computation is not only valid but also accepting, we use the
state f .

Summing this up, we define q = B0[f, qs(n), . . . , q1, c
′, cs(n), . . . , c1, r] as mentioned at the

begnning of the proof. Remember that we use the short-hand notation B0 for the balanced
commutator Bβ0,α0 from Definition 5 and observe that the individual parts of q can indeed
be computed in logarithmic space and that, thus, this is also true for q itself by Lemma 6.

Correctness. We need to prove that the action of q is equal to the identity if and only
if the Turing machine does not accept the input word w. The easier direction is to as-
sume that the Turing machine accepts on the initial configuration p0w

s(n)−n−1 . Let
γ

(0)
1 . . . γ

(0)
s(n) ` γ

(1)
1 . . . γ

(1)
s(n) ` · · · ` γ

(T )
1 . . . γ

(T )
s(n) be the corresponding computation with

γ
(0)
1 = p0, γ(0)

2 . . . γ
(0)
n+1 = w and γ(T )

i ∈ F for some 1 ≤ i ≤ s(n). We choose ` = dlog(s(n))e+1
and define

u = 0`γ(0)
1 . . . 0`γ(0)

s(n)#0`γ(1)
1 . . . 0`γ(1)

s(n)# . . .#0`γ(T )
1 . . . 0`γ(T )

s(n).

We now let q act on the word u$a1. Recall that we assume σ to operate non-trivially
on a1. The reader may verify that we have the black part of the cross diagram depicted in
Figure 7. From Fact 4, we immediately also obtain the gray additions to the cross diagram
where we use B instead of Bβ,α for the balanced commutator from Definition 5. By Lemma 8,
we obtain B[σ, . . . , σ] = σ in A5 and, thus, in G (T ). Therefore, q acts non-trivially on u$a1.

For the other direction, assume that no valid computation ofM on the initial configuration
p0w

s(n)−n−1 contains an accepting state from F . We have to show that q acts like the
identity on all words from Σ∗. If the word does not contain a $, then all individual parts of
q act on it like the identity by construction. This is clearly the case for r, c′, the qi and f .
For the ci, the only point to note is that Xσ acts in the same way as Xid on such words.

Thus, we may assume that the word is of the form u$v. If u is not of the form
(0∗Γ)+ (#(0∗Γ)+)∗, we have the cross diagram

u $
r id
u $

and, thus,
u $

q B[gt, . . . , g2, id]
u $

with g2, . . . , gt ∈ {σ, id}. As we have, B[gt, . . . , g2, id] =A5 1 by Lemma 8, we obtain that q

acts like the identity on u$v.
Therefore, we assume u to be of the form mentioned in Equation † and use a similar

argumentation for the remaining cases. If u does not contain a state from F , then we end
up in state id after reading $ for f . As w is not accepted by the machine, this includes in
particular all valid computations on the initial configuration p0w

s(n)−n−1 . If one of the
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6:14 An Automaton Group with PSPACE-Complete Word Problem

0 blocks in u is too short to count to a value required for the check-marking (i. e. one `(t)i is
too small), then the corresponding ci will go to (a state sequence equivalent to) id. This is
also true if one configuration is too short (i. e. It < s(n) for some t). If one configuration
is too long (i. e. It > s(n)), then this will be detected by c′ as not all positions will be
check-marked after check-marking all first s(n) positions in every configuration. Finally,
qi yields an id if γ(0)

i is not the correct symbol from the initial configuration or if we have
γ

(t+1)
i 6= τ(γ(t)

i−1, γ
(t)
i , γ

(t)
i+1) for some t (where we let γ(t)

−1 = = γ
(t)
s(n)+1). J

I Remark 11. The constructed automaton has 3Γ2 + Γ + 22 states where Γ is the sum of the
number of states and the number of tape symbols for a Turing machine for a PSPACE-hard
problem.
I Remark 12. Using Remark 9, we can reduce the alphabet of the automaton to a binary
one. This, however, involves some technical difficulties mainly for two reasons. First, the
original alphabet needs to be compressed into blocks over the binary alphabet and, second,
the element to be used in the balanced iterated commutator depends on the position.

4 Compressed Word Problem

In this section, we re-apply our previous construction to show that there is an automaton
group with an EXPSPACE-complete compressed word problem. The compressed word problem
of a group is similar to the normal word problem. However, the input element (to be compared
to the neutral element) is not given directly but as a straight-line program. A straight-line
program is a context-free grammar which generates exactly one word.

I Theorem 13. There is an automaton group with an EXPSPACE-complete compressed word
problem:

Constant: a G -automaton T = (Q,Σ, δ)
Input: a straight-line program generating a state sequence q ∈ Q∗

Question: is q = 1 in G (T )?

Proof. Before starting, we observe that, whenever we have a variable X in a straight-line
program generating a word representing a group element g, we can easily obtain a variable
X−1 generating a word representing g−1 by mirroring all rules for X, replacing all letters a
by a−1 and all variables A by A−1 (where we have to continue recursively). Hence, we will
always assume that we also have A−1 if we have described A in the following.

For the actual proof, we use the same construction as in the proof of Theorem 10, but we
start with a Turing machine M for an EXPSPACE-complete problem. Now, all configurations
on input of a word w of length n are of the form ∆`P∆m with `+ 1 +m = s(n) where
s(n) is of the form 2ne for some constant e ∈ N.

Recall that, for the (normal) word problem, we used

q = B0[f, qs(n), . . . , q1, c
′, cs(n), . . . , c1, r] (‡)

for the reduction where

ci = X−iid XσX
i−1

id , c′ = X−s(n)
id cXs(n)

id and qi = X−(i−1)
id qγ′

i
Xi−1

id

for 1 ≤ i ≤ s(n). The problem now is that we have exponentially many ci and qi. Thus,
we cannot output them in logarithmic space (or polynomial time), not even if we use a
straight-line program. So, we will have to accommodate for this. The good news is that, for
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c′, this is not a problem: we can output a straight-line program with starting variable C ′
generating c′:

C ′ →M2ne cM−1
2ne , M2ne →M2ne−1M2ne−1 , . . . , M21 →M20M20 , M20 → Xid

Notice that this program is of polynomial length in n and, clearly, C ′ evaluates to c′.
To circumvent the problem with the ci, we use the fact that the behavior of ci is

structurally the same as the behavior of cj . This can be exploited by defining a slightly
modified version of the balanced commutator B0 (where B0 is as in the proof of Theorem 10):
let Bc[1] = X−1

id Xσ and

Bc[k] =
[
Bc[d k

2 e]β0 X
b k

2 c
id , Bc[b k

2 c]α0

]
= X

−b k
2 c

id β−1
0 Bc[d k

2 e]−1β0 X
b k

2 c
id α−1

0 Bc[b k
2 c]−1α0

X
−b k

2 c
id β−1

0 Bc[d k
2 e]β0 X

b k
2 c

id α−1
0 Bc[b k

2 c]α0.

The intuitive idea behind this definition is that we start with all check-mark counters
at value zero (‘nothing is check-marked’). Then the bottom right part checks that we can
check the first bk2 c positions. However, the counters are reset to zero during this checking
(by induction), so we check-mark the positions again (without modifying the value in the
A5-mode) using a suitable power of Xid. Then the part on the bottom left checks that we can
check-mark the next dk2 e positions. After this, the counters are reset to zero. Then the same
happens again only using the inverse group elements this time to realize the commutator.
Here, it is important to note that the top left part sees the same situation as the bottom left
part, so it behaves in the same way except for going to σ−1 instead of σ in the A5-mode.

Formally, we can show Bc[k] =G (T ) B0[ck, . . . , c1] by induction. The base case holds by
definition and, for the induction step, we observe that Xid commutes with α0 and β0 and
that we have ci+d = X−did ciX

d
id in G (T ). Since we have [y, x]z = [yz, xz] in any group, we

obtain in G (T )

Bc[k] =
[
B0[cd k

2 e
, . . . , c1]β0 X

b k
2 c

id , B0[cb k
2 c
, . . . , c1]α0

]
(by induction)

=
[
B0
[
c
X
b k

2 c
id
d k

2 e
, . . . , c

X
b k

2 c
id

1
]β0

, B0[cb k
2 c
, . . . , c1]α0

]
=
[
B0[ck, . . . , cb k

2 c+1]β0 , B0[cb k
2 c
, . . . , c1]α0

]
= B0[ck, . . . , c1].

In particular, this shows that no Bc[k] modifies a word not containing $ (i. e. all Bc[k] act
like the identity in the TM-mode). This is important as we will be using Bc[s(n)] = Bc[2n

e ]
for checking that we can check-mark all positions in the end.

The straight-line program for Bc[s(n)] is similar to the one of c′ (and uses the variables
M2i defined above). We let

Bc,2` → M−1
2`−1 β

−1
0 B−1

c,2`−1β0 M2`−1 α−1
0 B−1

c,2`−1α0

M−1
2`−1 β

−1
0 Bc,2`−1β0 M2`−1 α−1

0 Bc,2`−1α0

for ` > 0 and Bc,20 → X−1
id Xσ. This way, we can compute Bc,2ne as a variable for Bc[s(n)] in

logarithmic space.

STACS 2020
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At first, it seems that we cannot use a similar idea for the qi as they are responsible for
different symbols of the configuration. However, as the initial configuration is p0w

2ne
−n ,

all qi except of the first n + 1 ones are responsible for the same tape symbol (the blank
symbol ). We define Bq[1] = q ; the inductive step is the same as in the definition of Bc[k]
and the same ideas apply. This time, however, we want to start with the first n+ 1 positions
check-marked (this is the p0w part) and, thus, we will be using X−n−1

id Bq[s(n)− n− 1]Xn+1
id

and the original qi for the first n+ 1 positions. With the same arguments as for Bc[s(n)],
one can show

X−n−1
id Bq[s(n)− n− 1]Xn+1

id =G (T ) B0[qs(n), . . . , qn+2].

A straight-line program for Bq[s(n)− n− 1] can be obtained in a similar way to the one
for Bc[s(n)]5 and the Xid blocks are short enough to output them directly.

Summing this up, we set

Q→ B0[f, X−n−1
id BqX

n+1
id , qn+1, . . . , q1, C

′, Bc,s(n), r]

where Bq is the starting variable of the straight-line program for Bq[s(n) − n − 1]. By
Lemma 6, we can compute the right-hand side of this rule in logarithmic space. By the
construction of the straight-line programs for Bq, Bc,s(n) and C ′ (and the proved equalities),
it follows that Q evaluates to

B0[f, B0[qs(n), . . . , qn+2], qn+1, . . . , q1, c′, B0[cs(n), . . . , c1], r].

Now, using Lemma 8, it is easy to see that this is equal to q from (‡) in G (T ): before reading
the first letter $, it operates as the identity and, after the first letter $, it operates either as
the identity or as σ depending on whether all components of the commutator act like σ. J

I Corollary 14. There is an automaton group with a PSPACE-complete word problem and
an EXPSPACE-complete compressed word problem.

Proof. The result follows from the closure of the class of automaton groups under dir-
ect product (which is well-known and easy to see) in combination with Theorem 10 and
Theorem 13. J
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Abstract
Regular path queries (RPQs) are an essential component of graph query languages. Such queries
consider a regular expression r and a directed edge-labeled graph G and search for paths in G for
which the sequence of labels is in the language of r. In order to avoid having to consider infinitely
many paths, some database engines restrict such paths to be trails, that is, they only consider paths
without repeated edges. In this paper we consider the evaluation problem for RPQs under trail
semantics, in the case where the expression is fixed. We show that, in this setting, there exists a
trichotomy. More precisely, the complexity of RPQ evaluation divides the regular languages into
the finite languages, the class Ttract (for which the problem is tractable), and the rest. Interestingly,
the tractable class in the trichotomy is larger than for the trichotomy for simple paths, discovered
by Bagan et al. [5]. In addition to this trichotomy result, we also study characterizations of the
tractable class, its expressivity, the recognition problem, closure properties, and show how the
decision problem can be extended to the enumeration problem, which is relevant to practice.
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1 Introduction

Graph databases are a popular tool to model, store, and analyze data [25, 33, 27, 35, 12].
They are engineered to make the connectedness of data easier to analyze. This is indeed a
desirable feature, since some of today’s largest companies have become so successful because
they understood how to use the connectedness of the data in their specific domain (e.g.,
Web search and social media). One aspect of graph databases is to bring tools for analyzing
connectedness to the masses.
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7:2 A Trichotomy for Regular Trail Queries

Regular path queries (RPQs) are a crucial component of graph databases, because they
allow reasoning about arbitrarily long paths in the graph and, in particular, paths that are
longer than the size of the query. A regular path query essentially consists of a regular
expression r and is evaluated on a graph database which, for the purpose of this paper, we
view as an edge-labeled directed graph G. When evaluated, the RPQ r searches for paths
in G for which the sequence of labels is in the language of r. The return type of the query
varies: whereas most academic research on RPQs [23, 6, 7, 20, 3] and SPARQL [34] focus on
the first and last node of matching paths, Cypher [26] returns the entire paths. G-Core, a
recent proposal by partners from industry and academia, sees paths as “first-class citizens”
in graph databases [2].

In addition, there is a large variation on which types of paths are considered. Popular
options are all paths, simple paths, trails, and shortest paths. Here, simple paths are paths
without repeated nodes and trails are paths without repeated edges. Academic research has
focused mostly on all paths, but Cypher 9 [26, 14], which is perhaps the most widespread
graph database query language at the moment, uses trails. Since the trail semantics in graph
databases has received virtually no attention from the research community yet, it is crucial
that we improve our understanding.

In this paper, we study the data complexity of RPQ evaluation under trail semantics.
That is, we study variants of RPQ evaluation in which the RPQ r is considered to be fixed.
As such, the input of the problem only consists of an edge-labeled graph G and a pair (s, t)
of nodes and we are asked if there exists a trail from s to t on which the sequence of labels
matches r. One of our main results is a trichotomy on the RPQs for which this problem is in
AC0, NL-complete, or NP-complete, respectively. By Ttract, we refer to the class of tractable
languages (assuming NP 6= NL).

In order to increase our understanding of Ttract, we study several important aspects of this
class of languages. A first set of results is on characterizations of Ttract in terms of closure
properties and syntactic and semantic conditions on their finite automata. In a second set of
results, we therefore compare the expressiveness of Ttract with yardstick languages such as
FO2[<], FO2[<,+], FO[<] (or aperiodic languages), and SPtract. The latter class, SPtract, is
the closely related class of languages for which the data complexity of RPQ evaluation under
simple path semantics is tractable.1 Interestingly, Ttract is strictly larger than SPtract and
includes languages outside SPtract such as a∗bc∗ and (ab)∗ that are relevant in application
scenarios in network problems, genomic datasets, and tracking provenance information of food
products [29] and were recently discovered to appear in public query logs [10, 9]. Furthermore,
every single-occurrence regular expression [8] is in Ttract, which can be a convenient guideline
for users of graph databases, since single-occurrence (every alphabet symbol occurs at most
once) is a very simple syntactical property. It is also popular in practice: we analyzed the
50 million RPQs found in the logs of [11] and discovered that over 99.8% of the RPQs are
single-occurrence regular expressions.

We then study the recognition problem for Ttract, that is: given an automaton, does its
language belong to Ttract? This problem is NL-complete (resp., PSPACE-complete) if the
input automaton is a DFA (resp., NFA). We also treat closure under common operations
such as union, intersection, reversal, quotients and morphisms.

We conclude by showing that also the enumeration problem is tractable for Ttract. By
tractable, we mean that the paths that match the RPQ can be enumerated with only
polynomial delay between answers. Technically, this means that we have to prove that we

1 Bagan et al. [5] called the class Ctract, which stands for “tractable class”. We distinguish between SPtract
and Ttract here to avoid confusion between simple paths and trails.
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Figure 1 Directed, edge-labeled graphs that have a trail from s to t.

cannot only solve a decision variant of the RPQ evaluation problem, but we also need to find
witnessing paths. We prove that the algorithms for the decision problems can be extended
to return shortest paths. This insight can be combined with Yen’s Algorithm [36] to give a
polynomial delay enumeration algorithm.

Related Work. RPQs on graph databases have been studied since the end of the 80’s and
are now finding their way into commercial products. The literature usually considers the
variant of RPQ evaluation where one is given a graph database G, nodes s, t, and an RPQ r,
and then needs to decide if G has a path from s to t (possibly with loops) that matches r.
For arbitrary and shortest paths, this problem is well-known to be tractable, since it boils
down to testing intersection emptiness of two NFAs.

Mendelzon and Wood [23] studied the problem for simple paths, which are paths without
node repetitions. They observed that the problem is already NP-complete for regular
expressions a∗ba∗ and (aa)∗. These two results rely heavily on the work of Fortune et al. [13]
and LaPaugh and Papadimitriou [19].

Our work is most closely related to the work of Bagan et al. [5] who, like us, studied the
complexity of RPQ evaluation where the RPQ is fixed. They proved a trichotomy for the case
where the RPQ should only match simple paths. In this paper we will refer to this class as
SPtract, since it contains the languages for which the simple path problem is tractable, whereas
we are interested in a class for trails. Martens and Trautner [22] refined this trichotomy of
Bagan et al. [5] for simple transitive expressions, by analyzing the complexity where the
input consists of both the expression and the graph.

Trails versus Simple Paths. We conclude with a note on the relationship between simple
paths and trails. For many computational problems, the complexities of dealing with simple
paths or trails are the same due to two simple reductions, namely: (1) constructing the line
graph or (2) splitting each node into two, see for example Perl and Shiloach [28, Theorem
2.1 and 2.2]. As soon as we consider labeled graphs, the line graph technique still works, but
not the nodes-splitting technique, because the labels on paths change. As a consequence, we
know that finding trails is at most as hard as finding simple paths, but we do not know if it
has the same complexity when we require that they match a certain RPQ r.

In this paper we show that the relationship is strict, assuming NL 6= NP. An easy example
is the language (ab)∗, which is NP-hard for simple paths [19, 23], but – assuming that a and
b-edges are different – in NL for trails. This is because every path from s to t that matches
(ab)∗ can be reduced to a trail from s to t that matches (ab)∗ by removing loops (in the path,
not in the graph) that match (ab)∗ or (ba)∗. In Figure 1 we depict four small graphs, all of
which have trails from s to t. (In the two rightmost graphs, there is exactly one path labeled
(ab)∗, which is also a trail.)

STACS 2020



7:4 A Trichotomy for Regular Trail Queries

2 Preliminaries

We use [n] to denote the set of integers {1, . . . , n}. By Σ we always denote a finite alphabet,
i.e., a finite set of symbols. We always denote symbols by a, b, c, d and their variants, like a′,
a1, b1, etc. A word is a finite sequence w = a1 · · · an of symbols.

We consider edge-labeled directed graphs G = (V,E), where V is a finite set of nodes
and E ⊆ V × Σ × V is a set of (labeled) edges. A path p from node s to t is a se-
quence (v1, a1, v2)(v2, a2, v3) · · · (vm, am, vm+1) with v1 = s and vm+1 = t and such that
(vi, ai, vi+1) ∈ E for each i ∈ [m]. By |p| we denote the number of edges of a path. A path
is a trail if all the edges (vi, ai, vi+1) are different and a simple path if all the nodes vi are
different. (Notice that each simple path is a trail but not vice versa.) We denote a1 · · · am

by lab(p). Given a language L ⊆ Σ∗, path p matches L if lab(p) ∈ L. For a subset E′ ⊆ E,
path p is E′-restricted if every edge of p is in E′. Given a trail p and two edges e1 and e2 in
p, we denote the subpath of p from e1 to e2 by p[e1, e2].

We define an NFA A to be a tuple (Q,Σ, I, F, δ) where Q is the finite set of states; I ⊆ Q
is a set of initial states; δ ⊆ Q × Σ × Q is the transition relation; and F ⊆ Q is the set
of accepting states. Strongly connected components of (the graph of) A are simply called
components. Unless noted otherwise, components will be non-trivial, i.e., containing at least
one edge.

By δ(q, w) we denote the states reachable from state q by reading w. We denote by
q1  q2 that state q2 is reachable from q1. Finally, Lq denotes the set of all words accepted
from q and L(A) =

⋃
q∈I Lq is the set of words accepted by A. For every state q, we denote by

Loop(q) the set {w ∈ Σ+ | δL(q, w) = q} of all non-empty words that allow to loop on q. For
a word w and a language L, we define wL = {ww′ | w′ ∈ L} and w−1L = {w′ | ww′ ∈ L}.

A DFA is an NFA such that I is a singleton and for all q ∈ Q, σ ∈ Σ |δ(q, σ)| ≤ 1. Let
L be a regular language. We denote by AL = (QL,Σ, iL, FL, δL) the (complete) minimal
DFA for L and by N the number |QL| of states. A language L is aperiodic if and only if
δL(q, wN+1) = δL(q, wN ) for every state q and word w. Equivalently, L is aperiodic if and
only if its minimal DFA of an aperiodic language L does not have simple cycles labeled wk

for k > 1 and w 6= ε. Thus, for “large enough n” we have: uwnv ∈ L iff uwn+1v ∈ L. So, a
language like (aa)∗ is not aperiodic (take w = a and k = 2), but (ab)∗ is. (There are many
characterizations of aperiodic languages [31].)

We study the regular trail query (RTQ) problem for a regular language L.

RTQ(L)
Given: A graph G = (V, E) and (s, t) ∈ V × V .
Question: Is there a trail from s to t that matches L?

A similar problem, which was studied by Bagan et al. [5], is the RSPQ problem. The
RSPQ(L) problem asks if there exists a simple path from s to t that matches L.

3 The Tractable Class

In this section, we define and characterize a class of languages of which we will prove that it
is exactly the class of regular languages L for which RTQ(L) is tractable (if NL 6= NP).

3.1 Warm-Up: Downward Closed Languages
It is instructive to first discuss the case of downward closed languages. A language L is
downward closed (DC) if it is closed under taking subsequences. That is, for every word
w = a1 · · · an ∈ L and every sequence 0 < i1 < · · · < ik < n + 1 of integers, we have that
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ai1 · · · aik
∈ L. Perhaps surprisingly, downward closed languages are always regular [16].

Furthermore, they can be defined by a clean class of regular expressions (which was shown
by Jullien [18] and later rediscovered by Abdulla et al. [1]), which is defined as follows.

I Definition 3.1. An atomic expression over Σ is an expression of the form (a + ε) or
of the form (a1 + · · · + an)∗, where a, a1, . . . , an ∈ Σ. A product is a (possibly empty)
concatenation e1 · · · en of atomic expressions e1, . . . , en. A simple regular expression is of
the form p1 + · · ·+ pn, where p1, . . . , pn are products.

Another characterization is by Mendelzon and Wood [23], who show that a regular language
L is downward closed if and only if its minimal DFA AL = (QL,Σ, iL, FL, δL) exhibits the
suffix language containment property, which says that if δL(q1, a) = q2 for some symbol a ∈ Σ,
then we have Lq2 ⊆ Lq1 .2 Since this property is transitive, it is equivalent to require that
Lq2 ⊆ Lq1 for every state q2 that is reachable from q1.

I Theorem 3.2 ([1, 16, 18, 23]). The following are equivalent:
(1) L is a downward closed language.
(2) L is definable by a simple regular expression.
(3) The minimal DFA of L exhibits the suffix language containment property.

Obviously, RTQ(L) is tractable for every downward closed language L, since it is equivalent
to deciding if there exists a path from s to t that matches L. For the same reason, deciding
if there is a simple path from s to t that matches L is also tractable for downward closed
languages. However, there are languages that are not downward closed for which we show
RTQ(L) to be tractable, such as a∗bc∗ and (ab)∗. For these two languages, the simple path
variant of the problem is intractable.

3.2 Main Definitions and Equivalence
The following definitions are the basis of the class of languages for which RTQ(L) is tractable.

I Definition 3.3. An NFA A satisfies the left-synchronized containment property if there
exists an n ∈ N such that the following implication holds for all q1, q2 ∈ Q:

If q1  q2 and if w1 ∈ Loop(q1), w2 ∈ Loop(q2) with w1 = aw′1 and w2 = aw′2,
then wn

2Lq2 ⊆ Lq1 .

Similarly, A satisfies the right-synchronized containment property if the same condition
holds with w1 = w′1a and w2 = w′2a.

We note that every downward closed language L satisfies the left-synchronized containment
property.

I Definition 3.4. A regular language L is closed under left-synchronized power abbreviations
(resp., closed under right-synchronized power abbreviations) if there exists an n ∈ N such
that for all words w`, wm, wr ∈ Σ∗ and all words w1 = aw′1 and w2 = aw′2 (resp., w1 = w′1a

and w2 = w′2a) we have that w`w
n
1wmw

n
2wr ∈ L implies w`w

n
1w

n
2wr ∈ L.

2 They restrict q1, q2 to be on paths from iL to some state in FL, but the property trivially holds for q2
being a sink-state.
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7:6 A Trichotomy for Regular Trail Queries

We note that Definition 3.4 is equivalent to requiring that there exists an n ∈ N such
that the implication holds for all i ≥ n. The reason is that, given i > n and a word of the
form w`w

i
1wmw

i
2wr, we can write it as w′`wn

1wmw
n
2w
′
r with w′` = w`w

i−n
1 and w′r = wi−n

2 wr,
for which the implication holds by Definition 3.4.

Next, we show that all conditions defined in Definitions 3.3 and 3.4 are equivalent for
DFAs.

I Theorem 3.5. For a regular language L with minimal DFA AL, the following are equivalent:
(1) AL satisfies the left-synchronized containment property.
(2) AL satisfies the right-synchronized containment property.
(3) L is closed under left-synchronized power abbreviations.
(4) L is closed under right-synchronized power abbreviations.

In Theorem 4.1 we will show that, if NL 6= NP, the languages L that satisfy the above
properties are precisely those for which RTQ(L) is tractable. To simplify terminology, we
will henceforth refer to this class as Ttract.

I Definition 3.6. A regular language L belongs to Ttract if L satisfies one of the equivalent
conditions in Theorem 3.5.

For example, (ab)∗ and (abc)∗ are in Ttract, whereas a∗ba∗, (aa)∗ and (aba)∗ are not. The
following property immediately follows from the definition of Ttract.

I Observation 3.7. Every regular expression for which each alphabet symbol under a Kleene
star occurs at most once in the expression defines a language in Ttract.

A special case of these expressions are those in which every alphabet symbol occurs at most
once. These are known as single-occurrence regular expressions (SORE) [8]. SOREs were
studied in the context of learning schema languages for XML [8], since they occur very often
in practical schema languages.

3.3 A Syntactic Characterization
As we have seen before, regular expressions in which every symbol occurs at most once define
languages in Ttract. We will define a similar notion on automata.

I Definition 3.8. A component C of some NFA A is called memoryless, if for each symbol
a ∈ Σ, there is at most one state q in C, such that there is a transition (p, a, q) with p in C.

The following theorem provides (in a non-trivial proof that requires several steps) a
syntactic condition for languages in Ttract. The syntactic condition is item (4) of the theorem,
which we define after its statement. Condition (5) emposes an additional restriction on
condition (4), and we later use it to prove that Ttract ⊆ FO2[<,+].

I Theorem 3.9. For a regular language L, the following properties are equivalent:
(1) L ∈ Ttract
(2) There exists an NFA A for L that satisfies the left-synchronized containment property.
(3) There exists an NFA A for L that satisfies the left-synchronized containment property

and only has memoryless components.
(4) There exists a detainment automaton for L with consistent jumps.
(5) There exists a detainment automaton for L with consistent jumps and only memoryless

components.
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C1 C2

p1

q1

p2

q2a a ⇒

C1 C2

p1

q1

p2

q2a a
a

Figure 2 Consistent jump condition (simplified, i.e.: without preconditions, counter and update)
used in Theorem 3.12. C1 and C2 are components (not necessarily different) such that C2 is reachable
from C1.

We use finite automata with counters or CNFAs from Gelade et al. [15], that we slightly
adapt to make the construction easier.3 For convenience, we provide a full definition in
Appendix A. Let A be a CNFA with one counter c. Initially, the counter has value 0. The
automaton has transitions of the form (q1, a, P ; q2, U) where P is a precondition on c and
U an update operation on c. For instance, the transition (q1, a, c = 5; q2, c := c− 1) means:
if A is in state q1, reads a, and the value of c is five, then it can move to q2 and decrease
c by one. If we decrease a counter with value zero, its value remains zero. We denote the
precondition that is always fulfilled by true.

We say that A is a detainment automaton if, for every component C of A:
every transition inside C is of the form (q1, a, true; q2, c := c− 1);
every transition that leaves C is of the form (q1, a, c = 0; q2, c := k) for some k ∈ N;4

Intuitively, if a detainment automaton enters a non-trivial component C, then it must stay
there for at least some number of steps, depending on the value of the counter c. The counter
c is decreased for every transition inside C and the automaton can only leave C once c = 0.
We say that A has consistent jumps if, for every pair of components C1 and C2, if C1  C2
and there are transitions (pi, a, true; qi, c := c− 1) inside Ci for all i ∈ {1, 2}, then there is
also a transition (p1, a, P ; q2, U) for some P ∈ {true, c = 0} and some update U .5 We note
that C1 and C2 may be the same component. The consistent jump property is the syntactical
counterpart of the left-synchronized containment property. The memoryless condition carries
over naturally to CNFAs, ignoring the counter.

Proof sketch of Theorem 3.9. The implications (3) ⇒ (2) and (5) ⇒ (4) are trivial. We
sketch the proofs of (1) ⇒ (5) ⇒ (3) and (4) ⇒ (2) ⇒ (1) below, establishing the theorem.

(1) ⇒ (5) uses a very technical construction that essentially exploits that – if the
automaton stays in the same component for a long time – the reached state only depends on
the last N2 symbols read in the component. This is formalized in Lemma 4.3 and allows us
to merge any pair of two states p, q which contradict that some component is memoryless.
To preserve the language, words that stay in some component C for less than N2 symbols
have to be dealt with separately, essentially avoiding the component altogether. Finally,
the left-synchronized containment property allows us to simply add transitions required to
satisfy the consistent jumps property without changing the language.

(5) ⇒ (3) and (4) ⇒ (2): We convert a given CNFA to an NFA by simulating the
counter (which is bounded) in the set of states. The consistent jump property implies
the left-synchronized containment property on the resulting NFA. The property that all
components are memoryless is preserved by the construction.

(2) ⇒ (1): One can show that the left-synchronized containment property is invariant
under the powerset construction. J

3 The adaptation is that we let counters decrease instead of increase. Furthermore, it only needs zero-tests.
4 If q2 is in a trivial component, then k should be 0 for the transition to be useful.
5 The values of P and U depend on whether C1 is the same as C2 or not.
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aperiodic languages (= FO[<]) (ac∗bc∗)∗

DCSPtract
a

a∗bc∗

Ttract

(ab)∗
FO2[<]

a∗ba∗

FO2[<,+]

a∗ba∗(cd)∗

Figure 3 Expressiveness of subclasses of the aperiodic languages.

3.4 Comparison to Other Classes
We compare Ttract to some closely related and yardstick languages to get an idea of its
expressiveness. For example, every downward closed (DC) language is in Ttract, since Ttract
relaxed the containment property.

Bagan et al. [5] introduced the class SPtract, which characterizes the class of regular
languages L for which the regular simple path query (RSPQ) problem is tractable.

I Theorem 3.10 (Theorem 2 in Bagan et al. [5]). Let L be a regular language.
(1) If L is finite, then RSPQ(L) ∈ AC0.
(2) If L ∈ SPtract and L is infinite, then RSPQ(L) is NL-complete.
(3) If L /∈ SPtract, then RSPQ(L) is NP-complete.
One characterization of SPtract is the following (Theorem 4 in [5]):

I Definition 3.11. SPtract is the set of regular languages L such that there exists an i ∈ N
for which the following holds: for all w`, w, wr ∈ Σ∗ and w1, w2 ∈ Σ+ we have that, if
w`w

i
1ww

i
2wr ∈ L, then w`w

i
1w

i
2wr ∈ L.

From this definition it is easy to see that every language in SPtract is also in Ttract, since our
definition imposes an extra “synchronizing” condition on w1 and w2, namely that they share
the same first (or last) symbol (Definition 3.4). We now fully classify the expressiveness of
Ttract and SPtract compared to yardsticks as DC, FO2[<], and FO2[<,+] (see also Figure 3).

Here, FO2[<] and FO2[<,+] are the two-variable restrictions of FO[<] and FO[<,+]
over words, respectively. By FO[<,+] we mean the first-order logic with unary predicates Pa

for all a ∈ Σ (denoting positions carrying the letter a) and the binary predicates +1 and <
(denoting the successor relation and the order relation among positions). FO[<] is FO[<,+]
without the binary predicate +1.

I Theorem 3.12.
(a) DC ( SPtract ( (FO2[<] ∩ Ttract)
(b) Ttract ( FO2[<,+]
(c) Ttract and FO2[<] are incomparable
Since FO2[<,+] ( FO[<], we also have Ttract ( FO[<]. Thus, every language in Ttract is
aperiodic.

Next, we show where SPtract and Ttract are in the concatenation hierarchy (also known
as Straubing-Thérien hierarchy) and the dot-depth hierarchy (also known as Brzozowski
hierarchy).

I Proposition 3.13.
(a) SPtract is in V3/2, the 3/2th level of the concatenation hierarchy.
(b) Every language L in Ttract ∩ Σ+ is in B1, the 1st level of the dot-depth hierarchy.
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Thus Proposition 3.13 implies that every language in SPtract can be described by a formula
in Σ2[<] and every language in tractable language Ttract by a boolean combination of formulas
in Σ1[<,+,min,max], see Pin [30, Theorem 4.1].

4 The Trichotomy

This section is devoted to the proof of the following theorem.

I Theorem 4.1. Let L be a regular language.
(1) If L is finite then RTQ(L) ∈ AC0.
(2) If L ∈ Ttract and L is infinite, then RTQ(L) is NL-complete.
(3) If L /∈ Ttract, then RTQ(L) is NP-complete.

We will prove Theorem 4.1 only for simple graphs, but it extends to graphs with multi-
edges, which are graphs with multiple edges with the same label between the same nodes.
Equivalently, this can be seen as a variation of the problem where edges are accompanied
with numbers that say how often they can be traversed. For example, we could say that e1
may be used at most twice, while e2 may be used at most 30 times. Here, the number of
occurrences of edges can even be encoded in binary. We discuss this in Section 4.4.

4.1 Finite Languages
We now turn to proving Theorem 4.1. We start with Theorem 4.1(1). Clearly, we can express
every finite language L as an FO-formula. Since we can also test in FO that no edge is used
more than once, the graphs for which RTQ(L) holds are FO-definable. By Immerman [17],
this implies that RTQ(L) is in AC0.

4.2 Languages in Ttract

We now sketch the proof of Theorem 4.1(2). We note that we define several concepts (trail
summary, local edge domains, admissible trails) that have a natural counterpart for simple
paths in Bagan et al.’s proof of the trichotomy for simple paths [5, Theorem 2]. However, the
underlying proofs of the technical lemmas are quite different. For instance, components of
languages in SPtract behave similarly to A∗ for some A ⊆ Σ, while components of languages
in Ttract are significantly more complex. Furthermore, the trichotomy for trails leads to a
strictly larger class of tractable languages.

For the remainder of this section, we fix the constant K = N2. We first describe the
NL algorithm. Then we observe that, if the algorithm answers “yes”, we can also output
a shortest trail. We will show that in the case where L belongs to Ttract, we can identify
a number of edges that suffice to check if the path is (or can be transformed into) a trail
that matches L. This number of edges only depends on L and is therefore constant for
the RTQ(L) problem. These edges will be stored in a path summary. We will define path
summaries formally and explain how to use them to check whether a trail between the input
nodes that matches L exists.

To this end, we need a few definitions. Let A = (Q,Σ, I, F, δ) be an NFA. We extend δ
to paths, in the sense that we denote by δ(q, p) the set of states that A can reach from q

after reading lab(p). For q0 ∈ Q, we say that a run from q0 of A over a path p = (v1, a1, v2)
(v2, a2, v3) · · · (vm, am, vm+1) is a sequence q0 · · · qm of states such that qi ∈ δ(qi−1, ai), for
every i ∈ [m]. When A is a DFA and q0 its initial state, we also simply call it the run of A
over p.
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7:10 A Trichotomy for Regular Trail Queries

I Definition 4.2. Let p = e1 · · · em be a path and r = q0 · · · qm the run of AL over p. For a
set C of states of AL, we denote by leftC the first edge ei with qi−1 ∈ C and by rightC the
last edge ej with qj ∈ C. A component C of AL is a long run component of p if leftC and
rightC are defined and |p[leftC , rightC ]| > K.

Next, we want to reduce the amount of information that we require for trails. To this
end, we use the following synchronization property for AL.

I Lemma 4.3. Let L ∈ Ttract, let C be a component of AL, let q1, q2 ∈ C, and let w be a
word of length N2. If δL(q1, w) ∈ C and δL(q2, w) ∈ C, then δL(q1, w) = δL(q2, w).

The lemma motivates the use of summaries, which we define next.

I Definition 4.4. Let Cuts denote the set of components of AL and Abbrv = Cuts × (V ×
Q)×EK . A component abbreviation (C, (v, q), eK · · · e1) ∈ Abbrv consists of a component
C, a node v of G and state q ∈ C to start from, and K edges eK · · · e1. A trail π matches a
component abbreviation, denoted π |= (C, (v, q), eK · · · e1), if δL(q, π) ∈ C, it starts at v, and
its suffix is eK · · · e1. Given an arbitrary set of edges E′, we write π |=E′ (C, (v, q), eK · · · e1)
if π |= (C, (v, q), eK · · · e1) and all edges of π are from E′ ∪ {e1, . . . , eK}. For convenience,
we write e |=∅ e.

If p is a trail, then the summary Sp of p is the sequence obtained from p by replacing, for
each long run component C the subsequence p[leftC , rightC ] by the abbreviation (C, (v, q), psuff),
where v is the source node of the edge leftC , q is the state in which AL is immediately before
reading leftC , and psuff is the suffix of length K of p[leftC , rightC ].

We note that the length of a summary is always bounded by O(N3), i.e., a constant that
depends on L. Indeed, AL has at most N components and, for each of them, we store at
most K + 3 many things (namely, C, v, q, and K edges). Our goal is to find a summary
S and replace all abbreviations with matching pairwise edge-disjoint trails which do not
use any other edge in S, because this results in a trail that matches L. However, not every
sequence of edges and abbreviations is a summary, because a summary needs to be obtained
from a trail. So, we will work with candidate summaries instead.

I Definition 4.5. A candidate summary S is a sequence of the form S = α1 · · ·αm with
m ≤ N where each αi is either (1) an edge e ∈ E or (2) an abbreviation (C, (v, q), eK · · · e1) ∈
Abbrv. Furthermore, all components and all edges appearing in S are distinct. A path p that
is derived from S by replacing each αi ∈ Abbrv by a trail pi such that pi |= αi is called a
completion of the candidate summary S.

The following corollary is immediate from the definitions and Lemma 4.3, as the lemma
ensures that the state after reading p inside a component does not depend on the whole path
but only on the labels of the last K edges, which are fixed.

I Corollary 4.6. Let L be a language in Ttract. Let S be the summary of a trail p that
matches L and let p′ be a completion of S. Then, p′ is a path that matches L.

Together with the following lemma, Corollary 4.6 can be used to obtain an NL algorithm
that gives us a completion of a summary S. The lemma heavily relies on other results on the
structure of components in AL.

I Lemma 4.7. Let L ∈ Ttract, let (C, (v, q), eK · · · e1) be an abbreviation and E′ ⊆ E. There
exists an NL algorithm that outputs a shortest trail p such that p |=E′ (C, (v, q), eK · · · e1) if
it exists and rejects otherwise.
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v

e
π

Edgei ∪ {e1, . . . eK}

v
eK · · · e1

e

π

Edge` ∪ {e1, . . . , eK}

Figure 4 Sketch of case (1) and (2) in the proof of Lemma 4.10.

Using the algorithm of Lemma 4.7 we can, in principle, output a completion of S that
matches L using nondeterministic logarithmic space. However, such a completion does not
necessarily correspond to a trail. The reason is that, even though each trail pC we guess for
some abbreviation involving a component C is a trail, the trails for different components
may not be disjoint. Therefore, we will define pairwise disjoint subsets of edges that can be
used for the completion of the components.

The following definition fulfills the same purpose as the local domains on nodes in Bagan et
al. [5, Definition 5]. Since our components can be more complex, we require extra conditions
on the states (the δL(q, π) ∈ C condition).

I Definition 4.8 (Local Edge Domains). Let S = α1 · · ·αk be a candidate summary and E(S)
be the set of edges appearing in S. We define the local edge domains Edgei ⊆ Ei inductively
for each i from 1 to k, where Ei are the remaining edges defined by E1 = E \ E(S) and
Ei+1 = Ei \ Edgei. If there is no trail p such that p |= αi or if αi is a simple edge, we define
Edgei = ∅.

Otherwise, let αi = (C, (v, q), eK · · · e1). We denote by mi the minimal length of a trail p
with p |=Ei

αi and define Edgei as the set of edges used by trails π that start at v, only use
edges in Ei, are of length at most mi −K, and satisfy δL(q, π) ∈ C.

We note that the sets E(S) and (Edgei)i∈[k] are always disjoint.

I Definition 4.9 (Admissible Trail). We say that a trail p is admissible if there exist a
candidate summary S = α1 · · ·αk and trails p1, . . . , pk such that p = p1 · · · pk is a completion
of S and pi |=Edgei

αi for every i ∈ [k].

We show that shortest trails that match L are always admissible. Thus, the existence of
a trail is equivalent to the existence of an admissible trail.

I Lemma 4.10. Let G and (s, t) be an instance for RTQ(L), with L ∈ Ttract. Then every
shortest trail from s to t in G that matches L is admissible.

Proof sketch. We assume towards a contradiction that there is a shortest trail p from s to t
in G that matches L and is not admissible. That means there is some ` ∈ N, and an edge e
used in p` with e /∈ Edge`. There are two possible cases: (1) e ∈ Edgei for some i < ` and (2)
e /∈ Edgei for any i. In both cases, we construct a shorter trail p that matches L, which then
leads to a contradiction. We depict the two cases in Figure 4. We construct the new trail by
substituting the respective subtrail with π. J

So, if there is a solution to RTQ(L), we can find it by enumerating the candidate summaries
and completing them using the local edge domains. We next prove that testing if an edge is
in Edgei can be done in logarithmic space. We will name this decision problem Pedge(L) and
define it as follows:
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Pedge(L)
Given: A graph G = (V, E), nodes s, t, a candidate summary S, an edge e ∈ E and an

integer i.
Question: Is e ∈ Edgei?

I Lemma 4.11. Pedge(L) is in NL for every L ∈ Ttract.

With this, we can finally give an NL algorithm that decides whether a candidate summary
can be completed to an admissible trail that matches L.

I Lemma 4.12. Let L ∈ Ttract and L be infinite. Then, RTQ(L) is NL-complete.

I Corollary 4.13. Let L ∈ Ttract, G be a graph, and s, t be nodes in G. If there exists a trail
from s to t that matches L, then we can output a shortest such trail in polynomial time (and
in nondeterministic logarithmic space).

4.3 Languages not in Ttract

The proof of Theorem 4.1(3) is by reduction from the following NP-complete problem:

TwoEdgeDisjointPaths
Given: A language L, a graph G = (V, E), and two pairs of nodes (s1, t1), (s2, t2).
Question: Are there two paths p1 from s1 to t1 and p2 from s2 to t2 such that p1 and p2

are edge-disjoint?

The proof is very close to the corresponding proof for simple paths by Bagan et al. [5,
Lemma 2] (which is a reduction from the two vertex-disjoint paths problem).

4.4 Extension to Multigraphs
We believe that Theorem 4.1 can be extended to graphs with multi-edges. For each edge e,
denote by maxe the number of occurrences of e in the multigraph. First, consider the case
where L is a finite language. Let m be the length of longest word in L. Notice that m is a
constant, since it only depends on L. Every edge can be used at most m times in paths that
match L, so we can check in FO whether an edge e is used at most ne = min{m,maxe}
times. The rest of the argument is analogous to Section 4.1.

We now turn to languages in Ttract. The length of the candidate summaries S (Defini-
tion 4.5) only depends on L and is therefore constant. Instead of testing whether all edges
appearing in S are distinct, we have to check if they occur at most the maximal number
of times. (Therefore, listing all candidate summaries is still in O((log |G|)N ), and thus in
polynomial time.) For the local edge domains (Definition 4.8), we define E1 as an ordinary
graph, i.e., non-multigraph, containing all edges that have not exhausted their maximal
number of occurrences in S already. With this graph we can continue just as for ordinary
graphs.

5 Recognition and Closure Properties

The following theorem establishes the complexity of deciding if a regular language is in Ttract.

I Theorem 5.1. Testing whether a regular language L belongs to Ttract is
(1) NL-complete if L is given by a DFA and
(2) PSPACE-complete if L is given by an NFA or by a regular expression.
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We wondered if, similarly to Theorem 3.2, it could be the case that languages closed under
left-synchronized power abbreviations are always regular, but this is not the case. For
example, the (infinite) Thue-Morse word [32, 24] has no subword that is a cube (i.e., no
subword of the form w3) [32, Satz 6]. The language containing all prefixes of the Thue-Morse
word thus trivially is closed under left-synchronized power abbreviations (with i = 3), yet it
is not regular.

We now give some closure properties of SPtract and Ttract.

I Lemma 5.2. Both classes SPtract and Ttract are closed under (i) finite unions, (ii) finite
intersections, (iii) reversal, (iv) left and right quotients, (v) inverses of non-erasing morphisms,
(vi) removal and addition of individual strings.

This lemma implies that SPtract and Ttract each are a positive Cne-variety of languages, i.e., a
positive variety of languages that is closed under inverse non-erasing homomorphisms.

I Lemma 5.3. The classes SPtract and Ttract are not closed under complement.

Proof. Let Σ = {a, b}. The language of the expression b∗ clearly is in SPtract and Ttract. Its
complement is the language L containing all words with at least one a. It can be described by
the regular expression Σ∗aΣ∗. Since biabi ∈ L for all i, but bibi /∈ L for any i, the language
L is neither in SPtract nor in Ttract. J

It is an easy consequence of Lemma 5.2 (vi) that there do not exist best lower or upper
approximations for regular languages outside SPtract or Ttract.

I Corollary 5.4. Let C ∈ {SPtract,Ttract}. For every regular language L such that L /∈ C and
for every upper approximation L′′ of L (i.e., L ( L′′) with L′′ ∈ C it holds that there
exists a language L′ ∈ C with L ( L′ ( L′′;
for every lower approximation L′′ of L (i.e., L′′ ( L) it holds that there exists a language
L′ ∈ C with L′′ ( L′ ( L.

The corollary implies that Angluin-style learning of languages in SPtract or Ttract is not
possible. However, learning algorithms for single-occurrence regular expressions (SOREs)
exist [8] and can therefore be useful for an important subclass of Ttract.

6 Enumeration

In this section we state that – using the algorithm from Theorem 4.1 – the enumeration
result from [36] transfers to the setting of enumerating trails matching L.

I Theorem 6.1. Let L be a regular language, G be a graph and (s, t) a pair of nodes in G.
If NL 6= NP, then one can enumerate trails from s to t that match L in polynomial delay in
data complexity if and only if L ∈ Ttract.

Proof sketch. The algorithm is an adaptation of Yen’s algorithm [36] that enumerates the k
shortest simple paths for some given number k, similar to what was done by Martens and
Trautner [22, Theorem 18]. It uses the algorithm from Corollary 4.13 as a subprocedure. J
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7 Conclusions and Lessons Learned

We have defined the class Ttract of regular languages L for which finding trails in directed
graphs that are labeled with L is tractable iff NL 6= NP. We have investigated Ttract in
depth in terms of closure properties, characterizations, and the recognition problem, also
touching upon the closely related class SPtract (for which finding simple paths is tractable)
when relevant.

In our view, graph database manufacturers can have the following tradeoffs in mind
concerning simple path (SPtract) and trail semantics (Ttract) in database systems:

SPtract ( Ttract, that is, there are strictly more languages for which finding regular
paths under trail semantics is tractable than under simple path semantics. Some of
the languages in Ttract but outside SPtract are of the form (ab)∗ or a∗bc∗, which were
found to be relevant in several application scenarios involving network problems, genomic
datasets, and tracking provenance information of food products [29] and appear in query
logs [10, 9].
Both SPtract and Ttract can be syntactically characterized but, currently, the characteriza-
tion for SPtract (Section 3.5 in [5]) is simpler than the one for Ttract. This is due to the
fact that connected components for automata for languages in Ttract can be much more
complex than for automata for languages in SPtract.
On the other hand, the single-occurrence condition, i.e., each alphabet symbol occurs at
most once, is a sufficient condition for regular expressions to be in Ttract. This condition
is trivial to check and also captures languages outside SPtract such as (ab)∗ and a∗bc∗.
Moreover, the condition seems to be useful: we analyzed the 50 million RPQs found in
the logs of [11] and discovered that over 99.8% of the RPQs are single-occurrence.
In terms of closure properties, learnability, or complexity of testing if a given regular
language belongs to SPtract or Ttract, the classes seem to behave the same.
The tractability for the decision version of RPQ evaluation can be lifted to the enumeration
problem, in which case the task is to output matching paths with only a polynomial delay
between answers.

As an open question remains the trichotomy for 2RPQs, that is, when we allow RPQs to
follow a directed edge also in its reverse direction. We briefly discuss why this is challenging.
Let us denote by â the backward navigation of an edge labeled a. Then, the case of ordinary
RPQs can be seen as a special case of 2RPQs on directed graphs: it only has bidirectional
navigation of the form (a + â). It has been open problem since 1991 whether evaluating
(aaa)∗ on undirected graphs is in P or NP-complete [4].
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A Background on NFAs with Counters

We recall the definition of counter NFAs from Gelade et al. [15]. We introduce a minor
difference, namely that counters count down instead of up, since this makes our construction
easier to describe. Furthermore, since our construction only requires a single counter, zero
tests, and setting the counter to a certain value, we immediately simplify the definition to
take this into account.

Let c be a counter variable, taking values in N. A guard on c is a statement γ of the form
true or c = 0. We denote by c |= γ that c satisfies the guard γ. In the case where γ is true,
this is trivially fulfilled and, in the case where γ is c = 0, this is fulfilled if c equals 0. By
G we denote the set of guards on c. An update on c is a statement of the form c := c− 1,
c := c, or c := k for some constant k ∈ N. By U we denote the set of updates on c.

I Definition A.1. A non-deterministic counter automaton (CNFA) with a single counter
is a 6-tuple A = (Q, I, c, δ, F, τ) where Q is the finite set of states; I ⊆ Q is a set of initial
states; c is a counter variable; δ ⊆ Q×Σ×G×Q× U is the transition relation; and F ⊆ Q
is the set of accepting states. Furthermore, τ ∈ N is a constant such that every update is of
the form c := k with k ≤ τ .

Intuitively, A can make a transition (q, a, γ; q′, π) whenever it is in state q, reads a, and
c |= γ, i.e., guard γ is true under the current value of c. It then updates c according to
the update π, in a way we explain next, and moves into state q′. To explain the update
mechanism formally, we introduce the notion of configuration. A configuration is a pair
(q, `) where q ∈ Q is the current state and ` ∈ N is the value of c. Finally, an update π
defines a function π : N → N as follows. If π = (c := k) then π(`) = k for every ` ∈ N. If
π = (c := c− 1) then π(`) = max(`− 1, 0). Otherwise, i.e., if π = (c := c), then π(`) = `. So,
counters never become negative.

An initial configuration is (q0, 0) with q0 ∈ I. A configuration (q, `) is accepting if q ∈ F
and ` = 0. A configuration α′ = (q′, `′) immediately follows a configuration α = (q, `) by
reading a ∈ Σ, denoted α→a α

′, if there exists (q, a, γ; q′, π) ∈ δ with c |= γ and `′ = π(`).
For a string w = a1 · · · an and two configurations α and α′, we denote by α ⇒w α′

that α →a1 · · · →an
α′. A configuration α is reachable if there exists a string w such that

α0 ⇒w α for some initial configuration α0. A string w is accepted by A if α0 ⇒w αf where
α0 is an initial configuration and αf is an accepting configuration. We denote by L(A) the
set of strings accepted by A.

It is easy to see that CNFA accept precisely the regular languages. (Due to the value τ ,
counters are always bounded by a constant.)

https://www.tigergraph.com/
https://www.w3.org/TR/sparql11-query/
https://www.wikidata.org/
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Abstract
Represented spaces are the spaces on which computations can be performed. We investigate the
descriptive complexity of sets in represented spaces. We prove that the standard representation of a
countably-based space preserves the effective descriptive complexity of sets. We prove that some
results from descriptive set theory on Polish spaces extend to arbitrary countably-based spaces. We
study the larger class of coPolish spaces, showing that their representation does not always preserve
the complexity of sets, and we relate this mismatch with the sequential aspects of the space. We
study in particular the space of polynomials.
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1 Introduction

Several branches of theoretical computer science, such as semantics of programming language,
domain theory or computability theory, have demonstrated the intimate relationship between
computation and topology, one of the simplest manifestations of this being that computable
functions are continuous. Descriptive Set Theory (DST) and its effective version provide a
natural framework in which the interaction between computations and topology can be fully
studied.

However, a large part of DST focuses on Polish spaces, leaving aside many topological
spaces relevant to theoretical computer science. A first extension to ω-continuous domains
was developed by Selivanov [13]. A further extension allowing a unification with Polish spaces
was achieved by de Brecht [2] who introduced the class of quasi-Polish spaces, which can be
thought of as the largest class of countably-based spaces on which DST extends. Still, many
topological spaces which are meaningful to theoretical computer science fall outside the class:
for instance the Kleene-Kreisel spaces important in higher-order computation theory [8], the
recently introduced coPolish spaces, which admit a well-behaved computational complexity
theory [12], more generally the represented spaces in computable analysis.

Therefore, there is a need to extend DST to more general topological spaces. Such an
extension was proposed and initiated in [10] for represented spaces. Some negative results
were obtained in [5] for spaces of Kleene-Kreisel functionals. With a different approach, a
study of quotients of countably-based spaces (QCB-spaces) was done in [4]. It would be
interesting to explore the relationship between DST on represented spaces and equivalence
relations on standard Borel spaces, a representation naturally inducing an equivalence relation
on names.
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In this paper, we investigate general countably-based spaces and the class of coPolish
spaces, in particular the space R[X] of real polynomials. We investigate the validity of some
classical theorems from DST on those topological spaces, identifying when they extend and
when they do not.

All these spaces have natural representations, which are essential to the development of
the theory. The role of representations in this work can be interpreted in two different ways:
1. Representations can simply be seen as a tool in the study of certain topological spaces.

Many results can be stated without any mention of representations, and of a purely
topological interest.

2. Representations can also be seen as providing a structure alternative to topology, inducing
in particular different measures of descriptive complexity of sets. As we briefly mention at
the end of the paper, several results from DST that fail on some topological spaces can be
recovered if one uses the notions induced by the representation rather than the topology.
This interpretation supports the viewpoint adopted in [10], suggesting a development of
DST in the category of represented spaces rather than topological spaces (which makes
no difference when restricting to Polish or quasi-Polish spaces where these two approaches
are equivalent).

We think that it is too early to choose between these two viewpoints, and that they both
have their merits.

We now give an overview of the results.
In a topological space, the descriptive complexity of a set A measures the complexity of

expressing A in terms of open sets. In a represented space (X, δX), where δX :⊆ N → X is
a partial surjective function from the Baire space N = NN (p ∈ dom(δX) being a code for
the point δX(p) ∈ X, to be given as input to a Turing machine), an alternative approach is
to measure the descriptive complexity of the set of codes of points of A, which measures the
complexity of testing membership of points in the set, when points are given by codes.

Represented spaces have a canonical topology (the final topology of the representation),
so two competing measures of complexity are available on these spaces.

I Problem 1. When do the notions of descriptive complexity induced by a representation
and its corresponding topology coincide?

We show that they coincide on countably-based spaces in a uniform computable way
(effectivizing a result of de Brecht [2]) and that they can differ on other spaces, including R[X].
In the class of coPolish spaces, we characterize the spaces on which the two notions of
complexity coincide (at least in the low complexity levels) as the class of Fréchet-Urysohn
spaces (the spaces in which closures and sequential closures coincide). It suggests that the
mismatch between the topology and the representation is related to the difference between
the topological and sequential aspects of the space, and that the complexity induced by the
representation reflects the sequential rather than topological aspects of the space.

I Problem 2. In a topological space, how to establish a lower bound on the descriptive
complexity of a given set?

On a Polish space, in order to prove that a set A does not belong to a descriptive complexity
class Γ, it is necessary and sufficient to prove that A is Γ̌-hard (when Γ is not self-dual,
i.e. when Γ̌ 6= Γ). We show that for complexity classes below ˜∆0

2, more precisely for the
classes of the difference hierarchy, this result is surprisingly valid on arbitrary countably-based
spaces. However it becomes false on R[X], precisely because of Problem 1: the hardness of
a set is not a measure of its topological complexity, but of the complexity of its preimage
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under the representation. Therefore, we need new techniques to measure the topological
complexity of a set in non-countably-based spaces. We develop a criterion, which is necessary
and sufficient, to prove that a set does not belong to a class below ˜∆0

2, in any topological
space.

Finally, we investigate the validity, outside Polish spaces, of a famous result from DST,
the Hausdorff-Kuratowski Theorem. In its simplest form, it states that the class ˜∆0

2 can
be classified exhaustively using the difference hierarchy (the general result also considers
classes ˜∆0

α).

I Problem 3. On which topological spaces does the Hausdorff-Kuratowski Theorem hold?

Using the previous results, we show that the Hausdorff-Kuratowski Theorem holds on a
countably-based space if and only if that space does not contain any ˜∆0

2-complete set. We
show that the Hausdorff-Kuratowski Theorem does not hold on the topological space R[X].
However, when seeing R[X] as a represented space and measuring the complexity of sets
according to the representation rather than the topology, the Hausdorff-Kuratowski Theorem
becomes true.

In Section 2 we give a minimalist summary of the background needed to state and prove
our results. In Section 3 we present our results concerning Problem 2, which will be needed
to give answers to Problem 1 in Section 4. In Section 5, we investigate the class of coPolish
spaces, which includes spaces that are not countably-based.

2 Background

The Baire space is N = NN with the product topology generated by the cylinders [σ],
with σ ∈ N∗. A represented space is a pair (X, δX) where X is a set and δX :⊆ N → X is
onto. A realizer of a function f : (X, δX)→ (Y, δY ) is any function F : dom(δX)→ dom(δY )
such that f ◦ δX = δY ◦ F . f is computable if it has a computable realizer.

A represented space (X, δX) is admissible if the continuously realizable functions f :⊆
N → X are precisely the continuous functions (for the final topology of δX).

An effective countably-based space is a countably-based topological space X with a
numbered basis of the topology (Bi)i∈N such that intersection of basic open sets is com-
putable: Bi ∩ Bj =

⋃
k∈Wf(i,j)

Bk for some computable f : N2 → N, where (We)e∈N is
an effective enumeration of the c.e. subsets of N. The standard representation, which is
admissible, is defined by representing x ∈ X by any listing of the set {i ∈ N : x ∈ Bi}. A
particularly useful property of these spaces is that the standard representation is effectively
open: δ([σ]) =

⋃
i∈Wg(σ)

Bi, for some computable g. The class Σ0
1(X) of effective open sets

consists of c.e. unions of basic open sets. More details can be found in [17, 9].

2.1 Hierarchies on topological spaces

2.1.1 Borel hierarchy
We should emphasize that although we work in represented spaces, we are using the topology
to define the descriptive complexity classes. It contrasts with the approach developed in [10] in
which the complexity of a set is defined as the descriptive complexity of the corresponding set
of names, i.e. the preimage of the set under the representation. Our general goal is precisely
to compare the topological complexity of sets with the complexity of its corresponding set of
names.

STACS 2020
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The Borel hierarchy, usually defined on Polish spaces, can be extended immediately to
any topological space X, with a slight modification to handle correctly the non-Hausdorff
spaces, in which open sets are not always unions of closed sets [13].

˜Σ0
1(X) is the class of open sets,

For 1 < α < ω1, A ∈ ˜Σ0
α(X) if A =

⋃
i∈NAi \Bi where Ai, Bi ∈ ˜Σ0

αi with αi < α.

We also define ˜Π0
α(X) as the class of complements of sets in ˜Σ0

α(X), and ˜∆0
α(X) =

˜Σ0
α(X) ∩ ˜Π0

α(X).

2.1.2 Difference hierarchy
Let X be a topological space. The difference hierarchy (˜Dα(˜Σ0

β(X)))1≤α<ω1 based on ˜Σ0
β(X)

is defined by transfinite induction as follows [13]:

˜D1(˜Σ0
β(X)) = ˜Σ0

β(X),
A ∈ ˜Dα+1(˜Σ0

β(X)) if A = U \B where U ∈ ˜Σ0
β(X) and B ∈ ˜Dα(˜Σ0

β(X)),
For a limit ordinal λ, A ∈ ˜Dλ(˜Σ0

β(X)) if A =
⋃
α<λ,α evenBα+1 \Bα where (Bα)α<λ is a

growing sequence of sets in ˜Σ0
β(X).

We define ˜Ďα(˜Σ0
β(X)) as the class of complements of sets in the class ˜Dα(˜Σ0

β(X)). We will
mainly focus on the hierarchy based on ˜Σ0

1(X), and we denote ˜Dα(˜Σ0
1(X)) by ˜Dα(X).

In any topological space X, the difference hierarchy based on ˜Σ0
β(X) is contained

in ˜∆0
β+1(X). On Polish spaces and even quasi-Polish spaces, the Hausdorff-Kuratowski

Theorem states that the hierarchy entirely exhausts ˜∆0
β+1(X) (Theorem 70 in [2]).

2.1.3 Representations of sets
Representations of descriptive complexity classes have been investigated in [1, 14].

As soon as one has chosen a representation of open sets, at least the finite levels of the
hierarchies have an obvious representation. For instance, a set in ˜D2(X) is represented by
pairing two names of open subsets of X. A set in ˜Σ0

n+1(X) is inductively represented by
two sequences of names of sets in ˜Σ0

n(X).
If (X, δX) is a represented set, then the canonical topology on X is the final topology

of δX . An open subset U of X can be represented by a name of any open subset of N whose
intersection with dom(δX) is δ−1

X (U).

3 Measuring the topological complexity of a set

When studying the descriptive complexity of sets in topological spaces, an important task is
to prove that a set does not belong to a given class. In the traditional theory on Polish spaces,
it can be achieved using the notion of hardness. We investigate on which topological spaces
this technique is still valid, and develop an alternative technique working on all topological
spaces.

Let Γ be a complexity class. We say that A ⊆ X is Γ-hard if for every C ∈ Γ(N ), there is
a continuous reduction from C to A, i.e. a continuous map f : N → X such that C = f−1(A).

On any Polish space X, if a class Γ is not self-dual (i.e., Γ 6= Γ̌) and is closed under
continuous preimages, then for A ⊆ X,

A /∈ Γ(X) ⇐⇒ A is Γ̌(X)-hard. (1)

This is essentially Wadge’s lemma in [7]. We call this equivalence the hardness criterion.
This result can easily be extended to the countably-based spaces admitting a total admissible
representation δ (they are called quasi-Polish spaces [2]).
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As we will see in this paper, it fails in other spaces such as R[X], because the hardness of
a set does not measure its topological complexity, but the complexity of its preimage under
the representation, which may differ. Therefore, we need some techniques to prove that a set
does not belong to a given class. We are going to see that for classes below ˜∆0

2,
There is a characterization that is valid in any topological space,
The hardness criterion (1) surprisingly holds for any countably-based space.

3.1 Arbitrary topological spaces
In order to characterize the classes of the difference hierarchy, we adapt the proof of the
Hausdorff-Kuratowski Theorem presented in [7], in which the level of a set in the difference
hierachy is essentially captured by iterating an operator on the set, and identifying the level
at which the set becomes empty. However, the operator used in [7], which takes a set to its
boundary, is too coarse to distinguish between the classes ˜Dη and ˜Ďη. We refine it and show
how it captures precisely the complexity of a set.

Intuitively, iterating the operator progressively removes the simple parts of the set, so
that the level at which the set is emptied measures the complexity of the set. Let ω1 be the
first uncountable ordinal.

I Definition 3.1. Let X be a topological space. For a set A ⊆ X, we define the sequence of
closed sets (Hη)η<ω1 by transfinite induction on η as follows:

H0(A) = X,

Hη+1(A) = A ∩Hη(Ac),

Hλ(A) =
⋂
η<λ

Hη(A) for a limit ordinal λ.

Intuitively, x ∈ H2(A) if x is arbitrarily close to points of A that are arbitrarily close to
points of Ac. At the next level, x ∈ H3(A) if x is arbitrarily close to points of A that are
arbitrarily close to points of Ac that are themselves arbitrarily close to points of A. More
generally, Hη(A) contains the points that are sufficiently deep inside the boundary of A.

We now study the basic properties of that sequence (the proofs are given in the appendix).
First, it is decreasing,

I Proposition 3.2. If α ≤ β then Hα(A) ⊇ Hβ(A).

At the limit levels, A and Ac induce the same set.

I Proposition 3.3. For each limit ordinal λ, one has Hλ(A) = Hλ(Ac).

We only consider countable ordinals because on a large class of spaces including represented
spaces, the sequence reaches a fixed point at some countable ordinal. A topological space is
hereditarily Lindelöf if every family of open sets contains a countable subfamily with the
same union. The final topology of a representation is always hereditarily Lindelöf.

I Proposition 3.4. If X is a hereditarily Lindelöf topological space, then for any A ⊆ X the
sequence (Hη)η<ω1 is eventually constant.

Proof. Let U = X \
⋂
η<ω1

Hη(A). The growing family of open sets (X \ Hη(A))η<ω1

covers U , so contains a countable subfamily covering U . As a result, U = X \Hη(A) for
some η < ω1, and Hα(A) = Hη(A) for all α ≥ η. J
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Whether a point belongs to Hη(A) only depends on the local behavior of A around that
point, which can be formulated as follows.

I Lemma 3.5. Let U be open. If A ∩ U = B ∩ U , then Hη(A) ∩ U = Hη(B) ∩ U .

In particular, Hη(A) ∩ U = Hη(A ∩ U) ∩ U = Hη(A ∪ U c) ∩ U .
The main result of this section is that the topological complexity of a set is captured by

this sequence, which gives an operative way of identifying the complexity of a set, and will
be used in the sequel.

I Theorem 3.6. Let X be any topological space. For a set A ⊆ X, one has

A ∈ ˜Dη(X) ⇐⇒ Hη+1(A) = ∅.

The proofs are rather technical and given in the appendix. We simply mention that one
direction has the following more general formulation.

I Lemma 3.7. For any set A ⊆ X, one has A \Hη+1(A) ∈ ˜Dη(X).

3.2 Countably-based spaces
The preceding result enables us to go further by extending the hardness criterion (1) to any
countably-based space, at least for the classes of the difference hierarchy.

I Theorem 3.8 (Hardness criterion). Let X be countably-based. Let η < ω1 be a countable
ordinal. For every set A ⊆ X, one has

A /∈ ˜Dη(X) ⇐⇒ A is ˜Ďη-hard.

Proof. The implication ⇐ holds on any space, we prove the other implication.
We prove by induction on η that for any countably-based space X, if C ∈ ˜Dη(N )

and Hη+1(A) 6= ∅ then there exists a continuous reduction φ from C to Ac (or equivalently,
from Cc to A).

This induction hypothesis implies in particular that for any countably-based space X and
any open set B ⊆ X, if B ∩Hη+1(A) 6= ∅ then there exists a continuous reduction from C

to Ac on any cylinder [σ], with values in B. Indeed, in the subspace B, the set HB
η+1(A ∩B)

(which is Hη+1(A ∩B)) defined in the space B) is the intersection of HX
η+1(A) with B.

The case η = 0 is straightforward: C = ∅ and A 6= ∅ so one can take a constant function
with value in A.

Now assume the induction hypothesis for some η. Let C ∈ ˜Dη+1(N ) and Hη+2(A) 6= ∅.
We build a continuous reduction φ from Cc to A. We adopt the language of computability,
by explaining how to compute φ(x) from x ∈ N . Computing φ(x) ∈ X means enumerating
the basic neighborhoods of φ(x). The computation is made relative to some suitable oracle
encoding whatever is needed.

One has C = U \ C ′ with U open and C ′ ∈ ˜Dη(N ). First define φ : U c → X with some
constant value in A ∩Hη+1(Ac) which is non-empty. Given x ∈ N , start computing φ(x) as
if x ∈ U c. If eventually one discovers that x ∈ U , then we obtain some [σ] ⊆ U with x ∈ [σ].
So far, an open neighborhood B of φ(x) has been enumerated. One has B ∩Hη+1(Ac) 6= ∅.
By induction hypothesis applied to η, [σ] ∩ C ′ and Ac, one can define φ on [σ] with values
in B, reducing [σ] ∩ C ′ to A ∩B.

We now prove the case of limit ordinals. Let λ be a limit ordinal, and assume the
induction hypothesis for all η < λ.
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Let C ∈ ˜Dλ(N ) and Hλ+1(A) 6= ∅. Let (Uα)α<λ be open sets defining C, and U their
union. We first define φ on U c with some constant value in A ∩Hλ(Ac), which is non-empty.
Given x ∈ N , start computing φ(x) as if x ∈ U c. If eventually one discovers that x ∈ U ,
then we obtain some [σ] ⊆ Uη with x ∈ [σ] and η < λ. So far, an open neighborhood B

of φ(x) has been enumerated. By Proposition 3.3, one has B ∩Hλ(A) = B ∩Hλ(Ac) 6= ∅
hence B ∩Hη+2(A) 6= ∅. As [σ] ⊆ Uη, one has [σ] ∩ C ∈ ˜Dη+1(N ). By induction, one can
define φ on [σ] with values in B, reducing [σ] ∩ C to Ac. J

We leave open the question whether such the hardness criterion holds for classes above ˜∆0
2

in countably-based spaces.
We will see later that in the space R[X] of polynomials, it already fails at the level ˜D2.
Theorem 3.8 gives for free a characterization of the countably-based spaces on which

the Hausdorff-Kuratowski Theorem holds. A set is said to be ˜∆0
2-complete if it belongs

to ˜∆0
2(X) and is ˜∆0

2-hard.

I Corollary 3.9. In a countably-based space, the Hausdorff-Kuratowski Theorem holds iff
there is no ˜∆0

2-complete set.

Proof. If the HK theorem fails then there is A ∈ ˜∆0
2(X) such that A /∈ ˜Dη(X) for any η < ω1.

By Theorem 3.8, A is ˜Ďη-hard for each η. As a result, A is ˜∆0
2-hard hence ˜∆0

2-complete.
If the HK theorem holds then no ˜∆0

2-set can be complete. Indeed, if A ∈ ˜∆0
2(X)

then A ∈ ˜Dη(X) for some η < ω1 by the HK theorem. If A is ˜∆0
2-hard then every C ∈ ˜∆0

2(N )
is continuously reducible to A so C ∈ ˜Dη(N ), contradicting the fact that the difference
hierarchy does not collapse on N . J

For instance, the space C = {f : N → N : f is eventually constant} ⊆ N is countably-
based and contains a ˜∆0

2-complete set C0 = {f : N→ N : f is eventually null}. Therefore, to
show that a set is ˜∆0

2-hard, it is sufficient to reduce C0 to that set. One may ask whether it
is always possible. We answer positively in the case of countably-based spaces.

I Proposition 3.10. In a countably-based space X, a set A ⊆ X is ˜∆0
2-hard iff there exists

a continuous function φ : C → X such that C0 = φ−1(A).

Proof. If A is ˜∆0
2-hard, then we show that there is a non-empty closed set F such that

both F ∩A and F \A are dense in F . From this result, we can build a reduction as follows.
Given f ∈ C, one can decide with finitely many mind-changes whether f ∈ C0. We can
assume that the first guess is that f ∈ C0. We start outputting a point in F ∩A; each time
we change our mind, if our new guess is that f /∈ C0 then we move to a point in F \A, and if
our new guess is that f ∈ C0, then we move to a point in F ∩ A. We can do that because
both sets are dense in F , so whatever the current neighborhood of the point we have already
output, we can move. After some finite time, there is no more mind-change, so we indeed
output a point, which belongs to A iff f ∈ C0.

Let us now prove the existence of such a F . For any η < ω1, one has A /∈ ˜Dη(X)
(otherwise every set in ˜∆0

2(N ) would belong to ˜Dη(N ), so the difference hierarchy would
collapse on N ). By Theorem 3.6, one has Hη+1(A) 6= ∅ for all η < ω1. Let η be such
that Hα(A) = Hη(A) for all α ≥ η. Let F = Hη(A). It is a closed set, and both A

and Ac are dense in it. Indeed, Hη(A) = Hη+2(A) ⊆ Hη+1(Ac) ⊆ Hη(A) so they are all
equal. Therefore Hη(A) = Hη+1(Ac) = Ac ∩Hη(A), so Ac is dense in Hη(A), and Hη(A) =
Hη+2(A) = A ∩Hη(A) so A is dense in Hη(A). J
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4 Preservation of descriptive complexity by representations

4.1 Countably-based spaces
It is proved in [2] that in a countably-based space X with a continuous open or admissible
representation δ :⊆ N → X, the descriptive complexity of δ−1(A) in dom(δ) coincides with
the descriptive complexity of A in X. The proof is based on [11, 16] and we point out that it
is actually effective. The effective version of the ˜Σ0

2 case was proved in [6]. The classes Dm

and Σ0
n(X) is the effective version of ˜Dm and ˜Σ0

n(X).

I Theorem 4.1 (Preservation). Let X be an effective countably-based space. The inverse
of the function δ−1 : ˜Dm(˜Σ0

n(X)) → ˜Dm(˜Σ0
n(dom(δ))) is computable. In particular, for

every A ⊆ X,

δ−1(A) ∈ Dm(Σ0
n(dom(δ))) ⇐⇒ A ∈ Dm(Σ0

n(X)).

This result is used and generalized in [15]. We follow the lines of the proofs given in [11, 2].
For A ⊆ N , let B(A) = {x ∈ X : A ∩ δ−1(x) is not meager in δ−1(x)}.

I Lemma 4.2. B(
⋃
i∈N Si) =

⋃
i∈NB(Si).

Proof. δ−1(x) is Polish so in that space,
⋃
i Si is not meager iff some Si is not meager. J

I Lemma 4.3. For any Borel set S ⊆ N , one has B(S) =
⋃
σ δ([σ]) \B([σ] \ S).

Proof. One has x ∈ B(S) iff S ∩ δ−1(x) is not meager in δ−1(x), iff there exists σ such
that [σ] intersects δ−1(x) (which means that x ∈ δ([σ])) and [σ] ∩ S ∩ δ−1(x) is comeager
in [σ] ∩ δ−1(x). The latter property can be reformulated as follows:

[σ] ∩ S ∩ δ−1(x) is comeager in [σ] ∩ δ−1(x)
⇐⇒ [σ] \ S ∩ δ−1(x) is meager in [σ] ∩ δ−1(x)
⇐⇒ [σ] \ S ∩ δ−1(x) is meager in δ−1(x)
⇐⇒ x /∈ B([σ] \ S).

As a result, x ∈ B(S) iff there exists σ such that x ∈ δ([σ]) \B([σ] \ S). J

I Lemma 4.4. Let X be an effective countably-based space. The function B : ˜Σ0
n(N ) →

˜Σ0
n(X) is computable.

Proof. We prove it by induction on n. For n = 1, if A ∈ ˜Σ0
1(N ) then B(A) = δ(A) so the

result follows because δ is effectively open.
Let A ∈ ˜Σ0

n+1(N ). A is given as
⋃
iAi with Ai ∈ ˜Π0

n(N ). By Lemmas 4.2 and 4.3,

B(A) =
⋃
i

B(Ai) =
⋃
i,σ

δ([σ]) \B([σ] \Ai).

We can conclude by applying the induction hypothesis to [σ] \Ai ∈ ˜Σ0
n(N ). J

Proof of Theorem 4.1. One has B(δ−1(A)) = A so the inverse of δ−1 is exactly B, which
is computable by Lemma 4.4. It shows the case m = 1. For m > 1, one can show as in [2]
that if δ−1(A) = S \ T then A = B(S) \B(T ), so the result follows by induction on m. J

The possibility of converting the description of the preimage of a set into a description of
the set in a uniform continuous way is actually a characterization of countably-based spaces,
as shown by the next result.



A. Callard and M. Hoyrup 8:9

I Theorem 4.5. Let X be an admissibly represented space. The function δ−1 : ˜D2(X) →

˜D2(dom(δ)) is computably invertible relative to an oracle iff X is countably-based.

To prove the theorem, we need the next Lemma, whose proof is given in the appendix.
In a topological space, the specialization preorder is x ≤ y if every neighborhood of x is a
neighborhood of y.

I Lemma 4.6. For every admissibly represented space, there is an admissible representation δ
such that the sets δ([σ]) are upward closed for the specialization preorder.

Proof. We use the following characterization of admissibly represented spaces [9]: the
canonical injection X → O(O(X)) sending x to the set of its open neighborhoods has a
continuously realizable inverse.

For any represented set Y , the canonical representation of O(Y ) has the upward closedness
property: the specialization preorder on O(Y ) is inclusion and every prefix of a name of an
open set U can be extended to the name of any open set V ⊇ U : the prefix encodes a finite
list of cylinders whose intersection with dom(δY ) is contained in δ−1

Y (U), hence in δ−1
Y (V ).

Now by taking Y = O(X) we get that the representation of O(O(X)) has this property.
Therefore any subspace also has this property. In particular, asX is admissibly represented,X
is a represented subspace of O(O(X)). J

Proof of Theorem 4.5. We can assume w.l.o.g. that δ has the upward closedness property as
in Lemma 4.6. Indeed, δ is equivalent to such a representation δ∗, and if δ−1 is continuously
invertible as in the statement then so is δ−1

∗ . Indeed, one has δ = δ∗ ◦ F for some continu-
ous F : dom(δ)→ dom(δ∗), the function F−1 : ˜D2(dom(δ∗))→ ˜D2(dom(δ)) is continuous,
so given δ−1

∗ (A) ∈ ˜D2(dom(δ∗)) one can continuously obtain δ−1(A) = F−1(δ−1
∗ (A)) ∈

˜D2(dom(δ)), from which one can continuously obtain A ∈ ˜D2(X).
Assume that X is not countably-based. For each finite union of cylinders Ci ⊆ N , the

interior Bi of δ(Ci) is an open subset of X. As X is not countably-based, the sequence (Bi)i∈N
is not a basis, therefore there exists an open set U ⊆ X which is not a union of Bi’s. It
means that there exists x ∈ U such that x /∈ Bi for each Bi ⊆ U .

Assume that the inverse φ of δ−1 : ˜D2(X) → ˜D2(dom(δ)) is continuously realizable,
let Φ :⊆ N → N be a continuous realizer of φ.

We build a set A ∈ ˜D2(X) by producing a name of δ−1(A) ∈ ˜D2(dom(δ)), feeding it to Φ
and observing its output, which must be a name of A ∈ ˜D2(X). In other words, we feed Φ
with a pair of names of open sets E0, E1 ⊆ N such that δ−1(A) = E1 \E0 ∩ dom(δ) and we
observe names of open sets F0, F1 ⊆ N such that A = A1 \A0 with δ−1(Ai) = Fi ∩ dom(δ).
Our goal is to make Φ fail.

We pick a particular name p of x. We start with E0 = ∅ and E1 = δ−1(U), and
start feeding names of them to Φ. We wait for p to appear in F1 (which must happen,
otherwise A = U but x /∈ A1 \A0). When p appears in F1, we stop our enumeration of E1,
which is currently some Ci, and let E0 = Ci. We start extending the names of E0 and E1
so that E0 = E1 = Ci, and wait for p to appear in F0 (it must happen, otherwise A = ∅
but x ∈ A1 \A0). When p appears in F0, we do the following.

As δ(Ci) ⊆ U , x does not belong to the interior of δ(Ci). As x belongs to the open
set A0, this open set cannot be contained in δ(Ci). As a result, there exists y ∈ A0 \ δ(Ci),
and we wait until we find a name of such a y in F0. The representation δ has the property
that the image of any cylinder is upward closed, in particular δ(Ci) is upward closed. As a
result, the closure of {y}, denoted by {y}, is disjoint from δ(Ci) (indeed, z ∈ {y} iff z ≤ y,
so z /∈ δ(Ci)).
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Now, we switch to A = {y}, with E1 = N and E0 an open set such that dom(δ) ∩ E0 =
dom(δ) \ δ−1({y}). It is indeed possible to find such an open set containing Ci, because δ(Ci)
is disjoint from {y}, and Ci is the part of E0 that has already been enumerated. The output
of Φ is mistaken, because y ∈ A but y /∈ A1 \A0 (we chose y ∈ A0).

Therefore we get a contradiction, which implies that Φ cannot exist. J

5 CoPolish spaces

So far, we have essentially obtained positive results, in particular that the standard repres-
entation of countably-based spaces preserve descriptive complexity of sets.

We now investigate what happens on non-countably based spaces. It is however a very
vast class, so we focus on one of the simplest classes of spaces, the coPolish spaces.

CoPolish spaces are a nice class of spaces going beyond countably-based spaces. They
were studied in [12] where they arise as a natural class of spaces on which complexity theory
can be developed. We start by showing that in coPolish spaces, the representation does not
always preserve descriptive complexity. Moreover, we give a simple characterization of the
coPolish spaces whose representation preserves the descriptive complexity of sets (at least
for low level complexity classes). We take the next definition from [3].

I Definition 5.1. A coPolish space is a direct limit of an increasing sequence of compact
metrizable subspaces Xn.

In other words X =
⋃
nXn and a set U ⊆ X is open if for each n, U ∩ Xn is open

on Xn. In this topology, a converging sequence is entirely contained in some Xn [12]. An
admissible representation δX is obtained as follows: a point x ∈ X is represented by a
pair (n, p) ∈ N×N ∼= N where n ∈ N is such that x ∈ Xn, and p ∈ N is a name of x in Xn.
I Remark 5.2. For a descriptive complexity class Γ in the Borel and difference hierarchies,
one has

δ−1
X (A) ∈ Γ(dom(δX)) ⇐⇒ ∀n,A ∩Xn ∈ Γ(Xn).

Indeed, δ−1
X (A) is the disjoint union over n ∈ N of [n] ∩ δ−1

X (A), so δ−1
X (A) belongs to a class

iff each member of the disjoint union belongs to that class. Now observe that on [n], δX
is simply δXn . We conclude by observing that as Xn is countably-based, the complexity
of A ∩Xn is the same as the complexity of its preimage under δXn .

We recall that a topological space is Fréchet-Urysohn if the closure of each set is the set
of limits of sequences of points in the set.

I Theorem 5.3. For a coPolish space X, the following statements are equivalent:
X is Fréchet-Urysohn,
For every A ⊆ X, δ−1

X (A) ∈ ˜D2(dom(δX)) implies A ∈ ˜D2(X),
For every A ⊆ X and every n < ω, δ−1

X (A) ∈ ˜Dn(dom(δX)) implies A ∈ ˜Dn(X).

We need the following results.

I Lemma 5.4. Let X be a Fréchet-Urysohn coPolish space. If a sequence xi converges to
some x, with xi 6= x for all i, then there exists p such that xi ∈ int(Xp) for almost all i.

Proof. Assume that for each p, there exist infinitely many i such that xi /∈ int(Xp). We can
extract a subsequence xip /∈ int(Xp) with ip < ip+1. Let Up be a neighborhood of xip such
that x /∈ Up (it exists as xip 6= x and X is Hausdorff). Let U =

⋃
p Up \Xp. One has xip ∈ U
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for all p, so x ∈ U . As the space if Fréchet-Urysohn, there exists p0 such that x ∈ U ∩Xp0

(indeed, there exists a sequence in U converging to x, and that sequence must belong to
some Xp0). However, U ∩Xp0 ⊆

⋃
p<p0

Up \Xp so its closure does not contain x, giving a
contradiction. J

Let HXp
n (A ∩Xp) be the set Hn(A ∩Xp), but defined in the space Xp.

I Lemma 5.5. If X is a Fréchet-Urysohn coPolish space, then Hn(A) =
⋃
pH

Xp
n (A ∩Xp).

Proof. We prove it by induction on n. For n = 0 the result is clear. Assume the result
for n ∈ N.

Let x ∈ Hn+1(A) = A ∩Hn(Ac). There exists a sequence xi ∈ A ∩Hn(Ac) converging
to x. If x = xi for some i, then x ∈ A ∩Hn(Ac) so x ∈ A ∩HXp

n (Ac ∩Xp) for some p by
induction hypothesis, hence x ∈ HXp

n+1(A ∩ Xp). If x 6= xi for all i, then by Lemma 5.4
there exists p such that xi ∈ int(Xp) for almost all i. As a result, using Lemma 3.5 we see
that xi ∈ H

Xp
n (Ac ∩Xp) for almost all i. We can take p large enough so that x ∈ Xp, and

obtain that x ∈ HXp
n+1(A ∩Xp). J

Proof of Theorem 5.3. Let X be Fréchet-Urysohn. If δ−1(A) ∈ ˜Dn(dom(δX)) then for
each p ∈ N, A∩Xp ∈ ˜Dn(Xp) by Remark 5.2 so HXp

n+1(A∩Xp) = ∅. As a result, Lemma 5.5
implies that Hn+1(A) = ∅ which implies that A ∈ ˜Dn(X).

If X is not Fréchet-Urysohn, then there exists a double-sequence xn,p ∈ X such that for
each n, xn,p converges to some xn as p→∞, which in turn converges to some x as n→∞,
with no sequence in {xn,p : n, p ∈ N} converging to x, and such that C = {x} ∪ {xn : n ∈
N} ∪ {xn,p : n, p ∈ N} is closed (it was proved in [3], Proposition 66). Let A := {x} ∪ {xn,p :
n, p ∈ N}. One easily checks that H3(A) = {x} 6= ∅ so A /∈ ˜D2(X). However, δ−1

X (A) ∈

˜D2(dom(δX)). For each i, the set {n : ∃p, xn,p ∈ A ∩Xi} is finite. Therefore, one can easily
see that A ∩Xi ∈ ˜D2(Xi). It implies that δ−1

X (A) ∈ ˜D2(dom(δX)). J

The result does not extend to higher complexity levels. The space R/Z is coPolish
and Fréchet-Urysohn, but the representation does not preserve the level ω of the difference
hierarchy.

I Proposition 5.6. There exists A ⊆ R/Z such that δ−1(A) ∈ ˜Dω(dom(δ)) but A /∈

˜Dω(R/Z).

Proof. The space X = R/Z is the direct limit of Xn = [−n, n]/Z. For each n, let An ⊆
[n, n + 1/2] be such that An ∈ ˜Dn+1 \ ˜Dn, with n ∈ Hn+1(An). Let A be the quotient
of
⋃
nAn. For each n, one has A ∩Xn ∈ ˜Dn+1(Xn) ⊆ ˜Dω(Xn), so δ−1(A) ∈ ˜Dω(dom(δ)).
However, A /∈ ˜Dω(X) because 0 ∈ Hω+1(A) 6= ∅. Indeed, 0 ∈ Hn+1(A) ⊆ Hn(Ac) for

all n, so 0 ∈ A ∩Hω(Ac) ⊆ Hω+1(A). J

On coPolish spaces, the representation may not preserve low complexity classes. However,
it always preserves classes ˜∆0

2 and above.

I Proposition 5.7. Let X be coPolish. For each α ≥ 1 and A ⊆ X, one has

δ−1
X (A) ∈ ˜Σ0

α(dom(δX)) ⇐⇒ A ∈ ˜Σ0
α(X).

Proof. For α = 1, it follows from the admissibility of δX . Let α ≥ 2. As observed earlier,
one has δ−1

X (A) ∈ ˜Σ0
α(dom(δX)) ⇐⇒ ∀n,A ∩Xn ∈ ˜Σ0

α(Xn). As Xn ∈ ˜Π0
1(X) ⊆ ˜Σ0

α(X), it
implies that A ∩Xn ∈ ˜Σ0

α(X). Therefore, A =
⋃
nA ∪Xn ∈ ˜Σ0

α(X). J
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In particular, if δ−1
X (A) ∈ ˜D2(dom(δX)) then A ∈ ˜∆0

2(X). We show that this gap cannot
be reduced in the space of polynomials R[X]. This space is obtained as the direct limit of
the spaces Rn, consisting of the polynomials of degree ≤ n, identified with their coefficients.
A polynomial is then represented by giving any upper bound on its degree, and the finite list
of its coefficients.

I Theorem 5.8. There exists a set A ⊆ R[X] such that δ−1(A) ∈ D2(dom(δ)) but A /∈

˜Dα(R[X]) for any α < ω1.

Proof. Let

A =
{

1
k1

+ 1
k2
Xk1 + . . .+ 1

kn+1
Xkn : k1 < k2 < . . . < kn+1, kn even

}
.

First, the closure of A can be easily obtained by taking the definition of A without the
evenness condition on n. Inside A, the complement of A is dense. No set of the difference
hierarchy can be dense and with a dense complement.

However, we now show that A ∩Xd ∈ D2(Rd). Let P =
∑
i≤d piX

i ∈ A be given by a
name (in particular, we know d). One can compute the degree of P with one mind-change.
Indeed, all the non-null coefficients except the dominant one must be at least 1

d . So for
each i ≤ d, we test in parallel whether pi < 1

d and whether pi > 0, and wait that one of
them stops (which must happen). Let i ≤ d be maximal such that the test pi > 0 stops first.
That i is our current guess for the degree of P . We then start testing pj > 0 for all i < j ≤ d.
If such a j is eventually found, then it is the degree of P .

We now show how to decide whether P ∈ A with at most two mind changes, starting
with rejection. We start rejecting P . If i is even then we change our mind and accept P .
If we eventually realize that the degree of P is some j > i, then if j is even, we accept P ,
otherwise we reject P .

Now, given P ∈ Rd, we run the previous algorithm and in parallel test whether P /∈ A.
If the latter condition is eventually found true, then we stop the algorithm and definitely
reject P . J

This example has several consequences, showing that many results working on countably-
based spaces fail on R[X]. First, the hardness criterion (1), which can be extended to
countably-based spaces (Theorem 3.8) does not hold on the space of polynomials.

I Corollary 5.9. In R[X], there exists a set A /∈ ˜D2(X) that is not ˜Ď2-hard.

Proof. We take the set A /∈ ˜D2(R[X]) with δ−1(A) ∈ ˜D2(dom(δ)). Take some C ∈

˜Ď2(N ) \ ˜D2(N ). A continuous reduction φ : N → X from C to A is continuously realizable
because the representation is admissible. Any continuous realizer is a continuous reduction
from C to δ−1(A), which implies that C ∈ ˜D2(N ), contradicting the choice of C. Hence C
is not continuously reducible to A. J

According to Corollary 3.9, the Hausdorff-Kuratowski Theorem holds on a countably-
based space iff it contains no ˜∆0

2-complete set. We show that this characterization fails
on R[X].

I Proposition 5.10. The Hausdorff-Kuratowski Theorem fails in the topological space R[X].

Proof. Theorem 5.8 provides a set A such that δ−1(A) ∈ ˜D2(dom(δ)), hence A ∈ ˜∆0
2(R[X]),

but A /∈ ˜Dη(R[X]) for any η < ω1. J

I Proposition 5.11. A space with a total admissible representation has no ˜∆0
2-complete set.
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Proof. If A ∈ ˜∆0
2(X) then δ−1(A) ∈ ˜∆0

2(N ). If A is ˜∆0
2-hard, then δ−1(A) is ˜∆0

2-hard by
admissibility. As there is no ˜∆0

2-complete set in N , there is no ˜∆0
2-complete set in X. J

Note that every coPolish space, in particular R[X], has a total admissible representation.

5.1 Complexity via representation
As we have just seen, several results from descriptive set theory fail in R[X]. However, when
the complexity of a set is measured using the representation, these results can be recovered.
The next results apply to any space with a total admissible representation (investigated in
[14]), in particular to any coPolish space. First, the hardness criterion (1) can be recovered
by measuring the complexity of a set via the representation.

I Proposition 5.12. Let (X, δX) be an admissibly represented space with δX total. Let Γ be
a class of the Borel or difference hierarchies that is non-self-dual in N . For every A ⊆ X,

δ−1
X (A) /∈ Γ(N ) ⇐⇒ A is Γ̌-hard.

Proof. As δX is admissible, any continuous reduction from some C ∈ Γ̌(N ) to A has a
continuous realizer, which is a continuous reduction from C to δ−1

X (A). As a result, A
is Γ̌-hard iff δ−1

X (A) is Γ̌-hard iff δ−1
X (A) /∈ Γ(N ). J

When the admissible representation is not total, we still have the equivalence for low
complexity classes.

I Proposition 5.13. Let (X, δX) be an admissibly represented space. Let Γ = ˜Dη(X) for
some η < ω1. For every A ⊆ X, one has

δ−1
X (A) /∈ Γ(dom(δX)) ⇐⇒ A is Γ̌-hard.

Proof. Again, admissibility of δX implies that A is Γ̌-hard iff δ−1
X (A), as a subset of

the space dom(δX), is Γ̌-hard. As dom(δX) is a countably-based space (it is a subspace
of N ), δ−1

X (A) is Γ̌-hard there iff δ−1
X (A) /∈ Γ(dom(δX)) by Theorem 3.8. J
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For η = 0, one has Hη(A) = Hη(B) = X.
Assume (4) for η. Let A,B satisfy A ∩ U = B ∩ U . One has Ac ∩ U = Bc ∩ U

so Hη(Ac) ∩ U = Hη(Bc) ∩ U by induction hypothesis. Therefore, A ∩ Hη(Ac) ∩ U =
B ∩Hη(Bc) ∩ U so

Hη+1(A) ∩ U = A ∩Hη(Ac) ∩ U,

= A ∩Hη(Ac) ∩ U ∩ U by (3)

= B ∩Hη(Bc) ∩ U ∩ U
= Hη+1(B) ∩ U.

If λ is a limit ordinal, assuming (4) for all η < λ, one has Hλ(A)∩U =
⋂
η<λHη(A)∩U =⋂

η<λHη(B) ∩ U = Hλ(B) ∩ U . J

B Proof of Theorem 3.6

We first prove Lemma 3.7, which states that for any set A ⊆ X, one has A\Hη+1(A) ∈ ˜Dη(X).

Proof of Lemma 3.7. First observe that because Hη(Ac) is closed, one has

A ∩Hη+1(A) = A ∩Hη(Ac), (5)
A \Hη+1(A) = A \Hη(Ac). (6)

We prove the statement by induction on η. Assume the result for some η and every A.
Let A ⊆ X. One has

A \Hη+2(A) = A \Hη+1(Ac)
= Hη+1(Ac)c \Ac

= Hη+1(Ac)c \ (Ac \Hη+1(Ac))
= U \ C,

where U = Hη+1(Ac)c is open and C = Ac \Hη+1(Ac) ∈ ˜Dη(X) by induction hypothesis.
As C ⊆ U , one has A = U \ C ∈ ˜Dη+1(X), which is what we wanted to prove.

The case of limit ordinals λ is proved without the induction hypothesis.

B Claim B.1. One has

A \Hλ+1(A) =
⋃

η<λ,even
Hη(A) \Hη+1(Ac).

The claim implies that A\Hλ+1(A) ∈ ˜Dλ(X): let Bη = Hη(A)c if η is even, Bη = Hη(Ac)
is η is odd, so the right-hand side in the claim equality can be rewritten as

⋃
η<λ,evenBη+1\Bη,

which fits the definition of ˜Dλ(X). We now prove the claim.

A \Hλ+1(A) = A \Hλ(Ac)
= A \Hλ(A)

=
⋃

η<λ,even
A \Hη(A)

=
⋃

η<λ,even
A \Hη+2(A) \ (A \Hη(A))

=
⋃

η<λ,even
A ∩Hη(A) \Hη+2(A).

STACS 2020
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Now,

A ∩Hη(A) \Hη+2(A) = A ∩Hη(A) \Hη+1(Ac)

= A ∩Hη(A) \Ac ∩Hη(A)
= Hη(A) \Hη+1(Ac). J

We now prove the other direction in Theorem 3.6.

I Lemma B.2. If A ∈ ˜Dη(X) then Hη+1(A) = ∅.

Proof. Assume the result for η. Let B ∈ ˜Dη+1(X). One has B = U \A for some open set U
and some A ∈ ˜Dη(X) with A ⊆ U . One has

Hη+2(B) = U \A ∩Hη+1(A ∪ U c)

= U \A ∩Hη+1(A) by Lemma 3.5
= ∅ as Hη+1(A) = ∅ by induction.

If A ∈ ˜Dλ(X) then let (Aη)η<λ be an increasing sequence of open sets such that A =⋃
η<λ,evenAη+1 \Aη.
It is not hard to see that for each η < λ, one has Ac ∩ Aη ∈ ˜Dη+1(X). By induction

hypothesis, Hη+2(Ac ∩Aη) = ∅, so Hη+2(Ac)∩Aη = ∅ by Lemma 3.5. As a result, Hλ(Ac)∩
Aη = ∅ for each η < λ. As A ⊆

⋃
η<λAη, one has Hλ(Ac) ∩ A = ∅, so Hλ+1(A) =

A ∩Hλ(Ac) = ∅. J
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m-complete sets for NP is ≤p
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Hopps: there exist optimal propositional proof systems

Hcpair: there exist ≤pp
m -complete disjoint NP-pairs

The following results are obtained:

The hypotheses are pairwise independent under relativizable proofs, except for the known
implication Hopps ⇒ Hcpair.

An answer to Pudlák’s question for an oracle relative to which ¬Hcpair, ¬Hopps, and UP has
≤p

m-complete sets.

The converse of Köbler, Messner, and Torán’s implication NEE ∩ TALLY ⊆ coNEE ⇒ Hopps
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one addresses the existence of optimal propositional proof systems. It is equivalent to the
existence of a finitely axiomatized theory that proves the finite consistency of each finitely
axiomatized theory by a proof of polynomial length [25]. The third hypothesis is motivated
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Below we explain the context in which these hypotheses came up and discuss further
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Hypothesis Hunion: unions of disjoint ≤p
m-complete sets for NP are ≤p

m-complete

The beauty of hypothesis Hunion lies in its simplicity. It states that the class of NP-complete
sets is closed under unions of disjoint sets. The question of whether Hunion holds was raised
by Selman [37] in connection with the study of self-reducible sets in NP.1

An interesting example for a union of disjoint NP-complete sets is the Clique-Coloring
pair, which is due to Pudlák [31]:

C0 = {(G, k) | G is a graph that has a clique of size k}
C1 = {(G, k) | G is a graph that can be colored with k − 1 colors}

The sets are NP-complete and disjoint, since a clique of size k cannot be colored with
k − 1 colors. C0 and C1 are P-separable [31], which means that there exists an S ∈ P, the
separator, such that C0 ⊆ S and C1 ⊆ S. The P-separability of C0 and C1 is a result based
on deep combinatorial arguments by Lovász [26] and Tardos [38]. It implies that C0 ∪ C1 is
NP-complete.

Glaßer et al. [14, 17] give several equivalent formulations of Hunion and show that the
union of disjoint sets that are ≤p

m-complete for NP is complete with respect to strongly non-
deterministic, polynomial-time Turing reducibility. Moreover, the union is also nonuniformly
polynomial-time many-one complete for NP under the assumption that NP is not infinitely-
often in coNP. Moreover, Glaßer et al. [13] provide sufficient and necessary conditions for
Hunion in terms of refuters that distinguish languages L ∈ NP with SAT ∩ L = ∅ from SAT.

Hypothesis Hopps: there exist optimal propositional proof systems

Cook and Reckhow [6] define a propositional proof system (pps) as a polynomial-time
computable function f whose range is TAUT, the set of tautologies. If f(x) = y, then x is a
proof for y. A pps f is simulated by a pps g, if proofs in g are at most polynomially longer
than proofs in f . We say that f is P-simulated by g, if additionally for a given proof in f
we can compute in polynomial time a corresponding proof in g. A pps g is optimal (resp.,
P-optimal) if it simulates (resp., P-simulates) each pps.

The question of whether Hopps holds was raised by Krajíček and Pudlák [25] in an exciting
context:2 Let ConT (n) denote the finite consistency of a theory T , which is the statement
that T does not have proofs of contradiction of length ≤ n. Krajíček and Pudlák [25] showed
that Hopps is equivalent to the statement that there is a finitely axiomatized theory S that
proves the finite consistency ConT (n) for each finitely axiomatized theory T by a proof of
polynomial length in n. In other words, Hopps expresses that a weak version of Hilbert’s
program (to prove the consistency of all mathematical theories) is possible [30].

Krajíček and Pudlák [25] also show that NE = coNE implies Hopps and that E = NE
implies the existence of P-optimal pps. The converses of these implications do not hold
relative to an oracle constructed by Verbitskii [40]. Köbler, Messner, and Torán [24] prove
similar implications with weaker assumptions and reveal a connection to promise classes. For
EE df=DTIME(2O(2n)) and NEE df=NTIME(2O(2n)) they show that NEE ∩ TALLY ⊆ coNEE
implies Hopps, which in turn implies that NP ∩ SPARSE has ≤p

m-complete sets. Moreover,
NEE ∩ TALLY ⊆ EE implies the existence of P-optimal pps, which in turn implies that UP
has ≤p

m-complete sets.

1 The analog of Hunion in computability theory holds [39], since the many-one complete c.e. sets are
creative [27].

2 The analog of Hopps in computability theory holds trivially, since there the notion of simulation does
not have any bounds for the length of proofs and hence each proof system is optimal.



T. Dose and C. Glaßer 9:3

Sadowski [36] proves that Hopps is equivalent to the statement that the class of all easy
subsets of TAUT is uniformly enumerable. Beyersdorff [2, 3, 4, 5] investigates connections
between disjoint NP-pairs and pps, and in particular studies the hypotheses Hcpair and
Hopps. Pudlák [30, 32] provides comprehensive surveys on the finite consistency problem, its
connection to propositional proof systems, and related open questions. In a recent paper,
Khaniki [23] shows new relations between the conjectures discussed in [32] and constructs
two oracles that separate several of these conjectures. In a couple of further papers [9, 8, 7],
one of the authors also builds oracles separating several of the conjectures in [32].

Hypothesis Hcpair: there exist ≤pp
m -complete disjoint NP-pairs

Even, Selman, and Yacobi [12, 11] show that the security of public-key cryptosystems depends
on the computational complexity of certain promise problems. The latter can be written
as disjoint NP-pairs, i.e., pairs (A,B) of disjoint sets A,B ∈ NP. The Clique-Coloring pair
mentioned above is an interesting example for a P-separable disjoint NP-pair. Even, Selman,
and Yacobi [12, 11] conjecture that every disjoint NP-pair has a separator that is not ≤p

T-hard
for NP. If the conjecture holds, then there are no public-key cryptosystems that are NP-hard
to crack. Grollmann and Selman [20] observe that secure public-key cryptosystems exist only
if P-inseparable disjoint NP-pairs exist.

The question of whether Hcpair holds was raised by Razborov [34] in the context of pps.3
To explain this connection we need the notions of reducibility and completeness for disjoint
NP-pairs. (A,B) polynomial-time many-one reduces to (C,D), written as (A,B)≤pp

m (C,D),
if there is a polynomial-time computable h such that h(A) ⊆ C and h(B) ⊆ D. A disjoint
NP-pair (A,B) is ≤pp

m -complete, if each disjoint NP-pair ≤pp
m -reduces to (A,B). Razborov

[34] defines for each pps f a corresponding disjoint NP-pair, the canonical pair of f . He
shows that the canonical pair of an optimal pps is an ≤pp

m -complete disjoint NP-pair, i.e.,

Hopps ⇒ Hcpair. (1)

This means that the open question of whether optimal pps exist can be settled by proving
that ≤p

m-complete disjoint NP-pairs do not exist. As we will see, (1) is the only nontrivial
implication between the three hypotheses and their negations that holds relative to all
oracles. For the relationship between Hcpair and Hopps this is shown by Glaßer et al. [16]
who construct two oracles such that Hcpair holds relative to both oracles, but Hopps holds
relative to the first one and ¬Hopps relative to the second one.

Pudlák [31] further investigates the connection between pps and disjoint NP-pairs and
shows that the canonical pair of the resolution proof system is symmetric. Glaßer, Selman,
and Sengupta [15] characterize Hcpair in several ways, e.g., by the uniform enumerability
of disjoint NP-pairs and by the existence of ≤p

m-complete functions in NPSV. Glaßer,
Selman, and Zhang [18] prove that disjoint NP-pairs and pps have identical degree structures.
Moreover, they show the following statement, which connects disjoint NP-pairs, pps, and
Hunion [19]: If NP 6= coNP and each disjoint NP-pair (SAT, B) is strongly polynomial-time
many-one equivalent to the canonical pair of a pps, then Hunion holds.

Our Contribution

The results of this paper improve our understanding on the three hypotheses and their
relationships in the following way.

3 The analog of Hcpair in computability theory holds [35, Ch. 7., Thm XII(c)].

STACS 2020
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1. Relativized independence of the hypotheses. We show that Hunion, Hopps, and Hcpair
are pairwise independent under relativizable proofs (except for the known implication
Hopps ⇒ Hcpair). For each two of these hypotheses and every combination of their truth
values there exists an appropriate oracle, except for Hopps ∧ ¬Hcpair which is impossible.
The relativized relationships between Hopps and Hcpair were settled by Glaßer et al. [16].
The remaining ones are obtained from an oracle by Ogiwara and Hemachandra [28], an
oracle by Homer and Selman [22], and three oracles constructed in the present paper.

2. Answer to a question by Pudlák. The oracle in Theorem 11 answers a question by Pudlák
[32] who asks for an oracle relative to which ¬Hcpair and UP has ≤p

m-complete sets, i.e.,
DisjNP 6⇒ UP in the notation of [32] (see subsection 4.1 for definitions). In particular,
relative to this oracle there are no P-optimal pps, but UP has ≤p

m-complete sets, i.e.,
CON 6⇒ UP. This is interesting, since CON⇐ UP is a theorem [24].

3. Possibility of Hopps without NEE ∩ TALLY ⊆ coNEE. The oracle constructed in The-
orem 12 shows that the converses of the following implications by Krajíček and Pudlák [25]
and Köbler, Messner, and Torán [24] fail relative to an oracle. For the implications (a) and
(b) this was known by Verbitskii [40], for the other implications this is a new result. It tells
us that Hopps might be possible under assumptions weaker than NEE∩TALLY ⊆ coNEE.
(a) [25] NE = coNE ⇒ Hopps

(b) [25] E = NE ⇒ there exist P-optimal pps
(c) [24] NEE ∩ TALLY ⊆ coNEE ⇒ Hopps, where NEE df=NTIME(2O(2n))
(d) [24] NEE∩TALLY ⊆ EE ⇒ there exist P-optimal pps, where EE df=DTIME(2O(2n))

4. Characterization of Hunion. We characterize Hunion and two variants (one is weaker, the
other one stronger) in several ways. For instance, Hunion (resp., its stronger version) is
equivalent to the statement that for each pps, the set of hard formulas is coNP-complete
(resp., p-producible). The latter notion was introduced by Hemaspaandra, Hemaspaandra,
and Hempel [21] for the study of inverses of NP-problems.

2 Preliminaries

Throughout this paper let Σ be the alphabet {0, 1}. We denote the length of a word w ∈ Σ∗
by |w|. The empty word is denoted by ε and the i-th letter of a word w for 0 ≤ i < |w| is
denoted by w(i), i.e., w = w(0)w(1) · · ·w(|w| − 1). For k ≤ |w| let prk(w) = w(0) · · ·w(k− 1)
be the length k prefix of w. If v is a prefix (resp., proper prefix) of w, then we write v v w
(resp., v vp w). A function f : Σ∗ → Σ∗ is length-increasing, if |f(x)| > |x| for all x ∈ Σ∗. N
(resp., N+) denotes the set of natural numbers (resp., positive natural numbers). The set of
primes is denoted by P = {2, 3, 5, . . .}, the set of primes ≥ k by P≥k = {n ∈ P | n ≥ k}. We
identify Σ∗ with N via the polynomial-time-computable, polynomial-time-invertible bijection
w 7→

∑
i<|w|(1+w(i))2i, which is a variant of the dyadic encoding. Hence notations, relations,

and operations for Σ∗ are transferred to N and vice versa. In particular, |n| denotes the length
of n ∈ N. We eliminate the ambiguity of the expressions 0i and 1i by always interpreting
them over Σ∗.

Let 〈·〉 :
⋃

i≥0 Ni → N be an injective, polynomial-time-computable, polynomial-time-
invertible pairing function such that |〈u1, . . . , un〉| = 2(|u1|+ · · ·+ |un|+ n).

Given two sets A and B, A−B = {a ∈ A | a /∈ B}. The complement of A relative to the
universe U is denoted by A = U −A. The universe will always be apparent from the context.

FP, P, and NP denote standard complexity classes [29]. Define coC = {A ⊆ Σ∗ | A ∈ C}
for a class C. Let UP denote the set of problems that can be accepted by a non-deterministic
polynomial-time Turing machine that on every input x has at most one accepting path
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and that accepts if and only if there exists an accepting path. TALLY denotes the class
{A | A ⊆ {0}∗}. We adopt the following notions from Köbler, Messner, and Torán [24]
with the remark that in the literature there exist inequivalent definitions for the double
exponential time classes EE and NEE. To avoid confusion, we will recall these definitions
where appropriate.

E df= DTIME(2O(n)) EE df= DTIME(2O(2n))
NE df= NTIME(2O(n)) NEE df= NTIME(2O(2n))

We also consider all these complexity classes in the presence of an oracle O and denote
the corresponding classes by FPO, PO, NPO, and so on. We use the usual oracle model
where the length of queries is not bounded, e.g., exponential-time machines can ask queries
of exponential length.

Let M be an oracle Turing machine. MD(x) denotes the computation of M on input x
with D as an oracle. For an arbitrary oracle D we let L(MD) = {x | MD(x) accepts}, where
as usual ifM is nondeterministic, the computationMD(x) accepts if and only if it has at least
one accepting path. For a deterministic polynomial-time oracle Turing transducer F (i.e., a
Turing machine computing a function), depending on the context, FD(x) either denotes the
computation of F on input x with D as an oracle or the output of this computation.

If A,B ∈ NP and A ∩ B = ∅, then we call (A,B) a disjoint NP-pair. The set of all
disjoint NP-pairs is denoted by DisjNP.

We use the following reducibilities for sets A,B ⊆ Σ∗. A≤p
mB if there exists an f ∈ FP

such that x ∈ A ⇔ f(x) ∈ B. A≤p
m,liB if A≤p

mB via some length-increasing f ∈ FP.
For disjoint NP-pairs (A,B) and (C,D) we define specific reducibilities. (A,B)≤pp

m (C,D)
(resp., (A,B)≤pp

m,li(C,D)) if there exists an f ∈ FP (resp., a length-increasing f ∈ FP) with
f(A) ⊆ C and f(B) ⊆ D. We use A≤pp

m (C,D) as an abbreviation for (A,A)≤pp
m (C,D) and

analogous notations for other reducibilities.
When we consider reducibilities in the presence of an oracle O, we write ≤p,O

m , ≤p,O
m,li,

≤pp,O
m , and ≤pp,O

m,li to indicate that the reduction function has access to O.
For a complexity class C and some problem A, we say that A is ≤-hard for C if for all

B ∈ C it holds B ≤ A, where ≤ is some reducibility. A is called ≤-complete for C if A is
≤-hard for C and A ∈ C. Let NPCp

m (resp., NPCp
m,li, NPCio-p/poly

m ) be the set of problems that
are ≤p

m-complete (resp., ≤p
m,li-complete, ≤io-p/poly

m -complete) for NP, where the reducibility
≤io-p/poly

m is given in Definition 6 below. If for all A ∈ NP it holds A≤pp
m (C,D), then we say

that (C,D) is ≤pp
m -hard for NP.

Let SAT denote the set of satisfiable formulas and TAUT the set of tautologies. Without
loss of generality, we assume that each word over Σ∗ encodes a propositional formula.

I Definition 1 ([6]). A function f ∈ FP is called a proof system for the set ran(f). For
f, g ∈ FP we say that f is simulated by g (resp., f is P-simulated by g) denoted by f ≤ g

(resp., f ≤p g), if there exists a function π (resp., a function π ∈ FP) and a polynomial p
such that |π(x)| ≤ p(|x|) and g(π(x)) = f(x) for all x. A function g ∈ FP is optimal (resp.,
P-optimal), if f ≤ g (resp., f ≤p g) for all f ∈ FP with ran(f) = ran(g). Corresponding
relativized notions are obtained by using PO, FPO, and ≤p,O in the definitions above. A
propositional proof system (pps) is a proof system for TAUT.

I Remark 2. The notion of a propositional proof system does not have a canonical relativiza-
tion. However, in view of Corollary 4 below, it is reasonable to use the following convention.
We say that there exist PO-optimal (resp., optimal) pps relative to an oracle O, if there
exists a ≤p,O

m -complete A ∈ coNPO that has a PO-optimal (resp., optimal) proof system.

STACS 2020
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The following proposition states the relativized version of a result by Köbler, Messner,
and Torán [24], which they show with a relativizable proof.

I Proposition 3 ([24]). For every oracle O, if A has a PO-optimal (resp., optimal) proof
system and ∅ 6= B≤p,O

m A, then B has a PO-optimal (resp., optimal) proof system.

I Corollary 4. For every oracle O, if there exists a ≤p,O
m -complete A ∈ coNPO that has a

PO-optimal (resp., optimal) proof system, then all non-empty sets in coNPO have PO-optimal
(resp., optimal) proof systems.

I Definition 5. For f ∈ FP and a polynomial q, a word y ∈ ran(f) is q-hard w.r.t. the proof
system f if there does not exist x ∈ Σ≤q(|y|) such that f(x) = y. The set of elements that are
q-hard w.r.t. the proof system f is denoted by fq, i.e., fq = {y ∈ ran(f) | y is q-hard w.r.t. f}.

We introduce ≤io-p/poly
m -reducibility, which we use to study a weakened variant of Hunion:

the union of disjoint ≤p
m-complete sets for NP is ≤io-p/poly

m -complete.
P/poly is the class of sets A ⊆ Σ∗ for which there exist a B ∈ P and a function

h : N → Σ∗ such that |h(n)| is polynomially bounded in n and for all x it holds that
x ∈ A ⇔ (x, h(|x|)) ∈ B. FP/poly is the class of total functions f : Σ∗ → Σ∗ for which there
exist a g ∈ FP and a function h : N→ Σ∗ such that |h(n)| is polynomially bounded in n and
for all x it holds that f(x) = g(x, h(|x|)). Two total functions f, g : Σ∗ → Σ∗ agree infinitely
often, written as f io= g, if for infinitely many n it holds that ∀x ∈ Σn, f(x) = g(x). Two sets
A,B ⊆ Σ∗ agree infinitely often, written as A io=B, if their characteristic functions agree
infinitely often. For a class C of functions or sets let io-C = {A | ∃B ∈ C, A io=B}.

I Definition 6. A set A ⊆ Σ∗ is infinitely often P/poly reducible to a set B ⊆ Σ∗,
written as A≤io-p/poly

m B, if there exists an f ∈ io-FP/poly such that for all x it holds that
x ∈ A ⇔ f(x) ∈ B.

It should be mentioned that ≤io-p/poly
m is an artificial reducibility notion (e.g., it is not

transitive), which emerged from the attempt to express the right-hand side of the known
implication Hunion ⇒ NP 6= coNP as a variant of Hunion. In Theorem 10 we show that this
is possible with ≤io-p/poly

m reducibility.

In our oracle constructions we use the following notations: If a partial function t is not
defined at point x, then t ∪ {x 7→ y} denotes the extension t′ of t that at x has value y and
satisfies dom(t′) = dom(t) ∪ {x}.

If A is a set, then A(x) denotes the characteristic function at point x, i.e., A(x) is 1
if x ∈ A, and 0 otherwise. An oracle D ⊆ N is identified with its characteristic sequence
D(0)D(1) · · · , which is an ω-word. In this way, D(i) denotes both, the characteristic function
at point i and the i-th letter of the characteristic sequence, which are the same. A finite
word w describes an oracle that is partially defined, i.e., only defined for natural numbers
x < |w|. Occasionally, we use w instead of the set {i | w(i) = 1} and write for example
A = w ∪ B, where A and B are sets. In particular, for an oracle Turing machine M , the
notation Mw(x) refers to M{i|w(i)=1}(x) (hence, oracle queries that w is not defined for are
answered by “no”). Using w instead of {i | w(i) = 1} additionally allows us to define the
following notion: for a nondeterministic oracle Turing machine M , the computation Mw(x)
definitely accepts if it contains a path that accepts and all queries on this path are < |w|.
The computation Mw(x) definitely rejects if all paths reject and all queries are < |w|. We say
that the computation Mw(x) is definite if it definitely accepts or definitely rejects. Similarly,
for a deterministic oracle Turing transducer F , the computation Fw(x) is definite if all its
queries are < |w|.
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3 Are Unions of Disjoint NP-Complete Sets NP-Complete?

It is difficult to find out whether Hunion is true or not, since each outcome solves a long
standing open problem:

Hunion is true ⇒ NP 6= coNP
Hunion is false ⇒ P-inseparable disjoint NP-pairs exist if and only if P 6= NP

Therefore, researchers approach the hypothesis Hunion by proving equivalent, necessary, and
sufficient conditions. This section continues this program as follows. In subsection 3.1
we investigate a stronger variant of Hunion, in 3.2 the original hypothesis, and in 3.3 a
weaker variant. We characterize Hunion and its variants in several ways, e.g., in terms
of p-producibility or coNP-completeness of the set of hard formulas of pps. Within each
subsection all hypotheses are equivalent and hence the following implications hold.

hypotheses in subsect. 3.1 ⇒ hypotheses in subsect. 3.2 ⇒ hypotheses in subsect. 3.3
m m

Hunion NP 6= coNP

Note that under the assumption that all sets in NPCp
m are complete w.r.t. length-increasing

reductions (which holds for example under the Berman-Hartmanis conjecture), all hypotheses
in the subsections 3.1 and 3.2 are equivalent.

3.1 Length-Increasing Polynomial-Time Reducibility
Consider the hypothesis that the union of SAT with a disjoint B ∈ NP is ≤p

m,li-complete for
NP. We show that this hypothesis can be characterized in terms of the p-producibility of the
set of hard formulas of pps. The notion of p-producibility was introduced by Hemaspaandra,
Hemaspaandra, and Hempel [21].

I Definition 7 ([21]). A set A is p-producible if and only if there is some f ∈ FP with
|f(x)| ≥ |x| and f(x) ∈ A for all x.

I Theorem 8. The following statements are equivalent:
1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCp

m,li.
2. For all A,B ∈ NPCp

m,li with A ∩B = ∅ it holds A ∪B ∈ NPCp
m,li.

3. fq is p-producible for all pps f and all polynomials q.

Proof. 1 ⇒ 2: Let A,B ∈ NPCp
m,li be disjoint and SAT≤p

m,liA via a length-increasing
f ∈ FP. B′ = f−1(B) is in NP and disjoint to SAT and hence SAT ∪ B′ ∈ NPCp

m,li.
SAT ∪B′≤p

m,liA ∪B via f and thus A ∪B ∈ NPCp
m,li.

2 ⇒ 3: By assumption, NP 6= coNP. Let f be a pps, q a polynomial, and define

B = {ϕ | f(y) = ¬ϕ for some y with |y| ≤ q(|¬ϕ|)}.

B ∩ SAT = ∅ and SAT ∪ B ( Σ∗. For A′ = 0SAT ∪ 1B and B′ = 1SAT ∪ 0B it holds
A′∩B′ = ∅ and A′, B′ ∈ NPCp

m,li. By 2, A′∪B′ = {0, 1}(SAT∪B) ∈ NPCp
m,li. In particular,

SAT≤p
m,li{0, 1}(SAT ∪ B). Hence SAT≤p

mSAT ∪ B via h1 ∈ FP with |x| ≤ |h1(x)|. Let
h2 ∈ FP be length-increasing such that SAT≤p

m,liSAT via h2. Thus SAT≤p
m,liSAT ∪ B

via h(x) = h1(h2(x)). We claim that fq is p-producible via the length-increasing g(x) =
¬h(x ∧ ¬x): As h(x ∧ ¬x) /∈ SAT ∪B, g(x) is a tautology. If g(x) /∈ fq, then there exists y
with |y| ≤ q(|g(x)|) and f(y) = g(x) = ¬h(x ∧ ¬x). Hence h(x ∧ ¬x) ∈ B, a contradiction.
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3⇒ 1: Choose B according to 1. Consider B′ = {x | x ∈ B or ∃z |z| ≤ |x| and x∨z ∈ B}
and observe B′ ∈ NP, B ⊆ B′, and B′∩SAT = ∅. LetM be an NP-machine with L(M) = B′

running in polynomial time q. The following f is a pps.

〈x, z〉 7→

{
x M accepts ¬x on path z or (|z| ≥ 2|x| and x is a tautology)
True otherwise.

Let q′ be a polynomial such that |¬x| ≤ q′(|x|). Choose r(n) = 2 · (q(q′(n)) + n + 1). By
3, fr is p-producible via some g ∈ FP with |g(x)| ≥ |x|. Consider the length-increasing
h ∈ FP with h(x) = ¬g(x) ∨ x. We show SAT≤pp

m,li(SAT,SAT ∪B) via h, which implies
SAT≤p

m,liSAT∪B via h. As g(x) is a tautology, x ∈ SAT⇔ h(x) ∈ SAT. It remains to show
x /∈ SAT ⇒ h(x) /∈ B. Let x /∈ SAT. If h(x) = ¬g(x) ∨ x ∈ B, then due to |x| ≤ |¬g(x)|
it holds ¬g(x) ∈ B′. Hence there is some path z such that M accepts ¬g(x) on path z.
Thus |z| ≤ q(q′(|g(x)|)). Consequently, f(〈g(x), z〉) = g(x) and |〈g(x), z〉| ≤ r(|g(x)|), in
contradiction to g(x) ∈ fr. J

3.2 Polynomial-Time Reducibility

We consider the hypothesis that the union of SAT with a disjoint B ∈ NP is ≤p
m-complete

for NP. This is equivalent to Hunion. We prove one more characterization stating that for
each pps f the set of formulas hard for f is coNP-complete. In the following theorem, the
equivalence 1 ⇔ 2 was shown in [14].

I Theorem 9. The following statements are equivalent:
1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCp

m.
2. For all A,B ∈ NPCp

m with A ∩B = ∅ it holds A ∪B ∈ NPCp
m.

3. fq is ≤p
m-complete for coNP for all pps f and all polynomials q.

Proof. We argue for “1 ⇒ 3”. By definition, fq = {x ∈ TAUT | ¬∃z ∈ Σ≤q(|x|)f(z) = x}
and hence fq ∈ coNP. Let B = {x ∈ Σ∗ | ∃z ∈ Σ≤q(|¬x|)f(z) = ¬x}.

Observe that B ∈ NP and SAT ∩B = ∅. By assumption, SAT ∪B ∈ NPCp
m and hence

SAT ∪B is ≤p
m-complete for coNP. Note SAT ∪B = {x ∈ Σ∗ | ¬x ∈ TAUT ∧ ¬∃z ∈

Σ≤q(|¬x|)f(z) = ¬x}. Thus x ∈ SAT ∪B ⇔ ¬x ∈ fq and hence fq is ≤p
m-complete for coNP.

“3⇒ 1”: Let B ∈ NP such that SAT∩B = ∅ and letM be a nondeterministic polynomial-
time machine that accepts B. Choose a polynomial q such that for all x ∈ Σ∗ and all accepting
paths y of M(¬x) it holds that |〈x, y〉| ≤ q(|x|). Let

f(z) =


x, if z = 〈x, y〉, |y| < 2|x|, and y is an accepting path of M(¬x)
x, if z = 〈x, y〉, |y| = 2|x|, and x ∈ TAUT
True, otherwise.

Observe that f is a pps. By assumption, the set fq = {x ∈ TAUT | ¬∃z ∈ Σ≤q(|x|)f(z) = x}
is ≤p

m-complete for coNP. Observe fq ∩Σ≥n = {x ∈ TAUT | ¬x /∈ B}∩Σ≥n for sufficiently
large n ∈ N. Hence for all x ∈ Σ≥n it holds that x ∈ fq ⇔ ¬x ∈ SAT ∪B. In the case
SAT ∪B 6= ∅ this shows fq≤p

mSAT ∪B and hence SAT ∪B is ≤p
m-complete for NP.

It remains to argue that the case SAT ∪B = ∅ is not possible. If SAT ∪B = ∅, then
NP = coNP and hence there exists a polynomially bounded pps f ′. Thus for some polynomial
q′ it holds f ′q′ = ∅, which is not≤p

m-complete for coNP, in contradiction to our assumption. J
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3.3 Infinitely Often P/poly Reducibility

Consider the hypothesis that the union of SAT with a disjoint B ∈ NP is ≤io-p/poly
m -complete

for NP. We show that this hypothesis is equivalent to NP 6= coNP.

I Theorem 10. The following statements are equivalent:
1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCio-p/poly

m .
2. For all A,B ∈ NPCp

m with A ∩B = ∅ it holds A ∪B ∈ NPCio-p/poly
m .

3. NP 6= coNP (i.e., polynomially bounded pps do not exist).

4 Oracle Constructions

4.1 An Oracle for P = UP and ¬Hcpair

We construct an oracle O relative to which P = UP and ¬Hcpair. This answers open questions
by Pudlák [32], who lists several conjectures and asks for equivalence proofs and oracles
relative to which conjectures are different. Among these are:

DisjNP df= “there are no ≤pp
m -complete disjoint NP-pairs (i.e., ¬Hcpair)”

CON df= “there are no P-optimal propositional proof systems”
SAT df= “NP-complete sets do not have P-optimal proof systems”
UP df= “UP does not have ≤p

m-complete sets”
NP ∩ coNP df= “NP ∩ coNP does not have ≤p

m-complete sets”

Relative to O, DisjNP and NP ∩ coNP hold, but UP does not. Hence DisjNP and NP ∩ coNP
do not imply UP. Moreover, relative to O, also the following conjectures mentioned by
Pudlák [32] do not imply UP (as they are implied by DisjNP relative to all oracles): CON,
CON∨SAT, and P 6= NP. The fact that relative to O, CON does not imply UP is of particular
interest as the converse implication holds relative to all oracles.

I Theorem 11. There exists an oracle O with the following properties.
1. DisjNPO does not have ≤pp,O

m -complete pairs.
2. NPO ∩ coNPO does not have ≤p,O

m -complete sets.
3. PO = UPO.
Sketch of the construction: For simplicity, we argue only for 1 and 3. Let M0,M1, . . . be
a standard enumeration of nondeterministic, polynomial-time oracle Turing machines and
let F0, F1, . . . be a standard enumeration of deterministic, polynomial-time oracle Turing
transducers. We assume that for all i the running times of Mi and Fi are bounded by
the polynomial ni + i. Adopting an idea by Baker, Gill and Solovay [1], we start with a
PSPACE-complete oracle that consists of words of odd length. During the construction we
add words of lengths e(n) to the oracle, where e(0) = 2 and e(n+ 1) = 22e(n) . Since e(n) is
even, the PSPACE-complete set that we started with will not be damaged.

On the one hand, the construction tries to prevent that L(Mi) and L(Mj) are disjoint. If
this is not possible, thenMi andMj inherently accept disjoint sets. In this case, we make sure
that there exists a disjoint NP-pair (Aij , Bij) that does not ≤pp

m -reduce to (L(Mi), L(Mj)).
This prevents the existence of complete disjoint NP-pairs. On the other hand, we try to
prevent that Mi has the uniqueness property “for all x, the computation Mi(x) has at most
one accepting path”. If this is not possible, then Mi inherently has the uniqueness property,
which allows us to show L(Mi) ∈ P.
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On the technical side, we maintain a growing collection t of properties that we demand
in the further construction. If an oracle satisfies the properties defined by t, then we call it
t-valid. The collection t contains properties of the following style:

V1: The oracle constructed so far guarantees that L(Mi) ∩ L(Mj) 6= ∅ for all extensions of
the oracle.

V2: It is impossible to reach L(Mi) ∩ L(Mj) 6= ∅ and for the oracle constructed so far we
have Aij ∩Bij = ∅. (In the future we restrict to extensions that maintain this property.)

V3: The oracle constructed so far guarantees that for all extensions of the oracle, Mi does
not have the uniqueness property.

V4: It is impossible to destroy the uniqueness property of Mi.

The construction successively settles the following tasks:
task (i, j): If possible, then realize V1 for the pair (L(Mi), L(Mj)), otherwise, V2 holds.
task i: If possible, then realize V3 for Mi, otherwise, V4 holds.
task (i, j, r): Make sure that Fr does not realize a reduction (Aij , Bij)≤pp

m (L(Mi), L(Mj))).

The tasks (i, j) and (i, j, r) make sure that relative to the final oracle, L(Mi)∩L(Mj) 6= ∅
or (L(Mi), L(Mj)) is not ≤pp

m -complete. The task i ensures that machines having the
uniqueness property are very special. An adaption of an argument by Rackoff [33] yields
that these machines accept sets in P, hence P = UP.

4.2 An Oracle for Hunion and Hopps

This section constructs an oracle O relative to which the implication Hopps ⇒ ¬Hunion is
false. Theorem 22 provides the analogous for the converse implication.

In addition, relative to O there exists a tally set in NEE − coNEE, where
NEE df=NTIME(2O(2n)). It shows that two conditions which are sufficient for the exist-
ence of an optimal (resp., a P-optimal) pps [24] are not necessary relative to O.

I Theorem 12. There exists an oracle O with the following properties.
1. There exists a PO-optimal propositional proof system f .
2. If A is ≤p,O

m -complete for NPO and disjoint from B ∈ NPO, then A ∪B is ≤p,O
m -complete

for NPO.
3. NEEO ∩ TALLY 6⊆ coNEEO, where NEEO df=NTIMEO(2O(2n)).

Proof. We only prove statements 1 and 2. Statement 3 follows (in a nontrivial way) from
the construction below. Let M1,M3,M5, . . . be a standard enumeration of nondeterministic,
polynomial-time oracle Turing machines. Let F2, F4, F6, . . . be a standard enumeration of
deterministic, polynomial-time oracle Turing transducers. We assume that the running time
of Mi for i odd (resp., Fj for j > 0 even) is bounded by the polynomial ni + i (resp., nj + j).

For a (possibly partial) oracle D we define sets KD and KD
∨ .

KD = {〈0i, 0j , x〉 | i is odd and MD
i (x) accepts within j steps}

KD
∨ = {〈z1, . . . , zn〉 | z1 ∈ KD ∨ · · · ∨ zn ∈ KD}

B Claim 13. For partial oracles v and w and all y ≤ min(|v|, |w|), if pry(v) = pry(w), then
Kw(y) = Kv(y) and Kw

∨ (y) = Kv
∨(y).

Proof. It suffices to show Kw(y) = Kv(y). We may assume y = 〈0i, 0j , x〉 for suitable i, j, x,
since otherwise, Kw(y) = Kv(y) = 0. For each q that is queried within the first j steps
of Mw

i (x) or Mv
i (x) it holds that |q| ≤ j < |y| and thus q < y. Hence these queries are

answered the same way relative to w and v, showing that Mw
i (x) accepts within j steps if

and only if Mv
i (x) accepts within j steps. C
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KD and KD
∨ are ≤p,D

m -complete for NPD and their complements are ≤p,D
m -complete for

coNPD. We construct the oracle such that KD
∨ has a PO-optimal proof system f ∈ FPO. As

KO
∨ is ≤p,O

m -complete for coNPO, this implies the first statement of the theorem.
For a (possibly partial) oracle D let

ED = {0n | ∃x ∈ D such that |x| = n}

and observe that ED ∈ NPD. Choose e ≥ 2 such that L(MD
e ) = ED for all (possibly partial)

oracles D and let vn = 〈0e, 0ne+e, 0n〉. Hence vn ∈ KD if and only if MD
e (0n) accepts, i.e.,

vn ∈ KD ⇔ 0n ∈ ED.
For i ∈ 2N+ and x, y ∈ N let c(i, x, y) = 〈0i, 0(|x|i+i)2ie

, x, y〉. These words are used to
encode proofs into the oracle: if the oracle contains the codeword c(i, x, y), then this means
Fi(x) = y and y /∈ K∨, i.e., c(i, x, y) is a proof for y /∈ K∨.

B Claim 14. The following holds for all partial oracles w, all i ∈ 2N+ and x, y ∈ N.
1. If c(i, x, y) ≤ |w|, then Fw

i (x) is definite and F v
i (x) = Fw

i (x) < |w| for all v w w.
2. If c(i, x, y) ≤ |w|, then Fw

i (x) is definite and Fw
i (x) ∈ Kw

∨ ⇔ F v
i (x) ∈ Kv

∨ for all v w w.

Proof. 1: Fw
i (x) is definite, since for each q queried by Fw

i (x) it holds that |q| ≤ |x|i + i <

|c(i, x, y)| and hence q < c(i, x, y) ≤ |w|. The same argument shows F v
i (x) = Fw

i (x) < |w|.
2: Follows from Claims 14.1 and 13. C

Preview of construction: On the one hand, the construction tries to prevent that Fi is
a proof system for K∨. If this is not possible, then Fi inherently is a proof system for K∨.
In this case, the codewords c(i, x, y) are used to encode Fi-proofs into the oracle. These
encodings finally yield a P-optimal proof system for K∨. On the other hand, the construction
also tries to prevent that Mi accepts a set disjoint from K∨. If this is not possible, then Mi

inherently accepts a set disjoint from K∨. In this case, there will be a prime p such that the
words vpk for k ≥ 1 are neither in K nor in L(Mi). It even holds 〈vpk , u1, . . . , un〉 /∈ L(Mi)
for all u = 〈u1, . . . , un〉 of length ≤ |vpk |. This means that the vpk are difficult instances for
Mi, since there is no linear-size proof u that allows Mi to recognize that vpk /∈ K. Hence
adding a sufficiently large vpk to an instance u does not change the membership to K∨, but
guarantees that the result is not in L(Mi). This yields a reduction K∨≤p

mK∨ ∪ L(Mi) and
implies that K∨ ∪ L(Mi) is NP-complete.

During the construction we maintain a growing list of properties. This list belongs to the
set T = {(m1, . . . ,mn) | n ≥ 0, m1, . . . ,mn ∈ N, and mi < mj for all i < j with mj 6= 0}.
If a partial oracle satisfies the properties defined by a list t, then we call it t-valid. For a list
t = (m1, . . . ,mn) and a ∈ N let t(i) = mi, |t| = n, and t+ a = (m1, . . . ,mn, a). If the list t
is a prefix of the list t′, then we write t v t′. We start with the empty list t0 = (), which
defines no property. By successively appending an element we obtain lists t1, t2, and so on.

A partial oracle w ∈ Σ∗ is t-valid, where t ∈ T , if the following holds:
V1: w ⊆ {c(i, x, y) | i ∈ 2N+ and x, y ∈ N} ∪ {v | |v| = pk for p ∈ P≥41 and k ≥ 1}

(meaning: the oracle contains only codewords c(i, x, y) and words of length pk)
V2: For all c(i, x, y) ∈ w with i ∈ 2N+ and x, y ∈ N it holds that Fw

i (x) = y /∈ Kw
∨ .

(meaning: if the oracle contains the codeword c(i, x, y), then Fw
i (x) outputs y /∈ Kw

∨ ;
hence c(i, x, y) ∈ w is a proof for y /∈ Kw

∨ )
V3: For all positive even i ≤ |t| it holds that t(i) ∈ 2N and:

a. If t(i) = m > 0, then c(i, x, y) ∈ w for all x, y ∈ N with Fw
i (x) = y and m ≤

c(i, x, y) < |w|.
(meaning: the oracle maintains codewords for Fi, i.e., if x is large enough and Fw

i (x)
outputs y, then w contains a proof for this, namely the codeword c(i, x, y))
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b. If t(i) = 0, then there exists x such that Fw
i (x) is definite and outputs y < |w| with

y ∈ Kw
∨ .

(meaning: Fi is not a proof system for K∨ relative to all extensions of w)
V4: For all odd i ≤ |t| it holds that t(i) ∈ {0} ∪ P≥41 and:

a. If t(i) = p > 0, then {x ∈ w | |x| = pk for k ≥ 1} = ∅ and for all positive even j < i

with t(j) = 0 it holds that {c(j, x, y) ∈ w | x, y ∈ N and |c(j, x, y)| ≥ p} = ∅.
(meaning: the first part says 0pk

/∈ Ew and hence vpk /∈ Kw for all k ≥ 1; the second
part says that if Fj is not a proof system for K∨ and has a smaller index than Mi,
then the oracle contains no codewords c(j, ·, ·) of length ≥ p)

b. If t(i) = 0, then there exists x < |w| such that x ∈ Kw
∨ and Mw

i (x) definitely accepts.
(meaning: Mi is not disjoint from K∨ relative to all extensions of w)

B Claim 15. The following holds in reference to the definition of t-valid.
1. In V1, the two sets are disjoint.
2. In V2, Fw

i (x) is definite and F v
i (x) = y /∈ Kv

∨ for all v w w.
3. In V3a, Fw

i (x) is definite.
4. In V3b, y ∈ Kv

∨ for all v w w.
5. In V4b, x ∈ Kv

∨ for all v w w.

Proof. V1: The union is disjoint, since |c(i, x, y)| is even. V2+V3a: Follows from Claim 14.
V3b+V4b: Follows from Claim 13. C

B Claim 16. Let u and w be t-valid. If u v v v w, then v is t-valid.

Proof. We show that v satisfies V1–V4. When we consider w and v as sets, then v ⊆ w.
Therefore, v satisfies V1 and V4a. Moreover, v v w and Claim 14 imply that v satisfies
V2 and V3a. Since u is t-valid, it satisfies V3b and V4b. From u v v, Claim 15.4, and
Claim 15.5 it follows that v satisfies V3b and V4b. C

Oracle construction: Let t0 = () be the empty list and w0 = ε, which is t0-valid. We
construct a sequence t0 vp t1 vp · · · of lists from T and a sequence w0 vp w1 vp · · · of partially
defined oracles such that |ts| = s and ws is ts-valid. The final oracle is O = lims→∞ ws. We
describe step s > 0, which starts with a list ts−1 of length s− 1 and a ts−1-valid ws−1 and
which defines a list ts wp ts−1 of length s and a ts-valid ws wp ws−1.

s even: If there is a ts−1-valid v wp ws−1 such that for some x, F v
s (x) is definite and has

an output y < |v| with y ∈ Kv
∨, then let ws = v and ts = ts−1 + 0. Otherwise, choose

b ∈ {0, 1} such that ws−1b is ts−1-valid, let ws = ws−1b and ts = ts−1 +m for an even
m > |ws| that is greater than all elements in ts−1.
(meaning: if possible, force that Fs is not a proof system for K∨ relative to all extensions
of v; otherwise, we start to maintain codewords for Fs, i.e., if x is large enough and Fs(x)
outputs y, then the oracle contains a proof for this, namely the codeword c(s, x, y))
s odd: If there is a ts−1-valid v wp ws−1 such that for some x < |v|, x ∈ Kv

∨ and Mv
s (x)

definitely accepts, then let ws = v and ts = ts−1 + 0. Otherwise, let ws = ws−1b for
b ∈ {0, 1} such that ws−1b is ts−1-valid and ts = ts−1 + p for p ∈ P≥41 large enough such
that (16|vpk |)s < 2pk for all k ∈ N+, p > |ws|, and p is greater than all elements in ts−1.
(meaning: force L(Ms) ∩K∨ 6= ∅ if possible; otherwise, choose a suitable prime p and
make sure that the oracle contains no elements of length pk and hence vpk /∈ K for all
k ≥ 1; the step corresponds to V4)

The subsequent claims refer to the construction above. We start by showing that the
construction is possible and how one can extend a ts-valid w w ws by one bit. The proof can
be found in [10].
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B Claim 17. Let s ∈ N. The choices of ws and ts are possible and ws is ts-valid. Moreover,
for each ts-valid w w ws and z = |w| the following holds.
1. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i ≤ s, ts(i) > 0, and z ≥ ts(i), then:

a. if Fw
i (x) = y, then w1 is ts-valid and w0 is not.

b. if Fw
i (x) 6= y, then w0 is ts-valid and w1 is not.

2. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i ≤ s and ts(i) = 0, then:
a. w0 is ts-valid.
b. if Fw

i (x) = y /∈ Kw
∨ and there is no odd i′ such that i < i′ ≤ s, ts(i′) = p ∈ P≥41, and

|z| ≥ p, then w1 is ts-valid.
3. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i > s, then:

a. w0 is ts-valid.
b. if Fw

i (x) = y /∈ Kw
∨ , then w1 is ts-valid.

4. If |z| = pk for p ∈ P≥41, p /∈ ts, and k ≥ 1, then w0 and w1 are ts-valid.
5. In all other cases w0 is ts-valid.

B Claim 18. MO
s (〈vpk , u1, . . . , un〉) rejects for all odd s with ts(s) = p ∈ P≥41, all k ∈ N+,

and all u = 〈u1, . . . , un〉 with |u| ≤ |vpk |.

Proof. We assume that MO
s (u′) accepts for u′ = 〈vpk , u1, . . . , un〉 and show a contradiction.

Choose j > s large enough such that Mwj
s (u′) definitely accepts, |wj | > u′, and |wj | > q

for all q with |q| = pk. By construction, wj is tj-valid and hence ts−1-valid. Let r be a
definitely accepting path of Mwj

s (u′). For r we inductively define the set of queries and their
dependencies.

Q0 = {q | q is queried on r} (2)
Qn+1 =

⋃
z ∈ Qn with z = c(i, x, y),
i < s, x, y ∈ N, ts−1(i) > 0

{q | q is queried by Fwj

i (x)} (3)

Let Q =
⋃

n≥0Qn. It holds that |Q| < 2pk , which is seen as follows: For mn =
∑

q∈Qn
|q| we

have mn+1 ≤ mn/2, since the sum of lengths of queries induced by z = c(i, x, y) is at most
|x|i + i ≤ (|x|i + i)2ie ≤ |z|/2 by the definition of c and 〈·〉. Thus the mn form a geometric
series. From |u′| = |u| + 2|vpk | + 2 ≤ 4|vpk | it follows |Q| ≤ 2m0 ≤ 2(|u′|s + s) ≤ 4|u′|s ≤
(16|vpk |)s < 2pk , where the latter inequality holds by the choice of p in step s.

Let q̄ be the smallest word of length pk that is not in Q. The word exists, since |Q| < 2pk .
By the assumption that |wj | > q for all q with |q| = pk, it holds in particular |wj | > q̄. By
the choice of p in step s we have p > |ws| and hence |ws−1| < q̄ < |wj |. Thus for v = prq̄(wj)
it holds that ws−1 vp v vp wj , where ws−1 and wj are ts−1-valid. By Claim 16, v is ts−1-valid.
Moreover, |v| = q̄, |q̄| = pk, and p /∈ ts−1, since step s chooses p greater than all elements in
ts−1. From Claim 17.4 it follows that v1 is ts−1-valid.

We show that there is a ts−1-valid w′ w v1 relative to which r is still a definitely accepting
path. More precisely, |w′| = |wj | and for all q ∈ Q it holds that q ∈ w′ ⇔ q ∈ wj . Below we
describe how v1 is extended bit by bit to w′, i.e., how the word w w v1 w ws−1 constructed
so far is extended by one bit b, where z denotes the length of w. We define b and argue that

wb is ts−1-valid and if z ∈ Q then b = wj(z), (4)

where we follow the cases in Claim 17.
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1. z = c(i, x, y) for i ∈ 2N+, x, y ∈ N, i ≤ s − 1, ts−1(i) > 0: If Fw
i (x) = y, then b = 1

else b = 0. Note that z > q̄ > p > ts−1(i). By Claim 17.1, wb is ts−1-valid. If z ∈ Q,
then by (3), q ∈ Q for all q queried by Fw

i (x). For these q it holds that q < z = |w| and
hence w(q) = wj(q) by (4). Thus Fw

i (x) = F
wj

i (x). We know that wj is ts−1-valid and
z > ts−1(i) > 0. From V2 and V3(a) it follows that z ∈ wj ⇔ F

wj

i (x) = y ⇔ Fw
i (x) =

y ⇔ b = 1. Hence b = wj(z), which proves (4).
2. z = c(i, x, y) for i ∈ 2N+, x, y ∈ N, i ≤ s − 1, ts−1(i) = 0: Let b = 0. By Claim 17.2,

wb is ts−1-valid. Assume b 6= wj(z), i.e., z ∈ wj . We are in the situation that wj is
tj-valid, s < j is odd, tj(s) = p, i ∈ 2N+ with i < s, and tj(i) = 0. By V4a, the set
{c(i, x, y) ∈ wj | x, y ∈ N and |c(i, x, y)| ≥ p} is empty. However, z belongs to this set,
as z = |w| > |v| = q̄ and hence |z| ≥ pk ≥ p. This is a contradiction, which shows (4).

3. z = c(i, x, y) for i ∈ 2N+, x, y ∈ N, i > s − 1: If z /∈ Q ∩ wj , then b = 0 else b = 1. If
b = 0, then wb is ts−1-valid by Claim 17.3. Otherwise, b = 1 and z ∈ Q ∩ wj .
We show |x|i + i < pk: Assume |x|i + i ≥ pk. From p ≥ 41, e ≥ 2, k ≥ 1, and i ≥ s ≥ 1
it follows that (41 · pke)s < p2ike. Moreover, |vpk | = 2(e + pke + e + pk + 3) ≤ 10 · pke.
Hence we obtain

|c(i, x, y)| > (|x|i + i)2ie ≥ p2ike > (41 ·(pke)s ≥ (40 ·pke)s +s ≥ (4|vpk |)s +s ≥ |u′|s +s.

Thus |z| > |u′|s + s ≥ m0 ≥ m1 ≥ · · · and hence z /∈ Q, a contradiction. This proves
|x|i + i < pk.
We know that wj is tj-valid. By V2, Fwj

i (x) = y /∈ Kwj

∨ . By |x|i +i < pk, the computation
F

wj

i (x) stops within |x|i + i < pk steps. Hence it can only ask queries of length < pk and
|y| < pk. Thus Fw

i (x) = y /∈ Kw
∨ , since w and wj coincide with respect to all words of

length < pk. By Claim 17.3, wb is ts−1-valid.
To show the second part of (4) assume z ∈ Q. If b = 1, then z ∈ Q ∩ wj and hence
b = wj(z). If b = 0, then z /∈ wj and hence b = wj(z). This proves (4).

4. |z| = p′
k for p′ ∈ P≥41, p′ /∈ ts, k ≥ 1: Let b = wj(z). By Claim 17.4, wb is ts−1-valid,

which implies (4).
5. Otherwise: Let b = 0. By Claim 17.5, wb is ts−1-valid. Assume b 6= wj(z), i.e., z ∈ wj .

We know that wj is tj-valid. From V1 it follows that z must be a word of length p′k

for p′ ∈ P≥41 and p′ ∈ ts−1 (note that the case p′ /∈ ts−1 has already been considered in
4). Choose s′ such that ts−1(s′) = p′ and note that s′ is odd. From V4a it follows that
z /∈ wj , a contradiction which implies (4).

This shows that there exists a ts−1-valid w′ w v1 wp ws−1 such that |w′| = |wj | > u′ and
for all q ∈ Q it holds that q ∈ w′ ⇔ q ∈ wj . Hence Mw′

s (u′) definitely accepts. Moreover,
|v| = q̄ and hence q̄ ∈ w′. From |q̄| = pk it follows vpk ∈ Kw′ and u′ ∈ Kw′

∨ . Therefore,
step s of the construction defines ts = ts−1 + 0 (and chooses for instance ws = w′), which
contradicts the assumption ts(s) = p ∈ P≥41. C

B Claim 19. KO
∨ ∪B is ≤p,O

m -complete for NPO for all B ∈ NPO that are disjoint to KO
∨ .

Proof. Choose s odd such that B = L(MO
s ). We claim that ts(s) = p ∈ P≥41. Otherwise,

there exists x ∈ Kws
∨ such that Mws

s (x) definitely accepts. Hence x ∈ KO
∨ and MO

s (x)
accepts, which contradicts the assumption KO

∨ ∩ L(MO
s ) = ∅.

Let f(〈u1, . . . , un〉) = 〈u0, u1, . . . , un〉, where u0 = vpk for the minimal k ≥ 1 such that
|〈u1, . . . , un〉| ≤ |vpk |.

It holds that f ∈ FP ⊆ FPO. We argue that f reduces KO
∨ to KO

∨ ∪B. If 〈u1, . . . , un〉 ∈
KO
∨ , then f(〈u1, . . . , un〉) ∈ KO

∨ .
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Assume now 〈u1, . . . , un〉 /∈ KO
∨ . From ts(s) = p it follows that for all k ≥ 1, O does

not contain elements of length pk and hence vpk /∈ KO. Therefore, f(〈u1, . . . , un〉) /∈ KO
∨ .

Moreover, by Claim 18, f(〈u1, . . . , un〉) /∈ L(MO
s ) = B. C

B Claim 20. If A is ≤p,O
m -complete for NPO and disjoint to B ∈ NPO, then A ∪ B is

≤p,O
m -complete for NPO.

Proof. Otherwise, there are counterexamples A and B. Choose f ∈ FPO such that KO
∨≤p,O

m A

via f and let B′ = f−1(B). Observe B′ ∈ NPO, KO
∨ ∩B′ = ∅, and KO

∨ ∪B′≤p,O
m A ∪B via

f . Hence KO
∨ ∪B′ is not ≤p,O

m -complete for NPO, which contradicts Claim 19. C

B Claim 21. KO
∨ has PO-optimal proof systems.

The straightforward proof of this claim is left due to space restrictions. As KO
∨ is ≤p,O

m -
complete for coNPO, the first statement of the theorem holds. This finishes the proof of
Theorem 12. J

Köbler, Messner, and Torán [24] prove the following implications (5) and (6).

NEE ∩ TALLY ⊆ coNEE ⇒ Hopps (5)
NEE ∩ TALLY ⊆ EE ⇒ ∃ P-optimal pps (6)

Relative to the oracle O constructed above, the converses of (5) and (6) fail, i.e., the
premises are stronger than the conclusions. This supports the hope that one can weaken the
premises in (5) and (6).

4.3 Further Oracles
We briefly discuss two further oracles.

I Theorem 22. There exists an oracle O with the following properties.
1. DisjNPO does not have ≤pp,O

m -complete pairs (and hence ¬Hopps relative to O).
2. There are disjoint sets A and B that are ≤p,O

m -complete for NPO such that A ∪B is not
≤p,O

m -complete for NPO.
The construction of this oracle is simpler than the other constructions. In order to achieve
statement 1, we proceed similarly as for the oracle in Theorem 11. ¬Hunion can be achieved
by a straightforward diagonalization.

The following theorem shows that the implication Hunion ⇒ Hcpair cannot be proven in a
relativizable way. Ogiwara and Hemachandra [28] construct an oracle that proves that the
converse implication Hcpair ⇒ Hunion cannot be proven relativizably as well.

I Theorem 23. There exists an oracle O with the following properties.
1. DisjNPO does not have ≤pp,O

m -complete pairs (and hence ¬Hopps relative to O).
2. If A is ≤p,O

m -complete for NPO and disjoint to B ∈ NPO, then A ∪ B is ≤p,O
m -complete

for NPO.
The construction of this oracle has similarities to the constructions in the Theorems 11 and
12. However, there are less dependencies and thus, the construction is less complicated.
Roughly speaking, we achieve ¬Hcpair in the same way as in Theorem 11 and Hunion can be
obtained similarly as in Theorem 12.
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Table 1 Summary of oracles and their properties. Each column corresponds to the oracle
mentioned in the topmost cell. We say that there exist P-optimal (resp., optimal) pps relative to an
oracle, if relative to this oracle, some ≤p

m-complete A ∈ coNP has a P-optimal (resp., optimal) proof
system (cf. Remark 2). A disjoint NP-pair (A, B) is ≤pp

T -complete, if for every disjoint NP-pair
(C, D) and every separator S of (A, B) there exists a separator T of (C, D) such that T≤p

TS. A
disjoint NP-pair (A, B) is ≤pp

T -hard for NP, if for every C ∈ NP and every separator S of (A, B) it
holds that C≤p

TS. The double exponential time classes are defined as EE = DTIME(2O(2n)) and
NEE = NTIME(2O(2n)).

[1
6,

T
3.
8]

[1
6,

T
6.
1]

[1
6,

T
6.
7]

[2
8,

L4
.7
]

[2
2,

T
1]

T
hm

11

T
hm

12

T
hm

22

T
hm

23

∃ P-optimal pps false false false true false false
∃ optimal pps / Hopps false true false true false true false false
NPCp

m closed under disj. union / Hunion false true true false true
∃ ≤pp

m -complete disjoint NP-pairs / Hcpair false true true true true false true false false
∃ ≤pp

T -complete disjoint NP-pairs false true true true true true
∃ disj. NP-pairs that are ≤pp

T -hard for NP false false false true false
∃ P-inseparable disjoint NP-pairs true true true true false true true true
P 6= UP false false
P 6= NP true true true true true true true true true
UP 6= NP true true true true true true
NP 6= coNP true true true false true true true true true
NP ∩ SPARSE has ≤p

m-complete sets true false true true
E 6= NE true true true true true true true
NE 6= coNE true false true false true true true true
NEE ∩ TALLY 6⊆ EE true true true true true true
NEE ∩ TALLY 6⊆ coNEE true false true false true true true true

5 Conclusion and Open Questions

The main goal of this paper is to investigate the hypotheses Hunion, Hopps, and Hcpair. We
have shown that – except for the known implication Hopps ⇒ Hcpair – each two of these
hypotheses are independent under relativizable proofs. But what are the connections between
the hypotheses if we consider all three at once? At first glance there are 8 possible situations.
As Hopps implies Hcpair relative to all oracles, there remain 6 possible situations. Table 1
illustrates that oracles for 4 of the 6 possible situations are known. This leads to the open
question: do there also exist oracles for the remaining two situations. More precisely, we ask:

Does there exist an oracle O1 with the following properties?
Relative to O1, ¬Hopps ∧Hunion ∧Hcpair, i.e., there are no optimal pps, unions of disjoint,
≤p

m-complete NP-sets remain complete, and there are ≤pp
m -complete disjoint NP-pairs.

Does there exist an oracle O2 with the following properties?
Relative toO2, ¬Hopps∧¬Hunion∧Hcpair, i.e., there is no optimal pps, unions of disjoint≤p

m-
complete NP-sets are not always ≤p

m-complete, and DisjNP has ≤pp
m -complete elements.

Furthermore we receive new insights on problems related to the main topic. On the
one hand, we answer an open question by Pudlák [32] who asks for an oracle relative to
which neither ¬Hcpair nor ¬Hopps implies that UP does not have ≤p

m-complete elements
(cf. Theorem 11). On the other hand, we show that the converses of Köbler, Messner,
and Torán’s [24] implications (NEE ∩ TALLY ⊆ coNEE ⇒ Hopps) and (NEE ∩ TALLY ⊆
EE ⇒ there exist P-optimal pps) fail relative to an oracle.
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Abstract
Given a string S of length n, the classic string indexing problem is to preprocess S into a compact
data structure that supports efficient subsequent pattern queries. In this paper we consider the
basic variant where the pattern is given in compressed form and the goal is to achieve query time
that is fast in terms of the compressed size of the pattern. This captures the common client-server
scenario, where a client submits a query and communicates it in compressed form to a server.
Instead of the server decompressing the query before processing it, we consider how to efficiently
process the compressed query directly. Our main result is a novel linear space data structure that
achieves near-optimal query time for patterns compressed with the classic Lempel-Ziv 1977 (LZ77)
compression scheme. Along the way we develop several data structural techniques of independent
interest, including a novel data structure that compactly encodes all LZ77 compressed suffixes of
a string in linear space and a general decomposition of tries that reduces the search time from
logarithmic in the size of the trie to logarithmic in the length of the pattern.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases string indexing, compression, pattern matching

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.10

Related Version https://arxiv.org/abs/1909.11930

Funding Inge Li Gørtz: Supported by the Danish Research Council (DFF–8021-002498).

1 Introduction

The string indexing problem is to preprocess a string S into a compact data structure that
supports efficient subsequent pattern matching queries, that is, given a pattern string P ,
report all occurrences of P within S. In this paper, we introduce a basic variant of string
indexing, called the string indexing with compressed pattern problem, where the pattern P
is given in compressed form and we want to answer the query without decompressing P .
The goal is to obtain a compact structure while achieving fast query times in terms of the
compressed size of P .

The string indexing with compressed pattern problem captures the following common
client-server scenario: a client submits a query and sends it to a server which processes the
query. To minimize communication time and bandwidth the query is sent in compressed
form. Naively, the server will then have to decompress the query and then process it. With
an efficient solution to the string indexing with compressed pattern problem we can eliminate
the overhead decompression and speed up queries by exploiting repetitions in pattern strings.
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To the best of our knowledge, no non-trivial solution to the string indexing with compressed
pattern problem are known. In contrast, the opposite problem, where the indexed string S is
compressed and the pattern P is uncompressed, is well-studied [18, 17, 6, 21, 15, 7, 8, 13, 14,
9, 26, 22, 5, 20, 23, 11, 2, 3] (see also the surveys [26, 24, 25, 12]).

We focus on the classic Lempel-Ziv 1977 (LZ77) [29] compression scheme. Note that
since the size of an LZ77 compressed string is a lower bound for many other compression
schemes (such as all grammar-based compression schemes) our results can be adapted to
such compression schemes by recompressing the pattern string. To state the bounds, let n be
the length of S, m be the length of P , and z be the LZ77 compressed length of P . Naively,
we can solve the string indexing with compressed pattern problem by using a suffix tree of S
as our data structure and answering queries by first decompressing them and then traversing
the suffix tree with the uncompressed pattern. This leads to a solution with O(n) space and
O(m+ occ) query time. At the other extreme, we can store a trie of all the LZ77 compressed
suffixes of S together with a simple tabulation, leading to a solution with O(n3) space and
O(z + occ) query time (see discussion in Section 3).

We present the first non-trivial solution to the string indexing with compressed pattern
problem achieving the following bound:

I Theorem 1. We can solve the string indexing with compressed pattern problem for LZ77-
compressed patterns in O(n) space and O(z + logm + occ) time, where n is the length of
the indexing string, m is the length of the pattern, and z is the number of phrases in the
LZ77 compressed pattern.

Since any solution must use at least Ω(z + occ) time to read the input and report the
occurrences, the time bound in Theorem 1 is optimal within an additive O(logm) term.
In the common case when z = O(logm) or if we consider LZ77 without self-references
the time bound is optimal. For simplicity, we focus on reporting queries, but the result is
straightforward to extend to also support existential queries (decide if the pattern occurs in
S) and counting queries (count the number of occurrences of the pattern in S) in O(z+logm)
time and the same space.

To achieve Theorem 1 we develop several data structural techniques of independent
interest. These include a compact data structure that encodes all LZ77 compressed suffixes
of a string in linear space and a general decomposition of tries that reduces the search time
from logarithmic in the size of the trie to logarithmic in the length of the pattern.

The paper is organized as follows. In Section 2 we recall basic string data structures and
LZ77 compression. In Section 3 we present a simple O(n2) space and O(z+ logn+ occ) time
data structure that forms the basis of our solutions in the following sections. In Section 4 we
show how to achieve linear space with the same time complexity. Finally, in Section 5 we
show how to improve the logn term to logm.

2 Preliminaries

A string S of length n is a sequence S[0] · · ·S[n−1] of n characters drawn from an alphabet Σ.
The string S[i] · · ·S[j − 1] denoted S [i, j] is called a substring of S. The substrings S [0, j]
and S [i, n] are called the jth prefix and ith suffix of S, respectively. We will sometimes use
Si to denote the ith suffix of S.
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Longest Common Prefix

For two strings S and S′, the longest common prefix of S and S′, denoted lcp(S, S′), is the
maximum j ∈ {0, . . . ,min (|S|, |S′|)} such that S [0, j] = S′ [0, j].

Given a string S of length n, there is a data structure of size O(n) that answers lcp-queries
for any two suffixes of S in constant time by storing a suffix tree combined with an efficient
nearest common ancestor (NCA) data structure [16, 28].

Compact Trie

A compact trie for a set D of strings S1, . . . , Sl is a rooted labeled tree TD, with the following
properties: The label on each edge is a substring of one or more Si. If the set of strings is
prefix free, each root-to-leaf path represents a string in the set (obtained by concatenating
the labels on the edges of the path), and for every string there is a leaf corresponding to
that string. Common prefixes of two strings share the same path maximally, and all internal
vertices have at least two children.

The compact trie has O(l) nodes and edges and a total space complexity of O
(∑l

i=1 |Si|
)
.

The position in the trie that corresponds to the maximum longest common prefix of a pattern
P of length m and any Si can be found in O(m) time. For a position p in the tree, which
can be either a node or a position within the label of an edge, let str(p) denote the string
obtained by concatenating the labels on the path from the root to p. The locus of a string P
in TD, denoted locus(P ), is the deepest position p in the tree such that str(p) is a prefix
of P . A compact trie on the suffixes of a string S is called the suffix tree of S and can be
stored in linear space [28]. The suffix array stores the starting positions of the suffixes in
the string in lexicographic order. If at every node in the suffix tree its children are stored in
lexicographic order, the order of the suffix array corresponds to the order of the leaves in the
suffix tree.

LZ77

Given an input string S of length n, the LZ77 parsing divides S into z substrings f1, f2, . . . , fz,
called phrases, in a greedy left-to-right order. The ith phrase fi, starting at position pi is
either (a) the first occurrence of a character in S or (b) the longest substring that has at
least one occurrence starting to the left of pi. If there are more than one occurrence, we
assume that the choice is made in a consistent way. To compress S, we can then replace each
phrase fi of type (b) with a pair (ri, li) such that ri is the distance from pi to the start of
the previous occurrence, and li is the length of the phrase. The occurrence of fi at position
pi − ri is called the source of the phrase. (This is actually the LZ77-variant of Storer and
Szymanski [27]; the original one [29] adds a character to each phrase so that it outputs triples
instead of tuples.)

Every LZ77-compressed string is a string over the extended alphabet which consists of all
possible LZ77 phrases. For any string T we denote this string by LZ (T ).

3 A Simple Data Structure

In this section we will define a data structure that allows us to solve the string indexing with
compressed pattern problem in O(n2) space and O(z+ logn+ occ) time, or O(n3) space and
O(z + occ) time. This data structure forms the basis of our solution.

STACS 2020
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Figure 1 The phrase trie for the string ABABACABABA$. In this example, the leaves are sorted
according to the lexicographic order of the originial suffixes. For instance the 6th suffix ABABA$ has
the LZ77 parse A B (2,3) $, and this string corresponds to the concatenation of labels on the path
from the root to the second leaf.

The Phrase Trie

The phrase trie of a string S is defined as the compact trie over the set of strings
{LZ (Si$) , i = 0, . . . , |S| − 1} ∪ {$}, that is, the LZ77 parses of all suffixes of S appen-
ded by a new symbol $ which is lexicographically greater than any letter in the alphabet.
For an example see Figure 1.

The phrase trie for a string S of length n has n+ 1 leaves, one corresponding to every
suffix of S$. Similarly as in the suffix tree, every internal node defines a consecutive range
within the suffix array. Since every node has at least 2 children the number of nodes and
edges is O(n).

LZ77 has the property that for two strings whose prefixes match up to some position `
the LZ77-compression of the two strings will be the same up to (not necessarily including)
the phrase that contains position `. As such, we can use the phrase trie to find the suffix Si
of S for which the LZ77-compression of the pattern P agrees with the LZ77-compression
of Si for as long as possible. Assuming they match for k − 1 phrases, the longest match of
P in S ends within the kth phrase. If we additionally to the phrase trie keep a table for
all possible phrases of a pattern that the longest match could end in, encoded as the triple
(p, r, l) of starting position, distance to the start of the previous occurance, and length of
the phrase, and which for each such phrase stores the solution to the query, we can solve
the string indexing with compressed pattern problem in O(n3) space and O(z + occ) time.
Instead, we will store a linear space and constant time lcp data structure for S and show
that given the first phrase where the suffix Si and the string P mismatch, we can find the
lcp of P and Si by finding the lcp of two substrings of S.
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S’

S

rk’
lk’

lcp lcp
pk

Figure 2 The kth phrase in S′ is copied from position pk − r′
k, at which point S and S′ are

identical; the lcp value gives how far pk and pk − r′
k match in S.

Longest Common Prefixes in LZ77-Compressed Strings

We will use an intuitive property about LZ77-compressed strings: assuming two strings
match up until a certain phrase k − 1, we can reduce the task of finding the lcp of the two
strings to the task of finding the longest common prefix between two suffixes of one of the
strings. This property is summarized in the following lemma (see also Figure 2):

I Lemma 2. Let S = f1 f2 · · · fz and S′ = f ′1 f ′2 · · · f ′z′ be two strings parsed into
LZ77 phrases, where f1 = f ′1, f2 = f ′2, . . . , fk−1 = f ′k−1. Let pk be the starting position of fk
and f ′k. If f ′k is a phrase represented by a pair (r′k, l′k) the following holds:

lcp (S, S′) ≥ pk + min (lcp (S [pk, n] , S [pk − r′k, n]) , l′k) . (1)

Furthermore, if fk 6= f ′k, equality holds in (1).

Proof. To prove (1), we will show by induction that for any

i ≤ min (lcp (S [pk, n] , S [pk − r′k, n]) , l′k) ,

we have that S[pk + i− 1] = S′[pk + i− 1]. For i = 0 this is true since S and S′ are the same
up until position pk − 1. For the induction step assume it is true for all i0 < i. We then have

S′[pk + i− 1] = S′[pk − r′k + i− 1] (2)
= S[pk − r′k + i− 1] (3)
= S[pk + i− 1], (4)

where (2) follows from i ≤ l′k and because pk − r′k is the source of phrase f ′k, (3) follows from
the induction hypothesis, and (4) follows from i ≤ lcp (S [pk, n] , S [pk − r′k, n]).

To show equality in the case where fk 6= f ′k, let t = min (lcp (S [pk, n] , S [pk − r′k, n]) , l′k).
We will show that S[pk + t] 6= S′[pk + t]. There are two cases:

For t = lcp (S [pk, n] , S [pk − r′k, n]) < l′k, note that S[pk − r′k + t] 6= S[pk + t]. From
(1) we know that S′[pk − r′k + t] = S[pk − r′k + t], and therefore we have S′[pk + t] =
S′[pk − r′k + t] = S[pk − r′k + t] 6= S[pk + t].

For l′k ≤ lcp (S [pk, n] , S [pk − r′k, n]), note that by (1), we know that S and S′ have an
lcp of length at least pk + t. If t ≥ lk, then by the uniqueness of the greedy left-to-right
parsing, the kth phrase of S and S′ would be the same, contradicting our condition. Otherwise,
we have lk > t = l′k. This together with (1) implies S[pk + i] = S[pk + i− rk] = S′[pk + i− rk]
for every i = 0, . . . , t, since rk ≥ 1. By the greedy parsing property and since l′k = t we know
that S′[pk + t− rk] 6= S′[pk + t] and so S[pk + t] 6= S′[pk + t]. J

STACS 2020
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3.1 The Data Structure
Additionally to storing the phrase trie of S, we store the suffix array of S, and for every node
in the phrase trie, the range of the leaves below it in the suffix array. Finally, we store a
linear space and constant time data structure for answering lcp-queries for suffixes of S.

3.2 Algorithm
We begin by matching LZ (P ) as far as possible in the phrase trie. Let v = locus(LZ (P )).
Let k be the first phrase in LZ (P ) that does not match any of the next phrases in the trie.
If v is a node set w = v, otherwise let w be the first node below v. We proceed as follows:

If the kth phrase in P is a single letter, we return pk as the length of the match and the
interval of positions stored at w.
If the kth phrase is represented by (rk, lk) then there are two cases:

If v is on an edge, let Si be the suffix corresponding to any leaf below v. We return

pk + min(lcp (S [i+ pk, n] , S [i+ pk − rk, n]) , lk)

as the length of the match and the interval of positions stored at w.
If v is on a node, we do a binary search for the longest match in the range in the
suffix array below v. That is, for the suffix Si corresponding to the middle leaf in
the range below v, we compute lcp(S [i+ pk, n] , S [i+ pk − rk, n]). If this is greater
than lk we stop the binary search. Otherwise, we check if the next position in suffix
Si is lexicographically smaller or bigger than the next position in P to see whether
we go left or right in the binary search. That is, we compare Si[t] = S[i + t] with
P [t] = Si[t− rk] = S[i+ t− rk], and update our search accordingly. We also keep track
of the longest match found so far. At the end of the search, we go to longest match,
and check left and right in the suffix array to find all occurrences.

3.3 Correctness
The compact trie gives us the longest matching prefix of LZ (P ) = f1 . . . fzp

in the phrase trie.
That is, we find all suffixes Si = f ′1 · · · f ′zi

for i = 0, . . . , n− 1 such that f1 = f ′1, . . . , fk−1 =
f ′k−1 and fk 6= f ′k, and k is maximal. By the uniqueness of parsing, the longest prefix of P
found in S is the prefix of at least one these suffixes.

Note that by the greedy parsing, the longest match of the kth phrase has to end before
the next node in the trie. We argue the different cases:

If the kth phrase in P is a letter, it did not appear in P before. Thus, it never appeared in
any of the suffixes we matched so far. Since the next phrase in the phrase trie is different, it
is either a copied position, or a different letter. In any case, the next letter of any candidate
suffix does not match the next letter in P .

If fk is represented by (rk, lk) there are two subcases. If v is on an edge, recall that Si
is the suffix corresponding to any leaf below the current position v. By Lemma 2 and
since Si[p] = S[p+ i] for any p, we have that

lcp (Si, P ) = pk + min(lcp (Si [pk, n] , Si [pk − rk, n]) , lk)
= pk + min(lcp (S [i+ pk, n] , S [i+ pk − rk, n]) , lk).

If v is on a node we have, by the same argument as before,

lcp (Si, P ) = pk + min(lcp (S [i+ pk, n] , S [i+ pk − rk, n]) , lk),

for every suffix Si. Further, because of the lexicographic order of the suffix array, we can
binary search to find the leaf with the longest match, and by checking the adjacent positions
in the suffix array we make sure to find all occurrences.
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3.4 Analysis

The suffix array and the lcp data structure both use linear space in the size of S. For the
phrase trie, we store the LZ77-compressed suffixes of S, which use O(

∑n
i=1 zi) = O(n2) space,

where zi is the number of phrases used to compress suffix Si.
For the time complexity, we use O(k) = O(z) time for matching the phrases in the trie. In

the worst case, that is, when the locus v is on a node, we need O(log(#leaves below v)) =
O(logn) constant time lcp queries. In total, we have a time complexity of O(z+ logn+ occ).
In summary, we proved the following lemma.

I Lemma 3. The phrase trie solves the string indexing with compressed pattern problem
in O(n2) space and O(z + logn+ occ) time.

4 Space Efficient Phrase Trie

In this section, we show how to achieve the same functionality as the phrase trie while using
linear space. The main idea is to store only one phrase per edge, and use Lemma 2 to
navigate along an edge. That is, we no longer store the entire LZ77-compressed suffixes of S.

4.1 The Data Structure

We store a compact form of the phrase trie, which is essentially a blind trie version of the
phrase trie. We store the following: We keep the tree structure of the phrase trie, and at
each node, we keep a hash table, using perfect hashing [10], where the keys are the first
LZ77 phrase of each outgoing edge. For each edge we store as additional information the
length of the (uncompressed) substring on that edge and an arbitrarily chosen leaf below
it. For an example see Figure 3. As before, we additionally store the suffix array, the range
within the suffix array for each node, and a linear-sized lcp data structure for S.

S =

l=1

l=1

l=1

l=1

l=1l=3

l=2

l=2 l=7

l=1
l=7

l=1
l=7

l=7

l=7
l=1l=1

l=7

0

6

2

8 4

10

1

7 3

9 5

11

Figure 3 The phrase trie for the string ABABACABABA using linear space.
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4.2 Algorithm
The algorithm proceeds as follows. We start the search at the root. Assume we have
matched k − 1 phrases of P and the current position in the trie is a node v. To match the
next phrase we check if the kth phrase in P is in the hash table of v.
1. If it is not, we proceed exactly as in the previous section in the case where the locus is at

a node.
2. If the kth phrase is present, let e be the corresponding edge and let i be the starting

index of the leaf stored for e. Set k = k + 1. We do the following until we reach the end
of edge e or get a mismatch. We differentiate between two cases.

The kth phrase is a single letter α:
If α = S[i+ pk], we set k = k + 1 and continue with the next phrase.
If α 6= S[i+ pk], we stop and return pk as the length of the match.

The kth phrase is represented by (rk, lk):
If min(lcp(S [i+ pk, n] , S [i+ pk − rk, n]), lk)) ≥ lk, we set k = k+1 and continue
with the next phrase.
Otherwise, we return pk + lcp(S [i+ pk, n] , S [i+ pk − rk, n]) as the length of the
match, with the interval of positions stored at the next node.

If we reach the end of an edge, we go to the next node below and continue in the same
way.

Correctness

The correctness follows from the previous section together with Lemma 2, since we always
keep the invariant that when we process the kth phrase, we already matched the k − 1
previous ones.

Analysis

The space complexity is linear since the compact phrase trie has O(n) nodes and edges and
stores constant information per node and edge, using perfect hashing.

The time complexity is the same as in the previous section, since for matching full phrases,
we use at most one constant time lookup in the hash table and one constant time lcp query
per phrase in P . As before, the worst case for matching the kth phrase is having to do a
binary search, using O(logn) constant time lcp queries. In summary, this gives the following
lemma.

I Lemma 4. We can solve the string indexing with compressed pattern problem in O(n)
space and O(z + logn+ occ) time.

5 Slice Tree Solution

In this section, we show how to reduce the O(logn) time overhead to O(logm). Recall
that the additional O(logn) time originates from the binary search in the case where after
matching k − 1 phrases we arrive at a node, and the kth phrase does not match any of the
outgoing edges. In any other case, the solution from the previous section gives O(z + occ)
time complexity. We use the solution from the previous section as a basis and show how
to speed up the last step of matching the kth phrase. For our solution, we use Karp-Rabin
fingerprints and the ART tree decomposition, which we define next.
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Karp-Rabin Fingerprints

For a prime p and an x ≤ p, the Karp-Rabin fingerprint [19] of a substring S [i, j] is defined
as

φp,x(S [i, j]) =
j−1∑
k=i

S[k]xk−i mod p.

Clearly, we have that if S [i, j] = S′ [i′, j′], then φp,x(S [i, j]) = φp,x(S′ [i′, j′]). Further-
more, the Karp-Rabin fingerprint has the property that for any three strings x, y and z where
z = xy, given the fingerprint of any two of those strings, the third one can be computed in
constant time. It follows that given the fingerprints of all suffixes of a string S, the fingerprint
of any substring of S can be computed in constant time.

We assume that p and x are chosen in such a way that φp,x is collision-free on substrings
of S, that is, two distinct substrings of S have different fingerprints. For details on how to
construct φp,x see for example [4]. We will from now on use the notation φ = φp,x.

ART decomposition

The ART decomposition of a tree by Alstrup et al. [1] partitions a tree into a top tree and
several bottom trees. Every vertex v of minimal depth with no more than χ leaves below it is
the root of a bottom tree which consists of v and all its descendants. The top tree consists
of all vertices that are not in any bottom tree. The following lemma gives a key property of
ART trees:

I Lemma 5 (Alstrup et al.[1]). The ART decomposition with parameter χ for a rooted tree T
with n leaves produces a top tree with at most n

χ+1 leaves.

5.1 The Slice Tree Decomposition
The overall idea is to construct a two level decomposition of the suffix tree. First, we
will divide the tree into smaller trees, the slice trees, where the heights are powers of two
and increase with the depth in the tree. Each of those slice trees is decomposed using an
ART decomposition. Together with Karp-Rabin fingerprints stored at the roots of each slice
tree, this will allow us to efficiently carry out an approximate search for the longest match,
so we can then use the slice trees to find the exact position and length.

In more detail, we store the space efficient phrase trie from the previous section for
matching full phrases of the pattern. Additionally, we store the Karp-Rabin fingerprints for
each suffix of S, as well as the following slice tree decomposition of the suffix tree of S:

We store the suffix tree together with extra nodes at any position in the suffix tree that
corresponds to a string depth that is a power of two. For each node we store the range in
the suffix array of the leaves below.
For each level of string depth 2i, where i = 0, . . . , blognc, we store a static hash table
with Karp-Rabin fingerprints of the substring in S from the root to every node of string
depth 2i. As in section 4, we use perfect hashing for all hash tables in this solution.
For each node v at string depth 2i we define a slice tree of order i. The slice tree is the
subtree rooted at v, cut off at string depth 2i, such that the string height of the slice tree
is (at most) 2i.
We compute an ART decomposition of each slice tree of order i with the parameter χ set
to χ = 2i. For each 1 ≤ d < 2i, we store a hash table with fingerprints corresponding to
the substrings of length d starting at the root of the slice tree and ending in the top tree.
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Additionally, for every edge connecting a top tree node to a bottom tree root save the
corresponding first letter in the suffix tree. For every leaf in the bottom tree we store the
starting position of a leaf below it in the suffix tree.

5.2 Algorithm
To match P , we first match the full phrases in the phrase trie until we find the first phrase fk
which does not match any of the next phrases in the trie. If fk is just a letter, as before, we
are done. Otherwise fk is represented by (rk, lk). Now:

We find the fingerprint φ(P [0, pk]) = φ(S [i0, i0 + pk]), where i0 is a leaf below the
current position in the phrase trie. Note that since S [i0, i0 + pk] is a substring of S and
we stored the fingerprints of all suffixes of S we can find its fingerprint in constant time
via the fingerprints of the suffixes Si0 and Si0+pk

.
In order to find the slice tree where the match ends, we do a linear search for the deepest
matching fingerprint in the hash tables at the power of 2 levels in the following way:

For j ∈
{

2dlog pke − pk, 2dlog pke+1 − pk, . . . , 2blognc − pk
}
and while j < lk, find the

fingerprint of fk [0, j] = S [i0 + pk − rk, i0 + pk − rk + j] and look for φ(P [0, pk]) +
xpkφ(fk [0, j]) mod p in the hash table of depth pk+j. If φ(P [0, pk])+xpkφ(fk [0, j])
mod p = φ(Si) for some i, we check if φ(S [i, i+ pk]) = φ(P [0, pk]) to avoid false
positives. We keep doing this until the first level where it is not present or the check
fails.
For the last level where there is a match, we find the corresponding node the slice tree
rooted at that node. Note that this slice tree can be of order at most logm.

Similarly as the linear search above, we now do an exponential search for fingerprints on
the levels in the top tree of the slice tree. For the lowest level in which there is a match
in the top tree, find the corresponding position v. If this is an internal node without any
off-hanging bottom trees or on an edge in the top tree then locus(P ) = v. Once we have
found locus(P ) we can easily find and return the occurrences as before. Otherwise, we
check if the next letter in P matches any of the off-hanging bottom trees. Again, we can
find this letter in constant time by looking up its source in S. If it matches, we do a
binary search for the longest match with the leaves of the bottom tree, which proceeds
exactly as in the phrase trie solution, but restricted to the representative leaves stored
for each bottom tree leaf. For each bottom tree leaf that has a longest match with P
report all suffix tree leaves below it.

5.3 Correctness
The correctness of matching the first k − 1 phrases follows from the previous section. Given
that k is the first phrase that does not match any of the next phrases in the suffixes, we
argue for the linear search in the power of two levels in the suffix tree. We know that
the Karp-Rabin fingerprints have no false negatives, so if P [0, pk + j] = S [i, i+ pk + j]
for some i, then φ(P [0, pk]) + xpkφ(fk [0, j]) mod p will be present in the hash table of
level pk + j. Further, we chose φ such that it has no false positives on substrings of S,
so by checking φ(P [0, pk]) = φ(S [i, i+ pk]) separately, we make sure that P [0, pk + j]
and S [i, i+ pk + j] are actually identical. Together, this means that by finding the biggest j
such that pk + j is a power of two and both conditions are fulfilled, we will find the slice tree
that contains the end of the longest match.

Next, we argue for the detailed search within the slice tree. The argument for the
exponential search is the same as for the linear search. When we end the exponential search,
we found the position in the top tree of maximum depth that corresponds to a substring
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of S matching a prefix of P . So the longest match either ends there or in a bottom tree that
is connected to this position. If there is more than one such bottom tree, the first letter on
each edge will uniquely identify the bottom tree that contains the leaf or leaves with the
longest match. If the longest match ends in a bottom tree, it is enough to do the binary
search with any representative leaf in the suffix tree per leaf in the bottom tree, since for any
such leaf the prefix of a given length that ends in the bottom tree is the same.

5.4 Analysis
We use linear space for the phrase trie representation of the previous section and the
fingerprints of the suffixes of S. Additionally, we use O(n logn) space for the extra nodes
and hash tables at the power of two levels.

For each slice tree T of order i denote |T | the number of nodes in the slice tree and let
h = 2i be the maximal height of the slice tree. By Lemma 5, the top tree has at most |T |/h
leaves. By the definition of the slice tree, each root-to-leaf path has at most h positions. As
such, the hash tables for the top tree take up O(|T |) space. Furthermore we use constant space
per leaf in the bottom tree. Each bottom tree leaf is a node in the suffix tree or an extra node,
and each such node is a leaf in at most one bottom tree. So the total space for all slice trees
is
∑
T is slice treeO (|T |) = O(#nodes in suffix tree + extra nodes) = O(n logn).

For the time complexity, as before, we use O(z) for matching in the phrase trie. Since we
stored the fingerprints of all suffixes of S, the fingerprint of any substring of S can be found
in constant time.

For the linear search of fingerprints in the suffix tree, note that the last phrase of P is at
most m long. This means we stop the search after checking at most logm power of 2 levels,
and a check can be done in constant time.

After the linear search we end up in a slice tree of order at most logm, which means h ≤ m.
It follows that the exponential search in the top tree uses time at most O(log h) = O(logm).
Further, by the definition of the ART decomposition, every bottom tree has no more than h ≤
m leaves, and as such the binary search in the bottom tree uses no more than O(logm)
operations.

In total, this gives us a time complexity of O(z+ logm+ occ). We arrive at the following
result:

I Lemma 6. The slice tree solution solves the string indexing with compressed pattern
problem in O(n logn) space and O(z + logm+ occ) time.

6 Saving Space

For the solution above, we constructed O(n logn) slice trees. By the way we defined them,
note that any internal node in a slice tree has to be an original node from the suffix tree.
Since there are only O(n) such nodes, we conclude that many of the slice trees consist of a
single edge. We will show that by removing those, we can define a linear space solution that
gives the same time complexity as in Lemma 6.

6.1 The Data Structure
We start with the slice tree solution. Call every edge that contains two or more extra nodes
a long edge. For every long edge, delete every extra node except the first and last, which we
call vfirst and vlast. For every deleted node also delete the additional information stored for
their slice trees, and their corresponding entries in the power of two hash tables. For each
long edge, store at the hash table position of vfirst additionally the information that it is on
a long edge, how long that edge is, and a leaf below it.
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6.2 Algorithm
The algorithm proceeds almost as before. The only change is that in the linear search of power
of two levels, when we match with a node that is vfirst of a long edge, jump directly to the
last power of two level that is before the end of the edge. If the fingerprint is present, proceed
normally, otherwise, the longest match ends on that edge and we do a single lcp query
between the source of the phrase in S and the stored leaf to find its length.

6.3 Correctness
If we do not encounter any long edges, nothing changes. If a long edge is entirely contained
in the match, we will first find vfirst and then jump directly to the last power of two level on
that edge, where we will find vlast, and then continue as before. If the longest match ends on
a long edge, there are two cases:
1. The longest match ends before vfirst or after vlast: this means that by doing the linear

search we find the slice tree that the longest match ends in, thus everything follows as
before.

2. The longest match ends between vfirst and vlast: In this case, we will find a matching
fingerprint at the level corresponding to vfirst but no matching fingerprint at the level
corresponding to vlast, which means we will use lcp to find the longest match with a
leaf below vfirst. Since the match ends on that edge, this gives us the correct length and
position.

6.4 Analysis
For space complexity, note that we only keep original nodes from the suffix tree, plus at most
two extra nodes per edge, so a linear number of nodes in total. Since the space used for the
slice trees and power of two hash tables is linear in the number of nodes, the total space
consumption is linear. The time complexity does not change. This concludes the proof of
Theorem 1.
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An FPT Algorithm for Minimum Additive Spanner
Problem
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Abstract
For a positive integer t and a graph G, an additive t-spanner of G is a spanning subgraph in which
the distance between every pair of vertices is at most the original distance plus t. The Minimum
Additive t-Spanner Problem is to find an additive t-spanner with the minimum number of edges
in a given graph, which is known to be NP-hard. Since we need to care about global properties of
graphs when we deal with additive t-spanners, the Minimum Additive t-Spanner Problem is
hard to handle and hence only few results are known for it. In this paper, we study the Minimum
Additive t-Spanner Problem from the viewpoint of parameterized complexity. We formulate
a parameterized version of the problem in which the number of removed edges is regarded as a
parameter, and give a fixed-parameter algorithm for it. We also extend our result to the case with
both a multiplicative approximation factor α and an additive approximation parameter β, which we
call (α, β)-spanners.
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1 Introduction

1.1 Spanners
A spanner of a graph G is a spanning subgraph of G that approximately preserves the
distance between every pair of vertices in G. Spanners were introduced in [4, 40, 41] in
the context of synchronization in networks. Since then, spanners have been studied with
applications to several areas such as space efficient routing tables [19, 42], computation of
approximate shortest paths [17, 18, 26], distance oracles [6, 45], and so on.

A main topic on spanners is trade-offs between the sparsity (i.e., the number of edges)
of a spanner and its quality of approximation of the distance, and there are several ways
to measure the approximation quality. In the early studies, the approximation quality of
spanners was measured by a multiplicative factor, i.e., the ratio between the distance in the
spanner and the original distance. Formally, for a positive integer t and a graph G, a spanning
subgraph H of G is said to be a multiplicative t-spanner if distH(u, v) ≤ t · distG(u, v) holds
for any pair of vertices u and v. Here, distG(u, v) (resp. distH(u, v)) denotes the distance
between u and v in G (resp. in H). Note that we deal with only graphs with unit length
edges, and hence the distance is defined as the number of edges on a shortest path. A
well-known trade-off between the sparsity and the multiplicative factor is as follows: for any
positive integer t and any graph G, there exists a (2t− 1)-spanner with O(n1+1/t) edges [3],
where n denotes the number of vertices in G. This bound is conjectured to be tight based on
the popular Girth Conjecture of Erdős [30].
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Another natural measure of the approximation quality is the difference between the
distance in the spanner and the original distance. For a positive integer t and a graph G, a
spanning subgraph H of G is said to be an additive t-spanner if distH(u, v) ≤ distG(u, v) + t

holds for any pair of vertices u and v. Since an additive spanner was introduced in [36, 37],
trade-offs between the sparsity and the additive term have been actively studied. It is shown
in [2, 25] that every graph has an additive 2-spanner with O(n3/2) edges. In addition, every
graph has an additive 4-spanner with O(n7/5poly(logn)) edges [14], and every graph has an
additive 6-spanner with O(n4/3) edges [7]. On the negative side, it is shown in [1] that these
bounds cannot be improved to O(n4/3−ε) for any ε > 0.

As a common generalization of these two concepts, (α, β)-spanners have also been studied
in the literature. For α ≥ 1, β ≥ 0, and a graph G, a spanning subgraph H of G is said to
be an (α, β)-spanner if distH(u, v) ≤ α · distG(u, v) + β holds for any pair of vertices u and
v. See [9, 27, 32, 43, 44, 46, 48, 49] for other results on trade-offs between the sparsity of a
spanner and its approximation quality.

In this paper, we consider a classical but natural and important problem that finds a
spanner of minimum size. In particular, we focus on additive t-spanners and consider the
following problem for a positive integer t.

Minimum Additive t-Spanner Problem
Instance. A graph G = (V,E).
Question. Find an additive t-spanner H = (V,EH) of G that minimizes |EH |.

The Minimum Multiplicative t-Spanner Problem and the Minimum (α, β)-Spanner
Problem are defined in the same way. Such a problem is sometimes called the Sparsest
Spanner Problem.

Although additive t-spanners have attracted attention as described above, there are only
few results on the Minimum Additive t-Spanner Problem. For any positive integer t, the
Minimum Additive t-Spanner Problem is shown to be NP-hard in [37]. It is shown by
Chlamtáč et al. [16] that there is no polynomial-time 2(log1−ε n)/t3 -approximation algorithm
for any ε > 0 under a standard complexity assumption. In [16], an O(n3/5+ε)-approximation
algorithm is proposed for any ε > 0 for a more general problem. We can obtain algorithms
for some special cases as consequences of known results. Every connected interval graph
has an additive 2-spanner that is a spanning tree [35], which implies that the Minimum
Additive t-Spanner Problem in interval graphs can be solved in polynomial time for
t ≥ 2. The same result holds for AT-free graphs [35]. It is shown in [15] that every chordal
graph has an additive 4-spanner with at most 2n− 2 edges, which implies that there exists a
2-approximation algorithm for the Minimum Additive 4-Spanner Problem in chordal
graphs. To the best of our knowledge, no other results exist for the Minimum Additive
t-Spanner Problem, which is in contrast to the fact that the Minimum Multiplicative
t-Spanner Problem has been actively studied from the viewpoints of graph classes and
approximation algorithms (see Section 1.3).

We make a remark on a difference between multiplicative t-spanners and additive t-
spanners. As in [13, 38, 33], multiplicative t-spanners can be characterized as follows: a
subgraphH = (V,EH) of G = (V,E) is a multiplicative t-spanner if and only if distH(u, v) ≤ t
holds for any uv ∈ E \ EH . This characterization means that if two edges in E \ EH are far
from each other, then they do not interfere with each other. Thus, we only need to care
about local properties of graphs when we deal with multiplicative t-spanners. In contrast,
for additive t-spanners, no such characterization exists, and hence we have to consider global
properties of graphs. In this sense, handling the Minimum Additive t-Spanner Problem
is much harder than the Minimum Multiplicative t-Spanner Problem, which might be
a reason why only few results exist for the Minimum Additive t-Spanner Problem.
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1.2 Our Results

In this paper, we consider the Minimum Additive t-Spanner Problem from the viewpoint
of fixed-parameter tractability and give the first fixed-parameter algorithm parameterized by
the number of deleted edges for it. A parameterized version of the Minimum Multiplicative
t-Spanner Problem is studied in [33]. Since an additive (or multiplicative) t-spanner of
a connected graph contains Ω(|V |) edges, the number of edges of a minimum additive (or
multiplicative) t-spanner is not an appropriate parameter. Therefore, as in [33], a parameter
is defined as the number of edges that are removed to obtain an additive (or multiplicative)
t-spanner. This parameterization has a meaning when we remove a small number of edges,
and such a situation might appear in a subroutine of other algorithms, e.g., in order to
obtain a small additive spanner, we can consider a heuristic algorithm that removes a small
number of edges repeatedly. Furthermore, the number of removed edges is a solution size in
a certain sense. For these reasons, it will be the most natural parameter when we deal with
spanners. Note that the same parameterization is also adopted in [5] for another network
design problem. Our problem is formulated as follows.

Parameterized Minimum Additive t-Spanner Problem
Instance. A graph G = (V,E).
Parameter. A positive integer k.
Question. Find an edge set E′ ⊆ E with |E′| ≥ k such that H = (V,E \ E′) is an additive

t-spanner of G or conclude that such E′ does not exist.

Note that if there exists a solution of size at least k, then its subset of size k is also a
solution, which means that we can replace the condition |E′| ≥ k with |E′| = k in the problem.
In this paper, we show that there exists a fixed-parameter algorithm for this problem, where
an algorithm is called a fixed-parameter algorithm (or an FPT algorithm) if its running time
is bounded by f(k)(|V |+ |E|)O(1) for some computable function f . See [20, 31, 39] for more
details.

Formally, our result is stated as follows.

I Theorem 1. For a positive integer t, there exists a fixed-parameter algorithm for the Pa-
rameterized Minimum Additive t-Spanner Problem that runs in (t+ 1)O(k2+tk)|V ||E|
time. In particular, the running time is 2O(k2)|V ||E| if t is fixed.

This result implies that there exists a fixed-parameter algorithm for the problem even
when t + k is the parameter. As described in Section 1.1, the Minimum Additive t-
Spanner Problem is a really hard problem and only few results were previously known
for it. Therefore, this result may be a starting point for further research on the problem.
A technical key ingredient of our algorithm is Lemma 5 that constructs a sequence of
edge-disjoint cycles satisfying a certain condition, which is of independent interest.

By using almost the same argument, we can show that a parameterized version of the
Minimum (α, β)-Spanner Problem is also fixed-parameter tractable. We define the Pa-
rameterized Minimum (α, β)-Spanner Problem in the same way as the Parameterized
Minimum Additive t-Spanner Problem.

I Theorem 2. For real numbers α ≥ 1 and β ≥ 0, there exists a fixed-parameter algo-
rithm for the Parameterized Minimum (α, β)-Spanner Problem that runs in (α +
β)O(k2+(α+β)k)|V ||E| time.
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1.3 Related Work: Minimum Multiplicative Spanner Problem
As mentioned in Section 1.1, there are a lot of results on the Minimum Multiplicative
t-Spanner Problem, whereas only few results are known for the Minimum Additive
t-Spanner Problem.

The Minimum Multiplicative t-Spanner Problem is NP-hard for any t ≥ 2 in
general graphs [11, 40], and there are several results on the problem for some graph classes.
It is NP-hard even when the input graph is restricted to be planar [10, 33]. Cai and Keil [13]
showed that the Minimum Multiplicative 2-Spanner Problem can be solved in linear
time if the maximum degree of the input graph is at most 4, whereas this problem is NP-hard
even if the maximum degree is at most 9. Venkatesan et al. [47] revealed the complexity
of the Minimum Multiplicative t-Spanner Problem for several graph classes such as
chordal graphs, convex bipartite graphs, and split graphs. For the weighted version of the
problem in which each edge has a positive integer length, Cai and Corneil [12] showed the
NP-hardness of the Minimum Multiplicative t-Spanner Problem for t > 1.

Another direction of research is to design approximation algorithms for the Minimum
Multiplicative t-Spanner Problem. Kortsarz [34] gave an O(logn)-approximation
algorithm for t = 2, and Elkin and Peleg [28] gave an O(n2/(t+1))-approximation algorithm
for t > 2. The approximation ratio was improved to O(n1/3 logn) for t = 3 by Berman et
al. [8] and to O(n1/3poly(logn)) for t = 4 by Dinitz and Zhang [22]. On the negative side,
for any t ≥ 2, it is shown in [29] that no o(logn)-approximation algorithm exists unless
P = NP . This lower bound was improved to 2(log1−ε n)/k for any ε > 0 in [21] under a
standard complexity assumption. Dragan et al. [23] gave an EPTAS for the problem in
planar graphs. When the input graph is a 4-connected planar triangulation, a PTAS is
proposed for the Minimum Multiplicative 2-Spanner Problem in [24].

A parameterized version of the Minimum Multiplicative t-Spanner Problem is
introduced in [33], where the parameter is the number of deleted edges, and a fixed-parameter
algorithm for it is presented in the same paper.

1.4 Organization
The remainder of this paper is organized as follows. In Section 2, we give some preliminaries.
In Section 3, we give an FPT algorithm for the Parameterized Minimum Additive t-
Spanner Problem and prove Theorem 1. In Section 4, we extend the argument in Section 3
to the Parameterized Minimum (α, β)-Spanner Problem and prove Theorem 2. Finally,
in Section 5, we conclude the paper with a summary.

2 Preliminaries

In this paper, we deal with only undirected graphs with unit length edges. Since we can
remove all the parallel edges and self-loops when we consider spanners, we assume that all the
graphs in this paper are simple. Let G = (V,E) be a graph. For u, v ∈ V , an edge connecting
u and v is denoted by uv. For a subgraph H of G, the set of vertices and the set of edges in
H are denoted by V (H) and E(H), respectively. For an edge e ∈ E, let G− e denote the
subgraph G′ = (V,E \ {e}). We say that an edge set F ⊆ E contains a path P if E(P ) ⊆ F .
For a path P and for two vertices u, v ∈ V (P ), let P [u, v] denote the subpath of P between
u and v. For u, v ∈ V , let distG(u, v) denote the length of the shortest path between u and
v in G. Note that the length of a path is the number of edges in it. If G is clear from the
context, distG(u, v) is simply denoted by dist(u, v). For a positive integer t, a subgraph
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H = (V,EH) of G = (V,E) is said to be an additive t-spanner if distH(u, v) ≤ distG(u, v) + t

or distG(u, v) = +∞ holds for any u, v ∈ V . For real numbers α ≥ 1 and β ≥ 0, a subgraph
H = (V,EH) of G = (V,E) is said to be an (α, β)-spanner if distH(u, v) ≤ α · distG(u, v) + β

or distG(u, v) = +∞ holds for any u, v ∈ V . In what follows, we may assume that the input
graph G = (V,E) is connected and distG(u, v) is finite for any u, v ∈ V , since we can deal
with each connected component separately. For a positive integer p, let [p] := {1, . . . , p}.

3 Proof of Theorem 1

3.1 Outline
In this subsection, we show an outline of our proof of Theorem 1.

Define F ⊆ E as the set of all edges contained in cycles of length at most t + 2. In
other words, an edge e = uv ∈ E is in F if and only if G − e contains a u-v path of
length at most t+ 1. By definition, if H = (V,E \ E′) is an additive t-spanner of G, then
distG−e(u, v) ≤ distH(u, v) ≤ distG(u, v) + t = t + 1 holds for each e = uv ∈ E′, which
implies that E′ ⊆ F . Thus, if |F | is small, then we can solve the Parameterized Minimum
Additive t-Spanner Problem by checking whether H = (V,E\E′) is an additive t-spanner
of G or not for every subset E′ of F with |E′| = k.

If |F | is sufficiently large (as a function of t and k), then there exist many cycles of length
at most t+2. In what follows, we show that if G has many cycles of length at most t+2, then
there always exists E′ ⊆ E with |E′| = k such that H = (V,E \ E′) is an additive t-spanner
of G. To this end, we prove the following statements in Sections 3.2–3.4, respectively.

If there are many cycles of length at most t+2, then we can find either many edge-disjoint
cycles of length at most t+ 2 or a desired set E′ ⊆ E (Section 3.2).
If there are many edge-disjoint cycles of length at most t + 2, then we can construct
a sequence (C1, . . . , Cp) of edge-disjoint cycles with a certain condition (Section 3.3).
Roughly speaking, this condition means that if h < i < j, then removing edges in E(Cj)
does not affect the distance between Ch and Ci.
If we have a sequence of edge-disjoint cycles with the above condition, then we can
construct a desired set E′ ⊆ E (Section 3.4).

Finally, in Section 3.5, we put them together and describe our entire algorithm.

3.2 Finding Edge-disjoint Cycles
The objective of this subsection is to show that if there are many cycles of length at most
t+ 2, then we can find either many edge-disjoint cycles of length at most t+ 2 or a desired
set E′ ⊆ E. We first show the following lemma.

I Lemma 3. For positive integers r and `, there exists an integer f1(r, `) = (r`)O(`) satisfying
the following condition. For any pair of distinct vertices u, v ∈ V in a graph G = (V,E), if
there exists a set P of u-v paths of length at most ` with |P| ≥ f1(r, `), then G contains two
distinct vertices u′, v′ ∈ V and r edge-disjoint u′-v′ paths of length at most `− dist(u, u′)−
dist(v, v′).

Proof. We show that f1(r, `) := 2(r`3)`−1 satisfies the condition by induction on `. The
claim is obvious when ` = 1, because |P| ≤ 1 holds as G is simple and f1(r, 1) = 2. Thus, it
suffices to consider the case of ` ≥ 2. Let P be a set of u-v paths of length at most ` with
|P| ≥ f1(r, `). We consider the following two cases separately.
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11:6 An FPT Algorithm for Minimum Additive Spanner Problem

We first consider the case when |{P ∈ P | e ∈ E(P )}| < f1(r,`)
r` holds for every e ∈ E.

In this case, |{Q ∈ P | E(P ) ∩ E(Q) 6= ∅}| < f1(r,`)
r for every P ∈ P. This shows that we

can take r edge-disjoint u-v paths in P by a greedy algorithm (i.e., repeatedly taking a u-v
path P in P and removing all the paths sharing an edge with P ). They form a desired set of
paths in which u′ = u and v′ = v.

We next consider the case when there exists an edge e = xy ∈ E such that |{P ∈ P |
e ∈ E(P )}| ≥ f1(r,`)

r` = 2`2(r`3)`−2. Since {x, y} 6= {u, v}, by changing the roles of x and y
if necessary, we may assume that x 6∈ {u, v}. For i = 1, . . . , `− 1, let Piux be the set of all
u-x paths of length i and Pixv be the set of all x-v paths of length i. Then, since each path
P ∈ P containing e can be divided into a u-x path and an x-v path, we obtain∑

i+j≤`
|Piux| · |Pjxv| ≥ |{P ∈ P | e ∈ E(P )}| ≥ 2`2(r`3)`−2.

Since the number of pairs (i, j) with i+ j ≤ ` is at most `(`−1)
2 < `2

2 , there exist i, j ∈ [`− 1]
with i+ j ≤ ` such that

|Piux| · |Pjxv| ≥ 2`2(r`3)`−2 · 2
`2 ≥ 2(r`3)i−1 · 2(r`3)j−1 ≥ f1(r, i) · f1(r, j).

Then, we have either (i) |Piux| ≥ f1(r, i) and |Pjxv| ≥ 1, or (ii) |Pjxv| ≥ f1(r, j) and |Piux| ≥ 1.
Suppose that (i) holds. By induction hypothesis, |Piux| ≥ f1(r, i) implies that there exist
u′, v′ ∈ V and r edge-disjoint u′-v′ paths of length at most

i− dist(u, u′)− dist(x, v′)
≤ `− j − dist(u, u′)− dist(x, v′) (by i+ j ≤ `)
≤ `− dist(x, v)− dist(u, u′)− dist(x, v′) (by |Pjxv| ≥ 1)
≤ `− dist(u, u′)− dist(v, v′). (by the triangle inequality)

Thus, they form a desired set of paths. The same argument can be applied when (ii) holds. J

By using this lemma, we obtain the following proposition.

I Proposition 4. Let G = (V,E) be a graph and C be a set of cycles of length at most t+2. Let
N be a positive integer and f1 be a function as in Lemma 3. If |C| ≥ N(t+2)f1(k+t+1, t+1),
then we have one of the following.

There exist N edge-disjoint cycles in C.
There exists E′ ⊆

⋃
C∈C E(C) with |E′| = k such that H = (V,E \ E′) is an additive

t-spanner of G.

Proof. For each edge e ∈ E, let Ce := {C ∈ C | e ∈ E(C)}. We first consider the case when
|Ce| < f1(k + t + 1, t + 1) holds for every e ∈ E. In this case, |{C ′ ∈ C | E(C) ∩ E(C ′) 6=
∅}| < (t+ 2)f1(k+ t+ 1, t+ 1) for every C ∈ C. This shows that we can take N edge-disjoint
cycles in C by a greedy algorithm (i.e., repeatedly taking a cycle C in C and removing all the
cycles sharing an edge with C), because |C| ≥ N(t+ 2)f1(k + t+ 1, t+ 1).

We next consider the case when there exists an edge e = uv ∈ E such that |Ce| ≥
f1(k+ t+ 1, t+ 1). Since P := {C − e | C ∈ Ce} consists of u-v paths of length at most t+ 1,
by Lemma 3, G contains two vertices u′, v′ ∈ V and a set P ′ of k + t+ 1 edge-disjoint u′-v′
paths of length at most t′ := t+ 1− distG(u, u′)− distG(v, v′). Let Qu and Qv be a shortest
u-u′ path and a shortest v-v′ path, respectively. Since |E(Qu)|+|E(Qv)|+1 = t+2−t′ ≤ t+1,
there exists P ′′ ⊆ P ′ with |P ′′| = |P ′|−(t+1) = k such that each path in P ′′ does not contain
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u ve

Qu Qv

u' v'

P1

Pk

e1

ek

x1 y1

xk yk

Figure 1 Definition of e1, . . . , ek in Proposition 4.

edges in E(Qu) ∪ E(Qv) ∪ {e}. Let P1, . . . , Pk denote the paths in P ′′. For i = 1, . . . , k,
let ei be the middle edge of Pi (see Fig. 1). Formally, we take ei = xiyi so that Pi[u′, xi]
contains b |E(Pi)|−1

2 c ≤ b t
′−1
2 c edges and Pi[yi, v

′] contains d |E(Pi)|−1
2 e ≤ d t

′−1
2 e edges. Define

E′ := {e1, . . . , ek} and consider the graph H = (V,E \ E′). Then, for any i, j ∈ [k] we can
see that

distH(xi, xj) ≤ |E(Pi[u′, xi])|+ |E(Pj [u′, xj ])| ≤ t′ ≤ t+ 1, (1)
distH(yi, yj) ≤ |E(Pi[yi, v′])|+ |E(Pj [yj , v′])| ≤ t′ ≤ t+ 1, (2)
distH(xi, yj) ≤ |E(Pi[u′, xi])|+ |E(Qu) ∪ E(Qv) ∪ {e}|+ |E(Pj [yj , v′])|

≤
⌊
t′ − 1

2

⌋
+ (t+ 2− t′) +

⌈
t′ − 1

2

⌉
≤ t+ 1. (3)

We now show that H is an additive t-spanner of G. Let x and y be distinct vertices
in V and let P be a shortest x-y path in G. If E(P ) ∩ E′ = ∅, then it is obvious that
distH(x, y) = distG(x, y). If E(P ) ∩ E′ 6= ∅, then let P [z, z′] be the unique minimal subpath
of P that contains all edges in E(P ) ∩ E′, where x, z, z′, and y appear in this order along P .
Since z, z′ ∈ {x1, y1, . . . , xk, yk}, we have distH(z, z′) ≤ t+ 1 by (1)–(3). Therefore,

distH(x, y) ≤ distH(x, z) + distH(z, z′) + distH(z′, y) (by the triangle inequality)
≤ |E(P [x, z])|+ t+ 1 + |E(P [z′, y])| (by (1)–(3))
= |E(P )| − |E(P [z, z′])|+ t+ 1
≤ distG(x, y) + t, (by |E(P )| = distG(x, y))

which shows that H is an additive t-spanner of G. J

3.3 Finding a Good Sequence of Cycles
In this subsection, we construct a sequence of edge-disjoint cycles with a certain condition
when we are given many edge-disjoint cycles.

Let C be a set of edge-disjoint cycles of length at most t+ 2. For each cycle C ∈ C, we
apply the breadth-first search from V (C) and obtain a shortest path P (v, C) between V (C)
and each vertex v ∈ V . That is, |E(P (v, C))| = min{|E(P )| | u ∈ V (C), P is a u-v path}.
Then,

⋃
v∈V E(P (v, C)) forms a forest for each cycle C ∈ C. The objective of this subsection

is to find a sequence (C1, . . . , Cp) of distinct p cycles C1, . . . , Cp ∈ C satisfying the following
condition:

(?) For any h, i, j ∈ [p] with h < i < j and for any vertex v ∈ V (Ch), it holds that
E(P (v, Ci)) ∩ E(Cj) = ∅.
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v e1 ep
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Figure 2 Definition of e1, . . . , ep.

xh xi xj
ejeh ei
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Ci Cj

w
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Figure 3 Definition of w.

Roughly speaking, this condition means that if h < i < j, then removing edges in E(Cj)
does not affect the distance between Ch and Ci.

I Lemma 5. For any positive integers t and p, there exists an integer f2(t, p) = O(t2p4)
satisfying the following condition. If C is a set of f2(t, p) edge-disjoint cycles of length at most
t+ 2, then there exists a sequence (C1, . . . , Cp) of distinct p cycles C1, . . . , Cp ∈ C satisfying
the condition (?).

Proof. We show that f2(t, p) := 27(t+ 2)(3t+ 1)p4 satisfies the condition in the lemma. Let
C be a set of f2(t, p) edge-disjoint cycles of length at most t+ 2. We consider the following
two cases separately.

Case 1. Suppose that there exist a vertex v ∈ V and a cycle C∗ ∈ C such that
|E(P (v, C∗)) ∩

⋃
C∈C E(C)| ≥ (3t + 1)p. In this case, we can take edges e1, . . . , ep in

E(P (v, C∗))∩
⋃
C∈C E(C) such that e1 = x1y1, e2 = x2y2, . . . , ep = xpyp appear in this order

along P (v, C∗) and the subpath of P (v, C∗) between xi and xi+1 contains at least 3t + 1
edges for i = 1, . . . , p− 1 (see Fig. 2). For i = 1, . . . , p, let Ci ∈ C be the cycle containing ei.
Note that Ci and Cj are distinct if i 6= j, since distG(xi, xj) ≥ 3t+ 1 > |E(Ci)|.

We now show that (C1, . . . , Cp) satisfies the condition (?). Assume to the contrary
that there exist indices h, i, j ∈ [p] with h < i < j and a vertex u ∈ V (Ch) such that
E(P (u,Ci))∩E(Cj) 6= ∅. Let w be the first vertex in V (Cj) when we traverse P (u,Ci) from
u to V (Ci) (see Fig. 3). Then, by using

dist(u, xh) ≤
⌊
|E(Ch)|

2

⌋
≤ t and dist(xj , w) ≤

⌊
|E(Cj)|

2

⌋
≤ t, (4)

we obtain

dist(xh, xi) + t

≥ dist(xh, xi) + dist(u, xh) (by (4))
≥ dist(u, xi) ≥ |E(P (u,Ci))| ≥ dist(u,w)
≥ dist(xh, xj)− dist(xh, u)− dist(w, xj) (by the triangle inequality)
≥ |E(P [xh, xj ])| − 2t (by (4) and dist(xh, xj) = |E(P [xh, xj ])|)
≥ (|E(P [xh, xi])|+ 3t+ 1)− 2t (by |E(P [xi, xj ])| ≥ 3t+ 1)
= dist(xh, xi) + t+ 1, (by dist(xh, xi) = |E(P [xh, xi])|)

which is a contradiction. Therefore, (C1, . . . , Cp) satisfies the condition (?).

Case 2. Suppose that |E(P (v, C∗)) ∩
⋃
C∈C E(C)| < (3t+ 1)p holds for every v ∈ V and

C∗ ∈ C, which implies that |{C ∈ C | E(P (v, C∗)) ∩ E(C) 6= ∅}| < (3t+ 1)p as C is a set of
edge-disjoint cycles. We define F3 ⊆ C3 by

F3 := {(Ch, Ci, Cj) | Ch, Ci, Cj ∈ C, E(P (v, Ci)) ∩ E(Cj) 6= ∅ for some v ∈ V (Ch)}.
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Then, it holds that

|F3| =
∑
Ch∈C

∑
Ci∈C

|{Cj ∈ C | E(P (v, Ci)) ∩ E(Cj) 6= ∅ for some v ∈ V (Ch)}|

≤
∑
Ch∈C

∑
Ci∈C

∑
v∈V (Ch)

|{Cj ∈ C | E(P (v, Ci)) ∩ E(Cj) 6= ∅}|

<
∑
Ch∈C

∑
Ci∈C

∑
v∈V (Ch)

(3t+ 1)p

≤ (t+ 2)(3t+ 1)p|C|2. (5)

We note that (C1, . . . , Cp) satisfies the condition (?) if and only if (Ch, Ci, Cj) 6∈ F3 holds
for any h, i, j ∈ [p] with h < i < j. That is, F3 represents the set of forbidden orderings of
three cycles. We define F2 ⊆ C2 and F1 ⊆ C by

F2 :=
{

(Ch, Ci) ∈ C2
∣∣∣∣ |{C ∈ C | (Ch, Ci, C) ∈ F3}| ≥

|C|
3p2

}
,

F1 :=
{
Ch ∈ C

∣∣∣∣ |{C ∈ C | (Ch, C) ∈ F2}| ≥
|C|
3p

}
.

By (5), we have

|F2| ≤ |F3| ·
3p2

|C|
< 3(t+ 2)(3t+ 1)p3|C|,

|F1| ≤ |F2| ·
3p
|C|

< 9(t+ 2)(3t+ 1)p4 ≤ |C|3 . (6)

In order to obtain (C1, . . . , Cp) satisfying the condition (?), we construct a sequence of
cycles satisfying additional conditions.

B Claim 6. For each q ∈ [p], there exists a sequence (C1, . . . , Cq) of q distinct cycles
C1, . . . , Cq ∈ C satisfying the following conditions:

Ch 6∈ F1 for any h ∈ [q],
(Ch, Ci) 6∈ F2 for any h, i ∈ [q] with h < i, and
(Ch, Ci, Cj) 6∈ F3 for any h, i, j ∈ [q] with h < i < j.

Proof. We show the claim by induction on q. When q = 1, we can choose C1 ∈ C \ F1
arbitrarily. Suppose that we have C1, . . . , Cq ∈ C satisfying the conditions in the claim,
where q ≤ p− 1. We evaluate the number of cycles that cannot be chosen as Cq+1. By the
definitions of F1 and F2, we have that

N2 := |{C ∈ C | (Ch, C) ∈ F2 for some h ∈ [q]}| ≤ q · |C|3p ≤
(

1− 1
p

)
· |C|3 <

|C|
3 − p,

(7)

N3 := |{C ∈ C | (Ch, Ci, C) ∈ F3 for some h, i ∈ [q] with h < i}| ≤ q2 · |C|3p2 <
|C|
3 , (8)

where we use |C| > 3p2 to obtain (7). Since |C| − |F1| − N2 − N3 > p ≥ q + 1 by (6)–(8),
there exists a cycle Cq+1 ∈ C that is different from C1, . . . , Cq such that (C1, . . . , Cq, Cq+1)
satisfies the conditions in the claim. This shows the claim by induction on q. C

By this claim, there exists a sequence (C1, . . . , Cp) of p distinct cycles C1, . . . , Cp ∈ C such
that (Ch, Ci, Cj) 6∈ F3 for any h, i, j ∈ [p] with h < i < j, which means that (C1, . . . , Cp)
satisfies the condition (?). J
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3.4 Constructing an Additive t-Spanner
In this subsection, we show that we can construct an additive t-spanner of G by using a
sequence of edge-disjoint cycles satisfying the condition (?).

I Lemma 7. For any positive integers t and k, there exists an integer f3(t, k) = (t+ 2)O(k)

satisfying the following condition. If there exists a sequence (C1, . . . , Cp) of p = f3(t, k)
edge-disjoint cycles of length at most t+ 2 satisfying the condition (?), then there exists an
edge set E′ ⊆

⋃
i∈[p] E(Ci) with |E′| = k such that H = (V,E \ E′) is an additive t-spanner

of G.

Proof. We show that p = f3(t, k) := k(t+ 2)k−1 satisfies the condition. For each edge e ∈ E,
define

I(e) := {i ∈ [p] | e 6∈
⋃
v∈V

E(P (v, Ci))}.

Since
⋃
v∈V E(P (v, Ci)) forms a forest for each i ∈ [p], for any cycle C there exists an edge

e ∈ E(C) such that i ∈ I(e). In other words,
⋃
e∈E(C) I(e) = [p] for any cycle C. We prove

the lemma by showing that Algorithm 1 always finds an edge set E′ ⊆
⋃
i∈[p] E(Ci) with

|E′| = k such that H = (V,E \ E′) is an additive t-spanner of G.

Algorithm 1 Constructing an additive t-spanner from a sequence with (?).

Input :A sequence (C1, . . . , Cp) of edge-disjoint cycles of length at most t+ 2 with
the condition (?)

Output :An edge set E′ ⊆
⋃
i∈[p] E(Ci) with |E′| = k such that H = (V,E \ E′) is

an additive t-spanner
1 I0 := [p]
2 for i = 1, . . . , k do
3 Let ind(i) be the minimum index in Ii−1
4 C ′i := Cind(i)
5 Choose an edge ei ∈ E(C ′i) that maximizes |(Ii−1 \ {ind(i)}) ∩ I(ei)|
6 Ii := (Ii−1 \ {ind(i)}) ∩ I(ei)
7 end
8 Return E′ := {e1, . . . , ek}

We first show that the algorithm returns a set of k edges. For i = 1, . . . , k − 1, since⋃
e∈E(C′

i
) I(e) = [p] and |E(C ′i)| ≤ t + 2, we have that |Ii| ≥ |Ii−1\{ind(i)}|

|E(C′
i
)| ≥ |Ii−1|−1

t+2 . By
combining this with |I0| = k(t+ 2)k−1, we see that |Ii| ≥ (k − i)(t+ 2)k−i−1 for each i by
induction, because

|Ii| ≥
|Ii−1| − 1
t+ 2 ≥ (k − i+ 1)(t+ 2)k−i − 1

t+ 2 ≥ (k − i)(t+ 2)k−i−1.

In particular, |Ik−1| ≥ 1 holds, and hence the algorithm returns a set E′ = {e1, . . . , ek}.
We next show that H = (V,E \ E′) is an additive t-spanner. Let x and y be distinct

vertices in V and let P be a shortest x-y path in G. If E(P ) ∩ E′ = ∅, then it is obvious
that distH(x, y) = distG(x, y). If E(P ) ∩ E′ = {ei} for some i ∈ {1, . . . , k}, then (E(P ) \
{ei}) ∪ (E(C ′i) \ {ei}) contains an x-y path, and hence we obtain distH(x, y) ≤ |(E(P ) \
{ei}) ∪ (E(C ′i) \ {ei})| ≤ distG(x, y) + t.
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Figure 4 Proof of Lemma 7.

Thus, it suffices to consider the case when |E(P ) ∩ E′| ≥ 2. Let P [z, z′] be the unique
minimal subpath of P that contains all edges in E(P ) ∩E′, where x, z, z′, and y appear in
this order along P . Suppose that z and z′ are endpoints of edges eh and ei in E(P ) ∩ E′,
respectively. We may assume that h < i by changing the roles of x and y if necessarily. We
now observe the following properties of P (z, C ′i).

Since (C1, . . . , Cp) satisfies (?), (C ′1, . . . , C ′k) also satisfies (?). It follows that P (z, C ′i)
does not contain edges in E(C ′j) for any j > i, because z ∈ V (C ′h) and h < i. In particular,
P (z, C ′i) does not contain ej for any j > i.
Since ind(i) ∈ Ii−1 ⊆ I(e1) ∩ I(e2) ∩ · · · ∩ I(ei−1) by the algorithm, P (z, C ′i) does not
contain ej for any j < i.
It is obvious that P (z, C ′i) does not contain ei by the definition of P (z, C ′i).

By these observations, P (z, C ′i) does not contain edges in E′, which means that P (z, C ′i) is a
path in H (see Fig. 4). Since C ′i − ei contains a path connecting an endpoint of P (z, C ′i) and
z′, E(P (z, C ′i)) ∪ (E(C ′i) \ {ei}) contains a path between z and z′, and hence we have that

distH(z, z′) ≤ |E(P (z, C ′i))|+ |E(C ′i) \ {ei}| ≤ |E(P (z, C ′i))|+ t+ 1. (9)

Since P [z, z′]− ei forms a path from z to C ′i, we obtain

|E(P (z, C ′i))| ≤ |E(P [z, z′]) \ {ei}|. (10)

By (9) and (10), we have that

distH(x, y)
≤ distH(x, z) + distH(z, z′) + distH(z′, y) (by the triangle inequality)

≤ distH(x, z) + |E(P (z, C ′i))|+ t+ 1 + distH(z′, y) (by (9))

≤ distH(x, z) + |E(P [z, z′]) \ {ei}|+ t+ 1 + distH(z′, y) (by (10))

= |E(P [x, z])|+ |E(P [z, z′])|+ t+ |E(P [z′, y])|
= |E(P [x, y])|+ t

= distG(x, y) + t.

Therefore, H is an additive t-spanner of G. J

3.5 The Entire Algorithm
In this subsection, we describe our entire algorithm for the Parameterized Minimum
Additive t-Spanner Problem and prove Theorem 1 by using Proposition 4 and Lemmas 5
and 7. Define

p := f3(t, k), N := f2(t, p), f4(t, k) := N(t+ 2)2f1(k + t+ 1, t+ 1),

STACS 2020
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where f1, f2, and f3 are as in Lemmas 3, 5, and 7, respectively. Then, N = (t+ 2)O(k) and
f1(k + t+ 1, t+ 1) = (kt)O(t), and hence

f4(t, k) = (t+ 2)O(k) · (kt)O(t). (11)

When t ≥ k, (11) is bounded by (t+2)O(t) ·(t2)O(t) = (t+1)O(t). When t ≤ k, (11) is bounded
by (t+ 2)O(k) · (k2)O(t) = (t+ 1)O(k). By combining them, we obtain f4(t, k) = (t+ 1)O(k+t).
Note that we can simply denote f4(t, k) = tO(k+t) unless t = 1.

In our algorithm, we first compute the set F ⊆ E of all edges contained in cycles of length
at most t+ 2. Note that we can do it in O(|V ||E|) time by applying the breadth-first search
from each vertex.

As described in Section 3.1, if H = (V,E \E′) is an additive t-spanner of G for E′ ⊆ E,
then E′ ⊆ F holds. Thus, if |F | ≤ f4(t, k), then we can solve the Parameterized
Minimum Additive t-Spanner Problem in O(f4(t, k)k|V ||E|) time by checking whether
H = (V,E \ E′) is an additive t-spanner of G or not for every subset E′ of F with |E′| = k.

Otherwise, we have |F | ≥ f4(t, k) = N(t+ 2)2f1(k+ t+ 1, t+ 1). Since there exist at least
|F |
t+2 ≥ N(t+ 2)f1(k+ t+ 1, t+ 1) cycles of length at most t+ 2 by the definition of F , we can
take a set C of N(t+ 2)f1(k+ t+ 1, t+ 1) cycles of length at most t+ 2 by a greedy algorithm.
The procedure is formally described as follows: for i = 1, 2, . . . , N(t+ 2)f1(k + t+ 1, t+ 1),
we pick up an edge ei ∈ F , find a cycle Ci of length at most t + 2 that contains ei, and
remove E(Ci) from F . Then, define C := {C1, C2, . . . , CN(t+2)f1(k+t+1,t+1)}.

By Proposition 4 and Lemmas 5 and 7, there always exists a set E′ ⊆
⋃
C∈C E(C) with

|E′| = k such that H = (V,E \E′) is an additive t-spanner of G. Furthermore, such E′ can
be found in O(((t+ 2)|C|)k|V ||E|) = O(f4(t, k)k|V ||E|) time by checking all the edge sets of
size k in

⋃
C∈C E(C). Note that it will be possible to improve the running time of this part

by following the proofs of Proposition 4 and Lemmas 5 and 7. However, we do not do it in
this paper, because it does not improve the total running time.

Overall, our algorithm solves the Parameterized Minimum Additive t-Spanner
Problem in O(f4(t, k)k|V ||E|) = (t+1)O(k2+tk)|V ||E| time, and hence we obtain Theorem 1.
The entire algorithm is shown in Algorithm 2.

4 Extension to (α, β)-Spanners

In this section, we extend the argument in the previous section to (α, β)-spanners and give a
proof of Theorem 2.

Let t := bα+βc− 1. We compute the set F ⊆ E of all edges contained in cycles of length
at most t+ 2 = bα+ βc+ 1. If H = (V,E \ E′) is an (α, β)-spanner of G for E′ ⊆ E, then
distH(u, v) ≤ α·distG(u, v)+β ≤ α+β for each uv ∈ E′. By integrality, distH(u, v) ≤ bα+βc
for each uv ∈ E′, which shows that E′ ⊆ F holds. This implies that the problem is trivial
if t = 0. Thus, we consider the case when t ≥ 1 and define f4(t, k) as in Section 3.5. If
|F | ≤ f4(t, k), then we can solve the Parameterized Minimum (α, β)-Spanner Problem
in O(f4(t, k)k|V ||E|) time by checking whether H = (V,E \ E′) is an (α, β)-spanner of G or
not for every subset E′ of F with |E′| = k.

Otherwise, by the argument in Section 3.5, in O(f4(t, k)k|V ||E|) time, we can find an
edge set E′ with |E′| = k such that H = (V,E \ E′) is an additive t-spanner. Then, H is
also an (α, β)-spanner, because

distH(u, v) ≤ distG(u, v) + t ≤ (distG(u, v)− 1) + α+ β

≤ α · (distG(u, v)− 1) + α+ β = α · distG(u, v) + β

for every pair of vertices u and v. Therefore, it suffices to return the obtained set E′. This
completes the proof of Theorem 2.
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Algorithm 2 Entire Algorithm.

Input :A graph G = (V,E)
Output :An edge set E′ ⊆ E with |E′| = k such that H = (V,E \ E′) is an additive

t-spanner (or conclude that such E′ does not exist)
1 Compute F := {e ∈ E | e is contained in some cycle of length at most t+ 2}
2 if |F | ≤ f4(t, k) then
3 for each E′ ⊆ F with |E′| = k do
4 if H = (V,E \ E′) is an additive t-spanner of G then
5 Return E′
6 end
7 end
8 Conclude that such E′ does not exist
9 end

10 else
11 for i = 1, 2, . . . , N(t+ 2)f1(k + t+ 1, t+ 1) do
12 Find a cycle Ci of length at most t+ 2 that contains ei ∈ F
13 F := F \ E(Ci)
14 end
15 C := {C1, C2, . . . , CN(t+2)f1(k+t+1,t+1)}
16 for each E′ ⊆

⋃
C∈C E(C) with |E′| = k do

17 if H = (V,E \ E′) is an additive t-spanner of G then
18 Return E′
19 end
20 end
21 end

5 Conclusion

In this paper, we studied the Minimum Additive t-Spanner Problem from the viewpoint
of fixed-parameter tractability. We formulated a parameterized version of the Minimum
Additive t-Spanner Problem in which the number of removed edges is regarded as a
parameter, and gave a fixed-parameter algorithm for it. We also extended our result to the
Minimum (α, β)-Spanner Problem.

As described in the last paragraph in Section 1.1, handling the Minimum Additive
t-Spanner Problem is much harder than the Minimum Multiplicative t-Spanner
Problem, because we have to care about global properties of graphs. Since only few results
were previously known for the Minimum Additive t-Spanner Problem, this work may be
a starting point for further research on the problem.
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Abstract
We study the fundamental list update problem in the paid exchange model P d. This cost model
was introduced by Manasse, McGeoch and Sleator [18] and Reingold, Westbrook and Sleator [24].
Here the given list of items may only be rearranged using paid exchanges; each swap of two adjacent
items in the list incurs a cost of d. Free exchanges of items are not allowed. The model is motivated
by the fact that, when executing search operations on a data structure, key comparisons are less
expensive than item swaps.

We develop a new randomized online algorithm that achieves an improved competitive ratio
against oblivious adversaries. For large d, the competitiveness tends to 2.2442. Technically, the
analysis of the algorithm relies on a new approach of partitioning request sequences and charging
expected cost. Furthermore, we devise lower bounds on the competitiveness of randomized algorithms
against oblivious adversaries. No such lower bounds were known before. Specifically, we prove
that no randomized online algorithm can achieve a competitive ratio smaller than 2 in the partial
cost model, where an access to the i-th item in the current list incurs a cost of i− 1 rather than i.
All algorithms proposed in the literature attain their competitiveness in the partial cost model.
Furthermore, we show that no randomized online algorithm can achieve a competitive ratio smaller
than 1.8654 in the standard full cost model. Again the lower bounds hold for large d.
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1 Introduction

In this paper we revisit the list update problem, one of the most basic problems in the theory
of online algorithms [7, 26]. The goal is to maintain an unsorted linear linked list of items so
that a sequence of accesses to these items can be served with low total cost. Unsorted linear
lists are sensible when one has to store a small dictionary consisting of a few dozen items.
Moreover, they have interesting applications in data compression. In fact, the standard
compression program bzip2 relies on a combination of the Burrows-Wheeler transform and
linear list encoding [9, 10, 19, 25].

Early work on the list update problem dates back to the 1960s [21]. Over the past decades
an extensive body of literature has been developed, see e.g. [1, 2, 5, 6, 7, 8, 11, 12, 14, 24, 26]
and references therein. List update in the standard model is well understood. In this
setting the cost of an access is equal to the depth of the referenced item in the current
list. Immediately after an access the requested item may be moved at no extra cost to any
position closer to the front of the list (free exchanges). Any other swap of two adjacent items
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in the list incurs a cost of 1 and is called a paid exchange. During the last years, research on
the list update problem has explored (1) alternative cost models [13, 15, 20, 22], (2) refined
input models capturing locality of reference [2, 6, 11], and (3) the value of algorithmic service
abilities [8, 15, 17].

We investigate the list update problem in the P d model, i.e. the paid exchange model,
introduced by Manasse, McGeoch and Sleator [18] as well as Reingold, Westbrook and
Sleator [24]. In this model there are no free exchanges and each paid exchange, swapping a
pair of adjacent items in the list, incurs a cost of d, where d ≥ 1 is a real-valued constant.
The model is motivated by the fact that the execution time of a program swapping a pair
of adjacent items in the list is typically much higher than that of the program doing one
iteration of the search loop. Moreover, bringing a referenced element closer to the front of
the list does incur cost. As main result we develop nearly tight upper and lower bounds on
the competitive ratio achieved by randomized online algorithms.

Problem formulation

In the list update problem we are given an unsorted linear linked list L of n items. An
algorithm is presented with a sequence σ = σ(1), . . . , σ(m) of requests that must be served
in the order of occurrence. Each request σ(t), 1 ≤ t ≤ m, specifies an item in the list. In
order to serve a request, an algorithm has to access the requested item, i.e. it has to start
at the front of the list and search linearly through the items until the referenced item is
found. Hence an access to the i-th item in the list incurs a cost of i. In the standard model,
immediately after a request, the referenced item may be moved at no extra cost to any
position closer to the front of the list. These exchanges are called free exchanges. Moreover,
at any time, two adjacent items in the list may be swapped at a cost of 1. Such exchanges
are called paid exchanges.

In contrast, in the paid exchange model P d, there are no free exchanges. The list can
only be rearranged using paid exchanges. Each paid exchange incurs a cost of d, where d ≥ 1
is an arbitrary, real-valued constant. Following Reingold, Westbrook and Sleator [24] we
assume that the service of a request σ(t), 1 ≤ t ≤ m, proceeds as follows: First an algorithm
performs a number of paid exchanges; then the item referenced by σ(t) is accessed. In general,
in both the standard and the P d model, the goal is to serve a request sequence so that the
total cost is as small as possible.

An online algorithm has to serve each request without knowledge of any future requests.
Given a request sequence σ, let CA(σ) and COPT(σ) denote the costs incurred by an online
algorithm A and an optimal offline algorithm OPT in serving σ. A deterministic online
algorithm A is called c-competitive if there exists an α such that CA(σ) ≤ c · COPT(σ) + α

holds for all request sequences σ. The value α must be independent of the input σ but
may depend on the list length n. A randomized online algorithm A is c-competitive against
oblivious adversaries if there exists an α such that E[CA(σ)] ≤ c · COPT(σ) + α holds for
all σ. Here the expectation is taken over the random choices made by A.

Previous work

Due to the wealth of results on the list update problem, we only mention the most important
contributions relevant to our work. First we focus on the standard model. In their seminal
paper [26], Sleator and Tarjan showed that the deterministic MOVE-TO-FRONT algorithm is
2-competitive. This is the best competitiveness a deterministic online strategy can attain [16].
Subsequent research developed randomized online algorithms against oblivious adversaries.
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Irani [12] gave a SPLIT algorithm that is 1.9375-competitive. Reingold et al. [24] devised a
family of COUNTER algorithms and showed that the best of these achieve a competitive ratio
of 85/49 ≈ 1.7346. In the same paper a generalized RANDOM RESET algorithm attains a
competitive ratio of

√
3 ≈ 1.7321. A family of TIMESTAMP algorithms was developed in [1].

They attain a competitiveness equal to the Golden Ratio (1 +
√

5)/2 ≈ 1.6180. The best
randomized algorithm currently known is 1.6-competitive [3]. The algorithm is a combination
of specific instances of the COUNTER and TIMESTAMP families.

As for lower bounds, Teia [27] showed that no randomized online algorithm can be
better than 1.5-competitive against oblivious adversaries. Ambühl et al. [5] showed that no
projective randomized online algorithm can be better than 1.6-competitive against oblivious
adversaries in the partial cost model. In the partial cost model an access to the i-th item in
the list incurs a cost of i− 1 rather than i. Moreover, an algorithm is projective if it suffices
to consider pairs of items. Specifically, the relative order of any two items in the list only
depends on the previous requests to those elements. All the algorithms mentioned above,
except for SPLIT, are projective.

Recent research on the standard model has proposed models capturing locality of reference
in request sequences [2, 6, 11]. Furthermore, Lopez-Ortiz et al. [17] analyzed the value of
paid exchanges. They showed a lower bound of 12/11 on the worst-case ratio between the
performance of an offline algorithm that uses only free exchanges and that of an offline
algorithm that uses both paid and free exchanges. The optimal offline algorithm does not
need to use free exchanges [23]. Boyar et al. [8] analyzed the list update problem with advice,
where an online algorithm has partial information on future requests.

We next consider the P d model. So far only COUNTER and RANDOM RESET
algorithms have been studied. The best deterministic online algorithm currently known
achieves a competitive ratio of (5 +

√
17)/2 ≈ 4.5616 [4]. No deterministic online algorithm

can be better than 3-competitive [24]. Reingold et al. [24] gave a randomized COUNTER
algorithm. For d = 1, the algorithm is 2.75-competitive against oblivious adversaries. For
increasing d, the competitiveness decreases and tends to (5 +

√
17)/4 ≈ 2.2808. For small

values of d, their RANDOM RESET algorithm achieves competitive ratios that are slightly
smaller than those of the COUNTER algorithm. No lower bounds on the performance of
randomized online algorithms against oblivious adversaries are known.

As for other cost models, Munro [22] and Kamali et al. [13] proposed settings that allow
rearranging large parts of a list at lower costs. Specifically, after an access to the i-th item in
the list, all items up to position i can be rearranged at a cost proportional to i. In an even
stronger model of Kamali et al. [13], which is interesting in data compression applications,
the whole list can be rearranged free of charge, while accessing an item in the ith position
only incurs cost Θ(lg i).

Our contribution

We present a comprehensive study of the list update problem in the P d model. First in
Section 3 we develop a new randomized online algorithm TIMESTAMP(l, p), which is defined
for any positive integer l and any probability p, 0 ≤ p ≤ 1. The strategy incorporates features
of the TIMESTAMP algorithm in the standard model and the COUNTER algorithm in the
P d model. In the P d model one cannot afford to move a referenced item closer to the front of
the list on every request to that item. Therefore, for every item in the list, TIMESTAMP(l, p)
maintains a mod l counter. These counters are initialized independently and uniformly at
random. When an item is requested, its counter value is decremented by 1. If the counter
switches from 0 to l − 1, we say that a master request to that item occurs. On a master
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request to x, with probability p, item x is moved to the front of the list. Otherwise, with
probability 1− p, item x is inserted in front of the first item y in the list such that (a) at
most one master request to y occurred since the last master request to x and (b) the possible
master request to y was also handled according to this latter policy, i.e. y was not moved to
the front.

TIMESTAMP(l, p) achieves an improved competitive ratio of c < 2.2442 against oblivious
adversaries, as d grows. A main contribution of this paper is a new analysis technique.
TIMESTAMP(l, p) is projective so that it can be analyzed on pairs of items. However in the
P d model, in contrast to the standard model, it is hard to keep track of the optimal offline
algorithm. Specifically, it does not hold true anymore that after two consecutive requests to
the same item, that item precedes the other item in the optimum list. Therefore we define a
more general phase partitioning of request sequences. A phase ends whenever the optimum
offline algorithm OPT changes the relative order of the two considered items in the list.
Hence the analysis is guided by OPT’s moves. In particular, each phase can be assigned
the cost of one paid exchange performed by OPT. The challenge is to estimate the cost of
TIMESTAMP(l, p) without making any assumptions on the request pattern at the end of a
phase. In order to analyze any phase, we also devise a new framework to charge expected
service cost.

In Section 4 we develop lower bounds. We prove that, against oblivious adversaries
and as d goes to infinity, no randomized online algorithm can achieve a competitive ratio
smaller than 1.8654. Furthermore, we show that no randomized online algorithm can attain
a competitiveness smaller than 2− 1/(2d) against oblivious adversaries in the partial cost
model, for general d. No lower bound against oblivious adversaries was known before.

In order to establish our lower bounds, we devise a probability distribution on request
sequences: The items of a given list are requested in cyclic order. The number of consecutive
requests to the same item is distributed geometrically with mean 2d. We then compare
expected online and offline cost. The analysis of the expected cost incurred by OPT is quite
involved. In the partial cost model we partition a request sequence into phases, each ending
with a certain surplus of requests to the same item, so that OPT will move that item to
the front of its list. As for the lower bound in the full cost model, we prove that we may
restrict ourselves to the partial cost model and request sequences referencing two items,
provided that we consider projective offline algorithms. Unfortunately, OPT is not projective.
Therefore, we define a family of projective offline algorithms and analyze their cost using a
Markov chain.

Although the competitive ratio of c < 2.2442 achieved by TIMESTAMP(l, p) is a relatively
small improvement over the previous best bound of 2.2808, our work – together with the
lower bounds – significantly tightens the gap on the best competitiveness of randomized
online algorithms in the P d model.

2 Preliminaries

Given any algorithm A for list update in the P d model, let CA(σ) denote its costs incurred
in serving a request sequence σ. We will consider both the full cost model and the partial
cost model. Again, in the former model, an access to the i-th item in the current list incurs a
cost of i. In the latter one the access cost is i− 1 only. Observe that for every algorithm the
total full cost exceeds the total partial cost by precisely m = |σ|, the length of σ. Hence, if
an online algorithm is c-competitive in the partial cost model, it is also c-competitive in the
full cost model, too. Therefore, we will analyze TIMESTAMP(l, p) in the partial cost model.
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We will prove in Section 3 that TIMESTAMP(l, p) is projective so that it can be analyzed
using item pairs. An algorithm is projective if, for any request sequences σ and any pair x, y
of items, the relative order of x and y in the list is always the same as if only references
to x and y were served on the respective two-item list. Formally consider an algorithm A,
a list L and two distinct items x, y ∈ L. Let σ be an arbitrary request sequence. Starting
from an initial list configuration L(0), let LA(σ) be the list state immediately after A has
served σ. Let LA(σ)xy be the list obtained from LA(σ) by deleting all items other than x
and y. Next consider the projected request sequence σxy, obtained from σ by deleting all
requests that are neither to x nor to y. Moreover, let L(0)xy be the list derived from L(0) by
removing all items, except for x and y. Finally, starting with L(0)xy, let LA(σxy) be the list
immediately after A has served σxy. If A is a randomized algorithm, its random choices on
σxy are identical to those on the requests to x and y in σ.

I Definition 1. An algorithm A is projective if and only if, for any request sequence σ,
starting list L and any pair x, y ∈ L of distinct items, LA(σ)xy = LA(σxy).

This property is desirable since it reduces the analysis to two-item lists. Formally, the
following holds:

I Proposition 2. Consider the partial cost model. A projective online algorithm A is c-
competitive if and only if it is c-competitive on request sequences referencing only two items,
which are served on a two-item list.

Since this proposition is well known in the literature, we give the proof in the full version of
the paper. We call an algorithm A strictly c-competitive on σ if we have CA(σ) ≤ c ·COPT(σ).
We will also apply this notion to subsequences λ = σ(t) . . . σ(t′) of σ. It is an obvious but
very useful fact that A is strictly c-competitive on a sequence σ if we can divide σ into
subsequences σ = λ1 . . . λh such that A is strictly c-competitive for each λi, 1 ≤ i ≤ h.
Here we assume that OPT serves the entire sequence σ and evaluate OPT’s cost on each
subsequence λ1, . . . , λh.

3 The TIMESTAMP(l, p)-algorithm

3.1 The algorithm
Our new algorithm TIMESTAMP(l, p), we refer to it by TS(l, p) or TS for short, is the
generalization of TIMESTAMP(p) for the standard cost model [1]. In the P d model item
exchanges are expensive and one can afford them only once in a while. Therefore, for every
item x in the given list L, our algorithm maintains a mod l counter c(x), taking values in
{0, . . . , l − 1}, for some positive integer l. The counter is initialized uniformly at random
and independently of other items.

Consider a request σ(t), referencing item x. There are two cases. If c(x) > 0 before the
request, then c(x) is decremented by 1 and the position of x remains unchanged in the current
list. On the other hand, if c(x) = 0, then a master request occurs. TIMESTAMP(l, p) resets
c(x) to l − 1 and moves x closer to the front of the list, choosing among two policies. With
probability p, item x is simply moved to the front of the list (Policy 1). With probability
1− p, item x is moved more reluctantly (Policy 2). Specifically, the algorithm determines the
longest suffix λ(t) of the request sequence ending with σ(t) such that λ(t) contains exactly
one master request to x, namely the one at σ(t). The algorithm then identifies the first
item z in the current list such that at most one master request to z occurs in λ(t) and
additionally the possible master request, if existent, was served using Policy 2. The algorithm
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12:6 New Bounds for Randomized List Update in the Paid Exchange Model

TIMESTAMP(l, p) moves x in front of z in the list. Observe that x satisfies the conditions
formulated for item z. If z = x the item is not moved. In particular, x does never move
backward in the list, which is sensible. The intuition of Policy 2 is to pass items whose
request frequency, measured in terms of master requests, is not higher than that of x. A
pseudo-code description of TIMESTAMP(l, p) is given in Algorithm 1.

Note that, for any item x, two master requests are separated by l − 1 regular requests
to x so that the item is not moved too often. Since c(x) is initialized uniformly at random,
the cycles consisting of a master request followed by l− 1 regular requests to x are shifted in
a random fashion in σ. In particular, with probability 1/l a request to x happens to be a
master request.

Algorithm 1 TIMESTAMP(l, p).

1: Let σ(t) = x;
2: if c(x) > 0 then
3: c(x)← c(x)− 1;
4: else // σ(t) is a master request
5: c(x)← l − 1;
6: With probability p, serve σ(t) using Policy 1 and

with probability 1− p serve it using Policy 2;
7: Policy 1: Move x to the front of the list.
8: Policy 2: Let λ(t) be the longest suffix of the sequence ending with σ(t) in which

exactly one master request to x occurs. Let z be the first item in the current list for
which at most one master request occurs in λ(t) and the possible master request was
served using Policy 2. If z 6= x move x in front of z in the list.

Theorem 3 gives the competitive ratio of TS(l, p), which is the maximum of six expressions.
Nonetheless, the maximum can be determined exactly and truly optimal, algebraic values
for p, l and hence the competitive ratio c can be computed. Details are given in the full
paper. By plugging in p = 0.45787 and ϕ = l/d = 1.19390, the reader can verify that indeed
c < 2.2442. For the optimal choice of p and ϕ, we have c1 = c2 = c3 while the other ratios
are smaller.

I Theorem 3. Let ϕ = l
d . TS(l, p) is c-competitive, where c is the maximum of the following

expressions:

c1 = 1 +
( 1

2 + max{1, 2p}(1− p)
)
ϕ c2 = 7−3p

4 + 1
ϕ c3 = 1 + 3p

2 − p
2 + 2p

ϕ

c4 = 3−p+p2

2 + 2(1−2p+2p2)
ϕ c5 = 3+p−p2

2 + 2p2

ϕ c6 = 2− p+ 1−p
ϕ .

As d goes to infinity, c < 2.2442, when choosing p ≈ 0.45787 and l such that ϕ ≈ 1.19390.

Figure 1 depicts the max-function we wish to minimize, considering two ranges for p and ϕ
each. A thorough analysis shows indeed that it is identical to the function max{c1, . . . , c4}.

3.2 The analysis
We will prove that TS(l, p) is c-competitive in the partial cost model, for the ratio c stated in
Theorem 3. As explained in Section 2 this immediately implies c-competitiveness in the full
cost model. In [1] it is shown that TS(l, p) is projective for l = 1. This is easily generalized
to the case of arbitrary l. A proof of the following proposition is contained in the full paper.

I Proposition 4. The algorithm TS(l, p) is projective.
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Figure 1 The function of Theorem 3. (The plot is colored.)

Therefore, we may consider an arbitrary request sequence σ, referencing two items x
and y that is served on a two-item list. We will compare the expected cost incurred by
TS(l, p) to the cost of OPT on σ.

A simple observation is that at any time while TS(l, p) serves σ, the counter value of
any item is uniformly distributed over {0, . . . , l − 1}, independently of the counters of other
items. This holds true because the counter value of an item, at any time, is equal to its
initial value minus the number of requests to that item served so far modulo l. We will use
this fact repeatedly. Of course, care needs to be taken since the choices of TS(l, p) are highly
correlated with the counter values.

The analysis of TS(l, p) crucially relies on a new phase partitioning of σ, together with a
sophisticated cost charging scheme. More precisely, the service cost of a request to an item is
paid at the next master request to that item, provided it occurs in the current phase. Extra
care needs to be taken about items where this master request belongs to the next phase. The
cost will then be further redistributed so that the expected service cost within a phase can
be analyzed independently of counter values at the beginning or during the phase.

Phases and pre-refined cost
Phase partitioning

Given an arbitrary request sequence σ, we partition it into phases. The first phase starts
with the first request in σ. Whenever OPT exchanges the two items x and y, the current
phase ends and a new phase starts with the request to the item just moved forward. Recall
that in response to a request, an algorithm may first exchange items. Then the request is
served. Hence, when OPT swaps x and y, the most recent request served is the final one of
the current phase. The upcoming request is the first one in the new phase. The last phase
ends with the last request in σ.

Suppose that σ has been partitioned into phases λ1, . . . , λk. We will prove that, for
any phase λi, TS(l, p)’s expected cost is bounded from above by c times the cost paid by
OPT, where c is the ratio given in Theorem 3. This establishes the theorem. In analyzing
a phase, we charge OPT a cost of d for the item swap at the end of the phase, in addition
to the service costs. We will charge this cost of d also in the last phase λk. This way we
overestimate OPT’s cost on σ by d, which does not affect the competitive ratio.

Now consider an arbitrary phase λ = λi. In what follows, y denotes the item stored at
the first position in OPT’s list. Item x is the one stored at the second position, behind y.
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12:8 New Bounds for Randomized List Update in the Paid Exchange Model

Thus OPT incurs a service cost of 1 for each reference to x. Requests to y cost 0. Item x

will be the good item because its service cost can be used to balance TS(l, p)’s cost. Item y

will be the bad item.

Pre-refined cost

We wish to evaluate the algorithms’ cost in λ without considering neighboring phases and
by focusing on master requests. Therefore, in a series of two steps, we will pass over to
the refined cost setting. First, we define the pre-refined cost for TS(l, p). The service cost
incurred by TS(l, p) on a request to an item z ∈ {x, y} is charged at the next master request
to z in the phase, if it exists. This charging scheme is applied even if the reference to z itself
is a master request. We still have to take care of service cost incurred on requests that are
not followed by a master request in the phase.

For the item y, we simply append l requests to y at the end of the phase, right before
OPT moves the element y to the back of its list. Then an additional master request to
y occurs at the end of the phase and the service cost of previous, unpaid requests to y is
covered. Indeed we will add 2l requests to y so that any phase ends with two master requests
to y. This will be convenient in the further phase analysis. The service cost of OPT does
not increase by the addition of requests to y. We remark that in analyzing a phase, we will
make no assumptions regarding the end of the preceding phase. In particular, the analysis
will not assume that 2l requests to x (or y) where appended to the preceding phase as this
would impact the behavior of TS(l, p).

As for the requests to x that are not followed by a master request to x in the phase, we
have to be more careful. Adding additional requests to x at the end of the phase is infeasible,
since it would increase the costs of OPT. Therefore, regarding requests to x that are not
followed by a master request to x in a given phase, we ignore their cost. Instead, at the first
master request to x in the phase, if it exists, we charge TS(l, p) a cost of l no matter how
many non-master requests have occurred so far. We show in the full paper that TS(l, p)’s
expected cost does not decrease when changing over to the pre-refined cost setting. For
further reference, the following definition summarizes this cost charging scheme.

I Definition 5. In the pre-refined cost setting, 2l requests to the bad item y are appended at
the end of a given phase. TS(l, p)’s cost incurred at a request to z ∈ {x, y} is charged to the
next master request to z in the phase, if such a request exists. At the first master request to
the good item x in the phase, if it exists, a cost of l is charged to TS(l, p).

I Lemma 6. TS(l, p)’s expected cost in a phase does not decrease when passing over to the
pre-refined cost setting.

The proof is given in the full paper. The main idea is to show that, for item x, the expected
extra cost charged at the first master request covers the expected cost ignored at the end
of the phase. Note that there might be no master request to x in a phase consisting of less
than l requests to x. In this case every request to x is a master request with probability 1/l
and thus pessimistically charged cost 1/l · l = 1 in expectation. From now on we evaluate
TS(l, p)’s cost in the pre-refined cost setting.

Counter fixing for x and refined cost
Given a phase λ, we split OPT’s cost so that OPT also incurs service cost at the master
requests to x, in addition to the cost for the paid exchange. In particular, this will allow
us to fix the counter value of x at the beginning of λ and compare the cost of TS(l, p) to
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that of OPT. Let E[CTS(λ)] denote TS(l, p)’s expected cost in λ. Moreover, let cx be the
counter value of x at the beginning of λ. Finally E[CcTS(λ)] denotes TS(l, p)’s expected cost
conditioned on cx = c. Since cx takes any value in {0, . . . , l − 1} with equal probability 1/l,
E[CTS(λ)] = 1/l ·

∑l−1
c=0 E[CcTS(λ)].

Assume that λ contains kl + j requests to x, for some k ≥ 0 and 0 ≤ j ≤ l − 1. Then
OPT’s cost in λ is equal to COPT(λ) = d+ kl + j. Let kc be the number of master requests
to x in λ conditioned on cx = c. If c < j, then kc = k + 1; otherwise kc = k.

Define CcOPT(λ) := d + kcl. Then 1/l ·
∑l−1
c=0 C

c
OPT(λ) = d +

∑l−1
c=0 kc = d + j(k + 1) +

(l − j)k = d+ kl + j = COPT(λ). This implies

E[CTS(λ)]
COPT(λ) =

1/l ·
∑l−1
c=0 E[CcTS(λ)]

1/l ·
∑l−1
c=0 C

c
OPT(λ)

≤ max
c

{
E[CcTS(λ)]
CcOPT(λ)

}
.

Hence in the following we consider a fixed cx = c and upper bound E[CcTS(λ)]/CcOPT(λ). We
emphasize that CcOPT(λ) charges service cost l to every master request to x.

We next partition a given phase λ into a prephase and a postphase, i.e. λ = λpreλpost.
The prephase λpre starts at the first request in λ and ends right before the first master
request to x in the phase. If no master request to x exists in λ, then λpre ends with the last
request in λ and the postphase is empty. Note that λpre cannot be empty, since the first
request of the phase must go to y. The cost of d the algorithm OPT incurs due to the paid
exchange made at the beginning of the phase accounts for the prephase, while the cost of l
the optimum algorithm pays at any master request to x is charged in the postphase.

The remainder of this section is devoted to evaluating TS(l, p)’s expected cost on λpre
and λpost. For the analysis on λpost, in a second step, we change over to a refined cost setting
that applies in λpost. In this framework TS(l, p) is charged a pessimistic cost of l at every
master request to x if item x is not at the front of the list when the request occurs. If after a
master request to x algorithm TS(l, p) has item x at the front of the list, then the request
is charged an additional cost of l/2 to pay the service cost of references to y until the next
master request to y occurs. A master request to y is assigned a cost of l if item y has been
at the back of TS(l, p)’s list since the last master request to y. This covers the remaining
cost for requests to y. Note in this case the preceding master request to y must have been
treated using Policy 2. Lemma 8 below shows that TS(l, p)’s expected cost does not decrease
when passing over to the refined cost.

I Definition 7. In the refined cost setting for TS(l, p) in λpost, a master request to x is
charged a base cost of l if the master request is the first one to x in λpost (and hence λ) or if
x is not at the front of TS(l, p)’s list when the request is presented. An additional cost of
l/2 is charged at the master request to x if, after service of the request, x is at the front of
TS(l, p)’s list. A master request to y in λpost is charged a bad cost of l if y has been at the
back of TS(l, p)’s list since the last master request to y.

I Lemma 8. The expected cost of TS(l, p) in λpost does not decrease when passing over to
the refined cost.

Proof. First consider a master request to either x or y, assuming that the referenced item is
at the front of TS(l, p)’s list when the request occurs. Then the item must have been at the
front of the list since the last master request to the item. Hence, no cost needs to be charged.

Next consider a master request to x and suppose that x is not at the front of TS(l, p)’s
list when the request occurs. The refined cost framework charges the maximum possible
service cost for l references to x. This reasoning also applies to the first master request to x
in λpost.
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We next examine a master request Y to item y, assuming that y is not at the front of
TS(l, p)’s list when Y occurs. If y has been at the back of TS(l, p)’s list since the last master
request to y, the refined cost framework charges a cost of l to Y , which is equal to the true
service cost for the last l requests to y. An overpayment might occur if the last master
request to y was in the previous phase.

The interesting case is the one where y was at the front of TS(l, p)’s list after the previous
master request to y was served. Then there must exist a master request X to item x where
TS(l, p) moved x to the front of the list. We now assign the cost to be paid at Y to X instead.
Let cXy denote the counter value of y at request X. There are cXy non-master requests to y,
each incurring a cost of 1, that need to be paid at Y . This cost is now assigned to X. In the
following we prove that the expected cost assigned to X, over TS(l, p)’s random choices and
the counter value of y at X, is bounded above by l/2 times the probability that x is at the
front of TS(l, p)’s list after X has been served. We remark that we analyze a slightly more
pessimistic cost charging scheme. Any master request X to x is charged a cost of cXy if x
resides at the front of TS(l, p)’s list after the service of X, independently of whether or not
x was just exchanged with y.

Given any master request X to x, let q(c) = qX(c) be the random variable denoting the
probability that item x is at the front of TS(l, p)’s list after X has been served, conditioned
on cXy = c. For simplicity we denote the counter cXy of y at X by cy. Then the expected cost
charged at X is exactly

Ecy [q(cy)cy] =
∑l−1
c=0 P [cy = c] P [x is at the front after serving X | cy = c] cy.

The probability of x being at the front of TS’s list after the service of X is

Ecy [q(cy)] =
∑l−1
c=0 P [cy = c] P [x is at the front after serving X | cy = c] .

In the refined cost framework, the expected additional cost charged at X is Ecy
[q(cy)] · l/2 ≥

Ecy [q(cy)] Ecy [cy]. Hence it remains to prove that Ecy [q(cy)cy] ≤ Ecy [q(cy)]Ecy [cy]. The
last inequality holds if and only if the covariance of the random variables cy and q(cy) is not
positive. The latter property in turn holds if q(cy) is (non-strictly) decreasing in cy. We
verify this property by giving a complete characterization of the function q(cy). Let r denote
the number of requests to y between X and the master request to x before that.

If cy < l − r, then the master request preceding X is to x and the probability of x being
at the front of the list after X is 1.
If l − r ≤ cy < 2l − r, then the two master requests preceding X are xy (in that order).
The element x is moved to the front if and only if either X is served with Policy 1 or the
preceding master request to y is served with Policy 2. Hence, the probability of x being
at the front of the list is q(cy) = p+ (1− p)2.
If 2l− r ≤ cy, then the two master requests preceding X both go to y and the probability
of x being at the front of the list after the service of X is exactly p, the probability that X
was handled by TS(l, p) using Policy 1.

In particular the function q(cy) is decreasing. J

The cost analysis of a phase
Consider an arbitrary phase λ. Let λpost be its postphase, which starts with a master request
to x and ends with at least two master requests to y, according to the phase adjustment
we did when changing over to the pre-refined cost. We next modify λpost so that we can
partition it into subphases, each ending with at least two master requests to y. For this
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purpose consider two consecutive master requests to x that are preceded by a single master
request to y. The next proposition shows that we can insert l new requests to y, thereby
generating a new master request to y, without decreasing the strict competitiveness on λpost.
The proof is given in the full version of the paper.

I Proposition 9. Consider a subsequence of consecutive master requests x0y1x1x2 in λpost
where master request zi goes to z, z ∈ {x, y}. Add l new requests to y before x1. TS(l, p)’s
expected refined cost on the resulting sequence of master requests x0y1y2x1x2 is at least as
high as that on the former sequence. OPT’s cost does not change.

Hence in λpost, whenever two master requests to x are preceded by exactly one master
request to y, we insert l new requests to y. Again, this creates a second master request to y.
We then partition λpost into subphases, each ending with two master requests to y. More
precisely, the first subphase starts with the first master request in λpost. A subphase ends
immediately before a master request to x that is preceded by at least two master requests
to y. Observe that whenever at least two consecutive master requests to x occur, they start
a new subphase. We obtain two types of subphases, specified by their master requests.

Type 1: x(yx)ky2+i for some i, k ≥ 0.
Type 2: x2+j(yx)ky2+i for some i, j, k ≥ 0.

In the following four lemmas we analyze TS(l, p) on any subphase. If the subphase is
the first one in λpost, we analyze it jointly with the preceding prephase λpre. Together the
four lemmas imply Theorem 3. The cost ratios ci, 1 ≤ i ≤ 6, stated in the lemmas are
identical to those of Theorem 3. In Lemma 10 we first consider Type 2 subphases as TS(l, p)’s
performance ratio on those phases can be bounded independent of the preceding master
requests. Then Lemmas 11, 12 and 13 address Type 1 subphases with the preceding master
requests. Lemma 11 considers the case that a Type 1 subphase is preceded by two master
requests to y. Note that this is, in particular, the case for any Type 1 subphase that is not
the first subphase in the given λ. Lemmas 12 and 13 address the special cases where a Type 1
subphase is preceded (a) by master requests to x and y, in this order, or (b) by a master
request to x. In both cases such a subphase must be the first one in λpost. Moreover, λpre
consists of less than two master requests to y in these special cases. In fact in case (b), there
is no master request in λpre. Proofs of all the lemmas are presented in the full paper.

I Lemma 10. TS(l, p) is strictly max{c1, c2, c4}-competitive on any subphase of Type 2,
including a possible preceding prephase.

I Lemma 11. TS(l, p) is strictly max{c1, c3, c4}-competitive on any subphase of Type 1,
including a possible prephase, if the subphase is preceded by two master requests to y.

I Lemma 12. TS(l, p) is strictly max{c1, c4, c5}-competitive on any subphase of Type 1 and
its leading prephase if the subphase is preceded by master requests to x and y in this order.

I Lemma 13. TS(l, p) is strictly max{c1, c4, c6}-competitive on any subphase of Type 1 and
its leading prephase if the subphase is preceded by a master request to x.

4 Lower bounds

We develop lower bounds in the partial cost and the full cost P d models.

I Theorem 14. Let A be a randomized online algorithm for list update in the partial cost
P d model. If A is c-competitive against oblivious adversaries, then c ≥ 2− 1

2d . This holds
even for request sequences referencing only two items.
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We conjecture that a lower bound of 2 − 1
2d also holds for the full cost P d model. The

difficulty is to bound the cost of OPT from above on request sequences referencing a general
set of n items. We can establish the following lower bound in the full cost P d model.

I Theorem 15. Let A be a randomized online algorithm for list update in the full cost P d
model. If A is c-competitive against oblivious adversaries, then c is at least

1
1 + 2W

(−1
2e
) −O(1

d

)
≈ 1.8654.

Here W is the upper branch of the Lambert-W-function, i.e. W
(−1

2e
)
is largest value x

satisfying 2xex+1 = −1.

Table 1 presents the values of the lower bound of Theorem 15, for small values of d, up to
d = 100. For d = 1, i.e. the standard cost model, our bound matches the one by Teia [27].

Table 1 The lower bound in the full cost P d model for various d.

d c(d)
1 1.5
2 1.8036
3 1.8270
4 1.8337
5 1.8420

d c(d)
6 1.8438
7 1.8485
10 1.8531
20 1.8594
100 1.8642

A probability distribution on request sequences
For the proof of the two theorems above, we use Yao’s minimax principle [28]. We define
a probability distribution on request sequences and compare the expected cost incurred
by any (deterministic) online algorithm A to that of OPT. For the definition of our
probability distribution, we describe how to sample a request sequence according to it. Let
L(0) = [x0 . . . xn−1] be a starting list of n items; xi precedes xi+1 for i = 0, . . . , n − 2.
Throughout the sampling process the list is static, i.e. no rearrangement of items is done.
The items will be requested in a cyclic fashion, in decreasing order of index. Each item will
be referenced a certain number of times.

Formally, in addition to L(0), the sampling process takes as input a number N ∈ N and a
starting item x ∈ L(0). Typically, the starting item is equal to the last item xn−1 in the list
but the process is defined for any x ∈ L(0). The sampling process produces a request sequence
consisting of N segments. Throughout this section a segment is a maximal subsequence of
requests to the same item. Moreover, to simplify notation, we set xi = xi mod n, for all i ∈ Z.

Initially, the request sequence σ to be produced is equal to the empty string. In each
step of the sampling procedure, if N > 0, a request to the current item x is appended at
the end of σ. Then with probability p = 1/(2d), the value N is decremented and x = xi
is replaced by xi−1. Hence in this event the segment of requests to xi ends and a segment
of references to xi−1 starts. Note that the length of a segment is geometrically distributed
with p = 1/(2d) and thus equal to 2d in expectation. The process stops when N = 0. A
pseudo-code description of the sampling process is given in Algorithm 2. Let SN [x] denote
the resulting probability distribution on request sequences with starting item x. Furthermore,
let SN = SN [xn−1].
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The lower bound construction in the full cost model will work with sequences generated
according to this particular process. In the partial cost model we will have to extend the
process so that the request sequences admit a phase partitioning and end with a complete
phase.

Algorithm 2 SampleRequestSequence.

1: Input: L(0) = [x0 . . . xn−1], N ∈ N and x ∈ L(0).
2: σ := empty string;
3: while N > 0 do
4: Append x to σ;
5: With probability p = 1

2d , decrement N and replace x = xi by xi−1;
6: Return σ;

We next introduce the notion of an algorithm being uncompetitive. It will be particularly
useful when deriving our lower bound in the full cost model. Nonetheless, the notion applies
to both the partial and the full cost models and it will always be clear from the context
which model is used.

I Definition 16. Let c ≥ 1. An online algorithm A is c-uncompetitive against an offline
algorithm B if, for every ε > 0, there exists an initial list L(0) such that

lim
N→∞

Eσ∼SN
[CA(σ)]

Eσ∼SN
[CB(σ)] ≥ c− ε.

If B = OPT, algorithm A is simply c-uncompetitive. Finally, A is c-uncompetitive on
two-item sequences (against B) if the above condition holds with ε = 0, for lists consisting of
two items.

The terminology is relevant due to the following obvious fact.

I Lemma 17. If a (possibly randomized) online algorithm A is c-uncompetitive, then its
competitive ratio is not smaller than c.

In a first step we bound the expected cost incurred by any online algorithm A on request
sequences generated according to SN from below. In Theorem 14, we consider the partial
cost model and request sequences referencing two items. In the proof of Theorem 15, we
show that we may restrict ourselves to the partial cost model and, again, may focus on
two-item request sequences if we consider a projective offline algorithm. Therefore, the
following Lemma 18 will be essential in the proofs of Theorems 14 and 15. Let L(0) = [xy]
be a list consisting of two items x and y; where x is initially stored in front of y. Consider
the distribution SN = SN [y].

I Lemma 18. Let L(0) = [xy]. For every online algorithm A and every N , we have in the
partial cost model

Eσ∼SN
[CA(σ)] ≥ dN.

Proof. It suffices to prove the lemma for deterministic algorithms because any randomized
algorithm is a probability distribution over deterministic ones. Hence, let us assume for the
sake of a contradiction that there were a deterministic online algorithm A and an N ∈ N
such that

C = Eσ∼SN

[
Cpart
A (σ)

]
< dN.
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Among all possible choices, we choose such a pair (A,N) with N minimal and, in case of
ties, C minimal. We clearly have N > 0. Given a sequence σ we denote by α(σ) the number
of leading requests to y and by β(σ) the number of requests to x following those.

We show that the algorithm A does not immediately move the element y to the front of
its list. Indeed, let us write σ = yα(σ)σ′. If we choose σ ∼ SN and pass over to σ′, it is the
same as choosing σ′ ∼ SN−1[x]. Now if A were to move the item y immediately to the front,
it would incur exactly cost d on the sequence yα(σ). Then, by the minimality of N , it will
incur an expected cost of at least d(N − 1) on σ′ and hence a total expected cost of at least
dN . This is a contradiction to the assumption that C < dN .

Hence we may assume that A does not immediately move y to the front of its list. For
σ ∼ SN we consider two cases. With probability 1

2d , the sequence σ starts with a single
request to y, i.e. we have α(σ) = 1. Then σ = yxβ(σ)σ′′. Note that we have σ” ∼ SN−2 if we
pick σ ∼ SN |α(σ)=1. On the sequence yxβ(σ) the algorithm A incurs cost of exactly 1 at the
first request. By the minimality of N we have for the remainder σ” of the sequence σ

Eσ” [CA(σ”)] ≥ d(N − 2).

Note that this is obviously true if N − 2 ≤ 0 holds.
On the other hand, with probability 1− 1

2d , we have α(σ) > 1. In this case the algorithm
A incurs cost 1 on the first request to y. We consider the algorithm B which behaves like the
algorithm A after having read a request to y, i.e. on the input sequence σ it behaves like A
would on the corresponding suffix of yσ. By the minimality of C we have Eσ∼SN

[CB(σ)] ≥ C.
Note that sampling σ from SN conditioned on it starting with at least two requests to y is
the same as sampling σ from SN and appending a request to y to its front. Hence we get

Eσ∼SN
[CA(σ) | α(σ) > 1] = 1 + Eσ∼SN

[CB(σ)] ≥ 1 + C.

In total we have

C = 1
2dEσ∼SN

[CA(σ) | α(σ) = 1] +
(
1− 1

2d
)

Eσ∼SN
[CA(σ) | α(σ) > 1]

≥ d(N−2)+1
2d +

(
1− 1

2d
)

(C + 1)
= dN

2d +
(
1− 1

2d
)
C.

The last inequality implies C ≥ dN . Again, we have reached the desired contradiction. J

The challenging part in the proofs of Theorems 14 and 15 is to bound the expected cost
incurred by OPT on sequences drawn according to SN . In the following we sketch some of
the main ideas. Full analyses are presented in the full paper.

Proof sketch for Theorem 14
We focus on request sequences referencing two items x and y, and hence on sequences σ ∼ SN
with initial list L(0) = [xy]. Such sequences consist of N segments that in turn reference y
and x. Given a sequence σ′ and an item z ∈ {x, y}, let |σ′|z be the number of requests to z
in σ′.

The optimal algorithm for two-item sequences is the following: We consider the case
where y is at the front of the list of OPT and x is at the back. The opposite case works
symmetrically. If y is requested next, OPT will obviously not move it to the back, but
wait, until x is requested. If x is requested next, OPT needs to decide whether to move
x to the front of its list. It does so if and only if there is a prefix σ′ of future requests
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with |σ′|x = |σ′|y + 2d and no (non-empty) prefix σ′′ of σ′ satisfies |σ′′|x ≤ |σ′′|y. There is
a special case if prefix σ′ comprises the entire sequence of future requests. Then we only
require in the first condition that |σ′|x ≥ |σ′|y +d holds true. In the following we will analyze
a simpler algorithm O, which omits this special case. While O is only close-to-optimal, it
still gives a good upper bound on OPT. Additionally, we will consider the algorithm Ō that
always keeps its list in opposite order, compared to the list of O. On each request in a given
sequence, exactly one of the two algorithms has a service cost of 1.

Given any sequence σ, let C̃O(σ) and C̃Ō(σ) be the pure service cost of O and Ō.
Furthermore, let DO(σ) be the cost incurred by O for paid exchanges. Define K(σ) =
C̃Ō(σ)− C̃O(σ)− 2DO(σ). For σ ∼ SN , K(σ) is a random variable, which we denote by EN .
We will show that Eσ∼SN

[CO(σ)] = dN −E[EN ]/2. Thus, by Lemma 18, the value E[EN ]/2
is a lower bound for the cost the algorithm O saves compared to any online algorithm. The
heart of the analysis is to estimate that limN→∞E[EN ]/N ≥ 2d(2d− 1)/(4d− 1). Together
with Lemmas 18, this implies that any online algorithm A is c-uncompetitive against OPT
with c ≥ dN/(dN − N

2
2d(2d−1)

4d−1 ) = 2− 1
2d . In particular, by Lemma 17 its competitive ratio

is at least 2− 1/(2d).
For the analysis of E[EN ], we partition a request sequence σ ∼ SN into phases. Each

phase λ consists of a series of subphases µ1, . . . , µl. We describe how to obtain µ1. At the
beginning of λ, let z ∈ {x, y} be the current item in the sampling process, i.e. the first
segment in λ consists of requests to z. Let z′ ∈ {x, y}, z′ 6= z, be the other item. Starting
at the beginning of λ we scan the generated requests, adding them to µ1 until one of the
following events occurs. (1) |µ1|z = |µ1|z′ or (2) |µ1|z = |µ1|z′ + 2d. In case (1) we call µ1 a
zero-subphase; in case (2) µ1 is an up-subphase. When event (1) or (2) occurs, the remaining
requests of the current segment are appended to µ1. These requests form the post-subphase.
Then µ1 ends. Each following subphase µi, for i > 1, is obtained in the same way, starting at
the end of µi−1. Phase λ ends when, for the first time, an up-subphase is obtained. Formally,
algorithm O moves item z to the front of the list right before the up-subphase.

We extend the sampling process so as to obtain sequences ending with a complete phase.
This induces a slightly related probability distribution of request sequences, which is not
critical though. For any λ, let C = K(λ) and let R = R(λ) be the number of segments
in λ. At the heart of the analysis, using a recurrence relation, we prove limN→∞E[EN ]/N ≥
E[C]/E[R]. We argue that E[C] is the total length of all post-subphases in λ. Then we show
E[C] = (2d− 1)/(1−P0) and E[R] = (4d− 1)/(2d(1−P0)), where P0 is the probability that
a subphase happens to be a zero-subphase. This yields the desired bound.

Proof sketch for Theorem 15
In this setting we are given a list L = L(0) with n items. Again, we focus on request sequences
generated according to SN (Algorithm 2). We first prove that we may restrict ourselves to the
partial cost model and two-item request sequences if we focus on projective offline algorithms:
If every deterministic online algorithm is c-uncompetitive on two-item sequences against
a projective offline algorithm B in the partial cost model, then every deterministic online
algorithm is c-uncompetitive against B in the full cost model. Nonetheless, the analysis of
the offline algorithm O developed for the proof of Theorem 15 cannot be employed because
O and OPT are not projective.

Therefore, we define a family of projective offline algorithms Bh, for 0 < h < 2d. Consider
a request sequence to be served on a list L consisting of n items. When presented with
any request, Bh works as follows: If the next h requests reference the same element z ∈ L,
algorithm Bh moves z to the front of its list. Otherwise it does not change the list. Algorithm
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Bh is projective, for sequences σ generated by SN , because items are requested in cyclic
order in σ and a projection to item pairs does not create longer subsequences of the same
item.

Given the result for projective offline algorithms stated above, it suffices to analyze Bh
on two-item sequences. Let L(0) = [xy] be the starting list. Technically, the main step is to
show that, for any σ ∼ SN , the expected cost incurred by Bh is

Eσ∼SN
[CBh

(σ)] =

(
1−(1−p)h

p − h(1− p)h−1
)

+ (1− p)h−1d

2− (1− p)h−1 N + o(N), (1)

where p = 1/(2d). In order to establish this equation, given σ ∼ SN , we write σ =
zα1

1 zα2
2 . . . zαN

N , where z1 = y and z2 = x. If we consider the algorithm Bh at the beginning
of the subsequence zαt

t , there can be three cases.
If zt is at the back of the list of Bh and αt ≥ h holds, we say the sequence zαt

t is of type h.
The algorithm Bh will incur a cost d on it because it immediately moves zt to the front.
If zt is at the back of the list of Bh and αt = j < h, we say the sequence zαt

t is of
type (j, 1). The algorithm Bh will incur cost j on it.
If zt is at the front of the list of Bh, the algorithm will incur no cost on it. Further we
have t > 1 and αt−1 = j < h, for some j. We say the sequence zαt

t is of type (j, 2).
For a type w ∈ Wh = {1, . . . , h − 1} × {1, 2} ∪ {h}, let P (t)w be the probability that the
sequence zαt

t is of this type if we sample σ ∼ SN . The process forms a Markov chain: From
type (j, 1), for j < h, we pass to the type (j, 2) with probability 1. From every other type w
we pass to type (j, 1), for j < h, with probability p(1− p)j−1 and to type h with probability
(1− p)h−1. Using basic Markov analysis we evaluate limt→∞ P (t)w, for w = (j, 1), w = (j, 2)
and w = h. Using the respective expressions, we obtain (1). Using this expression, we can
immediately verify the competitive ratios in table 1 using the following optimal choices of h.

Table 2 The best choices of h, for small values of d.

d c(d) h

1 1.5 1
2 1.8036 3
3 1.8270 5
4 1.8337 6
5 1.8420 8

d c(d) h

6 1.8438 10
7 1.8485 11
10 1.8531 16
20 1.8594 31
100 1.8642 154

To obtain the lower bound for d→∞ we set h = b2h̃dc for some h̃ > 0 to be determined
later. Then Eσ∼SN

[CBh
(σ)] is of the form (1 + 2h̃e−h̃

e−h̃−2 +O
( 1
d

)
)dN +o(N). Lemma 18 implies

that every online algorithm A is c-uncompetitive against the algorithm Bh in the full cost
model, where c is at least (1 + 2h̃e−h̃/(e−h̃ − 2))−1 as d→∞. Lemma 17 ensures that the
competitive ratio of A is not smaller than the above expression. Theorem 15 follows if we set
h̃ = W (−1/(2e)) + 1.
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Abstract
We study the problem of covering a set of segments on a line with the minimum number of unit-length
intervals, where an interval covers a segment if at least one of the two endpoints of the segment falls
in the unit interval. We also study several variants of this problem.

We show that the restrictions of the aforementioned problems to the set of instances in which all
the segments have the same length are NP-hard. This result implies several NP-hardness results in
the literature for variants and generalizations of the problems under consideration.

We then study the parameterized complexity of the aforementioned problems. We provide tight
results for most of them by showing that they are fixed-parameter tractable for the restrictions in
which all the segments have the same length, and are W[1]-complete otherwise.
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1 Introduction

Problem Definition and Motivation. The problem of covering a set of points on the (real)
line with the minimum number of closed unit-length intervals is a classical problem that can
be solved in polynomial time by a simple greedy algorithm (e.g., see exercise 16.2-5 in [8] and
exercise 5 in chapter 4 of [18]). A generalization of the above problem to that of covering a
set of segments on the real line with the minimum number of unit intervals, where an interval
covers a segment if at least one endpoint of the segment is in the interval, has been studied
in several works [2, 3, 4]. For clarity, throughout the paper, we distinguish the entities to be
covered from those used for covering, by referring to the former as segments and the latter
as intervals. It is easy to see that the greedy algorithm – referred to above – no longer works
for this generalization. In fact, this generalization turns out to be NP-hard, even though a
straightforward (polynomial-time) greedy algorithm works for the restriction in which all
segments have length at most 1 (unit).
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13:2 On Covering Segments with Unit Intervals

Recently, several variants and generalizations of the above segment covering problem
have been considered (as discussed below). Two natural variants arise based on whether the
unit intervals can be arbitrarily chosen on the line, or are restricted to a given input set;
the former version has been referred to as the continuous version as opposed to the latter
discrete version. Moreover, a more restricted notion of covering has been studied as well, that
we refer to henceforth as exact covering, in which exactly one endpoint from each segment
must be covered by the unit intervals.

In this paper, we study the classical and parameterized complexity of the variants of
segment covering by unit intervals discussed above, in most cases providing tight characteriza-
tions. The problem variants we study are: Continuous Segment Covering (Cont-SC);
Discrete Segment Covering (Disc-SC); Continuous Exact Segment Covering
(Cont-Exact-SC); and Discrete Exact Segment Covering (Disc-Exact-SC).

Related Work. Arkin et al. [2, 4] studied the exact covering problem of a set of color
classes, where each color class contains two points on the real line of the same color, with the
minimum number of intervals; here an interval covers a color class if it covers exactly one
point from the color class. This is precisely the notion of exact segment covering, in which
each color class corresponds to a segment whose endpoints are the two points in the class. It
was shown in [2] that the aforementioned problem is NP-hard, and that the case in which
the intervals are restricted to be unit intervals is NP-hard as well.

Arkin et al. [3, 4] also studied the problem of finding a conflict-free covering, where a
color class can have both points covered, but it is not allowed to use an interval that covers
both points of any color class. They showed that both the discrete and continuous versions
of the aforementioned problem are NP-hard, and gave approximation algorithms of ratios 3
and 2, respectively, for them. They also studied a problem variant in which each color class
consists of a horizontal or a vertical unit-length segment in the plane, and the goal is to
compute a minimum-cardinality set of axes-parallel unit squares such that exactly one point
from each segment is covered by the unit squares. They showed that this variant is NP-hard,
and gave an approximation algorithm of ratio 6 for it. Achaaryya et al. [1] studied several
variants of covering segments with axes-parallel unit squares in the plane. They obtained
approximation algorithms and showed the NP-hardness of the variant in which all segments
are horizontal unit segments.

The Cont-Exact-SC and Disc-Exact-SC problems under consideration are also
related to an NP-hard combinatorial problem, referred to as the “Paintshop” problem [5, 15],
that has applications in automotive industry. Other applications of covering line segments
(referred to as “stabbing”) with geometric objects (such as unit disks/squares) are in the
area of networks security (see [1, 19]).

Finally, we mention that there is a vast amount of literature on other notions of covering
and stabbing of geometric objects [7, 12, 13, 20, 21, 22].

Our Results. Our results for the Cont-SC, Disc-SC, Cont-Exact-SC, and Disc-Exact-
SC problems can be summarized as follows (recall that the covering elements in all these
segment covering variants are unit intervals):
(i) The restrictions of Cont-SC, Disc-SC, Cont-Exact-SC, and Disc-Exact-SC to

instances in which all segments have the same length are NP-hard.
This NP-hardness result has important implications. First, it strengthens and implies
several NP-hardness results in the literature about segment covering. The NP-hardness of
Cont-Exact-SC implies the NP-hardness result stated in Theorem 6 of [2]. Moreover,
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since we (can) assume that the uniform segment length in these restrictions of Cont-
SC and Disc-SC is more than 1 (otherwise, the problem is polynomial-time solvable
by a simple greedy algorithm), our NP-hardness result for Disc-SC implies the NP-
hardness result in Theorem 1 of [3] (since the segment length is more than 1 unit and
the intervals are unit intervals, the covering obtained is automatically a conflict-free
covering). Second, the NP-hardness results for Cont-SC, Disc-SC, Cont-Exact-SC,
and Disc-Exact-SC refine the complexity of these problems. For Cont-SC and
Disc-SC, we already know that the slices of these problems consisting of instances in
which each segment has length at most 1 unit are solvable in polynomial time by a
greedy algorithm. (Note that we do not know if the same holds for Cont-Exact-SC
and Disc-Exact-SC, as we do not know the complexity of their restrictions to instances
in which each segment has length at most 1.) The above result shows that the slices of
Cont-SC, Disc-SC, Cont-Exact-SC, and Disc-Exact-SC, consisting of instances
in which all segments have the same length, are NP-hard.
The crucial insight required for our NP-hardness results is that, while the problems are
one-dimensional, instances where the length of all segments differs significantly from
the length of all intervals in fact behave like two-dimensional objects. We employ this
in our proof by devising a series of two reductions, where we begin by considering a
2-dimensional segment covering problem whose instances are “nicely” embedded on a
grid. We show that this aforementioned problem is NP-hard via a reduction from the
restriction of Planar Vertex Cover to instances that are also “nicely” embedded
on a grid. It is worth noting that, while the idea of proving NP-hardness by reducing
from a problem with nice embedding properties (e.g., Planar 3-SAT) has been used
in previous work [1, 4], the presented reduction stands out due to requiring complex
“modularly constructed gadgets”. We compose the above reduction with a second one
that maps the segment covering problem on the grid to our 1-dimensional segment
covering problems.

(ii) We show that the restrictions of Cont-SC, Disc-SC, Cont-Exact-SC, and Disc-
Exact-SC to instances in which all segments have the same length are fixed-parameter
tractable (FPT). The FPT algorithm for Cont-SC combines several algorithmic ideas.
(The other FPT algorithms are similar.) It starts by computing an approximate solution
of ratio 3 whose intervals contain all (input) segment endpoints. The algorithm then
branches on all possibilities to determine how the approximate solution “interacts” with
an optimal solution. Based on the determined interaction, the algorithm identifies
endpoints of segments in the approximate solution, called anchors, around which the
intervals in an optimal solution are anchored (i.e., placed). The goal then becomes to
assign the endpoints of the segments to the anchors, where assigning an endpoint to
an anchor means that the endpoint (and hence the associated segment) is covered by
the interval in the optimal solution placed around that anchor. The algorithm then
exploits the restriction that all segments have the same length, to define a domination
relation among the anchors affecting each segment, which is then revealed through
further branching. With these domination relations revealed, the resulting problem can
be modeled as an instance of 2-Sat, which is solvable in polynomial time.

(iii) We show that Disc-SC and Cont-SC are W[1]-complete. Membership in W[1] is
proved using the characterization of W[1] by Chen et al. [6], whereas the W[1]-hardness
is proved via an FPT-reduction from the Multicolored Clique problem.
This reduction is quite involved, requiring gadget constructions that extend beyond the
standard toolkit used in conventional W[1]-hardness reductions from Multicolored
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13:4 On Covering Segments with Unit Intervals

Clique. The W[1]-completeness results, in conjunction with the results in (ii) above,
provide tight results for the parameterized complexity of Disc-SC and Cont-SC. Note
that, while the restrictions of Disc-SC and Cont-SC to instances in which all segments
have equal length have the same classical complexity as their general counterparts, these
restrictions exhibit a different behavior in terms of their parameterized complexity. The
parameterized complexity of Cont-Exact-SC and Disc-Exact-SC remains open.

2 Preliminaries

We assume familiarity with the basic notation and terminology used in graph theory and
parameterized complexity. We refer the reader to the standard books [10, 11] for more
information on these subjects. The asymptotic notation O∗ suppresses a polynomial factor
in the input length. For r ∈ N, we write [r] as shorthand for the set {1, . . . , r}.

We provide a brief overview of the basic parameterized complexity terminology used
throughout the paper. A parameterized problem Q is a subset of Ω∗ × N, where Ω is a fixed
alphabet. Each instance of Q is a pair (x, k), where k ∈ N is called the parameter. The
problem Q is called fixed-parameter tractable (FPT) if it can be solved in time f(k) · |x|O(1),
where f is a computable function. On the other hand, showing that a parameterized problem
Q is hard for the parameterized complexity class W[1] provides strong conditional evidence
that Q is not FPT. This is usually done by obtaining a suitable FPT-reduction, i.e., a
reduction which runs in time f(k) · |x|O(1) and where the parameter of the output instance is
upper-bounded by a function of the parameter of the input instance. We refer to the books by
Downey and Fellows [11] and Cygan et al. [9] for an in-depth introduction to parameterized
complexity.

2.1 Segment Covering Problems
The following problem will serve as a baseline for our problem definitions.

Discrete Segment Covering (Disc-SC)
Given: A set Γ of n intervals (called segments from here on out) on the rational line; a set
I of unit-intervals on the rational line; k ∈ N.
Parameter: k.
Question: Can the segments in Γ be covered by at most k intervals from I?

Recall that an interval I covers a segment S if at least one endpoint of S lies in I. The
Continuous Segment Covering problem (Cont-SC) is defined analogously to Disc-SC,
with the sole distinction that the intervals can be chosen arbitrarily (i.e., there is no set I
restricting which intervals may be chosen). For both of these problems, we also consider
their exact versions, where we require that each segment also has an endpoint that is not
contained in any interval (i.e., each segment must have precisely one “covered endpoint”);
we call the associated problems Cont-Exact-SC and Disc-Exact-SC.

Finally, we denote by Disc-Equal-SC, Cont-Equal-SC, Disc-Equal-Exact-SC and
Cont-Equal-Exact-SC the restrictions of Disc-SC, Cont-SC, Disc-Exact-SC and
Cont-Exact-SC, respectively, to instances in which all segments in Γ have the same length.
The restrictions of Cont-Equal-SC and Disc-Equal-SC to instances in which the length
of the segments is at most 1 unit can be easily solved in polynomial time using a greedy
approach; therefore, we will assume throughout this paper that the length of the segments in
the instances of Disc-Equal-SC and Cont-Equal-SC is more than 1 unit.
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vi1 vi2 viN−1 viN v′i1 v′i2 v′iN−1 v′iN

Figure 1 Illustration for the vertex-gadget construction. The segment Si = [vi
1, v

i
N ] is shown in

cyan color.

I Remark 1. There are polynomial-time FPT-reductions from Cont-SC and Cont-Exact-
SC to Disc-SC and Disc-Exact-SC, respectively. The reduction from Cont-SC to
Disc-SC follows from the fact that, for an instance of Cont-SC, we can always assume
that the left endpoint of each covering unit-interval is an endpoint of a segment; if this is
not the case for a covering unit-interval, we can shift it to the right until its left endpoint
coincides with a segment’s endpoint.

3 Parameterized Complexity of Disc-SC and Cont-SC

In this section, we give a very high-level sketch of the W[1]-completeness proofs for Disc-SC
and Cont-SC. Membership in W[1] is proved using the characterization of W[1] by Chen et
al. [6]. The W[1]-hardness of Disc-SC is easier to explain as the set of covering unit-intervals
is restricted; the proof can then be modified in order to lift this restriction, and obtain a
W[1]-hardness proof for Cont-SC as well.

We show the W[1]-hardness of Disc-SC via an FPT-reduction from the W[1]-hard problem
Multi-Colored Clique: Given a graph G with a proper k-coloring of its vertices, where
each color class has cardinality N , decide if there exists a clique Q ⊆ V (G) of size k [16, 9];
the parameter is k.

The reduction involves constructing three types of gadgets: vertex-selection gadgets,
edge-verification gadgets, and edge-synchronization gadgets. Vertex-selection gadgets encode
that k colorful vertices (i.e., no two vertices have the same color) in G are selected, and the
edge-verification and edge-synchronization gadgets encode that the selected vertices form a
clique. All the intervals and segments in the construction lie on the same (horizontal) line.
The vertex and edge gadgets are placed far apart on the line, such that for any two gadgets,
no two of their intervals overlap.

Vertex Gadgets. For each color class Ci = {vi1, . . . , viN}, i ∈ [k], we place a sequence Si of
N interleaved unit intervals [vir, v′ir ], r ∈ [N ], on the line, where the starting point of each
interval is separated from the starting point of the next by a distance of 1/N . We add the
intervals in Si, for i ∈ [k], to I as covering unit-intervals. For each sequence Si, we add
the segment Si = [vi1, viN ] to Γ, which ensures that any solution must contain at least one
interval from Si, in order to cover Si. See Figure 1 for illustration.

Edge Gadgets. For each set of edges Eij , between color classes Ci and Cj , where i < j ∈ [k],
let mij = |Eij |. We place two interleaved sequences of unit-intervals. The construction of
the two sequences is identical, and is done as follows. Set M = mij . The first sequence S1

ij

consists of unit-intervals [e1
r, e
′1
r ], r ∈ [M ], such that |e1

re
1
r+1| = 1/M , for r ∈ [M − 1]; that is,

the left endpoints of two consecutive intervals in this sequence are at distance 1/M . Similarly,
S2
ij consists of unit-intervals [e2

r, e
′2
r ], r ∈ [M ], such that |e2

re
2
r+1| = 1/M , for r ∈ [M − 1].

We place S1
ij and S2

ij on the line in an interleaving fashion, such that [e2
r, e
′2
r ] in S2

ij starts
1/(2M) units after [e1

r, e
′1
r ] in S1

ij ends, for r ∈ [M ]. Put it differently, the sequence S2
ij is

shifted 1 + 1/(2M) units to the right from S1
ij . The reason behind this placement is that, if
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e1
1 e1

2 e1
M−1 e

1
M e′11

e2
1

e′12

e2
2

e′1M−1

e2
M−1

e′1M

e2
M e′21 e′22 e′2M−1 e

′2
M

Figure 2 Illustration for the edge-gadget construction. The two segments S1
ij = [e1

1, e
1
M ] and

S2
ij = [e′2

1 , e
′2
M ] are shown in cyan color.

vir−1 v
i
r v

i
r+1 v′ir−1v

′i
r v
′i
r+1

e1
s e′1s e2

s e′2s

Figure 3 Illustration for the connection between a vertex-gadget and an edge-gadget that encodes
vertex-edge incidency. Only the relevant portions of the gadgets are shown, and for clarity, the two
gadgets are drawn on top of one another, rather than on the same line.

we assume that copies of the same interval are chosen from S1
ij ,S2

ij , a property that will be
ensured by the edge-synchronization gadgets discussed below, then the 1/(2M) units gap
between an interval [e1

r, e
′1
r ] in S1

ij and its copy [e2
r, e
′2
r ], r ∈ [M ], in S2

ij is covered by any
choice of an interval from S1

ij and its copy in S2
ij , except the choice of [e1

r, e
′1
r ] and [e2

r, e
′2
r ].

This property is crucial for encoding vertex-edge incidences. We add the unit-intervals of
S1
ij and S2

ij to I as covering unit-intervals. We add the two segments S1
ij = [e1

1, e
1
M ] and

S2
ij = [e′21 , e′2M ] to Γ; these two segments ensure that any solution must contain at least one

interval from each of S1
ij and S2

ij . See Figure 2 for illustration.

Edge-synchronization Gadgets. For each edge-gadget consisting of two sequences S1
ij and

S2
ij of unit-intervals, we construct a sequence of interleaved unit-intervals, S3

ij , that is
constructed identically to S1

ij and S2
ij . We add the intervals in S3

ij to I as covering unit-
intervals. We add the segment S3

ij = [e3
1, e

3
M ] to Γ, which ensures that any solution must

contain at least one interval from S3
ij . The intervals in S3

ij will ensure that, in the desired
solution, three copies of the same interval are chosen, one from each of S1

ij , S2
ij , and S3

ij .

Connecting the Gadgets. We encode vertex-edge incidences in G by adding segments
between vertex-gadgets and corresponding edges-gadgets. For a vertex vr, r ∈ [N ], in color
class Ci (resp. Cj) in G, and an edge eij incident to vr and to some vertex in color class
Cj (resp. Ci), let [e1

s, e
′1
s ] and [e2

s, e
′2
s ] be the intervals corresponding to eij in S1

ij and S2
ij ,

respectively. Do the following (see Figure 3 for an illustration): (if r < N) create a segment
with one endpoint in the interval (vir, vir+1) in Si (resp. in (vjr , v

j
r+1)), and the other in

(e′1s , e2
s); and (if r > 1) create a segment with one endpoint in (v′ir−1, v

′i
r ) in Si (resp. in

(v′jr−1, v
′j
r ) in Sj), and the other in (e′1s , e2

s).
We encode edge-synchronization for each triplet of sequences S1

ij , S2
ij , and S3

ij , corre-
sponding to the edges in Eij , where |Eij | = mij , as follows (see Figure 4 for an illustration).
For each s ∈ [mij − 1]: (i) create a segment with one endpoint in the interval (e1

s, e
1
s+1) and

the other in (e′3s , e′3s+1); (ii) create a segment with one endpoint in (e2
s, e

2
s+1) and the other in
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e1
s e1

s+1 e′1s e2
s e
′1
s+1e

2
s+1 e′2s e′2s+1

(i) (ii)

(iii) (iv)

e3
s e3

s+1 e′3s e′3s+1

Figure 4 Illustration of the edge-synchronization gadget construction. The four types of the
inter-sequence segments are indicated. For clarity, S3

ij is drawn on top of S1
ij and S2

ij .

(e′3s , e′3s+1); (iii) create a segment with one endpoint in (e3
s, e

3
s+1) and the other in (e′1s , e′1s+1);

and (iv) create a segment with one endpoint in (e3
s, e

3
s+1) and the other in (e′2s , e′2s+1).

We can now show that (G, k) is a YES-instance of Multi-Colored Clique if and only
if (Γ, I, k′), where k′ = k + 3

(
k
2
)
, is a YES-instance of Disc-SC. We conclude with:

I Theorem 2. Disc-SC is W[1]-complete.

I Corollary 3. Cont-SC is W[1]-complete.

4 NP-Completeness of the Equal Segment-Length Variants

In this section we show that all of our considered problems are NP-complete even when
restricted to the case where all segments have equal length (i.e., Disc-Equal-SC, Cont-
Equal-SC, Disc-Equal-Exact-SC and Cont-Equal-Exact-SC). We do so via a two-
step reduction through the following intermediate problem:
Grid Segment Covering
Given: A set Γ of n vertical segments, each of length 1, with endpoints on a q × q grid
with q ≤ 100 · n; k ∈ N.
Parameter: k.
Question: Can the segments in Γ be covered by at most k horizontal segments of length 2?

For consistency with the terminology used in this paper (in the definition of segment
covering problems under consideration), we will abuse the notation and refer to the horizontal
(covering) segments of length 2 as intervals, and to the vertical segments of length 1 (to be
covered) as segments. We define the Exact Grid Segment Covering analogously to
Grid Segment Covering, with the sole distinction being that each segment in Γ must
have precisely one endpoint covered by the solution (i.e., the set of intervals). The main
technical obstacle on the way to the NP-hardness of our problems lies in showing that Grid
Segment Covering and Exact Grid Segment Covering are NP-hard. The following
theorem will serve as a starting point towards obtaining these results.

I Theorem 4 (Theorem 5.9 of [17]). Given a planar graph G of degree at most 3 with n > 4
vertices, there is a linear time algorithm that constructs a plane orthogonal drawing of G on
an bn2 c×b

n
2 c grid with at most bn2 c+ 1 bends1, and with the property that there is a spanning

tree of n− 1 straight-line edges, while all nontree edges have at most one bend.

1 A bend is the meeting point of a horizontal and a vertical line in the drawing of an edge.
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13:8 On Covering Segments with Unit Intervals

4.1 Grid Segment Covering is NP-Complete
We reduce from a restriction of the NP-complete problem [14] Planar 3-Vertex Cover
(i.e., Vertex Cover restricted to planar graphs of maximum degree 3). We first show that
this restriction remains NP-complete:

I Theorem 5. Planar 3-Vertex Cover is NP-hard even on instances with n vertices and
a plane orthogonal drawing on an n× n grid, with no bends, even when such an embedding is
provided as input.

With Theorem 5 in hand, we can proceed to the description of the reduction strategy.
Given an n-vertex instance (G, `) of Planar 3-Vertex Cover, the first step is to invoke
Theorem 5 to obtain a plane orthogonal drawing Ω of G on an n × n grid satisfying the
property that every edge is a horizontal or a vertical line segment in this grid. Next, we
refine the grid underlying Ω by a factor of 100 – more formally, we replace each cell in the
grid underlying Ω with a 100× 100 subgrid.

We first outline the reduction. The reduction will represent each vertex v in G with a
vertex gadget α(v). This gadget consists of a set of segments placed along the border of a
geometric object that is roughly centered around the position of v in Ω, and that extend
in the directions of the edges incident to v. These vertex gadgets will have the following
properties:

Vertical connections: If v and w are adjacent vertices in G, then there is an “interface”
spanning a 2×3 subgrid such that either α(v) is placed at the bottom right of the subgrid
and α(w) at the top left, or vice versa. This property will be used by the edge gadget
β(uv).
Duality of choice: There are two “optimal configurations” of intervals that allow us to
cover all segments in α(v): one uses the minimum number of intervals required but does
not help us cover the segments located in the edge gadgets connected to α(v), while the
other requires one extra interval but also helps us cover segments in the edge gadgets
connected to α(v). These optimal configurations cover each segment in α(v) only once.

The following lemma formalizes the precise properties we require from the vertex gadgets.
Further intuition about the construction of the gadgets is provided in Figure 5.

I Lemma 6. Given G, `, Ω as above, in polynomial time we can construct a mapping α
from the vertex set V (G) that maps each v ∈ V (G) to a gadget α(v). Each such gadget α(v)
consists of a set of |α(v)| segments and up to 3 “link” points, each corresponding to an edge
incident to v, with the following properties:

1. Any interval that can cover segments from α(v) cannot cover segments from any α(w)
for w 6= v.

2. There exists no set of intervals of size less than cost(α(v)) = |α(v)|−1
2 that covers all

segments in α(v); moreover, there exists a set of intervals of size cost(α(v)) which is an
exact covering of all segments in α(v).

3. There exists no set of intervals of size less than cost(α(v)) + 1 that covers all segments in
α(v) together with at least one link point of α(v); moreover, there exists a set of intervals
of size cost(α(v)) + 1 which is an exact covering of all segments in α(v) and additionally
covers all link points of α(v).

4. For each edge vw ∈ E(G) with two link points (xv, yv) and (xw, yw), it holds that either
xv = xw + 2 and yv = yw − 3 or vice-versa.
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(a, b)

(a, b′)

(a′, b)

Figure 5 A vertex gadget (blue) for a vertex v located at point (a, b). Link points are marked by
purple segments. The set of green intervals has size cost(α(v)) and exactly covers α(v). The set of
red interval has size cost(α(v)) + 1 and covers α(v) and all the link points.

After applying Lemma 6 to construct the vertex gadgets, we will construct, for each
edge vw, an edge gadget β(vw). This will consist of the segments [(xv, yv), (xv, yv − 1)],
[(xv + 1, yv − 1), (xv + 1, yv − 2)], and [(xv + 2, yv − 2), (xv + 2, yv − 3)].

We now proceed to the NP-hardness proof.

I Theorem 7. Grid Segment Covering and Exact Grid Segment Covering are
NP-complete.

Proof Sketch. Inclusion in NP is trivial. To show NP-hardness, we reduce from Planar
3-Vertex Cover. Given an instance (G, `) of Planar 3-Vertex Cover, we apply the
construction: notably, we use Theorem 4 to obtain an embedding of G on an orthogonal
grid, refine this grid by a factor of 100, and replace all vertices with vertex gadgets as per
Lemma 6, and all edges with edge-gadgets. Set k = `+ |E(G)|+

∑
v∈V (G) cost(α(v)). Now

it suffices to show that (G, `) is a YES-instance if and only if (Σ, k) is a YES-instance. J

4.2 Reductions from the Grid Segment Covering Problem
I Theorem 8. Disc-Equal-SC, Cont-Equal-SC, Disc-Equal-Exact-SC and Cont-
Equal-Exact-SC are NP-complete.

Proof Sketch. We sketch the reduction for Cont-Equal-SC. Let (Γ, k) be an instance of
Grid Segment Covering with endpoints on q × q grid. We construct an instance (Γ′, k′)
of Cont-Equal-SC as follows. For a segment I ∈ Γ with endpoints (w, h) and (w, h+ 1),
we add in Γ′ the segment [ (q+3)h+w

2 , (q+3)(h+1)+w
2 ] and we let k′ = k. Note that if a segment

I ′ ∈ Γ′ has one endpoint at b ∈ Q, then there exist h ∈ N and w ∈ Q (with 0 ≤ w ≤ q)
such that b = (q+3)h+w

2 . Hence, if a unit interval covers endpoints b1 = (q+3)h1+w1
2 and

b2 = (q+3)h2+w2
2 , then it follows that h1 = h2, because otherwise |b2 − b1| ≥ 3

2 .
To conclude the proof for Cont-Equal-SC, it suffices to show that (Γ′, k′) is YES-instance

of Cont-Equal-SC if and only if (Γ, k) is YES-instance of Grid Segment Covering.
The construction is identical for Disc-Equal-Exact-SC, with the sole distinction being the
use of Exact Grid Segment Covering. The other two results follow from Remark 1. J

STACS 2020



13:10 On Covering Segments with Unit Intervals

5 FPT Algorithms for the Equal Segment-Length Variants

In this section, we give FPT algorithms for Cont-Equal-SC, Cont-Equal-Exact-SC,
Disc-Equal-SC, and Disc-Equal-Exact-SC. Before proceeding to the technical details,
we first discuss and give an overview of the FPT algorithm for Cont-Equal-SC.

Let (Γ, k) be an instance of Cont-Equal-SC. The FPT algorithm starts by computing
an approximate solution, Sapx, for Γ of size at most 3k (assuming that a solution of size
k exists) whose intervals contain all endpoints of the segments in Γ. The algorithm then
guesses (i.e., branches on all possibilities) how Sapx interacts with a solution, Sopt, for Γ of
size at most k. Based on this guess, the algorithm identifies endpoints of segments in Sapx,
called anchors, around which the intervals in Sopt are anchored (i.e., placed). The goal then
becomes to assign the endpoints of the segments in Γ to the guessed anchors, where assigning
an endpoint to an anchor means that the endpoint (and hence the associated segment) is
covered by the interval in Sopt placed around that anchor, and then modeling the problem as
an instance of 2-Sat that stipulates that, for each segment, at least one of its endpoints is
covered by a unit-interval placed around an anchor. The issue, however, is that for a segment,
there could be four anchors whose intervals cover its (two) endpoints, and this cannot be
stipulated by size-2 clauses. This issue is resolved by exploiting the crucial property that all
segments have the same length, which enables us to define a notion of domination among
the anchors that could potentially cover the same segment, and guess this domination. Once
the domination relations among the anchors affecting each segment are revealed, encoding
the covering requirement using size-2 clauses becomes possible, as the number of anchors
affecting each segment can be reduced from 4 to 2. Extra clauses are then added to the 2-Sat
instance to enforce that the assignment corresponds to a proper placement of k unit-length
covering intervals that cover the segments in Γ. We proceed to the details.

Let (Γ, k) be an instance of Cont-Equal-SC. We start with the following simple result:

I Fact 9. In O(|Γ| log |Γ|) time, we can compute a solution Sapx to Γ that is within ratio 3
from an optimal solution and that contains all endpoints of the segments in Γ.

Proof. For a unit-length interval I, define the left dual (resp. right dual) of I, denoted, IL
(resp. IR), to be the interval that is the translation of I (along the horizontal line) to the
left (resp. to the right) by a vector whose length is equal to the length of the segments in
Γ. Observe that the set of segments in Γ whose right (resp. left) endpoints are covered by
a unit-length interval I is the same set of segments whose left (resp. right) endpoints are
covered by IL (resp. IR).

The approximation algorithm, denoted APX-ALGO, finds a set of unit-length intervals
of minimum cardinality that covers the endpoints of all the segments in Γ; the problem of
covering a set of N points on a line by the minimum number of unit-length intervals is known
to be solvable in O(N lgN) time by a greedy approach (e.g., see problem 16.2-5 in [8]).

Consider now an optimal solution for Γ, and for each interval I in the optimal solution,
add both its left and right duals IL and IR. We obtain a solution that contains all segment
endpoints and whose cardinality is at most thrice that of the optimal solution. Since APX-
ALGO produces an optimal solution for covering the endpoints of all segments in Γ, the
result follows. J

Based on the above, if |Sapx| > 3k, the instance (Γ, k) is a no-instance of Cont-Equal-
SC. Assume henceforth that |Sapx| ≤ 3k. Every endpoint of a segment in Γ is contained in
an interval of Sapx. Without loss of generality, we can assume that the intervals in Sapx are
pairwise disjoint, and that each starts at an endpoint of a segment in Γ (see also Remark 1).
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If not, we can process the intervals in Sapx to ensure this property, while maintaining the
property that every endpoint of a segment in Γ is contained in an interval of Sapx. To do
so, we repeatedly pick the leftmost two overlapping intervals in Sapx, say Ir, Is where Ir
starts before Is. We shift Is to the right until it no longer overlaps with Ir, while starting
at an endpoint in Γ and retaining the set of segment endpoints contained in Ir ∪ Is. If
at some point this shifting results in an interval that is devoid of segment endpoints, we
remove this interval from Sapx. Clearly, at the end of this process, the set Sapx consists of
pairwise-disjoint intervals that contain all endpoints of the segments in Γ, each of whose
intervals starts at an endpoint of a segment in Γ, and satisfying |Sapx| ≤ 3k.

Let Sopt be an optimal solution for Γ, and assume that |Sopt| ≤ k. W.l.o.g., we will
assume that Sopt is chosen so as to maximize the number of intervals that are common to
both Sopt and Sapx (i.e., maximize |Sopt ∩ Sapx|).

I Definition 10. An endpoint a of an interval in Sapx is called an anchor if there is an
interval I in Sopt that contains a, in which case we say that I induces a.

The FPT-algorithm for Cont-Equal-SC performs the following steps:

Step (1). Guessing the Anchors: The FPT-algorithm starts by guessing how Sopt interacts
with Sapx. First, it guesses the number k′ of intervals that are common to both Sapx and
Sopt (i.e., |Sapx ∩Sopt|). Then, the algorithm guesses the k′ common intervals, removes them
from Sapx, and updates Γ and the parameter k accordingly (by removing from Γ all segments
covered by the k′ intervals, and setting k = k − k′). By the same arguments made above
about Sapx, we can assume from now on that the intervals in Sopt are disjoint, and that each
starts at a segment endpoint. Every interval I ∈ Sopt intersects two consecutive intervals in
Sapx. Otherwise, if I intersects only one interval I ′ ∈ Sapx, since each interval in Sopt starts
at a segment endpoint, I would intersect I ′ only at the left endpoint of I, and all segment
endpoints in I must also be in I ′. This contradicts our choice of Sopt as an optimal solution
that maximizes |Sapx ∩ Sopt| (since I could be shifted left to obtain an optimal solution
containing I ′). Hence, if I contains the left (resp. right) endpoint of I ′, then it must contain
the right (resp. left) endpoint of the predecessor (resp. successor) interval of I ′ in Sapx. Next,
for each endpoint of an interval in Sapx, the algorithm guesses whether it is an anchor. Let
Υ be the set of guessed anchors.

Step (2). Restructuring the Anchors: From Step (1), if an anchor a ∈ Υ is the right
(resp. left) endpoint of an interval I ′ ∈ Sapx, then the interval I ∈ Sopt that induces a

intersects the successor (resp. predecessor) of I ′ in Sapx, and hence, the left (resp. right)
endpoint of the successor (resp. predecessor) of I ′ must be an anchor induced by I as well. If
after Step (1) Υ does not conform to the above, then we can reject the guess, as there will be
another guess that satisfies the above property. Based on this property, we will remove from
Υ the anchors that are right endpoints of intervals in Sapx. After removing these anchors,
each interval in Sopt induces exactly one anchor in Υ that is the left endpoint of an interval
in Sapx. Since the intervals in Sapx are pairwise disjoint, any two anchors in Υ are more
than 1-unit apart. Consequently, if |Υ| > k, then we can reject the guess in Step (1), as no
solution of size at most k realizing the guess exists.

Step (3). Domination among Anchors: Let a, b be two anchors, and let S ⊆ Γ. We say
that a dominates b w.r.t. S, written as a �S b or b �S a, if the set of segments in S covered
by (the interval in Sopt inducing) a is a superset of the set of segments in S covered by (the
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13:12 On Covering Segments with Unit Intervals

interval in Sopt inducing) b. For convenience, we will define the notion of an empty anchor,
denoted ⊗; the set of segments covered by the empty anchor is the empty set φ, and hence,
every anchor dominates ⊗. We will use the notion of domination, in conjunction with a
guessing process, to reduce the instance (Γ, k), resulting from Steps (1) and (2) above, to an
instance of 2-Sat, which can then be solved in polynomial time. To do so, we consider the
intervals in Sapx from left to right, and construct an instance F of 2-Sat. We initialize F to
the empty set, and we will add clauses to F as follows.

Let I ∈ Sapx be the interval currently under consideration (when scanning the intervals
in Sapx from left to right), and let S be the set of segments whose left endpoints are on I.
(We are not concerned at this point about the set of segments whose right endpoint are on I
since those have been considered earlier in the process.) Observe that, since all segments in
Γ have the same length, and all covering intervals have the same length, the right endpoints
of the segments in S fall either on one or on two intervals in Sapx. (Otherwise, there would
be two segments whose left endpoints lie on I, and hence, of distance at most 1 unit, but
whose right endpoints are more than one unit apart.) This property, which again stems from
the fact that all segments in Γ have the same length, is crucial, and is the key idea behind
the FPT algorithm, as will be seen below.

We treat the more complex case in which the right endpoints of the segments in S fall on
two intervals I1, I2 in Sapx, where I2 is the successor of I1 in Sapx; the case where they fall
on one interval is simpler, and is a subcase of the treated case, as we explain below. Partition
S into S1,S2, where S1 consists of those segments in S whose right endpoints are on I1, and
S2 of those whose right endpoints are on I2. Let a be the left endpoint of I if it is an anchor,
and a = ⊗ otherwise; let b be the left endpoint of the successor of I in Sapx if its an anchor,
and b = ⊗ otherwise; let u be the left endpoint of I1 if it is an anchor, and u = ⊗ otherwise;
let s be the left endpoint of I2 if it is an anchor, and s = ⊗ otherwise; and let t be the left
endpoint of the successor of I2 in Sapx if it is an anchor, and t = ⊗ otherwise. Observe
that, since each of the anchors a and u covers a prefix (possibly empty) of the sequence of
segments in S1 when ordered from left to right, one of the two anchors must dominate the
other w.r.t. S1. Similarly, each of b and s covers a suffix (possibly empty) of the sequence of
segments in S1, and hence one must dominate the other w.r.t. S1. With respect to S2, one
of a and s must dominate the other, and one of b and t must dominate the other. Therefore,
(i) either a �S1 u or u �S1 a and (ii) either b �S1 s or s �S1 b; and w.r.t. the segments in
S2, we have (iii) either a �S2 s or s �S2 a, and (iv) either b �S2 t or t �S2 b.

The algorithm now guesses, for each of Cases (i) – (iv) above, which anchor dominates
the other. This guessing results in four cases w.r.t. each of S1 and S2 that are described
below, and hence, results in sixteen cases overall. If the right endpoints of the segments in S
fall on one interval I1, then the guessing results only in the four cases w.r.t. S1 distinguished
below (and anchor t would not be needed). We will create Boolean variables corresponding
to endpoints of segments in Γ. A Boolean variable of the form xh, where x is an endpoint of
a segment S ∈ Γ and h is an anchor, is true if and only if point x (and hence S) is covered by
the interval inducing h. We will then form an instance of 2-Sat that encodes the instance
(Γ, k) of Cont-Equal-SC under the assumed guess. For simplicity of the presentation, we
make the following assumptions. If a Boolean variable xh, associated with anchor h, is such
that either h = ⊗, or the distance between x and h is more than 1 unit (i.e., more than the
length of a unit-length covering interval), then we set/fix the value of xh to false. We start
by associating with every endpoint x of a segment in Γ two Boolean variables as follows. Let
h and h′ be the two anchors directly to the left and right, respectively, of x. We associate
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a b u s t

I suc(I) I1 I2 suc(I2)

Figure 6 Illustration for Cases 1-4 w.r.t. S1 and S2. The two red circles designate the endpoints
x, y of a segment S ∈ S1, and the green circles designate the endpoints x′, y′ of a segment S′ ∈ S2,
where x is to the left of y and x′ is to the left of y′. For clarity, only the endpoints of S, S′ are
shown. If the guess w.r.t. S1 is that a � u and s � b and w.r.t. S2 is that s � a and b � t then
clauses {xa ∨ ys} and {x′

b ∨ y′
s} are added to F .

the two Boolean variables xh and xh′ with x. (Note that h or h′ could be ⊗, or of distance
more than 1 unit from x, and in which case the corresponding Boolean variable would be set
to false.) The four cases distinguished w.r.t. S1 are (see Figure 6 for illustration):

Case 1: a � u and b � s. For each endpoint x on I such that x is the left endpoint of a
segment in S1, add the clause {xa ∨ xb} to F .

Case 2: a � u and s � b. For each endpoint x on I such that x is the left endpoint of a
segment S in S1, let y be the right endpoint of S. Add the clause {xa ∨ ys} to F .

Case 3: u � a and b � s. For each endpoint x on I such that x is the left endpoint of a
segment S in S1, let y be the right endpoint of S. Add the clause {xb ∨ yu} to F .

Case 4: u � a and s � b. For each endpoint x on I such that x is the left endpoint of a
segment S in S1, let y be the right endpoint of S. Add the clause {yu ∨ ys} to F .

Similarly, we can distinguish four cases w.r.t. S2, based on the two domination relations
in (iii) and (iv) discussed earlier, and add clauses to F accordingly.

After processing the intervals in Sapx, guessing domination, associating Boolean variables,
and adding clauses to F , we add to F the following “enforcement” clauses. For every anchor
a, and every two variables xa, za, corresponding to segment endpoints x, z, respectively,
associated with a:

(E1) If x and z are on the right (resp. left) side of a, and if z (resp. x) is to the right
(resp. left) of x, add {za ∨ xa} (resp. {xa ∨ za}) to F ; and (E2) if x and z are on opposite
sides of a and the distance between them is more than 1 unit, add {xa ∨ za} to F . The
enforcement clauses ensure that any satisfying assignment to F corresponds to an assignment
of segment endpoints to anchors satisfying: (1) All endpoints assigned to the same anchor
can be covered by a unit interval (E2); and (2) if an endpoint of a segment S that is assigned
to an anchor h is covered by the interval Ih inducing h, then any segment endpoint assigned
to h that is between that endpoint of S and h is also covered by Ih (E1).

The FPT algorithm accepts if any of the guesses it makes leads to a formula F that is a
YES-instance of 2-Sat, and rejects otherwise. We obtain the following result:

I Theorem 11. Cont-Equal-SC can be solved in time O((24 · 3 · e5/3)k · n logn) =
O(28k · n logn), where n = |Γ|, and hence is FPT.

Proof. We first argue the correctness of the algorithm. The instance (Γ, k) is a YES-instance
of Cont-Equal-SC if and only if there exists an optimal solution Sopt for Γ containing at
most k intervals. The algorithm guesses in Step (1) the intervals in Sapx that are in Sopt,
and updates (Γ, k) accordingly. As explained before, we may assume that the intervals in the
optimal solution sought (if it exists), Sopt, are pairwise disjoint, start at segment endpoints,
and that each interval in Sopt intersects two consecutive intervals in Sapx. The algorithm
then guesses which endpoints of intervals in Sapx are anchors (w.r.t. Sopt).
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The algorithm in Step (2) removes anchors from the set Υ of anchors, so that each anchor
is the left endpoint of its interval in Sapx. Note that after this restructuring, each interval
in the sought solution Sopt contains exactly one anchor in Υ. Moreover, any two anchors
are more than 1 unit apart, and hence, if |Υ| > k, then the algorithm can safely reject the
current guess, as it does in Step (2), since no solution Sopt of size k conforming to the current
guess exists. It is clear that a solution Sopt to (Γ, k) exists if and only if there exists a guess
of a set Υ of anchors satisfying the above conditions.

The algorithm then proceeds to determining how the intervals in the solution sought
should be “anchored” (or placed) around their anchors in order to cover all segments in Γ.
To do so, the algorithm considers the intervals in Sapx from left to right. For an interval I
under consideration, the set of segments S whose left endpoints lie on I must be covered by
Sopt. The right endpoints of the segments in S lie on at most two intervals of Sapx; we argue
the more complicated case in which these endpoints lie on exactly two intervals, I1, I2, where
I2 is the successor of I1 in Sapx, as this case subsumes the other one. The set of segments
S can be partitioned into S1 and S2, as explained in Step (3) of the algorithm, depending
on which interval in I1, I2 the right endpoint of the segment in S lies on. Let the anchors
a, b, u, s, t be as defined in Step (3) of the algorithm. Observe that, since each of the anchors
a and u covers a prefix (possibly empty) of the sequence of segments in S1 when ordered
from left to right, one of the two anchors must dominate the other w.r.t. S1. Similarly, each
of the anchors b and s covers a suffix (possibly empty) of the sequence of segments in S1
(when ordered from left to right), and hence one must dominate the other w.r.t. S1. With
respect to S2, one of the two anchors a and s must dominate the other, and one of b and
t must dominate the other. The algorithm guesses each of these domination relations, for
each interval I ∈ Sapx and set of segments S whose left endpoints lie on I. If the algorithm
guesses correctly, then for each segment in Γ, it assigns each of its two endpoints to an anchor
such that the segment is covered by an interval inducing one of the anchors assigned to its
endpoints. After guessing the domination relations among the anchors, the algorithm creates
an instance F of 2-Sat that, for each segment S ∈ Γ and each endpoint of S, associates a
Boolean variable whose value is true if and only if the endpoint of the segment is covered by
the interval inducing the anchor assigned to the endpoint (based on the domination relation).
The algorithm then adds enforcement clauses to F ensuring (the converse) that a satisfying
assignment to F corresponds to an assignment of segment endpoints to anchors satisfying:
(1) All endpoints assigned to the same anchor can be covered by a unit interval (E2); and (2)
if an endpoint x of a segment that is assigned to an anchor h is covered by the interval Ih
inducing h, then any segment endpoint assigned to h that is between x and h is also covered
by Ih (E1).

Given the above, it is not difficult to verify that the instance (Γ, k) is a YES-instance of
Cont-Equal-SC if and only if there is a guess for the algorithm that yields a YES-instance
F of 2-Sat, and hence, that the algorithm is correct. Next we analyze the running time of
the algorithm.

First, observe that computing Sapx can be done in O(n lgn) time, as this can be done
by sorting the endpoints in Γ. Moreover, all processing steps for the intervals in Sapx and
segments Γ can be carried out in time O(n lgn). Therefore, we only need to analyze the size
of the search tree needed to simulate the guesses performed by the algorithm. The algorithm
performs guessing only in Step (1) and Step (3).

In Step (1), the algorithm guesses a number k′ ∈ {0, . . . , k}, and then it guesses a subset
of k′ intervals in Sapx. The total number of branches needed to simulate these guesses is
at most

∑k
k′=0

(3k
k′

)
. For each guess of k′ intervals, the algorithm removes these intervals
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from Sapx, updates Γ and sets k = k − k′. Removing k′ intervals from Sapx leaves Sapx with
at most 3k − k′ intervals. The algorithm then guesses which endpoints of the (remaining)
intervals in Sapx are anchors. Since we can assume that the anchors in question are left
endpoints of their intervals, guessing the anchors can be simulated by choosing a subset of
(k − k′) endpoints, out of the at most (3k − k′) left endpoints of the (remaining) intervals in
Sapx. Therefore, the total number of branches needed to simulate all guesses in Step (1) is
at most

∑k
k′=0

(3k
k′

)
·
(3k−k′

k−k′

)
.

In Step (3), the algorithm guesses the domination relations among anchors. At this point,
the number of anchors (by Step (2)) is at most k − k′. In the guessing, each guess made
is w.r.t. an interval I ∈ Sapx and the two anchors a and b, as defined in Step (3). We will
charge each guess to the two anchors that play the roles of a and b w.r.t. some interval
I ∈ Sapx. There are four guesses made, resulting in sixteen cases, and each of a and b is
involved in the same number of guesses. Therefore, eight cases need to be distinguished with
respect to each of a and b. Since each of the at most k′ anchors can play the role of a once
and of b once, over all intervals in Sapx (note that a domination relation involving an empty
anchor is determined, not guessed), it follows that the total number of cases that each anchor
can be involved in is sixteen, which results in a total number of branches of at most 24k′

over all anchors.
It follows that the size of the search tree needed to simulate all the guesses performed by

the algorithm is
∑k
k′=0

(3k
k′

)
·
(3k−k′

k−k′

)
· 24k′ . Next, we upper bound this expression.

Applying the well-known upper bound
(
r
s

)
≤ (e · r/s)s on the binomial coefficient in

both binomial terms
(3k
k′

)
and

(3k−k′

k−k′

)
, where e is the base of the natural logarithm, and

simplifying, we obtain:
k∑

k′=0

(
3k
k′

)
·
(

3k − k′

k − k′

)
· 24k′

(1)

≤ (3e)k · 24k + (3e)k ·
k−1∑
k′=0

24k′
· (k/k′)k

′
· ((k − k′/3)/(k − k′))k−k

′
(2)

≤ (3e)k · 24k + (3e)k ·
k−1∑
k′=0

24k′
· (k/k′)k

′
· e2k′/3 (3)

= (3e)k · 24k + (3e)k ·
k−1∑
k′=0

((24 · e2/3 · k)/k′)k
′

(4)

≤ (3e)k · 24k + (3e)k · O((24 · e2/3)k) = O((24 · 3 · e5/3)k). (5)

In Inequality (2), we split the summation – a minor technicality – in order to avoid a
denominator of 0 in the term ((k−k′/3)/(k−k′))k−k′ , resulting from approximating

(3k−k′

k−k′

)
,

when k′ = k. We obtain Inequality (3) from Inequality (2), by upper bounding the term
((k−k′/3)/(k−k′))k−k′ by e2k′/3. This is done by rewriting the term ((k−k′/3)/(k−k′))k−k′

in the form (1 + 1/x)x, and using the well-known inequality (1 + 1/x)x ≤ e, for all x > 0. We
obtain Inequality (5) from Inequality (4) by showing that the function ((24 · e2/3 · k)/k′)k′ is
increasing in k′, which then can be used to upper bound the summation

∑k
k′=0((24 · e2/3 ·

k)/k′)k′ by O((24 · 3 · e2/3)k). J

We can obtain FPT algorithms for Disc-Equal-SC, Disc-Equal-Exact-SC, and
Cont-Equal-Exact-SC as well. The ideas leading to the FPT algorithm for Disc-Equal-
SC are the same as those for Cont-Equal-SC, albeit the technical details become more
complicated and the running time is significantly worse. The complications are mainly due to
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the stipulation that the covering intervals cannot be arbitrarily chosen, and must be selected
from the set I, given as input. This makes it harder to obtain an approximate solution
with the desired properties – and leads to a worse approximation ratio, and to restructure
the anchors. In particular, we can no longer make the simplifying assumptions about the
structure of the intervals in Sapx and Sopt. The FPT results for Disc-Equal-Exact-SC
and Cont-Equal-Exact-SC are byproducts of that for Disc-Equal-SC.

I Theorem 12. Disc-Equal-SC, Disc-Equal-Exact-SC, Cont-Equal-Exact-SC can
be solved in time O(230k · (|Γ| lg |Γ|+ |I| lg |I|)), and hence are FPT.

6 Conclusion

In this paper, we considered several variants of segment covering by unit intervals. We
established the NP-hardness of the restrictions of these problems to instances in which all
segments have the same length. In addition to its importance per se, this result strengthens
and implies a number of NP-hardness results in the literature. We also presented parameter-
ized complexity results for several of these problems, showing their W[1]-hardness for the
general case, and presenting FPT algorithms for their restrictions to instances in which all
segments have the same length. Our work gives rise to two open questions:

1. What is the parameterized complexity of Cont-Exact-SC and Disc-Exact-SC?
2. What is the complexity of the restriction of Cont-Exact-SC and Disc-Exact-SC to

instances in which all segments have length at most 1 unit?
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Abstract
In this paper we study low-complexity colorings (or tilings) of the two-dimensional grid Z2. A
coloring is said to be of low complexity with respect to a rectangle if there exists m, n ∈ N such that
there are no more than mn different rectangular m× n patterns in it. Open since it was stated in
1997, Nivat’s conjecture states that such a coloring is necessarily periodic. Suppose we are given at
most nm rectangular patterns of size n×m. If Nivat’s conjecture is true, one can only build periodic
colorings out of these patterns – meaning that if the m× n rectangular patterns of the coloring are
among these mn patterns, it must be periodic. The main contribution of this paper proves that
there exists at least one periodic coloring build from these patterns. We use this result to investigate
the tiling problem, also known as the domino problem, which is well known to be undecidable in its
full generality. However, we show that it is decidable in the low-complexity setting. Finally, we use
our result to show that Nivat’s conjecture holds for uniformly recurrent configurations. The results
also extend to other convex shapes in place of the rectangle.
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1 Introduction

The tiling problem, also known as the domino problem, asks whether the two-dimensional
grid Z2 can be colored in a way that avoids a given finite collection of forbidden local
patterns. The problem is undecidable in its full generality. The undecidability relies on the
fact that there are aperiodic systems of forbidden patterns that enforce any valid coloring to
be non-periodic [1].

In this paper we consider the low complexity setup where the number of allowed local
patterns is small. More precisely, suppose we are given at most nm legal rectangular patterns
of size n×m, and we want to know whether there exists a coloring of Z2 containing only
legal n×m patterns. We prove that if such a coloring exists then also a periodic coloring
exists (Corollary 5). This further implies, using standard arguments, that in this setup there
is an algorithm to determine if the given patterns admit at least one coloring of the grid
(Corollary 6). The results also extend to other convex shapes in place of the rectangle (see
Section 6).
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We believe the low complexity setting has relevant applications. There are numerous
examples of processes in physics, chemistry and biology where macroscopic patterns and
regularities arise from simple microscopic interactions. Formation of crystals and quasi-
crystals is a good example where physical laws govern locally the attachments of particles
to each other. Predicting the structure of the crystal from its chemical composition is a
notoriously difficult problem (as already implied by the undecidability of the tiling problem)
but if the number of distinct local patterns of particle attachments is sufficiently low, our
results indicate that the situation may be easier to handle.

Our work is also motivated by Nivat’s conjecture [10], an open problem concerning
periodicity in low complexity colorings of the grid. The conjecture claims the following: if
a coloring of Z2 is such that, for some n,m ∈ N, the number of distinct n ×m patterns
is at most nm, then the coloring is necessarily periodic in some direction. If true, this
conjecture directly implies a strong form of our peridicity result: in the low complexity
setting, not only a coloring exists that is periodic, but in fact all admitted colorings are
periodic. Our contribution to Nivat’s conjecture is that we show that under the hypotheses
of the conjecture, the coloring must contain arbitrarily large periodic regions (Theorem 4).

2 Preliminaries

To discuss the results in detail we need precise definitions. Let A be a finite alphabet.
A coloring c ∈ AZ2 of the two-dimensional grid Z2 with elements of A is called a (two-
dimensional) configuration. We use the notation cn for the color c(n) ∈ A of cell n ∈ Z2.
For any t ∈ Z2, the translation τ t : AZ2 −→ AZ2 by t is defined by τ t(c)n = cn−t, for all
c ∈ AZ2 and all n ∈ Z2. If τ t(c) = c for a non-zero t ∈ Z2, we say that c is periodic and
that t is a vector of periodicity. If there are two linearly independent vectors of periodicity
then c is two-periodic, and in this case there are horizontal and vertical vectors of periodicity
(k, 0) and (0, k) for some k > 0, and consequently a vector of periodicity in every rational
direction.

A finite pattern is a coloring p ∈ AD of some finite domain D ⊂ Zd. For a fixed D, we
call such p also a D-pattern. The set [p] = {c ∈ AZ2 | c|D = p} of configurations that contain
pattern p in domain D is the cylinder determined by p. We say that pattern p appears in
configuration c, or that c contains pattern p, if some translate τ t(c) of c is in [p]. For a fixed
finite D, the set of D-patterns that appear in a configuration c is denoted by Patt(c,D), that
is,

Patt(c,D) = {τ t(c)|D | t ∈ Z2 }.

We say that c has low complexity with respect to shape D if |Patt(c,D)| ≤ |D|, and we call
c a low complexity configuration if it has low complexity with respect to some finite D.

I Conjecture (Maurice Nivat 1997 [10]). Let c ∈ AZ2 be a two-dimensional configuration. If
c has low complexity with respect to some rectangle D = {1, . . . , n} × {1, . . . ,m} then c is
periodic.

The analogous claim in dimensions higher than two fails, as does an analogous claim in two
dimensions for many other shapes than rectangles [5].

2.1 Algebraic concepts
Kari and Szabados introduced in [9] an algebraic approach to study low complexity configur-
ations. The present paper heavily relies on this technique. In this approach we replace the
colors in A by distinct integers, so that we assume A ⊆ Z. We then express a configuration
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c ∈ AZ2 as a formal power series c(x, y) over two variables x and y in which the coefficient of
monomial xiyj is ci,j , for all i, j ∈ Z. Note that the exponents of the variables range from
−∞ to +∞. In the following also polynomials may have negative powers of variables so all
polynomials considered are actually Laurent polynomials. Let us denote by Z[x±1, y±1] and
Z[[x±1, y±1]] the sets of such polynomials and power series, respectively. We call a power
series c ∈ Z[[x±1, y±1]] finitary if its coefficients take only finitely many different values.
Since we color the grid using finitely many colors, configurations are identified with finitary
power series.

Multiplying a configuration c ∈ Z[[x±1, y±1]] by a monomial corresponds to translating
it, and the periodicity of the configuration by vector t = (n,m) is then equivalent to
(xnym−1)c = 0, the zero power series. More generally, we say that polynomial f ∈ Z[x±1, y±1]
annihilates power series c if the formal product fc is the zero power series. Note that variables
x and y in our power series and polynomials are treated only as “position indicators”: in
this work we never plug in any values to the variables.

The set of polynomials that annihilates a power series is a Laurent polynomial ideal, and
is denoted by

Ann(c) = {f ∈ Z[x±1, y±1] | fc = 0}.

It was observed in [9] that if a configuration has low complexity with respect to some
shape D then it is annihilated by some non-zero polynomial f 6= 0.

I Lemma 1 ([9]). Let c ∈ Z[[x±1, y±1]] be a low complexity configuration. Then Ann(c)
contains a non-zero polynomial.

One of the main results of [9] states that if a configuration c is annihilated by a non-zero
polynomial then it has annihilators of particularly nice form:

I Theorem 2 ([9]). Let c ∈ Z[[x±1, y±1]] be a configuration (a finitary power series) an-
nihilated by some non-zero polynomial. Then there exist pairwise linearly independent
(i1, j1), . . . , (im, jm) ∈ Z2 such that

(xi1yj1 − 1) · · · (ximyjm − 1) ∈ Ann(c).

Note that both Lemma 1 and Theorem 2 were proved in [9] for configurations c ∈ AZd in
arbitrary dimension d. In this work we only deal with two-dimensional configurations, so
above we stated these results for d = 2.

If X ⊆ AZ2 is a set of configurations, we denote by Ann(X) the set of Laurent polynomials
that annihilate all elements of X. We call Ann(X) the annihilator ideal of X.

2.2 Dynamical systems concepts
Cylinders [p] are a base of a compact topology on AZ2 , namely the product of discrete
topologies on A. See, for example, the first few pages of [6]. The topology is equivalently
defined by a metric on AZ2 where two configurations are close to each other if they agree
with each other on a large region around cell 0.

A subset X of AZ2 is a subshift if it is closed in the topology and closed under translations.
Equivalently, every configuration c that is not in X contains a finite pattern p that prevents
it from being in X: no configuration that contains p is in X. We can then as well define
subshifts using forbidden patterns: for a set P of finite patterns, define

XP = {c ∈ AZ2
| ∀t ∈ Z2 ∀p ∈ P : τ t(c) 6∈ [p] },

the set of configurations that avoid all patterns in P . Set XP is a subshift, and every subshift
is XP for some P . If X = XP for some finite P then X is a subshift of finite type (SFT).

STACS 2020
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The tiling problem (aka the domino problem) is the decision problem that asks whether
a given SFT is empty, that is, whether there exists a configuration avoiding a given finite
collection P of forbidden finite patterns. Usually this question is asked in terms of so-called
Wang tiles, but our formulation is equivalent. The tiling problem is undecidable [1]. An
SFT is called aperiodic if it is non-empty but does not contain any periodic configurations.
Aperiodic SFTs exist [1], and in fact they must exist because of the undecidability of the
tiling problem [13]. We recall the reason for this fact in the proof of Corollary 6.

Convergence of a sequence c(1), c(2), . . . of configurations to a configuration c in our
topology has the following simple meaning: For every cell n ∈ Z2 we must have c(i)

n = cn for
all sufficiently large i. As usual, we denote then c = limi→∞ c(i). Note that if all c(i) are in
a subshift X, so is the limit. Compactness of space AZ2 means that every sequence has a
converging subsequence. In the proof of Theorem 3 in Section 4 we frequently use this fact
and extract converging subsequences from sequences of configurations.

The orbit of configuration c is the set O(c) = {τ t(c) | t ∈ Z2 } that contains all translates
of c. The orbit closure O(c) of c is the topological closure of the orbit O(c). It is a subshift,
and in fact it is the intersection of all subshifts that contain c. The orbit closure O(c) can
hence be called the subshift generated by c. In terms of finite patterns, c′ ∈ O(c) if and only
if every finite pattern that appears in c′ appears also in c. O(c) can be seen as the subshift
containing all the translates of c (its orbit) and all the limits of those translates. Thus it can
be different of O(c): if c is the configuration that with a black cell at the origin and white
everywhere else, all the configurations of its orbit will contain a black cell, but at different
positions; however its orbit closure contains the configuration with only white cells, as it is a
limit of translations of c.

A configuration c is called uniformly recurrent if for every c′ ∈ O(c) we have O(c′) = O(c).
This is equivalent to O(c) being a minimal subshift in the sense that it has no proper
non-empty subshifts inside it. A classical result by Birkhoff [3] implies that every non-empty
subshift contains a minimal subshift, so there is a uniformly recurrent configuration in every
non-empty subshift.

We use the notation 〈x,y〉 for the inner product of vectors x,y ∈ Z2. For a nonzero
vector u ∈ Z2 \ {0} we denote

Hu = {x ∈ Z2 | 〈x,u〉 < 0}

for the discrete half plane in direction u. See Figure 1(a) for an illustration. A subshift X is
deterministic in direction u if for all c, c′ ∈ X

c|Hu = c′|Hu =⇒ c = c′,

that is, if the contents of a configuration in the half plane Hu uniquely determines the
contents in the rest of the cells. Note that it is enough to verify that the value c0 on the
boundary of the half plane is uniquely determined. Indeed, if c|Hu uniquely determines
the line at its boundary, it is also true for all the translations of c, so the next line is also
uniquely determined. By repeating this process the whole configuration is determined by
c|Hu . Moreover, by compactness, determinism in direction u implies that there is a finite
number k such that already the contents of a configuration in the discrete box

Bk
u = {x ∈ Z2 | − k < 〈x,u〉 < 0 and − k < 〈x,u⊥〉 < k}

are enough to uniquely determine the contents in cell 0, where we denote by u⊥ a vector that
is orthogonal to u and has the same length as u, e.g., (n,m)⊥ = (m,−n). See Figure 1(b)
for an illustration.
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uu

(a) The discrete half plane Hu

uu u⊥u⊥

(b) The discrete box Bk
u with k = 10.

Figure 1 Discrete regions determined by vector u = (−1, 2).

If X is deterministic in directions u and −u we say that u is a direction of two-sided
determinism. If X is deterministic in direction u but not in direction −u we say that u
is a direction of one-sided determinism. Directions of two-sided determinism correspond
to directions of expansivity in the symbolic dynamics literature. If X is not deterministic
in direction u we call u a direction of non-determinism. Finally, note that the concept
of determinism in direction u only depends on the orientation of vector u and not on its
magnitude.

3 Our results

Our first main new technical result is the following:

I Theorem 3. Let c be a two-dimensional configuration that has a non-trivial annihil-
ator. Then O(c) contains a configuration c′ such that O(c′) has no direction of one-sided
determinism.

From this result, using a technique by Cyr and Kra [7], we then obtain the second main
results, stating that under the hypotheses of Nivat’s conjecture, a configuration contains
arbitrarily large periodic regions.

I Theorem 4. Let c be a two-dimensional configuration that has low complexity with respect
to a rectangle. Then O(c) contains a periodic configuration.

These two theorems are proved in Sections 4 and 5, respectively. But let us first demonstrate
how these results imply relevant corollaries. First we consider SFTs defined in terms of allowed
rectangular patterns. Let D = {1, . . . , n} × {1, . . . ,m} for some m,n ∈ N, and let P ⊆ AD

be a set of D-patterns over alphabet A. Define X = XAD\P = {x ∈ AZ2 | Patt(c,D) ⊆ P},
the set of configurations whose D-patterns are among P .

I Corollary 5. With the notations above, if |P | ≤ nm and X 6= ∅ then X contains a periodic
configuration.

Proof. Let c ∈ X be arbitrary. By Theorem 4 then, O(c) ⊆ X contains a periodic configura-
tion. J

I Corollary 6. With the notations above, there is an algorithm to determine whether X 6= ∅
for a given P of cardinality |P | ≤ nm.

STACS 2020
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Proof. This is a classical argumentation by H. Wang [13]: there is a semi-algorithm to test
if a given SFT is empty, and there is a semi-algorithm to test if a given SFT contains a
periodic configuration. Since X is an SFT, we can execute both of these semi-algorithms on
X. By Corollary 5, if X 6= ∅ then X contains a periodic configuration. Hence, exactly one of
these two semi-algorithms will return a positive answer. J

The next corollary solves Nivat’s conjecture for uniformly recurrent configurations.

I Corollary 7. A uniformly recurrent configuration c that has low complexity with respect to
a rectangle is periodic.

Proof. Because c has low complexity with respect to a rectangle then by Theorem 4 there
is a periodic configuration c′ ∈ O(c). Because O(c′) contains only translates and limits
of translates of c′, all configurations in O(c′) are periodic. Finally, because c is uniformly
recurrent we have O(c) = O(c′), which implies that all elements of O(c), including c itself,
are periodic. J

In Section 6 we briefly argue that all of our results remain true if the m × n rectangle is
replaced by any convex discrete shape.

4 Removing one-sided determinism

In this section we prove Theorem 3 by showing how we can “remove” one-sided directions of
determinism from subshifts with annihilators.

Let c be a configuration over alphabet A ⊆ Z that has a non-trivial annihilator. By
Theorem 2 it has then an annihilator φ1 · · ·φm where each φi is of the form

φi = xniymi − 1 for some vi = (ni,mi) ∈ Z2. (1)

Moreover, vectors vi can be chosen pairwise linearly independent, that is, in different
directions. We may assume m ≥ 1.

Denote X = O(c), the subshift generated by c. A polynomial that annihilates c annihilates
all elements of X, because they only have local patterns that already appear in c. It is easy
to see that X can only be non-deterministic in a direction that is perpendicular to one of
the directions vi of the polynomials φi:

I Proposition 8. Let c be a configuration annihilated by φ1 · · ·φm where each φi is of the
form (1). Let u ∈ Z2 be a direction that is not perpendicular to vi for any i ∈ {1, . . . ,m}.
Then X = O(c) is deterministic in direction u.

Proof. Suppose X is not deterministic in direction u. By definition, there exist d, e ∈ X
such that d 6= e but d|Hu = e|Hu . Denote ∆ = d− e. Because ∆ 6= 0 but φ1 · · ·φm ·∆ = 0,
for some i we have φ1 · · ·φi−1 ·∆ 6= 0 and φ1 · · ·φi ·∆ = 0. Denote ∆′ = φ1 · · ·φi−1 ·∆.
Because φi ·∆′ = 0, configuration ∆′ is periodic in direction vi. But because ∆ is zero in
the half plane Hu, also ∆′ is zero in some translate H ′ = Hu − t of the half plane. Since the
periodicity vector vi of ∆′ is not perpendicular to u, the periodicity transmits the values 0
from the region H ′ to the entire Z2. Hence ∆′ = 0, a contradiction. J

Let u ∈ Z2 be a one-sided direction of determinism of X. In other words, u is a direction
of determinism but −u is not. By the proposition above, u is perpendicular to some vi.
Without loss of generality, we may assume i = 1. We denote φ = φ1 and v = v1.
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Let k be such that the contents of the discrete box B = Bk
u determine the content of cell

0, that is, for d, e ∈ X

d|B = e|B =⇒ d0 = e0. (2)

As pointed out in Section 2.2, any sufficiently large k can be used. We can choose k so that
k > |〈u⊥,v〉|. To shorten notations, let us also denote H = H−u.

I Lemma 9. For any d, e ∈ X such that φd = φe holds:

d|B = e|B =⇒ d|H = e|H .

Proof. Let d, e ∈ X be such that φd = φe and d|B = e|B . Denote ∆ = d− e. Then φ∆ = 0
and ∆|B = 0. Property φ∆ = 0 means that ∆ has periodicity vector v, so this periodicity
transmits values 0 from the region B to the stripe

S =
⋃
i∈Z

(B + iv) = {x ∈ Z2 | − k < 〈x,u〉 < 0},

See Figure 2 for an illustration of the regions H, B and S. As ∆|S = 0, we have that d|S = e|S .
Applying (2) on suitable translates of d and e allows us to conclude that d|H = e|H . J

SS
HH

BBB
uuu u⊥u⊥u⊥

Figure 2 Discrete regions H = H−u, B = Bk
u and S in the proof of Lemma 9. In the illustration

u = (−1, 2) and k = 10.

A reason to prove the lemma above is the following corollary, stating that X can only
contain a bounded number of configurations that have the same product with φ:

I Corollary 10. Let c1, . . . , cn ∈ X be pairwise distinct. If φc1 = · · · = φcn then n ≤ |A||B|.

Proof. Let H ′ = H − t, for t ∈ Z2, be a translate of the half plane H = H−u such that
c1, . . . , cn are pairwise different on H ′. Consider the translated configurations di = τ t(ci).
We have that di ∈ X are pairwise different on H and φd1 = · · · = φdn. By Lemma 9,
configurations di must be pairwise different on domain B. There are only |A||B| different
patterns in domain B. J

Let c1, . . . , cn ∈ X be pairwise distinct such that φc1 = · · · = φcn, with n as large
as possible. By Corollary 10 such configurations exist. Let us repeatedly translate the
configurations ci by τu and take a limit: by compactness there exists n1 < n2 < n3 . . . such
that

di = lim
j→∞

τnju(ci)

exists for all i ∈ {1, . . . , n}. Configurations di ∈ X inherit the following properties from ci:
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I Lemma 11. Let d1, . . . , dn be defined as above. Then
(a) φd1 = · · · = φdn, and
(b) Configurations di are pairwise different on translated discrete boxes B′ = B − t for all

t ∈ Z2.

Proof. Let i1, i2 ∈ {1, . . . , n} be arbitrary, i1 6= i2.

(a) Because φci1 = φci2 we have, for any n ∈ N,

φτnu(ci1) = τnu(φci1) = τnu(φci2) = φτnu(ci2).

Function c 7→ φc is continuous in the topology so

φdi1 = φ lim
j→∞

τnju(ci1) = lim
j→∞

φτnju(ci1) = lim
j→∞

φτnju(ci2) = φ lim
j→∞

τnju(ci2) = φdi2 .

(b) Let B′ = B − t for some t ∈ Z2. Suppose di1 |B′ = di2 |B′ . By the definition of

convergence, for all sufficiently large j we have τnju(ci1)|B′ = τnju(ci2)|B′ . This is equivalent
to τnju+t(ci1)|B = τnju+t(ci2)|B. By Lemma 9 then also τnju+t(ci1)|H = τnju+t(ci2)|H
where H = H−u. This means that for all sufficiently large j the configurations ci1 and ci2

are identical on the domain H − nju− t. But these domains cover the whole Z2 as j −→∞
so that ci1 = ci2 , a contradiction. J

Now we pick one of the configurations di and consider its orbit closure. Choose d = d1
and set Y = O(d). Then Y ⊆ X. Any direction of determinism in X is also a direction of
determinism in Y . Indeed, this is trivially true for any subset of X. But, in addition, we
have the following:

I Lemma 12. Subshift Y is deterministic in direction −u.

Proof. Suppose the contrary: there exist configurations x, y ∈ Y such that x 6= y but
x|H = y|H where, as usual, H = H−u. In the following we construct n+ 1 configurations in
X that have the same product with φ, which contradicts the choice of n as the maximum
number of such configurations.

By the definition of Y all elements of Y are limits of sequences of translates of d = d1, that
is, there are translations τ1, τ2, . . . such that x = limi→∞ τi(d), and translations σ1, σ2, . . .

such that y = limi→∞ σi(d). Apply the translations τ1, τ2, . . . on configurations d1, . . . , dn,
and take jointly converging subsequences: by compactness there are k1 < k2 < . . . such that

ei = lim
j→∞

τkj
(di)

exists for all i ∈ {1, . . . , n}. Here, clearly, e1 = x.

Let us prove that e1, . . . , en and y are n+ 1 configurations that (i) have the same product
with φ, and (ii) are pairwise distinct. This contradicts the choice of n as the maximum
number of such configurations, and thus completes the proof.

(i) First, φx = φy: Because x|H = y|H we have φx|H−t = φy|H−t for some t ∈ Z2.
Consider c′ = τ t(φx − φy), so that c′|H = 0. As φ2 · · ·φm annihilates φx and φy, it
also annihilates c′. An application of Proposition 8 on configuration c′ in place of c
shows that O(c′) is deterministic in direction −u. (Note that −u is not perpendicular
to vj for any j 6= 1, because v1 and vj are not parallel and −u is perpendicular to v1.)
Due to the determinism, c′|H = 0 implies that c′ = 0, that is, φx = φy.
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Second, φei1 = φei2 for all i1, i2 ∈ {1, . . . , n}: By Lemma 11 we know that φdi1 = φdi2 .
By continuity of the function c 7→ φc we then have

φei1 = φ limj→∞ τkj
(di1) = limj→∞ φτkj

(di1) = limj→∞ τkj
(φdi1)

=

φei2 = φ limj→∞ τkj
(di2) = limj→∞ φτkj

(di2) = limj→∞ τkj
(φdi2)

Because e1 = x, we have shown that e1, . . . , en and y all have the same product with φ.
(ii) Pairwise distinctness: First, y and e1 = x are distinct by the initial choice of x

and y. Next, let i1, i2 ∈ {1, . . . , n} be such that i1 6= i2. Let t ∈ Z2 be arbitrary
and consider the translated discrete box B′ = B − t. By Lemma 11(b) we have
τkj (di1)|B′ 6= τkj (di2)|B′ for all j ∈ N, so taking the limit as j −→ ∞ gives ei1 |B′ 6=
ei2 |B′ . This proves that ei1 6= ei2 . Moreover, by taking t such that B′ ⊆ H we see
that y|B′ = x|B′ = e1|B′ 6= ei|B′ for i ≥ 2, so that y is also distinct from all ei with
i ≥ 2. J

The following proposition captures the result established above.

I Proposition 13. Let c be a configuration with a non-trivial annihilator. If u is a one-sided
direction of determinism in O(c) then there is a configuration d ∈ O(c) such that u is a
two-sided direction of determinism in O(d). J

Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let c be a two-dimensional configuration that has a non-trivial an-
nihilator. Every non-empty subshift contains a minimal subshift [3], and hence there is a
uniformly recurrent configuration c′ ∈ O(c). If O(c′) has a one-sided direction of determ-
inism u, we can apply Proposition 13 on c′ and find d ∈ O(c′) such that u is a two-sided
direction of determinism in O(d). But because c′ is uniformly recurrent, O(d) = O(c′), a
contradiction. J

5 Periodicity in low complexity subshifts

In this section we prove Theorem 4. Every non-empty subshift contains a uniformly recurrent
configuration, so we can safely assume that c is uniformly recurrent.

Our proof of Theorem 4 splits in two cases based on Theorem 3: eitherO(c) is deterministic
in all directions or for some u it is non-deterministic in both directions u and −u. The first
case is handled by the following well-known corollary from a theorem of Boyle and Lind [4]:

I Proposition 14. A configuration c is two-periodic if and only if O(c) is deterministic in
all directions. J

For the second case we apply the technique by Cyr and Kra [7]. This technique was also
used in [11] to address Nivat’s conjecture. The result that we read from [7, 11], although it
is not explicitly stated in this form, is the following:

I Proposition 15. Let c be a two-dimensional uniformly recurrent configuration that has
low complexity with respect to a rectangle. If for some u both u and −u are directions of
non-determinism in O(c) then c is periodic in a direction perpendicular to u.

Let us prove this proposition using lemmas from [11]. We first recall some definitions,
adjusted to our terminology. Let D ⊆ Z2 be non-empty and let u ∈ Z2 \ {0}. The edge
Eu(D) of D in direction u consists of the cells in D that are furthest in the direction u:

Eu(D) = {v ∈ D | ∀x ∈ D 〈x,u〉 ≤ 〈v,u〉}.
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We call D convex if D = C ∩Z2 for a convex subset C ⊆ R2 of the real plane. For D,E ⊆ Z2

we say that D fits in E if D + t ⊆ E for some t ∈ Z2.
The (closed) stripe of width k perpendicular to u is the set

Sk
u = {x ∈ Z2 | − k < 〈x,u〉 ≤ 0}.

Consider the stripe S = Sk
u. The reader can refer to Figure 2 for an illustration of a closed

stripe, the only difference being the inclusion of the upper boundary of S. Clearly its edge
Eu(S) in direction u is the discrete line Z2 ∩ L where L ⊆ R2 is the real line through 0 that
is perpendicular to u. The interior S◦ of S is S \ Eu(S), that is, S◦ = {x ∈ Z2 | − k <
〈x,u〉 < 0}.

A central concept from [7, 11] is the following. Let c be a configuration and let u ∈ Z2\{0}
be a direction. Recall that Patt(c,D) denotes the set of D-patterns that c contains. A finite
discrete convex set D ⊆ Z2 is called u-balanced in c if the following three conditions are
satisfied, where we denote E = Eu(D) for the edge of D in direction u:
(i) |Patt(c,D)| ≤ |D|,
(ii) |Patt(c,D)| < |Patt(c,D \ E)|+ |E|, and
(iii) |D ∩ L| ≥ |E| − 1 for every line L perpendicular to u such that D ∩ L 6= ∅.
The first condition states that c has low complexity with respect to shape D. The second
condition implies that there are fewer than |E| different (D \ E)-patterns in c that can be
extended in more than one way into a D-pattern of c. The last condition states that the
edge E is nearly the shortest among the parallel cuts across D.

I Lemma 16 (Lemma 2 in [11]). Let c be a two-dimensional configuration that has low
complexity with respect to a rectangle, and let u ∈ Z2 \ {0}. Then c has a u-balanced or a
(−u)-balanced set D ⊆ Z2.

A crucial observation in [7] connects balanced sets and non-determinism to periodicity.
This leads to the following statement.

I Lemma 17 (Lemma 4 in [11]). Let d be a two-dimensional configuration and let u ∈ Z2\{0}
be such that d admits a u-balanced set D ⊆ Z2. Assume there is a configuration e ∈ O(d)
and a stripe S = Sk

u perpendicular to u such that D fits in S and d|S◦ = e|S◦ but d|S 6= e|S.
Then d is periodic in direction perpendicular to u.

With these we can prove Proposition 15.

Proof of Proposition 15. Let c be a two-dimensional uniformly recurrent configuration that
has low complexity with respect to a rectangle. Let u be such that both u and −u are
directions of non-determinism in O(c). By Lemma 16 configuration c admits a u-balanced
or a (−u)-balanced set D ⊆ Z2. Without loss of generality, assume that D is u-balanced
in c. As O(c) is non-deterministic in direction u, there are configurations d, e ∈ O(c) such
that d|Hu = e|Hu but d(0,0) 6= e(0,0). Because c is uniformly recurrent, exactly the same finite
patterns appear in d as in c. This means that D is u-balanced also in d. From the uniform
recurrence of c we also get that e ∈ O(d). Pick any k large enough so that D fits in the
stripe S = Sk

u. Because 0 ∈ S and S◦ ⊆ Hu, the conditions in Lemma 17 are met. By the
lemma, configuration d is p-periodic for some p that is perpendicular to u. Because d has
the same finite patterns as c, it follows that c cannot contain a pattern that breaks period p.
So c is also p-periodic. J

Now Theorem 4 follows from Propositions 14 and 15, using Theorem 3 and the fact that
every subshift contains a uniformly recurrent configuration.
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Proof of Theorem 4. Let c be a two-dimensional configuration that has low complexity
with respect to a rectangle. Replacing c by a uniformly recurrent element of O(c), we may
assume that c is uniformly recurrent. Since c is a low-complexity configuration, by Lemma 1
it has a non-trivial annihilator. By Theorem 3 there exists c′ ∈ O(c) such that O(c′) has
no direction of one-sided determinism. If all directions are deterministic in O(c′), it follows
from Proposition 14 that c′ is two-periodic. Otherwise there is a direction u such that both
u and −u are directions of non-determinism in O(c′). Now it follows from Proposition 15
that c′ is periodic. J

6 Conclusions

We have demonstrated how the low local complexity assumption enforces global regularities
in the admitted configurations, yielding algorithmic decidability results. The results were
proved in full details for low complexity configurations with respect to an arbitrary rectangle.
The reader can easily verify that the fact that the considered shape is a rectangle is not used
in any proofs presented here, and the only quoted result that uses this fact is Lemma 16.
A minor modification in the proof of Lemma 16 presented in [11] yields that the lemma
remains true for any two-dimensional configuration that has low complexity with respect to
any convex shape. We conclude that also all our results remain true if we use any convex
discrete shape in place of a rectangle.

If the considered shape is not convex the situation becomes more difficult. Theorem 4 is
not true for an arbitrary shape in place of the rectangle but all counter examples we know are
based on periodic sublattices [5, 8]. For example, even lattice cells may form a configuration
that is horizontally but not vertically periodic while the odd cells may have a vertical but
no horizontal period. Such a non-periodic configuration may be uniformly recurrent and
have low complexity with respect to a scatted shape D that only sees cells of equal parity. It
remains an interesting direction of future study to determine if a sublattice structure is the
only way to contradict Theorem 4 for arbitrary shapes. We conjecture that Corollaries 5
and 6 hold for arbitrary shapes, that is, that there does not exist a two-dimensional low
complexity aperiodic SFT. A special case of this is the recently solved periodic cluster tiling
problem [2, 12].
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Abstract
In computational biology, tandem duplication is an important biological phenomenon which can
occur either at the genome or at the DNA level. A tandem duplication takes a copy of a genome
segment and inserts it right after the segment – this can be represented as the string operation
AXB ⇒ AXXB. Tandem exon duplications have been found in many species such as human, fly
or worm, and have been largely studied in computational biology.

The Tandem Duplication (TD) distance problem we investigate in this paper is defined as
follows: given two strings S and T over the same alphabet, compute the smallest sequence of tandem
duplications required to convert S to T . The natural question of whether the TD distance can be
computed in polynomial time was posed in 2004 by Leupold et al. and had remained open, despite
the fact that tandem duplications have received much attention ever since. In this paper, we prove
that this problem is NP-hard, settling the 16-year old open problem. We further show that this
hardness holds even if all characters of S are distinct. This is known as the exemplar TD distance,
which is of special relevance in bioinformatics. One of the tools we develop for the reduction is a new
problem called the Cost-Effective Subgraph, for which we obtain W[1]-hardness results that might be
of independent interest. We finally show that computing the exemplar TD distance between S and
T is fixed-parameter tractable. Our results open the door to many other questions, and we conclude
with several open problems.
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1 Introduction

Tandem duplication is a biological process that creates consecutive copies of a segment of a
genome during DNA replication. Representing genomes as strings, this event transforms a
string AXB into another string AXXB. This process is known to occur either at small scale
at the nucleotide level, or at large scale at the genome level [5, 6, 7, 23, 12]. For instance,
it is known that the Huntington disease is associated with the duplication of 3 nucleotides
CAG [13], whereas at genome level, tandem duplications are known to involve multiple genes
during cancer progression [26]. Furthermore, gene duplication is believed to be the main
driving force behind evolution, and the majority of duplications affecting organisms are
believed to be of the tandem type (see e.g. [29]). As a result, around 3% of the human
genome are formed of tandem repeats.
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For these reasons, tandem duplications have received significant attention in the last
decades, both in practice and theory. The combinatorial aspects of tandem duplications
have been studied extensively by computational biologists [2, 14, 16, 22, 30], one question of
interest being to reconstruct the evolution of a cluster of tandem repeats by duplications
that could have given rise to the observed sequences. In parallel, various formal language
communities [9, 31, 25] have investigated the expressive power of tandem duplications on
strings.

From the latter perspective, a natural question arises: given a string S, what is the
language that can be obtained starting from S and applying (any number of) tandem
duplications, i.e. rules of the form AXB → AXXB, where X can be any substring of
S? This question was first asked in 1984 in the context of so-called copying systems [11].
Combined with results from [3], it was shown that this language is regular if S is on a binary
alphabet, but not regular for larger alphabets. These results were rediscovered 15 years
later in [9, 31]. In [25], it was shown that the membership, inclusion and regularity testing
problems on the language defined by S can all be decided in linear time (still on binary
alphabets). In [25, 24, 19], similar problems are also considered on non-binary alphabets,
when the length |X| of duplicated strings is bounded by a constant. More recently, Cho
et al. [8] introduced a tandem duplication system where the depth of a character, i.e. the
number of “generations” it took to generate it, is considered. In [18, 20], the authors study
the expressive power of tandem duplications, a notion based on the subsequences that can
be obtained from various types of copying mechanisms.

More directly related to our work, Alon et al. [1] recently investigated the minimum
number of duplications required to transform a string S into another string T . We call this
the Tandem Duplication (TD) distance. More specifically, the authors show that on binary
strings, the maximum TD distance between a square-free string S and a string T of length n

is Θ(n). They also mention the unsolved algorithmic problem of computing the TD distance
between S and T . In fact, this question was posed earlier in [25] (pp. 306, Open Problem 3)
by Leupold et al. and has remained open ever since. We settle this open problem in this
paper for an unbounded alphabet. As will be seen, our technique is different from that used
in [1], which only works for binary strings.

On the other hand, the TD distance is one of the many ways of comparing two genomes
represented as strings in computational biology – other notable examples include break-
point [17] and transpositions distances, the latter having recently been shown NP-hard in a
celebrated paper of Bulteau et al. [4]. The TD distance has itself received special attention
recently, owing to its role in cancer evolution [27].

Our results. In this paper, we solve the problem posed by Leupold et al. in 2004 and show
that computing the TD distance from a string S to a string T is NP-hard. We show that this
result holds even if S is exemplar, i.e. if each character of S is distinct. Exemplar strings are
commonly studied in computational biology [28], since they represent genomes that existed
prior to duplication events. We note that simply deciding if S can be transformed into T by
a sequence of TDs still has unknown complexity. In our case, we show that the hardness of
minimizing TDs holds on instances in which such a sequence is guaranteed to exist.

As demonstrated by the transpositions distance in [4], obtaining NP-hardness results for
string distances can sometimes be an involving task. Our hardness reduction is also quite
technical, and one of the tools we develop for it is a new problem we call the Cost-Effective
Subgraph. In this problem, we are given a graph G with a cost c, and we must choose a
subset X of V (G). Each edge with both endpoints in X has a cost of |X|, every other edge
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costs c, and the goal is to find a subset X of minimum cost. We show that this problem is
W[1]-hard for parameter p + c, where p is a parameter that asks if one can achieve a cost of
at most c|E(G)| − p (here c|E(G)| is an upper bound on the cost1). The problem enforces
optimizing the tradeoff between covering many edges versus having a large subset of high
cost, which might be applicable to other problems. In our case it captures the main difficulty
in computing TD distances. We then obtain some positive results by showing that if S is
exemplar, then one can decide if S can be transformed into T using at most k duplications
in time 2O(k2) + poly(n), where n is the length of T . The result is obtained through an
exponential size kernel. All of our results concern strings with unbounded alphabet sizes.
Finally, we conclude with several open problems that might be of interest to the theoretical
computer science community.

This paper is organized as follows. In Section 2, we give basic definitions. In Section 3,
we show that computing the TD distance is NP-hard through the Cost-Effective Subgraph
problem. In Section 4, we show that computing the exemplar TD distance is FPT. In Section
5, we conclude the paper with several open problems.

2 Preliminary notions

We borrow the string terminology and notation from [15]. In particular, [n] denotes the
set of integers {1, 2, . . . , n}. Unless stated otherwise, all the strings in the paper are on an
alphabet denoted Σ. If S1 and S2 are two strings, we usually denote their concatenation by
S1S2. For a string S, we write Σ(S) for the subset of characters of Σ that have at least one
occurrence in S. A string S is called exemplar if |S| = |Σ(S)|, i.e. each character present
in S occurs only once. A substring of S is a contiguous sequence of characters within S. A
prefix (resp. suffix) of S is a substring that occurs at the beginning (resp. end) of S, i.e.
if S = S1S2 for some strings S1 and S2, then S1 is a prefix of S and S2 a suffix of S. A
subsequence of S is a string that can be obtained by successively deleting characters from S.

A tandem duplication (TD) is an operation on a string S that copies a substring X of
S and inserts the copy after the occurrence of X in S. In other words, a TD transforms
S = AXB into AXXB. Given another string T , we write S ⇒ T if there exist strings
A, B, X such that S = AXB and T = AXXB. More generally, we write S ⇒k T if there
exist S1, . . . , Sk−1 such that S ⇒ S1 ⇒ . . . ⇒ Sk−1 ⇒ T . We also write S ⇒∗ T if there
exists some k such that S ⇒k T .

I Definition 1. The TD distance distT D(S, T ) between two strings S and T is the minimum
value of k satisfying S ⇒k T . If S ⇒∗ T does not hold, then distT D(S, T ) =∞.

We use the term distance here to refer to the number of TD operations from a string S to
another string T , but one may note that TD is not a metric in the formal sense. In particular,
distT D is not symmetric since duplications can only increase the length of a string.

A square string is a string of the form XX, i.e. a concatenation of two identical substrings.
Given a string S, a contraction is the reverse of a tandem duplication. That is, it takes a
square string XX contained in S and deletes one of the two copies of X. We write T � S if
there exist strings A, B, X such that T = AXXB and S = AXB. We also define T �k S

and T �∗ S for contractions analogously as for TDs. Observe that by the symmetry of

1 In other words, if we were to state the maximization version of the Cost-Effective Subgraph problem, p
would be the value to maximize. The minimization version, however, is more convenient to use for our
needs.
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duplications and contractions, T �k S if and only if S ⇒k T and T �∗ S if and only if
S ⇒∗ T . When there is no possible confusion, we will sometimes write T � S instead
T �∗ S.

We have the following problem.

The Tandem Duplication (TD) problem:
Input: Two strings S and T over the same alphabet Σ and an integer k.
Question: Is distT D(S, T ) ≤ k?

In the Exemplar-TD variant of this problem, S is required to be exemplar. In either
variant, we may call S the source string and T the target string. We will often use the fact
that S and T form a YES instance if and only if T can be transformed into S by a sequence
of at most k contractions. See Fig.1 for a simple example.

Sequence Operations

Sequence T = 〈a, c, g, g, a, c, g〉 contraction on 〈g, g〉
〈a, c, g, a, c, g〉 contraction on 〈a, c, g, a, c, g〉

Sequence S = 〈a, c, g〉

Figure 1 An example for transforming sequence T to S by two contractions. The corresponding
sequence of TDs from S to T would duplicate a, c, g, and then duplicate the first g.

We recall that although we study the minimization problem here, it is unknown whether
the question S ⇒∗ T can be decided in polynomial time. Nonetheless, our NP-hardness
reduction applies to “promise” instances in which S ⇒∗ T always holds.

3 NP-hardness of Exemplar-TD

To facilitate the presentation of our hardness proof, we first make an intermediate reduction
using the Cost-Effective Subgraph problem, which we will then reduce to the promise version
of the Exemplar-TD problem.

The Cost-Effective Subgraph problem
Suppose we are given a graph G = (V, E) and an integer cost c ∈ N>0. For a subset X ⊆ V ,
let E(X) = {uv ∈ E : u, v ∈ X} denote the edges inside of X. The cost of X is defined as

cost(X) = c · (|E(G)| − |E(X)|) + |X| · |E(X)|.

The Cost-Effective Subgraph problem asks for a subset X of minimum cost. In the decision
version of the problem, we are given an integer r and we want to know if there is a subset X

whose cost is at most r. Observe that X = ∅ or X = V are possible solutions.
The idea is that each edge “outside” of X costs c and each edge “inside” costs |X|.

Therefore, we pay for each edge not included in X, but if X gets too large, we pay more for
edges in X. We must therefore find a balance between the size of X and its number of edges.
The connection with the TD problem can be roughly described as follows: in our reduction,
we will have many substrings which need to be deleted through contractions. We will have
to choose an initial set of contractions X and then, each substring will have two ways to be
contracted: one way requires c contractions, and the other requires |X|.
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An obvious solution for a Cost-Effective Subgraph is to take X = ∅, which is of cost
c|E(G)|. Another formulation of the problem could be whether there is a subset X of cost
at most c|E(G)| − p, where p can be seen as a “profit” to maximize. Treating c and p

as parameters, we show the NP-hardness and W[1]-hardness in parameters c + p of the
Cost-Effective Subgraph problem (we do not study the parameter r). Our reduction to the
TD problem does not preserve W[1]-hardness and we only use the NP-hardness in this paper,
but the W[1]-hardness might be of independent interest.

Before proceeding, we briefly argue the relevance of parameter c in the W[1]-hardness.
If c is a fixed constant, then we may assume that any solution X satisfies |X| ≤ c. This is
because if |X| > c, every edge included in X will cost more than c and putting X = ∅ yields
a lower cost. Thus for fixed c, it suffices to brute-force every subset X of size at most c and
we get a nO(c) time algorithm. Our W[1]-hardness shows that it is difficult to remove this
exponential dependence between n and c.

I Theorem 2. The Cost-Effective Subgraph problem is NP-hard and W[1]-hard for parameter
c + p.

Proof. We reduce from CLIQUE. In this classic problem, we are given a graph G and an
integer k, and must decide whether G contains a clique of size at least k, where a clique is a
set of vertices in which every pair shares an edge. This problem is NP-hard [21] and also
W[1]-hard in parameter k [10]. We will assume that k is even (which does not alter either
hardness results).

Let (G, k) be a CLIQUE instance, letting n := |V (G)| and m := |E(G)|. The graph in
our Cost-Effective Subgraph instance is also G. We set the cost c = 3k/2, which is an integer
since k is even, and set

r := c

(
m−

(
k

2

))
+ k

(
k

2

)
= cm +

(
k

2

)
(k − c) = cm− k

2

(
k

2

)
.

We ask whether G admits a subgraph X satisfying cost(X) ≤ r. We show that (G, k) is
a YES instance to CLIQUE if and only if G contains a set X ⊆ V (G) of cost at most r. This
will prove both NP-hardness and W[1]-hardness in c + p (noting that here p = k/2

(
k
2
)
).

The forward direction is easy to see. If G is a YES instance, it has a clique X of size
exactly k. Since |E(X)| =

(
k
2
)
, the cost of X is precisely r.

Let us consider the converse direction. Assume that (G, k) is a NO instance of CLIQUE.
Let X ⊆ V (G) be any subset of vertices. We will show that cost(X) > r. There are 3 cases
to consider depending on |X|.

Case 1 : |X| = k. Since G is a NO instance, X is not a clique and thus |E(X)| =
(

k
2
)
− h,

where h > 0. We have that cost(X) = c(m−
(

k
2
)
+h)+k(

(
k
2
)
−h) = cm+

(
k
2
)
(k−c)+h(c−k) =

r + h(c− k). Since c > k and h > 0, the cost of X is strictly greater than r.

Case 2 : |X| = k + l for some l > 0. Denote |E(X)| =
(

k+l
2
)
− h, where 0 ≤ h ≤

(
k+l

2
)
The

cost of X is

cost(X) = c

(
m−

(
k + l

2

)
+ h

)
+ (k + l)

((
k + l

2

)
− h

)
= cm +

(
k + l

2

)
(k + l − c) + h(c− k − l)

= cm +
(

k + l

2

)(
l − k

2

)
+ h

(
k

2 − l

)
.
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Considering the difference

cost(X)− r =
(

k + l

2

)(
l − k

2

)
+ h

(
k

2 − l

)
−
(
−k

2

)(
k

2

)
= 3kl2

4 − kl

4 + l3

2 −
l2

2 + h

(
k

2 − l

)
,

if k/2− l ≥ 0, then the difference is clearly above 0 regardless of h, and then cost(X) > r as
desired. Thus we may assume that k/2− l < 0. In this case, we may further assume that
h =

(
k+l

2
)
, as this minimizes the difference. But in this case,

cost(X) = cm +
(

k + l

2

)(
l − k

2

)
+
(

k + l

2

)(
k

2 − l

)
= cm > r,

which concludes this case.

Case 3 : |X| = k − l, with l > 0. If k = l, then X = ∅ and cost(X) = cm > r. So we assume
k > l. Put |E(X)| =

(
k−l

2
)
− h, where h ≥ 0. We have

cost(X) = c

(
m−

(
k − l

2

)
+ h

)
+ (k − l)

((
k − l

2

)
− h

)
= cm +

(
k − l

2

)
(k − l − c) + h(c− k + l)

= cm +
(

k − l

2

)(
−k

2 − l

)
+ h

(
k

2 + l

)
.

The difference with this cost and r is

cost(X)− r =
(

k − l

2

)(
−k

2 − l

)
+ h

(
k

2 + l

)
−
(
−k

2

)(
k

2

)
= 3kl2

4 + kl

4 −
l3

2 −
l2

2 + h

(
k

2 + l

)
>

1
4(3l3 + l2)− 1

2(l3 + l2) ≥ 0,

the latter since k > l ≥ 1. Again, it follows that cost(X) > r. J

Reduction to Exemplar-TD (promise version)
Since the reduction is somewhat technical, we provide an overview of the techniques that
we will use. Let (G, c, r) be a Cost-Effective Subgraph instance where c is the cost and r the
optimization value, and with vertices V (G) = {v1, . . . , vn}. We will construct strings S and
T and argue on the number of contractions to go from T to S. We would like our source
string to be S = x1x2 . . . xn, where each xi is a distinct character that corresponds to vertex
vi. Let S′ be obtained by doubling every xi, i.e. S′ = x1x1x2x2 . . . xnxn. Our goal is to put
T = S′E1E2 . . . Em, where each Ei is a substring gadget corresponding to edge ei ∈ E(G)
that we must remove to go from T to S. Assuming that there is a sequence of contractions that
transforms T into S, we make it so that we first want to contract some, but not necessarily
all, of the doubled xi’s of S′, resulting in another string S′′. Let t be the number of xi’s
contracted from S′ to S′′. For instance, we could have S′′ = x1x1x2x3x3x4x5x5, where only
x2 and x4 were contracted, and thus t = 2. The idea is that these contracted xi’s correspond
to the vertices of a cost-effective subgraph. After T is transformed to S′′E1 . . . Em, we then
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force each Ei to use S′′ to contract it. For m = 3, a contraction sequence that we would like
to enforce would take the form

S′E1E2E3 � S′′E1E2E3 � S′′E2E3 � S′′E3 � S′′� S,

where we underline the substring affected by contractions at each step. We make it so that
when contracting S′′EiEi+1 . . . Em into S′′Ei+1 . . . Em, we have two options. Suppose that
vj , vk are the endpoints of edge ei. If, in S′′, we had chosen to contract xj and xk, we can
contract Ei using a sequence of t moves. Otherwise, we must contract Ei using another more
costly sequence of c moves. The total cost to eliminate the Ei gadgets will be c(m− e) + te,
where e is the number of edges that can be contracted using the first choice, i.e. for which
both endpoints were chosen in S′′.

Unfortunately, constructing S′ and the Ei’s to implement the above idea is not straight-
forward. The main difficulty lies in forcing an optimal solution to behave as we describe,
i.e. enforcing going from S′ to S′′ first, enforcing the Ei’s to use S′′, and enforcing the two
options to contract Ei with the desired costs. In particular, we must replace the xi’s by
carefully constructed substrings Xi. We must also repeat the sequence of Ei’s a certain
number p times. We now proceed with the technical details.

I Theorem 3. The Exemplar-TD problem is NP-complete, even if for the given string S and
T , S ⇒∗ T is guaranteed to hold.

Proof. To see that the problem is in NP, note that distT D(S, T ) ≤ |T | since each contraction
from T to S removes at least character. Thus a sequence of contractions can serve as a
certificate, has polynomial size and is easy to verify.

For hardness, we reduce from the Cost-Effective Subgraph problem, which has been
shown NP-hard in Theorem 2. Let (G, c, r) be an instance of Cost-Effective Subgraph, letting
n := |V (G)| and m := |E(G)|. Here c is the “outsider edge” cost and we ask whether there is a
subset X ⊆ V (G) such that c(m−|E(X)|)+ |X||E(X)| ≤ r. We denote V (G) = {v1, . . . , vn}
and E(G) = {e1, . . . , em}. The ordering of vertices and edges is arbitrary but remains fixed
for the remainder of the proof. For convenience, we allow the edge indices to loop through 1
to m, and so we put ei = ei+lm for any integer l ≥ 0. Thus we may sometimes refer to an
edge eh with an index h > m, meaning that eh is actually the edge e((h−1) mod m)+1.

The construction. Let us first make an observation. If we take an exemplar string X =
x1 . . . xl (i.e. a string in which no character occurs twice), we can double its characters
and obtain a string X ′ = x1x1 . . . xlxl. The length of X ′ is only twice that of X and
distT D(X, X ′) = l, i.e. going from X ′ to X requires l contractions. We will sometimes
describe pairs of strings X and X ′ at distance l without explicitly describing X and X ′, but
the reader can assume that X starts as an exemplar string of length l and we obtain X ′ by
doubling each character, as above.

Now we show how to construct S and T . First let d = m + 1 and p = m(n + m)10.
The exact values of d and p are not crucial and will only refer to them when needed: for
the most part, it is enough to think of d and p as simply “large enough”. Note however
that p is a multiple of m. For later reference, the value of k we will use in the reduction is
k = p/m · d(r + nm) + 4cdn.

Instead of doubling xi’s as in the intuition paragraph above, we will duplicate some
characters d times. Moreover, we can’t create a T string that behaves exactly as described
above, but we will show that we can append p copies of carefully crafted substring to obtain
the desired result. We need d and p to be high enough so that “enough” copies behave as we
desire.
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For each i ∈ [n], define an exemplar string Xi of length d. Moreover, create enough
characters so that no two Xi strings contain a character in common. Let Xd

i be a string
satisfying distT D(Xi, Xd

i ) = d.
Then for each j ∈ {0, 1, . . . , 2p}, define an exemplar string Bj . Ensure that no Bj contains

a character from an Xi string, and no two Bj ’s contain a common character. The Bj strings
can consist of a single character, with the exception of B0 and B1 which are special. We
assume that for B0 and B1, we have strings B∗0 and B∗1 such that

distT D(B0, B∗0) = dc + 2d− 2,

distT D(B1, B∗1) = dn + 2d− 1.

Again, this can be done using the doubling trick on exemplar strings. The Bj ’s are the
building blocks of larger strings. For each q ∈ [2p], define

Bq = BqBq−1 . . . B2B1B0, B0
q = BqBq−1 . . . B2B1B∗0 ,

B1
q = BqBq−1 . . . B2B∗1B0, B01

q = BqBq−1 . . . B2B∗1B∗0 .

These strings are used as “blockers” and prevent certain contractions from happening. Note
that B0

q and B1
q can be turned into Bq using dc+2d−2 contractions and dn+2d−1 contractions,

respectively. Moreover, B01
q can be turned into B0

q using dn + 2d− 1 contractions and into
B1

q using dc + 2d− 2 contractions.
Also define the strings

X = X1X2 . . . Xn, X d = Xd
1 Xd

2 . . . Xd
n,

and for edge eq = vivj with q ∈ [p] whose endpoints are vi and vj , define

Xeq
= Xd

1 . . . Xd
i−1XiX

d
i+1 . . . Xd

j−1XjXd
j+1 . . . Xd

n.

Thus in Xeq
, all Xk substrings are turned into Xd

k , except Xi and Xj .
Finally, define a new additional character ∆, which will be used to separate some of the

components of our string. We can now define S and T . We have

S = B2pX∆ = B2pB2p−1 . . . B2B1B0X1X2 . . . Xn∆.

It follows from the definitions of B2p,X and ∆ that S is exemplar. Now for i ∈ [p], define

Ei := B01
i Xei

∆B1
2pX∆,

which we will call the edge gadget. Define T as

T = B0
2pX d∆B1

2pX∆E1E2 . . . Ep

= B0
2pX d∆B1

2pX∆
[
B01

1 Xe1∆B1
2pX∆

] [
B01

2 Xe2∆B1
2pX∆

]
. . .
[
B01

p Xep
∆B1

2pX∆
]

.

We add brackets for clarity only – they indicate the distinct Ei substrings, but the brackets
are not actual characters of T . The idea is that T starts with S′ = B0

2pX d∆, a modified S in
which B2p becomes B0

2p and the Xi substrings are turned into Xd
i . This X d substring serves

as a choice of vertices in our cost-effective subgraph. Each edge ei has a “gadget substring”
Ei = B01

i Xei
∆B1

2pX∆. Since p is a multiple of m, the sequence of edge gadgets E1E2 . . . Em

is repeated p/m times. Our goal to go from T to S is to get rid of all these edge gadgets
by contractions. Note that because a Ei gadget starts with B01

i and the gadget Ei+1 starts
with B01

i+1, the substring Ei+1 has a character that the substring Ei does not have.
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The hardness proof. We now show that G admits a subset of vertices W of cost at most r

if and only if T can be contracted to S using at most p/m · d(r + nm) + 4cdn contraction
operations. We include the forward direction, which is the most instructive, in the main text.
The other direction can be found in the full version. Although we shall not dig into details
here, it can be deduced from the (⇒) direction that T �∗ S holds.

(⇒) Suppose that G admits a subset of vertices W of cost at most r. Thus c(m −
|E(W )|) + |W | · |E(W )| ≤ r. To go from T to S, first consider an edge ei that does not have
both endpoints in W . We show how to get rid of the gadget substring Ei for ei using dn + dc

contractions. Note that T contains the substring B1
2pX∆Ei = B1

2pX∆[B01
i Xei

∆B1
2pX∆],

where brackets surround the Ei occurrence that we want to remove (note that here for i > 1,
the prefix B1

2pX∆ is the suffix of the previous Ei−1 gadget, and for i = 1, it is the suffix
of the starting block of T ). We can first contract B01

i to B1
i using dc + 2d− 2 contractions,

then contract Xei
to X using d(n− 2) contractions. The result is the B1

2pX∆[B1
iX∆B1

2pX∆]
substring, which becomes B1

2pX∆ using two contractions (see below). This sums to dc + 2d−
2 + d(n − 2) + 2 = dc + dn operations. More visually, the sequence of contractions works
as follows (as before, brackets indicate the Ei substring and what remains of it, and the
underlines are there to emphasize the substrings that participate in the contractions(s)):

B1
2pX∆

[
B01

i Xei
∆B1

2pX∆
]

(dc + 2d− 2 contractions)

�B1
2pX∆

[
B1

iXei
∆B1

2pX∆
]

(d(n− 2) = dn− 2d contractions)

�B1
2pX∆

[
B1

iX∆B1
2pX∆

]
=B2pB2p−1 . . . Bi+1B1

iX∆
[
B1

iX∆B1
2pX∆

]
(1 contraction)

�B2pB2p−1 . . . Bi+1B1
iX∆

[
B1

2pX∆
]

=B1
2pX∆

[
B1

2pX∆
]

(1 contraction)

�B1
2pX∆.

This sequence of dn+dc contractions effectively removes the Ei substring gadget. Observe
that after applying this sequence, it is still true that every remaining Ej gadget substring is
preceded by B1

2pX∆. We may therefore repeatedly apply this contraction sequence to every
ei not contained in W (including those ei gadgets for which i > m). This procedure is thus
applied to p/m · (m− |E(W )|) gadgets. We assume that we have done so, and that every ei

for which the Ei gadget substring remains is in W . Call the resulting string T ′.
Now, let XW be the substring obtained from X d by contracting, for each vi ∈ W , the

string Xd
i to Xi. We assume that we have contracted the X d substring of T ′ to XW , which

uses d|W | contractions (note that there is only one occurrence of X d in T ′, namely right
before the first ∆). Call T ′′ the resulting string. At this point, for every Ei substring gadget
that remains, where Ei corresponds to edge ei = vjvk, XW contains the substrings Xj and
Xk (instead of Xd

j and Xd
k ).

Let i be the smallest integer for which the ei substring gadget Ei is still in T ′. This is
the leftmost edge gadget still in T ′′, meaning that T ′′ has the prefix

B0
2pXW ∆B1

2pX∆
[
B01

i Xei∆B1
2pX∆

]
,

where brackets indicate the Ei substring. To remove Ei, first contract B01
i to B0

i , and contract
Xei to XW (this is possible since ei ⊆W ). The result is B0

2pXW ∆B1
2pX∆

[
B0

iXW ∆B1
2pX∆

]
.

One more contraction gets rid of the second half. This requires dn + 2d− 1 + d(|W | − 2) + 1 =
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dn + d|W | contractions. This procedure is applied to p/m · |E(W )| gadgets. To recap, the
contraction sequence for Ei does as follows:

B0
2pXW ∆B1

2pX∆
[
B01

i Xei∆B1
2pX∆

]
(dn + 2d− 1 contractions)

�B0
2pXW ∆B1

2pX∆
[
B0

iXei∆B1
2pX∆

]
(d(|W | − 2) contractions)

�B0
2pXW ∆B1

2pX∆
[
B0

iXW ∆B1
2pX∆

]
(1 contraction)

�B0
2pXW ∆B1

2pX∆.

After we repeat this for every Ei, all that remains is the string B0
2pXW ∆B1

2pX∆. We contract
XW to X using d(n−|W |) contractions (in total, going from X d to X required dn contractions).
Then contract B0

2p and B1
2p to B2p using dc+2d−2+dn+2d−1 = d(c+n+4)−3 contractions.

One more contraction of the second half of the string yields S. The summary of the number
of contractions made is

p

m
· (m− |E(W )|) · (dc + dn) + p

m
· |E(W )| · (dn + d|W |) + dn + d(c + n + 4)− 3

≤ p

m
· (m− |E(W )|) · (dc + dn) + p

m
· |E(W )| · (dn + d|W |) + 4cdn

= p

m
· d · (c + n)(m− |E(W )|) + p

m
· d · (n + |W |)|E(W )|+ 4cdn

= p

m
· d · [c(m− |E(W )|) + |W ||E(W )|+ nm] + 4cdn

≤ p

m
· d(r + nm) + 4cdn,

as desired.
(⇐): this direction of the proof is somewhat involved and can be found in the full version.

The idea is to show that a minimum contraction sequence must have the form similar to
that in the (⇒) direction. The challenging part is to show that each Ei substring must
get removed separately in this sequence, and that “most” of them incur a cost of either
dn + dt− 2 or dn + dc− 2 for some t (this “most” is the reason that we need a large p). J

4 An FPT algorithm for the exemplar problem

In this section, we will show that Exemplar-k-TD can be solved in time 2O(k2) + poly(n) by
obtaining a kernel of size O(k2k), where n is the length of T .

We first note that there is a very simple, brute-force algorithm to solve the k-TD problem,
which is the variant of the TD problem with parameter k, the number of TDs to turn S into
T (including Exemplar-k-TD as a particular case). This only establishes membership in the
XP class, but it will be useful to evaluate the complexity of our kernelization later on.

I Proposition 4. The k-TD problem can be solved in time O(n2k), where n is the size of the
target string.

Proof. Let (S, T ) be a given instance of k-TD. Consider the branching algorithm that,
starting from T , tries to contract every substring of the form XX in T and recurses on each
resulting string, decrementing k by 1 each time (the branching stops when S is obtained
or when k reaches 0 without attaining S). We obtain a search tree of depth at most k and
degree at most n2, and thus it has O(n2k) nodes. Visiting the internal nodes of this search
tree only requires enumerating O(n2) substrings, which form the set of children of the node.
Hence, there is no added computation cost to consider when visiting a node. J
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From now on, we assume that we have an Exemplar-k-TD instance (S, T ), and so that S

is exemplar.
Let x and y be two consecutive characters in S (i.e. xy is a substring of S). We say that

xy is (S, T )-stable if in T , every occurrence of x in T is followed by y and every occurrence
of y is preceded by x. That is, the direct successor of every x character is y, and the direct
predecessor of every y character is y. An (S, T )-stable substring X = x1 . . . xl, where l ≥ 2,
is a substring of S such that xixi+1 is (S, T )-stable for every i ∈ [l − 1]. We also define a
string with a single character xi to be a (S, T )-stable substring (provided xi appears in S

and T ). If any substring of S that strictly contains X is not an (S, T )-stable substring, then
X is called a maximal (S, T )-stable substring. Note that these definitions are independent of
S and T , and so the same definitions apply for (X, Y )-stability, for any strings X and Y .

We will show that every maximal (S, T )-stable substring can be replaced by a single
character, and that if T can be obtained from S using at most k tandem duplications, then
this leaves strings of bounded size.

We first show that, roughly speaking, stability is maintained by all tandem duplications
when going from S to T .

I Lemma 5. Suppose that distT D(S, T ) = k and let X be an (S, T )-stable substring. Let
S = S0, S1, . . . , Sk = T be any minimum sequence of strings transforming S to T by tandem
duplications. Then X is (S, Si)-stable for every i ∈ [k].

Proof. Assume the lemma is false, and let Si be the first of S1, . . . , Sk that does not satisfy
the statement. Then there are two characters x, y belonging to X such that xy is (S, T )-stable,
but xy is not (S, Si)-stable.

We claim that, under our assumption, xy is not (S, Sj)-stable for any j ∈ {i, . . . , k}. As
this includes Sk = T , this will contradict that xy is (S, T )-stable. We do this by induction
– as a base case, xy is not (S, Si)-stable so this is true for j = i. Assume that xy is not
(S, Sj−1)-stable, where i < j ≤ k. Let D be the duplication transforming Sj−1 to Sj (here
D = (a, b) contains the start and end positions of the substring of Sj−1 to duplicate).

Suppose first that xy is not (S, Sj−1)-stable because Sj−1 has an occurrence of x that is
not followed by y. Thus Sj−1 has an occurrence of x, say at position px, followed by z 6= y.
If we assume that xy is (S, Sj)-stable, then a y character must have appeared after this x

from Sj−1 to Sj . Changing the character next to this x is only possible if the last character
duplicated by D is the x at position px and the first character of D is a y. In other words,
denoting Sj−1 = A1yA2xzA3 for appropriate A1, A2, A3 substrings, the D duplication must
do the following

A1yA2xzA3 ⇒ A1yA2xyA2xzA3,

as otherwise, the character next to the above occurrence of x will remain z. But then, there
is still an occurrence of x followed by z, and it follows that xy cannot be (S, Sj)-stable.

So suppose instead that xy is not (S, Sj−1)-stable because Sj−1 has an occurrence of
y preceded by z 6= x. Assume the character preceding this y has changed in Sj and has
become x. But one can verify that this is impossible. For completeness, we present each
possible case: either D includes both z and y, includes one of them or none. These cases are
represented below, and each one of them leads to an occurrence of y still preceded by z (the
left-hand side represents Sj−1 and the right-hand side represents Sj , and the Ai’s are the
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relevant substrings in each case):

Include both: A1A2zyA3A4 ⇒ A1A2zyA3A2zyA3A4,

Include z only: A1A2zyA3 ⇒ A1A2zA2zyA3,

Include y only: A1zyA2A3 ⇒ A1zyA2yA2A3,

Include none: A1A2zyA3 ⇒ A1A2A2zyA3 or A1zyA2A3 ⇒ A1zyA2A2A3.

We have therefore shown that xy cannot be (S, Sj)-stable, and therefore not (S, T )-stable,
which concludes the proof. J

Let S′ be a substring obtained from S by tandem duplications, and let X := S′[a..b] be
the substring of S′ at positions from a to b. Suppose that we apply a duplication D = (c, d),
which copies the substring S′[c..d]. Then we say that D cuts X if one of the following holds:

a < c ≤ b and b < d, in which case we say that D cuts X to the right;
c < a and a ≤ d < b, in which case we say that D cuts X to the left;
(a, b) 6= (c, d) and a ≤ c < d ≤ b, in which case D cuts X inside.

In other words, if we write X = X1X2 and S′ = UV X1X2WY , cutting to the right
takes the form UV X1X2WY ⇒ UBX1X2WX2WY . Cutting to the left takes the form
UV X1X2WY ⇒ UV X1V X1X2WY . Rewriting X = X1X2X3 and S′ = UX1X2X3V ,
cutting inside takes the form UX1X2X3V ⇒ UX1X2X2X3V . Note that if D does not cut
any occurrence of a maximal (S, S′)-stable substring X and S′′ is obtained by applying D

on S′, then X is (S, S′′)-stable.
The next lemma shows that we can assume that maximal stable substrings never get cut,

and thus always get duplicated together. The idea is that any duplication that cuts an Xj

can be replaced by an equivalent duplication that doesn’t.

I Lemma 6. Suppose that distT D(S, T ) = k, and let X1, . . . , Xl be the set of maximal
(S, T )-stable substrings. Then there exists a sequence of tandem duplications D1, . . . , Dk

transforming S into T such that no occurrence of an Xj gets cut by a Di.
In other words, for all i ∈ [k] and all j ∈ [l], the tandem duplication Di does not cut any

occurrence of Xj in the string obtained by applying D1, . . . , Di−1 to S.

The above implies that we may replace each maximal (S, T )-stable substring X of S and
T by a single character, since we may assume that characters of X are always duplicated
together (assuming, of course, that S is exemplar). It only remains to show that the resulting
strings are small enough. The proof of the following lemma has a very simple intuition.
First, S has exactly 1 maximal (S, S)-stable substring. Each time we apply a duplication, we
“break” at most 2 stable substrings, which creates 2 new ones. So if we apply k duplications,
there are at most 2k + 1 such substrings in the end.

I Lemma 7. If distT D(S, T ) ≤ k, then there are at most 2k + 1 maximal (S, T )-stable
substrings.

Proof. Let S = S0, S1, . . . , Sk = T be any minimum sequence of strings transforming S to T

by tandem duplications. We show by induction that, for each i ∈ {0, 1, . . . , k}, the number
of maximal (S, Si)-stable substrings is at most 2i + 1. For i = 0, there is only one maximal
(S, S)-stable substring, namely S itself. Now assume that there are at most 2(i−1)+1 = 2i−1
maximal (S, Si−1)-stable substrings. Let X = {X1, . . . , Xl} be the set of these substrings,
l ≤ 2i − 1. We then know that Si−1 can be written as a concatenation of Xj ’s from X
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(with possible repetitions). The duplication D transforming Si−1 to Si copies some of these
Xj ’s entirely, except at most two Xj ’s at the ends which it may copy partially (i.e. D cuts
at most two substrings from X). In other words, the substring duplicated by D can be
written as X2

j Xa1Xa2 . . . Xar X1
h, where Xj = X1

j X2
j and Xh = X1

hX2
h for some j, h ∈ [l] (and

Xa1 , . . . , Xar
∈ X). Going further, Si−1 and Si can be written, using appropriate substrings

A, B, C that are concatenation of elements of X, as

Si−1 = AX1
j X2

j BX1
hX2

hC ⇒ AX1
j X2

j BX1
hX2

j BX1
hX2

hC = Si.

Now, any Xr ∈ X \ {Xj , Xh} is (S, Si)-stable. Moreover, X1
j , X2

j , X1
h and X2

h are also
(S, Si)-stable. This shows that the number of maximal (S, Si)-stable substrings is at most
2i− 1− 2 + 4 = 2i + 1, as desired. J

We can now transform an instance (S, T ) of Exemplar-k-TD to a kernel, an equivalent
instance (S′, T ′) of size depending only on k.

I Theorem 8. An instance (S, T ) of Exemplar-k-TD admits a kernel (S′, T ′) in which
|S′| ≤ 2k + 1 and |T ′| ≤ (2k + 1)2k.

Proof. Let S′, T ′ be obtained from an instance (S, T ) by replacing each maximal (S, T )-
stable substring by a distinct character. We first prove that (S′, T ′) is indeed a kernel by
establishing its equivalence with (S, T ). Clearly if (S′, T ′) can be solved using at most k

duplications, then the same applies to (S, T ). By Lemma 6, the converse also holds: if (S, T )
can be solved with at most k duplications, we may assume that these duplications never cut
a maximal (S, T )-stable substring, and so these duplications can be applied on (S′, T ′).

Then by Lemma 7, we know that S′ has at most 2k + 1 characters. If distT D(S′, T ′) ≤ k,
then each duplication can at most double the size of the previous string. Therefore, T ′ must
have size at most (2k + 1)2k. J

The kernelization can be performed in polynomial time, as one only needs to identify
maximal (S, T )-stable substrings and contract them (we do not bother with the exact
complexity for now). Running the brute-force algorithm from Proposition 4 yields the
following.

I Corollary 9. The exemplar k-tandem duplication problem can be solved in time O(((2k +
1)2k)2k + poly(n)) = 2O(k2) + poly(n), where n is the size of the input.

5 Open problems

Although this work answers some open questions, many of them still deserve investigation.
We conclude with some of these questions along with future research perspectives.

Is the k-TD problem FPT in parameter k? As we observe in our Exemplar-k-TD kerneliza-
tion, if T and S are large compared to k, they must share many long common substrings
which could be exploited for an FPT algorithm. It is also an interesting question whether
Exemplar-k-TD admits a polynomial size kernel.
If |Σ| is fixed, is k-TD in P? Even the |Σ| = 2 case is open. One possibility it to check
whether we can reduce the alphabet of any instance to some constant by encoding each
character appropriately.

STACS 2020
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Can one decide in polynomial time whether S ⇒∗ T? The only known result on this
topic is that it can be done if |Σ| = 2, as one can construct a finite automaton accepting
all strings generated by S (though this automaton does not give the minimum number of
duplications required).
Does the k-TD problem admit a constant factor approximation algorithm? The answer
might depend on the hardness of deciding whether S ⇒∗ T , but one might still consider
the promise version of the problem.
If the length of each duplicated string is bounded by d, is k-TD in P (with d treated as a
constant)? We believe that it is FPT in k + d, but is it FPT in d?
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Abstract
We study the following natural variation on the classical universality problem: given a language
L(M) represented by M (e.g., a DFA/RE/NFA/PDA), does there exist an integer ` ≥ 0 such that
Σ` ⊆ L(M)? In the case of an NFA, we show that this problem is NEXPTIME-complete, and
the smallest such ` can be doubly exponential in the number of states. This particular case was
formulated as an open problem in 2009, and our solution uses a novel and involved construction. In
the case of a PDA, we show that it is recursively unsolvable, while the smallest such ` is not bounded
by any computable function of the number of states. In the case of a DFA, we show that the problem
is NP-complete, and e

√
n log n(1+o(1)) is an asymptotically tight upper bound for the smallest such

`, where n is the number of states. Finally, we prove that in all these cases, the problem becomes
computationally easier when the length ` is also given in binary in the input: it is polynomially
solvable for a DFA, PSPACE-complete for an NFA, and co-NEXPTIME-complete for a PDA.
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1 Introduction

The classical universality problem is the question, for a given language L over an alphabet Σ,
whether L = Σ∗. Depending on how L is specified, the complexity of this problem varies.
For example, when L is given as the language accepted by a DFA M , the problem is solvable
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in linear time (reachability of a non-final state) and further is NL-complete [10]. When L is
given by an NFA or a regular expression, it is PSPACE-complete [1]. When L is specified by
a PDA (push-down automaton) or a context-free grammar, the problem is undecidable [9].

Studies on universality problems have a long tradition in computer science and still
attract much interest. For instance, the universality has been studied for visibly push-down
automata [2], where the question was shown to be decidable in this model (in contrast
to undecidability in the ordinary model); timed automata [3]; the language of all prefixes
(resp., suffixes, factors, subwords) of the given language [14]; and recently, for partially (and
restricted partially) ordered NFAs [11].

In this paper, we study a basic variation of the universality problem, where instead of
testing the full language, we ask whether there is a single length that is universal for the
language. We focus on the following two problems:

I Problem 1 (Existential length universality). Given a language L represented by a machine
M of some type (DFA/RE/NFA/PDA) over an alphabet Σ of a fixed size, does there exist
an integer ` ≥ 0 such that Σ` ⊆ L?

I Problem 2 (Specified-length universality). Given a language L by a machine M of some
type (DFA/RE/NFA/PDA) over an alphabet Σ of a fixed size and an integer ` (given in
binary), is Σ` ⊆ L?

Furthermore, if such an ` exists, we are interested in how large the smallest ` can be.

I Definition 3. The minimum universality length of a language L over an alphabet Σ is the
smallest integer ` ≥ 0 such that Σ` ⊆ L.

1.1 Motivation
From the mathematical point of view, Problems 1 and 2 are natural variations of universality
that surprisingly, to the best of our knowledge, have not been thoroughly investigated in
the literature. Both problems can be seen as an interesting generalization of the famous
Chinese remainder theorem to languages, in the sense that given periodicities with multiple
periods, we ask where all these periodicities coincide. Hence, languages stand as succinct
representations of integers. Moreover, both problems are motivated by potential applications
in verification listed below. Finally, the techniques developed to study them are interesting
on their own and are likely to find applications elsewhere. In particular, to solve the case of
an NFA, we develop a novel formalism that helps to build NFAs with particular properties.
Indeed, similar constructions to some of the first ingredients in our proof (variables and the
Incrementation Gadget), were recently independently discovered to solve the problem of a
maximal chain length of the Green relation components of the transformation semigroup of
a given DFA [5].

Games with imperfect information
We consider games with imperfect information on a labeled graph [4], which are used to
model, e.g., reactive systems. In such a game there are two players, P modeling the program
and E modeling the environment. The game starts at the initial vertex. In one round, P
chooses a label (action) and E chooses an edge (effect) from the current vertex with this
label. If P is deterministic and cannot see the choices of E, then a strategy for P is just a
word over the alphabet of labels. The game can end under various criteria, and the sequence
of the resulting labels determines which player wins.
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Under one of the simplest ending criteria, the game lasts for a given number of steps
known to P. This models the situation when we are interested in the status of the system
after some known amount of time. For example, this occurs if a system must work effectively
for a specified duration, but in the end, we must be able to shut it down, which requires
that there are no incomplete processes still running inside. Another example could be a
distributed system, where processes have limited possibilities to communicate with the others
and are affected by the environment; in general, processes do not know if the system has
reached its global goal; hence, for a given strategy, we may need a guarantee of reaching the
goal after a known number of rounds, instead of monitoring termination externally.

The main question for such a game is: does P have a winning strategy? This is equivalent
to asking whether all strategies of P are losing. In other words, if L is the language of
all losing strategies of P, then we ask whether all words of the given length are in L. For
instance, if the winning criterion for P is just being in one of the specified vertices, then L is
directly defined by the NFA obtained from the graph, where we mark all the non-specified
vertices to be final. We can also ask whether the system is unsafe, i.e., we cannot find a
strategy for some number of steps, which corresponds to existential length universality.

One can mention the relationship with the “firing squad synchronization problem” [12, 13].
In this classical problem, we are given a cellular automaton of n cells, with one active cell,
and the goal is to reach a state in which all cells are simultaneously active. Thinking of an
evolving device where the state at time i is represented by the strings of length i in L, our
problem concerns how many time steps are needed until “all cells are active”, that is, until
all strings of length i are accepted.

Formal specifications

Our problems are strongly related to a few other questions that can be applied in formal
verification, where program correctness is often expressed through inclusion problems [17].
The universality problem is closely related to the inclusion problem: clearly, universality is a
special case of inclusion if the underlying language model can express Σ∗; and inclusion can
be reduced to universality when this model is closed under unions and includes some (simple)
regular languages (possibly folklore, cf. [6]). These reductions carry through to the given and
the existential length inclusion problems. We can consider the constrained inclusion problems
corresponding to the universality problems mentioned above; for instance, existential length
inclusion asks for two languages K and L whether K ∩ Σ` ⊆ L for some `. Specified-length
inclusion contains the essence of a specialized program verification problem: do all program
runs of a particular duration adhere to a given specification? Likewise, existential length
universality can be used to check whether there is some number ` such that running the
given program for exactly ` steps ensures that the specification is met.

Another question of potential interest in program verification is the bounded-length
universality problem, i.e., whether Σ≤` ⊆ L for a given `, resp. its inclusion variant. This
could then be used to check whether an implementation meets its specification up to some
point, in order to know, for example, whether the safety of a program can be guaranteed
for as long as it is terminated externally at some point. The complexity of bounded-length
universality is the same as that of specified-length universality, which is easy to show by
modifying our proofs.

STACS 2020
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Table 1 Computational complexity of universality problems.

DFA RE NFA PDA
Universality NL-c PSPACE-c PSPACE-c Undecidable
Existential length universality NP-c PSPACE-hard, NEXPTIME-c Undecidable(Problem 1) in NEXPTIME
Specified-length universality PTIME PSPACE-c PSPACE-c co-NEXPTIME-c(Problem 2)
Minimal universality length subexponential open doubly exponential uncountable

1.2 Contribution
We have studied the problems in four cases, when L is represented by a DFA, NFA, regular
expression, or PDA.

In the case where M is a DFA, existential length universality is NP-complete, and there
exist n-state DFAs for which the minimal universality length is of the form e

√
n log n(1+o(1)),

which is the best possible even when the input alphabet is binary. Specified-length universality
is solvable in polynomial time.

The case of existential length universality where M is an NFA was formulated as an open
question in May 2009, as mentioned in [15], and our solution requires the most involved
construction of all problems studied in this paper. We show that this problem is NEXPTIME-
complete.

In the case when M is a regular expression, existential length universality is PSPACE-
hard and in NEXPTIME, and there are examples where the minimal universality length
is exponential. The question about the exact complexity class remains open in this case.
Specified-length universality for REs and also for NFAs is PSPACE-complete, which follows
from modifying the PSPACE-hardness proof of the usual universality [1, Section 10.6].

Finally, in the case where M is a PDA, existential length universality is recursively
unsolvable, while the minimal universality length grows faster than any computable function,
which follows from the undecidability of the universality of a PDA. On the other hand,
specified-length universality is co-NEXPTIME-complete, which we show by another original
construction1, though less involved than that for NFAs, reducing from an exponential variant
of the tiling problem [16].

While for proving hardness we use larger alphabets, a standard binarization applies to
our problems, so all the complexity results remain valid when the alphabet is binary.

Our results are summarized in Table 1. In the conference version, we present only the
most involved case of the NEXPTIME-completeness of the existential length universality of
an NFA. Due to the length of the proof, the main ideas are exposed, with some technical
details omitted. These, and all the other proofs, are available in the full version of the paper.

2 The Case Where M is an NFA

The classical universality problem for regular expressions and so for NFAs is known to be
PSPACE-complete [1, Section 10.6]. Also, if the NFA does not accept Σ∗, then the length
of the shortest non-accepted words is at most exponential. Specified-length universality
for NFAs is also PSPACE-complete, which can be shown by a modification of the usual
proof for universality. However, we show that existential length universality is harder: it

1 We thank an anonymous referee for pointing out that coNEXPTIME-hardness of given-length universality
for PDA could also be obtained through a modification of the proof of [18, Theorem 8.1].
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is NEXPTIME-complete, and there are examples where the minimal universality length is
approximately doubly exponential in the number of states of the NFA.

We begin with upper bounds, which follow by determinization and the results for DFAs.

I Proposition 4. Let M be an NFA with n states. If there exists an ` such that M accepts
all strings of length `, then the smallest such ` is ≤ e2n/2

√
n log 2(1+o(1)).

I Proposition 5. Existential length universality (Problem 1) for NFAs is in NEXPTIME.

The difficult part is to show that existential length universality for NFAs is NEXPTIME-
hard. Note that the usual method which is applied to show PSPACE-hardness of the classical
universality problem does not seem enough in this case and, after a suitable modification,
results only in a proof of PSPACE-hardness. The reason for this difficulty is that, to show
NEXPTIME-hardness, we need to be able to construct NFAs whose minimum universality
length is larger than exponential, which is a non-trivial task in itself. The NFA constructed
by the reduction must have a polynomial size, whereas to solve an NEXPTIME-complete
problem we may need exponential memory. If the length of a word is superexponential, then
some subsets of the states of the NFA must be repeated multiple times.

To overcome this major technical hurdle we construct an NFA with minimum universality
length being roughly doubly exponential by using an indirect approach. We design the
automaton such that there are many exponentially long cycles on subsets of the states and it
accepts all words only for the lengths that are solutions given by the Chinese Remainder
Theorem for these cycle lengths. By exhibiting a family of NFAs with large minimal
universality lengths we show that our construction is essentially tight. The techniques are
rather involved, and hence we first develop an intermediate formalism that will be used for
both tasks. Having developed our formalism, we are able to solve the first task. To solve the
second task, we proceed in two steps. First, we reduce an auxiliary logic decision problem
concerning the divisibility of integers to existential length universality through our formalism.
Second, we reduce a canonical NEXPTIME-complete problem to this divisibility problem.

2.1 A Programming Language
We define a simple programming language that will be used to construct NFAs with particular
properties in a convenient way. Our language is nondeterministic, i.e., the programs can
admit many possible computations of the same length. In contrast to the usual programming
languages, we are interested only in this set of admitted computations by the program.

A program will be translated in polynomial time directly to an NFA, or, more precisely, to
an extended structure called a gadget, which is defined below. A computation of the program
will correspond to a word for the constructed NFA. If the computation is not admitted, the
word will be always accepted. Otherwise, usually, the word will not be accepted, with some
exceptions when we additionally make some states final in the NFA.

2.1.1 Gadget Definition
Let m ≥ 1 be a fixed integer. A variable V is a set of states {v1, . . . , vm, v̄1, . . . , v̄m}. These
states are called variable states, and m is the width of the variable. Besides variable states,
in our NFAs there will be also control flow states, and the unique special final state qacc,
which will be fixed by all transitions.

A gadget G is a 7-tuple (PG,VG,ΣG, δG, sG, tG, FG). When specifying the elements of
such a tuple, we usually omit the superscript if it is clear from the context. P is a set of
control flow states, V is a set of (disjoint) variables on which the gadget operates, s, t ∈ P
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16:6 Existential Length Universality

are distinguished start and target control flow states, respectively, and F ⊆ P is a set of
final states. The set of states of G is Q = {qacc} ∪ P ∪

⋃
V ∈V V . Then δ : Q×Σ→ 2Q is the

transition function, which is extended to a function 2Q ×Σ∗ → 2Q as usual. We always have
δ(qacc, a) = {qacc} for every a ∈ Σ.

The NFA of G is (Q,Σ, δ, s, F ). A configuration is a subset C ⊆ Q. Given a configuration
C, we say a state is active if it belongs to C. We say a configuration C is proper if it does
not contain qacc. Given a proper configuration C and a word w, we say that w is a proper
computation from C if the obtained configuration after reading w is also proper, i.e., δ(C,w)
is proper. Therefore, from a non-proper configuration we cannot obtain a proper one after
reading any word since qacc is always fixed, and so every non-proper computation from {s}
is an accepted word by the NFA.

We say that a variable V is valid in a configuration C ⊆ Q if for all 1 ≤ i ≤ m, vi ∈ C if
and only if v̄i /∈ C. In other words, the states v̄1, . . . , v̄m are complementary to the states
v1, . . . , vm. A valid variable stores an integer from {0, . . . , 2m − 1} encoded in binary; the
states v1 and vm represent the least and the most significant bit, respectively. Formally, if V
is valid in a configuration C, then its value V (C) is defined as V (C) =

∑
1≤i≤m

vi∈V ∩C
2i−1.

We say that a configuration C is initial for a gadget G if it is proper, contains the start
state s but no other control flow states, and the gadget’s variables are valid in C (if not
otherwise stated, which is the case for some gadgets). A final configuration is a proper
configuration that contains the target state t and no other control flow states. A complete
computation is a proper computation from an initial configuration to a final configuration.
Every gadget will possess some properties about its variables and the length of complete
computations according to its semantics. These properties are of the form that, depending
on an initial configuration C, there exists or not a complete computation of some length
from C to a final configuration C ′, where C ′ also satisfies some properties. Usually, proper
computations from an initial configuration will have bounded length (but not always, as
we will also create cycles). Also usually, proper configurations will have exactly one active
control flow state (with the exception of the Parallel Gadget, introduced later). If a variable
is not required to be valid in C, then these properties will not depend on its active states
in C.

We start from defining basic gadgets, which are elementary building blocks, and then we
will define compound gadgets, which are defined using the other gadgets inside.

2.1.2 Basic Gadgets
Selection Gadget. This gadget is denoted by Select(V ), where V is a variable. It allows
a nondeterministic selection of an arbitrary value for V . An initial configuration for this
gadget does not require that V is valid. For every integer c ∈ {0, . . . , 2m − 1} and for every
initial configuration C, there exists a complete computation from C to a final configuration
C ′ such that V (C ′) = c.

The gadget is illustrated in Fig. 1. It consists of control flow states P = {s =
p0, p1, . . . , pm−1, pm = t}, one variable V , and letters Σ = {α0, α1}. The letters α0 and
α1 allow moving the active control flow state over the states p0, p1, . . . , pm and, at each
transition, choosing either v1 or v̄1 to be active. Also, each vi and v̄i are shifted to vi+1 and
v̄i+1, respectively, and both vm and v̄m are mapped to no state (∅), which ensures that the
initial content of V is neglected. Note that a word w = αb1 . . . αbm

, for bi ∈ {0, 1}, sets the
value of the variable to

∑
1≤i≤m 2i−1bi.

The semantic properties are summarized in the following
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v1

v2 . . . vm ∅

v̄1

v̄2 . . . v̄m ∅

s=p0 p1 p2 . . . pm=t qacc

α0, α1

α0, α1 α0, α1 α0, α1 α0, α1

α0
α0

α0

α0

α1

α1

α1

α1

α0, α1

α0, α1
α0, α1 α0, α1 α0, α1

α0, α1

α0, α1 α0, α1 α0, α1

Figure 1 Selection Gadget.

I Lemma 6. Let C be an initial configuration for the Selection Gadget Select(V ). For
every value c ∈ {0, . . . , 2m − 1}, there exists a complete computation in Σm from C to a
proper configuration C ′ such that V (C ′) = c. Every complete computation has length m, and
every longer computation is not proper.

Equality Gadget. This gadget is denoted by U = V , where U and V are two distinct
variables. It checks if the values of valid variables U and V are equal in the initial configuration.
If so, the gadget admits a complete computation, which is of length m; otherwise, every word
of length at least m is a non-proper computation.

u1 . . . um−1 um

ū1
. . . ūm−1 ūm

v1. . .vm−1vm

v̄1. . .v̄m−1v̄m

p1 p2 . . . pm=ts=p0

qacc

α0, α1

α0, α1

α0, α1 α0, α1 α0

α1

α0, α1

α0, α1 α0, α1 α1

α0

α0, α1

α0, α1α0, α1α0
α1

α0, α1

α0, α1α0, α1α1

α0

α0, α1 α0, α1 α0, α1 α0, α1

α0, α1

Figure 2 Equality Gadget.

The gadget is illustrated in Fig. 2. It consists of control flow states P = {s =
p0, p1, . . . , pm = t}, two variables U and V , and letters Σ = {α0, α1}. The letters α0
and α1 allow moving the active control flow state over the states s = p0, p1, . . . , pm = t and,
at each transition, checking if the corresponding positions of U and V agree.

Inequality Gadget. This gadget is denoted by U 6= V , where U and V are two distinct
variables. It checks if the values of the valid variables U and V are different. The construction
is very similar to the Equality Gadget and its complete computations have length m+ 1.

Incrementation Gadget. This gadget is denoted by V++, where V is a variable. It increases
the value of the valid variable V by 1. If the value of V is the largest possible (2m − 1), then
the gadget does not allow to obtain a proper configuration by any word of length m + 1.
Variable V must be valid in an initial configuration. The construction is similar to Equality
and Inequality Gadgets and enforces a written addition of one to the value of V interpreted
in binary. All complete computations have length m+ 1.

STACS 2020



16:8 Existential Length Universality

Assignment Gadget. This gadget is denoted either by U ← c or by U ← V , where
c ∈ {0, . . . , 2m − 1} and U and V are two distinct variables. It assigns to U either the
fixed constant c or the value of the other variable V . Variable V must be valid in an initial
configuration, but U does not have to be. It consists of control flow states P = {s, t}, a
variable U or two variables U, V , and the unary alphabet Σ = {α}. The transitions of α map
s to t, and additionally map either s to the states of U encoding value c or the states of V
to the corresponding states of U .

In fact, the case U ← V could be alternatively implemented by a Selection Gadget
followed by an Equality Gadget, although it will add more states and letters.

Waiting Gadget. This gadget is denoted by WaitD, where D is a fixed positive integer.
This is a very simple gadget which just does nothing for D number of letters. There is exactly
one complete computation, which has length D.

2.1.3 Joining Gadgets Together
Compound gadgets are defined by other gadgets, which are joined together in the way
specified by a program. The method of definition is the only difference, as compound gadgets
are objects of the same type as basic gadgets. They will be also used incrementally to define
further compound gadgets.

The general scheme for creating a compound gadget by joining gadgets G1, . . . , Gk

operating on variables from the sets V1, . . . ,Vk (all of width m), respectively, is as follows:
1. There are fresh (unique) control flow states of the gadgets, and there are the variables

from V1 ∪ · · · ∪ Vk. Thus when gadgets operate on the same variable, its states are shared.
2. The alphabet contains fresh (unique) copies of the letters of the gadgets.
3. Final states in the gadgets are also final in the compound gadget.
4. The transitions are defined as in the gadgets, whereas the transitions of a letter from a

gadget Gi map every control flow state that does not belong to Gi to {qacc} and fix the
states of the variables on which Gi does not operate.

5. Particular definitions of compound gadgets may additionally identify some of the start
and target states of the gadgets and may add more (fresh) control flow states and letters.

In our constructions, the control flow states with their transitions will form a directed
graph, where the out-degree at every state of every letter is one (except the Parallel Gadget,
defined later, which is an exception from the above scheme) – it either maps a control flow
state to another one or to qacc. States of variables will never be mapped to control flow
states. This will ensure that during every proper computation from an initial configuration,
exactly one control flow state is active. The active control flow state will determine which
letters can be used by a proper computation, i.e., the letters from the gadget owning this
state (but in which it is not the target state).

Moreover, we will ensure that whenever a proper computation activates the start state of
an internal gadget Gi, the current configuration restricted to the states of Gi is an initial
configuration for Gi – this boils down to assuring that the variables required to be valid
have been already initialized (e.g., by a Selection Gadget or an Assignment Gadget). Hence,
complete computations for the compound gadget will contain complete computations for
the internal gadgets, and the semantic properties of the compound gadget are defined in a
natural way from the properties of the internal gadgets.

Now we define basic ways to join gadgets together. Let G1, . . . , Gk be some gadgets with
start states sG1 , . . . , sGk and target states tG1 , . . . , tGk , respectively.
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Sequence Gadget. For each i = 1, . . . , k− 1, we identify the target state tGi with the start
state sGi+1 . Then sG1 and tGk are respectively the start and target states of the Sequence
Gadget. We represent this construction by writing I1 . . . Ik. Complete computations for
this gadget are concatenations of complete computations for the internal gadgets.

u1 u2 u3

∅

ū1 ū2 ū3

∅

v1 v2 v3

∅

v̄1 v̄2 v̄3

∅

s=p0 p1 p2 p3=q0 q1 q2 q3=r0 r1 r2 r3=t

qacc

Σ

α0, α1 α0, α1 α0, α1 β1, β2 β1, β2 β1, β2 γ1, γ2 γ1, γ2 γ1, γ2

α0
α0 α0

α1

α1

α1

β1
β1 β1

β2

β2

β2

β1, β2 β1, β2 β1, β2

α0, α1 α0, α1

α0, α1

β1, β2 β1, β2 β1, β2

α0, α1 α0, α1

α0, α1

γ1γ1, γ2

γ1, γ2

γ2γ1, γ2

γ1, γ2

α0, α1 α0, α1 α0, α1

β1, β2 β1, β2

β1, β2

α0, α1 α0, α1 α0, α1

β1, β2 β1, β2

β1, β2

γ1γ1, γ2

γ1, γ2

γ2γ1, γ2

γ1, γ2

Figure 3 The complete NFA of the Sequence Gadget select(U) select(V ) U = V . All
omitted transitions go to qacc. The states pi, qi, ri and letters αi, βi, γi belong to the three gadgets,
respectively, that is: pi = p

select(U)
i , αi = α

select(U)
i , qi = p

select(V )
i , βi = α

select(V )
i , ri = pU=V

i ,
γi = αU=V

i .

For example, for k = 3 and m = 3, the Sequence Gadget Select(U) Select(V ) U = V is
shown in Fig. 3. It has the property that every complete computation has length 3m = 9 and
is a concatenation of complete computations for the three gadgets; a final configuration C ′ is
such that U(C ′) = V (C ′). There exists a complete computation for every possible value of
both variables, and longer computations are not proper.

Choose Gadget. This gadget allows selecting one of the given gadgets nondeterministically.
We add a fresh start state s and k unique letters α1, . . . , αk. The action of a letter αi maps
s to {sGi}, maps control flow states from the gadgets to {qacc}, and fixes variables states.
All target states tGi are identified into the target state t of the Choose Gadget. We represent
this construction by: choose: I1 or: . . . or: Ik end choose.

Note that for this gadget there may exist complete computations of different lengths,
even for the same initial configuration. Nevertheless, there exists an upper bound on the
length such that every computation longer than this bound is not proper (which is 1 plus
the maximum from the bounds for the internal gadgets).

Using the above constructions, we can easily develop If-Else Gadget and While Gadget
(which use Equality or Inequality Gadgets for checking conditions). A special version of the
latter is While-True Gadget, which creates an unconditional loop by identifying the start
and target states of the internal gadget.

Then we can define Addition Gadget and Multiplication Gadget for performing the
corresponding arithmetic operations. We also need Primality Gadget testing if the value
of a variable is prime (there is also a negated version), and a Prime Number Gadget
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16:10 Existential Length Universality

computing the i’th prime number. For each of the defined gadgets so far, except for While
Gadget in general, there always exists an upper bound on the length of every complete
computation, and every longer computation is not proper. This bound is at most exponential
in the size of the gadget, because proper computations cannot repeat the same configuration.

2.2 An NFA With a Large Minimal Universality Length
Our first application is to show a lower bound on the maximum minimal universality length.
Alg. 1 gives the program encoding our NFA. The numbers in the brackets [ ] at the right
denote the length of complete computations for the gadget (or for a part of it) in the current
line. In line 7, the annotation indicates that the start control flow state of this Waiting
Gadget is final, so the NFA of the program has two final states in total.

Algorithm 1 Large minimal universality length.

Variables: X,Y
1: Select(Y ) . [m]
2: X ← 0 . [1]
3: while true do
4: choose: . [1]
5: X = Y . [m]
6: X ← 0 . [1]
7: [start final state] Waitm+1 . [m+ 1]
8: or:
9: X 6= Y . [m+ 1]

10: X++ . [m+ 1]
11: end choose
12: end while

The idea of the program is as follows: In the beginning, we select an arbitrary value
for Y , and then in an infinite loop, we increment X modulo Y + 1. The Choose Gadget in
lines 4–11 is, in fact, an If-Else Gadget with condition X = Y , unrolled for easier calculation
of computation lengths. Every iteration (complete computation of the Choose Gadget) of the
loop takes the same number of letters (2m+ 3), hence given a computation length we know
that we must perform d− 1 complete iterations and end in the d’th iteration, for some d. A
proper computation of this length can avoid the final state in line 7 only in the iterations
where the value of X does not equal the value of Y . We can ensure this for every length
smaller than lcm(1, 2, . . . , 2m) · (2m+ 3), as we can always select Y such that Y + 1 does not
divide d+ 1, but it is not possible for length lcm(1, 2, . . . , 2m) · (2m+ 3). After a detailed
technical analysis and a calculation we get:

I Theorem 7. For a 15-letter alphabet, the minimal universality length can be as large as

e2n/11(1+o(1)).

2.3 Controlling the Computation Length
As we noted, because of Choose Gadgets, complete computations may have different lengths.
For example, the Addition Gadget for an initial configuration C performs V (C) iterations
of its internal while loop. Moreover, two or more branches of a Choose Gadget may admit
complete computations of different lengths even for the same current configuration. This
is an obstacle that makes it difficult or impossible to further rely on the exact length |w|
of a proper computation, based on which we would like to decide if w must be accepted.
Therefore, if we want to still use our constructions, we need a possibility to ensure that all
complete computations have a fixed known length, and furthermore, that there are no proper
computations longer than that length.
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Delaying Gadget. The first new ingredient is the Delaying Gadget DelayD, where D is a
fixed integer ≥ 0. It is a stronger version of Waiting Gadget. Using a While Gadget with
an Inequality Gadget and an Incrementation Gadget, it enforces proper computations that
incrementally count from 0 to D. Complete computations have length exactly T (D), which
is a function polynomial in D and exponential in the size of the gadget.

Parallel Gadget. The idea to control the computation length is to implement computation
in parallel. A given gadget for which there may exist complete computations of different
lengths is computed in parallel with a Delaying Gadget. When the computation is completed
for the given gadget, we still must wait in its target state until the computation for the
Delaying Gadget is also finished. In this way, as long as complete computations for the
Delaying Gadget are always longer than those for the given gadget (we can ensure this
by choosing D), complete computations for the joint construction will have fixed length
T (D) + 1. The joint computation is realized by replacing the alphabet with new letters for
every combined pair of actions in both gadgets.

2.4 Length Divisibility
In Subsection 2.2 we have constructed an NFA for which every word encoding a proper
computation must be accepted or can be not accepted depending on its length, namely, it is
always accepted if the length is divisible by lcm(1, 2, . . . , 2m) · O(m). We generalize this idea
so that we will be able to express more complex properties about the length of which all
words must be accepted.

We are going to test whether |w| satisfies some properties, in particular, whether a
function of |w| is divisible by some integers. This extends the idea from Alg. 1, which just
verifies whether |w|/r, for some constant r, is not divisible by some integer from 2 to 2m.
We define the divisibility program shown in Alg. 2. It is constructed for given numbers k
and m, and a verifying procedure, which is any gadget satisfying some technical properties:
Complete computations must be exponentially bounded by some L, longer computations
must not be proper, and all outgoing transitions from the target state must go to qacc; these
conditions will allow synchronizing the length of all complete computations to one length
T (D) + 1 > L with a Parallel Gadget. Furthermore, the values of variables Xi and X ′i may
not be modified and the existence of complete computations cannot depend on the setting of
any internal variables in the initial configuration; these conditions ensure that the gadget
can be activated repetitively in the same proper computation of the whole program. Finally,
there may not be final states.

There is an infinite while loop, which consists of two parts. In the first part, a nondeter-
ministic choice is made (line 4): either to run the verifying procedure or to wait. For the
verifying procedure (line 5) we use the Parallel Gadget; this ensures that this part finishes
after exactly T (D) + 1 > L letters. In the waiting case (line 7), we use the Delaying Gadget
with the same value of D as that in the Parallel Gadget. Then there is a single final state
(line 8). In the second part (lines 10–15), every variable X ′i counts the number of iterations
of the while loop modulo Xi. The for loop denotes that the body is instantiated for every i
(it is a Sequence Gadget). Every complete computation of the second part (lines 10–15) has
exactly (2m+ 3)k letters.

The idea is that, for certain lengths, every proper computation must end with a config-
uration with the non-final control flow states in line 5 (these are precisely the two target
states, of the verifying procedure and of the Delaying Gadget) or with the final state in line 8.
However, for the first option, it must succeed in the last iteration with the verifying procedure
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Algorithm 2 Divisibility program.

Variables: X1, . . . , Xk, X
′
1, . . . , X

′
k

1: Select(X1), . . . ,Select(Xk). . [km]
2: X ′

1 ← 0, . . . , X ′
k ← 0 . [k]

3: while true do
4: choose: . [1]

5: execute
in parallel

{
DelayD

Verifying procedure . [T (D) + 1]

6: or:
7: DelayD . [T (D)]
8: [final state] Wait1 . [1]
9: end choose

10: for i = 1, . . . , k do
11: X ′

i++ . [m+ 1]
12: if X ′

i = Xi then . [m+ 1 if X ′
i = Xi, and m+ 2 otherwise]

13: X ′
i ← 0 . [1]

14: end if
15: end for
16: end while

when X ′i = `′ mod Xi. In other words, for some selection of the values for X1, . . . , Xk, there
must exist a complete computation of the verifying procedure from an initial configuration
with these values for Xi and X ′i = `′ mod Xi. Due to these auxiliary variables X ′i, the
verifying procedure can check the divisibility of ` by Xi.

I Lemma 8. Consider Alg. 2 for some k, m, and a verifying procedure. There exist integers
r1 ≥ 1 and r2 ≥ 1 such that the NFA of Alg. 2 accepts all words of a length ` if and only if
there exist an integer `′ ≥ 0 such that:

` = r1 · `′ + r2, and
for every initial configuration C of the verifying procedure where variables X1, . . . , Xk

are valid and X ′i(C) = `′ mod Xi(C) for all 1 ≤ i ≤ k, there does not exist a complete
computation for the verifying procedure.

2.4.1 Existential Divisibility Formulas
We develop a method for verifying the properties of the computation length in a flexible way.
We use a subset of first-order logic, where formulas are in a special form. For a given integer
m, we say that a formula ϕ is in existential divisibility form if its only free variable is `′ (not
necessarily occurring in ϕ) and it has the following form:

∃X1,...,Xk∈{0,...,2m−1} ψ(X1, . . . , Xk, `
′).

Formula ψ is any propositional logic formula that uses operators ∧, ∨, and whose simple
propositions are of the following possible forms:
1. (Xi = c), where c ∈ {0, . . . , 2m − 1},
2. (Xh = Xi +Xj),
3. (Xh = Xi ·Xj),
4. Xi is prime,
5. Xi is the Xj ’th prime number,
6. (Xi | `′) or (Xi - `′),
where Xi, Xj , Xh are some variables from {X1, . . . , Xk}.

Given a ϕ, we can ask for what integer values of `′ the formula is satisfied, and in
particular whether it is not a tautology over positive integers.
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I Problem 9 (Non-satisfiability of existential divisibility formulas). Given an existential divisi-
bility formula ϕ, is there a positive integer `′ such that ϕ(`′) is not satisfied?

Verifying Gadget. For the formula ψ occurring in an existential divisibility formula ϕ, we
construct the gadget Verify(ψ) for verifying ψ. The gadget uses the external variables
X1, . . . , Xk, which are assumed to correspond with those in ψ, and the external auxiliary
variables X ′1, . . . , X ′k. There are also some fresh internal variables. The value of `′ is not
given, but instead, we assume that the value of every X ′i is equal to `′ mod Xi (and 0 when
Xi = 0), hence we will be able to check the divisibility of `′.

The construction uses our components designed so far. It is built using Sequence Gadgets
for conjunctions, Choose Gadgets for disjunctions, and other appropriate gadgets for (1)–(6).

The construction is such that, for an initial configuration C for Verify(ψ) with valid
variables X1, . . . , Xk and where X ′i(C) = `′ mod Xi(C), there exists a complete computation
if and only if ψ(X1, . . . , Xk, `

′) is satisfied. Note that the gadget meets the conditions of the
verifying procedure in Alg. 2.

2.4.2 Reduction from Problem 9
We already have all ingredients to reduce Problem 9 to Problem 1 (existential length
universality). Given an existential divisibility formula ϕ(`′), we construct the program from
Alg. 2 with the Verifying Gadget Verify(ψ) as the verifying procedure. Hence, the formula
is translated to an NFA in polynomial time. By Lemma 8, there exist integers r1, r2 ≥ 1
such that the NFA accepts all words of some length ` if and only if for some integer `′ ≥ 0,
` = r1 · `′ + r2 and ϕ(`′) is not satisfied. Hence, if ϕ is not satisfied for some `′, then the
NFA accepts all words of length `, and if the NFA accepts all words of a length `, then `
must be expressible as r1 · `′ + r2 and ϕ(`′) must be not satisfied.

I Remark 10. With a few more technical steps, which require, e.g., adding the negation
and controlling variable bounds, it is possible to represent the negated Problem 9 as the
satisfiability problem of the Presburger arithmetic with the prefix class ∃∀∗ and whose
formulas are of a specific form. The Presburger arithmetic with the prefix class ∃∀∗ is
NEXPTIME-hard [7], and a little more general one with the prefix class ∃∗∀∗ is ΣEXP

1 -
complete [8]. However, our problem is a strict subclass of the first case, because the first and
the only unbounded variable `′ can be checked only for divisibility, all the other variables
are exponentially bounded, and the propositions are of particular forms. Hence, we cannot
directly infer the hardness from that known result. In the last reduction step, we show that
NEXPTIME-hardness still holds for our restricted problem.

2.5 Reduction to the non-satisfiability of existential divisibility formulas
In the final step, we reduce from the canonical NEXPTIME-complete problem: whether a
nondeterministic Turing machine N with s states accepts the empty input after at most
2s steps. The idea is encoding by `′ a 2s × 2s table representing a proper computation of
the machine. Each symbol placed at each cell has assigned a unique prime number, and we
define that the symbol is present if and only if `′ modulo its prime number is non-zero. Then
we construct an existential divisibility formula ϕ(`′) that is satisfied for an `′ if and only if
the encoded computation by `′ is not correct. Thus, the formula is a disjunction of several
cases that express a possible error in the computation.

This reduces (by a polynomial reduction) an NEXPTIME-complete to Problem 9, which
was reduced to Problem 1 (existential length universality). Then we can further reduce to
the binary case by a standard binarization.
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I Theorem 11. Existential length universality (Problem 1) for NFAs is NEXPTIME-hard,
even if the alphabet is binary.
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Flooding is among the simplest and most fundamental of all graph/network algorithms. Consider a
(distributed network in the form of a) finite undirected graph G with a distinguished node v that
begins flooding by sending copies of the same message to all its neighbours and the neighbours, in
the next round, forward the message to all and only the neighbours they did not receive the message
from in that round and so on. We assume that nodes do not keep a record of the flooding event,
thus, raising the possibility that messages may circulate infinitely even on a finite graph. We call
this history-less process amnesiac flooding (to distinguish from a classic distributed implementation
of flooding that maintains a history of received messages to ensure a node never sends the same
message again). Flooding will terminate when no node in G sends a message in a round, and, thus,
subsequent rounds. As far as we know, the question of termination for amnesiac flooding has not
been settled – rather, non-termination is implicitly assumed.

In this paper, we show that surprisingly synchronous amnesiac flooding always terminates on
any arbitrary finite graph and derive exact termination times which differ sharply in bipartite and
non-bipartite graphs. In particular, synchronous flooding terminates in e rounds, where e is the
eccentricity of the source node, if and only if G is bipartite, and, otherwise, in j rounds where
e < j ≤ e + d + 1 and d is the diameter of G. Since e is bounded above by d, this implies termination
times of at most d and of at most 2d + 1 for bipartite and non-bipartite graphs respectively. This
suggests that if communication/broadcast to all nodes is the motivation, the history-less amnesiac
flooding is asymptotically time optimal and obviates the need for construction and maintenance of
spanning structures like spanning trees. Moreover, the clear separation in the termination times of
bipartite and non-bipartite graphs may suggest possible mechanisms for distributed discovery of the
topology/distances in an arbitrary graph.

For comparison, we also show that, for asynchronous networks, however, an adversary can force
the process to be non-terminating.
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(a) The Hypercube graph (on 8 nodes). (b) The Petersen Graph.

(c) Flooding on Hypercube. (d) Flooding on the Petersen Graph.

Figure 1 Two well known graph topologies (Hypercube and the Petersen Graph) and execution
of Amnesiac flooding (from the red coloured node) on them. The arrows point to direction of the
transmission of the message with the label giving the round number. Double headed arrows indicate
the message crossing over in both directions on the edge. The flooding on the hypercube terminates
in only 3 = diameter rounds, whereas on the Petersen graph, it takes 5 = 2* diameter + 1 rounds.

Acknowledgements We would like to thank the anonymous reviewers for their comments, and Saket
Saurabh, Jonas Lefèvre, Chhaya Trehan, Gary Bennett, Valerie King, Shay Kutten, Paul Spirakis,
Abhinav Aggarwal for the useful discussions and insights and to all others in our network who
attempted to solve this rather easy to state puzzle.

1 Introduction

Consider the two well known graphs in Figure 1; the hypercube (cube in 3 dimensions) graph
and the Petersen graph. Now, consider distributed networks where nodes follow the following
simple flooding process as a communication primitive: A single node (origin) with a message
M begins the process by sending M to all its neighbours in the first round. These nodes, in
the second round, in parallel forward M to all the other neighbours except the origin and
so on. Nodes do this forwarding in a mechanical manner not retaining any memory, thus,
forwarding M again if they receive it again. Possibly, this process can go on indefinitely. We
call this process Amnesiac Flooding (AF) and define it more formally in later discussion. How
does Amnesiac flooding behave if the topology of the network is a hypercube or a Petersen
graph? What about other topologies?

Consider AF on the hypercube first (Figure 1(c)) - it is easy to see that it stops after
3 rounds when the node diagonally opposite the origin gets M from all of its neighbours
simultaneously in round 3 and hence, cannot forward the message further. On the Petersen
graph (Figure 1(d)), though the process terminates, it takes 5 rounds and stops at the origin
itself. If we consider the termination times in terms of graph diameter, it takes diameter
time on the hypergraph but much longer (2 times diameter plus 1) for the Petersen graph.
Thus, the following question: Will AF terminate on other network topologies, and if so, how
long will it take? Why does the time differ markedly on the Hypercube and the Petersen
graphs though they are of similar sizes (in fact, the Petersen graph has a smaller diameter)?

Flooding is among the most basic of distributed graph/network algorithms. To quote
Apnes [1]: Flooding is about the simplest of all distributed algorithms. It is dumb and
expensive, but easy to implement, and gives you both a broadcast mechanism and a way
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to build rooted spanning trees. At a high level, flooding can be simply described as: In a
network, a node begins flooding by sending a message to all its neighbours and subsequently,
every node, in parallel, forwards the same message to all their neighbours.

Flooding is the simplest strategy to achieve broadcast i.e. have a message reach every
node in the network, in quick time. Often flooding is implemented with a flag that is set when
the message is seen for the first time to ensure termination (see e.g. [2]) We are interested in
the variant of flooding which does not explicitly use such a flag or keep a record of having
seen the message before. The node selectively sends the message only to the complement of
its neighbours from whom it has just received the message and subsequently forgets about
that activity. The process terminates if there is no node that forwards M in a round (and,
therefore, subsequent rounds). We call this amnesiac flooding (AF for short) to account
for the very short term memory of the node. We analyse this very simple and theoretically
interesting deterministic process on graphs and derive a rather unexpected and surprising
result. We show that synchronous AF (i.e. in the synchronous message passing model where
nodes send messages in parallel in synchronised rounds) terminates on every finite graph in
time optimal O(d) rounds, where d is the diameter of the graph. We also show that, at least
in one asynchronous model, an adversary can force AF to be non-terminating.

Besides being theoretically interesting, our results also have practical implications. AF is
a natural variant minimising memory overhead with nodes simply forwarding messages in a
rather dumb manner. Note that if there were multiple messages being flooded in the network,
the memory requirement of keeping the historical flags (for every message being flooded)
could be significant, especially for low memory devices (e.g. sensor networks). Our results
show that if the objective of the flooding is broadcasting, this overhead maybe unnecessary.
Of course, a spanning substructure could be constructed from the initial regular flooding
and used for subsequent broadcast (as is often done). However, spanning substructures can
be difficult to maintain if the network is changing. This would not be required if AF was
being used for communication.

We speculate (though we have not studied this in detail) that AF may correspond to
certain natural and social phenomena to whose understanding our results may contribute.
Consider the following possibly contrived example as a thought experiment: There is an
aggressive social media user that forwards every message it receives to all its contacts but
is polite enough to not forward to those who had just forwarded it the message. Naturally,
such users lose track of the messages they have been forwarding. A natural question is that
will a message cease getting circulated.

These need to be investigated further.

1.1 Model, Problem Definition and Results
Let G(V, E) be an undirected graph (with n vertices and m edges) representing a network
where the vertices represent the nodes of the network and edges represent the connections
between the nodes. We consider the process in a synchronous message passing network:
computation proceeds in synchronous rounds where each round consists of every node
receiving messages from all its neighbours, doing local computation and sending messages to
all (or some of) its neighbours. No messages are lost in transit. We consider only flooding
from a single source for now.

I Definition 1. Synchronous Amnesiac Flooding (Synchronous AF): A distinguished
node, say `, sends a message (say, M) to all its neighbours in round 1. In subsequent rounds,
every node receiving M forwards a copy of M to every, and only those, nodes it did not receive
the message from in the previous round. Algorithm 1.1 presents the algorithm formally.
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Algorithm 1.1 Synchronous Amnesiac Flooding: A message M from a source node s is “flooded”
over graph G.
1: procedure Flooding(G, s) {Flooding over graph G from source node s}
2: Let N(v)← Neighbours of v ∈ G

3: Node s sends message M to all its neighbours in G {Round 1: s “floods” a message M}
4: for Rounds i = 1, 2, . . . do
5: for For all nodes v in parallel do
6: Let I(v, M)← set of neighbours of v that sent M to v in round i−1 {I(v, M) ⊆ N(v)}

7: Send M to N(v)\I(v, M) {Send to all neighbours except those who sent the message
to v in the previous round}

Note that this is an “amnesiac” process i.e. nodes do not retain memory of having received
or sent the message in the previous (but one) rounds. We say that flooding terminates when
no message (i.e. a copy of M) is being sent over any edge in the network. We address the
following questions:

For every finite graph G, beginning from any arbitrary vertex, will amnesiac
flooding always terminate? If so, how many rounds does it take?

In Section 2, we answer the first part of the above question in the affirmative i.e. this
flooding process will terminate for every G. For the second part of the question, in Section 3,
we notice a sharp distinction between bipartite and non-bipartite graphs. Recall the standard
definitions of eccentricity and diameter : eccentricity of a node is defined as the length of
the longest of the shortest paths to other nodes in the graph, and diameter is the largest
eccentricity of any node in the graph i.e. the longest distance between any two nodes in the
graph. We show that flooding terminates in e rounds (i.e. at most d rounds), where e is the
eccentricity of the source node and d the diameter of G, if and only if G is bipartite. Note
that this is time optimal for broadcast. If the graph is non-bipartite, synchronous flooding
takes longer: from a single source, flooding terminates in j rounds where e < j ≤ e + d + 1.

Note that in this work, we only look at global termination i.e. the state when M stops
circulating in the system. We do not discuss the related problem of individual nodes detecting
that either global termination has happened or if they should stop participation in flooding.
In some sense, this is even unnecessary since nodes do not need to maintain any additional
state or history. There is no persistent overhead to keeping the simple amnesiac flooding
process as a rule in the background.

1.1.1 Asynchronous Message Passing
For comparison, we also consider an asynchronous message passing model and show in
Section 4 that an

adversary in this model can cause flooding to be non-terminating. We consider what
we call as the round-asynchronous model where the computation still proceeds in global
synchronous rounds but the adversary can decide the delay of message delivery on any link.
The message cannot be lost and will be eventually delivered but the adversary can decide
which round to deliver the message in. The adversary can decide on individual link delays
for a round based on the state of the network for the present and previous rounds (i.e. node
states, messages in transit and message history). Now, the flooding algorithm (Asynchronous
Amnesiac Flooding) will exactly be same as Algorithm 1.1 except that the adversary decides
which round a message transmitted on an edge reaches the other end. In Section 4, we show
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(a) Round 1. (b) Round 2. (c) Round 3.

Figure 2 Amnesiac Flooding over a line network beginning with node b in 2 ( < diameter = 3)
rounds. Circled nodes are sending M in that round.

(a) Round 1. (b) Round 2. (c) Round 3. (d) Round 4.

Figure 3 AF over a Triangle (Odd Cycle/Clique) network beginning with node b. Both node a

and c send M to each other in round 2 and to b in round 3. Also, this is an odd (# nodes) cycle
and termination takes 2d + 1 time (d= diameter = 1).

that the adversary can force Asynchronous AF to be non-terminating by choosing link delays.
Note that since the process is deterministic, the adversary can choose the link delays in
advance (rather than needing to choose them adaptively).

We leave discussion of other asynchronous settings for future work.

1.2 Some illustrative examples
Figure 2 shows flooding over a line graph. The process begins with the node b and terminates
at the ends of the graph and takes only 2 rounds, which is equal to the eccentricity of node b

in the graph (which has diameter of 3). Note that a line is an example of a bipartite graph.
The triangle graph is another interesting illustrative example (Figure 3) – here, termination
takes 3 rounds, whereas, the diameter is only 1. Note that the triangle is also the smallest
clique and the smallest non-trivial cycle with an odd number of nodes (an important topology
for us). The even cycle is another interesting topology but here termination will happen in d

rounds (as expected according to our bipartite graphs result). Of course, a graph can have
far more complicated topology with cyclic and acyclic subgraphs.

1.3 Related work
A brief announcement of this work has appeared as [10]. The applications of flooding as a
distributed algorithm are too numerous to be mentioned. It is one of the first algorithms
to be introduced in distributed computing textbooks, often as the basic algorithm to solve
leader election [12, 13] and set up graph substructures such as spanning trees [14, 2, 16, 19].
Flooding based algorithms (or flooding protocols) appear in areas ranging rom GPUs, High
performance, shared memory and parallel computing to Mobile ad hoc networks(MANETs),
Mesh Networks, Complex Networks etc [18]. In [17], Rahman et al show that flooding can
even be adopted as a reliable and efficient routing scheme, comparable to sophisticated
point-to-point forwarding schemes, in some ad-hoc wireless mobile network applications.

Termination is one of the most important properties a distributed algorithm requires.
Since it is imperative to not have unnecessary messages circulating and clogging the network,
explicit termination is desired and often enforced by using a flag to record if the node has
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already participated in the flooding [1, 14, 2, 16, 19]. Otherwise, algorithms using broadcast
for communication e.g. [9] (for high speed networks) use other explicit solutions to enforce
termination. However, in some models such as population protocols, the low memory makes
termination very difficult to achieve leading to research that tries to provide termination
e.g. [15]. Our flooding algorithm has the advantage of being simple, using low memory, and
being efficiently terminating as shown by our analysis. The idea of avoiding the most recently
chosen node(s) has been used before in distributed protocols e.g. in social networks [6] and
broadcasting [7] but we are not aware of this fundamental variant of flooding having been
studied before. Lastly, processes such as random walks [4, 5, 8, 12, 13] and its deterministic
variant Rotor-Router (or Propp) machine [11, 3] can be seen as restricted variants of flooding
which possibly our work can provide some insight into.

2 Termination in a synchronous network

I Definition 2. Let G be a graph. The round-sets R0, R1, . . . are defined as:

R0 is the singleton containing an initial node,
Ri is the set of nodes which receive a message at round i (i ≥ 1).

Clearly, if Rj = ∅ for some j ≥ 0, then Ri = ∅ for all i ≥ j. We shall refer to rounds Ri,
where Ri 6= ∅, as active rounds.

I Theorem 3. Any node g ∈ G is contained in at most two distinct round-sets.

Proof. Define R to be the set of finite sequences of consecutive round-sets of the form:

R = Rs, . . . , Rs+d where s ≥ 0, d > 0, and Rs ∩Rs+d 6= ∅ . (1)

In (1), s is the start-point s(R) and d is the duration d(R) of R. Note that, a node g ∈ G

belonging to Rs and Rs+d may also belong to other Ri in (1). If a node g ∈ G occurs in
three different round-sets Ri1 , Ri2 and Ri3 , then the duration between Ri1 and Ri2 , the
duration between Ri2 and Ri3 , or the duration between Ri1 and Ri3 will be even. Consider
the subset REV of R of sequences of the form (1) where d is even. To prove that no node is
in three round-sets, it suffices to prove that REV is empty.

We assume that REV is non-empty and derive a contradiction.
Let REV

d̂
be the subset of REV comprising sequences of minimum (even) duration d̂, i.e.

REV
d̂

= {R ∈ REV | ∀ R′ ∈ REV . d(R′) ≥ d(R) = d̂} (2)

Clearly, if REV is non-empty then so is REV
d̂

. Let R∗ ∈ REV
d̂

be the sequence with earliest
start-point ŝ, i.e.

R∗ = Rŝ, . . . , Rŝ+d̂ (3)

where

∀ R′ ∈ REV
d̂

. s(R′) ≥ s(R∗) = ŝ (4)

By (1), there exists g ∈ Rŝ ∩Rŝ+d̂. Choose node g′ which sends a message to g in round
ŝ + d̂. As g′ is a neighbour of g, either g′ sends a message to g in round ŝ or g sends a
message to g′ in round ŝ + 1. We show that each of these cases leads to a contradiction.
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Figure 4 Node g′ sends a message to node g in round ŝ: the first round of the minimum even
length sequence (of length d̂) in which g repeats.

Case (i): g′ sends a message to g in round ŝ

Refer to Figure 4. In this case, there must be a round ŝ− 1 which is either round 0 and
g′ is the initial node, or g′ received a message in round ŝ− 1. Thus, the sequence

R∗
′

= Rŝ−1, Rŝ, . . . , Rŝ+d̂−1 where g′ ∈ Rŝ−1 ∩Rŝ+d̂−1 (5)

has d(R∗
′
) = (ŝ + d̂− 1)− (ŝ− 1) = d̂ which is even and so R∗

′
∈ REV

d̂
. As R∗

′
∈ REV

d̂
,

by (4)

s(R∗
′
) ≥ s(R∗) (6)

But, from (5), s(R∗
′
) = ŝ− 1 and, from (4), s(R∗) = ŝ. Thus, by (6),

ŝ− 1 = s(R∗
′
) ≥ s(R∗) = ŝ

which is a contradiction.

Case (ii): g sends a message to g′ in round ŝ + 1

Refer to Figure 5. By the definition of REV , the smallest possible value of d̂ is 2.

Figure 5 Node g sends a message to node g′ in round ŝ + 1: round ŝ is the first round of the
minimum even length sequence (of length d̂) in which g repeats.

However, it is not possible to have d̂ = 2 in this case as then

R∗ = Rŝ, Rŝ+1, Rŝ+2

This would mean that g sends a message to g′ in round ŝ + 1. But, we chose g′ to be such
that g′ sends a message to g in round ŝ + d̂ = ŝ + 2. This cannot happen as g cannot
send a message to g′ and g′ to g in consecutive rounds by the definition of rounds.

R∗ = Rŝ, Rŝ+1, . . . , Rŝ+d̂−1, Rŝ+d̂

where ŝ + 1 < ŝ + d̂− 1. Consider the sequence

R∗
′′

= Rŝ+1, . . . , Rŝ+d̂−1 (7)

As g′ receives a message from g in round ŝ + 1 and g′ sends a message to g in round
ŝ + d̂, it is clear that g′ ∈ Rŝ+1 ∩ Rŝ+d̂−1. Thus, R∗

′′
∈ R. As d̂ is even, so is
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(a) Even Cycle Graph. (b) Odd Cycle Graph.

Figure 6 Even cycle (6 nodes) and Odd cycle (5 nodes) graphs: Graphs show markedly different
termination times. Consider AF from node b in both cases - In the 6-cycle it terminates in 3 rounds,
but in the 5-cycle in 5 rounds.

(ŝ + d̂ − 1) − (ŝ + 1) = d̂ − 2 and therefore R∗
′′
∈ REV . Now, R∗ ∈ REV

d̂
and so, as

R∗
′′
∈ REV , we have, by (2),

d(R∗
′′
) ≥ d(R∗) (8)

As d(R∗
′′
) = d̂− 2 from (7) and d(R∗) = d̂ from (3), we have, by (8),

d̂− 2 = d(R∗
′′
) ≥ d(R∗) = d̂

This contradiction completes the proof. J

I Definition 4. Given g ∈ G, we use a superscript 1 to indicate that g belongs to a round-set
for the first time, and a superscript 2 to indicate that it belongs to a round-set for the second
time, i.e.

g1 ∈ Rj

means that

g ∈ Rj and g /∈ Ri for all i with 0 ≤ i < j.

and

g2 ∈ Rj

means that

g ∈ Rj and g ∈ Ri for some i with 0 ≤ i < j.

Theorem 3 implies that Ri = ∅ for i ≥ 2n, where n is the number of vertices of G, and
therefore network flooding always terminates.

I Corollary 5. Synchronous network flooding always terminates in fewer than 2n + 1 rounds.

In the next section we give a greatly improved sharp upper bound for the number of rounds
to termination, in terms of the eccentricity of the initial node and the diameter of G.

3 Time to termination

The question of termination of network flooding is non-trivial when cycles are present in G.
The simple cases when G is an even cycle, as in Figure 6a and when G is an odd cycle, as
in Figure 6b display quite different termination behaviours. The even cycle in Figure 6a
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terminates after round e where e is the eccentricity of the initial node in G. On the other
hand, flooding on the odd cycle in Figure 6b, returns a message to the initial node and
terminates after round 2e + 1 resulting in a longer flooding process than the even cycle in
Figure 6a despite having fewer nodes and a smaller value of e. In this section, we show that
these observations can be largely generalized to arbitrary graphs. Specifically, we show that
flooding on a graph G terminates after e rounds if and only if G is bipartite. If G is not
bipartite, we show that flooding terminates after some round i where e < i ≤ e + d + 1 and d

is the diameter of G.

I Definition 6. Let (G, E) be a graph with vertex set G and edge set E, and g0 ∈ G be an
initial node. We will use the following definitions.
(i) For each j ∈ N, the distance set Dj will denote the set of points which are a distance j

from g0. i.e.

Dj = {g ∈ G : d(g0, g) = j},

where d is the usual distance function in graph G.
(ii) A node g ∈ G is an equidistantly-connected node, abbreviated ec node, iff there there

exists g′ ∈ G− {g0, g} such that d(g0, g) = d(g0, g′) and {g, g′} ∈ E

We have the following basic properties of distance sets Dj and ec nodes.

I Lemma 7. Let G be a graph and g0 ∈ G be an initial node.
(i) For all j ∈ N and i > j, Dj ⊆ Rj and Rj ∩Di = ∅.
(ii) For all j ∈ N, g ∈ Dj and g′ ∈ Dj+1 such that g and g′ are neighbours, g sends a

message to g′ in round j + 1, i.e. all nodes at a distance j from g0 send to all their
neighbours which are a distance j + 1 in round j + 1.

(iii) If j ≥ 1 and g ∈ Dj is an ec point, then g2 ∈ Rj+1.

Proof. For (i), clearly every node at a distance j from g0 receives a message in round j and
so Dj ⊆ Rj . Furthermore, every message received in round j will have travelled along j

edges from g0 and so could not have reached a node which is at a distance i > j from g0.
Thus, Rj ∩Di = ∅.

For (ii), we note that the only circumstance in which a node g in Dj (⊆ Rj by (i)) does
not send to a neighbour g′ in Dj+1 in round j + 1 is if g sent a message to g′ in round j.
This would need g to be in the round-set Rj−1, i.e. g ∈ Rj−1 ∩Dj+1 which contradicts (i)
which has Rj−1 ∩Dj+1 = ∅ as j + 1 > j − 1.

For (iii), if j ≥ 1 and g ∈ Dj is an ec point, then by Definition 6(ii) there is a point g′

equidistant from the initial node g0, i.e. g′ ∈ Dj such that g and g′ are neighbours. By
(i) of this lemma Dj ⊆ Rj , and so both g and g′ receive messages in round j. Also by (i),
neither sends a message in round j as Rj−1 ∩Dj = ∅. Thus, g and g′ send messages to each
other in round j + 1. As this will be the second time they receive messages we have that
g2 ∈ Rj+1. J

All nodes in a graph without ec nodes, belong to at most one round-set.

I Lemma 8. Let G be a graph and let g0 ∈ G be an initial node. Then G has an ec node if
and only if G has a node that is in two round-sets.

Proof. Suppose that G has no ec nodes. Assume, on the contrary, that G has nodes that
appear in two round-sets. Let Rj (j ≥ 1) be the earliest round which contains a node g

such that g2 ∈ Rj and h ∈ Rj−1 be a neighbour of g which sends to g in round j, so that

STACS 2020
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h1 ∈ Rj−1. Then, h ∈ Di for some i ≥ 1 and h1 ∈ Ri by Lemma i(i). Thus, i = j − 1 and
so g2 ∈ Ri+1. As g is a neighbour of h, g ∈ Di, Di+1, or Di−1. If g ∈ Di then g and h are
ec nodes contrary to our supposition that G has no ec nodes. If g ∈ Di+1 then g1 ∈ Ri+1
by Lemma i(i), which is contrary to the assertion that g2 ∈ Rj = Ri+1. If g ∈ Di−1 then
g ∈ Ri−1, by Lemma i(i), and so g1 ∈ Ri−1 as g2 ∈ Ri+1. By Lemma ii(ii), g sends to h in
round i = j − 1. This is contrary to h sending to g in round j. Thus, our assumption that G

has nodes that appear in two round-sets is false.
Conversely, suppose that G has an ec node g ∈ Dj where j ≥ 1. Then g2 ∈ Rj+1 by

Lemma iii(iii). J

We note that bipartite graphs do not have any ec nodes.

I Lemma 9. Let G be a graph and g0 ∈ G be an initial node. Then, G is bipartite iff it has
no ec nodes.

Proof. G is not bipartite iff there is a path from g0 to an odd cycle in G. This is the case iff
an edge of G connects two points equidistant from g0, i.e G has an ec point. J

From Lemmas 8 and 9, we see that, in bipartite graphs, nodes only appear in one round-set.
Thus, the time to termination can be determined by finding a bound on when each node
belongs to a round-set.

I Theorem 10. Let G be a graph and g0 ∈ G be an initial node with eccentricity e. Then,
flooding will have terminated after round e if and only if G is bipartite.

Proof.

G is bipartite iff G has no ec nodes (by Lemma 9)
iff no node appears in 2 round-sets (by Lemma 8)
iff Re is the last non-empty round-set

(as nodes a distance j from g0
are only in Rj by Lemma i(i))

J

To find the time to termination in general graphs we need to find a bound on when nodes
can belong to a round-set for the second time. As nodes can only belong to at most two
round-sets, by Theorem 3, this will give a bound for termination of flooding in general graphs.
The following lemma relates the round-sets of second occurrences of neighbouring nodes.

I Lemma 11. Let G be a graph and g0 ∈ G an initial node. If h2 ∈ Rj for some j ∈ N, and
if g is a neighbour of h, then

g2 ∈ Rj−1 or g2 ∈ Rj or g2 ∈ Rj+1

Proof. Let i be the distance of h from g0, i.e. h ∈ Di. Then, as h2 ∈ Rj , j > i by Lemma i(i).
As g is a neighbour of h, g ∈ Di or g ∈ Di−1 or g ∈ Di+1.

Case g ∈ Di: As h, g ∈ Di are neighbours they are both ec nodes. Thus, by Lemma iii(iii),
h2 ∈ Ri+1 and g2 ∈ Ri+1. Therefore, j = i + 1 and g2 ∈ Rj .
Case g ∈ Di−1: If g ∈ Rj ( 6= Ri−1 as j > i) then, as g1 ∈ Di−1 ⊆ Ri−1 by Lemma i(i),
it must be the case that g2 ∈ Rj . If g /∈ Rj and g ∈ Rj−1 ( 6= Ri−1 as j > i) then, as
g1 ∈ Ri−1 by Lemma i(i), it must be the case that g2 ∈ Rj−1. If g /∈ Rj and g /∈ Rj−1
then, as h ∈ Rj , h sends to g in round j + 1 and so g ∈ Rj+1 ( 6= Ri−1 as j > i). As
g1 ∈ Ri−1, it must be the case that g2 ∈ Rj+1.
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Case g ∈ Di+1, g does not send to h in round j: In this case, as h ∈ Rj , h sends to g in
round j + 1. Thus, g ∈ Rj+1 ( 6= Ri+1 as j > i) and therefore, as g1 ∈ Di+1 ⊆ Ri+1 by
Lemma i(i), it must be the case that g2 ∈ Rj+1.
Case g ∈ Di+1, g sends to h in round j: In this case, g ∈ Rj−1. If g1 ∈ Rj−1, then,
by Lemma i(i) , g1 ∈ Di+1 ⊆ Ri+1 and thus j − 1 = i + 1. Hence, by Lemma i(i),
h1 ∈ Di ⊆ Ri = Rj−2. Also, g /∈ Rj−3 as g1 ∈ Rj−1.
To summarize:

g /∈ Rj−3, h1 ∈ Rj−2, g1 ∈ Rj−1, h2 ∈ Rj

So, h sends to g in round j − 1 and g sends to h in round j by the case assumption. This
is a contradiction. Thus, g1 /∈ Rj−1 and, as g ∈ Rj−1, it follows that g2 ∈ Rj−1.

This completes the proof. J

I Theorem 12. Let G be a non-bipartite graph with diameter d and let g0 ∈ G be an initial
node of eccentricity e. Then, flooding terminates after j rounds where j is in the range
e < j ≤ e + d + 1.

Proof. If G is not bipartite it has an ec node g, by Lemma 9. By Lemma iii(iii), g2 ∈ Rk

where k = d(g0, g) + 1. Let h be an arbitrary node in G other than g. Then, there is a path

h0 = g −→ h1 −→ . . . −→ hl = h

where l ≤ d. By repeated use of Lemma 11,

h2
1 ∈ Rj1 where k − 1 ≤ j1 ≤ k + 1,

h2
2 ∈ Rj2 where j1 − 1 ≤ j2 ≤ j1 + 1,

. . .

h2
l ∈ Rjl

where jl−1 − 1 ≤ jl ≤ jl−1 + 1 (l ≥ 1).

Thus,

h2
l ∈ Rjl

where k − l ≤ jl ≤ k + l (9)

Put j = jl. From (19), as k = d(go, g) + 1 ≤ e + 1 and as l ≤ d,

h2
l ∈ Rj where j ≤ e + d + 1.

Thus, j ≤ e + d + 1.

As G is not bipartite, j > e by Theorem 10 and the proof is complete. J

Figure 7 Flooding in the graph in the above figure starting from node c takes e + d + 1 rounds
(the maximum as per our analysis), where e is eccentricity and d the diameter.

The upper bound in Theorem 12 is easily seen to be sharp - the flooding in the graph in
Figure 7 starting from node c terminates after round 7 = 2 + 4 + 1 = e + d + 1. Similar
termination times hold for all nodes in the Petersen graph (Figure 1).

STACS 2020
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(a) Round 1 (b) Round 2 (c) Round 3 (d) Round 4 (e) Round 5

Figure 8 Asynchronous AF over a Triangle. Both node a and c send M to each other in round
2. In round 3, a sends M to b but the adversary makes c holds the message for one round (shaded
node). In the next round, we have a round analogous to round 2 and so on.

4 Asynchronous Amnesiac Flooding

Non-termination in an adversarial asynchronous setting: Consider the round-asynchro-
nous setting (as described in the model section). The scheduling adversary can choose the
delay on every message edge i.e. which round to forward a message on.

An example suffices to prove non-termination. Consider round 3 in the triangle in Figure 8.
The adversary delays M at node c but a continues and sends to b. In round 4, node b and
c both send M so that the beginning of the next round is now identical to round 2 with
nodes a and b interchanged. This process can now continue ad infinitum with the adversarial
intervention.

5 Conclusion and Future Work

We studied a natural variant of the flooding algorithm where nodes do not retain any memory
of the flooding beyond the previous round. We call this Amnesiac flooding (AF ) and discussed
the question of termination i.e. no copies of the initial message are being circulated anymore.
We showed the surprising result that not only does this process terminate on all finite graphs
but also accomplishes broadcast in almost optimal time and message overhead. There is a
clear separation in complexity between bipartite and non-bipartite topologies. An interesting
question is whether this separation can be exploited to devise distributed procedures to
detect the topology of a graph given distance measures or vice versa. There is the question
of multiple sources: what happens when multiple nodes start the flooding process with the
same message M? We expect our method of proof can be extended to prove termination
and obtain bounds in the case of multiple sources.

What about dynamic settings where nodes and edges change? It is easy to see that due
to its simplicity, AF can be re-executed immediately after the graph has changed. However,
what if the graph changes while messages are in circulation - under what conditions is
termination/non-termination guaranteed?

Another important question is to look at flooding in asynchronous settings in more
detail. We show one model where an adversary can force AF to be non-terminating. Since a
completely asynchronous setting is event driven, this would also involve deciding what it
means to receive messages simultaneously. Finally, one can see processes such as random
walks, coalescing random walks and diffusion as probabilistic extremal variants of flooding.
Are there any implications or connections of our result on these or intermediate probabilistic
models? What about randomised variants of AF?
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Abstract
In the problem of Generalised Pattern Matching (GPM) [STOC’94, Muthukrishnan and
Palem], we are given a text T of length n over an alphabet ΣT , a pattern P of length m over an
alphabet ΣP , and a matching relationship ⊆ ΣT × ΣP , and must return all substrings of T that
match P (reporting) or the number of mismatches between each substring of T of length m and P
(counting). In this work, we improve over all previously known algorithms for this problem:

For D being the maximum number of characters that match a fixed character, we show two
new Monte Carlo algorithms, a reporting algorithm with time O(D n logn logm) and a (1− ε)-
approximation counting algorithm with time O(ε−1D n logn logm). We then derive a (1− ε)-
approximation deterministic counting algorithm for GPM with O(ε−2D n log6 n) time.
For S being the number of pairs of matching characters, we demonstrate Monte Carlo algorithms
for reporting and (1 − ε)-approximate counting with running time O(

√
S n logm

√
logn) and

O(
√
ε−1S n logm

√
logn), respectively, as well as a (1− ε)-approximation deterministic algorithm

for the counting variant of GPM with O(ε−1√Sn log7/2 n) time.
Finally, for I being the total number of disjoint intervals of characters that match the m
characters of the pattern P , we show that both the reporting and the counting variants of GPM
can be solved exactly and deterministically in O(n

√
I logm+ n logn) time.

At the heart of our new deterministic upper bounds for D and S lies a faster construction
of superimposed codes, which solves an open problem posed in [FOCS’97, Indyk] and can be of
independent interest.

To conclude, we demonstrate first lower bounds for GPM. We start by showing that any
deterministic or Monte Carlo algorithm for GPM must use Ω(S) time, and then proceed to show
higher lower bounds for combinatorial algorithms. These bounds show that our algorithms are
almost optimal, unless a radically new approach is developed.
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1 Introduction

Processing noisy data is a keystone of modern string processing. One possible approach
to address this challenge is approximate pattern matching, where the task is to find all
substrings of the text that are close to the pattern under some similarity measure, such as
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Hamming or edit distance. The approximate pattern matching approach assumes that noise
is arbitrary, i.e. that we can delete or replace any character of the pattern or of the text by
any other character of the alphabet.

The assumption that the noise is completely arbitrary is not necessarily justified, as in
practice we might have some predetermined knowledge about the structure of the errors.
In this paper we focus on the Generalised Pattern Matching (GPM) problem that
addresses this setting. We assume to be given a text T over an alphabet ΣT , a pattern P
over an alphabet ΣP , and we allow each character of ΣT to match a subset of characters
of ΣP . We must report all substrings of the text that match the pattern. This problem was
introduced in STOC’94 [35] by Muthukrishnan and Palem to provide a unified approach
for solving different extensions of the classical pattern matching question that has been
considered as separate problems in the early 90s. Later, Muthukrishnan [34] considered a
counting variant of GPM, where the task is to count the number of mismatches between
substrings of the text and the pattern. Formally, the problem is defined as follows:

Generalised Pattern Matching (GPM)
Input: A text T ∈ (ΣT )n, a pattern P ∈ (ΣP )m, and a matching relationship ⊆ ΣT×ΣP .
Output (Reporting): All i ∈ [n−m+ 1] such that T [i, i+m− 1] matches P .
Output (Counting): For each i ∈ [n−m+ 1], the number of positions j ∈ [m] such
that T [i+ j − 1] does not match P [j].
Muthukrishnan and Palem [35] and subsequent work [34, 36] considered three natural

parameters describing the matching relationship (D ,S ) or the pattern (I ). Viewing the
matching relationship as a bipartite graph with edges connecting pairs of matching characters
from ΣT ×ΣP , D is the maximum degree of a node and S is the total number of edges in the
graph. Next, the parameter I describes the pattern rather than the matching relationship.
For each character a ∈ ΣP , let I(a) be the minimal set of disjoint sorted intervals that
contain the characters that match a, and define I =

∑
j∈[m] |I(P [j])|.

The maximum number of characters that match a fixed character, D . For the reporting
variant of GPM, Muthukrishnan [34] showed a Las Vegas algorithm with running time
O(D n logn logm). Indyk [27] used superimposed codes to show a deterministic algorithm
with running time O(|ΣP |D 2 log2 n+D n log3 n logm). For the counting variant, Muthukrish-
nan [34] showed a (logm)-approximation Las Vegas algorithm with time O(D n logn logm).
Indyk [27] gave a (1 − ε)-approximation deterministic and Monte Carlo algorithm with
running time O(ε−2D 2n log3 n) and O(ε−2D n log3 n), respectively.

The number of matching pairs of characters, S . Muthukrishnan and Ramesh [36] gave
an O((Sm log2m)1/3n)-time algorithm for the reporting variant of GPM.

The number of intervals of matching characters, I . For this parameter, Muthukrish-
nan [34] gave an O(I + (mI )1/3n

√
logm)-time algorithm1.

1.1 Our Contribution
We improve existing randomised and deterministic upper bounds for GPM, and demonstrate
matching lower bounds. At heart of our deterministic algorithms for the counting variant of
GPM is a solution to an open problem of Indyk [27] on construction of superimposed codes.

1 [34, Theorem 9] claims O(n+ I + I 1/3(nm)2/3√logm), but the first sentence of the proof states that
for n ≤ 2m the algorithm takes O(I + I 1/3m4/3√logm) time, where the first term is the time that we
need to read the input. For a longer text, one needs to apply it n/m times for overlapping blocks of
length 2m, making the total time O(I + n/m · I 1/3m4/3√logm) = O(I + (mI )1/3n

√
logm).
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Data-dependent superimposed codes. A z-superimposed code is a set of binary vectors
such that no vector is contained in a Boolean sum (i.e. bitwise OR) of z other vectors.
Superimposed codes find their main application in information retrieval (e.g. in compressed
representation of document attributes), and optimizing broadcasting on radio networks [30],
and have also proved to be useful in graph algorithms [1,25]. Indyk [27] extended the notion
of superimposed codes to the so-called data-dependent superimposed codes, and asked for
a deterministic construction for such codes with a certain additional property that makes
them useful for counting mismatches (see Section 2 for a formal definition). We provide such
a construction algorithm in Theorem 10. We briefly describe the high-level idea below.

We need the concept of discrepancy minimization. Given a universe U , each of its elements
is assigned one of two colours, red or blue. The discrepancy of a subset of U is defined as
the difference between the number of red and blue elements in it, and the discrepancy of
a family F of subsets is defined as the maximum of the absolute values of discrepancies
of the subsets in F . Discrepancy minimization is a fundamental notion with numerous
applications, including derandomization, computational geometry, numerical integration,
understanding the limits of models of computation, and so on (see e.g. [13]). A recent line of
work showed a series of algorithms for constructing colourings of low discrepancy in various
settings [5–10,32, 33]. For our applications, we need to work under the assumption that the
size of each subset in F is bounded by a given parameter k. In Theorem 7, we describe a
fast deterministic algorithm that returns a colouring of small discrepancy for this case. We
follow the algorithm described by Chazelle [13] that can be roughly summarized as based on
the method of conditional expectations tweaked as to allow for an efficient implementation.
In more detail, Chazelle’s construction assumes infinite precision of computation and does
not immediately translate into an efficient algorithm working in the Word RAM model of
computation, thus requiring resolving some technical issues to bound the required precision
and the overall complexity.

We apply discrepancy minimization to design in Lemma 9 a procedure that, given a
family F of subsets of U , partitions the universe U into not too many parts such that the
intersection of each part and each of the subsets in F is small. The procedure follows the
natural idea of colouring the universe with two colours, and then recursing on the elements
with the same colour. Every step of such construction introduces some penalty that needs
to be carefully controlled as to guarantee the desired property in the end. Because of this
penalty, we are only able to guarantee that the intersections are small, but not constant.
To finish the construction, we combine the partition with a hash function into the ring of
polynomials. We stress that this part of the construction is new and not simply a modification
of Chazelle’s (or Indyk’s) method.

Upper bounds for GPM. Similar to previous work, we assume that the alphabets’ sizes
are polynomial in n and that the matching relationship is given as a graph M on the set
of vertices ΣT ∪ ΣP . We also assume to have access to three oracles that can answer the
following questions in O(1) time:

1. Is there an edge between a ∈ ΣT and b ∈ ΣP (in other words, do a and b match)?
2. What is the degree of a character a ∈ ΣT or b ∈ ΣP (in other words, what is the number

of characters that match a given character)?
3. What is the k-th neighbor of a ∈ ΣT (in other words, what is the k-th character b ∈ ΣP

matching a)? We assume an arbitrary (but fixed) order of neighbors of every node.

Under these assumptions, we show the following upper bounds summarized in Tables 1 and 2:
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Table 1 Generalised Pattern Matching (reporting).

Time Det./Rand.

O(|ΣP |D 2 log2 n+D n log3 n logm) Det. [27]
O(D n log6 n) Det. This work
O(D n logn logm) Rand. [34]
O(D n logn logm) Rand. This work
O((Sm log2 m)1/3n) Det. [36]
O(
√
S n log7/2 n) Det. This work

O(
√
S n logm

√
logn) Rand. This work

O(I + (mI )1/3n
√

logm) Det. [34]
O(n
√
I logm+ n logn) Det. This work

Table 2 Generalised Pattern Matching (counting).

Time Det./Rand. Approx. factor

O(ε−2D 2n log3 n) Det. (1− ε) [27]
O(ε−2D n log6 n) Det. (1− ε) This work
O(D n logn logm) Rand. logm [34]
O(ε−2D n log3 n) Rand. (1− ε) [27]
O(ε−1D n logn logm) Rand. (1− ε) This work
O(ε−1√S n log7/2 n) Det. (1− ε) This work
O(
√
ε−1S n logm

√
logn) Rand. (1− ε) This work

O(I + (mI )1/3n
√

logm) Det. – [34]
O(n
√
I logm+ n logn) Det. – This work

1. We start by showing a new Monte Carlo algorithm for the parameter D with running
time O(D n logm logn) (Theorem 11). While its running time is the same as that
of [34], it encapsulates a novel approach to the problem that serves as a basis for
other algorithms. We then derive a Monte Carlo algorithm for the parameter S with
running time O(

√
S n logm

√
logn) (Theorem 12). As a corollary, we show a (1 − ε)-

approximation Monte Carlo algorithm that solves the counting variant of GPM in time
O(min{ε−1D logn,

√
ε−1S logn} · n logm) (Corollary 13). All three algorithms have

inverse-polynomial error probability.
2. Next, using the data-dependent superimposed codes, we construct (1− ε)-approximation

deterministic algorithms for the counting variant of GPM. The first algorithm requires
O(ε−2D n log6 n) time (Theorem 14), and the second algorithm O(ε−1

√
S n log7/2 n) time

(Theorem 15). By taking ε = 1/2, we immediately obtain deterministic algorithms for
the reporting variant of the problem with the same complexities.

3. Finally, we show that both the reporting and the counting variants of GPM can be solved
exactly and deterministically in O(n

√
I logm+ n logn) time (Theorem 17).

Lower bounds for GPM. We also show first lower bounds for GPM (see Section 4). We
start with a simple adversary-based argument that shows that any deterministic algorithm or
any Monte Carlo algorithm with constant error probability that solves GPM must use Ω(S)
time (Lemma 19 and 20). We then proceed to show higher lower bounds for combinatorial



B. Dudek, P. Gawrychowski, and T. Starikovskaya 18:5

algorithms by reduction from Boolean matrix multiplication2 parameterized by D ,S , I
(Lemma 21 and Corollary 23). All the lower bounds are presented for the reporting variant
of GPM, so they immediately apply also to the counting variant. These bounds show that
our algorithms are almost optimal, unless a radically new approach is developed.

1.2 Related Work
Degenerate string matching. A more general approach to dealing with noise in string
data is degenerate string matching, where the set of matching characters is specified for
every position of the text or of the pattern (as opposed to every character of the alphabets).
Abrahamson [3] showed the first efficient algorithm for a degenerate pattern and a standard
text. Later, several practically efficient algorithms were shown [26,37].

Pattern matching with don’t cares. In this problem, we assume ΣT = ΣP = Σ, where Σ
contains a special character – “don’t care”. We assume that two characters of Σ match if
either one of them is the don’t care character, or they are equal. The study of this problem
commenced in [21], where a O(n logm log |Σ|)-time algorithm was presented. The time
complexity of the algorithm was improved in subsequent work [18,28, 29], culminating in an
elegant O(n logm)-time deterministic algorithm of Clifford and Clifford [15]. Clifford and
Porat [17] also considered the problem of identifying all alignments where the number of
mismatching characters is at most k.

Threshold pattern matching. In the threshold pattern matching problem, we are given
a parameter δ, and we say that two characters a, b match if |a − b| < δ. The threshold
pattern matching problem has been studied both in reporting and counting variants [4,
11, 12, 16, 19, 20, 22, 38]. The best algorithm for the reporting variant of the threshold
pattern matching problem is deterministic and takes linear time (after the pattern has been
preprocessed). The best deterministic algorithm for the counting variant of threshold pattern
matching has time O((log δ + 1)n

√
m logm), while the best randomised algorithm has time

O((log δ + 1)n logm) [38].
In threshold pattern matching the matching relationship is described with a single interval

per character, so I = m. Hence from Theorem 17 immediately follows a faster deterministic
algorithm for the counting variant of the threshold pattern matching problem (Corollary 18).

2 Data-Dependent Superimposed Codes

We start by solving the open problem posed by Indyk [27]: provide a deterministic algorithm
for construction of a variant of data-dependent superimposed codes that is particularly
suitable for the counting variant of GPM. The algorithm that we present is rather involved,
a reader more interested in pattern matching applications can skip this section on the first
reading.

IDefinition 1. Let S1, . . . , Sz be subsets of a universe U . A family of sets C = {C1, . . . , C|U |},
where Cu ⊆ [`] and |Cu| = w for u ∈ U is called an ({Si}, τ)-superimposed code if for every Si
and u /∈ Si we have |Cu −

⋃
v∈Si Cv| ≥ τ . We call ` and w respectively the length and the

weight of the code C.

2 It is not clear what combinatorial means precisely. However, FFT and Boolean convolution often used
in algorithms on strings are considered not to be combinatorial.
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Suppose that the size of each Si is at most k, where k is some fixed integer. Indyk asked if
there exists a deterministic Õ((zk)/εO(1))-time algorithm that computes an ({Si}, (1− ε)w)-
superimposed code of some weight w and length ` = O(k polylog(zk)). It can be seen that
we cannot hope to construct such a code with ` independent of ε. In the following lemma we
show that even if we restrict to the case of k = 1 we still need that ` significantly depends
on ε.

I Lemma 2. For every constant δ ∈ (0, 1), function f(z) = O(polylog z), and z large
enough, there exists a family of singleton sets S1, S2, . . . , Sz and 0 < ε < 1 such that any
({Si}, (1− ε)w)-superimposed code of weight w must have length length ` > f(z)/εδ.

Proof. Consider sets Si = {i} for i ∈ [z], where z will be determined later. Let ε =
1/(2f(z))

1
1−δ and suppose that there is a ({Si}, (1− ε)w)-superimposed code C. Then, by

definition of superimposed codes and from w ≤ `, for i 6= j it holds{
|Ci − Cj | ≥ (1− ε)w = w − εw ≥ w − ε`,
ε` ≤ εf(z)/εδ = ε1−δf(z) = 1/2

so |Ci − Cj | > w − 1. Hence, |Ci − Cj | = w and every Ci and Cj must be disjoint, and
therefore ` ≥ zw ≥ z. Assume towards a contradiction that ` ≤ f(z)/εδ. We obtain

` ≤ f(z)/εδ = f(z) · (2f(z))
δ

1−δ = f(z)
1

1−δ · 2
δ

1−δ = O(polylog z) · 2
δ

1−δ < z

where the last inequality holds for sufficiently large z. This leads to a contradiction and the
claim follows. J

Therefore, one should allow ` = O(k polylog(zk)/εO(1)). We give a positive answer to this
natural relaxation. We start by showing an efficient deterministic algorithm for discrepancy
minimization that will play an essential role in our approach.

2.1 Discrepancy Minimization
Let us start with a formal definition of discrepancy.

I Definition 3 (Discrepancy). Consider a family F of z sets Si ⊆ U , i ∈ [z]. We call
a function χ : U → {−1,+1} a colouring. The discrepancy of a set Si is defined as
χ(Si) =

∑
u∈Si χ(u), and the discrepancy of F is defined as maxi∈[z] |χ(Si)|.

In [13, Section 1.1], Chazelle presented a construction of a colouring of small discrepancy
assuming infinite precision of computation. Our deterministic algorithm will follow the outline
of this construction (although crucial modifications are required in order to overcome the
infinite precision assumption), so we quickly restate Chazelle’s construction below. The main
idea is to assign colours so as to minimize the value of an objective function G = G(χ, {Si})
defined as follows: let ε be chosen so that log 1+ε

1−ε = α ·
√

log(3z)/k for some constant α > 2,
and let pi (respectively, ni) be the number of u ∈ Si such that χ(u) = +1 (respectively,
χ(u) = −1) for i ∈ [z]. Define

Gi = (1 + ε)pi(1− ε)ni + (1 + ε)ni(1− ε)pi and G =
∑
i∈[z]

Gi

Chazelle’s construction assigns colours to one element of U at a time, without ever back-
tracking. To assign a colour to an element u, it performs the following three simple steps.
First, it computes G+, the value of G assuming χ(u) = +1. Second, it computes G−, the
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value of G assuming χ(u) = −1. Finally, if G+ ≤ G−, it sets χ(u) = +1 and G = G+, and
otherwise it sets χ(u) = −1 and G = G−. Note that for each i ∈ [z], we have

(1 + ε)pi+1(1− ε)ni + (1 + ε)ni(1− ε)pi+1 + (1 + ε)pi(1− ε)ni+1 + (1 + ε)ni+1(1− ε)pi

= 2 · ((1 + ε)pi(1− ε)ni + (1 + ε)ni(1− ε)pi)

and therefore the value of G can only decrease. This implies an important property of
Chazelle’s construction: since at initialization we have ni = pi = 0 for all i ∈ [z] and therefore
G = 2z, we have Gi ≤ G ≤ 2z for i ∈ [z] at any moment of the construction. Let us show
that small values of Gi’s imply small discrepancy. In order to do this, we follow the outline
of [13], but use a slightly higher bound for Gi’s to be able to apply this lemma later.

I Lemma 4 ([13]). If after all elements of U have been assigned a colour we have Gi ≤ 3z
for all i ∈ [z], then the discrepancy of the resulting colouring is at most α ·

√
k log(3z) for

any constant α > 2.

We will show a deterministic algorithm that computes a colouring for which the values Gi
are bounded by 3z. By Lemma 4, we therefore obtain that the discrepancy is bounded
by α ·

√
k log(3z). We must overcome several crucial issues: first, we must explain how to

compute ε. Second, we must design an algorithm that uses only multiplications and additions
so as to be able to control the accumulated precision error. And finally, we must explain
how to remove the assumption of infinite precision and to ensure that we never operate on
numbers that are too small.

I Proposition 5. Assume k > log(3z). There is a deterministic algorithm that computes
ε ∈ (0, 1) such that log 1+ε

1−ε = α ·
√

log(3z)/k for some constant α > 2 in O(log(zk)) time.
Both ε and 1− ε are bounded from below by 1/(kz)O(1).

We can implement Chazelle’s construction to use only multiplications and additions via
segment trees.

I Proposition 6. Assume that (1 + ε) and (1− ε) are known. Chazelle’s construction can
be implemented via O(zk log z) addition and multiplication operations.

Proof. We maintain a complete binary tree on top of {1, 2, . . . , 2t}, where 2t−1 < z ≤ 2t.
At any moment, the (2i − 1)-th leaf stores (1 + ε)pi(1 − ε)ni and the (2i)-th leaf stores
(1 + ε)ni(1− ε)pi for all i ∈ [z], while all the other leaves store value 0. Each internal node
stores the sum of the values in the leaves of its subtree. In particular, the root stores the
value G. To update G after setting χ(u) for u ∈ U , we must update the values stored in the
(2i− 1)-th and (2i)-th leaves for all i such that u ∈ Si, as well as the sums in the O(log z)
internal nodes above these leaves. For each leaf, we use one multiplication operation (we
must multiply the value by (1 + ε) or (1− ε) as appropriate), and for each internal node we
use one addition operation. In total, we need O(

∑
i∈[z] |Si| log z) = O(zk log z) addition and

multiplication operations. J

We are now ready to remove the infinite precision assumption and to show the final result
of this section. Our algorithm will follow the outline of Proposition 6, but the addition
and the multiplication operations will be implemented with precision ∆. Moreover, we will
guarantee that the algorithm only works with values in [∆,O(z)], which will imply that
both arithmetic operations can be performed in constant time and that the algorithm takes
O(zk log z) time.
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I Theorem 7. Given a family of z sets Si ⊆ U where |Si| ≤ k and |U | = zk, one
can find deterministically in O(zk log z) time a colouring χ : U → {−1,+1} such that
maxi∈[z] |χ(Si)| ≤ α ·

√
k log(3z) for some constant α > 2.

Theorem 7 can be used to partition the universe U into a small number of subsets such
that the intersection of every subset of the partition and every set Si is small. We start with
a simple technical lemma.

I Lemma 8. Consider a process that starts with x0 = x, and keeps computing xi+1 :=
bxi(1/2 + 1/√xi)c as long as xi > 4. The process ends after at most log x+O(log∗ x) steps.

I Lemma 9. Given a family of z sets Si ⊆ U where |Si| ≤ k and |U | = zk, one can construct
deterministically in O(|U | log z log k) time a function f : U → [k · 2O(log∗ k)] such that for
each c ∈ [k · 2O(log∗ k)] and for each Si, the intersection of {u ∈ U | f(u) = c} and Si contains
O(log z) elements.

Proof. We can reformulate the statement of the lemma as follows. We must show that there
is a partitioning of U into subsets Xc = {u ∈ U : f(u) = c} such that for every Si, the
intersection Xc ∩ Si has size at most O(log z).

We partition U recursively using the procedure from Theorem 7. We start with a single
set X = U . Suppose that after several steps we have a partitioning of U into sets Xc such
that |Si ∩Xc| ≤ y for all i and c and some integer y. We then apply Theorem 7 to the sets
Xc. Using the colouring output by the lemma, we partition each set Xc into sets Xc0 and
Xc1 , where the former contains all the elements of Xc of colour −1 and the latter all the
elements of Xc of colour +1. For j ∈ {0, 1} we choose cj (and also the value of f(x) for
x ∈ Xcj ) so that its binary representation equals the binary representation of c appended
with j. By Theorem 7, there is a constant α such that

|Si ∩Xc0 |, |Si ∩Xc1 | ≤ y/2 + 1
2α ·

√
y log(3z) ≤ y(1/2 + 1/

√
y/α2 log(3z)).

We continue this process until |Si ∩Xc| ≤ 4α2 log(3z) for all i and c.
It remains to bound the number of iterations. By setting x = k/α2 log(3z) in Lemma 8, we

obtain that we need at most log x+O(log∗ x) ≤ log k+O(1)+O(log∗ k) = log k+O(log∗ k) = t

recursive applications of the partition procedure implemented with Theorem 7 to ensure
that every set Si has at most 4α2 log(3z) = O(log z) elements in common with every Xc.
Therefore, the size of the image of f is bounded by 2t = k2O(log∗ k). The overall construction
time is O(|U | log z log k). J

2.2 Superimposed Codes
We are now ready to show an efficient construction algorithm for data-dependent superimposed
codes (see Definition 1). At a high level, we will construct a family of functions which,
combined with the partition f from Lemma 9, will give us the superimposed code.

I Theorem 10. Given a family of z sets Si ⊆ U where |Si| ≤ k and |U | = zk, one
can construct an ({Si}, (1 − ε)w)-superimposed code of weight w = O(ε−1 log2 |U |) and
` = O(ε−2k log5 |U |) in O(ε−1|U | log2 |U |) time and space.

Proof. By applying Lemma 9, we obtain in O(|U | log z log k) = O(|U | log2 |U |) time a
function f : U → [k · 2O(log∗ k)] which gives a partitioning of U into subsets Xc = {u ∈
U | f(u) = c}, such that for some constant α, for every c and i holds |Xc ∩ Si| ≤ α log z.
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Consider the ring of polynomials Z2[x]. Let U = {u1, u2, . . . , uzk}. We define a mapping
pol : U → Z2[x] as follows. Let u = uq and q = qtqt−1 . . . q0 be the binary representation
of q, where t = blog |U |c, then pol(u) =

∑t
i=0 qix

i.
Let H(U, d) be the family of functions hp : U → F2d of the form hp(u) = (pol(u) mod p)

for all irreducible polynomials p of degree d. By Gauss’s formula [14,23], there are Θ(2d/d)
irreducible polynomials of degree d over Z2, and so is the size of the family H(U, d). Consider
two distinct polynomials x, y of degree t. Observe that there are at most t/d irreducible
polynomials p that hash both x and y to the same value hp(x) = hp(y), because Z2[x] is a
unique factorization domain [23]. We choose d in such a way that the probability that x, y are
hashed to the same value while choosing a hash function uniformly at random from H(U, d)
is bounded by ε/(α log z): t/d

Θ(2d/d) ≤
ε

α log z and hence we can choose d = Θ(log t log z
ε ).

If d > t, then ε < log2 |U |
|U | and we can take ` = |U |, w = 1 and set Cuq = {q}. From

now on, assume d ≤ t. Let f be as in Lemma 9. Consider u ∈ U such that u ∈ Xc, where
c = f(u) ∈ [k · 2O(log∗ k)]. We define Cu as follows:

Cu = {Hp(u) = num(hp(u)) + 2d · num(p) + 4d · c | hp ∈ H(U, d)},

where the mapping num(q) treats a polynomial q =
∑d−1
i=0 qix

i as a d-bit number qd−1 . . . q0.
Clearly, w = |Cu| = O(2d/d) = O(2d) = O( t log z

ε ) = O(ε−1 log2 |U |) and Cu ⊆ [l] where:

` = 2d · 2d · k2O(log∗ k) = t2 log2 z

ε2 · k · 2O(log∗ k) = O(ε−2k log5 |U |).

We claim that the obtained code is a ({Si}, (1− ε)w)-superimposed code. Consider any
Si and u /∈ Si. We count elements of Cu that do not belong to any Cv, for v ∈ Si. Let
c = f(u) ∈ [k · 2O(log∗ k)] and so u ∈ Xc. By construction, |Xc ∩ Si| ≤ α log z. Thus, by
the union bound, the probability that hp(u) = hp(x) for some x ∈ Xc ∩ Si is at most ε
for hp chosen uniformly at random from H(U, d). Recall that Cu consists of elements
Hp(u) = num(hp(u)) + 2d · num(p) + 4d · c for hp ∈ H(U, d). The number of irreducible
polynomials p such that Hp(u) = Hp(x) for some x ∈ Xc ∩ Si is at most ε ·w. Consequently,
at least w − ε · w = (1− ε)w elements of Cu do not belong to any Cv, for v ∈ Si.

We now show that we can construct the above superimposed codes in O(|U |w) time. To
this end, we need to generate all irreducible polynomials of degree d and to explain how
we compute remainders modulo these polynomials. Note first that as we only operate on
polynomials of degree ≤ t = O(log |U |), they fit in a machine word and hence we can subtract
two polynomials or multiply a polynomial by any power of x in constant time. We can now
use this to generate the irreducible polynomials and compute the sets Cu at the same time.
We maintain a bit vector I that for each polynomial p of degree ≤ d stores an indicator bit
equal to 1 iff p, i.e. iff its remainder modulo any polynomial of degree smaller than deg(p) is
not zero. We consider the polynomials of degree 0, 1, 2, . . . , d in order. For every irreducible
polynomial p, we compute a table Modp[q] = (q mod p) for all polynomials q of degree ≤ t in
overall O(|U |) time using dynamic programming with the following recursive formula:

Modp[q] =
{
q, if deg(q) < deg(p)
Modp[q − p · xdeg(q)−deg(p)], otherwise

We use the table to compute Hp(u) for all u ∈ U . Also, if for a polynomial q the remainder
is zero, we zero out the corresponding bit in I. Here we use the fact that d ≤ t to guarantee
that we will find all irreducible polynomials of degree ≤ d in this way.

As there are w irreducible polynomials, in total we spend O(|U |w) = O(ε−1|U | log2 |U |)
time. At any moment, we use O(|U |) space to store the table and O(ε−1|U | log2 |U |) space
to store the codes. J
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3 Upper Bounds for Generalised Pattern Matching

In this section, we present new algorithms for the parameters D , S and I . Our algorithms
for the parameters D and S share similar ideas, so we present them together in Section 3.1.
The algorithm for I is presented in Section 3.2.

We start by recalling the formal statement of the Pattern Matching with Don’t
Cares problem that will be used throughout this section.

Pattern Matching with Don’t Cares (counting, binary alphabet)
Input: A text T ∈ {0, 1, ?}n and a pattern P ∈ {0, 1, ?}m, where “?” is a don’t care
character that matches any character of the alphabet.
Output: For each i ∈ [n−m+ 1], the number of positions j ∈ [m] such that T [i+ j− 1]
does not match P [j].

Clifford and Clifford [15] showed that this problem can be solved in O(n logm) time.

3.1 Parameters D and S
We first show Monte Carlo algorithms for the reporting and counting variants of GPM, and
then de-randomise them using the data-dependent superimposed codes of Section 2.

3.1.1 Randomised Algorithms
We start by presenting a new reporting algorithm for the parameter D . It does not improve
over the algorithm of [34], but encapsulates a novel idea that will be used by all our algorithms
for the parameters D and S . Essentially, we use hashing to reduce ΣT to a smaller set of
characters of size p = Θ(D ) while preserving occurrences of the pattern in the text with
constant probability, and then show that this smaller instance of GPM can be reduced
to p = Θ(D ) instances of Pattern Matching with Don’t Cares.

I Theorem 11. Let D be the maximum degree in the matching graph M and c be any
constant fixed in advance. There is a Monte Carlo algorithm that solves the reporting variant
of GPM in O(D n logm logn) time. The error is one-sided (only false positives are allowed),
and the error probability is at most 1/nc.

Proof. If D > m, we can use a naive algorithm that compares the pattern and each m-length
substring of the text character-by-character and uses O(mn) = O(D n) time in total. Below
we assume D ≤ m. We can also assume |ΣT | ≤ n.

We first choose a 2-wise independent hash function h : ΣT → [2D ] of the form h(x) =
((a·x+b) mod p) mod (2D )+1, where p ≥ |ΣT | is a prime, and a, b are chosen independently
and uniformly from Fp. Note that we can find a prime p such that n ≤ p ≤ 2n, in O(n) time.
Consider a matching graph M ′ on the set of vertices [p] ∪ ΣP . For every character b = P [j]
and for every character a ∈ ΣT in the adjacency list of b, we add an edge (h(a), b) to M ′.
Overall, it takes O(Dm) = O(D n) time.

We claim that if M does not contain an edge (a, b), then the probability of M ′ to contain
an edge (h(a), b) is at most 1/2. By definition, if (h(a), b) belongs to M ′, then there exists a
character a′ ∈ ΣT such that (a′, b) is in M and h(a′) = h(a). Since h is 2-wise independent,
for a fixed character a′ the probability of h(a′) = h(a) is 1/(2D ). Because the degree of b is
at most D , the probability of such event is at most 1/2 by the union bound.

Consider a text T ′, where T ′[i] = h(T [i]). If T [i, i+m− 1] does not match P under M ,
then T ′[i, i+m− 1] does not match P under M ′ with probability ≥ 1/2. Indeed, suppose
that for some j ∈ [m], T [i + j − 1] and P [j] do not match under M , or equivalently, an
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edge (T [i+ j − 1], P [j]) does not belong to M . From above, with probability at least 1/2,
h(T [i + j − 1]) and P [j] do not match under M ′. It follows that we can use the GPM
algorithm for M ′, T ′, and P to eliminate every non-occurrence of P in T with probability at
least 1/2. We can amplify the probability in a standard way, i.e. by independently repeating
the algorithm c logn times.

It remains to explain how to solve GPM for M ′, T ′, and P . We use the fact that the
size of the alphabet of T ′ is O(D ). For every a ∈ [2D ] we create a new text T ′a[1, n] and a
new pattern Pa[1,m] as follows:

T ′a[j] =

{
0 if T ′[j] = a,

? otherwise.
Pa[j] =

{
0 if a matches P [j] under M ′,
1 otherwise.

We can construct T ′a and Pa in O(n + m) = O(n) time, or in O(D n) total time for
all a ∈ [2D ]. It is not hard to see that T ′[i, i+m−1] matches P if and only if T ′a[i, i+m−1]
matches Pa for all a ∈ [2D ]. Therefore, to solve GPM for M ′, T ′, and P , it suffices to solve
the 2D instances of Pattern Matching with Don’t Cares. By [15], this can be done in
total O(D n logm) time. As we repeat the algorithm c logn times, the theorem follows. J

We now show a new randomised algorithm for the parameter S . At a high level, we
divide ΣP into heavy and light characters based on their degree in M (a character of ΣP is
called heavy when it matches many characters of ΣT , and light otherwise). The number of
heavy characters is relatively small, and we can eliminate all substrings of T that do not
match P because of heavy characters by running an instance of Pattern Matching with
Don’t Cares for each of them. For light characters, we apply Theorem 11.

I Theorem 12. Let S be the number of edges in the matching graph M and c be any constant
fixed in advance. There is a Monte Carlo algorithm that solves the reporting variant of GPM
in O(

√
S n logm

√
logn) time. The error is one-sided (only false positive are allowed), and

the error probability is at most 1/nc.

Combining the techniques of Theorems 11, 12 and the approach of Kopelowitz and
Porat [31], we obtain the following corollary.

I Corollary 13. Let c be any constant fixed in advance, D be the maximum degree and S be
the number of edges in the matching graph M . There is a (1− ε)-approximation Monte Carlo
algorithm that solves the counting variant of GPM in O(min{ε−1D logn,

√
ε−1S logn} ·

n logm) time. The error probability is at most 1/nc.

3.1.2 Deterministic Algorithms
We are now ready to give (1− ε)-approximation deterministic algorithms for the counting
variant of GPM for the parameters D and S . By taking ε = 1/2, the algorithms for the
reporting variant follow immediately. We first remind the definition of superimposed codes,
which we will use throughout this section.

IDefinition 1. Let S1, . . . , Sz be subsets of a universe U . A family of sets C = {C1, . . . , C|U |},
where Cu ⊆ [`] and |Cu| = w for u ∈ U is called an ({Si}, τ)-superimposed code if for every Si
and u /∈ Si we have |Cu −

⋃
v∈Si Cv| ≥ τ . We call ` and w respectively the length and the

weight of the code C.

I Theorem 14. Let D be the maximum degree in the matching graph M . There is an
(1− ε)-approximation deterministic algorithm that solves the counting variant of GPM in
O(ε−2D n log6 n) time.
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Proof. First, note that we can assume D ≤ m and ε ≥ 1/m. If this is not the case, we can
run a naive algorithm that compares each m-length substring of the text T and the pattern
character-by-character in O(mn) = O(D n) time.

For each distinct character b of the pattern P , consider a set Sb containing all characters
in ΣT that match b. By definition, |Sb| ≤ D . We define the universe U = (

⋃
b∈ΣP Sb) ∪ {$},

where $ /∈ ΣT is a special character that we will need later, |U | = O(n). We apply
Theorem 10 that constructs ({Sb}, (1 − ε)w)-superimposed code for the universe U and
sets Sb in O(ε−1n log2 n) time, where the weight w = O(ε−1 log2 n) and the length ` =
O(ε−2D log5 n).

We define the code of a character a ∈ U to be a binary vector of length ` such that
its j-th bit equals 1 if Ca contains j, and 0 otherwise. For a character a′ ∈ ΣT \ U , we
define its code to be equal to the code of $. We define the code of a character b ∈ ΣP to
be a binary vector of length ` such that its j-th bit equals 1 if

⋃
a∈Sb Ca contains j, and 0

otherwise. Next, we create a text T ′[1, n`] and a pattern P ′[1,m`] by replacing the characters
in respectively T and P by their codes. To finish this step, we replace each 1 in P ′ with the
don’t care character and run the algorithm of Clifford and Clifford [15] for T ′ and P ′ that
takes O(n` log(m`)) = O(ε−2D n log6 n) time (here we use ε ≥ 1/m).

Let h′ be the number of mismatching characters between P ′ and T ′[(i−1)·`+1, (i+m−1)·`],
and h be the number of mismatches between P and T [i, i+m−1]. We claim that (1−ε)wh ≤
h′ ≤ wh. Indeed, if P [j] matches T [i + j − 1], then CT [i+j−1] is a subset of

⋃
a∈SP [j]

Ca.
Therefore, if the code of T [i+ j − 1] contains 1 in position k, the code of P [j] will have 1 in
position k as well. By replacing all 1s in P ′ with the don’t care characters, we ensure that
the corresponding fragments of P ′ and T ′ match. On the other hand, if P [j] does not match
T [i+ j − 1], then from the definition of the code it follows that the distance between the
corresponding chunks of P ′ and T ′ will be at least (1− ε)w and at most w. J

To show a deterministic algorithm for the parameter S , we again consider the partition
of the alphabet ΣP into heavy and light characters. To count the mismatches caused by
some heavy character, we create an instance of Pattern Matching with Don’t Cares.
As the number of heavy characters is small, the total number of the created instances is small
as well. For light characters, we use the superimposed codes similarly as in Theorem 14.

I Theorem 15. Let S be the number of edges in the matching graph M . There is an
(1− ε)-approximation deterministic algorithm that solves the counting variant of GPM in
O(ε−1

√
S n log7/2 n) time.

3.2 Parameter I
In this section, we show a deterministic GPM algorithm for the parameter I . The algorithm
solves the counting variant of the problem exactly, and we can immediately derive an
algorithm for the reporting version with the same complexities as a corollary. We will need
the following technical lemma.

I Lemma 16. Let b be a parameter, S = {x1, x2, . . . , x`} be a sequence of integers, and
s =

∑
i∈[`] xi. Then S can be partitioned into O(s/b + 1) ranges S1, S2, . . . such that, for

every i, either Si is a singleton or the sum of all elements in Si is at most b.

We are now ready to show the main result of the section.

I Theorem 17. For each character a ∈ ΣP consider a minimal set I(a) of disjoint sorted
intervals that contain the characters that match a, and define I =

∑
j∈[m] |I(P [j])|. There is

a deterministic algorithm that solves the counting version of GPM in O(n
√
I logm+n logn)

time.
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Proof. If I > m2, we can use the naive algorithm that compares each m-length substring
with the pattern character-by-character and takes O(mn) time in total.

We first make a pass over T and retrieve the set of distinct characters a1, a2, . . . , al of ΣT
that occur in it, as well as their frequencies. This can be done in O(n logn) time using a
binary search tree. We partition a1, a2, . . . , al into ranges as follows. Let count(c), for c ∈ ΣT ,
be the frequency (i.e. the number of occurrences) of c in T . We apply Lemma 16 for b > 1
that will be specified later and the sequence count(a1), count(a2), . . . , count(al) which sums
up to n.

Let Σ′T be a new alphabet obtained by creating a character for every range in the
partition, where |Σ′T | = O(n/b + 1). For c ∈ Σ′T we denote by range(c) the range of ΣT

corresponding to c, and for a ∈ ΣT we denote by range−1(a) the character of Σ′T corres-
ponding to the range containing a. We create a new text T ′[1, n] and pattern P ′[1,m]
as follows. For every i ∈ [n], we set T ′[i] = range−1(T [i]). For every j ∈ [m], we set
P ′[j] = {c ∈ Σ′T | range(c) contains a character that matches P [j]}. As the number of the
ranges is O(n/b + 1), the size of the set P ′[j] is O(n/b + 1). We represent it as a binary
vector of length O(n/b + 1). Furthermore, we can construct T ′ in O(n) time, and P ′ in
O(I +m(n/b+ 1)) time.

After this initial step the algorithm consists of two phases. First, we solve the Subset
Pattern Matching for T ′ and P ′ that consists of counting, for every i ∈ [n −m + 1],
all positions j ∈ [m] such that T ′[i + j − 1] /∈ P ′[j]. To this end, we create an instance
of Pattern Matching with Don’t Cares for every c ∈ Σ′T , namely, we create a text
T ′c[1, n] and a pattern P ′c[1,m] as follows:

T ′c[i] =

{
0 if T ′[i] = c,

? otherwise.
P ′c[j] =

{
0 if c ∈ P ′[j],
1 otherwise.

We can solve all these instances in O(|Σ′T |n logm) = O((n/b+1)n logm) time [15]. Summing
up the results, we obtain the result for the subset matching problem.

In the second phase, we slightly adjust the results obtained for Subset Pattern
Matching to obtain the results for GPM. Consider a substring T [i, i+m− 1] that does
not match P because of a mismatch in position j of the pattern, i.e. T [i+ j − 1] does not
match P [j]. We have two possible cases. The first case is when T ′[i+ j − 1] /∈ P ′[j]. In this
case, the mismatch is detected by the Subset Pattern Matching algorithm. The second
case is when T ′[i+ j − 1] ∈ P ′[j]. Observe that in this case, range(T ′[i+ j − 1]) cannot be a
singleton and must contain an endpoint of some interval of characters that match P [j].

To detect such mismatches, we run the following algorithm. For each j ∈ [m], we consider
the intervals I(P [j]) of the characters that match P [j]. For every endpoint c ∈ ΣT of the
intervals in I(P [j]), we iterate over all a ∈ range−1(c) such that a does not match P [j] and
all occurrences of a in the text. Summing over all j and a, there are in total O(I · b) of the
occurrences due to the properties of the partition and the fact that range(T ′[i+ j − 1]) is not
a singleton. We can find the occurrences in O(I · b+n+mn/b) time as follows. First we find
the ranges containing the endpoints in O(I +m(n/b+1)) time similarly to above, and we can
generate the lists of occurrences of every character a ∈ ΣT in T by one pass over T inO(n logn)
time. For each such occurrence T [k] = a that does not match P [j], we increment the number
of mismatches for the substring T [k− j+ 1, k+m− j]. This correctly detects every mismatch
that has not been accounted for in the first phase, and hence allows counting all mismatches
in O(I +m(n/b+ 1) + (n/b+ 1)n logm+ n logn+ I · b) = O(n2 log(m)/b+ n logn+ I · b)
total time. Substituting b = n

√
logm/I gives us the claim of the theorem. J
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I Corollary 18. There is a deterministic algorithm that solves the counting variant of the
threshold pattern matching problem in O(n(

√
m logm+ logn)) time.

4 Lower Bounds for GPM

In this section we give lower bounds for GPM algorithms. All the lower bounds are presented
for the reporting variant of GPM, so they immediately apply also to the counting variant.
Recall that we assume to have access to three oracles that can answer the following questions
about the matching graph M in O(1) time:

1. Is there an edge between a ∈ ΣT and b ∈ ΣP ?
2. What is the degree of a character a ∈ ΣT or b ∈ ΣP ?
3. What is the k-th neighbor of a ∈ ΣT ?

n/2 n/2

m

m

1 2 . . .

diagonals

Figure 1 The adjacency matrix of the matching graph M . We show diagonals (solid lines) and a
quadruple of related cells (black). Note that among any quadruple of related cells, only one can
belong to a diagonal.

We first use an adversary-based argument to show an Ω(S) time lower bound.

I Lemma 19. Any deterministic algorithm for GPM requires Ω(S) time.

Proof. We will show that any deterministic algorithm checking if there exists at least one
occurrence needs to inspect Ω(S ) entries of M in the worst case by an adversary-based
argument. In particular, this implies a lower bound of Ω(nm) when S = Θ(nm). The main
difficulty in the argument is to design the input so that the second oracle is essentially useless.

It will be convenient for us to think in terms of the adjacency matrix of the matching
graphM that we denote byM. Let us assume that n ≥ 2m is even, ΣT = [n], and ΣP = [2m].
We split both alphabets into halves. For every a ∈ [n/2] and b ∈ [m] we will choose one of
the following two possibilities:

1. M[a, b] =M[n/2 + a,m+ b] = 1 andM[n/2 + a, b] =M[a,m+ b] = 0,
2. M[a, b] =M[n/2 + a,m+ b] = 0 andM[n/2 + a, b] =M[a,m+ b] = 1.

We callM[a, b],M[n/2 + a, b],M[a,m+ b] andM[n/2 + a,m+ b] related. Observe that,
irrespectively of all such choices, the second oracle returns the same number for every b ∈ ΣP
and every a ∈ ΣT , and so the algorithm only needs to query the first oracle.

We choose the text T = 1 2 . . . n/2 1 2 . . . n/2 and the pattern P = 1 2 . . .m. Clearly, P
occurs in T when, for some a ∈ [n/2], we have M [1 + (a+ b− 2) mod n/2, b] = 1 for every
b ∈ [m]. We call the set of corresponding entries of M a diagonal (see Fig. 1).
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Note that among any quadruple of related entries exactly one can belong to the diagonals.
Furthermore, suppose that an algorithm retrieves the values in a quadruple of related entries
M[a, b], M[n/2 + a,m + b], M[n/2 + a, b], M[a,m + b]. This can be done by one of the
following queries: ask for the value of any of these four entries, or retrieve the particular
neighbor of one of the nodes a, n/2 + a, b, or m + b. In both cases, we retrieve only the
related entries and spend Ω(1) time for any of the retrieved quadruples.

The adversary proceeds as follows. If the algorithm retrieves a quadruple contain-
ingM[a, b], for a ∈ [n/2] and b ∈ [m], such that the value ofM[a, b] is not yet determined,
the adversary checks if settingM[a, b] = 1 would result in creating a diagonal containing
only 1s. If so, the adversary setsM[a, b] = 0, and otherwise the adversary setsM[a, b] = 1.
In other words, the adversary sets M [a, b] = 0 when it is the last undecided entry on its
diagonal.

The algorithm can report an occurrence only after having verified that the corresponding
diagonal contains only 1s, and the adversary makes sure that this is never the case. On the
other hand, if the algorithm terminates without having reported an occurrence while there
exists a diagonal that has not been fully verified then the adversary could set its remaining
entries to 1s and obtain an instance that does contain an occurrence. Consequently, the
algorithm needs to retrieve all the entries in all the diagonals, and as we showed, it requires
Ω(mn) = Ω(S) time.

Note that above S = nm/2. The proof can be extended to S < nm/2 as follows.
If S ≥ m we set n′ = bS /mc and choose the text to be the prefix of length n of (1 2 . . . n′)∞
(the string 1 2 . . . n′ repeated infinitely many times). Then the above argument shows that
any algorithm needs to inspect n′m ≥ S /2 entries ofM. If S < m we choose the pattern
to be the prefix of length m of (1 2 . . .S )∞ (the string 1 2 . . .S repeated infinitely many
times), the text to be 1n (1 repeated n times) and proceed as above to argue that one must
inspect Ω(S) entries ofM. J

A similar argument can be used to show that this bound holds for Monte Carlo algorithms
with constant error probability as well.

I Lemma 20. Any Monte Carlo algorithm for GPM with constant error probability ε < 1/2
requires Ω(S) time.

We now show lower bounds for GPM conditional on hardness of Boolean matrix multi-
plication.

I Conjecture ([2]). For any α, β, γ, ε > 0, there is no combinatorial3 algorithm for multiply-
ing two Boolean matrices of size Nα ×Nβ and Nβ ×Nγ in time O(Nα+β+γ−ε).

A simple adaptation of the folklore lower bound for computing the Hamming distance
(cf. [24]) yields the following lower bounds.

I Lemma 21. For any α ≥ 1, and 1 ≥ β, ε > 0, there is no combinatorial algorithm that
solves GPM in time O(S 0.5−εn), for n = Θ(m(1+α)/2) and S = Θ(mβ).

Proof. We show a reduction from Boolean matrix multiplication. Consider a matrix A of
size x× y and a matrix B of size y × z, where x = Nα, y = Nβ , z = N . We transform the
matrix A by replacing every 1 by the number of the column it belongs to and every 0 by the
don’t care character ?. Similarly, we replace each 1 in B by the number of the row it belongs
to and every 0 by the don’t care character ?.

3 It is not clear what combinatorial means precisely, but fast matrix multiplication is definitely non-
combinatorial. Arguably neither is FFT used in our algorithms, thus making them non-combinatorial.
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I Example 22. Consider A = ((0, 0, 1), (1, 0, 1), (0, 1, 0)) and B = ((1, 0, 1), (0, 1, 0), (1, 1, 0)).
After the transform, they become ((?, ?, 3), (1, ?, 3), (?, 2, ?)) and ((1, ?, 1), (?, 2, ?), (3, 3, ?)),
respectively.

We define the text T =?z2
A1?z−y+1A2?z−y+1 . . . ?z−y+1Ax?z2 , where Ai is the i-th row

of A, and the pattern P = B1?z−yB2?z−y . . . ?z−yBz, where Bj is the j-th column of the
matrix B. The length of T is n = 2z2 + (x− 1)(z − y + 1) + xy = O(N1+α), and the length
of P is m = yz + (z − y)(z − 1) = O(N2). Next, we define the matching relationship as
follows. Every character different than the don’t care is defined to match all characters of
the alphabet but itself, and the don’t care character matches all characters of the alphabet.
Consequently, the alphabet has size y + 1 and the matching relationship matrix contains
S = Θ(y2) = Θ(N2β) set bits.

Let C = A×B. By definition, C[i, j] = 1 iff
∨y
k=1(Ai[k]∧Bj [k]) = 1. We claim that this

is the case iff, aligning Ai in the text and Bj in the pattern does not yield an occurrence
of the pattern. Suppose first that

∨y
k=1(Ai[k] ∧ Bj [k]) = 1. Then there is k0 such that

Ai[k0] = Bj [k0] = 1. In the text and in the pattern they are both encoded by the same
k0 6= ? and aligned, and k0 does not match itself. Therefore, we do not have an occurrence.
Assume otherwise. We need to show that for every character a 6= ?, a is not aligned with
itself. For Bj it follows from the fact that

∨y
k=1(Ai[k] ∧Bj [k]) 6= 1. For other columns of B

it follows from the shift caused by the don’t care characters.
It follows that a combinatorial algorithm that correctly outputs all occurrences of P in T

in O(S 0.5−εn) time implies a combinatorial algorithm for Boolean matrix multiplication
of matrices of size Nα × Nβ and Nβ × N in time O(S 0.5−εn) = O(N1+α+2β(0.5−ε)) =
O(Nα+1+β−2εβ), which contradicts the combinatorial matrix multiplication conjecture. The
lower bound follows. J

I Corollary 23. For any α ≥ 1, and 1 ≥ β, ε > 0, there is no combinatorial algorithm that
solves GPM in time O(D 1−εn), for n = Θ(m(1+α)/2) and D = Θ(mβ). For any α ≥ 1, and
1 ≥ ε > 0, there is no combinatorial algorithm that solves GPM in time O(I 0.5−εn), for
n = Θ(m(1+α)/2) and I = Θ(m).

Proof. To show the first part of the claim, note that in the constructed instance of generalized
pattern matching D = Θ(mβ/2). For the second part, we take β = 1. Then I = O(m),
and therefore a combinatorial algorithm that correctly outputs all occurrences of P in T
in O(I 0.5−εn) time implies a combinatorial algorithm for Boolean matrix multiplication of
matrices of size Nα×N and N×N in time O(I 0.5−εn) = O(N1+α+2(0.5−ε)) = O(Nα+2−2ε),
which contradicts the combinatorial matrix multiplication conjecture. J
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Abstract
Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the parameterized complexity
of the following problems parameterized by k: (1) Given a graph G, a clique modulator D (a clique
modulator is a set of vertices, whose removal results in a clique) of size k for G, and a list L(v) of
colors for every v ∈ V (G), decide whether G has a proper list coloring; (2) Given a graph G, a clique
modulator D of size k for G, and a pre-coloring λP : X → Q for X ⊆ V (G), decide whether λP

can be extended to a proper coloring of G using only colors from Q. For Problem 1 we design an
O∗(2k)-time randomized algorithm and for Problem 2 we obtain a kernel with at most 3k vertices.
Banik et al. (IWOCA 2019) proved the following problem is fixed-parameter tractable and asked
whether it admits a polynomial kernel: Given a graph G, an integer k, and a list L(v) of exactly
n− k colors for every v ∈ V (G), decide whether there is a proper list coloring for G. We obtain a
kernel with O(k2) vertices and colors and a compression to a variation of the problem with O(k)
vertices and O(k2) colors.
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1 Introduction

Graph coloring is a central topic in Computer Science and Graph Theory due to its importance
in theory and applications. Every text book in Graph Theory has at least a chapter devoted
to the topic and the monograph of Jensen and Toft [21] is completely devoted to graph
coloring problems focusing especially on more than 200 unsolved ones. There are many
survey papers on the topic including recent ones such as [10, 18, 25, 27].

For a graph G, a proper coloring is a function λ : V (G) → N≥1 such that for no pair
u, v of adjacent vertices of G, λ(u) = λ(v). In the widely studied Coloring problem, given
a graph G and a positive integer p, we are to decide whether there is a proper coloring
λ : V (G)→ [p], where henceforth [p] = {1, . . . , p}. In this paper, we consider two extensions
of Coloring: the Pre-Coloring Extension problem and the List Coloring problem.
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19:2 Parameterized Pre-Coloring Extension and List Coloring

In the Pre-Coloring Extension problem, given a graph G, a set Q of colors, and a
pre-coloring λP : X → Q, where X ⊆ V (G), we are to decide whether there is a proper
coloring λ : V (G) → Q such that λ(x) = λP (x) for every x ∈ X. In the List Coloring
problem, given a graph G and a list L(u) of possible colors for every vertex u of G, we are to
decide whether G has a proper coloring λ such that λ(u) ∈ L(u) for every vertex u of G.
Such a coloring λ is called a proper list coloring. Clearly, Pre-Coloring Extension is a
special case of List Coloring, where all lists of vertices x ∈ X are singletons.

The p-Coloring problem is a special case of Coloring when p is fixed (i.e., not
part of input). When Q ⊆ [p] (L(u) ⊆ [p], respectively), Pre-Coloring Extension
(List Coloring, respectively) are called p-Pre-Coloring Extension (List p-Coloring,
respectively). In classical complexity, it is well-known that p-Coloring, p-Pre-Coloring
Extension and List p-Coloring are polynomial-time solvable for p ≤ 2, and the three
problems become NP-complete for every p ≥ 3 [23, 25]. In this paper, we solve several open
problems about pre-coloring extension and list coloring problems, which lie outside classical
complexity, so-called parameterized problems. We provide basic notions on parameterized
complexity in the next section. For more information on parameterized complexity, see recent
books [11, 15, 17].

The first two problems we study are the following ones stated by Golovach et al. [19]
(see also [24]) who asked to determine their parameterized complexity. These questions
were motivated by a result of Cai [8] who showed that Coloring Clique Modulator
(the special case of Pre-Coloring Extension Clique Modulator when X = ∅) is
fixed-parameter tractable (FPT). Note that a clique modulator of a graph G is a set D of
vertices such that G−D is a clique. When using the size of a clique modulator as a parameter
we will for convenience assume that the modulator is given as part of the input. Note that
this assumption is not necessary (however it avoids having to repeat how to compute a clique
modulator) as we will show in Section 2.1 that computing a clique modulator of size k is
FPT and can be approximated to within a factor of two.

Input: A graph G, a clique modulator D of size k for G, and a list L(v) of colors for
every v ∈ V (G).

Problem: Is there a proper list coloring for G?

List Coloring Clique Modulator parameterized by k

Input: A graph G, a clique modulator D of size k for G, and a pre-coloring λP : X → Q

for X ⊆ V (G) where Q is a set of colors.
Problem: Can λP be extended to a proper coloring of G using only colors from Q?

Pre-Coloring Extension Clique Modulator parameterized by k

In Section 3 we show that List Coloring Clique Modulator is FPT. We first show
a randomized O∗(2k log k)-time algorithm, then we improve the running time to O∗(2k) using
more refined approaches. Note that all our randomized algorithms are one-sided error
algorithms having a constant probability of being wrong, when the algorithm outputs no.

We note that the time O∗(2k) matches the best known running time of O∗(2n) for
Chromatic Number (where n = |V (G)|) [5], while applying to a more powerful parameter.
It is a long-open problem whether Chromatic Number can be solved in time O(2cn) for
some c < 1 and Cygan et al. [12] ask whether it is possible to show that such algorithms are
impossible assuming the Strong Exponential Time Hypothesis (SETH).
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We conclude Section 3 by showing that List Coloring Clique Modulator does not
admit a polynomial kernel unless NP ⊆ coNP/poly. The reduction used to prove this result
allows us to observe that if List Coloring Clique Modulator could be solved in time
O(2cknO(1)) for some c < 1, then the well-known Set Cover problem could be solved in
time O(2c|U ||F|O(1)), where U and F are universe and family of subsets, respectively. The
existence of such an algorithm is open, and it has been conjectured that no such algorithm is
possible under SETH; see Cygan et al. [12]. Thus, up to the assumption of this conjecture
(called Set Cover Conjecture [22]) and SETH, our O∗(2k)-time algorithm for List Coloring
Clique Modulator is best possible w.r.t. its dependency on k.

In Section 4, we consider Pre-Coloring Extension Clique Modulator, which is
a subproblem of List Coloring Clique Modulator and prove that Pre-Coloring
Extension Clique Modulator, unlike List Coloring Clique Modulator, admits
a polynomial kernel: a linear kernel with at most 3k vertices. This kernel builds on a
known, but counter-intuitive property of bipartite matchings (see Proposition 2), which was
previously used in kernelization by Bodlaender et al. [6].

In Section 5, we study an open problem stated by Banik et al. [3]. In a classic result, Chor
et al. [9] showed that Coloring has a linear vertex kernel parameterized by k = n− p, i.e.,
if the task is to “save k colors”. Arora et al. [2] consider the following as a natural extension
to list coloring, and show that it is in XP. Banik et al. [3] show that the problem is FPT, but
leave as an open question whether it admits a polynomial kernel.

Input: A graph G on n vertices, an integer k, and a list L(v) of exactly n− k colors for
every v ∈ V (G).

Problem: Is there a proper list coloring for G?

(n− k)-Regular List Coloring parameterized by k

We answer this question in affirmative by giving a kernel with O(k2) vertices and colors,
as well as a compression to a variation of the problem with O(k) vertices, encodable in
O(k2 log k) bits. We note that this compression is asymptotically almost tight, as even
4-Coloring does not admit a compression into O(n2−ε) bits for any ε > 0 unless the
polynomial hierarchy collapses [20].

This kernel is more intricate than the above. Via known reduction rules from Banik et
al. [3], we can compute a clique modulator of at most 2k vertices (hence our result for List
Coloring Clique Modulator also solves (n − k)-Regular List Coloring in 2O(k)

time). However, the usual “crown rules” (as in [9] and in Section 4) are not easily applied
here, due to complications with the color lists. Instead, we are able to show a set of O(k)
vertices whose colorability make up the “most interesting” part of the problem, leading to
the above-mentioned compression and kernel.

Finally, in Section 6, we consider further natural pre-coloring and list coloring variants of
the “saving k colors” problem of Chor et al. [9]. We show that the known fixed-parameter
tractability and linear kernelizability [9] carries over to a natural pre-coloring generalization
but fails for a more general list coloring variant. Since (n− k)-Regular List Coloring
was originally introduced in [2] as a list coloring variant of the “saving k colors” problem,
it is natural to consider other such variants. We conclude the paper in Section 7, where in
particular a number of open questions are discussed.

Omitted proofs are marked by (?) and can be found in the full version of this paper.
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19:4 Parameterized Pre-Coloring Extension and List Coloring

2 Preliminaries

2.1 Graphs, Matchings, and Clique Modulator
We consider finite simple undirected graphs. For basic terminology on graphs, we refer to a
standard textbook [13]. Let H = (V,E) be an undirected bipartite graph with bi-partition
(A,B). We say that a set C is a Hall set for A or B if C ⊆ A or C ⊆ B, respectively, and
|NH(C)| < |C|. We will need the following well-known properties for matchings.

I Proposition 1 (Hall’s Theorem [13]). Let G be an undirected bipartite graph with bi-partition
(A,B). Then G has a matching saturating A if and only if there is no Hall set for A, i.e.,
for every A′ ⊆ A, it holds that |N(A′)| ≥ |A′|.

I Proposition 2 ([6, Theorem 2]). Let G be a bipartite graph with bi-partition (X,Y ) and
let XM be the set of all vertices in X that are endpoints of a maximum matching M of G.
Then, for every Y ′ ⊆ Y , it holds that G contains a matching that covers Y ′ if and only if so
does G[XM ∪ Y ].

Clique Modulator. Let G be an undirected graph. We say that a set D ⊆ V (G) is a clique
modulator for G if G−D is a clique. Since we will use the size of a smallest clique modulator
as a parameter for our coloring problems, it is natural to ask whether the following problem
can be solved efficiently.

Input: A graph G and an integer k
Problem: Does G have a clique modulator of size at most k?

Clique Modulator parameterized by k

The following proposition shows that this is indeed the case. Namely, Clique Modu-
lator is both FPT and can be approximated within a factor of two. The former is important
for our FPT algorithms and the later for our kernelization algorithms as it allows us to not
depend on a clique modulator given as part of the input.

I Proposition 3. (?) Clique Modulator is fixed-parameter tractable (in time O∗(1.2738k))
and can be approximated within a factor of two.

2.2 Parameterized Complexity
An instance of a parameterized problem Π is a pair (I, k) where I is the main part and k
is the parameter ; the latter is usually a non-negative integer. A parameterized problem is
fixed-parameter tractable (FPT) if there exists a computable function f such that instances
(I, k) can be solved in time O(f(k)|I|c) where |I| denotes the size of I and c is an absolute
constant. The class of all fixed-parameter tractable decision problems is called FPT and
algorithms which run in the time specified above are called FPT algorithms. As in other
literature on FPT algorithms, we will often omit the polynomial factor in O(f(k)|I|c) and
write O∗(f(k)) instead. To establish that a problem under a specific parameterization is not
in FPT we prove that it is W[1]-hard as it is widely believed that FPT6=W[1].

A reduction rule R for a parameterized problem Π is an algorithm A that given an instance
(I, k) of a problem Π returns an instance (I ′, k′) of the same problem. The reduction rule is
said to be safe if it holds that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π. If A runs in polynomial
time in |I|+k then R is a polynomial-time reduction rule. Often we omit the adjectives “safe”
and “polynomial-time” in “safe polynomial-time reduction rule” as we consider only such
reduction rules.
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A kernelization (or, a kernel) of a parameterized problem Π is a reduction rule such
that |I ′|+ k′ ≤ f(k) for some computable function f . Note that a decidable parameterized
problem is FPT if and only if it admits a kernel [11, 15, 17]. The function f is called the size
of the kernel, and we have a polynomial kernel if f(k) is polynomially bounded in k.

A kernelization can be generalized by considering a reduction (rule) from a parameterized
problem Π to another parameterized problem Π′. Then instead of a kernel we obtain a
generalized kernel (also called a bikernel [1] in the literature). If the problem Π′ is not
parameterized, then a reduction from Π to Π′ (i.e., (I, k) to I ′) is called a compression,
which is polynomial if |I ′| ≤ p(k), where p is a fixed polynomial in k. If there is a polynomial
compression from Π to Π′ and Π′ is polynomial-time reducible back to Π, then combining
the compression with the reduction gives a polynomial kernel for Π.

3 List Coloring Clique Modulator

The following lemma is often used in the design of randomized algorithms.

I Lemma 4. (Schwartz-Zippel [26, 30]). Let P (x1, . . . , xn) be a multivariate polynomial
of total degree at most d over a field F, and assume that P is not identically zero. Pick
r1, . . . , rn uniformly at random from F. Then Pr[P (r1, . . . , rn) = 0] ≤ d/|F|.

Both parts of the next lemma will be used in this section. The part for fields of
characteristic two was proved by Wahlström [28]. The part for reals can be proved similarly.

I Lemma 5. Let P (x1, . . . , xn) be a polynomial over a field of characteristic two (over reals,
respectively), and J ⊆ [n] a set of indices. For a set I ⊆ [n], define P−I(x1, . . . , xn) =
P (y1, . . . , yn), where yi = 0 for i ∈ I and yi = xi, otherwise. Define

Q(x1, . . . , xn) =
∑
I⊆J

P−I(x1, . . . , xn)

(Q(x1, . . . , xn) =
∑
I⊆J

(−1)|I|P−I(x1, . . . , xn), respectively).

Then for any monomial T divisible by Πi∈Jxi we have coefQT = coefPT, and for every other
monomial T we have coefQT = 0.

Using the lemmas, we can prove the following:

I Theorem 6. List Coloring Clique Modulator can be solved by a randomized
algorithm in time O∗(2k log k).

Proof. Let L =
⋃
V ∈V (G) L(v) and C = G−D. We say that a proper list coloring λ for G

is compatible with (D,D′) if:
D = {D1, . . . , Dp} is the partition of all vertices in D that do not reuse colors used by λ
in C into color classes given by λ and
D = {D′1, . . . , D′t} is the partition of all vertices in D that do reuse colors used by λ in C
into color classes given by λ.

Note that {D1, . . . , Dp, D
′
1, . . . , D

′
t} is the partition of D into color classes given by λ.

For a given pair (D,D′), we will now construct a bipartite graph B (with weights on
its edges) such that B has a perfect matching satisfying certain additional properties if
and only if G has a proper list coloring that is compatible with (D,D′). B has bi-partition
(C ∪ {D1, . . . , Dp}, L) and an edge between a vertex c ∈ C and a vertex ` ∈ L if and only if
` ∈ L(u). Moreover, B has an edge between a vertex Di and a vertex ` ∈ L if and only if

STACS 2020



19:6 Parameterized Pre-Coloring Extension and List Coloring

` ∈
⋂
d∈Di

L(d). Finally, if c ∈ C and ` ∈ L, then assign the edge c` weight
∑
j∈J xj , where

xj ’s are variables and j ∈ J if and only if ` ∈ (
⋂
d∈D′

j
L(d)) ∩ L(c) and c is not adjacent to

any vertex in D′j . All other edges in B are given weight 1. In the following we will assume
that B is balanced; if this is not the case then we simply add the right amount of dummy
vertices to the smaller side and make them adjacent (with an edge of weight 1) to all vertices
in the opposite side. Note that B has a perfect matching M such that there is a bijection α
between [t] and t edges in M such that for every i ∈ [t], the weight of the edge α(i) contains
the term xi if and only if G has a proper list coloring that is compatible with (D,D′).

Let M be the weighted incidence matrix of B, i.e., M is an |V (B)/2| × |V (B)/2| matrix
such that its entries Li,j equal to the weight of the edge between the i-th vertex on one side
and the j-th vertex on the other side of B if it exists and Li,j = 0 otherwise.

Note that the permanent per(M) of M equals to the sum of the products of entries of M ,
where each product corresponds to a perfect matching Q of B and is equal to the product of
the entries of M corresponding to the edges of Q. Some of the entries of M contain sums of
variables xj , j ∈ [t] and thus per(M) is a polynomial in these variables.

Now it is not hard to see that per(M) contains the monomial
∏t
j=1 xj if and only if B

has a perfect matching M such that there is a bijection α between [t] and t edges in M

such that for every i ∈ [t], the weight of the edge α(i) contains the term xi, which in turn is
equivalent to G having a proper list coloring that is compatible with (D,D′).

Hence, deciding whether G has a proper list coloring that is compatible with (D,D′) boils
down to deciding whether the permanent of M contains the monomial

∏t
j=1 xj . For any

evaluation of variables xj , we can compute per(M) over the field of characteristic two by
replacing permanent with determinant, which can be computed in polynomial-time [7].

Now let P (x1, . . . , xt) = det(M) and Q(x1, . . . , xt) =
∑
I⊆[t] P−I(x1, . . . , xt). Note that

Q(x1, . . . , xt) 6= 0 if and only if det(M) contains the monomial
∏t
j=1 xj . Moreover, using

Lemmas 4 and 5 (with P and Q just defined), we can verify in time O∗(2t) whether
Q(x1, . . . , xt) = 0 (i.e. whether det(M) contains the monomial

∏t
j=1 xj) with probability at

least 1− t
|F| ≥ 1− 1

t for a field F of characteristic 2 such that |F| ≥ t2.
Our algorithm sets t = k and for every pair (D,D′), where D∪D′ is a partition of D into

independent sets, constructs graph B and matrix M . It then verifies in time O∗(2t) whether
Q(x1, . . . , xt) = 0 and if Q(x1, . . . , xt) 6= 0 it returns “Yes” and terminates. If the algorithm
runs to the end, it returns “No”.

Note that the time complexity of the algorithm is dominated by the number of choices
for (D,D′), which is in turn dominated by O∗(Bk), where Bk is the k-th Bell number. By
Berend and Tassa [4], Bk < ( 0.792k

ln(k+1) )k, and thus O∗(Bk) = O∗(2k log k). J

3.1 A faster FPT algorithm
We now show a faster FPT algorithm, running in time O∗(2k). It is a variation on the same
algebraic sieving technique as above, but instead of guessing a partition of the modulator it
works over a more complex matrix. We begin by defining the matrix, then we show how to
perform the sieving step in O∗(2k) time.

3.1.1 Matrix definition
As before, let L =

⋃
v∈V (G) L(v) be the set of all colors, and let C = G − D. Define an

auxiliary bipartite graph H = (UH ∪ VH , EH) where initially UH = V (G) and VH = L, and
where v` ∈ EH for v ∈ V (G), ` ∈ L if and only if ` ∈ L(v). Additionally, introduce a set
L′ = {`′d | d ∈ D} of k artificial colors, add L′ to VH , and for each d ∈ D connect `′d to d but
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to no other vertex. Finally, pad UH with |VH | − |UH | artificial vertices connected to all of
VH ; note that this is a non-negative number, since otherwise |L| < |V (C)| and we may reject
the instance.

Next, we associate with every edge v` ∈ EH a set S(v`) ⊆ 2D as follows.
If v ∈ V (C), then S(v`) contains all sets S ⊆ D such that the following hold: 1. S is an
independent set in G, 2. N(v) ∩ S = ∅, 3. ` ∈

⋂
s∈S L(s).

If v ∈ D and ` ∈ L, then S(v`) contains all sets S ⊆ D such that the following hold: 1.
v ∈ S, 2. S is an independent set in G, 3. ` ∈

⋂
s∈S L(s).

If v or ` is an artificial vertex – in particular, if ` = `′d for some d ∈ D – then S(v`) = {∅}.
Finally, define a matrix A of dimensions |UH | × |VH |, with rows labeled by UH and columns
labeled by VH , whose entries are polynomials as follows. Define a set of variables X =
{xd | d ∈ D} corresponding to vertices of D, and additionally a set Y = {ye | e ∈ EH}.
Then for every edge v` in H, v ∈ UH , ` ∈ VH we define P (v`) =

∑
S∈S(v`)

∏
s∈S xs, where

as usual an empty product equals 1. Then for each edge v` ∈ EH we let A[v, `] = yv`P (v`),
and the remaining entries of A are 0. We argue the following. (Expert readers may note
although the argument can be sharpened to show the existence of a multilinear term, we do
not wish to argue that there exists such a term with odd coefficient. Therefore we use the
simpler sieving of Lemma 5 instead of full multilinear detection, cf. [11].)

I Lemma 7. Let A be defined as above. Then detA (as a polynomial) contains a monomial
divisible by

∏
x∈X x if and only if G is properly list colorable.

Proof. We first note that no cancellation happens in detA. Note that monomials of detA
correspond (many-to-one) to perfect matchings of H, and thanks to the formal variables Y ,
two monomials corresponding to distinct perfect matchings never interact. On the other
hand, if we fix a perfect matching M in H, then the contributions of M to detA equal
σM

∏
e∈M yeP (e), where σM ∈ {1,−1} is a sign term depending only on M . Since the

polynomials P (e) contain only positive coefficients, no cancellation occur, and every selection
of a perfect matching M of H and a factor from every polynomial P (e), e ∈ M results
(many-to-one) to a monomial with non-zero coefficient in detA.

We now proceed with the proof. On the one hand, let c be a proper list coloring of G.
Define an ordering ≺ on V (G) such that V (C) precedes D, and define a matching M as
follows. For every vertex v ∈ V (C), add vc(v) to M . For every vertex v ∈ D, add vc(v)
to M if v is the first vertex according to ≺ that uses color c(v), otherwise add v`′v to M .
Note that M is a matching in H of |V (G)| edges. Pad M to a perfect matching in H by
adding arbitrary edges connected to the artificial vertices in UH ; note that this is always
possible. Finally, for every edge v` ∈M with ` ∈ L we let Dv` = D ∩ c−1(`). Observe that
for every edge v` in M , Dv` ∈ S(v`); indeed, this holds by construction of S(v`) and since c
is a proper list coloring. Further let pv` =

∏
v∈Dv`

xv; thus pv` is a term of P (v`). It follows,
by the discussion in the first paragraph of the proof, that

ασM
∏
v`∈M

yv`pv`

is a monomial of detA for some constant α > 0, where σM ∈ {1,−1} is the sign term for M .
It remains to verify that every variable xd ∈ X occurs in some term pv`. Let ` = c(d) and let
v be the earliest vertex according to ≺ such that c(v) = `. Then v` ∈M and xd occurs in
pv`. This finishes the first direction of the proof.

On the other hand, assume that detA contains a monomial T divisible by
∏
x∈X x, and

let M be the corresponding perfect matching of H. Let T = α
∏
e∈M yepe for some constant
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factor α, where pe is a term of P (e) for every e ∈ M . Clearly such a selection is possible;
if it is ambiguous, make the selection arbitrarily. Now define a mapping c : V (G) → L as
follows. For v ∈ V (C), let v` ∈M be the unique edge connected to v, and set c(v) = `. For
v ∈ D, let v′ be the earliest vertex according to ≺ such that xv occurs in pv′`, where v′` ∈M .
Set c(v) = `. We verify that c is a proper list coloring of G. First of all, note that c(v) is
defined for every v ∈ V (G) and that c(v) ∈ L(v). Indeed, if v ∈ V (C) then c(v) ∈ L(v) since
vc(v) ∈ EH ; and if v ∈ D then c(v) ∈ L(v) is verified in the creation of the term pvc(v) in
P (vc(v)). Next, consider two vertices u, v ∈ V (G) with c(u) = c(v). If u, v ∈ D, then u and
v are represented in the same term pv′c(v) for some v′, hence u and v form an independent
set; otherwise assume u ∈ V (C). Note that u, v ∈ V (C) is impossible since otherwise the
matching M would contain two edges uc(u) and vc(u) which intersect. Thus v ∈ D, and v
is represented in the term puc(u). Therefore uv /∈ E(G), by construction of P (uc(u)). We
conclude that c is a proper coloring respecting the lists L(v), i.e., a proper list coloring. J

3.1.2 Fast evaluation
By the above description, we can test for the existence of a list coloring of G using 2k
evaluations of detA, as in Theorem 6; and each evaluation can be performed in O∗(2k) time,
including the time to evaluate the polynomials P (v`), making for a running time of O∗(4k)
in total (or O∗(3k) with more careful analysis). We show how to perform the entire sieving
in time O∗(2k) using fast subset convolution.

For I ⊆ D, let us define A−I as A with all occurrences of variables xi, i ∈ I replaced
by 0, and for every edge v` of H, let P (v`)−I denote the polynomial P (v`) with xi, i ∈ I
replaced by 0. Then a generic entry (v, `) of A−I equals A−I [v, `] = yv`P−I(v`), and in order
to construct A−I it suffices to pre-compute the value of P−I(v`) for every edge v` ∈ EH ,
I ⊆ D. For this, we need the fast zeta transform of Yates [29], which was introduced to exact
algorithms by Björklund et al. [5].

I Lemma 8 ([29, 5]). Given a function f : 2N → R for some ground set N and ring R, we
may compute all values of f̂ : 2N → R defined as f̂(S) =

∑
A⊆S f(A) using O∗(2|N |) ring

operations.

We show the following lemma, which is likely to have analogs in the literature, but we
provide a short proof for the sake of completeness.

I Lemma 9. Given an evaluation of the variables X, the value of P−I(v`) can be computed
for all I ⊆ D and all v` ∈ EH in time and space O∗(2k).

Proof. Consider an arbitrary polynomial P−I(v`). Recalling P (v`) =
∑
S∈S(v`)

∏
s∈S xs, we

have

P−I(v`) =
∑

S∈S(v`)

[S ∩ I = ∅]
∏
s∈S

xs =
∑

S⊆(D−I)

[S ∈ S(v`)]
∏
s∈S

xs,

using Iverson bracket notation.1 Using f(S) = [S ∈ S(v`)]
∏
s∈S xs, this clearly fits the form

of Lemma 8, with f̂(D − I) = P−I(v`). Hence we apply Lemma 8 for every edge v` ∈ EH ,
for O∗(2k) time per edge, making O∗(2k) time in total to compute all values. J

Having access to these values, it is now easy to complete the algorithm.

1 Recall that for a logical proposition P , [P ] = 1 if P is true and 0, otherwise.
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I Theorem 10. List Coloring Clique Modulator can be solved by a randomized
algorithm in time O∗(2k).

Proof. Let A be the matrix defined above (but do not explicitly construct it yet). By
Lemma 7, we need to check whether detA contains a monomial divisible by

∏
x∈X x, and by

Lemma 5 this is equivalent to testing whether
∑
I⊆D(−1)|I| detA−I 6≡ 0. By the Schwartz-

Zippel lemma, it suffices to randomly evaluate the variables X and Y occurring in A and
evaluate this sum once; if G has a proper list coloring and if the values of X and Y are
chosen among sufficiently many values, then with high probability the result is non-zero, and
if not, then the result is guaranteed to be zero. Thus the algorithm is as follows.
1. Instantiate variables of X and Y uniformly at random from [N ] for some sufficiently large

N . Note that for an error probability of ε > 0, it suffices to use N = Ω(n2(1/ε)).
2. Use Lemma 9 to fill in a table with the value of P−I(v`) for all I and v` in time O∗(2k).
3. Compute

∑
I⊆D(−1)|I| detA−I , constructing A−I from the values P−I(v`) in polynomial

time in each step.
4. Answer YES if the result is non-zero, NO otherwise.
Clearly this runs in total time and space O∗(2k) and the correctness follows from the
arguments above. J

3.2 Refuting Polynomial Kernel

In this section, we prove that List Coloring Clique Modulator does not admit a
polynomial kernel. We prove this result by a polynomial parameter transformation from
Hitting Set where the parameter is the number of sets, which is known not to have a
polynomial kernel [14].

I Theorem 11. (?) List Coloring Clique Modulator parameterized by k does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

We note here that the reduction also shows that if List Coloring Clique Modulator
could be solved in time O(2εknO(1)) for some ε < 1, then Hitting Set could be solved in
time O(2ε|F||U |O(1)), which in turn would imply that any instance I with universe U and set
family F of the well-known Set Cover problem could be solved in time O(2ε|U ||F|O(1)). The
existence of such an algorithm is open, and it has been conjectured that no such algorithm
is possible under SETH (the strong exponential-time hypothesis); see Cygan et al. [12].
Thus, up to the assumption of this conjecture and SETH, the algorithm for List Coloring
Clique Modulator given in Theorem 10 is best possible w.r.t. its dependency on k.

4 Polynomial kernel for Pre-Coloring Extension Clique Modulator

In the following let (G,D, k, λP , X,Q) be an instance of Pre-Coloring Extension Clique
Modulator, let C = G − D, let DP be the set of all pre-colored vertices in D, and let
D′ = D \DP .

I Reduction Rule 1. Remove any vertex v ∈ D′ that has less than |Q| neighbors in G.

The proof of the following lemma is obvious and thus omitted.

I Lemma 12. Reduction Rule 1 is safe and can be implemented in polynomial time.
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Note that if Reduction Rule 1 can no longer be applied, then every vertex in D′ has at least
|Q| neighbors, which because of |Q| ≥ |C| implies that every such vertex has at most |D| ≤ k
non-neighbors in G and hence also in C. Let CN be the set of all vertices in C that are not
adjacent to all vertices in D′ and let C ′ = C − CN . Note that |CN | ≤ |D||D| ≤ k2.

We show next how to reduce the size of CN to k. Note that this step is optional if our
aim is solely to obtain a polynomial kernel, however, it allows us to reduce the number
of vertices in the resulting kernel from O(k2) to O(k). Let J be the bipartite graph with
partition (CN , D) having an edge between c ∈ CN and d ∈ D if {c, d} /∈ E(G).

I Reduction Rule 2. If A ⊆ CN is an inclusion-wise minimal set satisfying |A| > |NJ(A)|,
then remove the vertices in D′ ∩NJ(A) from G.

Note that after the application of Reduction Rule 2, the vertices in A are implicitly removed
from CN and added to C ′ since all their non-neighbors in D′ (i.e. the vertices in D′ ∩NJ (A))
are removed from the graph.

I Lemma 13. Reduction Rule 2 is safe and can be implemented in polynomial time.

Proof. It is clear that the rule can be implemented in polynomial-time. Towards showing the
safeness of the rule, it suffices to show that G has a coloring extending λP using only colors
from Q if and only if so does G\(D′∩NJ (A)). Since G\(D′∩NJ (A)) is a subgraph of G, the
forward direction of this statement is trivial. So assume that G \ (D′ ∩NJ (A)) has a coloring
λ extending λP using only colors from Q. Because the set A is inclusion-minimal, we obtain
from Proposition 1, that there is a (maximum) matching, say M , between NJ(A) and A in
J that saturates NJ (A). Moreover, it follows from the definition of J that every vertex in A
is adjacent to every vertex in D \NJ (A) in the graph G. Hence, we obtain that every color
in λ(A) appears exactly once. Hence, we can extend λ into a coloring λ′ for G by coloring
the vertices in D′ ∩ NJ(A) according to the matching M . More formally, let λD′∩NJ (A)
be the coloring for the vertices in D′ ∩ NJ(A) by setting λD′∩NJ (A)(v) = λ(u) for every
v ∈ D′ ∩NJ(A), where {v, u} ∈ M . Then, we obtain λ′ by setting: λ′(v) = λ(v) for every
v ∈ V (G) \ (D′ ∩NJ(A)) and λ′(v) = λD′∩NJ (A)(v) for every vertex v ∈ D′ ∩NJ(A). J

Note that because of Proposition 1, we obtain that there is a set A ⊆ CN with |A| > |NJ (A)|
as long as |CN | > |D|. Moreover, since NJ(A) ∩D′ 6= ∅ for every such set A (due to the
definition of CN ), we obtain that Reduction Rule 2 is applicable as long as |CN | > |D|.
Hence after an exhaustive application of Reduction Rule 2, we obtain that |CN | ≤ |D′| ≤ k.

We now introduce our final two reduction rules, which allow us to reduce the size of C ′.

I Reduction Rule 3. Let v ∈ V (C ′) be a pre-colored vertex with color λP (v). Then remove
λ−1
P (λP (v)) from G and λP (v) from Q.

I Lemma 14. Reduction Rule 3 is safe and can be implemented in polynomial time.

Proof. Because v ∈ V (C ′), it holds that only vertices in DP can have color λP (v), but
these are already pre-colored. Hence in any coloring for G that extends λP , the vertices in
λ−1
P (λP (v)) are the only vertices that obtain color λP (v), which implies the safeness of the

rule. J

Because of Reduction Rule 3, we can from now on assume that no vertex in C ′ is pre-colored.
Note that the only part of G, whose size is not yet bounded by a polynomial in the parameter
k is C ′. To reduce the size of C ′, we need will make use of Proposition 2. Let P = λP (DP )
and H be the bipartite graph with bi-partition (C ′, P ) containing an edge between c′ ∈ C ′
and p ∈ P if and only if c′ is not adjacent to a vertex pre-colored by p in G.
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I Reduction Rule 4. Let M be a maximum matching in H and let CM be the endpoints of
M in C ′. Then remove all vertices in CM := C ′ \ CM from G and remove an arbitrary set
of |CM | colors from Q \ λP (X). (Recall that λP : X → Q.)

In the following let CM and CM be as defined in the above reduction rule for an arbitrary
maximum matching M of H. To show that the reduction rule is safe, we need the following
auxiliary lemma, which shows that if a coloring for G reuses colors from P in C ′, then those
colors can be reused solely on the vertices in CM .

I Lemma 15. If there is a coloring λ for G extending λP using only colors in Q, then there
is a coloring λ′ for G extending λP using only colors in Q such that λ′(CM ) ∩ P = ∅.

Proof. Let CP be the set of all vertices v in C ′ with λ(v) ∈ P . If CP ∩ CM = ∅, then
setting λ′ equal to λ satisfies the claim of the lemma. Hence assume that CP ∩ CM 6= ∅.
Let N be the matching in H containing the edges {v, λ(v)} for every v ∈ CP ; note that N
is indeed a matching in H, because CP is a clique in G. Because of Proposition 2, there
is a matching N ′ in H[CM ∪ P ] such that N ′ has exactly the same endpoints in P as N .
Let CM [N ′] be the endpoints of N ′ in CM and let λA be the coloring of the vertices in
CM [N ′] corresponding to the matching N ′, i.e., a vertex v in CM [N ′] obtains the unique
color p ∈ P such that {v, p} ∈ N ′. Finally, let α be an arbitrary bijection between the
vertices in (V (N) ∩ C ′) \ CM [N ′] and the vertices in CM [N ′] \ (V (N) ∩ C ′), which exists
because |N | = |N ′|. We now obtain λ′ from λ by setting λ′(v) = λA(v) for every v ∈ CM [N ′],
λ′(v) = λ(α(v)) for every vertex v ∈ (V (N)∩C ′) \CM [N ′], and λ′(v) = λ(v) for every other
vertex. To see that λ′ is a proper coloring note that λ′(C ′) = λ(C ′). Moreover, all the colors
in λ(C ′) \P are “universal colors” in the sense that exactly one vertex of G obtains the color
and hence those colors can be freely moved around in C ′. Finally, the matching N ′ in H
ensures that the vertices in CM [N ′] can be colored using the colors from P . J

I Lemma 16. Reduction Rule 4 is safe and can be implemented in polynomial time.

Proof. Note first that the reduction can always be applied since if Q \ λP (X) contains
less than |CM | colors, then the instance is a no-instance. It is clear that the rule can
be implemented in polynomial time using any polytime algorithm for finding a maximum
matching. Moreover, if the reduced graph has a coloring extending λP using only the colors
in Q, then so does the original graph, since the vertices in CM can be colored with the colors
removed from the original instance.

Hence, it remains to show that if G has a coloring, say λ, extending λP using only colors
in Q, then G \CM has a coloring extending λP that uses only colors in Q′ := Q \QM , where
QM is the set of |CM | colors from Q \ λP (X) that have been removed from Q.

Because of Lemma 15, we may assume that λ(CM ) ∩ P = ∅. Let B be the set of all
vertices v in G − CM with λ(v) ∈ QM . If B = ∅, then λ is a coloring extending λP using
only colors from Q′. Hence assume that B 6= ∅. Let A be the set of all vertices v in CM with
λ(v) ∈ Q′. Then λ(A) ∩ λP (X) = ∅, which implies that every color in λ(A) appears only in
CM (and exactly once in CM ). Moreover, |λ(A)| ≥ |λ(B)|. Let α be an arbitrary bijection
between λ(B) and an arbitrary subset of λ(A) (of size |B|) and let λ′ be the coloring obtained
from λ by setting λ′(v) = α(λ(v)) for every v ∈ B, λ′(v) = α−1(λ(v)) for every v ∈ A, and
λ′(v) = λ(v), otherwise. Then λ′ restricted to G− CM is a coloring for G− CM extending
λP using only colors from Q′. Note that λ′ is a proper coloring because the colors in λ(A)
are not in P and hence do not appear anywhere else in G and moreover the colors in λ(B)
do not appear in λ(CM ). J
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Note that after the application of Reduction Rule 4, it holds that |C ′| = |CM | ≤ |P | ≤
|DP | ≤ |D| ≤ k. Together with the facts that |D| ≤ k, |CN | ≤ k, we obtain that the reduced
graph has at most 3k vertices.

I Theorem 17. Pre-Coloring Extension Clique Modulator admits a polynomial
kernel with at most 3k vertices.

5 Polynomial kernel and Compression for (n − k)-Regular List
Coloring

We now show our polynomial kernel and compression for (n− k)-Regular List Coloring,
which is more intricate than the one for Pre-Coloring Extension Clique Modulator.
Let (G, k, L) be an input of (n− k)-Regular List Coloring. We begin by noting that
we can assume that G has a clique-modulator of size at most 2k.

I Lemma 18 ([3]). In polynomial-time either we can either solve (G, k, L) or compute a
clique-modulator for G of size at most 2k.

Henceforth, we let V (G) = C ∪D where G[C] is a clique and D is a clique modulator,
|D| ≤ 2k. Let T =

⋃
v∈V (G) L(v). We note one further known reduction rules for (n− k)-

Regular List Coloring. Consider the bipartite graph HG with bi-partition (V (G), T )
having an edge between v ∈ V (G) and t ∈ T if and only if t ∈ L(v).

I Reduction Rule 5 ([3]). Let T ′ be an inclusion-wise minimal subset of T such that
|NHG

(T ′)| < |T ′|, then remove all vertices in NHG
(T ′) from G.

Note that after an exhaustive application of Reduction Rule 5, it holds that |T | ≤ |V (G)|
since otherwise Proposition 1 would ensure the applicability of the reduction rule. Hence in
the following we will assume that |T | ≤ |V (G)|.

With this preamble handled, let us proceed with the kernelization. We are not able
to produce a direct “crown reduction rule” for List Coloring, as for Pre-Coloring
Extension (e.g., we do not know of a useful generalization of Reduction Rule 2). Instead,
we need to study more closely which list colorings of G[D] extend to list colorings of G. For
this purpose, let H = HG−D be the bipartite graph with bi-partition (C, T ) having an edge
{c, t} with c ∈ C and t ∈ T if and only if t ∈ L(c). Say that a partial list coloring λ0 : A→ T

is extensible if it can be extended to a proper list coloring λ of G. If D ⊆ A, then a sufficient
condition for this is that H − (A ∪ λ0(A)) admits a matching saturating C \A. (This is not
a necessary condition, since some colors used in λ0(D) could be reused in λ(C \A), but this
investigation will point in the right direction.) By Proposition 1, this is characterized by
Hall sets in H − (A ∪ λ0(A)).

A Hall set S ⊆ U in a bipartite graph G′ with bi-partition (U,W ) is trivial if N(S) = W .
We start by noting that if a color occurs in sufficiently many vertex lists in H, then it behaves
uniformly with respect to extensible partial colorings λ0 as above.

I Lemma 19. Let λ0 : A→ T be a partial list coloring where |A ∩C| ≤ p and let t ∈ T be a
color that occurs in at least k + p lists in C. Then t is not contained in any non-trivial Hall
set of colors in H − (A ∪ λ0(A)).

Proof. Let H ′ = H − (A ∪ λ0(A)). Consider any Hall set of colors S ⊂ (T \ λ0(A))
and any vertex v ∈ C \ (A ∪ NH′(S)) (which exists assuming S is non-trivial). Then
S ⊆ T \ L(v), hence |S| ≤ k, and by assumption |NH′(S)| < |S|. But for every t′ ∈ S, we
have NH(t′) ⊆ NH′(S) ∪ (A ∩ C), hence t′ occurs in at most |NH′(S) ∪ (A ∩ C)| < k + p

vertex lists in C. Thus t /∈ S. J
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In the following, we will assume that n ≥ 11k.2 This is safe, since otherwise (by Reduction
Rule 5) we already have a kernel with a linear number of vertices and colors. We say that a
color t ∈ T is rare if it occurs in at most 6k lists of vertices in C.

I Lemma 20. If n ≥ 11k, then there are at most 3k rare colors.

Proof. Let S = {t ∈ T | dH(t) < 6k}. For every t ∈ S, there are |C| − 6k “non-occurrences”
(i.e., vertices v ∈ C with t /∈ L(v)), and there are |C|k non-occurrences in total. Thus

|S| · (|C| − 6k) ≤ |C|k ⇒ |S| ≤ |C|
|C| − 6kk = (1 + 6k

|C| − 6k )k,

where the bound is monotonically decreasing in |C| and maximized (under the assumption
that n ≥ 11k and hence |C| ≥ 9k) for |C| = 9k yielding |S| ≤ 3k. J

Let TR ⊆ T be the set of rare colors. Define a new auxiliary bipartite graph H∗ with
bi-partition (C,D ∪ TR) having an edge between a vertex c ∈ C and a vertex d ∈ D if
{c, d} /∈ E(G) and an edge between a vertex c ∈ C and a vertex t ∈ TR if t ∈ L(c). Let X be
a minimum vertex cover of H∗. Refer to the colors TR \X as constrained rare colors. Note
that constrained rare colors only occur on lists of vertices in D∪(C∩X). Let T ′ = T \(TR\X),
V ′ = (D \X) ∪ (C ∩X), and set q = |T ′| − |C \X|. Before we continue, we want to provide
some useful observations about the sizes of the considered sets and numbers.

I Observation 1. It holds that:
|X| ≤ |D|+ |TR| ≤ 5k,
|V ′| ≤ |D|+ |X| ≤ 7k,
q ≤ |T | − |C|+ |C ∩X| ≤ |D|+ |X| ≤ 7k; this holds because |T | ≤ |V | = |C|+ |D|.

I Lemma 21. Assume n ≥ 11k. Then G has a list coloring if and only if there is a partial
list coloring λ0 : V ′ → T that uses at most q = |T ′| − |C \X| colors from T ′.

Proof. The number of colors usable in C \X is |T ′|−p where p is the number counted above
(since constrained rare colors cannot be used in C \X even if they are unused in λ0). Thus
it is a requirement that |T ′| − p ≥ |C \X|. That is, p ≤ |T ′| − |C \X| = q. Thus necessity
is clear. We show sufficiency as well. That is, let λ0 be a partial list coloring with scope
V ′ = (C ∩X) ∪ (D \X) which uses at most q colors of T ′. We modify and extend λ0 to a
list coloring of G.

First let H0 be the bipartite graph with bi-partition (V, TR \X) and let M0 be a matching
saturating TR \X; note that this exists by reduction rule 5. We modify λ0 to a coloring λ′0
so that every constrained rare color is used by λ′0, by iterating over every color t ∈ TR \X;
for every t, if t is not yet used by λ′0, then let vt ∈M0 and update λ′0 with λ′0(v) = t. Note
that the scope of λ′0 after this modification is contained in (C ∩X) ∪D. Next, let M be a
maximum matching in H∗. We use M to further extend λ′0 in stages to a partial list coloring
λ which colors all of D and uses all rare colors. In phase 1, for every color t ∈ TR ∩ X
which is not already used, let vt ∈M be the edge covering t and assign λ(v) = t. Note that
M matches every vertex of X in H∗ with a vertex not in X, thus the edge vt exists and
v has not yet been assigned in λ. Hence, at every step we maintain a partial list coloring,
and at the end of the phase all rare colors have been assigned. Finally, as phase 2, for

2 The constants 11k and 6k in this paragraph are chosen to make the arguments work smoothly. A
smaller kernel is possible with a more careful analysis and further reduction rules.
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every vertex v ∈ D ∩X not yet assigned, let uv ∈ M where u ∈ C; necessarily u ∈ C \X
and u is as of yet unassigned in λ. The number of colors assigned in λ thus far is at most
|X|+ |D| ≤ |TR|+ 2|D| ≤ 7k, whereas |L(u)∩L(v)| ≥ n− 2k ≥ 9k, hence there always exists
an unused shared color that can be mapped to λ(u) = λ(v). Let λ be the resulting partial
list coloring. We claim that λ can be extended to a list coloring of G.

Let A be the scope of λ and let H ′ = H − (A ∩ λ(A)). Note that A ∩ C ⊆ V (M), hence
|A ∩ C| ≤ |D|+ |TR| ≤ 5k. Thus by Lemma 19, no non-trivial Hall set in H ′ can contain a
rare color. However, all rare colors are already used in λ. Thus H ′ contains no non-trivial
Hall set of colors. Thus the only possibility that λ is not extensible is that H ′ has a trivial
Hall set, i.e., |T \ λ(A)| < |C \ A|. However, every modification after λ′0 added one vertex
to A and one color to λ(A), keeping the balance between the two sides. Thus already the
partial coloring λ′0 leaves behind a trivial Hall set. However, λ′0 colors precisely C ∩X in C
and leaves at least |T ′| − q colors remaining. By design this is at least |C \X|, yielding a
contradiction. Thus we find that H ′ contains no Hall set, and λ is a list coloring of G. J

Before we give our compression , we need the following auxiliary lemma.

I Lemma 22. T ′ contains at least |T ′| − |V ′|k colors that are universal to all vertices in V ′.

Proof. The list of every vertex v ∈ V ′ misses at most k colors from T ′. Hence all but at
most |V ′|k colors in T ′ are universal to all vertices in V ′. J

For clarity, let us define the output problem of our compression explicitly.

Input: A graph G, a set T of colors, a list L(v) ⊆ T for every v ∈ V (G), and a pair
(T ′, q) where T ′ ⊆ T and q ∈ N.

Problem: Is there a proper list coloring for G that uses at most q distinct colors from T ′?

Budget-Constrained List Coloring

I Theorem 23. (n− k)-Regular List Coloring admits a compression into an instance
of Budget-Constrained List Coloring with at most 11k vertices and O(k2) colors,
encodable in O(k2 log k) bits.

Proof. Lemma 21 shows that the existence of a list coloring in G is equivalent to the
existence of a list coloring in G[V ′] that uses at most q colors from T ′. Since |V ′| ≤ 7k,
it only remains to reduce the number of colors in TR ∪ T ′. Clearly, if |T ′| < |V ′|k + q,
then |TR ∪ T ′| ≤ 3k + (7k)k ∈ O(k2) and there is nothing left to show. So suppose that
|T ′| ≥ |V ′|k + q. Then, it follows from Lemma 22 that T ′ contains at least q colors that
are universal to the vertices in V ′ and we obtain an equivalent instance by removing all
but exactly q universal colors from T ′, which leaves us with an instance with at most
|TR|+ q ≤ 3k + 7k2 ∈ O(k2) colors, as required. Finally, to describe the output concisely,
note that G[V ′] can be trivially described in O(k2) bits, and the lists L(v) can be described
by enumerating T \L(v) for every vertex v, which is k colors per vertex, each color identifiable
by O(log k) bits. J

Note that the compression is asymptotically essentially optimal, since even the basic
4-Coloring problem does not allow a compression in O(n2−ε) bits for any ε > 0 unless the
polynomial hierarchy collapses [20]. For completeness, we also give a proper kernel, which
can be obtained in a similar manner to the compression given in Theorem 23.
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I Theorem 24. (n− k)-Regular List Coloring admits a kernel with O(k2) vertices and
colors.

Proof. We distinguish two cases depending on whether or not |T ′| < |V ′|k + q. If |T ′| <
|V ′|k + q, then |T | ≤ |TR| + |T ′| < 3k + |V ′|k + q ≤ 3k + (7k)(k + 1) ∈ O(k2). Since
a list coloring requires at least one distinct color for every vertex in C, it holds that
|C| ≤ |T | ≤ 3k + (7k)(k + 1) and hence |V (G)| ≤ (3 + 7k)k + 2k ∈ O(k2), implying the
desired kernel.

If on the other hand, |T ′| ≥ |V ′|k+q, then, because of Lemma 22 it holds that T ′ contains
a set U of exactly q colors that are universal to the vertices in V ′. Recall that Lemma 21
shows that the existence of a list coloring in G is equivalent to the existence of a list coloring
in G[V ′] that uses at most q = |T ′| − |C \X| colors from T ′. It follows that the graph G[V ′]
has a list coloring using only colors in (TR \X)∪U if and only if G has a list coloring. Hence,
it only remains to restore the regularity of the instance. We achieve this as follows. First we
add a set TN of |(TR \X)∪U | novel colors. We then add these colors (arbitrarily) to the color
lists of the vertices in V ′ such that the size of every list (for any vertex in V ′) is |(TR \X)∪U |.
This clearly already makes the instance regular, however, now we also need to ensure that no
vertex in V ′ can be colored with any of the new colors in TN . To achieve this we add a set CN
of |TN | novel vertices to G[V ′], which we connect to every vertex in (C ∩X)∪CN and whose
lists all contain all the new colors in TN . It is clear that the constructed instance is equivalent
to the original instance since all the new colors in TN are required to color the new vertices in
CN and hence no new color can be used to color a vertex in V ′. Moreover, D is still a clique
modulator and the number k′ of missing colors (in each list of the constructed instance)
is equal to |D| + |C ∩ X| ≤ 2k + 5k because the instance is (n − |D| − |C ∩ X|)-regular.
Finally, the instance has at most |V ′ ∪ CN | ≤ 7k + 3k + 7k = 17k ∈ O(k) vertices and at
most 2(|TR|+ |U |) ≤ 2(3k + 7k) = 20k ∈ O(k) colors, as required. J

6 Saving k colors: Pre-coloring and List Coloring Variants

In this section, we consider natural pre-coloring and list coloring variants of the “saving k
colors” problem, which given a graph on n vertices and an integer k asks whether G has a
proper coloring with at most n− k colors. This problem is known to be FPT (it even allows
for a linear kernel) [9], when parameterized by k. Notably the problem provided the main
motivation for the introduction of (n− k)-Regular List Coloring in [3, 2].

We consider the following (pre-coloring and list coloring) extensions of (n−k)-Coloring.

Input: A graph G with n vertices and a pre-coloring λP : X → Q for X ⊆ V (G) where
Q is a set of colors.

Problem: Can λP be extended to a proper coloring of G using only colors from Q?

(n− |Q|)-Pre-Coloring Extension parameterized by n− |Q|

Input: A graph G on n vertices with a list L(v) of colors for every v ∈ V (G) and an
integer k.

Problem: Is there a proper list coloring of G using at most n− k colors?

List Coloring with n− k colors parameterized by k
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Interestingly, we show that (n− |Q|)-Pre-Coloring Extension is FPT and even allows
a linear kernel. Thus, we generalize the above-mentioned result of Chor et al. [9] (set
Q = [n− k] and X = ∅). However, List Coloring with n− k colors is easily seen to be
NP-hard (even for k = 0) using a trivial reduction from 3-Coloring.

I Theorem 25. (?) (n− |Q|)-Pre-Coloring Extension (parameterized by n− |Q|) has a
kernel with at most 6(n− |Q|) vertices and is hence fixed-parameter tractable.

7 Conclusions

We have shown several results regarding the parameterized complexity of List Coloring
and Pre-Coloring Extension problems. We showed that List Coloring, and hence
also Pre-Coloring Extension, parameterized by the size of a clique modulator admits a
randomized FPT algorithm with a running time of O∗(2k), matching the best known running
time of the basic Chromatic Number problem parameterized by the number of vertices.
This answers open questions of Golovach et al. [19]. Note that also that ListColoring is
already W[1]-hard parameterized by vertex cover [19], i.e., modulator to an independent set,
which excludes even quite simple generalizations of our result to, e.g., a modulator to a disjoint
union of cliques. Additionally, we showed that Pre-Coloring Extension under the same
parameter admits a linear vertex kernel with at most 3k vertices and that (n− k)-Regular
List Coloring admits a compression into a problem we call Budget-Constrained List
Coloring, into an instance with at most 11k vertices, encodable in O(k2 log k) bits. The
latter also admits a proper kernel with O(k2) vertices and colors. This answers an open
problem of Banik et al. [3].

One obvious open question is whether it is possible to derandomize our algorithm for List
Coloring. This seems, however, very challenging as it would require a derandomization of
Lemma 4, which has been an open problem for some time. It might, however, be possible
(and potentially more promising) to consider a different approach than ours. Another open
question is to optimize the bound 11k on the number of vertices in the (n− k)-Regular
List Coloring compression, and/or show a proper kernel with O(k) vertices. Finally,
another set of questions is raised by Escoffier [16], who studied the Max Coloring problem
from a “saving colors” perspective. In addition to the questions explicitly raised by Escoffier,
it is natural to ask whether his problems Saving Weight and Saving Color Weights
admit FPT algorithms with a running time of 2O(k) and/or polynomial kernels.
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Abstract
The canonical hard problems for NP and its quantum analogue, Quantum Merlin-Arthur (QMA),
are MAX-k-SAT and the k-local Hamiltonian problem (k-LH), the quantum generalization of
MAX-k-SAT, respectively. In recent years, however, an arguably even more physically motivated
problem than k-LH has been formalized – the problem of simulating local measurements on ground
states of local Hamiltonians (APX-SIM). Perhaps surprisingly, [Ambainis, CCC 2014] showed
that APX-SIM is likely harder than QMA. Indeed, [Ambainis, CCC 2014] showed that APX-SIM
is PQMA[log]-complete, for PQMA[log] the class of languages decidable by a P machine making a
logarithmic number of adaptive queries to a QMA oracle. In this work, we show that APX-SIM
is PQMA[log]-complete even when restricted to physically motivated Hamiltonians, obtaining as
intermediate steps a variety of related complexity-theoretic results.

Specifically, we first give a sequence of results which together yield PQMA[log]-hardness for
APX-SIM on well-motivated Hamiltonians such as the 2D Heisenberg model:

We show that for NP, StoqMA, and QMA oracles, a logarithmic number of adaptive queries
is equivalent to polynomially many parallel queries. Formally, PNP[log] = P||NP, PStoqMA[log] =
P||StoqMA, and PQMA[log] = P||QMA. (The result for NP was previously shown using a different
proof technique.) These equalities simplify the proofs of our subsequent results.
Next, we show that the hardness of APX-SIM is preserved under Hamiltonian simulations (à la
[Cubitt, Montanaro, Piddock, 2017]) by studying a seemingly weaker problem, ∀-APX-SIM. As
a byproduct, we obtain a full complexity classification of APX-SIM, showing it is complete for
P,P||NP,P||StoqMA, or P||QMA depending on the Hamiltonians employed.
Leveraging the above, we show that APX-SIM is PQMA[log]-complete for any family of Hamilto-
nians which can efficiently simulate spatially sparse Hamiltonians. This implies APX-SIM is
PQMA[log]-complete even on physically motivated models such as the 2D Heisenberg model.

Our second focus considers 1D systems: We show that APX-SIM remains PQMA[log]-complete
even for local Hamiltonians on a 1D line of 8-dimensional qudits. This uses a number of ideas from
above, along with replacing the “query Hamiltonian” of [Ambainis, CCC 2014] with a new “sifter”
construction.
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1 Introduction

In analogy with MAX-k-SAT playing a central role in the theory of NP-completeness,
the k-local Hamiltonian problem (denoted k-LH, and which generalizes Boolean constraint
satisfaction) is the canonical complete [31] problem for the quantum analogue of NP, Quantum
Merlin Arthur (QMA). Roughly, in k-LH the input is a set of 2k × 2k Hermitian matrices
{Hi }, where each Hi is a “local quantum constraint” acting on a subset of k out of n qubits.
The output is the smallest eigenvalue of H =

∑
iHi, known as the ground state energy of

H, which we denote λ(H). (For clarity, in the sum H =
∑
iHi, each Hi is implicitly in

tensor product with an identity on all qubits which Hi does not act on.) In words, the
ground state energy encodes the energy of the quantum system corresponding to H when
cooled into its lowest energy configuration. This remarkable connection between physics and
complexity theory (i.e. Kitaev’s proof that k-LH is QMA-complete [31]) spawned the field of
Quantum Hamiltonian Complexity (QHC) (see, e.g., [37, 6, 18]), which has since explored the
complexity of computing properties of ground spaces (i.e. “solution spaces” of k-LH instances)
beyond estimating ground state energies [9, 44, 19, 21, 24, 20, 41, 3, 14, 22, 30, 7, 13].

Approximate Simulation

Despite the role of k-LH as a “posterchild” for Quantum Hamiltonian Complexity, in 2014
Ambainis formalized [3] the arguably even more natural physical problem of simulating
local measurements on low-energy states of a local Hamiltonian, denoting it Approximate
Simulation (APX-SIM). Intuitively, in APX-SIM one is given a local Hamiltonian H and
local measurement A, and asked to estimate the expectation value of A against the ground
space of H. Formally:

I Definition 1 (APX-SIM(H,A, k, `, a, b, δ) [3]). Given a k-local Hamiltonian H, an `-local
observable A, and real numbers a, b, and δ such that b − a ≥ n−c and δ ≥ n−c

′ , for n the
number of qubits1 H acts on and c, c′ > 0 some constants, decide:

If H has a ground state |ψ〉 satisfying 〈ψ|A |ψ〉 ≤ a, output YES.
If for all |ψ〉 satisfying 〈ψ|H |ψ〉 ≤ λ(H) + δ, it holds that 〈ψ|A |ψ〉 ≥ b, output NO.

For clarity, any Hermitian matrix A is a valid observable representing some projective meas-
urement; the eigenvalues of A denote the labels of the possible outcomes of the measurement,
and the eigenvectors the corresponding quantum state onto which the system is projected
post-measurement.

1 We state Definition 1 using qubits, i.e. 2-dimensional local systems. One could also use higher dimensional
qudits, i.e. d-dimensional local systems, if desired. Indeed, in certain contexts, such as the containment
result of Lemma 11, showing a result about qudits is more general than just considering qubits (hence
Lemma 11 explicitly uses qudits).
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Motivation for APX-SIM. Given a naturally occurring quantum system with time evolution
Hamiltonian H (which is typically k-local for k ∈ O(1)), we would like to learn something
about the quantum state |ψ〉 the system settles into when cooled to near absolute zero.
This low-temperature setting is particularly important, as it is where phenomena such as
superconductivity and superfluidity manifest themselves. Thus, learning something about
|ψ〉 potentially allows one to harness such phenomena for, say, materials design. The most
“basic” experimental approach to learning something about |ψ〉 is to attempt to prepare a
physical copy of |ψ〉, and then apply a local measurement to extract information from |ψ〉.
However, given that preparing the ground state |ψ〉 of an arbitrary Hamiltonian is hard – it
would allow one to solve the QMA-complete k-LH problem – we must wonder whether there
is an easier approach. Formally, how hard is APX-SIM?

Perhaps surprisingly, it turns out that simulating a measurement on the ground state |ψ〉
is strictly harder than QMA. To show this, [3] proved that APX-SIM is PQMA[log]-complete,
for PQMA[log] the class of languages decidable by a P machine making a logarithmic number
of adaptive queries to a QMA oracle. (See Section 2 and Appendix A for formal details on
promise oracle classes PC.) Why PQMA[log] instead of QMA? Intuitively, this is because
APX-SIM does not include thresholds for the ground state energy as part of the input (in
contrast to k-LH). This specification of APX-SIM is moreover well-motivated; typically
one does not have an estimate of the ground state energy of H, since such an estimate is
QMA-hard to compute to begin with.

Brief background on PQMA[log]. The class PQMA[log] is likely strictly harder than QMA,
since both QMA and co-QMA are contained in PQMA[log] (to put co-QMA in PQMA[log], use
the QMA oracle once and flip its answer using the P machine). Thus, QMA 6= PQMA[log]

unless co-QMA ⊆ QMA (which appears unlikely). Just how much more difficult than QMA is
PQMA[log]? Intuitively, the answer is “slightly more difficult”. Formally, QMA ⊆ PQMA[log] ⊆
PP [22] (where QMA ⊆ A0PP ⊆ PP was known [32, 45, 34] prior to [22]; note the latter
containment is strict unless the Polynomial-Time Hierarchy collapses [45]).

From a computer science perspective, there is an interesting relationship between
APX-SIM and classical constraint satisfaction. Recall that k-LH is the QMA-complete
generalization of MAX-k-SAT, in that the energy of a state is minimized by simultaneously
satisfying as many k-local constraints as possible. Classically, one might be asked whether the
solution to a MAX-k-SAT instance satisfies some easily verifiable property, such as whether
the solution has even Hamming weight; such a problem is PNP[log]-complete (see [46] for a
survey). APX-SIM is a quantum analogue to these problems, in which we ask whether an
optimal solution (the ground state) satisfies some property (expectation bounds for a specified
measurement), and APX-SIM is analogously PQMA[log]-complete. Beyond this connection,
of course, the strong appeal of APX-SIM lies additionally in its physical motivation.

High level direction in this work. That APX-SIM is such a natural problem arguably
demands that we study its hardness given natural settings. In this regard, the original
PQMA[log]-completeness result [3] was for simulating O(logn)-local observables and O(logn)-
local Hamiltonians. From a physical perspective, one wishes to reduce the necessary locality,
e.g. to O(1)-local observables and Hamiltonians. Hardness under this restriction was
subsequently achieved [22], for 1-qubit observables and 5-local Hamiltonians, by combining
the “query Hamiltonian” construction of Ambainis [3] with the circuit-to-Hamiltonian
construction of Kitaev [31]. However, even arbitrary O(1)-local Hamiltonians may be rather
artificial in contrast to naturally occurring systems. Ideally, one wishes to make statements
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along the lines of “simulating measurements on a physical model such as the quantum
Heisenberg model on a 2D lattice is harder than QMA”, or “simulating measurements on a
1D local Hamiltonian is harder than QMA”. This is what we achieve in the current paper.
Interestingly, to attain this goal, we first take a turn into the world of parallel versus adaptive
oracle queries.

Parallel versus adaptive queries

A natural question for oracle complexity classes is how the power of the class changes as
access to the oracle is varied. In the early 1990’s, it was shown [10, 27, 5] that a polynomial
number of parallel or non-adaptive queries to an NP oracle are equivalent in power to a
logarithmic number of adaptive queries. Formally, letting P||NP be the class of languages
decidable by a P machine with access to polynomially many parallel queries to an NP oracle,
it holds that P||NP = PNP[log] [5].

We begin by considering the analogous question for PQMA[log] versus P||QMA (defined as
P||NP but with a QMA oracle). For this, the direction PC[log] ⊆ P||C was shown by [5] for
all classes C. For the reverse, to show P||NP ⊆ PNP[log], [5] first conducts binary search to
determine the number of YES queries. Unfortunately, it is not clear how to carry out an
analogous binary search in the setting of promise problems, such as for QMA. The problem
is that, as explored in [22], oracles for promise classes like QMA may receive queries which
violate their promise (such as an instance of k-LH with the ground state energy within
the promise gap). By definition [23], in such cases the oracle can respond arbitrarily, even
changing its answer given repeated queries. As a result, the number of YES queries, by
which we mean queries on which the QMA oracle outputs 1, is not even well-defined. Thus,
the technique of binary search fails for QMA. (Note that for a language version of QMA –
i.e. the quantum analogue of MA as opposed to PromiseMA – this technique would still
work.) To hence show P||QMA ⊆ PQMA[log], we take a different approach: we show a hardness
result. Specifically, we use a modification of the PQMA[log]-hardness construction of [3], for
which we require the locality improvements of [22], to show that APX-SIM is P||QMA-hard.
Combining with the fact that APX-SIM ∈ PQMA[log] [3] then yields the desired containment.
This approach has two added benefits:

First, the use of parallel, rather than adaptive, queries simplifies the “query Hamiltonian”
construction of [3] significantly, which we later exploit to prove hardness results about
physical Hamiltonians (Theorem 6) and 1D Hamiltonians (Theorem 10). Moreover,
we give a simpler proof of Ambainis’s original claim that APX-SIM is PQMA[log]-hard;
indeed, we generalize it to classes C beyond QMA to show:

I Theorem 2. Let C be a class of languages or promise problems. Let F be a family
of Hamiltonians for which k-LH is C-complete under poly-time many-one reductions
for all k ≥ 2. Suppose F is closed under positive linear combination of Hamiltonians,
and that if {Hi}mi=1 ⊂ F , then Hcl +

∑m
i=1 |1〉〈1|i ⊗Hi ∈ F , where Hcl is any classical

Hamiltonian (i.e. diagonal in the standard basis)2. Then, PC[log] = P||C, and APX-SIM
is PC[log]-complete when restricted to k-local Hamiltonians and observables from F .
Recalling that k-LH is NP-complete, StoqMA-complete, and QMA-complete when re-
stricted to the families of classical, stoquastic, and arbitrary k-local Hamiltonians, re-
spectively [12], Theorem 2 thus gives the sequence of results:

2 Briefly, the reason for the form of the expression Hcl +
∑m

i=1 |1〉〈1|i ⊗Hi is that it suffices to encode
our construction, while still belonging to several interesting families F .
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I Corollary 3. PNP[log] = P||NP,PStoqMA[log] = P||StoqMA, and PQMA[log] = P||QMA.
Second, we use the Cook-Levin theorem [11, 33], as opposed to Kitaev’s circuit-to-
Hamiltonian construction [31] as in [22]. This allows us to obtain a constant promise gap
for the observable3 A’s threshold values (i.e. b− a ≥ Ω(1), as opposed to b− a ≥ 1/poly),
even when ‖A‖ = O(1). Further, because the core of this construction is already spatially
sparse, it eases proving hardness results about physical Hamiltonians (Theorem 6).

The complexity of APX-SIM for physically motivated Hamiltonians

With the simplifications that moving to parallel queries affords us (i.e. working with P||QMA

versus PQMA[log]), we next study P||QMA-hardness for physically motivated Hamiltonians.
This requires a shift of focus to simulations, in the sense of [13], i.e. analog Hamiltonian
simulations.

Recall that Kitaev originally proved QMA-hardness of k-LH for 5-local Hamiltonians [31];
this was brought down to 2-local Hamiltonians via perturbation theory techniques [29, 28].
Since then, there has been a large body of work (e.g. [36, 8, 12, 7, 39, 40]) showing complexity
theoretic hardness results for ever simpler systems, much of which uses perturbative gadgets4
to construct Hamiltonians which have approximately the same ground state energy as a
Hamiltonian of an apparently more complicated form. Here, we wish to enable a similarly
large number of results for the problem APX-SIM by using the same perturbative gadget
constructions and ideas of analogue simulation.

To this end, Ref. [13] defines a strong notion of simulation which approximately preserves
essentially all low-temperature properties of a Hamiltonian (including the ground state energy).
It then observes that the perturbative gadget constructions used in the k-LH literature are
examples of this definition of simulation. Ref. [13] then shows there exist simple families of
Hamiltonians (such as the 2-qubit Heisenberg interaction) which are universal Hamiltonians,
in the sense that they can simulate all O(1)-local Hamiltonians efficiently. Here “efficiently”
means that the important parameters of the simulator Hamiltonian, are polynomially related
to the corresponding parameters of the original Hamiltonian (see Definition 14).

How do simulations affect the complexity of APX-SIM? Ideally, we would like to show
that efficient simulations similarly lead to reductions between classes of Hamiltonians for the
problem APX-SIM. However, this is apparently difficult, as the definition of APX-SIM is
not robust to small perturbations in the eigenvalues of the system. We instead consider a
closely related, seemingly easier problem which we call ∀-APX-SIM.

I Definition 4 (∀-APX-SIM(H,A, k, `, a, b, δ)). Given a k-local Hamiltonian H, an `-local
observable A, and real numbers a, b, and δ such that satisfy b− a ≥ n−c and δ ≥ n−c′ , for n
the number of qubits H acts on and c, c′ > 0 some constants, decide:

If for all |ψ〉 s.t. 〈ψ|H |ψ〉 ≤ λ(H) + δ, it holds that 〈ψ|A |ψ〉 ≤ a, then output YES.
If for all |ψ〉 s.t. 〈ψ|H |ψ〉 ≤ λ(H) + δ, it holds that 〈ψ|A |ψ〉 ≥ b, then output NO.

3 The constant gap is only for the input thresholds a, b for the expectation value of the observable A. The
required “low-energy gap” defined by δ may be inverse polynomial, i.e. δ ≥ 1/poly, and we note that
the spectral gap of the Hamiltonian H may be arbitrarily small in our constructions unless otherwise
noted. Thus, it is unclear how to apply this result to resolve questions concerning Hamiltonians with
improved promise gaps, e.g. the Quantum PCP Conjecture.

4 Very roughly, perturbative gadgets allow one to “craft” a set of desired low-lying eigenvalues/eigenspaces
for a local Hamiltonian by carefully penalizing certain subspaces with non-constant weights.
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Above, we have a stronger promise in the YES case than in APX-SIM: namely, all low-energy
states |ψ〉 are promised to satisfy 〈ψ|A |ψ〉 ≤ a, as opposed to just a single ground state.
Thus, ∀-APX-SIM is easier than APX-SIM, in that ∀-APX-SIM reduces to APX-SIM.
(The reduction is trivial: a valid instance of ∀-APX-SIM is already a valid instance of
APX-SIM.) We conclude that ∀-APX-SIM is contained in PQMA[log]. Furthermore, the
proof of Theorem 2 is actually sufficient to show that ∀-APX-SIM is P||C-complete (when
restricted to the corresponding family of Hamiltonians for arbitrary class C).

Our second result, Lemma 15, proves that efficient simulations correspond to reductions
between instances of ∀-APX-SIM. As a byproduct, we combine this result with Theorem 2
and the universality classifications from [13] (cf. Corollary 3) to obtain complexity classifica-
tions for the original APX-SIM problem restricted to several families of Hamiltonians:

I Theorem 5. Let S be an arbitrary fixed subset of Hermitian matrices on at most 2 qubits.
Then the APX-SIM problem, restricted to Hamiltonians H and measurements A given as a
linear combination of terms from S, is
1. P-complete, if every matrix in S is 1-local;
2. PNP[log]-complete, if S does not satisfy the previous condition and there exists U ∈ SU(2)

such that U diagonalizes all 1-qubit matrices in S and U⊗2 diagonalizes all 2-qubit
matrices in S;

3. PStoqMA[log]-complete, if S does not satisfy the previous condition and there exists U ∈
SU(2) such that, for each 2-qubit matrix Hi ∈ S, U⊗2Hi(U†)⊗2 = αiZ

⊗2 + AiI + IBi,
where αi ∈ R and Ai, Bi are arbitrary single-qubit Hermitian matrices;

4. PQMA[log]-complete, otherwise.

Hardness of simulating local measurements on lattices and spatially sparse systems.
With the previous two main results in hand, we are in a position to show that ∀-APX-SIM
is PQMA[log]-hard even when the Hamiltonian is restricted to a spatially sparse interaction
graph (in the sense of [36]). This is analogous to the equivalent result for k-LH shown in
[36], which was crucial in showing that the Local Hamiltonian problem is QMA-complete for
Hamiltonians on a 2D square lattice. Formally, by exploiting the previously discussed results
about parallel queries (Theorem 2) and simulations (Lemma 15) and by developing a variant
of the hardness construction from Theorem 2, we are able to show the following:

I Theorem 6. Let F be a family of Hamiltonians which can efficiently simulate any spatially
sparse Hamiltonian. Then, APX-SIM is PQMA[log]-complete even when restricted to a
single-qubit observable and a Hamiltonian from the family F .

Via Theorem 6, we now obtain many corollaries via the long line of research using
perturbative gadgets to prove QMA-completeness of restricted physical Hamiltonians; for
brevity, here we list a select few such corollaries. We note that the locality of the observable
input to APX-SIM may increase after simulation, but only by a constant factor which can
be easily calculated based on the simulation used. For example, using the perturbative
gadgets constructed in [39], the following is an immediate corollary of Theorem 6:

I Corollary 7. APX-SIM is PQMA[log]-complete even when the observable A is 4-local
and the Hamiltonian H is restricted to be of the form H =

∑
(j,k)∈E a(j,k)h(j,k) where

h(j,k) = αXjXk + βYjYk + γZjZk, E is the set of edges of a 2D square lattice, a(j,k) ∈ R,
and at least two of α, β, γ are non-zero. The case α = β = γ corresponds to XX +Y Y +ZZ,
which is the physically motivated Heisenberg interaction.
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But, there is not always a blow-up in the locality of A, as is shown by this corollary which
follows from Theorem 6 and [42]:

I Corollary 8. APX-SIM is PQMA[log]-complete even when the observable A is 1-local and
the Hamiltonian H is restricted to be of the form: H =

∑
(j,k)∈E h(j,k) +

∑
j Bj , where

h(j,k) = XjXk + YjYk +ZjZk, E is the set of edges of a 2D square lattice, and Bj is a single
qubit operator (that may depend on j).

Finally, we remark that recent work on the simulation power of families of qudit Hamiltonians
[40] can be used to show the following corollary:

I Corollary 9. Let |ψ〉 be an entangled two qudit state. Then, APX-SIM is PQMA[log]-
complete even when the Hamiltonian H is restricted to be of the form H =

∑
j,k αj,k|ψ〉〈ψ|j,k,

where αj,k ∈ R and |ψ〉〈ψ|j,k denotes the projector onto |ψ〉 on qudits j and k.

Each of these corollaries follows as the corresponding references show that the described
families of Hamiltonians can efficiently simulate all spatially sparse Hamiltonians.

The complexity of APX-SIM on the line

We finally move to our last result, which characterizes the complexity of APX-SIM on the
line. Historically, it was known that the NP-complete problem MAX-2-SAT on a line is
efficiently solvable via dynamic programming or divide-and-conquer (even for large, but
constant, dimension). It hence came as a surprise when [1] showed that 2-LH on a line is still
QMA-complete. This result was for local dimension 13 ([1] claimed a result for 12-dimensional
qudits; [26] identified and fixed an error in [1] by adding an extra dimension). [35] improved
this to hardness for 12-dimensional qudits by leveraging the parity of the position of qudits.
Most recently, [26] showed QMA-completeness for qudits of dimension 8 by allowing some of
the clock transitions to be ambiguous. The complexity of k-LH on a 1D line remains open
for local dimension 2 ≤ d ≤ 7.

Returning to the setting of APX-SIM, the classical analogue of APX-SIM on a 1D
line of bits is also in P; given a 2-local Boolean formula φ : { 0, 1 }n 7→ { 0, 1 }, compute an
optimal solution x to φ (which recall can be done in 1D as referenced above), and evaluate
the desired efficiently computable local function on x (i.e. a “measurement” on a subset of
the bits). This raises the question: is APX-SIM on a line still PQMA[log]-complete? Or does
its complexity in the 1D setting drop to, say, QMA? Our final result shows the former.

I Theorem 10. APX-SIM is PQMA[log]-complete even when restricted to Hamiltonians on
a 1D line of 8-dimensional qudits and single-qudit observables.

Thus, even in severely restricted geometries like the 1D line, simulating a measurement on a
single qudit of the ground space remains harder than QMA.

Proof techniques for Theorem 10. We employ a combination of new and known ideas. We
wish to simulate the idea from [22] that instead of having the P machine make m queries to a
QMA oracle, it receives the answers to the queries as a “proof” y ∈ { 0, 1 }m which it accesses
whenever it needs a particular query answer. In [22], Ambainis’s query Hamiltonian [3] was
then used to ensure y was correctly initialized. However, it is not clear how to use Ambainis’
query Hamiltonian (or variants of it) while maintaining a 1D layout.

We hence take a different approach. Instead of receiving the query answers, the P machine
now has access to m QMA verifiers {Vi }mi=1 corresponding to the m queries, and for each of
them receives a quantum proof |ψi〉 in some proof register Ri. The P machine then treats
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the (probabilistic) outputs of each Vi as the “correct” answer to the query i. If a query i is a
NO instance of a QMA problem, this works well – no proof can cause Vi to accept with high
probability. However, if query i is a YES instance, a cheating prover may nevertheless submit
a “bad” proof to verifier Vi, since flipping the output bit of Vi may cause the P machine to
flip its final output bit. To prevent this, and thus ensure the P machine receives all correct
answers with high probability, we use a delicate application of 1-local energy penalties, which
we call “sifters”, to the outputs of the Vi; just enough to penalize bad proofs for YES cases,
but not enough to cause genuine NO cases to incur large energy penalties. Here, we again
utilize our result that PQMA[log] = P||QMA (Corollary 3), and choose to begin with a P||QMA

instance; this allows us to apply identical, independent sifters to the output of each verifier
Vi, significantly easing the subsequent analysis and transition to 1D.

We next plug this construction, where the P circuit has many sub-circuits Vi, into the
1D circuit-to-Hamiltonian construction of [26]. Similar to [22], we apply a corollary of the
Projection Lemma of [28, 22] to argue that any low energy state must be close to a history
state |ψ〉. Combining with our sifter Hamiltonian terms, we show in Lemma 23 that for |ψ〉
to remain in the low-energy space, it must encode Vi outputting approximately the right
query answer for any query i. To then conclude that all query responses are jointly correct
with high probability, and thus that the low-energy space encodes the correct final output to
the P||QMA computation, we apply a known quantum non-commutative union bound. In
fact, our argument immediately shows hardness for both APX-SIM and ∀-APX-SIM.

Open questions

Our results bring previous PQMA[log]-hardness results for a remarkably natural problem,
Approximate Simulation (APX-SIM), closer to the types of problems studied in the phys-
ics literature, where typically observables are O(1)-local, allowed interactions physically
motivated, and the geometry of the interaction graph is constrained. There are many
questions which remain open, of which we list a few here: (1) The coupling strengths for
local Hamiltonian terms in Corollary 7,8,9 are typically non-constant, as these corollaries
follow from the use of existing perturbation theory gadgets; can these coupling constants
be made O(1)? Note this question is also open for the complexity classification of k-LH
itself [12, 39]. (2) What is the complexity of PQMA[log]? It is known that PQMA[log] ⊆ PP [22];
can a tighter characterization be obtained? (3) Can similar hardness results for APX-SIM
be shown for translationally invariant 1D systems? For reference, it is known that k-LH
is QMAexp-complete for 1D translationally invariant systems when the local dimension is
roughly 40 [25, 4]. (QMAexp is roughly the quantum analogue of NEXP, in which the proof
and verification circuit are exponentially large in the input size. The use of this class is
necessary in [25, 4], as the only input parameter for 1D translationally invariant systems
is the length of the chain.) If a similar hardness result holds for APX-SIM, presumably it
would show PQMAexp[log]-hardness for 1D translationally invariant systems.

Organization. We prove Theorems 2, 5, 6, and 10 in Sections 3, 4, 5, and 6, respectively.
Proofs omitted due to space constraints are deferred to Appendices B, D, C, and E.

2 Preliminaries

Notation. λ(H) denotes the smallest eigenvalue of Hermitian operator H. For matrix
A, define spectral norm ‖A‖∞ := max{‖A |v〉‖2 : ‖|v〉‖2 = 1} and trace norm ‖A‖tr :=
Tr
√
A†A. Throughout, we assume both H =

∑m
i=1Hi and observable A =

∑m
i=1Ai satisfy

m, ‖Hi‖∞ , ‖Ai‖∞ ∈ O(poly(n)), for n the number of qubits in the system.
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Definitions. PQMA[log] [3] is the set of problems decidable by a polynomial-time deterministic
Turing machine with the ability to query an oracle for a QMA-complete problem O(logn)
times, where n is the size of the input. For a class C of languages or promise problems,
the class PC[log] is similarly defined, except with an oracle for a C-complete problem. (See
Appendix A for further formal details and discussion on promise oracle classes.) P||C is the
set of problems decidable by a polynomial-time deterministic Turing machine given access to
an oracle for a C-complete problem, with the restriction that all (up to O(nc) for c ∈ Θ(1))
queries to the oracle be made in parallel. Such queries are hence non-adaptive, as opposed to
the adaptive queries allowed to a PC[log] machine.

For PQMA[log] we assume the P machine makes queries to an oracle for the QMA-
complete [31] k-local Hamiltonian problem (k-LH), defined as follows: Given a k-local
Hamiltonian H and inverse polynomial-separated thresholds a, b ∈ R, decide whether λ(H) ≤
a (YES-instance) or λ(H) ≥ b (NO-instance) [28]. We say an oracle query is valid (invalid) if
it satisfies (violates) the promise gap of the QMA-complete problem the oracle answers. (An
invalid query hence satisfies λ(H) ∈ (a, b).) For any invalid query, the oracle can accept or
reject arbitrarily. A correct query string y ∈ { 0, 1 }m encodes a sequence of correct answers
to all of the m queries made by the P machine, and an incorrect query string is one which
contains at least one incorrect query answer. Note that for an invalid query, any answer
is considered “correct”, yielding the possible existence of multiple correct query strings.
Nevertheless, the P machine is required to output the same final answer (accept or reject)
regardless of how such invalid queries are answered [23].

3 Parallel versus adaptive queries

This section shows Theorem 2, i.e. that PC[log] = P||C for appropriate complexity classes C,
which will follow from Lemmas 11 and 12 below.

I Lemma 11. Let H be a k-local Hamiltonian acting on n qudits, and let A be an observable
on the same system of n qudits. If k-LH for αH + βA is contained in complexity class C for
any 0 ≤ α, β ≤ poly(n) and for all k ≥ 1, then APX-SIM(H,A, k, `, a, b, δ) ∈ PC[log] for all
` ≤ O(logn) and b− a, δ ≥ O(1/poly n).

The proof of Lemma 11 generalizes the known [3] proof that APX-SIM ∈ PQMA[log]; the
basic idea is to use binary search in conjunction with the oracle for C to estimate the ground
state energy λ of H. One additional oracle query is then made to to determine whether H
has a ground state with energy approximately λ and satisfying the promise thresholds for
observable A. This last query, in particular, is where we must be careful in our generalization
to arbitrary classes C. The formal proof is in Appendix B.

I Lemma 12. Let F be a family of Hamiltonians for which k-LH is C-hard for all k ≥ 2.
Then ∀-APX-SIM is P||C-hard even when b− a = Ω(1), the observable A is a single Pauli
Z measurement, and when restricted to Hamiltonians of the form H = Hcl +

∑
i |1〉〈1|i ⊗Hi,

where Hcl is a classical Hamiltonian, and the Hi are Hamiltonians from F .

Before discussing the proof of Lemma 12, let us remark how Lemmas 11 and 12 combine to
yield Theorem 2, i.e. that PC[log] = P||C. The interesting containment here is P||C ⊆ PC[log].
To show this, Lemma 12 yields that ∀-APX-SIM is P||C-hard. But ∀-APX-SIM trivially
reduces to APX-SIM, which Lemma 11 says is in PC[log]. Hence, we have used a hardness
result to show containment. The formal argument is in Appendix B.

We develop two tools needed to show Lemma 12: How to simplify [3]’s query Hamiltonian
in the context of parallel queries (which is used to enforce correct query answers), and how
to employ the Cook-Levin reduction (which enforces a correct simulation of the circuit given
those query answers).
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Figure 1 Left: Gates Ui in the circuit of the P machine. Middle: Hamiltonian terms hUt encoding
each gate. Each straight line edge on the right represents the interaction |01〉〈01|+ |10〉〈10|. The
initialization terms Hin on qubits in time step t = 0 are omitted in the diagram. Right: The
structure of the Hamiltonian H = H1 +H2 used in Lemma 12, for the case of 3 queries. H1 acts on
the space W ⊗X and H2 acts on X ⊗ Y, where X =

⊗
i
Xi and Y =

⊗
i
Yi.

Tool 1: Simplifying Ambainis’ query Hamiltonian. First, we give a simplified version of
the “query Hamiltonian” of Ambainis [3], which will be useful in subsequent lemmas. Namely,
given a P||C computation U for an appropriate class C, let (HYi

, ai, bi) be the instance of
2-LH corresponding to the i-th query made by U . Our “query Hamiltonian” is:

H =
m∑
i=1

Mi :=
m∑
i=1

(
ai + bi

2 |0〉〈0|Xi
⊗ IYi

+ |1〉〈1|Xi
⊗HYi

)
, (1)

where single qubit register Xi is intended to encode the answer to query i and Yi encodes the
ground state of HYi

. Since each query is 2-local, H is 3-local. Notably, because U makes all
of its queries in parallel, we are able to weight each of the m terms equally, unlike in [3, 22]
which studied adaptive queries. This significantly eases our later analysis.

The key property of the query Hamiltonian H is given by the following lemma, which
roughly says H encodes correct query answers in registers Xi. This lemma is analogous to
Lemma 3.1 of [22], but with an improved spectral gap; its proof (Appendix B) is similar
to [22], but significantly simplified due to our use of parallel queries.

I Lemma 13. Define for any x ∈ { 0, 1 }m the space Hx1···xm
:=
⊗m

i=1 |xi〉〈xi| ⊗ Yi. Then,
there exists a correct query string x ∈ { 0, 1 }m such that the ground state of H lies in
Hx1···xm . Moreover, if λ is the minimum eigenvalue of H restricted to this space, then for
any incorrect query string y1 · · · ym, any state in Hy1···ym

has energy at least λ + ε, where
ε = mini(bi − ai)/2.

Tool 2: Adapting the Cook-Levin construction. We next model the Cook-Levin construc-
tion as a Hamiltonian for our setting. We may view the P machine as a circuit of classical
reversible gates U = Um . . . U1, in which time step i performs gate Ui. The evolution of the
circuit is encoded into a 2D grid of qubits, where the t-th row of qubits corresponds to the
state of the system at time step t; the output of the circuit is copied to a dedicated output
bit in the final timestep. The overall Hamiltonian is diagonal in the computational basis
with a groundspace of states corresponding to the correct evolution of the P machine.

Let It be the set of qubits which Ut acts non-trivially on. If a qubit i /∈ It (i.e. it is
not acted on by the circuit at time step t), then there is an interaction |01〉〈01|+ |10〉〈10|
on qubits (i, t) and (i, t + 1), to penalize states which encode a change on qubit i. To
encode a classical reversible gate Ut : x 7→ Ut(x) acting at time t, we define an interaction
hUt

= I −
∑
x |x〉〈x|t ⊗ |Ut(x)〉〈Ut(x)|t+1 acting non-trivially only on qubits (i, t′) for i ∈ It

and t′ equal to t or t+ 1. Figure 1 (middle) gives an illustration of this Hamiltonian. This
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yields (positive semi-definite) propagation Hamiltonian

Hprop =
m∑
t=1

hUt
+
∑
i/∈It

|0〉〈0|(i,t)|1〉〈1|(i,t+1) + |1〉〈1|(i,t)|0〉〈0|(i,t+1)

 , (2)

whose ground space is spanned by states of the form: |w(x)〉 = |x〉t=1 ⊗ |U1x〉t=2 ⊗ · · · ⊗
|Um . . . U1x〉t=m+1. We also add an Hin term consisting of 1-local |1〉〈1| terms acting on the
first (t = 1) row to ensure the start configuration is correct. One can show that the resulting
Hamiltonian Hprop + Hin has (1) unique ground state |w(0n)〉 encoding the action of the
circuit on the 0n string, (2) ground state energy 0, and (3) spectral gap at least 1.

Proof sketch of Lemma 12. With our two tools in hand, we can finally sketch the proof
of Lemma 12. Split the Hilbert space into three parts W, X =

⊗
i Xi, Y =

⊗
i Yi and

consider Hamiltonian H = H1 + H2, where H1 acts on W and X , and H2 acts on X and
Y (Figure 1). H2 is the query Hamiltonian of Equation (1) (Tool 1); by Lemma 13, the
low energy space of H2 encodes in register in X a correct string of query answers for oracle
C. H1 = Hprop + Hin is the classical Hamiltonian encoding the evolution of a classical P
circuit, using the Cook-Levin construction (Tool 2), where Hprop is defined in Equation (2).
Intuitively, the low energy space of H1 simulates “reading” the correct query answers from X
and using these to simulate the underlying P circuit in register W. (Thus, X plays the role
of a “message” register passing information between H1 and H2.) Details are in Appendix B.

4 Simulations and APX-SIM for physical classes of Hamiltonians

To study the complexity of APX-SIM for physically motivated Hamiltonians in Section 5,
we require two tools: (1) hardness results for parallel query classes P||C (Section 3), and (2)
an understanding of how simulations affect the hardness of the problem APX-SIM, which
we now focus on. Roughly speaking, a simulation allows us to “reproduce” the low-energy
physics of a desired physical model H, by instead using Hamiltonians H ′ of a different form.
Formally, below we consider a simplified notion of simulation (a special case of the full
definition given in [13]). This simpler case includes all of the important details necessary for
the general case. Proofs with regard to the general definition of simulation are in Appendix F.

I Definition 14 (Special case of definition in [13]; variant of definition in [7]). We say that H ′
is a (∆, η, ε)-simulation of H if there exists a local isometry V =

⊗
i Vi such that

1. There exists an isometry Ṽ such that Ṽ Ṽ † = P≤∆(H′), where P≤∆(H′) is the projector
onto the space of eigenvectors of H ′ with eigenvalues less than ∆, and ‖Ṽ − V ‖ ≤ η;

2. ‖H ′≤∆ − Ṽ HṼ †‖ ≤ ε, where H ′≤∆ = P≤∆(H′)H
′P≤∆(H′).

We say that a family F ′ of Hamiltonians can simulate a family F of Hamiltonians if, for
any H ∈ F and any η, ε > 0, and ∆ ≥ ∆0 for some ∆0 > 0, there exists H ′ ∈ F ′ such that
H ′ is a (∆, η, ε)-simulation of H. We say that the simulation is efficient if, for H acting on
n qudits, ‖H ′‖ = poly(n, 1/η, 1/ε,∆); H ′ and {Vi } are computable in polynomial-time given
H, ∆, η and ε and provided that ∆, 1/η, 1/ε are O(poly n); and each isometry Vi maps from
at most one qudit to O(1) qudits.

Unlike in [13], here we have the additional requirement that the local isometry V is efficiently
computable. This ensures that given some input Hamiltonian H and local observable A, we
can use the notion of simulation to efficiently produce a simulating Hamiltonian H ′ and a
simulating observable A′. As far as we are aware, all known constructions satisfying the
notion of efficient simulation from [13] fulfill this additional requirement.
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Figure 2 (Color figure) Geometric structure of Hamiltonian H = H1 +H2 +H3 for the case of 3
queries. In words, H1 is the top square, H3 is the set of connecting wires and bottom three squares
to which they are connected. H2 is the remaining set of three squares at the bottom of the diagram.

One of the key properties of simulation is that it preserves eigenvalues of the target
Hamiltonian up to a small additive factor ε. Unfortunately, even such small perturbations
in eigenvalues can change the answer to APX-SIM if the Hamiltonian H has a small
spectral gap. We hence instead work with the “more robust” problem ∀-APX-SIM, which
recall trivially reduces to APX-SIM. Let F-∀-APXSIM denote the problem ∀-APX-SIM
restricted to Hamiltonians taken from the family F . The main result of this section is:

I Lemma 15 (Simulations preserve hardness of ∀-APX-SIM). Let F be a family of Hamilto-
nians which can be efficiently simulated by another family F ′. Then, F-∀-APXSIM reduces
to F ′-∀-APXSIM via polynomial-time many-one reductions.

The proof is rather technical, and hence deferred to Appendix C. As a corollary of Lemma 15,
we also show Theorem 5, which recall gives a classification of the complexity of APX-SIM
when restricted to families of Hamiltonians and measurements built up from a set of inter-
actions S: APX-SIM is either in P, PNP[log]-complete, PStoqMA[log]-complete, or PQMA[log]-
complete. Intuitively, this follows by combining the complexity characterizations and simula-
tion results for k-LH of [12, 7, 13] with Lemma 15 and Theorem 2. However, some work is
required to satisfy the preconditions of Theorem 2; details are in Appendix C.

5 Spatially sparse construction

We now combine the tools developed in the previous sections to study the complexity
of APX-SIM for physical Hamiltonians. Our approach is to show that ∀-APX-SIM is
P||QMA-hard even for Hamiltonians on a spatially sparse interaction graph, defined below:

I Definition 16 (Spatial sparsity [36]). A spatially sparse interaction (hyper)graph G on n
vertices is defined as a (hyper)graph in which
1. every vertex participates in O(1) hyper-edges, and
2. there is a straight-line drawing in the plane such that every hyper-edge overlaps with O(1)

other hyper-edges and the surface covered by every hyper-edge is O(1).

I Lemma 17. ∀-APX-SIM is P||QMA-hard even for b − a = Ω(1), 1-local (single-qubit)
observable A, and 4-local Hamiltonian H with a spatially sparse interaction graph.

By combining Lemma 15, Lemma 17 and Corollary 3, we obtain Theorem 6, which
recall shows APX-SIM is hard not only for families of Hamiltonians which are universal
(i.e. families that can efficiently simulate any k-local Hamiltonian), but also for restricted
families of Hamiltonians which can only efficiently simulate spatially sparse Hamiltonians. As
stated in Section 1, this then yields the desired hardness results for APX-SIM on physical
Hamiltonians such as the Heisenberg interaction on a 2D lattice (see, e.g., Corollary 7).
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Proof sketch of Lemma 17. We adapt the proof of Lemma 12. Recall that the Hamiltonian
H in Lemma 12 is H = H1 + H2, where H2 uses a simplification of Ambainis’s query
Hamiltonian on each of the registers Xi ⊗ Yi to encode the answer to that query into the
state of Xi, and H1 encodes the evolution of the P circuit using the Cook-Levin construction
on the W register (controlling on the states of the Xi registers). We arrange the qubits
of the W register on a square lattice and note H1 is already spatially sparse – this is an
advantage of using the Cook-Levin construction over the Kitaev [31] history state construction.
Furthermore, the Hamiltonian HYi , corresponding to the i-th QMA query, without loss of
generality acts on a 2D square lattice [36], and hence is also spatially sparse.

The problem is that our version of Ambainis’s query Hamiltonian H2 is far from spatially
sparse, since every qubit of Yi interacts with Xi. We resolve this by replacing each 1-qubit
Xi register with a multi-qubit register of ni qubits labeled {Xi(j)}ni

j=1 (ni the number of
qubits of Yi). We spread out the qubits of the Xi register in space around the Yi register,
and modify H2 so that each term is controlled only on a nearby qubit in Xi. We also need to
introduce a third term H3 to ensure that all qubits in each Xi register are either all |0〉 or all
|1〉. The construction is illustrated in Figure 2; the full proof is in Appendix D.

Finally, a brief comment about the claim that b− a = Ω(1) – as in Lemma 17, this is the
promise gap for 〈ψ|A |ψ〉, and is Ω(1) due to our use of the Cook-Levin construction, which
does not utilize history states (cf. [31]) to encode the action of the P machine.

6 Simulating measurements on a 1D line

We now show Theorem 10, i.e. that APX-SIM remains PQMA[log]-complete even on a 1D
line of 8-dimensional qudits with single-qudit observables. As the construction is rather
involved, here we provide a sketch. Full details and a correctness proof are in Appendix E.

Sketch of 1D hardness construction. We give a reduction from P||QMA to ∀-APX-SIM,
which by Theorem 2 yields the claim. Let Π be a P||QMA computation which takes in an
input of size n and which consists of a uniformly generated polynomial-size classical circuit C
making m = O(logn) 2-LH queries πi := (Hi, ai, bi) to a QMA oracle. As in Lemma 12, we
treat the “answer register” in which C receives answers to its m queries as a proof register.

Our high-level approach consists of three steps: (1) construct a “master” circuit V
composed of the verification circuits Vi corresponding to each query πi and of the circuit
C; (2) run V through the 1D circuit-to-Hamiltonian construction of [26] to obtain a 1D
Hamiltonian G with local dimension 8, such that the low-energy space S of G consists of
history states (of the form described in [26]); and (3) carefully add additional 1-local “sifter”
penalty terms acting on the output qubits corresponding to each verification circuit Vi.
Together, this yields a Hamiltonian H, whose low-energy space we show encodes satisfying
proofs to each Vi (when possible). Specifically, the final step of “fine-grained splitting” of S
(Step (3)) forces the output qubits of the circuits Vi to encode correct answers to query πi,
and thus the final circuit C receives a correct proof, hence leading the history states of step
(2) to encode a correct simulation of Π. The answer to the computation Π can then be read
off the ground state of H via an appropriate single qudit measurement. Note that Step (3)
allows us to bypass the use of Ambainis’ query Hamiltonian, which is a first for the study of
PQMA[log].
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1. Construction of V . Suppose each query πi has corresponding QMA verification circuit
Vi. We view the “master circuit” V as consisting of two phases:
1. (Verification phase) Given supposed proofs for each query, V runs all verification circuits

Vi in parallel, where Vi acts on space Yi ⊗Wi ⊗Xi, for proof register Yi, ancilla register
Wi, and single-qubit output register Xi.

2. (Simulated classical phase) The simulated P circuit C now receives the query answers
X := X1 ⊗ · · · ⊗ Xm as its proof register as well as an ancilla register W0. It outputs a
single qubit to an output register X0.

Crucially, note that given a set of proofs in register Y =
⊗

i=1 Yi, V does not necessarily
yield the same answer as Π, since a malicious prover could intentionally send a “bad” proof
to a YES query, flipping the final answer of V .

2. Construction of G. We now plug V into the circuit-to-Hamiltonian construction of
Hallgren, Nagaj, and Narayanaswami [26] and make a small modification (see Appendix E)
to obtain a nearest-neighbor 1D Hamiltonian G on 8-dimensional qudits.

3. Adding 1-local “sifters”. We now add 1-local Hamiltonian terms which serve to “sift”
through bad proofs, or more accurately split the ground space of G, so as to force low-energy
states to encode correct query answers. Namely, even a correct simulation of circuit V may
not output the correct answer for Π if a malicious prover gives a “bad” proof to query register
Yi, even though πi is a YES-query. We hence wish to penalize proofs |ψi〉 which lead verifier
Vi to reject, whenever there exists a proof |φi〉 Vi would have accepted (i.e. πi is a YES query).
To do so, we (roughly) add a “sifter” penalty term ε |0〉〈0|Xi

to each answer register Xi, for ε
a carefully chosen inverse polynomial. In particular, ε must simultaneously (1) penalize NO
answers enough to ensure the ground space encodes YES answers for YES-queries, but (2)
be small enough that genuine NO query proofs are not accidentally rejected (i.e. when πi is
a NO-query). We collectively give the sifter terms the label Hout.

Final construction. The final Hamiltonian is H := G + Hout, with 1-qudit observable A
penalizing output 0 on the designated output qudit of G. Proving correctness requires a
number of additional lemmas (Appendix E); as a sample, two tools used are a corollary of the
Projection Lemma of [28, 22] (low energy states must be close to a history state |ψ〉), and a
(known) quantum union bound (all query answers are jointly correct with high probability).
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A Additional notation and definitions

Notation. For a subspace S, S⊥ denotes the orthogonal complement of S. We denote the
restriction of an operator H to subspace S as H|S . The null space of H is denoted Null(H).

Definitions. We define the notion of containment of a promise problem Π = (Πyes,Πno) in
complexity class PC for promise class C following Definition 1.3 of Goldreich [23].

I Definition 18 (Cook reduction among promise problems [23]). A promise problem Π =
(Πyes,Πno) is Cook-reducible to promise problem Π′ = (Π′yes,Π′no) if there exists a polynomial-
time oracle Turing machine M such that:

For every x ∈ Πyes, MΠ′(x) = 1,
for every x ∈ Πno, MΠ′(x) = 0,

and any query q to Π′ is answered by 1 if q ∈ Π′yes, by 0 if q ∈ Π′no, and arbitrarily otherwise.

Remarks: (1) Quantum complexity classes, such as QMA, are typically promise classes, despite
the lack of the prefix “Promise” in their name. (In contrast, in the classical complexity
theory community, one typically distinguishes between, say, MA and PromiseMA.) Thus, as
stated in Section 2, a QMA oracle can (in line with Definition 18) answer an invalid QMA
query (i.e. violating the promise of the oracle) arbitrarily. Regardless of how such invalid
queries are answered, the P machine must output the same final answer [23]. (2) If according
to Definition 18, Π Cook-reduces to Π′ for Π′ in promise class C, then we say Π ∈ PC.
However, it is crucial to note that this does not necessarily imply that Π ∈ C. A notorious
example [23] of this is the promise problem xSAT, for which Πyes is the set of two-tuples
(φ1, φ2) where φ1 and φ2 are satisfiable and unsatisfiable Boolean formulae, respectively, and
Πno is analogous but with φ2 and φ1 being satisfiable and unsatisfiable, respectively. Then,
one can show (see Theorem 5.1 of [23]) that NP is Cook-reducible to xSAT, and that xSAT
is in NP ∩ co-NP, and yet this does not necessarily imply that NP ∈ NP ∩ co-NP.

B Proofs for Section 3

Proof of Lemma 11. We need to show the existence of a poly(n) time classical algorithm
to decide APX-SIM while making at most O(logn) queries to an oracle for C. As with the
proof in [3], the idea is to use O(logn) oracle queries to determine the ground space energy
λ(H) of H by binary search, and then use one final query to determine the answer. In [3] the
final query is a QMA query; here we show how this final query can be performed differently
so that only an oracle for C is required.

First calculate a lower bound µ for λ(A), the lowest eigenvalue of A. If A acts only on
O(1) qudits, then λ(A) can be calculated via brute force (up to, say, inverse exponential
additive error) in O(1) time. If A acts on many qudits, then λ(A) can alternatively be
approximated to within inverse polynomial additive error by binary search (as in [3]) by
querying the C oracle O(log ‖A‖) = O(logn) times. Note that without loss of generality, we
may assume 0 ≤ b−µ ≤ q(n) for some efficiently computable polynomial q. The lower bound
holds since if b < µ ≤ λ(A), we conclude our APX-SIM instance is a NO instance, and we
reject. For the upper bound, it holds that µ ≤ ‖A‖∞, and we may assume b ≤ ‖A‖∞, as
otherwise our APX-SIM instance is either a YES or invalid instance, and in both cases
we can accept. By assumption, ‖A‖∞ ≤ q(n) for appropriate polynomial q which can be
computed efficiently by applying the triangle inequality to the local terms of A; note ‖A‖∞
may hence be replaced by q in the bounds above.
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Perform binary search with the oracle for C (an example of how to perform binary search
with an oracle for a promise problem is given in [3]) to find λ∗ such that λ(H) ∈ [λ∗, λ∗ + ε]
where

ε = δ(b− a)
2(b− µ) ≥ 1/poly(n)

since 0 ≤ b− µ ≤ poly(n). This requires O(log 1/ε) = O(logn) queries to the oracle for C.
Next perform one final query to the C oracle to solve k-LH with Hamiltonian H ′ with
thresholds a′ and b′, where

H ′ = (b− µ)H + δA and a′ = (λ∗ + ε)(b− µ) + δa

b′ = λ∗(b− µ) + δb

and accept if and only if this final query accepts. Observe this is an allowed query for the C
oracle because H ′ is of the form required in the statement of the lemma (recall b− µ ≥ 0),
and also

b′ − a′ = δ(b− a)− ε(b− µ) = δ(b− a)/2 ≥ 1/poly(n).

Now, if APX-SIM(H,A, k, l, a, b, δ) is a YES instance, then there exists |ψ〉 such that
〈ψ|H |ψ〉 = λ(H) and 〈ψ|A |ψ〉 ≤ a. Then

〈ψ| (b− µ)H + δA |ψ〉 ≤ λ(H)(b− µ) + δa ≤ (λ∗ + ε)(b− µ) + δa = a′

and the algorithm accepts as required.
Now suppose the input is a NO instance. We will show that 〈ψ|H ′ |ψ〉 ≥ b′ for any |ψ〉

and so the algorithm rejects as required. First, if |ψ〉 is low-energy with 〈ψ|H |ψ〉 ≤ λ(H)+δ,
then it also satisfies 〈ψ|A |ψ〉 ≥ b, and so

〈ψ| (b− µ)H + δA |ψ〉 ≥ λ(H)(b− µ) + δb ≥ λ∗(b− µ) + δb = b′

where we have used 〈ψ|H |ψ〉 ≥ λ(H) ≥ λ∗ and b− µ ≥ 0. Otherwise, if |ψ〉 is high energy
with 〈ψ|H |ψ〉 ≥ λ(H) + δ, then

〈ψ| (b− µ)H + δA |ψ〉 ≥ (λ(H) + δ)(b− µ) + δλ(A)
= λ(H)(b− µ) + δb+ δ(λ(A)− µ) ≥ λ∗(b− µ) + δb = b′

where we have used 〈ψ|A |ψ〉 ≥ λ(A) and λ(A)− µ ≥ 0. Thus, we reject. J

Proof of Lemma 13. We proceed by contradiction. Let x ∈ { 0, 1 }m (y ∈ { 0, 1 }m) denote
a correct (incorrect) query string which has lowest energy among all correct (incorrect) query
strings against H. (Note that x and y are well-defined, though they may not be unique; in
this latter case, any such x and y will suffice for our proof.) For any z ∈ { 0, 1 }m, define λz
as the smallest eigenvalue in Hz.

Since y is an incorrect query string, there exists at least one i ∈ {1, . . . ,m} such that yi is
the wrong answer to a valid query HYi

. If query i is a YES-instance, the smallest eigenvalue
of Mi corresponds to setting Xi to (the correct query answer) |1〉, and is at most ai. On the
other hand, the space with Xi set to |0〉 has all eigenvalues equaling (ai + bi)/2. A similar
argument shows that in the NO-case, the |0〉-space has eigenvalues equaling (ai + bi)/2, and
the |1〉-space has eigenvalues at least bi. We conclude that flipping query bit i to the correct
query answer yi allows us to “save” an energy penalty of (bi − ai)/2 against Mi, and since
all other terms act invariantly on Xi ⊗ Yi, we save (bi − ai)/2 against H as well.

Let y′ denote y with bit i flipped. If y′ is also an incorrect query string, we have λy′ < λy,
a contradiction due to the minimality of y. Conversely, if y′ is a correct query string, then we
must have λy′ ≥ λx + (bi− ai)/2 ≥ λ+ ε, as otherwise we contradict the minimality of x. J
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The following technical lemma will be used in the proofs of Lemmas 12 and 15.

I Lemma 19. Let H be a Hamiltonian and ρ a density matrix satisfying Tr(Hρ) ≤ λ(H)+δ.
Let P be the projector onto the space of eigenvectors of H with energy less than λ(H) + δ′.
Then,

1
2‖ρ− ρ

′‖1 ≤
√
δ

δ′
, where ρ′ = PρP/Tr(Pρ).

Proof of Lemma 19. First, bound the trace distance by the fidelity in the usual way (using
one of the Fuchs-van de Graf inequalities [16]):

1
2‖ρ− ρ

′‖1 ≤
√

1− F (ρ, ρ′)2 (3)

where

F (ρ, ρ′) = Tr
(√√

ρρ′
√
ρ

)
= Tr

(√√
ρPρP

√
ρ

Tr(Pρ)

)
= 1√

Tr(Pρ)
Tr(√ρP√ρ) =

√
Tr(Pρ),

where the third equality follows since (√ρP√ρ)2 = √ρPρP√ρ and since the latter is positive
semi-definite. Now, it remains to bound Tr(Pρ). We note that H has eigenvalues at least
λ(H) + δ′ on the space annihilated by P and eigenvalues at least λ(H) everywhere else, and
so H � (λ(H) + δ′)(I − P ) + λ(H)P = (λ(H) + δ′)I − δ′P . Therefore, using the bound on
Tr(Hρ), we have

λ(H) + δ ≥ Tr(Hρ) ≥ (λ(H) + δ′) Tr(ρ)− δ′Tr(Pρ) ⇔ 1− Tr(Pρ) ≤ δ

δ′
.

Substituting this back into Equation (3) proves the result. J

Proof of Lemma 12. We split the Hilbert space into three partsW , X =
⊗

i Xi, Y =
⊗

i Yi
and have a Hamiltonian of the form H = H1 +H2, where H1 acts on W and X , and H2 acts
on X and Y. H2 is the query Hamiltonian of Equation (1), and therefore by Lemma 13 the
space of eigenvectors of H2 with eigenvalues less than λ(H2) + ε is spanned by states of the
form: |x〉X ⊗ |φ〉Y , where x is a correct string of answers for the queries to the C oracle.

H1 = Hprop + Hin is the classical Hamiltonian encoding the evolution of a classical
P circuit, using the Cook-Levin construction of Section 3, where Hprop is as defined in
Equation (2). For clarity, Hprop and Hin act on W and W ⊗X , respectively. We think of
W as “laid out in a 2D grid” as in Figure 1, and of X as playing the role of a “message”
register passing information between H1 and H2. We modify the Hamiltonian Hin which
initializes the qubits at the start of the classical circuit. For each qubit Xi in X , we initialize
a corresponding qubit of the first (t = 0) row of W into the same state with a penalty term
|1〉〈1|Xi

⊗ |0〉〈0|Wi
+ |0〉〈0|Xi

⊗ |1〉〈1|Wi
. All other qubits in the first (t = 0) row of W are

initialized to |0〉 with a penalty |1〉〈1|. The full construction is depicted diagrammatically
in Figure 1. Note that as stated in the claim, H is of the form H = Hcl +

∑m
i |1〉〈1|i ⊗Hi,

where Hcl contains H1 and the local terms of H2 which are tagged with |0〉〈0| in registers Xi.
We can argue about the low-energy eigenspace of H as follows. Since the ground spaces

of H1 and H2 have non-trivial intersection, λ(H) = λ(H1) + λ(H2) = λ(H2). Moreover,
since [H1, H2] = 0 (they overlap only on the X register, on which they are both diagonal in
the standard basis), and since we may assume without loss of generality that λ(H2) + ε is
inverse polynomially bounded below 1 (otherwise, we can scale H1 by an appropriate fixed
polynomial), we conclude the space of eigenstates of H with eigenvalue less than λ(H) + ε,
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henceforth denoted Hlow, is spanned by states of the form |Φ〉 = |w〉W ⊗ |x〉X ⊗ |φ〉Y , where
x is a string of correct answers to the oracle queries and w is the classical string encoding
the correct computation of the P circuit acting on x. The qubit corresponding to the output
bit of the P circuit will be in the state |1〉 (resp. |0〉) in a YES (resp. NO) instance of
∀-APX-SIM.

To complete the proof let the observable A = Zout, a Pauli Z measurement on the qubit
corresponding to the output bit of the P circuit, and let δ = ε/16 and δ′ = ε. Consider any
state |ψ〉 with 〈ψ|H |ψ〉 ≤ λ(H) + δ. Then by Lemma 19, there exists a state |ψ′〉 ∈ Hlow
such that 〈ψ′|H |ψ′〉 ≤ λ(H) + δ′ = λ(H) + ε which satisfies ‖ |ψ〉〈ψ| − |ψ′〉〈ψ′| ‖1 ≤ 1/2. So,

〈ψ′|Zout |ψ′〉 =
{
−1 in a YES instance
1 in a NO instance

which implies by Hölder’s inequality that 〈ψ|A |ψ〉 is ≤ −1/2 in a YES instance and ≥ 1/2
in a NO instance, as required. J

Proof of Theorem 2. The containment PC[log] ⊆ P||C follows directly from the same ar-
gument that PNP[log] ⊆ P||NP of [5], which we summarized in Section 1. By Lemma 11,
APX-SIM is contained in PC[log] for Hamiltonians and observables from F . And by Lemma 12
∀-APX-SIM is P||C-hard for Hamiltonians from F , even when the observable is a single
Pauli Z measurement, which is contained in F by the assumption that F contains any
classical Hamiltonian Hcl. Since ∀-APX-SIM trivially reduces to APX-SIM, we thus have
that APX-SIM is similarly P||C-hard, and the result follows. J

C Proofs for Section 4

Proof of Lemma 15. Let Π = (H,A, k, `, a, b, δ) be an instance of F-∀-APXSIM. We will
demonstrate that one can efficiently compute H ′ ∈ F ′ and A′, k′, `′, a′, b′, and δ′ such that
Π′ = (H ′, A′, k′, `′, a′, b′, δ′) is a YES (respectively NO) instance of ∀-APX-SIM if Π is
a YES (resp. NO) instance of ∀-APX-SIM; further, we will have that `′ ∈ O(`), a′ =
a+ (b− a)/3, b′ = b− (b− a)/3 and δ − δ′ ≥ 1/poly(n). To do so, we shall pick parameters
∆, η, ε so that ∆, 1/η, 1/ε are O(poly n), upon which the definition of efficient simulation
(Definition 14) guarantees we can efficiently compute a Hamiltonian H ′ being a (∆, η, ε)-
simulation of H, which we claim will preserve YES and NO instances H.

Let us leave ∆, η, ε arbitrary for now, and assume we have a simulation of the form given
in Definition 14. Then, there exists an isometry Ṽ : H → H′ (H and H′ are the spaces H and
H ′ act on, respectively) which maps onto the space of eigenvectors of H ′ with eigenvalues
less than ∆, i.e. onto S≤∆ := Span{|ψ〉 : H ′ |ψ〉 = λ |ψ〉 , λ ≤ ∆}. In addition, Ṽ satisfies
‖Ṽ −

⊗
i Vi‖ 6 η and ‖H6∆ − Ṽ HṼ †‖ 6 ε.

Let |ψ′〉 be a low-energy state of H ′ satisfying 〈ψ′|H ′ |ψ′〉 ≤ λ(H ′) + δ′ for δ′ to be set
later. First, we show that |ψ′〉 is close to a state Ṽ |ψ〉 where |ψ〉 is a low-energy state of
H; then, we will show that there exists an observable A′, depending only on A and the
isometries Vi, such that 〈ψ′|A′ |ψ′〉 approximates 〈ψ|A |ψ〉 for any choice of |ψ〉. Since by
Definition 14 A is efficiently computable, our choice of A′ will be as well.

Let |φ〉 = P≤∆(H′) |ψ′〉 /‖P≤∆(H′) |ψ′〉 ‖ be the (normalized) component of |ψ′〉 in S≤∆.
By Lemma 19, we have

1
2 ‖|ψ

′〉〈ψ′| − |φ〉〈φ|‖1 ≤

√
δ′

∆− λ(H ′) .
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Since S≤∆ = Im(Ṽ ), there must exist a state |ψ〉 in H such that Ṽ |ψ〉 = |φ〉; next, we
will show that |ψ〉 has low-energy with respect to H. Note that |ψ′〉 = √p |φ〉+

√
1− p |φ⊥〉

for some p ∈ [0, 1] and a state |φ⊥〉 in S⊥≤∆ which has higher energy: 〈φ⊥|H ′ |φ⊥〉 ≥ ∆ ≥
〈φ|H ′ |φ〉. Therefore,

〈ψ′|H ′ |ψ′〉 = p 〈φ|H ′ |φ〉+ (1− p) 〈φ⊥|H ′ |φ⊥〉 > 〈φ|H ′ |φ〉 ,

which implies that

〈ψ|H |ψ〉 − 〈ψ′|H ′ |ψ′〉 6 〈ψ|H |ψ〉 − 〈φ|H ′ |φ〉 (4)

= 〈φ| Ṽ HṼ † |φ〉 − 〈φ|H ′ |φ〉 (5)

6 ‖H ′≤∆ − Ṽ HṼ †‖ 6 ε. (6)

So, 〈ψ|H |ψ〉 6 λ(H ′) + δ′ + ε 6 λ(H) + δ′ + 2ε, where the final inequality follows from
Lemma 27 of [13], which roughly states that eigenvalues are preserved up to error ε in a
simulation (in particular, the minimum eigenvalues satisfy |λ(H ′)− λ(H)| ≤ ε).

For any local measurement AS acting on subset of S qubits HS (here HS is the Hilbert
space for qudits in set S ⊆ [n]), we can define the local measurement A′S = VSASV

†
S on H′S

where V =
⊗
Vi is the local isometry in the definition of simulation and VS :=

⊗
i∈S Vi. Note

that A′S acts only on the O(|S |) qudits which VS maps to. Furthermore, V †(A′S⊗I)V = AS⊗I
and so

| 〈ψ′|A′S ⊗ I |ψ′〉− 〈ψ|AS ⊗ I |ψ〉 | = | 〈ψ′|A′S ⊗ I |ψ′〉 − 〈ψ|V †(A′S ⊗ I)V |ψ〉 | (7)
6 ‖A′S‖‖|ψ′〉〈ψ′| − V |ψ〉〈ψ|V †‖1 (8)

6 ‖AS‖
(
‖|ψ′〉〈ψ′| − |φ〉〈φ|‖1 + ‖Ṽ |ψ〉〈ψ|Ṽ † − V |ψ〉〈ψ|V †‖1

)
(9)

6 ‖AS‖
(
‖|ψ′〉〈ψ′| − |φ〉〈φ|‖1 + 2‖Ṽ − V ‖

)
(10)

6 ‖AS‖

(
2

√
δ′

∆− λ(H ′) + 2η
)

(11)

where to get to (10), we have used the triangle inequality to bound:

‖Ṽ |ψ〉〈ψ|Ṽ † − V |ψ〉〈ψ|V †‖1 (12)

≤ ‖Ṽ |ψ〉〈ψ|Ṽ † − V |ψ〉〈ψ|Ṽ †‖1 + ‖V |ψ〉〈ψ|Ṽ † − V |ψ〉〈ψ|V †‖1 (13)

= ‖Ṽ − V ‖
(
‖|ψ〉〈ψ|Ṽ †‖1 + ‖V |ψ〉〈ψ|‖1

)
(14)

= 2‖Ṽ − V ‖ (15)

Therefore, to ensure that Π′ is a YES (resp. NO) instance if Π is a YES (resp. NO)
instance, we will choose a′ = a+ (b− a)/3 and b′ = b− (b− a)/3. Choosing δ′,∆, ε, η such
that

0 < δ′ + 2ε < δ and 0 < ‖A‖
(

2

√
δ′

∆− λ(H ′) + 2η
)
<
b− a

3

completes the proof. J

Proof of Theorem 5. We first discuss containment in the claimed complexity classes, and
then hardness.
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Containment. In the first case it is trivial to simulate the outcome of 1-local measurements
on the ground state of a 1-local Hamiltonian, as the ground state is an easily calculated
product state. For the other three cases, it was shown in [12] and [7], that k-LH for these
three families of Hamiltonians is complete for the classes NP,StoqMA,QMA, respectively.
Therefore, by Lemma 11, APX-SIM is contained in PNP[log],PStoqMA[log] and PQMA[log],
respectively. (Note that the precondition of Lemma 11 is met, i.e. for H and A given as a
linear combination of terms from S and I, we have that k-LH for αH + βA is contained in
the respective complexity class of NP, StoqMA, or QMA, for any 0 ≤ α, β ≤ poly(n), and
for all k ≥ 1.)

Hardness. Starting with the referenced completeness results of [12, 7] above, we now wish
to show APX-SIM is hard for PNP[log],PStoqMA[log] and PQMA[log] for cases 2–4 of our claim.
At first glance, it may seem that Theorem 2 already yields this result, since that theorem says
that APX-SIM is PC[log]-complete when restricted to k-local Hamiltonians and observables
from a family F . Unfortunately, however, a precondition of Theorem 2 is that F must
contain all classical (i.e. diagonal in standard basis) Hamiltonians, which is not necessarily
true for cases 2–4 of our claim here. Thus, some work is required get the hardness claims of
cases 2–4 here.

To achieve this, we first apply Lemma 12 to conclude that ∀-APX-SIM is hard for
classes P||NP,P||StoqMA and P||QMA for the families of classical, stoquastic and arbitrary
local Hamiltonians, respectively. (In contrast to the Hamiltonians of cases 2–4 of our claim
here, the sets of classical, stoquastic and arbitrary local Hamiltonians do contain all diagonal
Hamiltonians, and thus satisfy the preconditions of Lemma 12.) We then use simulations, in
combination with Lemma 15, to reduce the sets of classical, stoquastic, and arbitrary local
Hamiltonians to the Hamiltonians in cases 2,3,4 of our claim here, respectively.

Specifically, it was shown in [13] that the three families of Hamiltonians in cases 2–4
of our claim can efficiently simulate all classical, stoquastic and arbitrary local Hamiltoni-
ans, respectively, via some local isometry V (see Definition 14). It follows by Lemma 15
(which states that simulations act like hardness reductions) that ∀-APX-SIM is hard for
P||NP,P||StoqMA and P||QMA respectively, with respect to (using the notation of Lemma 15)
a local observable A′ (in the larger, simulating, space) such that A′ = V AV † (where in our
case A will equal Pauli Z due to the proof of Lemma 12). The only obstacle to achieving our
current claim is that we also require A′ to be chosen as a linear combination of terms from S
and I. This is what the remainder of the proof shall show.

Observation (*). To begin, note the proof of Lemma 12 used single qubit observable
Z, since we encoded the P machine’s output in a single bit, which we assumed was set
to |0〉 for “reject” and |1〉 for “accept”. However, without loss of generality, we may alter
the starting P machine to encode its output in some more general function on two bits,
such as the parity function. (For example, the P machine can be assumed to output a
2-bit string q, such that q has odd parity if and only if the P machine wishes to accept.)
We use this observation as follows. Consider any classical observable A with two distinct
eigenvalues λx < λy corresponding to eigenstates |x〉 and |y〉, respectively, for distinct strings
x, y ∈ { 0, 1 }2. Then, assuming the specification of A is independent of the number of qubits
in the system (thus, A is specified to within constant bits of precision, and so λy−λx ∈ Θ(1)),
if we set the P machine to output x when it wishes to accept and y when it wishes to
reject, a measurement with observable A suffices to distinguish these two cases. With this
observation in hand, we consider cases 2–4 of our claim, in particular with respect to the
action of isometry V .
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Case 2: P||NP-completeness. First note that in this case we can assume without loss of
generality that all interactions in S are diagonal (by performing a global basis change of
U⊗n if necessary) . Since we are not in the first case we know also that there is a 2-local
interaction in S with at least two distinct eigenvalues. By Observation (*), it will suffice
to simulate such an observable on a particular pair of qubits in the original system; call
this operator A. For the PNP[log] case, the isometry V appends some ancilla qubits in a
computational basis state (in the U⊗n basis) [15]. We can therefore choose A′ to be the
same 2-local observable A, but acting on the corresponding qubits in the larger, simulating
system; that is, if we let A′ = A ⊗ I (where the identity term acts on the ancilla qubits),
then V †A′V = A as desired.

Case 3: P||StoqMA-completeness. For the third case, one can check that the reductions in
[7] correspond to a simulation with an isometry V which maps each qubit |0〉 7→ |0011〉 and
|1〉 7→ |1100〉 and appends some additional ancilla qubits in a computational basis state (see
discussion in Section 9.4 of [13]). Thus, a classical 2-local observable Z ⊗ Z + diag(A)⊗ I +
I⊗diag(B) (which we may use by Observation (*)) can be simulated in the larger, simulating
space on physical qubits 1, 2, 3, 4 (logical qubit 1) and 5, 6, 7, 8 (logical qubit 2) via:

V †(Z1Z5 +A1 +B5)V = Z ⊗ Z + diag(A)⊗ I + I ⊗ diag(B),

where diag(A) denotes the diagonal part of A, i.e. diag(A) =
∑1
i=0 |i〉〈i|A|i〉〈i|. Thus,

measuring observable (Z1Z5 +A1 +B5) on the larger, simulating Hamiltonian H ′ (which has
the desired form of Case 3 here) is equivalent to measuring Z⊗Z+ diag(A)⊗ I+ I⊗diag(B)
on the starting Hamiltonian H in the simulation (again, using notation of Lemma 15).

Case 4: P||QMA-completeness. The final case is slightly more complicated. When
showing that these Hamiltonians are universal, the one step with a non-trivial isometry is
simulating {X,Z,XX,ZZ}-Hamiltonians with {XX + Y Y }-Hamiltonians or {XX + Y Y +
ZZ}-Hamiltonians in Theorem 41 of [13]. In both of these cases, the isometry V maps each
qubit via action

|0〉 7→ |Ψ−〉13 |Ψ
−〉24 |1〉 7→ 2√

3 |Ψ
−〉12 |Ψ

−〉34 −
1√
3 |Ψ

−〉13 |Ψ
−〉24 .

In the proof of Theorem 41 of [13], it is shown that a single Z observable can be reproduced by
choosing A = h13 (where either h = XX+Y Y or h = XX+Y Y +ZZ), that is V †h13⊗I24V

is proportional to Z.
The proof is completed by Corollary 3 (i.e. logarithmic adaptive queries are equivalent to

polynomially many parallel queries). J

D Proofs for Section 5

Proof of Lemma 17. We will construct a Hamiltonian on the registers W, Xi and Yi for
i ∈ {1, . . .m}, for which the problem ∀-APX-SIM encodes the output of a P||QMA circuit,
where m is the number of parallel queries to the QMA oracle.

Let the qubits of W and Yi be arranged on distinct parts of a square lattice. For each
qubit of Yi, there is a corresponding qubit in Xi, and Xi contains a path of qubits leading
from Yi to W. See Figure 2 for an example layout in the case m = 3.

Let Ei be the set of edges of the square lattice of qubits of Yi (i.e. not including the edges
connecting Yi to Xi in Figure 2) and let HYi

=
∑

(j,k)∈Ei
hiYi(j,k) be a 2D nearest neighbor

Hamiltonian on Yi corresponding to the i-th query. We have used the subscript notation
Yi(j, k) to denote the action of an operator on the j-th and k-th qubits of the Yi register.
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HYi has ground state energy less than ai if query i is a YES instance and energy greater
than bi in a NO instance. Then, let H2 =

∑
iH

(i)
2 where

H
(i)
2 = ai + bi

2 |0〉〈0|Xi(1) ⊗ IYi
+

∑
(j,k)∈Ei

(
|1〉〈1|Xi(g(j,k)) ⊗ hiYi(j,k)

)
,

where g(j, k) is the location of the “nearest” qubit in Xi to edge (j, k) in Yi. Here, the choice
“nearest” is somewhat arbitrary; for concreteness, one can set g(j, k) = j, i.e. pick the vertex
in Xi which aligns with the first coordinate of the edge (j, k). (In this sense, Figure 2 is not
entirely accurate, since it depicts the 3-local constraint |1〉〈1|Xi(g(j,k)) ⊗ hiYi(j,k) as a pair
of 2-local constraints. This is done solely for the purpose of simplifying the illustration, as
otherwise one would need to draw hyperedges of size 3.)

Let H1 = Hprop + Hin be the Cook-Levin Hamiltonian where Hprop is exactly as in
Lemma 12. Let Hin initialize the qubits of the first (t = 1) row of the qubits in W . For each
query i, we have a penalty term |1〉〈1|Xi(1)|0〉〈0|+ |0〉〈0|Xi(1)|1〉〈1| which effectively copies
the state of Xi(1), the qubit in Xi nearest to W, onto the i-th qubit of the first row of W.
For all the remaining qubits in the first (t = 1) row of W, we have a penalty term |1〉〈1|,
effectively initializing the qubit into the |0〉 state.

Restricted to the subspace H where each Xi register is either all |0〉 or all |1〉, H1 +H2 is
exactly the same Hamiltonian as in Lemma 12. It remains to give a high energy penalty to
all other states not in this subspace. We do this with H3 =

∑m
i=1H

(i)
3 where each term H

(i)
3

acts on Xi:

H
(i)
3 = ∆i

∑
(j,k)∈Gi

(
|0〉〈0|Xi(j)|1〉〈1|Xi(k) + |1〉〈1|Xi(j)|0〉〈0|Xi(k)

)
where Gi is the set of edges between the qubits of the Xi register. Gi consists of edges
between nearest neighbors on the square lattice Ei and on the path of qubits from Yi to W.
The overall Hamiltonian H = H1 +H2 +H3 is therefore spatially sparse.

H
(i)
3 is a classical Hamiltonian, so all of its eigenstates can be taken to be of form |x〉

for some x ∈ {0, 1}ni . Its ground space Gi contains |0〉⊗ni and |1〉⊗ni ; and all states in G⊥i
have energy at least ∆i. Choosing ∆i > δ +

∑
(j,k)∈Ei

‖hiYi(j,k)‖ ensures that all states in
G⊥i have energy greater than λ(H) + δ.

Then H = H1 + H2 + H3 is block diagonal with respect to the split of each subspace
Gi ⊕ G⊥i ; restricted to the spaces Gi, H is exactly the Hamiltonian from Lemma 12, and all
states in spaces G⊥i have energy greater than λ(H) + δ. The result then follows just as in the
proof of Lemma 12. J

E Proofs for Section 6

We now give all details of our 1D hardness construction from Section 6, and prove correctness
thereof in Section E.1.

Our 1D hardness construction. We give a reduction from P||QMA to ∀-APX-SIM, which
by Theorem 2 yields the claim. Let Π be a P||QMA computation which takes in an input of
size n and which consists of a uniformly generated polynomial-size classical circuit C making
m = O(logn) 2-LH queries πi := (Hi, ai, bi) to a QMA oracle. As in Lemma 12, we treat
the “answer register” in which C receives answers to its m queries as a proof register.
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Our high-level approach consists of three steps: (1) construct a “master” circuit V
composed of the verification circuits Vi corresponding to each query πi and of the circuit
C; (2) run V through the 1D circuit-to-Hamiltonian construction of [26] to obtain a 1D
Hamiltonian G with local dimension 8 constructed such that the low-energy space S of G
must consist of history states (of the form described in [26]); and (3) carefully add additional
1-local penalty terms acting on the output qubits corresponding to each verification circuit
Vi to obtain final Hamiltonian H such that the low-energy space must encode satisfying
proofs to each Vi whenever possible. This final step of “fine-grained splitting” of S forces the
output qubits of the circuits Vi to encode correct answers to query πi, and thus the final
circuit C receives a correct proof, hence leading the history states of step (2) to encode a
correct simulation of Π. The answer to the computation Π can then be read off the ground
state of H via an appropriate single qudit measurement.

1. Construction of V . Suppose each query πi has corresponding QMA verification circuit
Vi. Without loss of generality, we may henceforth assume that the completeness/soundness
error of Vi is at most p ≤ 2−n, for p to be set later, by standard error reduction [2, 34]; thus,
if a particular query (Hi, ai, bi) is valid (i.e. λ(H) /∈ (ai, bi)), then either there exists a proof
such that Vi outputs YES with probability at least 1 − p or no proof causes Vi to output
YES with probability greater than p. Next, since Π is a P||QMA computation, all queries and
corresponding Vi can be precomputed in polynomial-time. We view the “master circuit” V
as consisting of two phases:
1. (Verification phase) Given supposed proofs for each query, V runs all verification circuits

Vi in parallel, where Vi acts on space Yi ⊗Wi ⊗Xi, for proof register Yi, ancilla register
Wi, and single-qubit output register Xi.

2. (Simulated classical phase) The simulated P circuit C now receives the query answers
X := X1 ⊗ · · · ⊗ Xm as its proof register as well as an ancilla register W0. It outputs a
single qubit to an output register X0.

This completes the construction of V , which acts on Y ⊗W ⊗X , where Y =
⊗

i=1 Yi,W =⊗
i=1Wi, and X =

⊗
i=1 Xi. Crucially, note that given a set of proofs in register Y , V does

not necessarily yield the same answer as Π, since a malicious prover could intentionally send
a “bad” proof to a YES query, flipping the final answer of V .

2. Construction of G. We now plug V into the circuit-to-Hamiltonian construction of
Hallgren, Nagaj, and Narayanaswami [26] to obtain a nearest-neighbor 1D Hamiltonian
G′ = ∆inHin + ∆propHprop + ∆penHpen + Hout, where ∆in,∆prop, and ∆pen are at most
polynomials in n which we will set as needed; we review this construction more closely below.
Set G = G′ −Hout, since in our setting the task of “checking the output” will be delegated
to the observable A. Note that as an intermediate step, [26] maps V to a circuit V ′ which it
then maps to G′; we describe the role of V ′ in the following review. Our construction will
make two trivial assumptions about the behavior of V ′, including how it arranges its query
answers between the verification phase and the simulated classical phase and how it stores
its output in the final timestep; we defer details about these assumptions until we define our
“fine-grained splitting” in step 3 and when we define our observable.

Review of 1D QMA construction [26]. Suppose an arbitrary circuit U acts on n qubits.
Begin by arbitrarily arranging these qubits along a line. The circuit U is then “linearized”,
meaning it is mapped to a new circuit U ′ which consists of R rounds in which each round
applies a sequence of n− 1 two-qubit gates acting on nearest neighbors. The i-th gate in

STACS 2020



20:26 Oracle Complexity Classes and Local Measurements on Physical Hamiltonians

a round acts on qubits (i, i + 1). This “linearization” is achieved in polynomial time by
inserting swap and identity gates as needed, and U ′ is at most polynomially larger than U .

To reduce U ′ to an instance of k-LH, we wish to design a mapping similar to Kitaev’s
circuit-to-Hamiltonian construction for showing QMA-hardness of 5-LH on general geometry
[31]. In both settings, the goal is to design an H which enforces a structure on any state in
its low-energy space. In the construction of [31], H = Hin +Hprop +Hstab +Hout, and the
minimizing state of H has the form of a history state:

|η〉 = 1√
L+ 1

L∑
t=0

Ut · · ·U1 |ψ〉Y |0 · · · 0〉W |t〉C .

Intuitively, Hstab forces a structure on the clock register C of basis states |0〉 , |1〉 , . . . , such
that each will correspond to a timestep of U . Then, Hin ensures the ancilla register W is set
to the all |0〉 state when |t〉 = |0〉. The term Hprop ensures that the workspaces entangled
with timesteps |t〉 and |t+ 1〉 are related by the 2-qubit gate Ut+1. Together, these terms
ensure that a minimizing state |ψhist〉 encodes a correct simulation of the circuit U , and
that all low-energy states are close to |ψhist〉. In fact, a valid |ψhist〉 lies in the nullspace of
Hin +Hprop +Hstab. Finally, Hout penalizes the low-energy space if the output qubit has
overlap with |0〉.

Now in the 1D setting, the goal remains the same: design H such that the structure of
its low-energy state is a superposition over a sequence of states corresponding to timesteps
in the computation of U ′. But, we now appear unable to entangle the workspace with a
separate clock register using nearest neighbor interactions. Instead, the constructions of
[1, 26] employ qudits of higher dimension as a means to label the qubits, with each labeling
encoding a particular timestep. [26] then doubles the number of qudits in order to lower
the necessary number of labels. The construction of [26] thus maps U ′ to a Hamiltonian
H = Hin +Hprop +Hout +Hpen acting on 2nR qudits of dimension 8, where the qudits are
arranged on a 1D line in R blocks of 2n qudits (i.e. one block per round in U ′).

Let us further describe the idea of labeling, or “marking”, of qudits. For example, a qubit
α |0〉+β |1〉 may be encoded as α |A〉+β |B〉 if that qubit is ready for a gate to be applied or
as α |C〉+ β |D〉 if that round’s gate has already been applied, where |A〉 , |B〉 , |C〉 , |D〉 are
some basis states. The possible configurations, or arrangements, of labels along the line form
a set of orthogonal spaces. [26] thus introduces a Hamiltonian term Hpen which enforces a
set of “legal configurations” of the workspace, penalizing all other configurations. We then
map each of the configurations which remain in the low-energy space of H to timesteps in
the computation of U ′, effectively assigning the job of encoding the workspace in a particular
timestep to a particular configuration of qudits. We note that the crucial feature of the set of
legal configurations developed by [26] is that they are sufficiently identifiable solely by 2-local
nearest neighbor checks5 such that penalties can be correctly assigned when constructing
1D analogs of the terms Hin, Hprop, Hout. Similar to the general geometry case of [31], the
construction of [26] enforces that the nullspace of Hin + Hprop + Hpen consists of history
states

|ψhist〉 = 1√
L+ 1

L∑
t=0
|ψt〉 , (16)

5 For clarity, in [26] not all illegal configurations are immediately detectable by Hpen. Any such undetect-
able illegal configurations are instead shown to eventually evolve under Hprop into detectable illegal
configurations.
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such that |ψhist〉 is a superposition over states in each legal configuration, |ψ0〉 encodes
a properly initialized workspace, and each pair |ψt〉 and |ψt+1〉 are related according to
the corresponding timestep of U ′. Finally, again similar to the general geometry case, all
low-energy states must be close to |ψhist〉 (we make these two claims explicit and give proofs
in Lemma 22).

The full description of the labeling, the legal configurations, and their mapping to
timesteps by [26] is rather involved. Here, we introduce sufficient details for our later analysis.
We begin with a single block of 2n qudits, where recall each block is used to encode a single
round (taken from [26]):

I ◦© ◦© · · · ◦© © (17)

Recall the design of U ′ began by arranging the qubits of U arbitrarily on the line; the i-th
qubit on that line corresponds to qudits 2i − 1 and 2i in (17). Thus, each qubit of U ′,
henceforth denoted a logical qubit, is encoded into two consecutive qudits. Each pair of qudits
representing a logical qubit is depicted as separated by a for clarity. The standard basis for
each 8-dimensional qudit is labeled by

{ | ©〉, | �©〉, | ◦©〉, | ×©〉, | I 0〉, | I 1〉, | 0〉, | 1〉 } ,

where, as described earlier, the current state of a qudit can be used to encode a logical qubit
and to label the qudit. The first four states should be thought of as 1-dimensional labels;
they are used to ensure the correct propagation of the circuit and do not encode a logical
qubit. The final four states are used to either label a qudit with I , in which case a logical
qubit is encoded as a superposition of |I 0〉 and |I 1〉, or with , in which case a logical
qubit is encoded as a superposition of | 0〉 and | 1〉. To make this example more concrete,
a product state of (α |0〉+ β |1〉)⊗n on n logical qubits could be encoded as

(α |I 0〉+ β |I 1〉)⊗ | ◦©〉 ⊗ (α | 0〉+ β | 1〉)⊗ | ◦©〉 ⊗ · · · (18)

⊗ (α | 0〉+ β | 1〉)⊗ |©〉 . (19)

Next, here is an example depicting multiple blocks (from Table 2 of [26]):

· · · ×© ×© I ◦© ◦© © ©© ©© ©© ©© · · · , (20)

where the blocks are delineated by . The labels ×© to the left depict “dead” qudits, while
the labels © to the right depict “unborn” qudits. By construction, all logical qubits are
encoded in a block between the dead and unborn labels. In this example, the logical qubits
line up with the beginning of a new block, beginning with I and ending with the first © .

At a high level, the set of legal configurations is mapped to a sequence of timesteps as
follows. The first timestep corresponds to a configuration similar to (17), with n logical
qubits encoded in the leftmost block of 2n qudits, with no ×© labels anywhere, and with the
“gate” label I on the first qudit. The second configuration has the I label shifted to the
right, on the second qudit. Next, the third configuration has the second qudit labeled
and the third qudit labeled I . This propagation of the I label rightwards continues, with
each step corresponding to another legal configuration, until it reaches the end of the block.
As the I passes between logical qubits (i, i+ 1), the corresponding configurations map to
timesteps i and i+ 1 of round 1, and Hprop enforces that configurations are related by the
application of gate U ′i . Thus, when we reach a configuration with I at the end of the block,
i.e. I , all gates in the current round will have been applied. Next, before encoding the
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next round of gates, our goal becomes to shift all of the logical qubits encoded in the current
block rightwards 2n spots into the second block. To do this, the I label becomes a special
�© label and moves to the left one spot at a time until it reaches the end of the logical qubits
(here, the leftwards ). As the label �© moves left, it shifts each logical qubit to the right one
spot, i.e. | �©〉 → |�© 〉. This process repeats, with a label propagating rightwards to
the end of the logical qubits (now past the rightwards ), then the label �© propagating to
the left, shifting logical qubits to the right, and so on, until the logical qubits have shifted
entirely into the second block. Then, the gate label I once again transitions down the line,
with successive configurations encoding the second round of gates of U ′. Throughout this
sequence, © labels to the right are consumed, while all qudits to the left are labeled ×© .
This procedure continues until the entire circuit has been simulated.

Lastly, we observe that the final timestep of U ′ is encoded by [26] in the following
configuration:

· · · ×© ×© ×© ×© ×© ◦© · · · ◦© ◦© I (21)

3. Adding 1-local “sifters”. We now add 1-local Hamiltonian terms which serve to “sift”
through bad proofs, or more accurately to split the ground space of G, so as to force low-energy
states to encode correct query answers. As previously described, even a correct simulation
of the circuit V may not output the correct answer for instance Π if a malicious prover
supplies incorrect proofs to the query registers Yi; in particular, a prover might send a proof
which accepts with low probability even though πi is a YES-instance. Intuitively, we wish to
penalize states encoding a proof |ψi〉 which leads verifier Vi to reject with high probability
when there exists a proof |φi〉 such that Vi would have accepted with high probability (here,
query πi is a YES instance). For answer register Xi, we add a “sifter” penalty term ε |0〉〈0|Xi

,
for ε some inverse polynomial to be set later. These terms are similar to the Hout term from
other Hamiltonian constructions; but, here we are not only concerned about the ground
space but also about the low-energy space. As in other constructions, we must penalize NO
answers enough to ensure the ground space encodes YES answers when possible. But, given
a correct NO answer, the penalty must be small enough that the energy is gapped lower
than any state which encodes an incorrect YES, such as those which by encode an invalid
computation leading to YES.

However, because the encoding enforced by G shifts the block of logical qubits rightwards
along the line as the computation progresses, the location of a particular logical qubit’s
encoding depends on the current timestep. Thus, in order to properly act on logical qubit
Xi, we must be careful to specify the configuration which the penalty term acts on.

We may assume that once V ′ finishes simulating all of the circuits Vi, it arranges each
of the outputs in the first m logical qubits on the line, finishing by the end of some round
r∗ − 1, such that the i-th logical qubit on the line is the qubit which V stored in Xi. (The
value of r∗ can be determined during the construction of V ′.) We may also assume that V ′
then “pauses” by applying only identity gates in round r∗. This round is encoded in block
r∗, and since each block is comprised of 2n qudits, the answers to queries 1 to m are thus
simultaneously stored in qudits

qi := (2n)(r∗ − 1) + (2i− 1). (22)

The m sifter terms are given by

Hout,i = ε |I 0〉〈I 0|qi
,
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where the subscript denotes the qudit which the term acts on and ε is to be set later. Note
that there is a unique legal configuration in which any given qudit is labeled I , so Hout,i
will apply to at most one state |ψt〉 in the history state of Equation (16). Finally, we define
Hout =

∑m
i=1Hout,i.

The final Hamiltonian. Our final Hamiltonian is H := G+Hout = ∆inHin + ∆propHprop +
∆penHpen +Hout, with ∆in,∆prop,∆pen polynomials to be set later.

The observable. Recall the configuration from (21), which corresponds to the final timestep
in the computation of a circuit passed to the construction of [26]. Note that this is the
unique timestep in which the final qudit is labeled I . We assume, without loss of generality,
that V ′ places its final output in the rightmost logical qubit on the line. Thus, we choose
single-qudit observable A = |I 0〉〈I 0|2nR, where the subscript denotes that A acts on the
rightmost qudit on the line, where R is the number of rounds in V ′.

Setting parameters. Let L denote the number of legal configurations which the history
state in (16) is summed over, which is at most polynomial in n. We have that H is k-local
and A is `-local for k := 2 and ` := 1. Set ε = 1/(8m), where recall m is the (polynomial)
number of queries. Then, set p, the completeness/soundness error of each Vi, to some
inverse-exponential in n such that p < ε for all n. Set a = 1/(4L) and b = 3/(4L). We will
set δ to a sufficiently small fixed inverse polynomial in n in the proof of Lemma 23, which
will then set ∆in,∆prop,∆pen to sufficiently large fixed polynomials in n via the proof of
Lemma 22.

This concludes our deterministic polynomial-time mapping of the input P||QMA computa-
tion Π to the 1D instance Π̃ := (H,A, k, `, a, b, δ) of ∀-APX-SIM.

E.1 Correctness
We now prove Theorem 10 by showing correctness of our construction from Section 6. A
number of lemmas required in the proof are deferred to Section E.1.1 to ease the exposition; in
particular, we require Lemma 22, which explicitly proves two facts about the low-energy space
of the construction of [26], Lemma 23, which shows that a history state in our construction
must simultaneously encode nearly correct answers for all valid queries πi, and Lemma 24,
which states a Commutative Quantum Union Bound.

Proof of Theorem 10. Containment in PQMA[log] was already shown for up to O(logn)-local
H by [3], with no restriction on the geometry. Our goal is now to show P||QMA-hardness, which
by Theorem 2 yields PQMA[log]-hardness. We show hardness for the problem ∀-APX-SIM,
which recall from Section 1 trivially reduces to APX-SIM, thus yielding hardness for
APX-SIM. Let Π be a P||QMA computation and map it to the ∀-APX-SIM instance
Π̃ = (H,A, k, l, a, b, δ) as described in Section 6. The proof proceeds in two parts: We first
show that low energy states must necessarily encode correct query answers, and subsequently
apply this to show correctness in YES and NO cases for Π.

Low energy states approximately encode correct query answers. Recall that H = G +
Hout. Let δ, γ denote arbitrary inverse polynomials in n which will be set later in Lemma 23.
Consider any state |ψ〉 such that 〈ψ|H |ψ〉 ≤ λ(H) + δ. Since Hout � 0, 〈ψ|G |ψ〉 ≤ λ(H) + δ

as well. By Lemma 22, for sufficiently large fixed polynomials ∆in,∆prop,∆pen, two statements
thus hold: First, the nullspace S of Hamiltonian G = ∆inHin + ∆propHprop + ∆penHpen is
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the span of all correctly encoded history states, as defined in Equation (16); Second, there
exists a correctly encoded history state |ψhist〉 such that

‖|ψ〉〈ψ| − |ψhist〉〈ψhist|‖tr ≤ γ. (23)

Combining Equation (23) with the Hölder Inequality and the fact that ‖Hout‖∞ = mε yields
that

|Tr [Hout |ψ〉〈ψ|]− Tr [Hout |ψhist〉〈ψhist|]| ≤ γ ‖Hout‖∞ = mεγ.

Since |ψhist〉 is a nullstate of G and 〈ψ|Hout |ψ〉 ≤ 〈ψ|H |ψ〉 ≤ λ(H) + δ, we conclude

〈ψhist|H |ψhist〉 ≤ λ(H) + δ +mεγ. (24)

Next, let I ⊆ { 1, . . . ,m } be the set of indices corresponding to valid queries πi, and for
all i ∈ I define xi = 1 if πi is a YES-instance and xi = 0 if πi is a NO-instance.6 Recall now
from Section 6 that at the beginning of round r∗, V ′ has encoded the answer to the i-th
QMA query in qudit qi (defined in Equation (22)). Let |ψt∗〉 denote the unique (normalized)
state in the superposition comprising |ψhist〉 in which q1 is labeled I (i.e. the first timestep
corresponding to round r∗). Since during round r∗, V ′ only applies identity gates, the qubits
encoded in qudits qi during timestep t∗, in which q1 is labeled I and all other qi are labeled

, are exactly the same as in successive timesteps in which other qi are labeled by I . More
formally, |〈ψt∗ | xi〉qi

|2 = L|〈ψhist|I xi〉qi
|2 for any i ∈ I, and so by Lemma 23,

∣∣∣〈ψt∗ | xi〉qi

∣∣∣2 ≥ 1− ε, (25)

where7 we substitute the label I for when i = 1, and where the factor of L−1 is removed
due to the normalization of |ψt∗〉.

This is for any single query πi, i ∈ I; from this, we can obtain that |ψt∗〉 simul-
taneously encodes nearly correct query answers to all valid queries. To do so, define
Γ := Πi∈I | xi

〉〈 xi
|qi

(where again, we replace label I for when i = 1). Then, by
the Commutative Quantum Union Bound (Lemma 24),

〈ψt∗ |Γ |ψt∗〉 ≥ 1− |I | ε ≥ 1−mε. (26)

It follows that we may write |ψt∗〉 = α |φ1〉 + β |φ2〉 for unit vectors |φ1〉 , |φ2〉 such that
Γ |φ1〉 = |φ1〉 and Γ |φ2〉 = 0, and where α, β ∈ C, |α|2 + |β |2 = 1, and |α|2 ≥ 1 − mε.
Intuitively, |φ1〉 is the part of |ψt∗〉 that encodes correct strings of query answers on I, while
|φ2〉 encodes strings with at least one incorrect query answer in I – for clarity, |φ1〉 may
encode a superposition of multiple distinct correct strings of query answers, since queries
with indices not in I may be answered arbitrarily.

6 Without loss of generality, we may assume at least one query is valid (I 6= ∅). This is because if all
queries are invalid, then all simulations of the P circuit C must output the same answer no matter the
sequence of query answers C receives. Thus, all history states will encode the same final answer, and α
(defined after (26)) equals 1, satisfying the lower bound found of α ≥ 1−mε.

7 We implicitly apply identity on all qudits other than qi, i.e.
∣∣∣〈ψhist| xi〉qi

∣∣∣2 :=

Tr
[
|ψhist〉〈ψhist|

(
I ⊗ | xi〉〈 xi |qi

⊗ I
)]

.
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Application to YES versus NO cases for Π. We have shown that for any low energy state
|ψ〉, there exists a history state |ψhist〉 close to |ψ〉 which has large amplitude on all the
correct query answers for set I in round r∗. We can now analyze the YES and NO cases for
our PQMA[log] problem Π.

Recall that |φ1〉 may be a superposition over multiple correct query strings (due to invalid
queries πi for i 6∈ I). Nevertheless, since the classical circuit C for the PQMA[log] machine is
required to output the same answer regardless of how invalid queries are answered (i.e. for
any given correct string of query answers), all query strings which |φ1〉 is a superposition over
lead C to output the same, correct final answer. Thus, setting y = 0 if Π is a YES-instance
and y = 1 if Π is a NO-instance, we have∣∣∣〈ψhist|A |ψhist〉 −

y

L

∣∣∣ ≤ mε

L
,

where the factor of L−1 is due to the fact A applies only to the final configuration/time step.
Combining Equation (23) with the Hölder inequality yields that

|Tr [A |ψ〉〈ψ|]− Tr [A |ψhist〉〈ψhist|]| ≤ γ,

since ‖A‖∞ = 1, and so∣∣∣〈ψ|A |ψ〉 − y

L

∣∣∣ ≤ mε

L
+ γ,

Given that we set δ = γ = 1/(256m2L) < 1/(8L) in Lemma 23 and ε = 1/(8m), we have that
γ + mε/L < 1/(4L). We conclude that for all low-energy states |ψ〉 (i.e. states satisfying
〈ψ|H |ψ〉 ≤ λ(H) + δ), if Π is a YES-instance then 〈ψ|A |ψ〉 ≤ 1/(4L) (i.e. we have a YES
instance of ∀-APX-SIM), and if Π is a NO-instance then 〈ψ|A |ψ〉 ≥ 3/(4L) (i.e. we have a
NO instance of ∀-APX-SIM), as desired. J

E.1.1 Required lemmas for proof of Theorem 10
We begin by restating a known lemma and corollary.

I Lemma 20 (Kempe, Kitaev, Regev [28]). Let H = H1 +H2 be the sum of two Hamiltonians
operating on some Hilbert space H = S + S⊥. The Hamiltonian H1 is such that S is a zero
eigenspace and the eigenvectors in S⊥ have eigenvalue at least J > 2 ‖H2‖∞. Then,

λ(H2|S)−
‖H2‖2∞

J − 2 ‖H2‖∞
≤ λ(H) ≤ λ(H2|S),

where recall λ(H2|S) denotes the smallest eigenvalue of H2 restricted to space S.

I Corollary 21 ([22]). Let H = H1 +H2 be the sum of two Hamiltonians operating on some
Hilbert space H = S + S⊥. The Hamiltonian H1 is such that S is a zero eigenspace and the
eigenvectors in S⊥ have eigenvalue at least J > 2 ‖H2‖∞. Let K := ‖H2‖∞. Then, for any
δ ≥ 0 and vector |ψ〉 satisfying 〈ψ|H |ψ〉 ≤ λ(H) + δ, there exists a |ψ′〉 ∈ S such that

‖|ψ〉〈ψ| − |ψ′〉〈ψ′|‖tr ≤ 2
(
K +

√
K2 + δ(J − 2K)
J − 2K

)
.

We now prove the lemmas required for Theorem 10.

I Lemma 22. Assume the notation of Section 6. For G = ∆inHin + ∆propHprop + ∆penHpen,
the following hold:
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1. For sufficiently large (efficiently computable) polynomials ∆in,∆prop,∆pen, the null space
of G is the span of all correctly encoded history states, i.e. of the form in Equation (16).

2. For any fixed inverse polynomials δ and γ, there exist efficiently computable polynomials
∆in,∆prop,∆pen such that for any |ψ〉 attaining 〈ψ|G |ψ〉 ≤ λ(G) + δ, there exists a
correctly encoded history state |ψhist〉 such that

‖|ψ〉〈ψ| − |ψhist〉〈ψhist|‖tr ≤ γ.

Proof. The analysis of G is more subtle than that of, say, the 5-local Kitaev circuit-to-
Hamiltonian construction [31]. The latter required the analysis of two orthogonal subspaces
acted on invariantly by the Hamiltonian in question; the span of all correctly encoded history
states, and the span of all states with an incorrectly encoded clock register (i.e. illegal
configurations). In [26], however, due to the restrictions of encoding in 1D, there are two
types of illegal configurations which can arise – those which are detectable by local checks,
and those which are not – and G does not act invariantly on the spaces of legal and illegal
configurations. The soundness analysis of the QMA-hardness construction of [26] (see Section
6 therein, which we follow below) hence independently analyzes three types of subspaces
which are acted on invariantly by Hprop: (1) The span of legal configurations and certain
locally detectable illegal configurations, (2) the span of certain other locally detectable illegal
configurations, and (3) the span of illegal configurations which are not locally detectable.
We shall henceforth refer to these subspaces as S1, S2, and S3, respectively.

Proof of claim 1. This claim is implicit in [26]; we sketch a proof to make it explicit
here. Claim 2 of [26] and the subsequent discussion explicitly show that any valid history
state is a null state of G. For the reverse containment, Section 6.2 of [26] shows that for
sufficiently large polynomials ∆in,∆prop,∆pen, λ((∆propHprop + ∆penHpen)|S3) ∈ Ω(1). That
λ(G|S2) ≥ ∆pen follows since Hpen is a sum of pairwise commuting projectors. Thus, Null(G)
resides in S1. Section 6.1 of [26] shows that Null(Hprop|S1∩Null(Hpen)) is spanned by valid
history states. We conclude that the span of all valid history states contains Null(G).

Proof of claim 2. We know from claim 1 that Null(G) is precisely the span of all correctly
encoded history states. Let C denote the orthogonal complement of Null(G). Then, we
know from the proof of claim 1 that λ(G|C∩S2) ≥ ∆pen ∈ Ω(1), and that λ((∆propHprop +
∆penHpen)|C∩S3) ∈ Ω(1). (Here we have used the fact that S2 ∪ S3 ⊆ C.) Since δ is assumed
to be inverse polynomial in n, and since we know from claim 1 that λ(H) ≤ 0, it follows that
no vector |ψ〉 from S2 or S3 can attain 〈ψ|G |ψ〉 ≤ λ(G) + δ.

We are thus reduced to the case |ψ〉 ∈ S1, which we prove using three applications of
Corollary 21. (To reduce notation, in the remainder of this proof all operators are implicitly
restricted to S1.) In the first application, let H1 = ∆penHpen and H2 = ∆inHin +∆propHprop.
Suppose 〈ψ|H1 + H2 |ψ〉 ≤ λ(H) + δ. Then by Lemma 21, there exists a vector |ψ′〉 ∈
Null(Hpen) such that

‖|ψ〉〈ψ| − |ψ′〉〈ψ′|‖tr ≤ 2
(
K1 +

√
K2

1 + δ(J1 − 2K1)
J1 − 2K1

)
=: 2γ1,

for K1 := ‖H2‖∞ and J1 > 2K1. (Note that since ∆penHpen is a sum of commuting
projectors, its smallest non-zero eigenvalue is at least ∆pen, i.e. J ≥ ∆pen.) By the Hölder
inequality,

|Tr((H1 +H2) |ψ〉〈ψ|)− Tr((H1 +H2) |ψ′〉〈ψ′|)| ≤ 2γ1 ‖H1 +H2‖∞ =: ε1. (27)
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Combining these facts, we have

〈ψ′| (H1 +H2)|Null(Hpen) |ψ′〉 = 〈ψ′| (H1 +H2) |ψ′〉
≤ λ((H1 +H2)) + δ + ε1

≤ λ((H1 +H2)|Null(Hpen)) + δ + ε1

=: λ((H1 +H2)|Null(Hpen)) + δ2, (28)

where the first statement holds since |ψ′〉 ∈ Null(Hpen), the second by Equation (27), and
the third by the Projection Lemma (this follows directly since projections can only increase
the smallest eigenvalue).

We now repeat the process for H1 = ∆propHprop|Null(Hpen) and H2 = ∆inHin|Null(Hpen).
The key observation (used also in [26]) is that restricted to S1 ∩ Null(Hpen), Hprop is now
positive semidefinite, has a 1-dimensional null space spanned by the correct history state
(the action of Hprop ignores the initial setting of ancilla qubits, including the proof register,
which in general leads to multiple correct history states), and its smallest non-zero eigenvalue
is at least 1/(2(L+ 1)2) (recall L is the number of time steps a valid history state sums over).
Thus, by Lemma 21, there exists a vector |ψ′′〉 ∈ Null(Hpen) ∩Null(Hprop) such that

‖|ψ′〉〈ψ′| − |ψ′′〉〈ψ′′|‖tr ≤ 2
(
K2 +

√
K2

2 + δ2(J2 − 2K2)
J2 − 2K2

)
=: 2γ2,

for K2 := ‖H2‖∞ and J2 > 2K2. Note that J2 ≥ ∆prop/(2(L + 1)2). By the Hölder
inequality,

|Tr((H1 +H2) |ψ′〉〈ψ′|)− Tr((H1 +H2) |ψ′′〉〈ψ′′|)| ≤ 2γ2 ‖H1 +H2‖∞ =: ε2,

which yields

〈ψ′′| (H1 +H2)|Null(Hprop) |ψ′′〉 = 〈ψ′′| (H1 +H2) |ψ′′〉
≤ λ((H1 +H2)) + δ2 + ε2

≤ λ((H1 +H2)|Null(Hprop)) + δ2 + ε2

=: λ((H1 +H2)|Null(Hprop)) + δ3.

Finally, we repeat the process for H1 = ∆inHin|Null(Hpen)∩Null(Hprop) and H2 = 0. Since by
claim 1 we know the joint null space of Hin, Hprop, Hpen is non-empty, by Lemma 21, there
exists a vector |ψ′′′〉 ∈ Null(Hpen) ∩Null(Hprop) ∩Null(Hin) such that

‖|ψ′′〉〈ψ′′| − |ψ′′′〉〈ψ′′′|‖tr ≤ 2
√
δ3
J3

=: 2γ3,

for J3 > 0. Note that J3 ≥ ∆in since Hin is a sum of commuting projectors. By claim 1,
since |ψ′′′〉 is in the joint null space of Hin, Hprop, Hpen, it is a correctly encoded history state;
denote it |ψhist〉. By the triangle inequality we have

‖|ψ〉〈ψ| − |ψhist〉〈ψhist|‖tr ≤ 2(γ1 + γ2 + γ3).

The claim now follows by observing that all variables involved, i.e. δ2, δ3, ε1, ε2, γ1, γ2, γ3, J1,
J2, J3, decrease inverse polynomially in (a non-empty subset of) polynomials ∆in,∆prop,∆pen.
Thus, for any desired target accuracy q, we may attain the claim by setting ∆in,∆prop,∆pen
as sufficiently large polynomials. (Note that this requires upper bounding terms of the form
K2 := ‖H2‖∞, which is easily done via triangle inequality of the spectral norm and the fact
that projections can only decrease maximum eigenvalues.) J
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I Lemma 23. Assume the notation of Section E.1. For all i ∈ I, it holds that∣∣∣〈ψhist|I xi
〉qi

∣∣∣2 ≥ 1− ε
L

, (29)

where recall qi is the index of the qudit which encodes the output corresponding to query πi
following the verification phase.

Proof. For clarity, the factor of L−1 comes from the L configurations which |ψhist〉 is a sum
over. Recall there is a unique configuration in which any given qudit is labeled I , implying
all history states |ψhist〉 satisfy∣∣∣〈ψhist|I 0〉qi

∣∣∣2 +
∣∣∣〈ψhist|I 1〉qi

∣∣∣2 = 1
L
. (30)

We prove our claim by contradiction via an exchange argument. Suppose there exists a valid
query8 πj with correct answer xj such that∣∣∣〈ψhist|I xj 〉qj

∣∣∣2 < 1− ε
L

.

Since |ψhist〉 is a correctly encoded history state, we claim πj must be a YES-instance. For if
πj were a NO-instance, then all simulations of Vj (on any possible proof) output NO with
probability at least 1− p. Thus, |ψhist〉 always encodes an output qubit such that∣∣∣〈ψhist|I 0〉qj

∣∣∣2 ≥ 1− p
L
≥ 1− ε

L
,

which would contradict our supposition.
Given that πj is a YES-instance, we have that

∣∣∣〈ψhist|I 1〉qj

∣∣∣2 ≤ (1 − ε)/L, and so
by Equation (30), 〈ψhist|Hout,j |ψhist〉 ≥ ε2/L. Further, since πj is a YES-instance, there
exists a QMA proof |ω〉 which causes Vj to output YES with probability at least 1− p. By
exchanging the QMA proof which |ψhist〉 encodes for circuit Vj with the proof |ω〉, we obtain
a new history state |ψ′hist〉 which satisfies∣∣∣〈ψ′hist|I 1〉qj

∣∣∣2 ≥ 1− p
L

,

and so 〈ψ′hist|Hout,j |ψ′hist〉 ≤ pε/L. Hence,

〈ψhist|Hout,j |ψhist〉 − 〈ψ′hist|Hout,j |ψ′hist〉 ≥
(ε− p)ε

L
, (31)

i.e. flipping the incorrect query answer saves a non-trivial energy penalty on Hout,j .
We now use this to obtain the desired contradiction. Recall that H = G + Hout. We

make two observations: First, because all the QMA queries are made in parallel, flipping the
answer to query πj does not affect the other queries the P machine makes or the answers it
receives. Thus, |ψhist〉 and |ψ′hist〉 obtain the same energy on all terms of Hout other than
Hout,j , and Equation (31) holds for Hout in place of Hout,j . (Analyzing adaptive queries,
rather than parallel, would require that penalties for later queries be carefully weighted
less than penalties for earlier queries [3], leading to a significantly more involved analysis.)

8 If all queries are invalid, then Lemma 23 holds vacuously.
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Second, both |ψhist〉 and |ψ′hist〉 are null states of G, and so we may substitute H for Hout,
yielding

〈ψhist|H |ψhist〉 − 〈ψ′hist|H |ψ′hist〉 ≥
(ε− p)ε

L
. (32)

Now, recall from Equation (24) that 〈ψhist|H |ψhist〉 ≤ λ(H) + δ + mεγ. Since δ and
γ are inverse polynomials which (by Lemma 22) we are free to choose as needed (the
choice of δ and γ, in turn, will mandate the choices of ∆in,∆prop,∆pen via Lemma 22),
we set δ = γ = 1/(256m2L) (where recall L and m are fixed polynomials in n). These
choices of δ, γ satisfy δ +mεγ < (ε− p)ε/L, which combined with Equation (32) gives that
〈ψhist|H |ψhist〉 > λ(H) + δ +mεγ, i.e. |ψhist〉 could not have been close to the ground state
energy of H. Hence, we have a contradiction, completing the proof. J

Finally, we require a known quantum analogue of the union bound for commuting operators
(see, e.g. [38]). Generalizations to non-commuting projectors are given in [43, 17, 38].

I Lemma 24 (Commutative Quantum Union Bound). Let {Pi }mi=1 be a set of pairwise
commuting projectors, each satisfying 0 � Pi � I. Then for any quantum state ρ,

1− Tr(Πm · · ·P1ρP1 · · ·Πm) ≤
m∑
i=1

Tr((I − Pi)ρ).

The simple proof of Lemma 24 is given below for completeness.

Proof of Lemma 24. We proceed by induction on m. The case of m = 1 is trivial. Consider
m > 1. Since the Pi pairwise commute, Tr(Pm · · ·P1ρP1 · · ·Pm) = Tr(Pm · · ·P1ρ) :=
Tr(PmMρ) for brevity, and M is a projector. Then,

1− Tr(PmMρ) = Tr((I − Pm)Mρ) + Tr(Pm(I −M)ρ) + Tr((I − Pm)(I −M)ρ)
= Tr((I − Pm)ρ) + Tr((I −M)ρ)− Tr((I − Pm)(I −M)ρ)
≤ Tr((I − Pm)ρ) + Tr((I −M)ρ),

where the second equality holds since Tr((I − Pm)(I −M)ρ) equals

Tr((I − Pm)ρ) + Tr((I −M)ρ)− (Tr((I − Pm)Mρ)+
Tr(Pm(I −M)ρ) + Tr((I − Pm)(I −M)ρ)).

Applying the induction hypothesis completes the proof. J

F General simulations

In this section we will give a full proof of Lemma 15 and show that any efficient simulation
will preserve hardness of ∀-APX-SIM, not just the special case considered in Definition 14.
To state the full definition of simulation, we must first introduce the notion of an encoding.

I Definition 25 ([13]). We say a map E : B(H)→ B(H′) is an encoding if it is of the form

E(M) = V (M ⊗ P +M ⊗Q)V †

where M denotes the complex conjugate of M , P and Q are orthogonal projectors (i.e.
PQ = 0) on an ancilla space E; and V is an isometry V : H⊗ E → H′.

When H is a many body system with a decomposition H =
⊗n

i=1Hi, we say E is a local
encoding if E =

⊗n
i=1Ei such that:
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V =
⊗n

i=1 Vi where each Vi acts on Hi ⊗ Ei.
for each i, there exist orthogonal projectors PEi

and QEi
on E which act non-trivially

only on Ei, and satisfy PPEi = P and QQEi = Q.
We are now ready to give the full definition of simulation.

I Definition 26 ([13]). We say that H ′ is a (∆, η, ε)-simulation of H if there exists a local
encoding E(M) = V (M ⊗ P +M ⊗Q)V † such that:
1. There exists an isometry Ṽ : H⊗ E → H′ such that ‖Ṽ − V ‖ ≤ η; and that the encoding
Ẽ(M) = Ṽ (M ⊗ P +M ⊗Q)Ṽ † satisfies Ẽ(I) = P≤∆(H′).

2. ‖H ′≤∆ − Ẽ(H)‖ ≤ ε.
We say that a family F ′ of Hamiltonians can simulate a family F of Hamiltonians if, for
any H ∈ F and any η, ε > 0 and ∆ ≥ ∆0 (for some ∆0 > 0), there exists H ′ ∈ F ′ such that
H ′ is a (∆, η, ε)-simulation of H. We say that the simulation is efficient if, in addition, for
H acting on n qudits, ‖H ′‖ = poly(n, 1/η, 1/ε,∆); H ′ and {Vi } are efficiently computable
given H, ∆, η and ε; and each local isometry Vi in the decomposition V =

⊗
i Vi maps to

O(1) qudits.

We note that Definition 14 is just the special case of Definition 26 where E(M) = VMV †.
We are now ready to restate and prove Lemma 15.

I Lemma 15 (Simulations preserve hardness of ∀-APX-SIM). Let F be a family of Hamilto-
nians which can be efficiently simulated by another family F ′. Then F-∀-APXSIM reduces
to F ′-∀-APXSIM.

Proof. For brevity, let P≤∆ := P≤∆(H′). Let ρ′ = |ψ′〉〈ψ′| be a state on H′ such that
〈ψ′|H ′ |ψ′〉 ≤ δ′ and let ρ̃ = P≤∆ρ

′P≤∆/Tr(P≤∆ρ
′), so that by Lemma 19, we have ‖ρ′ −

ρ̃‖1 ≤ 2
√

δ′

∆−λ(H′) .
Since P≤∆ commutes with H ′, we have

Tr(H ′ρ′) = Tr(H ′P≤∆ρ
′P≤∆) + Tr(H ′(I − P≤∆)ρ′(I − P≤∆)) (33)

= pTr(H ′ρ̃) + (1− p) Tr(H ′ρ̃⊥) ≥ Tr(H ′ρ̃), (34)

where p = Tr(P≤∆ρ
′), ρ̃⊥ = (I −P≤∆)ρ′(I −P≤∆)/Tr((I −P≤∆)ρ′), and the final inequality

follows because Tr(H ′ρ̃⊥) ≥ ∆ ≥ Tr(H ′ρ̃).
Now let

ρ = TrE
(
Ṽ †ρ̃Ṽ (I ⊗ P )

)
+ TrE

(
Ṽ †ρ̃Ṽ (I ⊗Q)

)
and note that for any operator A on H, we have Tr(Ẽ(A)ρ̃) equals

Tr
(
Ṽ (A⊗ P +A⊗Q)Ṽ †ρ̃

)
= Tr

(
A⊗ PṼ †ρ̃Ṽ

)
+ Tr

(
A⊗QṼ †ρ̃Ṽ

)
= Tr(Aρ).

Therefore,

Tr(Hρ) = Tr(Ẽ(H)ρ̃)

≤ Tr(H ′ρ̃) + ‖H ′≤∆ − Ẽ(H)‖
≤ Tr(H ′ρ′) + ε

≤ λ(H ′) + δ′ + ε

≤ λ(H) + δ′ + 2ε,
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where the second inequality follows from Equation (34) and the last inequality from Lemma
27 of [13], which roughly states that eigenvalues are preserved up to additive error ε in a
simulation.

At this point the proof diverges from the simpler case because ρ may be a mixed state,
even when ρ′ = |ψ′〉〈ψ′| is pure. Despite having a bound on Tr(Hρ), this bound may not hold
for all pure states in the spectral decomposition of ρ. Let ρδ = PδρPδ/Tr(Pδ), where Pδ is the
projector onto eigenvectors of H with energy less than δ. By Lemma 19, ‖ρ−ρδ‖1 ≤ 2

√
δ′+2ε
δ .

We will use the spectral decomposition of ρδ =
∑
i µi|φi〉〈φi| where the |φi〉 are orthogonal

states with energy 〈φi|H |φi〉 ≤ λ(H) + δ and thus, for observable A given as part of of
F-∀-APXSIM input,

Tr(Aρδ) =
∑
i

µi 〈φi|A |φi〉
{
≤ a in a YES instance
≥ b in a NO instance.

Let U = V Ṽ † , which satisfies U Ẽ(A) = E(A)U for any A, and so E(I)Uρ̃U† =
U Ẽ(I)ρ̃U† = Uρ̃U†. Now we need to choose A′ such that A′E(I) = E(A). (Two notes:
First, E(I) 6= I necessarily, as P and Q need not sum to identity. Second, setting A′ = E(A)
is not necessarily desirable, as P and Q may be non-local projectors.) For example if
A = Bi ⊗ I, let A′ = Vi(Bi ⊗ PEi

+ Bi ⊗ QEi
)V †i ⊗ I. We note that the locality of A′

depends on the number of qudits which Vi maps to, which is O(1) by the definition of efficient
simulation. Then

Tr(Aρ) = Tr
(
Ẽ(A)ρ̃

)
= Tr

(
E(A)Uρ̃U†

)
= Tr(A′E(I)Uρ̃U†) = Tr(A′Uρ̃U†)

and therefore

|Tr(A′ρ′)− Tr(Aρδ)| ≤ |Tr(A′ρ′)− Tr(A′Uρ̃U†)|+ |Tr(Aρ)− Tr(Aρδ)|
≤ ‖A′‖

(
‖ρ′ − ρ̃‖1 + ‖ρ̃− Uρ̃U†‖1

)
+ ‖A‖‖ρ− ρδ‖1

≤ ‖A‖

(
2

√
δ′

∆− λ(H ′) + 2η + 2
√
δ′ + 2ε
δ

)
,

We note that ‖ρ̃−Uρ̃U†‖1 ≤ 2η follows from ‖U−Ṽ Ṽ †‖ ≤ η, and that Ṽ Ṽ †ρ̃ = P≤∆ρ̃ = ρ̃.
Therefore we just need to choose ∆, ε, η, δ′ such that this is less than (b− a)/3 and then set
a′ = a+ (b− a)/3 and b′ = b− (b− a)/3. J
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Abstract
A fundamental question that has been studied in cryptography and in information theory is whether
two parties can communicate confidentially using exclusively an open channel. We consider the
model in which the two parties hold inputs that are correlated in a certain sense. This model has
been studied extensively in information theory, and communication protocols have been designed
which exploit the correlation to extract from the inputs a shared secret key. However, all the
existing protocols are not universal in the sense that they require that the two parties also know
some attributes of the correlation. In other words, they require that each party knows something
about the other party’s input. We present a protocol that does not require any prior additional
information. It uses space-bounded Kolmogorov complexity to measure correlation and it allows the
two legal parties to obtain a common key that looks random to an eavesdropper that observes the
communication and is restricted to use a bounded amount of space for the attack. Thus the protocol
achieves complexity-theoretical security, but it does not use any unproven result from computational
complexity. On the negative side, the protocol is not efficient in the sense that the computation of
the two legal parties uses more space than the space allowed to the adversary.
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1 Introduction

The goal of a secret key agreement protocol is to allow two parties that communicate
through a public channel to obtain a shared string that is secret in some reasonable sense
(e.g., information-theoretical, complexity-theoretical, or some other sense) to anyone that
has observed the communication. There are some well-known such protocols, such as the
Diffie-Hellman protocol, or various public-key cryptosystems, that are efficient and used in
the real world. However, they have the disadvantage of relying on some unproven hardness
conjectures in computational complexity. Another setting is to assume that the two parties
hold at the beginning of the protocol pieces of information that have a certain degree of
correlation. Then, in some circumstances, it is possible to compute the shared secret key
without any unproven assumption. For a simple illustration, suppose that Alice holds a line
L in the 2-dimensional affine space, and Bob holds a point P which lies on L. Then Alice
sends Bob the slope of L, after which Bob, knowing that his P is on L, can compute the
intercept of L. Now, both Alice and Bob have the intercept of L, which they can use as
a secret key, because the adversary has only seen the slope, which is independent of the
intercept.
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In this paper, we consider the latter type of secret key agreement protocols. Thus, Alice
starts with a string x, Bob starts with y, and, after several rounds of interacting via messages
exchanged over a public channel, they obtain at the end of the protocol a common secret
key, that is a string z which is random conditioned by the transcript of the protocol. The
protocol is probabilistically computable, i.e., there exists a probabilistic algorithm so that
Alice computes each of her messages by running the algorithm on her input and on the
messages that she has received from Bob so far, and Bob computes his messages similarly.
As in the above example, if x and y are correlated in some way, one can hope to use the
information that is common to these strings to extract with high probability a secret key.

The study of this scenario has a long history in Information Theory and the common flavor
of the results is that for many interpretations of “correlated,” secret key agreement is possible.
Leung [7], Bennett et al. [3], Maurer [8], Ahlswede and Csiszár [1] have started an extensive
research line dedicated to the case when x and y are generated by a stochastic process, whose
properties describe their correlation (see the survey of Narayan and Tyagi [11]). Recently,
Romashchenko and Zimand [13] have studied this problem in the very general framework of
Algorithmic Information Theory using Kolmogorov complexity to gauge correlation without
using any generative model for the provenance of x and y. 1

In all these works, Alice and Bob possess at the beginning of the protocol, in addition
to x and y, some information about how these strings are correlated. For instance, in
the above example, Bob knows that the point P is on the line L. In the scenarios based
on generative models, Alice and Bob know various attributes of the joint distribution of
the two random variables (X,Y ) which describe the stochastic process that generates the
pair (x, y), such as entropy, ergodic properties, etc. In the algorithmic information theory
setting used in [13], Alice and Bob know the complexity profile of (x, y), which is the 3-tuple
(C(x), C(y), C(x, y)), where C(·) denotes Kolmogorov complexity. (Throughout this paper,
C(x), called the Kolmogorov complexity of x or the minimal description length of x, is the
length of a shortest program that when executed by a universal Turing machine prints x.)

Can Alice and Bob agree on a secret key without any additional prior information? A
disclaimer: This is not really a problem relevant for cryptography, because the protocols are
not efficient. We rather view it as a question about the fundamental limits of information
processing and communication. The challenge is that Alice and Bob have to detect a type
of correlation of their inputs through rounds of communication without leaking too much
information to the eavesdropper, so that they can compute a shared secret key of reasonable
length.

What is a reasonable length of the secret key? The relevant parameter that comes into
play is the mutual information of x and y, denoted I(x : y), which intuitively represents the
amount of information that is shared by x and y. In case we use Kolmogorov complexity
to measure the amount of information, I(x : y) is defined as C(x) + C(y) − C(x, y), and,
up to logarithmic precision, is also equal to C(x) − C(x | y) and to C(y) − C(y | x). It is
shown in [13] (extending a classical result from [1] which is valid for inputs generated by
memoryless processes, and which is using Shannon entropy to measure information), that
no computable protocol (even probabilistic) can obtain a shared secret key longer than the
mutual information of the inputs x and y. On the other hand, a protocol is presented in
[13] that with high probability produces a shared secret of length I(x : y) (up to logarithmic

1 We point out that unlike the protocols based on hardness assumption (e.g., Diffie-Hellman protocol)
which achieve complexity-theoretic security and are efficient, the protocols in the works above achieve
information-theoretic security but do not run in polynomial time.
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precison), provided, as mentioned above, the two parties know the complexity profile of the
inputs. Thus, the above discussion suggests that it is natural to aim for a shared secret
key whose length is equal to the mutual information of the inputs, for some concept of
information that measures the detectable correlation.

Our contribution. We identify space-bounded Kolmogorov complexity as a concept of
information that allows secret key agreement without any prior information or special setup
(e.g., shared randomness, special extra channel) between the two parties. The space-bounded
Kolmogorov complexity with space bound S of a string x, denoted CS(x), is similar to
standard Kolomogorov complexity except that the universal Turing machine is restricted to
use at most S cells on the working tape (see Section 1.1 for the formal definition). We show
that the correlation induced by space-bounded Kolmogorov complexity can be determined
without revealing much about x and y, which, in turn, allows the parties to compute a
common secret key.

The protocols that we design produce a key z that is random given the transcript in the
sense of space-bounded Kolmogorov complexity, where the transcript is the set of messages
sent by Alice and Bob. Formally, we require that CS(z | transcript) is close to the length of
z (denoted |z|), for some space bound S. In other words, an eavesdropper which is bounded
to use space S and knows the transcript, needs essentially |z| bits to find the secret key z,
which is the same as if she did not know the transcript. If CS(z | transcript) ≥ |z| −∆, we
say that ∆ is the randomness deficiency of z with respect to the transcript, and thus we want
to obtain z with small randomness deficiency. We also want the length of z to be close to the
mutual information of x and y, which in the case of space-bounded Kolmogorov complexity
is defined as CS1(x)− CS2(x | y) for space bounds S1 and S2. We next present our results.

We recall that a function S(n) is fully space constructible if there is a Turing machine M
that uses exactly S(n) cells for every natural number n and for every input of length n.

I Theorem 1. Let S be any fully space constructible function.such that S(n) ≥ n.
There is a randomized protocol that allows Alice on input x (an n-bit string) and Bob on

input y (of arbitrary length) to obtain with probability (1− ε) a common string z such that
(i) |z| ≥+ Cλ1·S(n)(x)− Cλ2·S(n)(x | y),
(ii) CS(n)(z | transcript) ≥+ |z| −∆,

where ∆ ≤ Cλ3·S(n)(x) − Cλ4·S(n)(x), λ1, λ2, λ3, λ4 are constants that depend only on the
universal Turing machine, and ≥+ hides a loss of precision bounded by O(log(n/ε)).

Note: The notation a ≥+ b means that a ≥ b−α, where α is the specified loss of precision.

The communication complexity of the protocol in the above theorem is n2+O(n log(1/ε))+
CS(n)(x | y), which is very large. The protocol in [13] (in which the parties also hold the
complexity profile of (x, y)) has communication complexity roughly C(x | y), which is shown
to be optimal. Thus, in our case, it would be desirable to have a protocol with communication
complexity close to CS(n)(x | y). The protocol in the next theorem has information complexity
CS(n)(x | y) plus a polylogarithmic term and communication complexity 2CS(n)(x | y) plus
a polylogarithmic term.

I Theorem 2 (Main Result). Let S be a fully space constructible function such that S(n) ≥
p0(n), where p0(n) is a fixed polynomial that only depends on the universal Turing machine.

There is a randomized protocol that allows Alice on input x (an n-bit string) and Bob on
input y (of arbitrary length) to obtain with probability (1− ε) a common string z such that
(i) |z| ≥+ CS(n)(x)− CS(n)(x | y),
(ii) CS(n)(z | transcript) ≥ |z| −∆,
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where ∆ ≤+ Cλ
−1S(n)(x)− Cλ·S(n)(x), λ is a constant that depends only on the universal

Turing machine, and ≥+ hides a loss of precision bounded by O(log3(n/ε)).
Furthermore, the length of the transcript is bounded by 2CS(n)(x | y) +O(log3(n/ε)).

In the above theorems, the key z has ∆, the randomness deficiency conditioned by the
transcript, bounded by CS′(n)(x) − CS′′(n)(x), where S′ and S′′ differ by a multiplicative
constant. Thus, intuitively, ∆ is small. A particularly favorable case is when x is a shallow
string. A string x is S-shallow if CS(n)(x) =+ C(x), i.e., if S(n) is enough space to allow the
construction of x from a description which is close to a shortest description. For every space
bound S, most strings are S-shallow and in case x is such a string then ∆ =+ 0.

1.1 Prerequisites
The S-space bounded Kolmogorov complexity of x conditioned by y with respect to a Turing
machine M , denoted CSM (x | y), is defined by

CSM (x | y) = min{|p| |M(p, y) = x and M uses at most S cells.}

In the case of space-bounded Kolmogorov complexity, simulation by the universal machine
incurs a constant blow-up in space usage. More precisely, there exists a universal Turing
machine U and a constant γ > 1 such that for any space bound S, for any Turing machine
M and for all strings x, y,

CγSU (x | y) ≤ CSM (x | y) +O(1).

As usual, we fix a universal machine U , and denote more simply CS(·) instead of CSU (·). Also,
in case the string y used in the condition is the empty string, we drop the condition in the
notation.

The chain rules for space-bounded Kolmogorov complexity are as follows: There exists a
constant γ > 1 such that for any space bound S, it holds that:

CγS(x, y) ≤ CS(x) + CS(y | x) +O(log(|x|+ |y|)),
CS(x, y) ≥ CγS(x) + CγS(y | x) +O(log(|x|+ |y|)). (1)

To simplify the writing of expressions, we sometimes use the notation CS(i)(. . . ) instead
of Cγi·S(. . . ), where S is a space bound and γ (or sometimes λ) is a constant which is clearly
defined in the context. For instance, the last inequality will be written as CS(0)(x, y) ≥
CS(1)(x) + CS(1)(y | x) +O(log(|x|+ |y|).

2 Outline of the proofs

The proofs of both Theorem 1 and Theorem 2 have the same structure. We present an
outline, in which, for simplicity, we skip some technical details and ignore small factors in
the quantitative relations. Recall that initially Alice holds x and Bob holds y. The protocols
in both proofs have two phases: (1) Information reconciliation, in which Alice communicates
x to Bob by sending him just enough information that allows him to obtain x given his y,
and (2) Secret key construction, in which, separately, Alice and Bob compute the secret key
z. All the communication happens in the Information reconciliation phase.

Phase 1 (Information reconciliation): First, Alice and Bob agree on a space bound
S = S(n). Next, Alice sends Bob a randomized hash function h. The goal is for Alice to send
Bob, as a fingerprint, some prefix of h(x) that permits Bob to construct Alice’s string x using
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the fingerprint and his string y. To avoid sending more information than what Bob needs,
Alice sends the bits of h(x) sequentially one bit per round. At each round, Bob attempts
to construct x by checking if the fingerprint of some string in a set of possible candidates
matches the prefix of h(x) that he has received so far. More precisely, at each round j, the
candidates are those strings whose S-space-bounded complexity conditioned by y is at most
j. If Bob finds a string among these candidates with a fingerprint that matches the prefix of
h(x) sent so far by Alice, he believes that he has found x, tells Alice to stop sending further
bits by sending her “1”, and Phase 1 stops. Otherwise, he tells Alice that he needs more bits
by sending her “0” (in which case Alice sends in the next round the next bit of h(x)).

Let p be the prefix of h(x) that Alice sends to Bob during the entire Phase 1. Then, with
high probability, at the end of Phase 1,
1. Bob has x,
2. |p| ≤ CS(x | y), because we show that Bob can reconstruct x by round j = CS(x | y). In

the proof of Theorem 1, a random matrix H also appears in the condition (as we explain
below), but this has little impact, because H is a random.

Phase 2 (Secret key construction): After Phase 1, both Alice and Bob have x (with high
probability). They both compute the shared secret key z by exhaustive searching a minimal
length program of x given p in space S. So, from p and z, it is possible to construct x. It
follows that z and p are independent, because otherwise z would not be minimal. But then
z and the transcript of the protocol are also almost independent, because the transcript
consists of p and the sequence “0 . . . 01” sent by Bob, and the complexity of 0 . . . 01 is low (at
most logn+O(1)). Thus, z is a secret key. Let us now estimate the length of z. Since x can
be constructed from p and z in space S, it follows that CS(x) ≤ |p|+ |z|, and thus the length
of z is at least CS(x)− |p|, which, by the above bound of |p|, is at least CS(x)− CS(x | y),
which is the mutual information of x and y in the framework of space-bounded Kolmogorov
complexity.

The main technical issue is finding the hash function that is used in Phase 1. In the proof
of Theorem 1, this is just a random linear function given by a random matrix H, chosen by
Alice. H is roughly n2 bits long, and Alice needs to also send H to Bob. This is the reason
the communication complexity is large. Also, the information-theoretical considerations in
Phase 2, are somewhat more delicate, because we need to take into account H. To reduce
the communication complexity, one has to use a shorter hash function. One idea is to use
Newman’s theorem from communication complexity, in which H is chosen from a smaller
sample space. But the sample space needs to be effectively constructed, and the obvious
way to do this leads to a loss of precision that is logarithmic in both the length of x and
of y, which can be very damaging in case y is much longer than x. In Theorem 2, we use
for hashing an explicit extractor of Raz, Reingold, and Vadhan [12], which has the special
property that if we take prefixes of the output, the extractor property is preserved. These
type of extractors, called prefix extractors, allow much more communication-efficient hashing,
in the sense that Alice does not need to send the hashing function to Bob, at the cost of
making Bob’s reconstruction of x more complicated.

In our technical approach, we were inspired by several papers. Muchnik [9] has introduced
bipartite graphs similar to extractors and has used for a certain type of information reconcili-
ation concepts similar to what we call heavy nodes and poor nodes in the proof of Theorem 2.
Prefix extractors have been used for information reconciliation in [10] and [15], and the
first paper analyzes the case of space-bounded Kolmogorov complexity. The application to
secret-key agreement is a novel contribution of this paper. Some of the information-theoretical
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estimations are similar to those in [13]. The idea of sending pieces of a fingerprint in several
rounds for the problem of information reconciliation (similarly to our Phase 1) has been used
before in [4, 6], and, the closest to our approach, in [5], where they study the communication
complexity of this problem in terms of the Kolmogorov complexity of the two inputs. There
is however a significant difference with the information reconcilation phase in our main result,
because, as standard in communication complexity, the protocol in [5] is not computable,
and therefore they can use random hash functions for fingerprinting.

3 Proof of Theorem 1

Phase 1: Information reconciliation. Before sending the first message, Alice takes a random
matrix H with entries in the finite field GF[2], with (n + log(1/δ)) rows and n columns,
where n is the length of x and δ = ε/2n. The random matrix H defines a random linear
function h mapping n bit strings to n+ log(1/δ) bit strings (viewed as vectors over GF[2]),
given by the expression h(v) = H · v.

In Round 0, Alice sends to Bob n, H, and the first 1 + log(1/δ) bits of h(x).
Then in each subsequent round, Alice sends to Bob the next bit of h(x) till Bob announces

that he does not need any additional bits. Thus, at round j ≥ 1, Bob has received the first
(j + 1) + log(1/δ) bits of h(x), a string which we denote pj . Bob checks if there is a string u
in Bj = {u ∈ {0, 1}n | CS(n)(u | y,H) ≤ j} such that pj is a prefix of h(u). If there is such a
string u, he believes that u is x, and announces that he does not need any extra bits and the
information reconciliation stops here. If there is no such string u, Bob announces that he
needs more bits and the protocol proceeds with the next round.

Bob may be wrong at round j, if there is a string u different from x in Bj such that
the prefixes of length (j + 1) + log(1/δ) of h(u) and h(x) coincide. For an arbitrary string
u 6= x, the probability that h(u) and h(x) agree in the first (j + 1) + log(1/δ) bits is
2−((j+1)+log(1/δ)) = δ/2j+1. Since Bj has less than 2j+1 elements, by the union bound, the
probability that Bob is wrong at round j is less than δ.

Let k = CS(n)(x | y,H). Let E be the event that Bob is wrong at one of the rounds
1, . . . , k. E has probability at most kδ ≤ (n + c)δ ≤ 2nδ = ε. Conditioned by E not being
true, the protocol reaches round k, when Bob finds x. Thus, with probability 1− ε, at the
end of round k, Bob has obtained x, and the string p := pk is a program for x given y and
H in space γ′ · S(n), for some constant γ′, and p has length CS(n)(x | y,H).

Phase 2: Secret key construction. By exhaustive search, Alice and (separately) Bob find
z, the first program of x given p and H in space S. We show that z satisfies the conclusion
of the theorem.

We denote S := S(n) and we let ≥+ hide a loss of precision of O(log(n/ε)). Recall that
we use the notation CS(i)(. . . ) in lieu of Cλi·S(. . . ), where λ is here the maximum between
the above γ′ and γ (the constant from the chain rule (1)).

First, we notice that, with high probability, conditioning by a random H does not decrease
complexities by too much.

B Claim 3. For every space bound S, for every n-bit string u, for every string v, if H is
chosen uniformly at random independent of u and v, we have

CS(0)(u | v,H) ≥+ CS(2)(u | v) with probability 1− ε.
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Proof.
CS(0)(u | v,H) ≥+ CS(1)(u,H | v)− CS(0)(H | v)

≥+ CS(2)(u | v) + CS(2)(H | u, v)− CS(0)(H | v)
≥+ CS(2)(u | v) with probability 1− ε.

(2)

In the first two lines, we use the chain rule, and in the last line, we use the fact that, for
every i, CS(i)(H | u, v) ≥ |H| − log(1/ε)− 1, with probability 1− ε (by a standard counting
argument) and CS(i)(H | v) ≤ |H|+O(1) for every H. C

Now we can show part (i) of Theorem 1.

|z| = CS(0)(x | p,H) ≥+ CS(1)(x, p | H)− CS(0)(p | H)
(chain rule)

≥+ CS(2)(x | H)− |p|
(because |p| ≥+ CS(0)(p | H))

≥+ CS(2)(x | H)− CS(0)(x | y,H) with probability 1− ε
(because |p| = CS(0)(x | y,H))

≥+ CS(4)(x)− CS(0)(x | y) with probability 1− 2ε
(by Claim 3)

(3)

Next we move to part (ii), where we need to show that the complexity of the secret key z,
conditioned by the transcript of the protocol, is close to the length of z. The transcript consists
of p, H, n (all sent by Alice to Bob) and of Bob’s sequence of responses s = 000 . . . 01 of length
` = k + 1 + log(1/ε). Bob’s sequence has complexity bounded by log `+O(1) = O(log(n/ε)),
and therefore, for every i we have CS(i)(z | s, p,H, n) =+ CS(i)(z | p,H). Thus we can
ignore s and n in the condition and it is enough to bound from below CS(i)(z | p,H). We
show the following estimation, which ends the proof of the theorem.

B Claim 4. With probability 1− 2ε, CS(4)(z | p,H) ≥+ |z| −∆, where ∆ = CS(−2)(x)−
CS(8)(x).

Proof. We need an upper bound of |z|:

|z| = CS(0)(x | p,H) ≤+ CS(−1)(x, p | H)− CS(0)(p | H)
(chain rule)

≤+ CS(−2)(x | H)− CS(1)(x | y,H) with probability 1− ε
(p can be computed from x, H and its length; and x from p, y,H)
≤+ CS(−2)(x)− CS(3)(x | y) with probability 1− 2ε

(by Claim 3)
(4)

Next,

CS(5)(p, z | H) ≥+ CS(6)(x | H) with probability 1− ε
(x can be computed from p, z,H)

≥+ CS(8)(x) with probability 1− 2ε (by Claim 3),
(5)

and
CS(5)(p, z | H) ≤+ CS(4)(p | H) + CS(4)(z | p,H)

(chain rule)
≤+ CS(3)(x | y,H) + CS(4)(z | p,H)

(p can be computed from x,H and its length)
≤+ CS(3)(x | y) + CS(4)(z | p,H)

(6)
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Combining inequalities (6) and (5), we obtain

CS(4)(z | p,H) ≥+ CS(8)(x)− CS(3)(x | y) with probability 1− 2ε. (7)

Using inequality (4), we finally obtain

CS(4)(z | p,H) ≥+ |z| −∆ with probability 1− 4ε, (8)

where ∆ = CS(−2)(x)− CS(8)(x). The conclusion follows after rescaling ε. C

4 Proof of Theorem 2

We first present extractors, which have been studied in the theory of pseudorandomness (for
example, see [14]). A particular type of extractor, prefix extractor, is used in the protocol in
the proof of Theorem 2 for hashing.

We recall that a (k, ε) extractor is a function E : {0, 1}n × {0, 1}d → {0, 1}m with the
property that for every subset B ⊆ {0, 1}n of size at least 2k and for every subset A ⊆ {0, 1}m:

∣∣∣∣Prob[E(UB,Ud) ∈ A]− |A|M

∣∣∣∣ < ε, (9)

where UB and Ud are independent random variables that are uniformly distributed over B
and, respectively, {0, 1}d.

It is useful to view an extractor E as a bipartite graph G, whose set of left nodes is
{0, 1}n, the set of right nodes is {0, 1}m, and each left node x has 2d (not necessarily distinct)
right neighbors {E(x,w) | w ∈ {0, 1}d}. The right node E(x,w), for random w ∈ {0, 1}d, is
viewed as the random fingerprint of the left node x.

As usual, we use explicit extractors. An explicit extractor is a family of extractors {En}n∈N
as above, indexed by n, and with the rest of the parameters k, d,m, ε being functions of
n, such that there exists an algorithm that computes En(x,w) in time polynomial in n.
Actually, for us it is more important the space complexity of the algorithm that computes
the extractor.

We denote D = 2d,M = 2m. Let B be a set of left nodes. The average numbers of
neighbors in B of a right node (called the average B-degree) is avg = |B| ·D/M . We say
that a right node p is ε-heavy for B if it has more (1/ε) · avg left neighbors in B. We say
that a left node u ∈ {0, 1}n is ε-poor for B if a fraction larger than 2ε of its right neighbors
are ε-heavy for B. Intuitively, a heavy p is a fingerprint that causes many collisions, and u is
poor if many of its fingerprints produce many collisions.

The relevant property of extractors is presented in the next lemma. The point is that
an ε-poor string is difficult to handle because a random fingerprint of it produces many
collisions. The lemma gives a criterion which guarantees that a string is not ε-poor.

I Lemma 5. There exist constants λ > 1 and c with the following property:
Let E : {0, 1}n×{0, 1}d → {0, 1}m be a (k−c, ε) extractor computable in space S(n) (in the

above sense). Let x be an n-bit string (which in the protocol is Alice’s input) and y be a string
(which is Bob′s input), such that CS(n)(x | y, n, k) ≤ k and CλS(n)(x | y, n, k − 1) > k − 1,
and let B = {u ∈ {0, 1}n | CS(n)(u | y, n, k) ≤ k}. Then x is not ε-poor for B.

Proof. Let A be the set of strings that are ε-heavy for B. By counting the edges between B
and A from left-to-right and from right-to-left, we obtain that |A|/M ≤ ε. Let POOR be
the set of nodes that are ε-poor for B. Note that

Prob(E(UPOOR,Ud) ∈ A) > 2ε ≥ |A|/M + ε,
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It follows that POOR has size less than 2k−c, because otherwise the set POOR would violate
the property that E is a (k − c, ε)-extractor.

Given y, n, k, c, the set POOR can be enumerated using space S(n) +O(n) (we need the
second term to maintain several counters which require O(n) space). Taking into account
the additional space needed by the universal machine, it follows that for some constant λ, if
u is an ε-poor node then

CλS(n)(u | y, n, k, c) ≤ k − c+O(1),

which implies CλS(n)(u | y, n, k − 1) ≤ k − 1, for sufficiently large c. It follows that x is not
ε-poor, which proves the lemma. J

We need to use a prefix extractor, which is a a function E : {0, 1}n × {0, 1}d → {0, 1}n
with the property that for every k ≤ n, the function Ek obtained by retaining only the prefix
of length k of E(x,w) is a (k, ε) randomness extractor. Raz, Reingold and Vadhan [12] have
obtained an explicit extractor ERRV of this type with d = O(log3(n/ε)). ERRV(x,w) can be
computed in time polynomial in n (recall that n = |x|). Let p0(n) be the polynomial that
bounds the space used in the computation of ERRV(x,w).

In the protocol, we use the Raz-Reingold-Vadhan prefix extractor ERRV. We denote by
Ek, the k-prefix of ERRV, and, abusing notation, also the bipartite graph corresponding to
the (k, ε) extractor Ek.

In addition to ERRV, we use a hash function h, based on congruences modulo prime
numbers. We view a string x as an integer (in some canonical way) and define ht(x) =
(x mod q, q), where q is a prime number chosen at random among the first t prime numbers.
The properties of ht follow from the following lemma.

I Lemma 6 ([2]). Let x1, x2 . . . , xs be distinct n-bit strings, which we view in some canonical
way as integers < 2n+1. Let t = (1/ε) · s · n. Let q be a prime number chosen uniformly at
random among the first t prime numbers. Then, with probability (1− ε),

x1 mod q 6∈ {x2 mod q, . . . , xs mod q}.

We now present the protocol. Recall that at the beginning of the protocol, Alice holds an
n-bit string x, and Bob holds a string y. We fix the parameters as follows. Let λ and c be
the constants guaranteed by Lemma 5, let s = (1/ε) · 2c+1 ·D, where D = 2d = 2O(log3(n/ε))

is the degree of the ERRV extractor, and let t = (1/ε) · s · n2. We use the space bound S(n)
and the constant λ > 1, given by Lemma 5 applied to the ERRV extractor. We assume that
the polynomial p0 and the constant c, promised by Lemma 5, are large enough so that for
every string x and every condition string u, Cp0(|x|)(x | u) ≤ |x|+ c. As we did earlier, we
use the abbreviated notation CS(i)(. . .) for Cλi·S(n)(. . .).

Phase 1: Information reconciliation. In Round 0, Alice sends to Bob, n and ht(x), where
ht is the hash function introduced above.

Next, Alice computes p′ = ERRV(x,w) for a random w ∈ {0, 1}d.
Alice sends to Bob the string p′ (or rather a prefix of it), one bit per round, till Bob

announces that he does not need more bits.
Suppose we are at round k, after Alice has sent the k-th bit of p′. Thus, by now Bob

has received pk, the k-th bit long prefix of p′. He calculates, as we explain next, a set of
candidate strings, which he thinks might be x. A string x′ is a candidate at round k if
1. x′ ∈ B = {u ∈ {0, 1}n | CS(n−k)(u | y, n, k + c) ≤ k + c}, and
2. x′ is a neighbor of pk, when viewing x′ as a left node and pk as a right node in the graph

Ek, and
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3. x′ is among the first (in some canonical order) s strings with the above two properties.
If no candidate has the fingerprint ht(x), then Bob asks for the next bit of p′. Otherwise,
there is one candidate string x′ so that ht(x′) = ht(x). Then Bob believes that x′ is Alice’s
x, and he responds to Alice that he does not need further bits. The Phase 1 (information
reconciliation) of the protocol is over.

We now analyze Phase 1 (information reconciliation). We show that with high probability,
at the end of Phase 1, Bob obtains x.

Let k∗ = min{k | CS(n−k)(x | y, n, k + c) ≤ k + c}. By the above largeness assumptions
for c and p0(n), it follows that k∗ ≤ n. Let E be the event that there exists x′ other than
x that is a candidate at one of the rounds 1, 2, . . . , k∗ and has the same fingerprint as x
(i.e., ht(x′) = ht(x)). The total number of candidates from rounds 1, 2, . . . , k∗ is at most
k∗ · s ≤ n · s. It follows from Lemma 6, that E has probability at most ε. Conditioned on E
not holding, either Bob finds correctly x before round k∗ (this happens if x is a candidate at
one of these earlier rounds), in which case we are done, or Phase 1 reaches round k∗.

Suppose Phase 1 reaches round k∗. Let B = {u ∈ {0, 1}n | CS(n−k∗)(u | y, n, k∗ + c) ≤
k∗ + c}. Clearly, by the definition of k∗,

CS(n−k∗)(x | y, n, k∗ + c) ≤ k∗ + c

and

CS(n−k∗+1)(x | y, n, k∗ + c− 1) > k∗ + c− 1.

Now we use Lemma 5 for the pair (x, y), the (k∗, ε) extractor Ek∗ : {0, 1}n×{0, 1}d → {0, 1}k∗

and the set B. The size of B is less than 2k∗+c+1 and the average B-degree of a right node is
avg = |B| ·D/2k∗ ≤ 2c+1 ·D. By Lemma 5 and the two inequalities above, x is not ε-poor,
which means that with probability 1− 2ε, pk∗ is a right neighbor of x that is not heavy, i.e.,
it has at most (1/ε) · avg ≤ (1/ε) · 2c+1 ·D = s neighbors in B. Therefore, conditioned on
non E , with probability 1− 2ε, x is a candidate at round k∗, and Bob finds it. We conclude
that with probability larger than 1− 3ε, Bob correctly obtains x.

Let p be the part of the protocol’s transcript that Alice has sent to Bob. For the analysis
of Phase 2, we need to evaluate the length of p. The string p consists of n, ht(x) and the
prefix of p′ that Alice has sent bit-by-bit before Bob told her that he does not need any
further bits. By the analysis above, with probability 1− 3ε, the length of the prefix of p′ is
at most k∗. Let k = CS(n)(x | y)− c. Note that k ≤ n. Since

CS(n−k)(x | y, n, k + c) ≤ CS(0)(x | y) = k + c,

it follows from the definition of k∗ that k∗ ≤ k. Next, the length of n and ht(x) is O(log3(n/ε))
because the t-th largest prime number is less than t log t. We conclude that

|p| ≤+ CS(0)(x | y). (10)

The communication complexity is 2|p|, because it consists of p and of Bob’s responses
00 . . . 01.

Phase 2: Secret key construction. Alice and Bob compute by exhaustive search from x

and p a program z of x given p in space S(n) of minimal length CS(0)(x | p).

We now show that the protocol satisfies the requirements of Theorem 2, and we start
with part (i). We let ≥+ hide a loss of precision of O(log3(n/ε)). We have

CS(0)(x) ≤+ |p|+ |z| (because x is computed from p and z in space S(n))

≤+ CS(0)(x | y) + |z| (by (10))



M. Zimand 21:11

Hence, |z| ≥+ CS(0)(x)− CS(0)(x | y).
Next we show part (ii) in Theorem 2. First notice that, by the chain rule,

|z| = CS(0)(x | p) ≤+ CS(−1)(x, p)− CS(0)(p). (11)

Next,

CS(0)(z | p) ≥+ CS(1)(z, p)− CS(0)(p)
(chain rule)

≥+ CS(1)(x, p)− CS(0)(p)
(because x can be computed from z and p in space S(n))

= CS(−1)(x, p)− CS(0)(p)− (CS(−1)(x, p)− CS(1)(x, p))

≥+ |z| −∆,

where ∆ = CS(−1)(x, p)− CS(1)(x, p). Since p can be computed from x and the seed of the
extractor and the random prime number q used by ht in space p0(n) ≤ S(n), we have

∆ ≤+ CS(0)(x)− CS(1)(x).

The transcript of the protocol consists of p and Bob’s sequence of responses 00 . . . 01, which
has complexity bounded by logn. Therefore

CS(0)(z | transcript) ≥+ CS(0)(z | p) ≥+ |z| −∆,

which proves part (ii) of Theorem 2. J

5 Final comments

As we have mentioned in the Introduction, the main results are of theoretical, rather than
practical, relevance. The secret key agreement protocols in Theorem 1 and Theorem 2
produce a key that looks random to an adversary whose computation is space-bounded by
S(n), and, on the other hand, in both theorems, the two legal parties (i.e., Alice and Bob)
execute the protocol in space larger than S(n). For this reason, the protocols do not seem to
be suitable for real cryptographic applications.

Another observation regards the key length. In Theorem 2, the protocol, on inputs the
n-bit string x and the string y, runs in space bounded by λnS(n) (we take into account the
space used by the two parties combined) for some constant λ > 1 and produces a secret key z
of length |z| ≈ CS(n)(x)−CS(n)(x | y) and having the randomness deficiency of z conditioned
by the trancript as stated in the theorem. Recall that the randomness deficiency ∆ is defined
by ∆ = |z|−CS(n)(z | transcript). Is the length of z optimal? It is known from [13], that no
computable protocol can produce a key longer than C(x)−C(x | y), the mutual information
of the inputs hold by the two parties. We have not been able to obtain a similarly clean result
for protocols that run in space S(n). By adapting the arguments in [13], it can be shown,
that if a protocol runs in space S(n) then, for every pair of inputs (x, y) with length bounded
by n, it produces a key z with Cλ

2S(n)(z | transcript) ≤ CS(n)(x) − Cλ3S(n)(x | y), for
some constant λ > 1. Thus we obtain the following upper bound: If a secret key agreement
protocol runs in space S(n) and on input (x, y), with |x|, |y| ≤ n, it produces a secret key z
with randomness deficiency ∆, then

|z| ≤ CS(n)(x)− Cλ
3S(n)(x | y) + ∆ + ∆1,

where ∆1 = C(S(n)(z | transcript)− Cλ2S(n)(z | transcript) and λ > 1 is a constant.
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Abstract
We propose new entropy measures for trees, the known ones are Hk(T ), the k-th order (tree label)
entropy (Ferragina at al. 2005), and tree entropy H(T ) (Jansson et al. 2006), the former considers
only the tree labels and the latter only tree shape. The proposed entropy measures, Hk(T |L) and
Hk(L|T ), exploit the relation between the labels and the tree shape. We prove that they lower
bound label entropy and tree entropy, respectively, i.e. Hk(T |L) ≤ H(T ) and Hk(L|T ) ≤ Hk(L).
Besides being theoretically superior, the new measures are significantly smaller in practice.

We also propose a new succinct representation of labeled trees which represents a tree T using
one of the following bounds: |T | (H(T ) +Hk(L|T )) or |T | (Hk(T |L) +Hk(L)). The representation
is based on a new, simple method of partitioning the tree, which preserves both tree shape and node
degrees. The previous state-of-the-art method of compressing the tree achieved |T | (H(T ) +Hk(L))
bits, by combining the results of Ferragina at al. 2005 and Jansson et al. 2006; so proposed
representation is not worse and often superior. Moreover, our representation supports standard
tree navigation in constant time as well as more complex queries. Such a structure achieving this
space bounds was not known before: aforementioned solution only worked for compression alone,
our structure is the first which achieves Hk(T ) for k > 0 and supports such queries. Lastly, our data
structure is fairly simple, both conceptually and in terms of the implementation, moreover it uses
known tools, which is a counter-argument to the claim that methods based on tree-partitioning are
impractical.
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1 Introduction

String entropy. For a string S its (zeroth order) entropy, denoted by H0(S), is defined as
|S|H0(S) = −

∑
s∈Σ ts log ts

|S| , where ts is a number of occurrences of character s in S. It is
convenient to think that − log ts

|S| assigned to a symbol s is the optimal cost of encoding this
symbol (in bits); those “values” are usually not natural numbers.

The standard extension of this measure is the k-th order entropy, denoted by Hk, in which
the (empirical) probability of s is conditioned by k preceding letters, i.e. the cost of single
occurrence of letter s is equal to − logP(s|w), where P(s|w) = tws

tw
, |w| = k and tv is the

number of occurrences of a word v in given word S. We call P(s|w) the empirical probability
of a letter s occurring in a k-letter context. Then |S|Hk(S) = −

∑
s∈Σ,w∈Σk tws logP(s|w).

The cost of encoding the first k letters is ignored when calculating the k-th order entropy.
This is acceptable, as k is (very) small compared to |S|, for example most tools based on
popular context-based compressor family PPM use k ≤ 16. There are multiple methods
compressing given string to the size of at most |S|Hk(S) bits (plus smaller order terms),
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like aforementioned PPM or BWT with compression boosting, there are also compressed
structures which consume such space, and moreover allow to perform operations on texts,
like access [16], insertion/deletion [26] rank/select [4, 25] or even pattern matching [24].

Tree Label entropy. In case of labeled trees, 0-th order entropy of tree labels has a natural
definition: it is a zeroth order entropy of string made by concatenation of labels of vertices.
However, for k-th order entropy the situation is more involved, as we have to somehow define
the context.

Ferragina et al. [13] proposed a definition of k-th order entropy of labeled trees. The
context is defined as the k labels from the node to the root. Such definition of entropy takes
into the account only the labels, and so we call it the k-th order entropy of labels. It is
claimed to be good measure both in practice [14] (as similarly labeled nodes descend from
similarly labeled contexts [13]) and in theory, as it is related to notion of tree sources [10].

Ferragina at al. [13] not only introduced the concept of k-th order entropy but also
proposed a novel transform, XBWT, which works by generating a single string from tree
labels by employing BWT-like transform on trees. It can be used to compress the tree using
|T |(2 +Hk(T ) + µ) + o(|T |) bits [13], for a reasonable k; where the 2|T | bits are needed for
encoding the tree shape and µ is a small constant, an artifact of used method of compression
boosting (well-known in text compression [15]). The major drawback of this approach is
that it works only for the case of compression alone, i.e. this approach does not generalize
to a structure on which we can perform queries, as to this end rank/select structure over
alphabet of size σ is required, which seems hard to combine with compression boosting.
Dropping the compression boosting gives the structure which achieves H0(T ) and even then
it supports only navigational queries (in particular, it does not support level_ancestor or
depth), though it also support some basic label-related operations, as well as path pattern
matching (i.e. pattern matching on strings made by concatenating labels of vertices on paths
from root to leaves). The other XBWT-related result is by Ferragina et al. [14], who proposed
a solution which encodes the labels of the tree using k-th order entropy of string produced by
XBWT and support some navigational queries for k = o(logσ |T |); the k-th order entropies
of the tree and of string produced by XBWT seem loosely related and no formal relation
is known between the two, but they argued that intuitively they are connected, because
they both similarly cluster node labels. Still, this structure supports a very limited set of
operations, has provably non-constant query time (due to the lower bounds on rank/select
indices [4, 25]) and large additional space consumption.

Tree entropy. The (k-th order) entropy of labels ignores the shape of the tree and the
information carried by it, and we still need to represent the tree structure somehow. A count-
ing argument shows that 2|T | bits are needed for a random unlabeled tree [32], and in-
deed there are representations [32, 31, 6] and succinct structures achieving such bounds
[42, 40, 12, 39, 43, 6, 31]. Yet, the 2|T | bits bound seems sub-optimal, as similarly as in the
case of strings, real data is rarely a random tree drawn from the set of all trees, for example
XML files are shallow and some tree shapes repeat, like in the Figure 1. For this reason
Jansson et al. [33] introduced the notion of tree entropy with the idea that it takes into the
account the probability of a node having a particular degree, i.e. it measures the number of
trees under some degree distribution. Formally, it is defined as: |T |H(T ) = −

∑|T |
i=0 di log di

|T | ,
where di is the number of vertices of degree i in T . Up to Θ(log |T |) additive summand, tree
entropy is an information-theoretic lower bound on the number of bits needed to represent
unlabeled tree that has some fixed degree distribution [33]. Similarly, as in the case of string
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catalog

book

year

1600

author

William Shakespeare

title

Hamlet

book

year

1961

author

Joseph Heller

title

Catch 22

magazine

year

1925

title

The New Yorker

magazine

year

1923

title

TIME

Figure 1 Sample XML file structure.

entropy, tree entropy refines the simpler estimations, in the sense that |T |H(T ) ≤ 2|T | [33].
Jansson et al. [33] also showed a structure for unlabeled trees which supported most of the
tree operations and use at most |T |H(T ) bits. This approach can be combined with aforemen-
tioned XBWT with compression boosting to compress the tree to roughly |T |H(T )+|T |Hk(T )
bits, but again it works only for the case of compression alone and needs a small additional
linear factor, µ|T |, same as when using only XBWT with compression boosting.

Our contribution. Label entropy and tree entropy treat labels and tree structure separately,
and so did most of the previous approaches to labeled tree data structures [13, 33, 14, 28].
Yet, the two are most likely correlated: one can think of XML document representing the
collection of different entities such as books, magazines etc., see Figure 1. Knowing that the
label of some node is equal to “book”, and that each book has an author, a year and a title,
determines degree of the vertex to be three (cf. tree grammar compression model, where we
explicitly assume that the label uniquely defines the arity of node [9]). On the other hand,
knowing the degree of the vertex can be beneficial for information on labels.

Motivated by this, we start by defining two new measures of entropy of trees, which
take into the account both tree structure and tree labels: Hk(T |L) and Hk(L|T ). Those
measures lower bound previous measures, i.e tree entropy [33] and Hk [13], respectively.
We also devise the encoding achieving newly defined values. To this end, we propose
a new way of partitioning the tree. In contrast to previous approaches, (i.e. succinct
representations [22, 12] and tree grammar compression [19]), this partition preserves both the
shape of the tree and the degrees of the nodes. We show that by applying an entropy coder to
tree partition we can bound the size of the tree encoding by both |T |Hk(T |L) + |T |Hk(L) +
O(|T |k log σ/ logσ |T | + |T | log logσ |T |/ logσ |T |) and |T |Hk(L|T ) + |T |H(T ) + O(|T |(k +
1) log σ/ logσ |T | + |T | log logσ |T |/ logσ |T |) bits. Note that the additional summands are
o(|T | log σ) if k = o(logσ |T |). This is the first method not based on XBWT achieving bounds
related to Hk, moreover it does not need additional µ|T | bits.

Using standard techniques we can augment our tree encoding, at the cost of increasing the
constants hidden in the O notation (the overall complexity is the same and only constants
in the “lower order terms” are slightly larger), so that most of the queries are supported
in constant time, thus getting the first structure which achieves Hk for trees and supports
queries on compressed representation. Previous state-of-the-art methods based on tree
grammars [18] and high-order compressed XBWT [13], do not have this property.

Then we show that we can further reduce the redundancy to O(|T | log log |T |/ logσ |T |)
bits, at the cost of increasing query time to O(log |T |/ log log |T |), assuming k = α logσ |S|
where α < 1. To this end we combine ideas from compression boosting [15] and compressed
text representations [26].

STACS 2020
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Note that the high-order compressed structures for strings supporting access queries
achieve analogous bit-size and query time: i.e. they either use |S|Hk(S) +
O(|S|k log σ/ logσ |S|+ |S| log logσ |S|/ logσ |S|) bits and support queries in O(1) time or they
use |S|Hk(S) + O(|S| log log |S|/ logσ |S|) bits and have the query time of
O(log |S|/ log log |S|) [16, 23, 26], and it is an open problem whether this trade-off is op-
timal. It is straightforward that improving our bounds even when the structure supports
only preorder_rank/preorder_select operations yields the improvement for the high-order
compressed structures for strings.

To compare, the original method of XBWT consumed |T |H0(L) bits for structure sup-
porting navigation queries, also previously mentioned result by Ferragina et al. [14], which
considered k-th order entropy of XBWT string instead k-th order label entropy, worked only
for k = o(logσ |S|) and had a redundancy o(|S| log σ).

Moreover, we can use known tools to support label-related operations (like childrank(v, a)
or childselect(v, i, a)). As those two are generalization of rank/select on large alphabets, the
obtainable redundancy is larger than aforementioned bounds achieved by our structures, we
also have to allow for a non-constant query time (see lower bounds in [4, 25]). In this case
we get the same redundancy and query time for label operations as one of the previously
mentioned results by Ferragina et al. [14], (it used space proportional to Hk of XBWT string
and supported only navigational queries), but in contrast to this result, our structure still
supports all non-label related operations in constant time, thus we get the structure which
outperforms previously known ones.

Our methods can also be applied to unlabeled trees to achieve tree entropy [33], in which
case we get the same (best known) additional space as in [33] and our techniques in case of
standard operations are less complex than other methods achieving tree entropy [33, 11].

Lastly, our structure allows to retrieve the tree in optimal, O(|T |/ logσ |T |) time (assuming
machine words of size Θ(log |T |)), using O(1) memory, in contrast to XBWT-based methods.

The comparison of our results and previous results based on XBWT is in Table 2. Table 1
gives an empirical comparison of our measures with previous ones.

Table 1 Data is taken from XMLCompBench (http://xmlcompbench.sourceforge.net). The last
four columns correspond to the bits per node used by compressed data structures (ignoring the
smaller order terms); note that the proposed structure is the only one to (simultaneously) attain the
last two. Note that sometimes the measures do not decrease when k grows, this is because some
files have shallow structure.

File k H(T ) Hk(L) Hk(T |L) Hk(L|T )
2 H(T ) Hk(T |L) H(T )
+ + + +

Hk(L) Hk(L) Hk(L) Hk(L|T )

EnWikiNew
0 0.233 0.537 0.031 0.335 2.537 0.77 0.568 0.568
1 0.233 0.311 0.031 0.216 2.311 0.544 0.342 0.45
2 0.233 0.311 0.031 0.216 2.311 0.544 0.342 0.45

Nasa
0 0.33 0.849 0.06 0.579 2.849 1.178 0.909 0.909
1 0.33 0.232 0.056 0.174 2.232 0.562 0.288 0.503
2 0.33 0.23 0.056 0.172 2.23 0.559 0.286 0.501

Treebank

0 1.812 4.616 0.692 3.495 6.616 6.428 5.308 5.308
1 1.812 3.234 0.656 2.259 5.234 5.046 3.89 4.072
2 1.812 3.073 0.64 2.109 5.073 4.886 3.713 3.922
4 1.812 2.957 0.626 1.997 4.957 4.77 3.584 3.809

http://xmlcompbench.sourceforge.net/
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2 Definitions

We denote the input alphabet by Σ, and size of the input alphabet as σ = |Σ|. For a tree T
we denote by |T | the number of its nodes, the same applies to forests. We consider rooted (i.e.
there is a designated root vertex), ordered (i.e. children of a given vertex have a left-to-right
order imposed on them) Σ-labeled (i.e. each node has a label from Σ) trees; label does not
determine node degree nor vice versa. We assume that bit sequences of length log |T | fit into
O(1) machine words and we can perform operations on them in O(1) time.

Tree Label entropy. The tree label entropy [13] defines the context of a node as the
concatenations of k labels from the node to the root. Similarly, as in the case of first k letters
in strings, this is undefined for nodes whose path to the root is of length less than k, which
can be large, even when k is small. There are two ways of dealing with this problem: in the
first we allow the node to have the whole path to the root as its context (when this path is
shorter than k); in the second we pad the too short context with some fixed letters. Our
algorithms can be applied to both approaches, resulting in the same (asymptotic) redundancy;
for the sake of the argument we choose the first one, as the latter can be easily reduced to
the former.

The tree label entropy is formally defined as |L|Hk(L) = −
∑
v∈T logP(lv|Kv), where lv

is label of vertex v, Kv is the word made by last k labels of nodes on the path from root of
T to v (or less if the path from the root to v is shorter than k) and, as in the case of strings,
P(lv|Kv) is the empirical probability of label lv conditioned that it occurs in context Kv.

Mixed entropy. We define the mixed entropies as follows:

|T |Hk(L|T ) = −
∑
v∈T logP(lv|Kv, dv), where P(lv|Kv, dv) is the empirical probability

of node v having label lv conditioned that it occurs in the context Kv and the node
degree is dv, that is, P(lv|Kv, dv) = tK,lv,dv

tK,dv
, where tK,lv,dv is a number of nodes in T with

context K, having degree dv and a label lv, and tK,dv is number of nodes in T preceded
by the context K, and having degree dv.

|T |Hk(T |L) = −
∑
v∈T logP(dv|Kv, lv), where P(dv|Kv, lv), is the empirical probability

of node v having degree dv conditioned that v has a context Kv and a label lv, defined
similarly as above.

We show that we can represent a tree using either |T |Hk(T |L)+|T |Hk(L) or |T |Hk(L|T )+
|T |H(T ) bits (plus some small order terms), see Section 5.

The new measures lower bound the old ones. This follows directly from log sum inequality:
intuitively increasing number of contexts can only reduce the entropy.

I Lemma 1. The following inequalities hold:

|T |Hk(T |L) ≤ |T |H(T ) and |T |Hk(L|T ) ≤ |T |Hk(L) .

STACS 2020
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Table 2 Comparison of the results, multiple values in the same operation set means that we can
choose one of the possibilities,
ρa = O((k log σ + log logσ |T |)/ logσ |T |); ρb = O(log log |T |/ logσ |T |); γ = O(log σ/ logσ |T |);
gk = polylog(σ) · σk
Navigation={parent(v), firstchild(v), nextsibling(v), childrank(u), child(u,i)};
Extended = {lca(u,v) and depth(u)};
Label = {childrank(v, a) and childselect(v, i, a)}, i.e. versions of childrank(u) and child(u,i) which
take label into account;
Level-Ancestor = {level_ancestor(v, i)}.
XBWT(L) refers to the XBWT string [14]. T0(rank/select))/S0(rank/select) and
Tk(rank/select))/Sk(rank/select) refer to the time and space required for structures sup-
porting rank/select over strings over σ-sized alphabets, the first pair refers to query time/additional
space required when the string is compressed with at most |S|H0(S) bits, respectively the second
refers to the case when string is compressed using |S|Hk(S) bits. Those values depends on the
alphabet size, in general, for strings compressed with |S|Hk(S) bits either Sk(rank/select) is larger
than |T |ρa and |T |ρb or query time is not constant [4].

Operation set Our structure XBWT-based

time space time space

Compression —
|T |(H(T ) +Hk(L) + ρb)

— |T |(H(T ) +Hk(L) + Θ(1)) + gk|T |(Hk(T |L) +Hk(L) + ρb)
|T |(H(T ) +Hk(L|T ) + ρb + γ)

Navigation

O(1)
|T |(H(T ) +Hk(L) + ρa)
|T |(Hk(T |L) +Hk(L) + ρa) O(T0(rank/select)) |T |(2 +H0(L)) + S0(rank/select)
|T |(H(T ) +Hk(L|T ) + ρa + γ)

O
(

log |T |
log log |T |

) |T |(H(T ) +Hk(L) + ρb)
|T |(Hk(T |L) +Hk(L) + ρb) O(Tk(rank/select)) |T |(2 +Hk(XBWT(L))) + Sk(rank/select)
|T |(H(T ) +Hk(L|T ) + ρb + γ)

Extended as Navigation not supported

Level-Ancestor as Navigation plus O(|T |(log log |T |)2/ logσ |T |) bits not supported

Label Depends on the alphabet size, see Section 7 as Navigation

3 Tree clustering

We present a new clustering method which preserves both node labels and vertex degrees.

Clustering. The idea of grouping nodes was used before in the context of compressed
tree indices [22, 27], also some dictionary compression methods like tree-grammars or top-
trees and other carry some similarities [8, 18, 29, 21]. Yet, from our perspective, their
main disadvantage is that the node degrees in the internal representation were very loosely
connected to the node degrees in the input tree, thus the tree entropy and mixed entropies
are hardly usable in upper bounds on space usage. We propose a new clustering method,
which preserves the node degrees and the tree structure much better: most vertices inside
clusters have the same degree as in T , and the rest have their degree zeroed. As we show,
this property implies a bound on the used space both in terms of the label/tree entropy and
mixed entropy of T , when an entropy coder is used to compress the multiset of clusters.

The idea of our clustering technique is that we group nodes into clusters of Θ(logσ |T |)
nodes, and collapse each cluster into a single node, thus obtaining a tree T ′ of O(|T |/ logσ |T |)
nodes. We label its nodes so that the new label uniquely determines the cluster that it
represents and separately store the description of the clusters.

The clustering uses a parameter m, 2m − 1 is the maximum size of the cluster. Each
node of the tree is in exactly one cluster and there are two types of nodes in a cluster: port
and regular nodes. A port node is a leaf in a cluster and a non-leaf in T , for a regular node
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all its children in T are also in the same cluster (in the same order as in T ); in particular,
its degree in the cluster is the same as in T . Observe that this implies that each node with
degree larger than 2m will be a port node.

The desired properties of the clustering are:
(C1) there at least |T |2m − 1 and at most 2|T |

m + 1 clusters;
(C2) each cluster is of size at most 2m− 1;
(C3) each cluster is a forest of subtrees (i.e. connected subgraphs) of T , roots of trees in

this forest are consecutive siblings in T ;
(C4) each node in a cluster C is either a port node or a regular node; each port node is

a leaf in C and non-leaf in T , each regular node has the same degree in C as in T . In
particular, if node u belongs to some cluster C, then either all or none of its children
are in C.

A clustering satisfying (C1–C4) can be found using a natural bottom-up greedy algorithm.
Note that the previously known tree factorizations [22, 12] do not satisfy the above properties,
especially the (C3) and (C4), which are crucial for our structure.

I Lemma 2. Let T be a labeled tree. For any m ≤ |T | we can construct in linear time
a partition of nodes of T into clusters satisfying conditions (C1–C4).
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Figure 2 Clustering of tree for parameter m = 3 and tree created by replacing clusters with new
nodes. Marked nodes are port nodes.

Building the cluster tree. We build the cluster tree out of the clustering satisfying (C1–C4):
we replace each cluster with a new node and put edges between new nodes if there was an
edge between some nodes in the corresponding clusters. To retrieve the original tree T from
the cluster tree and its labels we need to know the degree of each port node in the original
tree (note that this depends not only on the cluster, but also on the particular cluster node,
e.g. two clusters may have the same structure but can have different port node degrees in T ).
Thus we store for a cluster node with k ports a degree sequence d1, d2, . . . , dk, where di is
the number of clusters containing children of i-th port node. For an illustration, see cluster
replaced by cluster node labeled B in Figure 2, its degree sequence is 3, 2, 2. In section 5 we
show that degree sequence can be stored efficiently and along with cluster tree it is sufficient
to retrieve and navigate T .
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I Definition 3 (Cluster structure). For a labeled tree T and parameter m a cluster structure
C(T ) consists of:

Ordered, rooted, labeled tree T ′ (called cluster tree) with Θ (|T |/m) nodes, where each
node represents a cluster, different labels correspond to different clusters and the induced
clustering of T satisfies (C1–C4).
For each node v′ ∈ T ′, a degree sequence dv′,1, . . . dv′,j, where dv′,i means that i-th port
node in left-to-right order on leaves of cluster represented by v′ connects to dv′,i clusters
of T ′.
Look-up tables, which for a label of T ′, allow to retrieve the corresponding cluster C.

I Lemma 4. For a labeled tree T and a parameter m we can construct in time O(|T |) cluster
structure C(T ).

4 Entropy estimation

We show that entropy of labels of tree of C(T ) is upper bounded by the mixed entropy of
the input tree, up to some small additive factor. Due to the technical details, in the last case
the redundancy depends on k + 1 and not on k.

I Theorem 5. Let T be a labeled tree and let T ′ be a tree of cluster structure C(T ) from
Lemma 4 for parameter m. Let P be a string obtained by concatenation of labels of T ′. Then
all the following inequalities simultaneously hold:

|P |H0(P ) ≤ |T |H(T ) + |T |Hk(L) +O
(
|T |k log σ

m
+ |T | logm

m

)
, (1)

|P |H0(P ) ≤ |T |Hk(T |L) + |T |Hk(L) +O
(
|T |k log σ

m
+ |T | logm

m

)
, (2)

|P |H0(P ) ≤ |T |H(T ) + |T |Hk(L|T ) +O
(
|T |(k + 1) log σ

m
+ |T | logm

m

)
. (3)

Moreover, if m = Θ(logσ |T |), the additional terms are bounded by:
O
(
|T |k logσ
logσ |T |

+ |T | log logσ |T |
logσ |T |

)
and O

(
|T |(k+1) log σ

logσ |T |
+ |T | log logσ |T |

logσ |T |

)
, respectively. For k =

o(logσ |T |) both those values are o(|T | log σ).

We prove Theorem 5 in two steps. First, we devise a special representation of nodes of T ′.
The entropy of this representation is not larger than the entropy of P , thus we upper bound
the entropy of P . To this end we use the following corollary from Gibbs’ inequality, see [1]
for a simple proof.

I Lemma 6 ([1]). Let w ∈ Γ∗ be a string and q : Γ → R+ be a function such that∑
s∈Γ q(s) ≤ 1. Then |w|H0(w) ≤ −

∑
s∈Γ ts log q(s), where ts is the number of occurrences

of s in w.

Lemma 6 should be understood as follows: we can assign each letter in a string a
“probability” and calculate the “entropy” for a string using those “probabilities.” The
obtained value is not smaller than the true empirical entropy. Thus, to upper-bound the
entropy, it is enough to devise an appropriate function q.

Cluster representation. The desired property of the representation is that for each node v
in the cluster we can uniquely determine its context (i.e. labels of k nodes on the path from
v to the root) in original tree T .
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I Definition 7 (Cluster description). Given a cluster C occurring in context K and consisting
of subtrees T1, . . . , Tl, the cluster description, denoted by RK,C , is a triplet (K,NC , VC),
where

K is a context (of size at most k) preceding roots of the trees in cluster, i.e. for each root
r of tree in a cluster K = Kr holds, where Kv is the context of vertex v in T ; roots of
trees in a cluster have the same context in T , as they have the same parent.
NC is the total number of nodes in this cluster;
VC is a list of descriptions of nodes of C, according to preorder ordering. If a node v is
a port then its description is (1, lv), if it is a regular node, then it is (0, lv, dv), where dv
is the degree of the node v (in the cluster) and lv is its label.

Note that we do not store the degrees of port nodes, as they are always 0.

I Example 8. The description for k = 1 and central node (the one which is labeled B in
cluster tree) from Figure 2 is: (K = a,N = 4, V = {(1, b), (0, a, 2), (1, c), (1, a)}).

I Lemma 9. Cluster description of a cluster C uniquely defines a cluster C and context Kv

in T for each vertex v in C.

To prove Theorem 5, instead of estimating the entropy of P we will estimate the entropy
of string where letters are descriptions of each cluster. To this end we employ Lemma 6: we
assign each description a value q in a way similar to the adaptive arithmetic coding: we assign
each element of the description a separate value of q, which depends on both the element
and previous elements of a description, then we multiply all such values. Note that storing,
which nodes are port nodes inside a cluster description, uses additional O(|T | logm/m) bits,
if done naively (e.g. in a separate structure) it would use the same memory.

Proof of Theorem 5. Let P be a sequence of labels. Let R ∈ Γ∗R be a sequence of description
of clusters of T ′ in preorder ordering, so that description R[i] of cluster C corresponds to
label P [i]. Then H0(P ) ≤ H0(R), in particular |P |H0(P ) ≤ |R|H0(R). To see this, note that
each label of P may correspond to a few descriptions from R, but not the other way around:
if some nodes have different description, then they have different labels in T ′.

Thus it is enough to upper-bound |R|H0(R). To this end we apply Lemma 6 for
appropriately defined function q; different estimations require different variants of q. The
function q is defined on each R[i]. The assignment of values of q can be thought as a procedure
that starts with value 1 and then looks at each element of description and multiplies by
a value which depends on this element in description (or some previous ones), i.e. as in
adaptive arithmetic coding.

We begin with a proof for Case 2. Let RK,C = (K,NC , VC) be a description of the cluster
C. We define q(RK,C) = q(KC) · q(NC) · q(VC), where q for each coordinate is defined as
follows:

q(KC) = 1/
(
(k + 1) · σ|KC |

)
q(NC) = 1/(2m)
q(VC) =

∏
v∈VC q(v), where

q(v) =
{

1
m · P(lv|Kv) , if v = (1, lv)
m−1
m · P(lv|Kv) · P(dv|Kv, lv) , if v = (0, lv, dv)

Note that Kv is the context of v in original tree, i.e. T .
It is left to show that q summed over all cluster descriptions is at most 1 as required by

Lemma 6. To this end we will show that we can partition the interval [0, 1] into subintervals
and assign each element of ΓR a subinterval of length q(RK,C), such that for two symbols
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of ΓR their intervals are pairwise disjoint. It is analogous to applying adaptive arithmetic
coder. We start with interval I = [0, 1]. We process description of cluster by coordinates, at
each step we partition I into disjoint subintervals and choose one as the new I:

For KC we partition interval into k + 1 equal subintervals, each one corresponding to
different context length, then we choose one corresponding to |KC |. Then we partition
the I into σ|KC | disjoint and equal subintervals, one for each different context of length
|KC | and choose one corresponding to KC . Clearly the length of the current I at this
point is 1/

(
(|KC |+ 1) · σ|KC |

)
, also different contexts are assigned different intervals.

For NC we partition the I to 2m equal intervals, it is enough, as there are at most 2m
different cluster sizes.
Then we make a partition for each v ∈ VC . We process vertex descriptions in VC according
to the order they occur in list VC , i.e. the order is the preorder ordering of corresponding
vertices in C. We partition the interval into two, one of length |I|m , second |I|(m−1)

m . If
v = (1, lv) we choose the first one, otherwise we choose the second one. Then we partition
the |I| into σ different intervals (some may be of 0 length), one for each letter a of original
alphabet Σ; the subinterval for letter a has length |I| · P(a|Kv). It is a proper partition,
as all of the above values sum up to 1 by definition. We choose the one corresponding
to the letter lv. Lastly, if i = (0, lv, dv) then we partition the interval into intervals
corresponding to different degrees of nodes, again of lengths |I| · P(dv|Kv, lv).

By construction the interval assigned to RK,C has length q(RK,C). Also, for two different
clusters C1, C2, having different preceding contexts KC1 ,KC2 , their intervals are disjoint.
To see this consider the above procedure which assigns intervals and the first point where
descriptions RKC1 ,C1 , RKC2,C2 differ (there must be such point by Lemma 9). Observe
that up to this point both clusters were assigned the same intervals. What is more already
processed elements of RK,C uniquely define context (or label) for current vertex, i.e. when
we want to partition by P(lv|Kv), then all nodes on the path to v were already processed
(this is due to the preorder ordering of nodes in description). This guarantees that, if the
descriptions for two clusters C1, C2 were equal up to this point, then the interval will be
partitioned in the same way for C1 and C2. At this point RC1 , RC2 will be assigned different,
disjoint intervals.

Now we are ready to apply Lemma 6. By Cv and Kv we denote the cluster represented
by v and context of this cluster in T , respectively; additionally let n = |T |.

|P |H0(P ) ≤ |R|H0(R)

≤ −
∑
v∈T ′

log q(RKv,Cv ) by Lemma 6

= −
∑
v∈T ′

log (q(Kv) · q(NCv ) · q(VCv ))

≤ −
∑
v∈T ′

log
(

1
(k + 1)σk ·

1
m
· q(VCv )

)
= |T ′| (k log σ + log(k + 1) + logm)−

∑
v∈T ′

log (q(VCv ))

≤ −
∑
v∈T ′

log (q(VCv )) +O
(
nk log σ
m

+ n logm
m

)
.

Now:

−
∑
v∈T ′

log q(VCv ) = −
∑
u∈T

log q(u)
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= −
∑
u∈T
u:port

log
( 1
m
· P(lv|Kv)

)
−

∑
u∈T

u:regular

log
(
m− 1
m

· P(lv|Kv) · P(dv|Kv, lv)
)

≤ nHk(L) + nHk(T |L) +O(|T ′| logm) + n log m

m− 1

≤ nHk(L) + nHk(T |L) +O
(
n logm
m

)
+ n

m− 1 log
(

1 + 1
m− 1

)m−1

≤ nHk(L) + nHk(T |L) +O
(
n logm
m

)
+O

(
n

m

)
,

which ends the proof for the Case 2. In the estimation we have used the fact that the total
number of port nodes is at most O(n/m), since it cannot exceed the number of clusters.

The proof of Case 1 can be carried out in a similar manner, by replacing P(dv|Kv, lv)
with P(dv|Kv); alternatively it follows from Lemma 1.

The Case 3 requires slight modification of assignment of q to vertices, which reflects the
different estimation:

q(v) =
{

1
m ·

1
σ , if v = (1, lv)

m−1
m · P(dv|Kv) · P(lv|Kv, dv) , if v = (0, lv, dv)

.

Now, to show that values q sum to at most one (i.e. they satisfy conditions of Lemma 6) the
assignment of intervals must be changed, so that it reflects the current q: we first partition
the interval by P(dv|Kv) and then by P(lv|Kv, dv). The invariant is that when partitioning
the interval for P(dv|Kv) previous elements of RK,C uniquely determine Kv and when for
P(lv|Kv, dv) then they uniquely determine Kv, dv. However, this may not be true for port
nodes: if v is a port node then we cannot extract the information on original degree of v
from the cluster description alone. Hence we cannot partition the appropriate interval by
P(dv|Kv) for port nodes. This is why we have q(v) = 1

m ·
1
σ , instead of 1

m · P(dv|Kv) for port
nodes. This adds additional O

(
n logσ
m

)
term (since there are at most O(n/m) port nodes),

hence we have O
(
n(k+1) log σ

m

)
in the third case. J

5 Application – succinct data structure for labeled trees

We demonstrate how our tree clustering technique can be used for compressed representation of
labeled trees. Given a tree T we choose m = β logσ |T |, for some constant β to be determined
later. For appropriate β the number of different clusters is O(|T |1−α) for some constant
α > 0, moreover for such m the cluster tree T ′ from C(T ) can be stored using any succinct
representation (like balanced parentheses or DFUDS) in space O(|T |/ logσ |T |) = o(|T |) (for
small enough σ). At the same time clusters are small enough so that we can preprocess
them and answer all relevant queries within the clusters in constant time, the needed space
is also o(|T |).

Let T ′ denote the unlabeled tree of C(T ), i.e. the cluster tree (C1) stripped of node
labels. Our structure consists of:
(T1) Unlabeled tree T ′, |T ′| = O(|T |/ logσ |T |).
(T2) String P obtained by concatenating labels of the cluster tree of C(T ) in preorder

ordering.
(T3) Degree sequences for each node of T ′.
(T4) Precomputed arrays for each operation, for each cluster (along with look-up table from

C(T ) to decode cluster structure from labels).
We encode each of (T1–T4) separately, using known tools.
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(T1): Encoding tree T ′. There are many succinct representation for unlabeled trees which
allow fast navigational queries [40, 2, 33, 12, 22]. They all use 2|T ′|+ o(|T ′|) bits for tree
of size |T ′|, the exact function suppressed by the o(|T ′|) depends on the data structure.
Since in our case the tree T ′ is already of size O(|T |/ logσ |T |), we can use O(|T ′|) bits
for the encoding of T ′, so we do not care about exact function hidden in o(|T ′|). This
is of practical importance, as the data structures with asymptotically smallest memory
consumption, like [40], are very sophisticated, thus hard to implement and not always
suitable for practical purposes. Thus we can choose theoretically inferior, but more practical
data structure [2], we can even use a constant number of such data structures, as we are
interested only in O(|T ′|) bound.

Choose one method, say [37], for the sake of argument. We use it to encode T ′ on O(|T ′|)
bits, this encoding supports the following queries in constant time: parent(v) — parent of
v; firstchild(v) — leftmost child of v; nextsibling(v) — right sibling of v; preorder-rank(v) —
preorder rank of v; preorder-select(i) — returns a node whose preorder rank is i; lca(u, v) —
returns the lowest common ancestor of u, v; childrank(v) — number of siblings preceding a
node v; child(v, j) — j-th child of v; preorder_rank(v) — rank of node v in preorder ordering
of nodes; preorder_select(i) — i-th node in preorder ordering of nodes; leaf_rank(v) — number
of leaves to the left of u plus one ; leaf_select(i) — i-th leaf counting from the left; depth(v)
— distance from the root to v; level_ancestor(v, i) — ancestor at distance i from v.

(T2): Encoding preorder sequence of labels. By Theorem 5 it is enough to encode the
sequence P using roughly |P |H0(P ) bits, in a way that allows for O(1) time access to its
elements. This problem was studied extensively, and many (also practical) solutions were
developed [23, 16, 26, 24]. Most of these methods are not overly complex: they assign
a prefix code to consecutive groups of elements, concatenate prefix codes and use some simple
structure for storing information, where the code words begin/end.

However, we must take into the account that alphabet of |P | can be large (though, as
shown later, not larger than |T |1−α, 0 < α < 1). This renders some of previous results
inapplicable, for example the simplest (and most practical) structure for alphabet of size σ′
need additional O(|P | log log |P |/ logσ′ |P |) which can be as large as O(|P | log log |P |) [16].
As |P | = |T |/ logσ |T | this would be slightly above bound from Theorem 12:
(O(|T | log log |T |/ logσ |T |) vs O(|T | log logσ |T |/ logσ |T |)).

Still, there are structures achieving |P |H0(P ) + o(|P |) bits for alphabets of size |T |1−α,
for example the well-known one by Pǎtraşcu [41, Theorem 1].

(T3): Encoding the degree sequence. To navigate the tree, we need to know which
children of a cluster belong to which port node. We do it by storing degree sequence for each
cluster node of T ′ and design a structure which, given a node u′ of T ′ and index of a port
node u in the cluster represented by u′, returns the range of children of u′ which contain
children of u in T . We do it by storing rank/select structure for bitvector representing
degrees of vertices of T ′ in unary.

I Lemma 10. We can encode all degree sequences of nodes of T ′ using O(|T ′|) bits in total,
such that given node u of T ′ and index of port node v in cluster represented by u the structure
returns a pair of indices i1, i2, such that the children of v (in T ) are exactly the roots of trees
in clusters in children i1, i1 + 1, . . . , i2 − 1 of u. Moreover we can answer reverse queries,
that is, given an index x of x-th child of u ∈ T ′ find port node which connects to this child.
Both operations take O(1) time.
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(T4): Precomputed tables. We want to answer all queries in each cluster in constant time,
we start by showing that there are not many clusters of given size.

I Lemma 11. There are at most 22m′
σm

′ different clusters of size m′.

It is sufficient to choose m in clustering as m = 1
8 logσ |T | (or 1 if this is smaller than 1)

assuming that 2 ≤ σ ≤ |T |1−α, α > 0, then the number of different clusters of size at most
2m− 1 is

∑2m−1
i=1 22iσi ≤ O(|T |1−α).

We precompute and store the answers for each query for each cluster. As every query
takes constant number of arguments and each argument ranges over m values, this uses at
most O(|T |1−α) · O(logcσ |T |) = o(|T |) bits, where c is a constant. Additionally we make
tables for accessing i-th (in left-to-right order on leaves) port node of each cluster, as we will
need this later to support more involved queries.

Putting it all together. The above structures can be combined into a succinct data structure
for trees. Note that we used the fact that σ ≤ |T |1−α, we generalize for arbitrary σ in the
full version.

I Theorem 12. Let T be a labeled tree with labels from an alphabet of size σ ≤ |T |1−α, α > 0.
Then we can build in linear time a tree structure whose bit size is bounded by all of the below
values:

|T |H(T ) + |T |Hk(L) +O
(
|T |k log σ
logσ |T |

+ |T | log logσ |T |
logσ |T |

)
|T |Hk(T |L) + |T |Hk(L) +O

(
|T |k log σ
logσ |T |

+ |T | log logσ |T |
logσ |T |

)
|T |H(T ) + |T |Hk(L|T ) +O

(
|T |(k + 1) log σ

logσ |T |
+ |T | log logσ |T |

logσ |T |

)
It supports firstchild(u), parent(u), nextsibling(u), lca(u,v), childrank(u), child(u,i), depth(u),
preorder_rank(u), preorder_select(i), leaf_rank(u) and leaf_select(i). operations in O(1) time;
at the expense of additional O(|T |(log log |T |)2/ logσ |T |) bits it can support level_ancestor(v,
i) query in O(1) time.

The main idea of Theorem 12 is that for each query if both arguments and the answer are
in the same cluster then we can use precomputed tables, for other we can query the structure
for T ′ and reduce it to the former case using previously defined structures. A similar idea
was used in other tree partition based structures like [22] (yet this solution used different
tree partition method).

6 Even succincter structure

So far we have obtained the redundancy of O(|T | log logσ |T |/ logσ |T |) +O(|T |k log σ/ logσ |T |).
As the recent lower bound for zeroth-order entropy coding of a string partition [20] (assuming
certain partition properties) also applies to trees, we can conclude that our structure in
worst case requires Ω(|T |k log σ/ logσ |T |) additional bits. Yet, this lower bound only says
that the above factor is necessary when zeroth-order entropy coder is used, not that this
factor is required in general. Indeed, for strings, there are methods of compressing the text
S (with fast random access) using |S|Hk(S) + o(|S|) + f(k, σ) bits [26, 38], also methods
related to compression boosting achieve |S|Hk(S) +O(|S|) + f(k, σ) bits [15], where f(k, σ)
is some function that depends only on k and σ. Similarly, the method of compressing the tree
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using combination of XBWT and compression boosting gives redundancy of O(|S|) + f(k, σ)
bits [13]. In all of the above cases f(k, σ) can be bounded by O(σk ·polylog(σ)). This is more
desirable than O(|T |k log σ/ logσ |T |), as in many applications k and σ are fixed and so this
term is constant, moreover the redundancy is a sum of two functions instead of a product.
Furthermore, achieving such redundancy allows us to relax our assumptions, i.e. we obtain
additional o(|T |) factor for k = α logσ |T |, 0 < α < 1, while so far our methods only gave
o(|T | log σ) for k = o(logσ |T |).

We can decrease the redundancy to O(σk · polylog(σ)) at the cost of increasing the query
time to O(logn/ log logn) (note that previously mentioned compressed text storages [26] also
did not support constant access). The proof of Theorem 5 suggests that we lose up to k log σ
bits per cluster (as a remainder: we assign each cluster value q and we “pay” log q bits), so
it seems to be the bottleneck of our solution. In case of text compression [26] improvements
were obtained by partitioning the text into blocks and encoding string made of blocks of size
Θ(logσ n) with first order entropy coder; to support retrieval in time O(d), for some d, every
d-th block was stored explicitly. For d = log |S|/ log log |S| and assuming that each block
has at most logσ |S| characters this gives O(|S| log log |S|/ logσ |S|) bits of redundancy.

We would like to generalize this idea to labeled trees, yet there are two difficulties: first,
the previously mentioned solution for strings required that context of each block is stored
wholly in some previous block, second, as there is no linear order on clusters, we do not
know how to choose |T ′|/d clusters. Our approach for solving this problem combines ideas
from both compression boosting techniques [15] and for compressed text representation [26]:
for O(|T ′|/d) nodes, where d = log |T |/ log log |T |, we store the context explicitly using
k log σ bits. The selection of nodes is simple: by counting argument for some 1 ≤ i < d the
tree levels i, i+ d, . . . i+ dj of the cluster tree T ′ have at most |T ′|/d nodes. This allows to
retrieve context of each cluster by traversing (first up and then down) at most d nodes. Then
we partition the clusters in the classes depending on their preceding context and use zeroth
order entropy for each class (similarly to compression boosting [15] or some text storage
methods [23]), i.e. we encode each cluster as if we knew its preceding context. To decode, we
first retrieve the context and next decode zeroth order code from given class.

I Theorem 13. Let T be a labeled tree and k = α logσ |T |, for a constant 0 < α < 1. Then
we can build a tree structure which requires a number of bits bounded by all of the chosen
value from the list below:
|T |H(T ) + |T |Hk(L) +O

(
|T | log log |T |

logσ |T |

)
;

|T |Hk(T |L) + |T |Hk(L) +O
(
|T | log log |T |

logσ |T |

)
;

|T |H(T ) + |T |Hk(L|T ) +O
(
|T | logσ
logσ |T |

+ |T | log log |T |
logσ |T |

)
.

This data structure supports the following operations in O(log |T |/ log log |T |) time:
firstchild(u), parent(u), nextsibling(u), lca(u, v), child(v, i), childrank(u), depth(u),
preorder_rank(u), preorder_select(i), leaf_rank(u) and leaf_select(i). It can support
level_ancestor(v, i) query in O(log |T |/ log log |T |) time with additional
O(|T |(log log |T |)2

/ logσ |T |) bits.

7 Label-related operations

Using additional memory we can support some label-related operations previously considered
for succinct trees [44, 28]. Even though we do not support all of them, in all cases we support
at least the same operations as XBWT, i.e. childrank(v, a) (which returns v’s rank among
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children labeled with a) and childselect(v, i, a) (which returns the ith child of v labeled with
a). To this end we employ rank/select structures for large alphabets [3, 4]. Note, that we
do not have constant time for every alphabet size and required additional space is larger
than for other operations (i.e. o(|T | log σ)), but this is unavoidable [4, 25]. Moreover, as
the last point of Theorem 14 use structures which are not state-of-the-art, it is likely that
better structures [4] are applicable, but they are more involved and it is not clear if they are
compatible with our tree storage methods.

I Theorem 14. We can augment structures from Theorem 12 and Theorem 13 so that:
For σ = O(1) we can perform: childrank(v, a), childselect(v, i, a), level_ancestor(v, i, a),
depth(v, a) for structure from Theorem 12 in O(1) time and for structure from Theorem 13
in O(log |T |/ log log |T |) time using asymptotically the same additional memory.

For σ = O(log1+o(1) |T |) and σ = ω(1) we can perform: childrank(v, a) and
childselect(v, i, a) for structure from Theorem 12 in O(1) time and for structure from
Theorem 13 in O(log |T |/ log log |T |) time using additional o(|T | log σ) bits.

For arbitrary σ we can perform: childrank(v, a) and childselect(v, i, a) for structure from
Theorem 12 in O(log log1+ε σ) time and for structure from Theorem 13 in
O((log log1+ε σ) log |T |/ log log |T |) time; using additional o(|T | log σ) bits.

8 Open problems

There are a few open questions. First, can our analysis be applied to recently developed
dictionary compression methods for trees like Top-Trees/Top-Dags [8, 29] or other dictionary
based methods on trees? Related is the problem of finding good compression measures for
repetitive trees, for instance for the case of text we have LZ77 and BWT-run, for which we
can build efficient structures (like text indices) based on this representations [36, 17] and
find relation with information-theoretic bounds (like k-th order entropy) or even show that
they are close in information-theoretic sense to each other [35]. Even though we have tree
representation like LZ77 for trees [21] or tree grammars [34] we do not know relation between
them nor how they correspond to tree entropy measures (with the exception of recent paper
on tree grammars [30], yet this approach works only in the restricted case of binary trees
and the presented definition of tree entropy is different and only valid for the binary trees).
One could also measure tree repetitiveness with number of runs (i.e. number of phrases in
run-length encoding) in string generated by some linearization of the tree. The XBWT seems
to not be a good choice in this case, because, as mentioned before, it does not capture the
tree shape, moreover even on repetitive tree (i.e. trees with many repeated subtrees) XBWT
does not contain many long runs. Still, it would be interesting to develop new linearization
techniques or improve XBWT so it would apply for repetitive trees.

Second, we do not support all of the label-related operations, moreover we do not achieve
optimal query times. The main challenge is to support more complex operations, like
labeled level_ancestor, while achieving theoretical bounds considered in this work. Previous
approaches partitioned (in a rather complex way) the tree into subtrees, by node labels (i.e.
one subtree contained only nodes with same label) and achieved at most zeroth-order entropy
of labels [44, 28], it may be possible to combine these methods with ours.

Next, it should be possible that the presented structure can be made to support dynamic
trees, as all of the used structures have their dynamic equivalent [26, 7, 40]. Still, it is not
entirely trivial as we need to maintain the clustering.
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Next, as Ferragina et al. [13] mentioned, in some applications nodes can store strings,
rather than single labels, where the context for a letter is defined by labels of ancestor nodes
and previous letters in a node. It seems that our method should apply in this scenario,
contrary to XBWT.

Finally, can the additional space required for level_ancestor query be lowered? We believe
that this is the case, as our solution did not use the fact that all weights sum up to |T |;
moreover it should be possible to apply methods from [40] to obtainO(|T | log log |T |/ logσ |T |)
additional space for level_ancestor.
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A Additional proofs for Section 2

Proof of Lemma 1. The proof follows by straightforward application of the log sum inequal-
ity. To prove the case for |T |Hk(T |L) we use the fact that

∑
l

∑
K tK,l = |T | and that for a

fixed d we have
∑
K

∑
l tK,l,d = td.

|T |Hk(T |L) = −
∑
v∈T

logP(dv|Kv, lv)

= −
∑
v∈T

log tKv,lv,dv
tK,lv

= −
∑
d

∑
K

∑
l

tK,l,d log tK,l,d
tK,l

≤ −
∑
d

td log td
|T |

The proof for the case |T |Hk(L|T ) is analogous. J
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B Additional proofs for Section 3

Proof of Lemma 2. We build the clustering by a simple dfs-based method, starting at the
root r.

For a node v, the procedure returns a tree cv rooted in v along with its size (and also
creates some clusters). The actions on v are as follows: we recursively call the procedure on
v’s children v1, . . . , vj , let the returned trees be c1, . . . , cj and their sizes s1, . . . , sj . We have
two possibilities:∑j

i=1 si < m, then return a tree rooted at v with all of the returned trees c1, . . . , cj
rooted at its children.∑j
i=1 si ≥ m, then we group returned trees greedily: We process trees from left to right,

at the beginning we create cluster containing C = {c1}, while |C| < m we add consecutive
ci’s to C (recall that |C| denotes the number of nodes in trees in C). Then at some point
we must add cj such that |C| ≥ m. We output the current cluster C, set C = {cj+1} and
continue grouping the trees. At the end we return tree containing just one vertex: v.

Finally, we make a cluster of the tree returned by the root of T , regardless of its size.
We now show that the above algorithm satisfies (C1–C4).
Observe that the above procedure always returns a tree, its size is at most m: either it is

only a vertex v (in the second case) or the sum of sizes of subtrees is at most m− 1, plus 1
for the v (in the first case). This implies (C2): when we make a cluster out of ci, . . . , cj+1
then

∑j
`=i s` is at most m− 1 by the algorithm and sj+1 ≤ m by the earlier observation.

It is easy to see from the algorithm that a cluster contains trees rooted at the consecutive
siblings, so (C3) holds.

By an easy induction we can also show that in each returned tree the degree of the node
v is either 0 (in the second case, when we return tree which consists of only v) or equal to the
degree in the input tree T (in the first case, when the tree contains v and all of its children),
thus (C4) holds.

Concerning the total number of clusters, first recall that they are of size at most 2m− 1,
thus there are at least |T |

2m−1 ≥
|T |
2m − 1 clusters. To upper bound the number of clusters

observe that by the construction the clusters are of size at least m except two cases: the
cluster rooted at the root of the whole tree and the clusters that include the last child of the
node (but not the node, i.e. they are created in the second case). For the former, there is at
most one such a cluster. For the latter, before creating such cluster we created at least one
other cluster from trees rooted in siblings whose size is at least m, thus for each cluster of
size less than m there must exist corresponding (previously created) cluster with size at least
m. Hence the number of clusters of size smaller than m is at most half the number of total
clusters plus one, thus there are at most 2 |T |m + 1 clusters, as claimed in (C1). J

Proof of Lemma 4. Given a tree T we build a cluster of its nodes using procedure from
Lemma 2, create a node for each cluster and add an edge between two nodes u and v if and
only if in T there was an edge from some vertex from cluster Cu to some vertex in Cv. We
label the cluster nodes consistently, i.e. u and v get the same label if and only if their clusters
are identical, also in the sense which nodes are port nodes (note though, that the port nodes
can have different degree in the input tree). For each label representing the cluster we store
its cluster. For simplicity, we assume that the assigned labels are from an ordered set (i.e.
set of numbers).

As mentioned before, we store the previously defined degree sequence. J
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C Additional proofs for Section 4

Proof of Lemma 9. It is a known fact that from sequence of degrees in preorder ordering we
can retrieve shape of the tree (we can do it by simple dfs-procedure, which first creates node
with given degree, then calls itself recursively; when we recurse back we know which node is
next, etc.). From cluster description we can retrieve the sequence of its degrees in preorder
ordering. We also can retrieve labels and information which nodes are port. Now for each
vertex v in cluster we know its original context Kv in T , as we explicitly store context for
roots of trees, and other nodes have their context either fully in cluster, or their context is
concatenation of some suffix of K and some path in the cluster. J

D Additional material for Section 5

Proof of Lemma 10. First we concatenate degree sequences for each node in T ′, according
to preorder ordering, obtaining a sequence D = dv1,1, . . . dv1,j1 , dv2,1, . . . dv−2,j2 , dv|T ′|,1,

. . . dv|T ′|,j|T ′| . Sum of all dv,j ’s in the sequence is bounded by |T ′|, as each dv,j corresponds
to dv,j edges. We encode each number in the sequence in unary: Du = 0dv1,11 . . . 0dv|T ′|,j|T ′| 1.
Then we build a separate sequence Bu, which marks the borders between nodes in the degree
sequence, i.e. Bu[z] = 1 if and only if at index z starts the unary degree sequence of some
node.

Consider the following example: for nodes a, b, c, d, e and corresponding degree sequences
(0), (3, 1), (2), (1, 2), (2, 2) we have (the vertical lines | denote borders of degree sequences and
are added for increased readability):

Du = 1|000101|001|01001|001001
Bu = 1|100000|100|10000|100000

We now construct rank/select data structure for Du and Bu. There are multiple approaches
that, for static bitvectors, use O(|Du|+ |Bu|) = O(|T ′|) bits and allow both operations in
O(1) time [42].

We describe how to answer a query for node u ∈ T ′ and port node v in the cluster. Let
pu be preorder index of u.

Let j be the point in Du where the degree sequence of u starts, i.e. j = select1(pu, Bu).
Let pv be a port index of v in the u-cluster (recall that we ordered port nodes in each cluster
in left-to-right order on leaves). We want to find the beginning of unary description of
du,pv (plus one) in Du: this is the pv − 1-th 1 starting from j-th element in Du. The next 1
corresponds to the end of unary description. Let u1, u2 be the beginning and end of this unary
description, we can find them in the following way: u1 = select1(rank1(j,Du)+pv−1, Bu)+1
and u2 = select1(rank1(j,Du) + pv, Bu)− 1. Observe now that number of 0’s in Du between
j and u1 (with j and u1) is equal to i1. Similarly we can get i2 by counting zeroes between u1
and u2. Thus i1 = rank0(u1, Du)− rank0(j) and i2 = rank0(u2, Du)− rank0(u1, Du)− 1.

We now proceed to the second query. We find the beginning of description in unary,
denoted j as above. We find position ux of x-th 0 counting from j, we do it by calling
ux = select0(rank0(j) + x). Now we calculate the numbers of 1’s between j and ux and
simply return this value (+1). That is, we return rank1(ux)− rank1(j) + 1. J

Proof of Lemma 11. Each cluster can be represented by: a number of nodes in the cluster,
written as a unary string of length m′ + 1, a bitvector indicating which nodes are port nodes
of length m′, balanced parentheses representation of cluster structure, string of labels of
length m′. J
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We give more general version of Theorem 12.

I Theorem 15 (Full version of Theorem 12). Let T be a labeled tree with labels from an
alphabet of size σ ≤ |T |1−α, α > 0. Then we can build a tree structure which requires a
number of bits bounded by all of the chosen value from the list below:
|T |H(T ) + |T |Hk(L) +O

(
|T |k logσ
logσ |T |

+ |T | log logσ |T |
logσ |T |

)
;

|T |Hk(T |L) + |T |Hk(L) +O
(
|T |k logσ
logσ |T |

+ |T | log logσ |T |
logσ |T |

)
;

|T |H(T ) + |T |Hk(L|T ) +O
(
|T |(k+1) log σ

logσ |T |
+ |T | log logσ |T |

logσ |T |

)
.

For general σ we can build the structure which size is bounded by any of the values below:
|T |H(T ) + |T |Hk(L) +O

(
|T |k logσ
logσ |T |

+ |T | log log |T |
logσ |T |

)
;

|T |Hk(T |L) + |T |Hk(L) +O
(
|T |k logσ
logσ |T |

+ |T | log log |T |
logσ |T |

)
;

|T |H(T ) + |T |Hk(L|T ) +O
(
|T |(k+1) log σ

logσ |T |
+ |T | log log |T |

logσ |T |

)
.

It supports firstchild(u), parent(u), nextsibling(u), lca(u, v), childrank(u), child(u,i) and
depth(u) operations in O(1) time; moreover with additional O(|T |(log log |T |)2/ logσ |T |) bits
it can support level_ancestor(v, i) query in O(1) time.

Proof of Theorem 12 (and 15). We start by proving the part for operations firstchild(u),
parent(u), nextsibling(u), lca(u, v), as the rest requires additional structures.

First we consider the case for σ ≤ |T |1−α.
To bound the memory consumption we sum needed space for (T1–T4). (T1), (T3) and

(T4) take at most O(|T ′|) = O( |T |
logσ |T |

) bits. We bound space for (T2) by Theorem 5, observe
that this theorem gives us the same bound as in the claim, moreover this summand dominates
bounds for (T1), (T3) and (T4).

One of the crucial part while performing operations on our compressed tree structures
is that we can perform preorder-rank and preorder-select in constant time, this allows us to
retrieve tree node labels from preorder sequence P of C(T ) (and thus to retrieve the cluster),
given node of T ′, in constant time.

We now give the description of operations, let u denote the node and u′ the name of
its cluster. If the answer can be calculated using only the cluster of u (i.e. when u and the
answer is in the same cluster) we return the answer using precomputed tables. Thus in the
following we give the description when the answer cannot be computed within the cluster u′
alone.
firstchild(u): Using the structure for degree sequence (T3) we find index i of child of u′ which
represents cluster containing first child of u. We call child(u, i) on the structure for unlabeled
tree T ′ (T1), to get this cluster, the answer is the root of the first tree in this cluster.
parent(u): We call childrank(u′) on structure for T ′. This gives us index i such that u′ is i-th
node of node v′ representing the cluster containing parent(u). Now we query degree sequence
structure, as it supports also reverse queries (see Lemma 10) obtaining index of port node.
Finally, we use precomputed table, i.e. we query the table which for given index of port node
and given cluster returns this port node.
nextsibling(u): We call nextsibling(u′) on structure for T ′ (T1) and take root of the first tree
in the cluster and verify that it has the same parent as u.
lca(u, v): let v′ be the cluster of v. We use the structure for T ′ (T1): the answer is in the
cluster which is represented by node l = lca(u′ ,v′) of T ′ but we still need to determine the
actual node inside the cluster. To this end we find nodes u′′, v′′ of T ′ such that: both are
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children of l, they are ancestors of u′ and v′ respectively, and u′′ and v′′ connect to some (port)
nodes x, y such that x, y are in the cluster represented by node l and lca(x, y) = lca(u, v).
They can be computed as follows: u′′= level_ancestor(u′, depth(lca(u′ ,v′))-depth(u′)-1), the
case for v′′ is analogous. Having u′′ and v′′ we can, as in the case for parent(v), reverse
query the structure for degree sequence (T3) obtaining indices of x and y. Finally we use
precomputed table (as we want to find lowest common a for port nodes with indices x and y
in given cluster).

Note that most tree structures allow to find u′′, v′′ without calling depth and level_ancestor,
as they are rank/select structures on balanced parenthesis, and it is easy to express this
operation using such structures [40].

For general σ we need to only slightly modify our solution.
To encode labels the string P we use results from [16], which achieves |P |H0(P ) +

|P | log log |P | bits. As |P | = O(|T |/ logσ |T |) this gives required bound.
Additionally, if σ = Ω(|T |) we do not have to use precomputed tables, as every cluster

has constant number of nodes in it, thus we can perform operations inside the clusters in
constant time.

In other case we use tables of size O(|T |), this is still within bounds, as this is dominated
by O(|T | log log |T |/ logσ |T |). J

Note, that even Theorem 12 for the case σ = |T |1−α, the guarantee on the redundancy is
O(n), which is of the same magnitude as the size of the encoding of the tree using parentheses,
so for large alphabets this dominates tree entropy.

Also, in Theorem 12 for the case for arbitrary σ we get a slightly worse redundancy, i.e. we
have O(|T | log log |T |/ logσ |T |) factor instead of O(|T | log logσ |T |/ logσ |T |). Still, even in
the case of σ = ω(n1−α) we can get better bounds (more precisely: O(|T | log logσ |T |/ logσ |T |),
or O(n) for large alphabets) by encoding string of labels P using structure like [4]; but at
the cost that operations are slower than O(1).

We now prove the rest of Theorem 12, that is we can add even more operations, for more
complex operations we will need more involved data structures.

Succinct partial sums. To realize more complex operations we make use of structure for
succinct partial sums. This problem was widely researched, also in dynamic setting [7].
For our applications, however, it is enough to use a basic, static structure by Raman et al.
(RRR) [42].

I Lemma 16. For a table |T | = nt of nonnegative integers such that
∑
i T [i] ≤ n and

n
nt
≤ O(logc n), for some constant c, we can construct a structure which answers the

following queries in constant time: sum(i, j):
∑j
y=i T [y]; find(x): find first i such that∑y=i

y=1 T [y] ≥ x; and consumes O(nt log n
nt

) bits.

Proof of Lemma 16. We exploit the fact that all the numbers sum up to n. This allows us
to store T unary, i.e. as string 0T [i]1 . . . 0T [nt]1. Now using rank/select we can realize desired
operations, see [42] for details. For a string with n zeros and nt ones this structure takes
log
(
n+nt
nt

)
+ o(nt) bits. This can be estimated as: log

(
n+nt
nt

)
+ o(nt) ≤ nt log(e(n+ nt)/nt) +

o(n) = O(nt logn/nt), as claimed. J
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childrank(v), child(v, i). Observe first that if v and its parent are in the same cluster then
childrank(v) can be answered in constant time, as we preprocess all clusters. The same applies
to v and its children in case of child(v, i). Thus in the following we consider only the case
when v is a root of a tree in a cluster (for childrank(v)) or it is a port (for child(v, i)).

The problem with those operations is that one port node p can connect to multiple
clusters, and each cluster can have multiple trees. We solve it by storing for each port node
p a sequence Tp = tp,1, . . . , tp,j , where tp,j is the number of children of p in the j-th (in left
to right order) cluster connecting to p.

Observe that all sequences Tp contain in total |T ′|−1 numbers, as each number corresponds
to one cluster. To make a structure we first concatenate all sequences according to preorder
of nodes in T ′, and if multiple nodes are in some cluster, we break the ties by left-to-right
order on port nodes. Call the concatenated sequence T . Using structure from Lemma 10, for
port node p we can find indices i1, i2 which mark where the subsequence corresponding to
Tp starts and ends in T , i.e. T [i1 . . i2 − 1] = Tp.

We build the structure from Lemma 16 for T , this takes O(|T | log logσ |T |/ logσ |T |) bits,
as |T | = O

(
|T |

logσ |T |

)
and all elements in T sum up to at most |T |. We realize childrank(v)

as follows: let v′ ∈ T ′ be a node representing cluster containing v (by the assumption: as
a root). First we find indices i1, i2 corresponding to subsequence Tp, where p is port node
which connects to v′. Let j = childrank(v′) in T ′. Now it is enough to get sum(i1, j − 1), as
this corresponds to number of children in first j − i1 clusters connected to p, and add to the
result the rank of v in its cluster, the last part is done using look-up tables.

The child(v, i) is analogous: we find indices i1, i2 corresponding to Tp. Then we call find(i
+ sum(1, i1-1)) to get cluster containing child(v, i), as we are interested in first index j such
that T [i1] + . . . + T [j] > i. This way we reduced the problem to find i′-th node in given
cluster, this can be done using precomputed tables.

depth(v). The downside of clustering procedure is that we lose information on depth of
vertices. To fix this, we assign to each edge a non-negative natural weight in the following
way: Let v ∈ T ′ be any vertex and p be a port node in cluster represented by parent(v). For
an edge (v, parent(v)) we assign depth of p in cluster represented by parent(v). For example
in Figure 2 for edge (D,B) we assign 1, and for edge (I,B) we assign 2. In this way the
depth of the cluster C (alternatively: depth of roots of trees in C) in T is the sum of weights
of edges from root to node representing C.

A data structure for calculating depths is built using a structure for partial sums:
Consider balanced parentheses representation of T ′. Then we assign each opening paren-
thesis corresponding to node v weight w(v, parent(v)) and each closing parenthesis weight
−w(v, parent(v)). This creates the sequence of numbers, for example, for tree from Figure 2
we have:

( ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ( ) ( ) ) )
0 1 1 -1 1 -1 1 -1 2 -2 2 -2 2 -2 2 -2 -1 1 1 -1 1 -1 -1 0

Then we can calculate depth of a cluster by calculating the prefix sum. Observe that our
partial sums structure does not work on negative numbers, but we can solve that by creating
two structures, one for positive and one for negative number and subtract the result. Finally
we use look-up table to find the depth in the cluster

The total memory consumption is bounded by O(|T | log logσ |T |/ logσ |T |), as all weights
sum to at most |T |.
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preorder_rank(v), preorder_select(i). We again use the structure for succinct partial sums.
We create two sequences: First, for each port node consider its preorder rank in T , and arrange
these ranks in the sequence according to the preorder ordering: Sp = preorder_rank(p1),
preorder_rank(p2), . . . , preorder_rank(p#ports). Now consider the sequence of the increments,
i.e.: preorder_rank(p1), preorder_rank(p2)− preorder_rank(p1), . . . , preorder_rank(p#ports)−
preorder_rank(p#ports-1). With the structure for succinct partial sums created for this
sequence we are able to get the preorder_rank in T for any port node assuming that we know
its position in the sequence Sp. We can get this position in the same way as we did for the
childrank operation: we store additional partial sum structure where elements are number of
port nodes in given cluster (see the childrank operation description for details). Next, we
create the sequence of cluster sizes Sc = |C1|, |C2|, . . . |C|T ′||, where the order of clusters is
determined by the preorder ordering of nodes of T ′ (recall that each node of T ′ corresponds
to some cluster).

Now, for a given v to get the preorder_rank(v) we sum up three values: preorder rank in
T ′ of port node which is a connected to cluster Cv containing v, preorder rank of the node
v in cluster Cv and the sum of sizes of clusters Cr forming subtrees which are connected
to the port nodes p in Cv such that p is before v in preorder ordering of nodes in Cv. To
get the first summand, we use previously described structure, to get the second summand
we use precomputed tables. Now observe the sum of sizes of clusters Cr form consecutive
interval in Sc. Thus it is enough to get the preorder rank in T ′ of first and last such cluster.
This is straightforward when the structure for T ′ supports preorder_rank and rightmost_leaf
operation (e.g. we can use the structure from [40]): let p and p′ be first and last port nodes
which are before v in Cv, we find the preorder rank of the leftmost child of p and preorder
rank of rightmost cluster in subtree connected to p. As the elements in sequences sum up to
at most |T |, the space is bounded by O(|T | log logσ |T |/ logσ |T |).

The preorder_select(i) operation is more involved. For each cluster C we define pr(C)
— the position in preorder ordering of leftmost root of C (note that C can be a forest)
according to preorder ordering of vertices of T . Consider the sequence of increments
D = pr(C1), pr(C2)− pr(C1), pr(C3)− pr(C2), . . . , pr(C|T ′|−1)− pr(C|T ′|), where the clusters
are ordered to preorder ordering according to T ′.

Now, by using succinct partial sums structure on the sequence D, for a given i we can
find two (consecutive in preorder ordering on T ′) clusters Cj , Cj+1 such that pr(Cj) ≤ i <
pr(Cj+1). Observe that there are two possibilities: either Cj is parent of Cj+1 in T ′ and
Cj+1 is the first child of Cj , or Cj is the rightmost node of subtree rooted in parent Cp of
Cj+1 in T ′. If Cj is a parent of Cj+1, it is sufficient to find a node with preorder rank of
i− pr(Cj+1), as Cj+1 is the first child of Cj , for this we can use precomputed tables.

If Cj is a rightmost node of subtree rooted in Cp (and hence a leaf) we have three
possibilities: either the requested node is in Cj or in Cp or in parent of Cp. If |Cj |+pr(Cj) ≤ i
the node is in Cj and so we use the precomputed tables as in former case.

Otherwise we find two (not necessarily different) port nodes in Cp, nj and nj+1, which
are the nodes on the path from Cj to Cp and Cj+1 to Cp, respectively. Let nrj and nrj+1

be the roots of subtrees of Cp which contain nj and nj+1, respectively. Now the searched
node is either a parent of nrj and nrj+1 (observe that they must share a parent), or in one of
the subtrees in Cp rooted at either nrj or nrj+1 . We check the former case by simply calling
preorder_rank for the parent of nrj . For the latter case it is enough to get the node which is
i− (pr(Cj) + |Cj | − 1) positions after nj in Cp according to preorder ordering of nodes in Cp.
For this we can use precomputed tables (i.e. we store tables which allow to call preorder_rank
and preorder_select for vertices of a given cluster).
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leaf_rank(v), leaf_select(i). Consider the sequence of leaves of T , L = v1, v2, . . . , v|L|
where leaves are ordered from left to right. Now consider the grouping of leaves such that two
leaves are in the same group if and only if they are in the same cluster in T ′, call the obtained
sequence of groups LG = G1, G2, . . . G|L|. We build the succinct partial sum structure for
sequence of group sizes, LSG = |G1|, |G2|, . . . |G|L||.

Assuming that our structure for T ′ supports leaf_rank(u) and leaf_select(j) (this can
be achieved by using the structure from [40] for T ′) we can realize the operations as follow:
For leaf_rank(v) we first call the leaf_rank(u), where u is vertex in T ′ representing cluster
Cv, this way we know how many clusters containing leaves are to the left of Cv in T ′. We
use the structure for partial sums to get the number of leaves in clusters to the left of v,
for the vertices in Cv to the left of v we use precomputed tables. Analogously, we realize
leaf_select(i) by first using our structure for partial sums, this allows to identify the index i′
in LSG, then we call leaf_select(i′) on structure for T ′, we also use precomputed tables to
identify the leaf inside the cluster.

level_ancestor(v, i) We assign weights to edges as in the case of depth operation. This
reduces the level ancestor in T to weighted level ancestor in T ′; in this problem we ask for
such ancestor w of v that sum of weights on the path from w to v is at least i and w is
closest node to v in the terms of number of nodes on the path (note that there may not exist
a node for which the sum is equal exactly to i). The redundancy obtained for level_ancestor
operation is slightly worse than for previous operations, but not worse than most of the other
structures [33, 22] supporting this operation. Observe that each edge has weight of order
O(logσ |T |). From the following theorem we get that additional O(|T |(log log |T |)2/ logσ |T |)
bits is sufficient.

I Lemma 17. Let T ′, |T ′| = t be a tree where each edge is assigned a weight of at most
O(logn), for some n. We can build structure which consumes O(t(log logn)2) bits of memory
and allows to answer weighted level ancestor queries in O(1) time.

With the structure from Lemma 17 the query level_ancestor(v, i) is easy: first we check if
the answer is in the same cluster using preprocessed array. If not we find cluster containing
the answer, we do it by asking for level_ancestor(C, i-depth(C, v)), where depth(C, v) is
depth of v in cluster C containing v. There is similar problem as in the case of lca query,
that is we also need to find the port node on path from given vertex v to its i-th ancestor.
This may be solved in the same manner as in the case for lca.

Now we give the construction for weighted level ancestor structure. Note that there are
multiple ways of doing this [22, 40, 33]. We use the tree partitioning approach, yet the one
that operates on sequence of numbers, as in case for depth, should also be applicable, [33]
shows similar method (and uses same additional space), yet for simplicity we choose to stick
with solution which partition the tree into subtrees as we already defined most of the required
machinery. Note that tree partitioning method [22], which we refer to, partitioned the tree
a few times, we do it once and use stronger result [40] for the simplicity of proof. Also, the
partitioning from [22] may be used instead of our method.

Proof of Lemma 17. We use the idea from [22]. We first cluster the tree according to
Lemma 2 with m = Θ(log3 n). We obtain a smaller tree T ′′ of size |T ′′| = O

(
t

log3 n

)
. We

store labels of T ′′ and the descriptions of clusters naively, without the entropy coder. We
also store additional structure for navigation of T ′′, including degree sequences, observe that
it takes at most O(t) bits.
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Similarly, as in the case for depth, we assign weights to edges of T ′′ but we have to
remember that the input tree is weighted as well. Let v ∈ T ′′ be any vertex and p be a port
node in a cluster represented by parent(v), call the cluster Cp. For an edge (v, parent(v)) we
assign the sum of the weights on the path from p to the root of the tree containing p in Cp
(i.e. the weighted depth of p in Cp).

Observe that the weights in the T ′′ are of order O(log4 n). For such weighted tree we can
build structure which supports level_ancestor queries in O(1) time and use O(|T ′′| log2 n) =
o(n) bits, using result from [5].

Now for each smaller tree we can build structure from [40]. For a tree of size t′ and with
weights limited by O(log4 n) this structure takes O(t′ log t′ log(t′ log4 n)) = O(t′(log logn)2)
bits. Summing over all trees, we get O(t(log logn)2), as claimed. For each such tree we
additionally store the information, which nodes are port nodes in a way that allow to retrieve
i-th port node. This can be achieved by storing the bitmap for each small tree (in which
each j-th element indicates if j leaf is port node or not) and applying rank/select structure
(this consumes O(t) bits for all trees). Observe that we can even explicitly list all of the port
nodes: we do not have to use space efficient solution, as there are at most |T ′′| such nodes,
so even consuming O(log2 n) bits for port node is sufficient.

We perform level_ancestor operation in the same manner as previously described when
applying Lemma 17, i.e. we first check if the answer is in the same tree, if yes we can output
the answer as we can perform operations on small trees in O(1) time [40], if not we use
combination of depth and level_ancestor queries on structure for T ′′ in the same way as we
did for lca query (see proof of Theorem 12). It is possible as structure [5] supports all of the
required operations (or can be easily adapted to support by adding additional tree structure,
as the structure for T ′′ can consume up to O(log2 n) bits per node, in particular this means
that we can even preprocess all answer for depth queries for T ′′).

The only nontrivial thing left is that we would like to not only find a node in our structure
but also find corresponding node in structure for T ′. To this end we show that we can return
preorder position of given node in T ′, this is sufficient as structure for T ′ has preorder-select
operation.

To this end we explicitly store preorder and subtree size for each port node, observe that
this consumes at most O(T ′′ log t) = O(t) bits. Now given a node v in some cluster to find
preorder rank of this node in T ′ we sum the following values: preorder rank of v in cluster
C containing v, the rank of port node pv which is connected to cluster C, and the sizes of
subtrees Ti which are connected to port nodes ci of C, such that ci precedes v in preorder
ordering in C. To find the sum of sizes of ci we first find how many ci’s precede v in preorder
ordering in C, to this end we use rank/select structure for binary vector BC where BC [i] = 1
if and only if i-th node according to preorder ordering in C is a port node. Then we use the
structure for partial sums (again, we do not have to use succinct structure as there are at
most O(|T ′′|) elements in total). J

E Additional material for Section 6

The following Lemmas says that if we partition the clusters into groups according to their
k-letter contexts and encode each group separately with zeroth-order entropy we can get
better estimation than encoding them together.
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I Lemma 18. Let T ′ be a labeled cluster tree from Lemma 4 for parameter m, obtained from
T . For each k-letter context Ki let PKi be a concatenation of labels of T ′ which are preceded
by this context (i.e. each root v in each cluster is preceded by the context Ki in T ). Then all
of the following inequalities hold:

1.
∑
i |PKi |H0(PKi) ≤ |T |H(T ) + |T |Hk(L) +O

(
|T | logm

m

)
;

2.
∑
i |PKi |H0(PKi) ≤ |T |Hk(T |L) + |T |Hk(L) +O

(
|T | logm

m

)
;

3.
∑
i |PKi |H0(PKi) ≤ |T |H(T ) + |T |Hk(L|T ) +O

(
|T | logσ

m + |T | logm
m

)
.

Proof of Lemma 18. The proof is very similar to the proof of Theorem 5. For each PKi
we apply the Lemma 6: we use almost the same values of q function for each cluster but
we do not need to multiply it by q(KC), i.e. we define q(C) = q(NC) · q(VC). For detailed
definition of q see proof of Theorem 5. It is easy to check that without this factor we arrive
at the claim. J

I Lemma 19. Let T ′ be a labeled cluster tree from Lemma 4 for parameter m, obtained
from T . Let P be a string obtained by concatenation of labels of T ′. Then we can encode P
in a way, that, given context KP [i], we can retrieve P [i] in constant time. The encoding is
bounded by all of the following values:

1. |T |H(T ) + |T |Hk(L) +O
(
|T |(logm+log log |T |)

m + σk+m · 2m · log |T |
)
;

2. |T |Hk(T |L) + |T |Hk(L) +O
(
|T |(logm+log log |T |)

m + σk+m · 2m · log |T |
)
;

3. |T |H(T ) + |T |Hk(L|T ) +O
(
|T | logσ

m + |T |(logm+log log |T |)
m + σk+m · 2m · log |T |

)
.

Proof of Lemma 19. We use Lemma 18. For each PKi we generate codes using Huffman
encoding, this allows us to encode each PKi using |PKi |H0(PKi)+|PKi | bits, as we lose at most
1 bit per code (see [16] for example), plus additional O(2mσm log |T ′|) ≤ O(2mσm log |T |) bits
for Huffman dictionary. Summing this over all contexts Ki yields the bound, by Lemma 18.

Denote cv as Huffman code for vertex v of T ′. Let TC be the concatenation of all codes
cv according to order in string P . As each code is of length at most O(log |T ′|), given its
start and end in TC we can decode it in constant time. We store the bitmap of length |TC |
where TC [j] = 1 if and only if at j-th is the beginning of some code. This bitmap has length
at most |T ′| log |T | and has |T ′| ones. For such a bitmap we build rank/select structure,
using result by Raman et al. [42] this takes O(|T ′| log log |T |) bits. Using rank/select we can
retrieve the starting position of i-th code by simply calling select(i) (same idea was used
in [23]). J

Now we would like to simply apply Lemma 19, which says that we can encode labels of
T ′ more efficiently, yet there is one major difficulty: the Lemma states that to decode P [i]
we need to know the context. The idea is that we choose |T ′|/d nodes for which we store the
context, for rest we can retrieve the contexts in time O(d) by traversing T ′ and decoding
them on the way.

Proof of Theorem 13. We use almost the same structures as in the simpler case, i.e. the
structure from Theorem 12, the only difference is that instead encoding preorder sequence P
with structure using space proportional to zeroth order entropy we apply Lemma 19. We
choose m = β logσ |T | so that 2β + α < 1 and β < 1

8 , so that the precomputed tables use
o(|T |) space. As each operation in Theorem 12 accessed elements of P constant number
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of times it is sufficient to show how to access it in time O(log |T |/ log log |T |) time. By
Lemma 19 this leaves us with problem of finding context for each node in aforementioned
complexity.

Let d = dlog |T |/ log log |T |e. We choose at most O(|T ′| log log |T |/ log |T |)=O(|T ′|/d)
nodes, for which we store the context explicitly, in the following way: We store the context
for the root using dk log σe bits. We partition the nodes into d classes Ci depending on their
depth modulo d, i.e. in the class Ci there are nodes at depth dj + i, j ≥ 0. Then there is
a class having at most T ′/d such nodes, we choose all nodes in this class and store their
contexts.

Now we show, assuming we know the contexts for chosen nodes, that given a node we
can retrieve its context in O(d) time. If we want to compute the context for some node v we
first check whether it is stored explicitly. If not, we look at nodes on path from v to the root,
until we find a node u which has its context stored. Call the visited nodes v, v1, v2, . . . , vi, u.
Observe that we visited at most O(d) nodes that way. As we know the context for u, now we
can decode the node u, and determine the context for vi, vi−1, . . . , v1, v. To read the labels
in u which precede vi in constant time we first find port node which connects to u (as in the
proof of Theorem 12) and use the precomputed tables.

The only nontrivial thing left to explain is how to store the contexts for chosen O(|T ′|/d)
nodes and check which nodes have their contexts stored. We concatenate all contexts for
chosen O(|T ′|/d) nodes according to their order in preorder ordering. On top of that we store
binary vector B which satisfies B[i] = 1 if and only if i-th node of T ′ in preorder ordering
has its context stored. We build rank/select structure for B, as we have preorder-rank and
preorder-select operation for T ′ in constant time, for a given node we can check in constant
time if the node have its index stored or not. As each context has the same bit-length to
decode context for node which is j-th in preorder ordering we look at position (j−1)dk log σe.

The total space for storing the context is O(|T ′|k log σ/d) = O(|T ′| log log |T |), summing
that up with space bound from Lemma 19 yields the claim. J

F Additional material for Section 7

Proof of Theorem 14. The first part of the theorem is easy: if σ is constant we can construct
a separate structure for each letter. For each letter a we build a separate degree sequence,
level_ancestor structure and depth structure; observe that all of those structures support the
weighted case when we assign each vertex weight of 0 or 1, so it is sufficient to assign nodes
labeled with a value 1 and for the rest value 0. Similar idea was mentioned in [44, 28, 22].

For the next two parts we show how to adapt rank/select structures over large alphabets
to support childrank/childselect queries.

For the second part, when σ = O(log1+o(1) |T |), we use result by Belazzougui et al. [4].
They show (at discussion at above Theorem 5.7 in [4]) how for the sequence S divided into
O(|S|/m) blocks of length at most m, for some m, construct rank/select structure for large
alphabets, assuming that we can answer queries in time O(t) in blocks, such that it takes O(t)
time for query and consumes additional |S| log σ

m +O
(
|S|+ (σ|S|/s) log log(σ|S|/s)

logσ|S|/s

)
bits (in [4]

the assumption is that we can answer queries in blocks in O(1) time but as the operations
on additional structure cost constant time, our claim also holds). The solution uses only
succinct bitmaps by Raman et al. [43] and precomputed tables for additional data. Now
we can define sequence S as concatenation of labels of roots of cluster, where clusters are
ordered by preorder ordering, this gives our blocked sequence (where blocks correspond to
clusters). Observe that labeled childrank/childselect operations can easily be reduced to
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labeled rank/select in string S, all we need to do is to know where the sequence for children of
a given vertex v begins in S. Fortunately, this can be done in same manner as in Lemma 10,
that is, we use structure for degree sequence. As in our case m = logσ |T |, we can store
precomputed tables to answer rank/select queries for each cluster. The additional space is
o(|S| log σ) and clearly |S| ≤ |T |.

For the last part we use Lemma 3 from [3]. The lemma states that for a string |S| if, for
a given i, we can access i-th element in time O(t) then we can, using additional o(|S| log σ)
bits, support labeled rank/select operations in time O(t log log1+ε σ). We use the same
reduction as in the case for σ = O(log1+o(1) |S|), i.e. we set S as concatenation of labels of
roots of clusters, where clusters are ordered by preorder ordering. As in previous case, we
use node degree sequence and tree structure to retrieve i-th character in |S| (i.e. we first find
appropriate cluster and use precomputed tables). J
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Abstract
This paper considers the triangle finding problem in the CONGEST model of distributed computing.
Recent works by Izumi and Le Gall (PODC’17), Chang, Pettie and Zhang (SODA’19) and Chang
and Saranurak (PODC’19) have successively reduced the classical round complexity of triangle
finding (as well as triangle listing) from the trivial upper bound O(n) to Õ(n1/3), where n denotes
the number of vertices in the graph. In this paper we present a quantum distributed algorithm that
solves the triangle finding problem in Õ(n1/4) rounds in the CONGEST model. This gives another
example of quantum algorithm beating the best known classical algorithms in distributed computing.
Our result also exhibits an interesting phenomenon: while in the classical setting the best known
upper bounds for the triangle finding and listing problems are identical, in the quantum setting the
round complexities of these two problems are now Õ(n1/4) and Θ̃(n1/3), respectively. Our result
thus shows that triangle finding is easier than triangle listing in the quantum CONGEST model.
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1 Introduction

Background. The problem of detecting triangles in graphs has recently become the target
of intensive research by the distributed computing community [1, 5, 6, 7, 8, 9, 18, 25].
This problem comes in two main variants: the triangle finding problem and the triangle
listing problem. Given as input a graph G = (V,E), the triangle finding problem asks to
decide1 whether the graph contains a triangle (i.e., three vertices u, v, w ∈ V such that
{u, v}, {u,w}, {v, w} ∈ E), while the triangle listing problem asks to output all the triangles
of G. A solution to the latter version, obviously, gives a solution to the former version.
Besides its theoretical interest, another motivation for considering these problems is that

1 Another version of the triangle finding problem asks to output one triangle of G (or report that the
graph has no triangle). It is easy to see that the two versions are essentially equivalent: a triangle can
be found by applying O(log |V |) times an algorithm solving the decision version.
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for several graph problems faster distributed algorithms are known over triangle-free graphs
(e.g., [16, 26]). The ability to efficiently check whether the network is triangle-free (or detect
which part of the network is triangle-free) is essential when considering such algorithms.

One of the main models to study graph-theoretic problems in distributed computing is
the CONGEST model. In this model the graph G = (V,E) represents the topology of the
network, the computation proceeds with round-based synchrony and each vertex can send
one O(logn)-bit message to each adjacent vertex per round, where n denotes the number of
vertices. Initially, each vertex knows only the local topology of the network, i.e., the set of
edges incident to itself. The triangle finding and listing problems ask, respectively, to decide
if G contains a triangle and to list all triangles of G. The trivial strategy is for each vertex
to send the list of all its neighbors to each neighbor (all the triangles can then be listed
locally, i.e., without further communication). Since each list can contain up to n vertices,
this requires O(n) rounds in the CONGEST model.

In 2017, Izumi and Le Gall [18] gave the first nontrivial distributed algorithms for triangle
detection in the CONGEST model: they constructed a Õ(n2/3)-round randomized algorithm2

for triangle finding and a Õ(n3/4)-round randomized algorithm for triangle listing. This was
soon improved by Chang, Pettie and Zhang [6], who obtained a Õ(

√
n)-round randomized

algorithm for both the triangle finding and listing problems. The key idea leading to this
improvement was to decompose the graph into components with low mixing time, and then
apply recent routing techniques [13, 14] that make possible to achieve efficient routing in
graphs with low mixing time. The complexity of the resulting distributed algorithm was
dominated by the cost required to compute the graph decomposition. Very recently, Chang
and Saranurak [7] developed a much more efficient method to decompose the graph into
components with low mixing time, which immediately leads to Õ(n1/3)-round randomized
algorithms for the triangle finding and listing problems. Since a matching lower bound
Ω̃(n1/3) is known for triangle listing [25], the randomized round complexity of the triangle
listing problem is thus now settled, up to possible polylogarithmic factors.3 For the triangle
finding problem, on the other hand, essentially no nontrivial lower bound is known. Two
exceptions are, first, the very weak lower bound obtained by Abboud, Censor-Hillel, Khoury
and Lenzen [1] in the CONGEST model and, second, a lower bound obtained by Drucker,
Kuhn and Oshman [9] for the much weaker CONGEST-BROADCAST model (where at
each round the vertices can only broadcast a single common message to all other vertices)
under a conjecture in computational complexity theory. This leads to the following intriguing
question: is triangle finding easier than triangle listing?

Another related, but much stronger, model is the CONGEST-CLIQUE model. In this
model at each round messages can even be sent between non-adjacent vertices, which makes
bandwidth management significantly easier. In the CONGEST-CLIQUE model, Dolev,
Lenzen and Peled [8] first showed that the triangle listing problem (and thus the triangle
finding problem as well) can be solved deterministically in Õ(n1/3) rounds for general graphs,
which is tight since the lower bound Ω̃(n1/3) by Pandurangan, Robinson and Scquizzato [25]
mentioned above holds in this model as well. Note that this lower bound also means that
triangle listing in the CONGEST-CLIQUE model is not easier than triangle listing in the
CONGEST model, at least as far as randomized algorithms are concerned. For the triangle

2 In this paper the notations Õ(·) and Ω̃(·) remove poly(log(n)) factors.
3 An interesting open problem, however, is to determine the deterministic round complexity of these

problems. To our knowledge, no deterministic algorithm with sublinear round complexity is known in
the CONGEST model.
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Table 1 Prior results on the round complexity of distributed triangle finding and listing, and our
new result. Here n denotes the number of vertices of the graph. Note that any upper bound for
the listing problem (in particular, the upper bound from [7]) holds for the finding problem as well.
Similarly, note that any lower bound for the quantum CONGEST-CLIQUE model (in particular,
the lower bound from [25]) holds for the weaker classical and quantum CONGEST models as well.

Model Setting Problem Complexity Paper

CONGEST-CLIQUE Classical Listing Õ(n1/3) Dolev et al. [8]

CONGEST-CLIQUE Classical Finding O(n0.1572) Censor-Hillel et al. [5]

CONGEST Classical Listing Õ(n1/3) Chang and Saranurak [7]

CONGEST Quantum Finding Õ(n1/4) This paper

CONGEST-BROADCAST Classical Finding Ω
(

n

e
√

log n log n

)
Drucker et al. [9]

CONGEST-CLIQUE Quantum Listing Ω
(

n1/3

log n

)
Pandurangan et al. [25]

finding problem, on the other hand, the better upper bound O(n0.1572) has been obtained
by Censor-Hillel et al. [5] by implementing fast matrix multiplication algorithms in the
distributed setting. The CONGEST-CLIQUE model is thus a setting in which triangle
finding is easier than triangle listing.

Table 1 summarizes the best known bounds on the round complexity of triangle finding
and listing discussed so far.

Quantum distributed computing. Quantum versions of the main models studied in distrib-
uted computing can be easily defined by allowing quantum information, i.e., quantum bits
(qubits), to be sent through the edges of the network instead of classical information, i.e., bits.
In particular, in the quantum version of the CONGEST model, which we will simply call the
“quantum CONGEST model” below, each vertex can send one message of O(logn) qubits
to each adjacent vertex per round. While a seminal work by Elkin et al. [10] showed that
for many important graph-theoretical problems the quantum CONGEST model is not more
powerful than the classical CONGEST model, Le Gall and Magniez [20] recently showed that
one problem can be solved more efficiently in the quantum setting: computing the diameter
of the network. More precisely, they constructed a Õ(

√
nD)-round quantum algorithm for

the exact computation of the diameter of the network (here D denotes the diameter), while
it is known that any classical algorithm in the CONGEST model requires Ω̃(n) rounds,
even for graphs with constant diameter [11]. In the CONGEST-CLIQUE model as well,
a quantum algorithm faster than the best known classical algorithms has been obtained
recently for the All-Pair Shortest Path problem [17]. In the LOCAL model, which is another
fundamental model in distributed computing, separations between the computational powers
of the classical and quantum versions have also been reported [12, 21].

When discussing the classical randomized complexity of triangle listing in the CONGEST
and CONGEST-CLIQUE models, we mentioned the Ω̃(n1/3)-round lower bound by Pandur-
angan, Robinson and Scquizzato [25]. This lower bound is based on an information-theoretic
argument that actually holds even in the quantum setting. In view of the recent matching
upper bound in the classical setting [7], we can conclude that for triangle listing the quantum
CONGEST model is not more powerful than the classical CONGEST model. An intriguing
question is whether quantum communication can help solving faster the triangle finding
problem in the CONGEST model. In particular, can we break the Õ(n1/3) barrier for triangle
finding in the quantum setting?

STACS 2020



23:4 Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model

Our result. In this paper we break this barrier. Our main result is the following theorem.

I Theorem 1. In the quantum CONGEST model, the triangle finding problem can be solved
with probability at least 1 − 1/poly(n) in Õ(n1/4) rounds, where n denotes the number of
vertices in the network.

In comparison, as already explained, in the classical CONGEST model the best known upper
bound on the randomized round complexity of triangle finding is Õ(n1/3). Our result thus
gives another example of quantum algorithm beating the best known classical algorithms in
distributed computing. It also exhibits an interesting phenomenon: while in the classical
setting the best known upper bounds for the triangle finding and listing problems are both
Õ(n1/3), in the quantum setting the round complexity of the former problem becomes Õ(n1/4)
while the round complexity of the latter problem remains Θ̃(n1/3). Theorem 1 thus shows
that triangle finding is easier than triangle listing in the quantum CONGEST model.

Overview of our approach. Our approach starts similarly to the classical algorithms
developed by Chang, Pettie and Zhang [6] and Chang and Saranurak [7]. As in [6], by using
an expander decomposition of the network, the triangle finding problem over the whole
network is reduced to the task of detecting whether the subnetwork induced by a set of edges
Ein∪Eout contains a triangle. We denote the latter problem FindTriangleInSubnetwork.
Here Ein and Eout are two subsets of edges that satisfy specific conditions. In particular, the
subnetwork induced by the edges in Ein is guaranteed to have low mixing time (but in general
nothing can be said about the mixing time of the subnetwork induced by Ein ∪ Eout). We
use the algorithm from [7] to compute the expander decomposition efficiently, which implies
that an efficient algorithm for FindTriangleInSubnetwork gives an efficient algorithm
for the triangle finding problem over the whole network. More precisely, a Õ(n1/4)-round
algorithm for FindTriangleInSubnetwork leads to a Õ(n1/4)-round algorithm for the
triangle finding problem. The details of this reduction are described in Section 3.

Our main approach to solve the problem FindTriangleInSubnetwork is to apply the
framework for quantum distributed search developed in [20]. We briefly sketch the main
ideas. Let us write V ⊆ V the set of vertices of the graph induced by the edges in Ein ∪Eout.
We will partition V into t = Θ̃(

√
n) subsets V1,V2, . . . ,Vt each containing Õ(

√
n) vertices.

Let us write Λ = [t]× [t]× [t]. We will try to find a triple (i, j, k) ∈ Λ for which there exist
u ∈ Vi, v ∈ Vj and w ∈ Vk such that {u, v, w} is a triangle. To do this, we partition the
set Λ into t subsets Λ1, · · · ,Λt each containing t2 = Θ̃(n) triples and consider the following
search problem: find an index ` ∈ [t] such that the set Λ` contains a triple (i, j, k) for which
there exist u ∈ Vi, v ∈ Vj and w ∈ Vk such that {u, v, w} is a triangle. Quantum distributed
search enables us to solve this problem in Õ(

√
tδ) rounds in the quantum CONGEST model

if a checking procedure (i.e., a procedure that on input ` checks if the set Λ` contains a triple
(i, j, k) for which there exist u ∈ Vi, v ∈ Vj and w ∈ Vk such that {u, v, w} is a triangle) can
be implemented in δ rounds.

The checking procedure distributes the Θ̃(n) triples in Λ` among the vertices of the
network proportionally to the degree of the vertices. In particular, vertices with very low
degree do not receive any triple. This technique is essentially the same as for the main
procedure in the classical algorithm by Chang, Pettie and Zhang [6]. Next, each vertex
owning a triple (i, j, k) checks whether there exist u ∈ Vi, v ∈ Vj and w ∈ Vk such that
{u, v, w} is a triangle, which requires gathering information of all the edges with extremities
in these sets. Since the subnetwork induced by the edges in Ein has low mixing time, we
would like to use the same classical routing techniques [13, 14] as used in the main procedure
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of the classical algorithms [6, 7]. Special care is nevertheless required to ensure that we can
apply those routing techniques. (This was not needed in [6, 7] since these prior works used
a different approach: each vertex simply loaded all the necessary edges from Λ in Õ(n1/3)
rounds. In comparison, we need to guarantee that the necessary edges from Λ`, for a fixed `,
can be loaded in negligible time.) We solve this difficulty by carefully defining the sets Λ` so
that the the same edge is not requested by two distinct vertices at the same time (this is the
contents of Lemma 10 in Section 4.2).

Another technical difficulty is how to handle vertices with very high degree. In the
classical setting this was trivial, since it was enough to gather in Õ(n1/3) rounds all the
information about the edges of the network at one of these high-degree vertices. Since we
want to construct a Õ(n1/4)-round quantum algorithm we cannot use this approach. Instead,
we develop an approach based on the well-known protocol from the two-party quantum
computation complexity of the disjointness function [4]. This is explained in Section 4.1.

Other related works. The triangle finding problem is also a central problem in quantum
query complexity. While many quantum query algorithms have been designed in this setting
[2, 19, 22, 23], they are based on quantum techniques (e.g., quantum walk search and learning
graphs) that do not seem to lead to efficient algorithms in the distributed setting.

2 Preliminaries

Graph theory. All the graphs considered in this paper are undirected and unweighted. For
any graph G = (V,E) and any vertex u ∈ V , we denote deg(u) the degree of u and N (u)
the set of neighbors of u. We write n = |V | and m = |E|. For any set E′ ⊆ E, we denote
degE′(u) the number of edges in E′ incident to u and write NE′ the set of all neighbors
v ∈ N (u) such that {u, v} ∈ E′. We denote diam(G) the diameter of G and mix(G) the
mixing time of G, i.e., the number of steps of a random walk over G needed to obtain a
distribution close to the stationary distribution (we refer to [13] for a precise definition). For
any positive integer t, we write [t] = {1, 2, . . . , t}.

We will use the following lemma from [6] in our main algorithm.

I Lemma 2 (Lemma 4.2 in [6]). Consider a graph with m edges and n vertices. Let p
be such that p2m ≥ 400(logn)2. Suppose that the degree of any vertex of the graph is at
most mp/(20 logn). Generate a subset S by letting each vertex join S independently with
probability p. Then with probability at least 1−1/poly(n), the number of edges in the subgraph
induced by S is at most 6p2m.

Classical distributed computing. In the classical CONGEST model, the graph G = (V,E)
represents the topology of the network. The computation proceeds with round-based
synchrony and each vertex can send one O(logn)-bit message to each adjacent vertex per
round. All links (corresponding to the edges of G) are reliable and suffer no faults. Each
vertex has a distinct identifier from a domain I with |I| = poly(n). It is also assumed that
each vertex can access an infinite sequence of local random bits. Initially, each vertex knows
nothing about the topology of the network except the set of edges incident to itself and the
value of n.

Our quantum algorithm will be based on several classical distributed algorithms from the
literature. A first crucial ingredient is the following recent result by Chang and Saranurak [7]
that shows how to efficiently compute a good expander decomposition of the graph.
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I Theorem 3 ([7]). In the classical CONGEST model, there is a O(n0.1)-round algorithm
that computes with probability at least 1− 1/poly(n) a partition

V = V1 ∪ V2 ∪ · · · ∪ Vs

of the vertex set V that satisfies the following two conditions:
for each i ∈ [s], the subgraph induced by the vertex set Vi has mixing time O(poly(logn));
the number of inter-component edges (i.e., the number of edges with one endpoint in Vi
and one endpoint in Vj, for i 6= j) is at most |E|/10.

We will also use the following technical lemma from [6] that shows how to compute
efficiently a new ID assignment that gives a good estimation of the degree of any vertex of
the graph.

I Lemma 4 (Lemma 4.1 in [6]). In the classical CONGEST model, there is a O(diam(G) +
logn)-round deterministic algorithm that computes a bijective map γ : V → {1, . . . , |V |} and
a function d : {1, . . . , |V |} → {0, 1, . . . , blog2(n)c} satisfying the following conditions:
(i) γ(u) ≤ γ(v) implies blog2(deg(u))c ≤ blog2(deg(v))c for any u, v ∈ V ;
(ii) d(γ(u)) = blog2(deg(u))c for all u ∈ V .

More precisely, after running the algorithm each vertex u knows γ(u) and can locally compute
d(y) for any y ∈ {0, 1, . . . , |V |}.

We will also use the following result by Ghaffari, Kuhn and Su [13] about randomized
routing in networks with small mixing time (see also the discussion in Section 3 of [7]).

I Theorem 5 ([13]). In the classical CONGEST model, there exists a O(mix(G) · no(1))-
round algorithm that builds a distributed data structure. This data structure enables the
vertices to implement the following routing task with probability at least 1 − 1/poly(n) in
O(mix(G) · no(1)) rounds: given a set of point-to-point routing requests, each given by the
IDs of the corresponding source-destination pair and such that each vertex u is the source
and the destination of at most O(deg(u)) messages, delivers all the messages.

Quantum distributed computing. We assume that the reader is familiar with the basic
concepts of quantum computation and refer to, e.g., [24] for a good reference. The quantum
CONGEST model is defined (see [10, 20] for details) as the quantum version of the classical
CONGEST model, where the only difference is that each exchanged message consists of
O(logn) quantum bits instead of O(logn) bits. In particular, initially the vertices of the
network do not share any entanglement.

For the quantum CONGEST model, Le Gall and Magniez [20] introduced a framework for
quantum distributed search, which can be seen as a distributed implementation of Grover’s
search [15], one of the most important centralized quantum algorithms. Let X be a finite
set and f : X → {0, 1} be a Boolean function over X. Let u be an arbitrary vertex of the
network (e.g., an elected leader). Assume that vertex u can evaluate the function f in r
rounds: assume that there exists an r-round distributed checking procedure C such that
vertex u, when receiving as input x ∈ X, outputs f(x). Now consider the following problem:
vertex u should find one element x ∈ X such that f(x) = 1 (or report that no such element
exists). The trivial strategy is to compute f(x) for each x ∈ X one by one, which requires
r|X| rounds. Ref. [20] showed that in the quantum CONGEST model this problem can be
solved with probability at least 1− 1/poly(|X|) in Õ(r

√
|X|) rounds.

As explained in [20], the procedure C is often described as a classical (deterministic
or randomized) procedure. It can then be quantized using standard techniques: one first
transforms it to a reversible map using standard techniques [3] and then converts it into a
quantum procedure.
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FindTriangleInSubnetwork

Input: a connected subgraph Gin = (V in, Ein) of G and a set of edges Eout ⊆ E
joining vertices in V in to vertices in V \ V in

(each vertex u ∈ G knows if u ∈ V in and gets NEin(u) and NEout(u))
Promise: (i) mix(Gin) = poly(logn)

(ii) degEin(u) ≥ degEout(u) for all u ∈ V in

Goal: detect if there exists a triangle {u, v, w} with u, v, w ∈ V in ∪ V out and
{u, v}, {u,w}, {v, w} ∈ Ein ∪ Eout

Figure 1 Problem FindTriangleInSubnetwork.

3 Reduction to Triangle finding over Subnetworks

In this section we present the reduction by Chang, Pettie and Zhang [6] from triangle finding
over the whole network to triangle finding over subnetworks with small mixing time. In
this section again, G = (V,E) represents the whole network on which we want to solve the
triangle finding problem, and we write n = |V |.

Triangle finding over subnetworks with small mixing time. We now present the computa-
tional problem considered, which we denote FindTriangleInSubnetwork (the description
is also summarized in Figure 1).

The input of FindTriangleInSubnetwork is a connected subgraph Gin = (V in, Ein)
of G such that mix(Gin) = poly(logn), and a set of edges Eout ⊆ E joining vertices in V in

to vertices in V \ V in that satisfies the following condition:

degEin(u) ≥ degEout(u) for all u ∈ V in.

We write V out the set of vertices in V \ V in that appear as an endpoint of an edge in Eout.
The goal is to detect if there is a triangle in the subgraph of G induced by the edge set
Ein ∪Eout. Note that such a triangle is either a triangle of Gin, or consists of two vertices
in V in and one vertex in V out. Note that, while Gin (the subnetwork induced by Ein) has
small mixing time, in general nothing can be said about the mixing time of the subnetwork
induced by Ein ∪ Eout.

The reduction. Chang, Pettie and Zhang [6] proved that when a good expander decomposi-
tion of the network is known, triangle finding over the whole network can be efficiently reduced
to solving several instances of FindTriangleInSubnetwork. Combined with Theorem 3,
this gives an efficient reduction from triangle finding to FindTriangleInSubnetwork,
which we state in the following theorem. For completeness we include a sketch of the proof
(we refer to [6, 7] for the details).

I Theorem 6 ([6, 7]). Assume that there exists an r-round distributed algorithm A that
solves the problem FindTriangleInSubnetwork with probability at least 1−1/n3 and uses
only the edges in Ein ∪ Eout for communication. Then there exists a O(r logn+ n0.1)-round
distributed algorithm that solves the triangle finding problem over the whole graph G = (V,E)
with probability at least 1− 1/poly(n).
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Sketch of the proof. The first step of the reduction computes a good decomposition of the
whole network G in O(n0.1) rounds using Theorem 3. Let V = V1 ∪ V2 ∪ · · · ∪ Vs, for some
integer s ≤ n, denote the decomposition and Einter denote the set of inter-component edges.
By definition, the set Einter satisfies |Einter| ≤ 0.1|E|.

For any index i ∈ [s], let us write Gi = (Vi, Ei) the subgraph of G induced by Vi. We say
that a vertex u ∈ Vi is good if degEi

(u) ≥ degEinter(u); otherwise we say that u is bad. Let
Einter
i be the set of edges in Einter that are adjacent to a good vertex of Gi. Let Enew

i be the
set of edges in Ei that are adjacent to a bad vertex of Gi. Define the set

Enew = Einter ∪ Enew
1 ∪ · · · ∪ Enew

s

and observe that |Enew| ≤ |Einter|+ 2|Einter| ≤ 0.3|E|.
The triangles in G can be classified into the following four types.
Type 1: triangles with three vertices in a same component Gi.
Type 2: triangles with two vertices in a same component Gi and the third vertex in
another component Gj , in which the two vertices in Vi are good.
Type 3: triangles with two vertices in a same component Gi and the third vertex in
another component Gj , in which at least one of the two vertices in Vi is bad.
Type 4: triangles with three vertices in distinct components.

For each index i ∈ [s], we use Algorithm A to solve FindTriangleInSubnetwork
on instance (Gin, Eout) with Gin = Gi and Eout = Einter

i . A crucial point is that this
can be done for all i’s in parallel by “doubling” the bandwidth (i.e., by using 2r rounds
in total), since Algorithm A on instance (Gin, Eout) only uses the edges in Ei ∪ Einter

i for
communication. Indeed, the communication networks are disjoint for all instances, except for
the intercomponent edges that can be shared by two instances. This detects all the triangles
of types 1 and 2 in the graph.

Another crucial observation is that all remaining potential triangles (i.e., the triangles of
type 3 and 4) have their three edges contained in the set Enew. It is thus enough to recurse on
this set, i.e., to repeat the same methodology with E replaced by Enew. Since |Enew| ≤ 0.3|E|,
after O(logn) levels of recursion the algorithm finishes. The overall complexity of this second
part is thus O(r logn) rounds. J

4 Main Quantum Algorithm

In the classical CONGEST model, Chang, Pettie and Zhang [6] have shown that the problem
FindTriangleInSubnetwork can be solved with high probability in Õ(n1/3) rounds using
only the edges in Ein ∪ Eout for communication, which leads to a Õ(n1/3)-round classical
algorithm for triangle finding via Theorem 6. Our main technical result is the following
theorem.

I Theorem 7. In the quantum CONGEST model, there is a Õ(n1/4)-round quantum al-
gorithm that solves the problem FindTriangleInSubnetwork with probability at least
1− 1/n3 and uses only the edges in Ein ∪ Eout for communication.

Theorem 1 then immediately follows from Theorem 6 and Theorem 7.
The goal of this section is to prove Theorem 7. For brevity we write V = V in ∪ V out and

E = Ein ∪ Eout. We also write n̄ = |V| and m̄ = |E|. Note that m̄ ≥ n̄/2 since the graph
(V, E) is connected. Let S ⊆ V be the subset of all vertices u ∈ V such that

degE(u) ≥ m̄/
√
n̄.
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Observe that |S| ≤ 2
√
n̄.

In Section 4.1 below we present a Õ(n1/4)-round quantum algorithm that detects the
existence of a triangle containing at least one vertex from S. We then describe, in Section 4.2,
our main technical contribution: a Õ(n1/4)-round quantum algorithm that detects the
existence of a triangle under the assumption S = ∅. The quantum algorithm of Theorem 7
then follows by combining these two algorithms, since (as already observed in prior works [6, 7])
detecting whether there exists a triangle with no vertex in S reduces to the case S = ∅.

Let us provide some explanations about why detecting the existence of a triangle with no
vertex in S reduces to the case S = ∅. One natural approach is to focus on the subgraph
where all the nodes in S are removed. This approach nevertheless does not immediately work
since this may make the graph disconnected and may significantly reduce the number of edges
(in which case Lemma 2 may not anymore be applicable). Instead, we now briefly describe a
method that keeps the graph connected and the number of edges (almost) unchanged. The
idea is simply to “virtually” replace each node u ∈ S by a star of degree

√
n̄ and spread

the degE(u) incident edges of u evenly into the leaves of the star so that each leaf has
degE(u)/

√
n̄ < m̄/

√
n̄ incident edges. Since |S| ≤ 2

√
n̄, this can be done by introducing only

Θ(n̄) virtual nodes.

4.1 Finding a triangle containing (at least) one high-degree vertex
In this subsection we describe how to detect, in Õ(n1/4) rounds, the existence of a triangle
with edges in E that contains at least one vertex from S. We will use the following lemma,
which is a straightforward application of the framework for distributed quantum search
described in Section 2, but can also be seen as an adaptation of the quantum protocol
by Buhrman, Cleve and Wigderson [4] for the disjointness function in two-party quantum
communication complexity.

I Lemma 8. Consider any two adjacent vertices u and v, each owning a set Tu ⊆ V

and a set Tv ⊆ V , respectively. There is a quantum algorithm that checks if Tu ∩ Tv 6= ∅
with high probability in Õ(

√
min{|Tu|, |Tv|}) rounds. Moreover, this algorithm only uses

communication along the edge {u, v}.

Proof. Consider the subnetwork consisting only of the two vertices u and v and the edge
{u, v}. Set X = Tu and define the function

f(x) =
{

1 if x ∈ Tv,
0 otherwise,

for any x ∈ X. Obviously, for any x ∈ X, vertex u can compute the value f(x) in 2 rounds.
We can thus apply the quantum distributed search framework of Section 2 with vertex u
acting as a leader, which enables u to check whether there exists x ∈ X such that x ∈ Tv in
Õ(
√
|Tu|) rounds.

By symmetry there also exists a quantum algorithm that enables vertex v to decide
whether Tu ∩ Tv 6= ∅ in Õ(

√
|Tv|) rounds. Combining these two algorithms gives the claimed

complexity. J

We now explain how our quantum algorithm works. First of all, observe that since each
vertex u receives as input NEin(u) and NEout(u), each vertex knows whether it is in S or
not. Each vertex first tells this to all its neighbors. This requires 1 round of communication.

Each vertex u ∈ V then computes, locally, the set

Tu = NE(u) ∩ S = (NEin(u) ∪NEout(u)) ∩ S.
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Note that for each edge {u, v} ∈ E , there exists w ∈ S such that {u, v, w} is in a triangle
with three edges in E if and only if Tu ∩ Tv 6= ∅. Thus, for each edge {u, v} ∈ E , the vertices
u and v use the quantum algorithm of Lemma 8 to decide whether Tu ∩ Tv 6= ∅ or not. Since
this algorithm only communicates through the edge {u, v}, it can be applied in parallel to
all edges {u, v} ∈ E . This gives overall round complexity Õ(

√
|S|) = Õ(n1/4).

4.2 Finding a triangle with only low-degree vertices
In this subsection we assume that the inequality

degE(u) < m̄/
√
n̄.

holds for all vertices u ∈ V, i.e., we assume that S = ∅. We show how to detect, in Õ(n1/4)
rounds, the existence of a triangle with edges in E in this case as well.

Partitioning the set V. Let us write t =
⌊√

n̄/(30 log n̄)
⌋
. We randomly partition the set

V into t subsets V1, . . . ,Vt as follows: each vertex u ∈ V selects an integer i uniformly at
random in the set [t] and joins the set Vi. Vertex u ∈ V then tells its neighbors the value i,
which can be done in 1 round. Each vertex therefore learns in which sets its neighbors have
been included.

For any i, j ∈ [t], let E(Vi,Vj) denote all the edges in E with one endpoint in Vi and one
endpoint in Vj . Our analysis will rely on the following lemma.

I Lemma 9. With probability 1− 1/poly(n), the following statement is true: for all i, j ∈ [t],

|E(Vi,Vj)| = O

(
m̄(log n̄)2

n̄

)
.

Proof. Let us first consider the case i = j. We apply Lemma 2 over the graph generated by
the vertex set V and using the probability p = 1/t. Note that

p2m̄ = m̄

(
⌊√

n̄/(30 log n̄)
⌋
)2
≥ n̄/2

(
√
n̄/(30 log n̄))2

≥ 400(log n̄)2

and
m̄p

20 log n̄ = m̄

20 log n̄
⌊√

n̄/(30 log n̄)
⌋ ≥ m̄√

n̄
,

which implies that the two conditions in Lemma 2 are satisfied.
In the case i 6= j, we apply Lemma 2 over the graph generated by the vertex set V again,

but using the probability p = 2/t. The conclusion is the same. J

Partitioning the triples of indices. Let us write Λ the set of all triples (i, j, k) with i, j, k ∈
[t], i.e., Λ = [t]× [t]× [t]. Let us partition this set into t sets Λ1, . . . ,Λt, each containing t2
triples, as follows. For each ` ∈ [t], define the set Λ` as:

Λ` =
{

(i, j, 1 + (i+ j + ` mod t)) | (i, j) ∈ [t]× [t])
}
.

Our analysis will rely on the following lemma, which immediately follows from the definition
of the sets Λ`.

I Lemma 10. The following statements are true for all ` ∈ [t] and all triples (i, j, k) ∈ Λ`:
there is no index i′ ∈ [t] \ {i} such that (i′, j, k) ∈ Λ`;
there is no index j′ ∈ [t] \ {j} such that (i, j′, k) ∈ Λ`;
there is no index k′ ∈ [t] \ {k} such that (i, j, k′) ∈ Λ`.
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Assigning the triples to vertices. For each ` ∈ [t], we assign the t2 = Θ(n̄/(log n̄)2) triples
in Λ` to the vertices in V in. The assignment should be made carefully, so that each vertex
is assigned a number of triples proportional to its degree and, additionally, all the vertices
know to which vertex each triple in Λ` is assigned. To achieve this goal we use the same
approach as in [6], which is based on the ID assignment of Lemma 4.

We first apply Lemma 4 to the subnetwork Gin in order to obtain an ID assignment
γ : V in → {1, . . . , |V in|} and the degree estimator function

d : {1, . . . , |V in|} → {0, 1, . . . ,
⌊
log2 |V in|

⌋
}

satisfying the properties in the lemma. This requires O(diam(Gin) + logn) = O(mix(Gin) +
logn) = poly(logn) rounds. For any vertex u ∈ V in, define the quantity

ru = 2d(γ(u))

m̄/n̄
.

Note that since d(γ(u)) = blog2(degEin(u))c, the quantity ru is an approximation of the ratio
between degEin(u) and the average degree of the subgraph (V, E). Observe that∑

u∈V in

ru ≥
∑
u∈V in

degEin(u)/2
m̄/n̄

= |E
in|

m̄/n̄
≥ n̄/2,

since |Ein| ≥ m̄/2. Now define the quantity

qu =
{

0 if ru ≤ 1/4,
drue otherwise,

and observe that∑
u∈V in

qu ≥
∑
u∈V in

ru −
|V in|

4 ≥ n̄

4 ≥ t
2. (1)

We can now explain the assignment of the triples from Λ`. We fix an arbitrary order
(known to all the vertices of the network) on the triples of each Λ`. For concreteness, let
us choose the lexicographic order. We start by assigning to the vertex u1 ∈ V in such that
γ(u1) = 1 the first qu1 triples of Λ` in the lexicographic order, then assign to the vertex
u2 ∈ V in such that γ(u2) = 2 the next qu2 triples from Λ` in the lexicographic order, and
repeat the process until all the triples of Λ` have been assigned (Equation (1) guarantees
that all triples are assigned by this process). For each vertex u ∈ V in, let us write Λu` ⊆ Λ`
the set of triples assigned to u.

A crucial observation is that each vertex of the network can locally compute, for any
` ∈ [t] and any triple (i, j, k) ∈ Λ`, the ID of the vertex to which (i, j, k) is assigned, since
each vertex knows the value d(y) for all y ∈ {0, 1 . . . , |V in|}.

Description of the quantum search algorithm. Consider the function

f : [t]→ {0, 1}

defined as follows. For any ` ∈ [t], we have f(`) = 1 if and only if there exists a triple
(i, j, k) ∈ Λ` such that the graph G has a triangle with one vertex in the set Vi, one vertex
in Vj , one vertex in Vk and its three edges in E . Our quantum algorithm implements the
quantum distributed search framework described in Section 2 with X = [t] to detect if there
exists one index ` ∈ [t] such that f(`) = 1. This approach obviously detects the existence of
a triangle with three edges in E , i.e., it solves our problem. The complexity of this approach,
as explained in Section 2, is Õ(

√
tδ) = Õ(n1/4δ) rounds, where δ is the round complexity

of the checking procedure. We present below a checking procedure with round complexity
δ = Õ(mix(Gin)). Since mix(Gin) = poly(logn) from our assumption on Gin, the overall
round complexity is Õ(n1/4), as claimed.
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Description of the checking procedure. We now describe a classical randomized checking
procedure that enables the leader, on an input ` ∈ [t], to evaluate the value f(`). As explained
in Section 2 such a classical procedure can then be converted into a quantum procedure using
standard techniques. In the checking procedure, the leader first broadcasts the information
“`” to all the vertices of the network. This can be done in diam(Gin) ≤ mix(Gin) rounds.
Then each vertex u ∈ V in checks, for each (i, j, k) ∈ Λu` , whether there exists a triangle with
one vertex in Vi, one vertex in Vj , one vertex in Vk with three edges in E . In order to do
that, vertex u simply needs to collect all the edges in E(Vi,Vj) ∪ E(Vi,Vk) ∪ E(Vj ,Vk) for
each (i, j, k) ∈ Λu` . From Lemma 9 and from the definition of the set Λ`, this requires

Õ

(
m̄

n̄
× qu

)
= Õ

(
m̄

n̄
× bruc

)
= Õ (degEin(u))

incoming messages. Conversely, let us consider the number of outgoing messages needed to
gather the information about the edges. Lemma 10 guarantees that the information about
each edge only needs to be communicated to one vertex, which implies that each vertex u is
the source of degEin(u) messages. Theorem 5 thus implies that the checking procedure can
be implemented in O(mix(Gin) · no(1)) rounds. The leader then checks if one of the vertices
in V in found a triangle, which can be done in O(diam(Gin)) = O(mix(Gin)) rounds.

In order to reduce the complexity from O(mix(Gin) · no(1)) to Õ(mix(Gin)) we simply
need to modify slightly the routing scheme from [13], exactly as done in the classical case
(see Section 3 of [7]).
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Abstract
We study the complexity of representing polynomials by arithmetic circuits in both the commutative
and the non-commutative settings. To analyse circuits we count their number of parse trees, which
describe the non-associative computations realised by the circuit.

In the non-commutative setting a circuit computing a polynomial of degree d has at most 2O(d)

parse trees. Previous superpolynomial lower bounds were known for circuits with up to 2d1/3−ε

parse trees, for any ε > 0. Our main result is to reduce the gap by showing a superpolynomial lower
bound for circuits with just a small defect in the exponent for the total number of parse trees, that
is 2d1−ε

, for any ε > 0.
In the commutative setting a circuit computing a polynomial of degree d has at most 2O(d log d)

parse trees. We show a superpolynomial lower bound for circuits with up to 2d1/3−ε
parse trees, for

any ε > 0. When d is polylogarithmic in n, we push this further to up to 2d1−ε
parse trees.

While these two main results hold in the associative setting, our approach goes through a
precise understanding of the more restricted setting where multiplication is not associative, meaning
that we distinguish the polynomials (xy)z and x(yz). Our first and main conceptual result is
a characterization result: we show that the size of the smallest circuit computing a given non-
associative polynomial is exactly the rank of a matrix constructed from the polynomial and called
the Hankel matrix. This result applies to the class of all circuits in both commutative and non-
commutative settings, and can be seen as an extension of the seminal result of Nisan giving a similar
characterization for non-commutative algebraic branching programs. Our key technical contribution
is to provide generic lower bound theorems based on analyzing and decomposing the Hankel matrix,
from which we derive the results mentioned above.

The study of the Hankel matrix also provides a unifying approach for proving lower bounds for
polynomials in the (classical) associative setting. We demonstrate this by giving alternative proofs
of recent lower bounds as corollaries of our generic lower bound results.
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1 Introduction

The model of arithmetic circuits is the algebraic analogue of Boolean circuits: the latter
computes Boolean functions and the former computes polynomials, replacing OR gates by
addition and AND gates by multiplication. Computational complexity theory is concerned
with understanding the expressive power of such models. A rich theory investigates the
algebraic complexity classes VP and VNP introduced by Valiant [25]. A widely open
problem in this area of research is to explicitly construct hard polynomials, meaning for
which we can prove super polynomial lower bounds. To this day the best general lower bounds
for arithmetic circuits were given by Baur and Strassen [4] for the polynomial

∑n
i=1 x

d
i , which

requires Ω(n log d) operations.
The seminal paper of Nisan [19] initiated the study of non-commutative computation:

in this setting variables do not commute, and therefore xy and yx are considered as being
two distinct monomials. Non-commutative computations arise in different scenarios, the
most common mathematical examples being when working with algebras of matrices, group
algebras of non-commutative groups or the quaternion algebra. A second motivation for
studying the non-commutative setting is that it makes it easier to prove lower bounds which
can then provide powerful ideas for the commutative case. Indeed, commutativity allows a
circuit to rely on cancellations and to share calculations across different gates, making them
more complicated to analyze.

1.1 Nisan’s Characterization for ABP
The main result of Nisan [19] is to give a characterization of the smallest ABP computing a
given polynomial. As a corollary of this characterization Nisan obtains exponential lower
bounds for the non-commutative permanent against the subclass of circuits given by ABPs.

We sketch the main ideas behind Nisan’s characterization, since our first contribution
is to extend these ideas to the class of all non-associative circuits. An ABP is a layered
graph with two distinguished vertices, a source and a target. The edges are labelled by
affine functions in a given set of variables. An ABP computes a polynomial obtained by
summing over all paths from the source to the target, with the value of a path being the
multiplication of the affine functions along the traversed edges. Fix a polynomial f , and
define following Nisan a matrix Nf whose rows and columns are indexed by monomials: for
u, v two monomials, let Nf (u, v) denote the coefficient of the monomial u · v in f .

The beautiful and surprisingly simple characterization of Nisan states that for a ho-
mogeneous (i.e., all monomials have the same degree) non-commutative polynomial f , the
size of the smallest ABP computing f is exactly the rank of Nf . The key idea is that the
computation of the polynomial in an ABP can be split into two parts: let r be a vertex in
an ABP C computing the polynomial f , then we can split C into two ABPs, one with the
original source and target r and the other one with source r and the original target. We let
Lr and Rr denote the polynomials computed by these two ABPs. For u, v two monomials,
we observe that the coefficient of uv in f is equal to

∑
r Lr(u)Rr(v), where r ranges over all

vertices of C, Lr(u) is the coefficient of u in Lr, and Rr(v) is the coefficient of v in Rr. We
see this as a matrix equality: Nf =

∑
r Lr ·Rr, where Lr is seen as a column vector, and Rr

as a row vector. By subadditivity of the rank and since the product of a column vector by a
row vector is a matrix of rank at most 1, this implies that rank (Nf ) is bounded by the size
of the ABP, yielding the lower bound in Nisan’s result.

The crucial idea of splitting the computation of a monomial into two parts had been
independently developed by Fliess when studying so-called Hankel Matrices in [9] to derive
a very similar result in the field of weighted automata, which are finite state machines
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recognising words series, i.e., functions from finite words into a field. Fliess’ theorem [9, Th.
2.1.1] states that the size of the smallest weighted automaton recognising a word series f is
exactly the rank of the Hankel matrix of f . The key insight to relate the two results is to
see a non-commutative monomial as a finite word over the alphabet whose letters are the
variables. Using this correspondence one can obtain Nisan’s theorem from Fliess’ theorem,
observing that the Hankel matrix coincides with the matrix Nf defined by Nisan and that
acyclic weighted automata correspond to ABPs. (We refer to an early technical report of
this work for more details on this correspondence [8].)

1.2 Non-Associative Computations
Hrubeš, Wigderson and Yehudayoff in [12] drop the associativity rule and show how to
define the complexity classes VP and VNP in the absence of either commutativity or
associativity (or both) and prove that these definitions are sound in particular by obtaining
the completeness of the permanent.

In the same way that a non-commutative monomial can be seen as a word, a non-
commutative and non-associative monomial such as (xy)(x(zy)) can be seen as a tree, and
more precisely as an ordered binary rooted tree whose leaves are labelled by variables. The
starting point of our work was to exploit this connection. The work of Bozapalidis and
Louscou-Bozapalidou [5] extends Fliess’ result to trees; although we do not technically rely
on their results they serve as a guide, in particular for understanding how to decompose
trees.

Let us return to the key idea in Nisan’s proof, which is to decompose the computation of
an ABP into two parts. The way a monomial, e.g., x1x2x3 · · ·xd, is evaluated in an ABP
is very constrained, namely from left to right, or if we make the implicit non-associative
structure explicit as w = (· · · (((x1x2)x3)x4) · · · )xd. The decompositions of w into two
monomials u, v are of the form u = (· · · ((x1x2)x3) · · · )xi−1) and v = (· · · ((�xi)xi+1) · · · )xd.
Here � is a new fresh variable (the hole) to be substituted by u. Moving to non-associative
polynomials, a monomial is a tree whose leaves are labelled by variables. A context is a
monomial over the set of variables extended with a new fresh one denoted � and occurring
exactly once. For instance the composition of the monomial t = z((xx)y) with the context
c = (xy)((z�)y) is the monomial c[t] = (xy)((z(z((xx)y)))y).

Figure 1 On the left hand side the monomial t, in the middle the context c, and on the right
hand side the monomial c[t].

Let f be a non-associative (possibly commutative) polynomial f , the Hankel matrix
Hf of f is defined as follows: the rows of Hf are indexed by contexts and the columns by
monomials, the value of Hf (c, t) at row c and column t is the coefficient of the monomial c[t]
in f .
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Extending Nisan’s proof to computations in a general circuit, which are done along trees,
we obtain a characterization in the non-associative setting.

I Theorem 1. Let f be a non-associative homogeneous polynomial and let Hf be its Hankel
matrix. Then, the size of the smallest circuit computing f is exactly rank (Hf ).

Note that this is a characterization result: the Hankel matrix exactly captures the size
of the smallest circuit computing f (upper and lower bounds), exactly as in Nisan’s result.
Hence, understanding the rank of the Hankel matrix is equivalent to studying circuits for f .
We recover and extend Nisan’s characterization as a special case of our result.

Parse Trees
At an intuitive level, parse trees can be used to explain in what way a circuit uses the
associativity rule. Consider the case of a circuit computing the (associative) monomial 2xyz.
Since this monomial corresponds to two non-associative monomials: (xy)z and x(yz), the
circuit may sum different computations, for instance 3(xy)z−x(yz), which up to associativity
is 2xyz. We say that such a circuit contains two parse trees, corresponding to the two
different ways of parenthesizing xyz.

The shape of a non-associative monomial is the tree obtained by forgetting the variables,
e.g., the shape of (z((xy)((xx)y))) is (_ ((_ _)((_ _) _))). The parse trees of a circuit C
are the shapes induced by computations in C.

Many interesting classes of circuits can be defined by restricting the set of allowed parse
trees, both in the commutative and the non-commutative setting. The simplest such class
is that of Algebraic Branching Programs (ABP) [19, 7, 21], whose only parse trees are
left-combs, that is, the variables are multiplied sequentially. Lagarde, Malod and Perifel
introduced in [16] the class of Unique Parse Tree circuits (UPT), which are circuits computing
non-commutative homogeneous (but associative) polynomials such that all monomials are
evaluated in the same non-associative way. The class of skew circuits [24, 2, 18, 17] and
its extension small non-skew depth circuits [17], together with the class of unambiguous
circuits [3] are all defined via parse tree restrictions. Last but not least, the class of k-PT
circuits [3, 15, 23] is simply the class of circuits having at most k parse trees.

Contributions and Outline
In this paper we prove lower bounds for classes of circuits with parse tree restrictions, both
in the commutative and non-commutative setting.

Our first and conceptually main contribution is the characterization result stated in
Theorem 5 and proved in Section 2, which gives an algebraic approach to understanding
circuits in the non-associative setting. All the subsequent results in this paper are based on
this approach.

Our most technical developments are discussed in Section 3. We prove generic lower
bound results by further analyzing and decomposing the Hankel matrix, with the following
proof scheme. We consider a polynomial f in the associative setting. Let C be a circuit
computing f . Forgetting about associativity we can see C as computing a non-associative
polynomial f̃ , which projects onto f , meaning is equal to f assuming associativity. This
induces a set of linear constraints: for instance if the monomial xyz has coefficient 3 in f ,
then we know that f̃((xy)z) + f̃(x(yz)) = 3. We make use of the linear constraints to derive
lower bounds on the rank of the Hankel matrix Hf̃ , yielding a lower bound on the size of C.
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Sections 3.1 and 3.2 are devoted to the definition of parse trees and a classical tool for
proving lower bounds, partial derivative matrices. We can already show at this point how
Theorem 5 can be specialized to give a characterization result for UPT circuits, extending
Nisan’s result. (We note that a characterization result for UPT circuits was already known [16],
we slightly improve on it.) As a corollary we obtain exponential lower bounds on the size of
the smallest UPT circuit computing the permanent.

The final section is devoted to applications of our results, where we obtain superpolynomial
and exponential lower bounds for various classes. In the results mentioned below, n is the
number of variables, d is the degree of the polynomial, and k the number of parse trees. We
note that the lower bounds hold for any (prime) n, any d, and any field.

We obtain alternative proofs of some known lower bounds: unambiguous circuits [3], skew
circuits [17] and small non-skew depth circuits (obtaining a much shorter proof than [17]).

Our novel results are:

Slightly unbalanced circuits. We extend the exponential lower bound from [17] on 1
5 -

unbalanced circuits to
( 1

2 − ε
)
-unbalanced circuits.

Slightly balanced circuits. We derive a new exponential lower bound for ε-balanced
circuits.
Circuits with k parse trees in the non-commutative setting. We extend the superpolynomial
lower bound of [15] from k = 2d1/3−ε to k = 2d1−ε , the total number of possible non-
commutative parse trees being 2O(d).
Circuits with k parse trees in the commutative setting. We substantially extend the
superpolynomial lower bound from [3] from k = d1/2−ε to k = 2d1/3−ε , and even to
k = 2d1−ε when d is polylogarithmic in n.

Related Work

We argued that proving lower bounds in the non-commutative setting is easier, but this
has not yet materialized since the best lower bound for general circuits in this setting is
the same as in the commutative setting (by Baur and Strassen, already mentionned above).
Indeed, recent impressive results suggest that this may be hard: Carmosino, Impagliazzo,
Lovett, and Mihajlin [6] (essentially) proved that a lower bound in the non-commutative
setting which would be slightly stronger than superlinear can be amplified to get strong lower
bounds (even exponential, in some cases).

Most approaches for proving lower bounds rely on algebraic techniques and the rank of
some matrix. A different and beautiful approach was investigated by Hrubeš, Wigderson and
Yehudayoff [12] in the non-commutative setting through the study of the so-called sum-of-
squares problem. Roughly speaking, the goal is to decompose (x2

1 + · · ·+ x2
k) · (y2

1 + · · ·+ y2
k)

into a sum of n squared bilinear forms in the variables xi and yj . They show that almost any
superlinear bound on n implies non-trivial lower bounds on the size of any non-commutative
circuit computing the permanent.

The quest of finding lower bounds is deeply connected to another problem called polyno-
mial identity testing (PIT) for which the goal is to decide whether a given circuit computes
the formal zero polynomial. The connection was shown in [13], in which it is proved that
providing an efficient deterministic algorithm to solve the problem implies strong lower bounds
either in the arithmetic or boolean setting. PIT was widely investigated in the commutative
and non-commutative settings for classes of circuits based on parse trees restrictions, see
e.g., [22, 10, 1, 11, 23].
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2 Characterizing Non-Associative Circuits

2.1 Basic Definitions
For an integer d ∈ N, we let [d] denote the integer interval {1, . . . , d}.

Polynomials
Let K be a field and let X be a set of variables. Following [12] we consider that unless
otherwise stated multiplication is neither commutative nor associative. We assume however
that addition is commutative and associative, and that multiplication distributes over addition.
A monomial is a product of variables in X and a polynomial f is a formal finite sum

∑
i cimi

where mi is a monomial and ci ∈ K is a non-zero element called the coefficient of mi in f .
We let f(mi) denote the coefficient of mi in f , so that f =

∑
i f(mi)mi.

The degree of a monomial is defined in the usual way, i.e., deg(x) = 1 when x ∈ X
and deg(m1m2) = deg(m1) + deg(m2); the degree of a polynomial f is the maximal degree
of a monomial in f . A polynomial is homogeneous if all its monomials have the same
degree. Depending on whether we include the relations u · v = v · u (commutativity) and
u · (v · w) = (u · v) · w (associativity) we obtain four classes of polynomials.

Unless otherwise specified, for a polynomial f we use n for the number of variables and d
for the degree.

Trees and Contexts
The trees we consider have a single root and binary branching (every internal node has
exactly two children). To account for the commutative and for the non-commutative setting
we use either unordered trees or ordered trees, the only difference being that in the case
of ordered trees we distinguish the left child from the right child. We let Tree denote the set
of trees (it will be clear from the context whether they are ordered or not). The size of a
tree is defined as its number of leaves.

A non-associative monomial m is a tree with leaves labelled by variables. If m is non-
commutative then it is an ordered tree, and if m is commutative then it is an unordered
tree. We let Tree(X) denote the set of trees whose leaves are labelled by variables in X and
Treei(X) denote the subset of such trees with i leaves, which are monomials of degree i.

In this paper we see a non-associative polynomial as a mapping from monomials to K,
i.e., an element f : Tree(X)→ K. To avoid possible confusion, let us insist that the notation
f(m) refers to the coefficient of the monomial m in the polynomial f , not to be confused with
the evaluation of f at a given point. Similarly, a non-commutative associative homogeneous
polynomial of degree d is seen as a mapping f : Xd → K.

A (ordered or unordered) context is a tree with a distinguished leaf labelled by a special
symbol called the hole and written �. We let Context(X) denote the set of contexts whose
leaves are labelled by variables in X. Given a context c and a tree t we construct a new
tree c[t] by substituting the hole of c by t. This operation is defined in both ordered and
unordered settings.

Hankel Matrices
Let f be a non-associative polynomial. The Hankel matrix Hf of f is the matrix whose
rows are indexed by contexts and columns by monomials and such that the value of Hf at
row c and column t is the coefficient of the monomial c[t] in f .
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Arithmetic Circuits
An (arithmetic) circuit is a directed acyclic graph such that the vertices are of three types:

input gates: they have in-degree 0 and are labelled by variables in X,
addition gates: they have arbitrary in-degree, an output value in K, and a weight
w(a) ∈ K on each incoming arc a,
multiplication gates: they have in-degree 2, and we distinguish between the left child and
the right child.

Each gate v in the circuit computes a polynomial fv which we define by induction.
An input gate labelled by a variable x ∈ X computes the polynomial x.
An addition gate v with n arcs incoming from gates v1, . . . , vn and with weights α1, . . . , αn,
computes the polynomial α1fv1 + · · ·+ αnfvn .
A multiplication gate with left child u and right child v computes the polynomial fufv.

The circuit itself computes a polynomial given by the sum over all addition gates of the
output value times the polynomial computed by the gate. Note that it is slightly unusual
that all addition gates contribute to the circuit; one can easily reduce to the classical case
where there is a unique output addition gate by adding an extra gate.

To define the size of a circuit we make a syntactic assumption: each arc is either coming
from, or going to (but not both), an addition gate. This is a small assumption which can be
lifted at the price of a linear blow-up. The size of a circuit C is denoted |C| and defined to
be its number of addition gates. Note that this is how the size of ABPs is defined, it will be
a convenient definition here since our characterization result captures the exact size of the
smallest circuit computing a given polynomial.

Note that the definitions we gave above do not depend on which of the four settings we
consider: commutative or non-commutative, associative or non-assocative.

Consider the circuit on the left hand side of Figure 2: it computes the polynomial
7y2 + 2xy + yx, which in the commutative setting is equal to 7y2 + 3xy.

Figure 2 On the left hand side a circuit computing the polynomial 7y2 + 2xy + yx, which in the
commutative setting is equal to 7y2 + 3xy. The only addition gate with a non-zero output value is at
the bottom, its output value is 1. On the right hand side the monomial xy, seen as non-associative.
The dashed red arrow show one run of the circuit over this monomial.

2.2 The Characterization
This section aims at proving the characterization stated in Theorem 5. It extends Nisan’s
characterization of non-commutative ABPs to general circuits in the non-associative setting.
The result holds for both commutative and non-commutative settings, the proof being the
same up to cosmetic changes.
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The key step to go from ABPs to general circuits is the following: the polynomial
computed by an ABP is the sum over the paths of the underlying graph, whereas in a general
circuit the sum is over trees. We formalize this in the next definition by introducing runs of
a circuit. The definition is given in the non-commutative setting but easily adapts to the
commutative setting as explained in Remark 3.

I Definition 2. Let C be a circuit and V⊕ denote its set of addition gates. Let t ∈ Tree(X)
be a monomial. A run of C over t is a map ρ from nodes of t to V⊕ such that
(i) A leaf of t with label x ∈ X is mapped to a gate with a non-zero edge incoming from an

input gate labelled by x.
(ii) If n is a node of t with left child n1 and right child n2, then ρ(n) has a non-zero edge

incoming from a multiplication gate with left child ρ(n1) and right child ρ(n2).
(iii) The root of t is mapped to a gate with non-zero output value.
The value val(ρ) of ρ is a non-zero element in K defined as the product of the weights of the
edges mentioned in items (i) and (ii) together with the output value of ρ(r), r being the root
of t.

We write by a small abuse of notation ρ : t→ V⊕ for runs of C over t.

We refer to Figure 2 for an example of a run over the monomial xy. The value of the run
is 2.

I Remark 3. In the commutative setting we simply replace item (ii) by: “if n is a node of t
with children n1, n2, then ρ(n) has a non-zero edge incoming from a multiplication gate with
children ρ(n1), ρ(n2)”.

A run of C over a monomial t additively contributes to the coefficient of t in the polynomial
computed by C, leading to the following lemma.

I Lemma 4. Let C be a circuit computing the non-associative polynomial f : Tree(X)→ K.
Then the coefficient f(t) of a monomial t ∈ Tree(X) in f is equal to∑

ρ:t→V⊕

val(ρ).

We may now state and prove our cornerstone result, which holds in both the commutative
and non-commutative settings.

I Theorem 5. Let f : Tree(X) → K be a non-associative polynomial, Hf be its Hankel
matrix, and C be a circuit computing f . Then |C| ≥ rank (Hf ). Moreover, if f is homogeneous
this bound is tight, meaning there exists a circuit C computing f of size rank (Hf ).

An interesting feature of this theorem is that the upper bound is effective: given a
homogenous polynomial one can construct a circuit computing this polynomial of size
rank (Hf ).

Here, we only prove the lower bound as the upper bound is not used in the rest of the
paper. The proof of the lower bound follows the same lines as Nisan’s original proof for
non-commutative ABPs [19].

Proof. Let C be a circuit computing the non-associative polynomial f : Tree(X)→ K. Let
V⊕ denote the set of addition gates of C. To bound the rank of the Hankel matrix Hf by
|C| = |V⊕| we show that Hf can be written as the sum of |V⊕| matrices each of rank at
most 1.
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For each v ∈ V⊕ we define two circuits which decompose the computations around v. Let
Cv1 be the restriction of C to descendants of v, and Cv2 be a copy of C with just an extra input
gate labelled by a fresh variable � /∈ X with a single outgoing edge with weight 1 going to v.

We let fv : Tree(X)→ K denote the polynomial computed by Cv1 and gv : Context(X)→
K denote the restriction of the polynomial computed by Cv2 to Context(X) ⊆ Tree(X t{�}).

We show the equality

Hf (c, t) =
∑
v∈V⊕

fv(t)gv(c).

Fix a monomial t ∈ Tree(X) and a context c ∈ Context(X). We let n� denote the leaf
of c labelled by �, which is also the root of t and the node to which t is substituted with in
c[t]. Relying on Lemma 4, we calculate the coefficient f(c[t]) of c[t] in f .

f(c[t]) =
∑

ρ:c[t]→V⊕

val(ρ) =
∑
v∈V⊕

∑
ρ:c[t]→V⊕
ρ(n�)=v

val(ρ) =
∑
v∈V⊕

∑
ρv1 :t→V⊕
ρv1 (n�)=v

∑
ρv2 :c→V⊕
ρv2 (n�)=v

val(ρv1)val(ρv2)

=
∑
v∈V⊕

∑
ρv1 :t→V⊕
ρv1 (n�)=v

val(ρv1)
∑

ρv2 :c→V⊕
ρv2 (n�)=v

val(ρv2) =
∑
v∈V⊕

fv(t)gv(c).

Let Mv ∈ KTree(X)×Context(X) be the matrix given by Mv(t, c) = fv(t)gv(c): its rank is at
most one as Mv is the product of a column vector by a row vector. The previous equality
reads in matrix form Hf =

∑
v∈V⊕Mv. Hence, we obtain the announced lower bound using

rank subadditivity:

rank (Hf ) = rank

∑
v∈V⊕

Mv

 ≤ ∑
v∈V⊕

rank (Mv) ≤ |V⊕| = |C|. J

The remainder of this paper consists in applying Theorem 5 to obtain lower bounds in
various cases. To this end we need a better understanding of the Hankel matrix: in Section 3
we introduce a few concepts and develop decomposition theorems for the Hankel matrix.

3 Decomposing the Hankel Matrix

Our decomposition of the Hankel matrix relies on the notion of parse trees and partial
derivative matrices, which we formally introduce now.

3.1 Parse Trees
With any monomial t ∈ Tree(X) we associate its shape shape(t) ∈ Tree as the tree obtained
from t by removing the labels at the leaves.

I Definition 6. Let C be a circuit computing a non-commutative non-associative polynomial
f . A parse tree of C is any shape s ∈ Tree for which there exists a monomial t ∈
Tree(X) whose coefficient in f is non-zero and such that s = shape(t). We let PT (C) =
{shape(t) | f(t) non-zero}.

3.2 Partial Derivative Matrices
We now introduce a well known tool for proving circuit lower bounds, namely, partial
derivative matrices. For A ⊆ [d] of size i , u ∈ Xd−i, and v ∈ Xi, we define the monomial
u⊗A v ∈ Xd: it is obtained by interleaving u and v with u taking the positions indexed by
[d] \A and v the positions indexed by A. For instance x1x2 ⊗{2,4} y1y2 = x1y1x2y2.
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I Definition 7. Let f be a homogeneous non-commutative associative polynomial. Let A ⊆ [d]
be a set of positions of size i.

The partial derivative matrix MA (f) of f with respect to A is defined as follows: the
rows are indexed by u ∈ Xd−i and the columns by v ∈ Xi, and the value of MA (f) (u, v) is
the coefficient of the monomial u⊗A v in f .

I Example 8. Let f = xyxy + 3xxyy + 2xxxy + 5yyyy and A = {2, 4}. Then MA (f) is
given below.

_x_x _x_ y _ y_x _ y_ y
x_x_ 0 2 0 1
y_x_ 0 0 0 0
x_ y_ 0 3 0 0
y_ y_ 0 0 0 5

We define a distance dist : P([d]) × P([d]) → N on subsets of [d] by letting dist(A,B)
be the minimal number of additions and deletions of elements of [d] to go from A to B,
assuming that complementing is for free. Formally, dist(A,B) = min{|∆(A,B)|, |∆(Ac, B)|},
where ∆(A,B) = (A \B) ∪ (B \A) is the symmetric difference between A and B.

The following lemma (see e.g., [17]) informally says that, if A and B are close to each
other, then the ranks of the corresponding partial derivative matrices are close to each other
as well.

I Lemma 9. Let f be a homogeneous non-commutative associative polynomial of degree d
with n variables. Then, for any subsets A,B ⊆ [d], rank (MA (f)) ≤ ndist(A,B)rank (MB (f)).

At this point, we have the material in hands to describe a precise characterization of the
size of the smallest Unique Parse Tree circuit which computes a given polynomial. We take
this short detour before moving on to our core lower bound results.

3.3 Characterization of smallest Unique Parse Tree Circuit
Unique Parse Tree (UPT) circuits are non-commutative associative circuits with a unique
parse tree. They were first introduced in [16]. Our techniques allow a slight improvement and
a better understanding of their results. We obtain a small improvement since the original
result requires a normal form which can lead to an exponential blow-up.

Given a shape s ∈ Tree of size d, i.e., with d leaves and a node v of s, we let sv denote
the subtree of s rooted in v, and Iv ⊆ [d] denote the interval of positions of the leaves of sv
in s. We say that s′ ∈ Tree is a subshape of s if s′ = sv for some v, and that I is spanned by
s if I = Iv for some v.

Let f : Xd → K be a homogeneous non-commutative associative polynomial of degree d,
let s ∈ Tree be a shape of size d, and let s′ be a subshape of s such that v1, . . . , vp are all
the nodes v of s such that s′ = sv. We define

Ms′ =


MIv1

(f)
MIv2

(f)
...

MIvp
(f)

 .
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I Theorem 10. Let f : Xd → K be a homogeneous non-commutative associative polynomial
and let s ∈ Tree be a shape of size d. Then the smallest UPT circuit with shape s computing
f has size exactly∑

s′ subshape of s
rank (Ms′) .

Proof. Let C be a UPT circuit with shape s computing f . We let f̃ denote the non-associative
polynomial computed by C. Since C is UPT with shape s, f̃ is the unique non-associative
polynomial which is non-zero only on trees with shape s and projects to f , i.e., f̃(t) = f(u)
if shape(t) = s and t is labelled by u, and f̃(t) = 0 otherwise.

In particular, the size of the smallest UPT circuit with shape s computing f is the same
as the size of the smallest circuit computing f̃ , which thanks to Theorem 5 is equal to the
rank of the Hankel matrix Hf̃ .

The Hankel matrix of f̃ may be non-zero only on columns indexed by trees whose shapes
s′ are subshapes of s, and on such columns, non-zero values are on rows corresponding to a
context obtained from s by replacing an occurrence of s′ by �. The corresponding blocks are
precisely the matrices Ms′ , and are placed in a diagonal fashion, hence the lower bound. J

Theorem 10 can be applied to concrete polynomials, for instance to the permanent of
degree d.

I Corollary 11. Let s ∈ Tree be a shape. The smallest UPT circuit with shape s computing
the permanent has size∑

v node of s

(
d

|Iv|

)
,

where Iv is the set of leaves in the subtree rooted at v in s. In particular, this is always larger
than

(
d
d/3
)
.

Applied to s being a left-comb, Corollary 11 yields that the smallest ABP computing the
permanent has size 2d + d. Applied to s being a complete binary tree of depth k = log d, the
size of the smallest UPT is Θ

(
2d
d

)
, showing that this circuit is more efficient than any ABP.

3.4 General Roadmap
We now get to the technical core of the paper where we establish generic lower bounds
theorems through a decomposition of the Hankel matrix, that we will later instantiate in
Section 4 to concrete classes of circuits. We first restrict ourselves to the non-commutative
setting. Our first decomposition, Theorem 12, seems to capture mostly previously known
techniques. However, the second, more powerful decomposition, Theorem 13, takes advantage
of the global shape of the Hankel matrix. Doing so allows to go beyond previous results only
hinging around considering partial derivatives matrices which only turn out to be isolate
slices of the Hankel matrix.

We later explain in Section 3.6 how to extend the study to the commutative case.
Let f be a (commutative or non-commutative) polynomial for which we want to prove

lower bounds. Consider a circuit C which computes f , and let f̃ be the non-associative
polynomial computed by C. Our aim is, following Theorem 5, to give lower bounds on the
rank of the Hankel matrix Hf̃ . We know that the f̃ and f are equal up to associativity,
which provides linear relations among the coefficients of Hf̃ .
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The bulk of the technical work is to reorganize the rows and columns of Hf̃ in order to
decompose it into blocks which may be identified as partial derivative matrices with respect
to some subsets A1, A2, · · · ⊆ [d], of some associative polynomials which depend on f̃ and
sum to f . The number and choice of these subsets depend on the parse trees of the circuit C.

Now, assume there exists a subset A ⊆ [d] which is at distance at most δ to each Ai.
Losing a factor of nδ on the rank through the use of Lemma 9 we reduce the aforementioned
blocks of Hf̃ to partial derivatives with respect to A. Such matrices can then be summed to
recover the partial derivative matrix of f with respect to A, yielding in the lower bound a
(dominating) factor of rank (MA (f)).

3.5 Generic Lower Bounds in the Non-commutative Setting
Following the general roadmap described above, we obtain a first generic lower bound result.

I Theorem 12. Let f : Xd → K be a non-commutative homogeneous polynomial computed
by a circuit C. Let A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at
distance at most δ from A. Then C has size at least rank (MA (f))n−δ|PT (C) |−1.

The crux to prove Theorem 12 is to identify for each parse tree s of C a block in Hf̃

containing the partial derivative matrix MI(s) (fs) where fs is the polynomial corresponding
to the contribution of the parse tree s in the computation of f and I(s) is an interval spanned
by s.

However, we do not consider in this analysis how these blocks are located relative to
each other. A more careful analysis of Hf̃ consists in grouping together all parse trees that
lead to the same spanned interval. Aligning and then summing these blocks we remove the
dependence in |PT (C) | and instead use d2 which is the total number of possibly spanned
intervals of [d]. This yields Theorem 13.

I Theorem 13. Let f be a non-commutative homogeneous polynomial computed by a circuit
C. Let A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at distance at most
δ from A. Then C has size at least rank (MA (f))n−δd−2.

As we shall see in Section 4 the lower bounds we obtain using Theorem 12 match known
results, while using Theorem 13 yields substantial improvements.

3.6 Extending to the Commutative Setting
We explain how to extend the notions of parse trees and the generic lower bound theorems
to the commutative setting.

Let X = X1 tX2 t · · · tXd be a partition of the variable set X. A monomial is set-
multilinear with respect to the partition if it is the product of exactly one variable from
each set Xi, and a polynomial is set-multilinear if all its monomials are.

The permanent and the determinant of degree d are set-multilinear with respect to the
partitionX = X1tX2t· · ·tXd whereXi = {xi,j , j ∈ [d]}. The iterated matrix multiplication
polynomial is another example of an important and well-studied set-multilinear polynomial.
The partial derivative matrix also make sense in the realm of set-multilinear polynomials.

I Definition 14. Let X = X1 tX2 t · · · tXd, f be a set-multilinear polynomial of degree d,
and A ⊆ [d] be a set of indices. The partial derivative matrix MA (f) of f with respect
to A is defined as follows: the rows are indexed by set-multilinear monomials g with respect
to the partition

⊔
i/∈AXi and the columns are indexed by set-multilinear monomials h with

respect to the partition
⊔
i∈AXi. The value of MA (f) (g, h) is the coefficient of the monomial

g · h in f .

STACS 2020
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The notion of shape was defined by [3], and it slightly differs from the non-commutative
case because we need to keep track of the indices of the variable sets given by the partition
from which the variables belong. More precisely, given a partition of X = X1 tX2 t · · · tXd,
we associate to any monomial t ∈ Tree(X) of degree d its shape shape(t) ∈ Tree([d]) defined
as the tree obtained from t by replacing each label by its index in the partition. We let
Td ⊆ Tree([d]) denote the set of trees such that all elements of [d] appear as a label of a leaf.

Let C be a commutative circuit. We let f̃ denote the commutative non-associative
polynomial computed by C when it is seen as non-associative. A parse tree of C is any
shape s ∈ Td for which there exists a monomial t ∈ Tree(X) whose coefficient in f̃ is non-zero
and such that s = shape(t). Hence, we let PT (C) =

{
shape(t) | f̃(t) non-zero

}
∩ Td.

Given a shape s ∈ Tree([d]) with d leaves and a node v of s, we let sv denote the subtree
rooted at v and Av ⊆ [d] denote the set of labels appearing on the leaves of sv.

Following the same roadmap as in the non-commutative setting we obtain the following
counterpart of Theorem 12. We assume that the set of variables is partitioned into d parts of
equal size n (this is a natural setting for polynomials such as the determinant, the permanent
or the iterated matrix multiplication). In particular, it means that the polynomials we
consider are of degree d and over nd variables.

I Theorem 15. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d]
and δ ∈ N such that all parse trees of C span a subset at distance at most δ from A. Then C
has size at least rank (MA (f))n−δ|PT (C) |−1.

A notable difference with the non-commutative setting is that now parse trees no longer
span intervals of [d] but subsets of [d]. As a consequence, the technique used to prove
Theorem 13 groups together blocks corresponding to the same subset of [d] and therefore the
multiplicative factor is now 2−d as there are 2d such subsets.

I Theorem 16. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d]
and δ ∈ N such that all parse trees of C span a subset at distance at most δ from A. Then C
has size at least rank (MA (f))n−δ2−d.

While in the non-commutative setting, Theorem 13 strengthens Theorem 12 (when d2 is
small), this is no longer the case in the commutative setting. Indeed, the maximal number
of commutative parse trees being roughly d! (the exact asymptotic is

√
2−
√

2dd−1

ed(
√

2−1)d+1 , see e.g.,
https://oeis.org/A036774), Theorem 15 and Theorem 16 are incomparable.

4 Applications

In this section we instantiate our generic lower bound theorems on concrete classes of circuits.
We first show how the weaker version (Theorem 12) yields the best lower bounds to date for
skew and small non-skew depth circuits. Extending these ideas we obtain exponential lower
bounds for

( 1
2 − ε

)
-unbalanced circuits, an extension of skew circuits which are just slightly

unbalanced. We also adapt the proof to ε-balanced circuits, which are slightly balanced, then
move on to our main results, which concern circuits with many parse trees.

High-ranked polynomials
The lower bounds we state below hold for any polynomial whose partial derivative matrices
with respect to either a fixed subset A or all subsets have large rank. Such polynomials exist
for all fields in both the commutative and non-commutative settings, and can be explicitly

https://oeis.org/A036774
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constructed. For instance the so-called Nisan-Wigderson polynomial given in [14] (inspired
by the notion of designs by Nisan and Wigderson [20]) has this property. It are given by

NWn,d =
∑

h∈Fn[z]
deg(h)≤d/2

d∏
i=1

xi,h(i),

where Fn[z] denotes univariate polynomials with coefficients in the finite field of prime order
n. The fact that there exists a unique polynomial h ∈ Fn[z] of degree at most d/2 which takes
d/2 given values at d/2 given positions exactly implies that the partial derivative matrix of
NWn,d with respect to any A ⊆ [d] of size d/2 is a permutation matrix. This is then easily
extended to any A ⊆ [d].

4.1 Skew, Slightly Unbalanced, Slightly Balanced and Small Non-Skew
Depth Circuits

We show how using Theorem 12 yields exponential lower bounds for four classes of circuits
in the non-commutative setting.

Skew Circuits
A circuit C is skew if all its parse trees are skew, meaning that each node has at least one of
its children which is a leaf. As a direct application of Theorem 12, we obtain the following
result.

I Theorem 17. Let f be a homogeneous non-commutative polynomial such that
M[d/4+1,3d/4] (f) has full rank nd/2. Then any skew circuit computing f has size at least
2−dnd/4.

Slightly unbalanced circuits
A circuit C computing a homogeneous non-commutative polynomial of degree d is said to be
α-unbalanced if every multiplication gate has at least one of its children which computes a
polynomial of degree at most αd.

I Theorem 18. Let f be a homogeneous non-commutative polynomial such that
M[d/4+1,3d/4] (f) has full rank nd/2. Then any

( 1
2 − ε

)
-unbalanced circuit computing f

has size at least 4−dnεd.

This result improves over a previously known exponential lower bound on
( 1

5
)
-unbalanced

circuits [17].

Slightly balanced circuits
A circuit C computing a homogeneous non-commutative polynomial of degree d is said to be
α-balanced if every multiplication gate which computes a polynomial of degree k has both
of its children which compute a polynomial of degree at least αk.

I Theorem 19. Let f be a homogeneous non-commutative polynomial such that M[1,d/2] (f)
has full rank nd/2. Then any ε-balanced circuit computing f has size at least 4−dnεd.
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Small Non-skew Depth Circuits
A circuit C has non-skew depth k if all its parse trees are such that each path from the
root to a leaf goes through at most k non-skew nodes, i.e., nodes for which the two children
are inner nodes.

We obtain an alternative proof of the exponential lower bound of [17] on non-skew depth
k circuits as an application of Theorem 12. In the statement below A refers to an explicit
subset of [d] that we do not define here.

I Theorem 20. Let f be a homogeneous non-commutative polynomial of degree d = 12kp
such that MA (f) has full rank nd/2. Then any circuit of non-skew depth k computing f has
size at least 4−dnp/3 = 4−dnd/36k.

4.2 Circuits with Many Parse Trees
We focus on k-PT circuits which are circuits with at most k different parse trees.

The Non-commutative Setting
Lagarde, Limaye, and Srinivasan [15] obtained a superpolynomial lower bound for super-
polynomial k (up to k = 2d

1
3−ε). We first show how to obtain the same result using

Theorem 12.
For s ∈ Treed and A ⊆ [d], we define dist(A, s) = min {dist(A, I) | I spanned by s}. The

following lemma is a subtle probabilistic analysis ensuring the existence of a subset which is
close enough to all k parse trees.

I Lemma 21 (adapted from Claim 15 in [15]). Let s ∈ Treed be a shape with d leaves, and
δ ≤
√
d. Then

Pr
A∼U

(
( [d]
d/2)
) [dist(A, s) > d/2− δ

]
≤ 2−αd/δ

2
,

where α is some positive constant and U
(( [d]
d/2
))

the uniform distribution of subsets of d of
size d/2.

Proof sketch. Following [15], we find a sequence of r = Ω(d/δ2) nodes of s which all span
distant enough subtrees. We then obtain the bound by splitting the previous event into r
essentially independent events. J

From there, the lower bound is obtained using Theorem 12 and a fine tuning of the
parameters.

I Theorem 22. Let f be a homogeneous non-commutative polynomial such that for all
A ⊆ [d] MA (f) has full rank. Let k = 2d1/3−ε and ε > 0. Then for large enough d, any k-PT
circuit computing f has size at least 2d1/3(logn−d−ε).

Proof. Let C be a k-PT circuit computing f , and δ = d1/3 ≤
√
d. We first show that there

exists a subset A ⊆ [d] which is close to all parse trees in C. Indeed, a union bound and
Lemma 21 yield

Pr
A∼U

(
( [d]
d/2)
) [∃s ∈ PT (C) ,dist(A, s) > d/2− δ

]
≤

∑
s∈PT(C)

Pr
A∼U

(
( [d]
d/2)
) [dist(A, s) > d/2− δ

]
≤ k2−αd/δ

2
= 2d

1/3−ε−αd1/3
< 1,
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for large enough d. We now pick a subset A ⊆ [d] of size d/2 such that for all s ∈
PT (C) ,dist(A, s) ≤ d/2 − δ, that is, any s ∈ PT (C) spans an interval I(s) at distance at
most d/2− δ from A. Finally, we apply Theorem 12 to obtain

|C| ≥ rank (MA (f))n−(d/2−δ)k−1 = nd/2n−(d/2−d1/3)2−d
1/3−ε

= 2d
1/3(logn−d−ε). J

We may improve the previous bound by applying Theorem 13 instead of Theorem 12.
Indeed, since Theorem 13 gets rid of the factor k−1 in the lower bound, picking a much
smaller δ (δ = dε/3 instead of d1/3) still leads to a superpolynomial lower bound, while
allowing for more parse trees.

I Theorem 23. Let f be a homogeneous non-commutative polynomial such that for all
A ⊆ [d] MA (f) has full rank. Let k = 2d1−ε and ε > 0. Then for large enough d, any k-PT
circuit computing f has size at least ndε/4

d−2.

The bound 2d1−ε on the number of parse trees is to be compared to the total number of
shapes of size d which is 1

d

(2(d−1)
d−1

)
∼ 4d

d3/2√π ≤ 22d. As explained in the introduction this
means that we obtain superpolynomial lower bounds for any class of circuits which has a
small defect in the exponent of the total number of parse trees.

The Commutative Setting
Arvind and Raja [3] showed a superpolynomial lower bound for sublinear k (up to k = d1/2−ε).
We improve this to superpolynomial k (up to k = 2d1−ε).

Indeed, in the commutative setting, Lemma 21 holds as such (with a shape being an
element of Td, that is, a commutative parse tree of size d). However, the generic lower bound
theorems, namely Theorem 15 and Theorem 16, are not exactly the same, so we obtain
slightly different results. In particular, the two results we obtain are incomparable. Applying
Theorem 15 leads to Theorem 24, whereas Theorem 16 leads to Theorem 25.

I Theorem 24. Let f be a set-multilinear commutative polynomial such that for all A ⊆ [d],
the matrix MA (f) has full rank. Let k = 2d1/3−ε and ε > 0. Then for large enough d, any
k-PT circuit computing f has size at least 2d1/3(logn−d−ε).

I Theorem 25. Let f be a set-multilinear commutative polynomial such that for all A ⊆ [d],
the matrix MA (f) has full rank. Let k = 2d1−ε and ε > 0. Then for large enough d, any
k-PT circuit computing f has size at least ndε/42−d.
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Abstract
The VertexCover problem is proven to be computationally hard in different ways: It is NP-
complete to find an optimal solution and even NP-hard to find an approximation with reasonable
factors. In contrast, recent experiments suggest that on many real-world networks the run time
to solve VertexCover is way smaller than even the best known FPT-approaches can explain.
Similarly, greedy algorithms deliver very good approximations to the optimal solution in practice.

We link these observations to two properties that are observed in many real-world networks,
namely a heterogeneous degree distribution and high clustering. To formalize these properties
and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on
hyperbolic random graphs, which have become increasingly popular for modeling real-world networks.
In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be
solved in polynomial time, with high probability.

The proof relies on interesting structural properties of hyperbolic random graphs. Since these
predictions of the model are interesting in their own right, we conducted experiments on real-world
networks showing that these properties are also observed in practice. When utilizing the same
structural properties in an adaptive greedy algorithm, further experiments suggest that, on real
instances, this leads to better approximations than the standard greedy approach within reasonable
time.
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1 Introduction

VertexCover is a fundamental NP-complete graph problem. For a given undirected
graph G on n vertices the goal is to find the smallest vertex subset S, such that each edge
in G is incident to at least one vertex in S. Since, by definition, there can be no edge between
two vertices outside of S, these remaining vertices form an independent set. Therefore, one
can easily derive a maximal independent set from a minimal vertex cover and vice versa.

Due to its NP-completeness there is probably no polynomial time algorithm for solving
VertexCover. The best known algorithm for IndependentSet runs in 1.1996n poly(n) [22].
To analyze the complexity of VertexCover on a finer scale, several parameterized solutions
have been proposed. One can determine whether a graph G has a vertex cover of size k by
applying a branch-and-reduce algorithm. The idea is to build a search tree by recursively
considering two possible extensions of the current vertex cover (branching), until a vertex cover
is found or the size of the current cover exceeds k. Each branching step is followed by a reduce
step in which reduction rules are applied to make the considered graph smaller. This branch-
and-reduce technique yields a simple O(2k poly(n)) algorithm, where the exponential portion
comes from the branching. The best known FPT (fixed-parameter tractable) algorithm runs
in O(1.2738k + kn) time [7], and unless ETH (exponential time hypothesis) fails, there can
be no 2o(k) poly(n) algorithm [6].

While these FPT approaches promise relatively small running times if the considered
network has a small vertex cover, the cover is large for many real-world networks. Nevertheless,
it was recently observed that applying a branch-and-reduce technique on real instances is very
efficient [1]. Some of the considered networks had millions of vertices, yet an optimal solution
(also containing millions of vertices) was computed within seconds. Most instances were solved
so quickly since the expensive branching was not necessary at all. In fact, the application of
the reduction rules alone already yielded an optimal solution. Most notably, applying the
dominance reduction rule, which eliminates vertices whose neighborhood contains a vertex
together with its neighborhood, reduces the graph to a very small remainder on which the
branching, if necessary, can be done quickly. We trace the effectiveness of the dominance rule
back to two properties that are often observed in real-world networks: a heterogeneous degree
distribution (the network contains many vertices of small degree and few vertices of high
degree) and high clustering (the neighbors of a vertex are likely to be neighbors themselves).

We formalize these key properties using hyperbolic random graphs to analyze the perform-
ance of the dominance rule. Introduced by Krioukov et al. [17], hyperbolic random graphs
are obtained by randomly distributing nodes in the hyperbolic plane and connecting any two
that are geometrically close. The resulting graphs feature a power-law degree distribution
and high clustering [14, 17] (the two desired properties) which can be tuned using parameters
of the model. Additionally, the generated networks have a small diameter [13]. All of these
properties have been observed in many real-world networks such as the internet, social net-
works, as well as biological networks like protein-protein interaction networks. Furthermore,
Boguná, Papadopoulos, and Krioukov showed that the internet can be embedded into the
hyperbolic plane such that routing packages between network participants greedily works
very well [5], indicating that this network naturally fits into the hyperbolic space.

By making use of the underlying geometry, we show that VertexCover can be solved
in polynomial time on hyperbolic random graphs, with high probability. This is done by
showing that even a single application of the dominance reduction rule reduces a hyperbolic
random graph to a remainder with small pathwidth on which VertexCover can then
be solved efficiently. Our analysis provides an explanation for why VertexCover can be
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solved efficiently on practical instances. We note that, while our analysis makes use of the
underlying hyperbolic geometry, the algorithm itself is oblivious to it. Besides the running
time the model predicts certain structural properties that also point us to an adapted greedy
algorithm that is still very efficient and achieves better approximation ratios. We conducted
experiments indicating that these predictions (concerning the structural properties and
improved approximation) actually match the real world for a significant fraction of networks.

2 Preliminaries

Let G = (V,E) be an undirected graph. We denote the number of vertices in G with n. The
neighborhood of a vertex v is defined as N(v) = {w ∈ V | {v, w} ∈ E} and the size of the
neighborhood, called the degree of v, is denoted by deg(v). For a subset S ⊆ V , we use G[S]
to denote the induced subgraph of G obtained by removing all vertices in V \S. Furthermore,
we use the shorthand notation G≤d to denote G[{v ∈ V | deg(v) ≤ d}].

The Hyperbolic Plane. After choosing a designated origin O in the two-dimensional hyper-
bolic plane, together with a reference ray starting at O, a point p is uniquely identified by its
radius r(p), denoting the hyperbolic distance to O, and its angle (or angular coordinate) ϕ(p),
denoting the angular distance between the reference ray and the line through p and O. The
hyperbolic distance between two points p and q is given by

dist(p, q) = acosh(cosh(r(p)) cosh(r(q))− sinh(r(p)) sinh(r(q)) cos(∆ϕ(ϕ(p), ϕ(q)))),

where cosh(x) = (ex + e−x)/2, sinh(x) = (ex − e−x)/2 (both growing as ex/2± o(1)), and
∆ϕ(p, q) = π−|π−|ϕ(p)−ϕ(q)|| denotes the angular distance between p and q. If not stated
otherwise, we assume that computations on angles are performed modulo 2π.

We use Bp(r) to denote a disk of radius r centered at p, i.e., the set of points with
hyperbolic distance at most r to p. Such a disk has an area of 2π(cosh(r)−1) and circumference
2π sinh(r). Thus, the area and the circumference of a disk in the hyperbolic plane grow
exponentially with its radius. In contrast, this growth is polynomial in Euclidean space.
Therefore, representing hyperbolic shapes in the Euclidean geometry results in a distortion.
In the native representation, used in our figures, circles can appear teardrop-shaped (see
Figure 2).

Hyperbolic Random Graphs. Hyperbolic random graphs are obtained by distributing n
points uniformly at random within the disk BO(R) and connecting any two of them if and
only if their hyperbolic distance is at most R; see Figure 1. The disk radius R (which matches
the connection threshold) is defined as R = 2 log(8n/(πκ̄)), where κ̄ is a constant describing
the desired average degree of the generated network. The coordinates for the vertices are
drawn as follows. For vertex v the angular coordinate, denoted by ϕ(v), is drawn uniformly
at random from [0, 2π] and the radius of v, denoted by r(v), is sampled according to the
probability density function α sinh(αr)/(cosh(αR)− 1) for r ∈ [0, R] and α ∈ (1/2, 1). Thus,

f(r) = 1
2π

α sinh(αr)
cosh(αR)− 1 = α

2π e
−α(R−r)(1 + Θ(e−αR − e−2αr)), (1)

is their joint distribution function for r ∈ [0, R]. For r > R, f(r) = 0. The constant
α ∈ (1/2, 1) is used to tune the power-law exponent β = 2α+ 1 of the degree distribution
of the generated network. Note that we obtain power-law exponents β ∈ (2, 3). Exponents
outside of this range are atypical for hyperbolic random graphs. On the one hand, for
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β < 2 the average degree of the generated networks is divergent. On the other hand, for
β > 3 hyperbolic random graphs degenerate: They decompose into smaller components, none
having a size linear in n. The obtained graphs have logarithmic tree width [4], meaning the
VertexCover problem can be solved efficiently in that case.

The probability for a given vertex to lie in a certain area A of the disk is given by its
probability measure µ(A) =

∫
A
f(r)dr. The hyperbolic distance between two vertices u and

v increases with increasing angular distance between them. The maximum angular distance
such that they are still connected by an edge is bounded by [14, Lemma 6]

θ(r(u), r(v)) = arccos
(

cosh(r(u)) cosh(r(v))− cosh(R)
sinh(r(u)) sinh(r(v))

)
= 2e(R−r(u)−r(v))/2(1 + Θ(eR−r(u)−r(v))). (2)

Interval Graphs and Circular Arc Graphs. In an interval graph each vertex v is identified
with an interval on the real line and two vertices are adjacent if and only if their intervals
intersect. The interval width of an interval graph G, denoted by iw(G), is its maximum
clique size, i.e., the maximum number of intervals that intersect in one point. For any
graph the interval width is defined as the minimum interval width over all of its interval
supergraphs. Circular arc graphs are a superclass of interval graphs, where each vertex is
identified with a subinterval of the circle called circular arc or simply arc. The interval width
of a circular arc graph G is at most twice the size of its maximum clique, since one obtains
an interval supergraph of G by mapping the circular arcs into the interval [0, 2π] on the real
line and replacing all intervals that were split by this mapping with the whole interval [0, 2π].
Consequently, for any graph G, if k denotes the minimum over the maximum clique number
of all circular arc supergraphs G′ of G, then the interval width of G is at most 2k.

Treewidth and Pathwidth. A tree decomposition of a graph G is a tree T where each tree
node represents a subset of the vertices of G called bag, and the following requirements have
to be satisfied: Each vertex in G is contained in at least one bag, all bags containing a
given vertex in G form a connected subtree of T , and for each edge in G, there exists a bag
containing both endpoints. The width of a tree decomposition is the size of its largest bag
minus one. The treewidth of G is the minimum width over all tree decompositions of G. The
path decomposition of a graph is defined analogously to the tree decomposition, with the
constraint that the tree has to be a path. Additionally, as for the treewidth, the pathwidth
of a graph G, denoted by pw(G), is the minimum width over all path decompositions of G.
Clearly the pathwidth is an upper bound on the treewidth. It is known that for any graph G
and any k ≥ 0, the interval width of G is at most k + 1 if and only if its pathwidth is at
most k [8, Theorem 7.14]. Consequently, if k′ is the maximum clique size of a circular arc
supergraph of G, then 2k′ − 1 is an upper bound on the pathwidth of G.

Probabilities. Since we are analyzing a random graph model, our results are of probabilistic
nature. To obtain meaningful statements, we show that they hold with high probability (for
short whp.), i.e., with probability 1−O(n−1). The following Chernoff bound is a useful tool
for showing that certain events occur with high probability.

I Theorem 1 (Chernoff Bound [11, A.1]). Let X1, . . . , Xn be independent random variables
with Xi ∈ {0, 1} and let X be their sum. Let f(n) = Ω(log(n)). If f(n) is an upper bound
for E[X], then for each constant c there exists a constant c′ such that X ≤ c′f(n) holds with
probability 1−O(n−c).
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Figure 1 A hyperbolic random graph with 979 nodes, average degree 8.3, and a power-law
exponent of 2.5. With high probability, the gray vertices and edges are removed by the dominance
reduction rule. Additionally, the remaining subgraph in the outer band (consisting of the black
vertices and edges) has a small path width, with high probability.

3 Vertex Cover on Hyperbolic Random Graphs

Reduction rules are often applied as a preprocessing step, before using a brute force search
or branching in a search tree. They simplify the input by removing parts that are easy to
solve. For example, an isolated vertex does not cover any edges and can thus never be part
of a minimum vertex cover. Consequently, in a preprocessing step all isolated vertices can be
removed, which leads to a reduced input size without impeding the search for a minimum.

The dominance reduction rule was previously defined for the IndependentSet prob-
lem [12], and later used for VertexCover in the experiments by Akiba and Iwata [1].
Formally, vertex u dominates a neighbor v ∈ N(u) if (N(v) \ {u}) ⊆ N(u), i.e., all neighbors
of v are also neighbors of u. We say u is dominant if it dominates at least one vertex. The
dominance rule states that u can be added to the vertex cover (and afterwards removed
from the graph), without impeding the search for a minimum vertex cover. To see that this
is correct, assume that u dominates v and let S be a minimum vertex cover that does not
contain u. Since S has to cover all edges, it contains all neighbors of u. These neighbors
include v and all of v’s neighbors, since u dominates v. Therefore, removing v from S leaves
only the edge {u, v} uncovered which can be fixed by adding u instead. The resulting vertex
cover has the same size as S. When searching for a minimum vertex cover of G, it is thus
safe to assume that u is part of the solution and to reduce the search to G[V \ {u}].

In the remainder of this section, we study the effectiveness of the dominance reduction
rule on hyperbolic random graphs and conclude that VertexCover can be solved efficiently
on these graphs. Our results are summarized in the following main theorem.

STACS 2020



25:6 Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs

u
vO

Bu(R)

Bv(R)

R u
vO

R

D(u)

δ(r(u), r(v))

Figure 2 Left: Vertex u dominates vertex v, as Bv(R)∩BO(R) (light gray) is completely contained
in Bu(R) ∩BO(R) (gray). Right: All vertices that lie in D(u) are dominated by u.

I Theorem 2. Let G be a hyperbolic random graph on n vertices. Then the VertexCover
problem on G can be solved in poly(n) time, with high probability.

The proof of Theorem 2 consists of two parts that make use of the underlying hyperbolic
geometry. In the first part, we show that applying the dominance reduction rule once removes
all vertices in the inner part of the hyperbolic disk with high probability, as depicted in
Figure 1. We note that this is independent of the order in which the reduction rule is applied,
as dominant vertices remain dominant after removing other dominant vertices. In the second
part, we consider the induced subgraph containing the remaining vertices near the boundary
of the disk (black vertices in Figure 1). We prove that this subgraph has a small pathwidth,
by showing that there is a circular arc supergraph with a small interval width. Consequently,
a tree decomposition of this subgraph can be computed efficiently. Finally, we obtain a
polynomial time algorithm for VertexCover by first applying the reduction rules and
afterwards solving VertexCover on the remaining subgraph using dynamic programming
on the tree decomposition of small width.

3.1 Dominance on Hyperbolic Random Graphs
Recall that a hyperbolic random graph is obtained by distributing n vertices in a hyperbolic
disk BO(R) and that any two are connected if their distance is at most R. Consequently,
one can imagine the neighborhood of a vertex u as another disk Bu(R). Vertex u dominates
another vertex v if its neighborhood disk completely contains that of v (both constrained
to BO(R)), as depicted in Figure 2 left. We define the dominance area D(u) of u to be
the area containing all such vertices v. That is, D(u) = {p ∈ BO(R) | Bp(R) ∩ BO(R) ⊆
Bu(R) ∩BO(R)}. The result is illustrated in Figure 2 right. We note that it is sufficient for
a vertex v to lie in D(u) in order to be dominated by u, however, it is not necessary.

Given the radius r(u) of vertex u we can now compute a lower bound on the probability
that u dominates another vertex, i.e., the probability that at least one vertex lies in D(u),
by determining the measure µ(D(u)). To this end, we first define δ(r(u), r(v)) to be the
maximum angular distance between two nodes u and v such that v lies in D(u).

I Lemma 3. Let u, v be vertices with r(u) ≤ r(v). Then, v ∈ D(u) if ∆ϕ(u, v) is at most

δ(r(u), r(v)) = 2(e−r(u)/2 − e−r(v)/2) + Θ(e−3/2r(u))−Θ(e−3/2r(v)).
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O u v

iu iv

R

δ(r(u), r(v))

Bu(R)

Bv(R)

Figure 3 Vertex u dominates vertex v, with r(u) ≤ r(v), if ∆ϕ(u, v) ≤ ∆ϕ(iu, iv).

Proof. Without loss of generality we assume that ϕ(u) = 0. For now assume that ϕ(v) = ϕ(u).
Since r(v) ≥ r(u) we know that the intersections of the boundaries of Bv(R) with BO(R) lie
between those of Bu(R) with BO(R), as is depicted in Figure 3. Now let iu denote one of
these intersections for Bu(R) and BO(R), and let iv denote the intersection for Bv(R) and
BO(R) that is on the same side of the ray through O and u as iu. It is easy to see that the
maximum angular distance between u and v such that Bv(R) ∩BO(R) is contained within
Bu(R) ∩BO(R) is given by the angular distance between iu and iv. Therefore, v lies in the
dominance area of u if ∆ϕ(u, v) ≤ ∆ϕ(iu, iv).

Recall that θ(r(p), r(q)) denotes the maximum angular distance such that dist(p, q) ≤ R,
as defined in Equation (2). Since iu and iv have radius R and hyperbolic distance R to u
and v, respectively, we know that their angular coordinates are θ(r(u), R) and θ(r(v), R),
respectively. Consequently, the angular distance between iu and iv is given by

δ(r(u), r(v)) = θ(r(u), R)− θ(r(v), R)

= 2(e−r(u)/2 − e−r(v)/2) + Θ(e−3/2r(u))−Θ(e−3/2r(v)). J

Using Lemma 3 we can now compute the probability for a given vertex to lie in the
dominance area of u. We note that this probability grows roughly like 2/πe−r(u)/2, which is
a constant fraction of the measure of the neighborhood disk of u which grows as α/(α−1/2) ·
2/πe−r(u)/2 [14, Lemma 3.2]. Consequently, the expected number of nodes that u dominates
is a constant fraction of the expected number of its neighbors.

I Lemma 4. Let u be a node with radius r(u) ≥ R/2. The probability for a given node to
lie in D(u) is given by

µ(D(u)) = 2
π
e−r(u)/2(1−Θ(e−α(R−r(u))))±O(1/n).

Proof. The probability for a given vertex v to lie in D(u) is obtained by integrating the
probability density (given by Equation (1)) over D(u).

µ(D(u)) = 2
∫ R

r(u)

∫ δ(r(u),r)

0
f(r) dϕdr

= 2
∫ R

r(u)

(
2(e−r(u)/2 − e−r/2) + Θ(e−3/2r(u))−Θ(e−3/2r)

)
· α2π e

−α(R−r)(1 + Θ(e−αR − e−2αr)) dr
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Since r(u) ≥ R/2 and r ∈ [r(u), R] we have Θ(e−3/2r(u)) − Θ(e−3/2r) = ±O(e−3/4R) and
(1 + Θ(e−αR − e−2αr)) = (1 + Θ(e−αR)). Due to the linearity of integration, constant factors
within the integrand can be moved out of the integral, which yields

µ(D(u)) = α

π
e−αR(1 + Θ(e−αR))

∫ R

r(u)

(
2(e−r(u)/2 − e−r/2)±O(e−3/4R)

)
· eαr dr

= 2α
π
e−r(u)/2e−αR(1 + Θ(e−αR))

∫ R

r(u)
eαrdr

− 2α
π
e−αR(1 + Θ(e−αR))

∫ R

r(u)
e(α−1/2)rdr ±O

(
e−(3/4+α)R

∫ R

r(u)
eαrdr

)
.

The remaining integrals can be computed easily and we obtain

µ(D(u)) = 2
π
e−r(u)/2(1 + Θ(e−αR))(1− e−α(R−r(u)))

− 2α
(α− 1/2)π e

−R/2(1 + Θ(e−αR))(1− e−(α−1/2)(R−r(u)))

±O
(
e−3/4R(1− e−α(R−r(u)))

)
.

As e−R/2 = Θ(n−1) and e−3/4R = Θ(n−3/2), simplifying the error terms yields the claim. J

The following lemma shows that, with high probability, all vertices that are not too close
to the boundary of the disk dominate at least one vertex.

I Lemma 5. Let G be a hyperbolic random graph with average degree κ̄. Then there is a
constant c > 4/κ̄, such that all vertices u with r(u) ≤ ρ = R − 2 log log(nc) are dominant,
with high probability.

Proof. Vertex u is dominant if at least one vertex lies in D(u). To show this for any u with
r(u) ≤ ρ, it suffices to show it for r(u) = ρ, since D(u) increases with decreasing radius. To
determine the probability that at least one vertex lies in D(u), we use Lemma 4 and obtain

µ(D(u)) = 2
π
e−ρ/2(1−Θ(e−α(R−ρ)))±O(1/n)

= 2
π
e−R/2+log log(nc)(1−Θ(e−2α log log(nc)))±O(1/n).

By substituting R = 2 log(8n/(πκ̄)), we obtain µ(D(u)) = κ̄/(4n)(c log(n)(1− o(1))±O(1)).
The probability of at least one node falling into D(u) is now given by

Pr[{v ∈ D(u)} 6= ∅] = 1− (1− µ(D(u)))n ≥ 1− e−nµ(D(u)) = 1−Θ(n−cκ̄/4(1−o(1))).

Consequently, for large enough n we can choose c > 4/κ̄ such that the probability of a vertex
at radius ρ being dominant is at least 1−Θ(n−2), allowing us to apply union bound. J

I Corollary 6. Let G be a hyperbolic random graph and c > 4/κ̄. With high probability, all
vertices with radius at most ρ = R− 2 log log(nc) are removed by the dominance rule.

By Corollary 6 the dominance rule removes all vertices of radius at most ρ. Consequently,
all remaining vertices have radius at least ρ. We refer to this part of the disk as outer band.
More precisely, the outer band is defined as BO(R) \ BO(ρ). It remains to show that the
pathwidth of the subgraph induced by the vertices in the outer band is small.
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O r

v
Iv

R/2

R
AR/2

Ar

Figure 4 Left: The circular arcs representing the neighborhood of a vertex. For vertex v the area
containing the whole neighborhood of v, as well as the circular arc Iv are drawn in the same color.
Right: The area that contains the vertices whose arcs intersect angle 0. Area Ar contains all such
vertices with radius at least r. Vertex v lies on the boundary of Ar and its interval Iv extends to 0.

3.2 Pathwidth in the Outer Band
In the following, we use Gr = G[{v ∈ V } | r(v) ≥ r] to denote the induced subgraph of G that
contains all vertices with radius at least r. To show that the pathwidth of Gρ (the induced
subgraph in the outer band) is small, we first show that there is a circular arc supergraph
GSρ of Gρ with a small maximum clique. We use GS to denote a circular arc supergraph of a
hyperbolic random graph G, which is obtained by assigning each vertex v an angular interval
Iv on the circle, such that the intervals of two adjacent vertices intersect. More precisely,
for a vertex v, we set Iv = [ϕ(v)− θ(r(v), r(v)), ϕ(v) + θ(r(v), r(v))]. Intuitively, this means
that the interval of a vertex contains a superset of all its neighbors that have a larger radius,
as can be seen in Figure 4 left. The following lemma shows that GS is actually a supergraph
of G.

I Lemma 7. Let G = (V,E) be a hyperbolic random graph. Then GS is a supergraph of G.

Proof. Let {u, v} ∈ E be any edge in G. To show that GS is a supergraph of G we need
to show that u and v are also adjacent in GS , i.e., Iu ∩ Iv 6= ∅. Without loss of generality
assume r(u) ≤ r(v). Since u and v are adjacent in G, the hyperbolic distance between them
is at most R. It follows, that their angular distance ∆ϕ(u, v) is bounded by θ(r(u), r(v)).
Since θ(r(u), r(v)) ≤ θ(r(u), r(u)) for r(u) ≤ r(v), we have ∆ϕ(u, v) ≤ θ(r(u), r(u)). As Iu
extends by θ(r(u), r(u)) from ϕ(u) in both directions, it follows that ϕ(v) ∈ Iu. J

It is easy to see that, after removing a vertex from G and GS , GS is still a supergraph
of G. Consequently, GSρ is a supergraph of Gρ. It remains to show that GSρ has a small
maximum clique number, which is given by the maximum number of arcs that intersect at
any angle. To this end, we first compute the number of arcs that intersect a given angle
which we set to 0 without loss of generality. Let Ar denote the area of the disk containing all
vertices v with radius r(v) ≥ r whose interval Iv intersects 0, as illustrated in Figure 4 right.
The following lemma describes the probability for a given vertex to lie in Ar.

I Lemma 8. Let G be a hyperbolic random graph and let r ≥ R/2. The probability for a
given vertex to lie in Ar is bounded by

µ(Ar) ≤
2α

(1− α)π e
−(α−1/2)R−(1−α)r ·

(
1 + Θ(e−αR + e−(2r−R) − e−(1−α)(R−r))

)
.
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Proof. We obtain the measure of Ar by integrating the probability density function over Ar.
Due to the definition of Iv we can conclude that Ar includes all vertices v with radius r(v) ≥ r
whose angular distance to 0 is at most θ(r(v), r(v)), defined in Equation (2). We obtain,

µ(Ar) =
∫ R

r

2
∫ θ(x,x)

0
f(x) dϕdx

= 2
∫ R

r

2e(R−2x)/2(1±Θ(eR−2x)) · α2π e
−α(R−x)(1 + Θ(e−αR − e−2αx)) dx.

As before, we can conclude that (1 + Θ(e−αR − e−2αr)) = (1 + Θ(e−αR)), since r ≥ R/2. By
moving constant factors out of the integral, the expression can be simplified to

µ(Ar) ≤
2α
π
e−(α−1/2)R(1 + Θ(e−αR))

∫ R

r

e−(1−α)x(1 + Θ(eR−2x)) dx.

We split the sum in the integral and deal with the two resulting integrals separately.

µ(Ar) ≤
2α
π
e−(α−1/2)R(1 + Θ(e−αR))

(∫ R

r

e−(1−α)x dx+ Θ
(∫ R

r

e−(1−α)x+R−2x dx
))

= 2α
π
e−(α−1/2)R(1 + Θ(e−αR))

·

(
1

1− αe
−(1−α)r(1− e−(1−α)(R−r)) + Θ

(
eRe−(3−α)r(1− e−(3−α)(R−r))

))
.

By placing 1/(1− α)e−(1−α)r outside of the brackets we obtain

µ(Ar) ≤
2α

(1− α)π e
−(α−1/2)R−(1−α)r(1 + Θ(e−αR))

·

(
(1− e−(1−α)(R−r)) + Θ

(
eR−2r(1− e−(3−α)(R−r))

))
.

Simplifying the remaining error terms then yields the claim. J

We can now bound the maximum clique number in GSρ and thus its interval width iw(GSρ ).

I Theorem 9. Let G be a hyperbolic random graph and r ≥ R/2. Then there exists a
constant c such that, whp., iw(GSr ) = O(log(n)) if r ≥ R− 1

(1−α) log log(nc), and otherwise

iw(GSr ) ≤ 4α
(1− α)πne

−(α−1/2)R−(1−α)r
(

1 + Θ(e−αR + e−(2r−R) − e−(1−α)(R−r))
)
.

Proof. We start by determining the expected number of arcs that intersect at a given angle,
which can be done by computing the expected number of vertices in Ar, using Lemma 8:

E[|{v ∈ Ar}|] ≤
2α

(1− α)πne
−(α−1/2)R−(1−α)r(1 + Θ(e−αR + e−(2r−R) − e−(1−α)(R−r))).

It remains to show that this bound holds with high probability at every angle. To this
end, we make use of a Chernoff bound (Theorem 1), by first showing that the bound on
E[|{v ∈ Ar}|] is Ω(log(n)). We start with the case where r < R− 1

1−α log log(nc).
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E[|{v ∈ Ar}|] <
2α

(1− α)πne
−(α−1/2)R−(1−α)(R−1/(1−α) log log(nc))

·
(

1 + Θ(e−αR + e−(2(R−1/(1−α) log log(nc))−R)

− e−(1−α)(R−(R−1/(1−α) log log(nc))))
)

= 2α
(1− α)πne

−R/2+log log(nc))

·
(

1 + Θ(e−αR + e−(R−2/(1−α) log log(nc)) − e− log log(nc))
)

Substituting R = 2 log(8n/(πκ̄)) we obtain

E[|{v ∈ Ar}|] <
ακ̄c

4(1− α) log(n)(1 + o(1)).

Thus, for all radii smaller than R − 1
(1−α) log log(nc), the resulting upper bound is lower

bounded by Ω(log(n)), which lets us apply Theorem 1. Moreover, as E[|{v ∈ Ar}|] decreases
with increasing r, O(log(n)) is a pessimistic but valid upper bound for the case r ≥ R −

1
(1−α) log log(nc). Thus, we can also apply Theorem 1 to this case, using the O(log(n)) bound.

By Theorem 1, we can choose c such that in both cases the bound holds with probability
1−O(n−c′) for any c′ at a given angle. In order to see that it holds at every angle, note that
it suffices to show that it holds at all arc endings as the number of intersecting arcs does not
change in between arc endings. Since there are exactly 2n arc endings, we can apply union
bound and obtain that the bound holds with probability 1−O(n−c′+1) for any c′ at every
angle. Since our bound on E[|{v ∈ Ar}|] is an upper bound on the maximum clique size of
GSr , the interval width of GSr is at most twice as large, as argued in Section 2. J

Since the interval width of a circular arc supergraph of G is an upper bound on the
pathwidth of G [8, Theorem 7.14] and since ρ ≥ R − 1/(1− α) log log(nc) for α ∈ (1/2, 1),
we immediately obtain the following corollary.

I Corollary 10. Let G be a hyperbolic random graph and let Gρ be the subgraph obtained by
removing all vertices with radius at most ρ = R− 2 log log(nc). Then, pw(Gρ) = O(log(n)).

We are now ready to prove our main theorem, which we restate for the sake of readability.

I Theorem 2. Let G be a hyperbolic random graph on n vertices. Then the VertexCover
problem in G can be solved in poly(n) time, with high probability.

Proof. Consider the following algorithm that finds the minimum vertex cover of G. We
start with an empty vertex cover S. Initially, all dominant vertices are added to S, which
is correct due to the dominance rule. By Lemma 5, this includes all vertices of radius at
most ρ = R− 2 log log(nc), for some constant c, with high probability. Obviously, finding all
vertices that are dominant can be done in poly(n) time. It remains to determine a vertex
cover of Gρ. By Corollary 10, the pathwidth of Gρ is O(log(n)), with high probability. Since
the pathwidth is an upper bound on the treewidth, we can find a tree decomposition of Gρ
and solve the VertexCover problem in Gρ in poly(n) time [8, Theorems 7.18 and 7.9]. J

Moreover, linking the radius of a vertex in Theorem 9 with its expected degree leads
to the following corollary, which is interesting in its own right. It links the pathwidth to
the degree d in the graph G≤d. Recall that G≤d denotes the subgraph of G induced by the
vertices of degree at most d.
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I Corollary 11. Let G be a hyperbolic random graph and let d ≤
√
n. Then, with high

probability, pw(G≤d) = O(d2−2α + log(n)).

Proof. Consider the radius r = R−2 log(εd) for some constant ε > 0, and the graph Gr which
is obtained by removing all vertices of radius at most r. By substituting R = 2 log(8n/(πκ̄))
and using [14, Lemma 3.2] we can compute the expected degree of a vertex with radius r as

E[deg(v) | r(v) = r] = 2α
(α− 1/2)πne

−r/2(1±O(e−(α−1/2)r)) = ακ̄ε

4(α− 1/2)d(1± o(1)).

First assume that d ≥ log(n)1/(2−2α). We handle the other case later. Since d ∈ Ω(log(n))
we can choose ε large enough to apply Theorem 1 and conclude that this holds with high
probability. Furthermore, since a smaller radius implies a larger degree, we know that, with
high probability, all nodes v with radius at most r, have

deg(v) ≥ ακ̄ε

4(α− 1/2)d(1± o(1)).

For large enough n we can choose ε such that, with high probability, Gr is a supergraph of G≤d.
To prove the claim, it remains to bound the pathwidth of Gr. If r > R−1/(1−α) log log(nc),
we can apply the first part of Theorem 9 to obtain iw(GSr ) = O(log(n)). Otherwise, we use
part two to conclude that the interval width of Gr is at most

iw(GSr ) ≤ 4α
(1− α)πne

−(α−1/2)R−(1−α)r
(

1 + Θ(e−αR + e−(2r−R) − e−(1−α)(R−r))
)

= ακ̄ε2−2α

(2− 2α)d
2−2α

(
1 + Θ(n−2α + ((εd)2/n)2 − (εd)−(2−2α))

)
= O(d2−2α).

As argued in Section 2 the interval width of a graph is an upper bound on the pathwidth.
For d < log(n)1/(2−2α) (which we excluded above), considerG≤d′ for d′ = log(n)1/(2−2α) >

d. As we already proved the corollary for d′, we obtain pw(G≤d′) = O(d′2−2α + log(n)) =
O(log(n)). As G≤d is a subgraph of G≤d′ , the same bound holds for G≤d. J

4 Discussion

Our results show that a heterogeneous degree distribution as well as high clustering make
the dominance rule very effective. This matches the behavior for real-world networks, which
typically exhibit these two properties. However, our analysis actually makes more specific
predictions: (I) vertices with sufficiently high degree usually have at least one neighbor they
dominate and can thus safely be included in the vertex cover; and (II) the graph remaining
after deleting the high degree vertices has simple structure, i.e., small pathwidth.

To see whether this matches the real world, we run experiments on 59 networks from several
network datasets [2, 3, 18, 19, 20]. Although the focus of this paper is the theoretical analysis
on hyperbolic random graphs, we briefly report on our experimental results. (Detailed results
are in the full version of the paper.) Out of the 59 instances, we can solve VertexCover for
47 networks in reasonable time. We refer to these as easy, while the remaining 12 are called
hard. Note that our theoretical analysis aims at explaining why the easy instances are easy.

Recall from Lemma 5 that all vertices with radius at most R− 2 log log(n4/κ̄) probably
dominate, which corresponds to an expected degree of α/(α− 1/2) · logn. For more than half
of the 59 networks, more than 78 % of the vertices above this degree were in fact dominant.
For more than a quarter of the networks, more than 96 % were dominant. Restricted to the
47 easy instances, these number increase to 82 % and 99 %, respectively.
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Experiments concerning the pathwidth of the resulting graph are much more difficult, due
to the lack of efficient tools. Therefore, we used the tool by Tamaki et al. [21] to heuristically
compute upper bounds on the treewidth instead. As in our analysis, we only removed vertices
that dominate in the original graph instead of applying the reduction rule exhaustively. On
the resulting subgraphs, the treewidth heuristic ran with a 15 min timeout. The resulting
treewidth is at most 50 for 44 % of the networks, at most 15 for 34 %, and at most 5 for 25 %.
Restricted to easy instances, the values increase to 55 %, 43 %, and 32 %, respectively.

Hyperbolic random graphs are of course an idealized representation of real-world networks.
However, these experiments indicate that the predictions derived from the model match the
real world, at least for a significant fraction of networks.

Approximation. Concerning approximation algorithms for VertexCover, there is a similar
theory-practice gap as for exact solutions. In theory, there is a simple 2-approximation and
the best known polynomial time approximation reduces the factor to 2−Θ(log(n)−1/2) [15].
However, it is NP-hard to approximate VertexCover within a factor of 1.3606 [10], and
presumably it is even NP-hard to approximate within a factor of 2 − ε for all ε > 0 [16].
Moreover, the greedy strategy that iteratively adds the vertex with maximum degree to the
vertex cover and deletes it, is only a logn approximation. However, on scale-free networks
this strategy performs exceptionally well with approximation ratios very close to 1 [9].

Our results for hyperbolic random graphs at least partially explain this good approximation
ratio. Lemma 5 states that, with high probability, we do not make any mistake by taking all
vertices below a certain radius ρ, which corresponds to vertices of at least logarithmic degree.
The same computation for larger values of ρ does no longer give such strong guarantees.
However, it still gives bounds on the probability for making a mistake. In fact, this error
probability is sub-constant as long as the corresponding expected degree is super-constant.

Although this is not a formal argument, it still explains to a degree why greedy works so
well on networks with a heterogeneous degree distribution and high clustering. Moreover, it
indicates how the greedy algorithm should be adapted to obtain better approximation ratios:
As the probability to make a mistake grows with growing radius and thus with shrinking
vertex degree, the majority of mistakes are done when all vertices have already low degree.
However, for hyperbolic random graphs, the subgraphs induced by vertices below a certain
constant degree decompose into small components for n→∞. It thus seems to be a good
idea to run the greedy algorithm only until all remaining vertices have low degree, say k. The
remaining small connected components of maximum-degree k can then be solved with brute
force in reasonable time. In the following we call the resulting algorithm k-adaptive greedy.

We ran experiments on the 47 easy real networks mentioned above (for the hard instances,
we cannot measure approximation ratios). For these networks, we compare the normal
greedy algorithm with 2- and 4-adaptive greedy. Note that 2-adaptive greedy is special, as
VertexCover can be solved efficiently on graphs with maximum degree 2 (no brute-forcing
is necessary). For 4-adaptive greedy, the size of the largest connected component is relevant.

The median approximation ratio for greedy over all 47 networks is 1.008. This goes down
to 1.005 for 2-adaptive and to 1.002 for 4-adaptive greedy. Thus, the number of too many
selected vertices goes down by a factor of 1.6 and 4, respectively. As mentioned above, the
size of the largest connected component is relevant for 4-adaptive greedy. For 49 % of the
networks, this was below 100 (which is still a reasonable size for a brute-force algorithm).
Restricted to these networks, normal greedy has a median approximation ratio of 1.004,
while 4-adaptive again improves by a factor of 4 to 1.001. Moreover, the number of networks
for which we actually obtain the optimal solution increases from 4 to 7.
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Abstract
The Domino Problem on Z2 asks if it is possible to tile the plane with a given set of Wang tiles; it
is a classical decision problem which is known to be undecidable. The purpose of this article is to
parameterize this problem to explore the frontier between decidability and undecidability. To do so
we fix some horizontal constraints H on the tiles and consider a new Domino Problem DPH : given
a vertical constraint, is it possible to tile the plane? We characterize the nearest-neighbor horizontal
constraints where DPH is decidable using graphs combinatorics.
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1 Introduction

The Domino Problem is a classical decision problem introduced by Wang [20] to study
satisfaction procedures for some fragments of first-order logic. Considering a finite set of
tiles that are squares with colored edges, called Wang tiles, we ask if it is possible to tile
the plane with shifted copies of these tiles so that contiguous edges have the same color.
This question is also central in symbolic dynamics. A Zd-subshift of finite type is a set of
colorings of Zd by a finite alphabet, called configurations, and a finite set of patterns that
are forbidden to appear in those configurations. The set of tilings obtained when we tile the
plane with a Wang tile set is an example of Z2-subshift of finite type. In this setting, the
Domino Problem becomes: given a finite set of forbidden patterns, is the associated subshift
of finite type empty?
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On Z-subshifts of finite type, the Domino Problem is easily shown to be decidable. On
those over Z2, Wang conjectured the Domino Problem was decidable too, and produced
an algorithm of decision relying on the hypothetical fact that all subshifts of finite type
contained some periodic configuration. However, his claim was disproved by Berger [5] who
proved that the Domino Problem over any Zd, d ≥ 2 is algorithmically undecidable. The
key of the proof is the existence of a Zd-subshift of finite type containing only aperiodic
configurations, on which computations are implemented. In the decades that followed, many
alternative proofs of this fact were provided [19, 17, 14].

The exact conditions to cross this frontier between decidability and undecidability have
been intensively studied under different points of view during the last decade. To explore
the difference of behavior between Z and Z2, the Domino Problem has been extended on
discrete groups [7, 11, 6, 1, 2] and fractal structures [4] in order to determine which types of
structures can implement computation. The frontier is also studied by restraining complexity
(number of patterns of a given size) [15] or bounding the difference between numbers of colors
and tiles [13]. Additional dynamical constraints are also considered, such as block gluing
property [18, Lemma 3.1] or minimality [9].

In this article we propose a new approach. We fix horizontal constraints H which define a
Z-subshift of finite type and consider the decision problem DPH that given vertical contraints
V asks if it is possible to tile the plane. In other words, is the Z-subshift of finite type
defined by V compatible with the one defined by H? The purpose is to determine for which
horizontal constraints H the decision problem DPH is decidable.

This point of view has various motivations. First, one could eliminate horizontal con-
straints that necessarily yield periodic configurations to perform a more efficient computer
proof of the smallest aperiodic Wang tile set (reached with 11 Wang tiles in [12]). Second, a
classical result is that every effective Z-subshift can be realized as an horizontal projection on
Z of a Z2-subshift of finite type [10, 3, 8]. However, in these constructions, the subshift in the
vertical direction is trivial. We can ask which other vertical subshift can be compatible with
a given horizontal restriction: the result presented here is the first step to understand this.
Finally, looking for the undecidable frontier under horizontal constraints helps us understand
how to transfer information in order to implement computation.

Section 2 recalls the notions needed and formalizes the problem. Section 3 presents three
categories of horizontal constraints that yield a decidable Domino Problem. Finally Section 4
proves that all others have an undecidable Domino Problem. This is shown by reduction: we
prove that for any Wang tile set W , it is possible to add vertical constraints to these H so
that the resulting subshift simulates W . These vertical constraints can control the horizontal
transfer of information and implement any Wang tile set, and by extension computation.
The proof faces combinatorial explosion into subcases and is based on a careful dichotomy.

2 Definitions

As a preliminary note, any interval mentioned in this article will be an interval of integers,
unless explicitly stated otherwise.

2.1 Symbolic Dynamics
For a given finite set A called the alphabet, AZd is called the d-dimensional full shift over A.
Any x ∈ AZd , called a configuration, can be seen as a function from Zd to A and we write
x~v := x(~v). For any ~k ∈ Zd define the shift map σ~k : AZd → AZd such that σ~k(x)~v = x~v+~k.
The product topology on AZd is generated by the metric d(x, y) = 2− inf{|~v||~v∈Zd,x~v 6=y~v}, and
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makes AZd a compact space. A pattern p is a finite configuration p ∈ APp where Pp ⊂ Zd

is finite. We say that a pattern p ∈ APp appears in a configuration x ∈ AZd – or that x
contains p – if there exists ~k ∈ Zd such that for every ~̀ ∈ Pp, σ

~k(x)~̀ = p~̀.
A Zd-subshift associated to a set of patterns F , called set of forbidden patterns, is defined

by

XF = {x ∈ AZd

| ∀p ∈ F ,∀~k ∈ Zd,∃~̀ ∈ Pp, σ
~k(x)~̀ 6= p~̀}

that is, XF is the set of all configurations that do not contain any pattern from F . Note
that there can be several sets of forbidden patterns defining the same subshift X. A subshift
can equivalently be defined as a closed set under both the topology and the shift map. If
X = XF with F finite, then X is called a Subshift of Finite Type, SFT for short.

For Z-subshifts, we will talk about nearest-neighbor SFTs if F ⊂ A{0,1}. For Z2-subshifts,
the most well-known nearest-neighbor SFTs are the Wang shifts, defined by a finite number
of squared tiles with colored edges that must be placed matching colors called Wang tiles.
Formally, these tiles are quadruplets of symbols (te, tw, tn, ts). A Wang shift is described by
a finite Wang tile set, and local rules x(i, j)e = x(i+ 1, j)w and x(i, j)n = x(i, j + 1)s for all
integers i, j.

Note that Wang shifts are enough to encode any Z2-SFT, albeit changing the underlying
local rules and alphabet, so that a Z2-SFT is empty if and only if the corresponding Wang
shift is.

2.2 One-dimensional SFTs as graphs
As explained in [16], a nearest-neighbor SFT X = XF ⊂ AZ, with F ⊂ A2, can be described
as an oriented graph G = (V, ~E) with V = A and (a, b) ∈ ~E ⇔ ab /∈ F . This graph, that
encodes the allowed patterns, depends on A and F , thus two different descriptions of the
same SFT will yield different graphs.

However one graph can be canonically associated to a nearest neighbor SFT from any
other description of said SFT. It is the only one obtained by iterated suppression of all
vertices with no incoming edge or no outgoing edge, and so there only remain biinfinite paths
in the graph, that correspond to proper tilings of the line. This graph, denoted by G(X), is
called the Rauzy graph (of order 1) of X. Note that a Rauzy graph can be made of one or
several strongly connected components, SCC for short. In case it has several SCCs it can also
contain transient vertices, that are vertices with no path from themselves to themselves.

I Example 1. The two subshifts that are X = X{10,20,21,11,30,31,32,33} ⊂ {0, 1, 2, 3}Z and
Y = Y{10,20,21,11} ⊂ {0, 1, 2}Z are the same SFT. They have the same Rauzy graph made of
two SCCs {0} and {2}, and one transient vertex 1 (vertex 3 has been deleted from G(X)
else it would be of out-degree 0).

This technique that algorithmically associates a graph to an SFT will be of great use in
Section 4, because it means that our proof can mostly focus on combinatorics over graphs to
describe all nearest-neighbor one-dimensional SFTs.

2.3 The Domino Problem
Define DP (Zd) = {< H >| H is a nonempty Zd-SFT} where < H > is the encoding of the
SFT H using a finite alphabet and a finite set of forbidden patterns. DP (Zd) is a language
called the Domino Problem on Zd. As for any language, we can ask if it is algorithmically
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decidable, i.e. recognizable by a Turing Machine. Said otherwise, is it possible to find a
Turing Machine that takes as input any finite set of patterns F ⊂ AZd of rules and answers
YES if XF contains at least one configuration, and NO if it is empty?

It is widely known that DP (Z) is decidable, because the problem can be reduced to the
emptiness of nearest-neighbor Z-SFTs, and finding a valid configuration in a nearest-neighbor
SFT is equivalent, via what precedes, to finding a biinfinite path – hence a cycle – in a
finite oriented graph. On the contrary, DP (Z2) is undecidable [5, 19, 17, 14], and so is any
DP (Zd) for d ≥ 2 by reduction to the undecidability of DP (Z2).

2.4 Framework
I Definition 2. Let H,V ⊂ AZ be subshifts. The two-dimensional subshift

XH,V := {x ∈ AZ2
| ∀i, j ∈ Z, (xk,j)k∈Z ∈ H and (xi,`)`∈Z ∈ V }

is called the combined subshift of H and V , and uses H as horizontal rules and V as
vertical rules.

I Remark. The projection of the horizontal configurations that appear in XH,V does not
necessarily recover all of H; we may simply have a subset of it. Indeed, all configurations in
H will not necessarily appear because some of them may not be legally extended vertically.

An easy instance of this is choosing A = {0, 1}, H nearest-neighbor and forbidding 00 and
11, and V non-nearest-neighbor and forcing to alternate a 0 and two 1s: the resulting XH,V

is empty, although neither H nor V are. In some sense, said H and V are incompatible.

The previous remark motivates the main problem we will study in the rest of this article:
understanding when two one-dimensional SFTs are compatible to build a two-dimensional
SFT, and by extension where the frontier between decidability and undecidability lies. This
question is notably reflected by the following adapted version of the Domino Problem:

I Definition 3. Let H ⊂ AZ be an SFT. The Domino Problem depending on H is the
language

DPH := {< V >| V ⊂ AZ is an SFT and XH,V 6= ∅}.

I Remark. It is important to understand that this Domino Problem is defined for a given H,
and its decidability depends on such a H we choose beforehand. Subshifts can be conjugate,
this being defined as a continuous bijection that commutes with the shift maps. Although
it allows to identify structurally identical subshifts from a dynamical point of view, these
subshifts remain different in how they can encode information. Indeed, some SFT H1 and
H2 may be conjugate with DPH1 decidable but DPH2 undecidable. Consider for instance
the following Rauzy graphs and applications on finite words (extensible to biinfinite words):

a b β

α γ

φ :


aa 7→ γ

ab 7→ β

ba 7→ α

bb 7→ β

ψ :


α 7→ a

β 7→ b

γ 7→ a

These graphs describe conjugate SFTs through these applications, with φ(x)i+1 =
φ(xixi+1). However, as we will see in Section 3, the first graph has decidable DPH and the
second has not.
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3 Main result: frontier between decidability and undecidability

To understand where our future decidability conditions stem from, we study three examples:

I Example 4. Consider the following Rauzy graphs:

G(H1) G(H2) G(H3)
Let us consider a “vertical” Z-SFT V . As long as one can build a single column respecting

the rules of V , this column can legally be juxtaposed with itself in XH1,V since any element of
H1 can be horizontally juxtaposed with itself due to the self-loop at each vertex. Conversely,
if XH1,V contains a configuration, then in particular it contains a single column respecting
the rules of V . Hence checking if XH1,V is empty is tantamount to checking if V is empty.
Since DP (Z) is decidable, DPH1 is easily decidable in this case.

The same reasoning can be applied to the two other cases: for H2 any pair of columns,
and for H3 any triplet of columns, can be juxtaposed with itself. This finite number of
columns makes the decidability of our Domino Problem at stake depend on the decidability
of DP (Z). The extensive proof of this fact is located below Theorem 6.

With these three examples, we briefly saw how these three kinds of graphs yielded a
decidable DPH . The rest of this article will produce a proper proof of this and, more
importantly, will show that these three rather natural categories are in fact the only ones
where decidability appears.

I Definition 5. We say that an oriented graph G = (V, ~E) verifies condition D (for “Decid-
able”) if all its SCCs have a type in common among the following list. A SCC S can be of
none, one or several of these types:

for all vertices v ∈ S, we have (v, v) ∈ ~E) (we say that S is of reflexive type);
for all vertices v 6= w ∈ S such that (v, w) ∈ ~E, we have (w, v) ∈ ~E (we say that S is of
symmetric type; note that S = {v} a single vertex with a loop is also symmetric);
S =

⊔
Vi such that ∀v ∈ Vi, [(v, w) ∈ ~E ⇔ w ∈ Vi+1] with i meant modulo the number of

classes (we say that S is of state-split cycle type in reference to a term used in [16]; note
that a partition with one unique class V0 causes S to be a single vertex with self-loop).

I Theorem 6. Let H be a nearest-neighbor Z-SFT.

DPH is decidable ⇔ G(H) verifies condition D.

Proof. Proof of ⇐: assume G(H) verifies condition D. Then its SCCs share a common type,
be it reflexive, symmetric, or state-split cycle. For each of these three cases, we produce an
algorithm that takes as input a Z-SFT V ⊂ AZ, and that returns YES if XH,V is nonempty,
and NO otherwise.

Let M be the maximal size of forbidden patterns in FV (since V is an SFT, such an
integer exists).

If G(H) has state-split cycle type SCCs: let L be the LCM of the number of Vis in each
component. If there is no rectangle of size L×M(|A|LM + 1) (width × height) respecting
local rules of XH,V and containing no transient element, then answer NO. Indeed, any
configuration in XH,V contains valid rectangles as large as we want that do not contain
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transient elements. If there is such a rectangle R, then by the pigeonhole principle it
contains at least twice the same rectangle R′ of size L×M . To simplify the writing, we
assume that the rectangle that repeats is the one of coordinates [1, L] × [1,M ] inside
R where [1, L] and [1,M ] are intervals of integers, and that it can be found again with
coordinates [1, L]× [k, k+M −1]. Else, we simply truncate a part of R so that it becomes
true.
Define P := R|[1,L]×[1,k+M−1]. Since V has forbidden patterns of size at mostM , and since
R respects our local rules and begins and ends with R′, P can be vertically juxtaposed
with itself (overlapping on R′).
P can also be horizontally juxtaposed with itself (without overlap). Indeed, one line of
P uses only elements of one SCC of H (since elements of two different SCCs cannot be
juxtaposed horizontally, and we banned transient elements). Since L is a multiple of the
length of all cycle classes, the first element in a given line can follow the last element in
the same line. Hence all lines of P can be juxtaposed with themselves.
As a conclusion, P is a valid patch that can tile Z2 periodically. Therefore, XH,V is
nonempty; return YES.
If G(H) has symmetric type SCCs the construction is similar, but this time build a
rectangle R of size 2×M(|A|2M + 1). Either we cannot find one and return NO; or we
can find one and from it extract a patch that tiles the plane periodically and return YES.
Finally, if G(H) has reflexive type SCCs, the construction is even simpler than before.
Build a rectangle R of size 1×M(|A|M + 1); the rest of the reasoning is identical.

Proof of ⇒ is postponed to Section 4, and is done by contraposition. If G(H) does not verify
condition D, then for any Wang shift W we can algorithmically build some Z-SFT VW such
that XH,VW

reproduces all configurations in W . If we were able to solve DPH , then there
would exist a Turing MachineM able to tell us if XH,V is empty for any Z-SFT V . But
then we could build a Turing Machine N taking as input any Wang shift W , building the
corresponding VW after the following construction, and by runningM, N would be able to
tell us if XH,VW

is empty or not. Then it could answer if W is empty or not; but determining
the emptiness or nonemptiness of every Wang shift is equivalent to DP (Z2) being decidable,
which is false. Hence, since DP (Z2) is undecidable, DPH is too. J

4 Encoding a Wang shift under horizontal constraints

We begin this section by presenting the core idea of our algorithmic construction to prove
the direct implication by contraposition. Then, we introduce the vertical patterns needed to
achieve it in a generic case, said generic case being based on a set of conditions C. Finally,
we show that most graphs that do not verify condition D do verify condition C, and those
which don’t only need a slight adaptation of our generic construction.

4.1 Core idea
We have a one-dimensional nearest-neighbor SFT H ⊂ AZ (“horizontal”) that does not verify
condition D, and we fix a Wang shift W with a set of N tiles τ = {τ1, ..., τN}.

The idea is to introduce a well-chosen one-dimensional SFT V ⊂ AZ (“vertical”) depending
on W so that XH,V encodes the full shift on N elements. Then, we refine V by adding
conditions on forbidden patterns, thus encoding exactly the configurations in W . Such a
construction is done with the use of two main parts, that we will obtain by some carefully
chosen forbidden patterns in V .
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Figure 1 Steps of the core idea to reach the generic construction. Not to scale: the sync part
will be much bigger than the code part.

First, there are parts of synchronization, also called sync parts, that give some rigidity to
our tilings. They precise where the actual coding parts can be, which letters of the alphabet
can be used and where in these coding parts, and they ensure that you cannot glue patches
together in an unexpected way. They are the frame of our construction. Second comes the
filling: the coding parts. A given coding part simply codes a number between 1 and N ,
possibly several times.

In Figure 1a (our first rough attempt to encode a full shift on an alphabet of size N),
we suppose that our sync parts properly maintain this global structure. We notice that it
offers an interesting opportunity to transmit information vertically. Since our coding parts
are exactly aligned, once we have encoded the full shift over an alphabet of size N , it will
suffice to add vertical conditions to our V to precise whether a coding part can be above
another one.

However, horizontally Figure 1a overlooks two problems:
Since we must respect the horizontal conditions given by H, we cannot put any coding
part next to any other one if we do not put some kind of buffer between the two;
Even with this, we have no control on the horizontal transfer of information. The idea is
to transmit this horizontal information vertically, since we can add vertical constraints.

We can fix the first problem by setting a buffer (see Figure 1b) between two coding parts, a
portion of column that contains no coding and which can be next to any coding part. Of
course, we must ensure that this buffer cannot be anywhere in a configuration but obediently
remains between two coding parts. The sync parts will be designed to handle this.

However, this does not solve our need for horizontal transmission of information. Hence
a new idea: altering our coding parts so that they transmit information diagonally. We put
several consecutive lines of them, shifted little by little, as illustrated in Figure 1c. That way,
we can encode horizontal forbidden patterns vertically, because we can see vertically which
coding part is on the right of the one we are considering. For instance, by looking vertically
we can know that the encoding of T1,1 is next to T2,1 and above T1,0, and thus restrict the
content of these codings.

In what follows, we will build Figure 1c in details, although some technicalities will be
needed to preserve the integrity of our sync parts and to ensure that the coding of a tile of
W is well transmitted. This construction will indeed encode the full shift over τ , the tile set
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(a) C1 and C2 (in
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(c) A cycle with
uniform shortcuts
(in green).
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(e) An attractive ver-
tex t and a repulsive
vertex p.

Figure 2 Cases of compliance or not with elements of Condition C.

of W . Then, it can easily be refined by adding vertical rules so that the local rules of W are
ensured. Consequently, our newly built XH,V will properly simulate all configurations of W ,
allowing us to perform the rest of the proof of Theorem 6.

4.2 Generic construction
In this section, we describe a set of conditions on a nearest-neighbor SFT H that allows to
build formally what we described informally in Section 4.1. In all that follows, we denote
elements of cycles with an index that is written modulo the length of the corresponding cycle.
The following definitions are illustrated in Figure 2.

I Definition 7. Let C1 and C2 be two cycles in an oriented graph G, with elements denoted
respectively c1

i and c2
j . Let M := lcm(|C1|, |C2|).

We say that the cycles C1 and C2 contain a good pair if there is a pair (i, j) and
an integer 1 < l < M − 1 such that c1

i 6= c2
j , c

1
i+1 6= c2

j+1, . . . , c
1
i+l 6= c2

j+l and c1
i+(l+1) =

c2
j+(l+1), . . . , c

1
i+(M−1) = c2

j+(M−1).

I Definition 8. Let H ⊂ AZ be a one-dimensional nearest-neighbor SFT. We say that H
verifies condition C if G(H) = (V, ~E) contains two cycles C1 and C2, of elements denoted
respectively c1

i and c2
j , with the following properties:

(i) |C1| ≥ 3;
(ii) C1 and C2 contain a good pair;
(iii) (there is no uniform shortcut neither in C1 nor in C2) There does not exist any

k ∈ {0, 2, ..., |C1| − 1} such that for any c1
i ∈ C1, (c1

i , c
1
i+k) ∈ ~E; and there does not

exist any k ∈ {0, 2, ..., |C2| − 1} such that for any c2
j ∈ C2, (c2

j , c
2
j+k) ∈ ~E;

(iv) (there is no cross-bridge between C1 and C2) There are no i ∈ {0, ..., |C1| − 1} and
j ∈ {0, ..., |C2| − 1} with c1

i 6= c2
j and c1

i+1 6= c2
j+1 such that (c1

i , c
2
j+1) ∈ ~E and

(c2
j , c

1
i+1) ∈ ~E;

(v) (there cannot be both an attractive vertex and a repulsive vertex for C1) Either there is
no r ∈ C1 ∪ C2 such that for all c ∈ C1, (c, r) ∈ ~E, or there is no r ∈ C1 ∪ C2 such
that for all c ∈ C1, (r, c) ∈ ~E.

I Proposition 9. If G(H) verifies condition C, then DPH is undecidable.

The rest of the subsection is devoted to proving this result.
Let H with G(H) verifying condition C. We focus on encoding a full shift on an alphabet

τ of cardinality N . Then, the possibility to add vertical rules will allow us to encode any
Wang shift W using this alphabet, that is, to simulate the configurations of W as described
in Section 4.1.
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For the rest of the construction, we will name M := lcm(|C1|, |C2|) and K := 2|C1| +
|C2| + 3. We suppose that N ≥ 2 and do not focus on the trivial instance of W being a
monotile Wang shift.

We refer to Figure 3a in all that follows. We use the term slice as a truncation of a
column: it is a part of width 1 and of finite height. We use the following more specific
denominations for the various scales of our construction:

A macro-slice is of height KMN . Any column is merely made of a succession of some
specific macro-slices called ordered macro-slices (see below).
A meso-slice is of height MN . An ordered macro-slice is made of various meso-slices that
ensure it carries information and is correctly aligned with neighboring ordered macro-slices
(of neighboring columns).
A micro-slice is of height N . This subdivision is used inside code meso-slices (see below).

Although any scale of slice could denote any truncation of column of the right size, we will
only focus on specific slices that are meaningful because of what they contain, so that we
can assemble them precisely. They are:

An (i, j) k-coding micro-slice is a micro-slice composed of N − 1 symbols c1
i and one

symbol c2
j at position k. It encodes the kth tile of alphabet τ , unless c1

i = c2
j : it is then

called a buffer and encodes nothing.
An (i0, j0)-code meso-slice is made of M successive coding micro-slices starting with a
(i0, j0) coding micro-slice (that can encode anything). We add the vertical constraint that
if c1

i 6= c2
j , then the (i, j) k-coding micro-slice is vertically followed by the (i+ 1, j + 1)

k-coding micro-slice. If c1
i = c2

j , the (i, j) k-coding micro-slice can be vertically followed
by any (i+ 1, j+ 1) l-coding micro-slice. Note that there can be at most one such rupture
in the coding since C1 and C2 contain a good pair; k is then called the main-coded tile,
and l the side-coded tile.
An i-border meso-slice is made of M

|C1|N times the vertical repetition of elements of the
cycle C1, starting at c1

i .
A c1

i meso-slice is made of MN times the vertical repetition of element c1
i , denoted

(c1
i )MN in Figure 3a. Same for a c2

j meso-slice.
The succession of a c1

i meso-slice, then a c1
i+1 meso-slice, ..., then a c1

i−1 meso-slice is called
a i C1-slice (of height MN |C1|). Similarly, we define a j C2-slice (of height MN |C2|).
Finally, a (i, j)-ordered macro-slice is the succession of a i-border meso-slice, a i C1-slice,
a second i C1-slice, a j C2-slice, a i-border meso-slice, and finally a (i, j)-code meso-slice.

Now, the patterns we authorize in V are exactly the cyclic permutations of (i0 + k, j0 + k)-
ordered macro-slices with some good pair (i0, j0) and k ∈ {0, . . . ,M − 1}. As a consequence,
a given column is simply the repetition of a given (i, j)-ordered macro-slice. We prove below
that it is enough for our resulting XH,V to simulate a full shift on τ .

We say that two legally adjacent columns are aligned if they are subdivided into ordered
macro-slices exactly on the same lines. We say that two adjacent and aligned columns are
synchronized if any (i, j)-ordered macro-slice of the first one is followed by a (i+ 1, j + 1)-
ordered macro-slice in the second one.

I Proposition 10. In this construction, two legally adjacent columns are aligned up to a
vertical translation of size at most 2|C1| − 1 of one of the columns.

Proof. If two columns, call them K1 and K2, can be legally juxtaposed such that they
are not aligned even when vertically shifted by 2|C1| − 1 elements, it means that one of
the border meso-slices of K1 has at least 2|C1| vertically consecutive elements that are
horizontally followed by something that is not a border meso-slice in K2 (see Figure 3b).
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Figure 3 The generic construction.
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Since 2|C1| < MN , at least |C1| successive elements among the ones of the border meso-slice
are horizontally followed by elements that are part of the same meso-slice. If this is a code
meso-slice, simply consider the other border meso-slice of K1 (the first you can find, above
or below, before repeating the pattern cyclically): this one must be in contact with a c1

i

or c2
j meso-slice instead. Either way, we obtain that a border meso-slice has at least |C1|

successive elements that are horizontally followed by some t meso-slice made of a single
element t. Hence if we suppose that juxtaposing K1 and K2 this way is legal, it means that
in H all the elements of C1 lead to t, i.e t is an attractive vertex. Either this is forbidden, or
the “reverse” reasoning where we focus on the borders of K2 proves that there is also an
element p used in a Cj slice of K1 that leads to every element of C1; that is, a repulsive
vertex. We forbade any graph that had both, hence we reach a contradiction here. We obtain
the proposition we announced. J

I Proposition 11. In this construction, two legally adjacent columns are always aligned and
synchronized.

Proof. Proposition 10 states that two adjacent columns K1 and K2 are always, in some
sense, approximately aligned (up to a vertical translation of size at most 2|C1| − 1). If the
two columns are indeed slightly shifted, then any meso-slice of the C1 slice of K1 (consisting
only of the repetition of some c1

i ) is horizontally followed by two different meso-slices in K2.
Being different, at least one of them is not c1

i+1 but some c1
i+k, k ∈ {2, ..., |C1|}. This is true

with the same k for all values of i because all meso-slices representing c1
i are repeated twice

so that there is no “border effect”. We obtain something that contradicts our assumption that
C1 has no uniform shortcut. Hence there is no vertical shift at all between two consecutive
columns. Thus our construction ensures that two adjacent columns are always aligned.

It is easy to see that a meso-slice made only of c1
i in column K1 is horizontally followed,

because the columns are aligned, by a meso-slice made only of c1
i+k in column K2. This k is

once again independent of the i because inside a macro-slice, meso-slices respect the order of
cycle C1. But because C1 has no uniform shortcut, we must have k = 1. The reasoning is
the same for the C2 slice, and we use the fact that C2 has no shortcut either. Hence our
columns are synchronized. J

With these properties, we have ensured that our structure is rigid: our ordered macro-
slices are aligned just as we expected. The last fact to check is the transmission of information
between horizontally aligned code meso-slices (since, by the structure of a code meso-slice,
the vertical transmission is guaranteed).

We have to ensure that, every M horizontally aligned coding micro-slices, we have a
succession of buffers (a (i, j)-coding micro-slice that does not encode information because
c1

i = c2
j) then of non-buffers. Furthermore, we ask that all the buffers follow each other so

that we get some distinct “coding zone” and “buffer zone”. This is actually simply deduced
from the fact that we only authorized as ordered macro-slices the ones based on the orbit of
a good pair (see Definition 7).

Now, in which situation can there be a problem of horizontal transmission of the encoded
tile between two micro-slices? Suppose we have a (i, j) micro-slice then a (i + 1, j + 1)
micro-slice. A problem of transmission would mean that c1

i can be followed by c2
j+1, and c2

j

by c1
i+1. A problem of transmission also assumes that we transmit something, hence we don’t

consider buffer micro-slices: necessarily c1
i 6= c2

j and c1
i+1 6= c2

j+1. Then we would contradict
assumption (iv) “no cross-bridge” (which was assumed precisely to prevent this case).

As a consequence of all this, every M micro-slices starting with a buffer micro-slice,
horizontally successive coding micro-slices encode exactly one element of τ , since there is one
single coding zone and the coded tile is correctly transmitted.
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Figure 4 Some Rauzy graph and several associated code meso-slices for |τ | = 3. Here are
horizontally successively encoded τ3, τ1, τ2 and τ2, the number being indicated by the location of the
line of c’s.

In the end, we proved that if we were able to find such C1 and C2 complying with
condition C, they would be enough to build the construction we desire: a full shift on N
elements. Then, to encode only configurations that are valid in W , we forbid the following
additional vertical patterns:

the code meso-slices that would contain both the main-coded kth tile and the side-coded
lth tile if tile k cannot be horizontally followed by tile l in W ;
and the vertical succession of two ordered macro-slices that would contain code meso-slices
with two main-coded tiles that cannot be vertically successive in W .

With this, we proved Proposition 9.

4.3 Proof of Theorem 6 for one strongly connected component
We suppose that H ⊂ AZ is a one-dimensional nearest-neighbor SFT such that its Rauzy
graph does not verify condition D and is made of only one SCC.

Note that G(H), since it does not verify condition D, contains at least one loopless vertex,
and one unidirectional edge.

The idea is to divide the possible graphs into various cases. This way, one has a standard
procedure to find convenient C1 and C2 inside any graph to perform the generic construction.
Of course, for some specific cases, we won’t meet condition C even if H does not verify
condition D. However, we will punctually adapt the generic construction to these specificities.

Table 1 Table of the main cases, each of them illustrated with an example (the C2 on which we
perform the generic construction is in red).

Loops No loop
Bidirectional edges No bidirectional edge

v
w

C1

v

w

u

C1
v

a

u

C1
v

w

u

C1
v

w

C1

C1 C1
C1

Case 1.1 Case 1.2 Case 1.3 Case 2.1 Case 2.2 Case 3.1 Case 3.2 Case 3.3
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The division into cases is presented in a disjunctive fashion, see Table 1:
Is there a loop on a vertex?
If YES: Is there a unidirectional edge (v, w) ∈ ~E so that v is loopless and w has a loop
(or the reverse, which is similar)?

If YES: This is Case 1.1. We can find C1 and C2 that check condition C with
the exception of the possible presence of both an attractive and a repulsive vertices.
However, Proposition 10 is verified anyway because choosing the smallest possible
cycle containing such v and w, v has in-degree 1, a property that allows for an easy
synchronization.
If NO: Do unidirectional edges have loopless vertices?
∗ If YES: This is Case 1.2. We can find C1 and C2 that check condition C, possibly

by reducing to a situation encountered in case 2.2.
∗ If NO: This is Case 1.3. This one generates some exceptional graphs with 4 or 5

vertices that do not check condition C and must be treated separately. However,
technical considerations prove that our generic construction still works.

If NO: Is there a bidirectional edge?
If YES: Is there a cycle of size at least 3 that contains a bidirectional edge?
∗ If YES: This is Case 2.1. We can find C1 and C2 that verify condition C rather

easily.
∗ If NO: This is Case 2.2, in which checking condition C is also easy.
If NO: Is there a minimal cycle with a path between two different elements of it, say
c1

0 and c1
k, that does not belong to the cycle?

∗ If YES: Can we find such a path of length different from k?
· If YES: This is Case 3.1, a rather tedious case, but we can find cycles C1 and C2

that verify condition C nonetheless.
· If NO: This is Case 3.2, which relies heavily on the fact that G(H) is not of

state-split cycle type to find cycles that verify condition C.
∗ If NO: This is Case 3.3, an easy case to find cycles that verify condition C.

4.4 Proof of Theorem 6 for multiple strongly connected components
The idea if H has several SCCs is to build one, by products of SCCs, that is none of the
three types that constitute condition D. We can then apply what we did in the previous
subsections.

The direct product S1 × S2 of two SCCs S1 and S2 is made of pairs (s1, s2), where an
edge exists between two pairs if and only if edges exist in both S1 and S2 between the
corresponding vertices. It can be used in our construction by forcing pairs of elements
(s1, s2) ∈ S1 × S2 to be vertically one on top of the other.

Since H does not verify condition D, it has a non-reflexive SCC S1, a non-symmetric
SCC S2 and a non-state-split SCC S3 (two of them being possibly the same). But then:

Since S1 is non-reflexive, no SCC of S1 × S2 × S3 is reflexive. Indeed, since S1 is strongly
connected, all vertices of S1 are represented in any SCC C of that graph product, meaning
that for any s1 ∈ S1 there is at least one vertex of the form (s1, ∗, ∗) in C. But if C had
loop on all its vertices, then in particular S1 would be reflexive.
Similarly, since S2 is non-symmetric, no SCC of S1 × S2 × S3 is symmetric.
Finally, since S3 is non-state-split, no SCC of S1 × S2 × S3 is a state-split cycle. Indeed,
suppose S is such a state-split SCC of the direct product. It can be written as a collection
of classes (Vi)i∈I of elements from S1 × S2 × S3 that we can project onto S3, getting
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new classes (Wi)i∈I , with some elements of S3 that possibly appear in several of these.
Let c be any vertex in S3 that appears at least twice with the least difference of indices
between two classes where it appears; say c ∈Wi and c ∈Wi+k. Since S is state-split, all
elements in Wi+1 are exactly the elements of S3 to which c leads. But it is the same for
Wi+k+1. Hence Wi+1 = Wi+k+1. From this we deduce that Wi = Wi+k for any i, using
the fact that indices are modulo |I|. Since k is the smallest possible distance between
classes having a common element, classes from (Wi)i∈{0,...,k−1} are all disjoint; and they
obviously contain all vertices from S3. Now simply consider these classes W0 to Wk−1:
you get the proof that S3 is state-split.

Perspectives

Nearest-neighbor conditions are strong constraints, hence it is rather coherent that apart
from some very simple graphs the undecidability of DPH is systematic. Investigation has
begun about non-nearest-neighbor constraints, for which there seem to be more graphs with
a decidable Domino Problem, this set of graphs possibly being non-recursive. For instance,
the graph below is of decidable Domino Problem.

aa

ab ba

bb

Another perspective would be to generalize these results to Zd: we fix restrictions on a
Zk-SFT with k < d and look at the consequent decidability for Zd-SFTs. It is immediate
that if d− k ≥ 2 then we can reduce to DP (Z2) so this new problem is always undecidable.
However, the d− k = 1 case – that is, fixing a hyperplane – is still open.
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Temporal graphs are graphs whose topology is subject to discrete changes over time. Given a
static underlying graph G, a temporal graph is represented by assigning a set of integer time-labels
to every edge e of G, indicating the discrete time steps at which e is active. We introduce and
study the complexity of a natural temporal extension of the classical graph problem Maximum
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27:2 Computing Maximum Matchings in Temporal Graphs

1 Introduction

Computing a maximum matching in an undirected graph (a maximum-cardinality set
of “independent edges”, i.e., edges which do not share any endpoint) is one of the most
fundamental graph-algorithmic primitives. In this work, we lift the study of the algorithmic
complexity of computing maximum matchings from static graphs to the – recently strongly
growing – field of temporal graphs [15, 18]. In a nutshell, a temporal graph is a graph whose
topology is subject to discrete changes over time. We adopt a simple and natural model for
temporal graphs which originates in the foundational work of Kempe et al. [16]. According
to this model, every edge of a static graph is given along with a set of time labels, while the
vertex set remains unchanged.

I Definition 1 (Temporal Graph). A temporal graph G = (G,λ) is a pair (G,λ), where
G = (V,E) is an underlying (static) graph and λ : E → 2N \ {∅} is a time-labeling function
that specifies which edge is active at what time.

An alternative way to view a temporal graph is to see it as an ordered set (according to
the discrete time slots) of graph instances (called snapshots) on a fixed vertex set. Due to
their vast applicability in many areas, temporal graphs have been studied from different
perspectives under various names such as time-varying, evolving, dynamic, and graphs over
time.

In this paper we introduce and study the complexity of a natural temporal extension of
the classical problem Maximum Matching, which takes into account the dynamic nature of
temporal graphs. To this end, we extend the notion of “edge independence” to the temporal
setting: two time-labeled edges (simply time-edges) (e, t) and (e′, t′) are ∆-independent
whenever (i) the edges e, e′ do not share an endpoint or (ii) their time labels t, t′ are at
least ∆ time units apart from each other.1 Then, for any given ∆, the problem Maximum
Temporal Matching asks for the largest possible set of pairwise ∆-independent edges
in a temporal graph. That is, in a feasible solution, no vertex can be matched more than
once within any time window of length ∆. The concept of ∆-windows has been employed
in many different temporal graph problem settings [1, 7, 14,19]. It is particularly important
to understand the complexity of the problem in the case where ∆ is a constant, since this
models short “recovery” periods.

Our main motivation for studying Maximum Temporal Matching is of theoretical
nature, namely to lift one of the most classical optimization problems, Maximum Matching,
to the temporal setting. As it turns out, Maximum Temporal Matching is computationally
hard to approximate: we prove that the problem is APX-hard, even when ∆ = 2 and the
lifetime T of the temporal graph (i.e., the maximum edge label) is 3 (see Section 3.1). That
is, unless P=NP, there is no Polynomial-Time Approximation Scheme (PTAS) for any ∆ ≥ 2
and T ≥ 3. In addition, we show that the problem remains NP-hard even if the underlying
graph G is just a path (see Section 3.2). Consequently, we mainly turn our attention to
approximation and to fixed-parameter algorithms (see Section 4).

In order to prove our hardness results (see Section 3), we introduce the notion of a
temporal line graph2 which is a class of (static) graphs of independent interest and may
prove useful in other contexts, too. This notion enables us to reduce Maximum Temporal

1 Throughout the paper, ∆ always refers to that number, and never to the maximum degree of a static
graph (which is another common use of ∆).

2 We remark that a different notion of temporal line graphs was introduced in a survey by Latapy et
al. [18], which is somewhat similar to our definition for the case of ∆ = 1.
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Matching to the problem of computing a large independent set in a static graph (i.e., in
the temporal line graph that is defined from the input temporal graph). Moreover, as an
intermediate result, we show (see Theorem 11) that the classic problem Independent Set
(on static graphs) remains NP-hard on induced subgraphs of diagonal grid graphs, thus
strengthening an old result of Clark et al. [9] for unit disk graphs.

During the last few decades it has been repeatedly observed that for many variations
of Maximum Matching it is straightforward to obtain online (resp. greedy offline approx-
imation) algorithms which achieve a competitive (resp. an approximation) ratio of 1

2 , while
great research efforts have been made to increase the ratio to 1

2 + ε, for any constant ε > 0.
It is well known that an arbitrary greedy algorithm for matching gives approximation ratio
at least 1

2 [13,17], while it remains a long-standing open problem to determine how well a
randomized greedy algorithm can perform. Aronson et al. [3] provided the so-called Modified
Randomized Greedy (MRG) algorithm which approximates the maximum matching within
a factor of at least 1

2 + 1
400,000 . Recently, Poloczek and Szegedy [20] proved that MRG

actually provides an approximation ratio of 1
2 + 1

256 . Similarly to the above problems, it
is straightforward3 to approximate Maximum Temporal Matching in polynomial time
within a factor of 1

2 . However, we manage to provide a simple approximation algorithm
which, for any constant ∆, achieves an approximation ratio 1

2 + ε for a constant ε. For
∆ = 2 this ratio is 2

3 , while for an arbitrary constant ∆ it becomes ∆
2∆−1 = 1

2 + 1
2(2∆−1) (see

Section 4.1).
Given that Maximum Temporal Matching is NP-hard, we show fixed-parameter

tractability with respect to the desired solution size parameter. From a parameterized
classification standpoint, this improves a result of Baste et al. [6] who needed additionally ∆
as a second parameter for fixed-parameter tractability.

Finally, we show fixed-parameter tractability with respect to the combined parameter
∆ and size of a maximum matching of the underlying graph (which may be significantly
smaller than the cardinality of a maximum temporal matching of the temporal graph).
Our algorithmic techniques are essentially based on kernelization and matroid theory (see
Section 4).

It is worth mentioning that another temporal variation of Maximum Matching, which
is related to ours, was recently proposed by Baste et al. [6]. The main difference is that
their model requires edges to exist in at least ∆ consecutive snapshots in order for them
to be eligible for a matching. Thus, their matchings need to consist of time-consecutive
edge blocks, which requires some data cleaning on real-word instances in order to perform
meaningful experiments [6].

It turns out that the model of Baste et al. is a special case of our model, as there is an
easy reduction from their model to ours, and thus their positive results are also implied by
ours. Baste et al. [6] showed that solving (using their definition) Maximum Temporal
Matching is NP-hard for ∆ ≥ 2. In terms of parameterized complexity, they provided a
polynomial-sized kernel for the combined parameter (k,∆), where k is the size of the desired
solution.

We see the concept of multistage (perfect) matchings, introduced by Gupta et al. [12], as
the main alternative model for temporal matchings in temporal graphs. This model, which
is inspired by reconfiguration or reoptimization problems, is not directly related to ours:

3 To achieve the straightforward 1
2 -approximation it suffices to just greedily compute at every time slot a

maximal matching among the edges that are ∆-independent with the edges that were matched in the
previous time slots.
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roughly speaking, their goal is to find perfect matchings for every snapshot of a temporal
graph such that the matchings only slowly change over time. In this setting one mostly
encounters computational intractability, which leads to several results on approximation
hardness and algorithms [5, 12].

Several details and proofs (marked with ?) are omitted due to space constraints.

2 Preliminaries

We use standard mathematical and graph-theoretic notation. In the full version of this paper
there is an overview of the most important classical notation and terminology we use.

Temporal graphs. Throughout the paper we consider temporal graphs G with finite life-
time T (G) = max{t ∈ λ(e) | e ∈ E}, that is, there is a maximum label assigned by λ

to an edge of G. When it is clear from the context, we denote the lifetime of G simply
by T . The snapshot (or instance) of G at time t is the static graph Gt = (V,Et), where
Et = {e ∈ E | t ∈ λ(e)}. We refer to each integer t ∈ [T ] as a time slot of G. For every
e ∈ E and every time slot t ∈ λ(e), we denote the appearance of edge e at time t by the
pair (e, t), which we also call a time-edge. We denote the set of edge appearances of a
temporal graph G = (G = (V,E), λ) by E(G) := {(e, t) | e ∈ E and t ∈ λ(e)}. For every
v ∈ V and every time slot t, we denote the appearance of vertex v at time t by the pair
(v, t). That is, every vertex v has T different appearances (one for each time slot) during
the lifetime of G. For every time slot t ∈ [T ], we denote by Vt = {(v, t) : v ∈ V } the set
of all vertex appearances of G at time slot t. Note that the set of all vertex appearances
in G is V × [T ] =

⋃
1≤t≤T Vt. Two vertex appearances (v, t) and (w, t) are adjacent if the

temporal graph has the time-edge ({v, w}, t). For a temporal graph G = (G,λ) and a set of
time-edges M , we denote by G \M := (G′, λ′) the temporal graph G without the time-edges
in M , where G′ := (V,E′) with E′ := {e ∈ E | λ(e) \ {t | (e, t) ∈M} 6= ∅} and for all e ∈ E′,
λ′(e) := λ(e) \ {t | (e, t) ∈ M}. For a subset S ⊆ [T ] of time slots and a time-edge set M ,
we denote by M |S := {(e, t) ∈M | t ∈ S} the set of time-edges in M with a label in S. For
a temporal graph G, we denote by G|S := G \ (E(G)|[T ]\S) the temporal graph where only
time-edges with label in S are present.

In the remainder of the paper we denote by n and m the number of vertices and edges of
the underlying graph G, respectively, unless otherwise stated. We assume that there is no
compact representation of the labeling λ, that is, G is given with an explicit list of labels for
every edge, and hence the size of a temporal graph G is |G| := |V |+

∑T
t=1 |Et| ∈ O(n+mT ).

Furthermore, in accordance with the literature [23, 24] we assume that the lists of labels are
given in ascending order.

Temporal matchings. A matching in a (static) graph G = (V,E) is a set M ⊆ E of edges
such that for all e, e′ ∈M we have that e ∩ e′ = ∅. In the following, we transfer this concept
to temporal graphs.

For a natural number ∆, two time-edges (e, t), (e′, t′) are ∆-independent if e ∩ e′ = ∅
or |t− t′| ≥ ∆. If two time-edges are not ∆-independent, then we say that they are in conflict.
A time-edge (e, t) ∆-blocks a vertex appearance (v, t′) (or (v, t′) is ∆-blocked by (e, t)) if
v ∈ e and |t − t′| ≤ ∆ − 1. A ∆-temporal matching M of a temporal graph G is a set of
time-edges of G which are pairwise ∆-independent. Formally, it is defined as follows.

I Definition 2 (∆-Temporal Matching). A ∆-temporal matching of a temporal graph G is a
set M of time-edges of G such that for every pair of distinct time-edges (e, t), (e′, t′) in M we
have that e ∩ e′ = ∅ or |t− t′| ≥ ∆.
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We remark that this definition is similar to the definition of γ-matchings by Baste et al. [6].
A ∆-temporal matching is called maximal if it is not properly contained in any other

∆-temporal matching. A ∆-temporal matching is called maximum if there is no ∆-temporal
matching of larger cardinality. We denote by µ∆(G) the size of a maximum ∆-temporal
matching in G.

Having defined temporal matchings, we naturally arrive at the following central problem.

Maximum Temporal Matching
Input: A temporal graph G = (G,λ) and an integer ∆ ∈ N.
Output: A ∆-temporal matching in G of maximum cardinality.

We refer to the problem of deciding whether a given temporal graph admits a ∆-temporal
matching of given size k by Temporal Matching.

For some basic observations about our problem settings and more details about the
relation between our model and the model of Baste et al. [6] we refer to the full version of
this paper.

Temporal line graphs. In the following, we transfer the concept of line graphs to temporal
graphs and temporal matchings. In particular, we make use of temporal line graphs in the
NP-hardness result of Section 3.2.

The ∆-temporal line graph of a temporal graph G is a static graph that has a vertex
for every time-edge of G and two vertices are connected by an edge if the corresponding
time-edges are in conflict, i.e., they cannot be both part of a ∆-temporal matching of G. We
say that a graph H is a temporal line graph if there exist a ∆ and a temporal graph G such
that H is isomorphic to the ∆-temporal line graph of G. Formally, temporal line graphs and
∆-temporal line graphs are defined as follows.

I Definition 3 (Temporal Line Graph). Given a temporal graph G = (G = (V,E), λ) and a
natural number ∆, the ∆-temporal line graph L∆(G) of G has vertex set V (L∆(G)) = {et |
e ∈ E ∧ t ∈ λ(e)} and edge set E(L∆(G)) = {{et, e′t′} | e∩ e′ 6= ∅∧ |t− t′| < ∆}. We say that
a graph H is a temporal line graph if there is a temporal graph G and an integer ∆ such that
H = L∆(G).

By definition, ∆-temporal line graphs have the following property.

I Observation 4. Let G be a temporal graph and let L∆(G) be its ∆-temporal line graph. The
cardinality of a maximum independent set in L∆(G) equals the size of a maximum ∆-temporal
matching of G.

It follows that solving Temporal Matching on a temporal graph G is equivalent to solving
Independent Set on L∆(G).

3 Hardness Results

In this section we show that Maximum Temporal Matching is APX-hard and that
Temporal Matching is NP-complete when the underlying graph is a path.

3.1 APX-completeness of Maximum Temporal Matching
In this subsection, we look at Maximum Temporal Matching where we want to maximize
the cardinality of the temporal matching. We prove that Maximum Temporal Matching
is APX-complete even if ∆ = 2 and T = 3. For this we provide a so-called L-reduction [4] from
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the APX-complete Maximum Independent Set problem on cubic graphs [2] to Maximum
Temporal Matching. Together with the constant-factor approximation algorithm that we
present in Section 4.1 this implies APX-completeness for Maximum Temporal Matching.
The reduction also implies NP-completeness of Temporal Matching. Formally, we show
the following result.

I Theorem 5 (?). Temporal Matching is NP-complete and Maximum Temporal
Matching is APX-complete even if ∆ = 2, T = 3, and every edge of the underlying graph
appears only once. Furthermore, for any δ ≥ 664

665 , there is no polynomial-time δ-approximation
algorithm for Maximum Temporal Matching, unless P = NP, and Temporal Matching
does not admit a 2o(k) · |G|f(T )-time algorithm for any function f , unless the Exponential
Time Hypothesis fails.

We provide the following construction for a reduction from Maximum Independent
Set on cubic graphs. It is easy to check that it uses only three time steps and every edge
appears in exactly one time step.

I Construction 1. Let G = (V,E) be an n-vertex cubic graph. We construct in polynomial
time a corresponding temporal graph (H,λ) of lifetime three as follows. First, we find a
proper 4-edge coloring c : E → {1, 2, 3, 4} of G. Such a coloring exists by Vizing’s theorem
and can be found in O(|E|) time [21]. Now the underlying graph H = (U,F ) contains two
vertices v0 and v1 for every vertex v of G, and one vertex we for every edge e of G. The
set F of the edges of H contains {v0, v1} for every v ∈ V , and for every edge e = {u, v} ∈ E
it contains {we, uα}, {we, vα}, where c(e) ≡ α (mod 2). In temporal graph (H,λ) every edge
of the underlying graph appears in exactly one of the three time slots:
1. λ({we, uα}) = λ({we, vα}) = 1, where c(e) ≡ α (mod 2), for every edge e = {u, v} ∈ E

such that c(e) ∈ {1, 2};
2. λ({v0, v1}) = 2 for every v ∈ V ;
3. λ({we, uα}) = λ({we, vα}) = 3, where c(e) ≡ α (mod 2), for every edge e = {u, v} ∈ E

such that c(e) ∈ {3, 4}.
It is easy to check that the reduction also implies NP-completeness of Temporal Matching.
The full proof of Theorem 5 can be found in the full version of this paper.

I Observation 6 (?). Temporal Matching is NP-complete, even if ∆ = 2, T = 5, and
the underlying graph of the input temporal graph is complete.

The importance of this observation is due to the following parameterized complexity
implication. Parameterizing Temporal Matching by structural graph parameters of
the underlying graph that are constant on complete graphs cannot yield fixed-parameter
tractability unless P = NP, even if combined with the lifetime T . Note that many structural
parameters fall into this category, such as domination number, distance to cluster graph,
clique cover number, etc. We discuss how our reduction can be adapted to the model of
Baste et al. [6] in the full version of this paper.

3.2 NP-completeness of Temporal Matching with Underlying Paths
In this subsection we show NP-completeness of Temporal Matching even for a very
restricted class of temporal graphs.

I Theorem 7. Temporal Matching is NP-complete even if ∆ = 2 and the underlying
graph of the input temporal graph is a path.
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We show this result by a reduction from Independent Set on connected cubic planar
graphs, which is known to be NP-complete [11]. More specifically, we show that Independent
Set is NP-complete on the temporal line graphs of temporal graphs that have a path as
underlying graph. Recall that by Observation 4, solving Independent Set on a temporal
line graph is equivalent to solving Temporal Matching on the corresponding temporal
graph. We proceed as follows.
1. We show that 2-temporal line graphs of temporal graphs that have a path as underlying

graph have a grid-like structure. More specifically, we show that they are induced
subgraphs of so-called diagonal grid graphs or king’s graphs.

2. We show that Independent Set is NP-complete on induced subgraphs of diagonal grid
graphs which together with Observation 4 yields Theorem 7. More specifically:

We exploit that cubic planar graphs are induced topological minors of grid graphs
and extend this result by showing that they are also induced topological minors of
diagonal grid graphs.
We show how to modify the subdivision of a cubic planar graph that is an induced
subgraph of a diagonal grid graph such that NP-hardness of finding independent sets
of certain size is preserved.

I Definition 8 (Diagonal Grid Graph). A diagonal grid graph Ẑn,m has a vertex vi,j for all
i ∈ [n] and j ∈ [m] and there is an edge {vi,j , vi′,j′} if and only if |i− i′|2 + |j − j′|2 ≤ 2.

It is easy to check that for a temporal graph with a path as underlying graph and where
each edge is active at every time step, the 2-temporal line graph is a diagonal grid graph.

I Observation 9. Let G = (Pn, λ) with λ(e) = [T ] for all e ∈ E(Pn), then L2(G) = Ẑn−1,T .

Further, it is easy to see that deactivating an edge at a certain point in time results in
removing the corresponding vertex from the diagonal grid graph. See Figure 1 for an example.
Hence, we have that every induced subgraph of a diagonal grid graph is a 2-temporal line
graph.

I Corollary 10. Let Z ′ be a connected induced subgraph of Ẑn−1,T . Then there is a λ and
an n′ ≤ n such that Z ′ = L2((Pn′ , λ)).

Having these results at hand, it suffices to show that Independent Set is NP-complete
on induced subgraphs of diagonal grid graphs. By Observation 4, this directly implies that
Temporal Matching is NP-complete on temporal graphs that have a path as underlying
graph. Hence, in the remainder of this section, we discuss the following result.

I Theorem 11 (?). Independent Set on induced subgraphs of diagonal grid graphs is
NP-complete.

This result may be of independent interest and strengthens a result by Clark et al. [9], who
showed that Independent Set is NP-complete on unit disk graphs. It is easy to see from
Definition 8 that diagonal grid graphs and their induced subgraphs are a (proper) subclass
of unit disk graphs.

In the following, we give the main ideas of how we prove Theorem 11. The first building
block for the reduction is the fact that we can embed cubic planar graphs into a grid [22].
More specifically, a cubic planar graph admits a planar embedding in such a way that
the vertices are mapped to points of a grid and the edges are drawn along the grid lines.
Moreover, such an embedding can be computed in polynomial time and the size of the grid
is polynomially bounded in the size of the planar graph.
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e5, λ(e5) = {1, 2, 5}

e4, λ(e4) = {1, 4}

e3, λ(e3) = {1, 2, 3}

e2, λ(e2) = {2, 4}

e1, λ(e1) = {2, 4, 5}

(a) Temporal graph G = (P6, λ) with λ as
visualized.

1

e1

2

e2

3

e3

4

e4

5

e5

(b) 2-Temporal line graph L2(G).

Figure 1 A temporal line graph with a path as underlying graph where edges are not always
active and its 2-temporal line graph.

Note that if we replace the edges of the original planar graph by paths of appropriate
length, then the embedding in the grid is actually a subgraph of the grid. Furthermore, if we
scale the embedding by a factor of two, i.e. subdivide every edge once, then the embedding
is also guaranteed to be an induced subgraph of the grid. In other words, we argue that
every cubic planar graph is an induced topological minor of a polynomially large grid graph.
We then show how to modify the embedding in a way that insures that the resulting graph
is also an induced topological minor of an polynomially large diagonal grid graph. The
last step is to further modify the embedding such that it can be obtained from the original
graph by subdividing each edge an even number of times, this ensures that NP-hardness of
Independent Set is preserved.

It is easy to check that Theorem 11, Observation 4, and Corollary 10 together imply
Theorem 7. Theorem 7 also has some interesting implications from the point of view of
parameterized complexity: Parameterizing Temporal Matching by structural graph
parameters of the underlying graph that are constant on a path cannot yield fixed-parameter
tractability unless P = NP, even if combined with ∆. Note that a large number of popular
structural parameters fall into this category, such as maximum degree, treewidth, pathwidth,
feedback vertex number, etc.

4 Algorithms

Here, we show one approximation and two exact algorithms for Temporal Matching.

4.1 Approximation of Maximum Temporal Matching
In this section, we present a ∆

2∆−1 -approximation algorithm for Maximum Temporal
Matching. Note that for ∆ = 2 this is a 2

3 -approximation, while for arbitrary constant ∆
this is a ( 1

2 + ε)-approximation, where ε = 1
2(2∆−1) is a constant, too. Specifically, we show

the following.

I Theorem 12 (?). Maximum Temporal Matching admits an O (Tm(
√
n+ ∆))-time

∆
2∆−1 -approximation algorithm.
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Algorithm 4.1 ∆
2∆−1 -Approximation Algorithm (Theorem 12).

1 M ← ∅.
2 foreach ∆-template S do
3 Compute a ∆-temporal matching MS with respect to S.
4 if |MS | > |M | then M ←MS .
5 return M .

e1

λ(e1) = {2}
e2

λ(e2) = {1, 3}
e3

λ(e3) = {1}
e4

λ(e4) = {2}

Figure 2 A temporal graph witnessing that the analysis of Algorithm 4.1 is tight for ∆ = 2.

The main idea of our approximation algorithm is to compute maximum matchings for
slices of size ∆ of the input temporal graph that are sufficiently far apart from each other
such that they do not interfere with each other, and hence are computable in polynomial
time. Then we greedily fill up the gaps. We try out certain combinations of non-interfering
slices of size ∆ in a systematic way and then take the largest ∆-matching that was found
in this way. With some counting arguments we can show that this achieves the desired
approximation ratio. In the following we describe and prove this claim formally.

We first introduce some additional notation and terminology. Recall that µ∆(G) denotes
the size of a maximum ∆-temporal matching in G. Let ∆ and T be fixed natural numbers
such that ∆ ≤ T . For every time slot t ∈ [T −∆ + 1], we define the ∆-window Wt as the
interval [t, t + ∆ − 1] of length ∆. We use this to formalize slices of size ∆ of a temporal
graph. An interval of length at most ∆ − 1 that either starts at slot 1, or ends at slot T
is called a partial ∆-window (with respect to lifetime T ). For the sake of brevity, we write
partial ∆-window, when the lifetime T is clear from the context. The distance between two
disjoint intervals [a1, b1] and [a2, b2] with b1 < a2 is a2 − b1 − 1.

A ∆-template (with respect to lifetime T ) is a maximal family S of ∆-windows or partial
∆-windows in the interval [T ] such that any two consecutive elements in S are at distance
exactly ∆ − 1 from each other. Let S be a ∆-template. A ∆-temporal matching MS in
G = (G,λ) is called a ∆-temporal matching with respect to ∆-template S if MS has the
maximum possible number of edges in every interval W ∈ S, i.e.

∣∣MS |W ∣∣ = µ∆(G|W ) for
every W ∈ S.

Now we are ready to present and analyze our ∆
2∆−1 -approximation algorithm, see Al-

gorithm 4.1. The idea of the algorithm is simple: for every ∆-template S compute a
∆-temporal matching MS with respect to S and among all of the computed ∆-temporal
matchings return a matching of the maximum cardinality.

We remark that our analysis ignores the fact that the algorithm may add time-edges from
the gaps between the ∆-windows defined by the template to the matching if they are not
in conflict with any other edge in the matching. Hence, on the one hand, there is potential
room for improvement. On the other hand, our analysis of the approximation factor of
Algorithm 4.1 is tight for ∆ = 2. Namely, there exists a temporal graph G (see Figure 2) such
that on the instance (G, 2) our algorithm (in the worst case) finds a 2-temporal matching of
size two, while the size of a maximum 2-temporal matching in G is three. In this example
any improvement of the algorithm that utilizes the gaps between the ∆-windows would not
lead to a better performance.
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4.2 Fixed-parameter tractability for the parameter solution size
In this section we provide a fixed-parameter algorithm for Temporal Matching paramet-
erized by the solution size k. More specifically, we provide a linear-time algorithm for a fixed
solution size k. Formally, the main result of this subsection is to show the following.

I Theorem 13 (?). There is a linear-time FPT-algorithm for Temporal Matching
parameterized by the solution size k.

We discuss the proof Theorem 13 in the remainder of this section. Recall that due to
Baste et al. [6] it is already known that Temporal Matching is fixed-parameter tractable
when parameterized by the solution size k and ∆. In comparison to the algorithm of
Baste et al. [6] the running time of our algorithm is independent of ∆, hence improving their
result from a parameterized classification standpoint.

The rough idea of our algorithm is the following. We develop a preprocessing procedure
that reduces the number of time-edges of the first ∆-window. After applying this procedure,
the number of time-edges in the first ∆-window is upper-bounded in a function of the solution
size parameter k. This allows us to enumerate all possibilities to select time-edges from the
first ∆-window for the temporal matching. Then, for each possibility, we can remove the
first ∆-window from the temporal graph and solve the remaining part recursively.

Next, we describe the preprocessing procedure more precisely. Referring to kernelization
algorithms, we call this procedure kernel for the first ∆-window. If we count naively the
number of ∆-temporal matchings in the first ∆-window of a temporal graph, then this
number clearly depends on ∆. This is too large for Theorem 13. A key observation to
overcome this obstacle is that if we look at an edge appearance of a ∆-temporal matching
which comes from the first ∆-window, then we can exchange it with the first appearance of
the edge.

I Lemma 14 (?). Let (G,λ) be a temporal graph and let M be a ∆-temporal matching in
(G,λ). Let also e ∈ Et1 ∩ Et2 , where t1 < t2 ≤ ∆. If (e, t1) 6∈ M and (e, t2) ∈ M , then
M ′ = (M \ {(e, t2)}) ∪ {(e, t1)} is a ∆-temporal matching in (G,λ).

We use Lemma 14 to construct a small set K of time-edges from the first ∆-window such
that there exists a maximum ∆-temporal matching M in (G,λ) with the property that the
restriction of M to the first ∆-window is contained in K.

I Definition 15 (Kernel for the First ∆-Window). Let ∆ be a natural number and let G be a
temporal graph. We call a set K of time-edges of G|[1,∆] a kernel for the first ∆-window of G
if there exists a maximum ∆-temporal matching M in G with M |[1,∆] ⊆ K.

Informally, the idea for computing the kernel for the first ∆-window is to first select vertices
that are suitable to be matched. Then, for each of these vertices, we select the earliest
appearance of a sufficiently large number of incident time-edges, where each of these time-
edges corresponds to a different edge of the underlying graph. We show that we can do this
in a such way that the number of selected time-edges can be upper-bounded in a function of
the size ν of a maximum matching of the underlying graph G. Formally, we aim at proving
the following lemma.

I Lemma 16 (?). Given a natural number ∆ and a temporal graph G = (G,λ) we can
compute in O(ν2 · |G|) time a kernel K for the first ∆-window of G such that |K| ∈ O(ν2).

Algorithm 4.2 presents the pseudocode for the algorithm behind Lemma 16. We show
correctness of Algorithm 4.2 in Lemma 17 and examine its running time in Lemma 18. Hence,
Lemma 16 follows from Lemmas 17 and 18.
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Algorithm 4.2 Kernel for the First ∆-Window (Lemma 16).

1 Let G′ be the underlying graph of G|[1,∆] and K = ∅.
2 A← a maximum matching of G′.
3 VA ← the set of vertices matched by A.
4 foreach v ∈ VA do
5 Rv ←

{
({v, w}, t) | w ∈ NG′(v) and t = min{i ∈ [∆] | {v, w} ∈ Ei}

}
.

6 if |Rv| ≤ 4ν then K ← K ∪Rv.
7 else
8 Form a subset R′ ⊆ Rv such that |R′| = 4ν + 1 and for every (e, t) ∈ R′ and

(e′, t′) ∈ Rv \R′ we have t ≤ t′.
9 K ← K ∪R′.

10 return K.

I Lemma 17. Algorithm 4.2 is correct, that is, the algorithm outputs a size-O(ν2) kernel K
for the first ∆-window of G.

Proof. LetM be a maximum ∆-temporal matching of G such that
∣∣M |[1,∆] \K

∣∣ is minimized.
Without loss of generality we can assume that every time-edge inM |[1,∆] is the first appearance
of an edge. Indeed, by construction, K contains only the first appearances of edges, and
therefore if (e, t) ∈M |[1,∆] is not the first appearance of e, by Lemma 14 it can be replaced
by the first appearance, and this would not increase

∣∣M |[1,∆] \K
∣∣. Now, assume towards

a contradiction that M |[1,∆] \K is not empty and let (e, t) be a time-edge in M |[1,∆] \K.
Since A is a maximum matching in the underlying graph G′ of G|[1,∆], at least one of the
end vertices of e is matched by A, i.e., it belongs to VA. Then for a vertex v ∈ VA ∩ e we
have that (e, t) ∈ Rv. Moreover, observe that |Rv| > 4ν, because otherwise (e, t) would be
in K. For the same reason (e, t) 6∈ R′, where R′ ⊆ Rv is the set of time-edges computed in
Line 8 of the algorithm. Let W = {(w, t) | ({v, w}, t) ∈ R′} be the set of vertex appearances
which are adjacent to vertex appearance (v, t) by a time-edge in R′. Since Rv contains only
the first appearances of edges, we know that W contains exactly 4ν + 1 vertex appearances
of pairwise different vertices.

We now claim that W contains a vertex appearance which is not ∆-blocked by any time-
edge inM . To see this, we recall that ν is the maximum matching size of the underlying graph
of G. Hence it is also an upper bound on the number of time-edges inM |[1,∆] andM |[∆+1,2∆],
which implies that in the first ∆-window vertex appearances of at most 4ν distinct vertices
are ∆-blocked by time-edges in M . Since W contains 4ν + 1 vertex appearances of pairwise
different vertices, we conclude that there exists a vertex appearance (w′, t′) ∈ W which is
not ∆-blocked by M .

Observe that t′ ≤ t because ({v, w′}, t′) ∈ R′ and (e, t) ∈ Rv \ R′. Hence, (v, t′) is not
∆-blocked by M \ {(e, t)}. Thus, M∗ := (M \ {(e, t)}) ∪ {({v, w′}, t′)} is a ∆-temporal
matching of size |M | with

∣∣M∗|[1,∆] \K
∣∣ < ∣∣M |[1,∆] \K

∣∣. This contradiction implies that
M |[1,∆] \K is empty and thus M |[1,∆] ⊆ K.

It remains to show that |K| ∈ O(ν2). Since each maximum matching in G′ has at most
ν edges, we have that |VA| ≤ 2ν. For each vertex in VA the algorithm adds at most 4ν + 1
time-edges to K. Thus, |K| ≤ 2ν · (4ν + 1) ∈ O(ν2). J

I Lemma 18 (?). Algorithm 4.2 runs in O(ν2(n + m∆)) time. In particular, the time
complexity of Algorithm 4.2 is dominated by O(ν2|G|).
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Having Algorithm 4.2 at hand, we can formulate a recursive search tree algorithm which
(1) picks a ∆-temporal matchings M in the kernel of the first ∆-window, (2) removes the first
∆-window from the temporal graph, (3) removes all time-edges which are not ∆-independent
with M , and (4) calls itself until the temporal graph in empty. For pseudocode of this
algorithm and the proof of correctness, we refer to the full version of this paper.

4.3 Fixed-parameter tractability for the combined parameter ∆ and
maximum matching size ν of the underlying graph

In this section we show that Temporal Matching is fixed-parameter tractable when
parameterized by ∆ and the maximum matching size ν of the underlying graph.

I Theorem 19 (?). Temporal Matching can be solved in 2O(ν∆) · |G| · T∆ time.

Note that Theorem 19 implies that Temporal Matching is fixed-parameter tractable when
parameterized by ∆ and the maximum matching size ν of the underlying graph, because
there is a simple preprocessing step so that we can assume afterwards that the lifetime T is
polynomially upper-bounded in the input size. This preprocessing step modifies the temporal
graph such that it does not contain ∆ consecutive edgeless snapshots. This can be done by
iterating once over the temporal graph. Observe that this procedure does not change the
maximum size of a ∆-temporal matching and afterwards each ∆-window contains at least
one time-edge. Hence, T∆ ≤ |G|.

Note that this result is incomparable to Theorem 13. In some sense, we trade off replacing
the solution size parameter k with the structurally smaller parameter ν but we do not know
how to do this without combining it with ∆. In comparison to the exact algorithm by
Baste et al. [6] (who showed fixed-parameter tractability with k and ∆) we replace k by
the structurally smaller ν, hence improving their result from a parameterized classification
standpoint. Furthermore, we note that Theorem 19 is asymptotically optimal for any fixed
∆ since there is no 2o(ν) · |G|f(∆,T ) algorithm for Temporal Matching, unless ETH fails
(see Theorem 5).

In the reminder of this section, we sketch the main ideas of the algorithm behind
Theorem 19. The algorithm works in three major steps:
1. The temporal graph is divided into disjoint ∆-windows,
2. for each of these ∆-windows a small family of ∆-temporal matchings is computed, and

then
3. the maximum size of a ∆-temporal matching for the whole temporal graph is computed

with a dynamic program based on the families from (Step 2).

We first discuss how the algorithm performs Step 2. Afterwards we formulate the dynamic
program (Step 3). In a nutshell, Step 2 consists of an iterative computation of a small
(upper-bounded in ∆ + ν) family of ∆-temporal matchings for an arbitrary ∆-window such
that at least one of them is “extendable” to a maximum ∆-temporal matching for the whole
temporal graph.

Families of `-complete ∆-temporal matchings. Throughout this section let G = (G =
(V,E), λ) be a temporal graph of lifetime T and let ν be the maximum matching size in G.
Let also ∆ and ` be natural numbers such that `∆ ≤ T .

A familyM of ∆-temporal matchings of G|[∆(`−1)+1,∆`] is called `-complete if for any
∆-temporal matching M of G there is M ′ ∈ M such that

(
M \M |[∆(`−1)+1,∆`]

)
∪M ′ is a

∆-temporal matching of G of size at least |M |. A central part of our algorithm is an efficient
procedure for computing an `-complete family. Formally, we aim for the following lemma.
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I Lemma 20 (?). There exists a 2O(ν∆) · |G|-time algorithm that computes an `-complete
family of size 2O(ν∆) of ∆-temporal matchings of G|[∆(`−1)+1,∆`].

In the proof of Lemma 20 we employ representative families and other tools from matroid
theory [8, 10].

Dynamic program. Now we are ready to combine Step 2 of our algorithm with the remaining
Steps 1 and 3. More precisely, we employ `-complete families of ∆-temporal matchings
of ∆-windows in a dynamic program (Step 3) to compute the ∆-temporal matching of
maximum size for the whole temporal graph. The pseudocode of this dynamic program
and its proof of correctness is stated in the full version of this paper. This is the algorithm
behind Theorem 19. It computes a table T where each entry T [i,M ′] stores the maximum
size of a ∆-temporal matching M in the temporal graph G|[1,∆i] such that all the time-edges
in M |[∆(i−1)+1,∆i] = M ′. Observe that a trivial dynamic program which computes all
entries of T cannot provide fixed-parameter tractability of Temporal Matching when
parameterized by ∆ and ν, because the corresponding table is simply too large. The crucial
point of the dynamic program is that it is sufficient to fix for each i ∈ [ T∆ ] an i-complete
familyMi of ∆-temporal matchings for G|[∆(i−1)+1,∆i] and then compute only the entries
T [i,M ′], where M ′ ∈Mi.

Kernelization lower bound. Lastly, we can show that we cannot hope to obtain a polynomial
kernel for the parameter combination number n of vertices and ∆. In particular, this implies
that, presumably, we also cannot get a polynomial kernel for the parameter combination ν
and ∆, since ν ≤ n

2 .

I Proposition 21 (?). Temporal Matching parameterized by the number n of vertices
does not admit a polynomial kernel for all ∆ ≥ 2, unless NP ⊆ coNP/poly.

5 Conclusion

The following issues remain research challenges. First, on the side of polynomial-time
approximability, improving the constant approximation factors is desirable and seems feasible.
Beyond, lifting polynomial time to FPT time, even approximation schemes in principle seem
possible, thus circumventing our APX-hardness result. Taking the view of parameterized
complexity analysis in order to cope with NP-hardness, a number of directions are naturally
coming up. For instance, based on our fixed-parameter tractability result for the parameter
solution size, the following questions naturally arise:

1. Is there a polynomial-size kernel for the solution size parameter k?

2. Is there a faster algorithm or a matching lower-bound for the running time of Theorem 13?
To enlarge the range of promising and relevant parameterizations, one may extend the
parameterized studies to structural graph parameters combined with ∆ or the lifetime of the
temporal graph. In particular, treedepth combined with ∆ is left open, since it is a “stronger”
parameterization than in Theorem 19 but has an unbounded value in all known NP-hardness
reductions.
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Abstract
Search patterns of randomly oriented steps of different lengths have been observed on all scales of the
biological world, ranging from microscopic to the ecological, including in protein motors, bacteria,
T-cells, honeybees, marine predators, and more, see e.g., [21, 22, 31, 33, 34, 35, 36]. Through
different models, it has been demonstrated that adopting a variety in the magnitude of the step
lengths can greatly improve the search efficiency. However, the precise connection between the search
efficiency and the number of step lengths in the repertoire of the searcher has not been identified.

Motivated by biological examples in one-dimensional terrains, a recent paper studied the best
cover time on an n-node cycle that can be achieved by a random walk process that uses k step
lengths [7]. By tuning the lengths and corresponding probabilities the authors therein showed that
the best cover time is roughly n1+Θ(1/k). While this bound is useful for large values of k, it is hardly
informative for small k values, which are of interest in biology [2, 4, 25, 30]. In this paper, we provide
a tight bound for the cover time of such a walk, for every integer k > 1. Specifically, up to lower
order polylogarithmic factors, the cover time is n1+ 1

2k−1 . For k = 2, 3, 4 and 5 the bound is thus
n4/3, n6/5, n8/7, and n10/9, respectively. Informally, our result implies that, as long as the number
of step lengths k is not too large, incorporating an additional step length to the repertoire of the
process enables to improve the cover time by a polynomial factor, but the extent of the improvement
gradually decreases with k.
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1 Introduction

This paper follows the “Natural Algorithms” line of research, aiming to contribute to biological
studies from an algorithmic perspective [6, 10, 17, 26]. In particular, we follow a similar
approach to Chazelle [10, 11], considering a process that has been extensively studied by
physicists and biologists, and offering a more uniform algorithmic analysis based on techniques
from probability theory. Our subject of interest is random walks with heterogeneous step
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lengths, a family of processes that during the last two decades has become a central model
for biological movement, see e.g., [12, 21, 22, 25, 27, 29, 31, 32, 34, 35, 36]. Our approach
is to quantify by how much can the search efficiency improve when the searcher is allowed
to use more steps. Specifically, our goal is to analyze, for every integer k, the best cover
time achievable by a random walk that utilizes k step-lengths, and identify the parameters
that achieve the optimal cover time. Hence, in some sense, we view the number of steps as a
“hardware” constraint on the searcher, and ask what is the best “software” to utilize them,
that is, the best way to set the lengths, and the probabilities of taking the corresponding
steps. We focus on the one-dimensional terrain (an n-node cycle) as it is both biologically
relevant, and, among other Euclidean spaces, it is the most sensitive to step-length variations
(e.g., the simple random walk on the two-dimensional plain already enjoys a quasi-linear
cover time). A preliminary investigation of this question was recently done by the authors of
the current paper together with collaborating researchers [7], yielding asymptotic bounds
with respect to k. Unfortunately, these bounds are not very informative for small values of
k, which are of particular interest in biology [2, 4, 25, 30]. For example, for processes that
can use a small number of step-lengths, say k = 2 or k = 3, the bound in [7] merely says
that the cover time is polynomial in n, which does not even imply that such a process can
outperform the simple random walk – whose cover time is known to be Θ(n2). In this paper
we improve both the lower bound and the upper bound in [7], identifying the tight cover
time for every integer k.

1.1 Background and Motivation
The exploration-exploitation dilemma is fundamental to almost all search or foraging processes
in biology [19]. An efficient search strategy needs to strike a proper balance between the need
to explore new areas and the need to exploit the more promising ones found. At an intuitive
level, this is often perceived as a tradeoff between two scales: the global scale of exploration
and the local scale of exploitation. This paper studies the benefits of incorporating a hierarchy
of multiple scales, where lower scales serve to exploit the exploration made by higher scales.
We demonstrate this concept by focusing on random walk search patterns with heterogeneous
step lengths, viewing the usage of steps of a given length as searching on a particular scale.

In the last two decades, random walks with heterogeneous step lengths have been used
by biologists and physicists to model biological processes across scales, from microscopic
to macroscopic, including in DNA binding proteins [5, 14], immune cells [18], crawling
amoeba [33], locomotion mode in mussels [15, 22], snails [31], marine predators [21, 34],
albatrosses [35, 36], and even in humans [9, 32, 29]. Most of these biological examples
concern search contexts, e.g., searching for pathogens or food. Indeed, from a search
efficiency perspective, it has been argued that the heterogeneity of step lengths in such
processes allows to reduce oversample, effectively improving the balance between global
exploration and local exploitation [4, 36]. However, the precise connection between the search
efficiency and the number of step lengths in the repertoire of the searcher has not been
identified.

Due to possible cognitive conflicts between motion and perception, in some of the
aforementioned search contexts it was argued that biological entities are essentially unable to
detect targets while moving fast, and hence targets are effectively found only between jumps,
see e.g., [4, 25] and the references therein. Those models are often called intermittent. When
the search is intermittent, we say that a site is visited whenever the searcher completes a
jump landing on this site. It is also typically assumed that the searcher has some radius
of visibility r, and a target can only be detected if it is in the r-vicinity of a site currently
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visited by the searcher. Discretizing the space, one may view a Euclidian space as a grid of
the appropriate dimension, in which each edge is of length r. In this discretization, sites are
nodes, and the searcher can detect a target at a node, only if it makes a random jump that
lands on it.

In general, two families of processes with heterogeneous step lengths have been extensively
studied in Euclidean spaces: Lévy Flights (named after the mathematician Paul Lévy), and
Composite Correlated Random Walks (CCRW), see e.g., [2, 4, 25]. Both have been claimed
to be optimal under certain conditions and both have certain empirical support. In the Lévy
Flight process, step lengths have a probability distribution that is heavy-tailed: at each step
a direction is chosen uniformly at random, and the probability to perform a step of length d
is proportional to d−µ, for some fixed parameter 1 < µ < 3.

Searchers employing a CCRW can potentially alternate between multiple modes of search1,
but apart for few exceptions [30], such patterns have mostly been studied when assuming
that the number of search modes is 2. Specifically, a diffusive phase in which targets can
be detected and a ballistic phase in which the searcher moves in a random direction in a
straight line whose length is exponentially distributed with some mean L. This CCRW with 2
modes can be approximated as a discrete random walk with two step lengths, hereafter called
2-scales search: first, choose a direction uniformly at random. Then, with some probability
p take a step of unit length, and otherwise, with probability 1 − p, take a step of some
predetermined length L.

Lévy Flights and 2-Scales searches have been studied extensively using differential equation
techniques and computer simulations. These studies aimed to both compare the performances
of these processes as well as to identify the parameters that maximize the rate of target
detection or minimize the hitting time under various target distributions [4, 12, 25, 27, 36].

Most of the literature on the subject has concentrated on either one or two dimensional
Euclidian spaces. In particular, the one-dimensional case has attracted attention due to
several reasons. First, it finds relevance in several biological contexts, including in the
reaction pathway of DNA binding proteins [5, 14]. One-dimension can also serve as an
approximation to general narrow and long topologies, which can be found for example in
blood veins or other organs. Second, from a computational perspective, the one-dimension is
the only dimension where the simple random walk has a large cover time, namely, quadratic,
whereas in all higher dimensions the cover time is nearly linear. This implies that in terms
of the cover time, heterogeneous random walks can potentially play a much more significant
role in one-dimension than in higher dimensions.

1.2 Definitions
We model the one-dimension space as an n-node cycle, termed Cn. For an integer k, we
define the random walks process with k step lengths as follows.

I Definition 1 (k-scales search). A random walk process X is called a k-scales search on
Cn if there exists a probability distribution p = (pi)k−1

i=0 , where
∑
i pi = 1, and integers

L0, L1, . . . , Lk−1 such that, on each step, X makes a jump {0,−Li,+Li} with probability

1 CCRW have also been classified as either cue-sensitive, i.e., they can change their mode of operation
upon detecting a target [3], or internally-driven, i.e., their movement pattern depends only on the
mechanism internal to the searcher [23]. However, when targets are extremely rare and there is no
a-priori knowledge about their distribution, one must cover a large portion of the terrain before finding
a target, and hence the aforementioned distinction becomes irrelevant.

STACS 2020
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respectively pi/2, pi/4, pi/4. Overall, with probability 1/2, the process X stays in place2. The
numbers (pi) and (Li) are called the parameters of the search process X. The speed is
assumed to be a unitary constant, that is, it takes L time to do a step of length L.

Our goal is to show upper and lower bounds on the cover time of a k-scales search, that is,
the expected time to visit every node of the ambient graph Cn, where it is assumed that a
jump from some point x to y visits only the endpoint y, and not any of the intermediate
nodes. We denote by E(tcov(n, k)) the smallest cover time achievable by a k-scales search
over the n-node cycle. The parameters n and k are omitted when clear from the context.

We also define the following k-scales search which is often referred to in the mathematical
literature as a Weierstrassian random walk [20]. In the biology literature, it has been used
as a model for the movement strategy of snails [31] and mussels [30].

I Definition 2 (Weierstrassian random walk). Let b ≥ 2 and k be integers such that bk−1 <

n ≤ bk. The Weierstrassian random walk with parameter b is the k-scales search defined by:
Li = bi and pi = cbb

−i, for every 0 ≤ i ≤ k − 1, with the normalizing constant cb = b−1
b−b1−k .

Note that cb is an increasing function of b > 1, and so cb ≥ c2 ≥ 1/2 for b ≥ 2. Hence,
p0 = cb ≥ 1/2. Also p0 = cb ≤ 1, hence cb = Θ(1) is indeed a constant.

1.3 Previous Bounds on the Cover Time of k-scales search
The work of Lomholt et al. [25] considered intermittent search on the one-dimensional cycle
of length n, and compared the performances of the best 2-scales search to the best Lévy
Flight. With the best parameters, they showed that the best 2-scales search can find a target
in roughly n4/3 expected time, but introducing Lévy distributed relocations with exponent µ
close to 2 can reduce the search time to quasi linear.

Taking a more unified computational approach, a recent paper [7] analyzed the impact of
having k heterogeneous step lengths on the cover time (or hitting time3) of the n-node cycle
Cn. Specifically, the following bounds were established in [7].

I Theorem (Upper bound on the cover time of Weierstrassian random walk from [7]). Let b, n
be integers such that 2 ≤ b < n and set k = logn/ log b. The cover time of the Weierstrassian
random walk with parameter b on the n-cycle is at most poly(k) · poly(b) · n logn.

Taking b = dn1/ke yields the following corollary.

I Corollary (Upper bound from [7]). For any k ≤ logn
log logn , there exists a k-scales search with

cover time n1+O( 1
k ) logn.

Note that for small values of k, this bound is not very informative. For example, for k = 2, 3
the bound merely says that the cover time is polynomial in n, which is known already for
k = 1, i.e., the simple random walk, whose cover time is Θ(n2).

2 This laziness assumption is used for technical reasons, as is common in many other contexts of random
walks. Note that this assumption does not affect the time performance of the process, as we consider it
takes time 0 to stay in place.

3 Note that in connected graphs, the notion of cover time, namely the expected time until all sites (of a
finite domain) are visited when starting the search from the worst case site, is highly related to the
hitting time, namely, the expected time to visit a node x starting from node y, taken on the worst case
pair x and y; the cover time is always at least the hitting time, and in connected graphs it is at most a
logarithmic multiplicative factor more than the hitting time, see [24][Matthews method, Theorem 11.2].
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I Theorem (Lower bound from [7]). For every ε > 0, there exist sufficiently small constants
c, c′ > 0 such that for k ≤ c′ logn

log logn , any k-scales search cannot achieve a cover time better

than c · n1+ 1/2−ε
k+1 .

The aforementioned lower bound of [7] is more precise than the upper bound, but still not
tight, as we show in the next subsection. For example, for k = 2, the lower bound in [7] gives
n7/6 instead of n4/3, which is the tight bound.

1.4 Our Results
This paper provides tight bounds for the cover times of k-scales searches, for any integer
k > 1. Specifically, we prove that the optimal cover (or hitting) time achievable by a k-scales
search is n1+ 1

2k−1 , up to lower order polylogarithmic factors. Our bound implies that for
small k, the improvement in the cover time incurred by employing one more step length is
polynomial, but the extent of the improvement gradually decreases with k.

In order to establish the tight bound, we first had to understand what should be a good
candidate for the tight bound to aim to. This was not a trivial task, as the precise bound
takes an unusual form. After identifying the candidate for the bound, we had to improve
both the upper and the lower bounds from [7], which required us to overcome some key
technical difficulties. For the lower bound, [7] established that the cover time is bounded
from below by a function (specifically the square-root) of the ratio Li+1/Li, for every i. As
it turns out, what was required to tighten the analysis is a better understanding about the
relationships between the cover time and the extreme step-lengths, namely, L0, L1 and Lk−1.
Specifically, in proving the precise lower bound we have two components, one for the “local”
part (exploitation) and the other for the “global” part (exploration). We showed that in order
to be efficient on the local part, the small step-lengths need to be small, whereas in order
to be efficient on the global part (traversing large distances fast), the largest step-length
needs to be large. This allowed us to widen the ratios between consecutive step-lengths,
consequently increasing the lower bound.

In order to obtain the precise upper bound, we improved the analysis in [7] of the
Weierstrassian random walk process. This, in particular, required overcoming non-trivial
issues concerning dependencies between variables that were overlooked in [7]. By doing this,
we also refined the estimates on the order of magnitude of other dependencies. In addition,
we had to incorporate short-time probability bounds for each step-length used by the process,
and perform a tighter analysis of the part of the walk that corresponds to the largest step
length Lk−1.

We next describe our contribution in more details.

1.4.1 The Lower Bound
We begin with the statement of the lower bound. The formal proof is given in Section 2.

I Theorem 3. Let k and n be positive integers. The cover time of any k-scales search X on
Cn is:

E(tcov(n, k)) = n1+ 1
2k−1 · Ω(1/k).

1.4.2 The Upper Bound
The following theorem implies that up to lower order terms, the cover time of the Weier-
strassian random walk matches the lower bound of the cover time of any k-scales search, as
given by Theorem 3, for 2 ≤ k ≤ logn, i.e., for all potential scales.

STACS 2020
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I Theorem 4. Let k be an integer such that 2 ≤ k ≤ log2 n. The Weierstrassian random
walk with parameter b = bn

2
2k−1 c is a k-scales search that achieves a cover time of:

n1+ 1
2k−1 ·O

(
k2 log2 n

)
.

Observe that combining Theorems 3 and 4 we obtain the best cover time Covk,n achievable
by a k-scales search on Cn, which is Θ̃

(
n1+ 1

2k−1

)
for any 2 ≤ k ≤ logn. For particular

values of k, we thus have:

k 1 2 3 4 5 . . . logn
E(tcov(n, k)) Θ(n2) Θ̃(n 4

3 ) Θ̃(n 6
5 ) Θ̃(n 8

7 ) Θ̃(n 10
9 ) . . . O(n log3 n)

Theorem 4 follows immediately from the following more general theorem, by taking
b = n

2
2k−1 .

I Theorem 5. Let b, k, n be integers such that bk−1 < n ≤ bk. The cover time of the
Weierstrassian random walk on Cn with parameter b is

O

(
nmax

{
bk

n
,
n

bk−1

}
· k2 · log b · logn

)
= Õ

(
max

{
bk,

n2

bk−1

})
.

The formal proof of Theorem 5 is deferred to the full version. In Section 3 we provide a
sketch of the proof.

As mentioned, Theorem 5 using the particular value b = n
2

2k−1 gives a tight upper bound
for k-scales search. However, since the Weierstrassian random walk is of independent interest
as it is used in biology, it might be useful to understand its cover time also for other values
of b. Note that Lemmas 6 and 7 below, when applied to the Weierstrassian random walk
on Cn, show that the cover time is at least Ω

(
max{n

√
b, n2

bk−1 }
)
. This is quite close to the

bound Õ
(

max
{
bk, n2

bk−1

})
of the theorem. Indeed if n ≥ bk− 1

2 , both bounds match, up to

logarithmic terms. If n ≤ bk− 1
2 , the ratio of the bounds is bk− 1

2
n .

2 The Lower Bound Proof

The goal of this section is to establish the lower bound in Theorem 3. For this purpose,
consider a k-scales search X on the cycle Cn and denote (Li)k−1

i=0 its step lengths with
Li < Li+1 for all i ∈ [k − 2]. For convenience of writing we also set Lk = n, but it should be
clear that it is actually not a step length of the walk. Let pi denote the probability of taking
the step length Li.

The theorem will follow from the combination of two lemmas. The first one, Lemma 6,
stems from the analysis of the number of nodes that can be visited during Li+1 time steps.
It forces L0L1 as well as the ratios Li+1/Li for all 1 ≤ i ≤ k − 1 to be small enough in order
to have a small cover time. The second one, Lemma 7, comes from bounding the cover time
by the time it takes to go to a distance of at least n/3. It forces Lk−1 to be big enough to
have a small cover time.

I Lemma 6. The cover time of X is at least
E(tcov) = Ω(n

√
L0L1).

E(tcov) = Ω
(
n
k

√
Li+1
Li

)
for any 1 ≤ i ≤ k − 1.
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The second part of Lemma 6 was already given in [7]. We sketch here the ideas behind the
proof of the first part, namely, that the cover time is at least of order n

√
L0L1. Essentially,

we count the expected number of nodes that can be visited in a time duration of L1, which we
call a phase. A jump of length Li ≥ L1 will not contribute to visiting a new node during this
time duration. Thus, we may suppose that there are only jumps of length L0. Since L1 ≤ n,
the process does not do a turn of the cycle and, therefore, it can be viewed as a walk on Z.
Furthermore, since every jump has length L0, we can couple this walk by a corresponding
simple random walk, that does steps of length 1, during a time duration of L1/L0. The
expected number of nodes visited during a phase is thus of order

√
L1/L0. It follows that

we need at least n/(
√
L1/L0) such phases before covering the cycle. Since a phase lasts for

L1 time, the cover time is at least of order n
√
L0L1. The full proof of Lemma 6, including

the part that was proven in [7], appears in the full version.

I Lemma 7. The cover time of X is at least Ω(n2 µ
σ2 ), where µ = 1

2
∑
i≤k−1 piLi and

σ2 = 1
2
∑
i≤k−1 piL

2
i are the mean and variance of the jump lengths, respectively. In particular,

the cover time is:

E(tcov) = Ω
(

n2

Lk−1

)
.

Proof. Let mcov denote the random number of steps before all nodes of Cn are covered, and
let tcov be the random cover time of the process. By Wald’s identity, we have:

E(tcov) = E(mcov) · µ, (1)

where µ = 1
2
∑k−1
i=0 piLi is the expected length, and hence the expected time, of a jump (the

factor 1
2 comes from the laziness). By Markov’s inequality, we have:

Pr (mcov < 2E(mcov)) ≥ 1/2.

Let Nm be the (random) number of nodes visited by step m. We have:

E(N2E(mcov)) ≥ E
(
N2E(mcov) | mcov < 2E(mcov)

)
· Pr (mcov < 2E(mcov)) ≥ n ·

1
2 .

Define Dm as the maximal distance of the process from step 0 up to step m, i.e., Dm =
maxs≤m|X(s)|. Since Nm ≤ 2Dm + 1, we have:

2E(D2E(mcov)) + 1 ≥ E(N2E(mcov)) ≥ n/2.

As shown in [13] for general one-dimensional random walks, we have E(Dm) = O (σ
√
m),

where σ is the standard deviation of the length distribution, i.e., σ2 = 1
2
∑
i piL

2
i . Thus, we

have:√
E(mcov)σ = Ω(n),

and so:

E(mcov) = Ω
(
n2

σ2

)
,

and by Eq. (1), we get:

E(tcov) = Ω
(
n2 µ

σ2

)
= Ω

(
n2
∑k−1
i=0 Lipi∑k−1
i=0 L

2
i pi

)
,
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which proves the first part of the lemma.
In order to prove the second part, note that since Lk−1 is the biggest step length, we

have
∑k−1
i=0 piLi(1−

Li

Lk−1
) ≥ 0, and so

∑k−1
i=0

Lipi∑k−1
i=0

L2
i
pi

≥ 1
Lk−1

. Therefore,

E(tcov) = Ω
(

n2

Lk−1

)
,

which completes the proof of Lemma 7. J

Next, it remains to show how Theorem 3 follows by combining Lemma 6 and Lemma 7.
First, consider the lower bound of Ω(n2/Lk−1) in Lemma 7. If Lk−1 ≤ n1− 1

2k−1 then the
bound in Theorem 3 immediately follows. Let us therefore assume that Lk−1 > n1− 1

2k−1 .
Define α0 = L0L1 and αi = Li+1

Li
for i ∈ {1, 2, . . . , k − 2}. As

k−2∏
i=0

αi = L0Lk−1,

there must exist an index 0 ≤ i ≤ k − 2 such that αi ≥ (L0Lk−1)
1

k−1 . Thus, by Lemma 6,
the cover time is at least

Ω
(n
k

(L0Lk−1)
1

2(k−1)

)
.

Since Lk−1 > n1− 1
2k−1 = n

2k−2
2k−1 and L0 ≥ 1, we conclude that the cover time is at least

E(tcov) = Ω
(n
k
· n

1
2k−1

)
,

as desired. This completes the proof of Theorem 3. J

3 Upper Bound Proof (Sketch)

Let us give the key ideas of the proof of Theorem 5. Some of the initial steps in the proof
follow the technique in [7] (by doing so, we also corrected some mistakes in [7]). These parts
are clearly mentioned below. Our main technical contribution that allowed us to obtain the
precise upper bound, is the use of short-time probability bounds (see Eq. (6)), and a tighter
analysis of the part of the walk that corresponds to the largest step length Lk−1.

In more details, let us consider the Weierstrassian walk on Cn, termed X. The following
lemma establishes a link between the cover time of X and the point-wise probabilities of X.
For completeness, we provide a formal proof of it in the full version, although it is not hard
to obtain it using the technique in [7].

I Lemma 8. If p > 0 and m0 > 0 are such that, for any x ∈ {0, . . . , n− 1},∑2m0
m=m0

Pr(X(m) = x)∑m0
m=0 Pr(X(m) = 0)

≥ p, (2)

then the cover time of the Weierstrassian random walk X on the cycle Cn is O
(
m0p

−1k logn
)
.

Using Lemma 8, the bound of Theorem 5 can be established by proving bounds on the
probability to visit node x ∈ [0, n) at step m.
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Figure 1 The first two graphs represent, in different node disposition, the Weierstrassian walk on
C12 with parameter b = 4. There are k = 2 jump lengths, L0 = 1 (blue edges) and L1 = b = 4 (red,
dotted edges). To the right, we show the decomposition of C12 as C4 × C3. For instance the node
x = 7 ∈ C12 will be represented by x0 = 3 ∈ C4 and x1 = 1 ∈ C3.

In order to simplify the presentation, assume first that n = bk. Proceeding first as in
[7], we view the k-lengths Weierstrassian random walks as k (dependent) random walks, by
grouping together the jumps of the same length (see Figure 1). Define Si(m) as the algebraic
count of the jumps of lengths bi. E.g., if, by step m, there are exactly four positive jumps of
length bi, and one negative, then Si(m) = 3. We have:

X(m) =
k−1∑
i=0

Si(m)bi.

Define also the following decomposition of Cn.

I Definition 9 (Base b decomposition). For any x ∈ Cn, we may decompose x in base b as

x =
k−1∑
i=0

xib
i,

with 0 ≤ xi < b. We call xi the i-th coordinate of x (in base b).

It follows from Euclidean division, and the fact that n = bk, that the base b decomposition
is well-defined and unique for every x ∈ Cn. This decomposition is illustrated in Figure 1
(where we have taken n = n̂bk−1 to anticipate the more general case to follow).

Note that X(m) = x in Cn if and only if∑
i

(Si(m)− xi)bi = 0 mod n. (3)

By taking Eq. (3) modulo bi, for i ≤ k − 1, it is easy to show that Eq. (3) is equivalent to

Si(m) = yi mod b,

for yi := xi − b−i
∑
j<i(Sj(m)− xj)bj mod b.

Thus, X(m) = x is equivalent to Ri(m) = yi for all i, where Ri = Si mod b is a random
walk on Cb that moves with probability pi

2 . This process is illustrated in Figure 1, where
X(m) = 7 is equivalent to R0(m) = 3 and R1(m) = 2.

Unfortunately, the Ri’s and the yi’s are not independent, due to the fact that only one of
the Ri can change between steps m and m+ 1, however, let us overlook this issue in this
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informal outline. We then have:

Pr(X(m) = x) ≈
k−1∏
i=0

Pr(Ri(m) = yi). (4)

Recall that Ri is a random walk over Cb that moves with probability pi. The following is a
well-known property of the random walk over a cycle (see, e.g., Example 5.7 and Proposition
6.18 in [1]):

B Claim 10. For a simple random walk R on Cb that moves with probability 1
2 , and any

y ∈ Cb,

Pr (R(m) = y) =
{
O (1/

√
m) if m < b2

b−1(1± εm) if m ≥ b2,
(5)

with εm = O(e−cmb−2) where c > 0.

Considering that Ri moves with probability pi

2 = Θ(b−i), we can expect that, at step m,
Ri(m) has the same distribution as the lazy random walk with mpi steps that moves with
probability 1

2 . This is proved formally in the full version. Hence, by substituting m with
mpi in Claim 10, we obtain:

Pr (Ri(m) = yi) =
{
O
(
1/√mpi

)
if m < bi+2

b−1(1± εmpi
) if m ≥ bi+2.

(6)

Theorem 5 then follows from Eq. (4), Eq. (6) and Lemma 8. Essentially, to cover Cn, we
need that each Ri(m) is mixed, i.e., has some significant probability to visit any node yi in
Cb, which happens, as shown by Eq. (6), for m > bk−1+2 = bk+1. Let us apply Lemma 8
with

m0 := bk+1.

We first establish a lower bound on
∑2m0
m=m0

Pr(X(m) = x). By Eq. (4) and Eq. (6), we have,
for m > m0,

Pr(X(m) = x) ≈
∏

0≤i≤k−1
b−1 (1− εmpi

) = Θ
(
b−k
)
,

where the last equality is justified in the full version. Thus,
2m0∑
m=m0

Pr(X(m) = x) = Ω
(
m0b

−k) = Ω (b) .

We need also to upper bound
∑m0
m=0 Pr(X(m) = 0), which is the expected number of returns

to the origin up to step m0. To do this, we shall use the short-time bounds of Eq. (6).
Let us decompose the aforementioned sum as follows.

m0∑
m=0

Pr(X(m) = 0) = 1 + 1
2 +

k−1∑
j=0

bj+1∑
m=1+bj

Pr(X(m) = 0) +
m0∑

m=1+bk

Pr(X(m) = 0). (7)

Fix j, such that 1 ≤ j ≤ k − 1 and let m ∈ (bj , bj+1]. By Eq. (4), in order to upper bound
Pr(X(m) = 0) it is enough to bound Pr(Ri(m) = yi) for every i ≤ k − 1. For i > j, we
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bound Pr(Ri(m) = yi) by 1. For i ≤ j − 2, we use Eq. (6) to upper bound Pr(Ri(m) = yi)
by b−1(1 + εmpj

). For i = j − 1 and i = j, we bound Pr(Ri(m) = yi) by O
(
1/√mpj−1

)
and

O
(
1/√mpj

)
, respectively. We thus obtain, by Eq. (4),

Pr(X(m) = x) = O

 1
√
mpj−1

· 1
√
mpj

·
∏

0≤i≤j−2
b−1 (1 + εmpj

)
= O

(
b−(j−1) ·

√
bbj−1

m

)
= O

(√
b

m

)
,

where we justify in the full version that
∏

0≤i≤j−2(1 + εmpj ) = O(1). Hence, we get:

bj+1∑
m=1+bj

Pr(X(m) = 0) = O(
√
b log b), (8)

by using that
∑bj+1

m=1+bj m−1 = Θ
(∫ bj+1

m=bj u
−1du

)
= Θ(log b). For the case j = 0, we bound

Pr(Ri(m) = yi) by 1 for i > 1 and Pr(R0(m) = y0) by O(m− 1
2 ), so that, by Eq. (4),

Pr(X(m) = 0) = O( 1√
m

). Hence, we get:

b∑
m=2

Pr(X(m) = 0) = O
(√

b
)
. (9)

Similarly, for m ∈ (bk, bk+1], Pr(Ri(m) = yi) is bounded by b−1(1 + εmpi) for i ≤ k − 2, and
by 1√

mpk−1
for i = k − 1. Thus, for m ∈ (bk, bk+1],

Pr(X(m) = 0) = O

(
1

√
m
√
bk−1

)

and, since
∑bk+1

m=1+bk
1√
m

= O
(∫ bk+1

bk
1√
u
du
)

= O
(√

bk+1
)
, we get:

bk+1∑
m=1+bk

Pr(X(m) = x) = O

(√
bk+1
√
bk−1

)
= O(b). (10)

In total, by Eq. (7), combining Eqs. (8), (9) and (10), we find that the expected number of
returns to the origin up to step bk+1 is

m0∑
m=0

Pr(X(m) = 0) = O
(
k
√
b log b+ b

)
= O (kb log b) .

So that all together we have:∑2m0
m=m0

Pr(X(m) = x)∑m0
m=0 Pr(X(m) = 0)

= Ω
(

b

kb log b

)
= Ω

(
1

k log b

)
.

Thus, by Lemma 8, the cover time of X is at most:

O(m0 · k log b · k logn) = O(bk+1k2 log b logn) = O(nbk2 log b logn), (11)

as claimed by Theorem 5, for the case where n = bk.
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Consider now a more general case, in which n is a multiple of bk−1. Here, we can write
n = n̂bk−1, where n̂ ∈ (0, b] is an integer. What changes in this case is that the last coordinate,
Rk−1, is now a random walk over Cn̂ instead of over Cb, as depicted in Figure 1. Rk−1 is
thus mixed after a number of steps:

n̂2p−1
k−1 = Θ(bk−1n̂2) = Θ(n2/bk−1).

On the other hand, after Θ(bk−2+2) = Θ(bk) steps, the other coordinates are mixed. Thus,
the number of steps needed before every coordinate Ri is mixed is:

m0 = Θ
(
max{bk, n2/bk−1}

)
, (12)

which is again the order of magnitude of the cover time of X, up to polylogarithmic factors.
Note that when n = bk, Eq. (12) recovers the cover time of order Θ̃(bk+1). Furthermore,
the ratio of the cover time for n = bk and n = n̂bk−1 is of order bk+1

max{bk,bk−1n̂2} = min{b, b
2

n̂2 }.
When b is large (which corresponds to k being small), this can be significant. Hence, naively
bounding n̂ from above by b would not suffice to yield an optimal bound.

The general case, when n is not necessarily a multiple of bk−1, needs to be treated with
more care. What changes in this case is that we can no longer decompose X as k dependent
random walks on Cb × · · · × Cb × C n

bk−1
, since n

bk−1 is not an integer. Instead, we define Z
as the process that does the same jumps as X, but on the infinite line Z, and we also define

n̂ := bn/bk−1c.

Then, we use almost the same decomposition, where Z is viewed as k dependent random
walks over Cb × · · · × Cb × Z. The process corresponding to the last coordinate, Rk−1, is
now a random walk on Z, and we are interested especially on the probability of the event
Rk−1(m) = xk−1 for xk−1 ∈ [0, n̂]. As the coordinate Rk−1 is not restricted to [0, n̂], we need
to pay attention that the walk does not go too far.

4 Discussion

The upper bound in Theorem 4 implies that almost linear time performances, as those
obtained by Lévy Flights, can be achieved with a number of step lengths that ranges from
logarithmic to linear. This further suggests that cover time performances similar to those of
Lévy Flights can be seen by a large number of different processes. In practice, if one aims to fit
empirical statistics of an observed process to a theoretical model of a particular heterogeneous
step length distribution, the large degree of freedom can make this task extremely difficult, if
not impossible. On the other hand, the fact that so many processes yield similar cover times
may justify viewing all of them as essentially equivalent. This interpretation may also be
relevant to the current debate regarding whether animals’ movement is better represented by
Lévy Flights or by CCRW distributions with 2 or 3 scales [28, 15, 22, 30]. Moreover, the
fact that many heterogeneous step processes yield similar performances to Lévy Flights may
imply that limiting the empirical fit to either Lévy Flights or CCRW searches with 2 or 3
scales may be too restrictive. Our work may suggest that instead, the focus could shift to
identifying the number of scales involved in the search.

When combined with appropriate empirical measurements, our lower bound can potentially
be used to indirectly show that a given intermittent process uses strictly more than a certain
number of step lengths. For example, if the process is empirically shown as a heterogeneous
random walk whose cover time is almost linear, then Theorem 3 implies that it must use
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roughly logarithmic number of step lengths. From a methodological perspective, such a
result would be of particular appeal as demonstrating lower bounds in biology through
mathematical arguments is extremely rare [8, 16].

Finally, we note that most of the theoretical research on heterogeneous search processes
which is based on differential equation techniques and computer simulations. In contrast,
and similarly to [7], our methodology relies on algorithmic analysis techniques and discrete
probability arguments, which are more commonly used in theoretical computer science. We
believe that the computational approach presented here can contribute to a more fundamental
understanding of these search processes.
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Abstract
A breakthrough result of Cygan et al. (FOCS 2011) showed that connectivity problems parameterized
by treewidth can be solved much faster than the previously best known time O∗(2O(tw log tw)). Using
their inspired Cut&Count technique, they obtained O∗(αtw) time algorithms for many such problems.
Moreover, they proved these running times to be optimal assuming the Strong Exponential-Time
Hypothesis. Unfortunately, like other dynamic programming algorithms on tree decompositions,
these algorithms also require exponential space, and this is widely believed to be unavoidable. In
contrast, for the slightly larger parameter called treedepth, there are already several examples of
matching the time bounds obtained for treewidth, but using only polynomial space. Nevertheless,
this has remained open for connectivity problems.

In the present work, we close this knowledge gap by applying the Cut&Count technique to
graphs of small treedepth. While the general idea is unchanged, we have to design novel procedures
for counting consistently cut solution candidates using only polynomial space. Concretely, we obtain
time O∗(3d) and polynomial space for Connected Vertex Cover, Feedback Vertex Set, and
Steiner Tree on graphs of treedepth d. Similarly, we obtain time O∗(4d) and polynomial space for
Connected Dominating Set and Connected Odd Cycle Transversal.
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1 Introduction

The goal of parameterized complexity is to reign in the combinatorial explosion present in
NP-hard problems with the help of a secondary parameter. This leads us to the search for
fixed-parameter tractable (FPT) algorithms, i.e., algorithms with running time O(f(k)nc)
where n is the input size, k is the secondary parameter, f is a computable function, and c is
a constant. There are several books giving a broad overview of parameterized complexity
[10, 12, 13, 28]. One of the success stories of parameterized complexity is a graph parameter
called treewidth. A large swath of graph problems admit FPT-algorithms when parameterized
by treewidth as witnessed by, amongst other things, Courcelle’s theorem [9]. However, the
function f resulting from Courcelle’s theorem is non-elementary [16]. Thus, a natural goal
is to find algorithms with a smaller, or ideally minimal, dependence on the treewidth in
the running time, i.e. algorithms where f is as small as possible. Problems only involving
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29:2 Solving Connectivity Problems Parameterized by Treedepth

local constraints usually permit a single-exponential dependence on the treewidth (tw) in
the running time, i.e. time O∗(αtw) for some small constant α,1 by means of dynamic
programming on tree decompositions [1, 31, 32, 33]. For many of these problems we also
know the optimal base α if we assume the strong exponential-time hypothesis (SETH) [22].
For a long time a single-exponential running time seemed to be out of reach for problems
involving global constraints, in particular for connectivity constraints. This changed when
Cygan et al. [11] introduced the Cut&Count technique, which allowed them to obtain single-
exponential-time algorithms for many graph problems involving connectivity constraints.
Again, many of the resulting running times can be shown to be optimal assuming SETH [11].

The issue with treewidth-based algorithms is that dynamic programming on tree decom-
positions seems to inherently require exponential space. In particular, Chen et al. [8] devised
a model for single-pass dynamic programming algorithms on tree decompositions and showed
that such algorithms require exponential space for Vertex Cover and 3-Coloring. Algo-
rithms requiring exponential time and exponential space usually run out of available space
before they hit their time limit [34]. Hence, it is desirable to reduce the space requirement
while maintaining the running time. As discussed, this seems implausible for treewidth. In-
stead, we consider a different, but related, parameter called treedepth. Treedepth is a slightly
larger parameter than treewidth and of great importance in the theory of sparse graphs
[25, 26, 27]. It has been studied under several names such as minimum elimination tree height
[7], ordered chromatic number [19], and vertex ranking [6]. Fürer and Yu [17] established an
explicit link between treedepth and tree decompositions, namely that treedepth is obtained
by minimizing the maximum number of forget nodes in a root-leaf-path over all nice tree
decompositions (see [20] for a definition). Many problems parameterized by treedepth allow
branching algorithms on elimination forests, also called treedepth decompositions, that match
the running time of the treewidth-algorithms, but replacing the dependence on treewidth by
treedepth, while only requiring polynomial space [8, 17, 29].

Our contribution. The Cut&Count technique reduces problems with connectivity con-
straints to counting problems of certain cuts, called consistent cuts. We show that for several
connectivity problems the associated problem implied by the Cut&Count technique can be
solved in time O∗(αd) and polynomial space, where α is a constant and d is the depth of a
given elimination forest. Furthermore, the base α matches the base in the running time of
the corresponding treewidth-algorithm. Concretely, given an elimination forest of depth d
for a graph G we prove the following results:

Connected Vertex Cover, Feedback Vertex Set, and Steiner Tree can be
solved in time O∗(3d) and polynomial space.
Connected Dominating Set and Connected Odd Cycle Transversal can be
solved in time O∗(4d) and polynomial space.

Related work. The Cut&Count technique leads to randomized algorithms as it relies on
the Isolation Lemma. At the cost of a worse base in the running time, Bodlaender et
al. [5] present a generic method, called the rank-based approach, to obtain deterministic
single-exponential-time algorithms for connectivity problems parameterized by treewidth; the
rank-based approach is also able to solve counting variants of several connectivity problems.
Fomin et al. [15] use matroid tools to, amongst other results, reobtain the deterministic
running times of the rank-based approach. In a follow-up paper, Fomin et al. [14] manage to

1 The O∗-notation hides polynomial factors in the input size.
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improve several of the deterministic running times using their matroid tools. Multiple papers
adapt the Cut&Count technique and rank-based approach to graph parameters different
from treewidth. Bergougnoux and Kanté [3] apply the rank-based approach to obtain single-
exponential-time algorithms for connectivity problems parameterized by cliquewidth. The
same authors [4] generalize, incurring a loss in the running time, this approach to a wider
range of parameters including rankwidth and mim-width. Pino et al. [30] use the Cut&Count
technique and rank-based approach to obtain fast deterministic and randomized algorithms
for connectivity problems parameterized by branchwidth.

Lokshtanov and Nederlof [23] present a framework using algebraic techniques, such
as Fourier, Möbius, and Zeta transforms, to reduce the space usage of certain dynamic
programming algorithms from exponential to polynomial. Fürer and Yu [17] adapt this
framework to the setting where the underlying set (or graph) is dynamic instead of static, in
particular for performing dynamic programming along the bags of a tree decomposition, and
obtain a O∗(2d)-time, where d is the depth of a given elimination forest, and polynomial-space
algorithm for counting perfect matchings. Using the same approach, Belbasi and Fürer [2]
design an algorithm counting the number of Hamiltonian cycles in time O∗((4k)d), where k is
the width and d the depth of a given tree decomposition, and polynomial space. Furthermore,
they also present an algorithm for the traveling salesman problem with the same running
time, but requiring pseudopolynomial space.

Organization. We describe the preliminary definitions and notations in Section 2. In
Section 3 we first discuss the Cut&Count setup and give a detailed exposition for Connected
Vertex Cover. Afterwards, we explain what general changes can occur for the other
problems and then discuss Feedback Vertex Set; the remaining problems can be found in
the full version. We conclude in Section 4. Proofs that are delegated to the full version [18]
are denoted by ?.

2 Preliminaries

2.1 Notation

Let G = (V,E) be an undirected graph. We denote the number of vertices by n and the
number of edges by m. For a vertex set X ⊆ V , we denote by G[X] the subgraph of G that is
induced by X. The open neighborhood of a vertex v is given by N(v) = {u ∈ V | {u, v} ∈ E},
whereas the closed neighborhood is given by N [v] = N(v)∪{v}. We extend these notations to
sets X ⊆ V by setting N [X] =

⋃
v∈X N [v] and N(X) = N [X] \X. Furthermore, we denote

by cc(G) the number of connected components of G.
A cut of a set X ⊆ V is a pair (XL, XR) with XL ∩XR = ∅ and XL ∪XR = X, we also

use the notation X = XL ·∪XR. We refer to XL and XR as the left and right side of the cut,
respectively. Note that either side may be empty, although usually the left side is nonempty.

For two integers a, b we write a ≡ b to indicate equality modulo 2, i.e., a is even if and
only if b is even. We use Iverson’s bracket notation: for a predicate p, we have that [p]
is 1 if p is true and 0 otherwise. For a function f we denote by f [v 7→ α] the function
(f \ {(v, f(v))}) ∪ {(v, α)}. By F2 we denote the field of two elements. For a field or ring F
we denote by F[Z1, Z2, . . . , Zt] the ring of polynomials in the indeterminates Z1, Z2, . . . , Zt

with coefficients in F. With O∗ we hide polynomial factors, i.e. O∗(f(n)) = O(f(n)poly(n)).
For a natural number n, we denote by [n] the set of integers from 1 to n.
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2.2 Treedepth
I Definition 2.1. An elimination forest of an undirected graph G = (V,E) is a rooted forest
T = (V,ET ) such that for every edge {u, v} ∈ E either u is an ancestor of v in T or v is an
ancestor of u in T . The depth of a rooted forest is the largest number of nodes on a path
from a root to a leaf. The treedepth of G is the minimum depth over all elimination forests
of G and is denoted by td(G).

We slightly extend the notation for elimination forests used by Pilipczuk and Wrochna [29].
For a rooted forest T = (V,ET ) and a node v ∈ V we denote by tree[v] the set of nodes
in the subtree rooted at v, including v. By tail[v] we denote the set of all ancestors of v,
including v. Furthermore, we define tree(v) = tree[v] \ {v}, tail(v) = tail[v] \ {v}, and
broom[v] = {v} ∪ tail(v) ∪ tree(v). By child(v) we denote the children of v.

Note that an elimination forest T of a connected graph consists only of a single tree.

2.3 Isolation Lemma
I Definition 2.2. A function w : U → Z isolates a set family F ⊆ 2U if there is a unique
S′ ∈ F with w(S′) = minS∈F w(S), where for subsets X of U we define w(X) =

∑
u∈X w(u).

I Lemma 2.3 (Isolation Lemma, [24]). Let F ⊆ 2U be a nonempty set family over a universe
U . Let N ∈ N and for each u ∈ U choose a weight w(u) ∈ [N ] uniformly and independently
at random. Then P[w isolates F ] ≥ 1− |U |/N .

When counting objects modulo 2 the Isolation Lemma allows us to avoid unwanted
cancellations by ensuring with high probability that there is a unique solution. In our
applications, we will choose N so that we obtain an error probability of less than 1/2.

3 Cut&Count

In this section G = (V,E) always refers to a connected undirected graph. For the sake of a
self-contained presentation, we state the required results, with their proofs in the appendix,
for the Cut&Count technique again, mostly following the presentation of Cygan et al. [11].
Our approach only differs from that of Cygan et al. [11] in the counting sub-procedure.

We begin by describing the Cut&Count setup and then present the counting sub-procedure
for Connected Vertex Cover. Afterwards we explain how to adapt the counting sub-
procedure for the other problems. Our exposition is the most detailed for Connected
Vertex Cover, whereas the analogous parts of the other problems will not be discussed in
such detail.

3.1 Setup
Suppose that we want to solve a problem on G involving connectivity constraints, then we
can make the following general definitions. The solutions to our problem are subsets of a
universe U which is related to G. Let S ⊆ 2U denote the set of solutions and we want to
determine whether S is empty or not. The Cut&Count technique consists of two parts:

The Cut part: We relax the connectivity constraints to obtain a set S ⊆ R ⊆ 2U of
possibly connected solutions. The set Q will contain pairs (X,C) consisting of a candidate
solution X ∈ R and a consistent cut C of X, which is defined in Definition 3.1.
The Count part: We compute |Q| modulo 2 using a sub-procedure. The consistent cuts
are defined so that non-connected candidate solutions X ∈ R\S cancel, because they are
consistent with an even number of cuts. Hence, only connected candidates X ∈ S remain.
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If |S| is even, then this approach does not work, because the connected solutions would
cancel out as well when counting modulo 2. To circumvent this difficulty, we employ the
Isolation Lemma (Lemma 2.3). By sampling a weight function w : U → [N ], we can instead
count pairs with a fixed weight and it is likely that there is a weight with a unique solution
if a solution exists at all. Formally, we compute |Qw| modulo 2 for every possible weight w,
where Qw = {(X,C) ∈ Q | w(X) = w}, instead of computing |Q| modulo 2.

I Definition 3.1 ([11]). A cut (VL, VR) of an undirected graph G = (V,E) is consistent
if u ∈ VL and v ∈ VR implies {u, v} /∈ E. A consistently cut subgraph of G is a pair
(X, (XL, XR)) such that X ⊆ V and (XL, XR) is a consistent cut of G[X]. For V ′ ⊆ V , we
denote the set of consistently cut subgraphs of G[V ′] by C(V ′).

To ensure that connected solutions are not compatible with an even number of consistent
cuts, we will usually force a single vertex to the left side of the consistent cut. This results
in the following fundamental property of consistent cuts.

I Lemma 3.2 (?, [11]). Let X be a subset of vertices such that v1 ∈ X ⊆ V . The number of
consistently cut subgraphs (X, (XL, XR)) such that v1 ∈ XL is equal to 2cc(G[X])−1.

With Lemma 3.2 we can distinguish disconnected candidates from connected candidates
by determining the parity of the number of consistent cuts for the respective candidate. We
determine this number not for a single candidate but we determine the total for all candidates
with a fixed weight. Corollary 3.3 encapsulates the Cut&Count technique for treedepth.

I Corollary 3.3 (?). Let S ⊆ 2U and Q ⊆ 2U×(V×V ) such that the following two properties
hold for every weight function w : U → [2|U |] and target weight w ∈ N:

1. |{(X,C) ∈ Q | w(X) = w}| ≡ |{X ∈ S | w(X) = w}|,

2. There is an algorithm CountC(w, w, T ) accepting weights w : U → [N ], a target weight w,
and an elimination forest T , such that CountC(w, w, T ) ≡ |{(X,C) ∈ Q | w(X) = w}|.

Then Algorithm 1 returns false if S is empty and true with probability at least 1/2 otherwise.

Algorithm 1 Cut&Count.

Input: Set U , elimination forest T , procedure CountC accepting w : U → [N ], w ∈ N
1 for v ∈ U do
2 Choose w(v) ∈ [2|U |] uniformly at random;
3 for w = 1, . . . , 2|U |2 do
4 if CountC(w, w, T ) ≡ 1 then return true;
5 return false;

We will use the same definitions as Cygan et al. [11] for Q and S, hence it follows from
their proofs that Condition 1 in Corollary 3.3 is satisfied. Our contribution is to provide the
counting procedure CountC for problems parameterized by treedepth.

Given the sets S, R, and Q, and a weight function w : U → [N ], we will define for
every weight w the sets Sw = {X ∈ S | w(X) = w}, Rw = {X ∈ R | w(X) = w}, and
Qw = {(X,C) ∈ Q | w(X) = w}.
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3.2 Connected Vertex Cover

Connected Vertex Cover
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there a set X ⊆ V , |X| = k, such that G[X] is connected and X is a vertex cover

of G, i.e., e ∩X 6= ∅ for all e ∈ E?

In the considered problems, one usually seeks a solution of size at most k. For con-
venience we choose to look for a solution of size exactly k and solve the other case
in the obvious way. We define the objects needed for Cut&Count in the setting of
Connected Vertex Cover. We let U = V and define the candidate solutions by
R = {X ⊆ V | X is a vertex cover of G and |X| = k}, and the solutions are given by
S = {X ∈ R | G[X] is connected}.

To ensure that a connected solution is consistent with an odd number of cuts, we choose a
vertex v1 that is always forced to the left side of the cut (cf. Lemma 3.2). As we cannot be sure
that there is a minimum connected vertex cover containing v1, we take an edge {u, v} ∈ E
and run Algorithm 1 once for v1 := u and once for v1 := v. Hence, for a fixed choice of v1 we
define the candidate-cut-pairs by Q = {(X, (XL, XR)) ∈ C(V ) | X ∈ R and v1 ∈ XL}. We
must check that these definitions satisfy the requirements of Corollary 3.3.

I Lemma 3.4 (?, [11]). Let w : V → [N ] be a weight function, and let Q and S be as defined
above. Then we have for every w ∈ N that |Sw| ≡ |Qw|.

Next, we describe the procedure CountC for Connected Vertex Cover.

Algorithm 2 CountC for Connected Vertex Cover.

Input: Elimination forest T , weights w : V → [2n], target weight w ∈ [2n2]
1 Let r denote the root of T ;
2 P := calc_poly_inc(r, ∅);
3 return the coefficient of Zw

WZk
X in P ;

Algorithm 3 calc_poly_exc(v, f).

Input: Elimination forest T , weights w : V → [2n], vertex v ∈ V , previous choices
f : tail[v]→ {1L,1R,0}

1 if v is a leaf of T then return the result of equation (1);
2 else
3 P := 1;
4 for u ∈ child(v) do // cf. equation (2)

5 P := P · calc_poly_inc(v, f);
6 return P ;

I Lemma 3.5. Given a connected graph G = (V,E), a vertex v1 ∈ V , an integer k, a weight
function w : V → [2n], and an elimination forest T of G of depth d, we can determine
|Qw| modulo 2 for every 0 ≤ w ≤ 2n2 in time O∗(3d) and polynomial space. In particular,
Algorithm 2 determines |Qw| modulo 2 for a specified target weight w in the same time and
space.
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Algorithm 4 calc_poly_inc(v, g).

Input: Elimination forest T , weights w : V → [2n], vertex v ∈ V , previous choices
g : tail(v)→ {1L,1R,0}

1 for s ∈ {1L,1R,0} do
2 Ps := calc_poly_exc(v, g[v 7→ s]);

3 return P1L
Z

w(v)
W ZX + P1R

Z
w(v)
W ZX + P0; // cf. equation (3)

Proof. For the discussion of the algorithm, it is convenient to drop the cardinality constraint
in R and Q and to define these sets for every induced subgraph G[V ′] of G. Hence, we
define for every V ′ ⊆ V the set R̂(V ′) = {X ⊆ V ′ | X is a vertex cover of G[V ′]} and the
set Q̂(V ′) = {(X, (XL, XR)) ∈ C(V ′) | X ∈ R(V ′) and (v1 ∈ V ′ → v1 ∈ XL)}.

Similar to Pilipczuk and Wrochna [29], our algorithm will compute a multivariate poly-
nomial in the formal variables ZW and ZX , where the coefficient of Zw

WZi
X is the cardinality

of Q̂i
w(V ) = {(X,C) ∈ Q̂(V ) | w(X) = w, |X| = i} modulo 2, i.e., the formal variables track

the weight and size of candidate solutions. In particular, we have that Q̂k
w = Qw for every w.

Polynomials act as an appropriate data structure, because addition and multiplication of
polynomials naturally updates the weight and size trackers correctly.

The output polynomial is computed by a branching algorithm (see Algorithm 2) that
starts at the root r of the elimination forest T and proceeds downwards to the leaves. At
every vertex we branch into several states, denoted states = {1L,1R,0}. The interpretation
of the states 1L and 1R is that the vertex is inside the vertex cover and the subscript denotes
to which side of the consistent cut it belongs. Vertices that do not belong to the vertex cover
have state 0.

For each vertex v there are multiple subproblems on G[broom[v]]. When solving a
subproblem, we need to take into account the choices that we have already made, i.e.,
the branching decisions for the ancestors of v. At each vertex we compute two different
types of polynomials, which correspond to two different kinds of partial solutions. Those
that are subsets of tree(v) and respect the choices made on tail[v] and those that are
subsets of tree[v] and respect the choices made on tail(v). Distinguishing these two
types of partial solutions is important when v has multiple children in T . Formally, the
previous branching decisions are described by assignments f or g from tail[v] or tail(v) to
{1L,1R,0} respectively.

For every vertex v and assignment f : tail[v]→ {1L,1R,0} we define the partial solutions
at v, but excluding v, that respect f by

P(v)(f) = {(X, (XL, XR)) ∈ C(tree(v)) | X ′ = X ∪ f−1({1L,1R}),

C ′ = (XL ∪ f−1(1L), XR ∪ f−1(1R)), (X ′, C ′) ∈ Q̂(broom[v])}.

So, P(v)(f) consists of consistently cut subgraphs (X, (XL, XR)) of G[tree(v)] that are
extended by f to valid candidate-cut-pairs (X ′, C ′) for G[broom[v]], meaning that X ′ is a
vertex cover of G[broom[v]] and C ′ is a consistent cut of X ′.

Very similarly, for every vertex v and assignment g : tail(v)→ {1L,1R,0} we define the
partial solutions at v, possibly including v, that respect g by

P[v](g) = {(X, (XL, XR)) ∈ C(tree[v]) | X ′ = X ∪ g−1({1L,1R}),

C ′ = (XL ∪ g−1(1L), XR ∪ g−1(1R)), (X ′, C ′) ∈ Q̂(broom[v])}.

Thus, for the root r of T we have P[r](∅) = Q̂(V ).
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We keep track of the partial solutions P(v)(f) and P[v](g) using polynomials which we
define now. For every vertex v and assignment f : tail[v]→ {1L,1R,0} we will compute a
polynomial P(v)(f) ∈ F2[ZW , ZX ] where P(v)(f) =

∑2n2

w=0
∑n

i=0 cw,iZ
w
WZi

X and

cw,i = |{(X,C) ∈ P(v)(f) | w(X) = w and |X| = i}| mod 2.

Similarly, for every vertex v and assignment g : tail(v) → {1L,1R,0} we will compute a
polynomial P[v](g) ∈ F2[ZW , ZX ] where P[v](g) =

∑2n2

w=0
∑n

i=0 c
′
w,iZ

w
WZi

X and

c′w,i = |{(X,C) ∈ P[v](g) | w(X) = w and |X| = i}| mod 2.

Algorithm 2 computes the polynomial P = P[r](∅), where r is the root of T , and extracts
the appropriate coefficient of P . To compute P we employ recurrences for P(v)(f) and P[v](g).
We proceed by describing the recurrence for P(v)(f).

In the case that v is a leaf node in T , i.e., tree(v) = ∅, we can compute P(v)(f) by

P(v)(f) = [f−1({1L,1R}) is a vertex cover of G[tail[v]]]
· [(f−1(1L), f−1(1R)) is a consistent cut of G[f−1({1L,1R})]]
· [v1 ∈ tail[v]→ f(v1) = 1L],

(1)

which checks whether the assignment f induces a valid partial solution. This is the only step
in which we explicitly ensure that we are computing only vertex covers; in all other steps
this will not be required. If v is not a leaf, then P(v)(f) is computed by the recurrence

P(v)(f) =
∏

u∈child(v)

P[u](f), (2)

which combines disjoint partial solutions. The equations (1) and (2) are used by Algorithm 3
to compute the polynomial P(v)(f).

We proceed by giving the recurrence that is used by Algorithm 4 to compute the
polynomial P[v](g):

P[v](g) = P(v)(g[v 7→ 1L])Zw(v)
W ZX + P(v)(g[v 7→ 1R])Zw(v)

W ZX + P(v)(g[v 7→ 0]). (3)

Equation (3) tests all three possible states for v in a candidate-cut-pair and multiplies by
Z

w(v)
W ZX if v is in the vertex cover to update the weight and size of the partial solutions.

Correctness. We will now prove the correctness of equations (1) through (3). First of
all, observe that when v1 ∈ tail[v] but f(v1) 6= 1L then we must have that P(v)(f) = 0;
similarly, we must have P[v](g) = 0 when g(v1) 6= 1L for v1 ∈ tail(v). This property is
ensured by equation (1) and preserved by the recurrences (2) and (3). To see that equation
(1) is correct, notice that when v is a leaf node in T we have that tree(v) = ∅ and hence
the only consistently cut subgraph of tree(v) is (∅, (∅, ∅)). Therefore, we only need to verify
whether this is a valid partial solution in P(v)(f), which reduces to the predicate on the
right-hand side of (1).

For equations (2) and (3), we have to establish bijections between the objects counted on
either side of the respective equation and argue that size and weight are updated correctly.
We proceed by proving the correctness of equation (2), which is the only equation where
the proof of correctness requires the special properties of elimination forests. We consider
any (X, (XL, XR)) ∈ P(v)(f). We can uniquely partition X into subsets Xu of tree[u] for
u ∈ child(v) by setting Xu = X ∩ tree[u]. Furthermore, by setting Xu

L = XL ∩ tree[u] and
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Xu
R = XR ∩ tree[u] we obtain (Xu, (Xu

L, X
u
R)) ∈ P[u](f), because we are only restricting the

vertex cover X ′ = X∪f−1({1L,1R}) and consistent cut (XL∪f−1(1L), XR∪f−1(1R)) to the
induced subgraph G[broom[u]] of G[broom[v]]. Vice versa, any combination of partial solutions
(Xu, (Xu

L, X
u
R)) ∈ P[u](f) for each u ∈ child(v) yields a partial solution (X, (XL, XR)) ∈

P(v)(f) as there are no edges in G between tree[u] and tree[u′] for u 6= u′ ∈ child(v) by
the properties of an elimination forest. Since the sets Xu partition X, we obtain the size
and weight of X by summing over the sizes and weights of the sets Xu respectively. Hence,
these values are updated correctly by polynomial multiplication.

It remains to prove the correctness of (3). This time, consider any (X, (XL, XR)) ∈ P[v](g).
Now, there are three possible cases depending on the state of v in this partial solution.
1. If v ∈ XL ⊆ X, then we claim that (X \{v}, (XL \{v}, XR)) ∈ P(v)(f), where f = g[v 7→

1L]. This is true due to the identities (X \{v})∪f−1({1L,1R}) = X∪g−1({1L,1R}), and
(XL \ {v})∪ f−1(1L) = XL ∪ g−1(1L), and XR ∪ f−1(1R) = XR ∪ g−1(1R), which mean
that this implicitly defined mapping preserves the definition of X ′ and C ′ in the predicates
of P[v](g) and P(v)(f). Vice versa, any partial solution in P(v)(f) can be extended to
such a partial solution in P(v)(g) by adding v to XL. Since |X| − |X \ {v}| = 1 and
w(X)−w(X \{v}) = w(v), multiplication by Zw(v)

W ZX updates size and weight correctly.
2. If v ∈ XR ⊆ X, the proof is analogous to case 1.
3. If v /∈ X, then we have that (X, (XL, XR)) ∈ P(v)(f), where f = g[v 7→ 0]. Vice versa,

any (X, (XL, XR)) ∈ P(v)(f) must also be in P[v](g). Since X does not change, we do not
need to update size or weight and do not multiply by further formal variables in this case.

If v = v1, then equation (3) simplifies to P[v](g) = P(v)(g[v 7→ 1L])Zw(v)
W ZX , because

P(v)(g[v 7→ 1R]) = P(v)(g[v 7→ 0]) = ∅ and hence only the first case occurs. Note that
by establishing these bijections in the proofs of correctness, we have actually shown that
equations (1) through (3) are also correct when working in Z instead of F2.

Time and Space Analysis. We finish the proof by discussing the time and space requirement.
Observe that the coefficients of our polynomials are in F2 and hence can be added and
multiplied in constant time. Furthermore, all considered polynomials consist of at most
polynomially many monomials as the weight and size of a candidate solution are polynomial
in n. Therefore, we can add and multiply the polynomials in polynomial time and hence
compute recurrences (1), (2), and (3) in polynomial time. Every polynomial P(v)(f) and
P[v](g) is computed at most once, because P(v)(f) is only called by P[v](g) where f is an
extension of g, i.e., f = g[v 7→ s] for some s ∈ states, and P[v](g) is only called by P(w)(g)
where w is the parent of v. Hence, the recurrences only make disjoint calls and no polynomial
is computed more than once. For a fixed vertex v there are at most 3d choices for f and g.
Thus, Algorithm 2 runs in time O∗(3d) for elimination forests of depth d. Finally, Algorithm 2
requires only polynomial space, because it has a recursion depth of 2d+ 1 and every recursive
call needs to store at most a constant number of polynomials, which require by the previous
discussion only polynomial space each. J

I Theorem 3.6. There is a Monte-Carlo algorithm that given an elimination forest of depth
d for a graph G solves Connected Vertex Cover on G in time O∗(3d) and polynomial
space. The algorithm cannot give false positives and may give false negatives with probability
at most 1/2.

Proof. We pick an edge {u, v} ∈ E and branch on v1 := u and v1 := v. We run Algorithm 1
with U = V and the procedure CountC as given by Algorithm 2. Correctness follows from
Corollary 3.3 and Lemma 3.4. Running time and space bound follow from Lemma 3.5. J
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We remark that calling Algorithm 2 for each target weight w ∈ [2n2] (as in Algorithm 1)
would redundantly compute the polynomial P = P[r](∅) several times, although it suffices to
compute P once and then look up the appropriate coefficient depending on w.

If one is interested in solving Weighted Connected Vertex Cover, then it is
straightforward to adapt our approach to polynomially-sized weights: instead of using ZX

to track the size of the vertex covers, we let it track their cost and change recurrence (3)
accordingly.

3.3 Adapting to Other Problems
The high-level structure of the counting procedure for the other problems is very similar
to that of Algorithm 2 for Connected Vertex Cover. One possible difference is that
we might have to consider the solutions over a more complicated universe U than just the
vertex set V . Also, we might want to keep track of more data of the partial solutions and
hence use more than just two formal variables for the polynomials. Both of these changes
occur for Feedback Vertex Set, which is presented in the next section. The equation
for the base case (cf. equation (1)) and the recurrence for P[v](g) (cf. equation (3)) are also
problem-dependent.

Time and Space Analysis. The properties that we require of the polynomials and equations
in the time and space analysis, namely that the equations can be evaluated in polynomial
time and every polynomial is computed at most once, remain true by the same arguments as
for Connected Vertex Cover. The running time essentially results from the number
of computed polynomials, which increases when we use more states for the vertices. Again
denoting the set of states by states, we obtain a running time ofO∗(|states|d) on elimination
forests of depth d. The space analysis also remains valid, because the recursion depth remains
2d+ 1 and for each call we need to store only a constant number of polynomials each using
at most polynomial space.

3.4 Feedback Vertex Set

Feedback Vertex Set
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there a set X ⊆ V , |X| = k, such that G−X is a forest?

Feedback Vertex Set differs from the other problems in that we do not have a positive
connectivity requirement, but a negative connectivity requirement, i.e., we need to ensure
that the remaining graph is badly connected in the sense that it contains no cycles. Cygan
et al. [11] approach this via the well-known Lemma 3.7.

I Lemma 3.7. A graph with n vertices and m edges is a forest if and only if it has at most
n−m connected components.

Applying Lemma 3.7 requires that we count how many vertices and edges remain after
deleting a set X ⊆ V from G. We do not need to count exactly how many connected
components remain, it suffices to enforce that there are not too many connected components.
We will achieve this, like Cygan et al. [11], by the use of marker vertices. In this case, our
solutions are pairs (Y,M) with M ⊆ Y , where we interpret Y as the forest that remains after
removing a feedback vertex set X and the marked vertices are represented by the set M . To
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bound the number of connected components, we want that every connected component of
G[Y ] contains at least one marked vertex. By forcing the marked vertices to the left side
of the cut, we ensure that candidates (Y,M) where G[Y ] has a connected component not
containing a marked vertex, in particular those with more than |M | connected components,
cancel modulo 2. The formal definitions are R = {(Y,M) |M ⊆ Y ⊆ V and |Y | = n− k},
and S = {(Y,M) ∈ R | G[Y ] is a forest, every connected component of G[Y ] intersects M},
and Q = {((Y,M), (YL, YR)) | (Y,M) ∈ R and (Y, (YL, YR)) ∈ C(V ) and M ⊆ YL}.

Since our solutions (Y,M) are pairs of two vertex sets, we need a larger universe to make
the Isolation Lemma, Lemma 2.3, work. We use U = V × {F,M}, hence a weight function
w : U → [N ] assigns two different weights w(v,F) and w(v,M) to a vertex v depending on
whether v is marked or not. To make these definitions compatible with Corollary 3.3 we
associate to each pair (Y,M) the set Y × {F} ∪M × {M} ⊆ U , which also allows us to
extend the weight function to such pairs (Y,M), i.e. w(Y,M) = w(Y × {F} ∪M × {M}).

I Lemma 3.8 (?, [11]). Let (Y,M) be such that M ⊆ Y ⊆ V . The number of consistently
cut subgraphs (Y, (YL, YR)) such that M ⊆ YL is equal to 2ccM (G[Y ]), where ccM (G[Y ]) is the
number of connected components of G[Y ] that do not contain any vertex from M .

To apply Lemma 3.7, we need to distinguish candidates by the number of edges, and
markers, in addition to the weight, hence we make the following definitions for j, `, w ∈ N:

Rj,`
w = {(Y,M) ∈ R | w(Y,M) = w, |E(G[Y ])| = j, |M | = `},
Sj,`

w = {(Y,M) ∈ S | w(Y,M) = w, |E(G[Y ])| = j, |M | = `},
Qj,`

w = {(Y,M, (YL, YR)) ∈ Q | w(Y,M) = w, |E(G[Y ])| = j, |M | = `}.

I Lemma 3.9 (?, [11]). Let w : U → [N ] be a weight function, and Q and S as defined
above. Then we have for every w ∈ N and j ∈ [n− k − 1] that |Sj,n−k−j

w | ≡ |Qj,n−k−j
w |.

Note that by Lemma 3.7 a Feedback Vertex Set instance has a solution X if and
only if there is a choice of w, j ∈ N and M ⊆ Y := V \X such that (Y,M) ∈ Sj,n−k−j

w .

I Lemma 3.10. Given a connected graph G = (V,E), an integer k, a weight function
w : U → [4n] and an elimination forest T of G of depth d, we can determine |Qj,n−k−j

w |
modulo 2 for every 0 ≤ w ≤ 4n2, 0 ≤ j ≤ m, in time O∗(3d) and polynomial space.

Proof. Again, we drop the cardinality constraints from R and Q and define for induced
subgraphs G[V ′] the variants R̂(V ′) = {(Y,M) | M ⊆ Y ⊆ V ′} and Q̂(V ′) = {((Y,M),
(YL, YR)) | (Y,M) ∈ R̂(V ′) and (Y, (YL, YR)) ∈ C(V ′) and M ⊆ YL}.

We will compute a multivariate polynomial in the formal variables ZW , ZY , ZE , ZM ,
where the coefficient of Zw

WZi
Y Z

j
EZ

`
M is the cardinality modulo 2 of

Q̂i,j,`
w = {((Y,M), C) ∈ Q̂(V ) | w(Y,M) = w, |Y | = i, |E(G[Y ])| = j, |M | = `}.

The coefficients of Zw
WZn−k

Y Zj
EZ

n−k−j
M for every w and j then yield the desired numbers.

For Feedback Vertex Set we require three states which are given by states =
{1,0L,0R}. The state 1 represents vertices inside the feedback vertex set; the states 0L and
0R represent vertices inside the remaining forest and the subscript denotes to which side
of the consistent cut a vertex belongs. Perhaps surprisingly, there is no state to represent
marked vertices. It turns out that it is not important which vertices are marked; it is sufficient
to know the number of marked vertices.

STACS 2020
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For every vertex v and assignment f : tail[v]→ {1,0L,0R} we define the partial solutions
at v, but excluding v, that respect f by

P(v)(f) = {((Y,M), (YL, YR)) ∈ Q̂(tree(v)) | Y ′ = Y ∪ f−1({0L,0R}),

C ′ = (YL ∪ f−1(0L), YR ∪ f−1(0R)), ((Y ′,M), C ′) ∈ Q̂(broom[v])}.

The partial solutions in P(v)(f) are consistently cut subgraphs (Y, (YL, YR)) of G[tree(v)]
where a subsetM of the left side is marked and the extension to (Y ′, C ′) by f is a consistently
cut subgraph of G[broom[v]].

Similarly, for every vertex v and assignment g : tail(v) → {1,0L,0R} we define the
partial solutions at v, possibly including v, that respect g by

P[v](g) = {((Y,M), (YL, YR)) ∈ Q̂(tree[v]) | Y ′ = Y ∪ g−1({0L,0R}),

C ′ = (YL ∪ g−1(0L), YR ∪ g−1(0R)), ((Y ′,M), C ′) ∈ Q̂(broom[v])}.

For every vertex v and assignment f : tail[v]→ {1,0L,0R} we will compute a polynomial
P(v)(f) ∈ F2[ZW , ZY , ZE , ZM ] where the coefficient of Zw

WZi
Y Z

j
EZ

`
M in P(v)(f) is given by

|{((Y,M), C) ∈ P(v)(f) | w(Y,M) = w, |Y | = i, |E(G[Y ])| = j, |M | = `}| mod 2.

For every vertex v and assignment g : tail(v)→ {1,0L,0R} we will compute a polynomial
P[v](g) ∈ F2[ZW , ZY , ZE , ZM ] where the coefficient of Zw

WZi
Y Z

j
EZ

`
M in P[v](g) is given by

|{((Y,M), C) ∈ P[v](g) | w(Y,M) = w, |Y | = i, |E(G[Y ])| = j, |M | = `}| mod 2.

The exponents of the monomials Zw
WZi

Y Z
j
EZ

`
M in P(v)(f) and P[v](g) range between 0 ≤

w ≤ 4n2, 0 ≤ i ≤ n, 0 ≤ j ≤ m, and 0 ≤ ` ≤ n.
We now present the recurrences used to compute the polynomials P(v)(f) and P[v](g). If

v is a leaf node in T , then we can compute P(v)(f) by

P(v)(f) = [(f−1(0L), f−1(0R)) is a consistent cut of G[f−1({0L,0R})]]. (4)

If v is not a leaf node, then we compute P(v)(f) by

P(v)(f) =
∏

u∈child(v)

P[u](f). (5)

To compute P[v](g) we use the recurrence

P[v](g) = P(v)(g[v → 1])
+P(v)(g[v → 0L]) Z

w(v,F)
W ZY Z

|N(v)∩tree[v]|
E

+P(v)(g[v → 0L]) Z
w(v,F)+w(v,M)
W ZY Z

|N(v)∩tree[v]|
E ZM

+P(v)(g[v → 0R]) Z
w(v,F)
W ZY Z

|N(v)∩tree[v]|
E .

(6)

This recurrence tests all three possible states for the vertex v and whether it is marked. In
the last case v has state 0L, but the formal variables ZW and ZM must be updated differently
from the case where v is not marked but has state 0L.

We will now prove the correctness of the equations (4) to (6). For the correctness of
equation (4), notice that tree(v) = ∅ when v is a leaf. Hence, Q̂(tree(v)) degenerates
to {((∅, ∅), (∅, ∅))} and we must check whether ((∅, ∅), (∅, ∅)) ∈ P(v)(f) which means that
((f−1({0L,0R}), ∅), (f−1(0L), f−1(0R))) ∈ Q̂(broom[v]) and checking the consistency of the
cut is the only nontrivial requirement in this case.
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The proof of correctness for equation (5) is similar to the proof for equation (2) of
Connected Vertex Cover. Any solution in P(v)(f) uniquely partitions into solutions in
P[u](f) for each u ∈ child(v). Vice versa, any combination of solutions for the children u of
v yields a unique solution in P(v)(f). The properties of an elimination forest are needed to
show that the union of consistent cuts remains a consistent cut. We omit further details.

To prove the correctness of equation (6) we consider a partial solution ((Y,M), (YL, YR)) ∈
P[v](g) and distinguish between four cases depending on the state of v.
1. If v /∈ Y , then ((Y,M), (YL, YR)) ∈ P(v)(f), where f = g[v 7→ 1], because there is no

constraint involving vertices with state 1. Vice versa, we have that any partial solution
((Y,M), (YL, YR)) ∈ P(v)(f) must also be in P[v](g). Since Y and M do not change, we
do not need to multiply by further formal variables.

2. If v ∈ YL ⊆ Y and v /∈ M , then ((Y \ {v},M), (YL \ {v}, YR)) ∈ P(v)(f), where
f = g[v 7→ 0L], because the definition of Y ′ and C ′ in the predicate in the definition of
P[v](g) and P(v)(f) do not change. Hence, we can also extend any partial solution of
P(v)(f) to such a partial solution of P[v](g) by adding v to YL. The number of vertices
in Y increase by 1, |E(G[Y ])| increases by |N(v) ∩ tree[v]|, and the weight increases by
w(v,F). Therefore, multiplication with Zw(v,F)

W ZY Z
|N(v)∩tree[v]|
E is the correct update.

3. If v ∈M ⊆ YL ⊆ Y , then ((Y \{v},M \{v}), (YL \{v}, YR)) ∈ P(v)(f), where f = g[v 7→
0L]. The argument is similar to case 2. Note that, again, the definition of Y ′ and C ′
do not change in the predicates. The set of marked vertices M does change, but we
only need to ensure that M remains a subset of the left side of the cut, which we do by
removing v from M . In addition to the changes in the number of vertices and edges from
case 2, the number of marked vertices has increased by 1 and the weight increases by an
additional w(v,M), to keep track of these changes we further multiply by Zw(v,M)

W ZM .
4. If v ∈ YR ⊆ Y , then the proof is analogous to case 2.
The running time and space bound follows from the general discussion in Section 3.3. J

I Theorem 3.11. There exists a Monte-Carlo algorithm that given an elimination forest of
depth d solves Feedback Vertex Set in time O∗(3d) and polynomial space. The algorithm
cannot give false positives and may give false negatives with probability at most 1/2.

Proof. We set U = V × {F,M}, but we need to slightly adapt the definition of S and
Q to be able to apply Corollary 3.3. We define S̃ = ∪n−k−1

j=0 ∪4n2

w=0 Sj,n−k−j
w and Q̃ =

∪n−k−1
j=0 ∪4n2

w=0Qj,n−k−j
w . Note that S is nonempty if and only if S̃ is nonempty by Lemma 3.7.

The procedure CountC is given by running the algorithm from Lemma 3.10 and for a given
target weight w adding up (modulo 2) the values of |Qj,n−k−j

w | for j = 0, . . . , n − k − 1,
thereby obtaining the cardinality of Q̃w modulo 2. The desired algorithm is then given by
running Algorithm 1. The correctness follows from Lemma 3.9 and Corollary 3.3 with S̃ and
Q̃ instead of S and Q. The running time and space bound follows from Lemma 3.10. J

Theorem 3.11 allows us to easily reobtain a result by Cygan et al. [11] on Feedback
Vertex Set parameterized by Feedback Vertex Set. Recently, this result has been
superseded by results of Li and Nederlof [21]; they present an O∗(2.7k)-time and exponential-
space algorithm and an O∗(2.8446k)-time and polynomial-space algorithm for this problem.

I Corollary 3.12 (?, [11]). There is a Monte-Carlo algorithm that given a feedback vertex
set of size s solves Feedback Vertex Set in time O∗(3s) and polynomial space. The
algorithm cannot give false positives and may give false negatives with probability at most
1/2.
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4 Conclusion

The Cut&Count technique of Cygan et al. [11] has provided single-exponential-time and
-space algorithms for many connectivity problems parameterized by treewidth. We have
shown that this technique is just as useful for parameterization by treedepth, where we have
obtained single-exponential-time and polynomial-space algorithms. Our algorithms run in
time O∗(αd), where α is a small constant and d is the depth of a given elimination forest.
The base α matches that obtained by Cygan et al. [11] for parameterization by treewidth.
Assuming SETH, this base is optimal for treewidth, or even pathwidth [11]. In principle,
since treedepth is a larger parameter than both treewidth and pathwidth, it may be possible
to obtain better running times when parameterizing by treedepth, possibly at the cost of
using exponential space. The style of construction, used to obtain lower bounds relative to
treewidth, used by Lokshtanov et al. [22] and Cygan et al. [11], necessitates long paths and
is thereby unsuitable for bounds relative to treedepth. Thus, the question remains whether
our running times are optimal; it is tempting to conjecture that they are.

While we have not given the proofs, our techniques also extend to other problems
like Connected Feedback Vertex Set and Connected Total Dominating Set.
However, there are several problems, including Cycle Cover and Longest Cycle, for
which Cygan et al. [11] obtain efficient algorithms, where it is yet unclear how to solve them
in polynomial space when parameterizing by treedepth. In particular, Hamiltonian Path
and Hamiltonian Cycle share the same issues, namely that the algorithms parameterized
by treewidth keep track of the degrees in the partial solutions and it is not clear how to do
that when branching on the elimination forest while only using polynomial space. Belbasi
and Fürer [2] can count Hamiltonian cycles in polynomial space, but their running time
also depends on the width of a given tree decomposition. An algorithm for any of these
problems parameterized by treedepth, with single-exponential running time and requiring
only polynomial space, would be quite interesting.
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Abstract
The discrete acyclic convolution computes the 2n + 1 sums∑

i+j=k

(i,j)∈[0,1,2,...,n]2

aibj

in O (n log n) time. By using suitable offsets and setting some of the variables to zero, this method
provides a tool to calculate all non-zero sums∑

i+j=k

(i,j)∈P ∩Z2

aibj

in a rectangle P with perimeter p in O (p log p) time.
This paper extends this geometric interpretation in order to allow arbitrary convex polygons P

with k vertices and perimeter p. Also, this extended algorithm only needs O
(
k + p(log p)2 log k

)
time.

Additionally, this paper presents fast algorithms for counting sub-cadences and cadences with 3
elements using this extended method.
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1 Introduction

The convolution is a well-known and very useful method, which is not only closely linked
to signal processing (e.g. [18]) but is also used to multiply polynomials (see [5, p. 905]) and
large numbers (e.g. [17] (written in German)) in quasi-linear time. The convolution can be
efficiently computed with the fast Fourier transform or its counterpart in residue class rings,
the number theoretic transform:
I Theorem 1. Let a = (a0, a1, a2, . . . , an) and b = (b0, b1, b2, . . . , bn) be two sequences. The
sequence c = (c0, c1, c2, . . . , c2n) with ck =

∑
i+j=k (aibj) can be computed in O (n logn)

operations.
The most well-known proofs use additions and multiplications of arbitrary complex

numbers. However, with the finite register lengths of real-world computers, one must either
cope with the roundoff errors or do all calculations in a different ring. In Appendix A, we
show that a suitable ring can be found deterministically in O

(
n(logn)2(log logn)

)
time if

the generalized Riemann hypothesis is true.
The convolution can also be interpreted geometrically: Let a = (a0, a1, a2, . . . , an) and

b = (b0, b1, b2, . . . , bn) be sequences. Then the convolution calculates the partial sums∑
i+j=k

(i,j)∈P∩Z2

aibj ,

where P is the square given by {(x, y) : 0 ≤ x, y ≤ n}.
This paper extends this geometric interpretation and shows that if P is an arbitrary

convex polygon with k vertices and perimeter p, the partial sums can be calculated in
O
(
k + p(log p)2 log k

)
time.

We also use this extended method to solve an open problem of a string pattern called
cadence. A cadence is given by an arithmetic progression of occurrences of the same character
in a string such that the progression cannot be extended to either side without extending
the string as well. For example, in the string 001001001 the indices (3, 6, 9) corresponding to
the “1”s form a 3-cadence. On the other hand, in the string 001010100 the indices (3, 5, 7)
corresponding to the “1”s do not form a 3-cadence since, for example, the index 1 is still
inside of the string.

3-cadences can be found naïvely in quadratic time. In the paper [2], a quasi-linear time
algorithm for detecting the existence of 3-cadences was proposed, but this algorithm also
detects false positives as the aforementioned string 001010100.

This paper fixes this issue and also extends the algorithm to the slightly more general
notion of (a, b, c)-partial-k-cadences. The resulting extended algorithm also allows counting
those partial-cadences with a given character of an alphabet Σ of a string with length n and
only needs O

(
n(logn)2) time. Using a method presented by Amir et al. in [2], this implies

that all (a, b, c)-partial-k-cadences can be counted in O
(
min(|Σ|n(logn)2, n3/2 logn)

)
time.

Furthermore, we show that the output of the counting algorithm also allows finding x
partial-cadences in O (xn) time.

This paper also gives similar results for 3-sub-cadences.
For the time complexity, we assume that arithmetic operations with O(logn) bits can be

done in constant time. In particular, we want to be able to get the remainder of a division
by a prime p < 2(2n log(2n))2 in constant time.

Also, in this paper, we assume a suitable alphabet. I.e. the characters are given by
sufficiently small integers in order to allow constant time reading of a given character in the
string and in order to allow sorting the characters.
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2 (Sub-)Cadences and Their Definitions

While the concept of cadences in the context of strings was already considered in [19] by
Van der Waerden, the term cadence dates back to 1964 and was first introduced by Gardelle
and Guilbaud in [8] (written in French). Since then, there were at least two other, slightly
different and non-equivalent definitions given by Lothaire in [15, Chapter 3.3] and Amir et
al. in [2].

This paper uses the most restrictive definition of the cadence, which was introduced by
Amir et al. in [2], and also uses their definition of the sub-cadence, which is equivalent to
Gardelle’s cadence in [8] and Lothaire’s arithmetic cadence in [15, Chapter 3.3].

A string S of length n is the concatenation S = S[1..n] = S[1]S[2]S[3] . . . S[n] of characters
from an alphabet Σ.
I Definition 2. A k-sub-cadence is a triple (i, d, k) of positive integers such that

S[i] = S[i+ d] = S[i+ 2d] = · · · = S[i+ (k − 1)d]

holds.
In this paper, cadences are additionally required to start and end close to the boundaries

of the string:
I Definition 3. A k-cadence is a k-sub-cadence (i, d, k) such that the inequalities i− d ≤ 0
and n < i+ kd hold.

Since for any k-sub-cadence the inequality i + (k − 1)d ≤ n holds, for any k-cadence
i+ (k − 1)d ≤ n < i+ kd holds. This implies k − 1 ≤ n−i

d < k and thereby k =
⌊
n−i
d

⌋
+ 1.

It is therefore sufficient to omit the variable k of a k-cadence (i, d, k) and just denote this
k-cadence by the pair (i, d).
I Remark 4 (Comparison of the Definitions).

The cadence as defined by Lothaire is just an ordered sequence of unequal indices such
that the corresponding characters are equal.
The cadence as defined by Gardelle and Guilbaud additionally requires the sequence to
be an arithmetic sequence.
The cadence as defined by Amir et al. and as used in this paper additionally requires that
the cadence cannot be extended in any direction without extending the string as well.
For the analysis of cadences with errors, we need two more definitions:

I Definition 5. A k-cadence with at most m errors is a tuple (i, d, k,m) of integers such
that i, d, k ≥ 1 and i − d ≤ 0 and n < i + kd hold and such that there are k −m different
integers πj ∈ {0, 1, 2, . . . , k − 1} with j = 1, 2, 3, . . . , k −m and

S[i+ π1d] = S[i+ π2d] = S[i+ π3d] · · · = S[i+ πk−md].

A particularly interesting case of cadences with errors is given by the partial-cadences in
which we know all positions where an error is allowed:
I Definition 6. For some different integers πj ∈ {0, 1, 2, . . . , k − 1} with j = 1, 2, 3, . . . , p,
a (π1, π2, π3, . . . , πp)-partial-k-cadence is a triple (i, d, k) of positive integers with i− d ≤ 0
and n < i+ kd such that

S[i+ π1d] = S[i+ π2d] = S[i+ π3d] · · · = S[i+ πpd]

hold.
In this paper, we will only consider the case of k − 3 errors. I.e. k-cadences with at most

k − 3 errors and (a, b, c)-partial-k-cadences for three different integer a, b, c ∈ {0, 1, ..., k − 1}.

STACS 2020
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3 3-Sub-Cadences and Rectangular Convolutions

It is a direct consequence of van der Waerden’s theorem that sufficiently large strings are
guaranteed to have sub-cadences of a given length:

I Theorem 7 (Existence of sub-cadences (Van der Waerden [19] (written in German), see
Lothaire [15, Chapter 3.3])).

Let Σ be an alphabet and k an integer. There exists an integer N = N(|Σ|, k) such that
every string containing at least N characters has at least one k-sub-cadence

However, this theorem does not provide the number of k-sub-cadences of a given string.
In this section, we will show that 3-sub-cadences with a given character of a string of

length n can be efficiently counted in O (n logn) time. We will also show that arbitrary
3-sub-cadences of a string of length n can be counted in O

(
n3/2(logn)1/2) time and that

both counting algorithms allow us to output x different 3-sub-cadences in O (xn) additional
time if at least x different 3-sub-cadences exist.

Let σ ∈ Σ be a character. We will now count all 3-sub-cadences with character σ.
Let (i, d) be a 3-sub-cadence. Since i+d = i+(i+2d)

2 holds, the position i+d of the middle
occurrence of σ only depends on the sum of the index i of first occurrence and the index
i+ 2d of the third occurrence but does not depend on the individual indices of those two
positions. Therefore, it is possible to determine the candidates for the middle occurrences
with the convolution of the candidates of the first occurrence and the candidates of the third
occurrence.

Let the sequence δ = (δ0, δ1, δ2, . . . , δn) be given by the indicator function for σ in S:

δi :=
{

1 if S[i] = σ

0 if S[i] 6= σ (this includes i = 0)

With this definition, the product δiδj is 1 if and only if S[i] = S[j] = σ and otherwise
is 0. Therefore ck =

∑
i+j=k (δiδj) = #{i : S[i] = S[k − i] = σ} counts in how many ways

the index k
2 lies in the middle of two σ. These partial sums can be calculated in O (n logn)

time by convolution.
If k is odd or S

[
k
2
]
6= σ holds, the index k

2 cannot be the middle index of a 3-sub-cadence.
If S

[
k
2
]

= σ holds, the indicator function δ k
2
is 1, and therefore δ k

2
δ k

2
= 1 holds as well.

Since the arithmetic progression (δ k
2
, 0, 3) consisting of three times the number δ k

2
is not a

3-sub-cadence, the output element ck contains one false positive. Additionally, for i+ j = k

with i 6= j and S[i] = S[j] = σ, the output element ck counts the combination δiδj as well as
δjδi.

Therefore,

sk :=
{
c2k−1

2 if S[k] = σ

0 if S[k] 6= σ

counts exactly the number of 3-sub-cadences with character σ such that the second occurrence
of σ has index k. The sum of the sk is the number of total 3-sub-cadences with character σ.

Also, for each sk 6= 0, all those sk 3-sub-cadences can be found in O(k) ⊆ O(n) time by
checking for each index i < k whether S[i] = S[k] = S[2k − i] = σ holds.

If the character σ is rare, we can also follow the idea of Amir et al. in [2] for detecting
3-cadences with rare characters: If all nσ occurrences of the character are known, the ck can
be computed in O(n2

σ) time by computing every pair of those occurrences. Therefore:
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I Theorem 8. For every character σ ∈ Σ, the 3-sub-cadences with σ can be counted in
O(n logn) time. Also, if all nσ occurrences of σ are known, the 3-sub-cadences with σ can
be counted in O(n2

σ) time.

Following the proof in [2], we can get all occurrences of every character by sorting
the input string in O (n logn) time. This implies that the algorithm needs at most
O
(∑

σ∈Σ min(n2
σ, n logn)

)
⊆ O

(
n

(n logn)1/2n logn
)

= O(n3/2(logn)1/2) time.

I Theorem 9. The number of all 3-sub-cadences can be counted in

O
(

min(|Σ|n logn, n3/2(logn)1/2)
)

time.

I Theorem 10. After counting at least x 3-sub-cadences, it is possible to output x 3-sub-
cadences in O(xn) time.

4 Non-Rectangular Convolutions

In this section, we will extend the geometric interpretation of the convolution and show that
for convex polygons P with k vertices and perimeter p it is possible to calculate the partial
sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

aibj

in O
(
k + p(log p)2 log k

)
time.

Let us imagine a graph where all integer coordinates (i, j) have the value f(i, j) := aibj .
We do not need the convolution in order to determine the sum of the function values in a given
rectangle since we can use the simple factorization

∑n
i=0
∑m
j=0 (aibj) =

(∑n
i=0 ai

)(∑m
j=0 bj

)
in O(n+m) time. However, the convolution provides the 2n partial sums on the 45◦-diagonals
in almost the same time of O ((n+m) log(n+m)).

We will now extend this geometric interpretation firstly to triangles with a vertical
cathetus and a horizontal cathetus, then to arbitrary triangles and lastly to convex polygons.
In order to do this, we will cover the given polygon P in polygons P+

p and P−m such that for
each integer point (i, j) the equality

#{P+
p |(i, j) ∈ P+

p } −#{P−m |(i, j) ∈ P−m} =
{

1 if (i, j) ∈ P
0 if (i, j) /∈ P

holds, and we define

(cp)k :=
∑
i+j=k

(i,j)∈P+
p ∩Z

2

aibj and (cm)k := −
∑
i+j=k

(i,j)∈P−m∩Z
2

aibj .

By construction, ck = (
∑

(cp)k) + (
∑

(cm)k) holds. However, if the edges and vertices of the
polygons P+

p and P−m contain integer points, we need to carefully decide for every of these
polygons, which edges and vertices are supposed to be included in the polygons and which
are excluded from the polygons.

I Lemma 11. Let P be a triangle with a vertical cathetus and a horizontal cathetus and
perimeter p. Let also the sequences a = (a0, a1, a2, . . . , an) and b = (b0, b1, b2, . . . , bn) be
given.

STACS 2020
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0

yl

yl+yu

2

yu

xl xl+xu

2
xu

P ′′

P ′

Figure 1 The right-angled triangle P in Lemma 11.

Then the partial sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

aibj

can be calculated in O
(
p(log p)2) time.

Proof. The proof will be symmetrical with regard to horizontal and vertical mirroring.
Therefore, without loss of generality, we will assume that P is oriented as in Figure 1.

We first initialize the output vector c = (cxl+yl
, cxl+yl+1, cxl+yl+2, . . . , cxu+yu) with zero.

This takes O (p) time.
In the following proof, we assume that both catheti are included in the polygon and that

the hypotenuse as well as its endpoints are excluded. If this is not the expected behavior,
we can traverse the edges in O (p) time and for each integer point (i, j) on the edge, we can
decrease/increase the corresponding ci+j by aibj if necessary.

If p is at most one, there is at most one integer point (i, j) in the triangle, and this point
can be found in constant time. In this case, we only have to increase ci+j by aibj .

If p is bigger than one, we will separate the triangle P into three disjoint parts as seen in
Figure 1.

The triangle P ′ of points with x-coordinate of at least
⌈
xl+xu

2
⌉
,

the triangle P ′′ of points with y-coordinate of at least
⌈
yl+yu

2
⌉
and

the red rectangle of points with x-coordinate of at most
⌈
xl+xu

2
⌉
− 1 and y-coordinate of

at most
⌈
yl+yu

2
⌉
− 1.

There are no integers bigger than
⌈
xl+xu

2
⌉
− 1 but smaller than

⌈
xl+xu

2
⌉
nor integers

bigger than
⌈
yl+yu

2
⌉
− 1 but smaller than

⌈
yl+yu

2
⌉
− 1. Therefore, each integer point in P is

in exactly one of the three parts.
For the red rectangle, we can calculate the convolution and thereby get the corresponding

partial sums in O (p log p) time. The partial sums corresponding to the sub-triangles are
calculated recursively. Increasing the ck by the partial results leads to the final result.

Hence, the algorithm takes

O

p+

log2 p∑
i=0

2i
( p

2i log p

2i
)+ 2log2 p

 ⊆ O(log p∑
i=0

p log p
)

= O
(
p(log p)2)

time. J

We will now further extend this result to arbitrary triangles:
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0 0

yl yl

yu yu

xl xlxu xu

Figure 2 The two possible triangles P in Lemma 12.

I Lemma 12. Let a triangle P with perimeter p and sequences a = (a0, a1, a2, . . . , an) and
b = (b0, b1, b2, . . . , bn) be given.

Then the partial sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

aibj

can be calculated in O
(
p(log p)2) time.

Proof. Let xl, yl, xu, yu be the minimal and maximal x-coordinates and y-coordinates of the
three vertices of the polygon P . As in the last lemma, we first initialize the output vector
c = (cxl+yl

, cxl+yl+1, cxl+yl+2, . . . , cxu+yu).
Similarly to the last lemma, we can remove/add edges and vertices in linear time with

respect to p. Since the number of edges and vertices is constant, we ignore them for the sake
of simplicity.

Let R be the rectangle {(x, y)|xl < x < xu ∧ yl < y < yu}. Since R has four edges but P
only has three vertices, at least one of the vertices of P is also a vertex of R. Without loss of
generality, this vertex is (xl, yl).

Case 1: The opposing vertex (xu, yu) in R also coincides with a vertex of P (as in the
left-hand side of Figure 2):
Without loss of generality, we can assume that the third vertex of P is above the diagonal
from (xl, yl) to (xu, yu). In this case, the partial sums corresponding to P are given by
the sum of the partial sums of the red triangles and the partial sums of the blue rectangle
minus the partial sums of the lighter triangle.
There are only three triangles and one rectangle involved, and each of those polygons
has perimeter O (p). Furthermore, all triangles have a vertical cathetus and a horizontal
cathetus. Therefore, using Lemma 11, we can calculate all partial sums in O

(
p(log p)2)

time.
Case 2: The opposing vertex (xu, yu) in R does not coincide with a vertex of P (as in the

right-hand side of Figure 2):
In this case, one vertex of P lies on the right edge of R and one vertex of P lies on the
upper edge of R.
The wanted partial sums are in this case the difference of the partial sums of the rectangle
and of the partial sums of the three red triangles. Again, we can calculate all partial
sums in O

(
p(log p)2) time.

Since both cases require O
(
p(log p)2) time, this concludes the proof. J

STACS 2020
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0

yl

yu

xl xu

Figure 3 A regular k-gon. All chords from the leftmost vertex to the vertices on the right-hand
side of the k-gon are at least p

4 long. The sum of all chords’ lengths is therefore Θ (kp).

Now we will extend this algorithm to convex polygons with k vertices by dissecting them
into k − 2 triangles by adding k − 3 chords. Since the time complexity of the triangular
convolution given by Lemma 12 depends on the sum of the triangles’ perimeters, it is not
sufficient to just select one vertex and connect it with every other vertex in the polygon (see
Figure 3). On the other hand, the triangulation algorithm itself should not take longer than
the convolutions. Additionally, the order in which the chords are added does not matter for
the convolutions. We will show that for convex polygons there is a triangulation which can
be computed in linear time and only increases the perimeter by the factor O (log k).

0 0

yl yl

yu yu

xl xlxu xu

B
C

D

A

V1

V2

V3

V4

V5

V6V7

P ′

Figure 4 Two possible convex polygons P with more than 3 vertices in Lemma 13.

I Theorem 13. Let P be a convex polygon with k vertices and perimeter p. Let also the
sequences a = (a0, a1, a2, . . . , an) and b = (b0, b1, b2, . . . , bn) be given.

Then the partial sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

aibj

can be calculated in O
(
k + p(log p)2 log k

)
time.

Proof. As in the last two Lemmata, we define xl, yl, xu, yu to be the minimal and maximal
x-coordinates and y-coordinates of the k vertices of P . Also, we first initialize the output
vector c = (cxl+yl

, cxl+yl+1, cxl+yl+2, . . . , cxu+yu). We further assume that none of the edges
and vertices of P is included in P .

If P is a triangle, then this Lemma simplifies to Lemma 12 and there is nothing left to
prove.

If P is a quadrilateral ABCD, as in the left-hand side of Figure 4, then it can be partitioned
into the triangles ABD and CDB where the edge BD is included in exactly one triangle and
all other edges are excluded. The triangle inequality proves that |BD| ≤ |DA|+ |AB| and
|BD| ≤ |BC|+ |CD| hold. Therefore, both triangles have a perimeter of at most p. This
implies that the partial sums can be calculated in O

(
p(log p)2).
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If P is a polygon V1V2V3 . . . Vk with more than four vertices, as in the right-hand side of
Figure 4, it can be partitioned into

the polygon P ′ = V1V3V5 . . . V2d k
2 e−1, which is given by the odd vertices without its

edges,
the red triangles ViVi+1Vi+2 with i = 1, 3, 5, . . . , 2

⌈
k
2
⌉
− 3 including the edge ViVi+2 but

excluding the other edges and the vertices,
if k is even, the triangle Vk−1Vk including the edge Vk−1Vk+1 but excluding the other
edges and the vertices.

By construction and triangle inequality, the perimeter p′ of P ′ is at most p. This, however,
also implies that the total perimeter

∑
pi of the triangles is at most 2p. The inequality∑

min
(
1, pi(log pi)2) ≤ k +

∑(
pi(log p)2) ≤ k + p(log p)2

implies that the algorithm needs O
(
k + p(log p)2) time plus the time we need for processing

P ′. Since each step almost halves the number of vertices, we need O (log k) steps. This
results in a total time complexity of O

(
k + p(log p)2 log k

)
. J

5 (a,b,c)-Partial-k-Cadences

In this section, we will show how the non-rectangular convolution helps counting the (a, b, c)-
partial-k-cadences as defined in Definition 6.

In particular, we will show that (a, b, c)-partial-k-cadences with a given character σ can
be counted in O

(
n(logn)2) time. We will further show that all (a, b, c)-partial-k-cadences

can be counted in O
(
min(|Σ|n(logn)2, n3/2 logn)

)
time and that both counting algorithms

allow us to output x of those partial-cadences in O (xn) time.
As a special case, these results also hold for 3-cadences.
We further conclude from these results that the existence of k-cadences with at most k−3

errors as defined in Definition 5 can be detected in O
(
min(|Σ|k3n(logn)2, k3n3/2 logn)

)
time.

Without loss of generality, we will only deal with the case a < b in this section.

I Lemma 14. Three positions x, y and z form a (a, b, c)-partial-k-cadence if and only if
the equation y−x

b−a = z−y
c−b ∈ Z holds,

the equation S[x] = S[y] = S[z] holds and
the inequalities

0 ≥ (b+ 1)x− (a+ 1)y
b− a

, (1)

0 < bx− ay
b− a

, (2)

n ≥ (b− k + 1)x− (a− k + 1)y
b− a

and (3)

n < i+ kd = (b− k)x− (a− k)y
b− a

hold. (4)

Proof. Define d := y−x
b−a and i := x− ad. Then x = i+ ad and y = i+ bd. Furthermore, the

equation y−x
b−a = z−y

c−b holds if and only if z = i+ cd and y−x
b−a ∈ Z holds if and only if d is an

integer.
Additionally, using x = i+ ad and y = i+ bd, the four inequalities can be simplified to

0 ≥ i− d, 0 < i, n ≥ i+ (k − 1)d and n < i+ kd.
Therefore, the lemma follows from the definition of the partial-cadence. J
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x

y

0 1
4n

2
4n

2
4n

3
4n

(1)(2)

(3)

(4)

(n, n)

A

B

CD

Figure 5 The four inequalities of Lemma 14 for (1, 2, 3)-partial-4-cadences.

The four inequalities hold if the points (x, y) lie inside the convex quadrilateral given, as
shown in Figure 5, by the corners

A =
(
an

k
,
bn

k

)
B =

(
(a+ 1)n
k + 1 ,

(b+ 1)n
k + 1

)
C =

(
(a+ 1)n

k
,

(b+ 1)n
k

)
D =

(
an

k − 1 ,
bn

k − 1

)
including the vertex C and the edges between B and C as well as between C and D but
excluding all other vertices and the edges between A and B as well as between D and A.

For given x = i+ ad and y = i+ bd, the third occurrence z = i+ cd can be calculated
with the equation i+ cd = (b−c)(i+ad)+(c−a)(i+bd)

b−a directly without calculating i and d first.
The corresponding partial sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

a i
(b−c)

b j
(c−a)

can be calculated by using the partial sums

ck =
∑
i+j=k

(i,j)∈P ′∩Z2

a′ib
′
j

with a′i :=
{
a i

b−c
if i ≡ 0 (mod b− c)

0 otherwise
and b′j :=

{
b j

c−a
if j ≡ 0 (mod c− a)

0 otherwise
and a poly-

gon P ′, which is derived from P by stretching the first coordinate by (b− c) and the second
coordinate by (c−a). The perimeter of P ′ is at most max(|b− c|, |c−a|) times the perimeter
of P . Using the quadrilateral P = ABCD with perimeter

p ≤ 2|Cx−Ax|+ 2|Cy−Ay| = 2
(

(a+ 1)n
k

− an

k

)
+ 2

(
(b+ 1)n

k
− bn

k

)
= 4n

k
∈ O

(n
k

)
,

the polygon P ′ has perimeter p′ ∈ O (n). This proves the following three theorems.
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I Theorem 15. For every character σ ∈ Σ, the (a, b, c)-partial-k-cadences with σ can be
counted in O(n(logn)2) time. Also, if all nσ occurrences of σ are known, the (a, b, c)-partial-
k-cadences with σ can be counted in O(n2

σ) time.

I Theorem 16. The number of all (a, b, c)-partial-k-cadences can be counted in

O
(

min(|Σ|n(logn)2, n3/2 logn)
)

time.

I Theorem 17. After counting at least x (a, b, c)-partial-k-cadences, it is possible to output
x (a, b, c)-partial-k-cadences in O(xn) time.

Since every 3-cadence is an (0, 1, 2)-partial-3-cadence, we also obtain the special case:

I Corollary 18. For every character σ ∈ Σ, the 3-cadences with σ can be counted in
O(n(logn)2) time. Also, if all nσ occurrences of σ are known, the 3-cadences with σ can be
counted in O(n2

σ) time.
Therefore, the number of all 3-cadences can be counted in

O
(

min(|Σ|n(logn)2, n3/2 logn)
)

time.

Also, after counting at least x 3-cadences, it is possible to output x 3-cadences in O(xn)
time.

Taking the sum over all possible triples (a, b, c), we can also search for k-cadences with at
most k − 3 errors. It can be checked in

O
(

min(|Σ|k3n(logn)2, k3n3/2 logn)
)

time whether the given string has a k-cadence with at most k − 3 errors. However, since
k-cadences with less than k− 3 errors are counted more than once, it seems to be difficult to
determine the exact number of k-cadences with at most k − 3 errors.

6 Conclusion

This paper extends convolutions to arbitrary convex polygons. One might wonder whether
these convolutions could be sped up or be further extended to non-convex polynomials.

Instead of just partitioning the interior of the polygon into triangles, it is also possible
to identify polygons by the difference of a slightly bigger but less complex polygon and a
triangle. However, if the algorithm presented in this paper is adapted to non-convex polygons,
it can generate self-intersecting polygons. While the time-complexity stays the same for
these polygons, it becomes hard to ensure that every vertex and every edge of the polygon is
counted exactly once.

Another approach is given by Levcopoulos and Lingas in [13]. This paper shows that
any simple polygon can be decomposed into convex components in O (k log k) time while
only increasing the total perimeter by the factor O (log k). This paper also shows that if the
input polygon is rectilinear, this partition only contains axis-aligned rectangles. Since the
convolution handles rectangles quicker and more easily than triangles, this saves a logarithm.
However, in general, it is not obvious how to transform arbitrary polygons into equivalent
simple rectilinear polygons in quasilinear time without blowing-up the number of vertices
too much.

The non-rectangular convolution, unlike the usual convolution, allows us to define a
dependence between the indices of the convoluted sequences. This dependence is not usable in
applications like the multiplication of polynomials, and for many signal processing applications
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this extended method does not seem to bring any benefits either. However, in order to count
the partial-cadences this dependence was essential. The non-rectangular convolution may
also have future applications in image processing and convolutional neural networks.

In terms of cadences, this paper presents algorithms to count and find sub-cadences,
cadences and partial-cadences with three elements. However, if there are linearly many
c-positions of (a, b, c)-partial-k-cadences, the knowledge of those partial-cadences does not
lead to a sub-quadratic-time-algorithm for determining the existence 4-cadences. On the
other hand, it is also not shown that this problem needs quadratic time.

Also, the time-complexity O (xn) for finding x 3-cadences is quite pessimistic. If there
are many 3-cadences, it is very likely that quite a few of these 3-cadences share one of their
occurrences. These occurrences can be found in O(n) time. On the other hand, in the string
10n−112n, for example, there are linearly many 3-cadences but every second occurrence and
every third occurrence only occurs in at most one of those 3-cadences.
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A Convolutions

It is well-known that the discrete acyclic convolution can be calculated with O (n logn)
complex arithmetic operations. However, if the convolution is calculated with the fast Fourier
transform, the finite register lengths introduce roundoff errors. These errors can propagate
and accumulate throughout the calculation.

Therefore, in order to calculate the convolution of integer sequences, it seems more
convenient to use the number theoretic transform, which is the generalization of the fast
Fourier transform from the field of the complex numbers to certain residue class rings.

In this section, we will show that after some precomputation in O
(
n(logn)2(log logn)

)
time it is possible to calculate these convolutions in O (n logn) time.

Agarwal and Burrus show in [1] that the circular convolution of two integer vectors of
length n can be efficiently computed modulo a prime p if p− 1 is a multiple of n. Therefore
we want to find a prime p in the infinite arithmetic progression {n+ 1, 2n+ 1, 3n+ 1, . . . }.

The prime number theorem states that the number π(N) of primes smaller than N

asymptotically behaves like N
logN . Furthermore, Dirichlet’s prime number theorem states

that for a given n and a sufficiently large N , the prime numbers are evenly distributed in all
residue classes mn+ r with gcd(n, r) = 1.

Therefore, for a given n and sufficiently large N , we should expect circa N
ϕ(n) logN prime

numbers of the form mn+ 1 that are smaller than N . However, the “sufficient largeness” of
N depends on n. Therefore, these theorems do not provide the number of suitable primes
smaller than the given number N .

Since the primes are expected to behave similarly in all coprime residue classes, Heath-
Brown suggests in [12] that the least prime of the form mn+ 1 is in O

(
n(logn)2). Wagstaff

gives in [20] a heuristic argument to this conjecture and provides numerical evidence. However,
the best proven upper bounds are much larger, even if the generalized Riemann hypothesis
is assumed.

Linnik proves in [14] that there are constants c and L such that for each n, r with
gcd(n, r) = 1, there is a prime of the form mn + r with mn + r < cnL. While Linnik
himself did not provide the values of c and L, there are some upper bounds: For example,
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Xylouris proves in [21] (written in German) that there is a c such that for each n, r with
gcd(n, r) = 1, there is a prime of the form mn+ r with mn+ r < cn5. More explicitly, Bach
and Sorenson present in [4] that if the generalized Riemann hypothesis holds, for each n, r
with gcd(n, r) = 1, there is a prime of the form mn+ r with mn+ r < 2(n logn)2.

Without a shortcut allowing us to check the existence of a prime in a given finite arithmetic
progression quickly, we have to test for each single number in this progression whether it is
prime.

Therefore, using only the generalized Riemann hypothesis, we cannot expect to find a
prime deterministically in o

(
(n logn)2

n

)
= o

(
n(logn)2), even if we use on average only a

constant time for each possible prime number.
Since this is already too slow for fast multiplications, numerous ways to solve or circumvent

this problem have been established:
Harvey and van der Hoeven propose in [10] a multiplication algorithm which uses
O (n logn) time by using the fast Fourier transform based on complex numbers.
Some algorithms use stronger assumptions for the distribution of prime numbers. For
example, Harvey and van der Hoeven use in [11] an unproven lower bound for the number
of Mersenne primes and in [9] they assume that the least prime of the form mn+ c is in
all coprime residue classes in O

(
ϕ(n)(logn)2). Also, Covanov and Thomé use in [6] an

unproven lower bound for the number of generalized Fermat primes.
Many algorithms do not use convolution of length n but divide the number into blocks
first and then use shorter convolutions over large rings. For example De et al. use the
ring Z[α]/ (pc, αm + 1) in [7].
While De et al. do not use it in their multiplication algorithm, they provide in [7] a
randomized algorithm to find a suitable prime in expected running time Õ((logn)3).

In the next theorem, we will show that the sieve of Eratosthenes comes close to the
theoretical minimum of O

(
n(logn)2) for finding all primes of the formmn+1 up to (n logn)2.

The lengths of these primes is at most 4 times the length of n. Therefore, such a prime
number pn is a good modulus for the convolution of length n or any of its divisors.

I Theorem 19. Let n be an integer. A prime pn ≡ 1 (mod n) with pn < 2(n logn)2 can be
found in O(n(logn)2 log log(n)) time.

Proof. The main idea is to use the sieve of Eratosthenes to first find all primes up to 2n logn
and then sieve only the numbers up to 2(n logn)2 that are congruent to 1 modulo n with
these primes.

On the one hand, since (2n logn)2 > 2(n logn)2 holds, all numbers left after the second
sieving are primes. On the other hand, the result of Bach and Sorenson in [4] guarantees
that if the generalized Riemann hypothesis holds, there is a prime left. Also, by construction,
all primes pn left fulfill this theorem.

It remains to be shown that this algorithm can be done in O(n(logn)2 log log(n)) time.
For the usual sieve of Eratosthenes, one prepares a Boolean array for the first 2n logn

numbers. Then, for each number that has not been marked as non-prime, every multiple is
marked as non-prime. Afterwards, all non-marked numbers are returned. The majority of
the time is spent for the marking. This takes

O

 2n logn∑
p=2

p is prime

2n logn
p

 = O

n logn
2n logn∑
p=2

p is prime

1
p

 = O (n(logn)(log logn))
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time. The last equality is given by Mertens in [16, p. 46] (written in German) and the
inequality log log(2n logn) < 2 log log(n).

For the second part, we have a much larger interval of numbers. However, since we
only have to consider the first residue class, only every n-th number has to be considered.
Therefore we need

O

 2n logn∑
p=2

p is prime

2(n logn)2

np

 = O

n(logn)2
2n logn∑
p=2

p is prime

1
p

 = O
(
n(logn)2(log logn)

)

markings. Using the extended Euclidean algorithm, for every prime p, we can find the
smallest f such that fp ≡ 1 (mod n) in O (log p) ⊆ O (logn) time. Summing up over all
primes, this takes

O

 2n logn∑
p=2

p is prime

logn

 ⊆ O (n(logn)2)
time.

This concludes the proof. J

It is not only possible to find a suitable modulus for the number theoretic transform, but
we can also find a suitable 2t-th root in the corresponding residue ring:

I Theorem 20. Let p2t be a prime with p2t ≡ 1 (mod 2t) and p2t < 2(2t log(2t))2.
A 2t-th root of unity modulo p2t can be found in O

(
(log p2t)3) time.

Proof. Let p2t = 1 + o2r for an odd number o.
Firstly, we will show that a residue qo is a 2r-th root of unity modulo p2t if and only if q

is a quadratic nonresidue modulo p2t .
Since p2t is prime, there is a primitive root a modulo p2t .
Let q ≡ ai. Then qo = aio has the order o2r

gcd(io,o2r) = 2r

gcd(i,2r) . Therefore, q
o has order 2r

if and only if i is odd. On the other hand, if i is even, then q is a quadratic residue, and if i
is odd, then q ≡ ai = a

(
a

i−1
2

)2
is a quadratic nonresidue. This implies that qo is a 2r-th

root of unity modulo p2t if and only if q is a quadratic nonresidue modulo p2t .
Ankeny shows in [3] that if the generalized Riemann hypothesis holds, there is a quadratic

nonresidue in the first O
(
(log p2t)2) residue classes. For any residue q it can be tested with

O (log p2t) multiplications and modulo operations whether qo has order 2r. As byproduct we
get (qo)(2r−t). If and only if qo has order 2r, the power (qo)(2r−t) has order 2t.

Therefore, a 2t-th root of unity modulo p2t can be found in O
(
(log p2t)3) time. J

Therefore, we can efficiently compute the integer convolution with the help of the number
theoretic transform.

I Theorem 21. For a given integer N , we can find a modulus pN and a suitable root qN
in O

(
N(logN)2(log logN)

)
time such that it is possible to calculate the acyclic convolution

modulo pN of two sequences of length n ≤ N in O (n logn) time afterwards.

Proof. The acyclic convolution of sequences of length n can be derived from a circular
convolution of sequences with lengths of at least 2n. Therefore, we will first prepare circular
convolutions of length 2T with 2N ≤ 2T < 4N .
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For this length, the last two theorems state that a suitable modulus pN and a suitable
2T -th root qN of unity can be found in O

(
N(logN)2(log logN)

)
.

Afterwards, for every n ≤ N we can append zeros to get the length 2t with 2n ≤ 2t < 4n.
Since 2t is a divisor of 2T , we can use (qN )(2T−t) as 2t-th root of unity.

This allows the calculation of the acyclic convolution modulo pN in O (n logn) time. J
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Abstract
Let G be an intersection graph of n geometric objects in the plane. We show that a maximum
matching in G can be found in O(ρ3ω/2nω/2) time with high probability, where ρ is the density of
the geometric objects and ω > 2 is a constant such that n× n matrices can be multiplied in O(nω)
time.

The same result holds for any subgraph of G, as long as a geometric representation is at hand.
For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian
elimination, with the fact that geometric intersection graphs have small separators.

We also show that in many interesting cases, the maximum matching problem in a general
geometric intersection graph can be reduced to the case of bounded density. In particular, a maximum
matching in the intersection graph of any family of translates of a convex object in the plane can be
found in O(nω/2) time with high probability, and a maximum matching in the intersection graph
of a family of planar disks with radii in [1,Ψ] can be found in O(Ψ6 log11 n+ Ψ12ωnω/2) time with
high probability.
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1 Introduction

Let U be a family of (connected and compact) objects in R2. The intersection graph GU
of U is the undirected graph with vertex set U and edge set

E(GU ) = {UV | U, V ∈ U , U ∩ V 6= ∅}.

If the objects in U are partitioned into two sets, one can also define the bipartite intersection
graph, a subgraph of GU , in the obvious way. Consider the particular case when U is a
set of disks. Then, we call GU a disk graph, and if all disks in U have the same radius, a
unit-disk graph. Unit disk graphs are often used to model ad-hoc wireless communication
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networks and sensor networks [11,14,29]. Disks of varying sizes and other shapes become
relevant when different sensors cover different areas. Moreover, general disk graphs serve as
a tool to approach other problems, like the barrier resilience problem [16].

We consider a classic optimization problem, maximum matching, in the setting of geometric
intersection graphs, and introduce two new techniques, each interesting in its own. First,
we provide an efficient algorithm to compute a maximum matching in any subgraph of the
intersection graph of geometric objects of low density. Second, we provide a sparsification
technique to reduce the maximum matching problem in a geometric intersection graph to
the case of low density. The sparsification works for convex shapes of similar sizes for which
certain range searching operations can be done efficiently.

In this paper, we use ω to denote a constant such that ω > 2 and any two n× n matrices
can be multiplied in time O(nω).1

Maximum matching in intersection graphs of geometric objects of low density

We first introduce some geometric concepts. The diameter of a set X ⊂ R2, denoted by
diam(X), is the supremum of the distances between any two points of X. The density ρ(U)
of a family U of objects is

ρ(U) = max
X⊆R2

∣∣{U ∈ U | diam(U) ≥ diam(X), U ∩X 6= ∅}
∣∣. (1)

One can also define the density by considering for X only disks. Since an object of diameter
d can be covered by O(1) disks of diameter d, this changes the resulting parameter by only a
constant. (See, for example, the book by de Berg et al. [6, Section 12.5] for such a definition.)
The depth (ply) of U is the largest number of objects that cover a single point:

max
p∈R2

∣∣{U ∈ U | p ∈ U}∣∣.
For disk graphs and square graphs, the depth and the density are linearly related; see for
example Har-Peled and Quanrud [13, Lemma 2.7]. More generally, bounded depth and
bounded density are equivalent whenever we consider homothets of a constant number of
shapes. Density and depth are usually considered in the context of realistic input models;
see de Berg et al. [7] for a general discussion.

Let Gρ be the family of subgraphs of intersection graphs of geometric objects in the plane
with density at most ρ. Our goal is to compute a maximum matching in graphs of Gρ,
assuming the availability of a geometric representation of the graph and a few basic geometric
primitives on the geometric objects. For this, we consider the density ρ as an additional
parameter. Naturally, the case ρ = O(1) of bounded density is of particular interest.

In a general graph G = (V,E) with n vertices and m edges, the best running time for
computing a maximum matching in G depends on the ratio m/n. The classic algorithm of
Micali and Vazirani [20,27] is based on augmenting paths, and it finds a maximum matching
in O(

√
nm) time. Mucha and Sankowski [22] use algebraic tools to achieve running time

O(nω). More recently, Mądry [19] showed that an approach through interior-point methods
yields an algorithm with running time roughly O(m10/7). As we shall see, for G ∈ Gρ, we
have m = O(ρn), and this bound is asymptotically tight. Thus, for G ∈ Gρ, the running
times of these three algorithms become O(ρn3/2), O(nω) and O

(
(ρn)10/7), respectively.

1 In the literature, it is more common to assume ω ≥ 2. We adopt the stronger assumption ω > 2 because
it simplifies the bounds. If ω = 2 is allowed, then the running times that we state have additional
logarithmic factors.
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There is a specialized algorithm for certain classes of bipartite geometric intersection
graphs. Efrat, Itai, and Katz [9] show how to compute the maximum matching in bipartite
unit disk graphs in O(n3/2 logn) time. Having bounded density does not help in this
algorithm; it has O(

√
n) rounds, each of which needs Ω(n) time. The same approach can

be used for other geometric shapes if a certain semi-dynamic data structure is available.
In particular, using the data structure of Kaplan et al. [15] for additively-weighted nearest
neighbors, finding a maximum matching in a bipartite intersection graph of disks takes
O(n3/2 polylogn) time. We are not aware of any similar results for non-bipartite geometric
intersection graphs.

We show that a maximum matching in a graph of Gρ with n vertices can be computed in
O(ρ3ω/2nω/2) = O(ρ3.56n1.19) time. The algorithm is randomized and succeeds with high
probability. It uses the algebraic approach by Mucha and Sankowski [23] for planar graphs
with an extension by Yuster and Zwick [28] for H-minor-free graphs. As noted by Alon and
Yuster [4], this approach works for hereditary2 graph families with bounded average degree
and small separators. We note that the algorithm can be used for graphs of Gρ, because we
have average degree O(ρ) and balanced separators of size O(√ρn) [13, 25]. However, finding
the actual dependency on ρ is difficult because it plays a role in the average degree, in the
size of the separators, and the algorithm has a complex structure with several subroutines
that must be distilled.

There are several noteworthy features in our approach. For one, we solve a geometric
problem using linear algebra, namely Gaussian elimination. The use of geometry is limited
to finding separators, bounding the degree, and constructing the graph explicitly. Note that
the role of subgraphs in the definition of Gρ is a key feature in our algorithm. On the one
hand, we need a hereditary family of graphs, as needed to apply the algorithm. On the other
hand, it brings more generality; for example, it includes the case of bipartite graphs defined
by colored geometric objects.

Compared to the work of Efrat, Itai, and Katz [9], our algorithm is for arbitrary subgraphs
of geometric intersection graphs, not only bipartite ones; it works for any objects, as it does
not use advanced data structures that may depend on the shapes. On the other hand, it needs
the assumption of low density. Compared to previous algorithms for arbitrary graphs and
ignoring polylogarithmic factors, our algorithm is faster when ρ = o(n(20−7ω)/(21ω−20)). Using
the current bound ω < 2.373, this means that our new algorithm is faster for ρ = O(n0.113).

Our matching algorithm also applies for intersection graphs of objects in 3-dimensional
space. However, in this case there is no algorithmic gain with the current bounds on ω: one
gets a running time of O(n2ω/3) when ρ = O(1), which is worse than constructing the graph
explicitly and using the algorithm of Micali and Vazirani or the algorithm of Mądry.

Sparsification – Reducing to bounded depth

Consider a family of convex geometric objects U in the plane where each object contains a
square of side length 1 and is contained in a square of side length Ψ ≥ 1. Our objective is to
compute a maximum matching in the intersection graph GU .3 Our goal is to transform this
problem to finding a maximum matching in the intersection graph of a subfamily U ′ ⊂ U
with bounded depth. Then we can employ our result from above for GU ′ or, more generally,
any algorithm for maximum matching (taking advantage of the sparsity of the new instance).

2 closed under taking subgraphs
3 Note that here we do not consider subgraphs of GU ; we need the whole subgraph GU .
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We describe a method that is fairly general and works under comparatively mild assump-
tions and also in higher dimensions. However, for an efficient implementation, we require that
the objects under considerations support certain range searching operations efficiently. We
discuss how this can be done for disks of arbitrary sizes, translates of a fixed convex shape in
the plane, axis-parallel objects in constant dimension, and (unit) balls in constant dimension.
In all these cases, we obtain a subquadratic time algorithm for finding a maximum matching,
assuming that Ψ is small. We mostly focus on the planar case, mentioning higher dimensions
as appropriate.

As particular results to highlight, we show that a maximum matching in the intersection
graph of any family of translates of a convex object in the plane can be found in O(nω/2)
time with high probability, and a maximum matching in the intersection graph of a family of
planar disks with radii in [1,Ψ] can be found in O(Ψ6 log11 n+ Ψ12ωnω/2) time with high
probability.

Organization

We begin with some general definitions and basic properties of geometric intersection graphs
(Section 2). Then, in the first part of the paper, we present the new algorithm for finding
a maximum matching in geometric intersection graphs of low density (Section 3). In the
second part, we present our sparsification method. This is done in two steps. First, we
describe a generic algorithm that works for general families of shapes that have roughly the
same size, assuming that certain geometric operations can be performed quickly. (Section 4).
Second, we explain how to implement these operations for several specific shape families,
e.g., translates of a given convex objects and disks of bounded radius ratio (Section 5). The
two parts are basically independent, where the second part uses the result from the first part
as a black box, to state the desired running times. All the proofs are deferred to the long
version [5].

2 Basics of (geometric intersection) graphs

Geometric objects

Several of our algorithms work under fairly weak assumptions on the geometric input: we
assume that the objects in U have constant description complexity. This means that the
boundary of each object is a continuous closed curve whose graph is a semialgebraic set,
defined by a constant number of polynomial equalities and inequalities of constant maximum
degree. For later algorithms we restrict attention to some particular geometric objects, like
disks or squares.

To operate on U , we require that our computational model supports primitive operations
that involve a constant number of objects of U in constant time, e.g., finding the intersection
points of two boundary curves; finding the intersection points between a boundary curve and
a disk or a vertical line; testing whether a point lies inside, outside, or on the boundary of
an object; decomposing a boundary curve into x-monotone pieces, etc. See, e.g., [15] for a
further discussion and justification of these assumptions.

We emphasize that in addition to the primitives on the input objects, we do not require
any special constant-time operations. In particular, even though our algorithms use algebraic
techniques such as fast matrix multiplication or Gaussian elimination, we rely only on
algebraic operations over Zp, where p = Θ(n4). Thus, when analyzing the running time of
our algorithms, we do not need to worry about the bit complexity of these operations.
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Figure 1 Splitting one single vertex of Z.

Geometric intersection graphs

The following well-known lemma bounds |GU | in terms of ρ, and the time to construct GU .

I Lemma 1. If U has n objects and density ρ, then GU has at most (ρ − 1)n edges (this
holds in any dimension). If U consists of objects in the plane, then GU can be constructed in
O(ρn logn) time.

Separators in geometric intersection graphs

The classic planar separator theorem by Lipton and Tarjan [8, 18] shows that any planar
graph can be decomposed in a balanced way by removing a small number of vertices. Even
though geometric intersection graphs can be far from planar, similar results are also available
for them. These results are usually parameterized by the depth of the arrangement or by the
area of the separator and the components [3, 10,21]. The following recent result provides a
small separator for general intersection graphs of bounded density.

I Theorem 2 (Lemma 2.21 in [13]). Let U be a set of n objects in R2 with density ρ. In
O(n) expected time, we can find a circle S such that S intersects at most c√ρn objects of U ,
the exterior of S contains at most αn elements of U , and the interior of S contains at most
αn elements of U . Here 0 < c and 0 < α < 1 are universal constants, independent of ρ and
n.

The proof of Theorem 2 goes roughly as follows: Pick a point in each object of U , compute
the smallest circle S′ (or an approximation thereof) that contains, say, n/20 points, and then
take a concentric scaled copy S of S′, with scale factor uniformly at random in [1, 2]. With
constant probability, the circle S′ has the desired property. This can be checked easily in
linear time by determining which objects of U are inside, outside, or intersected by S. In
expectation, a constant number of repetitions is needed to obtain the desired circle.

A family G of graphs is hereditary if for every G ∈ G, it holds that all subgraphs H of G
are also in G. By definition, our family Gρ of subgraphs of geometric intersection graphs
with density ρ is hereditary. A graph G is δ-sparse if every subgraph H of G has at most
δ|V (H)| edges. Lemma 1 implies that all graphs in Gρ are ρ-sparse.

Consider a graph G and a vertex v of G. A vertex split at v consists of adding a pendant
2-path vv′v′′, where v′ and v′′ are new vertices, and possibly replacing some edges uv incident
to v by new edges uv′′; see Figure 1 for a sequence of splits. We note that a vertex split may
not replace any edges. In this case, we are just adding a pendant path of length 2.

Let G′ be a graph obtained from G by a sequence of k vertex splits. Then, the size of
a maximum matching in G′ is the size of a maximum matching in G plus k. Furthermore,
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31:6 Maximum Matchings in Geometric Intersection Graphs

from a maximum matching in G′, we can easily obtain a maximum matching in G in
O(|V (G)|+ |E(G)|+ k) time. We will use vertex splits to ensure that the resulting graphs
have bounded degree and a vertex set of a certain cardinality. (A vertex split may change
the density, but that will not be important.) Note that if we perform a vertex split at v in a
graph of Gρ, in general we obtain a graph of Gρ+2 because we can represent it by making
two new copies of the object corresponding to v. Nevertheless, this increase in the density
will not be problematic in our algorithm.

3 Maximum matching in low-density geometric intersection graphs

3.1 Separators and separator trees
A graph G has a (k, α)-separation if V (G) can be partitioned into three pairwise disjoint
sets X,Y, Z such that |X ∪ Z| ≤ α|V |, |Y ∪ Z| ≤ α|V |, |Z| ≤ k, and such that there is no
edge with one endpoint in X and one endpoint in Y . We say that Z separates X and Y . At
the cost of making the constant α larger, we can restrict our attention to graphs of a certain
minimum size.

Theorem 2 gives a (c√ρn, α′)-separation for every graph of Gρ, for some constant α′ < 1.
(A separator in GU is a separator in each subgraph of GU .) Furthermore, such a separation
can be computed in expected linear time, if the objects defining the graph are available.

A recursive application of separations can be represented as a binary rooted tree. We will
use so-called (weak) separator trees, where the separator does not go into the subproblems.
In such a tree, we store the separator at the root and recurse on each side to obtain the
subtrees. We want to have small separators and balanced partitions at each level of the
recursion, and we finish the recursion when we get to problems of a certain size. This leads
to the following definition. Let γ > 0, 0 < β < 1, and 0 < α < 1 be constants. We say that
a graph G has a (γ, β, α)-separator tree if there is a rooted binary full tree T with the
following properties:
(i) Each node t ∈ T is associated with some set Zt ⊆ V (G).
(ii) The sets Zt, t ∈ T , partition V (G), i.e.,

⋃
t∈T Zt = V (G), and Zt ∩Zt′ = ∅, for distinct

t, t′ ∈ T .
(iii) For each node t ∈ T , let Vt =

⋃
s Zs, where s ranges over the descendants of t (including

t). Note that if t is an internal node with children u and v, then Vt is the disjoint union
of Zt, Vu, and Vv. If t is a leaf, then Vt = Zt.

(iv) For each internal node t ∈ T with children u and v, (Vu, Vv, Zt) is a (γmβ , α)-separation
for G[Vt], the subgraph of G induced by Vt, where m = |Vt| = |Zt|+ |Vu|+ |Vv|.

(v) For each leaf t ∈ T , we have |Vt| ≤ Θ(γ1/(1−β)). We have chosen the size so that Vt is
a (γ|Vt|β , α)-separator for the whole induced subgraph G[Vt].

Yuster and Zwick [28] provide an algorithm that computes a separator tree of some split
graph for a given graph from an H-minor-free family. As Alon and Yuster [4, Lemma 2.13]
point out, this algorithm actually works for any δ-sparse hereditary graph family, as long
as δ is constant. Thus, the result applies to Gρ. We revise the construction to make the
dependency on ρ explicit.

I Lemma 3. Given a graph G of Gρ with n vertices, we can compute in O(ρn logn) expected
time a vertex-split graph G′ of G and a separator tree T ′ for G′ with the following properties:
(i) the graph G′ has Θ(ρn) vertices and edges;
(ii) the maximum degree of G′ is at most 4;
(iii) T ′ is a (γ = O(ρ), β = 1/2, α)-separator tree for G′, where α < 1 is a constant

(independent of ρ and n).
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Note that the split graph G′ in Lemma 3 is not necessarily in Gρ. It is a subgraph of an
intersection graph, but since we introduce copies of geometric objects when we split vertices,
the density increases. In any case, this does not matter because G′ will be accessed through
the separator tree T ′.

3.2 Nested dissection
We will need to compute with matrices. The arithmetic operations take place in Zp, where
p = Θ(n4) is prime. Thus, we work with numbers of O(logn)-bits, and we simply need to
bound the number of arithmetic operations. Using a word-RAM model of computation, each
arithmetic operation needs constant time.

Let A be an n×n matrix. A Gaussian elimination step on row i is the following operation:
for j = i + 1, . . . , n, add an appropriate multiple of row i to row j so that the element at
position (j, i) becomes 0. Elimination on row i can be performed if the entry at position (i, i)
is nonzero. Gaussian elimination on A consists of performing Gaussian elimination steps on
rows i = 1, . . . , n − 1. This is equivalent to computing an LU decomposition of A, where
L is a lower triangular matrix with units along the diagonal, and U is an upper triangular
matrix. Gaussian elimination is performed without pivoting if, for all i, when we are about to
do a Gaussian elimination step on row i, the entry at position (i, i) is non-zero. If Gaussian
elimination is performed without pivoting, then the matrix is non-singular. (Pivoting is
permuting the rows to ensure that the entry at position (i, i) is non-zero.)

Let [n] = {1, . . . , n}. The representing graph G(A) of an n×n matrix A = (ai,j)i,j∈[n]
is

G(A) =
(

[n],
{
ij ∈

(
[n]
2

)
|ai,j 6= 0 or aj,i 6= 0

})
.

Let T be a separator tree for G(A). The row order of A is consistent with T if, whenever t′
is an ancestor of t, all the rows of Zt are before any row of Zt′ . We may assume that all the
rows of Zt are consecutive. In particular, if the rows are ordered according to a post-order
traversal of T , then the row order of A is consistent with T . A careful but simple revision of
the nested dissection algorithm by Gilbert and Tarjan [12] leads to the following theorem.

I Theorem 4. Let A be an n× n matrix such that the representing graph G(A) has bounded
degree and assume that we are given a (γ, β, α)-separator tree T for G(A), were γ > 0,
0 < α < 1, and 1/2 < β < 1 are constants. Furthermore, assume that the row order of A
is consistent with T and that Gaussian elimination on A is done without pivoting. We can
perform Gaussian elimination (without pivoting) on A and find a factorization A = LU of A
in O(γωnβω) time, where L is a lower triangular matrix with units along the diagonal and U
is an upper triangular matrix.

To prove Theorem 4, we need the following folklore lemma.

I Lemma 5. Let A be an n× n matrix, and k ≤ n. Suppose that Gaussian elimination on
the first k rows of A needs no pivoting. Then, we can perform Gaussian elimination on the
first k rows of A with O(n2kω−2) arithmetic operations.

Remark 1: Mucha and Sankowski [23] noted that the result holds when G(A) is planar or,
more generally, has recursive separators, using the approach by Lipton, Rose, and Tarjan [17]
for nested dissection. This approach is based on the strong separator tree. Alon, Yuster, and
Zwick [4, 28] showed that a similar result holds for graphs of bounded degree with recursive
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separators if one instead uses the nested dissection given by Gilbert and Tarjan [12]. In this
case, we need bounded degree, but a weak separator tree suffices. Again, since we want to
make the dependency on ρ explicit and since the analysis in terms of matrix multiplication
time does not seem to be written down in detail anywhere, we revise the method carefully.

Remark 2: Usually, the result is stated for symmetric positive definite matrices. Reindexing
a symmetric positive definite matrix gives another symmetric positive definite matrix, and
Gaussian elimination on such matrices can always be performed without pivoting. Thus, for
positive semidefinite matrices, we do not need to assume that the row order is consistent
with T because we can reorder the rows to make it consistent with T . However, Mucha and
Sankowski [23] do need the general statement in their Section 4.2, and they mention this
general case after their Theorem 13. Actually, they need it over Zp, where the concept of
positive definiteness is not even defined!

3.3 The algorithm
Assume we have a graph G of Gρ with n vertices and a geometric representation, i.e.,
geometric objects U of density at most ρ such that G is a subgraph of GU . We want to
compute a maximum matching for G. For this, we adapt the algorithm of Mucha and
Sankowski [23]. We provide an overview of the approach, explain the necessary modifications,
and emphasize the dependency on ρ in the different parts of the algorithm.

Using Lemma 3, we get in O(ρn logn) expected time a vertex-split graph G′ of G and a
separator tree T ′ for G′ such that:
(i) the graph G′ has Θ(ρn) vertices and edges;
(ii) the maximum degree of G′ is at most 4;
(iii) T ′ is a (γ = O(ρ), β = 1/2, α)-separator tree for G′, where α < 1 is a constant

(independent of ρ and n).
Since G′ is obtained from G by vertex splits, it suffices to find a maximum matching in G′.
We set m = |V (G′)| = Θ(ρn), and we label the vertices of G′ from 1 to m. We consider
the variables X = (xij)ij∈E(G′); i.e., each edge ij of G defines a variable xij . Consider the
m×m symbolic matrix A[X] = A[X](G′), defined as follows:

(A[X])i,j =


xij , if ij ∈ E(G′) and i < j,

−xij , if ij ∈ E(G′) and j < i,

0 otherwise.

The symbolic matrix A[X] is usually called the Tutte matrix of G′. It is known [24] that the
rank of A[X] is twice the size of the maximum matching in G′. In particular, G′ has a perfect
matching if and only if det(A[X]) is not identically zero. Take a prime p = Θ(n4), and
substitute each variable in A[X] with a value from Zp, each chosen independently uniformly at
random. Let A be the resulting matrix. Then, with high probability, rank(A) = rank(A[X]),
where on both sides we consider the rank over the field Zp.

From maximum matching to perfect matching

Let B = AAT . Then, B is symmetric, and the rank of B equals the rank of A. Note that
(B)i,j is nonzero only if i and j share a neighbor in G′. Since G′ has bounded degree, from the
separator tree T ′ for G′, we can obtain a separator tree TB for the representing graph G(B).
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Since T ′ was a (γ = O(ρ), β = 1/2, α)-separator tree for G′, TB is a (γ = O(ρ), β = 1/2, α)-
separator tree for G(B), where the constant hidden in O(ρ) is increased by the maximum
degree in G′. Using Theorem 4, we obtain that Gaussian elimination can be done in B in
O(γωmω/2) = O(ρω(ρn)ω/2) = O(ρ3ω/2nω/2) time, assuming that pivoting is not needed.

Mucha and Sankowski [23, Section 5] show how Gaussian elimination without pivoting
can be used in B to find a collection of indices W ⊆ [m] such that the centered matrix
(B)W,W , defined by rows and columns of B with indices in W , has the same rank as B. It
follows that rank(AW,W ) = rank(BW,W ) and therefore G′[W ] contains a maximum matching
of G′ that is a perfect matching in G′[W ] (with high probability). The key insight to find
such W is that, if during Gaussian elimination in B we run into a 0 along the diagonal, then
the whole row and column are 0, which means that they can be removed from the matrix
without affecting the rank. We summarize.

I Lemma 6. In time O(ρ3ω/2nω/2) we can find a subset W of vertices of G′ such that, with
high probability, G′[W ] has a perfect matching that is a maximum matching in G′.

From now on, we can assume that G′ has a perfect matching. We keep denoting by
T ′ its separator tree, by A the matrix after substituting values of Zp into A[X], and by B
the matrix AAT . (We can compute the tree T ′ anew or we can reuse the same separator
tree restricted to the subset of vertices.) Let Zr denote the set stored at the root r of T ′.
Thus, Zr is the first separator on G′. Let Nr be the set Zr together with its neighbors in G′.
Because G′ has bounded degree, we have |Nr| = O(|Zr|) = O(ρm1/2) = O(ρ3/2n1/2).

Mucha and Sankowski show how to compute with O(1) Gaussian eliminations a matching
M ′ in G′ that covers all the vertices of Zr and is contained in some perfect matching of G′.
There are two ingredients for this. The first ingredient is to use Gaussian elimination on the
matrix B = AAT to obtain a decomposition AAT = LDLT , and then use (partial) Gaussian
elimination on a matrix C composed of L[m],Nr

and ANr,[m]\Nr
to compute (A−1)Nr,Nr

.
(Note that in general (A−1)Nr,Nr is different from (ANr,Nr )−1. Computing the latter is
simpler, while computing the former is a major insight by Mucha and Sankowski [23, Section
4.2].) Interestingly, T ′ is also a separator tree for the representing graph of this matrix
C, and Gaussian elimination can be performed without pivoting. Thus, we can obtain in
O(ρωmω/2) = O(ρ3ω/2nω/2) time the matrix (A−1)Nr,Nr

. The second ingredient is that, once
we have (A−1)Nr,Nr , we can compute for any matching M ′ contained in G′[Nr] a maximal
(with respect to inclusion) submatching M ′ that is contained in a perfect matching of G′.
This is based on an observation by Rabin and Vazirani [24] that shows how to find edges that
belong to some perfect matching using the inverse matrix, and Gaussian elimination on the
matrix (A−1)N,N to identify subsets of edges that together belong to some perfect matching.
The matrix (A−1)Nr,Nr

is not necessarily represented by a graph with nice separators, but it is
of size |Nr|×|Nr|. Thus, Gaussian elimination in (A−1)Nr,Nr

takes O(|Nr|ω) = O(ρ3ω/2nω/2)
time [23, Section 2.4].

Since the graph G′ has bounded maximum degree, making O(1) iterations of finding a
maximal matching M ′ in G′[Nr], followed by finding a maximal subset M ′′ of M ′ contained
in a perfect matching of G′, and removing the vertices contained in M ′ plus the edges of
M ′ \M ′′, gives a matching M∗ that covers Zr and is contained in a perfect matching of G′;
see [23, Section 4.3]. The vertices of M∗ can be removed, and we recurse on both sides of
G′ − V (M∗) ⊂ G′ − Zr using the corresponding subtrees of T ′. The running time is T (n) =
O(ρ3ω/2nω/2) + T (n1) + T (n2), where n1, n2 ≤ αn. This solves to T (n) = O(ρ3ω/2nω/2)
because ω/2 > 1. We summarize in the following result. If only the family U is given, first
we use Lemma 1 to construct GU .
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I Theorem 7. Given a graph G of Gρ with n vertices together with a family U of geometric
objects with density ρ such that G is a subgraph of GU , we can find in O(ρ3ω/2nω/2) time a
matching in G that, with high probability, is maximum. In particular, for a family U of n
geometric objects with density ρ, a maximum matching in GU can be found in O(ρ3ω/2nω/2)
time. The same holds for the bipartite or k-partite version of GU .

4 Sparsification

Let U be a family of convex geometric objects in the plane such that each object of U
contains a square of side length 1 and is contained in a square of side length Ψ ≥ 1. Through
the discussion we will treat Ψ as a parameter. Our objective is to reduce the problem of
computing a maximum matching in the intersection graph GU to the problem of computing
a maximum matching in GW for some W ⊆ U of small depth.

Let P = Z2 be the points in the plane with integer coordinates. Each square of unit side
length contains at least one point of P and each square of side length Ψ contains at most
(1 + Ψ)2 = O(Ψ2) points of P . In particular, each object U ∈ U contains at least one and at
most O(Ψ2) points from P .

First we provide an overview of the idea. The objects intersected by a point p ∈ P define
a clique, and thus any even number of them defines a perfect matching. We show that, for
each p ∈ P , it suffices to keep a few objects pierced by p, and we show how to obtain such a
suitable subfamily. The actual number of objects to keep depends on Ψ, and whether the
actual computation can be done efficiently depends on the geometric shape of the objects.

For each object U ∈ U , we find the lexicographically smallest point in P ∩ U . We
assume that we have a primitive operation to compute P ∩ U for each object U ∈ U in
O(1 + |P ∩U |) = O(Ψ2) time. A simple manipulation of these incidences allows us to obtain
the clusters

Up = {U ∈ U | p lexicographically minimum in P ∩ U}, for all p ∈ P .

Note that the clusters Up, for p ∈ P , form a partition of U . This will be useful later. Clearly,
the subgraph of GU induced by Up is a clique, for each p ∈ P .

We will use the usual notation

E(Up,Uq) = {UV | U ∈ Up, V ∈ Uq, U ∩ V 6= ∅} ⊆ E(GU ).

The pattern graph H = H(P,Ψ) has vertex set P and set of edges

E(H) = {pq | ‖p− q‖∞ ≤ 2Ψ} ⊆
(
P

2

)
.

The use of the pattern graph is encoded in the following property: if U ∈ Up, V ∈ Uq
and U ∩ V 6= ∅, then pq ∈ E(H). Indeed, if U and V intersect, then the union U ∪ V is
contained in a square of side length 2Ψ, and thus the L∞-distance between each p ∈ P ∩ U
and q ∈ P ∩ V is at most 2Ψ.

The definition of H(P,Ψ) implies that the edge set of GU is the disjoint union of E(Up,Uq),
over all pq ∈ E(H), and the edge sets of the cliques GUp

, over all p ∈ P . Thus, whenever
pq /∈ E(H), there are no edges in E(Up,Uq).

Let λ be the maximum degree of H. Note that λ = O(Ψ2). The value of λ is an upper
bound on how many clusters Uq may interact with a single cluster Up. We will use λ as
a parameter to decide how many objects from each Up are kept. We start with a simple
observation.
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I Lemma 8. There exists a maximum matching in GU that, for all pq ∈ E(H), contains at
most one edge of E(Up,Uq).

Of course we do not know which object from the cluster Up will interact with another
cluster Uq. We will explain how to get a large enough subset of cluster Up.

For each pq ∈ E(H), we construct a set W(p, q) ⊆ Up ∪ Uq as follows. First, we construct
a matching M = M(p, q) in E(Up,Uq) such that M has 2λ+ 1 edges or M has fewer than
2λ+ 1 edges and is maximal in E(Up,Uq). For example, such a matching can be constructed
incrementally. If M has 2λ+ 1 edges, we take W(p, q) to be the endpoints of M . Otherwise,
for each endpoint U ∈ Up (resp. V ∈ Uq) of M , we place U (resp. V ) and λ of its neighbors
from Uq (resp. Up) into W(p, q). When U (resp. V ) has fewer than λ neighbors, we place
all its neighbors in W(p, q). This finishes the description of W(p, q); refer to Algorithm
Sparsify-one-edge in the appendix (Figure 2) for pseudo-code.'

&

$

%

Algorithm Sparsify-one-edge
Input: p, q, Up and Uq
Output: W(p, q)
1. Ap ← Up
2. Aq ← Uq
3. (∗ compute matching M ∗)
4. M ← ∅
5. while |M | < 2λ+ 1 and Ap 6= ∅ do
6. U ← an arbitrary object of Ap
7. if U intersects some V ∈ Aq then
8. M ←M ∪ {UV }
9. Aq ← Aq \ {V }
10. Ap ← Ap \ {U}
11. (∗ end of computation of M ∗)
12. W ← ∪UV ∈M{U, V } (∗ endpoints of M ∗)
13. if |M | = 2λ+ 1 then (∗ M large enough matching ∗)
14. return W
15. else (∗ M maximal but small; add neighbors of W to the output ∗)
16. W ′ ←W
17. for W ∈ W do
18. if W ∈ Up then
19. add toW ′ min{λ, |E({W},Uq)|} elements of Uq intersecting

W

20. else (∗ W ∈ Up ∗)
21. add toW ′ min{λ, |E(Up, {W})|} elements of Up intersecting

W

22. return W ′

Figure 2 Algorithm Sparsify-one-edge.

STACS 2020



31:12 Maximum Matchings in Geometric Intersection Graphs

I Lemma 9. A maximum matching in

G̃ =

 ⋃
pq∈E(H)

GW(p,q)

 ∪
⋃
p∈P

GUp

 .

is a maximum matching in GU .

I Lemma 10. The family of objects W = ∪pq∈E(H)W(p, q) has depth O(Ψ8).

I Theorem 11. Let U be a family of n geometric objects in the plane such that each object
of U contains a square of side length 1 and is contained in a square of side length Ψ. Suppose
that, for any m ∈ N and for any p, q ∈ Z2 with |Up| + |Uq| ≤ m, we can compute the
sparsification W(p, q) as described above in time Tspars(m), where Tspars(m) = Ω(m) is
convex. In O(Ψ2 · Tspars(n)) time we can reduce the problem of finding a maximum matching
in GU to the problem of finding a maximum matching in GW for some W ⊆ U with maximum
depth O(Ψ8).

Our use of properties in the plane is very mild, and similar results hold in any space with
constant dimension.

I Theorem 12. Let d ≥ 3 be a constant. Let U be a family of n geometric objects in Rd such
that each object of U contains a cube of side length 1 and is contained in a cube of side length
Ψ. Suppose that, for any m ∈ N and for any p, q ∈ Zd with |Up|+ |Uq| ≤ m, we can compute
the sparsification W(p, q) as described above in time Tspars(m), where Tspars(m) = Ω(m) is
convex. In O(Ψd · Tspars(n)) time we can reduce the problem of finding a maximum matching
in GU to the problem of finding a maximum matching in GW for some W ⊆ U with maximum
depth (1 + Ψ)O(d).

As we mentioned in the introduction, for fat objects, bounded depth implies bounded
density; see Har-Peled and Quanrud [13, Lemma 2.7]. If a convex object contains a cube of
unit side length and is contained in a cube of side length Ψ, then it is O(1/Ψ)-fat; see van der
Stappen et al. [26], where the parameter 1/Ψ goes under the name of thickness. Combining
both results, one obtains that the relation between depth and density differs by a factor of
Ψ. For fixed shapes, they depth and density differ by a constant factor.

5 Efficient sparsification

Now, we implement Algorithm Sparsify-one-edge (Figure 2) efficiently. In particular, we
must perform the test in line 7 and find the neighbors in line 19 (and the symmetric case in
line 21). The shape of the geometric objects becomes relevant for this. First, we note that it
suffices to obtain an efficient semi-dynamic data structure for intersection queries.

I Lemma 13. Suppose there is a data structure with the following properties: for any m ∈ N
and for any p, q ∈ Z2 with |Up|+ |Uq| ≤ m, we can maintain a set Aq ⊆ Uq under deletions
so that, for any query U ∈ Up, we either find some V ∈ Aq with U ∩V 6= ∅ or correctly report
that no such V exists. Let Tcon(m) be the time to construct the data structure, Tque(m) an
upper bound on the amortized query time, and Tdel(m) be an upper bound on the amortized
deletion time. Then, the running time of Algorithm Sparsify-one-edge (Figure 2) for the
input (p, q,Up,Uq) is Tsparse(m) = O(Tcon(m) +mTque(m) + λ2Tdel(m)).
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5.1 Disks in the plane
When U consists of disks in the plane, we can use the data structure of Kaplan et al. [15] to
sparsify an edge of the pattern graph. This leads to the following.

I Proposition 14. Consider a family U of n disks in the plane with radii in [1,Ψ]. In
O(Ψ6n log11 n) expected time, we can reduce the problem of finding a maximum matching in
GU to the problem of finding a maximum matching in GW for some subfamily W ⊆ U of
disks with maximum depth O(Ψ8).

Possibly, the method can be extended to homothets of a single object. For this one should
consider the surfaces defined by weighted distances in the approach of Kaplan et al. [15].

Since the depth and the density of a family of disks are linearly related, Proposition 14
and Theorem 7 with ρ = O(Ψ8) imply the following.

I Theorem 15. Consider a family U of n disks in the plane with radii in the interval [1,Ψ].
In O(Ψ6n log11 n+ Ψ12ωnω/2) expected time, we can compute a matching in GU that, with
high probability, is maximum.

5.2 Translates of a fixed convex shape in the plane
Now, suppose U consists of translates of a single convex object with non-empty interior in
the plane. With an affine transformation, we ensure that the object is fat: the radii of the
minimum enclosing disk and of the maximum enclosed disk are within a constant factor.
Such a transformation is standard; e.g., [1, Lemma 3.2]. Thus, we may assume that Ψ = O(1).
We start with a standard lemma.

I Lemma 16. Let U be a family of n translates of a convex object in the plane that are
pierced by a given point q. The union of U can be computed in O(n logn) time.

We will use the following lemma to “simulate” deletions. For this, we will keep a
half-infinite interval of indices that contains the elements that are “deleted”.

I Lemma 17. Let U = {U1, . . . Un} be a family of n translates of a convex object in the plane
that are pierced by a given point q. In O(n log2 n) time, we can construct a data structure for
the following queries: given x ∈ R2 and a value a ∈ {1, . . . , n}, find the smallest i ≥ a such
that Ui contains x, or correctly report that x does not belong to Ua ∪ · · · ∪ Un. The query
time is O(log2 n).

I Lemma 18. Let Uq = {V1, . . . Vn} be a family of n translates of a convex object in the
plane that are pierced by a given point q. Let U0 be a convex object. In O(n log2 n) time, we
can construct a data structure for the following type of queries: given a translate U of U0
and a value a, find the smallest i ≥ a such that U intersects Vi, or correctly report that U
does not intersect Va ∪ · · · ∪ Vn. Each query can be answered in O(log2 n) time.

Lemma 18 can be used to make queries and simulate deletions.

I Proposition 19. Consider a family U of n translates of a convex object with non-empty
interior in the plane. In O(n log2 n) time, we can reduce the problem of finding a maximum
matching in GU to the problem of finding a maximum matching in GW for some subfamily
W ⊆ U with maximum depth O(1).

Combining Proposition 19 and Theorem 7 we obtain the following.
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I Theorem 20. Consider a family U of translates of a convex object with non-empty interior
in the plane. In O(nω/2) time we can find matching in GU that, with high probability, is
maximum.

If U consists of unit disks,the sparsification can be done slightly faster using a semi-
dynamic data structure by Efrat, Itai, and Katz [9], which has O(Tcon(m)) = O(m logm), and
O(Top(m)) = O(logm). However the current bottleneck is the computation of the maximum
matching after the sparsification. Thus, improving the sparsification in the particular case of
unit disks does not lead to an improved final algorithm.

Proposition 19 and Theorem 20 also holds if we have translations of O(1) different convex
objects (with nonempty interiors). Indeed, the data structure of Lemma 18 can be made for
each pair of different convex shapes. In this case, the constant Ψ depends on the shapes,
namely the size of the largest square that we can place inside each of the convex shapes and
the size of the smallest square that can be used to cover each of the convex shapes. Also, the
relation between the depth and the density depends on the shapes. However, for a fixed set
of O(1) shapes, both values are constants that depend on the shapes.

I Theorem 21. Consider a family U of translates of a constant number of different convex
objects in the plane with non-empty interiors. In O(nω/2) time we can find matching in GU
that, with high probability, is maximum.

5.3 Axis-parallel objects

A box is the Cartesian product of intervals. Combining standard data structures for
orthogonal range searching [6, Sections 5.4 and 10.3] one obtains the following results.

I Proposition 22. Let d ≥ 2 be an integral constant. Consider a family U of n boxes in
Rd such that each box of U contains a cube of side length 1 and is contained in a cube of
side length Ψ. In O(Ψd · npolylogn) time we can reduce the problem of finding a maximum
matching in GU to the problem of finding a maximum matching in GW , for some W ⊆ U
with maximum depth (1 + Ψ)O(d).

For d = 2, we can combine Theorem 7 and Proposition 22. Since we have assumed ω > 2,
the O(npolylogn) term is asymptotically smaller than O(nω/2), and we obtain the following.

I Theorem 23. Given a family U of n boxes in R2 such that each object of U contains a
square of side length 1 and is contained in a square of side length Ψ, we can compute in
(1 + Ψ)O(1)nω/2 time a matching in GU that, with high probability, is a maximum matching.

Consider now the case d ≥ 3. The set W that we obtain from Proposition 22 has depth
and density ρ = (1 + Ψ)O(d), and therefore the graph GW has O(ρn) edges; see Lemma 1. We
can thus use the algorithm of Mądry [19], which takes Õ(|E(GW)|10/7)) = Õ((1+Ψ)O(d)n10/7)
time. We summarize.

I Corollary 24. Let d ≥ 3 be an integral constant. Given a family U of n boxes in Rd such
that each object of U contains a cube of side length 1 and is contained in a cube of side length
Ψ, we can compute in Õ((1 + Ψ)O(d)n10/7) time a matching in GU that, with high probability,
is a maximum matching.
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5.4 Congruent balls in d ≥ 3 dimensions
Consider now the case of congruent balls in Rd, for constant d ≥ 3. Note that λ = O(1)
in this case. We use the dynamic data structure by Agarwal and Matoušek [2] for the
sparsification. For each m with n ≤ m ≤ ndd/2e, the data structure maintains n points in
Rd, answers O(n) queries for closest point and supports O(λ2) updates in

O

(
m1+ε + λ2m

1+ε

n
+ n · n log3 n

m1/dd/2e

)
time. Here ε > 0, is an arbitrary constant whose choice affects to the constants hidden in
the O-notation. For d ∈ {3, 4}, this running time is

O

(
m1+ε + λ2m

1+ε

n
+ n · n log3 n

m1/2

)
.

Setting m = n4/3, we get a running time of O(n4/3+ε + λ2n1/3+ε) = O(n4/3+ε) to handle
O(n) queries and O(λ2) = O(1) updates. Using this in Lemma 13 and Theorem 12, we get
the following result

I Proposition 25. Consider a family U of n unit balls objects in Rd, for d ∈ {3, 4}. In
O(n4/3+ε) time, we can reduce the problem of finding a maximum matching in GU to the
problem of finding a maximum matching in GW for some W ⊆ U with maximum depth O(1).

For the resulting set W with depth O(1), it is better to use the algorithm of Mądry [19]
for sparse graphs. Note that GW is sparse, and thus has O(n) edges. Therefore, a maximum
matching in GW can be computed in O(n10/7) time. In summary, we spend O(n4/3+ε) for
the sparsification and O(n10/7) for computing the matching in the sparsified setting.

For d > 4, we set m = n
2dd/2e

1+dd/2e . The running time for the sparsification is then
O(n

2dd/2e
1+dd/2e +ε). For each constant d, the resulting instance GW has O(n) edges. For d = 5, 6,

the running time of the sparsification is O(n3/2+ε). However, after the sparsification, we have
a graph with O(n) edges, and we can use the algorithm of Micali and Vazirani [20], which
takes O(n3/2) time. Thus, for d ≥ 5, the running time is dominated by the sparsification.

I Theorem 26. Let d ≥ 3 be a constant. Consider a family U of congruent balls in Rd. For
d = 3, 4, we can find in O(n10/7) time a maximum matching in GU . For d ≥ 5, we can find
in O(n

2dd/2e
1+dd/2e +ε) time a maximum matching in GU , for each ε > 0.

6 Conclusion

We have proposed the density of a geometric intersection graph as a parameter for the
maximum matching problem, and we showed that it can be fruitful in obtaining efficient
matching algorithms. Then, we presented a sparsification method that lets us reduce the
general problem to the case of bounded density for several interesting classes of geometric
intersection graphs. In our sparsification method, we did not attempt to optimize the
dependency on the radius ratio Ψ. It may well be that this can be improved by using
more advanced grid-based techniques. Furthermore, our sparsification needs the complete
intersection graph and does not apply to the bipartite setting. Here, we do not know of a
method to reduce the general case to bounded density. In general, the complexity of the
matching problem is wide open. To the best of our knowledge, there are no (even weak)
superlinear lower bounds for the (static) matching problem in general graphs.
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Abstract
In this paper we show that given a max-plus automaton (over trees, and with real weights) computing
a function f and a min-plus automaton (similar) computing a function g such that f 6 g, there
exists effectively an unambiguous tropical automaton computing h such that f 6 h 6 g.

This generalizes a result of Lombardy and Mairesse of 2006 stating that series which are both
max-plus and min-plus rational are unambiguous. This generalization goes in two directions: trees
are considered instead of words, and separation is established instead of characterization (separation
implies characterization). The techniques in the two proofs are very different.
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1 Introduction

Tropical automata is a nickname for weighted automata (automata parameterized by a
semiring as introduced by Schützenbgerger [17]) over a tropical semiring. This is a particularly
simple model of finite state automata that describe functions rather than languages. It exists
in two forms, max-plus and min-plus automata. Essentially, a tropical automaton A is a
non-deterministic automaton for which each transition is labelled by a real weight (or an
integer, or a natural number, depending on the variants). This weight is extended into a
weight for a run: the sum of the weights of the transitions involved. A max-plus automaton
computes the function [[A]] : A∗ → R ] {⊥} which to an input word associates the maximum
weight of an accepting run over the input, or ⊥ if there is no accepting runs. If it is a
min-plus automaton, minimum is used instead of maximum.

The use of tropical automata arises naturally in different contexts: max-plus automata
have been used for modeling scheduling constraints (see for instance [4]) or worst case
behaviors (see for instance [3] for computing the asymptotic worst case execution time
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of loops under the size-change abstraction); min-plus automata are used for optimisation
questions (these are for instance used as a key tool in the decision of the star-height problem
[6]). In all these situations, non-trivial decision procedures are used ([5, 12, 2]).

The starting point of this work is a result from 2006 of Lombardy and Mairesse:

I Theorem 1 ([13, 14]). A map f : A∗ → R] {⊥} which is both definable by a min-plus and
by a max-plus automaton is definable by an unambiguous tropical automaton.

Recall that an automaton is unambiguous if there is at most one accepting run per input1.
Unambiguous automata form a very particular class of tropical automata. Most of the
problems which are open or undecidable for general tropical automata are easily decidable
for unambiguous automata: equivalence with another tropical automaton [9], bounded-
ness, existence of an equivalent deterministic automaton, description of the asymptotic
behaviour [1].

It is noteworthy that the decision algorithm to decide whether there exists an equivalent
automaton actually applies to unambiguous automata and that algorithms described for
larger classes (finitely or polynomially ambiguous), consist indeed in deciding first whether
the tropical automaton is equivalent to some unambiguous one [8, 7].

The above Theorem 1 belongs to a fascinating corpus of mathematical statements of the
form ‘if X belongs both to class C and to class D, then it belongs to class E’, where E is
structurally simpler than both C and D (often D is some form of dual of C). An archetypical
example arises in descriptive set theory: Suslin’s theorem states that

if a set is analytic and coanalytic, it is Borel.

Many other instances of this pattern exist. For instance in automata theory, if an infinite
tree language is Büchi and its complement is Büchi, it is weak (Rabin’s theorem [15]). This
extends to cost-functions over infinite trees: if a cost-function over infinite trees is both
B-Büchi and S-Büchi, it is quasi-weak ; over infinite words, it is even weak (Kuperberg and
Vanden Boom [10, 11]). For languages of infinite words beyond regular, if a language is ωB
and ωS definable, then it is ω-regular (Skrzypczak [18]). In language theory, a language
which is both Σ2 and Π2 definable is definable in the two variables fragment (Thérien and
Wilke [19]). Also, a language which is both the support and the complement of the support
of a rational series over a field is regular [16]. This list continues on and on.

In many situations such statements arise in fact from a more general result of ‘separation’
(or of ‘interpolation’ in the logical terminology). For instance, Lusin’s theorem is the
separation version of Suslin’s theorem: It states that

for X ⊆ Y with X analytic and Y coanalytic, then X ⊆ Z ⊆ Y for some Borel set Z.

Such separation results imply the characterization version. For instance, Suslin’s result
follows from Lusin’s theorem: take X = Y to be the set which is both analytic and coanalytic.
Then X ⊆ Z ⊆ Y = X for Z Borel; hence X is Borel. This relationship is general. The
results of Rabin, Vanden Boom and Kuperberg, and Skrzypczak, for instance, exist in a
‘separation variant’.

1 Note that when a tropical automaton is unambiguous, it makes no difference whether it is a max-plus
or a min-plus automaton: It computes the same function.
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Contribution

The natural question that we answer in this work is thus:

Does there exist a separation version of Theorem 1 ?

In this paper, we provide a positive answer to this question. It takes the following form:

I Theorem 2 (separation for tropical tree automata). Given a max-plus automaton Amax and
a min-plus automaton Amin such that2

[[Amax]] 6 [[Amin]] ,

there exists effectively an unambiguous tropical automaton Asep such that

[[Amax]] 6 [[Asep]] 6 [[Amin]] .

Let us stress that the above theorem is established in the context of tropical automata
over trees. Theorem 1 is now a corollary. Indeed, (a) tropical word automata are a particular
case of tree automata over a ranked alphabet made of unary symbols only, plus a constant,
and (b) assuming that f is both accepted by a min-plus and by a max-plus automaton, then
by Theorem 2, there exists a function h accepted by an unambiguous tropical automaton
such that f 6 h 6 f . Thus f = h is accepted by an unambiguous tropical automaton.

Note that, though the result is a generalization, the proof of Theorem 2 is very different
from the original one of Theorem 1.

Let us finally emphasize that particular care has been taken in order to obtain the
result for real weights. Indeed, in the integer case (and as a consequence in the rational
case), simpler techniques can be used that involve keeping in the finitely many states of the
result automaton some explicit differences of partial weights up to a certain bound. Such a
technique (as far as we know) cannot be used in the real case. Our results are effective for
real weights as far as there exist an effective representation of the reals in the additive group
generated by weights of automata Amax and Amin, as well as algorithms that compute the
addition, the subtraction, and the comparison on these representations.

Other Related Work

The class of unambiguous tropical automata form an interesting subclass of tropical automata.
In particular, equivalence is decidable, while the problem for max-plus or min-plus automata
is undecidable [9]. Given a tropical automaton, deciding unambiguity is an open problem.
It has been solved when the input automaton is finitely ambiguous in [8], and when it is
polynomially ambiguous in [7].

The approach used in this paper is completely different from the original result of [14].
Crossing reachable and productive states refers to technics that have been used since
Hashiguchi’s papers on limitedness of tropical automata [5], but the basement of our proof is
the original pumping Lemma 11.

Structure of the Paper

This paper is organized as follows. In Section 2, we recall the standard definitions concerning
trees, automata over trees, and tropical automata. In Section 3, we establish our main
theorem of separation, Theorem 2. Section 4 concludes.

2 In this statement, we assume that ⊥ is incomparable with other elements, and thus [[Amax]] and [[Amin]]
are equal to ⊥ on the same words: they have same support.
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2 Definitions

We review in this section classical notions concerning terms, automata, and tropical automata.

2.1 Terms and Contexts

A ranked alphabet is a set A, the elements of which are called letters, together with a map
rank from A to N. For n ∈ N, let Terms(n) be the set of terms of arity n over the alphabet
A ∪ {1, . . . , n} in which 1, . . . , n are seen as special letters of rank 0 that are used exactly
once in each term. We call simply terms the terms of arity 0, and the set of terms is simply
denoted Terms. We call context the terms of arity 1, and the set of contexts is simply
denoted Contexts. Note that each letter a of rank n can naturally be seen as a term of arity n
consisting solely of a root labelled a and children 1, . . . , n. The nodes of a term of arity n,
Nodes(t) is the set of positions of the letters in the term. The root node is denoted root. A
node labelled i for i = 1 . . . n is called the ith-hole. The nodes that are not holes are called
inner nodes. Given a node x ∈ Nodes(t), t(x) denotes the letter it carries. Given a letter
of rank n and terms t0, . . . , tn−1, we denote by a(t0, . . . , tn−1) the term that has a as root,
and as children from left to right t0, . . . , tn−1. The height of a term s, denoted height(s), is
the longest length of a branch, for the standard meaning of a branch. The size of a term s,
denoted size(t), is the number of nodes it has. Finally, given c a context and t a term (resp.
t another context), we denote c ◦ t the term (resp. the context) obtained by plugging the
root of t in the hole of c.

2.2 Automata

A non-deterministic (tree) automaton (or simply an automaton) has a finite set of states Q,
an input ranked alphabet A, a set of final states F , and a transition relation ∆ that consists of
tuples of the form (p0, . . . , pn−1, a, q) in which a ∈ A is a letter of rank n, and p0, . . . , pk−1, q

are states from Q.
A run of the automaton over a term t of arity n is a map ρ from Nodes(t) to Q such that

for all inner nodes x ∈ Nodes(t) of children x0, . . . , xn−1, (ρ(x0), . . . , ρ(xn−1), t(x), ρ(x)) ∈ ∆.
We shall write ρ̃(x) for this transition. An accepting run is a run of the automaton such
that ρ(root) ∈ F . Given a term t, t is accepted by the automaton if there exists an accepting
run of the automaton over t. The set of terms that are accepted is the language accepted
by the automaton. We slightly refine the terminology for easier use. Over a term, a run to
state q is a run that assumes state q at the root. Over a context, a run from state p to state q
signifies that the state assumed in the hole is p, and the one assumed at the root is q. An
accepting run from p is a run from p to q for a final state q.

An automaton is unambiguous if for all input terms t, there exists at most one accepting
run over it. Said differently, for all input terms t, either there are no accepting runs over it,
and the term is not accepted, or there is exactly one accepting run, and the term is accepted.

An automaton with weights3 A is a non-deterministic automaton together with a real
weight for all transitions and all final states, i.e. a map weight from ∆ ] F to R. Given a
run ρ of the automaton, the weight of the run weight(ρ) is the sum of the weights of ρ̃(x) for x

3 This is not a weighted automaton, which is parametrized by a semiring and not a monoid. This definition
serves here just for holding the structure of our tropical automata irrespective of whether these are
min-plus or max-plus.
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ranging over the inner nodes of t. Given an accepting run ρ of the automaton, the weight of
the accepting run weightacc(ρ) is the sum of the weight of the run and weight(ρ(root)).

Tropical automata refer in this work to one of two forms of automata: min-plus automata
and max-plus automata defined as follows. A min-plus automaton A is an automaton with
weights that computes a function:

[[A]]min : Terms −→ R ] {⊥}

t 7−→

{
⊥ if there are no accepting runs of A over t,
min{weightacc(ρ) | ρ accepting run of A over t} otherwise,

in which ⊥ is a symbol that we understand as ‘undefined’ (it appears classically as an
absorbing element for + which is larger than all x ∈ R, i.e., the zero of the tropical semiring).
A max-plus automaton is defined in an identical manner, but the semantics [[A]]max is now
defined using max instead of min. Since it is always clear from the context, we denote simply
by [[A]] either [[A]]min or [[A]]max depending on whether A has been declared as a min-plus or
as a max-plus automaton.

An unambiguous tropical automaton A is a tropical automaton that has an unambiguous
underlying automaton. Note that in this case, [[A]]max = [[A]]min, and hence we call it simply
tropical automaton and do not have to specify whether it is min-plus or max-plus.

3 Separating Tropical Automata

3.1 Statement and Structure of the Proof
The goal of this section is to prove our main theorem:

I Theorem 2 (separation for tropical tree automata). Given a max-plus automaton Amax and
a min-plus automaton Amin such that4

[[Amax]] 6 [[Amin]] ,

there exists effectively an unambiguous tropical automaton Asep such that

[[Amax]] 6 [[Asep]] 6 [[Amin]] .

From now on, we fix the ranked alphabet A, a max-plus automaton Amax and a min-plus
automaton Amin:

Amax = (Qmax, A, Fmax,∆max,weightmax) and Amin = (Qmin, A, Fmin,∆min,weightmin)

such that

[[Amax]] 6 [[Amin]] .

It will be convenient in what follows to consider a single automaton with weights constructed
as the disjoint union of Amax and Amin (of course, it should be neither seen as a min-plus

4 In this statement, we assume that ⊥ is incomparable with other elements, and thus [[Amax]] and [[Amin]]
are equal to ⊥ on the same words: they have same support.
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32:6 Unambiguous Separators for Tropical Tree Automata

automaton nor as a max-plus automaton). Formally, we assume without loss of generality
that Qmax and Qmin are disjoint, and we set this automaton A = (Q,A, F,∆,weight), with

Q = Qmin ∪Qmax, F = Fmax ∪ Fmin, ∆ = ∆max ∪∆min,

and weight(v) =
{

weightmax(v) for v ∈ ∆max ] Fmax

weightmin(v) otherwise.

The rest of this section is devoted to the proof of Theorem 2, and is organized as follows. In
Section 3.2, we use some classical automata constructions for accessing in an unambiguous
manner the reachable and productive states (Lemma 3). The combinatorial core of the proof
is contained in Section 3.3 in which we study how the values of the automata may evolve
in a context (Lemma 9), and use it for showing how terms can be substituted for smaller
ones while preserving separability (Corollary 12). We finally provide the construction of the
automaton Asep in Section 3.4, and establish its correctness (Lemma 15). This concludes the
proof of Theorem 2.

3.2 Reachable and Productive States
An ingredient which is necessary in the proof is that the automaton we construct is always
‘aware’ of what are the states that may lead to an accepting run to the root. This section
is concerned with this aspect, and involves only completely standard techniques for tree
automata.

Given a term t, set Reach(t) ⊆ Q to be the set of states p such that there is a run over t
to p. We call such states reachable in t. Given a context c, set Prod(c) ⊆ Q to be the set of
states p such that there is an accepting run from p. We call such states productive in c. We
finally set

Reachable = {Reach(t) | t ∈ Terms} and Productive = {Prod(c) | c ∈ Contexts}.

We describe the construction of an automaton Apro = (Qpro, A, Fpro,∆pro) that computes
the productive states at each node of a term. The states are Qpro = Reachable×Productive.
The final states Fpro = Reachable× {F}, and for all letters a of rank n, the automaton has
a transition of the form

((R0, P0), . . . , (Rn−1, Pn−1), a, (R,P )) ∈ ∆pro

whenever
R = {r ∈ Q | (r0, . . . , rn−1, a, r) ∈ ∆, rj ∈ Rj for all j}, and
Pi = {ri ∈ Q | (r0, . . . , rn−1, a, p) ∈ ∆, rj ∈ Rj for j 6= i, p ∈ P} for all i = 0 . . . n− 1.

In the above definition, the constraint on R induces the computation in a bottom-up
deterministic way of the set of states that are reachable from the term below. The constraint
on Pi computes similarly in a top-down deterministic way the set of states that are productive
in the context above. We do not prove the correctness of this construction further. The
important aspects of this construction are summarized in the following lemma.

I Lemma 3. For all P ∈ Productive and all terms t, there exists one and one only run
of Apro over t to a state of the form (R,P ) for some R ∈ Reachable. And furthermore,
R = Reach(t).

For all R ∈ Reachable and all contexts c, there exists one and only one accepting run
of Apro over c from a state of the form (R,P ) for some P ∈ Productive. And furthermore,
P = Prod(c).
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3.3 The Central Pumping Lemma
In this section, we establish the key Corollary 12. The central concept here is to understand
what it does for the value computed by Amax and by Amin to substitute a subtree for another
subtree. And more precisely, we devise sufficient conditions such that, after performing the
substitution, the values of the two automata gets closer one to the other, up to some shifting.
This property is expressed in Lemma 5.

The key definition involved is the one of refinement with shift as defined now.

I Definition 4. Given two terms s, t, some set P ⊆ Q, and some real number x, then t

refines s for P with shift x if
Reach(s) = Reach(t),
for all runs ρ of Amax over s to a state p ∈ P , there is a run ρ′ over t to state p such that

weight(ρ) 6 weight(ρ′) + x

and
for all runs τ of Amin over s to a state q ∈ P , there is a run τ ′ over t to state q such that

weight(τ ′) + x 6 weight(τ)

The justification of this definition is given by the following lemma. It shows how
substituting s for t in a context when t refines s with some shift is done while ‘staying in the
separation interval’.

I Lemma 5. Let c be a context, and s, t be terms such that t refines s for Prod(c) with
shift x, then

[[Amax]](c ◦ s) 6 [[Amax]](c ◦ t) + x 6 [[Amin]](c ◦ t) + x 6 [[Amin]](c ◦ s) .

Proof. Let ρ be an accepting run of Amax over c ◦ s. It can be decomposed as an accepting
run ρc over c from some state p and a run ρs over s to state p. The run ρc is a witness
that p ∈ Prod(c) ∩Qmax. Hence, since t refines s for Prod(c) with shift x, there exists a run
ρt over t to state p such that weight(ρs) 6 weight(ρt) + x. By gluing ρt with ρc, we obtain a
new accepting run ρ′ of Amax over c ◦ t, furthermore,

weightacc(ρ) = weightacc(ρc) + weight(ρs)
6 weightacc(ρc) + weight(ρt) + x = weightacc(ρ′) + x .

Since for all ρ there exists such a ρ′, we obtain

[[Amax]](c ◦ s) 6 [[Amax]](c ◦ t) + x .

The middle inequality simply comes from the key assumption [[Amax]] 6 [[Amin]] in
Theorem 2.

The third inequality is established as the first one (it is symmetric). J

The two following facts are straightforward to verify.

I Fact 6 (reflexivity of refinement with shift). For all terms s, and all P ⊆ Q, s refines s
for P with shift 0.

I Fact 7 (transitivity of refinement with shift). If t refines s for P with shift x, and u refines t
for P with shift y, then u refines s for P with shift x+ y.
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The next lemma is also purely mechanical.

I Lemma 8 (refinement with shift is a congruence). Let ((P0, R0), . . . , (Pn−1, Rn−1), a, (P,R))
be in ∆pro, and for all i = 0 . . . n− 1, let ti, si be terms such that

Reach(ti) = Ri, and
ti refines si for Pi with shift xi,

then a(t0, . . . , tn−1) refines a(s0, . . . , sn−1) for P with shift x0 + · · ·+ xn−1.

Proof. Let ρ be a run of Amax over a(t0, . . . , tn−1) to state p ∈ P . The run ρ can be
decomposed into a transition (p0, . . . , pn−1, a, p) of weight x at the root, and a run ρi of Amax
over ti to pi for all i = 0 . . . n − 1. For all i = 0 . . . n − 1, pi ∈ Reach(ti) = Ri. Since
furthermore p ∈ P and ((P0, R0), . . . , (Pn−1, Rn−1), a, (P,R)) ∈ ∆pro, we obtain that pi ∈ Pi

for all i = 0 . . . n− 1 (second item of the definition of ∆pro). Thus, since ti refines si for Pi

with shift xi, there exists a run ρ′i of Amax over ti to pi such that weight(ρi) 6 weight(ρ′i)+xi.
We can combine all these runs ρ′i together with the transition (p0, . . . , pn−1, a, p) and obtain
a new run ρ′ of Amax over a(t0, . . . , tn−1) to p such that

weight(ρ) = weight(ρ0) + · · ·+ weight(ρn−1) + x

6 weight(ρ′0) + x0 + · · ·+ weight(ρ′n−1) + xn−1 + x

= weight(ρ′) + x0 + · · ·+ xn−1 .

This shows half of the fact that a(t0, . . . , tn−1) refines a(s0, . . . , sn−1) for P with shift x0 +
· · ·+ xn−1. The other half is symmetric. J

We aim now at proving Corollary 12 which states that all sufficiently large term is ‘shift
refined’ by another one of smaller size. Beforehand, we need a pumping argument to establish:

I Lemma 9. Let P ∈ Productive, R ∈ Reachable and m be a context, then there exists a
real number x such that

for every p in Qmax ∩ P ∩R, for all runs ρ of Amax over m from p to p, weight(ρ) 6 x,
and
for every q in Qmin ∩ P ∩R, for all runs τ of Amin over m from q to q, x 6 weight(τ).

Proof. Let t be a term such that Reach(t) = R, and c be a context such that Prod(c) = P .

B Claim 10. We claim first that for all runs ρ of Amax over m from p to p with p ∈ P ∩R
and all runs τ of Amin over m from q to q with q ∈ P ∩R, weight(ρ) 6 weight(τ).
Otherwise, there would exist some runs ρ, τ as above such that weight(ρ) > weight(τ). I.e.

weight(τ)− weight(ρ) < 0 . (?)

Consider now for all n > 0 the term:

un = c ◦
n-times︷ ︸︸ ︷

m ◦ · · · ◦ m ◦ t .

Let ρ′ be some accepting run over c from p (this is possible since p ∈ P = Prod(c)). Let τ ′
be some accepting run over c from q (this is possible since q ∈ P = Prod(c)). Let ρ′′ be some
run over t to p (this is possible since p ∈ R = Reach(t)). Let τ ′′ be some run over t to q (this
is possible since q ∈ R = Reach(t)).
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By concatenating ρ′, n-times ρ, and ρ′′, we obtain an accepting run ρn over un of
weight weightacc(ρn) = weightacc(ρ′) + nweight(ρ) + weight(ρ′′). Similarly, by concatenat-
ing τ ′, n-times τ , and τ ′′, we obtain an accepting run τn over un of weight weightacc(τn) =
weightacc(τ ′) + nweight(τ) + weight(τ ′′).

Furthermore, since [[Amax]](un) 6 [[Amin]](un), weightacc(ρn) 6 weightacc(τn). We obtain

0 6 weightacc(τn)− weightacc(ρn)
= weightacc(τ ′) + nweight(τ) + weight(τ ′′)− weightacc(ρ′)− nweight(ρ)− weight(ρ′′)
= weightacc(τ ′) + weight(τ ′′)− weightacc(ρ′)− weight(ρ′′) + n(weight(τ)− weight(ρ)).

However, using (?), this last quantity tends to −∞ when n tends to ∞. It contradicts its
non-negativeness. The claim is established.

We can now establish the lemma. Let Y be the set of weights weight(ρ) for ρ ranging
over the runs of Amax over m from p to p with p ∈ P ∩ R. Similarly, let Z be the set of
weights weight(τ) for τ ranging over the runs of Amin over m from q to q with q ∈ P ∩ R.
The above claim states that for all y ∈ Y and all z ∈ Z, y 6 z. This implies the existence
of some real number x such that for all y ∈ Y , y 6 x, and for all z ∈ Z, x 6 z (note that
proving it requires to treat the case of Y and/or Z being empty, and thus requires a case
distinction). This is exactly the statement of the lemma. J

Notice that a fixed context m admits only a finite number of runs; hence, the weights of
paths involved in Lemma 9 can be enumerated and the value x be effectively computed.

I Lemma 11. There exists a computable k ∈ N such that for all P0 ∈ Reachable and all
terms s of height more than k, there exists effectively a term t such that t refines s for P0
with some shift and size(t) < size(s).

Proof. Let k be (4|Q|)|Q|. Let us fix a context d such that Prod(d) = P0.
Consider now a term s of height larger than k and some P0 ∈ Reachable. We aim at

removing some piece of this term while achieving the conclusions of the lemma.
For all states p ∈ P0, set ρp to be an optimal run of A over s to p, i.e.,
if p ∈ Qmax, then for all runs τ of Amax over s to p, weight(τ) 6 weight(ρp), and
if p ∈ Qmin, then for all runs τ of Amin over s to p, weight(ρp) 6 weight(τ).

Since the longest branch of s has length greater than 2|Q|2|Q||Q||Q|, we can apply the
pigeonhole principle to the various ways to split this branch in two, and get a factorisation
of s into

s = c ◦m ◦ s′ ,

in which c is a context, m is a non-empty context, and s′ is a term such that
Reach(s′) = Reach(m ◦ s′); let R be this set;
Prod(d ◦ c) = Prod(d ◦ c ◦ m); let P be this set;
for all p ∈ P0, there exists a state qp ∈ Q such that ρp is decomposed into a run τp over s′
to qp, a run τ ′p over m from qp to qp, and a run τ ′′p over c from qp to p.

Let us define now our term t as:

t = c ◦ s′ .

Since s = c ◦ m ◦ s′, our new term t is nothing but s in which the non-empty part
corresponding to m has been removed. Hence size(t) < size(s).
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We shall prove now that t refines s for P0 with shift x where x is obtained by applying
Lemma 9 to P,R and m.

Let ρ be a run of Amax over s to state p for some p ∈ P0. We know that the run ρp as
defined above is such that weight(ρ) 6 weight(ρp). Finally, let ρ′ be the run over t = c ◦ s′
to p obtained by gluing τp and τ ′′p together. We have:

weight(ρ) 6 weight(ρp) (by optimality of ρp)
6 weight(τp) + weight(τ ′p) + weight(τ ′′p ) (decomposion of ρp)
6 weight(τp) + x+ weight(τ ′′p ) (by choice of x and Lemma 9)
6 weight(ρ′) + x . (definition of ρ′)

Hence, we have proved the first half of the definition of ‘t refines s for P0 with shift x’.
The second half is symmetric. Overall, we conclude that t refines s for P0 with shift x. J

Using iteratively the above Lemma 11, as long as the height of the term is larger than k,
together with Fact 6 and 7, we obtain the following corollary.

I Corollary 12. There exists a computable k ∈ N such that for all P ∈ Reachable and all
terms s there exists effectively a term t of height at most k which refines s for P with some
shift.

3.4 The Construction
We are now ready to construct our separating automaton Asep. It is defined as follows:

Asep = (Qsep, A, Fsep,∆sep,weightsep) ,

in which the set of states is

Qsep = {(R,P, t) | R ∈ Reachable, P ∈ Productive,
t ∈ Terms, Reach(t) = R, height(t) 6 k} ,

(where k is the constant from Corollary 12), the final states, together with their weight, are

Fsep = {(R,P, t) ∈ Qsep | P = F , R ∩ F 6= ∅} with weightsep(R,F , t) = [[Amax]](t) ,

and the transition relation and the weights are defined as follows. For a letter a of rank n,
there is a transition of the form

δ = ((R0, P0, t0), . . . , (Rn−1, Pn−1, tn−1), a, (R,P, t)) ∈ ∆sep with weightsep(δ) = x ,

whenever
((R0, P0), . . . , (Rn−1, Pn−1), a, (R,P )) is a transition of ∆pro.
(t, x) = srP (a(t0, . . . , tn−1)), where sr is a map of the following form:

srP : Terms −→ Terms× R
s 7−→ (t, x) such that t refines s for P with shift x.

(Such a map exists thanks to Corollary 12.)
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Notice first that R is a redondant information in the state (R,P, t), since R = Reach(t).
The set P in the state ensures that the weights which are considered are really contributing
to the run. If the constraint height(t) 6 k was removed from the definition of Qsep and
srP was defined as srP (s) = (s, 0), the automaton Asep would be an infinite unambiguous
automaton equivalent to Amax. Thanks to Lemma 11, one can bound the height of t in order
to obtain an automaton that realizes a function which is larger than [[Amax]] but smaller
than [[Amin]]. The automaton is finite: the number of states is bounded by 2|Q|ack , where
a is the size of the alphabet, c is the maximal rank of letters, and k is the constant of
Lemma 11, which is smaller than (4|Q|)|Q|. This bound is obviously crude. In a practical
implementation, an improvement can easily be made. It is not necessary to use all terms t of
height up to k in Qsep: it is sufficient to keep minimal ones for the shift refine relation for
each P ∈ Productive.

Let us first note:

I Lemma 13. For all P ∈ Productive and all terms s, there exists exactly one run of Asep
over s to a state of the form (R,P, t).

Proof. Indeed, we have seen in Lemma 3 thatAsep is unambiguous on its first two components.
Then the third component is computed in a bottom-up deterministic manner. Furthermore,
it is easy to show by induction that on every input term there is an accepting run. J

I Lemma 14. Let ρ be a run of Asep over s to (R,P, t), then t refines s for P with
shift weightsep(ρ).

Proof. The proof is by induction on height(s). Assume s of the form a(s0, . . . , sn−1). Let ρ
be the run of Asep over s to (R,P, t), let δ = ((R0, P0, t0), . . . , (R1, P1, t1), a, (R,P, t)) be the
transition assumed by ρ at the root. Let ρi be the run ρ restricted to the subterm si. By
induction hypothesis, ti refines si for Pi with shift weightsep(ρi). By Fact 7, a(t0, . . . , tn−1)
refines s for P with shift weightsep(ρ0) + · · ·+ weightsep(ρn−1). By definition of weightsep,
t refines a(t0, . . . , tn−1) with shift weightsep(δ). By Fact 7, we obtain that t refines s with
shift weightsep(ρ0) + · · ·+ weightsep(ρn−1) + weightsep(δ) = weightsep(ρ). J

We can now provide the concluding lemma of the proof of Theorem 2.

I Lemma 15. [[Amax]] 6 [[Asep]] 6 [[Amin]] .

Proof. Let s be a term. By Lemma 13, there exists one and exactly one run ρsep of Asep over s
to a state of the form (R,F , t). By Lemma 14, t refines s for F with shift weightsep(ρsep).
Note that in this case R = Reach(s) = Reach(t).

Two cases can occur. If (R,F , t) is not final. In this case, there is no accepting run
of Asep over s, and [[Asep]](s) = ⊥. However, (R,F , t) 6∈ Fsep means Reach(t) ∩ F = ∅,
hence Reach(s) ∩ F = ∅. Thus [[Amax]](s) = [[Amin]](s) = ⊥. We indeed have [[Amax]](s) 6
[[Asep]](s) 6 [[Amin]](s).

Otherwise, (R,F , t) is final, i.e. R∩F 6= ∅. Assume for instance that there is some R∩F ∩
Qmax 6= ∅ (it would be the same for Qmin). This means that [[Amax]](s) 6= ⊥. Since [[Amin]] >
[[Amax]], this implies also [[Amin]](s) 6= ⊥.

Let now ρ be an accepting run of Amax over s of maximal value, and let p be its root
state. Since t refines s for F with shift weightsep(ρsep), and p ∈ F , there exists a run ρ′
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over t to state p such that weight(ρ) 6 weight(ρ′) + weightsep(ρsep). Hence,

[[Amax]](s) = weightacc(ρ)
= weight(ρ) + weightmax(p)
6 weight(ρ′) + weightmax(p) + weight(ρsep)
6 [[Amax]](t) + weight(ρsep)
= [[Asep]](s)

In a symmetrical way, we obtain:

[[Asep]](s) = [[Amax]](t) + weight(ρsep)
6 [[Amin]](t) + weight(ρsep) (assumption [[Amax]] 6 [[Amin]])
6 [[Amin]](s) . (as for the other inequality)

Hence, we have established the expected [[Amax]](s) 6 [[Asep]](s) 6 [[Amin]](s). J

4 Conclusion

We have established a separation result for tropical automata over trees.
All the results of this paper directly applies to automata on words. The proofs can be

restated in this frameworks and are slightly easier, but their complexity actually comes from
the fact that we want to encompass automata with (computable) real weights.

Our result is under the assumption that [[Amax]] 6 [[Amin]]. A natural variant is to
invert the inequality and ask whether separation is possible when [[Amin]] 6 [[Amax]]. Some
separation results exist in both variants (like interpolation results in logic), while some
do not (separation of Büchi automata, or Lusin’s theorem). For tropical automata, the
assumption [[Amin]] 6 [[Amax]] would be more complicated than the one in our theorem: it
can be witnessed for instance by the fact that it is not decidable anymore [9].

Another interesting question is whether similar results hold for weights other than reals.
For instance here, our proof requires for the weights of our automata to be equipped with a
monoid structure, that it is commutative (otherwise weighted tree automata are not well
defined), a total order (for the hypotheses of Theorem 2 to be meaningful), that the product
be compatible with the order, and archimedianity (for the pumping argument in Lemma 9
to hold). The usefulness of each of these assumption could be studied. What if the monoid
is not commutative (over words)? What if the order is not total (and be, for instance a
lattice)? What if the operation is not archimedian (and what does it mean in these more
general cases)? And in all these situations, do we capture interesting forms of automata?

More generally, these results of separation are fascinating, and it would be interesting
to understand at high level what kind of abstract arguments may explain them, or at least
some of them, uniformly.
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Abstract
Resource Minimization Fire Containment (RMFC) is a natural model for optimal inhibition of
harmful spreading phenomena on a graph. In the RMFC problem on trees, we are given an undirected
tree G, and a vertex r where the fire starts at, called root. At each time step, the firefighters
can protect up to B vertices of the graph while the fire spreads from burning vertices to all their
neighbors that have not been protected so far. The task is to find the smallest B that allows for
saving all the leaves of the tree. The problem is hard to approximate up to any factor better than 2
even on trees unless P = NP [11].

Chalermsook and Chuzhoy [6] presented a Linear Programming based O(log∗ n) approximation
for RMFC on trees that matches the integrality gap of the natural Linear Programming relaxation.
This was recently improved by Adjiashvili, Baggio, and Zenklusen [1] to a 12-approximation through
a combination of LP rounding along with several new techniques.

In this paper we present an asymptotic QPTAS for RMFC on trees. More specifically, let ε > 0,
and I be an instance of RMFC where the optimum number of firefighters to save all the leaves is
OPT (I). We present an algorithm which uses at most d(1 + ε)OPT (I)e many firefighters at each
time step and runs in time nO(log logn/ε). This suggests that the existence of an asymptotic PTAS is
plausible especially since the exponent is O(log logn), not O(logn).

Our result combines a more powerful height reduction lemma than the one in [1] with LP
rounding and dynamic programming to find the solution. We also apply our height reduction lemma
to the algorithm provided in [1] plus a more careful analysis to improve their 12-approximation and
provide a polynomial time (5 + ε)-approximation.
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1 Introduction

The Firefighter problem and a closely related problem named Resource Minimization Fire
Containment (RMFC) are natural models for optimal inhibition of harmful spreading phe-
nomena on a graph. The firefighter problem was formally introduced by Hartnell [9] and
later Chalermsook and Chuzhoy [6] defined the RMFC problem. Since then, both problems
have received a lot of attention in several research papers, even when the underlying graph is
a spanning tree, which is one of the most-studied graph structures in this context and also
the focus of this paper.
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In both problems (when restricted to trees) we are given a graph G = (V,E), which is
a spanning tree, and a vertex r ∈ V , called root. The problem is defined over discretized
time steps. At time 0, a fire starts at r and spreads step by step to neighboring vertices.
During each time step 1, 2, . . . any non-burning vertex u can be protected, preventing u from
burning in any future time step.

In the RMFC problem the task is to determine the smallest number B ∈ Z≥1 such that
there is a protection strategy which protects B vertices at each time step while saving all
the leaves from catching fire. In this context, B is referred to as the number of firefighters
(or budget at each step). In the firefighters problem, given a fixed number of firefighters
(i.e. number of vertices that can be protected at each time step) the goal is to find a strategy
to maximize the number of vertices saved from catching the fire.

For RMFC on trees, King and MacGillivray [11] showed that it is NP-hard to decide
whether one firefighter is sufficient or not. This means that there is no (efficient) approximation
algorithm with an approximation factor strictly better than 2, unless P=NP. On the positive
side, Chalermsook and Chuzhoy [6] presented an O(log∗ n)-approximation, where n is the
number of vertices. Their algorithm is based on a natural Linear Programming (LP) relaxation,
which is a straightforward adaptation of the one previously used for the Firefighter problem
on trees and essentially matches the integrality gap of the underlying LP (the integrality
gap of the underlying LP is Θ(log∗ n) [6]). Recently, Adjiashvili et al. [1] presented a 12-
approximation for RMFC, which is the first constant factor approximation for the problem.
Their result is obtained through a combination of the known LPs with several new techniques,
which allows for efficiently enumerating subsets of super-constant size of a good solution to
obtain stronger LPs. They also present a PTAS for the firefighter problem.

1.1 Our Results
In this paper our main focus is on RMFC problem. By using Linear Programming and
dynamic programming techniques, we show how to approximate RMFC with a small additive
error by presenting a quasi-polynomial time asymptotic approximation scheme (AQPTAS)
for it. More specifically our main result is the following theorem:

I Theorem 1. For RMFC on trees and for any ε > 0 there is an algorithm that finds a
solution using d

(
1 + O(ε)

)
Be firefighters with running time nO(log logn/ε), where B is the

optimal number of firefighters.

We will also show how applying our more powerful height reduction lemma to the
algorithm used by Adjiashvili et al. [1], plus a more careful analysis, leads to a better constant
factor. In particular, we obtain the following:

I Theorem 2. For any ε > 0, there is a polynomial time (5 + ε)-approximation for the
RMFC problem on trees.

Recall that the RMFC problem on trees does not admit better than 2-approximation
unless P = NP [11]. However, this does not rule out the possibility of a +1 approximation
or an asymptotic PTAS. Our result is an indication that it is plausible that an asymptotic
PTAS exists, especially since the exponent is O(log logn), not O(logn) as we don’t know
any natural problem that admits nO(log logn) algorithm but not polynomial time.

We start by introducing a more powerful height reduction transformation than the
one used in [1] that allows for transforming the RMFC problem into a more compact and
better structured form, by only losing a (1 + ε) factor in terms of approximability. This
transformation allows us to identify small substructures, over which we can optimize efficiently,
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and having an optimal solution to these subproblems we can define a residual LP with small
integrality gap. Then we will show how to apply dynamic programming on the transformed
instance to obtain a strategy to protect the nodes at each step to successfully contain the
fire and save all the leaves with using only O(εB) more firefighters at each step. We will
apply our more powerful height reduction lemma to the previous combinatorial approach [1]
to reach a better constant factor approximation in polynomial time, which is presented in
Theorem 2.

1.2 Further Related Work

The Firefighter problem and RMFC, both restricted to trees, are known to be computationally
hard problems. More precisely, Finbow, King, MacGillivray and Rizzi [7] showed the NP-
hardness for the Firefighter problem on trees even when the maximum degree is three. For
RMFC on trees, it is NP-hard to decide whether one firefighter is sufficient or not [11], which
implies that the problem is hard to approximate to a factor better than 2.

Several approximation algorithms have been proposed for both of these problems. Hartnell
and Li [8] proved that a natural greedy algorithm is a 1

2 -approximation for the Firefighter
problem. Later, Cai, Verbin and Yang [3] improved this result to 1− 1

e , using a natural LP
relaxation and dependent randomized rounding. Then Anshelevich, Chakrabarty, Hate and
Swamy [2] showed that the Firefighter problem on trees can be interpreted as a monotone
submodular function maximization (SFM) problem subject to a partition matroid constraint.
This observation yields another (1− 1

e )-approximation by using a recent (1− 1
e )-approximation

for monotone SFM subject to a matroid constraint [4, 13].
Chalermsook and Vaz [5] showed that, for any ε > 0, the canonical LP used for the

Firefighter problem on trees has an integrality gap of 1− 1
e + ε. This generalized a previous

result by Cai, Verbin and Yang [3]. When restricted to some tree topologies this factor 1− 1
e

was later improved (see [10]) but, for arbitrary trees, that was the best known approximation
factor for a few years.

Recently, Adjiashvili, Baggio and Zenklusen [1] have filled the gap between previous
approximation ratios and hardness results for the Firefighter problem. In particular, they
present approximation ratios that nearly match the hardness results, thus showing that the
Firefighter problem can be approximated to factors that are substantially better than the
integrality gap of the natural LP. Their results are based on several new techniques, which
may be of independent interest.

Assuming a variant of the Unique Games Conjecture (UGC), the RMFC problem in
general graphs is hard to approximate within any constant factor, according to a recent work
by Lee [12] which is based on a general method of converting an integrality gap instance to a
length-control dictatorship test for variants of the s-t cut problem. For further results and
related work we refer the reader to [1].

1.3 Organization of the Paper

In Section 2 we start by introducing some preliminaries including a (now standard) Linear
Programming relaxation for the problem and then will provide a height reduction lemma.
Section 3 will cover our main algorithm to obtain the asymptotic QPTAS. In Appendix A we
will show how to apply our height reduction lemma to the previous combinatorial approach
of [1] to improve their 12-approximation and provide a (5 + ε)-approximation.
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2 Preliminaries and Overview of the Algorithm

Recall that we are given a tree G = (V,E) rooted at a vertex r, from which we assume the
fire starts. We denote by Γ ⊆ V the set of all leaves of the tree. Given an instance I for
RMFC and an integer parameter B ≥ 1, called the budget or the number of firefighters, at
each time step we can “protect” up to B non-burning vertices. Such vertices are protected
indefinitely. Our goal is to find the smallest B and a protection strategy such that all the
leaves Γ are saved from catching the fire. Observe that we say a vertex u is protected, if we
directly place a firefighter in u, and a vertex v is saved when the fire does not reach to u,
because of protecting some u on the unique v-r path. This smallest value of B is denoted by
OPT (I).

Let L ∈ Z≥1 be the depth of the tree, i.e. the largest distance, in terms of the number of
edges, between r and any other vertex in G. After at most L time steps, the fire spreading
process will halt. For ` ∈ [L] := {1, . . . , L}, let V` ⊆ V be the set of all vertices of distance
` from r, which we call the `-th level of the instance. We also use V≤` = ∪`k=1Vk, and we
define V≥`, V<`, and V>` in the same way. Moreover, for each 1 ≤ ` < L and each u ∈ V` ,
Pu ⊆ V≤` \ {r} denotes the set of all vertices on the unique u-r path except for the root r,
and Tu ⊆ V>` denotes the subtree rooted at u, i.e. descendants of u.

2.1 Linear Programming Relaxation
We use the following (standard) Linear Programming (LP) relaxation for the problem that
is used in both [6] and [1].

min B (1)
x(Pu) ≥ 1 ∀u ∈ Γ
x(V≤`) ≤ B · ` ∀` ∈ [L]

x ∈ RV \{r}≥0

Here x(U) :=
∑
u∈U x(u) for any U ⊆ V \ {r}. Note that with x ∈ {0, 1}V \{r} and

B ∈ Z≥0 we get an exact description of RMFC where x is the characteristic vector of the
vertices to be protected and B is the budget. The first constraint enforces that for each leaf
u, one vertex between u and r will be protected, which makes sure that the fire will not
reach u. The second constraint ensures that the number of vertices protected after each time
step is at most B · ` and makes sure that we are using no more than B firefighters per time
step (see [6] for more details). Note that (as mentioned in [6]), there is an optimal solution
to RMFC that protects, with the firefighters available at time step `, only the vertices in V`.
Hence, we can change the above relaxation to one with the same optimal objective value by
replacing the constraints x(V≤`) ≤ B · ` by the constraints x(V`) ≤ B for all ` ∈ [L].

min B (2)
x(Pu) ≥ 1 ∀u ∈ Γ
x(V`) ≤ B ∀` ∈ [L]

x ∈ RV \{r}≥0

Throughout the paper we use a lemma of [1] which basically says that any basic feasible
solution of LP(2) (and also LP(1)) is sparse. This is proved for the polytope of the firefighters
problem, which has the same LP constraints (just different objective function). Consider any
basic feasible solution x to LP(2). One can partition supp(x) = {v ∈ V \ {r} : x(v) > 0} into
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two parts: x-loose vertices and x-tight vertices. A vertex v ∈ V \ {r} is x-loose or simply
loose if v ∈ supp(x) and x(Pv) < 1. All other vertices in supp(x), which are not loose, will
be x-tight or simply tight.

I Lemma 3 (Lemma 6 in [1]). Let x be a vertex solution to LP(2) for RMFC, then the
number of x-loose vertices is at most L, the depth of the tree.

We will use this property crucially in the design of our algorithm. Also, as noted in [1],
we can work with a slightly more general version of the problem in which we have different
numbers of budgets/firefighters at each time step: say B` = m`B (for some m` ∈ Z≥0)
firefighters for each time step ` ∈ [L] while we are still minimizing B. Lemma 3 is valid for
this generalization too.

2.2 Height Reduction
The technique of reducing the height of a tree at a small loss in cost (or approximation ratio)
has been used in different settings and various problems (e.g. network design problems).
For RMFC, Adjiashvili et al. [1] showed how one can reduce an instance of the problem to
another instance where the height of the tree is only O(logn) at a loss of factor 2. In a
sense, the tree will be compressed into a tree with only O(logn) levels. Here we introduce a
more delicate version of that compression, which allows for transforming any instance to one
on a tree with O( logn

ε ) levels at a loss of 1 + ε in the approximation. Our compression is
similar to that of [1] with an initial delay and ratio 1 + ε. One key property we achieve with
compression, is that we can later use techniques with running time exponential in the depth
of the tree.

Suppose that the initial instance is a tree with L levels and each level ` has a budget
B`. To compress the tree to a low height one, we will first do a sequence of what is called
up-pushes. Each up-push acts on two levels `1, `2 ∈ [L] with `1 < `2 of the tree, and moves
the budget B`2 of level `2 up to `1. This means the new budget of level `1 will be B`1 +B`2

and for level `2 it will be 0.
We will show that one can do a sequence of up-pushes such that: (i) the optimal objective

value of the new instance is very close to the one of the original instance, and (ii) only
O(logL/ε) levels have non-zero budgets. Finally, 0-budget levels can easily be removed
through a simple contraction operation, thus leading to a new instance with only O(logL/ε)
depth. The following theorem is a more powerful version of Theorem 5 in [1] with some
improvements such as reducing the loss to only 1 + ε (instead of 2) and some differences in
handling of the first levels.

I Theorem 4. Let G = (V,E) be a rooted tree of depth L. Then for some constants c, d > 0
(that only depend on ε) we can construct efficiently a rooted tree G′ = (V ′, E′) with |V ′| ≤ |V |
and depth L′ = O( logL

ε ), such that:
(i) If the RMFC problem on G has a solution with budget B ∈ Z≥0 at each level, then the

RMFC problem on G′ has a solution with non-uniform budgets of B` = B for each level ` < c,
and a budget of B` = m` ·B for each level ` ≥ c, where m` =

(
d(1+ε)(`−d+1)e−d(1+ε)(`−d)e

)
.

(ii) Any solution to the RMFC problem on G′, where each level ` < c has a budget of
B` = B and each level ` ≥ c has a budget of B` = m` ·B can be transformed efficiently into
an RMFC solution for G with budget d(1 + 2ε)Be.

Proof. We start by describing the construction of G′ = (V ′, E′) from G. We first change
the budget assignment of the instance and then contract all 0-budgets levels.
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We set i∗ to be the smallest integer such that (1 + ε)i∗ ≥ 2(1+ε)
ε2 and we let c = d(1 + ε)i∗e.

The set of levels L in which the transformed instance will have non-zero budget contains
the first c − 1 levels of G and all the levels ` ≥ c of G such that ` = d(1 + ε)ie for some
i∗ ≤ i ≤ logL

log(1+ε) = O(logL/ε):

L =
{

1 ≤ ` ≤ L | ` < c or ` = d(1 + ε)ie for some i∗ ≤ i ≤
⌊ logL

log(1 + ε)

⌋}
For all other levels ` /∈ L we first do up-pushes. More precisely, the budget of these

levels ` ∈ [L] \ L will be assigned to the closest level in L that is above ` (has smaller index
than `). We then remove all 0-budget levels by contraction. For each vertex v in a level
`i = d(1 + ε)ie ≥ c we will remove all vertices in the levels `i < ` < `i+1 = d(1 + ε)i+1e from
its sub-tree and connect all the vertices in level `i+1 of its sub-tree to v directly. This leads
to a new tree G′ with a new set of leaves. Since our goal is to save all the leaves in the
original instance, for each vertex v ∈ G′ such that v ∈ G has some leaves in its contracted
sub-tree, we will mark v as a leaf in G′ and simply delete all its remaining subtree.

This finishes our construction of G′ = (V ′, E′) and it remains to show that both (i) and
(ii) hold. Note that the levels in G′ correspond to levels of G in L: the first c levels of G′ are
the same as the first c levels of G; for each ` > c, level ` in G′ is level d(1 + ε)`−c+i∗e of G.

Here we want to determine what will be the budget of each level of G′. For each
` < c = d(1 + ε)i∗e, the level ` of G′ is the same as the level ` of G and has the same budget
B` = B, because these levels are not involved in up-pushes. For ` = c, all the budgets
from level d(1 + ε)i∗e to d(1 + ε)i∗+1e − 1 in G are up-pushed to this level. This means
that the budget for level c in G′ is Bc =

(
d(1 + ε)i∗+1e − d(1 + ε)i∗e

)
· B. Now for each

i∗ < i ≤ b logL
log(1+ε)c, all the budgets from levels d(1+ε)ie to d(1+ε)i+1e−1 in G are up-pushed

to level d(1 + ε)ie, which becomes level i− i∗ + c in G′; this means that the budget for this
level of G′ will be d(1 + ε)i+1e−d(1 + ε)ie. Setting ` = i− i∗+ c and d = c− i∗, the budget of
level ` in G′, is B` = (d(1 + ε)`−d+1e − d(1 + ε)`−de) ·B. To prove (ii), we use the following
lemma:

I Lemma 5. For any two consecutive levels ` ≥ c and `+ 1 in G′, the difference between
m` and m`+1 is relatively small. More precisely: m`(1 + 2ε) ≥ m`+1

Proof. Based on the definition of m` and m`+1 we have:

m` = d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e ≥ (1 + ε)(`−d+1) − (1 + ε)(`−d) − 1
⇒ m`(1 + ε) ≥ (1 + ε)(`−d+2) − (1 + ε)(`−d+1) − (1 + ε). (3)

On the other hand:

m`+1 = d(1 + ε)(`−d+2)e − d(1 + ε)(`−d+1)e ≤ (1 + ε)(`−d+2) − (1 + ε)(`−d+1) + 1
≤ m`(1 + ε) + 2 + ε using (3) (4)

Also by our choice of c, d and i∗ = c− d we can conclude that:

m` = d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e
≥ (1 + ε)(`−d+1) − (1 + ε)(`−d) − 1 = ε(1 + ε)(`−d) − 1

≥ ε(1 + ε)(c−d) − 1 = ε · (1 + ε)i
∗
− 1 ≥ ε2(1 + ε)

ε2
− 1

⇒ m` ≥ 2 + ε

ε
⇒ εm` ≥ 2 + ε. (5)

Combining (4) and (5) completes the proof. J
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I Corollary 6. For each ` ≥ c and each budget B > 0:

m`+1 ·B ≤ m` · d(1 + 2ε)Be

Notice that in the constructed graph G′ for each level ` ≥ c, we have B` = m` ·B. Now
consider the instance of the problem on graph G with budget d(1 + 2ε)Be at each level. We
will show that by doing some down-pushes on G (i.e. move the budget of each level to some
level down) we can construct G′ again where the budget of each level ` is m` ·B, and this
means that if G′ has a solution with budget m` ·B in each level, then G has a solution with
uniform budget d(1 + 2ε)Be.

Like before the set of levels L with non-zero budgets will be the same. Instead of up-
pushes, we will down-push the budget from all levels ` /∈ L to the closest level in L which is
below ` (i.e has larger index than `). We will also down-push budget d2εBe from each level
` < c to level ` = c.

By doing the same contraction, for each level ` < c we will have B` = B and for each
level ` > c we will have B` = m`−1 · d(1 + 2ε)Be, which is greater than m` ·B based on the
above lemma.

The only remaining level to consider is level ` = c. For this level, by doing down-pushes,
we will have budget Bc = B + d2εBe · c. Our claim is that this is not less than mc ·B, which
is equal to (d(1 + ε)ce − c) ·B (based on the definition of mc):

Bc = B + d2εBe · c
≥ B + 2εB · c = (1 + 2εc) ·B
≥ d2εce ·B = d(1 + 2ε)c− ce ·B
≥ (d(1 + ε)ce − c) ·B = mc ·B.

This will complete the proof of the theorem, because by considering these down-pushes,
any solution to the RMFC problem on G′, where level ` ≥ c has a budget of B` = m` ·B and
level ` < c has a budget of B` = B, can be transformed efficiently into an RMFC solution
for G with budget d(1 + 2ε)Be. J

In the following we assume that the depth of the tree is not more than logn
log(1+ε) + 2(1+ε)

ε2 ,
so L = O( logn

ε ). After finding a solution with budget B for a tree with this height, then we
could apply the compression theorem and find a solution for the original tree by having dεBe
more firefighters at each level.

2.3 Overview of the Algorithm
Given an instance I, our first step of the algorithm is to use Theorem 4 to reduce I to an
instance I ′ with L = O(logn/ε) levels. Note that when we use B to refer to core budget
for instance I ′ we mean each level ` has budget m` · B for ` ≥ c, and budget B for each
level ` < c. Also, by OPT (I ′) we mean the smallest value B such that I ′ has a feasible
solution with core budget B as above. By Theorem 4, if we find a solution with core budget
B for I ′ then it can be transformed to a solution for I with budget d(1 + 2ε)Be. So we
focus on the height reduced instance I ′ from now on. We present an algorithm such that if
B ≥ OPT (I ′) then it finds a feasible solution to I ′ with core budget at most d(1 + ε)Be.
Then, using binary search, we find the smallest value of Bo (for B) for which the algorithm
finds a feasible solution. This would give us a solution of budget at most d(1 + ε)OPT (I ′)e,
which in turn implies a solution for I of value at most d(1 +O(ε))OPT (I)e.
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So let us assume we have guessed a value OPT (I ′) ≤ Bo. We consider LP(2) (with fixed
B = Bo) for I ′ with guessed core budget Bo. Let x∗ be a basic feasible solution to this
instance. Using Lemma 3 we know that there are at most L loose vertices. As we will see,
when Bo is relatively large, i.e. Bo > L

ε , then we can easily find an integer solution using
core budget at most d(1 + ε)Boe and this yields the desired bound for the original instance.

The difficult case is when Bo is small compared to L. The difficulty lies in deciding which
vertices are to be protected by the optimum solution in the top h levels of the tree for some
h = O(log logn); as if one has this information then we can obtain a good approximation as
in [1].

One way to do this would be to guess all the possible subsets of vertices that could be
protected by the optimal solution in the first h levels of the tree, but this approach would
have a running time far greater than ours. Still, we can solve the problem on instance I ′ in
quasi-polynomial time using a bottom-up dynamic programming approach. More precisely,
starting with the leaves and moving up to the root, we compute for each vertex u ∈ V the
following table. Consider a subset of the available budgets, which can be represented as a
vector q ∈ [B1]×...×[BL]. For each such vector q and node v, we want to know whether or not
using budgets described by q for the subtree Tv (subtree rooted at v) allows for disconnecting
v from all the leaves below it, i.e. saving all the leaves in Tv. Since L = O(logn/ε) and
the size of each budget B` is at most the number of vertices, the table size is nO(logn/ε)).
Moreover, it is easy to show that this table can be constructed bottom-up in quasi-polynomial
time using an auxiliary table and another dynamic programming, to fill each cell of the table.

This approach would have the total running time of nO(logn/ε), because of the size of the
table. In order to reduce the running time to nO(log logn/ε), we would consider each budget
vector value rounded up to the nearest power of (1+ ε2

(logn)2 ). So, instead of O(nL) = nO(logn/ε)

many options for budget vectors q, we will have O((logn/ε)3L) = nO(log logn/ε) many options
and we will show how by being more careful in our dynamic programming on these budget
vectors we can still compute the table in time nO(log logn/ε); this leads to an approximation
scheme (instead of the exact algorithm) for the instance I ′.

3 Asymptotic Approximation Scheme

As mentioned above, first we use the height reduction as discussed in the previous section to
reduce the given instance I to a new one I ′ with L = O( logn

ε ) levels. We assume we have
guessed a value Bo ≥ OPT (I ′). Recall that, as in the statement of Theorem 4, for some
constants c, d (depending on ε) the budget of each level ` < c is B` = Bo and for each level
` ≥ c the budget is B` = m` ·Bo where m` =

(
d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e

)
.

We consider two cases: (I) when Bo > L
ε , and (II) when Bo ≤ L

ε . For the first case we
show how we can find a solution with core budget at most d(1 + ε)Boe by rounding the
standard Linear Programming relaxation. For the second case we show how we can use a
bottom-up dynamic programming approach to find a quasi-polynomial time approximation
scheme.

3.1 Easy Case: Bo >
L
ε

In this case we consider LP(2) (with fixed B = Bo) for this instance. If x∗ is a feasible
solution to this LP and Bo >

L
ε then we add L ≤ dεBoe extra budget (i.e. number of

firefighters) to the first level which is enough to protect all the loose vertices. Since by using
Lemma 3 we know that there are at most L loose vertices and we can protect them all in the
first step using L extra firefighters.
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It remains to show that by using a budget of m` ·Bo at every level `, for c ≤ ` ≤ L, and
Bo for ` < c, we can protect all the tight vertices and so all the leaves would be saved, by
adding only L many extra firefighters to only the first level.

Observe that for each tight vertex v, either x(v) < 1, then we would have a loose vertex
in Pv, or x(v) = 1. In the first case v is already saved by protecting the loose vertices in the
first step. If we only consider vertices with x(v) = 1, we can see that the solution is integral
itself for these vertices. So we have rounded a fractional solution with Bo > L

ε to an integral
one by using only dεBoe more firefighters just in the first level. In this case we find a feasible
solution with core budget Bo + dεBoe in polynomial time.

3.2 When Bo ≤ L
ε

Recall that we have a budget of B` = Bo < L/ε for each level ` < c and B` = m` ·Bo ≤ m` · Lε
for each c ≤ ` ≤ L. We denote by q∗ the L-dimensional total budget vector that has q∗[`] = B`
for each 1 ≤ ` ≤ L. Also for each L-dimensional vector q ∈ [B1] × [B2] × ... × [BL], we
denote by Q(q) the set of all vectors q′ such that q′ ≤ q. Suppose that |Q(q∗)| = m. We
first describe a simpler (and easier to explain) dynamic programming with running time
nO(logn/ε). Then we change it to decrease the running time and have our final approximation
scheme with running time nO(log logn/ε).

3.2.1 First Algorithm
Our dynamic program (DP) consists of two DP’s: an outer (main) DP and an inner DP. In
our main DP table A we have an entry for each vertex v and each vector q ∈ Q(q∗). This
entry, denoted by A[v, q], will store whether using budgets described by q for levels of Tv
allows for disconnecting v from all leaves below it or not.

More formally, if we assume v ∈ V`, then A[v, q] would be true if and only if there is a
strategy for Tv such that (i) all the leaves in Tv are saved, and (ii) the budget for levels of
Tv are given by vector q in indices `+ 1, . . . , L, i.e. q[`+ 1] for the first level of Tv (direct
children of v) , q[`+ 2] for the second level, and so on.

We compute the entry A[., .] in a bottom up manner, computing A[v, q] after we have
computed the entries for children of v. To compute cell A[v, q], we would use another auxiliary
table B. Suppose v has k children u1, . . . , uk and assume that we have already calculated
A[uj , q′] for every 1 ≤ j ≤ k and all vectors q′ ∈ Q(q). Then we define a cell in our auxiliary
table B[v, q′, j] for each 1 ≤ j ≤ k and q′ ∈ Q(q), where B[v, q′, j] is supposed to determine
if the budget vector q′ is enough for the union of subtrees rooted at u1, . . . , uj to save all the
leaves in Tu1 ∪ . . . Tuj or not, where the total budgets for union of those subtrees are given
by q′. We can compute B[v, q′, j] having computed A[uj , q′′] and B[v, q′ − q′′, j − 1] for all
q′′ ∈ Q(q′). This means that we can compute each cell A[v, q] using auxiliary table B and
internal DPs and the running time is O(n2 ·m3). We need to find A[r, q∗]. If this cell is true,
then we can save all the leaves of the tree using q∗ as the budget vector for each level and if
it is false, Bo would not be enough.

The problem is that m` could be large (mL = O(n)) and so the options we have for
the budget of each level is O(n). Recall that we can have Bo ≤ L

ε many choices for q[`]
when ` < c and m` · Lε many options when c ≤ ` ≤ L. Using the definition of the m`:
m` = O(ε(1 + ε)`−d), and so the total possible different budget vectors we could have is:

m =
(L
ε

)c−1
×

L∏
`=c

(
m` ·

L

ε

)
=

(L
ε

)c−1
×LL−c+1×

L∏
`=c

(
(1+ε)`−d

)
= O

(
(nL)L

)
This means that the total running time will be O(nL) = nO(logn/ε) and this is an exact

algorithm to solve the RMFC problem on instance I ′.
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3.2.2 Reducing Budget Possibilities
To reduce the running time, we only consider budget vectors where each entry of the vector is
a power of (1+

(
ε/ logn

)2). In this case we have at most O
(

log (m` · L)×( logn
ε )2) = O(log3 n)

many options for `th entry of q for each c ≤ ` ≤ L, and so m = O((logn)L) = nO(log logn/ε).
Also, we have to show how we can compute the entries of the table in time nO(log logn/ε) and
why this would give a (1+ε)-approximation of the solution. For each real x, let RU(x) denote
the value obtained by rounding up x to the nearest power of (1 + (ε/ logn)2). The main idea
is that if for each vector q we round up each entry qi to RU(qi) and denote the new vector
by RU(q) then if A[v, q] = true then A[v,RU(q)] is also true. So we only try to fill in entries
of the table that correspond to vectors q where each entry is a power of (1 + (ε/ logn)2). We
show this can be done in time nO(log logn/ε) and the total loss in approximation is at most
1 + ε at the root of the tree.

From now on, we assume each vector q has entries that are powers of (1 + (ε/ logn)2);
and recall that Q(q) is the set of all such vectors q′ such that q ≤ q′ and assume we have
already calculated A[uj , q′] for every vector q′ ∈ Q(q) (again with all entries being powers of
(1 + (ε/ logn)2)).

If we try to compute A[v, q] from A[uj , q′]’s the same way, we need to calculate B[v, q′, j]
for each 1 ≤ j ≤ k and each time we round up the results of addition/subtractions (such as
q − q′) to the nearest power of (1 + (ε/ logn)2).

3.2.3 Reducing Height of Inner Table
To compute cell A[v, q] then this round-up operation could happen k = O(n) times and the
approximation loss blows up. Instead, we consider a hypothetical full binary tree with root v
and leaves (at the lowest level) being u1, . . . , uk; this tree will have height O(log k) = O(logn).
Then we define a cell in our auxiliary table for each internal node of this tree. See Figure 1
for an illustration.

v

u4 u5u3u2u1

v

u4 u5u3u2u1

Figure 1 Illustration of the hypothetical full binary tree with root v and leaves u1, . . . , u5.

More formally we would define a cell in our auxiliary table B[v, q′, j, j′] for each 0 ≤ j ≤
dlog ke, 1 ≤ j′ ≤ d k2j e and q

′ ∈ Q(q) with all entries being powers of (1 + (ε/ logn)2), where
B[v, q′, j, j′] is supposed to determine if the budget vector q′ is enough for the subtrees rooted
at uj1 , . . . , uj2 , where j1 = 2j · (j′ − 1) + 1 and j2 = min{2j · j′, k}, to save all the leaves in
those subtrees, where the total budgets for the union of those subtrees is given by q′.

Similar to what we did before, we can compute B[v, q′, j, j′] having computed B[v, q′′, j−
1, 2j′− 1] and B[v,RU(q′− q′′), j− 1, 2j′] (if it exists) for all q′′ ∈ Q(q′). At each step we are
computing a cell in table B a round-up will be applied to make the result of vector subtraction
to be a vector with entries being powers of (1 + (ε/ logn)2). If we can find a q′′ such that
both B[v, q′′, j− 1, 2j′− 1] and B[v,RU(q′− q′′), j− 1, 2j′] are true, then B[v, q′, j, j′] would
be true too. Also we can fill A[v, q] by checking the value of B[v, qi, dlog ke, 1].
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In the way we construct our auxiliary tables, while computing A[v, q], when v has k
children, log k many round up operations have happened (going up the auxiliary tree with
root v) to the solution we found for Tv only in this step. This means that O(log k) ≤ O(logn)
many round-ups could happen to compute entry A[v, q] and the total number of round-ups
starting from the values of A[., .] at a leaf level to A[r, q] (for any q) would be at most
L× logn ≤ log2 n

ε and at each round-up we increase our budget by a factor of (1 + (ε/ logn)2).
So the total approximation increase while computing the entries for A[r, .] would be at most:(

1 + ε2

(logn)2

) log2 n
ε = 1 +O(ε)

Observe that for every node v and subtree Tv if there is a solution with budget vectors
q then there is a solution with budget vector RU(q) as well. Using this fact we can find a
solution with budget vector at most (1 +O(ε))q∗ if there exists a solution with budget vector
q∗. This completes the proof of Theorem 1.

4 Conclusion

In this paper we presented an asymptotic QPTAS for RMFC on trees. More specifically, let
ε > 0, and I be an instance of RMFC where the optimum number of firefighters is OPT (I).
We presented an algorithm that uses at most d(1 + ε)OPT (I)e many firefighters at each step
and runs in time nO(log logn/ε). Our result combines a more powerful height reduction lemma
than the one in [1] by using dynamic programming to find the solution. We also provide a
polynomial time (5 + ε)-approximation for the problem by applying our height reduction
lemma to the algorithm provided in [1] as well as some minor changes to improve the best
previously known 12-approximation (Appendix A).

We believe that it should be possible to have an asymptotic PTAS for the RMFC problem.
Perhaps one way is to somehow guess the upper part of the optimal solution in polynomial
time and then use the LP to round the solution for the height reduced instance for which we
initially applied the height reduction lemma.
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A Polynomial (5 + ε)-Approximation for RMFC

In this section we show how the approach introduced in [1] can be adapted so that along
with our height reduction lemma gives a (5 + ε)-approximation. We largely follow the proof
of [1] only pointing out the main steps that need slight adjustments. We assume the reader
is familiar with that proof and terminology used there.

Let x be a fractional solution to LP(2). We define Wx as the set of leaves that are
(fractionally) cut off from r largely on low levels, i.e. there is high x-value on Pu on vertices
far away from the root. We first start by recalling Theorem 12 from [1] which basically says
that we can round an LP solution to an integral one by increasing the core budget B by a
small constant such that Wx can be saved.

I Theorem 7 (modified version of Theorem 12 in [1]). Let B ∈ R≥1, µ ∈ (0, 1], and
h = blog1+ε Lc. Let x ∈ LP(2) with value B and supp(x) ⊆ V>h, and we define W = {u ∈
Γ|x(Pu) ≥ µ}. Then one can efficiently compute a set R ⊆ V>h such that:

R ∩ Pu 6= ∅ ∀u ∈W , and
There is an integral solution z = y1 + y2 to LP(2), which is a combination of two integral
solutions y1 and y2 with value B′ = 1

µB and 1 respectively such that supp(y1) ⊆ V>h and
supp(y2) ⊆ V≤h.

Proof. The proof would be very similar to the proof of Theorem 12 in [1], and the only
difference is in providing the extra budget for protectecting the loose vertices in V>h. They
changed B to B + 1 at level h + 1 to provide this required budget. It that was enough,
because the budget in the reduced instance is Bh+1 = 2h+1 ·B at this level, and so by this
change 2h = L many more firefighters are available and they are enough to protect all the
loose vertices. But we need to change B to B + 1 on all levels 1 to h, to have L many more
firefighters for protecting all the loose vertices. This is because our budget in the reduced
instance is B` = B when 1 ≤ ` < c and B` = m` ·B when c ≤ ` ≤ L. So by this change, we
should have c− 1 more firefighters in total for the first c− 1 levels and

∑h
`=cm` many more

firefighters for levels c to h and the total would be (1 + ε)h = L, which is enough to protect
all the loose vertices. But the difference in our integral solution is that all the added budgets
are from levels 1 to h (one for each level), and the remaining integral solution, which is 1

µ

feasible, is the subset of V>h. This completes the proof of this theorem. J
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Similar to [1], we consider two cases based on how B compares to logL. When B ≥ logL,
we will have a 3-approximation for the reduced instance, by first solving the LP(2). This is
similar to Theorem 13 in [1] and consistent with our height reduction lemma:

I Theorem 8 (modified version of Theorem 13 in [1]). There is an efficient algorithm that
computes a feasible solution to a compressed instance of RMFC with budget at most 3BOPT
when B ≥ logL.

Proof. Assume x is a fractional LP(2) solution with value B. Then we use Theorem 7 and
set µ = 1/2 to obtain an integral solution z, which saves W = {u ∈ Γ|x(Pu) ≥ µ}, by core
budget 1 at each level 1 ≤ ` ≤ h and 2B at each level h+ 1 ≤ ` ≤ L. Note that we can now
transfer the 1 unit of budget from the very first level ` = 1 to level h+ 1 and change the core
budget 2B to 2B + 1 on this level and remove that extra budget from the very first level.
This is because these extra firefighters from levels 1 to h are supposed to protect the loose
vertices, which are in V>h. By doing so we have an integral solution z such that the core
budget is 0 in the first level, 1 in levels 2 to h, 2B + 1 at level h+ 1, and 2B at level h+ 2
to L. Now consider leaves Γ \W . If we write another LP similar to LP(2), but specifically
to save only these leaves by only protecting the vertices in V≤h, this LP would be feasible.
Because all these vertices had x(Pu)∩V≤h ≥ 0.5, and so, 2x restricted to the vertices in V≤h,
would be a feasible solution to this LP. Hence, we can find the optimal solution to this LP
call it y. Based on Lemma 3, there would be at most h = logL many loose vertices all in
V≤h, and so by adding B > logL = h many firefighters in the first level we would be able
to protect all these y-loose vertices. Then all other remaining vertices could be saved by
core budget 2B. Putting these two solutions together (for saving W and Γ \W ) we have
found an integral solution to save all the leaves, by having core budget 3B in the first level,
2B + 1 in levels 2 to h+ 1, and 2B at the remaining levels. This completes the proof of this
theorem. J

We use the same terminology defined before Lemma 14 in [1], in particular for clean set
pairs of vertices A,D. Suppose (A,D) is a clean pair compatible with OPT , i.e. A∪D ⊆ V≤h,
A ⊆ OPT andD∩OPT = ∅, for h = log logL and LP (A,D) by adding two sets of constraints
to LP(2) to force the solution to pick all vertices in A and not picking all vertices in D

as well as the vertices in their path to the root. Also for each fractional solution to this
LP let Wx =

{
u ∈ Γ

∣∣x(Pu ∩ V>h) ≥ 1
1+ε
}
to be the set of leaves cut off from the root by

an x-load of at least µ = 1
1+ε within bottom levels (we changed 2

3 to 1/(1 + ε) from [1]).
For each u ∈ Γ \Wx, let fu ∈ V≤h be the vertex closest to the root among all vertices in
(Pu ∩ V≤h) \D, then define Fx = {fu|u ∈ Γ \Wx} \A. It follows that no two vertices of Fx
lie on the same leaf-root path. Furthermore, every leaf u ∈ Γ \Wx is part of the subtree Tf
for precisely one f ∈ Fx. Also lets define Qx = V≤h ∩ (∪f∈FxTf ).

Now we are ready to provide our modification of Lemma 14 in [1] when B < logL:

I Lemma 9 (modified version of Lemma 14 in [1]). Let (A,D) be a clean pair of vertices
(A,D), which is compatible with OPT , and let x and y be optimal solutions to LP (A,D)
and LP (A, V≤h \A) with objective function B and B̂ respectively. Then, if OPT ∩Qx = ∅,
we have B̂ ≤ (2 + ε)BOPT .

Proof. The proof is similar to the proof of Lemma 14 in [1] and the first difference is that
we changed 2

3 to 1
1+ε in the definition of Wx. First of all we can have a fractional solution

that saves Wx with picking only vertices from V>h. This is because (1 + ε)x restricted to
levels h + 1 to L would save Wx. Now partition Γ \Wx into two groups. The leaves that
OPT cut them from the root by protecting a vertex in V≤h, denote them by W1, and W2
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are the leaves that OPT is cutting them in levels h+ 1 to L. By finding such (A,D), we are
actually saving W1. and for W2 there is an integral solution with core budget BOPT , which
is restricted to levels h+ 1 to L. So the optimum solution to LP (A, V≤h \A) would not use
more than (1 + ε)BOPT +BOPT as the core budget in levels h+ 1 to L. This completes the
first part of lemma. To round this fractional solution to an integral one which saves Wx and
W2 (note that W1 is saved already by the choice of A and D), we use the same technique as
Theorem 7.

We need to first find an integral solution restricted to levels h1 = logL to L that saves the
leaves with y(Pu ∩V>h1) ≥ 1

2(1+ε) by adding one core budget to levels 1 to h1 and then write
another LP restricted to levels h to h1. Then we find another integral solution restricted to
levels h to h1 by adding another core budget to levels 1 to h that saves all the remaining
leaves, which for sure has y(Pu ∩ V>h ∩ V≤h1) ≥ 1

2(1+ε) . Finally we would have an integral
solution with core budget BOPT + 2 for the first h levels, 2(2 + ε)BOPT + 1 for levels h+ 1
to h1 and 2(2 + ε)BOPT for levels h1 to L. This completes the proof of this lemma. J

The only remaining thing is to show how we can find such (A,D) pair of vertices in
polynomial time that follows in the exact same way of Lemma 15 in [1]. and the only
difference is the running time, which is still polynomial. In their proof they have used
the fact that for each leaf u ∈ Γ \Wx, we have x(Pu ∩ V < h) > 1

3 , and here we can say
x(Pu∩V < h) > 1− 1

1+ε > ε that would only change the constant factor in the actual running
time of O(logL)O(logL). So the total running time would be still polynomial. This means
that we are able to find a (5 + ε)-approximation for the reduced instance of the RMFC
problem, and then it leads to the (5 + ε)-approximation for the RMFC problem.
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Abstract
The semi-streaming model is a variant of the streaming model frequently used for the computation
of graph problems. It allows the edges of an n-node input graph to be read sequentially in p passes
using Õ(n) space. If the list of edges includes deletions, then the model is called the turnstile model;
otherwise it is called the insertion-only model. In both models, some graph problems, such as
spanning trees, k-connectivity, densest subgraph, degeneracy, cut-sparsifier, and (∆ + 1)-coloring,
can be exactly solved or (1 + ε)-approximated in a single pass; while other graph problems, such
as triangle detection and unweighted all-pairs shortest paths, are known to require Ω̃(n) passes to
compute. For many fundamental graph problems, the tractability in these models is open. In this
paper, we study the tractability of computing some standard spanning trees, including BFS, DFS,
and maximum-leaf spanning trees.

Our results, in both the insertion-only and the turnstile models, are as follows.

Maximum-Leaf Spanning Trees: This problem is known to be APX-complete with inapproximability
constant ρ ∈ [245/244, 2). By constructing an ε-MLST sparsifier, we show that for every constant
ε > 0, MLST can be approximated in a single pass to within a factor of 1 + ε w.h.p. (albeit in
super-polynomial time for ε ≤ ρ− 1 assuming P 6= NP) and can be approximated in polynomial
time in a single pass to within a factor of ρn + ε w.h.p., where ρn is the supremum constant
that MLST cannot be approximated to within using polynomial time and Õ(n) space. In the
insertion-only model, these algorithms can be deterministic.

BFS Trees: It is known that BFS trees require ω(1) passes to compute, but the naïve approach
needs O(n) passes. We devise a new randomized algorithm that reduces the pass complexity to
O(
√
n), and it offers a smooth tradeoff between pass complexity and space usage. This gives a

polynomial separation between single-source and all-pairs shortest paths for unweighted graphs.
DFS Trees: It is unknown whether DFS trees require more than one pass. The current best algorithm

by Khan and Mehta [STACS 2019] takes Õ(h) passes, where h is the height of computed DFS
trees. Note that h can be as large as Ω(m/n) for n-node m-edge graphs. Our contribution is
twofold. First, we provide a simple alternative proof of this result, via a new connection to sparse
certificates for k-node-connectivity. Second, we present a randomized algorithm that reduces the
pass complexity to O(

√
n), and it also offers a smooth tradeoff between pass complexity and

space usage.
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1 Introduction

Spanning trees are critical components of graph algorithms, from depth-first search trees
(DFS) for finding articulation points and bridges [44], computing st-numbering [13], chain
decomposition [41], and coloring signed graphs [18], to breadth-first search trees (BFS)
for finding separators [33], computing sparse certificates of k-node-connectivity [8, 12],
approximating diameters [10, 40], and characterizing AT-free graphs [5], and to maximum-
leaf spanning trees (MLST) for connected dominating sets [35, 42] and connected maximum
cuts [26, 21].

In the semi-streaming model, the tractability of spanning tree computation, except
arbitrary spanning trees [3, 43, 39], is less studied. The semi-streaming model [37, 3] is a
variation of streaming model frequently used for the computation of graph problems. It allows
the edges of an n-node input graph to be read sequentially in p passes using Õ(n)1 space. If
the list of edges includes deletions, then the model is called the turnstile model; otherwise it
is called the insertion-only model. In both models, some graph problems, such as spanning
trees [3], k-connectivity [25], densest subgraph [36], degeneracy [15], cut-sparsifier [29], and
(∆ + 1)-coloring [4], can be exactly solved or (1 + ε)-approximated in a single pass, while
other graph problems, such as triangle detection and unweighted all-pairs shortest paths [7],
are known to require Ω̃(n) passes to compute. For many fundamental graph problems,
e.g., standard spanning trees, the tractability in these models is open. BFS computation is
known to require ω(1) passes [17], but only the naive O(n)-pass algorithm is known. It is
unknown whether DFS computation requires more than one passes [14, 30], but the current
best algorithm needs Õ(h) passes [30] where h is the height of the computed DFS trees, so
h = O(n) for dense graphs. The tractability of maximum-leaf spanning trees (MLST) is
unknown even allowing O(n2) space, since it is APX-complete [34, 20].

Due to the lack of efficient streaming algorithms for spanning tree computation, for
some graph problems that are traditionally solved using spanning trees, such as finding
articulation points and bridges, people had to look for alternative methods when designing
streaming algorithms for these problems [16, 14]. The alternative methods, even if they
are based on known results in graph theory, may still involve the design of new streaming
algorithms. For the problems mentioned above, the alternative methods use newly-designed
sparse connectivity certificates [12, 25] that are easily computable in the semi-streaming

1 We write Õ(k) to denote O(k poly logn) or O(k/poly logn) where n is the number of nodes in the input
graph. Similarly, Ω̃(k) denotes Ω(k poly logn) or Ω(k/poly logn).

https://doi.org/10.4230/LIPIcs.STACS.2020.34
https://arxiv.org/abs/2001.07672


Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai 34:3

model, rather than the classical one due to Nagamochi and Ibaraki [38]. Hence establishing
the hardness of spanning tree computation helps to explain the need of the alternative
methods.

In this paper, we study the tractability of computing standard spanning trees for connected
simple undirected graphs, including BFS trees, DFS trees, and MLST. Unless otherwise
stated, our upper bounds work in the turnstile model (and hence also in the insertion-only
model), and our lower bounds hold for the insertion-only model (and hence also in the
turnstile model). The space upper and lower bounds are in bits. Our results are as follows.

Maximum-Leaf Spanning Trees: We show, by constructing an ε-MLST sparsifier (The-
orem 6), that for every constant ε > 0, MLST can be approximated in a single pass to
within a factor of 1 + ε w.h.p.2 (albeit in super-polynomial time for ε ≤ ρ − 1 since it is
APX-complete [34, 20] with inapproximability constant ρ ∈ [245/244, 2) [9]) and can be
approximated in polynomial time in a single pass to within a factor of ρn + ε w.h.p., where
ρn is the supremum constant that MLST cannot be approximated to within using polynomial
time and Õ(n) space. In the insertion-only model, these algorithms are deterministic. We
also show a complementary hardness result (Theorem 17) that for every k ∈ [1, (n− 5)/4],
to approximate MLST to within an additive error k, any single-pass randomized streaming
algorithm that succeeds with probability at least 2/3 requires Ω(n2/k2) bits. This hardness
result excludes the possibility to have a single-pass semi-streaming algorithm to approximate
MLST to within an additive error n1/2−Ω(1). Our results for MLST shows that intractability
in the sequential computation model (i.e., Turing machine) does not imply intractability in
the semi-streaming model.

Our algorithms rely on a new sparse certificate, the ε-MLST sparsifier, defined as
follows. Let G be an n-node m-edge connected simple undirected graph. Then for any given
constant ε > 0, H is an ε-MLST sparsifier if it is a connected spanning subgraph of G with
|E(H)| ≤ f(ε)|V (G)| and leaf(H) ≥ (1 − ε) leaf(G), where leaf(G) denotes the maximum
number of leaves (i.e. nodes of degree one) that any spanning tree of G can have and f is
some function independent of n. We show that an ε-MLST sparsifier can be constructed
efficiently in the semi-streaming model.

I Theorem 1. In the turnstile model, for every constant ε > 0, there exists a randomized
algorithm that can find an ε-MLST sparsifier with probability 1 − 1/nΩ(1) using a single
pass, Õ(f(ε)n) space, and Õ(n+m) time, and in the insertion-only model a deterministic
algorithm that uses a single pass, Õ(f(ε)n) space, and O(n+m) time.

Combining Theorem 1 with any polynomial-time RAM algorithms for MLST that uses
Õ(n+m) space, e.g, [34, 35, 42], we obtain the following result.

I Corollary 2. In the turnstile model, for every constant ε > 0, there exists a randomized
algorithm that can approximate MLST for any n-node connected simple undirected graph with
probability 1− 1/nΩ(1) to within a factor of ρn + ε using a single pass, Õ(f(ε)n) space, and
polynomial time, where ρn is the supremum constant that MLST cannot be approximated to
within using polynomial time and Õ(n) space, and in the insertion-only model a deterministic
algorithm that uses a single pass, Õ(f(ε)n) space, and polynomial time.

Using Corollary 2, we show that approximate connected maximum cut can be computed
in a single pass using Õ(n) space for unweighted regular graphs (Corollary 7).

2 W.h.p. means with probability 1− 1/nΩ(1).
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BFS Trees: It is known that BFS trees require ω(1) passes to compute [17], but the naive
approach needs O(n) passes. We devise a randomized algorithm that reduces the pass
complexity to O(

√
n) w.h.p., and give a smooth tradeoff between pass complexity and space

usage.

I Theorem 3. In the turnstile model, for each p ∈ [1,
√
n], there exists a randomized

algorithm that can compute a BFS tree for any n-node connected simple undirected graph with
probability 1− 1/nΩ(1) in p passes using Õ((n/p)2) space, and in the insertion-only model a
deterministic algorithm that uses Õ(n2/p) space.

This gives a polynomial separation between single-source and all-pairs shortest paths
for unweighted graphs because any randomized semi-streaming algorithm that computes
unweighted all-pairs shortest paths with probability at least 2/3 requires Ω̃(n) passes.

We extend Theorem 3 and obtain that multiple BFS trees, each starting from a unique
source node, can be computed more efficiently in pass complexity in a batch than individually
(see Theorem 13). We show that this batched BFS has applications to computing a 1.5-
approximation of diameters for unweighted graphs (Theorem 15) and a 2-approximation of
Steiner trees for unweighted graphs (Corollary 14).

DFS Trees: It is unknown whether DFS trees require more than one passes [14, 30], but
the current best algorithm needs Õ(h) passes due to Khan and Mehta [30], where h is the
height of computed DFS trees. We devise a randomized algorithm that has pass complexity
O(
√
n) w.h.p., and give a smooth tradeoff between pass complexity and space usage.

I Theorem 4. In the turnstile model, for each p ∈ [1,
√
n], there exists a randomized

algorithm that can compute a DFS tree for any n-node connected simple undirected graph
with probability 1− 1/nΩ(1) in p passes that uses Õ(n3/p4) space, and in the insertion-only
model a deterministic algorithm that uses Õ(n2/p2) space.

For dense graphs, our algorithms improves upon the current best algorithms for DFS
due to Khan and Mehta [30] which needs Ω(m/n) passes for n-node m-edge graphs in the
worst case because of the existence of (m/n)-cores, where a k-core is a maximal connected
subgraph in which every node has at least k neighboring nodes in the subgraph.

1.1 Technical Overview
Maximum-Leaf Spanning Trees: We construct an ε-MLST sparsifier by a new result that
complements Kleitman and West’s lower bounds on the maximum number of leaves for graphs
with minimum degree δ ≥ 3 [31]. The lower bounds are: if a connected simple undirected graph
G has minimum degree δ for some sufficiently large δ, then leaf(G) ≥ (1− (2.5 ln δ)/δ)|V (G)|
and the leading constant can be larger for δ ∈ {3, 4}. Our complementary result (Lemma 5),
without the restriction on the minimum degree, is: any connected simple undirected graph
G, except the singleton graph, has

leaf(G) ≥ 1
10(|V (G)| − inode(G)), (1)

where inode(G) denotes the number of nodes whose degree is two and whose neighbors both
have degree two. Equation (1) implies that, if one can find a connected spanning subgraph
H of G so that | leaf(G) − leaf(H)| ≤ ε(V (G) − inode(G)), then one gets an (10ε)-MLST
sparsifier.
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Our sparsification technique is general enough to obtain a (t + ε)-approximation for
MLST in a single pass using Õ(n) space by combining any t-approximation Õ(n)-space RAM
algorithm for MLST with our ε-MLST sparsifier. On the other hand, since in linear time one
can find an ε-MLST sparsifier of O(n) edges, any t-approximation RAM algorithm for MLST
with time complexity O(f(n,m)) can be reduced to O(f(n, n) + n+m) if a small sacrifice
on approximation ratio is allowed. This reduces the time complexity of RAM algorithms for
MLST that need superlinear time on the number of edges, such as the local search approach
from O(mknk+2) for k ≥ 1 to O(n2k+2) and the leafy forest approach from O((m+ n)α(n))
to O(m+ nα(n)), both due to Lu and Ravi [34, 35].

BFS Trees: We present a simple deterministic algorithm attaining a smooth tradeoff
between pass complexity and space usage. In particular, in the insertion-only semi-streaming
model, the algorithm finishes in O(n/poly logn) passes. The algorithm is based on an
observation that the sum of degrees of nodes in any root-to-leaf path of a BFS tree is
bounded by O(n) (Lemma 8).

Our more efficient randomized algorithm (Theorem 3) constructs a BFS tree by combining
the results of multiple instances of bounded-radius BFS. To reduce the space usage, the
simulation of these bounded-radius BFS are assigned random starting times, and the algorithm
only maintains the last three layers of each BFS tree. These ideas are borrowed from results
on shortest paths computation in the parallel and the distributed settings [11, 22, 27, 45].

DFS Trees: We present a simple alternative proof of the result of Khan and Mehta [30] that
a DFS tree can be constructed in dh/ke passes using Õ(nk) space, for any given parameter
k, where h is the height of the computed DFS tree. The new proof is based on the following
connection between the DFS computation and the sparse certificates for k-node-connectivity.
We show in Lemma 16 that the first k layers of any DFS tree of a such a certificate H can
be extended to a DFS tree of the original graph G.

The proof of Theorem 4 is based on the parallel DFS algorithm of Aggarwal and
Anderson [2]. In this paper we provide an efficient implementation of their algorithm
in the streaming model, also via the sparse certificates for k-node-connectivity, which allows
us to reduce the number of passes by batch processing.

We note that in a related work, Ghaffari and Parter [23] showed that the parallel DFS
algorithm of Aggarwal and Anderson can be adapted to distributed setting. Specifically,
they showed that DFS can be computed in the CONGEST model in Õ(

√
Dn+ n3/4) rounds,

where D is the diameter of the graph.

1.2 Paper Organization

In Section 2, we present how to construct an ε-MLST sparsifier and apply it to devise
single-pass semi-streaming algorithms to approximate MLST to within a factor of (1 + ε) for
every constant ε > 0. Then, in Section 3, we show how to compute a BFS tree rooted at a
given node by an O(

√
n)-pass Õ(n)-space algorithm w.h.p. and its applications to computing

approximate diameters and approximate Steiner trees. In Section 4, we have a similar result
for computing DFS trees; that is, O(

√
n)-pass Õ(n)-space algorithm that succeeds w.h.p.

Lastly, we prove the claimed single-pass lower bound in Section 5.
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2 Maximum-Leaf Spanning Trees

In this section, we will show how to construct an ε-MLST sparsifier in the semi-streaming
model; that is, proving Theorem 1. We recall the notions defined in Section 1 before
proceeding to the results. By ignorable node, we denote a node x whose degree is two and
whose neighbors u and v have degree two as well. Note that u 6= v for simple graphs. Let
leaf(G) be the maximum number of leaves (i.e. nodes of degree one) that a spanning tree of
G can have. Let inode(G) denote the number of ignorable nodes in G. Let degG(x) denote
the degree of node x in graph G. Let Sk(G) denote any subgraph of G so that Sk(G) contains
all nodes in G and every node x in Sk(G) has degree degSk

(x) ≥ min{degG(x), k}. Let T (G)
be any spanning tree of a connected graph G.

We begin with a result that complements Kleitman and West’s lower bounds on the
number of leaves for graphs with minimum degree δ for any δ ≥ 3. Our lower bound does
not rely on the degree constraint. The constant 1/10 in Lemma 5 may be improved, but the
subsequent lemmata and theorems only require it to be Ω(1).

I Lemma 5. Every connected simple undirected graph G, except the singleton graph, has

leaf(G) ≥ 1
10(|V (G)| − inode(G)).

Proof. Our proof is a generalization of the dead leaf argument due to Kleitman and West [31].
Let T be a tree rooted at s with N(s) as leaves for some arbitrary node s ∈ G initially, where
N(s) denotes the neighbors of s, and then grow T iteratively by a node expansion order,
defined below. By expanding T at node x, we mean to select a leaf node x of T and add all of
x’s neighbors in G\T , say y1, y2, . . . , yd, and their connecting edges, (x, y1), (x, y2), . . . , (x, yd),
to T . In this way, every node outside T cannot be a neighbor of any non-leaf node in T . We
say a leaf node in T is dead if it has no neighbor in G \ T . Let (∆n)i denote the number
of non-ignorable nodes in G that joins T while the i-th operation is applied. Let (∆`)i

denote the change of the number of leaf nodes in T while the i-th operation is applied. Let
(∆m)i denote the change of the number of dead leaf nodes in T while the i-th operation is
applied. The subscript i may be removed when the context is clear. We need to secure that
∆`+ ∆m ≥ ∆n/5 holds for each of the following operations and the initial operation.

Operation 1: If T has a leaf node x that has d ≥ 2 neighbors outside T , then expand T at
x. In this case, ∆n ≤ d, ∆` ≥ d− 1, and ∆m ≥ 0.

Operation 2: If every leaf node in T has at most one neighbor outside T and some node
x /∈ T has d ≥ 2 neighbors in T , then expand T at one of x’s neighbors in T . In this case,
∆n ≤ 1, ∆` = 0, and ∆m = d− 1.

Operation 3: This operation is used only when the previous two operations do not apply.
Let x0 be some leaf in T that has exactly one neighbor x1 not in T . For each i ≥ 1, if
xi is defined and all neighbors of xi other than xi−1 are outside T and xi has degree
two in G, then define xi+1 to be the neighbor of xi other than xi−1. Suppose that xi for
i ≤ k are defined and xk+1 is not defined, then we expand T at xi for each i ≤ k in order.
Though k can be arbitrarily large, ∆n ≤ 2 + degG(xk). If xk+1 is not defined and xk has
d > 0 neighbors other than xk−1 in T (thus k ≥ 2 in this case otherwise Operation 2
applies), then we discuss in subcases:

Subcase 1 (degG(xk) = 1): It is impossible to have degG(xk) = 1 for this case.
Subcase 2 (degG(xk) = 2): Then ∆` = 0 and ∆m = 2.
Subcase 3 (degG(xk) ≥ 3): Then ∆` = degG(xk)− d− 2 and ∆m ≥ d.
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If xk+1 is not defined and xk has 0 neighbor other than xk−1 in T , then degG(xk) is either
1 or ≥ 3. For degG(xk) = 1, ∆` = 0 and ∆m = 1. For degG(xk) ≥ 3, ∆` = degG(xk)− 2
and ∆m ≥ 0.

It is clear that one can expand T to get a spanning tree of G by a sequence of the
above operations. Because all leaves are eventually dead,

∑
∆m =

∑
∆`. Consequently,

2 leaf(G) ≥ 2
∑

∆` =
∑

∆`+ ∆m ≥ (
∑

∆n)/5 = (V (G)− inodeG)/5, as desired. J

Given Lemma 5, our goal is, for every constant ε > 0, find a sparse subgraph H of the
input graph G so that:

1. The nodes incident to the edges in T ∗ \H can be dominated by a small set S of at most
ε(|V (G)| − inode(G)) nodes, i.e. either in S or has at least one neighbor node in S using
the edges in H, where T ∗ is any optimal MLST of G.

2. H is connected.

Because of the existence of the small dominating set S, one can obtain a forest F from
T ∗ ∩H by adding some edges in H so that the number of leaves in F is no less than that in
T ∗ by |S| and the number of connected components in F is no more than that in T ∗ by |S|.
Since H is connected, one can further obtain a spanning tree T from F by adding at most
|S| edges in H, so the number of leaves in T is no less than that in F by 2|S|. Pick an H
associated with a sufficiently small ε, by Equation (1) H is an ε-MLST sparsifier. A formal
proof is given below.

I Theorem 6. For every integer k ≥ 186, every connected simple undirected graph G has

leaf(Sk(G) ∪ T (G)) ≥
(

1− 30
(

1 + ln(k + 1)
k + 1

))
leaf(G).

Proof. Let T ∗ be a spanning tree of G that has leaf(G) leaves. Let k be some fixed integer at
least 3 and let H = Sk(G) ∪ T (G). Let L = {x ∈ V (G) : x is incident to some e ∈ T ∗ \H}.
Note that every node x ∈ L has degG(x) > k, so x and all neighbors of x are not ignorable
nodes in G.

First, we show that L can be dominated by a small set S of size at most ε(|V (G)| −
inode(G)) using some edges in H. We obtain S from two parts, S1 and S2. S1 is a random
node subset sampled from the non-ignorable nodes in G, in which each node is included
in S1 with probability p independently, for some p ∈ (0, 1) to be determined later. Thus,
E[|S1|] = p(|V (G)|− inode(G)). Since every node x ∈ L is adjacent only to the non-ignorable
nodes in G, the probability that x ∈ L is not dominated by any node in S1 is

Pr[x is not dominated] = (1− p)1+degH(x) ≤ (1− p)k+1.

Let S2 be the set of nodes in L that are not dominated by any node in S1 using the edges in
H. Thus,

E[|S|] = E[|S1|+ |S2|] ≤
(
p+ (1− p)k+1) (|V (G)| − inode(G)).

Then, we obtain a forest F from T ∗ ∩H by adding some edges in H as follows. Initially,
F = T ∗ ∩H.

Operation 1: For each x ∈ L, if x is an isolated node in T ∗ ∩H and x /∈ S, then add an
edge e from x to some node in S to F . Such an edge e must exist because S dominates L.
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Operation 2: For each x ∈ L, if x is not an isolated node in T ∗ ∩ H and the connected
component that contains x has an empty intersection with S, then add an edge e from x

to some node in S to F . Again, such an edge e must exist because S dominates L.

For each leaf ` ∈ T ∗, if degG(`) ≤ k, then ` is a leaf in T ∗ ∩H (also in F unless ` ∈ S);
otherwise degG(`) > k, if ` is not a leaf in T ∗∩H, then ` must be an isolated node in T ∗∩H,
and by Operation 1 ` is connected to some node in S unless ` ∈ S. Hence, except those in S,
every ` is a leaf node in F , so the number of leaves in F is no less than that in T ∗ by |S|.
By Operation 2, the number of connected component is at most |S|.

Lastly, since H is connected, one can obtain a spanning tree T from F by connecting the
components in F by some edges in H. Thus, the number of leaves in T is no less than that
in T ∗ by 3|S|. To obtain an ε-MLST sparsifier, by Lemma 5 we need:

3|S|
1
10 (|V (G)| − inode(G))

≤ 30
(
p+ (1− p)k+1) ≤ 30

(
p+ e−p(k+1)

)
≤ ε

Setting p = (ln(k + 1))/(k + 1) gives the desired bound, and the leading constant is positive
for k ≥ 186. J

To find such a subgraph H, fetching a spanning tree of the input graph G and grabbing
k edges for each node in G suffices. Thus, we get a single-pass Õ(n)-space algorithm for the
insertion-only model. As for the turnstile model, we use Õ(k) `0-samplers [28] for each node
in G to fetch at least k neighbors of x w.h.p., and fetch a spanning tree by appealing to the
single-pass Õ(n)-space algorithm for spanning trees in dynamic streams [3]. This gives a
proof of Theorem 1.

Applications. In [21], Gandhi et al. show a connection between the maximum-leaf spanning
trees and connected maximum cut. Their results imply that, for any unweighted regular
graph G, the connected maximum cut can be found by the following two steps:

Step 1: Find a spanning tree T whose leaf(T ) ≥ (1/2− ε) leaf(G) for some constant ε > 0.
Step 2: Randomly partition the leaves in T into two parts L and R so that each leaf is

included in L with probability 1/2 independently.

Then, outputting L and V (G) \ L yields an 8 + ε-approximation for connected maximum
cut. Step 1 is the bottleneck and can be implemented by combining our ε-MLST sparsifier
(Theorem 1) with the 2-approximation algorithm for MLST due to Solis-Oba, Bonsma, and
Lowski [42]. This gives Corollary 7.

I Corollary 7. In the turnstile model, for every constant ε > 0, there exists a randomized
algorithm that can approximate the connected maximum cut for n-node unweighted regular
graphs to within a factor of 8 + ε with probability 1− 1/nΩ(1) in a single pass using Õ(f(ε)n)
space.

3 Breadth-First Search Trees

A BFS tree of an n-node connected simple undirected graph can be constructed in O(n) passes
using Õ(n) space by simulating the standard BFS algorithm layer by layer. By storing the
entire graph, a BFS tree can be computed in a single pass using O(n2) space. In Section 3.1,
we show that it is possible to have a smooth tradeoff between pass complexity and space
usage. In Section 3.2, we prove Theorem 3, which shows that the above tradeoff can be
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improved when randomness is allowed, even in the turnstile model. Then, in Section 3.3, we
show that multiple BFS trees, each starting from a distinct source node, can be computed
more efficiently in a batch than individually. Lastly, we demonstrate an application to
diameter approximation in Section 3.4.

In the BFS problem, we are given an n-node connected simple undirected graph G = (V,E)
and a distinguished node s, and it suffices to compute the distance dist(s, v) for each node
v ∈ V \ {s}. To infer a BFS tree from the distance information {dist(s, v) : v ∈ V }, it
suffices to assign a parent to each node v ∈ V \ {s} the smallest-identifier node from the
set {u ∈ N(v) : dist(s, u) = dist(s, v) − 1} where N(v) is the set of v’s neighbors. This
can be done with one additional pass using Õ(n) space in the insertion-only model. In
the turnstile model, for p-pass streaming algorithms with p > logn, this can be done with
O(logn/ log logn) additional passes w.h.p. using O(logn) `0-samplers [28] for each node
v ∈ V \ {s}, and this costs Õ(n) space. For p ≤ logn, the space bound is Õ(n2) and one
can use Õ(n) `0-samplers for each node, so this step can be done in one additional pass.
Hence in the subsequent discussion we focus on computing the distance from s to each node
v ∈ V \ {s}.

3.1 A Simple Deterministic Algorithm
We present a simple deterministic p-pass Õ(n2/p)-space algorithm in the insertion-only
model by an observation that every root-to-leaf path in a BFS tree cannot visit too many
high-degree nodes (Lemma 8). Then, one can simulate the standard BFS algorithm efficiently
layer-by-layer over high-degree nodes (Theorem 9).

I Lemma 8. Let P be a root-to-leaf path in some BFS tree of an n-node connected simple
undirected graph G. Then∑

x∈P

degG(x) ≤ 3n = O(n)

where degG(x) denotes the degree of x in G.

Proof. Suppose P = x1x2 · · ·xk comprises k nodes. Observe that if xi and xj have i ≡ j

(mod 3), then xi and xj cannot share any neighbor node; otherwise P can be shorten, a
contradiction. Thus, for each c ∈ {0, 1, 2} the total contribution of all xi’s whose i ≡ c

(mod 3) to
∑

xi∈P degG(xi) is O(n). Summing over all possible c gives the bound. J

We note that Lemma 8 is near-optimal. To see why, let H = (V,E) where V is the union of
disjoint sets V0, V1, . . . , Vk and E = {(x, y) : x ∈ Vi and y ∈ Vj for any i, j that |i− j| ≤ 1}.
By setting k = d(n− 1)/te for some parameter t, |V0| = 1, |Vi| = t for every i ∈ [1, k− 1], and
1 ≤ |Vk| ≤ t, any BFS tree rooted at the node in V0 has a root-to-leaf path Q of length k,
and each node in Q ∩ (V2 ∪ V3 ∪ . . . ∪ Vk−2) has degree 3t− 1. Pick any t such that k = ω(1)
and t = ω(1). We have

∑
x∈Q degH(x) = (3− o(1))n.

I Theorem 9. Given an n-node connected simple undirected graph G with a distinguished
node s, a BFS tree rooted at s can be found deterministically in p passes using Õ(n2/p) space
for every p ∈ [1, n] in the insertion-only model.

Proof. Given a parameter k, our algorithm goes as follows. In the first pass, keep arbitrary
n/k neighbors for each node v ∈ G in memory and then use the in-memory edges to update
the distance dist(s, v) for each v ∈ G by any single-source shortest path algorithm. The
set of the in-memory edges is an invariant after the first pass. Hence, the memory usage is
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Õ(n2/k). Then, in each of the subsequent passes, processing the edges (u, v) in the stream
one by one, without keeping them in memory after the processing, if dist(s, u) + 1 < dist(s, v)
(resp. if dist(s, v) + 1 < dist(s, u)), then update dist(s, v) (resp. dist(s, u)). After the edges
in the stream are all processed, use the in-memory edges to update the distance dist(s, v)
for each v ∈ G again by any single-source shortest path algorithm but with initial distances.
Our algorithm repeats until no distance has been updated in a single pass.

Observe a root-to-leaf path P = sz1z2 · · · zt in some BFS tree rooted at s. Suppose
P contains exactly ` edges that appears only on tape, let them be (zx1 , zy1), . . . , (zx`

, zy`
)

where 1 ≤ xi < yi ≤ xi+1 < yi+1 ≤ t for every i ∈ [1, ` − 1]. Let predP (zi) be the
predecessor of zi on P that is closest to zi among nodes in {s} ∪ {zyj

: yj < i}. By the
definition of the above construction, it is assured that deg(zxi) ≥ n/k for each i ∈ [1, `].
Thus by Lemma 8, ` = O(k). Then we appeal to the argument used for the analysis of
Bellman-Ford algorithm [19, 6]. For every i ∈ [1, t], if i /∈ {y1, y2, . . . , y`}, dist(s, zi) attains
the minimum possible value at the same pass when dist(s,predP (zi)) attains; otherwise
i = yj for some j ∈ [1, `], dist(s, yj) attains the minimum possible value at most one pass
after dist(s, xj) attains. Hence, O(k) passes suffices to compute dist(s, zi) for all i ∈ [1, t] and
this argument applies to all root-to-leaf paths. Setting k = p yields the desired bound. J

3.2 A More Efficient Randomized Algorithm
In this section, we prove Theorem 3. Our BFS algorithm is based on the following generic
framework, which has been applied to finding shortest paths in the parallel and the distributed
settings [11, 22, 27, 45]. Sample a set U of approximately k distinguished nodes such that
each node v 6= s joins U independently with probability k/n, and s ∈ U with probability
1. By a Chernoff bound, |U | = Θ̃(k) with high probability. We will grow a local BFS tree
of radius Õ(n/k) from each node in U , and then we will construct the final BFS tree by
combining them. We will rely on the following lemma, which first appeared in [45].
I Lemma 10 ([45]). Let s be a specified source node. Let U be a subset of nodes such that
each node v 6= s joins U with probability k/n, and s joins U with probability 1. For any
given parameter C ≥ 1, the following holds with probability 1− n−Ω(C). For each node t 6= s,
there is an s-t shortest path Ps,t such that each of its C(n logn)/k-node subpath P ′ satisfies
P ′ ∩ U 6= ∅.

For notational simplicity, in subsequent discussion we write h = C(n logn)/k−1 = Õ(n/k).
Lemma 10 shows that for each node t ∈ V \ {s},

dist(s, t) = min
u∈U∩Nh(t)

dist(s, u) + dist(u, t) (2)

with probability 1− n−Ω(C) where Nh(v) = {u : dist(u, v) ≤ h}.
To see this, consider the s-t shortest path Ps,t specified in Lemma 10. If the number of

nodes in Ps,t is less than h, then the above claim holds because s ∈ U ∩Nh(t). Otherwise,
Lemma 10 guarantees that there is a node u ∈ Ps,t ∩ U ∩Nh(t) with probability 1− n−Ω(C).
Using Equation (2), a BFS tree can be computed using the following steps.
1. Compute dist(u, v) for each u ∈ U and v ∈ U ∩Nh(u). Using this information, we can

infer dist(s, u) for each u ∈ U .
2. Compute dist(s, t) for each t ∈ V \{s} by the formula dist(s, t) = minu∈U∩Nh(t) dist(s, u)+

dist(u, t).
In what follows, we show how to implement the above two steps in the streaming model,

using Õ(n+ k2) space and Õ(n/k) passes. By a change of parameter p = Õ(n/k), we obtain
Theorem 3.
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Step 1. To compute dist(u, v) for each u ∈ U and v ∈ U ∩Nh(u), we let each u ∈ U initiate
a radius-h local BFS rooted at u. A straightforward implementation of this approach in the
streaming model costs h = Õ(n/k) passes and O(n · |U |) = Õ(nk) space, since we need to
maintain |U | search trees simultaneously.

We show that the space requirement can be improved to Õ(n+ k2). Since we only need
to learn the distances between nodes in U , we are allowed to forget distance information
associated with nodes v /∈ U when it is no longer needed. Specifically, suppose we start
the BFS computation rooted at u ∈ U at the τuth pass, where τu is some number to be
determined. For each 0 ≤ i ≤ h− 1, the induction hypothesis specifies that at the beginning
of the (τu + i)th pass, all nodes in Li(u) = {v ∈ V : dist(u, v) = i} have learned that
dist(u, v) = i. During the (τu + i)th pass, for each node v ∈ V with dist(u, v) > i, we check
if v has a neighbor in Li(u). If so, then we learn that dist(u, v) = i+ 1.

In the above BFS algorithm, if dist(u, v) = i for some 0 ≤ i ≤ h − 1, then we learn
the fact that dist(u, v) = i during the (τu + i − 1)th pass. Observe that such information
is only needed during the next two passes. After the end of the (τu + i + 1)th pass, for
each v ∈ V with dist(u, v) = i, we are allowed to forget that dist(u, v) = i. That is, v
only needs to participate in the BFS computation rooted at u during these three passes
{τu + i− 1, τu + i, τu + i+ 1}.

For each u ∈ U , we assign the starting time τu independently and uniformly at random
from {1, 2, . . . , h}. Lemma 11 shows that for each node v ∈ V and for each pass 1 ≤ t ≤ 2h−1,
the number of BFS computations that involve v is Õ(1). The idea of using random starting
time to schedule multiple algorithms to minimize congestion can be traced back from [32].
Note that τu + dist(u, v)− 1 ≤ t ≤ τu + dist(u, v) + 1 is the criterion for v to participate in
the BFS rooted at u during the tth pass.

I Lemma 11. For each node v, and for each integer 1 ≤ t ≤ 2h− 1, with high probability,
the number of nodes u ∈ U such that τu + dist(u, v)− 1 ≤ t ≤ τu + dist(u, v) + 1 is at most
O(max{logn, |U |/h}).

Proof. Given two nodes u ∈ U and v ∈ V , and a fixed number t, the probability that
τu + dist(u, v) − 1 ≤ t ≤ τu + dist(u, v) + 1 is at most 3/h. Let X be the total number
of u ∈ U such that τu + dist(u, v) − 1 ≤ t ≤ τu + dist(u, v) + 1. The expected value of X
can be upper bounded by µ = |U | · (3/h). By a Chernoff bound, with high probability,
X = O(max{logn, |U |/h}). J

Recall that |U | = Õ(k) with high probability, and h = Õ(n/k). By Lemma 11, we only
need

⌈
k2/n

⌉
· Õ(1) space per each v ∈ V to do the radius-h BFS computation from all

nodes u ∈ U . That is, the space complexity is Õ(n+ k2). To store the distance information
dist(u, v) for each u ∈ U and v ∈ U ∩Nh(u), we need Õ(k2) space. Thus, the algorithm for
Step 1 costs Õ(n+ k2) space. The number of passes is 2h− 1 = Õ(k).

In the insertion-only model, the implementation is straightforward. In the turnstile
model, care has to be taken when implementing the above algorithm. We write x =
O(max{logn, |U |/h}) to be the high probability upper bound on the number of BFS compu-
tation that a node participates in a single pass. We write y = O(x logn). Let U1, U2, . . . , Uy

be random subsets of U such that each u ∈ U joins each Uj with probability 1/x, independ-
ently. Consider a node v ∈ V and consider the rth pass. Let S be the subset of U such that
u ∈ S if r = τu + dist(u, v) − 1, i.e., the BFS computation rooted at u hits v during the
rth pass. We know that with high probability |S| ≤ x. By our choice of U1, U2, . . . , Uy, we
can infer that with high probability for each u ∈ S there is at least one index j such that
S ∩ Uj = {u}.
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To implement the rth pass in the turnstile model, each node v ∈ V virtually maintains y
edge set Z1, Z2, . . . , Zy. For each insertion (resp., deletion) of an edge e = {w, v} satisfying
r = τu + dist(u,w) − 2 for some u ∈ Uj , we add (resp., remove) the edge from the set Zj .
After processing the entire data stream, we take one edge out of each edge set Z1, Z2, . . . , Zy.
In view of the above discussion, it suffices to only consider these edges when we grow the
BFS trees. This can be implemented using y `0-samplers per each node v ∈ V , and the space
complexity is still Õ(ny) = Õ(n+ k2).

Step 2. At this moment we have computed dist(s, u) for each u ∈ U . Now we need to
compute dist(s, t) for each t ∈ V \ {s} by the formula dist(s, t) = minu∈U∩Nh(t) dist(s, u) +
dist(u, t).

In the insertion-only model, this task can be solved using h iterations of Bellman-Ford
steps. Initially, d0(v) = dist(s, v) for each v ∈ U , and d0(v) =∞ for each v ∈ V \ U . During
the ith pass, we do the update di(v)← min{di−1(v), 1+minu∈N(v) di−1(u)}. By Equation (2),
we can infer that dh(t) = dist(s, t) for each t ∈ V . A straightforward implementation of this
procedure costs Õ(n) space and h = Õ(n/k) passes.

In the turnstile model, we can solve this task by growing a radius-h BFS tree rooted
at u, for each u ∈ U , as in Step 1. During the process, each node v ∈ V maintains
a variable d(v) which serves as the estimate of dist(s, v). Initially, d(v) ← ∞. When
the partial BFS tree rooted at u ∈ U hits v, we update d(v) to be the minimum of
the current value of d(v) and dist(s, u) + dist(u, v). At the end of the process, we have
d(v) = minu∈U∩Nh(t) dist(s, u) + dist(u, v) = dist(s, v) for each v ∈ V . This costs Õ(n+ k2)
space and Õ(n/k) passes in view of the analysis of Step 1.

3.3 Extensions
In this section we consider the problem of solving c instances of BFS simultaneously for
some c ≤ n and a simpler problem of computing the pairwise distance between the c given
nodes. Both of these problems can be solved via a black box application of Theorem 3. In
this section we show that it is possible to obtain better upper bounds.

I Theorem 12. Given an n-node undirected graph G, for any given parameters 1 ≤ c ≤ k ≤ n,
the pairwise distances between all pairs of nodes in a given set of c nodes in G can be computed
with probability 1− 1/nΩ(1) using Õ(n/k) passes and Õ(n+ k2) space in the turnstile model.

Proof. Let S be the input node set of size c. Consider the modified Step 1 of our algorithm
where each s ∈ S is included in U with probability 1. Since |S| = c ≤ k, we still have
|U | = Õ(k) with high probability. Recall that Step 1 of our algorithm calculates dist(u, v) for
each u ∈ U and v ∈ U ∩Nh(u) in Õ(n+k2) space and Õ(n/k) passes. Applying Equation (2)
for each s ∈ U , we obtain the pairwise distances between all pairs of nodes in U , which
includes S as a subset. There is no need to do Step 2. J

For example, if c = n1/2, then Theorem 12 implies that we can compute the pairwise
distances between all pairs of nodes in a given set of c nodes in Õ(n) space and Õ(n1/2)
passes.

I Theorem 13. Given an n-node undirected graph G, for any given parameters 1 ≤ c ≤ k ≤ n,
one can solve c instances of BFS with probability 1 − 1/nΩ(1) using Õ(n/k) passes and
Õ(cn+ k2) space in the turnstile model.
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Proof. Let S be the node set of size c corresponding to the roots of the c BFS instances.
Consider the following modifications to our BFS algorithm.

Same as the proof of Theorem 12, in Step 1, include each s ∈ S in U with probability
1. The modified Step 1 still takes Õ(n+ k2) space and Õ(n/k) passes, and it outputs the
pairwise distances between all pairs of nodes in U .

Now consider Step 2. In the insertion-only model, remember that a BFS tree rooted at
a node s ∈ S can be constructed in O(n) space and h = Õ(n/k) passes using h iterations
of Bellman-Ford steps. The cost of constructing all c BFS trees is then O(cn) space and
Õ(n/k) passes.

In the turnstile model, we can also use the strategy of growing a radius-h BFS tree rooted
at u, for each u ∈ U . During the process, each node v ∈ V maintains c variables serving
as the estimates of dist(s, v), for all s ∈ S. The complexity of growing radius-h BFS trees
is still Õ(n+ k2) space and Õ(n/k) passes. The extra space cost for maintaining these cn
variables is O(cn). J

For example, if c = n1/3, then Theorem 13 implies that we can solve c instances of BFS
in Õ(n4/3) space and Õ(n1/3) passes. Note that the space complexity of Õ(n4/3) is necessary
to output c = n1/3 BFS trees.

Theorem 13 immediately gives the following corollary.

I Corollary 14. Given an n-node connected undirected graph G with unweighted edges and a
c-node subset S of G, for any given parameters 1 ≤ c ≤ k ≤ n, finding a Steiner tree in G
that spans S can be approximated to within a factor of 2 with probability 1− 1/nΩ(1) using
Õ(n/k) passes and Õ(cn+ k2) space in the turnstile model.

Note that if we do not need to construct a Steiner tree, and only need to approximate
the size of an optimal Steiner tree, then Theorem 12 can be used in place of Theorem 13.

3.4 Diameter Approximation
It is well-known that the maximum distance label in a BFS tree gives a 2-approximation
of diameter. We show that it is possible to improve the approximation ratio to nearly 1.5
without sacrificing the space and pass complexities.

Roditty and Williams [40] showed that a nearly 1.5-approximation of diameter can be
computed with high probability as follows.
1. Let S1 be a node set chosen by including each node v ∈ V to S1 with probability

p = (logn)/
√
n independently. Perform a BFS from each node v ∈ S1.

2. Let v? be a node chosen to maximize dist(v?, S1). Break the tie arbitrarily. Perform a
BFS from v?.

3. Let S2 be the node set consisting of the
√
n nodes closest to v?, where ties are broken

arbitrarily. Perform a BFS from each node v ∈ S2.
Let D∗ be the maximum distance label ever computed during the BFS computations in the
above procedure. Roditty and Williams [40] proved that D∗ satisfies that b2D/3c ≤ D∗ ≤ D,
where D is the diameter of G.

The algorithm of Roditty and Williams [40] can be implemented in the streaming model
by applying Theorem 13 with c = Õ(

√
n), but we can do better. Note that when we perform

BFS from the nodes in S1 and S2, it is not necessary to store the entire BFS trees. For
example, in order to select v∗, we only need to let each node v know dist(v, S1), which is the
maximum distance label of v in all BFS trees computed in Step 1. Therefore, the O(cn) term
in the space complexity of Theorem 13 can be improved to O(n). That is, the space and
pass complexities are the same as the cost for computing a single BFS tree using Theorem 3.
We conclude the following theorem.
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I Theorem 15. Given an n-node connected undirected graph G, a diameter approximation
D∗ satisfying b2D/3c ≤ D∗ ≤ D, where D is the diameter of G, can be computed with
probability 1 − 1/nΩ(1) in p passes using Õ((n/p)2) space, for each 1 ≤ p ≤ Õ(

√
n) in the

turnstile model.

4 Depth-First Search

A straightforward implementation of the naive DFS algorithm in the streaming model costs
either n− 1 passes with Õ(n) space or a single pass with O(n2) space. Khan and Mehta [30]
recently showed that it is possible to obtain a smooth tradeoff between the two extremes.
Specifically, they designed an algorithm that requires at most dn/ke passes using Õ(nk)
space, where k is any positive integer. Furthermore, for the case the height h of the computed
DFS tree is small, they further decrease the number of passes to dh/ke. In Section 4.1,
we will provide a very simple alternative proof of this result, via sparse certificates for
k-node-connectivity.

In the worst case, the “space × number of passes” of the algorithms of Khan and
Mehta [30] is still Õ(n2). In Section 4.2, we will show that it is possible to improve this
upper bound asymptotically when the number of passes p is super-constant. Specifically, for
any parameters 1 ≤ s ≤ k ≤ n, we obtain the following DFS algorithms.

A deterministic algorithm using Õ((n/k) + (k/s)) passes and Õ(ns) space in the insertion-
only model. After balancing the parameters, the space complexity is Õ(n2/p2) for p-pass
algorithms, for each 1 ≤ p ≤ Õ(

√
n).

A randomized algorithm using Õ((n/k) + (k/s)) passes and Õ(ns2) space in the turnstile
model. After balancing the parameters, the space complexity is Õ(n3/p4) for p-pass
algorithms, for each 1 ≤ p ≤ Õ(

√
n).

4.1 A Simple DFS Algorithm
In this section, we present a simple alternative proof of the result of Khan and Mehta [30] that
a DFS tree can be constructed in dh/ke passes using Õ(nk) space, for any given parameter
k, where h is the height of the computed DFS tree.

Sparse Certificate for s-Node-Connectivity. A strong s-VC certificate of a graph H is its
subgraph K such that for any supergraph G of H, for every pair of nodes s∗, t∗ ∈ G, if they
are c-node-connected in G, then they are c′-node-connected for some c′ ≥ min{s, c} in the
graph obtained from G by replacing its subgraph H with K. A sparse strong s-VC certificate
of the graph G is exactly what we need here. Eppstein, Galil, Italiano, and Nissenzweig [12]
showed that such a sparse subgraph of O(ns) edges can be computed in a single pass with
Õ(ns) space deterministically in the insertion-only model. In the turnstile model, Guha,
McGregor, and Tench [25] showed that such a sparse subgraph of Õ(ns2) edges can be
computed with high probability in a single pass using Õ(ns2) space. This result can be
inferred from Theorem 8 of [25] with ε = Θ(1/s). In [25] the analysis only considers the case
G = H, but it is straightforward to extend the analysis to incorporate any supergraph G of
H.

If the subgraph K of the graph H satisfies the above requirement for the special case of
G = H, then K is said to be a s-VC certificate of H. Our simple DFS algorithm relies on
this tool.
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I Lemma 16. Suppose K is a (k + 1)-VC certificate of H. Let T be any DFS tree of K.
Consider any two nodes u and v such that the least common ancestor w of u and v are within
the top k layers of T . If w 6= u and w 6= v, then u and v are not adjacent in H.

Proof. Suppose u, v, and w violate the statement of the lemma. That is, u and v are adjacent
in H. Since T is a DFS tree, u and v are not adjacent in K, and each path connecting u and
v must pass through a node that is a common ancestor of u and v. Let cH (resp., cK) be
the u-v node-connectivity in H (resp., K). The above discussion implies that cK ≤ k and
cH ≥ cK + 1, contradicting the assumption that K is a (k + 1)-VC certificate of H. J

Algorithm. Using Lemma 16, we can construct a DFS tree of G recursively as follows. Pick
K as a (k + 1)-VC certificate of G. Compute a DFS tree T of K. Let T ′ be the tree induced
by the top k + 1 layers of of T . Let v1, v2, . . . , vz be the leaves of T ′. Denote Si as the set of
descendants of vi in T , including vi. By Lemma 16, there exists no edge in G that crosses
two distinct sets Si and Sj . For each 1 ≤ i ≤ z, we recursively find a DFS tree Ti of the
subgraph of G induced by Si rooted at vi. By the above observation, we can obtain a valid
DFS tree of G by appending T1, T2, . . . , Tz to T ′.

Analysis. If the height of the final DFS tree is h, then the depth of the recursion is at most
dh/ke. The cost for computing a (k + 1)-VC certificate is 1 pass and Õ(nk) space, and the
resulting subgraph K has O(nk) edges. Therefore, the total number of passes is at most
dh/ke, and the overall space complexity is Õ(nk).

4.2 Streaming Implementation of the Algorithm of Aggarwal and
Anderson

The bounds of Theorem 4 are attained via an implementation of the parallel DFS algorithm of
Aggarwal and Anderson [2] in the streaming model, with the help of various tools, including
the strong sparse certificates for s-node-connectivity described above. Due to the page limit,
we only provide a sketch of the proof. The complete proof will be presented in the full version
of this paper.

At a high level, the DFS algorithm of Aggarwal and Anderson [2] works as follows. Start
with a maximal matching, and then merge these length-1 paths iteratively into a constant
number of node-disjoint paths such that the number of nodes not in any path is at most
|V |/2. The algorithm then constructs the initial segment of the DFS tree from these paths.
Each remaining connected component is solved recursively. The final DFS tree is formed by
appending the DFS trees of recursive calls to the initial segment.

The bottleneck of this DFS algorithm is a task called MaximalPaths which is a variant of
the maximal node-disjoint paths problem between a set of source nodes S and a set of sink
nodes T . In this variant, each member of S is a path instead of a node. Goldberg, Plotkin,
and Vaidya [24] gave a parallel algorithm for this problem. Their algorithm has two phases.
For any given parameter k, they showed that after k iterations of the algorithm of the first
phase, the number of sources in S that are still active is at most n/k. These remaining active
sources are processed one-by-one in the second phase. Using this approach with k =

√
n,

MaximalPaths can be solved in the streaming model with Õ(
√
n) passes and Õ(n) space. To

further reduce the pass complexity, we apply the sparse certificates for s-node-connectivity
of Eppstein, Galil, Italiano, and Nissenzweig [12] and Guha, McGregor, and Tench [25],
which allow us to process the remaining active sources in batches. In the insertion-only
model, we obtain a deterministic p-pass algorithm with space complexity Õ(n2/p2), for each
1 ≤ p ≤ Õ(

√
n). For the more challenging turnstile model, we obtain a randomized algorithm

with a somewhat worse space complexity of Õ(n3/p4).
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5 Single-Pass Lower Bounds

In this section, we use the lower bound of the 1-way randomized communication complexity for
the Index problem [1] to show the single-pass space lower bound for computing approximate
MLST to within an additive error k. This gives a complementary result for Theorem 1.

I Theorem 17. In the insertion-only model, given a connected n-node simple undirected graph
G, computing a spanning tree of G that has at least leaf(G)−k leaves for any k ∈ [1, (n−5)/4]
requires Ω(n2/k2) bits for any single-pass randomized streaming algorithm that can succeed
with probability at least 2/3.

Proof. We begin with a reduction from an n2-bit instance of the Index problem to computing
a spanning tree of (2n+3)-node graph G with leaf(G) leaves for any n ≥ 1. Given Alice’s input
in the Index problem, i.e. a bit-array of length n2, we construct an n by n bipartite graph H,
as part of G, in which edge (xi, yj) for every i, j ∈ [1, n] corresponds to the ((i− 1)n+ j)-th
bit in Alice’s array. Then, given Bob’s input, a tuple (i, j) for some i, j ∈ [1, n], we construct
the remaining part of G by adding three additional nodes s, t, and `, and

connecting an edge from s to z for every node z 6= yj in H, and
adding edge (`, xi), (s, t), and (t, yj).

It clear that G is connected and has

leaf(G) =
{

2n+ 1 if (xi, yj) ∈ H
2n otherwise

Thus, having a single-pass streaming algorithm to compute leaf(G) suffices to decide the
n2-bit instance of the Index problem, i.e. for Bob to tell what the ((i− 1)n+ j)-th bit in
Alice’s array is. This requires Ω(n2) bits. To obtain the hardness result for MLST with
additive error k for any k ≥ 1, one can duplicate H ∪ {`, t} into (k + 1) copies and let the
copies share the same s, so G is connected, has (k + 1)(2n+ 2) + 1 nodes, and has

leaf(G) =
{

(2n+ 1)(k + 1) if (xi, yj) ∈ H
2n(k + 1) otherwise

Hence, having a single-pass streaming algorithm to compute leaf(G) for G of (k+ 1)(2n+
2) + 1 nodes to within an additive error k suffices to decide the n2-bit Index problem.
Replace (k + 1)(2n+ 2) + 1 = n′ and n2 = Ω((n′/k)2) yields the desired bound. J

6 Conclusion

In this paper, we devised semi-streaming algorithms for spanning tree computations, including
max-leaf spanning trees, BFS trees, and DFS trees. For max-leaf spanning trees, despite
that any streaming algorithm requires Ω(n2) space to compute the exact solution, we show
how to compute a (1 + ε)-approximation using a single pass and Õ(n) space, albeit in
super-polynomial time. For BFS trees and DFS trees, we show how to compute them using
O(
√
n) passes and Õ(n) space, and offer a smooth tradeoff between pass complexity and

space usage.
The pass complexities of our algorithms for BFS trees and DFS trees are still far from

the known lower bounds, ω(1) passes for BFS trees [17] and the trivial 1 pass for DFS trees.
It is unclear whether our upper bounds can be further reduced or the known lower bounds
can be improved. We leave closing the gap to future work.
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Abstract
A k-coloring of a graph maps each vertex of the graph to a color in {1, 2, . . . , k}, such that no two
adjacent vertices receive the same color. Given a k-coloring of a graph, a Kempe change produces
a new k-coloring by swapping the colors in a bicolored connected component. We investigate the
complexity of finding the smallest number of Kempe changes needed to transform a given k-coloring
into another given k-coloring. We show that this problem admits a polynomial-time dynamic
programming algorithm on path graphs, which turns out to be highly non-trivial. Furthermore, the
problem is NP-hard even on star graphs and we show that on such graphs it admits a constant-factor
approximation algorithm and is fixed-parameter tractable when parameterized by the number k of
colors. The hardness result as well as the algorithmic results are based on the notion of a canonical
transformation.
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1 Introduction

Reconfiguration problems ask for the existence of a transformation between two solutions
of an instance of a combinatorial problem, such as the satifiability problem, the stable
set problem, and so forth. Our reference problem is the k-coloring problem. Recall that
a k-coloring of a graph partitions the vertex set into at most k stable sets, called color
classes. A classical technique to obtain a new k-coloring from a given one is the Kempe
change: Given a k-coloring, a Kempe change swaps the colors in a connected component
of a subgraph induced by two color classes. We say that two k-colorings α and β of a
graph admit a Kempe-sequence of length ` if there is a sequence γ0, γ1, . . . , γ` of k-colorings,
such that γ0 = α, γ` = β, and for 0 ≤ i < `, the coloring γi+1 can be obtained from γi
by performing a single Kempe change. Two k-colorings that admit a Kempe-sequence (of
any length) are called Kempe-equivalent. Kempe-equivalence has been of great interest in
graph theory [15, 17, 19], sampling of colorings [8, 25], and statistical physics [2, 20, 21]. We
consider a natural optimization variant of Kempe-equivalence: Given a number ` and two
k-colorings of a graph, do the two colorings admit a Kempe-sequence of length at most `?

One of the first algorithms that exhibits Kempe-sequences is due to Las Vergnas and
Meyniel [15]. From their analysis it follows that for a d-degenerate graph and any k > d,
any two k-colorings of the graph are Kempe-equivalent. More recently, several results of a
similar flavor were obtained [2, 3, 10, 19]. Interestingly, no non-trivial subexponential upper
bounds on the length of the Kempe-sequences computed by the algorithm of Las Vergnas
and Meyniel are known, even for small values of k. Using different techniques, Bousquet and
Heinrich showed recently that for k ≥ d + 2, any two k-colorings of a d-degenerate graph
admit a Kempe-sequence of polynomial length in d [6]. Note that none of the algorithms
in the references mentioned above is known to exhibit Kempe-sequences of minimal length.
Furthermore, to the best of our knowledge, the complexity of determining the minimal length
of a Kempe-sequence between two k-colorings is open. The aim of this paper is to settle the
complexity of this task and to provide efficient exact and approximate algorithms for it.

We show that a Kempe-sequence of minimal length for two k-colorings of a path graph
can be found in polynomial time by a non-trivial dynamic programming algorithm. On the
other hand, it is unlikely that this positive result can be generalized significantly, since we
also show that the same problem on star graphs is NP-hard. Note that since star graphs and
path graphs are bipartite, a Kempe-sequence of linear length in the input size can be found
efficiently [3, 19].

In order to illustrate why finding Kempe-sequences of minimal length is non-trivial even
on path graphs, let us consider the example shown in Figure 1. It shows two Kempe-sequences
α, γ1, γ2, β and α, γ′1, γ′2, γ′3, β between two 3-colorings α and β of a path on seven vertices.
The latter Kempe-sequence changes only the colors of vertices that receive differents colors
in α and β. On the other hand, the Kempe-sequence α, γ1, γ2, β, which is optimal, changes
also twice the color of the middle vertex v, which receives the same color in α and β. The
purpose of changing the color of v is to build a large connected component consisting of the
vertices with colors 1 and 2. As a result, with a single Kempe change, all vertices can be
recolored to their target colors. We conclude from the example that a key difficulty is to
build up suitable bicolored components in order to obtain a short Kempe-sequence.

Related Work

Finding shortest transformations between configurations has recently received much attention
in different domains, ranging from the triangulations of point sets and polygons [16, 1] to
satisfying assignments of Boolean formulas [22] to puzzles [9, 12, 24]; please see [13, 23]
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α β

γ1’ γ2

γ1 γ2

’ γ3’

2 1 3 32 1 2

2 1 2 23 1 2 2 1 2 21 1 2

1 2 3 32 1 2 1 2 1 32 1 2 1 2 1 32 2 1

1 2 1 12 2 1
v v

Figure 1 Two Kempe-sequences between 3-colorings α and β of a path on seven vertices. The
upper sequence 〈α, γ1, γ2, β〉 is shortest even though it recolors the middle vertex v twice; notice
that v receives the same color 2 in α and β. On the other hand, the lower sequence 〈α, γ′

1, γ
′
2, γ

′
3, β〉

is not shortest although it recolors only the vertices receiving different colors in α and β.

for recent suveys. Such problems are often NP-hard, even if the existence of a suitable
transformation between two configurations can be decided in polynomial time. A recent
example is the NP-hardness of solving the n-Rubik’s cube using a minimal number of steps [9].

We say that two k-colorings are equivalent under elementary recolorings if they admit
a Kempe-sequence, such that any two consecutive k-colorings of the sequence differ with
respect to the color of a single vertex. In contrast to Kempe-equivalence, the complexity of
deciding equivalence under elementary recolorings is quite well understood [5, 7]. Furthermore,
Johnson et al. showed that deciding the existence of a transformation of length ` between two
k-colorings in this setting admits a polynomial-time algorithm for k = 3 and is FPT when
parameterized by k + ` [14]. It may seem quite surprising that there is a polynomial-time
algorithm for k = 3, since deciding if a graph admits a 3-coloring is NP-complete. This
polynomial-time algorithm is based on a potential argument: Each vertex is assigned a
non-negative potential value and in each step of a shortest transformation, the potential is
decreased by a positive constant value. When the target coloring is reached the potential
becomes zero. Due to long-range effects of general Kempe changes it is unlikely that a similar
potential argument can be used in our setting; hence our techniques are very different.

We can think of a k-coloring in terms of placing labeled tokens the vertices of a graph.
Transformations between labelled token configurations on graphs have been considered in
a slightly different setting called token swapping: from a given token configuration a new
configuration can be obtained by swapping two tokens on adjacent vertices. The goal is
again to decide whether there is a transformation of length at most ` between two given
token configurations. It is not required that adjacent vertices have tokens with different
labels. The problem is related to the design of efficient sorting networks. It is NP-complete
on graphs of treewidth two and constant diameter [4] and admits a polynomial-time 4-factor
approximation algorithm [18]. Several variations of the problems have been studied, for
example colored token swapping [26, 27], where tokens of the same color are indistinguishable.

Our Contribution

Let G be a class of graphs. We consider the following problem.

Kempe Distance on G
input: Graph G ∈ G, numbers k, ` ∈ N, two k-colorings α, β of G
question: Do α and β admit a Kempe-sequence of length at most `?

We show that Kempe Distance on paths admits a O(kn)-time dynamic programming
algorithm, where n is the number of vertices of the input graph. The algorithm can easily
be modified to output a shortest Kempe-sequence. The analysis of the algorithm is highly
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non-trivial. Roughly speaking, given a path on vertices v1, v2, . . . , vn and two k-colorings α
and β of the input graph, the algorithm computes for 1 ≤ i ≤ n two kinds of quantities on
the sub-path v1, v2, . . . , vi according to eight rules (please refer to Section 2 for an overview).
It computes i) the length of a shortest Kempe-sequence between the two colorings restricted
to the current subpath and ii) for each color a that is different from the source and target
color of vi, the algorithm checks whether there is a shortest Kempe-sequence on the subpath
such that vi has color a at some point. To establish the correctness of the algorithm, we
prove several interesting properties of Kempe-sequences between k-colorings of a path graph.
For instance, we show that in a shortest Kempe-sequence, the color of each vertex changes
at most twice.

We complement the above result by showing that the problem Kempe Distance on stars
is NP-complete by a reduction from the problem Hamiltonian Cycle. In contrast, we show
that a Kempe-sequence of minimal length that certifies the equivalence of two k-colorings of
a star graph under elementary recolorings can be found efficiently. On the positive side, we
show that there is a polynomial-time algorithm that computes a Kempe-sequence of length
at most 4 OPT(I) + 1, where OPT(I) denotes the length of a shortest Kempe-sequence for
an instance I of Kempe Distance on stars, and give an almost matching lower bound.
Furthermore, we show that Kempe Distance on stars parameterized by the number k of
colors is fixed-parameter tractable. The algorithmic results as well as the hardness result
are based on the notion of a canonical transformation. We would like to remark that
many algorithms for reconfiguration problems make use of a canonical configuration, that
is, the existence of a transformation is established by showing that any configuration can
be transformed into a certain canonical one. Here, we show that for any Kempe-sequence
between two k-colorings of a star there is a canonical Kempe-sequence of at most the same
length. Hence, it is sufficient to consider canonical shortest Kempe-sequences.

Notation

A star graph on n vertices consists of a center vertex of degree n− 1 and n− 1 leaf vertices,
each of degree one. For a k-coloring α of a graph, a maximal monochromatic set of vertices is
called a color class. Let G be a graph and let α and β be two k-colorings of G. Suppose that
α and β admit a Kempe-sequence s := (γ0, γ1, . . . , γl). We say that s is a Kempe-sequence
from α to β and denote its length by |s|. For a Kempe sequence s = (γ0, γ1, . . . , γl) and for
a vertex v ∈ V , the color transition of v in s is a sequence of colors c0 → c1 → · · · → cp
with ci 6= ci−1 for each i that represents the transition of colors of v in s. In other words,
c0, c1, . . . , cp is obtained from γ0(v), γ1(v), . . . , γl(v) by removing duplicates if a color appears
consecutively in the sequence. When the color transition of v is c0 → c1 → · · · → cp, we say
that v is recolored p times in the Kempe sequence.

Proofs marked with (∗) have been omitted due to space limitations.

2 Kempe Distance on Paths: a polynomial-time algorithm

In this section we present a polynomial-time algorithm for the problem Kempe Distance
on paths. In the following, let P be a path graph and we denote its vertex set by V =
{v1, v2, . . . , vn} and its edge set by E = {v1v2, v2v3, . . . , vn−1vn}. Let C = {1, 2, . . . , k} be
the color set and let α : V → C and β : V → C be the initial and target k-colorings of
P , respectively. For i = 1, 2, . . . , n, the colors α(vi) and β(vi) are denoted by αi and βi,
respectively.
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For i ∈ {1, . . . , n}, let Pi be the subpath of P induced by Vi := {v1, . . . , vi}. The restriction
of α (resp. β) to {v1, . . . , vi} is also denoted by α (resp. β) for notational convenience. For
i ∈ {1, . . . , n}, let l(Pi, α, β) ∈ Z+ be the length of a shortest Kempe sequence for the instance
(Pi, α, β). We simply denote li := l(Pi, α, β) if α and β are clear. For each i ∈ {1, . . . , n} and
for a color a ∈ C, we define f(i, a) as follows: f(i, a) = yes if a 6∈ {αi, βi} and there exists
a Kempe sequence s of length li such that the color transition of vi is αi → a → βi, and
f(i, a) = no otherwise.

Our algorithm adopts a dynamic programming approach that computes li and f(i, a) for
each i ∈ {1, . . . , n} and for each a ∈ C. For i ≥ 2, the update formula is as follows.

(U1) If αi = βi, then li = li−1 and f(i, a) = no for any a ∈ C.
(U2) If αi = βi−1 and αi−1 = βi, then li = li−1 and f(i, a) = no for any a ∈ C.
(U3) If αi = βi−1, αi−1 6= βi, and f(i− 1, βi) = yes, then li = li−1 and f(i, a) = no for any

a ∈ C.
(U4) If αi 6= βi−1, αi−1 = βi, and f(i− 1, αi) = yes, then li = li−1 and f(i, a) = no for any

a ∈ C.
(U5) If αi = βi−1, αi−1 6= βi, and f(i− 1, βi) = no, then li = li−1 + 1 and

f(i, a) =
{

yes if a = αi−1 or f(i− 1, a) = yes,
no otherwise

for a ∈ C.
(U6) If αi 6= βi−1, αi−1 = βi, and f(i− 1, αi) = no, then li = li−1 + 1 and

f(i, a) =
{

yes if a = βi−1 or f(i− 1, a) = yes,
no otherwise

for a ∈ C.
(U7) If αi, βi, αi−1, and βi−1 are distinct, then li = li−1 + 1 and

f(i, a) =


yes if a = αi−1 and f(i− 1, αi) = yes,
yes if a = βi−1 and f(i− 1, βi) = yes,
no otherwise

for a ∈ C.
(U8) If αi 6= βi and αi−1 = βi−1, then li = li−1 + 1 and

f(i, a) =
{

yes if i ≥ 3, a = αi−1, αi = αi−2, βi = βi−2, and f(i− 2, a) = yes,
no otherwise

for a ∈ C.

In order to show the validity of (U1)–(U8), we introduce the following properties (P1) and
(P2), and show simultaneously that (P1), (P2), and (U1)–(U8) hold for any i ∈ {1, . . . , n} by
induction.

(P1) There exists a Kempe sequence of length li such that vi is recolored at most once in
it, that is, vi is recolored directly from αi to βi if αi 6= βi, and vi is never recolored if
αi = βi.

(P2) For any Kempe sequence s for (Pi, α, β), vi is recolored at most 2|s| − 2li + 2 times
in s. In particular, vi is recolored at most twice in any shortest Kempe sequence.
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I Proposition 1 (∗). For any pair of colorings α : V → C and β : V → C, (U1)–(U8) hold
for i ≥ 2, and (P1) and (P2) hold for any i ≥ 1.

By using this proposition, we can obtain a polynomial-time algorithm for Kempe Dis-
tance on paths.

I Theorem 2. Kempe Distance on paths can be solved in O(nk) time.

Proof. We can easily compute l1 and f(1, a) for each a ∈ C. For i = 2, 3, . . . , n in this
order, we compute li and f(i, a) for each a ∈ C by using (U1)–(U8). Since each value can be
computed in constant time, we can compute ln in O(nk) time. J

The algorithm returns ln, the length of a shortest sequence. We note that we can easily
modify our algorithm so that it outputs a sequence of Kempe changes of length ln.

3 Kempe Distance on Stars

In this section we show that Kempe Distance on stars admits a constant-factor approxi-
mation algorithm and the same problem parameterized by the number k of colors is FPT.
Furthermore, we give a lower bound instance for the approximation algorithm and show that
Kempe Distance on stars is NP-complete. The key concept common to all our results in
this section is the notion of a sorted Kempe-sequence.

3.1 Sorted Kempe-Sequences
In the following, let S = (V,E) be a star graph with center vertex c ∈ V and leaves
L = V \ {c}. Any Kempe change performed on a k-coloring of S either changes the color
of the center vertex or it does not. This observation motivates the following notion of
a sorted Kempe-sequence. We consider a Kempe-sequence to be sorted, if there is some
intermediate coloring γ, such that the color of the center vertex is constant up to γ and
after γ it changes in each step. Formally, a Kempe-sequence γ0, γ1, . . . , γ` is sorted if there is
some index j ∈ {1, 2, . . . , `} and a color a ∈ {1, 2, . . . , k}, such that for 1 ≤ i ≤ j, we have
γi(c) = a and for j ≤ i < `, we have γi(c) 6= γi+1(c). In the following we let γ := γj and
call γ the intermediate coloring. We first show that we may restrict our attention to sorted
Kempe-sequences. We then provide tight bounds for shortest Kempe-sequences from α to γ
and γ to β, respectively, which will imply our algorithmic results and our hardness result.

According to the next lemma, for any Kempe-sequence between two k-colorings of S
there is a sorted one of at most the same length.

I Lemma 3. Let s := γ0, γ1, . . . , γ` be a Kempe-sequence of length ` of k-colorings of S.
Then there is a sorted Kempe-sequence from γ0 to γ` of length at most `.

Proof. We assume without loss of generality that no two consecutive colorings in s are
identical, since if this is the case, we may remove one of the two from s and thus obtain a
shorter Kempe-sequence. Suppose furthermore that s is not sorted, that is, there is some
index i ∈ {1, 2, . . . , ` − 2}, such that γi(c) 6= γi+1(c) and γi+1(c) = γi+2(c). To keep our
notation concise, let a := γi(c) and a′ := γi+1(c) be the color of c in γi and γi+1, respectively.
Since γi+1 6= γi+2, there is a unique leaf v ∈ L, such that γi+1(v) 6= γi+2(v). We let
b := γi+1(v) and b′ := γi+2(v) be the color of the leaf v in γi+1 and γi+2, respectively. By
assumption we have a 6= a′ and b 6= b′. Furthermore, since γi+1(c) = γi+2(c), we have that
b′ 6= a′. Finally, since γi+1 is a k-coloring, we have a′ 6= b.
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We show that there is a Kempe-sequence γ0, γ1, . . . , γi, γ
′, γi+2, . . . , γ`, such that γi(c) =

γ′(c). By applying this argument iteratively, we obtain a sorted Kempe-sequence between γ0
and γ` of length at most `. We consider two main cases.

Case 1: γi(v) = γi+1(v)
It remains to consider the two subcases a = b′ and a 6= b′. In the first subcase we have
γi(c) = a and γi+1(c) = γi+2(c) = a′, as well as γi(v) = γi+1(v) = b and γi+2(v) = a = b′.
So in this case we may first recolor v to color a′ and then c to b′ using Kempe changes.
That is, we let the k-coloring γ′ be given by γ′(u) := γi(u) for each vertex u ∈ V \ {v}
and γ′(v) := a′. On the other hand, if a 6= b′ then a, a′, b, b′ are distinct, so we may
choose γ′(u) := γi(u) for u ∈ V \ {v} and γ′(v) := b′. That is, we can reach γ′ from γi by
changing the color of v to b′ and γi+2 from γ′ by changing the color of the center vertex
c from a to a′.

Case 2: γi(v) 6= γi+1(v)
Recall that c receives different colors in γi and γi+1. Therefore, if v receives different
colors in γi and γi+1, then we must have γi(v) = a′ and γi+1(v) = a = b. Furthermore, if
a = b′ then v receives the same color in γi+1 and γi+2, which contradicts our assumptions.
Hence, it remains to consider the case that a 6= b′. We let γ′(u) := γi(u) for u ∈ V \ {v}
and γ′(v) := b′ and observe that γ′ is a k-coloring of S. By construction, the k-coloring
γ′ can be obtained from γi by performing a Kempe change that alters the color of v to b′.
Then, γi+2 can be obtained from γ′ by a Kempe change that alters the color of c from a

to a′. J

Note that a Kempe change that alters the color of the center vertex c, say, from color a
to color b, also changes the color of every leaf of color b to color a. Let us fix two k-colorings
α and β of the star S and let γ be the intermediate coloring of a sorted Kempe-sequence
from α to β. The next lemma establishes that the color classes of an intermediate coloring γ
agree with those of β.

I Lemma 4 (∗). Let u, v ∈ L be two leaves of S. Then β(u) = β(v) if and only if γ(u) = γ(v).

We will show below that, given some coloring γ whose color classes agree with β, we can
find efficiently a corresponding shortest sorted Kempe-sequence from α to β via γ. Hence, in
the light of Lemma 3, the task of finding a shortest Kempe-sequence from α to β reduces to
the task of finding among such colorings one whose corresponding sorted Kempe-sequence
is shortest. For this purpose, from the two k-colorings α and β of S, we construct an
edge-weighted bipartite auxiliary graph and show that any sorted Kempe-sequence from α

to β corresponds to a one-sided perfect matching in this graph. Furthermore, we determine
the bounds on the length of a sorted Kempe-sequence from α to β in terms of the weight of
the corresponding matching and structure of the graph it induces on the set of colors. Let
Gαβ be a complete bipartite graph on the vertex sets ([k] \ {α(c)}, β(L)). The weight wij of
an edge (i, j) ∈ E(Gαβ) is given by

wij := |α−1(i) ∩ β−1(j)| .

In the following, let γ be a k-coloring of S whose color classes agree with those of β. That
is the color classes of γ and β induce the same partition of the vertex set of S, but the parts
may receive different colors in β and γ. Let M := {(i, j) ∈ E(Gαβ) | γ−1(i) = β−1(j)}. By
Lemma 4, the set M is a β(L)-perfect matching of Gαβ . Hence, any sorted Kempe-sequence
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from α to β gives a β(L)-perfect matching of Gαβ . Also, each β(L)-perfect matching of Gαβ
corresponds to an intermediate coloring of a sorted Kempe-sequence from α to β.

We now show that, given γ, we can compute in polynomial time a shortest Kempe-sequence
from α to β via γ.

I Proposition 5. Let γ be a k-coloring of S whose color classes agree with those of β. Then
there is a polynomial-time algorithm that computes a shortest sorted Kempe-sequence from α

to β via γ.

The next two lemmas give tight bounds for i) the length of a Kempe-sequence from α

to γ that does not alter the color of the center vertex and ii) the length of a Kempe-sequence
from γ to β such that the color of the center vertex is altered in each step. Since the proofs
of the two lemmas are constructive and lead to polynomial-time algorithms, they imply
Proposition 5.

I Lemma 6 (∗). The length of a shortest Kempe-sequence from α to γ such that the color
of the center vertex is constant is |L| − w(M).

Proof (sketch). Observe that the number of leaves u ∈ L such that α(u) 6= γ(u) is a lower
bound on the length of a Kempe-sequence from α to γ that does not alter the color of the
center vertex. By performing for each leaf u such that α(u) 6= γ(u) a Kempe change that
assigns to u the color γ(u), we obtain a shortest Kempe-sequence from α to γ of the claimed
length that does not alter the color of the center vertex. J

It remains to bound the length of a shortest Kempe-sequence from γ to β such that the
color of the center vertex changes in each step. Note that matching M in Gαβ obtained from
γ defines at most one successor M(u) ∈ β(L) for each color u ∈ [k] \ {γ(c)}, where c is the
center vertex of the star S. By the construction of Gαβ , this partial successor map gives rise
to a set C of cycles and a set P paths on the set {1, 2, . . . , k} of colors. To obtain a desired
Kempe-sequence from γ to β, for each item Z ∈ P ∪ C, the color classes corresponding to
the vertices V (Z) need to be altered one-by-one by changing the color of the center vertex.

I Lemma 7 (∗). The length of a shortest Kempe-sequence from γ to β such that the color
of the center vertex changes in each step is( ∑

Z∈C∪P
|E(Z)|+ 1

)
− |{γ(c)} ∩ β(L)}|+ 1− |{β(c)} ∩ γ(L)}| .

Proof (sketch). By Lemma 4 it remains to assign the correct colors (given by β) to the
color classes of γ. We observe that for any cycle C ∈ C, since the color of the center vertex is
not in V (C), at least |E(C)|+ 1 Kempe changes altering the color of the center vertex are
required in order to assign to each leaf u ∈ L with γ(u) ∈ V (C) the color β(u). By a similar
observation, each path P ∈ P requires at |E(P )|+ 1 Kempe changes if the center vertex has
γ(c) /∈ V (P ) and |E(P )| Kempe changes otherwise. J

3.2 Fixed-parameter and Approximation Algorithms
Based on the insights about sorted Kempe-sequences from Section 3.1 we show that Kempe
Distance on stars is fixed-parameter tractable, where the parameter is the number k of
available colors. The correspondence between sorted Kempe-sequences and matchings in the
auxiliary graph Gαβ defined in Section 3.1, together with Proposition 5, yields the following
FPT result.
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I Theorem 8 (∗). Kempe Distance on stars can be decided in time O(k! · poly(k) · n),
where k is the number of available colors and n is the size of the instance.

Proof (sketch). Let (S, k, `, α, β) be an instance of Kempe Distance on stars. Let L be
the set of leaves of the star graph S. Each intermediate coloring of a sorted Kempe-sequence
corresponds to a β(L)-perfect matching in the graph Gαβ from Section 3.1. This graph can
be constructed in time O(poly(k) · n) by iterating over the leaves of G and keeping track of
the source and target colors. For each β(L)-perfect matching M of Gαβ we obtain in time
O(n) the length of a shortest Kempe-sequences according to the proofs of lemmas 6 and 7.
If the sum of the two lengths is at most ` for some matching output Yes, otherwise output
No. J

Note that for a given instance of Kempe Distance, a shortest Kempe-sequence can be
obtained in a straight-forward way by turning the constructive proofs of Lemmas 6 and 7 into
an algorithm. For two k-colorings α and β of a graph, we let α4β := {i ∈ {1, 2, . . . , k} |
α−1(i) 6= β−1(i)} be the set of colors on which the color classes of α and β are different.
Since changing the color of any leaf u that has the same source and target color results in at
least two additional Kempe changes, any shortest Kempe-sequence from α to β only involves
colors in α4β. This observation implies the following corollary.

I Corollary 9. Kempe Distance on stars is FPT in the number of color classes on which
the two colorings differ.

For an instance I of Kempe Distance on stars, we denote by OPT(I) the smallest value
t, such that α and β admit a Kempe-sequence of length at most t. Note that OPT(I) is at
most the order of input graph. We show that for a maximum-weight matching M of Gαβ ,
the length of a sorted Kempe-sequence with intermediate coloring γM gives a constant-factor
approximation.

I Theorem 10. There is a polynomial-time algorithm that, given an instance I of Kempe
Distance on stars with k-colorings α and β, computes a Kempe-sequence from α to β of
length at most 4 ·OPT(I) + 1.

Proof. Let I = (S, α, β, k, `) be an instance of Kempe Distance on stars and let Gαβ =
(A+B,E) be the bipartite graph obtained from the instance as in Section 3.1. We denote by
L the set of leaves of the graph S. Let τ∗ be a shortest Kempe-sequence from α to β of length
OPT(I). By Lemma 3, we may assume that τ∗ is sorted, so there is a matching M∗ of Gαβ ,
such that τ∗ is composed of a Kempe-sequence τ∗1 from α to an intermediate coloring γM∗

and a Kempe-sequence τ∗2 from γM∗ to β. Let M be a maximum-weight matching of Gαβ
and let τ1 (resp., τ2) be the Kempe-sequence from α to γM (resp., from γM to β) obtained
according to Lemma 6 (resp., Lemma 7). We show that τ has length at most 4 ·OPT(I) + 1.

By lemmas 4 and 6, the τ1 has minimal length among all Kempe-sequences from α to
a coloring γ′ such that for any two leaves u, v ∈ L, we have γ′(u) = γ′(v) if and only if
β(u) = β(v). So the length of τ1 is at most OPT(I). It will be convenient in the remainder
of this proof to consider Kempe-sequences also to be sequences of Kempe changes.

It remains to bound the length of τ2. Let C (resp., P) be the set of cycles (resp., paths)
on {1, 2, . . . , k} given by the successor map M . Let j ∈ β(L) be a target color of some leaf of
S and suppose that there is at least one Kempe change with target color j in τ2. Then j is a
vertex of an item in C ∪ P (relative to the matching M). We call a color j ∈ β(L) deficient
if j ∈ V (Z) for some Z ∈ C ∪ P and τ∗ contains no Kempe change with target color j.
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B Claim 11. The only edge with positive weight incident to a deficient vertex j in Gαβ is
(j, j). Furthermore, (j, j) ∈M∗.

Proof of Claim. Each vertex j ∈ β(L) of Gαβ has at least one incident edge with positive
weight; otherwise no vertex has target color j implying that j /∈ β(L). Since, by assumption,
there is no Kempe change with target color j in τ∗2 , we have that (j, j) ∈M∗. Furthermore,
we have that each edge (i, j) with i 6= j has weight zero in Gαβ ; otherwise there is a Kempe
change in τ∗1 with target color j. C

We may ignore the colors j ∈ β(L) such that (j, j) ∈ M , since no Kempe change in τ2
has target color j. So let us assume that β(L) contains no such colors. Furthermore, let d be
the number of deficient colors in β(L). We distinguish two cases.

Case 1: d ≤ |β(L)|/2.
For each non-deficient color in β(L), the Kempe-sequence τ∗ contains at least one Kempe
change with target color j. Therefore, OPT(I) ≥ |β(L)|/2. For each deficient color
j ∈ β(L), the corresponding vertex j on other side of Gαβ is covered by M , since
otherwise M does not have maximum weight. Therefore, each path or cycle in C ∪ P
contains at least two vertices. By Lemma 7, the Kempe-sequence τ2 has length at most
(3|β(L)|/2) + 1 ≤ 3 OPT(I) + 1.

Case 2: d > |β(L)|/2.
Consider the graph with edges H := (V (Gαβ),M 4M∗). Since M and M∗ are β(L)-
perfect, each component of H has an even number of edges. Therefore, the graph H is a
disjoint union of even paths P ′ and cycles C′. Let Z ∈ P ′ ∪ C′ and consider any deficient
vertex j of Z and the two edges (j, j) ∈M∗ and (i, j) ∈M incident to it. By Claim 11,
we have that wjj > 0 and wij = 0. On the other hand, since M has maximum weight,
we have w(M ∩E(Z)) ≥ w(M∗ ∩E(Z)). Therefore, the weight of the edges in M ∩E(Z)
exceeds that of the edges in M∗ ∩ E(Z) by at least the number of deficient vertices of Z.
Now observe that for each edge (i, j) ∈M \M∗, there are at least wij Kempe changes in
τ∗1 due to Lemma 4. We conclude that τ∗1 has length at least d ≥ |β(L)|/2 + 1. By again
considering the worst-case length of τ2 according to Lemma 7, we bound the length of
the Kempe-sequence τ by

3 OPT(I) ≥ 3|τ∗1 | ≥ 3|β(L)|/2 + 1 ≥ |τ2|

By combining the bounds for τ1 and τ2, we obtain that the Kempe-sequence τ has length
at most 4 OPT(I) + 1. J

We conclude this subsection by showing that our analysis in the proof of Theorem 10 is
almost tight. For this purpose, consider the instance of Kempe Distance on stars and the
corresponding graph Gαβ shown in Figure 2. Note that just one Kempe change is needed to
transform the source coloring into the target coloring. Both perfect matchings of the shown
graph Gαβ have weight 1, so the approximation algorithm may select the one consisting
of the two crossing edges. This yields a transformation that first recolors the vertex with
source and target color 1 to color 2. It remains to permute the color classes to obtain the
target coloring; the permutation of the colors is a cycle of length two. By Lemma 7, takes
precisely three Kempe changes to reach the target coloring. Hence, the algorithm outputs a
4-approximate solution in the worst case.
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3→ 3

1→ 2 1→ 1
(a)

1

2

1

2

1

0

1
0

(b)

Figure 2 Instance of Kempe Distance on stars (a) and corresponding edge-weighted graph
Gαβ (b) for which the approximation algorithm gives a 4-approximate solution. A label a → b

indicates source color a and target color b for the corresponding vertex.

3.3 NP-completeness of Kempe Distance
We complement our polynomial-time algorithms from Section 3.2 by the following result,
which we will prove in the remainder of this section.

I Theorem 12. Kempe Distance on stars is NP-complete.

Recall that any two k-colorings of a star on n vertices admit a Kempe-sequence of
length O(n). Hence, Kempe Distance on stars is in NP. To show NP-hardness, we give a
polynomial-time reduction from the problem Hamiltonian Cycle, which asks, whether a
given graph contains a simple cycle visiting each vertex. It was shown by Garey, Johnson, and
Tarjan that Hamiltonian Cycle remains NP-complete even on planar cubic graphs [11].
In order to show that Kempe Distance on stars is NP-hard, we first reduce Hamiltonian
Cycle on cubic graphs to the following minimum-cost permutation problem.

Minimum-Cost Permutation
Input: non-negative weights w ∈ ZV×V≥0 and number z ∈ Z
For a permutation π we denote by c(π) the number of cycles of a cycle decomposition
of π. The cost of a permutation π of V is given by c(π)−

∑
v∈V w(v, πv).

Question: Is there a permutation π of V , such that π has cost at most z?

We then establish that the minimum cost of a permutation corresponds to the length of a
shortest Kempe-sequence of a suitable instance of Kempe Distance. Let G = (V,E) be a
cubic graph. Consider the weights w ∈ ZV×V given by

wuv =
{
K if u and v are adjacent in G
0 otherwise,

where K is a suitably large number, say K = |V |2. The following lemma implies that
Minimum-Cost Permutation is NP-hard.

I Lemma 13. G has a Hamiltonian cycle if and only if there is a permutation π of V , such
that π has cost at most 1−K · |V |.

Proof. Let C = v1, v2, . . . , vt be a Hamiltonian cycle of G, where t = |V |. Furthermore, let
π be given by π(vi) := vi+1 for 1 ≤ i < t and π(vt) := v1 Since C is a Hamiltonian cycle, the
cost π is 1−K · |V |.

Now suppose that π is a permutation of V of cost at most 1 −K · |V |. Then for each
v ∈ V contributes at least −K to the cost and π contains not fixpoints (due to the choice
of K). Therefore, each vertex v ∈ V is on some cycle of π. Since the cost π is at most
1−K · |V | we have that c(π) ≤ 1. It follows from the construction of w that π corresponds
Hamiltonian cycle of G. J
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Note that since w is symmetric, it corresponds to a complete edge-weighted bipartite graph
G′ on the vertex set (V, V ). We construct an instance (S, α, β) of Kempe Distance on stars,
such that the corresponding edge-weighted auxiliary graph Gαβ (see Section 3.1) is isomorphic
to the weighted graph G′. The star graph S has 3K · |V | leaves

⋃
v∈V {`v1, `v2, . . . , `v3K}. We

denote its center vertex by c. The source coloring α is given by α(`vi ) := v for 1 ≤ i ≤ 3K
and v ∈ V . For 1 ≤ i ≤ 3, let ni(v) be the three neighbors of v in G in arbitrary order. For
1 ≤ i ≤ 3K and v ∈ V , let

β(`vi ) :=


n1(v) if 1 ≤ i ≤ K
n2(v) if K + 1 ≤ i ≤ 2K
n3(v) it 2k + 1 ≤ i ≤ 3K

Finally, let α(c) = β(c) = |V | + 1. It is readily verified that the weighted graph G′ is
isomorphic to the graph Gαβ obtained from S and the colorings α and β as in Section 3.1.
Hence, we may invoke lemmas 6 and 7 and obtain the following relation between minimum-cost
permutations and shortest Kempe-sequences from α to β.

I Lemma 14. There is a permutation of V of cost at most 1−K · |V | if and only if α and
β admit a Kempe-sequence of length at most |V |(2K + 1) + 1.

Proof. Let π be a permutation of V of cost at most 1−K · |V |. Since π corresponds to a
perfect matching M of the weighted graph G′ and G′ is isomorphic to Gαβ , we may invoke
lemmas 6 and 7 to obtain a sorted Kempe-sequence τ of length |V |(2K + 1) + 1 from α to β
via γM .

Now let τ be a Kempe-sequence from α to β of length at most |V |(2K + 1) + 1. We
show that there is a permutation π of V of cost at most 1−K · |V |. We may assume that τ
is sorted, so let γ be the intermediate coloring and let Mγ be the corresponding matching
of Gαβ (see Section 3.1). The successor map given by the matching Mγ gives rise to a
permutation π on V , which in turn induces a set C of cycles on V ; and potentially fixpoints.
By lemmas 6 and 7 we have

|V |(2K + 1) + 1 = |τ | ≥ 3K|V | − w(Mγ) + c(π)

Rearranging gives 1−K|V |+ |V | ≥ −w(Mγ) + c(π) =
∑
v∈V w(v, πv). Since K > 2|V |, we

have w(v, πv) = K for each v ∈ V . Therefore, by the construction of w, the permutation
π has no fixpoints. Hence, by lemmas 6 and 7, we get the following sharper bound on the
length of τ .

|V |(2K + 1) + 1 = |τ | ≥ 3K|V | − w(Mγ) + |V |+ c(π)

Since w(v, πv) = K for each v ∈ V , we obtain from this inequality that c(π) = 1. Therefore,
the permutation π has cost at most 1−K · |V |. J

From Lemmas 13 and 14, the NP-hardness of Kempe Distance on stars is immediate.
Observe that if we restrict ourselves to elementary recolorings then the problem is tractable.

I Proposition 15 (∗). There is a polynomial-time algorithm that, given two k-colorings α
and β of a star graph, finds, if it exists, a Kempe-sequence of minimal length that certifies
the equivalence of α and β under elementary recolorings.
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4 Conclusion

We showed that Kempe Distance on paths admits a polynomial-time algorithm and that
the same problem on stars is NP-complete. Furthermore, we show that Kempe Distance
on stars is FPT in the number k of colors and it admits a constant-factor approximation
algorithm. There are some interesting open questions related to our results.

Is it possible to generalize the dynamic programming algorithm for Kempe Distance on
paths to trees with a bounded number of leaves?
Does Kempe Distance on stars admit a polynomial-time approximation scheme?
Does Kempe Distance on stars admit a polynomial kernel?

We conjecture that the answer to the last question is negative.
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Abstract
The Vertex Cover problem plays an essential role in the study of polynomial kernelization in
parameterized complexity, i.e., the study of provable and efficient preprocessing for NP-hard problems.
Motivated by the great variety of positive and negative results for kernelization for Vertex Cover
subject to different parameters and graph classes, we seek to unify and generalize them using
so-called blocking sets. A blocking set is a set of vertices such that no optimal vertex cover contains
all vertices in the blocking set, and the study of minimal blocking sets played implicit and explicit
roles in many existing results.

We show that in the most-studied setting, parameterized by the size of a deletion set to a
specified graph class C, bounded minimal blocking set size is necessary but not sufficient to get a
polynomial kernelization. Under mild technical assumptions, bounded minimal blocking set size is
showed to allow an essentially tight efficient reduction in the number of connected components.

We then determine the exact maximum size of minimal blocking sets for graphs of bounded
elimination distance to any hereditary class C, including the case of graphs of bounded treedepth.
We get similar but not tight bounds for certain non-hereditary classes C, including the class CLP of
graphs where integral and fractional vertex cover size coincide. These bounds allow us to derive
polynomial kernels for Vertex Cover parameterized by the size of a deletion set to graphs of
bounded elimination distance to, e.g., forest, bipartite, or CLP graphs.
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1 Introduction

In the Vertex Cover problem we are given an undirected graph G = (V,E) and an
integer k; the question is whether there exists a set S ⊆ V of at most k vertices such that
each edge of G is incident with a vertex of S, or, in other words, such that G − S is an
independent set. Despite Vertex Cover being NP-complete, it is known that there are
efficient preprocessing algorithms that reduce any instance (G, k) to an equivalent instance
with O(k2) or even at most 2k vertices (and size polynomial in k). The existence or non-
existence of such preprocessing routines for NP-hard problems has been studied intensively in
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the field of parameterized complexity under the term polynomial kernelization,1 and Vertex
Cover has turned out to be one of the most fruitful research subjects with a variety of
upper and (conditional) lower bounds subject to different parameters (see, e.g., [2]).

In the present work, we seek to unify and generalize existing results by using so-called
blocking sets. A blocking set in a graph G = (V,E) is any set Y ⊆ V that is not a subset of
any minimum cardinality vertex cover of G, e.g., the set V itself is always a blocking set. Of
particular interest are minimal blocking sets, i.e., those that are minimal under set inclusion.
Several graph classes have constant upper bounds on the size of minimal blocking sets, e.g.,
in any forest (or even in any bipartite graph) every minimal blocking set has size at most two.
On the other hand, even restrictive classes like outerplanar graphs have unbounded minimal
blocking set size, i.e., for each d there is a graph in the class with a minimal blocking set of
size greater than d. As a final example, cliques are the unique graphs for which V is the only
(minimal) blocking set because all optimal vertex covers have form V \ {v} for any v ∈ V ; in
particular, any graph class containing all cliques has unbounded minimal blocking set size.

For ease of reading, the introduction focuses mostly on hereditary graph classes, i.e., those
closed under vertex deletion; the later sections give more general results modulo suitable
technical conditions, where appropriate. Apart from that, throughout the paper, we restrict
study to graph classes C that are robust, that is, they are closed under disjoint union and
under deletion of connected components. In other words, a graph G is in C if and only if
all of its connected components belong to C. Most graph classes studied in the context of
kernels for Vertex Cover are robust, and a large number of them are also hereditary.
A particular non-hereditary graph class of interest for us is the class CLP of graphs whose
minimum vertex cover size equals the minimum size of a fractional vertex cover (denoted LP
as it is also the optimum solution value for the vertex cover LP relaxation).

1.1 Blocking sets and kernels for Vertex Cover
Most known polynomial kernelizations for Vertex Cover are for parameterization by the
vertex deletion distance to some fixed hereditary graph class C that is also robust, e.g., for C
being the class of forests [13], graphs of maximum degree one or two [18], pseudoforests [8]
(each component has at most one cycle), bipartite graphs [17], d-quasi forests/bipartite
graphs [10] (at most d vertex deletions per component away from being a forest/bipartite),
cluster graphs of bounded clique size [18], or graphs of bounded treedepth [2]. Concretely,
the input is of form (G, k,X), asking whether G has a vertex cover of size at most k, where
X ⊆ V such that G−X ∈ C; the size ` = |X| of the modulator X is the parameter. Blocking
sets have been implicitly or explicitly used for most of these results and we point out that all
the mentioned classes have bounded minimal blocking set size.

As our first result, we show that this is not a coincidence: If C is closed under disjoint
union (or, more strongly, if C is robust) then bounded size of minimal blocking sets in graphs
of C is necessary for a polynomial kernel to exist (Section 3.1). Moreover, the maximum size
of minimal blocking sets in C yields a lower bound for the possible kernel size.

I Theorem 1. Let C be a graph class that is closed under disjoint union. If C contains any
graph with a minimal blocking set of size d then Vertex Cover parameterized by the size
of a modulator X to C does not have a kernelization of size O(|X|d−ε) for any ε > 0 unless
NP ⊆ coNP/poly and the polynomial hierarchy collapses.

1 A polynomial kernelization is an efficient algorithm that given any instance with parameter value `
returns an equivalent instance of size polynomial in `. In the initial Vertex Cover example we have
parameter ` = k. For more information on the topic, see [4, 7]
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To the best of our knowledge, this theorem captures all known kernel lower bounds for
Vertex Cover parameterized by deletion distance to any union-closed graph class C, e.g.,
ruling out polynomial kernels for C being the class of mock forests (each vertex is in at most
one cycle) [8], outerplanar graphs [12], or any class containing all cliques [1]; and getting
kernel size lower bounds for graphs of bounded treedepth [2] or cluster graphs of bounded
clique size [18]. To get lower bounds of this type, it now suffices to prove (or observe) that C
has large or even unbounded minimal blocking set size.

It is natural to ask whether the converse holds, i.e., whether a bound on the minimal
blocking set size directly implies the existence of a polynomial kernelization. Unfortunately,
we show that this does not hold in a strong sense: There is a class C such that all graphs in C
have minimal blocking sets of size one, but there is no polynomial kernelization (Section 3.2).
More strongly, solving Vertex Cover on C is not in RP ⊇ P unless NP = RP.

I Theorem 2. There exists a graph class C such that all graphs in C have minimal blocking
set size one and such that Vertex Cover on C is not solvable in polynomial time, unless
NP = RP.

In light of this result, one could ask what further assumptions on C, apart from the
necessity of bounded minimal blocking set size, are required to allow for polynomial kernels.
Clearly, polynomial-time solvability of Vertex Cover on the class C is necessary and (as
we implicitly showed) not implied by C having bounded blocking set size. If, slightly stronger,
we require that blocking sets in graphs of C can be efficiently recognized2 then we show that
there is an efficient algorithm that reduces the number of components of G − X for any
instance (G, k,X) of Vertex Cover parameterized by deletion distance to C to O(|X|d)
(Section 3.3). This is a standard opening step for kernelization and can be followed up by
shrinking and bounding the size of those components. Note that this requires that deletion
of any component yields a graph in C (e.g., implied by C being robust), which here is covered
already by C being hereditary.

I Theorem 3. Let C be any hereditary graph class with minimal blocking set size d on which
Vertex Cover can be solved in polynomial time. There is an efficient algorithm that given
(G, k,X) such that G−X ∈ C returns an equivalent instance (G′, k′, X) such that G′−X ∈ C
has at most O(|X|d) connected components.

We point out that the number O(|X|d) of components is essentially tight (assuming that
NP * coNP/poly) because the lower bound underlying Theorem 1 creates instances where
components have a constant c = c(d) many vertices. Reducing to O(|X|d−ε) components,
for any ε > 0, would violate the kernel size lower bound.

1.2 Minimal blocking set size relative to elimination distances
Recently, Bougeret and Sau [2] presented a polynomial kernelization for Vertex Cover
parameterized by the size of a modulator X such that G−X has treedepth at most d; here d
is a fixed constant and the degree of the polynomial in the kernel size depends exponentially
on d. To get the kernelization, they prove (in different but equivalent terms) that the size
of any minimal blocking set in a graph of treedepth d is at most 2d, and they give a lower
bound of 2d−3. As our first result here, we determine the exact maximum size of minimal
blocking sets in graphs of treedepth d (see below, and see Section 4 for all these results).

2 This condition holds for all hereditary C on which Vertex Cover can be solved in polynomial time:
Given G = (V,E) and Y ⊆ V it suffices to compute solutions for G and G− Y . Clearly, the set Y is a
blocking set if and only if OPT(G) < OPT(G− Y ) + |Y |.

STACS 2020
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Bulian and Dawar [3] introduced the notion of elimination distance to a class C, generalizing
treedepth, which corresponds to elimination to the empty graph (see Section 2 for a formal
definition). This is defined in the same way as treedepth except that all graphs from C
get value 0 rather than just the empty graph. (Note that here it is convenient that C is
robust because the definition assigns value 0 to disjoint unions of graphs from C.) Intuitively,
elimination distance to C can be pictured as having a tree-like deletion of vertices (as for
treedepth) but being allowed to stop when the remaining connected components belong to
C (rather than continuing to the empty graph). For hereditary C, we determine the exact
maximum size of minimal blocking sets in graphs of elimination distance at most d to C,
denoted βC(d), depending on the maximum minimal blocking set size bC in the class C.

I Theorem 4. Let C be a robust hereditary graph class where bC is bounded. For every
integer d ≥ 1 it holds that

βC(d) =
{

2d−1 + 1 , if bC = 1,
(bC − 1)2d + 1 , if bC ≥ 2.

The lower bound holds as well for any non-hereditary class C but we only get a slightly
weaker upper bound for such classes (and also require a further technical condition called
f -robustness). In particular, we get such an upper bound for the class CLP mentioned above.
Note that if C has unbounded minimal blocking set size then the same is true for graphs of
any bounded elimination distance to C (irrespective of C being hereditary or not).

The bound for graphs of treedepth at most d is included in the theorem by using that
having treedepth at most d is equivalent to having elimination distance at most d− 1 to the
class of independent sets (i.e., graphs of treedepth one), for which all minimal blocking sets
have size 1. Concretely, for treedepth d we get β(d) = 1 for d = 1 and β(d) = 2d−2 + 1 for
d ≥ 2.

1.3 Some consequences for kernels for Vertex Cover
Our bounds for the minimal blocking set size relative to elimination distances allow us to
generalize and combine previous polynomial kernelization results for Vertex Cover. We
state this explicitly for elimination distances to hereditary graph classes.

I Theorem 5. Let C be a hereditary and robust graph class for which bC is bounded, such
that Vertex Cover has a (randomized) polynomial kernelization parameterized by the size
of a modulator to C. Then Vertex Cover also has a (randomized) polynomial kernelization
parameterized by the size of a modulator to graphs of bounded elimination distance to C.

As an example, this combines known polynomial kernels relative (to the size of) modulators
to a forest [13] resp. to graphs of bounded treedepth [2] to polynomial kernels relative to
a modulator to graphs of bounded forest elimination distance. Similarly, the randomized
polynomial kernel for Vertex Cover parameterized by a modulator to bipartite graphs
is generalized to a modulator to graphs of bounded bipartite elimination distance. The
approach to this result (also in the non-hereditary case) uses our bounds for minimal blocking
set size relative to elimination distances and, apart from that, is inspired by the result of
Bougeret and Sau [2]. Intuitively, these kernels are obtained by suitable reductions to the
known kernelizable cases, and thus carry over their properties (e.g., being deterministic or
randomized).

As an explicit example for the non-hereditary case, we state a new kernelization result
relative to the size of a modulator to the class of graphs of bounded elimination distance to
CLP, i.e., bounded elimination distance to graphs where optimum vertex cover size equals
optimum fractional vertex cover size.
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I Theorem 6. Vertex Cover admits a randomized polynomial kernel parameterized by
the size of a modulator to graphs that have bounded elimination distance to CLP.

This subsumes several polynomial kernels for Vertex Cover (except for their size
bounds).

2 Preliminaries

For n ∈ N we use [n] to denote {1, . . . , n}. We use standard graph notation [6]. We say
that a graph class C is robust if C is closed under disjoint union and deletion of connected
components. A set S ⊆ V (G) is a vertex cover of a graph G, if for each edge e ∈ E(G), at
least one of its endpoints is contained in S. We will use OPT(G) to denote the size of a
minimum vertex cover of G. The linear program relaxation for Vertex Cover for G is

LP(G) = min

 ∑
v∈V (G)

xv | ∀{u, v} ∈ E(G) : xu + xv ≥ 1 ∧ ∀v ∈ V (G) : 0 ≤ xv ≤ 1

 .

It is well known that there is always an optimal feasible solution such that xv ∈ {0, 1
2 , 1} for

all v ∈ V (G). We call a solution for which this holds a half-integral solution.

I Definition 7. Let C be a graph class and let G be a graph. We define the elimination
distance to C as

edC(G) :=


0 if G ∈ C,
minv∈V (G) edC(G− {v}) + 1 if G /∈ C and G is connected,
maxi∈[t] edC(Gi) if G consists of connected components G1, . . . , Gt.

The treedepth of a graph G is simply its elimination distance to the empty graph.

Let C be a graph class, let G be a graph and let X ⊆ V (G). We say X is a C-modulator
if G−X ∈ C. We say that X is a (C, d)-modulator if edC(G−X) ≤ d. When considering
Vertex Cover parameterized by the size of a C-modulator or a (C, d)-modulator, we will
assume that this modulator is given on input. As such, inputs to the problem are triplets
(G, k,X) such that X is a modulator and the problem is to decide whether G has a vertex
cover of size at most k.

For a graph class C, let C + c be the graph class consisting of all graphs that have a
C-modulator of size at most c, i.e., C + c := {G | ∃X ⊆ V (G), |X| ≤ c : G−X ∈ C}.

I Definition 8. Let G be a graph and let Y ⊆ V (G) be a subset of its vertices. We say
that Y is a blocking set in G if there exists no vertex cover S of G such that Y ⊆ S and
|S| = OPT(G). In other words, there is no optimal vertex cover of G that contains Y . A
blocking set Y is minimal if no strict subset of Y is also a blocking set.

Let G be a graph, we use β(G) to denote the size of the largest minimal blocking set in G.
For a graph class C, let bC := maxG∈C β(G), let bC :=∞ if the minimal blocking set size of
graphs in this graph class can be arbitrarily large. Define βC(d) := max{β(G) | edC(G) ≤ d}.

3 Relation between minimal blocking sets and polynomial kernels

In this section, we show relations between the size of minimal blocking sets in C and
kernelization bounds for Vertex Cover parameterized by a C-modulator.
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B1

H1

B2

H2

B3

H3

v1 v3 v5X v2 v4 v6

Figure 1 The Vertex Cover instance G′ obtained in the proof of Theorem 1, corresponding to
instance (F , 2) with F = {{v1, v2, v3}, {v1, v3, v4}, {v4, v5, v6}}. Since F has a hitting set of size 2,
G′ has a vertex cover of size 2 + 3 · 3, indicated in white.

3.1 Polynomial kernel implies a bound on the minimal blocking set size
In this section we prove Theorem 1, showing that if C is a graph class where minimal blocking
sets can have size d, then this gives a kernelization lower bound for Vertex Cover when
parameterized by the size of a C-modulator. This generalizes most existing lower bounds for
Vertex Cover when parameterized by the size of a modulator to C for some graph class
C [8, 12, 14, 18]. Under the assumption that NP * coNP/poly, the theorem shows that having
bounded blocking set size is necessary to obtain a polynomial kernel in the following sense.
For a graph class C closed under disjoint union, for which Vertex Cover parameterized by
a modulator to C admits a polynomial kernel of size O(kd), it must hold that bC ≤ d.

I Theorem 1 (F3). Let C be a graph class that is closed under disjoint union. If C contains
any graph with a minimal blocking set of size d then Vertex Cover parameterized by the
size of a modulator X to C does not have a kernelization of size O(|X|d−ε) for any ε > 0
unless NP ⊆ coNP/poly and the polynomial hierarchy collapses.

Proof sketch. The lower bound is obtained by a linear-parameter transformation from d-
Hitting Set. An input to this problem consists of a set family F over a universe U and
integer k where every set in F has size exactly d. The problem is to decide whether F has a
hitting set of size at most k. A hitting set is a set X ⊆ U such that for every set S ∈ F we
have S ∩X 6= ∅. The lower bound will then follow from the fact that for d ≥ 2, d-Hitting
Set parameterized by the universe size n does not have a kernel of size O(nd−ε) for any
ε > 0 unless NP ⊆ coNP/poly [5, Theorem 2].

Suppose we are given an instance (F , k) for d-Hitting Set. Choose H ∈ C with a
minimal blocking set of size d. We construct G′ for Vertex Cover starting with vertex
set X := U (note G′ −X ∈ C), and adding a copy Hj of graph H for each Sj ∈ F . The
vertices in X that correspond to vertices in Sj are now each connected to a distinct vertex
in the size-d minimal blocking set of Hj . This ensures that for any vertex cover S′ of G′, if
none of the vertices from Sj is contained in S′, then |S′ ∩Hj | > OPT(Hj). We can use this
to show that there exists a minimum vertex cover S′ of G′ such that S′ ∩X corresponds
to a hitting set of F . A sketch of the constructed instance (G′, k′ := k +m ·OPT(H)) for
Vertex Cover is shown in Figure 1. J

3.2 Bounded minimal blocking set size is not sufficient
Now that it is clear that, proving that a graph class has bounded blocking set size is essential
towards obtaining a polynomial kernel for Vertex Cover parameterized by the size of a
modulator to this graph class, one may wonder whether this condition is also sufficient. It

3 For statements marked with a (F), the (full) proof can be found in the full version of the paper, which
is available at https://arxiv.org/abs/1905.03631.

https://arxiv.org/abs/1905.03631
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turns out that it is not. We show that there exists a graph class C for which all minimal
blocking sets have size 1, for which Vertex Cover is not solvable in polynomial time unless
NP = RP. This implies that Vertex Cover is unlikely to be FPT when parameterized by
the size of a C-modulator, immediately implying that it does not have a polynomial kernel
when parameterized by a C-modulator.

I Theorem 2. There exists a graph class C such that all graphs in C have minimal blocking
set size one and such that Vertex Cover on C is not solvable in polynomial time, unless
NP = RP.

Proof. It is known that the Unique-SAT problem cannot be solved in polynomial-time
unless NP = RP [19, Corollary 1.2]. An input to Unique-SAT is a CNF-formula F that has
either exactly one satisfying solution or is unsatisfiable. The problem is to decide whether F
is satisfiable. It can be shown that the same result holds for Unique-3-SAT [15, Example
26.7], where the input formula is further restricted to be in 3-CNF. We show that the following
polynomial-time reduction from Unique-3-SAT to Vertex Cover exists.

B Claim 9 (F). There is a polynomial-time reduction from Unique-3-SAT to Vertex
Cover, that given a formula F , outputs an instance (G, k) for Vertex Cover such that:

If F has exactly one satisfying assignment, then G has a unique minimum vertex cover of
size k.
If F is unsatisfiable, then G has a unique minimum vertex cover of size k + 1.

To conclude the proof, let C be the graph class consisting of all graphs that are obtained
via the reduction given in the claim above, when starting from a formula F that has zero
or one satisfying assignments. As such, solving Vertex Cover on C in polynomial time
corresponds to solving Unique-3-SAT in polynomial time, implying NP = RP. Since any
graph in C has exactly one minimum vertex cover, we obtain that indeed bC = 1, as any
vertex that is not part of the minimum vertex cover forms a (minimal) blocking set. J

Graphs in the graph class C constructed in the proof of Theorem 2 are always connected,
since they are the complement of a disconnected graph. As such, C is closed under removing
connected components. However, C is not robust because it is not closed under disjoint
union. We can however define C′ to contain all graphs for which all connected components
lie in C. Observe that C′ is robust, but that bC′ = 1 and Vertex Cover is not solvable in
polynomial time on C′ ⊇ C unless RP = NP.

3.3 Reducing the number of components outside the modulator
As mentioned in the previous subsections, bounded blocking set size is necessary to obtain
polynomial kernels for Vertex Cover. Many papers that give polynomial kernels for
Vertex Cover parameterized by the size of a C-modulator showed that their graph class
C has bounded blocking set size, see for example [2, 8, 10, 13, 18]. Some of them used the
blocking set size of class C to bound the number of connected components. More precisely,
given an instance (G, k,X) of Vertex Cover with G−X ∈ C they showed that one can
reduce the number of connected components of G−X to O(|X|bC+1). We will show that one
can reduce the number of connected components of G−X to |X|bC , as a first step towards
proving Theorem 3. Here we assume that the class C is robust in order to guarantee that
deletion of connected components of G − X again results in a graph of C. At the end of
this section, we discuss suitable conditions so that this component reduction can be done
efficiently.
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Let (G, k,X) be an instance of Vertex Cover parameterized by the size of a C-modulator.
First, we define the set X = {Z ⊆ X | Z is an independent set in G and 1 ≤ |Z| ≤ bC} as
the collection of chunks of X. The intuition of defining the set X of chunks is to find sets in
the modulator X for which at least one vertex must be contained in any optimum vertex
cover of G. The concept of chunks was first introduced by Jansen and Bodlaender [13].

To reduce the number of connected components of G−X, we use the following result
due to Hopcroft and Karp [11] which computes a certain crown-like structure in a bipartite
graph. The second part of the theorem is not standard (but well known).

I Theorem 10 ([11]). Let G be an undirected bipartite graph with bipartition V1 and V2,
on n vertices and m edges. Then we can find a maximum matching of G in time O(m

√
n).

Furthermore, in time O(m
√
n) we can find either a maximum matching that saturates V1 or

a set Z ⊆ V1 such that |NG(Z)| < |Z| and such that there exists a maximum matching M of
G−NG[Z] that saturates V1 \ Z.

We construct a bipartite graph GB to which we will apply Theorem 10 to find a set of
connected components in G − X that can be safely removed from G. We denote the set
of connected components in G − X by F . The two parts of the bipartite graph GB are
the set X of chunks and the set F of connected components in G−X. More precisely, for
every chunk Z ∈ X and for every connected component H ∈ F we add a vertex to the
bipartite graph. To simplify notation we denote the vertex of GB that corresponds to a
connected component H ∈ F resp. a chunk Z ∈ X by H resp. Z. We add an edge between a
vertex H ∈ F and a vertex Z ∈ X when NG(Z) ∩ V (H) is a blocking set in H, i.e., when
OPT(H −NG(Z)) + |NG(Z)∩V (H)| > OPT(H). Observe that GB can only be constructed
in polynomial time, if this condition can be tested in polynomial time, which is possible
under some additional assumptions on C, as we will see later.

It follows from Theorem 10 that there exists either a maximum matching M of GB

that saturates X or a set X ′ ⊆ X such that |NGB
(X ′)| < |X ′| and such that there exists

a maximum matching M of GB − NGB
[X ′] that saturates X̂ = X \ X ′. If there exists

a maximum matching M of GB that saturates X then let X ′ = ∅ and let X̂ = X . Let
FD = F \ (NGB

(X ′) ∪ V (M)) be the set of connected components in F that are neither in
the neighborhood of X ′ nor endpoint of a matching edge of M .

I Reduction Rule 1. Delete all connected components in FD from G and decrease the size
of k by OPT(FD) the size of an optimum vertex cover in FD.

Observe that Reduction Rule 1 deletes also all connected components H ∈ F which have
the property that for all sets Z ∈ X it holds that N(Z) ∩ V (H) is not a blocking set of H
because these connected components correspond to isolated vertices in the bipartite graph
GB. To show the correctness of Reduction Rule 1 we will use the following lemma which
guarantees us the existence of certain optimum vertex covers of G.

I Lemma 11 (F). There exists an optimum vertex cover S of G with S ∩ Z 6= ∅ for all
Z ∈ X̂ .

Now, we show the correctness of Reduction Rule 1 using Lemma 11. Let (G̃, k̃,X) be
the reduced instance, i.e., G̃ = G−FD and k̃ = k −OPT(FD). Obviously, if (G, k,X) is a
yes-instance then (G̃, k̃,X) is a yes-instance. For the other direction, assume that (G̃, k̃,X)
is a yes-instance. Observe that M is also a matching in G̃B that saturates X̂ because we
delete no connected component that is an endpoint of a matching edge. Furthermore, it holds
that either X̂ = X or |N

G̃B
(X ′)| < |X ′| because we delete no connected component that
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corresponds to a vertex in |N
G̃B

(X ′)|. Thus, it follows from Lemma 11 that there exists an
optimum vertex cover S̃ of G̃ with S̃ ∩ Z 6= ∅ for all sets Z ∈ X̂ . Note that every connected
component H ∈ FD is only adjacent to vertices in X̂ in GB. Since every set Z ∈ X̂ has a
non-empty intersection with the set S̃, it holds that there exists an optimum vertex cover SH

of H which contains the set NG(X \ S̃) ∩ V (H). Let S be the set that results from adding
for each connected component H ∈ FD the optimum vertex cover SH to the set S̃. By
construction, it holds that S is a vertex cover of G of size |Ŝ|+OPT(FD) ≤ k̂+OPT(FD) = k.
This proves that (G, k,X) is also a yes-instance. Overall, we showed that Reduction Rule 1
is safe.

I Theorem 12 (F). Let (G, k,X) be an instance of Vertex Cover parameterized by the
size of a C-modulator that is reduced under Reduction Rule 1. The graph G−X has at most
|X|bC connected components.

To use Theorem 12 to prove that we can efficiently reduce the number of connected
components in G − X when X is a C-modulator, we need to show that, under certain
assumptions, Reduction Rule 1 can be applied in polynomial time. We start by providing
two sufficient conditions in the next lemma.

I Lemma 13 (F). If bC is bounded, if Vertex Cover is solvable in polynomial time on
graphs of class C and if we can verify in polynomial time whether a given set Y is a blocking
set in a graph of class C then we can apply Reduction Rule 1 in polynomial time.

We continue by providing two cases that satisfy the preconditions for the lemma above,
such that Reduction Rule 1 can be applied in polynomial time on these graph classes.

First of all, we consider the case that graph class C is hereditary. In this case, being
solvable in polynomial time on the class C is sufficient to also be able to verify whether a
given subset of the vertices is a blocking set, thus allowing us to apply Reduction Rule 1 in
polynomial time. As mentioned in Subsection 3.3 we also need that bC is bounded. Overall,
we assume that C is a hereditary graph class on which Vertex Cover is polynomial-time
solvable and where bC is bounded.

I Lemma 14 (F). Let C be any hereditary graph class on which Vertex Cover can be
solved in polynomial time and where bC is bounded. Then Reduction Rule 1 can be applied in
polynomial time.

Theorem 3 (restated below) now follows directly from Theorem 12 and Lemmas 13 and 14.

I Theorem 3. Let C be any hereditary graph class with minimal blocking set size d on which
Vertex Cover can be solved in polynomial time. There is an efficient algorithm that given
(G, k,X) such that G−X ∈ C returns an equivalent instance (G′, k′, X) such that G′−X ∈ C
has at most O(|X|d) connected components.

We can actually further generalize Theorem 3 to some non-hereditary graph classes.
However, we have more problems to show that Lemma 13 holds for non-hereditary graph
classes, because after deleting vertices from a graph G that is contained in a non-hereditary
graph class C we do not know whether the resulting graph still belongs to the graph class C.
As such we need the additional assumption that Vertex Cover is also polynomial-time
solvable on graph class C + 1. This additional assumption is not unreasonable, when our
goal is to obtain a kernelization algorithm for Vertex Cover. In fact, in order to obtain
any kernel for Vertex Cover parameterized by the size of a modulator to C it is necessary
to assume that the problem is FPT. From this, it immediately follows that we can solve
Vertex Cover in polynomial time on C + 1.
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I Theorem 15 (F). Let C be any robust graph class with minimal blocking set size d on
which Vertex Cover can be solved in polynomial time. Furthermore, assume that Vertex
Cover can be solved in polynomial time on graphs of graph class C + 1. There is an efficient
algorithm that given (G, k,X) such that G−X ∈ C returns an equivalent instance (G′, k′, X)
such that G′ −X ∈ C has at most O(|X|d) connected components.

4 Minimal blocking sets in graphs of bounded elimination distance

As seen in the previous section, minimal blocking sets play an important role for Vertex
Cover kernelization. In this section we try to combine different structural parameters by
considering the minimal blocking set size of graphs that have elimination distance d to some
graph class C that has bounded minimal blocking set size. We prove the following theorem.

I Theorem 4 (F). Let C be a robust hereditary graph class where bC is bounded. For every
integer d ≥ 1 it holds that

βC(d) =
{

2d−1 + 1 , if bC = 1,
(bC − 1)2d + 1 , if bC ≥ 2.

Proving the theorem consists of proving both the upper and the lower bound. The upper
bound for βC(d) given above only holds when C is hereditary. When C is not hereditary, we
obtain an upper bound when C satisfies the following additional property:

I Definition 16. We say that a graph class C is f -robust, if bC+c ≤ f(c) = f(bC , c) for a
computable function f .

I Theorem 17 (F). Let C be an f-robust and robust graph class where bC is bounded, and
let d ≥ 0. It holds that

βC+c(d) ≤
( d∑

i=0

(
d

i

)
f(c+ i)

)
− 2d + 1.

The lower bound given by Theorem 4 however extends to any robust graph class C. The
lower bound is proven by constructing for each graph class C where bC is bounded and
each integer d ≥ 1 a graph G with edC(G) = d that contains a minimal blocking set of
size at least 2d−1 + 1 when bC = 1, and of size at least (bC − 1)2d + 1 when bC ≥ 2. Since
βC(d) = max{β(G) | edC(G) ≤ d} this gives the desired result. This result is obtained by
showing that, given a graph H, we can obtain a graph H ′ such that edC(H ′) ≤ edC(H) + 1
and β(H ′) ≥ 2β(H)− 1. For bC = 1 we need an additional construction that, given a graph
H, allows us to obtain a graph H ′ with edC(H ′) ≤ edC(H) + 1 and β(H ′) ≥ β(H) + 1. A
depiction of both constructions is shown in Figure 2.4

5 Kernelization results

In this section, we will combine the results from Sections 3.3 and 4 to obtain polynomial
kernelizations for Vertex Cover parameterized by a C-modulator or a (C, d)-modulator.
In Section 3.3 we have seen necessary assumptions on a graph class C such that Reduction
Rule 1 can be applied efficiently. We can show that for hereditary graph classes, for which
Vertex Cover is solvable in polynomial time, Vertex Cover can also be solved efficiently
on graphs for which edC(G) is bounded. From that, we then obtain the following.

4 For a proof of the correctness of this construction, refer to Section 4.1 in the full version of the paper.
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β(H) = |Y |,
edC(H) = d

β(H ′) ≥ |Y |+1,
edC(H

′) ≤ d+1
β(H ′) ≥ 2|Y | − 1,
edC(H

′) ≤ d+ 1

Y

H

Y ′

H ′

Y

H

β(H) = |Y |,
edC(H) = d

Y ′

H ′

Figure 2 This figure depicts the construction used to prove the lower bound on βC(d) in Theorem 4.
White vertices form minimal blocking sets.

I Corollary 18 (F). Reduction Rule 1 is applicable in polynomial time on graphs G with a
given (C, d)-modulator X, where C is a hereditary graph class on which Vertex Cover is
solvable in polynomial time, and where bC is bounded.

For non-hereditary graph classes C we also need that Vertex Cover is solvable in
polynomial time on graph class C + c with c constant. For the next corollary, observe that in
particular βC(d) is bounded if C is known to be either hereditary or f -robust, by Theorems 4
and 17.

I Corollary 19 (F). Reduction Rule 1 is applicable in polynomial time on graphs G with a
given (C, d)-modulator X, where C is a robust graph class with the properties that βC(d) is
bounded for any constant d and that Vertex Cover is polynomial-time solvable on graph
class C + c for constant c.

5.1 General results
In this section, we show that Vertex Cover parameterized by the size of a (C, d)-modulator
has a polynomial kernel when the graph class C fulfills some additional properties. The
assumptions that βC(d) is bounded and that Vertex Cover is polynomial-time solvable
on the considered graph class are necessary, if these assumptions fail a polynomial kernel is
unlikely to exist. The same holds for the assumption that Vertex Cover parameterized by
a C-modulator has a polynomial kernel. We additionally require that C is a robust graph
class that is either hereditary, or has the property that Vertex Cover is polynomial-time
solvable on C + c. These assumptions will ensure that our reduction rule can be applied in
polynomial time.

I Lemma 20 (F). Let C be a robust graph class for which βC(d) is bounded and on which
Vertex Cover is polynomial-time solvable, such that C is hereditary or Vertex Cover is
polynomial-time solvable on C + c for all constants c.

Suppose Vertex Cover parameterized by the size of a C-modulator X̂ has a (randomized)
polynomial kernel with g(|X̂|) vertices. Then Vertex Cover parameterized by the size of a
(C, d)-modulator X has a (randomized) polynomial kernel with O(g(|X|b)) vertices, where
b =

∏d
i=1 βC(i).

The kernel is obtained by induction, by transforming an instance (G, k,X) of Vertex
Cover parameterized by (C, d)-modulator to an instance parameterized by (C, d − 1)-
modulator. This is done by first reducing the number of connected components in G−X
using Reduction Rule 1, and then adding the root of the treedepth decomposition of each
connected component of G−X to the modulator. This method for kernelization is similar to
the kernelization for Vertex Cover parameterized by the size of a d-treedepth modulator
(see [2]). One difference is that we do not introduce hyper-edges.
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Observe that in the above lemma statement, when Vertex Cover parameterized by a C
modulator allows a polynomial kernel, the fact that Vertex Cover is solvable in polynomial
time on graphs from C + c is immediate: since the problem has a polynomial kernel, it must
be FPT in the parameter. Since in this case the size of a C-modulator is c, which is constant,
the result follows.

In the above lemma statement, we assume that βC(d) is bounded to obtain the kernelization.
We observe that for hereditary graph classes, this assumption is not needed, it follows from
our results in Theorem 4 that it suffices to bound bC. Furthermore, a bound on bC often
comes naturally: if Vertex Cover parameterized by a C-modulator has a polynomial
kernel, it follows from Theorem 1 that, unless NP ⊆ coNP/poly, there must exist a constant
d such that bC ≤ d.

I Theorem 5 (F). Let C be a hereditary and robust graph class for which bC is bounded, such
that Vertex Cover has a (randomized) polynomial kernelization parameterized by the size
of a modulator to C. Then Vertex Cover also has a (randomized) polynomial kernelization
parameterized by the size of a modulator to graphs of bounded elimination distance to C.

Similarly, for non-hereditary graph classes, it suffices if C is f -robust to obtain a polynomial
kernel. The size of the kernel depends on f .

I Corollary 21 (F). Let C be a robust and f -robust graph class for which bC is bounded and
for which Vertex Cover parameterized by the size of a C modulator X̂ has a (randomized)
polynomial kernel. Then Vertex Cover parameterized by the size of a (C, d)-modulator has
a (randomized) polynomial kernel.

5.2 Kernel for modulator to bounded CLP elimination distance
In this section, we show how Theorem 6 follows from the general results in the previous
section, to have an explicit example for a non-hereditary base class C. That is, we show how
to get a randomized polynomial kernel for Vertex Cover parameterized by the size of a
modulator X such that G−X has bounded elimination distance to the non-hereditary class
CLP of graphs where integral and fractional vertex cover size coincide. Towards proving this
result, we show the following relation between the value of ` = OPT(G)− LP(G) and the
size of a CLP-modulator in G.

I Lemma 22 (F). Let G be a graph, and let ` = OPT(G)− LP(G). There exists a vertex
set X ⊆ V (G) of size at most 2` such that OPT(G−X) = LP(G−X).

We can show that CLP is f -robust5 with f(c) = f(bC , c) = 2c + bCLP = 2c + 2. Using
Theorem 17 and Lemma 20 we can now generalize the kernelization for Vertex Cover
parameterized by the size of a d-treedepth modulator and parameterized by the difference
between an optimum vertex cover and an optimum LP solution using the size of a (CLP, d)-
modulator as the parameter. The following theorem subsumes Theorem 6.

I Theorem 23 (F). An optimum (CLP, d)-modulator of a graph G has at most the size of a
d-treedepth modulator of G and at most twice the size of OPT(G)− LP(G). Furthermore,
Vertex Cover parameterized by the size of a (CLP, d)-modulator admits a randomized
polynomial kernel.

5 This is proven in the full version at the end of Section 4.2.
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6 Conclusion

In the first part (Section 3) we have showed that bounded minimal blocking set size in
C is necessary but not sufficient to get a polynomial kernel for Vertex Cover when
parameterized by the size of a modulator X to a robust (or at least union-closed) class C. We
then showed that bounded minimal blocking set size suffices to efficiently reduce the number
of components of G−X assuming that C is robust (so deletion of components lets G−X
stay in C) and that we can efficiently compute optimum vertex covers and test blocking sets
in graphs of C. The obtained bound of O(|X|bC ) components is likely optimal because it
matches the size lower bound proved earlier, which requires only components of constant
size.

In the second part we first proved bounds for the minimal blocking set size relative
to elimination distances to classes C, motivated by the bounds that Bougeret and Sau [2]
obtained relative to treedepth (Section 4). We obtain the exact value for all hereditary classes
C and slightly weaker upper bounds for certain non-hereditary classes C. This enabled new
polynomial kernelization results for Vertex Cover that effectively replace (the size of) a
modulator to a class C to modulators to graphs of bounded elimination distance to C, e.g.,
when C is the class of forests, bipartite graphs, or CLP (where integral and fraction vertex
cover size coincide).

As future work it would be great to get a similar kernelization result when parameterized
by the size of a modulator to bounded elimination distance to the graph class C2LP−MM
where OPT = 2LP−MM (i.e., minimum vertex cover size equals two times fractional cost
minus size of a maximum matching, cf. [9]), which relates to the randomized kernelization for
the corresponding above guarantee parameterization [16]. This would essentially subsume
and generalize all currently known polynomial kernelizations for Vertex Cover (to which
we came close with the result for bounded elimination distance to CLP). It would also be nice
to have tight bounds for the maximum size of minimal blocking sets in the non-hereditary
case, and to get such bounds with fewest possible technical assumptions.
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Abstract

Given a linear recurrence sequence (LRS), specified using the initial conditions and the recurrence
relation, the Skolem problem asks if zero ever occurs in the infinite sequence generated by the LRS.
Despite active research over last few decades, its decidability is known only for a few restricted
subclasses, by either restricting the order of the LRS (upto 4) or by restricting the structure of the
LRS (e.g., roots of its characteristic polynomial).

In this paper, we identify a subclass of LRS of arbitrary order for which the Skolem problem is
easy, namely LRS all of whose characteristic roots are (possibly complex) roots of real algebraic
numbers, i.e., roots satisfying xd = r for r real algebraic. We show that for this subclass, the Skolem
problem can be solved in NPRP. As a byproduct, we implicitly obtain effective bounds on the zero
set of the LRS for this subclass. While prior works in this area often exploit deep results from
algebraic and transcendental number theory to get such effective results, our techniques are primarily
algorithmic and use linear algebra and Galois theory. We also complement our upper bounds with a
NP lower bound for the Skolem problem via a new direct reduction from 3-CNF-SAT, matching the
best known lower bounds.
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1 Introduction

A (rational) linear recurrence sequence (LRS) is an infinite sequence of rationals u1 . . .

such that the n-th term can be written as a linear combination of the previous terms,
un = a1un−1 + . . .+ akun−k, where each coefficient ai is a rational. The number k is called
the order of the LRS. Once we fix the initial k values, the equation above uniquely determines
the infinite sequence. LRS are a fundamental object of study in discrete mathematics, with a
rich theory and widespread applications and have been widely investigated. However, some
very basic computational questions remain unsolved for the last several decades despite
considerable interest. The most well-known of these is the so-called Skolem problem (or
Skolem-Pisot problem): given an LRS u = {un}∞n=0 with coefficients {ai}ki=1 and initial
conditions {ui}ki=1, does there exist an n such that un = 0. This problem is known to be
NP-hard [9] (see also [3]), but even decidability is open. A fundamental result in this area is
the Skolem-Mahler-Lech theorem, which states that the zero set of an LRS is a semi-linear
set[18], i.e, the zero set is the union of a finite set and a finite union of arithmetic progressions.
Unfortunately, this nice characterization does not result in an algorithm due its use of
non-effective techniques [28], and it does not help in deciding if the zero set is non-empty.
To obtain decidability of the Skolem problem, researchers have considered restricted classes
of LRS, along two broad avenues.

The first is by restricting the order of the LRS. Vereshchagin [30] gave an algorithm to
decide Skolem problem up to order 4; the computational complexity of this algorithm was
analyzed by Chonev, Ouaknine and Worrell (Appendix of [12]) to show that it is in the
complexity)1 class NPRP, which is contained in the second level of Polynomial Hierarchy
(PH). But, no lower bound is known and hence we do not know if these results are tight,
even upto the RP-oracle. Indeed, the NP-hardness reductions in [9, 3] do not work when
the order is restricted. The second approach to obtaining decidability has been to restrict
the spectral structure of the LRS. Given an LRS u of order k, the roots of its characteristic
polynomial xk − a1x

k−1 . . .− ak = 0, also called characteristic roots, can be used to give a
closed form expression for the LRS (see Proposition 1). Restricting the spectral structure
of the LRS refers to imposing conditions on these roots, i.e., considering classes of LRS
where the characteristic roots have special properties. In [3], it was shown that for LRS
whose characteristic roots are complex roots of unity, the Skolem problem is NP-complete.
To the best of our knowledge, no efficient bounds (e.g., within the Polynomial Hierarchy)
or optimality results are known for the Skolem problem for any other natural non-trivial
subclasses (e.g., for simple LRS, where the roots are distinct), even if decidability is known
or considered folklore [31, 4, 7, 17].

In this paper, we take a step in this direction, and provide optimal complexity bounds
on the Skolem problem for a highly expressive subclass of LRS, obtaining by restricting
its spectral structure. More precisely, we consider the class of LRS where all the roots of
the characteristic polynomial are roots of real numbers, i.e., λ such2 that λn = r for some
n ∈ N, r real algebraic. We denote this class by LRS(rR) (and by LRS(R) the class of LRS
with real characteristic roots). Notice that this class considerably extends the subclass in [3],
which corresponds to roots of unity, i.e., λ such that λn = 1 for some n ∈ N. Restricting the
spectrum of a polynomial to be reals or roots of reals has been used to recover decidability

1 RP is the class of problems that admits a randomized polynomial time algorithm with one-sided error
2 Notice that every complex algebraic number is a root of a quadratic polynomial with real coefficients.

However not all complex algebraic numbers are n-th roots of a real number.
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across various areas, ranging from hybrid systems [17] to probabilistic verification [4, 1],
and weighted automata [7]. Our results allow us to infer strong complexity results on these
models, and solves an open problem stated in [7], as discussed later in the paper.

Our contributions: Our main result is that the Skolem problem for LRS(rR) can be solved
in NPRP. Since this class contains LRS over roots of unity, it inherits the NP hardness
for Skolem. Now standard [20] derandomization assumptions in computational complexity
imply that P = RP, under which condition, we obtain that our result on Skolem problem for
LRS(rR) is tight. To the best of our knowledge, this is the first tight, upto derandomization,
complexity bound on the Skolem problem for a class of LRS whose roots may contain
arbitrary reals. We also remark that our results combined with the order 4 results (where
also an NPRP upper bound is obtained in [12]), seem to suggest that when Skolem problem
is decidable, it is easy, i.e., in NPRP.

To understand the difficulty in showing our result, note that while it is a folklore result
that the Skolem problem for LRS(R) is decidable, standard ideas don’t seem to yield even a
PSPACE upper bound. The usual way to analyze an LRS is via the exponential polynomial
solution (Proposition 1), where the coefficients of the exponential polynomials can be shown to
be algebraic numbers from a (exponentially) large field extension of Q. A linear combination
of these algebraic numbers could be double exponentially small (See for example the work
of Tiwari on the sign problem [29] and Allender et al. [5]) and we currently don’t have
techniques to handle numerical computation in this regime efficiently. Thus, while one does
get decidability, none of these approaches seem to immediately provide precise complexity
bounds beyond NEXP to the best of our knowledge. Another example comes from a recent
work of Fijalkow et al. [17], where to decide the reachability problem for Linear Time Invariant
systems (which they also prove to be Skolem-hard) specified by a matrix A, a key step in
the algorithm relies on the Jordan block decomposition P−1DP of A to analyse the product
P−1DnP for various values of n. Though the authors do not analyse the complexity of their
algorithm, since the matrices P and P−1 have algebraic numbers of exponential degree, a
similar complexity bottleneck seems unavoidable.

Thus, in order to prove our results, we introduce new techniques to circumvent numerical
difficulties that are usually encountered in computations involving irrational numbers, which
we believe could be of independent interest. Numerical difficulties arise regularly in problems
in computational geometry (for example, the Square roots sum problem [29]), numerical
analysis [10] and algorithmic game theory (computing Nash equilibria of 3-player games [15]),
to mention a few examples. A key step in our proof is to revisit and strengthen the folklore
result (Proposition 1) that LRS correspond precisely to the class of exponential polynomials.
We give a refined version (see Lemma 6) of the closed form of the LRS. Using this and
appealing to the classical root separation theorems [23], we obtain an NPRP algorithm for the
Skolem problem over reals, i.e., LRS(R) (Theorem 7). We then reduce Skolem problem for
LRS(rR) to that of LRS(R) in two steps. First we reduce the Skolem problem for LRS(rR) to
the Skolem problem for simple LRS(rR), i.e., where the roots are assumed to be all distinct.
Then we show that we can reduce the Skolem problem for simple LRS(rR) to exponentially
many instances of the Skolem problem for simple LRS(R). In doing so, the most technical
part is to prove that numerical issues do not surface again after the reduction (Lemma 12).

We may also contrast our techniques with those of earlier results on the Skolem problem.
While the authors of [12] also obtain a NPRP upper bound for the Skolem problem (only up
to order 4), they use Baker’s theorem on linear forms in logarithms [6]. Though Baker’s
theorem seems unavoidable to show decidability for special cases where the characteristic
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roots have irrational phases (even here, currently the method can help prove decidability
of Skolem problem only for LRS up to order 4), it is potentially an obstacle to prove good
complexity bounds since the “effective” version of Baker’s theorem has constants that could
be double exponentially small as a function of the order of the LRS. Since [12] deal only
with constant order LRS, the constants from Baker’s theorem do not pose a problem. Since
LRS(rR) does not have roots with irrational phases, we can avoid using Baker’s theorem and
instead rely on elementary linear algebra and Galois theory to obtain a strong lower bound
on the zeros of the LRS.

As a final contribution, we also analyze the hardness proof for Skolem to see how it
behaves with respect to various parameters. Towards this, we first provide a direct reduction
from 3-CNF-SAT for showing the NP-hardness proof. Using this we observe that Skolem
is strongly NP-hard with respect to the initial conditions while it is only weakly NP-hard
with respect to the coefficients as they seem to blow up in the reduction. Note that this
strengthens the lower bound from [3], which only shows weak NP-hardness in both initial
conditions and coefficients. We must however point out that a careful analysis of [9] suggests
that their indirect reduction, through universality of automata, is also weakly NP-hard wrt
coefficients and strongly wrt initial conditions. However, all the three reductions are weakly
NP-hard wrt the coefficients of the LRS since in all the reductions the numerical value of the
coefficients may require polynomially (in the size of the LRS) many bits to represent.

Other related work. A recent work of Min Sha [25] shows effective bounds for simple LRS,
when there are one or two dominant roots (and other roots are arbitrary), using Baker’s
theorem on linear forms of logarithms. The class of LRS considered here are orthogonal to
the one in the current paper since they cannot handle the case of repeated complex dominant
roots, even if the roots are complex roots of rationals (for which we obtain NPRP) or roots of
unity (for which we have containment in NP by [3]). On the other hand, we require all roots
to be roots of reals, even if there is a single dominant root.

2 Preliminaries and notations

We first set up some notation that we use throughout the paper. We denote by poly(m), any
quantity that is bounded from above by mO(1) and by exp(m) any quantity that is bounded
from above by 2mO(1) . By Qexp(m) we denote rational numbers where both the numerator and
denominator are bounded by integers of magnitude at most exp(m). Note that such a number
can be represented in binary by a string of length at most poly(m). Throughout the paper,
we say that the magnitude of a rational number being exp(m)-bounded and the rational
number being representable by poly(m)-bits interchangeably. For an algebraic number λ, we
denote by Qexp(m)(λ) all the elements of the field extension which are obtained by rational
linear combination of powers of λ, where the rationals used in the linear combination are
exp(m)-bounded. Also for a field F, we use F to denote its algebraic closure.

We introduce some standard definitions and properties of LRS. For a detailed treatment
of LRS, see the book of Evereste et al. [16]. An LRS of order k is a sequence whose nth term
is given by un =

∑k
i=1 aiun−i, where u1, . . . , uk and a1, . . . , ak are respectively called the

initial conditions and coefficients of the LRS. We assume all initial conditions and coefficients
to be rational and hence all terms are rational. Such LRS are sometimes called rational LRS,
but we will call them just LRS for simplicity, and denote by u a rational LRS and by un the
nth term of u.
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Given an LRS, its characteristic polynomial is χu(x) = xk−
∑k−1
i=0 ak−ix

i =
∏g
j=1 fj(x)hj ,

where the latter equality is obtained by factorizing into irreducible square-free factors fj over
Q. We can also break as χu(x) =

∏r
j=1(x− λj)ej , where λj is a root, called a characteristic

root with multiplicity ej and ej = hj′ if λj is a root of fj′ . A perfect field is one where every
irreducible polynomial over the field has distinct roots. It is known that all characteristic
zero fields are perfect. As a result, when u is a rational LRS, all characteristic roots coming
from an irreducible factor occur with same multiplicty. An LRS is called simple if ej = 1 for
all j, i.e., the characteristic roots are distinct.

I Definition 1 (Exponential polynomial). An exponential polynomial over a field F is a
special bivariate polynomial P (x, y) ∈ F(x, y) of the form P (x, ex). Such a polynomial is
a finite polynomial combination of exponentials E(x) =

∑k
i=1 pi(x)eδix, where δi ∈ F and

pi(x) ∈ F(x).

I Proposition 1 (Exponential polynomial solution [16]). Given an LRS u, a closed form
solution of the n-th term of the LRS is given as a solution to an exponential polynomial,
i.e., un =

∑r
j=1 pj(n)λnj , where for j ∈ [r], λj ∈ C, pj(n) =

∑ej−1
`=0 cj`n

` are polynomials
of degree at most (ej − 1) and cj` ∈ Q̄(λ1, . . . , λn). Note that for a simple LRS we get
un =

∑r
j=1 cj0λ

n
j .

Let e = maxj(ej) be the highest multiplicity. With this, we can rewrite this equation as

un =
r∑
j=1

(
ej−1∑
`=0

cj`n
`

)
λnj (1)

We call the coefficients cj` the defining coefficients of the LRS un. We denote by m the
bit-size needed to describe the LRS, namely the order, coefficients and initial conditions of
the LRS, i.e., m = ||u|| = k +

∑k
i=1(log ai + log ui). We refer to m as the size of the LRS.

I Proposition 2. Given LRS u of size m, n ≤ poly(m), un is poly(m)-bit representable.

Algebraic numbers. We introduce some basic notions about algebraic numbers, found in
any standard text (e.g., Cohen [13]).

I Definition 2 (Algebraic number, Height, Degree). A complex number α is called algebraic
if there is a univariate polynomial pα(x) with rational coefficients of minimum degree that
vanishes at α. pα is said to be the defining polynomial or the minimal polynomial of the
algebraic number α. The degree and height of α are then the degree and the maximum value
of the coefficients of pα. The roots of pα are called the Galois conjugates of α.

I Lemma 3 (Mignotte’s Root Separation bound [23]). If αi and αj are roots of an integer
polynomial p(x) of degree d and height H, then |αi − αj | >

√
6

d
d+1

2 Hd−1

I Proposition 3. If α is an algebraic number of degree d and height H, then the degree and
height of αt are bounded by d and exp(d)Hdt respectively for any t ∈ N.

We call an algebraic number α, tth primitive root of unity if αt = 1 and for all i ∈ N,
i, 0 ≤ i < t, αi 6= 1.
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3 LRS to Exponential Polynomials : A finer analysis

In this section, we give a refined analysis of the exponential polynomials obtained from LRS,
thus strengthening Proposition 1. To do this, we show two lemmas which are possibly of
independent interest. The first is a structural lemma, which shows how one can decompose
an LRS into a polynomial combination of simple LRS, with only a polynomial blow-up in
the resulting size.

I Lemma 4. [Splitting lemma] Given an (rational) LRS u of size m and order k, we can
write u =

∑e−1
`=0 n

`u`, with the following properties:
1. u` is a simple LRS of order k` ≥ 1 such that

∑e−1
`=0 k` = k.

2. The initial conditions and coefficients of u` are also poly(m)-bit rationals.

Proof. From equation 1 we have

un =
r∑
j=1

(
ej−1∑
`=0

cj`n
`

)
λnj =

e−1∑
`=0

n`

 ∑
j:ej>`

cj`λ
n
j

 =
e−1∑
`=0

n`u`n

for e = maxj(ej) and u`n =
∑
j:ej>` cj`λ

n
j . Note that

∑
j:ej>` cj`λ

n
j is a simple rational LRS

because it is an exponential sum. The only λj that occur in the expression for u`n are the ones
with ej > ` or the roots of all fj′ such that hj′ > `. Hence the characteristic polynomials of
u`n is χu`(x) =

∏
j:hj>`

fj(x). Since χu(x) =
∏g
j=1 fj(x)hj is a rational univariate polynomial,

we have that χu` is a product of all those irreducible factors of χu(x) where hj > `. Hence
the coefficients of the polynomial χu`(x) are all poly(m)-bit bounded since the coefficients of
χu(x) can all be written in ≤ m bits. Thus in fact the coefficients of each LRS u` have size
poly(m) bits.

Further the order of u` is exactly k` = `(
∑
j:hj>` deg(fj)). Since deg(χu(x)) =∑g

j=1 hjdeg(fj) we have
∑e−1
`=0 k` = k by double counting. We now set up a system of

k linear equations with the initial conditions of the LRSs u` as variables. Each of the k linear
equations expresses one initial condition of u as a linear combination of the initial conditions
of u`. This requires us to in turn express the first k terms of u` as a linear combination of
the k` initial terms of u` (variables in our system).

Suppose u`n =
∑k`
i=1 aiu

`
n−i is the recurrence equation for u`, with u`1, . . . , u`k` being the

initial conditions, and a1, . . . , ak` the coefficients of the recurrence. We first express u`n for
k` < n ≤ k in terms of the initial values as u`n = c1u

`
1 + · · ·+cku

`
k`

by applying the recurrence
repeatedly. The constants ci are poly(m)-bit bounded, since ci < (a1 +a2 + · · ·+ak`)n. Thus
ci < (k` · 2poly(m))n ≤ (m · 2m)k = 2poly(m), since we have seen that each ai is poly(m)-bit
bounded. Hence we have a linear system with k equations and k variables, the initial
conditions of each u`. Further all constants in the linear systems are poly(m)-bit bounded,
and thus we get that all initial conditions of each u` are also poly(m)-bit bounded. J

Our second step is to show that for a simple LRS, the coefficients of the exponential
polynomial solution are exponentially bounded (and poly in the bit representation).

I Lemma 5. Let u be a simple LRS of order k and size m, whose exponential polynomial
solution is given by un =

∑k
i=1 ciλ

n
i and initial conditions are u1, . . . , uk. Then the coefficients

ci in the exponential polynomial solution are uniquely determined and have the property
ci ∈ Qexp(m)(λi). That is, ci are bounded in magnitude by 1

2poly(m) ≤ ci ≤ 2poly(m) for all
i ∈ [k].
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Proof. We proceed by interpolation. We set up a system of linear equations by substituting
n = 1, 2, . . . , k. We get, V c = U , where V is the classical Vandermonde matrix given by
Vij = λij , for 1 ≤ i, j ≤ k and c = [c1c2 . . . ck]T and U = [u1u2 . . . uk]T . Now we have
c = V −1U , and in fact ci is given by the inner product

∑k
j=1 V

−1
ij uj . Since U ∈ Qk×1, to

prove the claim, it suffices to show that V −1
ij ∈ Q(λi) for j ∈ [k]. To this end, we start

with the following well-known (See for example [21], Exercise 40 in Section 1.2.3, wherein
the expression is attributed to De Moivre [14]) formula for the inverse of the Vandermonde
matrix given by V = (bi,j)1≤i,j≤k where

bij =



(−1)j−1



∑
1≤ `1 <...< `k−j ≤ k

`1,...,`k−j 6=i

λ`1 · · ·λ`k−j

λi
∏

1≤ `≤ k
` 6=i

(λ` − λi)

 : 1 ≤ j < k

1
λi

∏
1≤ `≤ k
` 6=i

(λi − λ`)
: j = k

First let’s consider the denominator. As χu(x) = xk − ak−1x
k−1 + · · ·+ a0 =

∏
i∈[k]

(x− λi)

its derivative χ′u(x) = kxk−1 − (k − 1)ak−1x
k−2 + · · ·+ a1 =

∑
i∈[k]

∏
j∈[k],j 6=i

(x− λj). Now we

observe that the denominator is just λiχ′u(λi) ∈ Qexp(m)(λi) as ai’s are m bit rationals.
Now notice that all elements of the k-th column of the Vandermonde matrix is just 1

scaled by a poly(m)-bit number. The (k − 1)-th column is given by,

bi,k−1 = (−1)k−2
∑

1≤`1≤k;`1 6=i
λ`1 = (−1)k−2(ak−1 − λi)

where ak−1 is the coefficient of xk−1 in the characteristic polynomial of the recurrence
via Vieta’s identities [32].

Similarly we use the fact that the coefficient of xk−2 in the characteristic polynomial
is the elementary symmetric polynomial of its roots (namely the {λi}ki=1) and rewrite the
expression of the Vandermonde inverse above to get

bi,k−2 = (−1)k−3(
∑

1≤`1,`2≤k;`1,`2 6=i
λ`1λ`2) = (−1)k−3(ak−2 − λi

∑
1≤`≤k;` 6=i

λ`)

= (−1)k−3(ak−2 − (−1)k−1λi(ak−1 − λi))

Proceeding inductively, let us assume that bi,j+1 ∈ Q(λi). Let ejk(x1, . . . , xk) denote the
j-th elementary symmetric polynomial in the variables {x1, . . . , xk}. Now we have,

bi,j =

(−1)j−1
∑

1≤ `1 <...< `k−j ≤ k
`1,...,`k−j 6=i

λ`1 · · ·λ`k−j


= (−1)j−1(ejk(λ1, . . . , λk)− λibi,j+1)
= (−1)j−1(ak−j − λibi,j+1)

which indeed shows that bi,j ∈ Q(λi).
To see that 1

2O(m) ≤ ci ≤ 2O(m), just notice that ci is obtained as a rational linear
combination of powers of λi. Since λi are the roots of the characteristic polynomial of the
LRS we started out with, their magnitude is upper bounded by 2O(m) (which is also the
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height of the characteristic polynomial) and lower bounded by 1/2O(m) (to see this just
notice that if α is a root of χu(x), then 1/α is a root of xkχu(1/x), where k is the degree of
χu(x)). This concludes the proof. J

Armed with these lemmas, we are now able to refine Proposition 1 considerably. Most
standard references on the subject [31, 16] observe that the coefficients cj` reside in a finite
extension of the rationals, namely Q̄(λ1, . . . , λn). We have the following

I Lemma 6. Given a LRS u = 〈un〉, the exponential polynomial solution is: un =∑r
j=1 pj(n)λnj where pj(n) =

∑ej−1
`=0 cj`n

`. Then, the defining coefficients cj` ∈ Qexp(m)(λj),
where m is the size of the given LRS instance.

Proof. We want to show here that all the coefficients appearing in the polynomials pj(n) in the
exponential polynomial solution belong to Q(λj) and are expressible in poly(m)-bits. To show
this we rely on Lemmas 4 and 5. When the LRS is simple, we have from Lemma 5 that each
coefficient ci in the exponential polynomial solution un =

∑r
j=1 cjλ

n
j belongs to Qexp(m)(λj).

From Lemma 4, we can write u =
∑e−1
i=0 n

iui, where each ui is a simple LRS of order di whose
initial conditions and recurrence coefficients belong to Qexp(m). Let uin =

∑di
`′=1 ci`′λ

n
i`′ . From

Lemma 5, we have that each ci`′ ∈ Qexp(m)(λi`′), since size of ui is also poly(m). Together
with Equation 1, we have: un =

∑r
j=1

(∑ej−1
`=0 cj`n

`
)
λnj =

∑e−1
i=0 n

i
(∑di

`′=1 ci`′λ
n
i`′

)
Note from the expression on the left that cj` is exactly the coefficient of n`λnj . By

comparing the two expressions, we see that the coefficient of n`λnj in the expression on the
right is exactly ci`′ where i = ` and λi`′ = λj . Thus we have that each cj` ∈ Qexp(m)(λj),
since we noted that each ci`′ ∈ Qexp(m)(λi`′). J

The lemma above is implicit in the work of Cai [11] on computing Jordan forms of matrices.
However, we give a direct proof using elementary techniques. The main purpose of Lemma 6
is to provide a good upper and lower bound on the magnitude of the coefficients of pj(n) in
the exponential polynomial solution to any LRS. While, this is of no consequence with respect
to decidability, as we elaborate in the forthcoming sections, it affects the computational
complexity of the problem considerably.

4 Real characteristic roots

In this section we analyze the exact complexity of the Skolem problem for LRS(R) and obtain
an upper bound of NPRP.

I Theorem 7. Given an LRS u with real characteristic roots, Skolem problem is decidable
in NPRP

Proof. Let u be a LRS of order k with distinct (not considering repeated) roots λ1, . . . , λr ∈ R.
Let m denote the number of bits required to specify the LRS u. We first assume that all
roots are positive. We then show a decision procedure for zero testing in this case by showing
that there is an exponential bound after which all terms of the LRS are non-zero, and thus
it is enough to only consider terms before this bound. In fact, we show this for a class of real
exponential polynomials:

I Lemma 8. Consider a real exponential polynomial u given by un =
∑r
j=1 pj(n)λnj s.t.,

1. λj ∈ R+ are the (distinct) absolute values of the roots of a polynomial χu(x) whose
coefficients are expressible in m bits,

2. the coefficients of all the polynomials pj(n) are expressible in poly(m) bits,
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3. r and the degrees of each pj(n) ≤ m.
where m is a size parameter. Then there exists N = 2mO(1) such that either (i) for all n > N ,
un > 0, or (ii) for all n > N , un < 0.

Proof. Note first that the number of bits required to specify the real exponential polynomial
as the coefficients of pj(n), λj ’s and r is poly(m). Let us assume λ1 > λ2 > · · · > λr > 0.
Now we can write:

un
λn1

= p1(n)
(
λ1

λ1

)n
+

r∑
j=2

pj(n)
(
λj
λ1

)n
= p1(n)1n +

r∑
j=2

pj(n)ρnj

where ρj = λj/λ1 and ρj ∈ (0, 1) for 2 ≤ j ≤ r. Let r(n) =
∑r
j=2 pj(n)ρnj . We first place

bounds on r(n):

B Claim 9. There exist ε ∈ (0, 1) and N , where 1/ε = 2mO(1) and N = 2mO(1) such that for
every n > N , |r(n)| < (1− ε)n.

Proof. Note that |r(n)| ≤
∑r
j=2|pj(n)|ρjn. We are considering a class of real exponential

polynomials where the degree of any polynomial pj is at most m, and that for every j ∈ [r],
the defining coefficients of pj(n) are upper and lower bounded by numbers expressible in
poly(m)-bits. Hence the height of pj(n) is 2O(m), and putting the height and degree bounds
together, we can upper and lower3 bound |pj(n)| by 2O(m)nm.

Now we are left with obtaining bounds on ρj to have a bound on r(n). Consider a
polynomial χ′u which has roots 1, ρ2, . . . , ρr. The roots of χ′u are the roots of the polynomial
χu scaled by a constant factor 1/λ1. Since χu has size O(m), so does χ′u. Thus bounds on
its degree d = O(m) and height H = 2O(m) follow. We now use Mignotte’s root separation
bound (Lemma 3). When applied to χ′u this gives: |1− ρj | >

√
6

d(d+1)/2Hd−1 = 1
2mO(1) . Since

ρj ∈ (0, 1), we have ρjn < (1− 2−mO(1))n. Now observe that,

|r(n)| =
r∑
j=2
|pj(n)||ρj |n ≤

r∑
j=2

2O(m)nO(m)(1− 2−m
O(1)

)n

We also have that the polynomials pj(n) for j ∈ [n] have coefficients upper and lower
bounded by values that are expressible in poly(m)-bits. Since an exponential function
eventually (after a certain N) dominates a polynomial function, we can find an ε such that
|r(n)| < (1− ε)n for all n > N . Since the degree of the polynomial is poly(m), the height of
the polynomial is poly(m)-bit bounded, and the base of the (decaying) exponential function
is (1− 2−mO(1)), 1/ε and N are exponentially bounded in m. C

We now proceed to prove Lemma 8. The n-th term of the sequence is given by: un
λn1

=
p1(n) + r(n). From Claim 9, there exist ε ∈ (0, 1) and N1, where 1/ε = 2mO(1) and
N1 = 2mO(1) such that for every n > N1, |r(n)| < (1− ε)n. We also know from Lemma 6 that
the coefficients of p1(n) are poly(m)-bit bounded. Thus, similar to the proof of Claim 9, we
can find an exponentially bounded N2 = 2mO(1) such that for all n > N2, |p1(n)| > (1− ε)n.
Note here that Lemma 6 was crucial in obtaining the exponential bound on N2, since without

3 Notice that just an upper bound is not sufficient, as since the coefficient are algebraic numbers, it
might be the case that the coefficients are too small, which might hurt the complexity of our algorithm.
However this turns out not to be the case, thanks to Lemma 6
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it only a double exponentially smaller lower bound on the coefficients of p1(n) is known,
which does not translate to an exponential bound on N2.

Putting these two together, we observe that if p1(n) has a positive leading coefficient, we
have that for all n ≥ max{N1, N2}, un > p1(n)− |r(n)| > (1− ε)n − (1− ε)n > 0. If p1(n)
has a negative leading coefficient, then consider −un = q(n)− r(n), where q(n) = −p(n) has
a positive leading coefficient, and again, we can have that for all n ≥ max{N1, N2}, −un > 0.
This means that all terms of the sequence beyond N = max{N1, N2} are either all strictly
positive or all strictly negative. J

We now show how to decide Skolem problem for LRSs with positive real roots using
Lemma 8. Recall that m is the size of the LRS. Now observe that
1. un is an exponential polynomial solution (see Equation 1).
2. λj ’s are positive reals, and roots of χu(x), the characteristic polynomial of the LRS. Since

the coefficients of χu(x) are part of the input, they are expressible in m bits.
3. r and the degrees of the polynomials are all ≤ k, which in turn is ≤ m.

Thus we can apply Lemma 8. Thus we see that deciding if there is an n such that
un = 0 amounts to checking the only terms un where n < N , where N is the exponentially
bounded constant in Lemma 8. Since N can be represented in polynomial number of bits
in the size of the input LRS, we can guess 0 ≤ n < N in NP and check if un = 0 by
iterated squaring of the companion matrix of the LRS, which can be represented as a small
circuit. We can now invoke the randomized algorithm for circuit zero testing (commonly
called EqSLP, see for example [5]). This places Skolem problem for LRSs with positive
real characteristic roots in NPEqSLP which is in NPRP, since EqSLP ⊆ coRP. To reduce the
general case of real roots (LRS with both positive and negative real roots) to the case of
positive real roots discussed above, notice that since reals form an ordered field, any LRS
with real characteristic roots can have at most two dominant roots: say λ1 and −λ1. We
have: un = p1(n)λn1 +p2(n)(−λ1)n+

∑r
j=3 pj(n)λnj . Consider the sequences v and w defined

by vn = u2n and wn = u2n+1

vn = u2n = (p′1(n) + p′2(n))(λ2
1)n +

r∑
j=3

p′j(n)(λ2
j )n

wn = u2n+1 = (p′′1(n) + p′′2(n))(λ2
1)n +

r∑
j=3

p′′j (n)(λ2
j )n

where p′1(n) = p1(2n), p′′1(n) = λ1p1(2n), and so on. Since the expressions for vn and wn are
in the exponential polynomial form, the sequences v and w are linear recurrences. Observing
the exponential polynomial solution further reveals their characteristic roots are squares
of the characteristic roots of u, and thus are positive reals. Notice that deciding Skolem
problem for u is equivalent to deciding Skolem problem for both v and w. Since the LRSs
v and w can be computed in polynomial time from u, and using the fact that Skolem
problem can be decided in NPRP for LRSs with positive real roots, we have that Skolem
problem for LRSs with real algebraic characteristic roots is also in NPRP. J

5 Roots of reals

In this section, we use the results proved in the previous sections, to finally show the following
main result of this paper.

I Theorem 10. Skolem problem for LRS(rR) can be decided in NPRP
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At a high level, the main idea is to show that the Skolem problem for an LRS u ∈ LRS(rR)
can be reduced to testing for zeros of a set of real exponential polynomials, for which we can
then appeal to Lemma 8. We divide the proof into two parts: first we show the result for
simple LRS and then, we use splitting lemma (Lemma 4) to solve the general case. We start
with a technical lemma about the phases of roots in a LRS(rR) instance:

I Lemma 11. For an irreducible polynomial which factors as p(x) =
∏d
j=1(x−αjωj), where

αj ∈ Q∩R and ωj = e
2πιsj
tj is a tj-th primitive root of unity, we have for all j, tj = O(d2 log d)

and lcm{tj}dj=1 = 2O(d log d).

Proof. Let ω be some ωj , which is the tj = tth primitive root of unity. Since αω is a root of
an irreducible polynomial of degree d, we have degQ(αω) = d. Notice that αω−1 is a conjugate
of αω and hence also satisfies degQ(αω−1) = d. Hence we have [Q(αω, αω−1) : Q] ≤ d2, by
the multiplicative property of field extensions. This gives (αω)/(αω−1) = ω2 ∈ Q(αω, αω−1).
Hence degQ(ω) ≤ 2d2. But φ(t) = degQ(ω). Now, a well-known lower bound for the Euler
totient function is φ(t) ≥ Ω

(
t

log t

)
(see for example Theorem 328 in [19]) and together with

φ(t) ≤ 2d2, this yields t = O(d2 log d) and the LCM bound follows. J

The lemma above can be considered as a weak generalization of the well-known fact that
any polynomial with degree-d2 cannot have as one of its roots a d′-th primitive root of unity,
whenever d′ > d.

5.1 The case of Simple LRS(rR)
We first set up some notation. Let v = {vn}n≥0 ∈ LRS(rR) be a simple LRS of order k
having size m. Let the characteristic roots of the LRS v be αjωj , for j ∈ [k], where αj ∈ R+,
and ωj = eι2πsj/tj (where sj ∈ Z and tj ∈ Z+ and lcm(|sj |, tj) = 1) is the tthj primitive root
of unity. For a multiset S, define supp(S) to be the set obtained from S. Let A be the set
of absolute values of the characteristic roots, A = supp({αj}kj=1) = {βj}k

′

j=1. Define the set
T = supp({tj}kj=1). Let K = lcm({t | t ∈ T}). We call a number from the set {0, . . . ,K − 1}
as the global phase of the LRS and numbers from T as the local phases.

The main idea behind our algorithm is that once a global phase ` is fixed, the terms of
the LRS vn where n ≡ ` mod K can be captured by a real exponential polynomial q`(n).
More formally we have the following,

I Lemma 12. Given a simple LRS v ∈ LRS(rR), for every ` ∈ {0, 1, . . . ,K − 1}, there
exists a real exponential polynomial q`(n) =

∑k′

j=1 c`jβ
n
j such that vn = q`(n) whenever n ≡ `

mod K. Further c`j ∈ Qexp(m)(βj) and can be computed in poly(m) time.

The crucial point to establish is that the coefficients of this real exponential polynomial
are also bounded by polynomially many bits. Once we have this, checking the existence
of a Skolem zero reduces to zero testing of a real exponential polynomial, as was done in
Lemma 8. Armed with Lemma 12, we can now prove

I Theorem 13. The Skolem problem for simple LRS from the class LRS(rR) is decidable in
NPRP.

Proof. The following algorithm takes as input the LRS v and outputs “yes” if and only if
vn = 0 for some n:
1. Guess the global phase, i.e., a value ` from {0, 1, . . . ,K − 1}.
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2. Compute a real exponential polynomial q`(n) =
∑k′

j=1 c`jβ
n
j such that vn = q`(n) for

n ≡ ` mod K. We will show in Lemma 12 below that each c`j ∈ Qexp(m)(βj) and can
be computed in poly(m) time.

3. Use the algorithm of Lemma 8 to guess a zero n′ of the real exponential polynomial q`(n).
If q`(n′) = 0 and n′ ≡ ` mod K, then output “yes”, else output “no”.

Correctness. Suppose there is a Skolem zero n′ such that vn′ = 0, and that n′ ≡ `

mod K. Then the algorithm correctly guesses ` and the zero n′ of q`(n). On the other hand
if the algorithm finds an n′ in step 3 such that n′ ≡ ` mod K, and q`(n′) = 0, then by
Lemma 12 it holds that vn′ = q`(n′) = 0. Thus n′ is a Skolem zero.

Complexity. Guessing `, n′ and computing q`(n) can be done in polynomial time. This is
due to Lemma 12 and because ` ≤ 2poly(k) due to Lemma 11. Due to the bounds established
in Lemma 8, checking if n′ ≡ ` mod K and if q`(n′) = 0 can be done in RP. Thus, this
algorithm runs in NPRP. J

It remains to prove Lemma 12.

Proof of Lemma 12. We fix some ` ∈ {0, 1, . . . ,K − 1}. From the exponential polynomial
solution (Definition 1), we have vn =

∑k
j=1 cj(αjωj)n. For n ≡ ` mod K, we have that

n ≡ ` mod t, for every t ∈ T . Thus,

vn =
k∑
j=1

cjω
n
j α

n
j =

k∑
j=1

cjω
` mod tj
j αnj

Grouping terms by same αj ’s, we have that

vn =
k′∑
j=1

( ∑
j′:αj′=βj

cj′ω
` mod tj′
j′

)
βnj (2)

Now we show that the coefficient of βnj in the above expression is in Qexp(m)(βj) for each
j. To do this, we first divide up the characteristic roots of the LRS into sets defined as
follows, for each α ∈ A and t ∈ T :

Sαt = {j | αj = α, ωj is a tthj primitive root of unity s.t. tj = t}
Sα�t = {j | αj = α, ωj is a tthj primitive root of unity s.t. tj � t}

where � is the partial order given by a � b ⇐⇒ a | b. The utility of these sets is that we
have j ∈ Sα�t, if and only if (αjωj)t = αt. We now show:

B Claim 14. For every α ∈ A and t ∈ T , the constants cαt =
∑
j∈Sαt

cjω
`
j and dαt =

∑
j∈Sα�t

cjω
`
j

are in Qexp(m)(α), and can be computed in poly(m) time.

Proof. We first show that dαt ∈ Qexp(m)(α) can be computed in poly(m)-time. Let
supp({(αjωj)t | j ∈ [k]}) = {τj | j ∈ [h]}. We proceed by grouping terms in the expo-
nential polynomial solution for vn for the first h values of n where n ≡ ` mod t. Specifically,
for each 0 ≤ g < h, we write

∑k
j=1 cj(αjωj)gt+` = vgt+`. We rewrite this equation as follows:

k∑
j=1

cj(αjωj)`−t[(αjωj)t)g+1] = vgt+`
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Grouping terms according with same (αjωj)t, we get:

h∑
j=1

( ∑
j′:(αj′ωj′ )t=τj

cj′(αj′ωj′)`−t
)
τg+1
j = vgt+`

Denoting by c′j the expression in the bracket, we see that we have h equations in h

variables, namely the c′j . We get the following linear system, Tc′ = V , where Tij = τ ij
for 1 ≤ i, j ≤ h and c′ = [c′1c′2 . . . c′h]T and V = [v`vt+` . . . v(h−1)t+`]T . Notice that T is a
Vandermonde matrix. Also, since we know t is polynomially bounded in k, by Proposition 2
the values v`, . . . , v(h−1)t+` are in Qexp(m). We can now invoke the following lemma with
λj = τj and γj = αjωj to conclude that each constant c′j ∈ Qexp(m)(τj).

I Lemma 15. Let u be a sequence of order k, whose exponential polynomial solution
is given by un =

∑k
i=1 ciλ

n
i and initial conditions are given by u1, . . . , uk. Let χ(x) =

xk
′−ak′−1x

k′−1 + · · ·+a0 be a polynomial with ai ∈ Qexp(m), roots (γj)k
′

j=1, k ≤ k′ ≤ poly(k).
Define the set {λi}ki=1 from the multiset {γtj}k

′

j=1, t ≤ poly(k). Then the coefficients ci in the
exponential polynomial solution have the property that ci ∈ Qexp(m)(λi).

Proof. For all λi there exists a j such that λi = γtj . As t ≤ poly(m) by Proposition 3 all λi’s
have a monic polynomial over Q with coefficients from Qexp(m).

Let conj(γ) be the set of all galois conjugates of γ over Q. Let {δi}k
′′

i=1 = ∪k′i=1conj(λi).
Each λi has degree poly(k) as it is a poly(k) power of some γj which itself has degree poly(k).
Hence k′′ ≤ k′maxi(deg(λi)) ≤ poly(k) . The product of all the monic polynomials of
λi’s has exactly the list of roots {δi}k

′′

i=1 with no repeated roots. Also this product has
coefficients from Qexp(m) as we are multiplying at most poly(k) ≤ poly(m) polynomials of
poly(k) ≤ poly(m) degree each having coefficients from Qexp(m).

As the set {δi}k
′′

i=1 is a superset of {λi}ki=1, by Lemma 5 we have a unique solution
un =

∑k′′

j=1 wjδ
n
j with wj ∈ Qexp(m)(δj). But as we also have un =

∑k
i=1 ciλ

n
i it must

be the case that wj = 0 if δj 6∈ {λi}ki=1 and wj = ci when δj = λi some i. So we have
un =

∑k
i=1 ciλ

n
i with ci = wj ∈ Qexp(m)(δi) = Qexp(m)(λi). J

We observed that j ∈ Sα�t ⇐⇒ (αjωj)t = αt. Let αt = τj for some 1 ≤ j ≤ h. Thus all
j′ for which (αj′ωj′)t = τj are in fact in Sα�t. Hence the constant

dαt =
∑
j∈Sα�t

cjω
`
j =

∑
j∈Sα�t

cj(αjωj)`−t(αjωj)t

(αj)`
=
∑
j∈Sα�t

cj(αjωj)`−tαt

α`
= c′jα

t−`

Since c′j ∈ Qexp(m)(τj) = Qexp(m)(αt), and t ≤ poly(k), by Proposition 3 we have in fact
c′j ∈ Qexp(m)(α). Hence dαt = c′j(α)t−` ∈ Qexp(m)(α). It is clear that since the expression
for c′j involves poly(m) operations on poly(m)-sized algebraic numbers, dαt can be computed
in poly(m)-time.

We now show that cαt ∈ Qexp(m)(α) and can be computed in poly(m) time. For the
minimal nodes of the partial order �, i.e. for prime t, it is the case that cαt = dαt. Thus for
such t, we directly have that cαt is in Qexp(m)(α), and can be computed in poly(m) time.

For any other t we can compute cαt recursively by using the equation:

cαt =
∑
j∈Sαt

cjω
`
j =

∑
j∈Sα�t

cjω
`
j −

∑
t′≺t

∑
j′∈Sα

t′

cj′ω
`
j′ = dαt −

∑
t′≺t

cαt′

STACS 2020



37:14 Near-Optimal Complexity Bounds for Fragments of the Skolem Problem

Since for all t ∈ T , t ≤ poly(k), we have that the longest chain in this partial order is
of length O(log k) = O(logm). Using an inductive argument together with the proof that
dαt ∈ Qexp(m)(α) , we see that all the relevant quantities appearing in the above equation
are in Qexp(m)(α). This implies that cαt ∈ Qexp(m)(α) and can be computed in poly(m) time.

C

We now revisit Equation 2:

vn =
k′∑
j=1

( ∑
j′:αj′=βj

cj′ω
` mod tj′
j′

)
βnj =

k′∑
j=1

c`jβ
n
j

Here we define c`j as the coefficient of βnj in Equation 2. Roots with real part equal to
βj with different local phases contribute to c`j . Separating roots according to different local
phases, we have

c`j =
∑

j′:αj′=βj

cj′ω
` mod tj′
j′ =

∑
t∈T

∑
j′∈S

βj
t

cj′ω
` mod t
j′ =

∑
t∈T

cβjt

Now it follows directly from Claim 14 that for every j, c`j ∈ Qexp(m)(βj) and can be
computed in poly(m) time since t ≤ poly(k). This establishes Lemma 12. J

5.2 The general case
We now consider the general case of LRS in LRS(rR) and show:

I Theorem 16. Skolem problem for the class LRS(rR) is decidable in NPRP.

Proof. In the general case, the exponential polynomial solution (Definition 1) for a LRS
u ∈ LRS(rR) takes the following form: un =

∑r
j=1 pj(n)(αiωj)n where pj(n) =

∑ej−1
i=0 pjin

i.
From Lemma 5 and 6, we know that every defining coefficient pji ∈ Qexp(m)(αjωj). We
can now use Lemma 4 to decompose LRS u as: un =

∑e−1
i=0 n

iui where each ui is a
simple LRS in LRS(rR). As in proof of Theorem 13, once we fix ` ∈ {0, 1, . . . ,K − 1},
whenever n ≡ ` mod K, we have from Lemma 12 that we can write uin =

∑k′

j=1 c`ijβ
n
j

for every LRS ui, where each c`ij ∈ Qexp(m)(βj). Thus, whenever n ≡ ` mod K, we have:
un =

∑e−1
i=0 n

i
(∑k′

j=1 c`ijβ
n
j

)
. J

Observe that the right hand side of the equation above is a real exponential polynomial
q`(n) and c`ij is the coefficient of niβnj , where c`ij ∈ Qexp(m)(βj). This allows us to invoke
Lemma 8 to accomplish zero testing of the exponential polynomial q`(n) in NPRP. We note
that if there is an n such that q`(n) = 0 and n ≡ ` mod K then un = 0. On the other hand
if there is an n such that un = 0, then q`(n) = 0 where ` ∈ {0, 1, . . . ,K − 1} is such that
n ≡ ` mod K. Thus the above is an algorithm to decide Skolem for LRS(rR) in NPRP.

6 Revisiting NP-hardness

Blondel and Portier [9] proved that Skolem problem is NP-hard by a reduction from the
non-universality problem for unary NFAs [27]. More recently, in [3], an alternate proof was
obtained by a reduction from the subset sum problem. In this section, we provide yet another
proof of NP-hardness, by directly reducing from 3-SAT. Given a 3-SAT formula φ over s
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variables x1, . . . , xs, we will construct an LRS y such that φ is satisfiable if and only if the
LRS y has a Skolem zero, i.e., ∃n ∈ N yn = 0. Let p1, . . . , ps be the first s primes. By
the Prime number theorem, the number of primes less than s is roughly s/ log s, and thus
ps ∼ s log s.

For each prime pi, define an LRS ui with order pi given by:

uin =


0, for 1 ≤ n < pi

1, for n = pi

uin−pi , for n > pi

With 1 and 0 representing the boolean values true and false, we define a surjection f from
N to the set of assignments to variables of φ as f : N→ {0, 1}s, given by f(n) = (a1, . . . , as)
where ai = 1 ⇐⇒ pj |n. The inverse map of an assignment, f−1(a1, . . . , as) is the set
{n : pj |n ⇐⇒ aj = 1}. For sequences u, v and w, we will denote u = v to mean
∀n ∈ N un = vn, and w = u+ v to mean ∀n ∈ N wn = un + vn. Let φ = C1 ∧ · · · ∧ Cm. For
a clause Ci = vi1 ∨ vi2 ∨ vi3 define the LRS yil for l = 1, 2, 3 as follows:

yil =
{

1− uk, if vil = xk for some k ∈ {1, . . . , s},
uk, if vil = ¬xk for some k ∈ {1, . . . , s}

Define the sequences yi = yi1yi2yi3 for 1 ≤ i ≤ m, and y = y1 + · · ·+ ym. Since the sum
and product of LRS is a LRS (see Theorem 4.1 in [16]), y is also an LRS. Then we have:

B Claim 17. yin = 0 if and only if f(n) satisfies Ci.

Now one can argue that

I Proposition 18. φ is satisfiable if and only if ∃n s.t. yn = 0.

The order of y is at most m(ps)3, and thus is polynomial in the number of variables and
the clauses and y can be constructed from an instance of 3-SAT in polynomial time. Thus,
we have shown that the Skolem problem for integral LRS is at least as hard as 3-SAT, and
hence NP-hard.

Weak vs Strong NP-hardness. A simple consequence of the above reduction is that we
can now show that the Skolem problem remains NP-hard even when the initial values are
given in unary, i.e., it is strongly NP-hard wrt the initial values. This follows since the initial
values of the LRS y used in the construction above, are at most m in value, and thus can be
represented in logm bits, as opposed to poly(m) bits.

7 Applications and Discussion

We have shown that for a natural and large subclass of recurrences namely LRS(rR), the
Skolem problem can be solved in NPRP. This immediately implies effective bounds for two
well-known questions on LRS, namely, Positivity and Ultimate Positivity for LRS(rR). Given
an LRS u, the positivity problem asks to decide if un > 0 for all n ∈ N. Similarly, the ultimate
positivity problem asks if there exists n0 ∈ N s.t., un > 0 for all n > n0. Using the machinery
that we developed in this paper, we obtain:
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I Corollary 19 (to Theorem 10). Positivity and Ultimate positivity for LRS(rR) can be
decided in4 coNPPosSLP.

Proof. We can reduce an LRS(rR) instance to a exponentially bounded set of real exponential
polynomials, and in such polynomials the sign of the dominant root dominates the sign after
an n that is exponentially bounded in m. Hence if the LRS is negative or zero before an
exponential point, we can guess such an n in NP and verify the sign using PosSLP. This solves
both Positivity and Ultimate Positivity in the fourth level of the Counting Hierarchy. J

Ultimate Positivity and Positivity are known to be hard for ∀R (the universal theory of
reals) for the class of simple LRS [24] and hence considered unlikely to be in the Counting
Hierarchy [5]. An inspection of the proof in [24] reveals that the LRS constructed to show
hardness have characteristic roots with phases that are irrational multiple of π and hence
do not fall in the class LRS(rR). Finally, as mentioned in the introduction we show three
applications of our results to obtain complexity bounds for problems from three completely
different areas.

Weighted automata: In a recent result, Barloy et al. [7] define a subclass of LRS
called poly-rational sequences, denoted by rational expressions closed under sum and
product. They show that polynomially ambiguous weighted automata, copyless cost-
register automata, rational formal series, and LRS whose eigenvalues are roots of rational
numbers (called PolyRat, these are exactly those LRS where the characteristic roots are
of the form λ, where λn = r for some r ∈ Q) are equivalent. They leave open the precise
complexity of the Skolem problem for PolyRat sequences. We solve this problem, since
Theorem 10 immediately implies that Skolem for PolyRat is in NPRP.
Probabilistic finite automata (PFA): A second application is in the language theor-
etic properties of unary probabilistic finite automata. Given the link between the Skolem
problem and the Markov chain reachability problem [2], the work in [4] considers regularity
of unary PFA, whose dynamics are described using Markov chains. Proposition 2 give
the decidability of reachability and positivity problems in the special case where roots
are distinct (i.e., the “simple” case) roots of real numbers. Again, from Theorem 7 we
obtain that these problems are in NPRP and NPPosSLP respectively. One interesting line
of future work would be to see if the techniques introduced in this paper would also help
in showing complexity bounds for regularity problems, which is the focus of [4].
Hybrid systems: Most reachability problems on hybrid systems are known to be
undecidable. Two well-behaved decidable fragments here are o-minimal hybrid systems [22]
(Theorem 6.2), [26] (Theorem 4.6) and linear-time invariant (LTI) systems [17] (Theorem
3.10). In both these cases, decidability is obtained by assuming that the eigenvalues of
the matrix associated with the linear system are reals or roots of reals (for example, called
simple LTI systems in [17]). Given that [17] proves that reachability for LTI systems is
hard for both the Skolem and Positivity problems for LRS, this raises the question of the
precise computational complexity of reachability in LTI systems. Whether the techniques
introduced in this paper will yield more precise complexity bounds to the computability
results in these papers is part of ongoing research.

Implicit in our NPRP algorithm for Skolem problem for LRS(rR) is an effective bound,
i.e a number N ∈ N which is exp(m) such that for all n > N , un 6= 0. Since if such an
n can be effectively bounded by exp(m) for all LRS would imply the decidability (in fact

4 Given an arithmetic circuit representing a number, the PosSLP problem introduced by Allender et al. [5]
is to decide if the number is positive. It is known to be P-hard and lies in the Counting Hierarchy.
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in NPRP) for the Skolem problem, one interesting way to improve the hardness result in
Section 6 would be to construct an explicit LRS for which the first zero provably occurs5
after n > exp(exp(m)). We leave this as a challenging open question for future work. In
an orthogonal recent work, Bell et al. [8] introduce a class multidimensional version of LRS
(n-LRS). In their language, Skolem problem is the question of finding zeroes in a 1-LRS. The
zeroness problem for n-LRS of depth 2 is NP-hard, but in general the problem of n-LRS of
depth k is undecidable. It would be interesting to see if spectral restrictions such as ours
could yield decidability for special cases of n-LRS.
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Abstract
Computing all-pairs shortest paths is a fundamental and much-studied problem with many applica-
tions. Unfortunately, despite intense study, there are still no significantly faster algorithms for it
than the O(n3) time algorithm due to Floyd and Warshall (1962). Somewhat faster algorithms exist
for the vertex-weighted version if fast matrix multiplication may be used. Yuster (SODA 2009) gave
an algorithm running in time O(n2.842), but no combinatorial, truly subcubic algorithm is known.

Motivated by the recent framework of efficient parameterized algorithms (or “FPT in P”),
we investigate the influence of the graph parameters clique-width (cw) and modular-width (mw)
on the running times of algorithms for solving all-pairs shortest paths. We obtain efficient
(and combinatorial) parameterized algorithms on non-negative vertex-weighted graphs of times
O(cw2 n2), resp. O(mw2 n + n2). If fast matrix multiplication is allowed then the latter can be
improved to O(mw1.842 n + n2) using the algorithm of Yuster as a black box. The algorithm relative
to modular-width is adaptive, meaning that the running time matches the best unparameterized
algorithm for parameter value mw equal to n, and they outperform them already for mw ∈ O(n1−ε)
for any ε > 0.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Shortest paths

Keywords and phrases All-pairs shortest Paths, efficient parameterized Algorithms, parameterized
Complexity, Clique-width, Modular-width

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.38
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1 Introduction

all-pairs shortest paths (APSP) is a fundamental and much-studied problem in the
field of algorithmic graph theory. Next to the theoretical interest in the problem, all-pairs
shortest paths is important for many practical applications, e.g., it is closely related
to several vertex centrality measures in networks (for example, the betweenness centrality
of a vertex v is defined as the sum of the fraction of all-pairs shortest paths that pass
through v). The all-pairs shortest paths problem is also considered as the core of many
routing problems and has applications for example in areas such as routing protocols, driving
direction on web mappings, transportation, and traffic assignment problems, and many more.
See also the survey of Susmita [23] for more applications.

Despite the large interest in all-pairs shortest paths, there are only small improve-
ments known since the well-known O(n3)-time algorithm by Floyd and Warshall [8, 26] from
1962: Chan [3] as well as Han and Takaoka [12] gave an algorithm running in O(n3/ log2 n)
(omitting poly(log logn) factors) and Williams [27] gave an randomized algorithm running in
time O(n3/2Ω(logn)1/2). While there are no unconditional lower bounds known, it has been
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conjectured that there is no truly subcubic algorithm for all-pairs shortest paths, i.e.,
that no algorithm achieves time O(n3−ε) for any ε > 0. Using suitable subcubic reductions,
this is tightly connected to the existence of subcubic algorithms for several network centrality
measures, finding a directed triangle of negative total edge length, finding the second shortest
simple path between two nodes in an edge-weighted graph, or checking if a given matrix
defines a metric. This means that if one of those problems can be solved in truly subcubic
time (i.e., can be solved in time O(n3−ε) · poly(logM) for an ε > 0 and weights in [−M,M ]
for weighted problems), then all of the problems admit algorithms with truly subcubic
running time [28]. The situation is different for vertex-weighted all-pairs shortest
paths: While it is conjectured that there is no truly subcubic combinatorial algorithm,
faster algorithms are known if fast matrix multiplication may be used. The currently fastest
algorithm is due to Yuster [29] and runs in time O(n2.842). For sparse graphs there is an
algorithm running in time O(nm+ n2 log logn) for directed graphs [20] and an algorithm for
undirected graphs [21] with a running time of O(mn logα(m,n)), where α is the inverse of
the Ackermann’s function.

Independently of whether one believes in conditional lower bounds and hypotheses, the
fact remains that we do not know any truly subcubic algorithms for all-pairs shortest
paths nor truly subcubic, combinatorial algorithms for the vertex-weighted case. Besides
heuristics or approximation algorithms, one possible solution for faster algorithms for at
least some input graphs is to exploit structure in the input graph. In addition to measuring
the complexity of a problem relative to the input size of a graph (number n of vertices and
number m of edges), one may additionally consider some parameter, say k, that quantifies
structure that may be exploited by an algorithm; i.e., we may study the parameterized
complexity of the problem. This framework typically aims at NP-hard problems and a key
goal is to obtain fixed-parameter tractable (FPT) algorithms that run in time f(k)nc for
some constant c and some (usually exponential) function f(k) of the parameter. Initiated by
the work of Giannopoulou et al. [11], also efficient parameterized algorithms for tractable
problems are considered (apart from many older results that predate even parameterized
complexity). In this framework, also called “FPT in P”, one is interested in running times
O(kαnβ) when the best dependence on the input size alone is O(nγ) with γ > β, which then
results in a better running time for sufficiently small parameter k. Typically, the parameter
k is at most n, thus, in the case of α + β = γ, one already achieves truly better running
times for k ∈ o(n). We call such algorithms, which even for k = n are not worse than the
best unparameterized algorithm, adaptive algorithms.

Several recent publications dealt with efficient parameterized algorithms for different
problems and parameters [9, 14, 4, 1, 13, 19], however, all-pairs shortest paths got very
little attention. Coudert et al. [4] considered the clique-width of a graph as a parameter for
tractable problems related to cycle problems. Intuitively, clique-width captures the closeness
of a graph to a cograph, with cographs being exactly the graphs of clique-width at most two.
Alongside some positive results for triangle counting or girth, they proved a conditional
lower bound for diameter namely that there is no O(2o(cw) · n2−ε) time algorithm for any
ε > 0. That is, even computing just the greatest length of any shortest path in an unweighted
graph admits no such algorithm. A weaker parameter and an upper bound for clique-width is
the modular-width of a graph, which is another parameter that has been previously studied
regarding its use for efficient parameterized algorithms [4, 16].

Note that small clique-width or small modular-width does not imply the sparsity of
the graph, e.g. cliques have clique-width and modular-width two. For parameters that do
imply the sparsity of the graph (meaning that for parameter value k, the number of edges is



S. Kratsch and F. Nelles 38:3

bounded by O(kn), where n denotes the number of vertices in the graph), the algorithm of
Pettie and Ramachandran directly yield a running time of O(kn2 + n2 log logn), which is
nearly optimal.

Our work. We study efficient parameterized algorithms for all-pairs shortest paths
for its vertex-weighted variant. We consider the structural parameters clique-width (cw)
and modular-width (mw). As our main result, we present an O(cw2 n2)-time algorithm
for vertex-weighted all-pairs shortest paths, yielding a truly subcubic algorithm
for cw ∈ O(n0.5−ε). This immediately allows to solve the diameter problem in the same
asymptotic time O(cw2 n2), even with vertex weights, and thereby nicely complements the
lower bound ruling out O(2o(cw) · n2−ε) for any ε > 0 [4].

Further, we present a general framework to determine the running time for many al-
gorithms that use modular-width and the related modular decomposition tree. We use this
framework to prove an algorithm of time O(mw2 n+ n2) for vertex-weighted all-pairs
shortest paths on graphs of modular-width at most mw. This algorithm is combinat-
orial, however, it can benefit from subcubic algorithms for vertex-weighted all-pairs
shortest paths that use fast matrix multiplication. For example, we achieve a running
time of O(mw1.842 n+ n2) by using an O(n2.842)-time algorithm for the vertex-weighted case
by Yuster [29] in each prime node; this algorithm uses fast matrix multiplication whereas all
other algorithms (previous and new) are combinatorial.

Related Work. Following the work of Floyd and Warshall [8, 26], Fredman [10] achieved
the first subcubic algorithm, running in time O(n3 log1/3 logn/ log1/3 n). Chan [3] and Han
and Takaoka [12] both achieved a running time of O(n3/ log2 n) (omitting poly(log logn)
factors). Recently, Williams [27] solved APSP in randomized time O(n3/2Ω(logn)1/2). For
sparse graphs, Pettie and Ramachandran [21] get a running time of O(n2α(n,m) +mn). All
these algorithms solve the standard edge-weighted case.

In the vertex-weighted case, the currently fastest algorithm by Yuster [29] runs in O(n2.842)
and relies on fast matrix multiplication. Shapira et al. [22] considered some variants of APSP,
namely the all-pairs bottleneck paths, where one seeks the maximum bottleneck weight
on a graph, and provided an algorithm of time O(n2.575) for vertex-weighted graphs. Czumaj
and Lingas [6] analyzed the related problem of finding the minimum-weight triangle in vertex-
weighted graphs and achieved a running time of O(nω + n2+o(1)). All of these algorithms
for vertex-weighted graphs exploit fast matrix multiplication. There is no truly subcubic
combinatorial algorithm known for vertex-weighted all-pairs shortest paths.

There are some subcubic algorithms known for APSP on special graph classes, such as
uniform disk graphs with non-negative vertex weights, induced by point sets of bounded
density within a unit square. Lingas and Sledneu [18] showed how to solve APSP on such
graphs in time O(

√
rn2.75), where r is the radius of the disk around the vertices in a unit

square. Bentert and Nichterlein [2] considered the related problem of computing the diameter
of a graph, parameterized by several parameters.

Organization. Section 2 contains the preliminaries, in particular, the definition of clique-
width. In Section 3, we present the algorithm for vertex-weighted all-pairs shortest
paths parameterized by the clique-width. Due to space restrictions, most of the proofs, the
algorithm for modular-width as well as the running time framework can only be found in the
full version of this paper [17]. We conclude in Section 4.
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2 Preliminaries

We follow basic graph notations [7]. For a natural number k ∈ N, define [k] = {1, . . . , k}.
All graphs are simple, i.e., without loops or multiple edges. In a graph G = (V,E), a path
P = (v1, v2, . . . , vn) is a sequence of vertices vi ∈ V with {vi, vi+1} ∈ E for i ∈ [n − 1].
We define by P[vi,vj ] the subpath of P starting in vi and ending in vj for i, j ∈ [n] with
i < j. The length of a path is the number of edges in it. In a vertex-weighted graph
G = (V,E) with weights ω : V → R≥0, the weight (also called cost) of a path P is defined as
ω(P ) =

∑n
i=1 ω(vi). Thus, every paths between two distinct vertices u and v has minimum

weight ω(v) + ω(u) and a path of length 0 from a vertex v to itself has always weight
ω(v). For a graph G = (V,E) and u, v ∈ V , we denote the minimum weight of all paths
between u and v as distG(u, v). For a set of vertices X ⊆ V and a vertex u ∈ V we
define distG(u,X) = minv∈X distG(u, v) and for two sets of vertices X,Y ⊆ V , we define
distG(X,Y ) = minu∈X,v∈Y (u, v).

For two sets A and B we denote the disjoint union by A∪̇B and we say that two sets A
and B overlap if A ∩B 6= ∅, A \B 6= ∅, and B \A 6= ∅.

2.1 Clique-width and NLC-width
A k-labeled graph is a graph in which each vertex is assigned one out of k labels. Formally,
a vertex-labeled graph G is a triple (V,E, lab) with V being the vertex set, E denotes the
set of edges, and lab : V → [k] is a function that defines the label for each vertex. For a
k-labeled graph G = (V,E, lab) we denote by unlab(G) = (V,E) the underlying unlabeled
graph. Intuitively, a graph G has clique-width at most k, if it is the underlying graph of
some k-labeled graph that can be constructed by using four operations: (1) Introducing a
single labeled vertex, (2) redefining one label to another label, (3) taking the disjoint union
of two already created k-labeled graphs, and (4) adding all edges between vertices of label i
to vertices of label j for a pair (i, j) of labels.

I Definition 1 (Clique-width, [5]). Let k ≥ 2. The class CWk consists of all k-labeled graphs
that can be constructed by the following operations:

The nullary operation •a, that corresponds to a graph consisting of a single vertex with a
label a ∈ [k].
Let G = (V,E, lab) ∈ CWk be a k-labeled graph, and let a, b ∈ [k]. Then

ρa,b(G) = (V,E, lab′) with lab′(v) =
{
lab(v) , if lab(v) 6= a

b , if lab(v) = a

is in CWk.
Let G = (VG, EG, labG) ∈ CWk and H = (VH , EH , labH) ∈ CWk be two k-labeled graphs
in CWk with VG ∩ VH = ∅. Then the disjoint union, defined by

G⊕H = (VG∪̇VH , EG∪̇EH , lab′) with lab′(v) =
{
labG(v) , if v ∈ VG
labH(v) , if v ∈ VH

is in CWk.
Let G = (V,E, lab) ∈ CWk be a k-labeled graph, and let a, b ∈ [k] with a 6= b. Then

ηa,b(G) = (V,E′, lab) with E′ = E ∪ {{u, v} | lab(u) = a, lab(v) = b}

is in CWk.
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The clique-width of a graph G, denoted by cw(G), is the smallest k ≥ 2 such that there is a
labeled graph G′ ∈ CWk with unlab(G′) = G. The expression consisting of the operations
defined in Definition 1 is called a (clique-width) k-expression. For a k-expression t, we denote
with val(t) the resulting labeled graph and by tree(t) the so called k-expression tree of t,
which is the canonical tree representation of t. Clique-width is a strict generalization of
modular-width, which is defined in the appendix. In fact, the clique-width of a graph G is
equal to the maximum clique-width of any quotient graph of a prime node in the modular
decomposition tree of G. On the other hand, modular-width cannot be bounded by a function
of clique-width.

Very similar to clique-width, one can define NLC-width, which was introduced by
Wanke [25]. The main differences are that the join operation η and the disjoint union
operation ⊕ are somewhat combined and consecutive relabel operations are compressed into
one operation.

I Definition 2 (NLC-width). Let k ≥ 1. The class NLCk consists of all k-labeled graphs that
can be constructed by the following operations:

The nullary operation •a, that corresponds to a graph consisting of a single vertex with a
label a ∈ [k].
Let G = (V,E, lab) ∈ NLCk and let R : [k]→ [k]. Then

◦R(G) = (V,E, lab′) with lab′(v) = R(lab(v))

is in NLCk.
Let G = (VG, EG, labG) ∈ NLCk and H = (VH , EH , labH) ∈ NLCk be two k-labeled
graphs in NLCk. Let S ⊆ [k]2. Then

G×S H = (VG ∪ VH , E′, lab′) with lab′(v) =
{
labG(v) , if v ∈ VG
labH(v) , if v ∈ VH

and E′ = EG ∪ EH ∪ {{u, v} | u ∈ VG, v ∈ VH , and (labG(u), labH(v)) ∈ S}

is in NLCk.
The NLC-width of a graph G, denoted by nlc(G), is the smallest k ≥ 2 such that there
is a labeled graph G′ ∈ NLCk with unlab(G′) = G. As for clique-width, the expression
consisting of the operations defined in Definition 2 is called a (NLC-width) k-expression. For
a k-expression t, we again denote with val(t) the resulting labeled graph and by tree(t) = T

canonical tree representation of t, the so called k-expression tree of t. This means each
leaf node of T is marked with •a for some a ∈ [k] and each internal node is either marked
with ◦R for some R : [k] 7→ [k] or with ×S for some S ⊆ [k]2, according to the operations
defined in Definition 1 resp. Definition 2. For a node x ∈ V (T ) we denote by Gx the labeled
graph defined by the k-expression represented by the subtree of T rooted in x and we define
by Lxi = {v ∈ V (Gx) | lab(v) = i} the set of vertex in Gx with label i ∈ [k]. For a node
x ∈ V (T ), we will use the shortcut distx(u, v) := distGx(u, v) to denote the distance between
two vertices u and v in Gx.

The following lemma shows that we can safely focus on NLC k-expression trees, since the
NLC-width and clique-width only differs by a factor of two at most.

I Lemma 3 ([15]). For any graph G it holds that nlc(G) ≤ cw(G) ≤ 2 · nlc(G).
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3 APSP parameterized by clique-width

Assuming SETH, one cannot solve diameter (and thus, unweighted all-pairs shortest
paths) in time 2o(cw) · n2−ε [4]. In this section, we show how to solve vertex-weighted
all-pairs shortest paths in time O(cw2 n2).

I Theorem 4. For every graph G = (V,E), given together with a clique-width k-expression
and vertex weights ω : V → R≥0, vertex-weighted all-pairs shortest paths can be
solved in time O(k2n2).

For an input graph G = (V,E), given together with a clique-width k-expression for
some k ≥ 2, we transform in a first step the clique-width k-expression to an NLC-width
k-expression in linear time as described for example in [15]. For the rest of this section, by
writing k-expression we always refer to an NLC-width k-expression instead of a clique-width
k-expression. We interpret the (NLC-width) k-expression as a k-expression tree T , in which
each node v ∈ V (T ) is marked with an operation of the k-expression that is applied to the
children of v. Accordingly, T has exactly n leafs, each marked with an operation •i for
i ∈ [k], and exactly n− 1 nodes marked with an operation ×S for some S ⊆ [k]2. For ease
of presentation, we assume that there is exactly one node marked with an operation ◦R for
some R : [k]→ [k] in between any two nodes marked with ×S (using R(i) = i when no actual
relabeling is necessary), hence, the length of the k-expression is O(n). Note, that the length
of a clique-width k-expression is O(n+m) in general. For a node x ∈ V (T ) we denote by
Gx the labeled graph that is defined by the subexpression tree of T rooted in x.

The algorithm consists of three phases. In the first phase, we traverse T in a bottom-up
manner: For each node x ∈ V (T ) we partition the vertex set into sets of same-labeled vertices
and compute the shortest distance for each single vertex to (the closest vertex in) each label
set. Additionally, we compute the distance between each pair of label sets, i.e., the shortest
distance of two vertices of the respective sets. Note, however, that in the first phase we only
consider for each each node x ∈ V (T ) the distances in the graph Gx. In the second phase,
we perform a top-down traversal of the k-expression tree T and consider the whole graph G.
Once we have computed the necessary values in phase one and two, we traverse T one last
time and finally compute the shortest path distances between all pairs of vertices.

First Phase. For a node x ∈ V (T ), which corresponds to the k-labeled graph Gx, we define
Lxi = {v ∈ V (Gx) | lab(v) = i} as the set of all vertices in Gx with label i. Note, that
unlab(Gx) is an induced subgraph of G for any x ∈ V (T ). We traverse T in a bottom-up
manner and compute for each node x ∈ V (T ) and for all pairs (i, j) ∈ [k]2 of labels the
shortest distance between some vertex in Lxi and some vertex in Lxj . Additionally, we compute
for any vertex v ∈ V (Gx) and any label i ∈ [k] the shortest distance from v to some vertex
in Lxi . To be precise, for a node x ∈ V (T ) we compute the following values:

cxi,j = distx(Lxi , Lxj ) for i, j ∈ [k]
axv,i = distx(v, Lxi ) for v ∈ V (Gx), i ∈ [k]

For nodes x ∈ V (T ) that are marked with ×S for some S ⊆ [k]2 we need to compute
some auxiliary values. Let y and z be the two children of x in T . This means that Gx
consists of the disjoint union of Gy and Gz together with a full join between the vertex sets
Lyi and Lzj for each (i, j) ∈ S. Thus, one can partition the vertex set of Gx into the 2k sets
{Ly1, . . . , L

y
k, L

z
1, . . . , L

z
k} = Lx. For each pair (A,B) ∈ Lx × Lx of vertex sets, we compute

the shortest distance between some vertex in A to some vertex of B. In addition, we compute
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the shortest distance between A and B with the constraint that either the first edge, the
last edge, or the first and the last edge of the shortest path is an edge of a newly inserted
full join defined by S. This achieves the effect that we additionally compute the shortest
distance from (1) all vertices of A to some vertex of B, (2) from some vertex of A to all
vertices of B, and (3) from all vertices of A to all vertices of B. Doing this, one can e.g.
combine a path that ends at some vertex of A with a path that can start at any vertex of A.
In the following, we will describe how to compute the required values for each of the three
different types of nodes in the k-expression tree T .

For the base case, let x be a leaf of the k-expression tree T . Thus, the node x ∈ V (T )
is marked with •` for some ` ∈ [k]. This means that Gx consists of a single vertex v with
label `. In this case the following holds:

cxi,j =
{
ω(v) if i = j = `

∞ otherwise
for i, j ∈ [k]

axv,i =
{
ω(v) if i = `

∞ otherwise
for v ∈ V (Gx), i ∈ [k]

Now, let x ∈ V (T ) be an internal node of the k-expression tree T marked with ◦R for some
R : [k]→ [k]. Let y ∈ V (T ) be the unique child of x in T . Since we traverse T in a bottom-up
manner, we have already computed the values ayv,i for all v ∈ V (Gy) and i ∈ [k] and the
values cxi,j for all i, j ∈ [k]. Note, that unlab(Gx) = unlab(Gy), which, in particular, implies
that distances between vertices are identical in both graphs (though distances between label
sets may be not, as these sets may be different).

I Lemma 5. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ◦R for
some R : [k] → [k] and let y be the child of x in T . Then cxi,j = mini′∈R−1(i),j′∈R−1(j) c

y
i′,j′

for all i, j ∈ [k].

Note, that the computation of all cxi,j can be realized in time O(k2) by updating for every
cyi,j the corresponding value cxR(i),R(j). The values axv,i can be similarly computed from the
values at the child node:

I Lemma 6. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ◦R for
some R : [k]→ [k] and let y be the unique child of x in T . Then axv,i = minj∈R−1(i) a

y
v,j for

all v ∈ V (Gx) and i ∈ [k].

The running time for computing the values axv,i is O(nk) since we need to consider each value
ayv,i for any v ∈ V (Gy) and i ∈ [k] exactly once.

Finally, let x ∈ V (T ) be an internal node of the k-expression tree T marked with ×S
for some S ⊆ [k]2. Denote by y ∈ V (T ) and z ∈ V (T ) the two children of x in T , meaning
that Gx combines the two labeled graphs Gy and Gz by introducing for each (i, j) ∈ S a full
join between the vertices in Lyi and those in Lzj . Thus, V (Gx) = V (Gy)∪̇V (Gz) and one can
partition the vertices of Gx into the 2k vertex sets {Ly1, . . . , L

y
k, L

z
1, . . . , L

z
k} and Lxi = Lyi ∪̇Lzi .

To compute the desired distances between the label sets {Ly1, . . . , L
y
k, L

z
1, . . . , L

z
k}, we construct

an edge-weighted directed graph Hx that represents all the distances between the label sets
in a graph with only 4k vertices.

For each label set Lai of Gx with i ∈ [k] and a ∈ {y, z} we create two vertices vai and
uai . Let V a = {vai | i ∈ [k]} resp. Ua = {uai | i ∈ [k]} for a ∈ {y, z}. We add a directed full
join from V y to Uy resp. from V z to Uz with weight equal to the length of a shortest path
between the two corresponding label sets. Finally, we connect vertices in Uy with vertices in
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V y

Uy V z

Uz

cyi,j

S

czi,j

S−1

Figure 1 Construction of the auxiliary graph Hx. Each large node consists of k disjoint vertices
corresponding to one of the k label sets in Gy resp. Gz. Between V y and Uy there is a full join, each
edge between the corresponding vertex of Ly

i and Ly
j is weighted by cy

i,j , analogously for V z and Uz.
Vertices in Uy are only connected to those vertices in V z for which the corresponding label sets are
connected via S, analogously for Uz and V y.

V z, resp. vertices in Uz with vertices in V y, if and only if the corresponding pair is contained
in S, i.e., if there is a full join in Gx between the two corresponding label sets. See also
Figure 1 for an illustration. Formally, we define the directed, edge-weighted graph Hx as
follows.

I Definition 7. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ×S
for some S ⊆ [k]2 and let y ∈ V (T ) and z ∈ V (T ) be the children of x. We define Hx as a
directed, edge-weighted graph on 4k vertices created as follows:

For each label set Lai ∈ {L
y
1, . . . , L

y
k, L

z
1, . . . , L

z
k} we create two vertices vai and uai for

i ∈ [k] and a ∈ {y, z}.
Add edges (vyi , u

y
j ) with cost cyi,j for all i, j ∈ [k].

Add edges (vzi , uzj ) with cost czi,j for all i, j ∈ [k].
Add edges (uyi , vzj ) with cost zero for all (i, j) ∈ S.
Add edges (uzi , v

y
j ) with cost zero for all (j, i) ∈ S.

Note, that some edges may have cost ∞ as there is no path of the requested type exists.
Next, we will see that Hx exhibits all the desired distances from Gx in a compact way.

I Theorem 8. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ×S
for some S ⊆ [k]2 with children y and z. Let Hx be the graph as defined in Definition 7.
Then the following holds:
(1) distHx(vai , ubj) = distx(Lai , Lbj) for all a, b ∈ {y, z} and i, j ∈ [k].
(2) distHx(uai , ubj) = minP∈P ω(P ) − minv∈La

i
ω(v) where P is the set of all paths in Gx

starting in Lai , ending in Lbj, and having the second vertex in V (Gx) \ V (Ga).
(3) distHx(vai , vbj) = minP∈P ω(P ) − minv∈Lb

j
ω(v) where P is the set of all paths in Gx

starting in Lai , ending in Lbj, and having the penultimate vertex in V (Gx) \ V (Gb).
(4) distHx(uai , vbj) = minP∈P ω(P )−minv∈La

i
ω(v)−minv∈Lb

j
ω(v) where P is the set of all

paths in Gx starting in Lai , ending in Lbj , and having the second vertex in V (Gx) \V (Ga)
and the penultimate vertex in V (Gx) \ V (Gb).

We prove Theorem 8 in two steps. We first prove that every path in Hx corresponds to
some path in Gx. Later, we prove that also each optimal path between two label sets in Gx
corresponds to some shortest path in Hx. We start with statement (1) of Theorem 8.
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I Lemma 9. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with
×S for some S ⊆ [k]2 with children y and z. Let Hx be the auxiliary graph as defined in
Definition 7 and let P ∗ be an arbitrary vyi -uzj -path in Hx for some i, j ∈ [k]. Then there
exists an Lyi -Lzj -path P in Gx with ω(P ) = ωHx(P ∗).

Proof. Due to the circular structure of Hx, each vyi -uzj -path in Hx will repeat the sequence
(vyp , uyq , vzr , uzs) for some p, q, r, s ∈ [k] until reaching uzj at the end of a sequence. Thus, each
vyi -uzj -path in Hx consists of 4` vertices for ` ∈ N and can be written as

P ∗ = (vyi = vyp1
, uyq1

, vzr1
, uzs1

, vyp2
, uyq2

, vzr2
, uzs2

, . . . , vyp`
, uyq`

, vzr`
, uzs`

= uzj ).

One can construct a path P in Gx from P ∗ as follows: For each edge (vypi
, uyqi

) in P ∗ of
cost cypi,qi

pick a shortest path in Gy of total cost cypi,qi
and for each edge (vzri

, uzsi
) in P ∗

of cost cyri,si
pick a shortest path in Gz of total cost czri,si

for each i ∈ [`]. Those paths
always exist since cypi,qi

resp. cyri,si
are defined as the cost of a shortest Lypi

-Lyqi
-path in Gy,

resp. as the cost of a shortest Lzri
-Lzsi

in Gz. Since each edge (uqi , vri) only exists if and
only if there is a full join between the sets Lyqi

and Lzri
, one can connect the last vertex

of the path corresponding to the previous edge in P ∗ (that ends in some vertex in Lyqi
) to

the first vertex of the path corresponding to the following edge in P ∗ (that starts at some
vertex in Lzri

). In the same manner one can argue that due to each edge (uzsi
, vypi+1

) one can
connect the last vertex of the path corresponding to the edge (vzri

, uzsi
) with the first vertex

of the path corresponding to the edge (vypi+1
, uyqi+1

). In both cases, the cost of the vertices is
already accounted for in the resp. c··,· value. Thus, each v

y
i -uzj -path in Hx corresponds to an

Lyi -Lzj -path in Gx of same cost. J

Next, we generalize this argumentation to the following corollary:

I Corollary 10. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with
×S for some S ⊆ [k]2 with children y and z. Let Hx be the auxiliary graph as defined in
Definition 7. Then for every i, j ∈ [k] and a, b ∈ {y, z} the following holds:
(1) For any vai -ubj-path P ∗ in Hx there exists an Lai -Lbj-path P in Gx with ωHx(P ∗) = ω(P ).
(2) For any uai -ubj-path P ∗ in Hx there exists an Lai -Lbj-path P = (p1, p2, . . . , p`) in Gx with

the property that p2 ∈ V (Gx) \ V (Ga) and ωHx(P ∗) = ω(P )− ω(p1).
(3) For any vai -vbj-path P ∗ in Hx there exists an Lai -Lbj-path P = (p1, . . . , p`−1, p`) in Gx

with the property that p`−1 ∈ V (Gx) \ V (Gb) and ωHx(P ∗) = ω(P )− ω(p`).
(4) For any uai -vbj-path P ∗ in Hx there exists an Lai -Lbj-path P = (p1, p2, . . . , p`−1, p`) in

Gx with the property that p2 ∈ V (Gx) \ V (Ga), p`−1 ∈ V (Gx) \ V (Gb), and ωHx(P ∗) =
ω(P )− ω(p1)− ω(p`).

For any path in Hx that starts at some vertex uai (resp. ends at some vertex vbj) one
can find a corresponding path P in Gx with the property that the second vertex (resp. the
penultimate vertex) is connected to all vertices of Lai (resp. Lbj). Thus, one can extend any
path that ends at some vertex in Lai by such a path (resp. one can prepend any path that
starts in Lbj by such a path). Hence, the cost of the first vertex (resp. last vertex) is neglected
if the path starts in some vertex uai or ends at some vertex vbj for a, b ∈ {x, y}. In general,
every path that one can find in Hx corresponds to a path in Gx of essentially the same cost,
possibly without the first or last vertex (which can be chosen as the minimum of the label
set). This proves “≤” in the equations of Theorem 8.

For the other direction, we will show that every optimal shortest path between two label
sets in Gx is represented by a path in Hx.
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I Lemma 11. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ×S for
some S ⊆ [k]2 with children y and z. Let Hx be the auxiliary graph as defined in Definition 7.
Let P be a shortest Lyi -Lzj -path in Gx for some i, j ∈ [k]. Then there exist a vyi -uzj -path P ∗
in Hx with ωHx(P ∗) = ω(P ).

Again, one can generalize the argumentation of Lemma 11 to the following corollary:

I Corollary 12. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with
×S for some S ⊆ [k]2 with children y and z. Let Hx be the auxiliary graph as defined in
Definition 7. Then for every i, j ∈ [k] and a, b ∈ {y, z} the following holds:
(1) For every shortest Lai -Lbj-path P in Gx there exists a vai -ubj-path P ∗ in Hx of cost

ωHx(P ∗) = ω(P ).
(2) For every shortest Lai -Lbj-path P in Gx with the property that the second vertex is

in V (Gx) \ V (Ga) there exists a uai -ubj-path P ∗ in Hx of cost ωHx(P ∗) = ω(P ) −
minv∈La

i
ω(v).

(3) For every shortest Lai -Lbj-path P in Gx with the property that the penultimate vertex
is in V (Gx) \ V (Gb) there exists a vai -vbj-path P ∗ in Hx of cost ωHx(P ∗) = ω(P ) −
minv∈Lb

j
ω(v).

(4) For every shortest Lai -Lbj-path P in Gx with the property that the second vertex is in
V (Gx) \ V (Ga) and the penultimate vertex is in V (Gx) \ V (Gb) there exists a uai -vbj -path
in Hx of cost ωHx(P ∗) = ω(P )−minv∈La

i
ω(v)−minv∈Lb

j
ω(v).

Corollary 12 shows that every shortest Lai -Lbj-path in Gx is represented in Hx for i, j ∈ [k]
and a, b ∈ {y, z}. Together with Corollary 10, this proves Theorem 8.

After the construction of the auxiliary graph Hx as defined in Definition 7, we compute
and store the shortest distances for all pairs of vertices in Hx. With those values one can
now compute the values cxi,j and axv,i for i, j ∈ [k] and v ∈ V (Gx). Note that some of the
values are only required in the second phase.

I Corollary 13. Let x ∈ V (T ) be a node in the k-expression tree T marked with ×S for some
S ⊆ [k]2. For all i, j ∈ [k] it holds that

cxi,j = min
{
distHx(vyi , u

y
j ), distHx(vyi , u

z
j ), distHx(vzi , u

y
j ), distHx(vzi , uzj )

}
.

I Corollary 14. Let x ∈ V (T ) be a node in the k-expression tree T marked with ×S for some
S ⊆ [k]2. Then for any v ∈ V (Gy) and i ∈ [k] it holds that axv,i = minj∈[k],a∈{y,z}

{
ayv,j +

distHx(uyj , uai )
}
.

Second Phase. In this phase, we process the k-expression tree T in a top-down manner
and use the local values that we have computed in the first phase to determine distances in
the whole graph G.

Consider an internal node x ∈ V (T ) of the k-expression tree T marked with ×S for some
S ⊆ [k]2 and let y and z be the children of x in T . Let Lyi resp. Lzi denote the set of vertices
with label i in Gy resp. Gz for i ∈ [k]. For an internal node x with children y and z we will
compute for any vertex set Lyi resp. Lzi and every vertex v ∈ V (Gx) the minimum cost of all
paths in G that start in v and end in Lyi resp. Lzi with the property that the penultimate
vertex is in V (G) \V (Gy), resp. in V (G) \V (Gz). Thus, the penultimate vertex is connected
to all vertices of the vertex set Lyi resp. Lzi . It will therefore be convenient not to include
the cost of the final vertex in these costs (cf. definition below). Note, that we consider the
whole graph G in this step instead of just Gx.

Formally, for a node x ∈ V (T ) marked with ×S for some S ⊆ [k]2 with children y and z
we compute for every v ∈ V (Gx) and i ∈ [k] the following values:
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dxv,i,y = minP∈P ω(P )−minu∈Ly
i
ω(u) where P is the set of all paths in G starting in v,

ending in Lyi , and having the penultimate vertex in V (G) \ V (Gy).
dxv,i,z = minP∈P ω(P )−minu∈Lz

i
ω(u) where P is the set of all paths in G starting in v,

ending in Lzi , and having the penultimate vertex in V (G) \ V (Gz).

For a node x ∈ V (T ) marked with ◦R for some R : [k] 7→ [k] and the child y, we only
compute dxv,i,y. We start by computing those values for the root node. We can assume,
w.l.o.g., that the root node has label ×S for some S ⊆ [k]2.

I Lemma 15. Let r ∈ V (T ) be the root node of the k-expression tree T marked with ×S for
some S ⊆ [k]2 and let y and z be the children of r. Let further Hr be the graph defined in
Definition 7. Then, for any v ∈ V (Gy) and for every i ∈ [k] it holds that

drv,i,y = min
j∈[k]

{
ayv,j + distHr (uyj , v

y
i )
}

and drv,i,z = min
j∈[k]

{
ayv,j + distHr (uyj , v

z
i )
}
.

Analogously, for any v ∈ V (Gz) and for every i ∈ [k] it holds that

drv,i,y = min
j∈[k]

{
azv,j + distHr (uzj , v

y
i )
}

and drv,i,z = min
j∈[k]

{
azv,j + distHr (uzj , vzi )

}
.

Next, we show how to propagate those values downwards in the k-expression tree, starting
with a node marked with ◦R for some R : [k] 7→ [k].

I Lemma 16. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with ◦R
for some R : [k]→ [k]. Let y be the unique child of x and w be the unique ancestor of x in
T . Then dxv,i,y = dwv,R(i),x

We now show the propagation for nodes x of T that are marked with ×S . We start with
one specific case and then conclude the general case as a corollary.

I Lemma 17. Let x ∈ V (T ) be an internal node of the k-expression tree T that is marked
with ×S for some S ⊆ [k]2. Let y and z be the two children of x in T , let w be the unique
ancestor of x in T , and let v ∈ V (Gy) be arbitrary. Then dxv,i,y is the minimum of the
following three values:

dwv,i,x
minj∈[k]

{
ayv,j + distHx(uyj , v

y
i )
}

minj∈[k],c∈{y,z}
{
dwv,j,x + distHx(vcj , v

y
i )
}

Proof. After possibly adding nodes marked with ◦id to the k-expression tree, with id being
the identity function, one can assume, that w is marked with ◦R for some R : [k]→ [k] and
that x is the only child of w.

Let P = (p1, . . . , pn−1, pn) be a shortest v-Lxi -path in G with penultimate vertex in
V (G) \ V (Gy), i.e., with p1 = v, pn ∈ Lyi , and pn−1 ∈ V (G) \ V (Gy); thus, ω(P )− ω(pn) =
dxv,i,y. We distinguish three cases:
Case 1: pn−1 ∈ V (G) \ V (Gx). In this case, P is also a v-Lxi -path with the property that

the penultimate vertex is in V (G) \ V (Gx); thus, dxv,i,y ≥ dwv,i,x.
Case 2: pn−1 ∈ V (Gz) and all vertices of P are in Gx. In this case, we can compute

the value in the same way as done in Lemma 15 for the root node and get dxv,i,y =
minj∈[k]{ayv,j + distHx(uyj , v

y
i )}.

Case 3: pn−1 ∈ V (Gz) and at least one vertex in P is in V (G) \ V (Gx). Let p` be the
last vertex of P that is in V (G) \ V (Gx); clearly, p`+1 ∈ V (Gx). We split the path P
into the two subpaths P1 = (p1, . . . , p`) and P2 = (p`+1, . . . , pn). Let j ∈ [k] such that
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p`+1 ∈ Lxj . Since p` is connected to p`+1, the vertex p` is connected to every vertex in
Lxj . We extend P1 by p′ = arg minu∈Lx

j
ω(u) and denote the resulting path by P ′1. Now

it holds by definition that ω(P ′1)− ω(p′) ≥ dwv,j,x, as the penultimate vertex p` of P ′1 is in
V \ V (Gx). Let further c ∈ {y, z} such that p`+1 ∈ Lcj , noting that it does not change its
label at x. Then ω(P2) − ω(pn) ≥ distHx(vcj , v

y
i ) by Theorem 8, as P2 is a path in Gx.

Note, that ω(P ) = ω(P ′1) + ω(P2)− ω(p′). Thus, in this case it holds that

dxv,i,y = ω(P )− min
u∈Ly

i

ω(u)

= ω(P ′1)− ω(p′) + ω(P2)− min
u∈Ly

i

ω(u)

≥ dwv,j,x + distHx(vcj , v
y
i ) + ω(pn)− min

u∈Ly
i

ω(u)

≥ dwv,j,x + distHx(vcj , v
y
i )

≥ min
j∈[k],c∈{y,z}

{
dwv,j,x + distHx(vcj , v

y
i )
}

We have seen in the case analysis above that in each case dxv,i,y is at least the value considered
in the case; in particular, it is at least equal to their collective minimum value. On the
other hand, for each case there is a path P fulfilling the definition of dxv,i,y such that
ω(P ) −minu∈Ly

i
ω(u) equals the value of the considered case. Thus, dxv,i,y is also at most

equal to the minimum taken over all three cases. This completes the proof. J

I Corollary 18. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with
×S for some S ⊆ [k]2. Let y and z be the unique children of x in T , w be the unique ancestor
of x in T , and let α, β ∈ {y, z} be arbitrary. Then, for v ∈ V (Gα) the value dxv,i,β is the
minimum of the following three values:

dwv,i,x
minj∈[k]

{
aαv,j + distHx(uαj , v

β
i )
}

minj∈[k],c∈{y,z}
{
dwv,j,x + distHx(vcj , v

β
i )
}

Third Phase. In the third phase, we traverse the k-expression tree T one final time; the
ordering is immaterial. We go over all nodes x with label ×S for some S ⊆ [k]2 and compute
for each pair of vertices (u, v) with u ∈ V (Gy) and v ∈ V (Gz) the shortest u-v-path in G,
where y and z are the two children of x in T . Since the leaves of T correspond one-to-one
to single-vertex graphs, one for each vertex of G, this procedure will consider every pair of
vertices in G at some node x ∈ V (T ).

I Lemma 19. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with ×S
for some S ⊆ [k]2. Let y and z be the two children of x and let u ∈ V (Gy) and v ∈ V (Gz).
Then distG(u, v) = mini∈[k]

{
dxu,i,z + azv,i

}
.

Running time. First, we need to transform the clique-width k-expression into a NLC-width
k-expression tree T , which can be done in linear time O(n+m) [15].

In the first traversal, we compute for every node x ∈ V (T ) the values axv,i for v ∈ V (Gx)
and i ∈ [k]. Thus, we compute at most n · k values, each in time O(k), which results in
a running time of O(nk2) per node of T . In the case of a node x with label ×S for some
S ⊆ [k]2 we first compute the auxiliary graph Hx in time O(|V (H)|+ |E(H)|) = O(k2) and
solve (edge-weighted) all-pairs shortest paths on Hx in time O(k3). After this, by using
Corollary 13 resp. Corollary 14, we compute each cxi,j in constant time resp. each axv,i in time
O(k) resulting in a running time per node x ∈ V (T ) of O(k3 + k2 · n).
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In the second phase we perform a top-down traversal of T to compute the for each node
x the values dxv,i,y and dxv,i,z for all v ∈ Gx and i ∈ [k]. Again, we compute at most n · k
values, each in time O(k), which results in a running time of O(nk2) per node of T . Since
there are O(n) nodes in the k-expression tree T , the total running time for Phase One and
Phase Two is O(nk3 + n2k2) = O(n2k2).

In the last phase, we consider each pair (u, v) of vertices exactly once and compute each
pairwise distance in time O(k). Thus, running time for the last phase is O(n2k). In total,
we obtain the claimed bound of O(k2n2).

4 Conclusion

We started the study of vertex-weighted all-pairs shortest paths in the FPT in
P framework and obtained efficient parameterized algorithms with respect to clique-width
and modular-width. The algorithm parameterized by modular-width is adaptive, i.e., even
if the parameter reaches its upper bound of n, the algorithm is not worse than the best
unparameterized algorithm, and even for k ∈ O(n1−ε) for any ε > 0, it outperforms the best
unparameterized algorithm. The algorithm parameterized by the stronger parameter clique-
width is truly subcubic if cw ∈ O(n0.5−ε) for any ε > 0. It also permits us to solve diameter
in the same time O(cw2 n2), complementing the lower bound ruling out O(2o(cw) · n2−ε) for
any ε > 0, due to Coudert et al. [4]. The algorithms only apply to the vertex-weighted
case. Note also that the algorithm relative to clique-width assume to be given a suitable
expression or decomposition, whereas the modular decomposition of a graph, and hence its
modular-width, can be computed in linear time [24].

As mentioned in [16], considering edge-weighted graphs with (low) clique-width resp.
low modular-width is hopeless, as one could modify an arbitrary input graph by adding all
the missing edges with sufficiently large weights. Clearly, the shortest path lengths do not
change, but the resulting graph is a clique and has constant clique-width and modular-width.

Apart from considering other parameters, one interesting open question is whether there
is an adaptive algorithm for all-pairs shortest paths parameterized by clique-width,
e.g., can the running time be reduced to O(cwn2)? This seems quite challenging, since even
computing some variant of all-pairs shortest paths for each node in the expression tree
(on a graph with cw many nodes) results in a non-adaptive running time.
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Abstract
Solving the algebraic dichotomy conjecture for constraint satisfaction problems over structures first-
order definable in countably infinite finitely bounded homogeneous structures requires understanding
the applicability of local-consistency methods in this setting. We study the amount of consistency
(measured by relational width) needed to solve CSP(A) for first-order expansions A of countably
infinite homogeneous graphs H := (A; E), which happen all to be finitely bounded. We study our
problem for structures A that additionally have bounded strict width, i.e., for which establishing
local consistency of an instance of CSP(A) not only decides if there is a solution but also ensures
that every solution may be obtained from a locally consistent instance by greedily assigning values
to variables, without backtracking.

Our main result is that the structures A under consideration have relational width exactly (2,LH)
where LH is the maximal size of a forbidden subgraph of H, but not smaller than 3. It beats the
upper bound: (2m, 3m) where m = max(arity(A) + 1,L, 3) and arity(A) is the largest arity of a
relation in A, which follows from a sufficient condition implying bounded relational width given
in [10]. Since LH may be arbitrarily large, our result contrasts the collapse of the relational bounded
width hierarchy for finite structures A, whose relational width, if finite, is always at most (2, 3).
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1 Introduction

The constraint satisfaction problem (CSP) is one of the most important problems in theoretical
and applied computer science and at the same time it is a general framework in which many
other computational problems may be formalized. Given a number of constraints imposed on
variables one asks if there is a global solution, i.e., a function assigning values to variables so
that all the constraints are simultaneously satisfied. Boolean satisfiability and graph colouring
are among the most prominent examples of NP-hard problems that can be formalized as
CSPs and hence the CSP is NP-hard in general. Thus, one considers the problem CSP(A)
parametrized by a relational structure (called also a constraint language, a language or a
template) A. (In this paper, A is always over a finite signature). A longstanding open
problem in this area was to verify the Feder-Vardi [20] conjecture which states that for every
finite A the problem CSP(A) is either in P or it is NP-complete. After over thirty years of
work and a number of important partial results this so-called Dichotomy Conjecture was
confirmed independently in [26] and [16]. In both cases the proof was carried out in the
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so-called universal-algebraic approach to the complexity of CSPs [22, 17]. The approach not
only provided appropriate tools but also suggested the delineation. This so-called algebraic
dichotomy conjecture [17] saying that CSP(A) is hard under the condition that the algebra
corresponding to A lacks interesting operations also has been confirmed in both proofs.

The universal-algebraic approach to finite-domain constraint satisfaction problems has
been generalized to capture the computational complexity in many other similar settings. In
particular, the complexity of CSP(A) depends on the algebra corresponding to A when A is
ω-categorical [11], i.e., all countable models of the first-order theory of A are isomorphic. In
particular, all structures first-order definable in (reducts of) (countably infinite) homogeneous
structures over finite signatures are ω-categorical structure. (A structure is homogeneous if
every isomorphism between its finite substructures may be extended to an automorphism of
a structure.) Considering these infinite structures significantly broadens the class of problems
that may be captured within the CSP framework. In particular, the order over rational
numbers (Q, <), which is homogeneous, gives rise to CSP(Q;<) that can be seen as the
digraph acyclicity problem. The latter cannot be expressed as the CSP over a finite template.
Furthermore a number of problems of interest in qualitative reasoning may be captured by
CSP(A) where A is a reduct of a homogeneous structure B. It concerns constraint satisfaction
problems in formalisms such as Allen’s interval algebra or RCC-5, see [6] for a survey. Many
of the homogeneous structures B of interest are finitely bounded, i.e., there exists a finite
unique minimal set FB of finite structures over the signature of B such that a finite structure
∆ embeds into B if and only if none of the structures in FB embeds into ∆. A dichotomy
for algebras corresponding to reducts of countably infinite finitely bounded homogeneous
structures was proved in [3]. As in the finite case, it suggests the delineation between
polynomial-time solvable and NP-hard CSPs. Although the complexity dichotomy is still
far from being obtained, the algebraic dichotomy conjecture for reducts of finitely bounded
homogeneous structures is known to hold in the number of cases including the reducts of
(N,=) [7], (Q, <) [8], the random partial order [23] or a countably infinite homogeneous
graph [13, 14, 9].

Theoretical research on CSPs is focused not only on providing classifications of computa-
tional complexity but also on settling the limits of applicability of widely known algorithms
or algorithmic techniques such as establishing local consistency. This method is used not only
for finite CSP but is also considered to be the most important (if not the only) algorithmic
technique for qualitative CSPs [25]. The algebraic characterization of finite structures A with
bounded width [2], i.e., for which CSP(A) can be solved by establishing local consistency, is
considered to be an important step towards solving the Feder-Vardi conjecture. Thus, in
order to understand the complexity of CSPs for reducts A of finitely bounded homogeneous
structures, we need to characterize A with bounded width and to understand how different
notions of consistency relate to each other for templates under consideration. The focus of
this paper is on the latter.

The amount of consistency needed to solve CSP(A) for A with bounded width is measured
here [1] and here [15] by relational width. The relational width of A is a pair of numbers
(k, l) with k ≤ l (for the exact definition we refer the reader to Section 4). The following
question was of interest for finite structures.

I Question 1. What is the exact relational width of A with bounded width?

Question 1 for finite A was completely answered in [1] where it was proved that A
with bounded width has always either relational width (1, 1) or (2, 3), see [15] for another
proof. Both proofs rely, however, on the algebraic characterization of structures A with
bounded width. Although the notion of bounded width has been generalized to ω-categorical
structures [5], according to our knowledge, no algebraic characterization of bounded width for
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such structures is within sight. Nevertheless the algebraic characterization of strict bounded
width has been quite easily lifted from finite [20] to infinite domains [5]. (Again, for a detailed
definition we refer the reader to Section 4.) A reduct of a finitely bounded homogeneous
structure has bounded strict width if and only if it is preserved by so-called oligopotent quasi
near-unanimity operation. This algebraic characterization gives us a hope to answer the
following question analogous to Question 1.

I Question 2. What is the exact relational width of reducts A of finitely bounded homogeneous
structures with bounded strict width?

In this paper we answer Question 2 for first-order expansions of countably infinite
homogeneous graphs. We believe that our method may be used to provide the general
answer in the near future. We note that the answer to Question 2 would be not only a nice
theoretical result but should be also of particular interest for structures that give rise to
constraint satisfaction problems in qualitative reasoning. In this context strict width is called
local-to-global consistency and has been widely studied see, e.g., [19].

1.1 Our results
In contrast to all homogeneous structures, all countably infinite homogeneous graphs are
well understood and have been classified in [24]. It happens that every such graph H is also
finitely bounded, i.e., in each case there exists a finite unique minimal set of finite graphs FH
such that a finite graph G embeds into H if and only if none of the graphs in FH embeds
into G. We will write LH for the maximum of the number 3 and the size of the largest finite
structure in LH. Perhaps the best known example of a homogeneous graph is the random
graph that is determined up to isomorphism by the two properties of being homogeneous
and universal (i.e., it contains all countable graphs as induced subgraphs). Equivalently, the
random graph is a unique countably infinite graph which has this extension property: for all
disjoint finite subsets U,U ′ of the domain there exists an element v such that v is adjacent
to all members of U and to none in U ′. In this case the finite set of bounds consists of a
single directed edge and a loop, and hence LG for the random graph G is 3. Furthermore,
the family of homogeneous graphs contains universal countable k-clique free graphs Hk with
k ≥ 3, called also Henson graphs, in which case FHk

contains also a k-clique, and hence
LHk

is k or the graphs Csn that are disjoint sums of n cliques of size s where 1 ≤ n, s ≤ ω

and either n or s equals ω. Observe that FCs
n
contains a graph on three vertices with two

edges and one non-edge as well as a null graph over n + 1 vertices in case n is finite or a
(s+ 1)-clique in the case where s is finite. Thus, LCs

n
is either 3, n+ 1 or s+ 1. All remaining

homogeneous graphs are the complements of graphs Hk or Csn. In this paper we prove the
following.

I Main Result. Let A be a first-order expansion of a countably infinite homogeneous graph
H such that A has bounded strict width. Then A has relational width (2,LH).

In fact, we obtain a more general result. Some sufficient conditions implying that a first-
order expansion of a homogeneous graph H has relational width (2,LH) are given in Section 5.
In particular, the conditions cover all languages under consideration preserved by binary
canonical operations considered in [13, 14, 9] where an analysis of algebras corresponding to
reducts of homogeneous graphs and the computational dichotomy is provided. Our result:
relational width (2,LH) beats the upper bound (2m, 3m), where m = max(arity(A) + 1,L, 3)
and arity(A) is the largest arity of a relation in A, that can be easily obtained from the proof
of Theorem 4.10 in [10].

STACS 2020
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We believe that measuring relational width of structures with bounded width is interesting
in its own rights. Nevertheless, our research has complexity consequences. As in the finite
case, it was proved in [5] that CSP(A) for an ω-categorical A with strict width k may
be solved by establishing (k, k + 1)-consistency and hence in time O(nk+1) where n is the
number of variables in an instance. Our main result implies that such CSP(A) for a first-order
expansion A of a homogeneous graph H may be solved by establishing (2,LH)-minimality,
and hence in time O(nm) where m = max(LH, arity(A)).

1.2 Outline of the paper

We start with general preliminaries in Section 2. Then we review canonical operations
providing tractability for reducts of homogeneous graphs, Section 3. Bounded (relational)
width, strict width and other notions related to local consistency are provided in Section 4.
There we also give a number of examples explaining the applicability of our main result. The
proof of the main result is divided into Section 5 and Section 6. In the former one, we give a
number of sufficient conditions implying relational width (2,LH), while in the latter one we
show that the sufficient conditions are satisfied whenever a first-order expansion of H has
bounded strict width. In Section 5 we additionally show that the sufficient condition are also
satisfied by first-order expansions of homogeneous graphs preserved by the studied binary
canonical operations. As a consequence, we obtain that all tractable (whose CSP is solvable
in polynomial time) reducts of H where H is Cω1 , C1

ω, C
ω
ω or Hk with k ≥ 3 have bounded

relational width (2,LH) and hence can be solved by establishing (2,LH)-minimality.

2 Preliminaries

We write t = (t[1], ..., t[n]) for a tuple of elements and [n] to denote the set {1, . . . , n}.

2.1 Relations, languages and formulas

In this paper we consider first-order expansions A := (A;E,R1, . . . , Rk) over a finite signature
τ of homogeneous graphs, called also (constraint) languages or templates, where all R1, . . . , Rk
have a first-order definition in (A;E). We assume that A constains = and N whenever N is
pp-definable in A. Relations E and N refer always to a homogeneous graph H known from
the context. For the sake of presentation we usually do not distinguish between a relation
symbol R in the signature of A and the relation RA and use the former symbol for both. We
often write O,O1, O2, . . . for elements of {E,N,=} and E,N,O,O1,O2 to denote relations
(E∪ =), (N∪ =), (O∪ =), (O1∪ =), (O2∪ =), respectively.

For a structure A over domain A and a tuple t ∈ Ak, the orbit of t in A is the relation
{(α(t[1]), . . . , α(t[k])) | α ∈ Aut(A)} where Aut(A) is the set of automorphisms of A. In
particular, E,N and = are orbits of pairs, called also orbitals. We would like to note that
all structures considered in this paper are ω-categorical. By a theorem proved independently
by Ryll-Nardzewski, Engeler and Svenonius, a structure A is ω-categorical if and only if its
automorphism group is oligomorphic, i.e., for every n the number of orbits of n-tuples is
finite. See [21] for a textbook on model theory.

A primitive-positive (pp-)formula is a first-order formula built exclusively out of existential
quantifiers ∃, conjunction ∧ and atomic formulas R(x1, . . . , xk) where R is a k-ary relation
symbol and x1, . . . , xk are variables, not necessarily pairwise different.
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2.2 The universal-algebraic approach

We say that an operation f : An → A is a polymorphism of an m-ary relation R iff for any m-
tuples t1, . . . , tn ∈ R, it holds that the tuple (f(t1[1], . . . , tn[1]), . . . , f(t1[m], . . . , tn[m])) is also
in R. We write f(t1, . . . , tn) as a shorthand for (f(t1[1], . . . , tn[1]), . . . , f(t1[m], . . . , tn[m])).
An operation f is a polymorphism of A if it is a polymorphism of every relation in A. If
f : An → A is a polymorphism of A, R, we say that f preserves A, R, otherwise that f violates
A, R. A set of polymorphisms of an ω-categorical structure A forms an algebraic object
called an oligomorphic locally closed clone [4], which in particular contains an oligomorphic
permutation group [18].

I Theorem 1 ([11]). Let A be a countable ω-categorical structure. Then R is preserved
by the polymorphisms of A if and only if it has a primitive-positive definition in A, i.e., a
definition via a primitive-positive formula.

We say that a set of operations F generates a set of operations G if every g ∈ G is in the
smallest locally-closed clone containing F . We wite Aut(A) to denote the clone generated
by the automorphisms of the structure A. An operation f of an oligomorphic clone F is
called oligopotent if {g} where g(x) := f(x, . . . , x) is generated by the permutations in F .
We say that a k-ary operation f is a weak near-unanimity operation if f(y, x, . . . , x) =
f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) for all x, y ∈ A and that f is a quasi near-unanimity
operation (short, qnu-operation) if it is a weak near-unanimity and it additionally satisfies
f(x, . . . , x) = f(x, . . . , x, y) for all x, y ∈ A. We say that a k-ary operation f is a weak
near-unanimity operation modulo Aut(A) if there exist e1, . . . , ek ∈ Aut(A) such that:
e1(f(y, x, . . . , x)) = e2(f(x, y, x, . . . , x)) = · · · = ek(f(x, . . . , x, y)) for all x, y ∈ A.

2.3 The constraint satisfaction problem

We define the CSP to be a computational problem whose instance I is a triple (V, C, A)
where V = {v1, . . . , vn} is a set of variables, C is a set of constraints each of which is of the
form ((vi1 , . . . , vik ), R) where {vi1 , . . . , vik} ⊆ V is the scope of the constraint and R ⊆ Ak.
The question is whether there is a solution s : V → A to I satisfying (s(vi1), . . . , s(vik )) ∈ R
for all ((vi1 , . . . , vik ), R) ⊆ C. Further, we define CSP(A) for a constraint language A to be
the CSP restricted to instances where all relations come from A. 1

We define the projection of ((vi1 , . . . , vik ), R) to the set {w1, . . . , wl} ⊆ {vi1 , . . . , vik}
to be the constraint ({w1, . . . , wl}, R′) where the relation R′ is given by (R′(w1, . . . , wl) ≡
∃x1 . . . ∃xm R(vi1 , . . . , vik )) and {x1, . . . , xm} = {vi1 , . . . , vik} \ {w1, . . . , wm}. Let W ⊆ V.
An assignment a : W → A is a partial solution to I if a satisfies all projections of constraints
in I to variables in W .

It is very well known that adding pp-definable relations to the template does not change
the complexity of the problem.

I Proposition 2. Let A = (A;R1, . . . , Rl) be a relational structure, and let R be a relation
that has a primitive-positive definition in A. Then CSP(A) and CSP(A,R,R1, . . . , Rl) are
log-space equivalent.

1 Equivalently, one defines an instance of CSP(A) as a conjunction ϕ of atomic formulae over the signature
of A. Then the question is whether ϕ is satisfiable in A.

STACS 2020
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B1 = E N

= = E N
E E E E
N N E N

B2 = E N

= = E E
E E E E
N E E E

B3 = E N

= = N N
E N E N
N N N N

Figure 1 Three examplary binary behaviours: B1, B2, and B3.

2.4 Efficient entailment
We say that a formula ϕ1 entails a formula ϕ2 both over free variables x1, . . . , xn if
(∀x1 · · · ∀xn (ϕ1(x1, . . . , xn) =⇒ ϕ2(x1, . . . , xn))) is a valid sentence. Furthermore, we
say that an n-ary relation R entails ϕ over free variables x1, . . . , xn if R(x1, . . . , xn) entails
ϕ. These definitions are quite standard but for the purposes of this paper we need a stronger
notion of entailment.

I Definition 3. We say that a quaternary relation R efficiently entails ψ := (S1(x1, x2) =⇒
S2(x3, x4)) where S1, S2 are binary relations if R entails ψ and R contains
1. a tuple t1 such that (t1[1], t1[2]) ∈ S1 and (t1[3], t1[4]) ∈ S2, and
2. a tuple t2 such that (t2[1], t2[2]) /∈ S1 and (t2[3], t2[4]) /∈ S2.

We say that a quaternary relation R is a [(S1(x1, x2) =⇒ S2(x3, x4)), (ϕ)]-relation if R
efficiently entails (S1(x1, x2) =⇒ S2(x3, x4)) and entails ϕ or that a quaternary relation R is
a [(S1(x1, x2) =⇒ S2(x3, x4))]-relation if R efficiently entails (S1(x1, x2) =⇒ S2(x3, x4)).

3 Canonical Operations over Reducts of Homogeneous Graphs

The polymorphisms that appear in the complexity classifications of CSPs of reducts of
homogeneous graphs display some regularities in the sense defined below.

Let f : Ak → A, and let G be a permutation group on A. We say that f is canonical with
respect to G if for all m ∈ N,α1, . . . , αk ∈ G and m-tuples a1, . . . , ak, there exists β ∈ G
such that βf(α1(a1), . . . , αk(ak)) = f(a1, . . . , ak). Equivalently, this means that f induces
an operation ξtyp(f), called a k-ary behaviour, on orbits of m-tuples under G, by defining
ξtyp(f)(O1, . . . , Ok) as the orbit of f(a1, . . . , ak) where ai is any m-tuple in Oi. In what
follows we are mainly interested in operations that are canonical with respect to Aut(H)
where H is a homogeneous graph. Therefore we usually say simply canonical. See [12] for a
survey on canonical operations. Three simple binary behaviors are presented in Figure 1.
According to Definition 6, a binary injection f such that ξtyp(f) is

B1 is said to be of behavior max and balanced,
B2 is said to be E-constant,
B3 is said to be of type min and N -dominated.

We introduce the following notation. Let R1, . . . , Rk ⊆ A2 be binary relations. We write
R1 · · ·Rk for the binary relation on Ak defined so that: R1 · · ·Rk(a1, a2) holds for k-tuples
a1, a2 ∈ Ak if and only if Ri(a1[i], a2[i]) holds for all i ∈ [k]. Here, we can find the list of all
binary behaviours of interest.

I Definition 4. Let (A,E) be a countably infinite homogeneous graph. We say that a binary
injective operation f : A2 → A is

balanced if for all a, b ∈ A2 we have that E=(a, b) and =E(a, b) implies E(f(a), f(b)) as
well as N=(a, b) and =N(a, b) implies N(f(a), f(b)),
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E-dominated (N -dominated) if for all a, b ∈ A2 with 6==(a, b) or =6=(a, b) we have that
E(f(a), f(b)) (N(f(a), f(b)));
of behaviour min if for all a, b ∈ A2 with 6= 6=(a, b) we have E(f(a), f(b)) iff EE(a, b);
of behaviour max if for all a, b ∈ A2 with 6= 6=(a, b) we have N(f(a), f(b)) iff NN(a, b);
of behaviour projection if there exists i ∈ [2] such that for all a, b ∈ A2 with 6= 6=(a, b) we
have E(f(a), f(b)) iff E(a[i], b[i]),
of behaviour xor if for all a, b ∈ A2 with 6= 6=(a, b) the relation E(f(a), f(b)) holds iff
EN(a, b) or NE(a, b) holds;
of behaviour xnor if for all a, b ∈ A2 with 6= 6=(a, b) the relation E(f(a), f(b)) holds iff
EE(a, b) or NN(a, b) holds;
E-constant if the image of f is a clique,
N-constant if the image of f is an independent set.

We now turn to ternary behaviours of interest.

I Definition 5. Let (A;E) be a countably infinite homogeneous graph. We say that a ternary
injective operation f : A3 → A is of behaviour

majority if for all a, b ∈ D3 satisfying 6= 6= 6= (a, b) we have that E(f(a), f(b)) if and only
if EEE(a, b), EEN(a, b), ENE(a, b), or NEE(a, b),
minority if for all a, b ∈ D3 satisfying 6=6=6= (a, b) we have that N(f(a), f(b)) if and only
if NNN(a, b), EEN(a, b), ENE(a, b), or NEE(a, b).

Furthermore, let B be a binary behavior. A ternary function is hyperplanely of behaviour
B if the binary functions (x, y)→ f(x, y, c), (x, z)→ f(x, c, z), and (y, z)→ f(c, y, z) have
behavior B for all c ∈ D.

4 Consistency and Minimality

This section is devoted to the formal introduction of consistency and width notions. The
main algorithm we are interested in is based on establishing minimality.

I Definition 6. Let l ≥ k > 0 be natural numbers. An instance I = (V, C, A) of the CSP is
(k, l)-minimal if:
1. Every at most l-element set of variables is contained in the scope of some constraint in I.
2. For every set W with |W | ≤ k and every pair of constraints C1 and C2 in C whose scopes

contain W , the projections of the constraints C1 and C2 to W are the same.
We say that I is trivial if it contains a constraint with an empty relation. Otherwise, we say
that I is non-trivial.

As in the finite case, one may transform an instance I into an equivalent instance, i.e.
with the same set of solutions by simply introducing at most O(|V|l) new constraints so that
the first condition in Definition 6 was satisfied and then by repeatedly removing orbits of
tuples from constraints until the second condition is satisfied. Similarly to the finite CSP we
have the following.

I Proposition 7. Let A be an ω-categorical relational structure. Then for every instance
I of CSP(A) and l ≥ k > 0 there exists an instance I ′ of the CSP with the same sets of
solutions as I such that I ′ is (k, l)-minimal.

For fixed (k, l) and A, the process of establishing (k, l)-minimality, i.e., transfoming I
into I ′ takes time O(|V|m) where m = max(l, arity(A)) is the maximum of l and the greatest
arity of a relation in A. If I ′ is trivial, then both I and I ′ have no solutions.

We are now ready to define the relational width.

STACS 2020
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I Definition 8. We say that A has relational width (k, l) if and only if I has a solution
provided any (k, l)-minimal instance of the CSP equivalent to I is non-trivial. We say that A
has (relational) bounded width 2 if there exist (k, l) such that A has relational width (k, l).

Finite structures with bounded relational width admit an algebraic characterization [2].
It is known that a finite structure A has bounded (relational) width if and only if it has
a four-ary polymorphism f and a ternary polymorphism g that are weak near-unanimity
operations and such that f(y, x, x, x) = g(y, x, x) for all x, y ∈ A. We have a similar sufficient
condition for reducts of finitely bounded homogeneous structures.

I Theorem 9 ([10]). Let A be a finite-signature reduct of a finitely bounded homogeneous
structure B. Suppose that A has a four-ary polymorphism f and a ternary polymorphism g that
are canonical with respect to Aut(B) and are weak near-unanimity operations modulo Aut(B),
and such that there are operations e1, e2 ∈ Aut(B) with e1(f(y, x, x, x)) = e2(g(y, x, x)) for
all x, y ∈ A. Then CSP(A) has bounded relational width.

A slight change in the proof of the above theorem gives us the upper bound for relational
width of infinite structures under consideration.

I Corollary 10. Let A be a finite-signature reduct of a finitely bounded homogeneous structure
B. Suppose that A has a four-ary polymorphism f and a ternary polymorphism g that are
canonical with respect to Aut(B), that are weak near-unanimity operations modulo Aut(A),
and such that there are operations e1, e2 ∈ Aut(B) with e1(f(y, x, x, x)) = e2(g(y, x, x)) for
all x, y ∈ A. Then A has relational width (2m, 3m) where m = max(arity(A) + 1, arity(B) +
1,LB, 3).

We now use Corollary 10 to provide the upper bound of the relational width for reducts
of homogeneous graphs preserved by binary canonical operations considered in [13, 14, 9].

I Proposition 11. Let A be a reduct of a countably infinite homogeneous graph H preserved
by a binary injection:
1. of behaviour max which is either balanced or E-dominated, or
2. of behaviour min which is either balanced or N -dominated, or
3. which is E-constant, or
4. which is N -constant.
Then it has relational width (2m, 3m) where m = max(arity(A) + 1,LH, 3).

In Section 6.1, we use our approach to show that the exact relational width of structures
under consideration in Proposition 11 is (2,LH). The same is proved for first-order expansions
of homogeneous graphs with bounded strict width.

Strict width is defined as follows. A (k, l)-minimal instance I of the CSP is called globally
consistent, if every partial solution of I can be extended to a total solution of I.

I Definition 12. We say that A has strict width k if for some l ≥ k ≥ 2 all instances of
CSP(A) that are (k, l)-minimal are globally consistent. We say that A has bounded strict
width if it has strict width k for some k. 3

We have the following algebraic characterization of ω-categorical structures with bounded
strict width.

2 We note that the definition of bounded width provided in [5] is equivalent to ours.
3 Our definition of strict width slightly varies from a definition in [5] but again both definitions are

equivalent.
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I Theorem 13 ([5, 4]). Let A be an ω-categorical language. Then the following are equivalent.
1. A has strict width k.
2. A has an oligopotent (k + 1)-ary quasi near-unanimity operation as a polymorphism.

For a (2, k)-minimal instance over variables V = {v1, . . . , vn} we write Ii,j with i, j ∈ [n]
to denote a subset of {E,N,=} such that the projection of all constraints having vi, vj in its
scope to {vi, vj} equals

⋃
O∈Ii,j

O. We will say that an instance is simple if |Ii,j | = 1 for all
i, j ∈ [n].

We will now show that a simple non-trivial (2,LH)-instance of CSP(A) for a first-order
expansion A of a homogeneous graph H always has a solution and that this amount of
consistency is necessary.

I Observation 14. Let I be a simple non-trivial (2,LH)-minimal instance of the CSP
equivalent to an instance of CSP(H′) where H′ is the expansion of H containing all orbitals
pp-definable in H. Then I has a solution.

On the other hand, for every homogeneous graph H there exists a simple non-trivial
(1,LH)-minimal instance I1 equivalent to an instance of CSP(H′) and a simple non-trivial
(2,LH−1)-minimal instance I2 equivalent to an instance of CSP(H′) that have no solutions.

Proof. We start from proving the first part of the observation. Define ∆ to be a finite structure
over the domain consisting of variables {v1, . . . , vn} in I and the signature τ ⊆ {E,N,=}
such that (vi, vj) ∈ R∆ for i, j ∈ [n] and R ∈ τ if ϕI contains a constraint ((vi, vj), R). Since
I is (2, 3)-minimal, we have the following.

I Observation 15. The binary relation ∼:= {(vi, vj) | Ii,j ⊆ {=}} ∪
⋃
i∈[n]{(vivi)} is an

equivalence relation.

We claim that there is an embedding from ∆/ ∼ to H′. Assume the contrary. Since H
is finitely bounded, there exists G over variables {w1, . . . , wl} in FH′ such that G embeds
into ∆/ ∼ and l ≤ LH. Since I is (2,LH)-minimal, there is a constraint C in I whose
scope contains {w1, . . . , wl} and the corresponding relation is empty. It contradicts with the
assumption that I is non-trivial. Thus, ∆/ ∼ embeds into H, and in consequence I has a
solution. It completes the proof of the first part of the observation.

For the second part of the observation, we select I1 to be {((v1, v2), E), ((v1, v2), N)}.
Indeed, every subset of variables of I1 is in the scope of some constraint. The projection
of each constraint to {v1} or {v2} is the set of all vertices in H. It follows that I1 is
(1,LH)-consistent. Clearly I1 has no solutions.

We now turn to I2. If LH > 3 and G = ([n], E) is a forbidden subgraph of size n = LH
consider an instance I ′

2 over variables {v1, . . . , vn} containing a constraint ((vi, vj), E) if
(i, j) ∈ EG and a constraint ((vi, vj), N) if (i, j) /∈ EG. Let I2 be a (2,LH−1)-minimal
instance of the CSP equivalent to I ′

2. By the minimality of FH, we have that no induced
subgraph of G is in FH. It follows that I2 is non-trivial but, clearly, I2 has no solutions.
If LH = 3, then we select I2 to be an instance such that C = {((v1, v2),=), ((v2, v3),=
), ((v1, v3), E). It is again straightforward to check that I2 is (2, 2)-minimal. Yet, it has no
solutions. It completes the proof of the observation. J

We complete this section by giving some examples of first-order expansions of homogeneous
graphs with bounded strict width.

I Proposition 16. Let A be a first-order expansion of the random graph H = (A;E) such
that every relation in A is pp-definable as a conjunction of clauses of the form:

(x1 6= y1 ∨ · · · ∨ xk 6= y1 ∨R(y1, y2) ∨ y2 6= z1 ∨ · · · ∨ y2 6= zl),

where R ∈ {E,N}. Then A has bounded strict-width.
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And here comes another example.

I Proposition 17. The constraint language A = (A;E,N,R) where (A;E) is Cω2 and
R(x1, x2, x3) ≡ ((E(x1, x2) ∧N(x2, x3)) ∨ (N(x1, x2) ∧ E(x2, x3))) has bounded strict width.

5 Conditions Sufficient for Low Relational Width

In order to show that a non-trivial (2,LH)-minimal instance I of CSP(A) for first-order
expansions A of a homogeneous graph H has a solution, we always use one scheme. We take
advantage of the fact that certain quaternary and ternary relations are not pp-definable in A
and we carefully narrow down Ii,j for i, j ∈ [n] so that we end up with a simple non-trivial
instance I ′ which is a ’subinstance’ of I in the following sense: for every C = ((x1, . . . , xr), R)
in I we have C ′ = ((x1, . . . , xr), R′) ∈ I ′ such that R′ ⊆ R. Since I ′ is simple, by
Observation 14, it has a solution. This solution is clearly a solution to the orginal instance I.

We shrink an instance of CSP(A) using one of three different sets of relations presented
in the three lemmas below.

I Lemma 18. Let {O1, O2} be {E,N} and A be a first-order expansion of a homogeneous
graph H such that none of the following types of relations is pp-definable in A:
1. [(O1(x1, x2) =⇒ O2(x3, x4))]-relations,
2. [(O1(x1, x2) =⇒ x3 = x4)]-relations, and
3. [(O2(x1, x2) =⇒ x3 = x4), (O2(x1, x2) ∧O2(x3, x4))]-relations.
Then A has relational width (2,LH).

Before we discuss the ’shrinking’ strategy that stands behind Lemma 18, consider
a non-trivial instance I of some A under consideration in the lemma and a constraint
((x1, . . . , xr), R) for which there are i1, j1, i2, j2 such that vi1 , vj1 , vi2 , vj2 ∈ {x1, . . . , xr}
and O1 ∈ Ii1,j1 , O1 ∈ Ii2,j2 . Since I is non-trivial and (2, 3)-minimal the relation
(R′(x1, . . . , xr) ≡ (R(x1, . . . , xr) ∧ O1(vi1 , vj1))) is non-empty. But also (R′′(x1, . . . , xr) ≡
(R(x1, . . . , xr)∧O1(vi1 , vj1)∧O1(vi2 , vj2))) is non-empty. Indeed, otherwise since O1 ∪O2 =
A2, the structure A would define a relation from Item 1 or Item 2. Generalizing the argument,
one can easily transform I to a non-trivial I ′ where every I ′

i,j = {O1} whenever Ii,j contains
O1. Using a similar reasoning and Item 3, and taking care of some details, we have to skip
here, one can then transform I ′ to I ′′ so that I ′′

i,j = O2 whenever I ′
i,j contains O2. Since

I ′′ is simple and non-trivial, we can use Observation 14 to argue that both I ′′ and I has a
solution.

The next lemma considers a specific situation where H is a disjoint sum of ω edges and
languages under consideration are preserved by oligopotent qnu-operations.

I Lemma 19. Let A be a first-order expansion of C2
ω preserved by an oligopotent qnu-operation

and such that none of the following types of relations is pp-definable in A:
1. [(N(x1, x2) =⇒ E(x3, x4))]-relations,
2. [(N(x1, x2) =⇒ E(x3, x4)), (E(x3, x4))]-relations,
3. [(N(x1, x2) =⇒ x3 = x4)]-relations,
4. [(O1(x1, x2) =⇒ O2(x3, x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relations where the set
{O1, O2} equals {E,=}.

Then A has relational width (2, 3).

The shrinking strategy for Lemma 19 is as follows. We start with a non-trivial (2, 3)-
minimal instance I and use Items 1–3 to transform it into a non-trivial (2, 3)-minimal I ′

such that I ′
i,j = {N} whenever Ii,j contains N . Since E fo-definable in C2

ω is transitive and
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I ′ is (2, 3)-minimal, it is easy to show that the graph over variables {v1, . . . , vn} and edges
I ′
i,j with i, j ∈ [n] is a disjoint union of components K1, . . . ,Kκ such that for all k ∈ [κ] and

all vi, vj ∈ Kk it holds that I ′
i,j ⊆ {E,=} and whenever vi, vj are in different components,

then I ′
i,j = {N}. Now, any I ′

Ki
– the instance I ′ restricted to variables in Ki, which is in

fact an instance of CSP(∆) for ∆ over two-elements (some edge in C2
ω, different for every

i ∈ [κ]) preserved by a near-unanimity operation, is shown to have a solution si. It follows by
the characterization of relational width for finite structure. In order to prove that solution
s :=

⋃
i∈[κ] si is the solution to I ′ and hence to I we use the fact that relations from Item 4

are not pp-definable in A.
Finally, we turn to the case where H is a disjoint sum of two infinite cliques and the

structures A have oligopotent qnu-operations as polymorphisms.

I Lemma 20. Let A be a first-order expansion of Cω2 preserved by an oligopotent qnu-operation
and such that A pp-defines neither N nor [(O(x1, x2)→ x3 = x4)] for any O ∈ {E,N}. Then
A has relational width (2, 3).

Clearly any tuple over Cω2 takes some of its values from one equivalence class in Cω2
and the remaining values from the other class. In order to prove Lemma 20, we consider
a non-trivial (2, 3)-minimal instance I of CSP(A) but this time we also assume without
loss of generality that there are no i, j with Ii,j = {=}. Since A does not define N we
have that for all i, j ∈ [n] the set Ii,j contains E. Then we transform I to IB of CSP(∆)
where ∆ is over the domain {0, 1} by replacing any tuple t in any relation in any constraint
in I by a tuple over {0, 1} so that all values in one equivalence class are replaced by 0
and all values in the other equivalence class are replaced by 1. Since ∆ is preserved by
a near-unanimity operation, and hence has bounded relational width we have that the
(2, 3)-minimal IB has a solution sB : {v1, . . . , vm} → {0, 1}. We use sB to transform I to I ′

so that we set I ′
i,j to {N} whenever sB(vi) 6= sB(vj). No [(N(x1, x2)→ x3 = x4)]-relations

are pp-definable in A, and hence we have that I ′
i,j for any i, j ∈ [n] contains E. Since B

pp-defines no [(E(x1, x2)→ x3 = x4)]-relations we may transform I ′ into I ′′ so that I ′′
i,j is

E whenever I ′
i,j 6= {N}. Thus, I ′′ is a simple non-trivial (2, 3)-minimal instance. It follows

by Observation 14 that both I ′′ and I have a solution. Again, we skipped many details but
our goal was rather to convey some intuitions that stand behind the proofs of the lemmas in
this section.

6 Constraint Languages with Low Relational Width

In this section we employ lemmas from Section 5 to provide the exact characterization
of relational width of first-order expansions of homogeneous graphs with bounded strict
width and first-order expansions of homogeneous graphs preserved by binary canonical
operations from Proposition 11. In order to prove the former, we also show which quaternary
relations of interest are violated by ternary injections used in the complexity classification
(see Subsection 6.2). To rule out some other relations, we have to use oligopotent qnu-
operations directly (see Subsection 6.3).

6.1 Binary Injections and Low Relational Width
We start with first-order expansions A of homogeneous graphs H whose tractability has
been shown in Proposition 8.22 in [13], Proposition 6.2 in [14] as well as Proposition 37 and
Theorem 62 in [9].
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I Lemma 21. Let A be a first-order expansion of a countably infinite homogeneous graph H
preserved by a binary injection:
1. of behaviour max which is either balanced or E-dominated, or
2. of behaviour min which is either balanced or N -dominated, or
3. which is E-constant, or
4. which is N -constant.
Then A has relational width (2,LH).

The above lemma gives an opportunity to reformulate the dichotomy results for reducts
A of C1

ω, C
ω
1 , C

ω
ω and Hk for any k ≥ 3.

I Corollary 22. Let A be a reduct of a homomorphism graph H which is C1
ω, C

ω
1 , C

ω
ω or Hk

for any k ≥ 3. Then either CSP(A) is NP-complete or A has relational width (2,LH).

Proof. We have that any tractable first-order expansion of (N; =, 6=) is preserved by a binary
injection [7]. It follows that every tractable reduct of Cω1 is either preserved by a constant
operation or is a first-order expansion of Cω1 and preserved by a binary injection which is
of behaviour max and E-dominated. A similar reasoning holds for reducts of C1

ω with a
difference that we replace E with N . Further, every reduct of Cωω is either homomorphically
equivalent to a reduct of (N; =) or pp-defines both E and N , see Theorem 4.5 [14]. In the
former case we are done, while in the latter a tractable A is preserved by a binary injection
of behaviour min and balanced, Corollary 7.5 in [14]. The corollary follows by Lemma 21.
By Proposition 15 and Lemma 17 in [9], a tractable reduct of Hk with k ≥ 3 is either
homomorphically equivalent to a reduct of (N; =) or pp-defines both E and N . In the former
case we are done while in the latter, we have that CSP(A) is in P when it is preserved by
a binary injection of behaviour min and N -dominated (see Theorem 38 in [9]). Again, the
corollary follows by Lemma 21. J

6.2 Types of Relations violated by Ternary Canonical Operations
Here we look at quaternary relations of interest violated by canonical ternary operations.
We start with ternary injections of behaviour majority.

I Lemma 23. Let A be a reduct of a countably infinite homogeneous graph preserved by a
ternary injection of behaviour majority which additionally is:

hyperplanely balanced and of behaviour projection, or
hyperplanely E-constant, or hyperplanely N-constant, or
hyperplanely of behaviour max and E-dominated, or
hyperplanely of behaviour min and N-dominated.

Then A pp-defines no [(O(x1, x2) =⇒ x3 = x4)]-relations with O ∈ {E,N}.

We continue with ternary injections of behaviour minority.

I Lemma 24. Let A be a reduct of a countably infinite homogeneous graph preserved by a
ternary injection of behaviour minority which additionally is:

hyperplanely balanced and of behaviour projection,
hyperplanely of behaviour projection and E-dominated, or
hyperplanely of behaviour projection and N-dominated, or
hyperplanely balanced of behaviour xnor, or
hyperplanely balanced of behaviour xor.

Then A does not pp-define [(O(x1, x2) =⇒ x3 = x4)]-relations with O ∈ {E,N}.
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We are already in the position to prove that another large family of CSP(A) under
consideration may be solved by establishing minimality.

I Corollary 25. Let A be a first-order expansion of Cω2 preserved by a canonical ternary
injection of behaviour minority which is hyperplanely balanced of behaviour xnor and an
oligopotent qnu-operation. Then A has relational width (2, 3).

Proof. By Lemma 24, the structure A does not pp-define [(O(x1, x2) =⇒ x3 = x4)]
with O ∈ {E,N}. Since a canonical ternary injection of behaviour minority which is
hyperplanely balanced of behaviour xnor does not preserve N , the result follows by appealing
to Lemma 20. J

The third lemma of this subsection takes care of the third kind of ternary operations that
occurrs in complexity classifications of CSPs for reducts of homogeneous graphs.

I Lemma 26. Let A be a reduct of a countably infinite homogeneous graph preserved by a
ternary canonical operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves
like a minority on {E,=}, i.e., h satisfies the behaviour B such that B(E,E,E) = B(E,=,=
) = B(=, E,=) = B(=,=, E) = E and B(=,=,=) = B(=, E,E) = B(E,=, E) = B(E,E,=)
equals =. Then A pp-defines none of the following types of relations:

[(N(x1, x2) =⇒ E(x3, x4))]-relations,
[(N(x1, x2) =⇒ x3 = x4)]-relations,
[(N(x1, x2) =⇒ E(x3, x4)), (E(x3, x4))]-relations.

6.3 Types of Relations violated by Oligopotent QNUs
Here we provide a list of quaternary relations of interest violated by ternary canonical
operations and oligopotent qnu-operations. We start with the case where the considered
homogeneous graph is the random graph.

I Lemma 27. Let A be a first-order expansion of the random graph preserved by a ternary
injection of behaviour majority which additionally satisfies one of the conditions in Lemma 23
or of behaviour minority which additionally satisfies one of the conditions in Lemma 24, and
an oligopotent qnu-operation. Then A pp-defines at most one of the following:
1. either a [(E(x1, x2) =⇒ N(x3, x4))]-relation or
2. a [(N(x1, x2) =⇒ E(x3, x4))]-relation.
Here comes the corollary.

I Corollary 28. Let A be a first-order expansion of the random graph preserved by a ternary
injection of behaviour majority which additionally satisfies one of the conditions in Lemma 23
or of behaviour minority which additionally satisfies one of the conditions in Lemma 24 and
an oligopotent qnu-operation. Then A has relational width (2, 3).

Proof. By appeal to Lemma 27, it follows that there are {O1, O2} = {E,N} such that A does
not pp-define a [(O1(x1, x2) =⇒ O2(x3, x4))]-relation. By Lemmas 23 and 24, A pp-defines
neither [(O1(x1, x2) =⇒ x3 = x4)]-relations nor [(O2(x1, x2) =⇒ x3 = x4)]-relations. Since
LH in the case where H is the random graph equals 3, the result follows by Lemma 18. J

We now turn to the case where the considered homogeneous graph is the disjoint union
of ω edges.
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I Lemma 29. Let A be a first-order expansion of C2
ω preserved by a ternary canonical

operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves like a minority on
{E,=} and an oligopotent qnu-operation. Then A pp-defines neither

a [(E(x1, x2) =⇒ (x3 = x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relation nor
a [((x1 = x2) =⇒ E(x3, x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relation.

Then we provide another similar lemma.

I Lemma 30. Let A be a first-order expansion of C2
ω preserved by a ternary canonical

operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves like a minority on
{E,=} and an oligopotent qnu-operation. Then A pp-defines neither

a [(E(x1, x2) =⇒ E(x3, x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relation nor
a [((x1 = x2) =⇒ (x3 = x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relation.

Then comes the corollary.

I Corollary 31. Let A be a first-order expansion of C2
ω preserved by a ternary canonical

operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves like a minority on
{E,=} and an oligopotent qnu-operation. Then A has relational width (2, 3).

Proof. By Lemmas 26, 29 and 30 none of the types of relations mentioned in Lemma 19 is
pp-definable in A. Appealing to Lemma 19 completes the proof of the corollary. J

6.4 The Main Result

Here we prove our main result.

I Theorem 32. Let A be a first-order expansion of a countably infinite homogeneous graph
H which has bounded strict width. Then A has relational width (2,LH).

Proof. By the classification of Lachlan and Woodrow [24], we have that H is either the
random graph, a Henson graph Hk with a forbidden k-clique where k ≥ 3, a disjoint
set of n cliques of size s denoted by Csn or a complement of either Csn or Hk. The case
where H is Cω1 , C1

ω, Cωω or Hk with k ≥ 3 follows by Corollary 22. If Csn is such that
3 ≤ n < ω or 3 ≤ s < ω, then by Theorem 60 in [9], a first-order expansion A of Csn is
either homomorphically equivalent to a reduct of (N; =) or is not preserved by an oligopotent
qnu-operation and we are done. If A is a first-order expansion of Cω2 , then by Theorem 61
in [9] either it is homomorphically equivalent to a reduct of (N; =) or is not preserved by
an oligopotent qnu-operation or pp-defines both E and N and is preserved by a canonical
ternary injection of behaviour minority which is hyperplanely balanced of behaviour xnor
and then A has relational width (2, 3) by Corollary 25. If A is a first-order expansion of C2

ω,
then by Theorem 62 in [9], we have that either A is homomorphically equivalent to a reduct
of (N; =), or it is not preserved by an oligopotent qnu-operation or it pp-defines both E and
N and is preserved by a canonical binary injection of behaviour min that is N -dominated
or a ternary canonical operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which
behaves like a minority on {E,=}. In the former case the language A has relational width
(2, 3) by Lemma 21, in the latter by Corollary 31.

The remaining case is where A is a first-order expansion of the random graph G preserved
by an oligopotent qnu-operation. By Theorem 6.1 in [13] we have that a first-order expansion
of G is either homorphically equivalent to a reduct of (N; =) and then we are done or
pp-defines both E and N in which case, by Theorem 9.3 in [13], we have that:
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A is preserved by a binary injection of behaviour max which is either balanced or
E-dominated, by a binary injection of behaviour min which is either balanced or N -
dominated, by a binary injection which is E-constant, or a binary injection which is
N -constant, and then the theorem follows by Lemma 21, or
A is preserved by a ternary injection of behaviour majority which additionally satisfies
one of the conditions in Lemma 23 or of behaviour minority which additionally satisfies
one of the conditions in Lemma 24, and then the theorem holds by Corollary 28.

It completes the proof of the theorem. J

7 Summary and Future Work

In this paper we proved in particular that:
1. every first-order expansion of a homogeneous graph H preserved by a canonical binary

operation considered in [13, 14, 9] and
2. every first-order expansion of a homogeneous graph H with bounded strict width has

relational width exactly (2,LH).
A nice consequence of the former result is that all tractable reducts of C1

ω, C
ω
1 , C

ω
ω and Hk

with k ≥ 3 have relational width exactly (2,LH), and thus all tractable CSP(A) may be
solved by establishing (2,LH)-minimality. Nevertheless, we find the latter result to be the
main result of this paper. It is for the following reason.

Our general strategy is that we show that constraint languages A under consideration
do not express “too many implications”, i.e., quaternary relations that efficiently entail
formulas of the form (R1(x1, x2) =⇒ R2(x3, x4)), see definitions in Section 2.4 and lemmas
in Section 5 and then use these facts in order to find a strategy of how to shrink a non-trivial
(2,LH)-minimal instance of the CSP so that it became a simple instance. In this paper, in
order to show that certain relations are not pp-definable in A we employ in particular some
binary and ternary canonical operations. We believe that it is not in fact necessary and
theorems analogous to Theorem 32 may be obtained for large families of constraint languages
using only the fact that structures A under consideration are preserved by oligopotent
qnu-operations. Thereby we believe that Question 2 may be answered in full generality.
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Abstract

In [5], Angluin et al. proved that population protocols compute exactly the predicates definable in
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1 Introduction

Population protocols [3, 4] are a model of distributed computation by indistinguishable,
mobile finite-state agents, intensely investigated in recent years (see e.g. [2, 10]). Initially
introduced to model networks of passively mobile sensors, they have also been applied to the
analysis of chemical reactions under the name of chemical reaction networks (see e.g. [14]).

In a population protocol, a collection of agents, called a population, randomly interact
in pairs to decide whether their initial configuration satisfies a given property, e.g. whether
there are initially more agents in some state A than in some state B. Since agents are
indistinguishable and finite-state, their configuration at any time moment is completely
characterized by the mapping that assigns to each state the number of agents that currently
populate it. A protocol is said to compute a predicate if for every initial configuration where
the predicate holds, the agents eventually reach consensus 1, and they eventually reach
consensus 0 otherwise.

In a seminal paper, Angluin et al. proved that population protocols compute exactly
the predicates definable in Presburger arithmetic (PA) [5]. As part of the result, for every
Presburger predicate Angluin et al. construct a leaderless protocol that computes it. The
construction uses the quantifier elimination procedure for PA: every Presburger formula ϕ
can be transformed into an equivalent boolean combination of threshold predicates of the form
α · x > β and remainder predicates of the form α · x ≡ β (mod m), where α is an integer
vector, and β,m are integers [12]. Slightly abusing language, we call the set of these boolean
combinations quantifier-free Presburger arithmetic (QFPA)1. Using that PA and QFPA have
the same expressive power, Angluin et al. first construct protocols for all threshold and
remainder predicates, and then show that the predicates computed by protocols are closed
under negation and conjunction.

The construction of [5] is simple and elegant, but it produces large protocols. Given a
formula ϕ of QFPA, let n be the number of bits of the largest coefficient of ϕ in absolute
value, and let m be the number of atomic formulas of ϕ, respectively. The number of states
of the protocols of [5] grows exponentially in both n and m. In terms of |ϕ| (defined as the
sum of the number of variables, n, and m) they have O(2poly(|ϕ|)) states. This raises the
question of whether succinct protocols with O(poly(|ϕ|)) states exist for every formula ϕ of
QFPA. We give an affirmative answer by proving that every formula of QFPA has a succinct
and leaderless protocol.

Succinct protocols are the state-complexity counterpart of fast protocols, defined as
protocols running in polylogarithmic parallel time in the size of the population. Angluin
et al. showed that every predicate has a fast protocol with a leader [6], but Alistarh et al.,
based on work by Doty and Soloveichik [9], proved that in the leaderless case some predicates
need linear parallel time [1]. Our result shows that, unlike for time complexity, succinct
protocols can be obtained for every QFPA formula in both the leaderless case and the case
with leaders.

The proof of our result overcomes a number of obstacles. Designing succinct leaderless
protocols is particularly hard for inputs with very few input agents, because there are less
resources to simulate leaders. So we produce two completely different families of protocols,
one for small inputs with O(|ϕ|3) agents, and a second for large inputs with Ω(|ϕ|3) agents,
and combine them appropriately.

1 Remainder predicates cannot be directly expressed in Presburger arithmetic without quantifiers.
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Large inputs. The family for large inputs is based on our previous work [8]. However,
in order to obtain leaderless protocols we need a new succinct construction for boolean
combinations of atomic predicates. This obstacle is overcome by designing new protocols
for threshold and remainder predicates that work under reversible dynamic initialization.
Intuitively, agents are allowed to dynamically “enter” and “leave” the protocol through the
initial states (dynamic initialization). Further, every interaction can be undone (reversibility),
until a certain condition is met, after which the protocol converges to the correct output for
the current input. We expect protocols with reversible dynamic initialization to prove useful
in other contexts, since they allow a protocol designer to cope with “wrong” non-deterministic
choices.

Small inputs. The family of protocols for small inputs is designed from scratch. We exploit
that there are few inputs of small size. So it becomes possible to design one protocol for each
possible size of the population, and combine them appropriately. Once the population size is
fixed, it is possible to design agents that check if they have interacted with all other agents.
This is used to simulate the concatenation operator of sequential programs, which allows for
boolean combinations and succinct evaluation of linear combinations.

Relation to previous work. In [8], we designed succinct protocols with leaders for systems of
linear equations. More precisely, we constructed a protocol with O((m+k)(n+logm)) states
and O(m(n + logm)) leaders that computes a given predicate Ax ≥ c, where A ∈ Zm×k
and n is the number of bits of the largest entry in A and c, in absolute value. Representing
Ax ≥ c as a formula ϕ of QFPA, we obtain a protocol with O(|ϕ|2) states and O(|ϕ|2)
leaders that computes ϕ. However, in [8] no succinct protocols for formulas with remainder
predicates are given, and the paper makes extensive use of leaders.

Organization. Sections 2 and 3 introduce basic notation and definitions. Section 4 presents
the main result. Sections 5 and 6 present the constructions of the protocols for large and
small inputs, respectively. Section 7 presents conclusions. For space reasons, several proofs
are only sketched. Detailed proofs are given in the full version of this paper [7].

2 Preliminaries

Notation. We write Z to denote the set of integers, N to denote the set of non negative
integers {0, 1, . . .}, [n] to denote {1, 2, . . . , n}, and NE to denote the set of all multisets
over E, i.e. unordered vectors with components labeled by E. The size of a multiset
v ∈ NE is defined as |v| def=

∑
e∈E v(e). The set of all multisets over E with size s ≥ 0 is

E〈s〉
def=
{
v ∈ NE : |v| = s

}
. We sometimes write multisets using set-like notation, e.g. Ha, 2 ·bI

denotes the multiset v such that v(a) = 1, v(b) = 2 and v(e) = 0 for every e ∈ E \ {a, b}.
The empty multiset HI is instead denoted 0 for readability. For every u,v ∈ NE , we write
u ≥ v if u(e) ≥ v(e) for every e ∈ E. Moreover, we write u + v to denote the multiset
w ∈ NE such that w(e) def= u(e) + v(e) for every e ∈ E. The multiset u � v is defined
analogously with − instead of +, provided that u ≥ v.

Presburger arithmetic. Presburger arithmetic (PA) is the first-order theory of N with
addition, i.e. FO(N,+). For example, the PA formula ψ(x, y, z) = ∃x′∃z′(x = x′ + x′) ∧ (y =
z+z′)∧¬(z′ = 0) states that x is even and that y > z. It is well-known that for every formula
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of PA there is an equivalent formula of quantifier-free Presburger arithmetic (QFPA) [13],
the theory with syntax given by the grammar

ϕ(v) ::= a · v > b | a · v ≡c b | ϕ(v) ∧ ϕ(v) | ϕ(v) ∨ ϕ(v) | ¬ϕ(v)

where a ∈ ZX , b ∈ Z, c ∈ N≥2, and ≡c denotes equality modulo c. For example, the formula
ψ(x, y, z) above is equivalent to (x ≡2 0) ∧ (y − z ≥ 1). Throughout the paper, we refer to
any formula of QFPA, or the predicate NX → {0, 1} it denotes, as a predicate. Predicates of
the form a · v > b and a · v ≡c b are atomic, and they are called threshold and remainder
predicates respectively. The max-norm ‖ϕ‖ of a predicate ϕ is the largest absolute value
among all coefficients occurring within ϕ. The length len(ϕ) of a predicate ϕ is the number
of boolean operators occurring within ϕ. The bit length of a predicate ϕ, over variables X, is
defined as |ϕ| def= len(ϕ) + log‖ϕ‖+ |X|. We lift these definitions to sets of predicates in the
natural way: given a finite set P of predicates, we define its size size(P ) as the number of
predicates in P , its length as len(P ) def=

∑
ϕ∈P len(ϕ), its norm as ‖P‖ def= max{‖ϕ‖ : ϕ ∈ P},

and its bit length as |P | def= size(P ) + len(P ) + log‖P‖+ |X|. Note that len(P ) = 0 iff P only
contains atomic predicates.

3 Population protocols

A population protocol is a tuple P = (Q,T, L,X, I,O) where
Q is a finite set whose elements are called states;
T ⊆ {(p, q) ∈ NQ × NQ : |p| = |q|} is a finite set of transitions containing the set
{(p,p) : p ∈ NQ, |p| = 2};
L ∈ NQ is the leader multiset;
X is a finite set whose elements are called input variables;
I : X → Q is the input mapping;
O : Q→ {0, 1,⊥} is the output mapping.

For readability, we often write t : p 7→ q to denote a transition t = (p, q). Given ∆ ≥ 2,
we say that t is ∆-way if |p| ≤ ∆.

In the standard syntax of population protocols T is a subset of N2×N2, and O : Q→ {0, 1}.
These differences are discussed at the end of this section.

Inputs and configurations. An input is a multiset v ∈ NX such that |v| ≥ 2, and a
configuration is a multiset C ∈ NQ such that |C| ≥ 2. Intuitively, a configuration represents
a population of agents where C(q) denotes the number of agents in state q. The initial
configuration Cv for input v is defined as Cv

def= L+ Hv(x) · I(x) : x ∈ XI.
The support and b-support of a configuration C are respectively defined as JCK def= {q ∈ Q :

C(q) > 0} and JCKb = {q ∈ JCK : O(q) = b}. The output of a configuration C is defined as
O(C) def= b if JCKb 6= ∅ and JCK¬b = ∅ for some b ∈ {0, 1}, and O(C) def= ⊥ otherwise. Loosely
speaking, if O(q) = ⊥ then agents in state q have no output, and a population has output
b ∈ {0, 1} if all agents with output have output b.

Executions. A transition t = (p, q) is enabled in a configuration C if C ≥ p, and disabled
otherwise. Because of our assumption on T , every configuration enables at least one transition.
If t is enabled in C, then it can be fired leading to configuration C ′ def= C � p+ q, which we
denote C t−→ C ′. For every set of transitions S, we write C S−→ C ′ if C t−→ C ′ for some t ∈ S.
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We denote the reflexive and transitive closure of S−→ by S∗

−−→. If S is the set of all transitions
of the protocol under consideration, then we simply write −→ and ∗−→.

An execution is a sequence of configurations σ = C0C1 · · · such that Ci −→ Ci+1 for every
i ∈ N. We write σi to denote configuration Ci. The output of an execution σ is defined
as follows. If there exist i ∈ N and b ∈ {0, 1} such that O(σi) = O(σi+1) = · · · = b, then
O(σ) def= b, and otherwise O(σ) def= ⊥.

Computations. An execution σ is fair if for every configuration D the following holds:

if |{i ∈ N : σi
∗−→ D}| is infinite, then |{i ∈ N : σi = D}| is infinite.

In other words, fairness ensures that an execution cannot avoid a configuration forever. We
say that a population protocol computes a predicate ϕ : NX → {0, 1} if for every v ∈ NX
and every fair execution σ starting from Cv, it is the case that O(σ) = ϕ(v). Two protocols
are equivalent if they compute the same predicate. It is known that population protocols
compute precisely the Presburger-definable predicates [5, 11].

I Example 1. Let Pn = (Q,T,0, {x}, I, O) be the protocol where Q def= {0, 1, 2, 3, . . . , 2n},
I(x) def= 1, O(a) = 1 def⇐⇒ a = 2n, and T contains a transition, for each a, b ∈ Q, of the form
Ha, bI 7→ H0, a+ bI if a+ b < 2n, and Ha, bI 7→ H2n, 2nI if a+ b ≥ 2n. It is readily seen that Pn
computes ϕ(x) def= (x ≥ 2n). Intuitively, each agent stores a number, initially 1. When two
agents meet, one of them stores the sum of their values and the other one stores 0, with sums
capping at 2n. Once an agent reaches this cap, all agents eventually get converted to 2n.

Now, consider the protocol P ′n = (Q′, T ′,0, {x}, I ′, O′), where Q′ def= {0, 20, 21, . . . , 2n},
I ′(x) def= 20, O′(a) = 1 def⇐⇒ a = 2n, and T ′ contains a transition for each 0 ≤ i < n of the
form H2i, 2iI 7→ H0, 2i+1I, and a transition for each a ∈ Q′ of the form Ha, 2nI 7→ H2n, 2nI.
Using similar arguments as above, it follows that P ′n also computes ϕ, but more succinctly:
While Pn has 2n + 1 states, P ′n has only n+ 1 states.

Types of protocols. A protocol P = (Q,T, L,X, I,O) is
leaderless if |L| = 0, and has |L| leaders otherwise;
∆-way if all its transitions are ∆-way;
simple if there exist f, t ∈ Q such that O(f) = 0, O(t) = 1 and O(q) = ⊥ for every
q ∈ Q \ {f, t} (i.e., the output is determined by the number of agents in f and t.)

Protocols with leaders and leaderless protocols compute the same predicates [5]. Every
∆-way protocol can be transformed into an equivalent 2-way protocol with a polynomial
increase in the number of transitions [8]. Finally, every protocol can be transformed into an
equivalent simple protocol with a polynomial increase in the number of states [7].

4 Main result

The main result of this paper is the following theorem:

I Theorem 2. Every predicate ϕ of QFPA can be computed by a leaderless population
protocol P with O(poly(|ϕ|)) states. Moreover, P can be constructed in polynomial time.

To prove Theorem 2, we first provide a construction that uses ` ∈ O(|ϕ|3) leaders. If
there are at least |v| ≥ ` input agents v (large inputs), we will show how the protocol can
be made leaderless by having agents encode both their state and the state of some leader.
Otherwise, |v| < ` (small inputs), and we will resort to a special construction, with a single
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leader, that only works for populations of bounded size. We will show how the leader can be
simulated collectively by the agents. Hence, we will construct succinct protocols computing
ϕ for large and small inputs, respectively. Formally, we prove:

I Lemma 3. Let ϕ be a predicate over variables X. There exist ` ∈ O(|ϕ|3) and leaderless
protocols P≥` and P<` with O(poly(|ϕ|)) states such that:
(a) P≥` computes predicate (|v| ≥ `)→ ϕ(v), and
(b) P<` computes predicate (|v| < `)→ ϕ(v).

Theorem 2 follows immediately from the lemma: it suffices to take the conjunction of
both protocols, which only yields a quadratic blow-up on the number of states, using the
classical product construction [3]. The rest of the paper is dedicated to proving Lemma 3.
Parts (a) and (b) are shown in Sections 5 and 6, respectively.

In the remainder of the paper, whenever we claim the existence of some protocol P, we
also claim polynomial-time constructibility of P without mentioning it explicitly.

5 Succinct protocols for large populations

We show that, for every predicate ϕ, there exists a constant ` ∈ O(|ϕ|3) and a succinct
protocol P≥` computing (|v| ≥ `) → ϕ(v). Throughout this section, we say that n ∈ N is
large if n ≥ `, and that a protocol computes ϕ for large inputs if it computes (|v| ≥ `)→ ϕ(v).

We present the proof in a top-down manner, by means of a chain of statements of the
form “A← B, B ← C, C ← D, and D”. Roughly speaking, and using notions that will be
defined in the forthcoming subsections:

Section 5.1 introduces protocols with helpers, a special class of protocols with leaders.
The section shows: ϕ is computable for large inputs by a succinct leaderless protocol (A),
if it is computable for large inputs by a succinct protocol with helpers (B).
Section 5.2 defines protocols that simultaneously compute a set of predicates. The section
proves: (B) holds if the set P of atomic predicates occurring within ϕ is simultaneously
computable for large inputs by a succinct protocol with helpers (C).
Section 5.3 introduces protocols with reversible dynamic initialization. The section shows:
(C) holds if each atomic predicate of P is computable for large inputs by a succinct
protocol with helpers and reversible dynamic initialization (D).
Section 5.4 shows that (D) holds by exhibiting succinct protocols with helpers and
reversible dynamic initialization that compute atomic predicates for large inputs.

5.1 From protocols with helpers to leaderless protocols

Intuitively, a protocol with helpers is a protocol with leaders satisfying an additional property:
adding more leaders does not change the predicate computed by the protocol. Formally, let
P = (Q,T, L,X, I,O) be a population protocol computing a predicate ϕ. We say that P is a
protocol with helpers if for every L′ � L the protocol P ′ = (Q,T, L′, X, I,O) also computes
ϕ, where L′ � L def= ∀q ∈ Q : (L′(q) = L(q) = 0 ∨ L′(q) ≥ L(q) > 0). If |L| = `, then we say
that P is a protocol with ` helpers.

I Theorem 4. Let P = (Q,T, L,X, I,O) be a ∆-way population protocol with `-helpers
computing some predicate ϕ. There exists a 2-way leaderless population protocol with O(` ·
|X|+ (∆ · |T |+ |Q|)2) states that computes (|v| ≥ `)→ ϕ(v).
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Proof sketch. By [8, Lemma 3], P can be transformed into a 2-way population protocol
(with helpers2) computing the same predicate ϕ, and with at most |Q|+ 3∆ · |T | states. Thus,
we assume P to be 2-way in the rest of the sketch.

For simplicity, assume X = {x} and L = H3 · q, 5 · q′I; that is, P has 8 helpers, and
initially 3 of them are in state q, and 5 are in q′. We describe a leaderless protocol P ′ that
simulates P for every input v such that |v| ≥ |L| = `. Intuitively, P ′ runs in two phases:

In the first phase each agent gets assigned a number between 1 and 8, ensuring that
each number is assigned to at least one agent (this is the point at which the condition
|v| ≥ ` is needed). At the end of the phase, each agent is in a state of the form (x, i),
meaning that the agent initially represented one unit of input for variable x, and that it
has been assigned number i. To achieve this, initially every agent is placed in state (x, 1).
Transitions are of the form H(x, i), (x, i)I 7→ H(x, i+ 1), (x, i)I for every 1 ≤ i ≤ 7. The
transitions guarantee that all but one agent is promoted to (x, 2), all but one to (x, 3),
etc. In other words, one agent is “left behind” at each step.
In the second phase, an agent’s state is a multiset: agents in state (x, i) move to state
HI(x), qI if 1 ≤ i ≤ 3, and to state HI(x), q′I if 4 ≤ i ≤ 8. Intuitively, after this move
each agent has been assigned two jobs: simultaneously simulate a regular agent of P
starting at state x, and a helper of L starting at state q or q′. Since in the first phase
each number is assigned to at least one agent, P ′ has at least 3 agents simulating helpers
in state q, and at least 5 agents simulating helpers in state q′. There may be many more
helpers, but this is harmless, because, by definition, additional helpers do not change the
computed predicate.
The transitions of P ′ are designed according to this double role of the agents of P ′. More
precisely, for all multisets p, q,p′, q′ of size two, Hp, qI 7→ Hp′, q′I is a transition of P ′ iff
(p+ q) −→ (p′ + q′) in P. J

5.2 From multi-output protocols to protocols with helpers
A k-output population protocol is a tuple Q = (Q,T, L,X, I,O) where O : [k]×Q→ {0, 1,⊥}
and Qi

def= (Q,T, L,X, I,Oi) is a population protocol for every i ∈ [k], where Oi denotes the
mapping such that Oi(q)

def= O(i, q) for every q ∈ Q. Intuitively, since each Qi only differs
by its output mapping, Q can be seen as a single population protocol whose executions
have k outputs. More formally, Q computes a set of predicates P = {ϕ1, ϕ2, . . . , ϕk} if Qi
computes ϕi for every i ∈ [k]. Furthermore, we say that Q is simple if Qi is simple for
every i ∈ [k]. Whenever the number k is irrelevant, we use the term multi-output population
protocol instead of k-output population protocol.

I Proposition 5. Assume that every finite set A of atomic predicates is computed by some
|A|-way multi-output protocol with O(|A|3) helpers and states, and O(|A|5) transitions. Every
QFPA predicate ϕ is computed by some simple |ϕ|-way protocol with O(|ϕ|3) helpers and
states, and O(|ϕ|5) transitions.

Proof sketch. Consider a binary tree decomposing the boolean operations of ϕ. We design
a protocol for ϕ by induction on the height of the tree.

The case where the height is 0, and ϕ is atomic, is trivial. We sketch the induction
step for the case where the root is labeled with ∧, that is ϕ = ϕ1 ∧ ϕ2, the other cases
are similar. By induction hypothesis, we have simple protocols P1,P2 computing ϕ1, ϕ2,

2 Lemma 3 of [8] deals with leaders and not the more specific case of helpers. Nonetheless, computation
under helpers is preserved as the input mapping of P remains unchanged in the proof of the lemma.
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respectively. Let tj , fj be the output states of Pj for j ∈ {1, 2} such that Oj(tj) = 1 and
Oj(fj) = 0. We add two new states t, f (the output states of the new protocol) and an
additional helper starting in state f. To compute ϕ1 ∧ϕ2 we add the following transitions for
every b1 ∈ {t1, f1}, b2 ∈ {t2, f2}, and b ∈ {t, f}: Hb1, b2, bI 7→ Hb1, b2, tI if b1 = t1 ∧ b2 = t2,
and Hb1, b2, bI 7→ Hb1, b2, fI otherwise. The additional helper computes the conjunction as
desired. J

5.3 From reversible dynamic initialization to multi-output protocols
Let P = {ϕ1, . . . , ϕk} be a set of k ≥ 2 atomic predicates of arity n ≥ 1 over a set
X = {x1, . . . , xn} of variables. We construct a multi-output protocol P for P of size
poly(|ϕ1|+ · · ·+ |ϕk|).

Let P1, . . . ,Pk be protocols for ϕ1, . . . , ϕk. Observe that P cannot be a “product protocol”
that executes P1, . . . ,Pk synchronously. Indeed, the states of such a P are tuples (q1, . . . , qk)
of states of P1, . . . ,Pk, and so P would have exponential size in k. Further, P cannot execute
P1, . . . ,Pk asynchronously in parallel, because, given an input x ∈ Nn, it must dispatch k ·x
agents (x to the input states of each Pj), but it only has x. Such a P would need (k − 1)|x|
helpers, which is not possible, because a protocol of size poly(|ϕ1|+ · · ·+ |ϕk|) can only use
poly(|ϕ1|+ · · ·+ |ϕk|) helpers, whatever the input x.

The solution is to use a more sophisticated parallel asynchronous computation. Consider
two copies of inputs, denoted X = {x1, . . . , xn} and X = {x1, . . . , xn}. For each predicate
ϕ over X, consider predicate ϕ̃ over X ∪ X satisfying ϕ̃(x,x) = ϕ(kx + x) for every
(x,x) ∈ NX∪X . We obtain ϕ̃(x,x) = ϕ(x) whenever kx + x = x, e.g. for x := bx

k c and
x := xmod k. With this choice, P needs to dispatch a total of k (|x+ x|) ≤ |x|+n · (k− 1)2

agents to compute ϕ̃1(x,x), . . . , ϕ̃k(x,x). That is, n · (k − 1)2 helpers are sufficient to
compute P. Formally, we define ϕ̃ in the following way:

For ϕ(x) =
(

n∑
i=1

αixi > β

)
, we define ϕ̃(x,x) :=

(
n∑
i=1

(k · αi)xi + αixi > β

)

and similarly for modulo predicates. For instance, if ϕ(x1, x2) = 3x1 − 2x2 > 6 and k = 4,
then ϕ̃(x1, x1, x2, x2) = 12x1 + 3x1 − 8x2 − 2x2 > 6. As required, ϕ̃(x,x) = ϕ(kx+ x).

Let us now describe how the protocol P computes ϕ̃1(x,x), . . . , ϕ̃k(x,x). Let P̃1, . . . , P̃k
be protocols computing ϕ̃1, . . . , ϕ̃k. Let X = {x1, . . . , xn} be the input states of P, and let
xj

1, . . . , x
j
n and xj

1, . . . , x
j
n be the input states of P̃j for every 1 ≤ j ≤ k. Protocol P repeatedly

chooses an index 1 ≤ i ≤ n, and executes one of these two actions: (a) take k agents from
xi, and dispatch them to x1

i, . . . , x
k
i (one agent to each state); or (b) take one agent from xi

and (k − 1) helpers, and dispatch them to x1
i, . . . , x

k
i. The index and the action are chosen

nondeterministically. Notice that if for some input xi, all ` agents of xi are dispatched, then
kxj

i + xj
i = ` for all j. If all agents of xi are dispatched for every 1 ≤ i ≤ n, then we say that

the dispatch is correct.
The problem is that, because of the nondeterminism, the dispatch may or may not be

correct. Assume, e.g., that k = 5 and n = 1. Consider the input x1 = 17, and assume that
P has n · (k − 1)2 = 16 helpers. P may correctly dispatch x1 = b 17

5 c = 3 agents to each of
x1

1, . . . , x
1
5 and x1 = (17mod 5) = 2 to each of x1

1, . . . , x
1
5; this gives a total of (3 + 2) · 5 = 25

agents, consisting of the 17 agents for the input plus 8 helpers. However, it may also wrongly
dispatch 2 agents to each of x1

1, . . . , x
1
5 and 4 agents to each of x1

1, . . . , x
1
5, with a total of

(2 + 4) · 5 = 30 agents, consisting of 14 input agents plus 16 helpers. In the second case, each
Pj wrongly computes ϕ̃j(2, 4) = ϕj(2 · 5 + 4) = ϕj(14), instead of the correct value ϕj(17).
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To solve this problem we ensure that P can always recall agents already dispatched to
P̃1, . . . , P̃k as long as the dispatch is not yet correct. This allows P to “try out” dispatches
until it dispatches correctly, which eventually happens by fairness. For this we design P so
that (i) the atomic protocols P̃1, . . . , P̃k can work with inputs agents that arrive over time
(dynamic initialization), and (ii) P̃1, . . . , P̃k can always return to their initial configuration
and send agents back to P, unless the dispatch is correct (reversibility). To ensure that
P stops redistributing after dispatching a correct distribution, it suffices to replace each
reversing transition p 7→ q by transitions p+ HxiI 7→ q + HxiI, one for each 1 ≤ i ≤ n: All
these transitions become disabled when x1, . . . , xn are not populated.

Reversible dynamic initialization. Let us now formally introduce the class of protocols with
reversible dynamic initialization that enjoys all properties needed for our construction. A
simple protocol with reversible dynamic initialization (RDI-protocol for short) is a tuple
P = (Q,T∞, T†, L,X, I,O), where P∞ = (Q,T∞, L,X, I,O) is a simple population protocol,
and T† is the set of transitions making the system reversible, called the RDI-transitions.

Let T def= T∞ ∪ T†, and let In def= {inx : x ∈ X} and Out def= {outx : x ∈ X} be the sets of
input and output transitions, respectively, where inx

def= (0, HI(x)I) and outx
def= (HI(x)I,0). An

initialization sequence is a finite execution π ∈ (T ∪ In ∪ Out)∗ from the initial configuration
L′ with L′ � L. The effective input of π is the vector w such that w(x) def= |π|inx

− |π|outx

for every x ∈ X. Intuitively, a RDI-protocol starts with helpers only, and is dynamically
initialized via the input and output transitions.

Let f, t ∈ Q be the unique states of P withO(f) = 0 andO(t) = 1. For every configuration
C, let [C] def= {C ′ : C ′(f) + C ′(t) = C(f) + C(t) and C ′(q) = C(q) for all q ∈ Q \ {f, t}}.
Intuitively, all configurations C ′ ∈ [C] are equivalent to C in all but the output states.

An RDI-protocol is required to be reversible, that is for every initialization sequence π
with effective input w, and such that L′ π−→ C for some L′ � L, the following holds:

if C T∗

−−→ D and D′ ∈ [D], then D′ T
∗

−−→ C ′ for some C ′ ∈ [C], and

C(I(x)) ≤ w(x) for all x ∈ X.
Intuitively, an RDI-protocol can never have more agents in an input state than the effective
number of agents it received via the input and output transitions. Further, an RDI-protocol
can always reverse all sequences that do not contain input or output transitions. This
reversal does not involve the states f and t, which have a special role as output states. Since
RDI-protocols have a default output, we need to ensure that the default output state is
populated when dynamic initialization ends, and reversal for f and t would prevent that.

An RDI-protocol P computes ϕ if for every initialization sequence π with effective input
w such that L′ π−→ C for some L′ � L, the standard population protocol P∞ computes ϕ(w)
from C (that is with T† disabled). Intuitively, if the dynamic initialization terminates, the
RDI-transitions T† become disabled, and then the resulting standard protocol P∞ converges
to the output corresponding to the dynamically initialized input.

I Theorem 6. Assume that for every atomic predicate ϕ, there exists a |ϕ|-way RDI-protocol
with O(|ϕ|) helpers, O(|ϕ|2) states and O(|ϕ|3) transitions that computes ϕ. For every finite
set P of atomic predicates, there exists a |P |-way simple multi-output protocol, with O(|P |3)
helpers and states, and O(|P |5) transitions, that computes P .
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5.4 Atomic predicates under reversible dynamic initialization
Lastly, we show that atomic predicates are succinctly computable by RDI-protocols:

I Theorem 7. Every atomic predicate ϕ over variables X can be computed by a simple
|ϕ|-way population protocol with reversible dynamic initialization that has O(|ϕ|) helpers,
O(|ϕ|2) states, and O(|ϕ|3) transitions.
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22
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Figure 1 Partial representation of the protocol computing 5x + 6y ≥ 4 (mod 7) as a Petri net,
where places (circles), transitions (squares) and tokens (smaller filled circles) represent respectively
states, transitions and agents. Non-helper agents remember their input variable (labeled here within
tokens). The depicted configuration is obtained from input x = 2, y = 1 by firing the bottom
leftmost transition (dark blue).

The protocols for arbitrary threshold and remainder predicates satisfying the conditions
of Theorem 7, and their correctness proofs, are given in [7]. Note that the threshold protocol
is very similar to the protocol for linear inequalities given in Section 6 of [8]. Thus, as an
example, we will instead describe how to handle the remainder predicate 5x− y ≡7 4. Note,
that the predicate can be rewritten as (5x+ 6y ≥ 4 (mod 7)) ∧ (5x+ 6y 6≥ 5 (mod 7)). As
we can handle negations and conjunctions separately in Section 5.2, we will now explain the
protocol for ϕ def= 5x+ 6y ≥ 4 (mod 7). The protocol is partially depicted in Figure 1 using
Petri net conventions for the graphical representation.

The protocol has an input state x for each variable x ∈ X, output states f and t, a neutral
state 0, and numerical states of the form +2i for every 0 ≤ i ≤ n, where n is the smallest
number such that 2n > ‖ϕ‖. Initially, (at least) one helper is set to f and (at least) 2n
helpers set to 0. In order to compute 5x+ 6y ≥ 4 (mod 7) for x := r and y := s, we initially
place r and s agents in the states x and y, i.e., the agents in state x encode the number r in
unary, and similarly for y. The blue transitions on the left of Figure 1 “convert” each agents
in input states to a binary representation of their corresponding coefficient. In our example,
agents in state x are converted to a(x) = 5 = 01012 by putting one agent in 4 and another
one in 1. Since two agents are needed to encode 5, the transition “recruits” one helper from
state 0. Observe that, since the inputs can be arbitrarily large, but a protocol can only
use a constant number of helpers, the protocol must reuse helpers in order to convert all
agents in input states. This happens as follows. If two agents are in the same power of
two, say +2i, then one of them can be “promoted” to +2i+1, while the other one moves to
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state 0, “liberating” one helper. This allows the agents to represent the overall value of all
converted agents in the most efficient representation. That is, from any configuration, one
can always reach a configuration where there is at most one agent in each place 20, . . . , 2n−1,
there are at most the number of agents converted from input places in place 2n, and hence
there are at least n agents in place 0, thus ready to convert some agent from the input place.
Similar to promotions, “demotions” to smaller powers of two can also happen. Thus, the
agents effectively shift through all possible binary representations of the overall value of
all converted agents. The ≡7 transition in Figure 1 allows 3 agents in states 4, 2 and 1
to “cancel out” by moving to state 0, and it moves the output helper to f. Furthermore,
there are RDI-transitions that allow to revert the effects of conversion and cancel transitions.
These are not shown in Figure 1.

We have to show that this protocol computes ϕ under reversible dynamic initialization.
First note, that while dynamic initialization has not terminated, all transitions have a
corresponding reverse transition. Thus, it is always possible to return to wrong initial
configurations. However, reversing the conversion transitions can create more agents in input
states than the protocol effectively received. To forbid this, each input agent is “tagged” with
its variable (see tokens in Figure 1). Therefore, in order to reverse a conversion transitions,
the original input agent is needed. This implies, that the protocol is reversible.

Next, we need to argue that the protocol without the RDI-transitions computes ϕ
once the dynamic initialization has terminated. The agents will shift through the binary
representations of the overall value. Because of fairness, the ≡7 transition will eventually
reduce the overall value to at most 6. There is a ≥ 4-transition which detects the case where
the final value is at least 4 and moves the output helper from f to state t. Notice that
whenever transition ≡7 occurs, we reset the output by moving the output helper to state f.

6 Succinct protocols for small populations

We show that for every predicate ϕ and constant ` = O(|ϕ|3), there exists a succinct protocol
P<` that computes the predicate (|v| < `)→ ϕ(v). In this case, we say that P<` computes
ϕ for small inputs. Further, we say that a number n ∈ N (resp. an input v) is small with
respect to ϕ if n ≤ ` (resp. |v| ≤ `). We present the proof strategy in a top-down manner.

Section 6.1 proves: There is a succinct leaderless protocol P that computes ϕ for small
inputs (A), if for every small n some succinct protocol Pn computes ϕ for all inputs of
size n (B). Intuitively, constructing a succinct protocol for all small inputs reduces to the
simpler problem of constructing a succinct protocol for all small inputs of a fixed size.
Section 6.2 introduces halting protocols. It shows: There is a succinct protocol that
computes ϕ for inputs of size n, if for every atomic predicate ψ of ϕ some halting succinct
protocol computes ψ for inputs of size n (C). Thus, constructing protocols for arbitrary
predicates reduces to constructing halting protocols for atomic predicates.
Section 6.3 proves (C). Given a threshold or remainder predicate ϕ and a small n, it
shows how to construct a succinct halting protocol that computes ϕ for inputs of size n.

6.1 From fixed-sized protocols with one leader to leaderless protocols
We now define when a population protocol computes a predicate for inputs of a fixed size.
Intuitively, it should compute the correct value for every initial configurations of this size; for
inputs of other sizes, the protocol may converge to the wrong result, or may not converge.
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I Definition 8. Let ϕ be a predicate and let i ≥ 2. A protocol P computes ϕ for inputs of
size i, denoted “P computes (ϕ | i)”, if for every input v of size i, every fair execution of P
starting at Cv stabilizes to ϕ(v).

We show that if, for each small number i, some succinct protocol computes (ϕ | i), then
there is a single succinct protocol that computes ϕ for all small inputs.

I Theorem 9. Let ϕ be a predicate over a set of variables X, and let ` ∈ N. Assume that for
every i ∈ {2, 3, . . . , `−1}, there exists a protocol with at most one leader and at most m states
that computes (ϕ | i). Then, there is a leaderless population protocol with O(`4 ·m2 · |X|3)
states that computes (x < `)→ ϕ(x).

Proof sketch. Fix a predicate ϕ and ` ∈ N. For every 2 ≤ i < `, let Pi be a protocol
computing (ϕ | i). We describe the protocol P = (Q,T,X, I,O) that computes (x ≥
`) ∨ ϕ(x) ≡ (x < `)→ ϕ(x). The input mapping I is the identity. During the computation,
agents never forget their initial state – that is, all successor states of an agent are annotated
with their initial state. The protocol initially performs a leader election. Each provisional
leader stores how many agents it has “knocked out” during the leader election in a counter
from 0 to `− 1. After increasing the counter to a given value i < `, it resets the state of i
agents and itself to the corresponding initial state of Pi+1, annotated with X, and initiates a
simulation of Pi+1. When the counter of an agent reaches `− 1, the agent knows that the
population size must be ≥ `, and turns the population into a permanent 1-consensus. Now,
if the population size i is smaller than `, then eventually a leader gets elected who resets the
population to the initial population of Pi. Since Pi computes (ϕ | i), the simulation of Pi
eventually yields the correct output. J

6.2 Computing boolean combinations of predicates for fixed-size inputs
We want to produce a population protocol P for a boolean combination ϕ of atomic predicates
(ϕi)i∈[k] for which we have population protocols (Pi)i∈[k]. As in Section 5.3, we cannot use a
standard “product protocol” that executes P1, . . . ,Pk synchronously because the number of
states would be exponential in k. Instead, we want to simulate the concatenation of (Pi)i∈[k].
However, this is only possible if for all i ∈ [k], the executions of Pi eventually “halt”, i.e.
some agents are eventually certain that the output of the protocol will not change anymore,
which is not the case in general population protocols. For this reason we restrict our attention
to “halting” protocols.

I Definition 10. Let P be a simple protocol with output states f and t. We say that P is a
halting protocol if every configuration C reachable from an initial configuration satisfies:

C(f) = 0 ∨ C(t) = 0,
C
∗−→ C ′ ∧ C(q) > 0⇒ C ′(q) > 0 for every q ∈ {f, t} and every configuration C ′.

Intuitively, a halting protocol is a simple protocol in which states f and t behave like
“final states”: If an agent reaches q ∈ {f, t}, then the agent stays in q forever. In other words,
the protocol reaches consensus 0 (resp. 1) iff an agent ever reaches f (resp. t).

I Theorem 11. Let k, i ∈ N. Let ϕ be a boolean combination of atomic predicates (ϕj)j∈[k].
Assume that for every j ∈ [k], there is a simple halting protocol Pj = (Qj , Lj , X, Tj , Ij , Oj)
with one leader computing (ϕj | i). Then there exists a simple halting protocol P that
computes (ϕ | i), with one leader and O (|X| · (len(ϕ) + |Q1|+ . . .+ |Qk|)) states.
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Proof sketch. We only sketch the construction for ϕ = ϕ1 ∧ ϕ2. The main intuition is
that, since P1 and P2 are halting, we can construct a protocol that, given an input v, first
simulates P1 on v, and, after P1 halts, either halts if P1 converges to 0, or simulates P2 on
v if P1 converges to 1. Each agent remembers in its state the input variable it corresponds
to, in order to simulate P2 on v. J

6.3 Computing atomic predicates for fixed-size inputs
We describe a halting protocol that computes a given threshold predicate for fixed-size inputs.

I Theorem 12. Let ϕ(x,y) def= α · x − β · y > 0. For every i ∈ N, there exists a halting
protocol with one leader and O(i2(|ϕ|+ log i)3) states that computes (ϕ | i).

We first describe a sequential algorithm Greater-Sum(x,y), that for every input x,y satisfying
|x| + |y| = i decides whether α · x − β · y > 0 holds. Then we simulate Greater-Sum by
means of a halting protocol with i agents.

Since each agent can only have O(log i+ log |ϕ|) bits of memory (the logarithm of the
number of states), Greater-Sum must use at most O(i · (log i + log |ϕ|)) bits of memory,
otherwise it cannot be simulated by the agents. Because of this requirement, Greater-Sum
cannot just compute, store, and then compare α · x and β · y; this uses too much memory.

Greater-Sum calls procedures Probe1(j) and Probe2(j) that return the j-th bits of αx
and βy, respectively, where j = 1 is the most significant bit. Since |x| ≤ i, and the
largest constant in α is at most ||ϕ||, we have α · x ≤ i · ||ϕ||, and so α · x has at most
m

def= |ϕ|+ blog(i)c+ 1 bits, and the same holds for βy. So we have 1 ≤ j ≤ m. Let us first
describe Greater-Sum, and then Probe1(j); the procedure Probe2(j) is similar.

Greater-Sum(x,y) loops through j = 1, . . . ,m. For each j, it calls Probe1(j) and Probe2(j).
If Probe1(j) > Probe2(j), then it answers ϕ(x,y) = 1, otherwise it moves to j + 1. If
Greater-Sum reaches the end of the loop, then it answers ϕ(x,y) = 0. Observe that
Greater-Sum only needs to store the current value of j and the bits returned by Probe1(j)
and Probe2(j). Since j ≤ m, Greater-Sum only needs O(log(|ϕ|+ log i)) bits of memory.

Probe1(j) uses a decreasing counter k = m, . . . , j to successively compute the bits b1(k)
of α · x, starting at the least significant bit. To compute b1(k), the procedure stores the
carry ck ≤ i of the computation of b1(k + 1); it then computes the sum sk := ck +α(k) · x
(where α(k) is the k-th vector of bits of α), and sets bk := sk mod 2 and ck−1 := sk ÷ 2. The
procedure needs O(log(|ϕ|+ log i)) bits of memory for counter k, log(i) + 1 bits for encoding
sk, and O(log(i)) bits for encoding ck. So it only uses O(log(|ϕ|+ log i)) bits of memory.

Let us now simulate Greater-Sum(x,y) by a halting protocol with one leader agent.
Intuitively, the protocol proceeds in rounds corresponding to the counter k. The leader
stores in its state the value j and the current values of the program counter, of counter k,
and of variables bk, sk, and ck. The crucial part is the implementation of the instruction
sk := ck +α(k) · x of Probe1(j). In each round, the leader adds input agents one by one. As
the protocol only needs to work for populations with i agents, it is possible for each agent to
know if it already interacted with the leader in this round, and for the leader to count the
number of agents it has interacted with this round, until it reaches i to start the next round.

7 Conclusion and further work

We have proved that every predicate ϕ of quantifier-free Presburger arithmetic (QFPA)
is computed by a leaderless protocol with poly(|ϕ|) states. Further, the protocol can be
computed in polynomial time. The number of states of previous constructions was exponential
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both in the bit-length of the coefficients of ϕ, and in the number of occurrences of boolean
connectives. Since QFPA and PA have the same expressive power, every computable predicate
has a succinct leaderless protocol. This result completes the work initiated in [8], which also
constructed succinct protocols, but only for some predicates, and with the help of leaders.

It is known that protocols with leaders can be exponentially faster than leaderless protocols.
Indeed, every QFPA predicate is computed by a protocol with leaders whose expected time
to consensus is polylogarithmic in the number of agents [6], while every leaderless protocol
for the majority predicate needs at least linear time in the number of agents [1]. Our result
shows that, if there is also an exponential gap in state-complexity, then it must be because
some family of predicates have protocols with leaders of logarithmic size, while all leaderless
families need polynomially many states. The existence of such a family is an open problem.

The question of whether protocols with poly(|ϕ|) states exist for every PA formula ϕ,
possibly with quantifiers, also remains open. However, it is easy to prove that no algorithm
for the construction of protocols from PA formulas runs in time 2p(n) for any polynomial p.

I Theorem 13. For every polynomial p, every algorithm that accepts a formula ϕ of PA as
input, and returns a population protocol computing ϕ, runs in time 2ω(p(|ϕ|)).

Therefore, if PA also has succinct protocols, then they are very hard to find.
Our succinct protocols for QFPA have slow convergence (in the usual parallel time model,

see e.g. [2]), since they often rely on exhaustive exploration of a number of alternatives, until
the right one is eventually hit. The question of whether every QFPA predicate has a succinct
and fast protocol is very challenging, and we leave it open for future research.
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Abstract
The Longest Common Increasing Subsequence problem (LCIS) is a natural variant of the celebrated
Longest Common Subsequence (LCS) problem. For LCIS, as well as for LCS, there is an O

(
n2)-time

algorithm and a SETH-based conditional lower bound of O
(
n2−ε

)
. For LCS, there is also the

Masek-Paterson O
(
n2/ logn

)
-time algorithm, which does not seem to adapt to LCIS in any obvious

way. Hence, a natural question arises: does any (slightly) sub-quadratic algorithm exist for the
Longest Common Increasing Subsequence problem? We answer this question positively, presenting a
O
(
n2/ loga n

)
-time algorithm for a = 1

6 − o (1). The algorithm is not based on memorizing small
chunks of data (often used for logarithmic speedups, including the “Four Russians Trick” in LCS),
but rather utilizes a new technique, bounding the number of significant symbol matches between
the two sequences.
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1 Introduction

The Longest Common Increasing Subsequence problem (LCIS) is a variant of the well-known
and extensively studied Longest Common Sequence (LCS) problem. The LCS is formulated
as follows: given two integer sequences A = (A[1], . . . , A[n]) and B = (B[1], . . . , B[n]),
determine another sequence C which is a subsequence of both A and B, of maximal possible
length. In the LCIS variant, we require C to be a strictly increasing subsequence.

For LCS, a simple algorithm working in O
(
n2)-time was published in 1974 by Wagner and

Fischer [27]. The complexity was later brought down to O
(

n2

logn

)
(for constant alphabet size)

by Masek and Paterson, using a technique informally called the “Four Russians trick” [21].
Some improvements have been made since then (in particular, [14] shaves another logarithm,
down to O

(
n2 log logn

log2 n

)
even with arbitrary alphabet size), but no truly sub-quadratic,

O
(
n2−ε)-time algorithm has been found. There is even substantial evidence that a better

algorithm might in fact not exist: it was shown by Abboud, Backurs and Vassilevska-Williams
[1], as well as by Bringmann and Künnemann [8] that a truly sub-quadratic algorithm for
LCS would yield a 2δn-time algorithm for SAT, with some δ < 1, thus refuting the Strong
Exponential Time Hypothesis (which states, roughly speaking, that such an algorithm is
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41:2 A Sub-Quadratic Algorithm for the LCIS problem

impossible [16, 17]). Hence, if we believe that SETH is true, then we must accept that no
fast algorithms for LCS will ever be found. It is worth noting that in recent years several
other SETH-based quadratic-time bounds were also shown, e.g., [6] and [24].

As for LCIS, it is arguably one of the most interesting variants of LCS: neither of these
problems seems to be reducible to the other (unless we count the reduction of LCIS to
3-sequence LCS [18], which does not seem strong enough to have meaningful consequences).
Therefore no algorithm or hardness result for LCS can be easily translated to a corresponding
result for LCIS. The “obvious” dynamic programming algorithm for LCIS is O

(
n3), the first

O
(
n2)-time algorithm was given in [31], and possibly the simplest one was explicitly stated

in [32]. A conditional lower bound was proven in [13]: it turns out that, as for LCS, any
O
(
n2−ε)-time algorithm for LCIS would refute the Strong Exponential Time Hypothesis.

The proof is based, like the one in [1], on a reduction from the Orthogonal Vectors problem
(introduced in [28]), but the reduction itself needs a quite different gadget construction. It is
also worth mentioning that the problem of Longest Common Weakly Increasing Subsequence,
similar to LCIS but with only weak monotonicity required, also has a conditional quadratic
lower bound [23]. LCWIS, unlike LCIS, is also non-trivial when restricted to constant-size
alphabets [19, 12]. It still remains an open question whether LCWIS admits a sub-quadratic
algorithm for any alphabet size greater than 3.

The LCIS problem itself has been studied quite extensively, and other algorithms have
been proposed: Sakai [25] found an algorithm which can retrieve the LCIS in linear space,
Kutz et al. [19] presented an algorithm that works in (roughly speaking) O (n · d) time,
where d is the output size (i.e. the length of LCIS). Chan et al. [11] proved that LCIS
can be found in O (r log logn), where r is the number of matching pairs of symbols (i.e.
the pairs (x, y) with A[x] = B[y]). These algorithms work much faster for some specific
cases (for example, they are sub-quadratic for “random” inputs with a reasonable notion of
“randomness”), but no algorithm that achieves o

(
n2) worst-case complexity has been given

so far. Arguably, one of the reasons is that the “Four Russians Trick” does not seem to adapt
to current dynamic-programming LCIS algorithms – at least, not in any easy way. In light
of known conditional lower bound of this problem, we can only hope for complexity similar
to O

(
n2

loga n

)
for some a > 0, but achieving this would seem interesting enough. “The Art of

Shaving Logs”, as called by Timothy M. Chan [9], has already been practised for a variety of
problems [7, 10, 29, 20, 15, 30], sometimes yielding surprising results – for example, some
remarkable consequences in circuit complexity [3, 2]. Therefore, it appears natural to ask
the question: Is there any slightly sub-quadratic (i.e. o

(
n2)-time) algorithm for LCIS?

This paper gives a positive answer to this question, by presenting an O
(
n2(log logn)2

log1/6 n

)
-time

algorithm for LCIS. Our algorithm iterates over matching pairs of symbols (as the one in
[11]), but to achieve sub-quadratic time, a new „log-shaving” technique is introduced: we do
not try to precompute the results for small chunks of data, as in LCS algorithms. Instead,
we choose a useful subset of matching pairs – so-called significant pairs – prove that there
are o

(
n2) such pairs, and adapt the algorithm to exploit this fact.

2 Basic notions and paper outline

Let A and B be the input sequences – for most of the paper, it is convenient to allow A

and B to have different lengths. Later, for the final complexity results, we will assume
|A| = |B|. We use array-like notation for elements of A and B, i.e. A = (A[1], A[2], . . .),
B = (B[1], B[2], . . .). We will refer to the elements of A and B as symbols, remembering that
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the symbols are in fact integers, and thus can be compared with each other. Also, we may
assume that all those integers are positive and not exceeding O (|A|+ |B|) – if not, we can
rename all the elements to be in range {1, 2, . . . , |A|+ |B|}, while preserving their relative
order.

I Definition 1 (Matching pair). A pair of indices (x, y) for some 1 ≤ x ≤ |A|, 1 ≤ y ≤ |B| is
a matching pair if A[x] = B[y]. For σ = A[x] = B[y], we can say that (x, y) is a σ-matching
pair, or simply a σ-pair. We also say that σ is the symbol of (x, y) and sometimes write
σ = symbol(x, y).

I Definition 2 (Orders on pairs). Let (x, y) and (x′, y′) be matching pairs.

(1) We say that (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′.

(2) We say that (x, y) ≺ (x′, y′) if x < x′, y < y′ and symbol(x, y) < symbol(x′, y′).

I Definition 3 (Common increasing subsequence). A common increasing sequence of A and
B is a sequence of matching pairs (x1, y1), . . . , (xs, ys) such that (x1, y1) ≺ . . . ≺ (xs, ys).

Our main problem is to find the longest possible common increasing subsequence. Some-
times, we wish to consider only some prefixes of A and B, for which we will need the following
two definitions:

I Definition 4. For any x ≤ |A| and y ≤ |B|, we define lcis(x, y) as the maximal possible
length of a common increasing subsequence that ends with some (x′, y′) with x′ ≤ x and
y′ ≤ y. In other words lcis(x, y) is the length of the longest common increasing subsequence
of A[1..x] and B[1..y].

I Definition 5. For any matching pair (x, y), we define lcis→(x, y) as the maximal possible
length of a common increasing subsequence that ends with (x, y).

I Remark 6. The value of lcis(x, y) is equal to max(x′,y′)≤(x,y) lcis
→(x′, y′). In particular,

for any (x′, y′) ≤ (x, y) we have lcis→(x′, y′) ≤ lcis(x, y).

A sequence realizing lcis→(x, y) must have some pair (x′, y′) as the next-to-last element
(providing that lcis→(x, y) ≥ 2). Clearly, lcis→(x′, y′) = lcis→(x, y)− 1. We call such a pair
the predecessor of (x, y). There may be multiple candidates for the predecessor, so we break
the ties first by y, then by x. Formally:

I Definition 7 (Predecessor). For a matching pair (x, y) the predecessor π(x, y) is a matching
pair (x′, y′) ≺ (x, y) such that:

(1) lcis→(x′, y′) = lcis→(x, y)− 1,

(2) (x′, y′) has the minimal possible y′ of all pairs satisfying (1),

(3) (x′, y′) has the minimal possible x′ of all pairs satisfying (1) and (2).

STACS 2020
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An example is shown in Figure 1 below:

A: 1 3 5 2 5 4 5

B: 1 2 5 3 5 4 5

1 2 3 4

22 33 33

Figure 1 An example: for two sequences A = (1, 3, 5, 2, 5, 4, 5) and B = (1, 2, 5, 3, 5, 4, 5) some
matching pairs are shown. A pair (x, y) is labeled with lcis→(x, y) and an arrow leads from (x, y)
to π(x, y). Some pairs were omitted for clarity.

I Definition 8. For a matching pair (x, y) with lcis→(x, y) > k, the k-th predecessor
πk(x, y) is defined inductively as (x, y) for k = 0 and π(πk−1(x, y)) for k ≥ 1. In particular,
π1(x, y) = π(x, y).

The algorithm for LCIS in [11] iterates over all matching pairs in A and B. There may be,
however, as many as Θ(n2) of them – it is easy to construct an example of such sequences by
including a lot of equal elements. Observe, though, that some of the matching pairs may not
really matter in the solution – for example, if A[x+ 1] = A[x], then a matching pair (x+ 1, y)
for any y is as good as (x, y), and we could drop A[x+ 1] from A altogether. We generalize
this observation to form the notion of a significant pair, which is the central concept of this
paper, allowing us to construct the desired faster algorithm for LCIS.

I Definition 9 (Significant pair). Let (x, y) be a σ-pair, i.e. σ = A[x] = B[y]. We say
that (x, y) is a significant pair if for every σ-pair (x′, y′) ≤ (x, y), if (x′, y′) 6= (x, y) then
lcis→(x′, y′) < lcis→(x, y).

Again, we include an example to make this important definition more clear:

A: 1 3 5 2 5 4 5

B: 1 2 5 3 5 4 5

2 33 43 3 3

Figure 2 An example of two sequences A and B with some matching pairs. A pair (x, y) is
labeled with lcis→(x, y); the significant pairs are drawn with solid lines, while the insignificant ones
– with dashed lines. Some pairs were ommitted for clarity.

B Claim 10. If (x, y) is a matching pair, then π(x, y), if exists, is a significant pair.

Proof. Easy from the tie-breaking rule in the predecessor definition: let (x′, y′) = π(x, y). If
(x′, y′) is not significant, then there is a better candidate for the predecessor. C
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Having defined the significant pairs, we propose the following two theorems, which together
form our main result. The first bounds the number of such pairs, the second proposes an
algorithm that exploits this bound:

I Theorem 11. For any A, B with |A|, |B| ≤ n, the number of significant pairs is at most
O
(

n2

log1/3 n

)
.

I Theorem 12. Suppose that |A|, |B| ≤ n and that there are at most O
(
n2

t

)
significant

pairs, with t = t(n) satisfying log t = Θ (log logn). There is an algorithm which finds LCIS
in O

(
n2(log logn)2

√
t

)
time complexity.

The obvious consequence of Theorems 11 and 12 is the following:

I Corollary 13. There is an algorithm which finds LCIS of two sequences A,B with |A|, |B| ≤
n in O

(
n2(log logn)2

log1/6 n

)
time complexity.

The rest of the paper is devoted to proving the two main theorems: in Section 3 we prove
Theorem 11, whereas Section 4 describes the algorithm of Theorem 12.

3 Counting significant pairs

3.1 The idea
In this section we present the high-level idea behind the bound for the number of significant
pairs. Please note that while the proof originally stems from this concept, its final version
needs also some careful counting and balancing arguments, as well as a few non-intuitive
tricks. Therefore, we start with an informal sketch to give some intuitions, while the full,
formal proof will be presented in Sections 3.2-3.4.

Imagine two sequences A and B with |A| = |B| = n and with the number of significant
pairs „very close” to Θ

(
n2). This requires at least one symbol σ generating a lot of significant

σ-pairs itself (as opposed to, for example,
√
n different symbols generating Θ

(
n3/2) pairs

each – this is impossible, as it would imply |A| > n or |B| > n). We then focus on one
particular such symbol σ and imagine a graph Gσ with all occurrences of σ in A and B as
vertices of Gσ, and all significant σ-pairs as its edges. (An example is already provided with
Figure 2 – for σ = 5, the red elements of A and B are the vertices of Gσ, and red solid lines
are the edges).

Denote by s = s(n) the largest integer such that Gσ has at least s vertices of degree at
least s – the total number of edges cannot exceed O (n · s), so simplifying a little bit, our
goal is to show that s = o (n). But every σ-pair must have its predecessors, which are τ -pairs
for some other symbols τ < σ. The proof is based on the observation that these predecessors
need quite a lot of different symbols – we argue that the total number of required elements of
A and B is asymptotically greater than s. This forces s = o (n), and after careful calculations
we obtain more specific bounds.

To take a closer (but still preliminary) look at our main tools, consider a vertex A[x]
in Gσ with edges (x, y1), . . . , (x, ys) with y1 > y2 > . . . > ys. Consider, for a fixed k > 0,
all predecessors πk(x, yi) for 1 ≤ i ≤ s (let us not worry, for the moment, whether the
predecessors exist), denoting πk(x, yi) = (ui, vi). We claim that for every i, vi+k < vi. This
is because vi+k < yi+k, while vi < yi+k would lead to (ui, vi) ≺ (x, yi+k), which would
in turn yield lcis→(x, yi+k) ≥ lcis→(ui, vi) + 1 = lcis→(x, yi) − k + 1. But the values
lcis→(x, yi), . . . , lcis→(x, yi+k) must all be different (as the pairs are significant), which

STACS 2020
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implies lcis→(x, yi+k) ≤ lcis→(x, yi) − k – a contradiction. Therefore vi > yi+k > vi+k.
This shows that there must be at least s

k different elements in B to accommodate the k-th
predecessors of the pairs (x, yi) for i = 1, 2, . . . , s. A notable edge case is that for every k,
all those predecessors happen to use the same symbol τk, implying at least s

k occurrences
of τk in B and thus at least s + s/2 + s/3 + . . . = Ω (s log s) symbols in B, which would
immediately imply s = O (n/ logn). Of course, we cannot hope to be that fortunate, but
we can salvage some bounds from this argument: if, for some δ = δ(n), which is ω(1) and
o (logn), and for any particular x ∈ A, the k-th predecessors use at most δ different symbols
for every k, we can prove that this yields Ω

(
s log s
δ

)
symbols in B, so s = O

(
nδ

logn

)
= o (n)

and we are done – this is formally proven in more general form in Section 3.4. On the other
hand, if there are more than δ different symbols among predecessors for every possible x, we
expect δ different elements before x in A. Using similar arguments as before, we argue that
those sets of elements must be (at least partly) disjoint for different picks of x. But there are
Ω (s) possible choices of a high-degree vertex x, which also implies s = o (n) – this sketch
roughly corresponds to Section 3.3.

We now move on to the full proof. Before presenting the core observations, we start with
padding the sequences – adding dummy elements to make computing predecessors easier.

3.2 Preliminaries – padding the sequences
Consider two sequences A, B with |A|, |B| ≤ n. Suppose that lcis(|A|, |B|) ≥ 1 – if there are
no common elements in A and B, there is nothing to be proven. We can also assume n ≥ 2.
For the sake of analyzing significant pairs between A and B, we shall modify the sequences a
little bit. First, we can assume, without loss of generality, that A and B contain only positive
integers (adding any constant to all the elements does not change anything). Then we pad both
the sequences, inserting a prefix of dummy elements Pn = (−2n,−2n+ 1,−2n+ 2, . . . ,−1)
in the front, obtaining new sequences Â and B̂. More precisely, we put Â = Pn ◦ A and
B̂ = Pn ◦ B, where ◦ is the operator of sequence concatenation. These new elements now
contribute to all previous common increasing subsequences, increasing their lengths by exactly
2n. This does not change the significance of any “old” matching pairs, i.e. any significant pair
(x, y) present in A and B remains a significant pair (2n+ x, 2n+ y) in Â and B̂. Therefore
the number of significant pairs can only increase in this operation, so it is enough to prove
the inequality of Theorem 11 for Â and B̂. The padding operation also ensures that for every
matching pair (x, y) with x, y > 2n we have lcis→(x, y) > 2n, allowing us to compute up to
2n predecessors of (x, y).

3.3 The σ-pair graph

First, let δ = δ(n) = log1/3 n
4 – our goal is to bound the number of significant pairs by

O
(
n2

δ(n)

)
, and the order of magnitude of δ is chosen as „the highest one for which the proof

still holds”.
The crucial step of the proof starts with fixing a symbol σ and bounding only the number

of significant σ-pairs, which we will then sum up over all possible σ. Without loss of generality
we remove – for a while – all elements greater than σ from Â and B̂, as they do not affect
the significance of any σ-pair.

Let Aσ (resp. Bσ) be the set of all positions x with Â[x] = σ (resp. B̂[x] = σ). Consider
a bipartite graph Gσ with the set of vertices V (Gσ) = Aσ ∪Bσ, and the edge set E(Gσ) =
{(x, y) ∈ Aσ × Bσ : (x, y) is a significant pair}. Our main goal is to bound the number of
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edges in Gσ. To do that, we first define some family of „bad” configurations of edges and
prove that if any of them is forbidden, the number of edges can be bounded as desired.
Finally – which is the most technical part – we show that at least one of those configurations
does not, indeed, appear in the graph.

For any 1 ≤ x ≤ |Â|, let us denote by A→x the suffix of Â starting at x (including x). For
an integer k we say that A→x is a k-dense suffix, if:

|A→x | ≤ dk · δe,
There are bn/δc distinct edges (x, c1), . . . , (x, cbn/δc) ∈ Gσ,
Every ci has, in turn, k distinct edges (yij , ci) for j = 1, 2, . . . , k and some yij ∈ A→x .

The following lemma is the core idea of the proof, as it forbids at least one dense suffix
to appear in Gσ. As its proof needs careful analysis (boiling down to counting predecessors
of σ-pairs), and is somewhat technical, we defer the proof until Section 3.4. Before that, we
will use Lemma 14 to show our ultimate goal, Theorem 11.

I Lemma 14. For every A and B with |A|, |B| ≤ n, and for the corresponding graph Gσ,
there exists some positive integer k ≤ n/δ such that there is no k-dense suffix in Â.

To prove that this lemma bounds the number of edges in Gσ, we first split vertices of
Â according to their degree. The small vertices are these with degree at most 2n

δ , the rest
being large vertices. The following observation is straightforward:
I Remark 15. The total number of edges incident to small vertices of Â is at most |Aσ| · 2n

δ .
It remains to bound the number of edges incident to large vertices in Â. For every

connected substring S ⊆ Â, let us denote by L(S) the number of such edges between S and
B̂.

I Lemma 16. For every A and B with |A|, |B| ≤ n, L(Â) ≤ |Bσ| · 2|Â|
δ .

Proof. We use induction on |Â| (please note that n remains fixed throughout the proof, so
|Â| is always equal to |A|+ 2n). The minimal length of a padded sequence is |Â| = 2n+ 1 –
i.e. with only one non-dummy element – and in this case we have |E| ≤ |Bσ|. Suppose now
that we have some Â with |Â| = a, and have already proven the statement for all A′ with
|A′| < a.

Let k be the integer obtained from Lemma 14 and let Y be the suffix of of Â of length
dkδe (as dkδe ≤ n, Y is a proper suffix). We can now use Lemma 14 to bound the number of
edges between Y and B̂. Let us initially place k tokens on every σ-element of B̂ and consider
all elements of Y , starting from the last one. For every large vertex x ∈ Y we look at all its
neighbors and remove one token from each of them, whenever they still have one. We claim
that every time, at least half of these neighbours (which is at least n/δ, as we are dealing
with large vertices) must still have a token to spare. This is because if at least n/δ neighbors
of x were already tokenless, than A→x would be a k-dense suffix: clearly |A→x | ≤ dkδe, and
we have just found that x has bn/δc neighbors which have already lost their k tokens, so
each of them has k neighbours in A→x .

Therefore, every x must be able to take a token from at least half of its neighbors. As
there are only k · |Bσ| tokens to be removed, the total number of edges L(Y ) cannot exceed
2k|Bσ| ≤ 2 · dkδeδ · |Bσ| = |Y | ·

2|Bσ|
δ .

Let us denote by Â− Y the prefix of Â obtained by deleting Y from the end of Â (i.e.
the prefix of length |Â| − |Y |). Now if |Â−Y | ≤ 2n (i.e. Y uses up all non-padding symbols),
then L(Â− Y ) = 0. Otherwise, we can apply the induction hypothesis to Â− Y , obtaining
L(Â− Y ) ≤ |Â− Y | · 2|Bσ|

δ . In both cases we have L(Â) = L(Â− Y ) + L(Y ) ≤ |Â| · 2|Bσ|
δ ,

as desired. J
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We can now prove Theorem 11 and bound the total number of significant pairs:

Proof of Theorem 11. We want to show that for any A, B with |A|, |B| ≤ n, the number
of significant pairs is at most O

(
n2

log1/3 n

)
. We already know that is enough to prove it for

padded sequences Â and B̂. For a fixed σ, the number of significant σ-pairs is, from Remark
15 and Lemma 16, at most |Aσ| · 2n

δ + |Bσ| · 2|Â|
δ ≤ (|Aσ|+ |Bσ|) · 6n

δ . Summing this over all
possible symbols σ (and using the fact that

∑
σ(|Aσ|+ |Bσ|) = |Â|+ |B̂| ≤ 6n), we get that

the total number of significant pairs does not exceed 36n2

δ ≤ 144n2

log1/3 n
. J

To close this section, it may be worth asking if our bound of O
(

n2

log1/3 n

)
significant pairs

is tight, or at least close to the optimal one. We partially answer that in the full version of
the paper, providing an example of two sequences with Ω

(
n2

logn

)
significant pairs. Hence, we

cannot go lower than this bound, but there is still a gap for possible future work.

3.4 Dense suffixes and the predecessor matrix
In this section we complete the missing part by proving Lemma 14. To do that, we need
to introduce a new concept – the predecessor matrix M of significant pairs. To give some
intuition what this matrix is, imagine that we first find the longest common increasing
subsequence of Â and B̂ and put this sequence of significant pairs into the first column of M ,
one pair in every cell (starting from last element of LCIS, downwards). Then we delete some
final elements of B̂ such that the length of LCIS decreases by exactly 1, find the new (possibly
very different) LCIS, and form M ’s second column the same way. We can repeat this process
n times, and the padding of the sequences always allows us to compute n predecessors.

Each entry of M is a significant pair (x, y). We refer to symbol(x, y) as color of this
entry of M , as we feel this gives a better intuition. To analyze M , we look at the number
of different colors in each row. We show that too few colors in every row would cause B̂ to
accumulate more than 3n elements – which is impossible – so there is a row (say, k-th) with
somewhat more colors – we then prove that this row corresponds to the desired k fulfilling
the statement of Lemma 14.

To formally define M , recall the previous assumptions: we have sequences Â and B̂ which
are both padded with Pn and do not contain symbols greater than σ. Let a = |Â|, b = |B̂|
and ` = lcis(a, b). Because of padding we know that 2n < a, b ≤ 3n and that ` > 2n. It
is easy to see that for every y > 1 we have lcis(a, y − 1) ≥ lcis(a, y) − 1. Therefore, if we
iterate y downwards from b to 1, lcis(a, y) takes all values between ` and 1. In particular,
there must exist elements b = b1 > b2 > . . . > bn such that:

lcis(a, bj) = `− j + 1,

for every j = 1, 2, . . . , n.
We define the predecessor matrix M as an n× n matrix of matching pairs. For 1 ≤ j ≤ n

we consider the longest common increasing sequence realizing lcis(a, bj) and define M [1, j]
as its last element (x∗, y∗). If there are multiple possibilities, we pick the one with minimal
y∗ and then with minimal x∗. We then define M [i, j] = πi−1(M [1, j]). In other words,
below every pair in M we put its predecessor. Observe that the properties of predecessors
immediately imply lcis→(M [i, j]) = lcis→(M [1, j])− i+ 1 = `− i− j + 2.

If we pick, instead of some bj , another b′j such that lcis(a, b′j) = lcis(a, bj) = `− j + 1,
we will get exactly the same M [1, j], and thus the same M [i, j] for all i = 1, 2, . . . , n – this
is because of the tie-breaker rule for the choice of M [1, j]. Thus, the matrix M does not
depend on the choice of b1, . . . , bn, but only on Â and B̂.
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We begin with a technical lemma about M which will be useful later. This observation
is a generalization of the idea introduced in Section 3.1 – if s different significant pairs are
incident to a single vertex x ∈ Â, then among their i-th predecessors we expect at least about
s/i distinct values.

I Lemma 17. For some i, i′, j, j′ with 1 ≤ j < j′ ≤ n and 1 ≤ i, i′ ≤ n, let (x, y) = M [i, j]
and (x′, y′) = M [i′, j′]. If j′ ≥ j + i, then y′ < y.

Proof. Suppose to the contrary that y ≤ y′. As y′ ≤ bj′ and a is the last element of
Â, it would imply (x, y) ≤ (a, bj′), which would in turn yield lcis(a, bj′) ≥ lcis→(x, y) =
lcis→(M [i, j]) = lcis→(M [1, j])− i+ 1 = lcis(a, bj)− i+ 1. But as j′ ≥ j + i, there must be
lcis(a, bj′) ≤ lcis(a, bj)− i. This contradiction shows y′ < y. J

As stated before, we will refer to the symbols of Â and B̂ as colors, imagining that
every entry (x, y) in M is painted with a color corresponding to symbol(x, y), the (common)
symbol of Â[x] and B̂[y]. In every column of M the colors are strictly decreasing, and thus
different. Hence, no color can have more than n entries in M . It is also evident that two
entries in M must correspond to different elements in Â and B̂ if they have different colors.
The main lemma of this section states, roughly, that the rows of M do not contain too few
colors:

I Lemma 18. There is some 2 ≤ k ≤ n/δ such that every submatrix of M consisting of some
dnδ e columns (not necessarily consecutive) and rows 1, . . . , k − 1 uses at least dkδe colors.

Proof. Consider all k that are powers of 2: k = 2q for 1 ≤ q ≤ blogn− log δc. Suppose, to
the contrary, that for every such k = 2q we can find some dnδ e columns c1, . . . , cdnδ e of M
which have at most δ · 2q colors in total in rows 1, 2, . . . , 2q − 1. From these columns ci and
the lower half of these rows (2q−1, . . . , 2q − 1) we form a submatrix Mq of M . These matrices
are defined for 1 ≤ q ≤ blogn− log δc and have the following properties:

they are disjoint submatrices of M (as every one takes different rows),
for any q, the matrix Mq contains 2q−1 · dnδ e pairs,
for any q, the entries of Mq use at most δ · 2q colors between them.

Let a color be q-strong, if at least n
4δ2 entries in Mq are of that color. Observe that a

particular color can be q-strong for at most 4δ2 distinct values of q, otherwise – as all Mq’s
are disjoint – there would be more than n entries of that color in M , which is impossible.

For any q, the colors which are not q-strong can make up for at most half of entries in
Mq (as there are δ · 2q colors in Mq, none of which can have more than n

4δ2 entries – a total
of n

2δ · 2
q−1). Hence, there are at least n2q−1

2δ pairs in Mq which have q-strong colors. Let us
mark all these entries of Mq.

For any t = 0, 1, . . . , 2q − 1 letMq(t) be the set of columns Mq[·, j] with j ≡ t mod 2q.
For a fixed q, at least one of the sets Mq(t) must contain at least n

4δ marked entries, as
there are n2q−1

2δ marked entries in Mq split between 2q sets. But we can show that if (x, y)
and (x′, y′) are two different pairs in some Mq(t), then y 6= y′. Indeed, both pairs are
either in the same column – which makes them have different colors and thus no common
elements – or at least 2q columns apart, in which case y 6= y′ because of Lemma 17. This
in turn means that for every q there is a set Bq of at least n

4δ distinct elements of B̂, each
of a q-strong color. A color can be q-strong for at most 4δ2 values of q, so in the sum
B1 ∪ . . . ∪Bblogn−log δc every element can be repeated at most 4δ2 times. This accounts for
at least blogn− log δc · n4δ ·

1
4δ2 = n blogn−log δc

16δ3 distinct elements of B̂. For δ = log1/3 n
4 this

is equal to 4n · blogn−1/3·log logn+2c
logn > 3n ≥ |B̂|. The contradiction proves that at least one

k = 2q for some q must satisfy the statement. J
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Now let us return to the graph Gσ of significant pairs. Recall that σ is the largest symbol
appearing in input sequences – for the rest of the section, we retain this assumption. As
Figure 2 shows, any two incident edges must correspond to pairs with different values of
LCIS, as otherwise the pairs could not be significant. This is formalized in a following simple
observation:

I Lemma 19.
a) If (x, y1), (x, y2), . . . , (x, ys) are significant σ-pairs for y1 > y2 > . . . > ys, then for every

1 ≤ i ≤ j ≤ s, we have lcis(x, yi) ≥ lcis(x, yj) + (j − i).
b) If (x1, y), (x2, y), . . . , (xs, y) are significant σ-pairs for x1 > x2 > . . . > xs, then for every

1 ≤ i ≤ j ≤ s, we have lcis(xi, y) ≥ lcis(xj , y) + (j − i).

Proof. The first claim easily follows from the fact that lcis(x, yi) ≥ lcis(x, yi+1) + 1, which
is part of the definition of the significant pair. The second proof is symmetric. J

Finally, we can restate Lemma 14 and prove it using predecessor matrices:

I Lemma 14. For every A and B with |A|, |B| ≤ n, and for the corresponding graph Gσ,
there exists some positive integer k ≤ n/δ such that there is no k-dense suffix in Â.

Proof. Assume, to the contrary, that for every k there is a k-dense suffix. Pick an arbitrary
k ≤ n/δ and let x ∈ A be such that A→x is k-dense. Let |Â| = a, let r = dn/δe and let
(x, c1), . . . , (x, cr) be the significant pairs from the definition of k-dense suffix (meaning that
each ci has k neighbours in A→x ). We can assume that c1 > c2 > . . . > cr. We will now show
another sequence c′1, c′2, . . . , c′r such that:
(1) lcis(a, c′1) > lcis(a, c′2) > . . . > lcis(a, c′r),
(2) lcis(a, c′i) ≥ lcis(x, c′i) + k − 1 for i = 1, 2, . . . , r.

To do that, we set c′1 = c1, and for i > 1, we pick c′i+1 = ci+1 if lcis(a, ci+1) < lcis(a, c′i).
If not, we define c′i+1 to be the largest element with lcis(a, c′i+1) = lcis(a, c′i)− 1. Observe
that in the second case we know that lcis(a, ci+1) ≥ lcis(a, c′i) > lcis(a, c′i+1), so always
c′i+1 ≤ ci+1.

Inequality (1) follows immediately from the definition of c′i. To see (2), first observe that
if c′i = ci, then there are k significant σ-pairs between (x, ci) and (a, ci) – neighbors of ci –
which we will denote by (y1, ci), . . . , (yk, ci) and assume that y1 > . . . > yk. As we assume σ
to be the largest symbol, we can write lcis(yj , ci) = lcis→(yj , ci). From this and Lemma 19
we derive:

lcis(a, ci) ≥ lcis(y1, ci) ≥ lcis(yk, ci) + k − 1 ≥ lcis(x, ci) + k − 1.

Now consider the case c′i < ci. Let β be the smallest integer such that β < i and
ci−β = c′i−β (it always exists, as we can take β = i− 1). From the definition of c′i we have
lcis(a, c′i) = lcis(a, c′i−1) − 1 = . . . = lcis(a, c′i−β) − β = lcis(a, ci−β) − β ≥ lcis(x, ci−β) +
k− 1−β. Now, because all (x, cj) are significant, we have lcis(x, ci−β) ≥ lcis(x, ci) +β from
Lemma 19, so lcis(a, c′i) ≥ lcis(x, ci) + k − 1 ≥ lcis(x, c′i) + k − 1.

The pairs (a, c′i) are some choice of r different columns of the predecessor matrix M .
Consider any c′i, and its corresponding column j. Pick a positive integer s ≤ k − 1.
Let (a∗i , c∗i ) = M [s, j]. Recall that from the definition of M we have lcis→(a∗i , c∗i ) =
lcis(a, c′i)− s+ 1. We also know that c∗i ≤ c′i ≤ ci. If a∗i < x, then (a∗i , c∗i ) ≤ (x, c′i), which
implies lcis(a, c′i)− s+ 1 = lcis(a∗i , c∗i ) ≤ lcis(x, c′i) ≤ lcis(a, c′i)− k + 1, which is impossible
for s ≤ k − 1. Then a∗i ≥ x. So the only colors available for M [s, j] for the chosen r columns
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and s ≤ k − 1 are those appearing in A→x , and there are at most dkδe of them. Hence, for
any k we can produce, from a k-dense suffix, an dnδ e-column submatrix of M having at most
dkδe colors in total in its first k − 1 rows. This contradicts Lemma 18 and proves that for
some k there are no k-dense suffixes. J

4 The algorithm

To implement our algorithm, we need a specific data structure – an associative array which
can store a number of elements ordered by their keys. We assume the keys to be distinct
integers between 1 and n. This data structure A must provide the following operations:

Insert(A, s) – adds the element s to A,
Delete(A, x) – removes the element having key x from the A (we assume that this is
called only for x ∈ A ),
Find(A, x) – returns the element whose key is x if there is one, or NULL otherwise,
Next(A, x), Prev(A, x) – returns the first element whose key is larger (respectively,
smaller) than x.

To achieve the desired running time, we need all these operations to work in O (log logn)
complexity (possibly amortized), and van Emde Boas queue [26] does exactly that. While
the standard implementation requires O (n) space (and thus O (n) initialization time, which
would be too much for us, as we employ O (n) queues), there is also a randomized version
([22]) that needs only O (m) time and space, where m is the maximal number of elements on
the queue. In the full version of the paper we show how to construct a deterministic van
Emde Boas queue with O

(
m+ n

logc n

)
time and space bounds, with c being any desired

constant, while retaining the O (log logn) query complexity. These bounds also suit our
needs.

The algorithm takes, as the input, two integer sequences A and B with |A| = |B| = n.
Its main idea is to consider all symbols from A and B in increasing order (there are at most
2n of them, so we can sort them in O (n logn)). For every symbol σ, the algorithm finds and
stores all significant σ-pairs. For that, we employ n van Emde Boas queues Q1, Q2, . . . , Qn,
with every Qk storing the significant pairs (x, y) with lcis→(x, y) = k, sorted by x. For
convenience, we define Q = Q1 ∪ . . . ∪Qn. We also keep Q0 as one-element queue (0, 0).

Whenever some Qk contains two pairs (x, y) ≤ (x′, y′), we drop (x′, y′) from Qk. Inform-
ally, we can do it because (x, y) can replace (x′, y′) in every situation. We say that (x, y)
dominates (x′, y′) and remove any dominated pairs from any Qk. Observe that a pair is
significant if and only if it is not dominated by any pair of the same symbol (a significant
pair, however, may still be dominated by other pairs with larger symbols).

This leads to the following invariant:

B Claim 20 (Algorithm invariant). For every k, all pairs (x, y) ∈ Qk are in strict increasing
order with respect to x and in strict decreasing order with respect to y.

To keep the invariant, we modify Insert() into the following Insert-Inv() procedure. It
only inserts a pair (x, y) if it is not dominated by another pair, and after inserting it removes
all larger pairs.

The amortized complexity of Insert-Inv() is O (log logn): the loop in lines 14-19 deletes
an element with every iteration (so it cannot do more iterations than the total number of
elements in queue), and outside the loop there is only a constant number of standard queue
operations.
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Algorithm 1 New version of Insert() keeping the invariant.

1: procedure Insert-Inv(Qk, (x, y))
2: (x′, y′)← Find(Qk, x) . check for other pairs with key x
3: if (x′, y′) 6= null and y′ ≤ y then
4: return
5: end if
6: if (x′, y′) 6= null and y′ > y then
7: Delete(x′)
8: end if
9: (a, b)← Prev(Qk, x)

10: if (a, b) 6= null and b ≤ x then . (a, b) ≤ (x, y), so we should not insert (x, y)
11: return
12: end if
13: Insert(Qk, (x, y))
14: repeat . now we remove all (a, b) ≥ (x, y), restoring the invariant
15: (a, b)← Next(Qk, x)
16: if (a, b) 6= null and ≥ (x, y) then
17: Delete(Qk, a)
18: end if
19: until (a, b) = null or not (a, b) ≥ (x, y)
20: end procedure

Apart from queues Q1, Q2, . . . , Qn we will also need, for every symbol σ, two van Emde
Boas queues Xσ and Yσ which store positions of all σ-symbols in A and B, respectively:
Xσ = {i : A[i] = σ}, Yσ = {j : B[j] = σ}. These structures do not change during the
algorithm, and their sole purpose is finding σ-symbols closest to a given position.

Now we are ready to introduce the main idea of the algorithm. Recall that we assume that
the number of significant pairs between A and B is at most O

(
n2

t

)
with t = t(n) = Θ (logp n)

for some p. We iterate over all the symbols, dividing them into two categories:
frequent – appearing more than n√

t
times in B,

infrequent – with at most n√
t
occurrences in B.‡

Let us start with an informal sketch of the algorithm behavior for both cases. The
frequent symbols are easier: for every such symbol σ we iterate through all previously found
pairs, and for every (x, y) ∈ Q we find the next occurrence of σ after A[x] (say, A[x∗]) and
the next occurrence y∗ of σ in B after y. In other words, we find a σ-pair (x∗, y∗) for which
(x, y) is a predecessor. As we will ensure that Q contains only significant pairs (and thus
cannot get too big) and there are no more than

√
t frequent symbols, the total complexity

will fit into desired limits.
To handle infrequent symbols, observe that every such symbol in A can form a matching

pair with at most n√
t
elements of B. Hence, there are at most n2

√
t
matching pairs on infrequent

symbols, so we can iterate through all of them. The hardest part is to determine, for every
infrequent pair (x, y), the value of lcis→(x, y). For that, we will need a separate subroutine
and a non-trivial analysis.

‡The technique of splitting symbols of a string according to their number of occurences is not new – it
has been used, e.g. in [4] and [5], though it is more common to have split thresholds closer to

√
n.
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The whole algorithm is presented below:

Algorithm 2 LCIS by significant pairs.

1: procedure LCIS(A,B)
2: Q0 ← {(0, 0)}
3: for all σ – symbols in increasing order do
4: T ← ∅ . for storing new pairs
5: if σ occurs less than n/

√
t times in B then . if σ is infrequent. . .

6: for all x : A[x] = σ, in increasing order do . fix x. . .
7: k ← 0
8: for all y : B[y] = σ, in inc. order do . . . . compute lcis→(x, y) for all y
9: k′ ← ComputeNextPair(x, y, k) . using a special subroutine
10: T ← T ∪ (x, y, k′)
11: k ← k′ . k = lcis→(x, y), for last considered y
12: end for
13: end for
14: else . If σ is frequent. . .
15: for k = 1, 2, . . . , n do
16: for all (x, y) ∈ Qk do . every pair (x, y) ∈ Q may be a predecessor. . .
17: x′ ← Next(Xσ, x)
18: y′ ← Next(Yσ, y) . . . . of some σ-pair (x′, y′)
19: T ← T ∪ (x′, y′, k + 1)
20: end for
21: end for
22: end if
23: for all (x, y, k) ∈ T do . all new pairs are now added to Q
24: Insert-Inv(Qk, (x, y))
25: end for
26: end for
27: return largest k with Qk 6= ∅
28: end procedure

Before analyzing the algorithm, we must explain the ComputeNextPair() subroutine.
It takes three arguments: positions x ∈ A, y ∈ B, such that A[x] = B[y] = σ, and an integer
k. It assumes that lcis→(x, y) ≥ k and its goal is to find the exact value of lcis→(x, y). It
also assumes that for every j < lcis→(x, y), there is a pair (xj , yj) ∈ Qj with (xj , yj) ≺ (x, y)
– informally, this means that all the predecessors of (x, y) have already been considered, and
Lemma 21 will prove that this condition is indeed satisfied whenever ComputeNextPair()
is invoked.

Therefore the subroutine must determine the largest ` ≥ k − 1 for which there is a pair
(x′, y′) ≺ (x, y) with lcis→(x′, y′) = `. We can guess `, and verify whether there exists a
right pair (x′, y′) ≺ (x, y) in Q`: if there is one, then Prev(Q`, x) ≤ (x, y). This allows us
to do a binary search for `:
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Algorithm 3 Finding lcis→(x, y), with assumption that it is at least k.

1: procedure ComputeNextPair(x, y, k)
2: d← 1 . first, find d – a rough approximation for `− k
3: while Prev(Qk+d, x) ≺ (x, y) do
4: d← 2d . if d is too small, try 2d
5: end while
6: p← k . now we know that k + d/2 ≤ ` < k + d

7: q ← k + d

8: while p < q do . so we can do the real binary search
9: s← dp+q

2 e
10: if Prev(Qs, x) ≺ (x, y) then
11: p← s

12: else
13: q ← s− 1
14: end if
15: end while
16: return p

17: end procedure

The first part of the algorithm finds d for which d/2 ≤ |` − k| < d (if ` = k, then we
assume d = 1). The second one is a binary search on the interval [k, k + d). Therefore, the
algorithm makes at most 2 log(d+ 1) = 2 · log(lcis→(x, y)− k + 2) steps, each step invoking
a queue operation once.

Let us now go back to the main algorithm, proving its correctness:

I Lemma 21. After processing a symbol σ, the following two facts hold:
(1) If (x, y) ∈ Qk, then (x, y) is a significant σ′-pair for some σ′ ≤ σ with lcis→(x, y) = k;
(2) For any k ≥ 1, σ′ ≤ σ and for every σ′-pair (x, y) with lcis→(x, y) ≥ k, there is some

(x∗, y∗) ∈ Qk with (x∗, y∗) ≤ (x, y).

Proof. Let us use induction on σ. Observe that assuming induction hypothesis, we only
need to prove two weaker facts:

(1’) If (x, y) ∈ Qk, then lcis→(x, y) = k;
(2’) For any k ≥ 1 and for every σ-pair (x, y) with lcis→(x, y) = k, there is some (x∗, y∗) ∈ Qk

with (x∗, y∗) ≤ (x, y).

Indeed, for any pair (x, y) with lcis→(x, y) = k′ > k, (2) is true because of the induction
hypothesis applied to the pair (x′, y′) = πk

′−k(x, y). We know that (x′, y′) is a τ -pair for some
τ < σ, so induction hypothesis provides a pair (x∗, y∗) ∈ Qk with (x∗, y∗) ≤ (x′, y′) ≤ (x, y).
Next, note that (2) is also true for σ′ < σ, again from induction hypothesis and the fact that
once a pair is in Q, it can only be dislocated by another pair that dominates it.

Also, if we show (2) and (1’), this will automatically imply that every (x, y) ∈ Qk must
be significant, and thus that (1) is true – let (x′, y′) be a pair with (x′, y′) ≤ (x, y) and
lcis→(x′, y′) = lcis→(x, y) = k. There is, by (2), another pair (x′′, y′′) ≤ (x′, y′) ≤ (x, y),
which is also in Qk. But with Claim 20, (x, y) and (x′′, y′′) cannot both be in Qk unless
(x, y) = (x′, y′) = (x′′, y′′), so (x, y) is significant.

To prove the remaining statements (1’) and (2’), consider two cases:
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Case 1: infrequent σ. Pick an arbitrary σ-pair (x, y) and let lcis→(x, y) = k. We will show
that at some point during processing symbol σ the instruction Insert-Inv(Qk, (x, y)) is
invoked.
For any integer i with 1 ≤ i ≤ k let (xi, yi) = πi(x, y). We know that symbol(xi, yi) < σ

and lcis→(xi, yi) = k − i, so by induction hypothesis (2) there was some (x∗i , y∗i ) ∈ Qk−i
with (x∗i , y∗i ) ≤ (xi, yi), which implies (x∗i , y∗i ) ≺ (x, y) (observe that for i = k, we need the
artificial pair (0, 0) ∈ Q0). But then when (x, y) is considered by ComputeNextPair(),
for every i ≥ 1 and for each of the predecessors (xi, yi) = πi(x, y) there is a pair
(x∗i , y∗i ) ≤ (xi, yi) in Qk−i. This satisfies the conditions needed by ComputeNextPair(),
so the binary search properly computes lcis→(x, y) as k (note that it is not possible to
find any larger candidate for predecessor – any (u, v) ≺ (x, y) found in Qk′ for k′ ≥ k

would mean either that lcis→(u, v) had been computed wrong, or that lcis→(x, y) > k).
This shows that the algorithm tries to insert (x, y) into the proper queue Qk, which
immediately proves (1’). Also, (x, y) may remain in Qk, be dislocated later, or even
fail to be inserted because of some other pair dominating it. Either way, some pair
(x∗, y∗) ≤ (x, y) will be present in Qk to the very end of the algorithm. This completes
the proof of (2’).

Case 2: frequent σ. Let us first prove (2’) for any k and for any σ-pair (x, y) with
lcis→(x, y) = k. We can assume that (x, y) is significant (if not, we replace it with
a significant σ-pair (x′, y′) ≤ (x, y)). As in Case 1, from the induction hypothesis we
know that some pair (x′, y′) ≺ (x, y) is present in Qk−1. The algorithm must at some
point consider (x′, y′). If the next σ symbol in A after x′ is not x but some z, then
lcis→(z, y) ≥ k, so (x, y) could not be significant. By the same argument, the next σ
symbol in B after y′ must be y. Therefore (x, y) is a candidate to be inserted into Qk, so
either it remains there itself, or is dominated by other pair (x∗, y∗) ∈ Qk. Either way,
(2’) is shown.
For (1) we need to rule out a possibility that a σ-pair (x, y) with lcis(x, y) = k will
be inserted, besides Qk, into some other Qk′ with k′ 6= k, as a frequent pair could be
theoretically considered multiple times by the algorithm. But for k′ > k this would have
been caused by another pair (x∗, y∗) ∈ Qk′−1 with (x∗, y∗) ≺ (x, y). This contradicts
lcis→(x, y) = k, as k′−1 ≥ k. For k′ < k observe that by induction hypothesis (2) applied
to πk−k′(x, y) we already have a pair in Qk′ which dominates (x, y), so the insertion must
fail. J

I Corollary 22. The algorithm correctly returns the length of longest common increasing
subsequence of A and B.

Proof. Let k be the value of LCIS and let (x, y) be a significant pair with lcis→(x, y) = k.
From statement (2) of Lemma 21 we know that some pair (x′, y′) ≤ (x, y) must be in Qk at
the end of the algorithm. Therefore the algorithm returns at least k. On the other hand, for
every k′ > k, Qk′ = ∅, as any pair in it would contradict statement (1) from Lemma 21. J

I Lemma 23. Let x ≤ |A| and (x, y1), (x, y2), . . . , (x, ym) be all σ-pairs formed by x, for
an infrequent σ. Then, all calls to ComputeNextPair(x, ·, ·) work in O

(
n(log logn)2

√
t

)
total

time complexity.

Proof. We know that m ≤ n√
t
, as σ is infrequent. Recall also that log t = Θ (log logn). Let

`i = lcis→(x, yi) − lcis→(x, yi−1) + 2 for i = 1, 2, . . . ,m, assuming y0 = 0. The i-th call
to ComputeNextPair() requires O (log `i) steps of binary search, with every step having
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O (log logn) complexity from queue operations. Therefore, the whole procedure works in
O (log logn ·

∑m
i=1 log `i). Consider two cases:

If m ≤ n√
t logn , then

∑m
i=1 log `i ≤ m logn = O

(
n/
√
t
)
.

If m > n√
t logn , then the Jensen equality yields:∑m

i=1 log `i = m

∑m

i=1
log `i

m ≤ m log
(∑m

i=1
`i

m

)
,

and as
∑
`i = 2m+ lcis→(x, ym)− lcis→(x, y0) ≤ 3n we have:∑m

i=1 log `i ≤ m log 3n
m < m log(3

√
t · logn) = O (m log logn) .

With m ≤ n/
√
t, the total complexity in both cases is O

(
n(log logn)2

√
t

)
. J

Proof of Theorem 12. We already know that the algorithm correctly computes lcis(A,B).
It remains to determine its complexity.

There are O (n) van Emde Boas queues. Each of them is initialized in constant time if
we use randomized version [22], or in O (n/ logc n) with some c large enough if we choose
the version described in the appendix of the full version of the paper . Either way, total
complexity is O

(
n2/ logc n

)
, which is fast enough.

We first analyze the cost for infrequent symbols – it is dominated by the calls of
ComputeNextPair(). By Lemma 23 the cost is O

(
n(log logn)2

√
t

)
for a fixed x, which

yields O
(
n2(log logn)2

√
t

)
total complexity.

Now let us move on to frequent symbols. For every such symbol, we iterate over all Q.
But from Lemma 21 we know Q only contains significant pairs, therefore |Q| = O

(
n2

t

)
. As

every iteration needs only a constant number of queue operations, the total cost for a single
symbol is O

(
n2 log logn

t

)
.

Finally, observe that there are at most
√
t frequent symbols (otherwise there would be

|B| > n), so the final complexity in this case is O
(
n2 log logn√

t

)
.

It is also worth noting that we can replace the threshold between frequent and infrequent
symbols n√

t
with n√

t log logn
, and all the proofs would essentially work in the same way, with

only minor changes needed. This way we could show the complexity of the algorithm to be
in fact O

(
n2(log logn)3/2

√
t

)
. The current analysis seems, however, a bit easier to read. J

5 Final remarks and open problems related to LCIS

We have shown an algorithm for LCIS that breaks the O
(
n2) barrier, but there still appears

to be plenty of room for improvement and further work on this matter. First, the bound in
Theorem 11 for the number of significant pairs may not be tight. In the full version of the
paper we give an example of two sequences A and B having Ω

(
n2

logn

)
significant pairs, but

this still leaves a gap between Ω
(

n2

logn

)
and O

(
n2

(logn)1/3

)
. Also, the algorithm itself might

be improved to work in O
(
s · (log logn)k

)
, where s is the number of significant pairs and k

is a constant. Taking all this into account, we conjecture that there is an O
(
n2(log logn)k

logn

)
algorithm which uses the significant pairs technique.

The second question related to LCIS stems from the papers [3] and [2]: we know that
there is a constant c ≤ 7 such that an O

(
n2

logc n

)
algorithm for LCS would lead to unexpected

breakthroughs in circuit complexity. Can a similar statement be made for LCIS?
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Abstract
The Unsplittable Flow Cover problem (UFP-cover) models the well-studied general caching problem
and various natural resource allocation settings. We are given a path with a demand on each edge
and a set of tasks, each task being defined by a subpath and a size. The goal is to select a subset
of the tasks of minimum cardinality such that on each edge e the total size of the selected tasks
using e is at least the demand of e. There is a polynomial time 4-approximation for the problem
[Bar-Noy et al., STOC 2000] and also a QPTAS [Höhn et al., ICALP 2014]. In this paper we
study fixed-parameter algorithms for the problem. We show that it is W[1]-hard but it becomes
FPT if we can slightly violate the edge demands (resource augmentation) and also if there are at
most k different task sizes. Then we present a parameterized approximation scheme (PAS), i.e., an
algorithm with a running time of f(k) · nOε(1) that outputs a solution with at most (1 + ε)k tasks
or assert that there is no solution with at most k tasks. In this algorithm we use a new trick that
intuitively allows us to pretend that we can select tasks from OPT multiple times.
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1 Introduction

In the Unsplittable Flow Cover problem (UFP-cover) we are given a path G = (V,E) where
each edge e has a demand ue ∈ N, and a set of tasks T where each task i ∈ T has a start
vertex si ∈ V and an end vertex ti ∈ V , defining a path P (i), and a size pi ∈ N. The
goal is to select a subset of the tasks T ′ ⊆ T of minimum cardinality |T ′| that covers the
demand of each edge, i.e., such that

∑
i∈T ′∩Te pi ≥ ue for each edge e where Te denotes

the set of tasks i ∈ T for which e lies on P (i). It is the natural covering version of the
well-studied Unsplittable Flow on a Path problem (UFP), see e.g., [22, 21, 9] and references
therein. Also, it is a generalization of the knapsack cover problem [11] and it can model
general caching in the fault model where we have a cache of fixed size and receive requests
for non-uniform size pages, the goal being to minimize the total number of cache misses
(see [1, 5, 16] and Appendix A). Caching and generalizations of it have been studied for
several decades in computer science, see e.g., [1, 8, 20, 24]. Also, UFP-cover is motivated by
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many resource allocation settings in which for instance the path specifies a time interval and
the edge demands represent minimum requirements for some resource like energy, bandwidth,
or number of available machines at each point in time.

UFP-cover is strongly NP-hard, since it generalizes general caching in the fault model [16],
and the best known polynomial time approximation algorithm for it is a 4-approximation [5]
with no improvement in almost 20 years. However, the problem admits a QPTAS for the case
of quasi-polynomial input data [23] which suggests that better polynomial time approximation
ratios are possible.

In this paper, we study the problem for the first time under the angle of fixed parameter
tractability (FPT). We define our parameter k to be the number of tasks in the desired
solution and seek algorithms with a running time of f(k)nO(1) for some function f . We show
that by allowing such a running time we can compute solutions that are almost optimal.

1.1 Our contribution
First, we prove that UFP-cover is W[1]-hard which makes it unlikely that it admits an
FPT-algorithm. In particular, this motivates studying FPT-approximation algorithms or
other relaxations of the problem. We first show that under slight resource augmentation the
problem becomes FPT. We define an additional parameter δ > 0 controlling the amount of
resource augmentation and we compute either a solution that is feasible if we decrease the
demand of each edge e to ue/(1 + δ), or we assert that there is no solution of size k for the
original edge demands. Key to our result is to prove that due to the resource augmentation
we can assume that each edge e is completely covered by tasks whose size is comparable to
ue or it is covered by at least one task whose size is much larger than ue. Based on this we
design an algorithm that intuitively sweeps the path from left to right and on each uncovered
edge e we guess which of the two cases applies. In the former case, we show that due to the
resource augmentation we can restrict ourselves to only f(k, δ) many guesses for the missing
tasks using e. In the latter case e belongs to a subpath in which each edge is covered by a
task that is much larger than the demand of e. We guess the number of tasks in this subpath
and select tasks to maximize the length of the latter. This yields a subproblem that we solve
recursively and we embed the recursion into a dynamic program.

I Theorem 1. There is an algorithm for UFP-cover with running time kO( kδ log k) · nO(1) that
either outputs a solution of size at most k that is feasible if the edge capacities are decreased
by a factor 1 + δ or asserts that there is no solution of size k for the original edge capacities.

We use the above algorithm to obtain a simple FPT-2-approximation algorithm without
resource augmentation. Also, with similar ideas we derive an algorithm computing the
optimal solution, assuming that additionally the number of different task sizes in the input is
bounded by a parameter.

I Theorem 2. There is an algorithm that solves UFP-cover in time kO(k′k) ·nO(1), assuming
that |{pi : i ∈ T}| ≤ k′.

Then we present a parameterized approximation scheme (PAS) for UFP-cover, i.e., an
algorithm with a running time of f(k) · nOε(1) that outputs a solution with at most (1 + ε)k
tasks or assert that there is no solution with at most k tasks. This algorithm is based
on a lemma developed for UFP in which we have the same input as in UFP-cover but we
want to maximize the weight of the selected tasks T ′ and require that their total size is
upper-bounded by ue on each edge e, i.e.,

∑
i∈T ′∩Te pi ≤ ue. Informally, the mentioned

lemma states that we can remove a set of tasks from OPTSL ⊆ OPT of negligible cardinality
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such that on each edge e we remove one of the largest tasks of OPT using e. This yields
some slack that we can use in order to afford inaccuracies in the computation. Translated to
UFP-cover, the natural correspondence would be a solution in which the tasks in OPTSL are
not removed but selected twice. This is not allowed in UFP-cover. However, we guess a set of
tasks T ′ that intuitively yields as much slack as OPTSL and whose size is also negligible. If
OPT ∩ T ′ 6= ∅ then we cannot add the tasks in T ′ to OPT to gain slack since some of them
are already included in OPT . Therefore, we use the following simple but useful trick: we
guess T ′ ∩OPT for which there are 2|T ′| ≤ 2O(εk) options, select the tasks in T ′ ∩OPT , and
recurse on the remaining instance. Since OPT ≤ k the whole recursion tree has a complexity
of O(kk) which depends only on our parameter k.

If OPT ∩ T ′ = ∅ then T ′ ∪OPT is a (1 + ε)-approximate solution with some slack and
we can use the slack in our computation. We compute a partition of E into O(k) intervals.
Some of these intervals are dense, meaning that there are many tasks from OPT that start
or end in them. We ensure that for each dense interval there is a task in T ′ that covers the
whole interval and whose size is at least a Ω(1/k)-fraction of the demand of each edge in the
interval. Intuitively this is equivalent to decreasing the demand on each edge by a factor
1 + Ω(1/k). If we had only dense intervals we could apply the FPT-algorithm for resource
augmentation from above for the remaining problem. On the other hand, if only few tasks
start or end in an interval we say that it is sparse. If all intervals are sparse, we devise a
dynamic program that processes them in the order of their amount of slack and guesses their
tasks step by step. We use the slack in order to be able to “forget” some of the previously
guessed tasks which yields a DP with only polynomially many cells.

Unfortunately, in an instance there can be dense and sparse intervals and our algorithms
above for the two special cases are completely incompatible. Therefore, we identify a type of
tasks in OPT such that we can guess tasks that cover as much as those tasks, while losing
only a factor of 1 + ε. Using some charging arguments, we show that then we can split the
remaining problem into two independent subinstances, one with only dense intervals and one
with only sparse intervals which we then solve with the algorithms mentioned above.

I Theorem 3. There is a parameterized approximation scheme for UFP-cover.

Our algorithms for resource augmentation, a bounded number of task sizes, and the
FPT-2-approximation even work in the weighted case, at the expense of a factor 1 + ε in
the approximation ratio. Due to space constraints the details of this and many proofs are
deferred to the full version of the paper.

1.2 Other related work
The study of parameterized approximation algorithms was initiated independently by Cai
and Huang [10], Chen, Grohe, and Grüber [14], and Downey, Fellows, and McCartin [18]. A
good survey on the topic was given by Marx [26]. Recently, the notion of approximate kernels
was introduced [25]. Independently, Bazgan [7] and Cesati and Trevisan [12] established an
interesting connection between approximation algorithms and parameterized complexity by
showing that EPTASs, i.e., (1 + ε)-approximation algorithms with running time f(ε)nO(1),
imply FPT algorithms for the decision version. Hence a W[1]-hardness result for a problem
makes the existence of an EPTAS for it unlikely.

For the unweighted case of UFP (packing) a PAS is known [27]. Note that in the FPT
setting UFP is easier than UFP-cover since we can easily make the following simplifying
assumptions that we cannot make in UFP-cover. First, we can assume that the input tasks
are not too small: if there are k input tasks whose size is smaller than 1/k times the capacity
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of any the edges they use, then we can simple output those tasks and we are done; otherwise
we can enumerate over them and only large tasks remain. Second, the tasks are not too
big since the size of a task can be assumed to be at most the minimum capacity of an edge
in its path. Third, we can easily find a set of at most k edges that together intersect the
path of each input task (i.e., a hitting set for the input task’s paths) unless a simple greedy
algorithm finds a solution of size k [27]. The best known polynomial time approximation
algorithm for UFP has a ratio of 5/3 + ε [22] and the problem admits a QPTAS [3, 6].

Recently, polynomial time approximation algorithms for special cases of UFP-cover under
resource augmentation were found: an algorithm computing a solution of optimal cost
if pi = ci for each task i and a (1 + ε)-approximation if the cost of each task equals its
“area”, i.e., the product of pi and the length of P (i) [17]. UFP-cover is a special case of the
general scheduling problem (GSP) on one machine in the absence of release dates. The best
known polynomial time result for GSP is a (4 + ε)-approximation [15] and a QPTAS for
quasi-polynomial bounded input data [2]. Also, UFP-cover is a special case of the capacitated
set cover problem, e.g., [13, 4].

2 Few different task sizes

In this section, we show that UFP-cover is FPT when it is parameterized by k + k′ where
k′ is the number of different task sizes. We are given two parameters k and k′ and assume
|{pi : i ∈ T}| = k′. We seek to compute a solution T ′ ⊆ T with |T ′| ≤ k such that for each
edge e it holds that p(T ′ ∩ Te) :=

∑
i∈T ′∩Te pi ≥ ue or assert that there is no such solution.

Denote by T (`) for ` = 1, . . . , k′ the partition of the set T into sets of tasks with equal size.
Our algorithm sweeps the path from left to right and guesses the tasks in OPT step by

step (in contrast to similar such algorithms it is not a dynamic program). We maintain a set
T ′ of previously selected tasks and a pointer indicating an edge e. We initialize the algorithm
with e being the leftmost edge of E and T ′ := ∅. Suppose that the pointer is at some edge
e. If the tasks in T ′ already cover the demand of e, i.e., p(Te ∩ T ′) ≥ ue, then we move the
pointer to the edge on the right of e. Otherwise, in OPT the edge e must be covered by a
task that is not in T ′. For each group T (`) we guess the number of tasks using e that are
missing in T ′ compared to OPT , i.e., we guess k` := |Te ∩ OPT ∩ T (`)| − |Te ∩ T ′ ∩ T (`)|.
Since there are at most k′ groups T (`), the number of possible guesses is bounded by (k+1)k′ .
For each group T (`) we add to T ′ the k` tasks in (Te ∩ T (`)) \ T ′ with rightmost endvertex.
Then we move the pointer to the edge on the right of e. Overall, we want to select at most k
tasks. Therefore, at each guessing step, we enumerate only guesses that ensure that we do
not select more than k tasks altogether. Hence, the total number of possible guesses overall
is bounded by ((k+ 1)k′)k = kO(k′k). Each of them yields a set T ′. In case that the resulting
set T ′ is not a feasible solution we reject the guesses that lead to T ′.

Assume from now on that all guesses were correct. In the next lemma we show that then
we obtain a feasible solution. The intuition for the proof is as follows: suppose that the
pointer is at some edge e and we select additional tasks from a group T (`). These additional
tasks were not necessary in order to cover the demands of the edges on the left of e. All
tasks in T (`) have exactly the same size. Therefore, the best choice is to select the tasks in
Te ∩ T (`) with rightmost endvertices.

I Lemma 4. Assume that the given instance has a solution of size at most k. Then the
resulting set T ′ satisfies

∑
i∈T ′∩Te pi ≥ ue for each edge e.

The total number of guesses is bounded by kO(k′k) and for each set of guesses we can
compute the corresponding set T ′ in time nO(1). Hence, we obtain Theorem 2.
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3 Resource augmentation

In this section, we turn to the case where we have resource augmentation but the number of
different task sizes is arbitrary. As a consequence of Theorem 2, we first show that UFP-cover
with (1 + δ) resource augmentation, can be solved in time f(k, δ) · nO(1) if the edge demands
come in a polynomial range. In Section 3.1 we generalize this algorithm to arbitrary edge
demands.

For now, we assume that the edge demands come in a polynomial range. Then, for two
parameters k ∈ N and δ > 0 we seek to compute a solution T ′ ⊆ T with |T ′| ≤ k such that
for each edge e it holds that p(T ′∩Te) :=

∑
i∈T ′∩Te pi ≥ ũe := ue/(1 + δ) or assert that there

is no solution T ′ ⊆ T with |T ′| ≤ k such that for each edge e it holds that p(T ′ ∩ Te) ≥ ue.
The idea is to round the task sizes and then use our algorithm for bounded number of

task sizes. Let OPT denote a solution with at most k tasks. We group the tasks into groups
such that the sizes of the tasks in the same group differ by at most a factor of 1 + δ. For
each ` ∈ N we define the group T (`) := {i ∈ T |pi ∈ [(1 + δ)`, (1 + δ)`+1)}. For each ` we
round the sizes of the tasks in T (`) to (1 + δ)`, i.e., for each i ∈ T (`) we define its rounded
size to be p̃i := (1 + δ)` (for convenience, we allow rounded the task sizes and edge demands
to be fractional). As we show in the next lemma, this rounding step is justified due to our
resource augmentation.

I Lemma 5. By decreasing the demand of each edge e to ũe := ue/(1 + δ) we can assume
for each ` ∈ N that each task i ∈ T (`) has a size of p̃i = (1 + δ)`, i.e., for each edge e it holds
that

∑
i∈OPT∩Te p̃i ≥ ũe.

Note that w.l.o.g. we can assume that pi ≤ maxe ue for each task i. Since we assumed
that the edge demands are bounded by a polynomial in n, there are only O(log1+δ n) groups
T (`) with T (`) 6= ∅. The optimal solution contains tasks from at most k of these groups. We
guess the groups T (`) that satisfy that OPT ∩ T (`) 6= ∅ in time

(O(log1+δ n)
k

)
= ( 1

δ logn)O(k).
Note that the latter quantity is of the form f(k, δ) · nO(1), since (logn)O(k) ≤ n + kO(k).
We delete the tasks from all other groups. This yields an instance with at most k different
(rounded) task sizes, and then we can apply Theorem 2 with k′ = k. Hence, there is an
algorithm with running time ( 1

δ logn)O(k) ·kO(k2) ·nO(1) = f(k, δ) ·nO(1) if the edge demands
are in a polynomial range.

3.1 Arbitrary demands

We extend the above algorithm now to the case of arbitrary demands. To this end, we start
with a shifting step that intuitively partitions the groups above into supergroups such that
the sizes of two tasks in different supergroups differ by at least a factor of 2k/δ. In particular,
one task from one supergroup will be larger than any k tasks from supergroups with smaller
tasks together. We define K to be the smallest integer such that k(1 + δ)−K−1 < δ/2, i.e.,
K = O( 1

δ log k). Let α ∈ {0, ..., k} be an offset to be defined later. Intuitively, we remove an
1
k+1 -fraction of all groups T (`) and combine the remaining groups into supergroups. With
a shifting argument we ensure that no task from OPT is contained in a deleted group.
Formally, we define a supergroup T (s) :=

⋃K(α+(s+1)(k+1)−1)−1
`=K(α+s(k+1)) T (`) for each integer s. In

particular, each supergroup contains K · k groups.

I Lemma 6. There exists an offset α ∈ {0, ..., k} such that for each task i ∈ OPT there is a
supergroup T (s) such that i ∈ T (s).
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We guess the value α due to Lemma 6. If the edge demands are no necessarily polynomially
bounded we can no longer guess the groups that contains tasks from OPT since there can be
up to Ω(n) groups. Instead, for each edge e we define a level se to be the largest value s such
that (1 + δ)K(α+s(k+1)) ≤ ûe := ũe/(1 + δ). Note that (1 + δ)K(α+s(k+1)) is a lower bound
on the size of each task in T (s). In the next lemma, using resource augmentation we prove
that for each edge e it holds that the tasks in

⋃
`′ T (se) ∩ OPT are sufficient to cover the

demand of e or that in OPT the edge e is completely covered by one task in a supergroup
T (s′) with s′ > se.

I Lemma 7. For each edge e it holds that p(OPT ∩ T (se) ∩ Te) ≥ ûe or that there is a task
i ∈ OPT ∩

⋃∞
s=se+1 T (s) ∩ Te. In the latter case it holds that pi ≥ p̃i ≥ ûe.

In order to solve our problem, we define a set of subproblems that we solve via dynamic
programming. Let us denote T (≥s) :=

⋃
s′≥s T (s′). Each subproblem is characterized by a

subpath Ẽ ⊆ E, and integers k̃, s̃ with 0 ≤ k̃ ≤ k and s̃ ∈ {−1, ..., O(log maxe ue)}. A tuple
(Ẽ, k̃, s̃) represents the following subproblem: select a set of tasks T ′ ⊆ T (≥s̃) with |T ′| ≤ k̃
such that for each edge e ∈ Ẽ it holds that

∑
i∈T ′∩Te p̃i ≥ ûe. Note that the subproblem

(E, k,−1) corresponds to the original problem that we want to solve. Moreover, the number
of DP-cells is polynomial in the input length. Notice that there are only a polynomial number
of values s̃ for which T (s̃) is non-empty.

Suppose we are given a subproblem (Ẽ, k̃, s̃) and assume that we already solved each
subproblem of the form (Ẽ′, k̃′, s̃′) where Ẽ′ ⊆ Ẽ, k̃′ ≤ k̃, and s̃′ > s̃. Assume that in OPT
each edge e ∈ Ẽ is covered by at least one task in T (≥s̃) (it will turn out that we need to
compute a feasible solution to (Ẽ, k̃, s̃) only in this case). Hence, for covering the reduced
edge demands û we do not need the tasks in supergroups T (s′) with s′ < s̃. Our algorithm
sweeps the path from left to right and guesses the tasks in OPT step by step (where OPT
denotes the optimal solution to the original input instance). We maintain a pointer at some
edge e and a set T ′ of previously selected tasks. We initialize the algorithm with e being the
leftmost edge of Ẽ and T ′ := ∅. Suppose that the pointer is at some edge e. If the tasks in
T ′ already cover the reduced demand of e, i.e., p(Te ∩ T ′) ≥ ûe, then we move the pointer to
the edge on the right of e. Otherwise, in OPT the edge e must be covered by a task that
is not in T ′. We guess whether p(OPT ∩ T (≥s̃+1) ∩ Te) ≥ ûe or p(OPT ∩ T (s̃) ∩ Te) ≥ ûe.
Since we assumed that e is covered by a task in T (≥s̃), Lemma 7 yields that one of these two
cases applies.

Suppose we guessed that p(OPT ∩ T (≥s̃+1) ∩ Te) ≥ ûe. For any two edges e1, e2 denote
by Pe1,e2 the subpath of E starting with e1 and ending with e2 (including e1 and e2). Let e′
be the rightmost edge on the right of e such that each edge e′′ ∈ Pe,e′ the set OPT ∩ Te′′
contains at least one task in T (≥s̃+1). Let k̃′ denote the number of tasks in OPT ∩ T (≥s̃+1)

whose path intersects Pe,e′ . We guess k̃′. Then we determine the rightmost edge e′′ such that
(Pe,e′′ , k̃′, s̃′) is a yes-instance, where s̃′ ≥ s̃+ 1 is the smallest integer such that T (s̃′) 6= ∅.
We add to T ′ the tasks in the solution of (Pe,e′′ , k̃′, s̃′) and move the pointer to the edge on
the right of e′′.

Assume now that we guessed that p(OPT ∩ T (s̃) ∩ Te) ≥ ûe. Observe that T (s̃) consists
of only Kk non-empty groups T (`). For each of these groups T (`) we guess k` := |OPT ∩
Te ∩ T (`)| − |T ′ ∩ Te ∩ T (`)|. Note that there are only (k + 1)Kk possible guesses. For each
group T (`) we add to T ′ the k` tasks in (Te ∩ T (`)) \ T ′ with rightmost endvertex. Then we
move the pointer to the edge on the right of e.

Like before, at each guessing step, we enumerate only guesses that ensure that we do not
select more than k̃ tasks altogether. Hence, the total number of possible guesses overall is
bounded by 2k̃(k̃+ 1)O(Kk̃) = kO( kδ log k). We store in the cell (Ẽ, k̃, s̃) the set T ′ of minimum
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size if a set of size k̃ was found. Finally, we output the solution in the cell (E, k,−1) if it
contains a feasible solution. If it does not contain a feasible solution we output that there is
no solution of size k for the original edge capacities u. Theorem 1 follows.

4 FPT-2-approximation algorithm

We present an FPT-2-approximation algorithm without resource augmentation (for arbitrary
edge demands), i.e., an algorithm that runs in time f(k)nO(1) and finds a solution of size
at most 2k or asserts that there is no solution of size at most k. Suppose we are given an
instance (I, k). First, we call the algorithm for resource augmentation from Section 3 with
δ = 1. If this algorithm asserts that there is no solution of size at most k then we stop.
Otherwise, let ALG denote the found solution. We guess ALG ∩OPT . Note that there are
only 2k possibilities for ALG ∩ OPT . If ALG ∩ OPT = ∅ then the solution OPT ∪ ALG
covers each edge e to an extent of at least 3/2 · ue, i.e., p((OPT ∪ ALG) ∩ Te) ≥ 3/2 · ue.
Therefore, we create a new UFP-cover instance I ′ whose input tasks are identical with the
tasks in I and in which the demand of each edge e is changed to u′e := 3/2 · ue. We invoke
our algorithm for the resource augmentation setting from Section 3 to I ′ where we look for
a solution of size at most |ALG|+ k ≤ 2k and we set δ := 1/2. Let ALG′ be the returned
solution. It holds that |ALG′| ≤ |ALG|+ k ≤ 2k and ALG′ covers each edge e to an extent
of at least 3/2 · ue/(1 + 1/2) = ue. We output ALG′.

If ALG∩OPT 6= ∅ then we generate a new instance I ′′ in which the tasks in ALG∩OPT
are already taken, i.e., the demand of each edge e is reduced to u′′e := ue−p(ALG∩OPT ∩Te)
and the set of input tasks consists of T \(ALG∩OPT ). We recurse on I ′′ where the parameter
k is set to k − |ALG ∩OPT |. Observe that OPT ′′ := OPT \ ALG is a solution to I ′′ and
if |OPT | ≤ k then |OPT ′′| ≤ k − |ALG ∩OPT |. The resulting recursion tree has depth at
most k with at most 2k children per node and hence it has at most 2O(k2) nodes in total.
This yields the following theorem.

I Theorem 8. There is an algorithm for UFP-cover with a running time of 2O(k2) · nO(1)

that either finds a solution of size at most 2k or asserts that there is no solution of size k.

5 Parameterized approximation scheme

In this section, we present a PAS for UFP-cover. Given a parameter k, we seek to compute
a solution of size at most (1 + ε)k or assert that there is no solution of size at most k. The
running time of our algorithm is kO(k)n(1/ε)O(1/ε) . Let OPT denote a solution with at most
k tasks and let ε > 0 such that 1/ε ∈ N.

We describe first how we guess a partition of E = I0∪̇I1∪̇ · · · ∪̇Ir into O(k) many subpaths
that we denote as intervals. Also, we will guess a set of tasks TS ⊆ T such that if we add TS
to OPT then we obtain a certain amount of slack that we will use in the computation later.
If TS ∩OPT 6= ∅ then we will simply guess TS ∩OPT and recurse, without losing anything
in the approximation ratio.

We group the tasks into groups such that the tasks in the same group have the same size, up
to a factor 1+ε. Formally, for each integer ` we define T ` := {i ∈ T, pi ∈ [(1+ε)`, (1+ε)`+1)}
and we say that a task i is of level ` if i ∈ T `. Then we run the 4-approximation algorithm
from [5] to obtain a solution S. If |S| > 4k then OPT > k and we stop. For each edge e let
OPT

1/ε
e denote the 1/ε largest tasks in OPT ∩ Te (breaking ties in an arbitrary fixed way).

Intuitively, we would like to select the tasks OPTSL due to the following lemma from [6,
Lemma 3.1].
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I Lemma 9 ([6]). There is a set OPTSL ⊆ OPT with |OPTSL| ≤ γε|OPT | such that for
each edge e with |OPT ∩Te| ≥ 1/ε it holds that OPTSL∩OPT 1/ε

e 6= ∅, where γ is a universal
constant that is independent of the given instance.

We cannot guess OPTSL directly. Instead, we run the following algorithm that computes
a set TS = T

(1)
S ∪ T (2)

S ∪ T (3)
S with at most O(|OPTSL|) tasks that gives us similar slack as

OPTSL. The reader may imagine that T (1)
S ∪ T (2)

S = OPTSL and that T (3)
S are additional

tasks that we select. We initialize T (1)
S = ∅. Let Ṽ be the set of start and end vertices of

the tasks in S. We partition E according to the vertices in Ṽ . Formally, we consider the
partition E = Ĩ1∪̇ · · · ∪̇Ĩr̃ of E such that for each Ĩj = {v1, ..., vs} we have that v1 ∈ Ṽ and
vs ∈ Ṽ and for each s′ ∈ {2, ..., s− 1} we have that vs′ 6∈ Ṽ . We say that a task i starts in
an interval Ĩj if Ĩj is the leftmost interval that contains an edge of P (i) and a task i ends in
an interval Ĩj if Ĩj is the rightmost interval that contains an edge of P (i). For each pair of
intervals Ĩj , Ĩj′ we guess whether there is a task from OPTSL that starts in Ĩj and ends in
Ĩj′ . If yes, we add to T (1)

S the largest task with this property. Additionally, for each interval
Ĩj in which at least one task from OPTSL starts or ends we add to T (1)

S the largest task
i∗ ∈ T such that Ĩj ⊆ P (i∗) and define s̄j := pi∗ . One can show that the maximum demand
of an edge e ∈ Ĩj is upper-bounded by 4ks̄j since i∗ is at least as large as the largest task
i ∈ S with Ĩj ⊆ P (i) and each task i ∈ S starts or ends at a vertex in Ṽ . On the other
hand, s̄j is as large as k tasks of size at most 1

k s̄j together and hence we can ignore tasks
of the latter kind for Ĩj if we have s̄j units of slack in Ĩj . Let L denote the set of values `
such that there is an interval Ĩj and a task i ∈ T ` with pi ∈ [ 1

2k s̄j , 4ks̄j ]. One can show that
|L| ≤ Oε(k log k) and |T (1)

S | ≤ O(εk).
Next, we define a set T (2)

S of additional slack tasks. We maintain a queue Q ⊆ V of
vertices that we call interesting and a set of tasks T (2)

S . At the beginning, we initialize
T

(2)
S := ∅ and Q := Ṽ . In each iteration we extract an arbitrary vertex v from Q. Let Q′

be the set of vertices that were removed from the queue Q in an earlier iteration. For each
vertex v let Tv denote the input tasks i whose path P (i) uses v, i.e., such that P (i) contains
an edge e incident to v. For each group T ` with ` ∈ L we guess whether there is a task in
OPTSL that uses v but that does not use any vertex in Q′, i.e., we guess whether there is a
task in OPTSL ∩T ` ∩Tv \

⋃
v′∈Q′ Tv′ . We add to T (2)

S the task with leftmost startvertex and
the task with rightmost endvertex from T ` ∩ Tv \

⋃
v′∈Q′ Tv′ . For each added task, we add

its start- and its endvertex to Q if it has not been in Q before. The algorithm terminates
once Q is empty.

Let T (2)
S be the resulting set. One can show that |T (2)

S | ≤ O(εk). Let now V ′ be the set of
start- and endvertices of tasks in S ∪T (1)

S ∪T
(2)
S and let I0∪ I1∪ · · · ∪ Ir = E be the partition

into subpaths defined by the vertices in V ′. In the following, we partition intervals into three
groups according to the number of tasks from OPT that start or end in them. Given an
interval I let d be the number of tasks that start or end in I. Let α be some constant in
{5, · · · , 5/ε}. We say that I is sparse if d ≤ 1/εα, medium if 1/εα < d ≤ 1/εα+5 and dense if
d > 1/εα+5.

I Lemma 10. There exists an integer α ∈ {5, . . . , 5/ε} such that the number of tasks in
OPT that start or end in a medium interval is at most 2εk.

We guess α and for each interval Ij we guess whether it is sparse, medium, or dense.
Note that there are in total 5

ε 3O(k) many guesses. We select now some more tasks that will
provide us with additional slack. For each medium or dense interval Ij we select the largest
task i ∈ T such that Ij ⊆ P (i). Also, for each maximal set of contiguous sparse intervals
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Ij ∪ Ij+1 ∪ · · · ∪ Ij′ =: I we select the largest task i ∈ T such that I ⊆ P (i). Let T (3)
S denote

the resulting set. We have that |T (3)
S | is at most twice the total number of intervals that are

medium or dense. In each of the latter intervals there are at least 1/ε5 tasks from OPT that
start or end. Therefore, |T (3)

S | ≤ εk. We call TS := T
(1)
S ∪T

(2)
S ∪T

(3)
S the slack tasks. For each

interval Ij we denote by ŝj the slack in the interval given by TS , i.e., ŝj = mine∈Ij p (Te ∩ TS).
To summarize, we obtained the following properties of our intervals and TS .

I Lemma 11. We have that I0∪̇I1∪̇ · · · ∪̇Ir is a partition of E into O(k) intervals and
|TS | ≤ O(εk). For each edge e that is the leftmost or the rightmost edge of an interval Ij
we have that there are at most 1/ε tasks i′ ∈ OPT ∩ Te such that ŝj(1 + ε) < pi′ < 4kŝj.
For each dense interval Ij we have that ŝj ≥ 1

4k maxe∈Ij ue. Also, for each maximal set of
contiguous sparse intervals Ij ∪ Ij+1 ∪ · · · ∪ Ij′ =: I we have that minj′′:j≤j′′≤j′ ŝj′′ is at least
size of the largest task i ∈ OPT with I ⊆ P (i) (if OPT contains such a task i).

If the tasks in TS are not contained in OPT then OPT ∪TS is a solution of size (1+O(ε))k
in which each edge has some slack and hence we can use this slack algorithmically. Otherwise,
we recurse: We guess OPT ∩ TS and if OPT ∩ TS 6= ∅ then we recurse on a new instance
where we assume that OPT ∩ TS is already selected. Formally, this instance has input task
T̄ := T \ (OPT ∩ TS), each edge e ∈ E has demand ūe := ue −

∑
i∈Te∩(OPT∩TS) pi, and

the parameter is k̄ := k − |OPT ∩ TS |. Together with the guesses above, this yields kO(k2)

many guesses. Hence, the recursion tree has depth at most k and each internal node has
at most kO(k2) children which yields kO(k3) vertices in total. In the sequel, we will assume
that OPT ∩ TS = ∅ and solve the remaining problem without any further recursion in time
f(k)nO(1) for some function f .

5.1 Medium intervals
We describe a routine that essentially allows us to reduce the problem to the case where
there are no medium intervals. From Lemma 10 we know that there are no more than 2εk
tasks in OPT that start or end in a medium interval. Therefore, for those tasks we can
afford to make mistakes that cost us a constant factor, i.e., we can select O(εk) instead of
2εk of those tasks.

Let Tmed ⊆ T be the set of tasks that start or end in a medium interval. Let Ij be
a medium interval. In OPT , the demand of the edges in Ij is partially covered by tasks
i ∈ OPT \ Tmed that completely cross Ij , i.e., such that Ij ⊆ P (i). We guess an estimate
for the total size of such tasks, i.e., an estimate for p̂j = p ({i ∈ OPT \ Tmed : Ij ⊆ P (i)}).
Formally, we guess ûj := bp̂j/(ŝj/3)c.

I Lemma 12. We have that ûj ∈ {0, ..., 3k} and for each edge e ∈ Ij it holds that p(Te ∩
OPT ∩ Tmed) + ûj ŝj/3 + p(Te ∩ TS) ≥ ue.

Since there are only O(k) intervals, there are only kO(k) many guesses in total. We construct
an auxiliary instance on the same graph G = (V,E) with input tasks Tmed and demand
umed
e = max{ue−p(Te∩(TS))− û`ŝ`/3, 0} for each e ∈ E in a medium interval, and umed

e = 0
for each edge e ∈ E in a sparse or dense interval. We run the 4-approximation algorithm [5]
on this instance, obtaining a set of tasks T ′med ⊆ Tmed with |T ′med| ≤ 4|OPT ∩Tmed| ≤ O(εk).

For our remaining computation for each medium interval Ij we define the demand ue of
each edge e ∈ Ij to be ue := ûj ŝj/3. Lemma 12 implies that any solution T ′ for this changed
instance yields a solution T ′ ∪ T ′med ∪ TS with at most |T ′| + O(εk) tasks for the original
instance. In the sequel, denote by OPT ′ the optimal solution to the new instance.
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5.2 Heavy vertices
Our strategy is to decouple the sparse and dense intervals. A key problem is that there are
tasks i ∈ OPT ′ such that P (i) contains edges in sparse and in dense intervals. Intuitively,
our first step is therefore to guess some of them in an approximate way.

There are vertices v ∈ V ′ that are used by many tasks in OPT ′ ∩ T ` for some level `.
Formally, we say that for a set of tasks T ′ ⊆ T a vertex v ∈ V ′ is (`, T ′)-heavy if there are
more than 1/εα+1 tasks i ∈ T ′ ∩ T ` ∩ Tv such that i starts or ends in a sparse or a medium
interval. We are interested in vertices v ∈ V ′ that are (`, OPT ′)-heavy for some `. It turns
out that we can compute a small number of levels ` for which this can happen based on the
slacks ŝj of the intervals Ij .

I Lemma 13. Let v ∈ V ′ and assume that v is (`, OPT ′)-heavy for some ` ∈ N0. Then
(1 + ε)` ∈ [ 1

2k ŝj , 4k · ŝj ] for some interval Ij.

Therefore, let L denote the set of levels ` such that a vertex v ∈ V ′ can be (`, OPT ′)-heavy
according to Lemma 13, i.e., L := {`|∃j : (1 + ε)` ∈ [ 1

2k ŝj , 4k · ŝj ]}. Intuitively, for each level
` ∈ L and each (`, OPT ′)-heavy vertex v ∈ V ′ we want to select a set of tasks T̄`,v ⊆ T ` ∩ Tv
that together cover as much as the tasks in OPT ′ due to which v is (`, OPT ′)-heavy, i.e.,
the tasks in OPT ′ ∩ T ` ∩ Tv.

To this end, we do the following operation for each level ` ∈ L. We perform several
iterations. We describe now one iteration and assume that v′ ∈ V ′ is the vertex that we
processed in the previous iteration (at the first iteration v′ is undefined and let Tv′ := ∅ in
this case). We guess the leftmost vertex v ∈ V ′ on the right of v′ that is (`, OPT ′ \Tv′)-heavy.
Let OPT ′`,v := OPT ′ ∩ T ` ∩ Tv \ Tv′ . We want to compute a set T̄`,v that is not much bigger
than OPT ′`,v, i.e., |T̄`,v| ≤ (1 + O(ε))|OPT ′`,v| and that covers at least as much on each
edge e as OPT ′`,v, i.e., p(Te ∩ T̄`,v) ≥ p(Te ∩ OPT ′`,v). We initialize T̄`,v := ∅. We consider
each pair of intervals Ij and Ij′ such that all edges of Ij are on the left of v (but might
have v as an endpoint) and all edges of Ij′ are on the right of v (but might have v as an
endpoint) and such that Ij or Ij′ is sparse or medium. We guess the number kv,`j,j′ of tasks
from OPT ′ ∩ T ` ∩ Tv \ Tv′ that start in Ij and end in Ij′ (and hence are contained in Tv). If
Ij is sparse or medium (and hence then Ij′ can be anything), we add to T̄`,v the kv,`j,j′ tasks
from T ` \ Tv′ with rightmost endvertex that start in Ij and end in Ij′ . If Ij is dense (and
hence then Ij′ is sparse or medium) we add to T̄`,v the kv,`j,j′ tasks from T ` \ Tv′ with leftmost
startvertex that start in Ij and end in Ij′ . Note that

∑
j,j′ k

v,`
j,j′ = |OPT ′`,v|. Intuitively,

the tasks in T̄`,v cover each edge of E to a similar extent as the tasks in OPT ′`,v. We will
show that the difference is compensated by additionally adding the following tasks to T̄`,v:
we add to T̄`,v the b2/εα + 2ε|OPT ′`,v|c tasks from T ` ∩ Tv \ (T̄`,v ∪ Tv′) with leftmost start
vertex. After this, we add to T̄ `v the b2/εα + 2ε|OPT ′`,v|c tasks from T ` ∩ Tv \ (T̄`,v ∪ Tv′)
with rightmost end vertex. Let T̄`,v denote the resulting set. We prove that it covers as much
as OPT ′`,v and that it is not much bigger than |OPT ′`,v|.

I Lemma 14. For each edge e ∈ E in a dense or a sparse interval, we have that p(Te∩T̄`,v) ≥
p(Te ∩OPT ′`,v). For each edge e in a medium interval, we have that p(Te ∩ T̄`,v \ Tmed) ≥
p(Te ∩OPT ′`,v \ Tmed). Also, it holds that |T̄`,v| ≤ (1 +O(ε))|OPT ′`,v|.

We continue with the next iteration where now v′ is defined to be the vertex v from
above. We continue until in some iteration there is no vertex v ∈ V ′ on the right of v′ that
is (`, OPT ′ \ Tv′)-heavy. Let V ′` ⊆ V ′ denote all vertices that at some point were guessed as
being the (`, OPT ′ \ Tv′)-heavy vertex v above. Let TH :=

⋃
`∈L

⋃
v∈V ′

`
T̄`,v denote the set

of computed tasks and define OPT ′H :=
⋃
`∈L

⋃
v∈V ′

`
OPT ′`,v.
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I Lemma 15. We have that p(Te ∩ TH) ≥ p(Te ∩OPT ′H) for each edge e in a dense and a
sparse interval, and p(Te ∩ TH \ Tmed) ≥ p(Te ∩OPT ′H \ Tmed) for each edge e in a medium
interval. Also, it holds that |TH | ≤ (1 +O(ε))|OPT ′H |.

It remains to compute a set of tasks T ′ such that T ′ ∪ TH ∪ TS is feasible. Intuitively,
T ′ should cover as much as OPT ′ \ OPT ′H on each edge. To this end, we decouple the
problem into one for the dense intervals and one for the sparse intervals. One problem for
this is that even after selecting the tasks in TH we might need to select additional tasks that
have one endpoint in a dense interval and the other one in a sparse interval. However, we
will show that since we selected the tasks in TS , for each dense interval I there are only
constantly many such tasks that still matter. We show that we can afford to select such
tasks twice (once in the subproblem for the dense intervals and once in the subproblem for
the sparse intervals) since we can charge them to the many tasks that start or end in I. For
this charging to work we use that in a dense interval there can be many more tasks that
start or end than in a sparse interval.

5.3 Dense intervals
Recall that for each dense interval Ij we have that ŝj ≥ 1

4k maxe∈Ij ue (see Lemma 11).
Hence, intuitively it suffices to compute a solution for Ij that is feasible under (1 + 1

4k )-
resource augmentation. So in order to compute a set of tasks T ′ that cover the remaining
demand in all dense intervals Ij (after selecting TH) we could apply the algorithm for resource
augmentation from Section 3 directly as a black box. However, there are also the sparse
intervals and it might be that there are tasks i ∈ OPT ′ \OPT ′H that are needed for a dense
interval and for a sparse interval. There are two types of such tasks. The first type are tasks
that have at least one endpoint in a sparse interval. For each dense interval Ij there can be
at most 2/εα such tasks in T ` ∩OPT ′ \OPT ′H for each group ` (since each of them needs to
overlap one of the endpoints of Ij). We will show later that the slack due to TS is as large
as almost all of them together, all apart from 1/εα+4 many. Hence, if we select the latter
tasks twice (once in the subproblem for the dense intervals and once in the subproblem for
the sparse intervals) we can charge them to the tasks that start or end in Ij and hence we
increase our cost by at most a factor 1 + ε. The second type are tasks that start and end in
a dense interval. Let TD ⊆ T denote the set of all such tasks. Note that a vertex can be
crossed by more than constantly many tasks in TD ∩OPT ′ \OPT ′H . To handle those tasks,
we guess an estimate for the demand that such tasks cover in the sparse intervals. Therefore,
for each sparse interval Ij′ we guess a value ûj′ such that ûj′ =

⌊
p(Te∩TD∩OPT ′\OPT ′H)

ŝj/4

⌋
· ŝj/4

for each edge e ∈ Ij′ (note that p(Te ∩TD ∩OPT ′ \OPT ′H) is identical for each edge e ∈ Ij′).
Then p(Te ∩ TD ∩OPT ′ \OPT ′H) essentially equals ûj′ and we show that the difference is
compensated by our slack, even if we cover a bit less than ûj′ units on each edge e ∈ Ij′ .

I Lemma 16. Let Ij′ be a sparse interval. Then ûj′ ∈ {0, ŝj4 , 2 ·
ŝj
4 , . . . , 4k ·

ŝj
4 } and

ûj′ ≤ p(Te ∩ TD ∩OPT ′ \OPT ′H) ≤ 1
(1+ 1

4k ) ûj′ + p(Te ∩ TS)/2 for each e ∈ Ij′ .

We generate now an auxiliary instance where in each sparse interval Ij′ we reduce the demand
ue of each edge e ∈ Ij′ to ûj′ (but do not change the demand on any edge in a dense interval)
and remove all input tasks i such that P (i) does not contain an edge of a dense interval.
Also, for each remaining task i we shorten its path P (i) to a path P ′(i) such that P ′(i) is
the longest path contained in P (i) that starts and ends on a vertex in a dense interval. We
apply the algorithm from Section 3 with (1 + δ)-resource augmentation to this instance with
δ := 1/4k. We obtain a solution T (1) such that for each edge e in an interval Ij , the solution
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T (1) covers at least ue − ŝj/2 when Ij is dense and ûj − ŝj/2 when Ij is sparse. Notice that
according to Lemma 11, we have ŝj ≥ ue/(4k) for each edge e in a dense interval Ij and for
each edge e lying in a maximal set of contiguous sparse intervals that is completely crossed
by at least one input task.

I Lemma 17. For each edge e in a dense interval we have that p(Te∩ (T (1)∪TH ∪TS)) ≥ ue.
For each edge e in a sparse interval Ij′ we have that p(Te ∩ T (1) ∩ TD) + p(Te ∩ TS)/2 ≥
p(Te ∩ TD ∩OPT ′ \OPT ′H).

Due to Lemma 17 we cover the complete demand in each dense interval and some portion
of the demand in each sparse interval. Therefore, for the remaining problem for each edge
e in a sparse interval Ij′ we change its demand to ūe := ue − ûj′ . Also, we remove all
tasks in TD from the input, i.e., we work with the input tasks T̄ := T \ TD. We claim that
OPT := OPT ′ \ (OPT ′H ∪ TD) is a solution to the residual instance.

I Lemma 18. For each edge e in a sparse interval we have that p(Te ∩OPT ) ≥ ūe.

5.4 Sparse intervals
Recall that in each sparse interval Ij′ there are at most 1/εα tasks from OPT that start
or end in Ij′ (and hence the same is true for OPT ⊆ OPT ). Therefore, for each sparse
interval we can guess these tasks in time nO(1/εα). If it was even true that for each sparse
interval Ij′ there are at most 1/εα tasks i ∈ OPT with P (i) ∩ Ij′ 6= ∅ then we could devise
a simple dynamic program (DP) that sweeps the intervals from left to right and computes
the optimal solution. Unfortunately, this is not true, but note that each vertex v ∈ V ′ is
used by at most 1/εα+1 tasks in OPT ∩ T ` for each group T `. Using this, we devise a more
complicated DP that processes the intervals in the order of their slacks ŝj and guesses step
by step the at most 1/εα tasks that start or end in each of them. In order to restrict the
running time to a polynomial we use the tasks in TS in order to be able to “forget” some
previously guessed tasks, i.e., we argue that the forgotten tasks have a total size that is at
most the size of the slack due to TS . Let us define a constant β := 1 + log1+ε

( 6
εα+2

)
and a

constant Γ := 1/εα + 1/ε+ (β + 2)/εα+1. Formally, each DP-cell is described by
two intervals Ij , Ij′ such that for each interval Ij′′ between Ij and Ij′ it holds that
ŝj′′ ≥ max{ŝj , ŝj′},
two sets of tasks T ′j and T ′j′ of size at most Γ such that for each i ∈ T ′j (resp. i ∈ T ′j′) it
holds that P (i) ∩ Ij 6= ∅ (resp. P (i) ∩ Ij′ 6= ∅) and p(Te ∩ T ′j) + p(Te ∩ TS)/2 ≥ ūe (resp.
p(Te ∩ T ′j′) + p(Te ∩ TS)/2 ≥ ūe) for each edge e ∈ Ij (resp. e ∈ Ij′), i.e., the tasks in T ′j
(resp. T ′j′) essentially cover the demand of Ij (resp. Ij′).

Such a cell (Ij , Ij′ , T ′j , T ′j′) represents the subproblem of selecting a set of tasks T̂ such that
the path of each task i ∈ T̂ lies between Ij and Ij′ and does not use any edge of Ij ∪ Ij′ and
such that T ′j ∪ T ′j′ ∪ T̂ cover the demand ūe for each edge between Ij and Ij′ together with
half of the slack, i.e., p(Te ∩ (T ′j ∪ T ′j′ ∪ T̂ )) + p(Te ∩ TS)/2 ≥ ūe.

Suppose we are given a cell (Ij , Ij′ , T ′j , T ′j′) and we want to compute a solution DP (Ij , Ij′ ,
T ′j , T

′
j′) for it. Let Ij′′ denote the interval between Ij and Ij′ with smallest slack ŝj′′ (breaking

ties arbitrarily). Let `′′ be the greatest integer such that (1 + ε)`′′ ≤ ŝj′′ . Let T≥`′′−β :=⋃
`≥`′′−β T

`. The intuition is that we guess the tasks in OPT that use Ij′′ and when we recurse
we forget all tasks that are not in T≥`′′−β . We will show that our slack compensates the
forgotten tasks. Therefore, we can ensure that if we always guess all tasks from OPT correctly
then we will have only subproblems (Ij , Ij′ , T ′j , T ′j′) where |T ′j | ≤ Γ and |T ′j′ | ≤ Γ. Formally,
we enumerate all sets of tasks T ′j′′ ⊆ T≥`

′′−β such that there are at most Γ tasks in T ′j′′ ,
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P (i)∩Ij′′ 6= ∅ for each i ∈ T ′j′′ , and the tasks in T ′j′′ cover the demand of Ij′′ together with half
of the slack in TS , i.e., p(Te∩T ′j′′)+p(Te∩TS)/2 ≥ ūe for each edge e ∈ Ij′′ . For a fixed guess
of T ′j′′ we associate the solution T ′j ∪ T ′j′ ∪ T ′j′′ ∪DP (Ij , Ij′′ , T ′j , T ′j′′) ∪DP (Ij′′ , Ij′ , T ′j′′ , T ′j′).
We define DP (Ij , Ij′ , T ′j , T ′j′) to be the solution of minimum size associated to one of the
enumerated sets T ′j′′ . For DP-cells (Ij , Ij′ , T ′j , T ′j′) such that there is no interval between
Ij and Ij′ we define DP (Ij , Ij′ , T ′j , T ′j′) := ∅. For convenience, assume that we append two
dummy intervals I−1 and Ir+1 on the left and on the right of E that are not used by any
task and that have zero demand on each of their edges. Also, we define that they have zero
slack, i.e., ŝ−1 = ŝr+1 = 0. We output the solution DP (I−1, Ir+1, ∅, ∅).

In order to show that the above DP is correct, one key step is to argue that it is
unproblematic to neglect the tasks that are not in T≥`′′−β in each respective step. This is
shown in the following lemma.

I Lemma 19. Let Ij , Ij′ be two intervals such that for each interval Ij′′ between Ij and Ij′
it holds that ŝj′′ ≥ max{ŝj , ŝj′}. Let `′′ be the greatest integer such that (1 + ε)`′′ ≤ ŝj′′ for
all intervals Ij′′ between Ij and Ij′ . Then for each edge e between Ij and Ij′ it holds that
d
(
Te ∩OPT ∩ T≥`

′′−β
)

+ p(Te ∩ TS)/2 ≥ ūe.

Also, we need to show that when we enumerate the sets T ′j′′ above one candidate set
consists of the tasks in OPT that use Ij′′ but neither Ij nor Ij′ and that in particular the
latter set contains at most Γ tasks.

I Lemma 20. Let Ij′′ be a sparse interval and let `′′ be the greatest integer such that
(1 + ε)`′′ ≤ ŝj′′ . Then there are at most Γ tasks in OPT ∩ T≥`′′−β that use an edge of Ij′′ .

Equipped with Lemmas 19 and 20 we can prove that the above DP is correct by arguing
that it will produce OPT if it makes the corresponding guesses for each DP-cell. Also, by
construction the returned solution is feasible. This yields the following lemma.

I Lemma 21. There is an algorithm with a running time of nO(1/εα+4) that computes a set
T (2) ⊆ T̄ with |T (2)| ≤ |OPT | and p(Te ∩ T (2)) + p(Te ∩ TS)/2 ≥ ūe for each edge e.

It remains to argue that our computed sets T ′med, T
(1), T (2), TH , TS together form a feasible

solution and do not contain too many tasks. With the following lemma we complete the
proof of Theorem 3.

I Lemma 22. We have that T ′med∪T (1)∪T (2)∪TH ∪TS is a feasible solution to the original
input instance (T,E) and |T ′med ∪ T (1) ∪ T (2) ∪ TH ∪ TS | ≤ (1 +O(ε))k.

6 W [1]-hardness

In this section we prove that UFP-cover is W [1]-hard if the parameter k represents the
number of tasks in the optimal solution. Our proof goes along the lines of the proof that
UFP (packing) is W [1]-hard for the same parameter as in [27].

I Theorem 23. UFP-cover problem is W [1]-hard when parameterized by the number of tasks
in the optimal solution.

We give a reduction from the k-subset sum problem which is W [1]-hard [19]. Given a set
of n values A = {a1, ..., an}, a target value B and an integer k, the goal is to choose exactly
k values from A that sum up to exactly B.

Suppose we are given an instance of k-subset sum. First, we claim that we can assume
w.l.o.g. some properties of it.
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. . .eL eR

B
B −B/(2k)

i(j)
i′(j)

v0 v1 vn vn+1v2 v3 vn−2 vn−1

aj
2B/k − aj

Figure 1 Sketch of the reduction used in order to prove Theorem 23. The sketch shows the tasks
i(j) and i′(j) for only one index j. The figure is essentially identical to a figure in [27], taken with
consent of the author.

I Lemma 24. W.l.o.g. we can assume that there are values ε1, ..., εn, not necessarily positive,
such that ai = B/k + εi for each i ∈ [n] and that

∑n
i=1 |εi| < B/(2k).

We construct an instance of UFP-cover that admits a solution with 2k tasks if and only
if the given k-subset sum is a yes-instance. Our UFP-cover instance has a path with n+ 2
vertices v0, v1, ..., vn+1. Denote the leftmost and the rightmost edge by eL and eR, respectively.
We define u(eL) = u(eR) = B. For all other edges e we define u(e) := B −B/(2k). Assume
that the values in S are ordered such that a1 ≥ a2 ≥ ... ≥ an. Let j ∈ [n]. We introduce two
tasks i(j), i′(j) with s(i(j)) := v0, t(i(j)) := vj , p(i(j)) := aj s(i′(j)) := vj , t(i′(j)) = vn+1,
and p(i′(j)) := 2B/k − aj . See Figure 1 for a sketch.

In order to get some intuition about the constructed instance, we prove the following
lemma.

I Lemma 25. Any feasible solution contains at least 2k tasks. Among them are k tasks
covering eL and k tasks covering eR. If a task covers eL then it does not cover eR and vice
versa.

In the next lemma we show how to construct a solution with 2k tasks if the given k-subset
sum instance is a yes-instance.

I Lemma 26. If the given k-subset sum instance is a yes-instance, then the constructed
UFP-cover instance has a solution with 2k tasks.

Conversely, we show that if the UFP-cover instance has a solution with at most 2k tasks
then the k-subset sum instance is a yes-instance. Suppose we are given such a solution for
the UFP-cover instance. First, we establish that for each j ∈ [n] the solution selects either
both i(j) and i′(j) or none of these two tasks.

I Lemma 27. Given a solution T ′ to the UFP-cover instance with 2k tasks. For each j ∈ [n]
we have that either {i(j), i′(j)} ⊆ T ′ or {i(j), i′(j)} ∩ T ′ = ∅.

Suppose we are given a solution T ′ to the UFP instance with 2k tasks (for which hence
Lemma 27 applies). Let J ′ be the set of indices j such that i(j) ∈ T ′. Note that Lemma 27
implies that |J ′| = k.

I Lemma 28. We have that
∑
j∈J′ aj = B.

Hence, we proved that the constructed UFP-cover instance has a solution with 2k tasks
if and only if the k-subset sum instance is a yes-instance. This implies that UFP-cover
is W [1]-hard when parameterized by the number of tasks in the optimal solution. This
completes the proof of Theorem 23.



A. Cristi, M. Mari, and A. Wiese 42:15

7 Conclusion and open questions

In this paper we presented a PAS for UFP-cover and showed that the problem is FPT under
resource augmentation or if additionally the number of different task sizes are bounded by
a parameter. It remains open whether the problem is FPT if only the number task sizes
is bounded by a parameter, but not the number of tasks in the optimal solution. Also, we
showed that UFP-cover is W [1]-hard. Our W [1]-hardness proof is based on a reduction from
the k-subset sum problem, which can be solved in pseudopolynomial time O(nB). Hence, it
is open whether UFP-cover is FPT if the input data are polynomially bounded. Our PAS
can be simplified in this setting, however, it crucially relies on the slack obtained by selecting
εk additional tasks and thus does not solve the problem optimally in this case.
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For completeness we present the reduction here using our notation. In the fault model of
general caching we are given a value M ∈ N that denotes the size of the cache and we are
given a set of pages P. Each page q ∈ P has a (not necessarily unit) size s(q) ∈ N. Also we
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is to decide at what times we bring each page into the cache in order to minimize the total
number of these transfers, assuming that initially the cache is empty. We show here how to
reduce this problem to UFP-cover with unit weights.

I Lemma 29. Given an instance (P,R,M) of general caching in the fault model, in polyno-
mial time we can compute an instance (V,E, T, u) of UFP-cover such that for any solution
to (P,R,M) with cost C, there is a solution T ′ ⊆ T to (V,E, T, u) with |T ′| = C, and vice
versa.

Proof. W.l.o.g. we can restrict ourselves to solutions of (P,R,M) where each page enters
the cache only when it is requested and leaves the cache only right after it is requested,
and to instances where each page is requested at least once and M <

∑
q∈P s(q). Thus, a

solution is completely defined by deciding at each point in time whether we evict the page
that was just requested or whether we keep it in the cache until it is requested again. We
construct the path (V,E) by defining one edge e(t) for each time t such that there is a request
j ∈ R with tj = t, and ordering the edges on the path by increasing values of t. For defining
the tasks T , we initialize T := ∅. Then, for every page q ∈ P and every pair j1, j2 ∈ R of
consecutive requests of page q, we add a task i(j1, j2) to T with size pi(j1,j2) = s(q). The
subpath Pi(j1,j2) is the one that starts in the right vertex of e(tj1) and ends in the left vertex
of e(tj2). We define the demand of the edge e(t) to be ue(t) = p(Te(t))−M +

∑
j∈R:tj=t s(qj)

for every time t. We also add an extra edge e0 at the left of E with capacity ue0 =
∑
q∈P s(q)

and we add a task i∗q with Pi∗q = {e0} and pi∗q = s(q) for each page q ∈ P. The cost of these
tasks is exactly the total cost of loading each page into the cache once, i.e., the first time
that the respective page is requested.

Given a solution to (P,R,M), we construct a solution T ′ for (V,E, T, u) in the following
way. For every page q and every pair of consecutive requests j1, j2 of page q, we add i(j1, j2)
to T ′ if and only if page q is evicted from (and therefore re-loaded into) the cache between
tj1 and tj2 . We also add i∗q to T ′ for all q ∈ P. It is clear that |T ′| is exactly the number of
times a page is brought into the cache in the original solution. We now check that T ′ is a
feasible solution. Consider an edge e(t) ∈ E. Then p(Te(t) \ T ′) is the sum of sizes of the
pages that are in the cache at time t that are not requested exactly at time t. The total
size of all pages in the cache is at most M , so p(Te(t) \ T ′) +

∑
j∈R:tj=t s(qj) ≤M . Then, as

p(Te(t)) = p(Te(t) ∩T ′) + p(Te(t) \T ′) and ue(t) = p(Te(t))−M +
∑
j∈R:tj=t s(qj) we conclude

that p(T ′ ∩ Te(t)) ≥ ue(t). Also it holds by construction that p(T ′ ∩ Te0) = ue0 .
Let now T ′ be a feasible solution to (V,E, T, u). Of course i∗q ∈ T ′ for all q ∈ P. This

accounts for the first time each page is brought into the cache. We construct a solution S′
to (P,R,M) as follows. For every page q and every pair of consecutive requests j1, j2 of
page q we keep page q in the cache between tj1 and tj2 if and only if i(j1, j2) 6∈ T ′. Thus,
for each element in T ′ we have to bring a page into the cache once, and then the cost of
the solution is exactly |T ′|. We have to check that the size of the pages in the cache never
exceeds M in S′. In fact, note that the total size of the pages in the cache at time t is
p(Te(t) \ T ′) +

∑
j∈R:tj=t s(qj). But p(Te(t) ∩ T ′) ≥ ue(t), and therefore,

p(Te(t) ∩ T ′) ≥ p(Te(t))−M +
∑

j∈R:tj=t
s(qj)

⇔ M ≥ p(Te(t)) + p(Te(t) ∩ T ′) +
∑

j∈R:tj=t
s(qj)

⇔ M ≥ p(Te(t) \ T ′) +
∑

j∈R:tj=t
s(qj) . J
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Abstract
It is well known that the isomorphism problem for vertex-colored graphs with color multiplicity at
most 3 is solvable by the classical 2-dimensional Weisfeiler-Leman algorithm (2-WL). On the other
hand, the prominent Cai-Fürer-Immerman construction shows that even the multidimensional version
of the algorithm does not suffice for graphs with color multiplicity 4. We give an efficient decision
procedure that, given a graph G of color multiplicity 4, recognizes whether or not G is identifiable
by 2-WL, that is, whether or not 2-WL distinguishes G from any non-isomorphic graph. In fact,
we solve the more general problem of recognizing whether or not a given coherent configuration of
maximum fiber size 4 is separable. This extends our recognition algorithm to directed graphs of
color multiplicity 4 with colored edges.

Our decision procedure is based on an explicit description of the class of graphs with color multi-
plicity 4 that are not identifiable by 2-WL. The Cai-Fürer-Immerman graphs of color multiplicity 4
distinctly appear here as a natural subclass, which demonstrates that the Cai-Fürer-Immerman
construction is not ad hoc. Our classification reveals also other types of graphs that are hard for
2-WL. One of them arises from patterns known as (n3)-configurations in incidence geometry.
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and has an even more powerful k-dimensional version (k-WL) for any k > 2. The original 2-
dimensional version and the logarithmic-dimensional enhancement are important components
in Babai’s quasipolynomial-time isomorphism algorithm [4].

Even on its own, 2-WL is a quite powerful tool in isomorphism testing. For instance,
it solves the isomorphism problem for several important graph classes, in particular, for
interval graphs [16]. Also, it is successful for almost all regular graphs of a fixed degree [5].
On the other hand, not every pair of non-isomorphic graphs is distinguishable by 2-WL. For
example, it cannot detect any difference between two non-isomorphic strongly regular graphs
with the same parameters.

We call a graph G amenable to k-WL if the algorithm distinguishes G from any non-
isomorphic graph. An efficient characterization of the class of graphs amenable to 1-WL is
obtained by Arvind et al. in [2], where it is given also for vertex-colored graphs. Independently,
Kiefer et al. [26] give an efficient criterion of amenability to 1-WL in a more general framework
including also directed graphs with colored edges. Similar results for 2-WL are currently
out of reach. A stumbling block here is the lack of understanding which strongly regular
graphs are uniquely determined by their parameters. Note that a strongly regular graph is
determined by its parameters up to isomorphism if and only if it is amenable to 2-WL.

A general strategy to approach a hard problem is to examine its complexity in the
parameterized setting. We consider vertex-colored graphs with the color multiplicity, that is,
the maximum number of equally colored vertices, as parameter. If this parameter is bounded,
the graph isomorphism problem is known to be efficiently solvable. More specifically, it
is solvable in time polynomial in the number of vertices and quasipolynomial in the color
multiplicity [4, Corollary 4], and it is solvable in polylogarithmic parallel time [27]. Graph
Isomorphism is known to be in the ModkL hierarchy for any fixed color multiplicity [3], and
even in ⊕L = Mod2L for color multiplicity at most 5 [1].

Every graph of color multiplicity at most 3 is amenable to 2-WL (Immerman and Lander
[24]). Starting from color multiplicity 4, the amenability concept is non-trivial: The prominent
Cai-Fürer-Immerman construction [9] shows that for any k, there exist graphs with color
multiplicity 4 that are not amenable to k-WL.

We design an efficient decision procedure that, given a graph G with color multiplicity 4,
recognizes whether or not G is amenable to 2-WL. Note that an a priori upper complexity
bound for this decision problem is coNP, as a consequence of the aforementioned fact
that Graph Isomorphism for graphs of bounded color multiplicity is in P. From now on,
amenability is meant with respect to 2-WL, unless stated otherwise.

We actually solve a much more general problem. 2-WL transforms an input graph G,
possibly with colored vertices and directed and colored edges, into a coherent configuration
C(G), which is called the coherent closure of G. The concept of a coherent configuration has
been discovered independently in statistics [6] and algebra [22] and, playing an important role
in diverse areas, has been developed to the subject of a rich theory; see a recent monograph
[10], that we will use in this paper as a reference book. A coherent configuration C is called
separable if the isomorphism type of C is determined by its regularity parameters in a certain
strong sense; see the definition in Section 2. The separability of the coherent closure C(G)
implies the amenability of the graph G. This was the approach undertaken in [16], where
it was shown that the coherent closure of any interval graph is separable. Somewhat less
obviously, the converse relation between amenability of G and separability of C(G) is also
true: For every graph G,

G is amenable if and only if C(G) is separable; (1)

see Theorem 2.1 in Section 2. Equivalence (1) reduces the amenability problem for graphs
to the separability problem for coherent configurations. This reduction works as well for
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directed graphs with colored vertices and colored edges, that is, essentially for arbitrary
binary relational structures. If G has color multiplicity b, then the maximum fiber size of
C(G) is also bounded by b (see Section 2 for the definitions). While all coherent configurations
with fibers of size at most 3 are known to be separable [10], the separability property for
coherent configurations with fibers of size 4 is non-trivial, and our first result is this.

I Theorem 1.1. The problem of deciding whether a given coherent configuration with
maximum fiber size 4 is separable is solvable in ⊕L.

Since ⊕L ⊆ NC2 (which follows from the inclusion #L ⊆ NC2 in [35]), Theorem 1.1
implies that the separability problem is solvable in parallel polylogarithmic time. Using the
reduction (1), we obtain our result for graphs.

I Theorem 1.2. The problem of deciding whether a given vertex-colored graph with maximum
color multiplicity 4 is amenable to 2-WL is solvable in P. This holds true also for vertex-
and edge-colored directed graphs.

More precisely, the proof of Theorem 1.2 yields an algorithm deciding amenability of
graphs of color multiplicity at most 4 with running time O(n2+ω), where ω < 2.373 is the
exponent of fast matrix multiplication [19]. Using randomization, the running time can be
improved to O(n4 log2 n).

Theorems 1.1 and 1.2 are proved in Section 5. The proof is based on a combinatorial Cut-
Down Lemma in Section 3, which reduces deciding separability of a coherent configuration C
with maximum fiber size 4 to deciding separability of a subconfiguration C′ of C belonging to
a class of well-structured coherent configurations which we call irredundant. Separability of
irredundant configurations is studied in Section 4, where it is recast as a question about a
certain permutation group.

Our results have the following consequences, which we discuss in Section 6.

Highlighting the inherent structure of the Cai-Fürer-Immerman graphs. The essence
of our proof of Theorem 1.2 is an explicit description of the class of graphs with color
multiplicity 4 that are not amenable to 2-WL. The Cai-Fürer-Immerman graphs of color
multiplicity 4 distinctly appear here as a natural subclass, which demonstrates that the
Cai-Fürer-Immerman construction is not ad hoc. In a sense, the famous CFI gadget [9,
Fig. 3] (or [25, Fig. 13.24]) appears in our analysis inevitably “by itself”.1

While the CFI graphs have many automorphisms, Gurevich and Shelah [21] came up with
a construction of (non-binary) multipede structures that are rigid and yet not identifiable
by k-WL. Neuen and Schweitzer [30, 31] combined both approaches to construct multipede
graphs and to give sufficient conditions ensuring that these graphs are not amenable to k-WL
(see also a recent related paper [12]). The multipede graphs are vertex-colored and the results
of [30, 31] make perfect sense if the color multiplicity is bounded by 4. An irredundant
coherent configuration typically admits a natural representation by a multipede graph and vice
versa; see Remark 6.6. Though non-amenability to k-WL for higher dimensions implies non-
amenability to 2-WL, the results obtained in [12, 30, 31] and in our paper are incomparable
as we provide both sufficient and necessary conditions for 2-WL-non-amenability.

1 More precisely, this concerns a simplified version of the CFI gadget, where each vertex in a cubic pattern
graph is replaced with a quadruple of new vertices and two quadruples are connected by edges directly,
and not via two extra pairs of auxiliary vertices as in the original version; cf. Fig. 4. The simplified
gadget appears in an algebraic analog of the CFI result by Evdokimov and Ponomarenko [15]; see also
Fürer’s survey paper [18]. This gadget comes out also in the shrunken multipede graphs [30].
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More graphs hard for 2-WL. Our analysis reveals new types of non-amenable graphs. A
particularly elegant construction is based on the well-studied (n3)-configurations of lines and
points [20, 32]. For example, the 7-point Fano plane and the 9-point Pappus configuration
give rise to non-amenable graphs of color multiplicity 4 with, respectively, 28 and 36 vertices.

Classification of small graphs. Our amenability criteria are easy to apply in many cases. In
particular, they imply that all graphs of color multiplicity 4 with no more than 15 vertices are
amenable. Among graphs of color multiplicity 4 with 16 vertices there are 434 non-amenable
graphs, which are split into 217 pairs of 2-WL indistinguishable non-isomorphic graphs.

All proofs omitted in this version of the paper can be found in [17].

2 Basic definitions and facts

Let V be a set, whose elements are called points. Let C = {R1, . . . , Rs} be a partition of
the Cartesian square V 2, that is,

⋃s
i=1 Ri = V 2 and any two Ri and Rj are disjoint. An

element R of C will be referred to as a basis relation. C is called a coherent configuration on
V = V (C) if it has the following properties:
(A) If a basis relation R ∈ C contains a loop vv, then all pairs in R are loops;
(B) For every R ∈ C, the transpose relation R∗ = {uv : vu ∈ R} is also in C.
(C) For every triple R,S, T ∈ C, the number p(uv) = | {w : uw ∈ R, wv ∈ S} | is the same

for all uv ∈ T .
For a coherent configuration C, the number p(uv) in (C) does not depend on the choice of uv
in T and is denoted by pTRS . The entries of this 3-dimensional matrix are called intersection
numbers of C.

Two coherent configurations C and D are combinatorially isomorphic if there is a bijection
φ : V (C)→ V (D), called a combinatorial isomorphism from C to D, such that φ(R) ∈ D for
every R ∈ C. We write C ∼=comb D for this relationship. Here φ(R) = {φ(u)φ(v) : uv ∈ R}.

Coherent configurations C and D are algebraically isomorphic if their 3-dimensional
matrices of intersection numbers, pTRS and pT ′R′S′ , are isomorphic, that is, there is a bijection
f : C → D such that

pTRS = p
f(T )
f(R)f(S).

In this case we write C ∼=alg D. Such a bijection f is called an algebraic isomorphism from C
to D. Note that combinatorially isomorphic coherent configurations are also algebraically
isomorphic. Indeed, any combinatorial isomorphism φ from C to D gives rise to the algebraic
isomorphism f defined by f(R) = φ(R).

To allow a uniform treatment of ordinary graphs, vertex-colored graphs, and even edge-
colored directed graphs, we formally define a colored graph G on a vertex set V = V (G) as a
function cG : V 2 → C such that cG(vv) 6= cG(uw) whenever u 6= w. For each color c ∈ C,
the set {uv : cG(uv) = c} is called a color class of G. Two colored graphs G and H are
isomorphic if there is a bijection φ : V (G)→ V (H) such that cH(φ(u)φ(v)) = cG(uv) for all
u, v ∈ V (G). In the context of the isomorphism problem, we can always assume that

cG(uv) = cG(u′v′) if and only if cG(vu) = cG(v′u′), (2)

that is, if arrows have the same color, then the inverse arrows must also be equally colored.
This condition can be ensured by modifying the coloring as follows. Suppose that an arrow
uv is colored red in G, and the inverse arrow vu is colored blue. Then uv is recolored a new
color redblue, and vu is recolored a new color bluered. The new colored graph Ĝ satisfies
the condition (2). Note that Ĝ ∼= Ĥ exactly when G ∼= H.
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We remark that ordinary graphs are covered by this setting as adjacency and non-
adjacency can be seen as two distinct colors of vertex pairs. The vertex-colored graphs are
covered as well as a vertex v can be seen as having color cG(vv). A set of vertices of the
same color is referred to as vertex color class.

Given a colored graph G as input, the 2-dimensional Weisfeiler-Leman algorithm (2-WL
for short) iteratively computes colorings ciG of the Cartesian square V 2 for V = V (G).
Initially, c0

G = cG and then,

ci+1
G (uv) = ciG(uv) |

{{
ciG(uw) | ciG(wv)

}}
w∈V ,

where {{ }} denotes the multiset and | denotes the string concatenation (an appropriate
encoding is assumed). Denote the partition of V 2 into the color classes of ciG by RiG. Note
that Ri+1

G refines RiG. Let t = tG be the minimum number such that RtG = Rt−1
G . The

algorithm terminates after the t-th color refinement round. It is easy to verify that RtG is a
coherent configuration. Moreover, let RG denote the partition of V (G)2 into the color classes
of G. It turns out that RtG coincides with the coherent closure of RG, which is the coarsest
coherent configuration refining RG; see [10, Section 2.6.1]. We call this configuration the
coherent closure of the graph G and denote it by C(G).

We say that colored graphs G and H are 2-WL equivalent and write G ≡2-WL H if{{
ctG(uv)

}}
uv∈V (G)2 =

{{
ctH(uv)

}}
uv∈V (H)2 (3)

for t = tG (equivalently, for t = tH , or for all t).
Suppose that G ≡2-WL H. Equality (3) implies that there is a one-to-one map f : C(G)→

C(H) preserving the 2-WL colors. Note that f is an algebraic isomorphism from C(G) to
C(H). We, therefore, have the following diagram:

G ∼= H =⇒ G ≡2-WL H

⇓ ⇓
C(G) ∼=comb C(H) =⇒ C(G) ∼=alg C(H)

We call a colored graph G amenable (to 2-WL) if 2-WL distinguishes G from any non-
isomorphic graph H, that is, G ≡2-WL H implies G ∼= H.

A coherent configuration C is separable if every algebraic isomorphism from C to any
coherent configuration D is induced by a combinatorial isomorphism from C to D.

I Theorem 2.1. A colored graph G is amenable if and only if its coherent closure C(G) is
separable.

Let C be a coherent configuration on the point set V = V (C). A set of points X ⊆ V is
called a fiber of C if the set of loops {xx : x ∈ X} is a basis relation of C. Denote the set of
all fibers of C by F (C). By Property (A) of a coherent configuration, F (C) is a partition of V .
Property (C) implies that, for every basis relation R of C there are, not necessarily distinct,
fibers X and Y such that R ⊆ X × Y . Thus, if X,Y ∈ F (C), then the Cartesian product
X × Y is split into basis relations of C. We denote this partition by C[X,Y ]. If X = Y , we
simplify notation to C[X] = C[X,X]. Note that C[X] is a coherent configuration on X, with
X being its single fiber. Such coherent configurations are called association schemes. We
will call C[X] a cell of C.

All possible association schemes on at most 4 points are depicted in Figure 1. Basis
relations are represented by undirected edges if they are equal to their transposes, and by
arrows otherwise. Loops are omitted. The 4-point cells are named K4, C4, ~C4, and F4
according to the graphs underlying their shapes. Here, ~C4 stands for the directed 4-cycle,
and F4 stands for the factorization of K4 into three matchings 2K2.
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K4 F4 C4 ~C4

Figure 1 Cells C[X] on at most 4 points.

|X| = |Y | = 2: |X| = |Y | = 3:

|X| = 2, |Y | = 4:

2K1,2

4K1,1

|X| = |Y | = 4, |C[X,Y ]| = 2:

2K2,2 C8

|X| = |Y | = 4, |C[X,Y ]| = 3: |X| = |Y | = 4, |C[X,Y ]| = 4:

Figure 2 Non-uniform interspaces C[X, Y ] for fibers X, Y with at most 4 points.

If X 6= Y , we call the partition C[X,Y ] an interspace of C. If |C[X,Y ]| = 1, that is, X×Y
is a basis relation of C, then the interspace C[X,Y ] will be called uniform. If R ∈ C[X,Y ],
then the number of arrows in R from a point x ∈ X is the same for each x in X. We call
this number the valency of R and denote it by d(R).

I Lemma 2.2. Let X,Y ∈ F (C). If |X| and |Y | are coprime, then C[X,Y ] is uniform.

Proof. Let R be a basis relation such that R ⊆ C[X,Y ]. Recall that the valency d(R) is
equal to the number of arrows in R from each point x ∈ X. Note also that the valency d(R∗)
of the transpose relation R∗ is equal to the number of arrows in R to a point y ∈ Y ; it does
not depend on the choice of y. It follows that d(R)|X| = |R| = d(R∗)|Y |. Since |X| and |Y |
are coprime, d(R) is divisible by |Y |. Taking into account that d(R) ≤ |Y |, we obtain the
equality d(R) = |Y |. As a consequence, R = X × Y . J

Thus, all interspaces C[X,Y ] with |X| = 1 are uniform, and so are also interspaces with
|X| = 2 and |Y | = 3. Figure 2 shows all non-uniform interspaces C[X,Y ] with |X|, |Y | ≤ 4.
Here we depict pairs xy by undirected edges as they are implicitly ordered by the fibers.
To facilitate visualization, one of the basis relations in each picture is missing as it is
reconstructable from the others. We use the notation like C[X] ' C4, C[X,Y ] ' 2K2,2 etc.
to indicate the type of a cell or an interspace.

3 Cutting it down

Given a family of sets P, we use P∪ to denote the closure of P under unions. For any
U ∈ F (C)∪ we let C[U ] denote the set of all basis relations of a coherent configuration
C contained in U2. Note that C[U ] is a coherent configuration on the point set U . Let
W = V \ U . We say that C is the direct sum of coherent configurations C[U ] and C[W ] and
write C = C[U ]� C[W ] if the interspace C[X,Y ] is uniform for any two fibers X,Y ∈ F (C)
with X ⊆ U and Y ⊆W .
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∈ T ∈ T/∈ T

∈
R
∗

∈
R ∈
R∈

R

y1 y2 y3 y4

x1 x2 x3 x4

R ∪R∗
S

Figure 3 Proof of Lemma 3.4.

I Lemma 3.1 (see [10, Corollary 3.2.8]). Suppose that C = C1�C2. The coherent configuration
C is separable if and only if both C1 and C2 are separable.

Lemma 3.1 reduces the general separability problem to its restriction for indecomposable
coherent configurations, that is, those configurations which cannot be split into a direct sum.
Lemma 2.2 implies that an indecomposable coherent configuration of maximum fiber size at
most 4 either has maximum fiber size at most 3 or has only fibers of size 4 or 2. We use the
following known fact.

I Lemma 3.2 (cf. [10, Exercise 3.7.20]). Every coherent configuration D with maximum fiber
size at most 3 is separable.

Lemma 3.2, along with Lemmas 3.1 and 2.2, reduces the decision problem of whether a
coherent configuration C with maximum fiber size 4 is separable to the case that C has fibers
only of size 4 or 2. Next, we reduce the separability problem to instances having only fibers
of size 4 and non-uniform interspaces of type 2K2,2.

Let M be a basis relation of a coherent configuration C. Suppose that M ∈ C[X,Y ]
for distinct fibers X and Y , We call M a matching if M is irreflexive and both M and its
transpose have valency 1, i.e., d(M) = 1 and d(M∗) = 1. This means that M determines a
one-to-one correspondence between X and Y . If M ∈ C[X] for a fiber X, we additionally
require that M is symmetric. In this case, M determines a partition of X into pairs of points.

The backward implication in Part 1 of the following lemma follows from [14, Lemma 9.4].
Part 2 applies, in particular, to the multipede graphs of color multiplicity at most 4. In this
setting, Neuen and Schweitzer [30, Section 4.2] use exactly this shrinking operation in order
to reduce the number of vertices in their construction of benchmark graphs challenging for
practical isomorphism solvers.

I Lemma 3.3 (Cut-Down Lemma). Let C be a coherent configuration on V = V (C).
1. Suppose that an interspace C[X,Y ] contains a matching M . Then C is separable if and

only if C[V \X] is separable.
2. Suppose that |V | > 2, all fibers of C have size 4 or 2, and no interspace of C contains a

matching. Let X ∈ F (C) with |X| = 2. Under these conditions, C is separable if and only
if C[V \X] is separable.

3. Suppose that |F (C)| > 3, all fibers of C have size 4, and no interspace of C contains a
matching. Let C[X,Y ] be a C8-interspace (see Figure 2). Under these conditions, C is
separable if and only if C[V \ (X ∪ Y )] is separable.

We, therefore, focus on coherent configurations with non-uniform fibers only of type 2K2,2.

I Lemma 3.4. Let C[X,Y ] ' 2K2,2 and suppose that C[X,Y ] contains a relation R =
{x1, x2}×{y1, y2}∪{x3, x4}×{y3, y4}. Then C[Y ] contains the basis relation S = {y1y2, y2y1,

y3y4, y4y3}.

STACS 2020



43:8 Identifiability of Graphs with Small Color Classes by the Weisfeiler-Leman Algorithm

Proof. Let T be the basis relation of C[Y ] containing the arrow y1y2. We have T ⊆ S

because pTR∗R > 0. For example, y2y3 /∈ T because y1y2 extends to y1x1y2 and y2y3 cannot
be extended to a triangle of this kind. On the other hand, S ⊆ T because pRRT > 0. For
example, y3y4 ∈ T because otherwise, while x1y2 extends to x1y1y2, the pair x4y4 could not
be extended to a triangle of this kind; see Figure 3. J

In the context of Lemma 3.4, we say that C[X,Y ] determines a matching in Y (namely
{y1y2, y2y1, y3y4, y4y3}). Suppose that C[X,Y ] determines a matching M in Y , and C[Z, Y ]
determines a matching M ′ in Y . We say that C[X,Y ] and C[Z, Y ] have a direct connection at
Y if M = M ′ (or are directly connected at Y ). If M 6= M ′, we say that C[X,Y ] and C[Z, Y ]
have a skewed connection at Y (or are askew connected at Y ).

I Lemma 3.5 (Transitivity of direct 2K2,2-connections). If C[X,Y ] ' 2K2,2 and C[Z, Y ] '
2K2,2 are directly connected at Y , then either C[X,Z] contains a matching or C[X,Z] ' 2K2,2
and the connections between C[Z,X] and C[Y,X] at X and between C[X,Z] and C[Y,Z] at Z
are direct.

4 Irredundant configurations

The Cut-Down Lemma and the preceding analysis in Section 3 reduce our task to deciding
separability of a coherent configuration C under the following three conditions:
(1) C is indecomposable,
(2) all fibers of C have size 4,
(3) every non-uniform interspace of C is of type 2K2,2.
A coherent configuration satisfying Conditions (1)–(3) will be called irredundant. Irredundant
configurations are closely related to the reduced Klein configurations studied in [10, Section
4.1.2], but the two classes of coherent configurations are not identical. In particular, a reduced
Klein configuration cannot contain C4-cells.

We begin with noticing that, for irredundant configurations, every algebraic isomorphism
f gives rise to a combinatorial isomorphism φ, even though φ does not need to induce f on
the whole coherent configuration.

I Lemma 4.1. Suppose that a coherent configuration C is irredundant. If f is an alge-
braic isomorphism from C to a coherent configuration C′, then there exists a combinatorial
isomorphism φ from C to C′ such that φ induces f on each cell C[X] of C.

By Lemma 4.1, if a coherent configuration C is irredundant, then C ∼=alg C′ implies
C ∼=comb C′. This has the following practical consequence: An irredundant configuration C is
separable if and only if every algebraic automorphism of C, i.e., an algebraic isomorphism
from C to itself, is induced by a combinatorial automorphism of C. Moreover, we call an
algebraic automorphism f of C strict if f is the identity on each cell C[X] of C.

I Lemma 4.2. An irredundant coherent configuration C is separable if and only if every
strict algebraic automorphism of C is induced by a combinatorial automorphism of C.

Let A(C) denote the set of strict algebraic automorphisms of C. Our next task, which will
be accomplished by Lemma 4.5 below, is to describe A(C) for a given irredundant coherent
configuration C. Call a permutation f on C bound if f is the identity on each cell, maps each
interspace onto itself, and satisfies the condition f(R∗) = f(R)∗ for every basis relation R of
C. Since the last condition is obeyed by any algebraic isomorphism, every strict algebraic
automorphism is bound. If C[X,Y ] ' 2K2,2, then for a bound permutation f there are two
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possibilities. Specifically, suppose that C[X,Y ] partitions X × Y into two parts R1 and R2.
We say that f fixes C[X,Y ] if f(Ri) = Ri and that f switches C[X,Y ] if f(Ri) = R3−i for
i = 1, 2. Note that, if f switches C[X,Y ], then it switches also C[Y,X]. Given a set S of
pairs {X,Y } such that C[X,Y ] is non-uniform, let fS denote the bijection from C onto itself
which switches the interspace C[X,Y ] as well as the interspace C[Y,X] for each {X,Y } ∈ S
and leaves the rest of C fixed. Thus, every bound permutation of C coincides with fS for
some S. Conversely, every fS is a bound permutation, but not all fS must be algebraic
automorphisms.

Thus, we have to describe the class of those S for which fS is an algebraic automorphism.
Note that deciding whether a bound permutation f is a strict algebraic automorphism of C
reduces to locally verifying this on all 3-fiber subconfigurations C[X ∪ Y ∪ Z]. Therefore, we
first consider coherent configurations with three fibers.

We call an irredundant configuration C skew-connected if C contains no directly connected
interspaces.

I Lemma 4.3. Let C be an irredundant coherent configuration with F (C) = {X,Y, Z} and f
be a bound permutation of the set of basis relations of C.
1. If C is skew-connected, then f is an algebraic automorphism of C.
2. Suppose that C is not skew-connected. Then f is an algebraic automorphism of C if

and only if f makes exactly two switches of interspaces (switching an interspace and its
transpose is counted as a single switch).

Let C be an irredundant coherent configuration. Like in the case of reduced Klein
configurations [15], we define the fiber graph of C, denoted by FC , as follows:

The vertices of FC are the fibers of C, i.e., V (FC) = F (C);
Two fibers X and Y are adjacent in FC if the interspace C[X,Y ] is non-uniform.

Suppose that C[X,Y ] is a non-uniform interspace. We defineD(X,Y ) to be the set of fibers
consisting of X, Y , and all Z such that C[Z,X] is non-uniform and directly connected with
C[Y,X]. Let DC denote the family of all sets D(X,Y ) over non-uniform interspaces C[X,Y ].
We regard DC as a hypergraph on F (C) and call it the hypergraph of direct connections of C.

The following properties of irredundant configurations are known for reduced Klein
configurations [29]; see also [10, Lemma 4.1.18].

I Lemma 4.4.
1. Every hyperedge of DC is a clique in FC, and all interspace connections within this clique

are direct.
2. Any two hyperedges of DC have at most one common vertex.

Proof. Lemma 3.5 implies that, if A and B are two fibers in D(X,Y ), then the interspace
C[A,B] is non-uniform and D(A,B) = D(X,Y ). This implies both Parts 1 and 2. J

Given C ∈ DC and a non-empty U ( C, let S(U,C) be the set of all edges {X,Y } in FC
such that X ∈ U and Y ∈ C \ U . Using the notation fS introduced above, we now define
fX,C = fS({X},C) for X ∈ C.

I Lemma 4.5. Suppose that a coherent configuration C is irredundant.
1. fS ∈ A(C) if and only if, for every C ∈ DC, either the intersection S ∩

(
C
2
)
is empty or it

forms a spanning bipartite subgraph of
(
C
2
)
, where

(
C
2
)
is considered the complete graph

on the vertex set C.
2. A(C) is generated by the set of fX,C for all C ∈ DC and all X ∈ C.
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Proof. 1. For C ∈ DC , denote S[C] = S ∩
(
C
2
)
. By Lemma 4.4, {S[C] }C∈DC is a partition

of S. Therefore,

fS =
∏
C∈DC

fS[C],

where the product is in the group of permutations of C.
(⇐=) It suffices to prove that each fS[C] is an algebraic automorphism of C. It is enough

to check that, for every triple of fibers X,Y, Z, the restriction of fS[C] to C[X ∪ Y ∪ Z] is an
algebraic automorphism of C[X ∪ Y ∪ Z]. If |{X,Y, Z} ∩ C| ≤ 1, then fS[C] is the identity
on C[X ∪ Y ∪Z]. If |{X,Y, Z} ∩C| = 2, then Lemma 3.5 implies that C[X ∪ Y ∪Z] is either
decomposable or skew-connected. The former case is obvious, and in the latter case we are
done by Part 1 of Lemma 4.3. If {X,Y, Z} ⊆ C, then C[X ∪Y ∪Z] cannot be skew-connected
by the definition of DC and the bipartiteness of S[C] implies that fS[C] switches either two
(up to transposing) or no interspaces between X,Y, Z. In this case we are done by Part 2 of
Lemma 4.3.

( =⇒ ) Let C ∈ DC and suppose that S[C] is non-empty. The claim is trivially true if
|C| = 2, so we assume that |C| ≥ 3. Let X, Y , and Z be three fibers in C. By assumption,
the restriction of fS to C[X ∪ Y ∪Z] is an algebraic automorphism of C[X ∪ Y ∪Z]. By Part
2 of Lemma 4.3, fS makes either none or exactly two switches in C[X ∪ Y ∪ Z]. For S[C],
seen as a graph on the vertex set C, this implies that S[C] does not contain any induced
subgraph isomorphic to K3 or to K2 +K1, where the latter is the graph with 3 vertices and
1 edge. A graph is (K2 +K1)-free if and only if it is complete multipartite. To see this, look
at the complement and note that a graph is a vertex-disjoint union of cliques if and only if it
does not contain an induced copy of a path on 3 vertices, the complement of K2 +K1. Thus,
S[C] is a complete multipartite graph. Since S[C] is also triangle-free, it is bipartite.

2. Part 1 implies that A(C) is generated by the set of fS(U,C) for all C ∈ DC and ∅ 6= U ( C.
Note that, if U is split into two non-empty parts U1 and U2, then fS(U,C) = fS(U1,C) ◦fS(U2,C)
(as each interspace between U1 and U2 is switched twice). It follows that

fS(U,C) =
∏
X∈U

fX,C ,

which implies the lemma. J

Separability test for irredundant coherent configurations

By Lemma 4.2, it suffices to check whether every strict algebraic automorphism f ∈ A(C) is
induced by a combinatorial automorphism of C. Note that A(C) forms a group of permutations
of the set of basis relations of C. Therefore, it is enough to choose an arbitrary generating set
of A(C) and to check whether every f in this set is induced by a combinatorial automorphism.
We use the generating set provided by Part 2 of Lemma 4.5. For deciding whether f = fX,C is
induced by a combinatorial automorphism of C, we construct a vertex-colored graph G = G(C)
whose automorphism group Aut(G) consists of all those combinatorial automorphisms of C
which map every basis relation of C onto itself:

V (G) = V (C).
The vertex color classes of G are exactly the fibers of C.
For two disjoint sets X and Y of vertices of G, let G[X,Y ] denote the subgraph of G on
the vertex set X ∪ Y formed by the edges between a vertex in X and a vertex in Y . For
each non-uniform interspace C[X,Y ], we set G[X,Y ] to be one of the two 2K2,2 graphs
underlying the basis relations of C[X,Y ].
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For each X ∈ F (C), the subgraph G[X] induced by G on X is defined as follows:
If there are interspaces C[Y,X] and C[Z,X] with askew connection at X, then G[X] is
empty (in this case C[X] ' F4 by Lemma 3.4, and each matching relation on X will be
anyway preserved by any automorphism of G(C));
Otherwise, G[X] depends on C[X]. We define G[X] so that Aut(G[X]) consists exactly
of the combinatorial automorphisms of C[X] mapping each basis relation onto itself.
Specifically,

if C[X] ' F4, then we put a matching 2K2 in G[X] different from the one determined
by some interspace C[Y,X] (note that at least one such interspace must exist);
if C[X] ' C4, we leave G[X] empty (a matching on X is implicitly determined anyway);
if C[X] ' ~C4, we have to put a directed 4-cycle in G[X] coherently with the matching
implicitly determined on X. To avoid making G(C) a directed graph, we subdivide
each edge of this cycle with two differently colored vertices in the direction given by
~C4. This costs us two new colors and four new vertices of each of these colors (which
we put in V (G) in addition to the vertices of C).

For each pair (X,C) where X ∈ C ∈ DC, we now have to check whether the algebraic
automorphism fX,C is induced by a combinatorial automorphism. A crucial fact is that the
number of such pairs is polynomially bounded. Fix G = G(C) as above and obtain a graph
GX,C from G by complementing each bipartite subgraph G[X,Y ] spanned by the fiber X and
a fiber Y in C \ {X} (i.e., by connecting a vertex in X and a vertex in Y by an edge if and
only if they are not adjacent in G[X,Y ]). By construction, a combinatorial automorphism φ

of C induces fX,C exactly when φ is an isomorphism of the graphs G and GX,C . Thus, fX,C
is induced by a combinatorial automorphism if and only if G ∼= GX,C . The last condition is
efficiently verifiable [1] as the graphs G and GX,C are of color multiplicity 4.

5 Putting it together

5.1 Proof of Theorem 1.1
The Cut-Down Lemma (Lemma 3.3) and the preceding analysis of the irredundant case
in Section 4 yield the following algorithm for recognizing whether or not a given coherent
configuration C with fibers of size at most 4 is separable.

Decompose C in the direct sum of indecomposable subconfigurations C1, . . . , Cm and treat
each Ci separately. By Lemma 3.1, C is separable if and only if every Ci is separable.
Assume, therefore, that the input configuration C is indecomposable. If all fibers of C are
of size at most 3, immediately decide that C is separable (see Lemma 3.2). Otherwise:

Remove all fibers of size 2 from C.
Remove all pairs of fibers X and Y with C[X,Y ] ' C8.
As long as C contains an interspace C[X,Y ] with a matching, remove the fiber X
from C.

If C becomes decomposable, split it into indecomposable components and handle each of
them separately once again in the same way.
If C becomes empty, decide that C is separable.
Otherwise, we arrive at the case that C is irredundant and proceed as in Section 4.
If all computational paths terminate with a positive decision, output “C is separable”;
otherwise, output “C is non-separable”.
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Due to [1], each isomorphism test performed by the algorithm in Section 4 for an
irredundant coherent configuration is implementable in ⊕L. A list of all subconfigurations to
which this step is applied can be generated in logarithmic space [33]. Since L⊕L = ⊕L (see
[8]), the whole algorithm can be implemented in ⊕L. Theorem 1.1 is proved.

5.2 Proof of Theorem 1.2
Suppose that the color multiplicity of G is bounded by 4. By Theorem 2.1, G is amenable
to 2-WL if and only if its coherent closure C(G) is separable. Given G with n vertices, the
coherent closure C(G) is computable in time O(n3 logn) using the algorithm in [24]. Since
G has color multiplicity at most 4, the coherent configuration C(G) has only fibers with at
most 4 points. Therefore, we can decide separability of C(G) using the algorithm presented
in Section 5.1. This algorithm reduces deciding separability for C(G) to deciding separability
for a number of irredundant subconfigurations C1, . . . , Ct such that

t⋃
i=1

F (Ci) ⊆ F (C(G)). (4)

Producing the list of coherent configurations C1, . . . , Ct has low time complexity. For each
i ≤ t, we decide separability of Ci as described in Section 4. Specifically, Ci is separable
if and only if the associated vertex-colored graph Gi is isomorphic to its modified version
Hi = GiX,C for every X ∈ F (Ci), where C is the hyperedge of DCi containing X. Denote the
number of vertices in Gi by ni. The isomorphism algorithm for graphs of color multiplicity 4
in [1] performs a low-cost conversion of the pair (Gi, Hi) into a system of Mi < (ni)2 linear
equations with Ni < ni unknowns over the field Z2 such that Gi ∼= Hi if and only if the
system is consistent.

Specifically, we here describe a simplified version of this general reduction suitable for
any pair (Gi, Hi) arising from Ci. Recall that V (Gi) = V (Hi) = V (Ci), and the vertex color
classes of both Gi and Hi are exactly the fibers X1, . . . , Xs of Ci, where each Xj has the
same color both in Gi and Hi. For every Xj , we have Gi[Xj ] = Hi[Xj ]. Every non-empty
bipartite subgraph Gi[Xj , Xk] is isomorphic to 2K2,2. Moreover, Hi[Xj , Xk] is equal either
to Gi[Xj , Xk] or to its bipartite complement.

Any isomorphism from Gi and Hi maps each vertex color class Xj onto itself. Moreover,
if Gi and Hi are isomorphic, then there is an isomorphism φ preserving each of the three
matchings on Xj for every j (recall that any isomorphism φ induces a strict algebraic
automorphism of Ci and, hence, preserves the matchings in each Xj such that Ci[Xj ] ' F4
and can be modified to obey this condition for each Xj such that Ci[Xj ] ' C4). Denote the
restriction of φ to Xj by φj . Thus, φj is one of the four elements of the Klein group K(Xj),
where

K(X) = {idX , (x1x2)(x3x4), (x1x3)(x2x4), (x1x4)(x2x3)}

for a 4-element set X = {x1, x2, x3, x4}. We say that a matching on X is fixed by a
permutation from K(X) if each of the two matched pairs is mapped onto itseld, and we say
that it is flipped if the matched pairs are mapped onto each other. Denote the matchings
on Xj by Aj , Bj , Cj . An element of K(Xj) is uniquely determined by a triple (aj , bj , cj),
where aj = 1 if Aj is flipped and aj = 0 if Aj is fixed, and similarly for bj and cj . Since a
non-identity element of K(X) fixes one matching and flips the other two, we have

aj ⊕ bj ⊕ cj = 0. (Ej)
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Figure 4 Three pairwise skew-connected interspaces and the matchings they induce.

Another constraint on φj is imposed by each pair Xj , Xk such that Gi[Xj , Xk] is non-empty.
To be specific, suppose that Gi[Xj , Xk] determines the matching Aj in Xj and the matching
Bk in Xk. Then

aj ⊕ bk = dj,k, (Ej,k)

where dj,k = 0 if Hi[Xj , Xk] is equal to Gi[Xj , Xk] and dj,k = 1 if Hi[Xj , Xk] is the
bipartite complement of Gi[Xj , Xk]. It remains to notice that a set of permutations {φj }sj=1
composing an isomorphism from Gi to Hi exists if and only if the system of equations
consisting of (Ej) for all j ≤ s and (Ej,k) for all non-empty Gi[Xj , Xk] has a solution.

The rank of an M ×N matrix over a finite field is computable in time O(MNω−1), where
N ≤ M (see [7, 23]), or in randomized time O(N3 logN) (see [11]). Since |F (Ci)| = ni/4,
we can test separability of Ci in time O((ni)2+ω) deterministically or in time O((ni)4 logni)
using randomization. Taking into account the inequality

∑t
i=1 ni ≤ n, which follows from

(4), and the general inequality
∑t
i=1(ni)α ≤

(∑t
i=1 ni

)α
for any real α ≥ 1, we conclude

that separability of C(G) is decidable in deterministic time O(n2+ω) or in randomized
time O(n4 log2 n), where an extra logarithmic factor corresponds to the number of repetitions
needed to make the failure probability an arbitrarily small constant.

6 Examples of graphs hard for 2-WL

In Section 4 we constructed a vertex-colored graph G(C) underlying the structure of an
irredundant coherent configuration C. As easily seen, if C contains no ~C4-cells, then C is the
coherent closure of G(C). Theorem 2.1, therefore, implies that every non-separable C of this
kind yields a graph not identifiable by 2-WL.

6.1 The Cai-Fürer-Immerman construction
Skew-connected irredundant coherent configurations correspond to the seminal CFI construc-
tion. Indeed, Part 3 of the following theorem is reminiscent of [9, Lemma 6.2]. It shows that,
if all connections between non-uniform interspaces are skewed and exactly 3 non-uniform
interspaces emanate from each fiber (which is a direct analog of the famous CFI gadget; see
Fig. 4), then the coherent configuration is non-separable.
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As usually, δ(G) denotes the minimum degree of a vertex in the graph G. We also use
the notation introduced in Section 4.

I Theorem 6.1. If C is skew-connected, then the following is true.
1. A(C) = {fS : S ⊆ E(FC)}.
2. If δ(FC) ≤ 2, then every fS is induced by a combinatorial automorphism of C and, hence,
C is separable.

3. If δ(FC) = 3, i.e., FC is a regular graph of degree 3, then fS is induced by a combinatorial
automorphism of C exactly when |S| is even. Hence, C is non-separable in this case.

6.2 Examples coming from incidence geometry
Lemma 4.4 says exactly that, if C is irredundant, then the hypergraph of direct connections
DC is a configuration known in incidence geometry [13, 28] as a partial linear space. Here
vertices of the hypergraph are interpreted as points and hyperedges as lines, even though
not every partial linear space admits a geometric realization. More precisely, a hypergraph
is called linear if every two hyperedges have at most one common vertex. A partial linear
space is a linear hypergraph with each hyperedge of size at least 2.

A relationship between partial linear spaces and reduced Klein configurations was noticed
in [10, Corollary 4.1.19]. The following lemma implies that, if the hypergraph DC is 3-
regular, that is, every fiber of C belongs to exactly three cliques in DC, then the coherent
configuration C is uniquely determined by DC . Moreover, every partial linear space D where
each point belongs to at most 3 lines is the hypergraph of direct connections for some coherent
configuration. As a consequence, partial linear spaces are a rich source of templates for
constructing coherent configurations.

Specifically, a hypergraph is called connected if its Gaifman graph is connected. The
degree of a vertex v in a hypergraph H is the number of hyperedges of H containing v.
Similarly to graphs, ∆(H) (resp., δ(H)) denotes the maximum (resp., minimum) degree of a
vertex in the hypergraph H. Note that 1 ≤ δ(DC) ≤ ∆(DC) ≤ 3.

I Lemma 6.2.
1. Let C be an irredundant configuration. If C ∼=alg C′, then DC ∼= DC′ , where ∼= denotes

isomorphism of hypergraphs.
2. Under the condition δ(DC) ≥ 2, DC ∼= DC′ implies that C ∼=comb C′.
3. For any connected partial linear space D with ∆(D) ≤ 3 there is an irredundant configu-

ration C such that DC ∼= D.

Proof.
1. This part follows from the fact that an algebraic isomorphism respects fibers, non-

uniformity of interspaces, and direct connections of interspaces.
2. Let h : F (C) → F (C′) be an isomorphism from the hypergraph DC to the hypergraph

DC′ . Based on h, we define a bijection h̄ from the set of all matchings of C to the set of
all matchings of C′. Consider a fiber X ∈ F (C). Let C1 and C2 be two hyperedges of
DC containing X. All interspaces C[Y,X] for Y ∈ C1 determine the same matching in
the cell C[X], which we denote by M1. All interspaces C[Y,X] for Y ∈ C2 determine a
matching M2, different from M1. Denote the third matching in C[X] by M3. Similarly,
the interspaces C′[Y ′, h(X)] for Y ′ ∈ h(C1) determine a matching M ′1, and the interspaces
C′[Y ′, h(X)] for Y ′ ∈ h(C2) determine a matching M ′2 6= M ′1 in C′[h(X)]. Denote the
third matching in C′[h(X)] by M ′3 and set h̄(Mi) = M ′i for i = 1, 2, 3. Let ψX be a
bijection from X onto h(X) such that φX(M) = h̄(M) for each matching M in C[X].
Combining all ψX over X ∈ F (C), we obtain a bijection from V (C) onto V (C′) which is a
combinatorial isomorphism from C to C′.
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(a) (b) (c)

(d)

Figure 5 (a) The Fano plane. (b) The Möbius-Kantor configuration. One 3-point “line” in (a)
and in (b) is drawn as a circle. (c) The Pappus configuration. (d) Construction of the cyclic versions
D7 and D8 of the Fano and the Möbius-Kantor configurations.

3. Given D, we construct C as follows. Each point p of D gives rise to a 4-point fiber Xp

in C, with the cell C[Xp] being of type F4. With each hyperedge C of D containing p,
we associate a matching relation Mp,C in C[Xp] such that Mp,C 6= Mp,C′ if C 6= C ′. For
each pair of points p and q in the same hyperedge C, we make the interspace C[Xp, Xq]
non-uniform so that it determines the matching Mp,C in C[Xp] and the matching Mq,C

in C[Xq]. J

We now give examples of non-amenable graphs (or, equivalently, examples of non-separable
irredundant coherent configurations) arising from classical incidence geometries. Partial linear
spaces with n points where every line contains exactly 3 points and every point is incident to
exactly 3 lines are known as (n3)-configurations; see [20, 32]. There is no (n3)-configuration
for n ≤ 6. There are a unique (73)-configuration, namely the Fano plane, and a unique
(83)-configuration, namely the Möbius-Kantor configuration; see Figure 5. We denote the
coherent configurations whose hypergraphs of direct connections are isomorphic to these two
line-point configurations by CFano and CMK respectively. These configurations exist by Part
3 of Lemma 6.2 and are unique by Part 2 of this lemma.

I Theorem 6.3. CFano is non-separable, and CMK is separable.

Thus, the 7-point Fano plane gives rise to a graph of color multiplicity 4 with 28 vertices
which is not identifiable by 2-WL and is not a CFI graph. Theorem 6.3 is actually a particular
instance of a more general statement.

Let n ≥ 7. The cyclic (n3)-configurations Dn is constructed as follows [20, Section 2.1].
Let Fn be the Cayley graph of Zn with the difference set {±1,±2,±3} and Dn be the
hypergraph formed by 3-cliques {i, i+ 2, i+ 3} in Fn, where i ∈ Zn. It is straightforward
to see that Dn is really an (n3)-configuration. By the uniqueness of (n3)-configurations
for n = 7, 8 (see, e.g., [32, Theorem 5.13]), the Fano plane is isomorphic, as a hypergraph,
to D7, and the Möbius-Kantor configuration is isomorphic to D8. Let Cn be the coherent
configuration constructed from Dn as in the proof of Part 3 of Lemma 6.2. This lemma
implies that CFano ∼=comb C7 and CMK ∼=comb C8. Thus, Theorem 6.3 is equivalent to the
statement that Cn is non-separable if n = 7 and separable if n = 8.
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I Theorem 6.4. Let n ≥ 7. The coherent configuration Cn is non-separable if and only if n
is a multiple of 7.

I Remark 6.5. There are exactly three (93)-configurations [20, 32]. The most famous of them
is the Pappus configuration shown in Fig. 5(c). Computer-assisted verification shows that
the corresponding 36-point coherent configuration is non-separable. Of the other two (93)-
configurations, one is the cyclic (93)-configuration defined above, and the other is obtained
similarly by rotating the triangle {0, 3, 4} (instead of {0, 2, 3}) in Z9. These two produce
separable coherent configurations.

I Remark 6.6. Curiously, Lemma 6.2 reveals a connection between irredundant coherent
configurations and the multipede graphs introduced by Neuen and Schweitzer in [30]. Let C
be an irredundant configuration and assume for the hypergraph of direct connections of C
that δ(DC) = 3. Consistently with the notation in [30], denote the incidence graph of the
hypergraph DC by G = G(V,W ), where V = F (C) is the vertex set of DC , i.e., the set of all
fibers of C, and W is the set of the hyperedges of DC , i.e., the cliques of directly connected
fibers. Two vertices v ∈ V and w ∈ W are adjacent in G if v belongs to w. Thus, every
vertex in V has degree 3 in G. Any such bipartite graph G determines a multipede graph
denoted in [30] by R(G). This is a vertex-colored graph with vertex classes of size 4 and 2.
Since we started from an irredundant configuration C, the coloring of R(G) is not refinable
by 2-WL, and each color class of R(G) stays as a fiber in the coherent closure C(R(G)). Let
C′ be the coherent configuration obtained from C(R(G)) by cutting down all fibers of size 2
(cf. Part 2 of Lemma 3.3). Lemma 6.2 implies that C′ is combinatorially isomorphic to C.

6.3 Small graphs
Our amenability criteria behind Theorem 1.2 are rather practical, which is illustrated by the
following result.

I Theorem 6.7.
1. All graphs of color multiplicity 4 with at most 15 vertices are amenable.
2. Up to isomorphism and color renaming, there are 434 non-amenable graphs of color

multiplicity 4 with 16 vertices. More precisely, the number of non-trivial ≡2-WL-equivalence
classes is 217, each consisting of exactly two non-isomorphic graphs.

7 Conclusion and further questions

Our results raise questions about the parameterized complexity of recognizing the amenability
of a given graph with the largest color multiplicity m taken as the parameter. The problem is
trivial for m = 3 due to [24]. We show that it is solvable in polynomial time for m = 4. Our
analysis surely generalizes to a few subsequent values of m. For any fixed m, the problem is
in coNP, and it is open whether it is in P if m is large.

Another open question, that naturally arises in light of Theorem 1.2, concerns the next
dimension of the Weisfeiler-Leman algorithm: Can the amenability to 3-WL be decided in
polynomial time on input graphs with the largest color multiplicity 4?

The WL dimension of a graph G is defined as the minimum k such that G is amenable
to k-WL. The graphs with large WL dimension are of significant interest in the study of the
graph isomorphism problem. When we seek such graphs among graphs with color multiplicity
4, note that they must be at least non-amenable to 2-WL. Cai, Fürer, and Immerman [9]
give conditions ensuring linear WL dimension for graphs whose coherent closure is, in our
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terminology, skew-connected. Further such conditions are identified by the line of research
[12, 21, 30, 31]. Can we achieve high WL dimension in other cases, say, for graphs whose
coherent closure corresponds to a line-point (n3)-configuration (see Section 6)?
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Abstract
In the Unsplittable Flow on a Path Cover (UFP-cover) problem we are given a path with a demand
for each edge and a set of tasks where each task is defined by a subpath, a size and a cost. The
goal is to select a subset of the tasks of minimum cost that together cover the demand of each
edge. This problem models various resource allocation settings and also the general caching problem.
The best known polynomial time approximation ratio for it is 4 [Bar-Noy et al., STOC 2000]. In
this paper, we study the resource augmentation setting in which we need to cover only a slightly
smaller demand on each edge than the compared optimal solution. If the cost of each task equals
its size (which represents the natural bit-model in the related general caching problem) we provide
a polynomial time algorithm that computes a solution of optimal cost. We extend this result to
general caching and to the packing version of Unsplittable Flow on a Path in their respective natural
resource augmentation settings. For the case that the cost of each task equals its “area”, i.e., the
product of its size and its path length, we present a polynomial time (1 + ε)-approximation for
UFP-cover. If additionally the edge capacities are in a constant range we compute even a solution
of optimal cost and also obtain a PTAS without resource augmentation.
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1 Introduction

Caching is one of the most classical problems in computer science. We are given a value
M ∈ N that denotes the size of the cache and we are given a set of unit size pages P. Also,
we are given a set of requests R where each request j ∈ R is characterized by a time tj ≥ 0
and a page qj ∈ P meaning that at time tj the page qj has to be present in the cache. The
goal is to decide at what times we bring each page into the cache in order to minimize
the total number of these transfers, assuming that initially the cache is empty. Caching
is a very well-studied problem in computer science with research on it dating back to the
1960s, see e.g., [8, 16, 9] and references therein. It admits a polynomial time algorithm in
the offline setting [14] and in the online case there are several deterministic M -competitive
algorithms [21, 9] and a randomized O(logM)-competitive algorithm [15].

A natural generalization is the general caching problem where additionally each page
i ∈ P has a (not necessarily unit) size pi ∈ N and additionally a cost wi ∈ N that we have to
pay each time we bring i into the cache, the goal being to minimize the total cost. General
caching can be modeled by a covering problem which turns out to be the natural covering
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variant of the well-studied Unsplittable Flow on a Path problem (UFP) [13, 6, 1, 18]. We
denote this covering problem by UFP-cover. Its input consists of a path G = (V,E) and a set
of tasks T . Each task i ∈ T is characterized by a start vertex si ∈ V , an end vertex ti ∈ V , a
size pi ∈ N and a cost wi ∈ N. For each edge e ∈ E we are given a demand ue and we denote
by Te ⊆ T the set of tasks i such that e lies on the path Pi between si and ti. Our goal is to
select a subset of the tasks T̄ ⊆ T such that p(T̄ ∩ Te) ≥ ue for each edge e where for any
set of tasks T ′ ⊆ T we define p(T ′) :=

∑
i∈T ′ pi and w(T ′) :=

∑
i∈T ′ wi. Our objective is to

minimize w(T̄ ). When we reduce general caching to UFP-cover each time tj of some request
j is represented by an edge of G and there is a task i for each two consecutive requests of a
page i′ where intuitively selecting i represents loading i′ again into the cache at the time of
the second request and pi = pi′ and wi = wi′ ; see [6, 1] for details. Hence, if we restrict the
sizes and costs in the considered instances of general caching then this restricts the sizes and
costs of the resulting instance of UFP-cover in the same way. Additionally, UFP-cover is
motivated by resource allocation settings where, e.g., the edge demands represent minimum
requirements for energy, bandwidth, or workers and the tasks represent possibilities to satisfy
a part of this demand during some given time interval at a certain cost.

General caching and UFP-cover are NP-hard which motivates studying approximation
algorithms for them. The best known polynomial time approximation ratio for both problems
is 4 [6] and there has been no improvement on this in almost 20 years. In this paper, we
study the resource augmentation setting in which we are given a value δ > 0 such that for
each edge e we need to cover only a demand of (1− δ)ue while the compared optimum needs
to cover ue. No better algorithm is known for this setting.

1.1 Our Contribution

We first study the case of UFP-cover where pi = wi for each task i for which the best known
result is still the mentioned 4-approximation for the general case [6]. We present a polynomial
time algorithm that computes a solution (that is feasible under resource augmentation) whose
cost is at most the cost of the optimal solution (without resource augmentation). Hence,
intuitively we solve the problem optimally under resource augmentation. We consider first
the special case where the edge demands are in a constant range. We prove that there are
solutions of cost at most OPT that are feasible under resource augmentation and which have
the following structure: we can partition E into subpaths where on each subpath there are
constantly many special edges such that each task of relatively small size (small task) in the
solution uses one of these edges. This drastically simplifies the computations for the small
tasks: we design an algorithm that guesses the partition of E into subpaths and then on each
subpath it approximately guesses the small tasks crossing the constantly many special edges
in OPT . After that, it additionally selects tasks with relatively large sizes (large tasks) via a
dynamic program. For the case of arbitrary edge demands we consider for each edge e the
amount by which the optimal solution covers e and partition the edges according to ranges
of these values. For each range we show that there is a partition of E into subpaths with
constantly many special edges for the small tasks, like in the case of a constant range of
edge demands. Then, we design a dynamic program that intuitively patches the solutions for
these ranges together.

I Theorem 1. For any constant δ > 0 there is a polynomial time algorithm for the case of
UFP-cover where wi = pi for each task i, that computes a solution with optimal cost that is
feasible under (1− δ)-resource augmentation.



A. Cristi and A. Wiese 44:3

Using our techniques, we derive an algorithm for the case of general caching where pi = wi
for each page i ∈ P which is known as the bit-model [20], meaning that the cost wi of bringing
a page i into the cache is proportional to its size pi (which is a natural assumption). Our
algorithm computes a solution that is feasible for a slightly increased cache of size (1 + δ)M
and whose cost is at most the cost of the optimal solution for a cache of size M . The
notions of resource augmentation for UFP-cover and general caching are not equivalent w.r.t.
the known reduction from general caching to UFP-cover, i.e., an algorithm for UFP-cover
under resource augmentation does not imply an algorithm for general caching under resource
augmentation. Therefore, we derive a reduction from general caching to UFP (instead of
UFP-cover) in which we have the same input as for UFP-cover but we want to select a set of
tasks T̄ of maximum total weight such that on each edge e the tasks T̄ do not exceed the
capacity, i.e., p(T̄ ∩ Te) ≤ ue. We argue that if we increase the size of the cache in a general
caching instance by a factor 1 + δ then in the reduced UFP instance the capacity of each
edge increases by at least a factor 1 + δ. We adapt our new techniques for UFP-cover above
to UFP and obtain an algorithm for UFP that computes a solution of value OPT if we can
increase the capacity of each edge by a factor 1 + δ and if pi = wi for each task i. This yields
an algorithm for general caching under resource augmentation for the case that pi = wi for
each page i, computing again a solution of cost at most OPT .

I Theorem 2. For any constant δ > 0 there are algorithms with polynomial running time
for the cases of general caching and UFP where wi = pi for each page/task i that compute
solutions with optimal cost that are feasible under (1 + δ)-resource augmentation.

Then we study the case of UFP-cover in which the cost wi of each task i equals its
“area”, i.e., its size pi multiplied by the length of its path Pi. We first prove that if the
edge capacities are in a constant range then we can compute a (1 + ε)-approximation under
resource augmentation by extending techniques from [17]. Then we turn this routine into a
PTAS without resource augmentation for the same setting. To this end, we prove that there
are (1 + ε)-approximate solutions in which for each edge e either all small input tasks using
it are selected or e is covered to an extent of at least (1 + δ2)ue which yields some slack.
We intuitively guess the edges e of the former type, select all input tasks using them, and
then apply our algorithm for resource augmentation on the remaining edges. With similar
ideas, we construct an algorithm that computes a solution with optimal cost under resource
augmentation for a constant range of edge capacities.

Then we present a polynomial time (1 + ε)-approximation under resource augmentation
for arbitrary edge demands, under the same assumption on the task’s costs. To construct this
algorithm, we provide a reduction that essentially turns a polynomial time α-approximation
for the special case of a constant range of edge capacities into a polynomial time (1 + ε)α-
approximation algorithm for arbitrary edge capacities under resource augmentation. We
apply this reduction to the previous algorithm which yields a (1 + ε)-approximation under
resource augmentation. The reduction works for arbitrary cost functions and in particular
it might be useful for future work. To derive such a reduction, it might seem natural to
split the overall problem into subproblems corresponding to the different ranges of the edge
capacities. However, in UFP-cover there can be an edge e with very small demand which in
the optimal solution is covered by tasks whose total size is very large. Hence, the demand
of an edge might not give us a good estimate for how much the optimal solution covers it.
Therefore, our reduction is guided by the (unknown) amount by which the optimal solution
covers each edge, instead of the edge demands themselves. The resulting algorithm is a
dynamic program which makes repeated calls to the given algorithm for a constant range of
edge capacities and in which solutions of some DP-cells yield input tasks of other cells.

STACS 2020
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I Theorem 3. Consider the case of UFP-cover where wi = |Pi| · pi for each task i. For any
constants ε, δ > 0 there is a polynomial time algorithm that computes

a (1 + ε)-approximate solution that is feasible under (1− δ)-resource augmentation,
a (1 + ε)-approximate solution without resource augmentation, if the edge capacities are
in a constant range,
a solution with cost at most OPT that is feasible under (1− δ)-resource augmentation, if
the edge capacities are in a constant range.

Due to space constraints almost all proofs are deferred to the full version of the paper.

1.2 Other related work

UFP-cover is a generalization of the knapsack-cover problem. For the latter, an LP-
formulation with a constant integrality gap is known [10] based on the knapsack-cover
inequalities which are also used in other settings [12, 5, 11]. On the other hand, UFP-cover
is a special case of the capacitated set cover problem, e.g., [11, 4], in which we are given a
set of elements with demands and a family of sets where each set has a size and one seeks to
select sets such that each element is covered by sets whose total size is at least the demand
of the element.

For UFP-cover there is a QPTAS if the input data is quasi-polynomially bounded [19] and
with the reduction in [6, 1] the same holds for general caching. A related problem is the general
scheduling problem on one machine without release dates in which we are given a set of jobs
where for each job we have to pay a cost that depends on its completion time. The best known
approximation algorithm for this problem is a (4 + ε)-approximation [12] that generalizes the
4-approximation for UFP-cover in [6] and there is a QPTAS for quasi-polynomially bounded
input data [2].

For UFP (packing) the best known polynomial time approximation ratio is 5/3 + ε [18]
and there is a QPTAS [3, 7]. For the cases that the weight of each task is proportional to
its size or to its “area” even PTASs are known [7, 17]. In this paper we extend the PTAS
for the latter case to UFP-cover under resource augmentation for bounded edge demands.
However, for the case where pi = wi for each task i we need a completely different approach.

2 Task costs proportional to size

Given a constant δ > 0, we present a polynomial time algorithm for UFP-cover for the
case that pi = wi for each task i. Our algorithm computes a solution that is feasible under
(1− δ)-resource augmentation whose cost is at most the cost of the optimal solution without
resource augmentation.

By adding edges with demand 0 we can assume w.l.o.g. that the start and end vertices
of the input tasks of any considered instance are pairwise distinct. First, we describe an
algorithm for the special case that there is a value U such that ue ∈ [δU, U) for each edge e
and later we extend this algorithm to the general case.

We start by showing that there is a well-structured solution whose cost is at most w(OPT ).
Our algorithm will later compute a solution with this structure. We classify tasks into large
and small tasks. A task i is large if pi ≥ δ3U and small otherwise. We denote by TL and
TS the large and small input tasks, respectively. First, we establish some properties of the
optimal solution OPT that in fact hold for arbitrary task costs (assuming that ue ∈ [δU, U)
for each edge e).
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I Lemma 4. Let OPT be an optimal solution. For each edge e it holds that p(OPT ∩ TS ∩
Te) ≤ (2 + 2δ3)U and |OPT ∩ TL ∩ Te| ≤ O(1/δ3).

We want to cut the given instance into simpler subinstances via a partition of E into
subpaths E = E1∪̇E2∪̇...∪̇Ek such that intuitively we can compute an optimal solution for
each subpath Ej separately and then output the union. For each subpath Ej we require that
there are 9/δ special edges ej,1, ej,2, ..., ej,j′ ∈ Ej and that there is a set T ′j ⊆ TS such that
each task in T ′j uses at least one of the edges ej,1, ej,2, ..., ej,j′ and the tasks in T ′j , together
with a global set of large tasks T ′L ⊆ TL, form a feasible solution for Ej under resource
augmentation. Then we define a solution T ′ to be the union of the sets T ′j together with
T ′L. Note that a small task i might be contained in several sets T ′j and in this case we add it
several times to T ′, i.e., we allow T ′ to be a multiset. Formally, we look for solutions T ′ that
are nice. Figure 1 gives some intuition on how such a solution looks like.

I Definition 5. A multiset T ′ is nice if there exists a partition of E into subpaths E =
E1∪̇E2∪̇...∪̇Ek and partition of T ′ into sets T ′ = T ′L∪̇T ′1∪̇T ′2∪̇...∪̇T ′k such that

T ′L = T ′ ∩ TL,
for each j we have that T ′j ⊆ TS and T ′j contains each task at most once,
for each subpath Ej there are at most most 9/δ edges ej,1, ej,2, ..., ej,j′ ∈ Ej such that each
task i ∈ T ′j uses at least one of them, and for each e ∈ Ej we have that p(Te∩ (T ′j ∪T ′L)) ≥
(1− δ/2)ue.

I Lemma 6. There exists a nice multiset T ′ with a corresponding partition T ′ = T ′L∪̇T ′1∪̇T ′2∪̇
...∪̇T ′k such that w(T ′L) +

∑k
k′=1 w(T ′k′) ≤ w(OPT ).

Proof sketch. We define T ′L := OPT ∩TL. For any two vertices u, v ∈ V denote by Pu,v the
path between u and v. We define the partition E = E1∪̇E2∪̇...∪̇Ek and the corresponding
sets T ′j inductively. Suppose that we have already defined k′−1 paths E1∪̇E2∪̇...∪̇Ek′−1. Let
v0 denote the rightmost vertex of Ek′−1 and for the case that k′ = 1 let v0 be the leftmost
vertex of V . We define ek′,1 = {u1, v1} to be the leftmost edge such that the total size of
small tasks TS ∩ OPT whose path is contained in Pv0,u1 is at least δ2U/4. The total size
of those tasks is at most δ2U/3 since pi ≤ δ3U for each small task i and the end vertices
of the input tasks are pairwise distinct. Inductively, suppose that we have defined j′ edges
ek′,1, ek′,2, ..., ek′,j′ in this way and let ek′,j′ = {uj′ , vj′}. We define ek′,j′+1 = {uj′+1, vj′+1}
to be the leftmost edge on the right of ek′,j′ such that the total size of small tasks TS ∩OPT
whose path is contained in Pvj′ ,uj′+1 is at least δ2U/4 (and hence at most δ2U/3). We stop
after defining ek′,9/δ2 = {u9/δ2 , v9/δ2} and define Ek′ := Pv0,v9/δ2 . We define T ′k′ to be all
tasks in TS ∩OPT whose path contains one of the edges ek′,1, ek′,2, ..., ek′,9/δ2 . Note that the
total cost of tasks in OPT ∩TS \T ′k′ that use an edge of Ek′ (i.e., small tasks of OPT that we
did not add to T ′k′) is at least 9

δ2 · δ
2U
4 ≥ (2+δ)U . This justifies that tasks in OPT ∩TS using

the rightmost edge of Ek′ might be added to T ′k′ and to T ′k′+1 and hence we have to pay twice
for them (their total size and hence their total cost is at most (2 + 2δ3)U by Lemma 4). We
stop if during some iteration k we cannot find a next edge ek,j′+1 = {uj′+1, vj′+1} according
to our definition. In this case we define Ek to be the path between v0 and the rightmost
vertex of V and stop the construction procedure. One can show that the set T ′L ∪

⋃
k′ T

′
k′

is feasible under resource augmentation, i.e., that p(Te ∩ (T ′L ∪ T ′j)) ≥ (1− δ/2)ue for each
e ∈ Ej for each j and that w(T ′) = w(OPT ∩ TL) +

∑
k′ w(T ′k′) ≤ w(OPT ). J
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Figure 1 Some of the tasks of a nice solution covering a subpath Ej . The vertical lines are the
boundaries of Ej and the shaded columns represent the few special edges ej,1, ej,2, ..., ej,j′ ∈ Ej . All
small tasks (depicted in light gray) cross one of those edges. The demand covered by the solution
(dashed curve) might be by a factor (1− δ/2) smaller than the demand of the edges (thick curve).
Note that the complete nice solution contains many more tasks covering Ej than the ones shown
above.

The algorithm

We present now an algorithm that intuitively computes a nice solution T̄ whose cost is
at most w(T ′). We first present such an algorithm for the case that for the partition
E = E1∪̇E2∪̇...∪̇Ek of T ′ it holds that k = 1 and then extend it later to the case that k > 1.

Assume that k = 1. We guess the at most 9/δ2 edges e1,1, e1,2, ..., e1,j′ in time nO(1/δ2),
i.e., we enumerate all possibilities. We guess an estimate for the capacity needed by the
tasks in T ′1 on each edge. To this end, for each edge e ∈ E let f1(e) := p

(
T ′1 ∩ Te ∩ Te1,1

)
denote the total size of the tasks in T ′1 ∩ Te1,1 that use e. Intuitively, we would like to guess
the function f1, however, there are too many possibilities for it. Therefore, instead we guess
the estimate f̂1(e) :=

⌊
f1(e)
δ4U/36

⌋
δ4U/36. Using that f1 is non-decreasing on the left of e1,1

and non-increasing on the right of e1,1, we will show that f̂1(e) has only O(1/δ4) many
steps. We define inductively functions f̂2, ..., f̂j′ where each function f̂j′′ is an estimate for
the size of the tasks in T ′1 that use e1,j′′ but not e1,j′′−1. Formally, we define fj′′(e) :=
p
((
T ′1 ∩ Te ∩ Te1,j′′ ∩ TS

)
\ Te1,j′′−1

)
and f̂j′′(e) :=

⌊
fj′′ (e)
δ4U/36

⌋
δ4U/36 for each j′′ = 2, ..., j′.

I Lemma 7. For each j′′ ∈ {1, ..., j′} the function f̂j′′ is a step function with only O(1/δ4)
many steps whose values are all integral multiples of δ4U/36 bounded by (2 + 2δ3)U . Also,
for each edge e ∈ E we have that

∑
j′′ f̂j′′(e) ≥

∑
j′′ fj′′(e)− δ2U/4.

We guess each function f̂j′′ with j′′ ∈ {1, ..., j′} in time nO(1/δ4) which gives nO(1/δ6)

many guesses in total. For each function f̂j′′ we invoke a polynomial time algorithm that
computes a set of tasks T̄1,j′′ that essentially covers f̂j′′ and that is at most as costly as the
tasks T ′1 ∩ Te1,j′′∩TS \ Te1,j′′−1 (that define the profile fj′′).

I Lemma 8. Let j′′ ∈ {1, ..., j′}. There is an algorithm with a running time of nO(1/δ4) that
computes a set of tasks T̄1,j′′ ⊆ TS ∩ Te1,j′′ \ Te1,j′′−1 with p(T̄1,j′′ ∩ Te) ≥ f̂j′′(e) − δ4U/36
for each edge e, and w(T̄1,j′′) ≤ w(T ′1 ∩ Te1,j′′ \ Te1,j′′−1).

We define T̄1 :=
⋃
j′′ T̄1,j′′ to be the small tasks that we select in order to cover E1. It

remains to select the large tasks. Due to Lemma 4 each edge is used by at most O(1/δ3)
tasks in T ′L. Therefore, we can use a dynamic program that computes the cheapest set of
large tasks T̄L that covers the demand that is not already covered by T̄1 (taking into account
that we have resource augmentation). Intuitively, it sweeps the path from left to right and
for each edge e it guesses the at most O(1/δ3) many large tasks in T ′L ∩ Te. Finally, we
output T̄ := T̄1 ∪ T̄L.
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I Lemma 9. There is an algorithm with a running time of nO(1/δ3) that computes a set of
tasks T̄L ⊆ TL such that p((T̄L∪T̄1)∩Te) ≥ (1−δ)ue for each edge e ∈ E and w(T̄L) ≤ w(T ′L).

For the case that k > 1 we define a dynamic program that intuitively guesses the partition
E = E1∪̇E2∪̇...∪̇Ek step by step and the large tasks at the boundaries of the subpaths. After
guessing a subpath Ej and the large tasks using its boundary edges it invokes the algorithm
for k = 1 as a subroutine on Ej and then continues with the guessing.

Formally, our DP has a cell (E′′, T ′′) for each combination of a subpath E′′ of E that
contains the rightmost edge of E and a set of at most O(1/δ3) large tasks T ′′ that use the
leftmost edge of E′′, denoted by e′′L. The reader may imagine that E′′ = Ej ∪Ej+1 ∪ ...∪Ek
for some j (where the subpaths Ej correspond to the nice solution T ′) and that T ′′ are the
large tasks in T ′ that use the leftmost edge of Ej . The goal is to compute a set T̄ ′′ of tasks
of low cost such that T̄ ′′ ∪ T ′′ forms a feasible solution for E′′ under resource augmentation,
i.e., p(Te ∩ (T̄ ′′ ∪ T ′′)) ≥ (1− δ)ue. Given a cell (E′′, T ′′) we intuitively guess Ej+1 ∪ ...∪Ek,
i.e., we try all subpaths Ē′′ ⊆ E′′ that contain the rightmost edge of E and all sets T̄ ′′ of
O(1/δ3) large tasks that use the leftmost edge of Ē′′, denoted by ē′′L, such that T ′′ and T̄ ′′
are compatible, i.e., T ′′ ∩ Tē′′

L
⊆ T̄ ′′ and T̄ ′′ ∩ Te′′

L
⊆ T ′′. Let Ẽ′′ := E′′ \ Ē′′ (the reader may

imagine that Ẽ′′ = Ej). On Ẽ′′ we apply the procedure above for the case of k = 1 and
we slightly change the algoritm due to Lemma 9 such that we require that the large tasks
T ′′ ∪ T̄ ′′ are included in the computed set T̄L. Let T̂ denote the resulting tasks. With the
guess (Ē′′, T̄ ′′) we associate the solution T̂ ∪ (T̄ ′′ \ T ′′) ∪ DP (Ē′′, T̄ ′′) where DP (Ē′′, T̄ ′′)
denotes the solution stored in the cell (Ē′′, T̄ ′′). We store in the cell (E′′, T ′′) the solution of
minimum cost among all guesses. Assume for convenience that we append an edge on the
left of E with zero demand. We output the solution stored in the cell (E, ∅).

Arbitrary demands

We generalize the above algorithm to the case of arbitrary edge demands. First, we change
the definition of large and small tasks and in particular make it dependent on the (unknown)
optimal solution. For each edge e ∈ E we define ûe := p(OPT ∩ Te) and we define its level
`(e) to be the integer ` such that ûe ∈ [(1/δ)`, (1/δ)`+1). For each task i ∈ T we define its
level `(i) by `(i) := mine∈Pi `(e). We say that a task i ∈ T is large if pi ≥ δ3(1/δ)`(i)+1 and
small otherwise. For each level ` we define T `S and T `L to be the small and large tasks of level
`, respectively, and T ` = T `S ∪ T `L. We extend the notion of a nice multiset T ′ to the case of
arbitrary demands. Again, we have a partition of E into subpaths E = E1∪̇E2∪̇...∪̇Ek and
a partition of T ′ into sets T ′ = T ′1∪̇T ′2∪̇...∪̇T ′k but now for each subpath Ej there can be up
to 18/δ2 special edges for each level `. Similarly as before, for each edge e ∈ Ej the small
tasks in T ′j crossing one of these edges cover e together with the large tasks in T ′ (assuming
that we have resource augmentation). Due to the resource augmentation we can even require
that already the tasks in T ′ of levels `(e)− 1 and `(e) are sufficient for covering e.

I Definition 10. A multiset T ′ ⊆ T is nice-by-levels if there exists a partition into subpaths
E = E1∪̇...∪̇Ek and sets T ′ = T ′1∪̇...∪̇T ′k with the property that each set T ′j contains each
task i at most once and for each subpath Ej and each level ` there is a set of at most 18/δ2

edges ej,1,`, ej,2,`, ... ∈ Ej of level ` such that T ′j ∩ T `S ⊆
⋃
j′ Tej,j′,` ∩ T

`
S. Moreover, for each

edge e ∈ Ej of some level ` we have that p(Te ∩ T ′j ∩ (T ` ∪ T `−1)) ≥ (1− 3δ)ûe ≥ (1− 3δ)ue
and |T ′ ∩ Te ∩ T `L| ≤ 1/δ3.

I Lemma 11. There is a set T ′ that is nice-by-levels with
∑
k′ w(T ′k′) ≤ w(OPT ).
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Proof sketch. Assume that we already defined a set of vertices V ′ and a set of special
vertices for each level `′ ∈ {0, ..., `− 1} such that the vertices V ′ separate E into subpaths
Ej such that for each level `′ ∈ {0, ..., `− 1} each subpath Ej contains at most 18/δ2 special
edges of level `′. For each subpath Ej we consider its edges of level ` and apply a slight
adaptation of the procedure from the proof of Lemma 6. Let v0 be the leftmost vertex of
Ej . We define ej,1,` = {u1, v1} to be the leftmost edge such that the total size of the small
tasks of level ` ending in Pv0,u1 is at least δ2(1/δ)`+1/4 and hence at most δ2(1/δ)`+1/3.
Inductively, we define special edges {ej,j′,`}j∈[k],j′∈N in this way. If an edge e of level `′ > `

is selected as a special edge we replace it by the two closest edges of level `. We do this
operation for each level `. If we defined more than 18/δ2 special edges of level `, then we add
to V ′ the right vertex of one in every 18/δ2 special edges, so we partition Ej into subpaths
such that each subpath contains at most 18/δ2 special edges of level `.

Let Ej be a subpath of the final partition, let {ej,j′,`}j′,`∈N be the special edges contained in
Ej , and let T ′j := OPT ∩

(
{i ∈ TL|Pi ∩ Ej 6= ∅} ∪

⋃
`

⋃
j′ Tej,j′,`

)
be the tasks corresponding

to Ej . With a similar reasoning as in Lemma 6 before we argue that for each edge e ∈ Ej
the tasks in T ′j that cross e and additionally at least one of the edges {ej,j′,`}j′,`∈N have a
total size of at least (1− δ)û(e), i.e., essentially cover e. One can show that the tasks of level
`(e)− 2 or smaller covering e have a total size of at most 2δûe, using that each of them must
use the closest edge on the left or on the right of e that is of level `(e)− 2 and each of them
is used by tasks in OPT of total size at most (1/δ)`−1 ≤ δûe. We define T ′ =

⋃k
j=1 T

′
j to

be the constructed multiset. With a similar argumentation as in Lemma 6 one can show
that

∑
k′ w(T ′k′) ≤ w(OPT ), arguing that some tasks in OPT ∩ TS are not included in T ′

and that they compensate for the additional cost of tasks in OPT that are included several
times in T ′. J

We describe now a dynamic program that intuitively computes a nice-by-levels solution
T̄ with w(T̄ ) ≤ w(T ′). Consider first the case that k = 1 and let j = 1. Unlike the case
of a constant range of edge capacities, we cannot guess all edges {ej,j′,`}j′,`∈N in one step
since they can be more than constantly many. Instead, we start with ` := 0 we first guess all
O(1/δ2) special edges {ej,j′,`}j′∈N of level ` and for each of these edges ej,j′,` we guess the
large tasks in T ′ using ej,j′,`, i.e., T ′ ∩ T `L ∩ Tej,j′,` and an approximation of the profiles of
the small tasks that use ej,j′,` and no special edge ej,ĵ′,ˆ̀ with ˆ̀< ` or with ˆ̀= ` and ĵ′ < j′

(like in Section 2).
Formally, we define f1(e) := p

(
T ′j ∩ Te ∩ Tej,1,` \

⋃
`′<`

⋃
ĵ Tej,ĵ,`′

)
and for each j′ > 1

we define fj′(e) := p
(
T ′1 ∩ Te ∩ Tej,j′,` \

(
Tej,j′−1,` ∪

⋃
`′<`

⋃
ĵ Tej,ĵ,`′

))
. Then we define the

approximative profiles by f̂j′(e) :=
⌊

fj′ (e)
δ4(1/δ)`/36

⌋
(1/δ)`δ4/36 for each j′. Note that each

function f̂j′(e) has only O(1/δ5) many steps. Since there are at most 18/δ2 special edges
of each level, we can guess all functions f̂j′(e) in time nO(1/δ7). For each guessed profile we
compute small tasks that essentially cover it, like in Lemma 8.

I Lemma 12. For each j′ there is an algorithm with a running time of nO(1/δ5) that
computes a set of tasks T̄j,j′,` ⊆ Tej,j′,` \

(
Tej,`′−1,` ∪

⋃
`′<`

⋃
ĵ Tej,ĵ,`′ ∪

(
T ′ ∩ T `L ∩ Tej,j′,`

))
with p(T̄j,j′,` ∩ Te) ≥ f̂j′(e)− δ4(1/δ)`/36 for each edge e, and w(T̄j,j′,`) ≤ fj′(ej,j′,`).

Let E′ be a subpath between two consecutive special edges in {ej,j′,`}j′∈N. It might be
that E′ contains edges of level `. Denote these edges by E′`. We want to guess the large
tasks of level ` that use an edge in E′`. In order to do this we invoke a dynamic program that
intuitively sweeps in E′ from left to right and in each step guesses an edge e ∈ E′` together
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with the tasks T ′∩Te∩T `L. We recurse in each subpath E′′ between two consecutive edges in
E′`, between the leftmost edge of E′ and the leftmost edge in E′`, and between the rightmost
edge of E′` and the rightmost edge of E′. In each recursive call, the arguments consists of the
subpath E′′, the next level `+ 1, and the guessed O(1/δ2) special edges of level ` and their
profiles, and the large tasks of level ` using the leftmost edge of E′′ or the rightmost edge of
E′′. In principle, by doing this we forget (and thus lose) the amount that tasks from levels
`− 1 and below cover on edges in E′′. However, T ′ is nice-by-levels and thus we have that on
each edge e of some level ` the tasks in T ′ ∩ (T ` ∪ T `−1) are sufficient to cover the demand
ue (under resource augmentation). For the arguments in our recursive call there is only a
polynomial number of options. Therefore, we can embed this recursion into a polynomial
time dynamic program. The base case is given when the path E′′ is empty or if the level ` is
so large that T `S = T `L = ∅, i.e., if maxe∈E ûe ≤

∑
i∈T pi < (1/δ)`.

Finally, if k > 1 then we use the same dynamic program as before in order to guess the
partition E = E1∪̇...∪̇Ek. Thus we have the following theorem. Its proof and the complete
description of the algorithm is deferred to the full version of the paper.

I Theorem 13. For any δ > 0 there is an algorithm with a running time of n(1/δ)O(1)

for the case of UFP-cover where wi = pi for each task i that computes a solution T ′ with
w(T ′) ≤ w(OPT ) and that satisfies that p(Te ∩ T ′) ≥ (1− δ)ue for each edge e.

2.1 General caching and UFP
We use the techniques from the previous algorithm to obtain algorithms for UFP and general
caching under resource augmentation. First, we show how to reduce general caching to UFP.

I Lemma 14. Given an instance (P,R,M) of general caching such that pi = wi for each
page qi ∈ P. In polynomial time we can compute an instance (V,E, T, u) of UFP with
ue ≤M for each edge e ∈ E and pi = wi for each task i ∈ T such that
1. for any solution to (P,R,M) with cost C there is a solution T ′ ⊆ T to (V,E, T, u) with

w(T ′) = w(T )− C and vice versa,
2. for any solution to (P,R,M(1+δ)) with cost C there is a solution T ′ to (V,E, T, u+1δM)

with w(T ′) = w(T )− C and vice versa.

Lemma 14 implies that in order to obtain an algorithm for general caching under resource
augmentation it sufficies to provide an algorithm for UFP under (1+δ)-resource augmentation,
i.e., where the capacity of each edge e is increased to (1 + δ)ue. We construct an algorithm
for UFP of the latter type. We begin with the case of a constant range of edge capacities, i.e.,
ue ∈ [δU, U). We define a task i ∈ T to be large if pi ≥ δ3U and small otherwise. Denote by
TL and TS the set of large and small input tasks, respectively. Like in the case of UFP-cover
we are looking for solutions that are nice which in this case means that there is a partition
of E into subpaths E = E1∪̇E2∪̇...∪̇Ek such that we restrict ourselves to tasks i such that
Pi ⊆ Ej for some j ∈ {1, ..., k} and additionally for each set Ej there are some special edges
ej,1, ej,2, ..., ej,` such that we select each task i ∈ TS with Pi ⊆ Ej that does not use any of
these special edges.

I Definition 15. A set T ′ ⊆ T is nice if there exists a partition of E into subpaths E =
E1∪̇E2∪̇...∪̇Ek such that

for each task i ∈ T ′ we have that Pi ⊆ Ej for some j ∈ {1, ..., k},
for each Ej there are at most 4/δ2 edges ej,1, ej,2, ..., ej,` ∈ Ej such that {i ∈ TS : Pi ⊆
Ej} \

⋃`
`′=1 Tej,`′ ⊆ T

′ and for each edge e ∈ Ej we have that p(T ′ ∩ Te) ≤ ue + δ2U/2.
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I Lemma 16. There is a nice set T ′ that satisfies w(T ′) ≥ w(OPT ).

Our algorithm is now similar as the algorithm for UFP-cover above. If k > 1 then we
first invoke a dynamic program that guesses the partition E = E1∪̇E2∪̇...∪̇Ek. Let T ′j be the
tasks i ∈ T ′ with Pi ⊆ Ej . For each subpath Ej we guess the special edges ej,1, ej,2, .... For
each j′ we define the profile of the small tasks using ej,j′ and none of the edges ej,1, ..., ej,j′−1

by fj′(e) := p
(
T ′j ∩ TS ∩ Te ∩ Tej,j′ \ Tej,j′−1

)
and a corresponding overestimating profile

f̂j′(e) :=
⌈
fj′ (e)
δ4U/16

⌉
δ4U/16. The latter has O(1/δ4) many steps for each j′ so we guess all

profiles f̂j′(e) in time nO(1/δ6). We compute tasks for the profiles similarly as in Lemma 8.

I Lemma 17. Let j′ ∈ N. There is an algorithm with a running time of nO(1/δ4) that
computes a set of tasks T̄j,j′ ⊆ TS ∩ Tej,j′ \ Tej,j′−1 with p(T̄j,j′ ∩ Te) ≤ f̂j′(e) + δ4U/16 for
each edge e, and w(T̄j,j′) ≥ w(T ′j ∩ TS ∩ Tej,j′ \ Tej,j′−1).

Then we add all small tasks whose path is contained in Ej and that do not use any of
the special edges ej,1, ej,2, ... . Let T̄j denote the selected small tasks. If all our guesses were
correct then one can show that on each edge e we have that p(T̄j ∩ Te) ≤ (1 + δ)ue. Finally,
we invoke a dynamic program that selects a maximum weight set of large tasks that fits in
the remaining edge capacities, similarly as in Lemma 9. We define T ′L = T ′ ∩ TL.

I Lemma 18. There is an algorithm with a running time of nO(1/δ3) that computes a set of
tasks T̄L ⊆ TL such that p((T̄L∪T̄j)∩Te) ≤ (1+δ)ue for each edge e ∈ E and w(T̄L) ≥ w(T ′L).

In fact, using Lemma 14 one can show that our algorithm for UFP for a constant range
of edge capacities is already sufficient for general caching under resource augmentation.

I Theorem 19. For any δ > 0 there is an algorithm with a running time of n(1/δ)O(1) for
general caching instances (P,R,M) where wi = pi for each page i ∈ P that computes a
solution whose cost is at most the cost of the optimal solution and that is feasible if the cache
has size (1 + δ)M .

For the case of arbitrary edge capacities in UFP we can use a similar generalization as
for UFP-cover to obtain the following theorem.

I Theorem 20. For any δ > 0 there is an algorithm with a running time of n(1/δ)O(1) for the
case of UFP where wi = pi for each task i, that computes a solution T ′ with w(T ′) ≥ w(OPT )
and that satisfies that p(Te ∩ T ′) ≤ (1 + δ)ue for each edge e.

3 Task costs proportional to area

In this section we study the case of UFP-cover in which wi = |Pi| · pi for each task i ∈ T .
For the respective case of UFP a PTAS is known [17] that uses a sparsification step. For
UFP-cover we cannot use this technique, however, in the next theorem we extend the
methodology in [17] to a (1 + ε)-approximation for UFP-cover under resource augmentation
if the edge capacities are in a constant range (its proof is deferred to the full version of the
paper). Suppose that ue ∈ [δU, U) for some global value U . We define a task i to be small if
pi ≤ δ3 · U and large otherwise, denote by TS and TL the respective sets of tasks.

I Theorem 21. Let ε, δ > 0 and U > 0. Given an instance of UFP-cover for the case that
wi = |Pi|·pi for each task i ∈ TS and ue ∈ {0}∪[δU, U) for each edge e. There is an algorithm
with a running time of nOε,δ(1) that computes a solution T ′ with p(T ′ ∩ Te) ≥ (1− δ)ue for
each edge e and such that w(T ′) ≤ w(TL ∩OPT ) + (1 + ε)w(TS ∩OPT ) ≤ (1 + ε)OPT .
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Next, we construct a PTAS without resource augmentation for a constant range of edge
capacities. The PTAS will use the algorithm due to Theorem 21 as a black-box. Recall that
in OPT each edge is used by at most O(1/δ3) large tasks (see Lemma 4). We prove that
there is a solution OPT ′ with w(OPT ′) ≤ (1 +O(δ))w(OPT ) such that for every edge e ∈ E
it holds that either OPT ′ contains all small tasks using e or OPT ′ covers e to an extent of
at least (1 + δ2)ue. Intuitively, we construct OPT ′ by taking OPT and adding tasks from
TS greedily until the property is satisfied. We show that in this way each edge is used by
additional tasks of size at most O(δ2). Hence, the total cost of these additional tasks is at
most O(δ2U)|E| while w(OPT ) ≥ δU |E|.

I Lemma 22. There is a set OPT ′ such that w(OPT ′) ≤ (1 +O(δ))w(OPT ) and on each
edge e ∈ E it holds that p(OPT ′ ∩ Te) ≥ (1 + δ2)ue or Te ∩ TS ⊆ OPT ′.

Let E′ denote the set of edges e such that OPT ′ contains all small tasks using e. Using a
standard dynamic program we guess the edges E′ step by step (see the full version of the
paper for details). Then, for each edge e ∈ E′ we guess the O(1/δ3) large tasks in OPT ′ ∩Te
and we selects all small tasks in Te∩TS . Observe that in this way we select all tasks in OPT ′
that use some edge in E′. For each subpath E′′ between two consecutive edges e1, e2 ∈ E′ we
compute a set of tasks that cover the remaining demand on E′′ (i.e., the demand not covered
by the tasks in (Te1 ∪Te2)∩OPT ′). To this end, we invoke the algorithm due to Theorem 21
on an auxiliary instance defined as follows. We start with E and contract all edges that are
not in E′′. If for some edge e ∈ E′′ the tasks in (Te1 ∪ Te2) ∩OPT ′ already cover e, i.e., if
p(Te ∩ (Te1 ∪ Te2) ∩ OPT ′) ≥ ue, then we contract e as well. Otherwise, note that OPT ′
covers e to an extent of at least (1 + δ2)ue and therefore the tasks in OPT ′ \ (Te1 ∪ Te2)
cover e to an extent of at least ūe := (1 + δ2)ue − p (Te ∩ (Te1 ∪ Te2) ∩OPT ′). Therefore,
we define the demand of each edge e to be ūe. One can show that ūe ∈ [δ2U,U) (since we
did not contract e). Let T ′ denote the solution that we obtain if we apply the algorithm due
to Theorem 21 on this instance. One can show that then T ′ ∪ ((Te1 ∪ Te2) ∩OPT ′) covers
the original demand ue on each edge e ∈ E′′, i.e., p(Te ∩ T ′ ∪ ((Te1 ∪ Te2) ∩OPT ′)) ≥ ue for
each edge e ∈ E′′. We apply this routine on each subpath E′′ between two consecutive edges
in E′.

Above, we constructed OPT ′ by adding tasks to OPT in order to create some slack. If
instead we remove tasks from OPT we can construct a solution OPT ′′ which is cheaper
than OPT , feasible under resource augmentation, and in which on each edge e we removed
small tasks of total size δ2ue or we removed all small tasks using e. Being guided by OPT ′′
instead of OPT ′ we can construct an algorithm that computes a solution of cost at most
OPT that is feasible under resource augmentation.

I Theorem 23. Consider the case of UFP-cover where wi = |Pi| · pi for each task i and in
which the edge capacities are in a constant range. This case admits a PTAS and for any
δ > 0 there is an algorithm with a running time of n(1/δ)O(1) that computes a solution T ′

with w(T ′) ≤ w(OPT ) and that satisfies that p(Te ∩ T ′) ≥ (1− δ)ue for each edge e.

4 Reducing to a constant range of edge demands

We describe a black-box procedure that intuitively turns an α-approximation algorithm for
the case of UFP-cover of a bounded range of edge demands (independently of the costs of
the tasks) into an α(1 + ε)-approximation algorithm under (1− δ)-resource augmentation
for arbitrary edge demands. As a technicality, we need that the former algorithm works on
instances with some normal tasks and some artificial huge tasks TH where each task i ∈ TH
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has the property that it alone covers the complete demand on each edge of its path Pi and
we require that the algorithm loses the factor of α only on the cost of the normal tasks. Note
that any restriction on the set of normal tasks, like cost proportional to the area or to the
size, is preserved in the reduction.

I Lemma 24. Let ε, δ > 0 and given an instance (T,E, u) of UFP-cover. Suppose there is
a polynomial time approximation algorithm for instances of the form (T ∪ TH , E′, ū) where
E′ ⊆ E and there is a value U such that for each edge e ∈ E′ it holds that δ2U ≤ ūe ≤ U or
that ūe = M := 1+

∑
i∈T pi and that pi′ = M for each i′ ∈ TH and assume that this algorithm

computes solutions of cost at most w(OPT ∩TH)+αw(OPT ∩T ). Then there is a polynomial
time algorithm that computes a solution T ′ ⊆ T for (T,E, u) with w(T ′) ≤ α(1 + ε)OPT and
p(Te ∩ T ′) ≥ (1− δ)ue for each edge e.

Proof sketch. Similarly as in the algorithm for UFP-cover in Section 2 we group the edges
into levels according to the extent by which they are covered in OPT . For each edge e ∈ E
we define ûe := p(OPT ∩ Te) and we define its level `(e) to be the integer ` such that
ûe ∈ [(1/δ)`, (1/δ)`+1). For each task i ∈ T we define its level `(i) := mine∈Pi `(e). Let
T (`) denote the tasks of level ` and let E(`) denote the edges of level `. We assign the
tasks into groups T (s) such that each group contains the tasks from 1/ε + 1 consecutive
levels, intuitively most tasks are contained in exactly one group and some few tasks are
contained in two groups. For an offset β ∈ {0, ..., 1/ε − 1} to be defined later we define
T (s) :=

⋃β+(s+1)/ε
`=β+s/ε T (`) for each s ∈ Z. In particular, for each s ∈ Z the tasks in T (β+(s+1)/ε)

are contained in two groups, T (s) and T (s+1). By a shifting argument there is a choice for
β such that

∑
s w(T (s) ∩OPT ) ≤ (1 + ε)OPT . Similarly, we group the edges into groups.

However, now each edge will be contained in only one group. For each s ∈ Z we define
E(s) :=

⋃β+(s+1)/ε
`=β+s/ε+1E

(`). One key observation is that due to the resource augmentation the
tasks in T (s) ∩OPT are sufficient to cover the demand of all edges in E(s).

B Claim 25. Let s ∈ N. For each edge e ∈ E(s) it holds that Te∩T (s)∩OPT ≥ ûe(1−O(δ)).

Hence, if we knew the level of each edge then we could generate one subinstance for each
group s whose input contains only the edges E(s) and the tasks in T (s) and then take the
union of these solutions. Unfortunately, we do not know the levels of the edges. Instead,
we define a dynamic program. Our DP has a cell (E′, s) for each E′ ⊆ E and each level
s ∈ Z. For each s ∈ Z let P(s) denote (unknown) the maximal subpaths consisting of edges
in
⋃
s′:s′≥s E(s′).
Consider a cell (E′, s), where the reader may imagine that E′ ∈ P(s). The goal is to

compute a set of tasks that cover E′ where we restrict ourselves to solutions such that
each edge e ∈ E′ is covered to an extent of at least (1 − δ)(1/δ)β+s/ε+1 (even though
the real demand ue of e might be smaller). Note that if E′ ∈ P(s) then p(Te ∩ {i ∈
OPT ∩

⋃∞
s′=s T (s′)|Pi ∩E′ 6= ∅}) ≥ (1− δ)(1/δ)β+s/ε+1, for each e ∈ E′. Inductively, assume

that there is a value s such that for each E′ ∈ P(s′) with s′ > s the DP-cell (E′, s′) stores
a solution of cost at most α(1 + ε)w

(
{i ∈ OPT ∩

⋃∞
s′=s+1 T (s′)|Pi ∩ E′ 6= ∅}

)
that covers

each edge e ∈ E′ to an extent of at least ue(1 − δ). Ideally, we would like to guess the
paths E′′ ⊆ E′ such that E′′ ∈ P(s + 1), take the solutions stored in the respective cells
(E′′, s+ 1), and then call the α-approximation on the remaining edges on E′′. However, the
number of such paths E′′ can be too large. Instead, for each solution in a cell (E′′, s+ 1)
with E′′ ⊆ E′ we introduce an artificial input task i(E′′, s + 1) with pi(E′′,s+1) = M and
the weight wi(E′′,s+1) of i(E′′, s+ 1) is defined as the cost of the solution stored in the cell
(E′′, s + 1). Let TH denote the set of all these (polynomially many) artifical tasks. We
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define demand of the edges such that for each edge e ∈ E′ we define its demand ūe to be
ūe := (1− δ)(1/δ)β+s/ε+1 if ue < (1/δ)β+s/ε+1 (recall that we restrict ourselves to solutions
that cover at least this amount), ūe := (1 − δ)ue if (1/δ)β+s/ε+1 ≤ ue < (1/δ)β+(s+1)/ε+1,
and ūe := M if ue ≥ (1/δ)β+(s+1)/ε+1. Observe that if ue ≥ (1/δ)β+(s+1)/ε+1 then `(e) > s

and hence the tasks in OPT ∩ T (s) are not needed for covering e (due to the resource
augmentation). Note that one solution to this subproblem is to select the task i(E′′, s+ 1)
for each E′′ ∈ P(s+ 1) and the tasks in OPT ∩ T (s) that use E′. From Claim 25 we know
that the tasks in sets T (s′) with s′ < s are not needed to cover the demand in E′. We
invoke the α-approximation algorithm and store the solution in the cell (E′, s′). One can
show that the cell (E,−1) then stores a α(1 + ε)-approximative solution T ′ that satisfies
p(Te ∩ T ′) ≥ (1− δ)ue for each e ∈ E. J

I Corollary 26. Consider the case of UFP-cover where wi = |Pi| · pi for each task i.
For any ε, δ > 0 there is a polynomial time algorithm that computes a solution T ′ with
w(T ′) ≤ (1 + ε)w(OPT ) and that satisfies that p(Te ∩ T ′) ≥ (1− δ)ue for each edge e.

5 Conclusion and open problems

In this paper we studied approximation algorithms for UFP-cover under resource augmenta-
tion. We gave algorithms for the cases where the task costs are proportional to their “areas”
or sizes, computing solutions whose costs are (1+ε)-approximate or even optimal, respectively.
It is an open question whether one can obtain such algorithms also for the general case under
resource augmentation. An interesting first step would be to get an algorithm for this setting
with a better approximation ratio than 4.

Our results imply that under resource augmentation UFP-cover is no longer NP-hard if
the cost of each task equals its size (unless P = NP), and the same holds for the respective
settings of UFP (packing) and general caching. This raises the question whether the general
case of these problems is still NP-hard in the resource augmentation setting or whether one
can compute a solution with optimal cost in polynomial time. Another natural open question
is whether one can obtain results like ours also without resource augmentation. We hope
that our new techniques help constructing such algorithms.
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Abstract
Given a Boolean function f : {−1, 1}n → {−1, 1}, define the Fourier distribution to be the
distribution on subsets of [n], where each S ⊆ [n] is sampled with probability f̂(S)2. The Fourier
Entropy-Influence (FEI) conjecture of Friedgut and Kalai [24] seeks to relate two fundamental
measures associated with the Fourier distribution: does there exist a universal constant C > 0 such
that H(f̂2) ≤ C · Inf(f), where H(f̂2) is the Shannon entropy of the Fourier distribution of f and
Inf(f) is the total influence of f?

In this paper we present three new contributions towards the FEI conjecture:
(i) Our first contribution shows that H(f̂2) ≤ 2 · aUC⊕(f), where aUC⊕(f) is the average un-

ambiguous parity-certificate complexity of f . This improves upon several bounds shown by
Chakraborty et al. [16]. We further improve this bound for unambiguous DNFs.

(ii) We next consider the weaker Fourier Min-entropy-Influence (FMEI) conjecture posed by
O’Donnell and others [43, 40] which asks if H∞(f̂2) ≤ C · Inf(f), where H∞(f̂2) is the
min-entropy of the Fourier distribution. We show H∞(f̂2) ≤ 2 · C⊕min(f), where C⊕min(f) is
the minimum parity certificate complexity of f . We also show that for all ε ≥ 0, we have
H∞(f̂2) ≤ 2 log(‖f̂‖1,ε/(1 − ε)), where ‖f̂‖1,ε is the approximate spectral norm of f . As a
corollary, we verify the FMEI conjecture for the class of read-k DNFs (for constant k).

(iii) Our third contribution is to better understand implications of the FEI conjecture for the
structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We
pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same
magnitude) of degree d and sparsity 2ω(d) can 1/3-approximate a Boolean function. This
conjecture is known to be true assuming FEI and we prove the conjecture unconditionally (i.e.,
without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing
connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which
has been extensively studied in functional analysis.
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1 Introduction

Boolean functions f : {−1, 1}n → {−1, 1} naturally arise in many areas of theoretical
computer science and mathematics such as learning theory, complexity theory, quantum
computing, inapproximability, graph theory, extremal combinatorics, etc. Fourier analysis
over the Boolean cube {−1, 1}n is a powerful technique that has been used often to analyze
problems in these areas. For a survey on the subject, see [40, 54]. One of the most important
and longstanding open problems in this field is the Fourier Entropy-Influence (FEI) conjecture,
first formulated by Ehud Friedgut and Gil Kalai in 1996 [24]. The FEI conjecture seeks to
relate the following two fundamental properties of a Boolean function f : the Fourier entropy
of f and the total influence of f , which we define now.

For a Boolean function f : {−1, 1}n → {−1, 1}, Parseval’s identity relates the Fourier
coefficients {f̂(S)}S and the values {f(x)}x by∑

S⊆[n]

f̂(S)2 = Ex[f(x)2] = 1,

where the expectation is taken uniformly over the Boolean cube {−1, 1}n. An immediate
implication of this equality is that the squared Fourier coefficients {f̂(S)2 : S ⊆ [n]} can
be viewed as a probability distribution over subsets S ⊆ [n], which we often refer to as
the Fourier distribution. The Fourier entropy of f (denoted H(f̂2)) is then defined as the
Shannon entropy of the Fourier distribution, i.e.,

H(f̂2) :=
∑
S⊆[n]

f̂(S)2 log 1
f̂(S)2

.

The total influence of f (denoted Inf(f)) measures the expected size of a subset S ⊆ [n],

https://arxiv.org/abs/1809.09819
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where the expectation is taken according to the Fourier distribution, i.e.,

Inf(f) =
∑
S⊆[n]

|S| f̂(S)2.

Combinatorially Inf(f) is the same as the average sensitivity as(f) of f . In particular, for
i ∈ [n], define Infi(f) to be the probability that on a uniformly random input flipping the
i-th bit changes the function value. Then, Inf(f) is defined to be

∑n
i=1 Infi(f).

Intuitively, the Fourier entropy measures how “spread out” the Fourier distribution is
over the 2n subsets of [n] and the total influence measures the concentration of the Fourier
distribution on the “high” level coefficients. Informally, the FEI conjecture states that
Boolean functions whose Fourier distribution is well “spread out” (i.e., functions with large
Fourier entropy) must have significant Fourier weight on the high-degree monomials (i.e.,
their total influence is large). Formally, the FEI conjecture can be stated as follows:

I Conjecture 1.1 (FEI Conjecture). There exists a universal constant C > 0 such that for
every Boolean function f : {−1, 1}n → {−1, 1},

H(f̂2) ≤ C · Inf(f). (1)

The original motivation of Friedgut and Kalai for the FEI conjecture came from studying
threshold phenomena of monotone graph properties in random graphs [24]. For example,
resolving the FEI conjecture would imply that every threshold interval of a monotone graph
property on n vertices is of length at most c(logn)−2 (for some universal constant c > 0).
The current best upper bound, proven by Bourgain and Kalai [11], is cε(logn)−2+ε for
every ε > 0.

Besides this application, the FEI conjecture is known to imply the famous Kahn-Kalai-
Linial theorem [30] (otherwise referred to as the KKL theorem). The KKL theorem was one
of the first major applications of Fourier analysis to understanding properties of Boolean
functions and has since found many application in various areas of theoretical computer
science.

I Theorem 1.2 (KKL theorem). For every f : {−1, 1}n → {−1, 1}, there exists an i ∈ [n]
such that Infi(f) ≥ Var(f) · Ω

(
logn
n

)
.

See Section 2 for the definitions of these quantities. Another motivation to study the FEI
conjecture is that a positive answer to this conjecture would resolve the notoriously hard
conjecture of Mansour [37] from 1995.

I Conjecture 1.3 (Mansour’s conjecture). Suppose f : {−1, 1}n → {−1, 1} is computed by
a t-term DNF.1 Then for every ε > 0, there exists a family T of subsets of [n] such that
|T | ≤ tO(1/ε) (i.e., size of T is polynomial in t) and

∑
T∈T f̂(T )2 ≥ 1− ε.

A positive answer to Mansour’s conjecture, along with the query algorithm of Gopalan et
al. [26], would resolve a long-standing open question in computational learning theory of
agnostically learning DNFs under the uniform distribution in polynomial time (up to any
constant accuracy).

More generally, the FEI conjecture implies that every Boolean function can be approxim-
ated (in `2-norm) by sparse polynomials over {−1, 1}. In particular, for a Boolean function

1 A t-term DNF is a disjunction of at most t conjunctions of variables and their negations.
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f and ε > 0, the FEI conjecture implies the existence of a polynomial p with 2O(Inf(f)/ε)

monomials such that Ex[(f(x)− p(x))2] ≤ ε. The current best known bound in this direction
is 2O(Inf(f)2/ε2), proven by Friedgut [23].2

Given the inherent difficulty in answering the FEI conjecture for arbitrary Boolean
functions, there have been many recent works studying the conjecture for specific classes of
Boolean functions. We give a brief overview of these results in the next section. Alongside the
pursuit of resolving the FEI conjecture, O’Donnell and others [43, 40] have asked if a weaker
question than the FEI conjecture, the Fourier Min-entropy-Influence (FMEI) conjecture can
be resolved. The FMEI conjecture asks if the entropy-influence inequality in Eq. (1) holds
when the entropy of the Fourier distribution is replaced by the min-entropy of the Fourier
distribution (denoted H∞(f̂2)). The min-entropy of {f̂(S)2}S is defined as

H∞(f̂2) := min
S⊆[n]:
f̂(S)6=0

{
log 1

f̂(S)2

}

and thus it is easily seen that H∞(f̂2) ≤ H(f̂2). In fact, H∞(f̂2) could be much smaller
compared to H(f̂2). For instance, consider the function f(x) := x1 ∨ IP(x1, . . . , xn); then
H∞(f̂2) = O(1) whereas H(f̂2) = Ω(n). (IP is the inner-product-mod-2 function.) So the
FMEI conjecture could be strictly weaker than the FEI conjecture, making it a natural
candidate to resolve first.

I Conjecture 1.4 (FMEI Conjecture). There exists a universal constant C > 0 such that for
every Boolean function f : {−1, 1}n → {−1, 1}, we have H∞(f̂2) ≤ C · Inf(f).

Another way to formulate the FMEI conjecture is, suppose f : {−1, 1}n → {−1, 1}, then
does there exist a Fourier coefficient f̂(S) such that |f̂(S)| ≥ 2−O(Inf(f))? By the granularity
of Fourier coefficients it is well-known that every Fourier coefficient of a Boolean function f
is an integral multiple of 2−deg(f), see [40, Exercise 1.11] for a proof of this. (Here the deg(f)
refers to the degree of the unique multilinear polynomial that represents f .) The FMEI
conjecture asks if we can prove a lower bound of 2−O(Inf(f)) on any one Fourier coefficient, and
even this remains open. Proving the FMEI conjecture seems to require proving interesting
structural properties of Boolean functions. In fact, as observed by [43], the FMEI conjecture
suffices to imply the KKL theorem.

Understanding the min-entropy of a Fourier distribution is important in its own right too.
It was observed by Akavia et al. [2] that for a circuit class C, tighter relations between min-
entropy of f ∈ C and fA defined as fA(x) := f(Ax), for an arbitrary linear transformation
A, could enable us to translate lower bounds against the class C to the class C ◦ MOD2.
In particular, they conjectured that min-entropy of fA is only polynomially larger than
f when f ∈ AC0[poly(n), O(1)]. (AC0[s, d] is the class of unbounded fan-in circuits of size
at most s and depth at most d.) It is well-known that when f ∈ AC0[s, d], H∞(f̂2) is at
most O((log s)d−1 · log log s) [35, 10, 51]. Depending on the tightness of the relationship
between H∞(f̂2) and H∞(f̂A

2
), one could obtain near-optimal lower bound on the size of

AC0[s, d]◦MOD2 circuits computing IP (inner-product-mod-2). This problem has garnered
a lot of attention in recent times for a variety of reasons [48, 46, 2, 18, 17]. The current
best known lower bound for IP against AC0[s, d]◦MOD2 is quadratic when d = 4, and only
super-linear for all d = O(1) [17].

2 Friedgut’s Junta theorem says that f is ε-close to a junta on 2O(Inf(f)/ε) variables. We refer to [40,
Section 9.6, page 269, Friedgut’s Junta Theorem] for details.
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Organization. We end this introduction with an overview of prior work on the FEI and
FMEI conjecture in Section 1.1. We then describe our contributions and sketch the proofs in
Section 3. We conclude in Section 4. Due to lack of space the proofs have been omitted. We
refer to the full version [5] for any omission from this version.

1.1 Prior work
After Friedgut and Kalai [24] posed the FEI conjecture in 1996, there was not much work
done towards resolving it, until the work of Klivans et al. [33] in 2010. They showed that
the FEI conjecture holds true for random DNF formulas. Since then, there have been many
significant steps taken in the direction of resolving the FEI conjecture. We review some
recent works here, referring the interested reader to the blog post of Kalai [31] for additional
discussions on the FEI conjecture.

The FEI conjecture is known to be true when we replace the universal constant C
with logn in Eq. (1). In fact we know H(f̂2) ≤ O(Inf(f) · logn) for real-valued functions
f : {−1, 1}n → R (see [43, 32] for a proof and [16] for an improvement of this statement).3
If we strictly require C to be a universal constant, then the FEI conjecture is known to be
false for real-valued functions. Instead, for real-valued functions an analogous statement
called the logarithmic Sobolev Inequality [28] is known to be true. The logarithmic Sobolev
inequality states that for every f : {−1, 1}n → R, we have Ent(f2) ≤ 2 · Inf(f), where Ent(f)
is defined as Ent(f) = E[f ln(f)]−E[f ] ln(E[f ]), where the expectation is taken over uniform
x ∈ {−1, 1}n.

Restricting to Boolean functions, the FEI conjecture is known to be true for the “standard”
functions that arise often in analysis, such as AND, OR, Majority, Parity, Bent functions and
Tribes. There have been many works on proving the FEI conjecture for specific classes of
Boolean functions. O’Donnell et al. [43] showed that the FEI conjecture holds for symmetric
Boolean functions and read-once decision trees. Keller et al. [32] studied a generalization of
the FEI conjecture when the Fourier coefficients are defined on biased product measures on the
Boolean cube. Then, Chakraborty et al. [16] and O’Donnell and Tan [41], independently and
simultaneously, proved the FEI conjecture for read-once formulas. In fact, O’Donnell and Tan
proved an interesting composition theorem for the FEI conjecture (we omit the definition of
composition theorem here, see [41] for more). For general Boolean functions, Chakraborty et
al. [16] gave several upper bounds on the Fourier entropy in terms of combinatorial quantities
larger than the total influence, e.g., average decision tree depth, etc., and sometimes even
quantities that could be much smaller than influence, namely, average parity-decision tree
depth.

Later Wan et al. [53] used Shannon’s source coding theorem [49] (which characterizes
entropy) to establish the FEI conjecture for read-k decision trees for constant k. Using their
novel interpretation of the FEI conjecture they also reproved O’Donnell-Tan’s composition
theorem in an elegant way. Recently, Shalev [47] improved the constant in the FEI inequality
for read-k decision trees, and further verified the conjecture when either the influence is
too low, or the entropy is too high. The FEI conjecture is also verified for random Boolean
functions by Das et al. [20] and for random linear threshold functions (LTFs) by Chakraborty
et al. [15].

3 For Boolean functions, the log n-factor was improved by [27] to log(s(f)) (where s(f) is the sensitivity
of the Boolean function f).
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There has also been some work in giving lower bounds on the constant C in the FEI
conjecture. Hod [29] gave a lower bound of C > 6.45 (the lower bound holds even when
considering the class of monotone functions), improving upon the lower bound of O’Donnell
and Tan [41].

However, there has not been much work on the FMEI conjecture. It was observed
in [43, 15] that the KKL theorem implies the FMEI conjecture for monotone functions and
linear threshold functions. Finally, the FMEI conjecture for “regular” read-k DNFs was
recently established by Shalev [47].

2 Preliminaries

Notation. We denote the set {1, 2, . . . , n} by [n]. A partial assignment of [n] is a map
τ : [n] → {−1, 1, ∗}. Define |τ | = |τ−1(1) ∪ τ−1(−1)|. A subcube of the Boolean cube
{−1, 1}n is a set of x ∈ {−1, 1}n that agrees with some partial assignment τ , i.e., {x ∈
{−1, 1}n : xi = τ(i) for every i with τ(i) 6= ∗}.

Fourier Analysis. We recall some definitions and basic facts from analysis of Boolean
functions, referring to [40, 54] for more. Consider the space of all functions from {−1, 1}n to
R equipped with the inner product defined as

〈f, g〉 := Ex[f(x)g(x)] = 1
2n

∑
x∈{−1,1}n

f(x)g(x).

For S ⊆ [n], the character function χS : {−1, 1}n → {−1, 1} is defined as χS(x) :=
∏
i∈S xi.

Then the set of character functions {χS}S⊆[n] forms an orthonormal basis for the space of
all real-valued functions on {−1, 1}n. Hence, every real-valued function f : {−1, 1}n → R
has a unique Fourier expansion

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

The degree of f , denoted deg(f), is defined as max{|S| : f̂(S) 6= 0}. The spectral norm of
f is defined to be

∑
S |f̂(S)|. The Fourier weight of a function f on a set of coefficients

S ⊆ 2[n] is defined as
∑
S∈S f̂(S)2. The approximate spectral norm of a Boolean function f

is defined as

‖f̂‖1,ε = min
{∑

S

|p̂(S)| : |p(x)− f(x)| ≤ ε for every x ∈ {−1, 1}n
}
.

We note a well-known fact that follows from the orthonormality of the character functions.

I Fact 2.1 (Plancherel’s Theorem). For any f, g : {−1, 1}n → R,

Ex[f(x)g(x)] =
∑
S

f̂(S)ĝ(S).

In particular, if f : {−1, 1}n → {−1, 1} is Boolean-valued and g = f , we have Parseval’s
Identity

∑
S f̂(S)2 = E[f(x)2], which in turn equals 1. Hence

∑
S f̂(S)2 = 1 and we can

view {f̂(S)2}S as a probability distribution, which allows us to discuss the Fourier entropy
and min-entropy of the distribution {f̂(S)2}S , defined as
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I Definition 2.2. For a Boolean function f : {−1, 1}n → {−1, 1}, its Fourier entropy
(denoted H(f̂2)) and min-entropy (denoted H∞(f̂2)) are

H(f̂2) :=
∑
S⊆[n]

f̂(S)2 log 1
f̂(S)2

, and H∞(f̂2) := min
S⊆[n]:
f̂(S)6=0

{
log 1

f̂(S)2

}
.

Similarly, we can also define the Rényi Fourier entropy.
I Definition 2.3 (Rényi Fourier entropy). For f : {−1, 1}n → {−1, 1}, α ≥ 0 and α 6= 1, the
Rényi Fourier entropy of f of order α is defined as

Hα(f̂2) := 1
1− α log

∑
S⊆[n]

|f̂(S)|2α
 .

It is known that in the limit as α → 1, Hα(f̂2) is the (Shannon) Fourier entropy H(f̂2)
(see [19, Chapter 17, Section 8]) and when α→∞, observe that Hα(f̂2) converges to H∞(f̂2).
It is easily seen that H∞(f̂2) ≤ H(f̂2) ≤ H 1

2
(f̂2) ≤ H0(f̂2).

For f : {−1, 1}n → {−1, 1}, the influence of a coordinate i ∈ [n], denoted Infi(f), is
defined as

Infi(f) = Pr
x∈{−1,1}n

[f(x) 6= f(x(i))] = Ex
[(f(x)− f(x(i))

2

)2]
,

where the probability and expectation is taken according to the uniform distribution on
{−1, 1}n and x(i) is x with the i-th bit flipped. The total influence of f , denoted Inf(f), is

Inf(f) =
∑
i∈[n]

Infi(f).

In terms of the Fourier coefficients of f , it can be shown, e.g., [30], that Infi(f) =
∑
S3i f̂(S)2,

and therefore

Inf(f) =
∑
S⊆[n]

|S|f̂(S)2.

The variance of a real-valued function f is given by Var(f) =
∑
S 6=∅ f̂(S)2. It easily

follows that Var(f) ≤ Inf(f). We will also need the following version of the well-known KKL
theorem.
I Theorem 2.4 (KKL Theorem, [30]). There exists a universal constant c > 0 such that for
every f : {−1, 1}n → {−1, 1}, we have

Inf(f) ≥ c · Var(f) · log 1
maxi Infi(f) .

We now introduce some basic complexity measures of Boolean functions which we use
often, referring to [13] for more.

Sensitivity. For x ∈ {−1, 1}n, the sensitivity of f at x, denoted sf (x), is defined to be the
number of neighbors y of x in the Boolean hypercube (i.e., y is obtained by flipping exactly
one bit of x) such that f(y) 6= f(x). The sensitivity s(f) of f is maxx{sf (x)}. The average
sensitivity as(f) of f is defined to be Ex[sf (x)]. By the linearity of expectation observe that

Ex[sf (x)] =
n∑
i=1

Pr
x

[f(x) 6= f(x(i))] =
n∑
i=1

Infi(f) = Inf(f),

so the average sensitivity of f equals the total influence of f . As a result, the FEI conjecture
asks if H(f̂2) ≤ C · as(f) for every Boolean function f .
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Certificate complexity. For x ∈ {−1, 1}n, the certificate complexity of f at x, denoted
C(f, x), is the minimum number of bits in x that needs to be fixed to ensure that the
value of f is constant. The certificate complexity C(f) of f is maxx{C(f, x)}. The min-
imum certificate complexity of f is Cmin(f) = minx{C(f, x)}. The 0-certificate complexity
C0(f) of f is maxx:f(x)=1{C(f, x)}. Similarly, the 1-certificate complexity C1(f) of f is
maxx:f(x)=−1{C1(f, x)}. Observe that for every x ∈ {−1, 1}n, s(f, x) ≤ C(f, x). This gives
s(f) ≤ C(f) and as(f) ≤ aC(f) where aC(f) denotes the average certificate complexity of f .
As before, the average is taken with respect to the uniform distribution on {−1, 1}n.

Parity certificate complexity. Analogously, we define the parity certificate complexity
C⊕(f, x) of f at x as the minimum number of parities on the input variables one has
to fix in order to fix the value of f at x, i.e.,

C⊕(f, x) := min{co-dim(H) | H is an affine subspace on which f is constant and x ∈ H},

where co-dim(H) is the co-dimension of the affine subspace H. It is easily seen that
C⊕(f, x) ≤ C(f, x). We also define C⊕(f) := maxx{C⊕(f, x)}, and C⊕min(f) := minx C⊕(f, x).

Unambiguous certificate complexity. We now define the unambiguous certificate complexity
of f . Let τ : [n] → {−1, 1, ∗} be a partial assignment. We refer to Sτ = {x ∈ {−1, 1}n :
xi = τ(i) for every i ∈ [n]\τ−1(∗)} as the subcube generated by τ . We call C ⊆ {−1, 1}n
a subcube of {−1, 1}n if there exists a partial assignment τ such that C = Sτ and the
co-dimension of C is the number of bits fixed by τ , i.e., co-dim(C) = |{i ∈ [n] : τ(i) 6= ∗}|. A
set of subcubes C = {C1, . . . , Cm} partitions {−1, 1}n if the subcubes are disjoint and they
cover {−1, 1}n, i.e., Ci ∩ Cj = ∅ for i 6= j and ∪iCi = {−1, 1}n.

An unambiguous certificate U = {C1, . . . , Cm} (also referred to as a subcube partition)
is a set of subcubes partitioning {−1, 1}n. We say U computes a Boolean function f :
{−1, 1}n → {−1, 1} if f is constant on each Ci (i.e., f(x) is the same for all x ∈ Ci). For
an unambiguous certificate U , the unambiguous certificate complexity on input x (denoted
UC(U , x)), equals co-dim(Ci) for the Ci satisfying x ∈ Ci. Define the average unambiguous
certificate complexity of f with respect to U as aUC(f,U) := Ex[UC(U , x)]. Then, the average
unambiguous certificate complexity of f is defined as

aUC(f) := min
U

aUC(f,U),

where the minimization is over all unambiguous certificates for f . Finally, the unambiguous
certificate complexity of f is

UC(f) := min
U

max
x

UC(U , x).

Note that since unambiguous certificates are more restricted than general certificates, we
have C(f) ≤ UC(f).

An unambiguous ⊕-certificate U = {C1, . . . , Cm} for f is defined to be a collection of
monochromatic affine subspaces that together partition the space {−1, 1}n. It is easily seen
that a subcube is also an affine subspace. Analogously, for an unambiguous ⊕-certificate
U , on an input x, UC⊕(U , x) := co-dim(Ci) for the Ci satisfying x ∈ Ci, and aUC⊕(f,U) :=
Ex[UC⊕(U , x)]. Similarly, we define aUC⊕(f) and UC⊕(f).

DNFs. A DNF (disjunctive normal form) is a disjunction (OR) of conjunctions (ANDs) of
variables and their negations. An unambiguous DNF is a DNF that satisfies the additional
property that: on every (−1)-input, exactly one of the conjunctions outputs −1.
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Approximate degree. The ε-approximate degree of f : {−1, 1}n → R, denoted degε(f),
is defined to be the minimum degree among all multilinear real polynomials p such that
|f(x)− p(x)| ≤ ε for all x ∈ {−1, 1}n. Usually ε is chosen to be 1/3, but it can be chosen to
be any constant in (0, 1), without significantly changing the model.

Deterministic decision tree. A deterministic decision tree for f : {−1, 1}n → {−1, 1} is a
rooted binary tree where each node is labelled by i ∈ [n] and the leaves are labelled with an
output bit {−1, 1}. On input x ∈ {−1, 1}n, the tree proceeds at the i-th node by evaluating
the bit xi and continuing with the subtree corresponding to the value of xi. Once a leaf is
reached, the tree outputs a bit. We say that a deterministic decision tree computes f if for
all x ∈ {−1, 1}n its output equals f(x).

A parity-decision tree for f is similar to a deterministic decision tree, except that each
node in the tree is labelled by a subset S ⊆ [n]. On input x ∈ {−1, 1}n, the tree proceeds at
the i-th node by evaluating the parity of the bits xi for i ∈ S and continues with the subtree
corresponding to the value of ⊕i∈Sxi. Note that if the subsets at each node have size |S| = 1,
then we get the standard deterministic decision tree model.

Randomized decision tree. A randomized decision tree for f is a probability distribution
Rµ over deterministic decision trees for f . On input x, a decision tree is chosen according
to Rµ, which is then evaluated on x. The complexity of the randomized tree is the largest
depth among all deterministic trees with non-zero probability of being sampled according to
Rµ. One can similarly define a randomized parity-decision tree as a probability distribution
R⊕µ over deterministic parity-decision trees for f .

We say that a randomized decision tree computes f with bounded-error if for all x ∈
{−1, 1}n its output equals f(x) with probability at least 2/3. R2(f) (resp. R⊕2 (f)) denotes
the complexity of the optimal randomized (resp. parity) decision tree that computes f with
bounded-error, i.e., errs with probability at most 1/3.

Information Theory. We now recall the following consequence of the law of large numbers,
called the Asymptotic Equipartition Property (AEP) or the Shannon-McMillan-Breiman
theorem. See Chapter 3 in the book [19] for more details.

I Theorem 2.5 (Asymptotic Equipartition Property (AEP) Theorem). Let X be a random
variable drawn from a distribution P and suppose X1,X2, . . . ,XM are independently and
identically distributed copies of X, then

− 1
M

logP (X1,X2, . . . ,XM ) −→ H(X)

in probability as M →∞.

I Definition 2.6. Fix ε ≥ 0. The typical set T (M)
ε (X) with respect to a distribution P is

defined to be the set of sequences (x1, x2, . . . , xM ) ∈ X1 ×X2 × · · · ×XM such that

2−M(H(X)+ε) ≤ P (x1, x2, . . . , xM ) ≤ 2−M(H(X)−ε).

The following properties of the typical set follows from the AEP.

I Theorem 2.7 ([19, Theorem 3.1.2]). Let ε ≥ 0 and T (M)
ε (X) be a typical set with respect

to P , then
(i) |T (M)

ε (X)| ≤ 2M(H(X)+ε).
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(ii) Suppose x1, . . . , xM are drawn i.i.d. according to X, then
Pr[(x1, . . . , xM ) ∈ T (M)

ε (X)] ≥ 1− ε for M sufficiently large.
(iii) |T (M)

ε (X)| ≥ (1− ε)2M(H(X)−ε) for M sufficiently large.

We also require the following stronger version of typical sequences and asymptotic
equipartition property.

I Definition 2.8 ([19, Chapter 11, Section 2]). Let X be a random variable drawn according
to a distribution P . Fix ε > 0. The strongly typical set T ∗(M)

ε (X) is defined to be the set
of sequences ρ = (x1, x2, . . . , xM ) ∈ X1 ×X2 × · · · ×XM such that N(x; ρ) = 0 if P (x) = 0,
and otherwise∣∣∣∣N(x; ρ)

M
− P (x)

∣∣∣∣ ≤ ε

|X| ,

where N(x; ρ) is defined as the number of occurrences of x in ρ.

The strongly typical set shares similar properties with its (weak) typical counterpart which
we state now. See [19, Chapter 11, Section 2] for a proof of this theorem.

I Theorem 2.9 (Strong AEP Theorem). Following the notation in Definition 2.8, let T ∗(M)
ε (X)

be a strongly typical set. Then, there exists δ > 0 such that δ → 0 as ε→ 0, and the following
hold:
(i) Suppose x1, . . . , xM are drawn i.i.d. according to X, then

Pr[(x1, . . . , xM ) ∈ T ∗(M)
ε (X)] ≥ 1− ε for M sufficiently large.

(ii) If (x1, . . . , xM ) ∈ T ∗(M)
ε (X), then

2−M(H(X)+δ) ≤ P (x1, . . . , xM ) ≤ 2−M(H(X)−δ).

(iii) For M sufficiently large,

(1− ε)2M(H(X)−δ) ≤ |T ∗(M)
ε (X)| ≤ 2M(H(X)+δ).

3 Our Contributions

Our contributions in this paper are threefold, which we elaborate on below:

3.1 Better upper bounds for the FEI conjecture
Our first and main contribution of this paper is to give a better upper bound on the Fourier
entropy H(f̂2) in terms of aUC(f), the average unambiguous certificate complexity of f .
Informally, the unambiguous certificate complexity UC(f) of f is similar to the standard
certificate complexity measure, except that the collection of certificates is now required to be
unambiguous, i.e., every input should be consistent with a unique certificate. In other words,
an unambiguous certificate is a monochromatic subcube partition of the Boolean cube. By
the average unambiguous certificate complexity, aUC(f), we mean the expected number of
bits set by an unambiguous certificate on a uniformly random input.

There have been many recent works on query complexity, giving upper and lower bounds
on UC(f) in terms of other combinatorial measures such as decision-tree complexity, sensitivity,
quantum query complexity, etc., see [25, 4, 8] for more. It follows from definitions that UC(f)
lower bounds decision tree complexity. However, it is known that UC(f) can be quadratically
smaller than decision tree complexity [4]. Our main contribution here is an improved upper
bound of average unambiguous certificate complexity aUC(f) on H(f̂2). This improves upon
the previously known bound of average decision tree depth on H(f̂2) [16].
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I Theorem 3.1. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then,

H(f̂2) ≤ 2 · aUC(f).

A new and crucial ingredient employed in the proof of the theorem is an analog of the law
of large numbers in information theory, usually referred to as the Asymptotic Equipartition
Property (AEP) theorem (Theorem 2.5). Employing information-theoretic techniques for the
FEI conjecture seems very natural given that the conjecture seeks to bound the entropy of a
distribution. Indeed, Keller et al. [32, Section 3.1] envisioned a proof of the FEI conjecture
itself using large deviation estimates and the tensor structure (explained below) in a stronger
way, and Wan et al. [53] used Shannon’s source coding theorem [49] to verify the conjecture
for bounded-read decision trees.

In order to prove Theorem 3.1, we study the tensorized version of f , fM : {−1, 1}Mn →
{−1, 1}, which is defined as follows,

fM (x1, . . . , xM ) := f(x1
1, . . . , x

1
n) · f(x2

1, . . . , x
2
n) · · · f(xM1 , . . . , xMn ).

Similarly we define a tensorized version CM of an unambiguous certificate C of f ,4 i.e., a direct
product of M independent copies of C. It is not hard to see that CM is also an unambiguous
certificate of fM . To understand the properties of CM we study C in a probabilistic manner.
We observe that C naturally inherits a distribution C on its certificates when the underlying
inputs x ∈ {−1, 1}n are distributed uniformly. Using the asymptotic equipartition property
with respect to C, we infer that for every δ > 0, there exists M0 > 0 such that for all
M ≥ M0, there are at most 2M(aUC(f,C)+δ) certificates in CM that together cover at least
1− δ fraction of the inputs in {−1, 1}Mn. Furthermore, each of these certificates fixes at most
M(aUC(f, C)+δ) bits. Hence, a particular certificate can contribute to at most 2M(aUC(f,C)+δ)

Fourier coefficients of fM . Combining both these bounds, all these certificates can overall
contribute to at most 22M(aUC(f,C)+δ) Fourier coefficients of fM . Let’s denote this set of
Fourier coefficients by B. We then argue that the Fourier coefficients of fM that are not in
B have Fourier weight at most δ. This now allows us to bound the Fourier entropy of fM as
follows,

H(f̂M
2
) ≤ log |B|+ δnM + H(δ),

where H(δ) is the binary entropy function. Since H(f̂M
2
) = M ·H(f̂2), we have

H(f̂2) ≤ 2(aUC(f, C) + δ) + δn+ H(δ)
M

.

By the AEP theorem, note that δ → 0 as M →∞. Thus, taking the limit as M →∞ we
obtain our theorem.

Looking finely into how certificates contribute to Fourier coefficients in the proof above,
we further strengthen Theorem 3.1 by showing that we can replace aUC(f) by the average
unambiguous parity-certificate complexity aUC⊕(f) of f . Here aUC⊕(f) is defined similar to
aUC(f) except that instead of being defined in terms of monochromatic subcube partitions
of f , we now partition the Boolean cube with monochromatic affine subspaces. (Observe that
subcubes are also affine subspaces.) This strengthening also improves upon the previously
known bound of average parity-decision tree depth on H(f̂2) [16]. It is easily seen that
aUC⊕(f) lower bounds the average parity-decision tree depth.

4 Recall an unambiguous certificate is a collection of certificates that partitions the Boolean cube {−1, 1}n.
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I Theorem 3.2. Let f : {−1, 1}n → {−1, 1} be any Boolean function. Then,

H(f̂2) ≤ 2 · aUC⊕(f).

The proof outline remains the same as in Theorem 3.1. However, a particular certificate
in CM no longer fixes just variables. Instead these parity certificates now fix parities over
variables, and so potentially could involve all variables. Hence we cannot directly argue
that all the certificates contribute to at most 2M(aUC⊕(f,C)+δ) Fourier coefficients of fM .
Nevertheless, by the AEP theorem we still obtain that a typical parity-certificate fixes at
most M(aUC⊕(f, C) + δ) parities. Looking closely at the Fourier coefficients that a parity-
certificate can contribute to, we now argue that such coefficients must lie in the linear span of
the parities fixed by the parity-certificate. Therefore, a typical parity-certificate can overall
contribute to at most 2M(aUC⊕(f,C)+δ) Fourier coefficients of fM . The rest of the proof now
follows analogously.

I Remark 3.3. As a corollary to the theorem we obtain that the FEI conjecture holds for the
class of functions f with constant aUC⊕(f), and Inf(f) ≥ 1. That is, for a Boolean function
f with Inf(f) ≥ 1, we have

H(f̂2) ≤ 2 · aUC⊕(f) · Inf(f).

We note that the reduction in [53, Proposition E.2] shows that removing the requirement
Inf(f) ≥ 1 from the above inequality will prove the FEI conjecture for all Boolean functions
with Inf(f) ≥ logn. Furthermore, if we could show the FEI conjecture for Boolean functions
f where aUC⊕(f) = ω(1) is a slow-growing function of n, again the padding argument in
[53] shows that we would be able to establish the FEI conjecture for all Boolean functions.

Further extension to unambiguous DNFs
Consider an unambiguous certificate C = {C1, . . . , Ct} of f . It covers both 1 and −1 inputs
of f . Suppose {C1, . . . , Ct1} for some t1 < t is a partition of f−1(−1) and {Ct1+1, . . . , Ct} is
a partition of f−1(1). To represent f , it suffices to consider

∨t1
i=1 Ci. This is a DNF repres-

entation of f with an additional property that {C1, . . . , Ct1} forms a partition of f−1(−1).
We call such a representation an unambiguous DNF. In general, a DNF representation need
not satisfy this additional property.

Using the equivalence of total influence and average sensitivity, one can easily observe
that

Inf(f) ≤ 2 ·min
{

t1∑
i=1

co-dim(Ci) · 2−co-dim(Ci),

t∑
i=t1+1

co-dim(Ci) · 2−co-dim(Ci)

}
≤ aUC(f, C),

where co-dim(·) denotes the co-dimension of an affine space. Note that the quantity∑t1
i=1 co-dim(Ci) · 2−co-dim(Ci), in a certain sense, is “average unambiguous 1-certificate

complexity” and, similarly,
∑t
i=t1+1 co-dim(Ci) · 2−co-dim(Ci) captures “average unambiguous

0-certificate complexity”.
Building on our ideas from the main theorem in the previous section and using a stronger

version of the AEP theorem (Theorem 2.9) we essentially establish the aforementioned im-
proved bound of the smaller quantity between “average unambiguous 1-certificate complexity”
and “average unambiguous 0-certificate complexity” on the Fourier entropy. Formally, we
prove the following.
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I Theorem 3.4. Let f : {−1, 1}n → {−1, 1} be a Boolean function and C = {C1, . . . , Ct} be a
monochromatic affine subspace partition of {−1, 1}n with respect to f such that {C1, . . . , Ct1}
for some t1 < t is an affine subspace partition of f−1(−1) and {Ct1+1, . . . , Ct} is an affine
subspace partition of f−1(1). Further, p := Prx[f(x) = 1]. Then,

H(f̂2) ≤


2
(

t1∑
i=1

co-dim(Ci) · 2−co-dim(Ci) + p · max
i∈{1,...,t1}

co-dim(Ci)
)
,

2
(

t∑
i=t1+1

co-dim(Ci) · 2−co-dim(Ci) + (1− p) · max
i∈{t1+1,...,t}

co-dim(Ci)
)
.

We remark that to truly claim the bound of “average unambiguous 1-certificate complexity”
one would like to remove the additive term p ·maxi∈{1,...,t1} co-dim(Ci) from the stated bound
in the above theorem. This is because when the maxi co-dim(Ci) term is not weighted by
p, it becomes a trivial bound on entropy. Ideally, one would like to get rid of this term
altogether, possibly at the expense of increasing the constant factor in the first summand.

We also note that a similar bound for the general DNF representation, i.e., when
{C1, . . . , Ct1} is an arbitrary DNF representation of f where the Cis need not be disjoint,
suffices to establish Mansour’s conjecture (Conjecture 1.3). In fact, following the analogy,
Theorem 3.4 implies a bound of “average 1-certificate complexity” in the general case. In
this direction, we observe that a weaker bound of 1-certificate complexity, i.e., showing
H(f̂2) ≤ O(C1(f)), would already suffice to answer Mansour’s conjecture positively. We refer
to the full version [5] for a detailed discussion on this.

The outline for the proof of Theorem 3.4 remains the same as before, but it differs in
implementation details. We sketch them now. Analogous to the proof of the main theorem
we consider a partition of inputs with respect to f and its tensorized version. Motivated
by the DNF representation, we study the following partition {C1, . . . , Ct1 , f

−1(1)} which
naturally inherits a distribution C given by the uniform distribution on the underlying inputs.
Again we build a “small” set B of Fourier coefficients of fM based on the Fourier expansions
of strongly typical sequences. However, unlike before, the probability of observing a strongly
typical sequence doesn’t capture the number of coefficients it could contribute to B. Here,
we use stronger properties guaranteed by the strong AEP. In particular, it guarantees that
the empirical distribution of a typical sequence is close to the distribution of C. In contrast,
the (weak) AEP only guarantees that the empirical entropy of a typical sequence is close
to the entropy of C. Using the stronger property we can now lower bound the magnitude
of any non-zero Fourier coefficient in the Fourier expansion of the indicator function of a
strongly typical sequence. We then use Parseval’s Identity (Fact 2.1) to deduce an upper
bound on its Fourier sparsity, which in turn is used to bound the size of B. We also need to
argue that coefficients not in B have negligible Fourier weight, which can be done as before.
Using the two properties, we can now complete the proof.

3.2 New upper bounds for the FMEI conjecture
Given the hardness of obtaining better upper bounds on the Fourier entropy of a Boolean
function, we make progress on a weaker conjecture, the FMEI conjecture. The FMEI
conjecture is much less studied than the FEI conjecture. In fact, we are aware of only
one recent paper [47] which studies the FMEI conjecture for a particular class of functions.
Our second contribution is to give upper bounds on the min-entropy of general Boolean
functions in terms of the minimum parity-certificate complexity (denoted C⊕min(f)) and the
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approximate spectral norm of Boolean functions (denoted ‖f̂‖1,ε). The minimum parity-
certificate complexity C⊕min(f) is also referred to as the parity kill number by O’Donnell et
al. [42] and is closely related to the communication complexity of XOR functions [56, 39, 52].
The approximate spectral norm ‖f̂‖1,ε is related to the quantum communication complexity
of XOR functions [34, 55]. In particular, it characterizes the bounded-error quantum
communication complexity of XOR functions with constant F2-degree [55]. (By F2-degree,
we mean the degree of a function when viewed as a polynomial over F2.)

I Theorem 3.5. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then,
(1) For every ε ≥ 0, H∞(f̂2) ≤ 2 · log

(
‖f̂‖1,ε/(1− ε)

)
.

(2) H∞(f̂2) ≤ 2 · C⊕min(f).
(3) H∞(f̂2) ≤ 2(1 + log2 3) ·R⊕2 (f).5

The proof of Theorem 3.5 (1) expresses the quantity ‖f̂‖1,ε as a (minimization) linear
program. We consider the dual linear program and exhibit a feasible solution that achieves
an optimum of (1− ε)/maxS |f̂(S)|. This proves the desired inequality. In order to prove
part (2) and (3) of the theorem, the idea is to consider a “simple” function g that has “good”
correlation with f , and then upper bound the correlation between f and g using Plancherel’s
theorem (Fact 2.1) and the fact that g has a “simple” Fourier structure. For part (2), g is
chosen to be the indicator function of an (affine) subspace where f is constant, whereas for
part (3) the randomized parity-decision tree computing f itself plays the role of g.6

As a corollary of this theorem we also obtain upper bounds on the Rényi Fourier entropy
H1+δ(f̂2) of order 1 + δ for all δ > 0. Recall that H1+δ(f̂2) ≥ H∞(f̂2) for every δ ≥ 0 and
as δ →∞, H1+δ(f̂2) converges to H∞(f̂2). Also H1(f̂2) is the standard Shannon entropy of
the Fourier distribution. We refer to the full version [5] for a detailed treatment of it.

We believe that these improved bounds on min-entropy of the Fourier distribution give a
better understanding of Fourier coefficients of Boolean functions, and could be of independent
interest. As a somewhat non-trivial application of Theorem 3.5 (in particular, part (2)) we
verify the FMEI conjecture for read-k DNFs, for constant k. (A read-k DNF is a formula
where each variable appears in at most k terms.)

I Theorem 3.6. For every Boolean function f : {−1, 1}n → {−1, 1} that can be expressed
as a read-k DNF, we have

H∞(f̂2) ≤ O(log k) · Inf(f).

This theorem improves upon a recent (and independent) result of Shalev [47] that
establishes the FMEI conjecture for “regular” read-k DNFs (where regular means each term
in the DNF has more or less the same number of variables, see [47] for a precise definition).
In order to prove Theorem 3.6, we essentially show that Inf(f) is at least as large as the
minimum certificate complexity Cmin(f) of f .

I Lemma 3.7. There exists a universal constant c > 0 such that for all f : {−1, 1}n →
{−1, 1} that can be expressed as a read-k DNF, we have

Inf(f) ≥ c · Var(f) · (Cmin(f)− 1− log k) .

5 R⊕2 (f) is the randomized parity-decision tree complexity of f (we define this formally in Section 2).
6 We remark here that there exists simpler proof of part (1), along the lines of parts (2) and (3). However,
we believe that the linear-programming formulation of H∞(f̂2) might help obtain better bounds, such
as fractional block sensitivity.
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The proof of this lemma is an application of the KKL theorem (Theorem 2.4). Now
the proof of Theorem 3.6 follows with an application of the lemma in conjunction with
Theorem 3.5 (2).

3.3 Implications of the FEI conjecture and connections to the
Bohnenblust-Hille inequality

Our final contribution is to understand better the structure of polynomials that ε-approximate
Boolean functions on the Boolean cube. To be more specific, for simplicity we fix ε = 1/3
and we consider polynomials p such that |p(x) − f(x)| ≤ 1/3 for all x ∈ {−1, 1}n, where
f is a Boolean function. Such polynomials have proved to be powerful and found diverse
applications in theoretical computer science. The single most important measure associated
with such polynomials is its degree. The least degree of a polynomial that 1/3-approximates
f is referred to as the approximate degree of f . Tight bounds on approximate degree have
both algorithmic and complexity-theoretic implications, see for instance Sherstov’s recent
paper [50] and references therein.

In this work we ask, suppose the FEI conjecture were true, what can be said about
approximating polynomials? For instance, are these approximating polynomials p sparse
in their Fourier domain, i.e., is the number of monomials in p, |{S : p̂(S) 6= 0}|, small? Do
approximating polynomials have small spectral norm (i.e., small

∑
S |p̂(S)|)? In order to

understand these questions better, we restrict ourselves to a class of polynomials called
flat polynomials over {−1, 1}, i.e., polynomials whose non-zero coefficients have the same
magnitude.

We first observe that if a flat polynomial p 1/3-approximates a Boolean function f , then
the entropy of the Fourier distribution of f must be “large”. In particular, we show that
H(f̂2) must be at least as large as the logarithm of the Fourier sparsity of p.

B Claim 3.8. If p is a flat polynomial with sparsity T that 1/3-approximates a Boolean
function f , then

H(f̂2) = Ω(log T ).

It then follows that assuming the FEI conjecture, a flat polynomial of degree d and
sparsity 2ω(d) cannot 1/3-approximate a Boolean function. However, it is not clear to us
how to obtain the same conclusion unconditionally (i.e., without assuming that the FEI
conjecture is true) and, so we pose the following conjecture.

I Conjecture 3.9. No flat polynomial of degree d and sparsity 2ω(d) can 1/3-approximate a
Boolean function.

I Remark 3.10. We remark that there exists degree-d flat Boolean functions of sparsity 2d.
One simple example on 4 bits is the function x1(x2 + x3)/2 + x4(x2 − x3)/2. By taking a
(d/2)-fold product of this Boolean function on disjoint variables, we obtain our remark.

Since we could not solve the problem as posed above, we make progress in understanding
this conjecture by further restricting ourselves to the class of block-multilinear polynomials.
An n-variate polynomial is said to be block-multilinear if the input variables can be partitioned
into disjoint blocks such that every monomial in the polynomial has at most one variable
from each block. Such polynomials have been well-studied in functional analysis since the
work of Bohnenblust and Hille [9], but more recently have found applications in quantum
computing [1, 38], classical and quantum XOR games [12], and polynomial decoupling [44].
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In the functional analysis literature block-multilinear polynomials are known as multilinear
forms. In an ingenious work [9], Bohnenblust and Hille showed that for every degree-d
multilinear form p : (Rn)d → R, we have( n∑

i1,...,id=1
|p̂i1,...,id |

2d
d+1

) d+1
2d ≤ Cd · max

x1,...,xd∈[−1,1]n
|p(x1, . . . , xd)|, (2)

where Cd is a constant that depends on d. In [9], they showed that it suffices to pick Cd to
be exponential in d to satisfy the equation above. For d = 2, Eq. (2) generalizes Littlewood’s
famous 4/3-inequality [36]. Eq. (2) is commonly referred to as the Bohnenblust-Hille (BH)
inequality and is known to have deep applications in various fields of analysis such as operator
theory, complex analysis, etc. There has been a long line of work on improving the constant
Cd in the BH inequality (to mention a few [22, 21, 3, 6, 45]). The best known upper bound
on Cd (we are aware of) is polynomial in d. It is also conjectured that it suffices to let Cd be
a universal constant (independent of d) in order to satisfy Eq. (2).

In our context, using the best known bound on Cd in the BH-inequality implies that a
flat block-multilinear polynomial of degree d and sparsity 2ω(d log d) cannot 1/3-approximate
a Boolean function. However, from the discussion before Conjecture 3.9, we know that the
FEI conjecture implies the following theorem.

I Theorem 3.11. If p is a flat block-multilinear polynomial of degree d and sparsity 2ω(d),
then p cannot 1/8-approximate a Boolean function.

Moreover, the above theorem is also implied when the BH-constant Cd is assumed to be a
universal constant. Our main contribution is to establish the above theorem unconditionally,
i.e., neither assuming Cd is a universal constant nor assuming the FEI conjecture. In order
to show the theorem, we show an inherent weakness of block-multilinear polynomials in
approximating Boolean functions. More formally, we show the following.

I Lemma 3.12. Let p be a block-multilinear polynomial of degree-d that 1/8-approximates a
Boolean function f . Then, deg(f) ≤ d.

Now using the fact that Fourier entropy of f is at least as large as the logarithm of the
sparsity of p (Claim 3.8), we obtain Theorem 3.11.

4 Conclusion

We gave improved upper bounds on Fourier entropy of Boolean functions in terms of average
unambiguous (parity)-certificate complexity, and as a corollary verified the FEI conjecture for
functions with bounded average unambiguous (parity)-certificate complexity. We established
many bounds on Fourier min-entropy in terms of analytic and combinatorial measures,
namely minimum certificate complexity, logarithm of the approximate spectral norm and
randomized (parity)-decision tree complexity. As a corollary to this, we verified the FMEI
conjecture for read-k DNFs. We also studied structural implications of the FEI conjecture on
approximating polynomials. In particular, we proved that flat block-multilinear polynomials
of degree d and sparsity 2ω(d) can not approximate Boolean functions.

We now list few open problems which we believe are structurally interesting and could
lead towards proving the FEI or FMEI conjecture. Let f : {−1, 1}n → {−1, 1} be a Boolean
function.
(1) Does there exist a Fourier coefficient S ⊆ [n] such that |f̂(S)| ≥ 2−O(deg1/3(f))? This

would show H∞(f̂2) ≤ O(deg1/3(f)).
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(2) Can we show H(f̂2) ≤ O(Q(f))? Or, H∞(f̂2) ≤ O(Q(f))? (where Q(f) is the 1/3-error
quantum query complexity of f , which Beals et al. [7] showed to be at least deg1/3(f)/2).

(3) Does there exist a universal constant λ > 0 such that H(f̂2) ≤ λ ·min{C1(f),C0(f)}?
This would resolve Mansour’s conjecture.

In an earlier version of this manuscript we suggested that bounding the logarithm of the
approximate spectral norm by O(deg1/3(f)) or O(Q(f)) might be an approach to answer
Question (1) or (2) above. However, in a very recent work [14] it is shown that log(‖f̂‖1,ε)
could be as large as Ω(Q(f) · logn), thus nullifying the suggested approach.
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Abstract
We consider the notion of information distance between two objects x and y introduced by Bennett,
Gács, Li, Vitanyi, and Zurek [2] as the minimal length of a program that computes x from y

as well as computing y from x, and study different versions of this notion. In the above paper,
it was shown that the prefix version of information distance equals max(K(x|y), K(y |x)) up to
additive logarithmic terms. It was claimed by Mahmud [13] that this equality holds up to additive
O(1)-precision. We show that this claim is false, but does hold if the distance is at least logarithmic.
This implies that the original definition provides a metric on strings that are at superlogarithmically
separated.
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1 Introduction

Informally speaking, Kolmogorov complexity measures the amount of information in an
object (say, a bit string) in bits. The complexity C(x) of x is defined as the minimal bit
length of a program that generates x. This definition depends on the programming language
used, but one can fix an optimal language that makes the complexity function minimal
up to an O(1) additive term. In a similar way one can define the conditional Kolmogorov
complexity C(x|y) of a string x given some other string y as a condition. Namely, we consider
the minimal length of a program that transforms y to x. Informally speaking, C(x|y) is the
amount of information in x that is missing in y, the number of bits that we should give in
addition to y if we want to specify x.

The notion of information distance was introduced in [2] as “the length of a shortest
binary program that computes x from y as well as computing y from x.” It is clear that such
a program cannot be shorter than C(x|y) or C(y |x) since it performs both tasks; on the
other hand, it cannot be much longer than the sum of these two quantities (we can combine
the programs that map x to y and vice versa with a small overhead needed to separate the
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46:2 Information Distance Revisited

two parts and to distinguish x from y). As the authors of [2] note, “being shortest, such
a program should take advantage of any redundancy between the information required to
go from x to y and the information required to go from y to x”, and the natural question
arises: to what extent is this possible? The main result of [2] gives the strongest upper
bound possible and says that the information distance equals max(C(x|y),C(y |x)) with
logarithmic precision. In many applications, this characterization turned out to be useful,
see [11, Section 8.4]. In fact, in [2] the prefix version of complexity, denoted by K(x|y),
and the corresponding definition of information distance were used; see, e.g. [14] for the
detailed explanation of different complexity definitions. The difference between prefix and
plain versions is logarithmic in the complexity, so it does not matter whether we use plain
or prefix versions if we are interested in results with logarithmic precision. However, the
prefix version of the above characterization has an advantage: after adding a large enough
constant, this distance satisfies the triangle inequality. The plain variant does not have
this property, and this follows from Proposition 7 below. However, several inequalities that
are true with logarithmic precision for plain complexity, become true with O(1)-precision if
prefix complexity is used. So one could hope that a stronger result with O(1)-precision holds
for prefix complexity. If this is true, then also the original definition satisfies the triangle
inequality (after a constant increase). In [2, Section VII], this was conjectured to be false,
and in [13] it was claimed to be true; in [12] a similar claim is made with reference to [2].1
Unfortunately, the proof in [13] contains an error, and we show that the result is not valid
for prefix complexity with O(1)-precision. On the other hand, it is easy to see that the
original argument from [2] can be adapted for plain complexity to obtain the result with
O(1)-precision, as noted in [15].

In this paper we try to clarify the situation and discuss the possible definitions of
information distance in plain and prefix versions, and their subtle points (one of these
subtle points was the source of the error in [13]). We also discuss some related notions. In
Section 2 we consider the easier case of plain complexity; then in Section 3 we discuss the
different definitions of prefix complexity (with prefix-free and prefix-stable machines, as well
as definitions using the a priori probability) and in Section 4 we discuss their counterparts
for the information distance. In Section 5 we use the game approach to show that indeed the
relation between information distance (in the prefix version) and conditional prefix complexity
is not valid with O(1)-precision, contrary to what is said in [13]. Finally, we show that if the
information distance is at least logarithmic, then equality holds.

2 Plain complexity and information distance

Let us recall the definition of plain conditional Kolmogorov complexity. Let U(p, x) be a
computable partial function of two string arguments; its values are also binary strings. We
may think of U as an interpreter of some programming language. The first argument p is
considered as a program and the second argument is an input for this program. Then we
define the complexity function

CU (y |x) = min{|p| : U(p, x) = y};

1 The authors of [12] define (section 2.2) the function E(x, y) as the prefix-free non-bipartite version of
the information distance (see the discussion below in section 4.1) and then write: “the following theorem
proved in [4] was a surprise: Theorem 1. E(x, y) = max{C(x|y), C(y |x)}”. They do not mention that
in the paper they cited as [4] (it is [2] in our list) there is a logarithmic error term; in fact, they do not
mention any error terms (though in other statements the constant term is written explicitly). Probably
this is a typo, since more general Theorem 2 in [12] does contain a logarithmic error term.
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here |p| stands for the length of a binary string p, so the right hand side is the minimal length
of a program that produces output y given input x. The classical Solomonoff–Kolmogorov
theorem says that there exists an optimal U that makes CU minimal up to an O(1)-additive
term. We fix some optimal U and then denote CU by just C. See, e.g., [11, 14] for the details.

Now we want to define the information distance between x and y. One can try the
following approach: take some optimal U from the definition of conditional complexity and
then define

EU (x, y) = min{|p| : U(p, x) = y and U(p, y) = x},

i.e., consider the minimal length of a program that both maps x to y and y to x. However,
there is a caveat, as the following simple observation shows.

I Proposition 1. There exists some computable partial function U that makes CU minimal
up to an O(1) additive term, and still EU (x, y) is infinite for some strings x and y and
therefore not minimal.

Proof. Consider an optimal function U and then define U ′ such that U(Λ, x) = Λ where Λ
is the empty string, U ′(0p, x) = 0U(p, x) and U ′(1p, x) = 1U(p, x). In other terms, U ′ copies
the first bit of the program to the output and then applies U to the rest of the program and
the input. It is easy to see that CU ′ is minimal up to an O(1) additive term, but U ′(q, ·)
has the same first bit as q, so if x and y have different first bits, there is no q such that
U(q, x) = y and U(q, y) = x at the same time. J

On the other hand, the following proposition is true (and can be proven in the same way
as the existence of the optimal U for conditional complexity):

I Proposition 2. There exists a computable partial function U that makes EU minimal up
to O(1) additive term.

Now we may define information distance for plain complexity as the minimal function EU .
Some examples. If x has small complexity, then EU (x, y) = C(y) + O(1). Let x and y be
n-bit strings, and let ⊕ denote the bitwise xor-operation. We have EU (x, y) 6 n + O(1),
because x⊕ (x⊕ y) = y and y⊕ (y⊕x) = x. It turns out that the original argument from [2]
can be easily adapted to show the following result (that is a special case of a more general
result about several strings proven in [15]):

I Theorem 3. The minimal function EU equals max(C(x|y),C(y |x)) +O(1).

Proof. We provide the adapted proof here for the reader’s convenience. In one direction we
have to prove that C(x|y) 6 EU (x, y) + O(1), and the same for C(y |x). This is obvious,
since the definition of EU contains more requirements for p: it should map both x to y and
y to x, while in C(x|y) it is enough to map y to x.

To prove the reverse inequality, consider for each n the binary relation Rn on strings (of
all lengths) defined as

Rn(x, y) ⇐⇒ C(x|y) < n and C(y |x) < n.

By definition, this relation is symmetric. It is easy to see that Rn is (computably) enumerable
uniformly in n, since we may compute better and better upper bounds for C reaching
ultimately its true value. We think of Rn as the set of edges of an undirected graph whose
vertices are binary strings. Note that each vertex x of this graph has degree less than 2n
since there are less than 2n programs of length less than n that map x to its neighbors.

STACS 2020
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For each n, we enumerate edges of this graph (i.e., pairs in Rn). We want to assign colors
to the edges of Rn in such a way that edges that have a common endpoint have different
colors. In other terms, we require that for every vertex x all edges of Rn adjacent to x have
different colors. For that, 2n+1 colors are enough. Indeed, each new edge needs a color that
differentiates it from less than 2n existing edges adjacent to one its endpoint and less than
2n edges adjacent to other endpoint.

Let us agree to use (n+ 1)-bit strings as colors for edges in Rn, and perform this coloring
in parallel for all n. Now we define U(p, x) for a (n+ 1)-bit string p and arbitrary string x as
the string y such that the edge (x, y) has color p in the coloring of edges from Rn. Note that
n can be reconstructed as |p| − 1. The uniqueness property for colors guarantees that there is
at most one y such that (x, y) has color p, so U(p, x) is well defined. It is easy to see now that
if C(x|y) < n and C(y |x) < n, and p is the color of the edge (x, y), then U(p, x) = y and
U(p, y) = x at the same time. This implies the reverse inequality (the O(1) terms appears
when we compare our U with the optimal one). J

I Remark 4. In the definition of information distance given above we look for a program
p that transforms x to y and also transforms y to x. Note that we do not tell the program
which of the two transformations is requested. A weaker definition would provide also this
information to p. This modification can be done in several ways. For example, we may
require in the definition of E that U(p, 0x) = y and U(p, 1y) = x, using the first input bit
as the direction flag. An equivalent approach is to use two computable functions U and U ′
in the definition and require that U(p, x) = y and U ′(p, y) = x. This corresponds to using
different interpreters for both directions.

It is easy to show that the optimal functions U and U ′ exist for this two-interpreter
version of the definition. A priori we may get a smaller value of information distance in this
way, because the program’s task is easier when the direction is known, informally speaking.
But it is not the case for the following simple reason. Obviously, this new quantity is still
an upper bound for both conditional complexities C(x|y) and C(y |x) with O(1) precision.
Therefore Theorem 3 guarantees that this new definition of information distance coincides
with the old one up to O(1) additive terms. For the prefix versions of information distance
such a simple argument does not work anymore, see below.

We have seen that different approaches lead to the same notion of plain information
distance (up to O(1) additive term). There is also a simple and natural quantitative
characterization of this notion as a minimal function in a class of functions.

I Theorem 5. Consider the class of functions E that are non-negative, symmetric, upper
semicomputable, and for some c, all n and all x, satisfy

#{y : E(x, y) < n} 6 c2n. (*)

For every optimal U this class contains EU , and for any E in this class, we have EU 6
E +O(1).

Recall that upper semicomputability of E means that one can compute a sequence of
total upper bounds for E that converges to E. The equivalent requirement: the set of
triples (x, y, n) where x, y are strings and n are natural numbers, such that E(x, y) < n, is
(computably) enumerable.

Proof. The function max(C(x|y),C(y |x)) is upper semicomputable and symmetric. The
inequality (∗) is true for it since it is true for the smaller function C(y |x) (for c = 1; indeed,
the number of programs of length less than n is at most 2n).
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On the other hand, if E is some symmetric upper semicomputable function that satisfies
(∗), then one can for any given x and n enumerate all y such that E(x, y) < n. There are less
than c2n strings y with this property, so given x, each such y can be described by a string
of n+ dlog ce bits, its ordinal number in the enumeration. Note that the value of n can be
reconstructed from this string by decreasing its length by dlog ce, so C(y |x) 6 n+O(1) if
E(x, y) < n. It remains to apply the symmetry of E and Theorem 3. J

I Remark 6. The name “information distance” motivates the following question: does the
plain information distance satisfy the triangle inequality? With logarithmic precision the
answer is positive, because

C(x|z) 6 C(x|y) + C(y |z) +O(log(C(x|y) + C(y |z))).

However, if we replace the last term by an O(1)-term, then the triangle inequality is no
more true. Indeed, for all strings x and y, the distance between the empty string Λ and
x is C(x) + O(1), and the distance between x and some encoding of a pair (x, y) is at
most C(y) +O(1), and the triangle inequality for distances with O(1)-precision would imply
C(x, y) 6 C(x) + C(y) +O(1), and this is not true, see, e.g., [14, section 2.1].

One may ask whether a weaker statement saying that there is a maximal (up to an O(1)
additive term) function in the class of all symmetric non-negative functions E that satisfy
both the condition (∗) and the triangle inequality, is true. The answer is negative, as the
following proposition shows.

I Proposition 7. There are two upper semicomputable symmetric functions E1, E2 that both
satisfy the condition (∗) and the triangle inequality, such that no function that is bounded
both by E1 and E2 can satisfy (∗) and the triangle inequality at the same time.

Proof. Let us agree that E1(x, y) and E2(x, y) are infinite when x and y have different
lengths. If x and y are n-bit strings, then E1(x, y) 6 k means that all the bits in x and y
outside the first k positions are the same, and E2(x, y) 6 k is defined in a symmetric way for
the last k positions. Both E1 and E2 satisfy the triangle inequality (and even the ultrametric
inequality) and also satisfy the condition (∗), since the ball of radius k consist of strings that
coincide except for the first/last k bits. If E is bounded both by E1 +O(1) and E2 +O(1)
and satisfies the triangle inequality, then by changing the first k and the last l positions in a
string x we get a string y such that E(x, y) 6 k + l + O(1), and it is easy to see that the
number of strings that can be obtained in this way is not O(2k+l), but Θ((k + l)2k+l). J

3 Prefix complexity: different definitions

The notion of prefix complexity was introduced independently by Levin [6, 8, 4] and later
by Chaitin [3]. There are several versions of this definition, and they all turn out to be
equivalent, so people usually do not care much about technical details that are different.
However, if we want to consider the counterparts of these definitions for information distance,
their differences become important if we are interested in O(1)-precision.

Essentially there are four different definitions of prefix complexity that appear in the
literature.

STACS 2020
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3.1 Prefix-free definition
A computable partial function U(p, x) with two string arguments and string values is called
prefix-free (with respect to the first argument) if U(p, x) and U(p′, x) cannot be defined
simultaneously for a string p and its prefix p′ and for the same second argument x. In other
words, for every string x the set of strings p such that U(p, x) is defined is prefix-free, i.e.,
does not contain a string and its prefix at the same time.

For a prefix-free function U we may consider the complexity function CU (y |x). In this
way we get a smaller class of complexity functions compared with the definition of plain
complexity, and the Solomonoff–Kolmogorov theorem can be easily modified to show that
there exists a minimal complexity function in this smaller class (up to O(1) additive term,
as usual). This function is called prefix conditional complexity and usually is denoted by
K(y |x). It is greater than C(y |x) since the class of available functions U is more restricted;
the relation between C and K is well studied, see, e.g., [14, chapter 4] and references within.

The unconditional prefix complexity K(x) is defined in the same way, with U that does
not have a second argument. We can also define K(x) as K(x|y0) for some fixed string y0.
This string may be chosen arbitrarily; for each choice we have K(x) = K(x|y0) +O(1) but
the constant in the O(1) bound depends on the choice of y0.

3.2 Prefix-stable definition
The prefix-stable version of the definition considers another restriction on the function U .
Namely, in this version the function U should be prefix-stable with respect to the first
argument. This means that if U(p, x) is defined, then U(p′, x) is defined and equal to U(p, x)
for all p′ that are extensions of p (i.e., when p is a prefix of p′). We consider the class of all
computable partial prefix-stable functions U and corresponding functions CU , and observe
that there exists an optimal prefix-stable function U that makes CU minimal in this class.

It is rather easy to see that the prefix-stable definition leads to a version of complexity
that does not exceed the prefix-free one, since each prefix-free computable function can be
easily extended to a prefix-stable one. The reverse inequality is not so obvious and there is no
known direct proof; the standard argument compares both versions with the forth definition
of prefix complexity, (the logarithm of a maximal semimeasure, see Section 3.4 below).

Prefix-free and prefix-stable definitions correspond to the same intuitive idea: the program
should be “self-delimiting”. This means that the machine gets access to an infinite sequence
of bits that starts with the program and has no marker indicating the end of a program.
The prefix-free and prefix-stable definitions correspond to two possible ways of accessing this
sequence. The prefix-free definition corresponds to a blocking read primitive (if the machine
needs one more input bit, the computation waits until this bit is provided). The prefix-stable
definition corresponds to a non-blocking read primitive (the machine has access to the input
bits queue and may continue computations if the queue is currently empty). We do not go
into details here; the interested reader could find this discussion in [14, section 4.4].

3.3 A priori probability definition
In this approach we consider the a priori probability of y given x, the probability of the event
“a random program maps x to y”. More precisely, consider a prefix-stable function U(p, x)
and an infinite sequence π of independent uniformly distributed random bits (a random
variable). We say that U(π, x) = y if U(p, x) = y for some p that is a prefix of π. Since U is
prefix-stable, the value U(π, x) is well defined. For given x and y, we denote by mU (y |x)
the probability of this event (the measure of the set of π such that U(π, x) = y). For each
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prefix-stable U we get some function mU . It is easy to see that there exists an optimal U
that makes mU maximal (up to an O(1)-factor). Then we define prefix complexity K(y |x)
as − logmU (y |x) for this optimal U , where the logarithm has base 2.

It is also easy to see that if we use prefix-free functions U instead of prefix-stable ones, we
obtain the same definition of prefix complexity. Informally speaking, if we have an infinite
sequence of random bits as the first argument, we do not care whether we have blocking or
non-blocking read access, the bits are always there. The non-trivial and most fundamental
result about prefix complexity is that this definition, as the logarithm of the probability, is
equivalent to the two previous ones. As a byproduct of this result we see that the prefix-free
and prefix-stable definitions are equivalent. This proof and the detailed discussion of the
difference between the definitions can be found, e.g., in [14, chapter 4].

3.4 Semimeasure definition
The semimeasure approach defines a priori probability in a different way, as a convergent
series that converges as slow as possible. More precisely, a lower semicomputable semimeasure
is a non-negative real-valued function m(x) on binary strings such that m(x) is a limit of an
increasing sequence of rational numbers and

∑
xm(x) 6 1 that is computable uniformly in x.

There exists a lower semicomputable semimeasure m(x) that is maximal up to O(1)-factors,
and its negative logarithm coincides with unconditional prefix complexity K(x) up to an
O(1) additive term.

We can define conditional prefix complexity in the same way, considering semimeasures
with parameter y. Namely, we consider lower semicomputable non-negative real-valued
functions m(x, y) such that

∑
xm(x, y) 6 1 for every y. Again there exists a maximal

function among them, denoted by m(x|y), and its negative logarithm equals K(x|y) up to
an O(1) additive term.

To prove this equality, we note first that the a priori conditional probability mU (x|y) is a
lower semicomputable conditional semimeasure. The lower semicomputability is easy to see:
we can simulate the machine U and discover more and more programs that map y to x. The
inequality

∑
xmU (x|y) also has a simple probabilistic meaning: the events “π maps y to x”

for a given y and different x are disjoint, so the sum of their probabilities does not exceed
1. The other direction (starting from a semimeasure, construct a machine) is a bit more
difficult, but in fact it is possible (even exactly, without additional O(1)-factors). See [14,
chapter 4] for details.

The semimeasure definition can be reformulated in terms of complexities (by taking
exponents): K(x|y) is a minimal (up to O(1) additive term) upper semicomputable non-
negative integer function k(x, y) such that∑

x

2−k(x,y) 6 1

for all y. A similar characterization of plain complexity would use a weaker requirement

#{x : k(x, y) < n} < c2n

for some c and all y. (We discussed a similar result for information distance where the
additional symmetry requirement was used, but the proof is the same.)

3.5 Warning
There exists a definition of plain conditional complexity that does not have a prefix-version
counterpart. Namely, the plain conditional complexity C(x|y) can be equivalently defined as
the minimal unconditional plain complexity of a program that maps y to x. In this way we
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do not need the programming language used to map y to x to be optimal; it is enough to
assume that we can computably translate programs in other languages into our language;
this property, sometimes called s-m-n-theorem or Gödel property of a computable numbering,
is true for almost all reasonable programming languages. Of course, we still assume that the
language used in the definition of unconditional Kolmogorov complexity is optimal.

One may hope that K(x|y) can be similarly defined as the minimal unconditional prefix
complexity of a program that maps y to x. The following proposition shows that it is not
the case.

I Proposition 8. The prefix complexity K(x|y) does not exceed the minimal prefix complexity
of a program that maps y to x; however, the difference between these two quantities is not
bounded.

Proof. To prove the first part, assume that U1(p) is a prefix-stable function of one argument
that makes the complexity function

CU1(q) = min{|p| : U(p) = q}

minimal. Then CU (q) = K(q) + O(1). (We still need an O(1) term since the choice of an
optimal prefix-stable function is arbitrary). Then consider the function

U2(p, x) = [U1(p)](x)

where [q](x) denotes the output of a program q on input x. Then U2 is a prefix-stable
function from the definition of conditional prefix complexity, and

CU2(y |x) 6 CU1(q)

for any program q that maps x to y (i.e., [q](x) = y). This gives the inequality mentioned
in the proposition. Now we have to show that this inequality is not an equality with
O(1)-precision.

Note that K(x|n) 6 n+O(1) for every binary string x of length n. Indeed, a prefix-stable
(or prefix-free) machine that gets n as input can copy n first bits of its program to the output.
(The prefix-free machine should check that there are exactly n input bits.) In this way we
get n-bit programs for all strings of length n.

Now assume that the two quantities coincide up to an O(1) additive term. Then for
every string x there exists a program qx that maps |x| to x and K(qx) 6 |x|+ c for all x and
some c. Note that qx may be equal to qy for x 6= y, but this may happen only if x and y
have different lengths. Consider now the set Q of all qx for all strings x, and the series∑

q∈Q
2−K(q). (**)

This sum does not exceed 1 (it is a part of a similar sum for all q that is at most 1, see
above). On the other hand, we have at least 2n different programs qx for all n-bit strings x,
and they correspond to different terms in (∗∗); each of these terms is at least 2−n−c. We get
a converging series that contains, for every n, at least 2n terms of size at least 2−n−c. It is
easy to see that such a series does not exist. Indeed, each tail of this series should be at least
2−c−1 (consider these 2n terms for large n when at least half of these terms are in the tail),
and this is incompatible with convergence. J

Why do we get a bigger quantity when considering the prefix complexity of a program
that maps y to x? The reason is that the prefix-freeness (or prefix-stability) requirement for
the function U(p, x) is formulated separately for each x: the decision where to stop reading
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the program p may depend on its input x. This is not possible for a prefix-free description of
a program that maps x to y. It is easy to overlook this problem when we informally describe
prefix complexity K(x|y) as “the minimal length of a program, written in a self-delimiting
language, that maps y to x”, because the words “self-delimiting language” implicitly assume
that we can determine where the program ends while reading the program text (and before
we know its input), and this is a wrong assumption.

3.6 Historical digression

Let us comment a bit on the history of prefix complexity. It appeared first in 1971 in Levin’s
PhD thesis [6]; Kolmogorov was his thesis advisor. Levin used essentially the semimeasure
definition (formulated a bit differently). This thesis was in Russian and remained unpublished
for a very long time. In 1974 Gács’ paper [4] appeared where the formula for the prefix
complexity of a pair was proven. This paper mentioned prefix complexity as “introduced
by Levin in [4], [5]” ([7] and [8] in our numbering). The first of these two papers does not
say anything about prefix complexity explicitly, but defines the monotone complexity of
sequences of natural numbers, and prefix complexity can be considered as a special case
when the sequence has length 1 (this is equivalent to the prefix-stable definition of prefix
complexity). The second paper has a comment “(to appear)” in Gács’ paper. We discuss it
later in this section.

Gács does not reproduce the definition of prefix complexity, saying only that it is “defined
as the complexity of specifying x on a machine on which it is impossible to indicate the
endpoint2 of a master program: an infinite sequence of binary symbols enters the machine and
the machine must itself decide how many binary symbols are required for its computation”.
This description is not completely clear, but it looks more like a prefix-free definition if we
understand it in such a way that the program is written on a one-directional tape and the
machine decides where to stop reading. Gács also notes that prefix complexity (he denotes
it by KP (x)) “is equal to the [negative] base two logarithm of a universal semicomputable
probability measure that can be defined on the countable set of all words”.

Levin’s 1974 paper [8] says that “the quantity KP (x) has been investigated in details
in [6,7]”. Here [7] in Levin’s numbering is Gács paper cited above ([4] is our numbering)
and has the comment “in press”, and [6] in Levin’s numbering is cited as [Levin L.A., On
different version of algorithmic complexity of finite objects, to appear]. Levin does not have
a paper with exactly this title, but the closest approximation is his 1976 paper [9], where
prefix complexity is defined as the logarithm of a maximal semimeasure. Except for these
references, [8] describes the prefix complexity in terms of prefix-stable functions: “It differs
from the Kolmogorov complexity measure 〈. . .〉 in that the decoding algorithm A has the
following “prefix” attribute: if A(p1) and A(p2) are defined and distinct, then p1 cannot be a
beginning fragment of p2”.

The prefix-free and a priori probability definitions were given independently by Chaitin
in [3] (in different notation) together with the proof of their equivalence, so [3] was the first
publication containing this (important) proof.

Now it seems that the most popular definition of prefix complexity is the prefix-free one,
for example, it is given as the main definition in [11].

2 The English translation says “halting” instead of “endpoint” but this is an obvious translation error.
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4 Prefix complexity and information distance

4.1 Four versions of prefix information distance
Both the prefix-free and prefix-stable versions of prefix complexity have their counterparts
for the information distance.

Let U(p, x) be a partial computable prefix-free [respectively, prefix-stable] function of two
string arguments having string values. Consider the function

EU (x, y) = min{|p| : U(p, x) = y and U(p, y) = x}.

As before, one can easily prove that there exists a minimal (up to O(1)) function among all
functions EU of the class considered. It will be called prefix-free [respectively prefix-stable]
information distance function. We clarify the difference between these variants.

Note that only the cases when U(p, x) = y and also U(p, y) = x matter for EU . So we
may assume without loss of generality that U(p, x) = y ⇔ U(p, y) = x waiting until both
equalities are true before finalizing the values of U . Then for every p we have some matching
Mp on the set of all strings: an edge x–y is in Mp if U(p, x) = y and U(p, y) = x. This is
indeed a matching: for every x only U(p, x) may be connected with x.

The set Mp is enumerable uniformly in p. In the prefix-free version the matchings Mp

and Mq are disjoint (have no common vertices) for two compatible strings p and q (one
is an extension of the other). For the prefix-stable version Mp increases when p increases
(and remains a matching). It is easy to see that a family Mp that has these properties,
always corresponds to some function U , and this statement holds both in the prefix-free and
prefix-stable version.

There is another way in which this definition could be modified. As we have discussed
for plain complexity, we may consider two different functions U and U ′ and consider the
distance function

EU,U ′(x, y) = min{|p| : U(p, x) = y and U ′(p, y) = x}.

Intuitively this means that we know the transformation direction in addition to the input
string. This corresponds to matchings in a bipartite graph where both parts consist of all
binary strings; the edge x–y is in the matching Mp if U(p, x) = y and U ′(p, y) = x. Again
instead of the pair (U,U ′) we may consider the family of matchings that are disjoint (for
compatible p, in the prefix-free version) or monotone (for the prefix-stable version). In this
way we get two other versions of information distance that could be called bipartite prefix-free
and bipartite prefix-stable information distances.

In [2] the information distance is defined as the prefix-free information distance with the
same function U for both directions, not two different ones. The definition in section III
considers the minimal function among all EU . This minimal function is denoted by E0(x, y),
while max(K(x|y),K(y |x)) is denoted by E1(x, y), see section I of the same paper. The
inequality E1 6 E0 is obvious, and the reverse inequality with logarithmic precision is proven
in [2] as Theorem 3.3.

Which of the four versions of prefix information distance is the most natural? Are they
really different? It is easy to see that the prefix-stable version (bipartite or not) does not
exceed the corresponding prefix-free version, since every prefix-free function has a prefix-
stable extension. Also each bipartite version (prefix-free or prefix-stable) does not exceed the
corresponding non-bipartite version for obvious reasons: one may take U = U ′. It is hard
to say which version is most natural, and the question whether some of them coincide or
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all four are different, remains open. But as we will see in Theorem 13, the smallest of all
four, the prefix-stable bipartite version, is still bigger than E1 (the maximum of conditional
complexities), and the difference is unbounded. Hence, for all four versions, including the
prefix-free non-bipartite version used both in [2, 12, 13], the equality with O(1)-precision is
not true, contrary to what is said in [13]. This was conjectured in [2, Section VII].

However, before going to this negative result, we prove some positive results about the
definition of information distance that is a counterpart of the a priori probability definition
of prefix complexity.

4.2 A priori probability of going back and forth
Fix some prefix-free function U(p, x). The conditional a priori probability mU (y |x) is
defined as

Pr
π

[U(π, x) = y],

where π is an infinite uniformly randomnly generated bitsequence, and U(π, x) = y means
that U(p, x) = y for some p that is a prefix of π. As we discussed, there exists a maximal
function among all mU , and its negative logarithm equals the conditional prefix complexity
K(y |x).

Now let us consider the counterpart of this construction for the information distance.
The natural way to do this is to consider the function

eU (x, y) = Pr
π

[U(π, x) = y and U(π, y) = x].

Note that in this definition the prefixes of π used for both computations are not necessarily
the same. It is easy to show, as usual, that there exists an optimal machine U that makes eU
maximal. Fixing some optimal U , we get some function e(x, y). Note that different optimal
U lead to functions that differ only by O(1)-factor. The negative logarithm of this function
coincides with E1 from [2] with O(1)-precision, as the following result says.

I Theorem 9.

− log e(x, y) = max(K(x|y),K(y |x)) +O(1).

Proof. Rewriting the right-hand side in the exponential scale, we need to prove that

e(x, y) = min(m(x|y),m(y |x))

up to O(1)-factors. One direction is obvious: e(x, y) is smaller than m(x|y) since the set of
π in the definition of e is a subset of the corresponding set for m, if we use the probabilistic
definition of m = mU . The same is true for m(y |x).

The non-trivial part of the statement is the reverse inequality. Here we need to construct
a machine U such that

eU (x, y) > min(m(x|y),m(y |x))

up to O(1)-factors.
Let us denote the right-hand side by u(x, y). The function u is symmetric, lower

semicomputable and
∑
y u(x, y) 6 1 for all x (due to the symmetry, we do not need the other

inequality where y is fixed). This is all we need to construct U with the desired properties;
in fact eU (x, y) will be at least 0.5u(x, y), (and the factor 0.5 is important for the proof).
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Every machine U has a “dual” representation: for every pair (x, y) one may consider the
subset Ux,y of the Cantor space that consists of all π such that U(π, x) = y and U(π, y) = x.
These sets are effectively open (i.e., are computably enumerable unions of intervals in the
Cantor space) uniformly in x, y, are symmetric (Ux,y = Uy,x) and have the following property:
for a fixed x, all sets Ux,y for all y (including y = x) are disjoint.

What is important to us is that this correspondence works in both directions. If we have
some family Ux,y of uniformly effectively open sets that is symmetric and has the disjointness
property mentioned above, there exists a prefix-free machine U that generates these sets as
described above. This machine works as follows: given some x, it enumerates the intervals
that form Ux,y for all y (it is possible since the sets Ux,y are effectively open uniformly in
x, y). One may assume without loss of generality that all the intervals in the enumeration
are disjoint. Indeed, every effectively open set can be represented as a union of a computable
sequence of disjoint intervals (to make intervals disjoint, we represent the set difference
between the last interval and previously generated intervals as a a finite union of intervals).
Note also that for different values of y the sets Ux,y are disjoint by the assumption. If the
enumeration for Ux,y contains the interval [p] (the set of all extensions of some bit string p),
then we let U(p, x) = y and U(p, y) = x (we assume that the same enumeration is used for
Ux,y and Uy,x). Since all intervals are disjoint, the function U(p, x) is prefix-free.

Now it remains (and this is the main part of the proof) to construct the family Ux,y
with the required properties in such a way that the measure of Ux,y is at least 0.5u(x, y).
In our construction it will be exactly 0.5u(x, y). For that we use the same idea as in [2]
but in the continuous setting. Since u(x, y) is lower semicomputable, we may consider the
increasing sequence u′(x, y) of approximations from below (that increase with time, though
we do not explicitly mention time in the notation) that converge to u(x, y). We assume that
at each step one of the values u′(x, y) increases by a dyadic rational number r. In response
to that increase, we add to Ux,y one or several intervals that have total measure r/2 and do
not intersect Ux,z and Uz,y for any z. For that we consider the unions of all already chosen
parts of Ux,z and of all chosen parts of Uz,y. The measure of the first union is bounded by
0.5

∑
z u
′(x, z) and the measure of the second union is bounded by 0.5

∑
z u
′(z, y) where u′

is the lower bound for u before the r-increase. Since the sums remain bounded by 1 after the
r-increase, we may select a subset of measure r/2 outside both unions. (We may even select
a subset of measure r, but this will destroy the construction at the following steps, so we
add only r/2 to Ux,y.) J

I Remark 10. As for the other settings, we may consider two functions U and U ′ and the
probability of the event

eU,U ′(x, y) = Pr
π

[U(π, x) = y and U ′(π, y) = x]

for those U,U ′ that make this probability maximal. The equality of Theorem 9 remains valid
for this version. Indeed, the easy part can be proven in the same way, and for the difficult
direction we have proven a stronger statement with additional requirement U = U ′.

One can also describe the function e as a maximal function in some class, therefore
getting a quantitative definition of E0. This is essentially the statement of theorem 4.2 in [2].
In terms of semimeasures it can be reformulated as follows.

I Proposition 11. Consider the class of symmetric lower semicomputable functions u(x, y)
with string arguments and non-negative real values such that

∑
y u(x, y) 6 1 for all x. This

class has a maximal function that coincides with min(m(x|y),m(y |x)) up to an O(1) factor.



B. Bauwens 46:13

Indeed, we have already seen that this minimum has the required properties; if some
other function u(x, y) in this class is given, we compare it with conditional semimeasures
m(x|y) and m(y |x) and conclude that u does not exceed both of them.

In logarithmic scale this statement can be reformulated as follows: the class of upper
semicomputable symmetric functions D(x, y) with string arguments and real values such that∑

y 2−D(x,y) 6 1 for each x, has a minimal element that coincides with max(K(x|y),K(y |x))
up to an O(1) additive term. Theorem 4.2 in [2] says the same with the additional condition
for D: it should satisfy the triangle inequality. This restriction makes the class smaller and
could increase the minimal element in the class, but this does not happen since the function

max(K(x|y),K(y |x)) + c

satisfies the triangle inequality for large enough c. This follows from the inequality K(x|z) 6
K(x|y) + K(y |z) + O(1) since the left hand size increases by c and the right hand size
increases by 2c when K is increased by c.
I Remark 12. To be pedantic, we have to note that in [2] an additional condition D(x, x) = 0
is required for the functions in the class; to make this possible, one has to exclude the term
2−D(x,x) in the sum (now this term equals 1) and require that

∑
y 6=x 2−D(x,y) 6 1 (p. 1414,

the last inequality). Note that the triangle inequality remains valid if we change D and let
D(x, x) = 0 for all x.

5 A counterexample

In this section we present the main negative (and most technically difficult) result of this
paper that shows that none of the four prefix distances coincides with

E1(x, y) = max(K(x|y),K(y |x)).

I Theorem 13. The bipartite prefix-stable information distance exceeds E1(x, y) more than
by a constant: the difference is unbounded.

As we have mentioned, the other three versions of the information distance are even bigger,
so the same result is true for all of them. We will explain the proof for the non-bipartite
prefix-stable version (it is a bit easier and less notation is needed) and then explain the
changes needed for the bipartite prefix-stable version. Our proof also provides a lower bound
in terms of the length: for strings of length n, the difference can be as large as

log logn−O(log log logn).

The proof can be found in the ArXiv version of this paper [1]. It uses game approach:
We first explain the game rules, then show that a computable winning strategy in the
game implies that the difference is unbounded, and finally, present that computable winning
strategy. Both the game and the winning strategy has similarities with the game in [5].

6 Equality if the distance is superlogarithmic

Given the previous result, all distances become equal for pairs of strings of equal length,
provided their distance is not too small.

I Theorem 14. If |x| = |y| and E1(x, y) > 6 log |x|, then all four prefix information distances
are equal to E1(x, y) +O(1).

This seems to be the first equality in information theory whose precision becomes smaller
if the quantity becomes larger. The proof can be found in the ArXiv version of this paper [1].
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Abstract
In this paper, we are interested in understanding the complexity of computing multilinear polyno-
mials using depth four circuits in which polynomial computed at every node has a bound on the
individual degree of r (referred to as multi-r-ic circuits). The goal of this study is to make progress
towards proving superpolynomial lower bounds for general depth four circuits computing multilinear
polynomials, by proving better and better bounds as the value of r increases.

Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four
arithmetic circuit of bounded individual degree r computing a multilinear polynomial on nO(1)

variables and degree d = o(n), must have size at least
(

n
r1.1

)Ω(√ d
r

)
when r is o(d) and is strictly

less than n1.1. This bound however deteriorates with increasing r. It is a natural question to ask if
we can prove a bound that does not deteriorate with increasing r or a bound that holds for a larger
regime of r.

We here prove a lower bound which does not deteriorate with r, however for a specific instance
of d = d(n) but for a wider range of r. Formally, we show that there exists an explicit polynomial
on nO(1) variables and degree Θ(log2 n) such that any depth four circuit of bounded individual
degree r < n0.2 must have size at least exp

(
Ω
(
log2 n

))
. This improvement is obtained by suitably

adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of
the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).
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1 Introduction

One of the major focal points in the area of algebraic complexity theory is to show that
certain polynomials are hard to compute syntactically. Here, the hardness of computation is
quantified by the number of arithmetic operations that are needed to compute the target
polynomial. Instead of the standard Turing machine model, we consider arithmetic circuits
and formulas as models of computation.

Arithmetic circuits are directed acyclic graphs such that the leaf nodes are labeled by
variables or constants from the underlying field, and every non-leaf node is labeled either by
a + or ×. Every node computes a polynomial by operating on its inputs with the operand
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given by its label. The flow of computation flows from the leaf to the output node. We refer
the readers to the standard resources [30, 29] for more information on arithmetic formulas
and arithmetic circuits.

Valiant conjectured that the Permanent does not have polynomial sized arithmetic
circuits [33]. Working towards that conjecture, we aim to prove superpolynomial circuit
size lower bounds. However, the best known circuit size lower bound is Ω(n logn), for a
power symmetric polynomial, due to Baur and Strassen [31, 3], and, the best known formula
size lower bound is Ω(n2), due to Kalorkoti [13]. Due to the slow progress towards proving
general circuit/formula lower bounds, it is natural to study some restricted class of arithmetic
circuits and formulas.

Since most of the polynomials of interest such as Determinant, Permanent, etc., are
multilinear polynomials, it is natural to consider the restriction where every intermediate
computation is in fact multilinear. Due to the phenomenal work in the last two decades [23,
25, 24, 27, 28, 12, 26, 2, 6, 4, 5], the complexity of multilinear formulas and circuits is better
understood than that of general formulas and circuits.

Backed with this progress it is natural to try to extend these results to a circuit model
where the individual degree of every variable in the polynomial computed at every node in
the circuit is r. We refer to these circuits as multi-r-ic circuits. When r = 1, the circuit
model is multilinear.

Kayal and Saha [18] first studied multi-r-ic circuits of depth three and proved exponential
lower bounds. Kayal, Saha and Tavenas [20] have extended this and proved exponential lower
bounds at depth three and depth four. These circuits that were considered were syntactically
multi-r-ic . That is, at any product node, any variable appears in the support of at most r
many operands, and the total of the individual degrees is also at most r. Henceforth, all the
multi-r-ic depth four circuits that we talk about shall be syntactically multi-r-ic .

Recently, Kumar, Oliviera and Saptharishi [21] showed that there is a chasm1 for
multi-r-ic circuits too. Formally, they showed that any polynomial sized (say nc for a
fixed constant c) multi-r-ic circuit of arbitrary depth computing a polynomial on n variables
can be depth reduced to syntactical multi-r-ic depth four circuits of size exp(O(

√
rn logn)).

This provides us a motivation to study multi-r-ic depth four circuits and prove strong lower
bounds against them.

Kayal, Saha and Tavenas [20] proved an exponential size lower bound against multi-r-ic
depth four circuits computing a variant of the iterated matrix multiplication polynomial.
They achieved this bound using a measure that is inspired by the method Shifted Partial
Derivatives [14, 9] and the method of Skew Partial Derivatives [17]. They referred to this
new technique as the method of Shifted Skew Partial Derivatives. Hegde and Saha [11]
improved upon [20] and showed a near-optimal size lower bound. However, the best known
lower bounds are for polynomials that are multi-r-ic.

Motivation for this work
Raz and Yehudayoff [28] showed a lower bound of exp(Ω

(√
d log d

)
) against multilinear

depth four circuits which compute a multilinear polynomial over n variables and degree
d � n (cf. [20, Footnote 9]). Kayal, Saha and Tavenas [20] have shown a lower bound of(
n
r1.1

)Ω(√ d
r

)
for a multilinear polynomial over nO(1) variables and degree d that is computed

1 Agrawal and Vinay [1], Koiran, and Tavenas [32] showed that any general circuit can be depth reduced
to a depth four circuit of non-trivial size.
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by a multi-r-ic depth four circuit. This lower bound degrades with the increasing value of
r and is superpolynomial only when r is o(d) and is strictly less than n1.1. This raises a
natural question if the dependence on r could be improved upon.

In this work, we show that for a certain regime of d, we can prove a lower bound that
does not deteriorate with increasing values of r.

I Theorem 1. Let n and r be integers such that r < n0.2. There exists an explicit polynomial
Qn of degree Θ(log2 n), over nO(1) variables such that any syntactically multi-r-ic depth four
circuit computing it must have size exp

(
Ω(log2 n)

)
.

The explicit polynomial that we consider can be expressed as a p-projection of an Iterated
Matrix Multiplication polynomial IMMñ,d̃ (where ñ = nO(1) and d̃ = Θ(log2 n)) and thus
Theorem 1 implies a lower bound of nΩ(logn) for Iterated Matrix Multiplication polynomial
as well. By substituting for d = Θ(log2 n) into the bound from [20], we get that their bound
evaluates to nΩ

(
logn√
r

)
. Note that this bound is superpolynomial only when r = o(log2 n).

Thus lower bound is quantitatively better in this regime of parameters. In particular, we
show a lower bound in the regimes of parameters where [20] cannot.

If we can show superpolynomial size lower bounds against multi-r-ic depth four circuits
for r = nc for any constant c, then we indeed have superpolynomial circuit size lower bounds
against depth four circuits. We believe that by building on the work of [20, 11], Theorem 1
is a step towards that direction.

Proof overview
Analogous to the work of Fournier et al. [8], and Kumar and Saraf [22], we first consider
multi-r-ic depth four circuits of low bottom support2 and prove lower bounds against them.

Let T1, T2, . . . , Ts be the terms corresponding to the product gates feeding into the output
sum gate. The output polynomial is obtained by adding the terms T1, T2, . . . , Ts. Note that
each of these Ti’s is a product of low support polynomials Qi,j , that is, every monomial in
these Qi,j ’s is supported on a small set of variables (say µ many). One major observation at
this point is to see that there can be at most N · r many factors in any of the Ti’s.

Kayal et al. [20] observed that the measure of shifted partial derivates [19, 8] does not
yield any non-trivial lower bound if the number of factors is much larger than the number of
variables itself. They worked around this obstacle by defining a hybrid complexity measure
(refered to as Shifted Skew Partial Derivatives) where they first split the variables into two
disjoint and unequal sets Y and Z such that |Y | � |Z|, then considered the low order partial
derivatives with respect to only the Y variables and subsequently set all the Y variables to
zero in the partial derivatives obtained. This effectively reduces the number of factors in a
partial derivative to at most |Z| · r. They then shift these polynomials by monomials in Z
variables and look at the dimension of the polynomials thus obtained.

This measure gave them a size lower bound of
(
n
r1.1

)Ω(√ d
r

)
against multi-r-ic depth four

circuits computing an explicit polynomial on nO(1) variables and degree d = o(n) when
r = o(d). To improve the dependence on r in the lower bound, we consider a variant of
Shifted Skew Partial Derivatives that we call Projected Shifted Skew Partial Derivatives. Here,
we project down the space of Shifted Skew Partials and only look at the multilinear terms.
Since the polynomial of interest is multilinear, it makes sense to only look at the multilinear

2 That is, all the product gates at the bottom are supported on small set of variables.
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terms obtained after the shifts of the skew partial derivatives. This is analogous to the
method employed by Kayal et al. [16] to prove exponential lower bounds for Homogeneous
depth four circuits, through the measure of Projected Shifted Partial Derivatives.

We first show that the dimension of Projected Shifted Skew Partial derivatives is not too
large for small multi-r-ic depth four circuits of low bottom support. We then show that there
exists an explicit polynomial whose dimension of Projected Shifted Skew Partial derivatives
is large and thus cannot be computed by small multi-r-ic depth four circuits. We then lift
this result to multi-r-ic depth four circuits for suitable set of parameters.

2 Preliminaries

Notation

For a polynomial f , we use ∂=k
Y (f) to refer to the space of partial derivatives of order k

of f with respect to monomials of degree k in Y .
We use z=` and z≤` to refer to the set of all the monomials of degree equal to ` and at
most `, respectively, in Z variables.
We use z≤`ML to refer to the set of all the multilinear monomials of degree at most ` in Z
variables.
We use z≤`NonML to refer to the set of all the non-multilinear monomials of degree at most
` in Z variables.
For a monomial m we use |MonSupp(m)| to refer to the size of the set of variables that
appear in it.
For a polynomial f , we use |MonSupp(f)| to refer to the maximum |MonSupp(m)| over
all monomials in f .

Depth four circuits

A depth four circuit (denoted by ΣΠΣΠ) over a field F and variables {x1, x2, . . . , xn} computes
polynomials which can be expressed in the form of sums of products of polynomials. That is,
s∑
i=1

di∏
j=1

Qi,j(x1, . . . , xn) for some di’s. A depth four circuit is said to have a bottom support of

t (denoted by ΣΠΣΠ{t}) if it is a depth four circuit and all the monomials in each polynomial
Qi,j are supported on at most t variables.

Multi-r-ic arithmetic circuits

I Definition 2 (multi-r-ic circuits). Let r = (r1, r2, · · · , rn). An arithmetic circuit Φ is said
to be a syntactically multi-r-ic circuit if for all product gates u ∈ Φ and u = u1×u2×· · ·×ut,
each variable xi can appear in at most ri many of the ui’s (i ∈ [t]). Further the total degree
with respect to every variable over the polynomials computed at u1, u2, · · · , ut, is bounded by
r, i.e.

∑
j∈[t] degxi(fuj ) ≤ r for all i ∈ [n]. If r = (r, r, · · · , r), then we simply refer to them

as multi-r-ic circuits.

Complexity Measure

We shall now describe our complexity measure which we shall henceforth refer to as Dimension
of Projected Shifted Skew Partial Derivatives. This is a natural extension of the Dimension
of Shifted Skew Partial Derivatives as used by [20].
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This is analogous to the work of [15] where they study a shifted partials inspired measure
called Shifted Projected Partial derivatives and then [16] where they study Projected Shifted
Partial derivatives.

Since the polynomial of interest is multilinear, it does make sense for us to only look at
those shifts of the partial derivatives that maintain multilinearity. At the same time, since
the individual degree of the intermediate computations in the multi-r-ic depth four circuit is
large and non-multilinear terms cancel out to generate the multilinear polynomial, we can
focus on the multilinear terms generated after the shifts by projecting our linear space of
polynomials down to them. We describe this process formally, below.

Let the variable set X be partitioned into two fixed, disjoint sets Y and Z such that |Y |
is an order larger than |Z|. Let σY : F[Y tZ] 7→ F[Z] be a map such that for any polynomial
f(Y,Z), σY (f) ∈ F[Z] is obtained by setting every variable in Y to zero by it and leaving Z
variables untouched. Let mult : F[Z] 7→ F[Z] be a map such that for any polynomial f(Y,Z),
mult(f) ∈ F[Z] is obtained by setting the coeficients of all the non-multilinear monomials in
f to 0 and leaving the rest untouched. We use z≤` · σY (∂=k

Y f) to refer to the linear span
of polynomials obtained by multiplying each polynomial in σY (∂=k

Y f) with monomials of
degree at most ` in Z variables. We will now define our complexity measure, Dimension of
Projected Shifted Skew Partial Derivatives (denoted by Γk,`) as follows.

Γk,`(f) = dim
(
F-span

{
mult

(
z≤` · σY

(
∂=k
Y f

))})
This is a natural generalization of Shifted Skew Partial Derivatives of [20]. The following

proposition is easy to verify.

I Proposition 3 (Sub-additivity). Let k and ` be integers. Let the polynomials f, f1, f2 be
such that f = f1 + f2. Then, Γk,`(f) ≤ Γk,`(f1) + Γk,`(f2) .

Monomial Distance

We recall the following definition of distance between monomials from [7].

I Definition 4 (Definition 2.7, [7]). Let m1,m2 be two monomials over a set of variables.
Let S1 and S2 be the multisets of variables corresponding to the monomials m1 and m2
respectively. The distance dist(m1,m2) between the monomials m1 and m2 is the min{|S1| −
|S1 ∩ S2|, |S2| − |S1 ∩ S2|} where the cardinalities are the order of the multisets.

For example, let m1 = x2
1x2x

2
3x4 and m2 = x1x

2
2x3x5x6. Then S1 = {x1, x1, x2, x3, x3, x4},

S2 = {x1, x2, x2, x3, x5, x6}, |S1| = 6, |S2| = 6 and dist(m1,m2) = 3. It is important to note
that two distinct monomials could have distance 0 between them if one of them is a multiple
of the other and hence the triangle inequality does not hold.

The following beautiful lemma (from [9]) is key to the asymptotic estimates required for
the lower bound analyses.

I Lemma 5 (Lemma 6, [9]). Let a(n), f(n), g(n) : Z≥0 → Z≥0 be integer valued functions
such that (f + g) = o(a). Then,

ln (a+ f)!
(a− g)! = (f + g) ln a±O

(
(f + g)2

a

)
We use the following strengthening of the Principle of Inclusion and Exclusion in our

proof.
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I Lemma 6 (Strong Inclusion-Exclusion [22]). Let W1,W2, · · · ,Wt be subsets of a finite set
W . For a parameter λ ≥ 1, let

∑
i,j∈[t]
i 6=j
|Wi ∩Wj | ≤ λ

∑
i∈[t] |Wi| . Then,

∣∣∪i∈[t]Wi

∣∣ ≥
1

4λ
∑
i∈[t] |Wi| .

Polynomial Families

Let n, α, k be positive integers. We define the polynomial family {Pn,α,k}n,α,k≥0 as follows.
Let the variable set X = {x1, . . . , xN0} be partitioned into two fixed, and disjoint sets Y and
Z. We first define the polynomial family fn,α,k(Y,Z) as follows (as it was defined in [20]).

fn,α,k =
k∏
i=1

gi(Yi, Zi) where gi(Yi, Zi) =
∑

a,b∈[n]

y
(i)
a,b

∏
c∈[α]

z(i,1)
a,c z

(i,2)
c+α,b.

It is easy to see that |Y | is n2k and |Z| is 2αnk. We shall henceforth use m to refer to
|Z|. Thus, N0 = |X| = |Y |+ |Z| = k(n2 + 2αn).

Let c be a fixed constant in (0, 1). We shall now define another polynomial family Pn,α,k
based on the definition of fn,α,k. Let p = N−c0 . Let X̂ = {x̂1,1, x̂1,2, . . . , x̂1,t, . . . , x̂N0,1, x̂N0,2,

. . . , x̂N0,t} be a variable set distinct from X such that t = N0 logN0
p . Let Linp : X 7→ X̂ be

a linear map such that xi 7→
∑t
j=1 x̂i,j for all i ∈ [N0]. Then the polynomial Pn,α,k(X̂) is

defined to be fn,α,k ◦ Linp(X̂). That is,

Pn,α,k = fn,α,k

 t∑
j=1

x̂1,j ,

t∑
j=1

x̂2,j , · · · ,
t∑

j=1
x̂N0,j

 where t = N0 logN0

p
.

Note that Pn,α,k is a polynomial on N = N2+c
0 logN0 many variables.

We will now recall the following lemma which in the mentioned form is due to Kumar
and Saptharishi [29].

I Lemma 7 (Analogous to Lemma 20.5, [29]). Let ρ be a random restriction on the variable
set X̂ that sets each variable to zero with a probability of at least (1− p) where p = N−c0 for
some constant c ∈ (0, 1) . Then fn,α,k(X) is a projection of ρ(Pn,α,k(X̂)) with a probability
of at least (1− 2−N0).

3 Multi-r-ic Depth Four Circuits of Low Bottom Support

For some carefully chosen parameters k and `, we shall first show that if a multi-r-ic depth
four circuit C of bottom support µ is small then Γk,`(C) is not too large. We shall then
show that Γk,`(fn,α,k) is large and thus it cannot be computed by C.

3.1 Upper Bound on Γk,`(C)
Recall that C is a sum of at most s many products of polynomials T (1) + · · ·+ T (s) where
each Ti is a syntactically multi-r-ic product of polynomials of low monomial support.

We shall first prove a bound on Γk,`(Ti) for an arbitrary Ti and derive a bound on Γk,`(C)
by using sub-additivity of the measure (cf. Proposition 3).

Let T be a syntactic multi-r-ic product of polynomials Q̃1(Y,Z) · Q̃2(Y,Z) · . . . · Q̃D(Y, Z) ·
R(Y ) such that

∣∣MonSupp(Q̃i)
∣∣ ≤ µ. We will first argue that D is not too large since T is

a syntactically multi-r-ic product. We shall first pre-process the product T by doing the
following procedure.
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Repeat this process until all but at most one of the factors in T (except R) have a
Z-support of at least µ

2 .
1. Pick two factors Q̃i1 and Q̃i,2 such that they have the smallest Z-support amongst

Q1, · · · , QD.
2. If both of them have support strictly less than µ

2 , merge these factors to obtain a new
factor. Else, stop.

In the afore mentioned procedure, it is important to note that the monomial support
post merging will still be at most µ since the factors being merged are of support strictly
less than µ

2 . Henceforth, W.L.O.G we shall consider that every product gate at the top, in
any multi-r-ic depth four circuit to be in a processed form.

Let T = Q1(Y, Z) · Q2(Y,Z) · . . . · Qt(Y, Z) · R(Y ) be the product obtained after the
preprocessing. Each of the Qi has a Z-support of at least µ

2 . The total Z-support is at most
|Z| r = mr since T is a syntactically multi-r-ic product. Thus t could at most be 2mr

µ .

I Lemma 8. Let n, k, r, ` and µ be positive integers such that ` + kµ < m
2 . Let T be a

processed syntactic multi-r-ic product of polynomials Q1(Y, Z) ·Q2(Y, Z) · . . . ·Qt(Y, Z) ·R(Y )
such that |MonSupp(Qi)| ≤ µ. Then, Γk,`(T ) is at most

(
t
k

)
·
(
m

`+kµ
)
· (`+ kµ).

Before proving Lemma 8, we shall first use it to show an upper bound on the dimension
of the space of Projected Shifted Skew Partial derivatives of a depth four multi-r-ic circuit of
low bottom support.

I Lemma 9. Let n, k, r, ` and µ be positive integers such that ` + kµ < m
2 . Let C be a

processed syntactic multi-r-ic depth four circuit of bottom support µ and size s. Then, Γk,`(C)
is at most s ·

( 2mr
µ

k

)
·
(
m

`+kµ
)
· (`+ kµ).

Proof. W.L.O.G we can assume that C be expressed as
∑s
i T

(i) such that T (i) is a processed
syntactically multi-r-ic product of bottom support polynomials at most µ. From Proposition 3,
we get that Γk,`(C) ≤

∑s
i=1 Γk,`(T (i)). From the afore mentioned discussion we know that

the number of factors in T (i) with a non-zero Z-support is at most 2mr
µ . From Lemma 8, we

get that Γk,`(T (i)) is at most
( 2mr

µ

k

)
·
(
m

`+kµ
)
· (`+ kµ). By putting all of this together, we get

that

Γk,`(C) ≤ s ·
( 2mr

µ

k

)
·
(

m

`+ kµ

)
· (`+ kµ) . J

Proof of Lemma 8. We will first show by induction on k, the following.

∂=k
Y T ⊆F-span


⋃

S∈( t
t−k)

{∏
i∈S

Qi(Y,Z) · z≤kµML · F[Y ]
}

⋃
F-span


⋃

S∈( t
t−k)

{∏
i∈S

Qi(Y,Z) · z≤krµNonML · F[Y ]
}

The base case of induction for k = 0 is trivial as T is already in the required form. Let us
assume the induction hypothesis for all derivatives of order < k. That is, ∂=k−1

Y T can be
expressed as a linear combination of terms of the form

h(X,Y ) =
∏
i∈S

Qi(Y,Z) · h1(Z) · h2(Y )
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47:8 On Computing Multilinear Polynomials Using Multi-r-ic Depth Four Circuits

where S is a set of size t− (k − 1), h1(Z) is a polynomial in Z variables of degree at most
(k− 1)rµ, and h2(Y ) is some polynomial in Y variables. In fact, h1(Z) can be expressed as a
linear combination of multilinear monomials of degree at most (k − 1)µ, and non-multilinear
monomials of degree at most (k − 1)rµ.

For some u ∈ [|Y |] and some fixed i0 in S,

∂h(Y,Z)
∂yu

=

∑
j∈S

∏
i∈S
i 6=j

Qi(Y,Z) · ∂Qj(Y,Z)
∂yu

· h1(Z) · h2(Y )


+
∏
i∈S Qi

Qi0
·Qi0(Y, Z) · h1(Z) · ∂h2(Y )

∂yk

∈F-span


∏
i∈S
i6=j

Qi(Y,Z) · ∂Qj(Y, Z)
∂yu

· h1(Z) · F[Y ] | j ∈ [S]

⋃
F-span

{∏
i∈S Qi

Qi0
·Qi0(Y, Z) · h1(Z) · F[Y ]

}

⊆F-span


⋃

T∈( S
|S|−1)

{∏
i∈T

Qi(Y,Z) · zµML · h1(Z) · F[Y ]
}

⋃
⋃

T∈( S
|S|−1)

{∏
i∈T

Qi(Y,Z) · z≤rµNonML · h1(Z) · F[Y ]
}

⊆F-span


⋃

T∈( t
t−k)

{∏
i∈T

Qi(Y,Z) · z≤kµML · F[Y ]
}

⋃
F-span


⋃

T∈( t
t−k)

{∏
i∈T

Qi(Y,Z) · z≤krµNonML · F[Y ]
}

The last inclusion follows from the fact that h1(Z) is a linear combination of multilinear
monomials of degree at most (k − 1)µ, and non-multilinear monomials of degree at most
(k−1)rµ. From the discussion above we know that any polynomial in ∂kY (T ) can be expressed
as a linear combination of polynomials of the form ∂h

∂yu
. Further every polynomial of the

form ∂h
∂yu

belongs to the set

W = F-span


⋃

T∈( t
t−k)

{∏
i∈T

Qi(Y,Z) · z≤kµML · F[Y ]
}

⋃
F-span


⋃

T∈( t
t−k)

{∏
i∈T

Qi(Y,Z) · z≤krµNonML · F[Y ]
} .

Thus, we get that ∂=kT is a subset of W . This completes the proof by induction.
From the afore mentioned discussion, we can now derive the following expressions.
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σY
(
∂=k
Y T

)
⊆F-span


⋃

S∈( [t]
t−k)

{∏
i∈S

σY (Qi) · z≤kµML

}
⋃

F-span


⋃

S∈( [t]
t−k)

{∏
i∈S

σY (Qi) · z≤krµNonML

}

z≤`σY
(
∂=k
Y T

)
⊆F-span


⋃

S∈( [t]
t−k)

{∏
i∈S

σY (Qi) · z≤`+kµML

}
⋃

F-span


⋃

S∈( [t]
t−k)

{∏
i∈S

σY (Qi) · z≤`+krµNonML

}

=⇒ F-span
{

mult
(
z≤` · σY

(
∂=k
Y T

))}
⊆ F-span


⋃

S∈( [t]
t−k)

{∏
i∈S

mult(σY (Qi)) · z≤kµ+`
ML

} .

Thus we get that dim
(
F-span

{
mult

(
z≤` · σY (∂=k

Y T )
)})

is at most

dim

F-span


⋃

S∈
(

[t]
t−k

)
{∏
i∈S

mult(σY (Qi)) · z≤kµ+`
ML

}


≤ dim

F-span


⋃

S∈
(
t
t−k

)
{∏
i∈S

mult(σY (Qi))

}
 · dim

(
F-span

{
z≤kµ+`

ML

})

≤
( t

t− k

)
·
kµ+`∑
i=0

(m
i

)
≤
(t
k

)
·
( m

`+ kµ

)
· (`+ kµ) (Since `+ kµ < m/2).

J

3.2 Lower Bound on Γk,`(fn,α,k)
First we recall the generalized Hamming bound [10, Section 1.7].

B Claim 10. Let the vectors a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk) correspond to the
indices of the Y -monomial y(1)

a1,b1
y

(2)
a2,b2

· · · y(k)
ak,bk

that is used to derive fn,α,k with. For every
∆0 < k, there is a subset P∆0 ⊂ [n]2k of size n2k−∆0

∆0( 2k
∆0)

such that for all (a,b), (a′,b′) ∈ P,
dist((a,b), (a′,b′)) ≥ ∆0.

I Observation 1. It is important to note that ∂kfn,α,k

y
(1)
a1,b1

y
(2)
a2,b2

···y(k)
ak,bk

for any choice of (a,b) ∈

[n]2k is a multilinear monomial over just the Z variables.
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B Claim 11. Let (a,b) and (a′,b′) be such that dist((a,b), (a′,b′)) ≥ ∆0. Then
dist

(
∂k(a,b)fn,α,k, ∂

k
(a′,b′)fn,α,k

)
≥ α∆0.

Let m1,m2, . . . ,mt be the monomials in the setM0(= ∂=k
P∆0

fn,α,k), over Z variables such
that dist(mi,mj) ≥ ∆ ≥ α∆0 for all i 6= j. Further, σY (M0) =M0. LetM be the set of
mutlilinear monomials of the form mim

′ over Z-variables for some 1 ≤ i ≤ t where m′ is a
monomial of length `. It is important to note that the setM now corresponds to the set
z=` · σY

(
∂=k
P∆0

fn,α,k

)
. We shall now show that the cardinality of the setM is large enough

for a suitable setting of parameters α, ∆0 and k.

I Lemma 12. Let m, k, d, r,∆0,∆, ` and µ be positive integers such that ` + kµ < m
2 ,

(d− k)2 = o(m), ∆2 = o(m), ∆0 = δk and ` = m
2 (1− ε) for some fixed constants δ and ε.

Then, |M| ≥ 1
2

(
2

1−ε

)δαk
·
(
m−(d−k)

`

)
.

Proof. For all i ∈ [t], Let Bi be the set of multilinear monomials of the form mim
′ where

m′ is a multilinear monomial of degree `. From the previous discussion, it follows that
|M| = |∪ti=1Bi|. Using the principle of Inclusion and Exclusion, we get that

∣∣∪ti=1Bi
∣∣ ≥ t∑

i=1
|Bi| −

t∑
i 6=j∈[t]

|Bi ∩Bj | .

B Claim 13. For all i ∈ [t], |Bi| =
(
m−(d−k)

`

)
.

Proof. Since deg(mi) is equal to d− k, the cardinality of Bi is equal to
(
m−(d−k)

`

)
. C

B Claim 14. For all i, j ∈ [t] such that i 6= j, |Bi ∩Bj | ≤
(
m−(d−k)−∆

`−∆
)
.

Proof. Consider any two monomials m̂i and m̂j from Bi and Bj respectively. For m̂i and
m̂j to be identical, m̂i should contain at least ∆ variables from m̂j \ m̂i and similarly m̂j

should contain at least ∆ variables from m̂i \ m̂j . The rest of the at most (` −∆) many
variables should be the same both in m̂i and m̂j . The number of such multilinear monomials
over Z variables is at most

(
m−(d−k)−∆

`−∆
)
. C

Putting Claim 13 and Claim 14 together, we get the following.

|M| =
∣∣∪ti=1Bi

∣∣ ≥ t(m− (d− k)
`

)
− t2

2

(
m− (d− k)−∆

`−∆

)
.

Let T1 = t
(
m−(d−k)

`

)
and T2 = t2

2
(
m−(d−k)−∆

`−∆
)
. Let us consider the case where T2 = λT1

where λ ≥ 1 for some setting of the parameters ∆, α, ` and k.
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λ = T2

T1
=

t2

2
(
m−(d−k)−∆

`−∆
)

t
(
m−(d−k)

`

)
= t

2 ·
(m− (d− k)−∆)!

(`−∆)!(m− `− (d− k))! ·
(m− `− (d− k))!`!

(m− (d− k))!

= t

2 ·
(m− (d− k)−∆)!

(m− (d− k))! · `!
(`−∆)!

= t

2 ·
(m− (d− k)−∆)!

m! · m!
(m− (d− k))! ·

`!
(`−∆)!

= t

2 ·
m(d−k) · `∆

m(d−k)+∆ (Using Lemma 5)

= t

2 ·
(
`

m

)∆
.

The math block above crucially uses the fact that ∆2 = o(`) and (d− k)2 = o(m) while
invoking Lemma 5. Since λ ≥ 1, we get that t

2 ·
(
`
m

)∆ ≥ 1. For some suitably fixed constants
δ and ε, let ∆0 be set to δk and ` be set to m

2 (1− ε). Recall that for a fixed ∆0, t = n2k−∆0

∆0( 2k
∆0)

and ∆ = α∆0 = δαk. Thus,

n2k−∆0

2
(2k

∆0

) · ( `

m

)∆
≥ 1

n2k−∆0 ≥ 2∆0

(m
`

)∆
(

2k
∆0

)
n2k−∆0 ≥

(
2

1− ε

)∆( 2k
∆0

)∆0

n(2−δ)k ≥
(

2
1− ε

)αδk ( 2k
∆0

)δk
and hence,

α ≤
(2− δ) logn− δ log

( 2
δ

)
δ log

(
2

1−ε

) .

Invoking Lemma 6 with the previous discussion, we get that

|M| ≥ T1

4λ =
t
(
m−(d−k)

`

)
4λ = 1

2

(m
`

)∆
·
(
m− (d− k)

`

)
= 1

2

(
2

1− ε

)δαk
·
(
m− (d− k)

`

)
.J

I Lemma 15. Let m, k, d, r, ` and µ be positive integers such that `+ kµ < m
2 , ∆0 = δk and

` = m
2 (1 − ε) for some fixed constants δ and ε. Then, Γk,`(fn,α,k) ≥ |M| ≥ 1

2

(
2

1−ε

)δαk
·(

m−(d−k)
`

)
.

Proof. Recall that M corresponds to the set z=` · σY
(
∂=k
P∆0

fn,α,k

)
. Since M is a bag of

multilinear monomials over just the Z variables

|M| = dim
(
F-span

{
mult

(
z=` · σY

(
∂=k
P∆0

fn,α,k

))})
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Since ∂=k
P∆0

fn,α,k ⊆ ∂=kfn,α,k and z=` ⊆ z≤`, we get that

dim
(
F-span

{
mult

(
z=` · σY

(
∂=k
P∆0

fn,α,k

))})
≤ dim

(
F-span

{
mult

(
z≤` · σY

(
∂=k
Y fn,α,k

))})
= Γk,`(fn,α,k) .

Thus, Γk,`(fn,α,k) ≥ |M| ≥ 1
2

(
2

1−ε

)δαk
·
(
m−(d−k)

`

)
. J

We shall now a size lower bound on the depth four multi-r-ic circuits of low bottom
support that compute fn,α,k.

I Theorem 16. Let δ = 0.25 and ε = 0.8. Let n, r, α, k and µ be positive integers such that
r ≤ n0.2, µ ≤ logn

50 and α = (2−δ) logn
0.9δ log 2

1−ε
. Let C be a depth four multi-r-ic circuit of low bottom

support µ and size s. If C computes the polynomial fn,α,k then s must be exp(Ω(k logn)).

Proof. Recall that the polynomial fn,α,k is defined on the variable sets Y and Z such that
|Z| = m = 2αnk. Let ` be an integer such that ` = m

2 (1− ε) and `+ kµ < m
2 . Let ∆0 = δk.

Let us assume that the polynomial fn,α,k is computed by a depth four multi-r-ic circuit C of
low bottom support µ and size s. Then it must be the case that Γk,`(fn,α,k) = Γk,`(C).

s ≥
1
2

(
2

1−ε

)δαk
·
(
m−(d−k)

`

)
( 2mr

µ

k

)
·
(
m

`+kµ
)
· (`+ kµ)

≥ 1
2(`+ kµ) ·

(
2

1− ε

)δαk
·
(

kµ

2emr

)k
·
(
m−(d−k)

`

)(
m

`+kµ
)

= 1
2(`+ kµ) ·

(
2

1− ε

)δαk
·
(

kµ

2emr

)k
· (m− (d− k))!

m! · (m− `− kµ)!
(m− `− (d− k))! ·

(`+ kµ)!
`!

≥ 1
2(`+ kµ) ·

(
2

1− ε

)δαk
·
(

kµ

2emr

)k
· `kµ

m(d−k) · (m− `)
(d−k)−kµ

= 1
2(`+ kµ) ·

(
2

1− ε

)δαk
·
(

kµ

2emr

)k
·
(

`

m− `

)kµ
·
(
m− `
m

)d−k
= 1

2(`+ kµ) ·
(

2
1− ε

)δαk
·
( µ

4eαnr

)k
·
(

1− ε
1 + ε

)kµ
·
(

1 + ε

2

)d−k
= 1

2(`+ kµ) ·
(

2
1− ε

)δαk
·
( µ

4eαnr

)k
·
(

1− ε
1 + ε

)kµ
·
(

1 + ε

2

)2αk

= 1
2(`+ kµ) ·

((
2

1− ε

)δ
·
(

1 + ε

2

)2
)αk

·
( µ

4eαnr

)k
·
(

1− ε
1 + ε

)kµ

=
exp

(
αk log

((
2

1−ε

)δ
·
( 1+ε

2
)2)− k logn− k log r − k log 4eα

µ + kµ log 1−ε
1+ε

)
2(`+ kµ) .

In the above math block, we use Lemma 5 to simplify the terms along with the fact that
k2µ2 = o(m− `), (d− k)2 = o(m) and k2µ2 = o(`). To get a meaningful lower bound, we

need α log
((

2
1−ε

)δ
·
( 1+ε

2
)2) to be strictly greater than (logn+ log r + log 4eα

µ ). Let us set

α to (2−δ) logn
0.9δ log 2

1−ε
. This reduces to showing that there exist constants δ, ε and ν such that

(2− δ) · log
((

2
1−ε

)δ
·
( 1+ε

2
)2)

0.9δ log 2
1−ε

− 1 ≥ ν. (1)
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Let us fix the constants as follows: ε = 0.8, δ = 0.25 and ν = 0.23. Through some
calculations, it can be verified that Equation 1 gets satisfied. Thus,

s ≥
exp

(
k
(

0.23 logn− log r − log 4eα
µ + µ log 1−ε

1+ε

))
2(`+ kµ)

If µ ≤ logn
50 and r ≤ n0.2, we get that s ≥ exp (Ω (k logn)). J

4 Multi-r-ic Depth Four Circuits

To prove the main theorem, we also need the following lemma.

I Lemma 17 (Analogous to Lemma 20.4, [29]). Let P be a multi-r-ic polynomial that is
computed by a syntactically multi-r-ic depth 4 circuit C of size s ≤ Nγµ for some γ > 0 .
Let ρ be a random restriction that sets each variable to zero independently with probability
(1−N−2γ) . Then with probability at least (1−N−γµ) the polynomial ρ(P ) is computed by
a multi-r-ic depth four circuit C ′ of bottom support at most µ and size s.

Proof of Theorem 1. Let n be a large positive integer. Let us set some relevant parameters
in terms of n or otherwise as follows.

µ = logn
50 , ε = 0.8,

δ = 0.25, α = (2− δ) logn
0.9δ log 2

1−ε
,

k = c

100 logn N0 = k(n2 + 2αn),

N = N2+c
0 logN0, γ is a small constant such that N2γ u N c

0 .

Let X̂ = {x̂1,1, x̂1,2, . . . , x̂1,t, . . . , x̂N0,1, x̂N0,2, . . . , x̂N0,t} be a set of variables over which the
polynomial Pn,α,k is defined. Let ρ : X̂ 7→ {0, ∗} be a random restriction such that a variable
is set to zero with a probability of (1−N−2γ), and is left untouched otherwise. Let C be a
syntactically multi-r-ic depth four circuit of size s ≤ Nγµ that computes Pn,α,k. Lemma 17
tells us that C ′ = ρ(C) is a multi-r-ic depth four circuit of size s and bottom support at
most µ with a probability of at least (1−N−γµ). Conditioned on this probability, ρ(Pn,α,k)
has a multi-r-ic ΣΠΣΠ{µ} size at most s.

Lemma 7 tells us that fn,α,k is a p-projection of ρ(Pn,α,k) with a probability of (1− 2−N0)
and hence fn,α,k also has a multi-r-ic ΣΠΣΠ{µ} of size at most s with a probability of at
least (1−N−γµ − 2−N0). In other words, there is a random restriction σ such that fn,α,k is
a p-projection of ρ(Pn,α,k) and C ′ = ρ(C) is a multi-r-ic ΣΠΣΠ{µ} circuit.

On the other hand, from Theorem 16 we know that any multi-r-ic ΣΠΣΠ{µ} circuit that
computes fn,α,k must be of size exp(Ω(k logn)). Thus, it must be that exp(Ω(k logn)) ≤
s ≤ Nγµ. We can choose c to be a small enough constant such that the aforementioned
expression is satisfied. Thus, s must at least be exp

(
Ω(log2 n)

)
. The explicit polynomial Qn

is Pn,α,k where α = (2−δ) logn
0.9δ log 2

1−ε
and k = c

100 logn. J
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A Missing Proofs

Proof of Claim 10. There are n2k elements in P. It is easy to see that the volume of a
Hamming Ball of radius ∆0 for vectors of length 2k is at most

∑∆0
i=0
(2k
i

)
· ni ≤ ∆0

(2k
∆0

)
n∆0

and thus there are at most
(2k

∆0

)
n∆0 many vectors (a,b) in that Hamming ball. Thus, there

exists a packing of these Hamming balls in P with at least n2k−∆0

∆0( 2k
∆0)

many balls. C

Proof of Claim 11. For a vector (a,b) ∈ [n]2k, ∂kfn,α,k

y
(1)
a1,b1

y
(2)
a2,b2

···y(k)
ak,bk

=
∏k
i=1
∏
v∈[α] z

i,1
ai,v ·z

i,1
v+α,bi .

For all i ∈ [k], let Bi(a,b) =
∏
v∈[α] z

i,1
ai,v · z

i,1
v+α,bi . Note that for some i ∈ [k], if

ai 6= a′i, dist(Bi(a,b), (a′,b′)) is at least α. Similar is the case when bi 6= b′i. Thus, if
dist((a,b), (a′,b′)) ≥ ∆0), there are at least ∆0 many locations where either ai 6= a′i or
bi 6= b′i and hence dist

(
∂k(a,b)fn,α,k, ∂

k
(a′,b′)fn,α,k

)
≥ α∆0. C

The following proofs are a step by step adaptation, rather a replication of proofs Lemma
20.4 and Lemma 20.5 respectively in [29].

Proof of Lemma 17. Let C be a multi-r-ic depth four circuit of size s. Let m1,m2, · · · ,mt

be the set of monomials computed at the lower product gate of C, that have at least µ
distinct variables in their support. Note that t is at most s. For all i ∈ [t], Pr[ρ(mi) 6= 0] ≤
N−2γµ. By taking an union bound, the probability that there exists in a monomial amongst
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m1,m2, · · · ,mt which is not set to 0 by ρ is at most t ·N−2γµ ≤ s ·N−2γµ ≤ N−γµ. Thus
with a probability of at least (1 − N−γµ), all the monomials at the bottom product gate
have at most µ distinct variables in their support. J

Proof of Lemma 7. For all i ∈ [N0],

Pr[ρ(x̂i,1) = ρ(x̂i,2) = · · · ρ(x̂i,t) = 0] = (1−N−c0 )t ≈ 1
N02N0

.

By union bound, probability that there exists an i ∈ [N0] such that all the variables of the
form x̂i,j for j ∈ [t] are set to zero is at most 1

2N0 . Thus, with a probability of at least
(1− 2−N0), for each i, there exists at least one j such that ρ(x̂i,j) 6= 0.It is easy to see that
the polynomial fn,α,k can be written as a p-projection of ρ(Pn,α,k) in such a case. J
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Abstract
We compare two approaches for modelling imperfect information in infinite games by using finite-state
automata. The first, more standard approach views information as the result of an observation process
driven by a sequential Mealy machine. In contrast, the second approach features indistinguishability
relations described by synchronous two-tape automata.

The indistinguishability-relation model turns out to be strictly more expressive than the one
based on observations. We present a characterisation of the indistinguishability relations that admit
a representation as a finite-state observation function. We show that the characterisation is decidable,
and give a procedure to construct a corresponding Mealy machine whenever one exists.
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1 Introduction

Uncertainty is a main concern in strategic interaction. Decisions of agents are based on
their knowledge about the system state, and that is often limited. The challenge grows in
dynamical systems, where the state changes over time, and it becomes severe, when the
dynamics unravels over infinitely many stages. In this context, one fundamental question is
how to model knowledge and the way it changes as information is acquired along the stages
of the system run.

Finite-state automata offer a solid framework for the analysis of systems with infinite
runs. They allow to reason about infinite state spaces in terms of finite ones – of course, with
a certain loss. The connection has proved to be extraordinarily successful in the study of
infinite games on finite graphs, in the particular setting of perfect information assuming that
players are informed about every move in the play history, which determines the actual state
of the system. One key insight is that winning strategies, in this setting, can be synthesized
effectively [6, 23]: for every game described by finite automata, one can describe the set
of winning strategies by an automaton (over infinite trees) and, moreover, construct an
automaton (a finite-state Moore machine) that implements a winning strategy.

In this paper, we discuss two approaches for modelling imperfect information, where, in
contrast to the perfect-information setting, it is no longer assumed that the decision maker
is informed about the moves that occurred previously in the play history.
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The first, more standard approach corresponds to viewing information as a result of
an observation process that may be imperfect in the sense that different moves can yield
the same observation in a stage of the game. Here, we propose a second approach, which
corresponds to representing information as a state of knowledge, by describing which histories
are indistinguishable to the decision maker.

Concretely, we assume a setting of synchronous games with perfect recall in a partitional
information model. Plays proceed in infinitely many stages, each of which results in one move
from a finite range. Histories and plays are thus determined as finite or infinite sequences of
moves, respectively.

To represent information partitions, we consider two models based on finite-state automata.
In the observation-based model, which corresponds to the standard approach in computing
science and non-cooperative game theory, the automaton is a sequential Mealy machine that
inputs moves and outputs observations from a finite alphabet. The machine thus describes
an observation function, which maps any history of moves to a sequence of observations
that represents its information set. In the indistinguishability-based model, we use two-tape
automata to describe which pairs of histories belong to the same information set.

As an immediate insight, we point out that, in the finite-state setting, the standard model
based on observation functions is less expressive than the one based on indistinguishability
relations. Intuitively, this is because observation functions can only yield a bounded amount
of information in each round – limited by the size of the observation alphabet, whereas
indistinguishability relations can describe situations where the amount of information received
per round grows unboundedly as the play proceeds.

We investigate the question whether an information partition represented as (an indis-
tinguishability relation given by) a two-tape automaton admits a representation as (an
observation function given by) a Mealy machine. We show that this question is decidable,
using results from the theory of word-automatic structures. We also present a procedure
for constructing a Mealy machine that represents a given indistinguishability relation as an
observation function, whenever this is possible.

2 Basic Notions

2.1 Finite automata
To represent components of infinite games as finite objects, finite-state automata offer a
versatile framework (see [13], for a survey). Here, we use automata of two different types,
which we introduce following the notation of [22, Chapter 2].

As a common underlying model, a semi-automaton is a tuple A = (Q,Γ, qε, δ) consisting
of a finite set Q of states, a finite input alphabet Γ, a designated initial state qε ∈ Q, and
a transition function δ : Q × Γ → Q. We define the size |A| of A to be the number of its
transitions, that is |Q| · |Γ|. To describe the internal behaviour of the semi-automaton we
extend the transition function from letters to input words: the extended transition function
δ : Q× Γ∗ → Q is defined by setting, for every state q ∈ Q,

δ(q, ε) := q for the empty word ε, and
δ(q, τc) := δ(δ(q, τ), c), for any word obtained by the concatenation of a word τ ∈ Γ∗ and
a letter c ∈ Γ.

On the one hand, we use automata as acceptors of finite words. A deterministic finite
automaton (for short, dfa) is a tuple A = (Q,Γ, qε, δ, F ) expanding a semi-automaton by
a designated subset F ⊆ Q of accepting states. We say that a finite input word τ ∈ Γ∗ is
accepted by A from a state q if δ(q, τ) ∈ F . The set of words in Γ∗ that are accepted by A
from the initial state qε forms its language, denoted L(A) ⊆ Γ∗.
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Thus, a dfa recognises a set of words. By considering input alphabets over pairs of letters
from a basis alphabet Γ, the model can be used to recognise synchronous relations over Γ,
that is, relations between words of the same length. We refer to a dfa over an input alphabet
Γ× Γ as a two-tape dfa. The relation recognised by such an automaton consists of all pairs
of words c1c2 . . . c`, c

′
1c
′
2 . . . c

′
` ∈ Γ∗ such that (c1, c

′
1)(c2, c

′
2) . . . (c`, c′`) ∈ L(A). With a slight

abuse of notation, we also denote this relation by L(A). We say that a synchronous relation
is regular if it is recognised by a dfa.

On the other hand, we consider automata with output. A Mealy automaton is a tuple
(Q,Γ,Σ, qε, δ, λ) where (Q,Γ, qε, δ) is a semi-automaton, Σ is a finite output alphabet, and
λ : Q×Γ→ Σ is an output function. To describe the external behaviour of such an automaton,
we define the extended output function λ : Γ∗ × Γ → Σ by setting λ(τ, c) := λ(δ(qε, τ), c)
for every word τ ∈ Γ∗ and every letter c ∈ Γ. Thus, the external behaviour of a Mealy
automaton defines a function from the set Γ+ := Γ∗ \ {ε} of nonempty histories to Σ. We
say that a function on Γ+ is regular, if there exists a Mealy automaton that defines it.

2.2 Repeated games with imperfect information

In our general setup, we consider games played in an infinite sequence of stages. In each
stage, every player chooses an action from a given set of alternatives, independently and
simultaneously. As a consequence, this determines a move that is recorded in the play history.
Then, the game proceeds to the next stage. The outcome of the play is thus an infinite
sequence of moves.

Decisions of a player are based on the available information, which we model by a partition
of the set of play histories into information sets: at the beginning of each stage game, the
player is informed of the information set to which the actual play history belongs (in the
partition associated to the player). Accordingly, a strategy for a player is a function from
information sets to actions. Every strategy profile (that is, a collection of strategies, one for
each player) determines a play.

Basic questions in this setup concern strategies of an individual player to enforce an
outcome in a designated set of winning plays or to maximise the value of a given payoff
function, regardless of the strategy of other players. More advanced issues target joint
strategies of coalitions among players towards coordinating on a common objective, or
equilibrium profiles. Scenarios where the available actions depend on the history, or where
the play might end after finitely many stages, can be captured by adjusting the information
partition together with the payoff or winning condition.

For our formal treatment of information structures, we use the model of abstract infinite
games as introduced by Thomas in his seminal paper on strategy synthesis [26]; the relevant
questions for more elaborate settings, such as infinite games on finite graphs or concurrent
game structures can be reduced easily to this abstraction. The underlying model is consistent
with the classical definition of extensive games with information partitions and perfect recall
due to von Neumann and Morgenstern [28], in the formulation of Kuhn [15]. For a more
detailed account on partitional information, we refer to Bacharach [1] and Geanakoplos [11].

Our formalisation captures the information structures of repeated games with imperfect
monitoring as studied in non-cooperative game theory (see the survey of Gossner and
Tomala [12]), and of infinite games with partial observation on finite-state systems as studied
in computing science (see Reif [25], Lin and Wonham [18], van der Meyden and Wilke [27],
Chatterjee et al. [7], Berwanger et al. [3]). For background on the modelling of knowledge, and
the notion of synchronous perfect recall we refer to Chapter 8 in the book of Fagin et al. [9].
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2.2.1 Move and information structure
As a basic object for describing a game, we fix a finite set Γ of moves. A play is an
infinite sequence of moves π = c1c2 . . . ∈ Γω. A history (of length `) is a finite prefix
τ = c1c2 . . . c` ∈ Γ∗ of a play; the empty history ε has length zero. The move structure of
the game is the set Γ∗ of histories equipped with the successor relation, which consists of all
pairs (τ, τc) for τ ∈ Γ∗ and c ∈ Γ. For convenience, we denote the move structure of a game
on Γ simply by Γ∗ omitting the (implicitly defined) successor relation.

The information available to a player is modeled abstractly by a partition U of the set Γ∗
of histories; the parts of U are called information sets (of the player). The intended meaning
is that if the actual history belongs to an information set U , then the player considers every
history in U possible. The particular case where all information sets in the partition are
singletons characterises the setting of perfect information.

The information structure (of the player) is the quotient Γ∗/U of the move structure by
the information partition. That is, the first-order structure on the domain consisting of the
information sets, with a binary relation connecting two information sets (U,U ′) whenever
there exists a history τ ∈ U with a successor history τc ∈ U ′. Generally, we assume the
perspective of just one player, so we simply refer to the information structure of the game.

Our information model is synchronous, which means, intuitively, that the player always
knows how many stages have been played. Formally, this amounts to asserting that all
histories in an information set have the same length; in particular the empty history forms
a singleton information set. Further, we assume that the player has perfect recall – he
never forgets what he knew previously. Formally, if an information set contains nonempty
histories τc and τ ′c′, then the predecessor history τ is in the same information set as τ ′.
In different terms, an information partition satisfies synchronous perfect recall if whenever
a pair of histories c1 . . . c` and c′1 . . . c′` belongs to an information set, then for every stage
t ≤ `, the prefix histories c1 . . . ct and c′1 . . . c′t belong to the same information set. As a direct
consequence, the information structures that arise from such partitions are indeed trees.

I Lemma 1. For every information partition U of perfect synchronous recall, the information
structure Γ∗/U is a directed tree.

We will use the term information tree when referring to the information structure
associated with an information partition with synchronous perfect recall.

In the following, we discuss two alternative representations of information partitions.

2.2.2 Observation
The first alternative consists in describing the information received by the player in each stage.
To do so, we specify a set Σ of observation symbols and an observation function β : Γ+ → Σ.
Intuitively, the player observes at every nonempty history τ the symbol β(τ); under the
assumption of perfect recall, the information available to the player at history τ = c1c2 . . . c`
is thus represented by the sequence of observations β(c1)β(c1c2) . . . β(c1 . . . c`), which we call
observation history (at τ); let us denote by β̂ : Γ∗ → Σ∗ the function that returns, for each
play history, the corresponding observation history.

The information partition Uβ represented by an observation function β is the collection
of sets Uη := {τ ∈ Γ∗ | β̂(τ) = η} indexed by observation histories η ∈ β̂(Γ∗). Clearly,
information partitions described in this way verify the conditions of synchronous perfect recall:
each information set Uη consists of histories of the same length (as η), and for every pair τ, τ ′
of histories with different observations β̂(τ) 6= β̂(τ ′), and every pair of moves c, c′ ∈ Γ, the
observation history of the successors τc and τ ′c′ will also differ β̂(τc) 6= β̂(τ ′c′).
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(b) Two-tape dfa.

Figure 1 A Mealy automaton and a two-tape dfa over alphabet Γ = {a, b} describing the same
information partition (the symbol ∗ stands for {a, b}).

To describe observation functions by a finite-state automaton, we fix a finite set Σ of
observations and specify a Mealy automatonM = (Q,Γ,Σ, qε, δ, λ), with moves from Γ as
input and observations from Σ as output. Then, we consider the extended output function
ofM as an observation function βM : Γ+ → Σ.

To illustrate, Figure 1a shows a Mealy automaton defining an observation function. The
input alphabet is the set Γ = {a, b} of moves, and the output alphabet is the set {1, 2} of
observations. For example, the histories abb and bba map to the same observation sequence,
namely 111, thus they belong to the same information set; the information partition on
histories of length 2 is {aa, ab, bb}, {ba}.

This formalism captures the standard approach for describing information in finite-state
systems (see, e.g., Reif [25], Lin and Wonham [18], Kupferman and Vardi [16], van der
Meyden and Wilke [27]).

2.2.3 Indistinguishability
As a second alternative, we represent information partitions as equivalence relations between
histories, such that the equivalence classes correspond to information sets. Intuitively, a
player cannot distinguish between equivalent histories.

We say that an equivalence relation is an indistinguishability relation if the represented
information partition satisfies the conditions of synchronous perfect recall. The following
characterisation simply rephrases the relevant conditions for partitions in terms of equivalence
relations.

I Lemma 2. An equivalence relation R ⊆ Γ∗ × Γ∗ is an indistinguishability relation if, and
only if, it satisfies the following properties:
(1) For every pair (τ, τ ′) ∈ R, the histories τ, τ ′ are of the same length.
(2) For every pair of histories τ, τ ′ ∈ R of length `, every pair (ρ, ρ′) of histories of length t ≤ `

that occur as prefixes of τ, τ ′, respectively, is also related by (ρ, ρ′) ∈ R.

As a finite-state representation, we will consider indistinguishability relations recognised
by two-tape automata. To illustrate, Figure 1b shows a two-tape automaton that defines
the same information partition as the Mealy automaton of Figure 1a. Here and throughout
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48:6 Observation and Distinction

the paper, the state qrej represents a rejecting sink state. For example, the pair of words
τ1, τ2 where τ1 = abb and τ2 = bba is accepted by the automaton (the state q1 is accepting),
meaning that the two words are indistinguishable.

Given a two-tape automaton A = (Q,Γ× Γ, qε, δ, F ), the recognised relation L(A) is, by
definition, synchronous and hence satisfies condition (1) of Lemma 2. To decide whether A
indeed represents an indistinguishability relation, we can use standard automata-theoretic
techniques to verify that L(A) is an equivalence relation, and that it satisfies the perfect-recall
condition (2) of Lemma 2.

I Lemma 3. The question whether a given two-tape automaton recognises an indistinguishab-
ility relation with perfect recall is decidable in polynomial (actually, cubic) time.

The idea of using finite-state automata to describe information constraints of players in
infinite games has been advanced in a series of work by Maubert and different coauthors [20,
21, 5, 8], with the aim of extending the classical framework of temporal logic and automata for
perfect-information games to more expressive structures. In the general setup, the formalism
features binary relations between histories that can be asynchronous and may not satisfy
perfect recall. The setting of synchronous perfect recall is adressed as a particular case
described by a one-state automaton that compares observation sequences rather than move
histories. This allows to capture indistinguishability relations that actually correspond to
regular observation functions in our setup.

Another approach of relating game histories via automata has been proposed recently
by Fournier and Lhote [10]. The authors extend our framework to arbitrary synchronous
relations, which are not necessarily prefix closed – and thus do not satisfy perfect recall.

2.2.4 Equivalent representations
In general, any partition of a set X can be represented either as an equivalence relation
on X – equating the elements of each part – or as a (complete) invariant function, that
is a function f : X → Z such that f(x) = f(y) if, and only if, x, y belong to the same
part. Thus equivalence relations and invariant functions represent different faces of the same
mathematical object. The correspondence is witnessed by the following canonical maps.

For every function f : X → Z, the kernel relation ker f := {(x, y) ∈ X×X | f(x) = f(y)}
is an equivalence. Given an equivalence relation ∼ ⊆ X×X, the quotient map [ · ]∼ : X → 2X ,
which sends each element x ∈ X to its equivalence class [x]∼ := {y ∈ X | y ∼ x}, is a
complete invariant function for ∼. Notice that the kernel of the quotient map is just ∼.

For the case of information partitions with synchronous perfect recall, the above corres-
pondence relates indistinguishability relations and observation-history functions.

I Lemma 4. If β : Γ∗ → Σ is an observation function, then ker β̂ is an indistinguishability
relation that describes the same information partition. Conversely, if ∼ is an indistin-
guishability relation, then the quotient map is an observation function that describes the same
information partition.

Accordingly, every information partition given by an indistinguishability relation can be
alternatively represented by an observation function, and vice versa. However, if we restrict
to finite-state representations, the correspondence might not be preserved. In particular, as
the quotient map of any indistinguishability relation on Γ∗ has infinite range (histories of
different length are always distinguishable), it is not definable by a Mealy automaton, which
has finite output alphabet.
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Figure 2 A two-tape dfa defining an indistinguishability relation that does not correspond
to any regular observation function (the symbol = stands for {a

a, b
b, c

c}, the symbol 6= stands for
{x

y ∈ Γ× Γ | x 6= y}, and the symbol ∗ stands for {a, b, c}).

3 Observation is Weaker than Distinction

Firstly, we shall see that for every regular observation function the corresponding indistin-
guishability relation is also regular.

I Proposition 5. For every observation function β given by a Mealy automaton of size m, we
can construct a two-tape dfa of size O(m2) that defines the corresponding indistinguishability
relation ker β̂.

Proof. To construct such a two-tape automaton, we run the given Mealy automaton on
the two input tapes simultaneously, and send it into a rejecting sink state whenever the
observation output on the first tape differs from the output on the second tape. Accordingly,
the automaton accepts a pair (τ, τ ′) ∈ (Γ× Γ)∗ of histories, if and only if, their observation
histories agree β̂(τ) = β̂(τ ′). J

The statement of Proposition 5 is illustrated in Figure 1 where the structure of the
two-tape dfa of Figure 1b is obtained as a product of two copies of the Mealy automaton in
Figure 1a, where q1 = (p1, p1), q2 = (p2, p2), q3 = (p1, p2), and q4 = (p2, p1).

For the converse direction, however, the model of imperfect information described by
regular indistinguishability relations is strictly more expressive than the one based on regular
observation functions.

I Lemma 6. There exists a regular indistinguishability relation that does not correspond to
any regular observation function.

Proof. As a simple example, consider a move alphabet with three letters Γ := {a, b, c}, and
let ∼ ∈ Γ∗ × Γ∗ relate two histories τ, τ ′ whenever they are equal or none of them contains
the letter c. This is an indistinguishability relation, and it is recognised by the two-tape
automaton of Figure 2.

We argue that the induced information tree has unbounded branching. All histories
of the same length n that do not contain c are indistinguishable, hence Un = {a, b}n is
an information set. However, for every history w ∈ Un the history wc forms a singleton
information set. Therefore Un has at least 2n successors, for every n.
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48:8 Observation and Distinction

However, for any observation function, the degree of the induced information tree is
bounded by the size of the observation alphabet. Hence, the information partition described
by ∼ cannot be represented by an observation function of finite range and so, a fortiori, not
by any regular observation function. J

4 Which Distinctions Correspond to Observations

We have just seen, as a necessary condition for an indistinguishability relation to be repres-
entable by a regular observation function, that the information tree needs to be of bounded
branching. In the following, we show that this condition is actually sufficient.

I Theorem 7. Let Γ be a finite set of moves. A regular indistinguishability relation ∼ admits
a representation as a regular observation function if, and only if, the information tree Γ∗/∼
is of bounded branching.

Proof. The only-if -direction is immediate. If for an indistinguishability relation ∼, there
exists an observation function β : Γ+ → Σ with finite range (not necessarily regular) such
that ∼ = ker β̂, then the maximal degree of the information tree Γ∗/∼ is at most |Σ|. Indeed,
the observation-history function β̂ is a strong homomorphism from the move tree Γ∗ to
the tree of observation histories β̂(Γ∗) ⊆ Σ∗: it maps every pair (τ, τc) of successive move
histories to the pair of successive observation histories (β̂(τ), β̂(τ)β(τc)), and conversely, for
every pair of successive observation histories, there exists a pair of successive move histories
that map to it. By the Homomorphism Theorem (in the general formulation of Mal’cev [19]),
it follows that the information tree Γ∗/∼ = Γ∗/ker β̂ is isomorphic to the image β̂(Γ∗), which,
as a subtree Σ∗, has degree at most |Σ|.

To verify the if -direction, consider an indistinguishability relation ∼ over Γ∗, given by a
dfa R, such that the information tree Γ∗/∼ has branching degree at most n ∈ N.

Let us fix an arbitrary linear ordering � of Γ. First, we pick as a representative for each
information set, its least element with respect to the lexicographical order <lex induced by
�. Then, we order the information sets in Γ∗/∼ according to the lexicographical order of
their representatives. Next, we define the rank of any nonempty history τc ∈ Γ∗ to be the
index of its information set [τc]∼ in this order, restricted to successors of [τ ]∼ – this index is
bounded by n. Let us consider the observation function β that associates to every history
its rank. We claim that (1) it describes the same information partition as ∼ and (2) it is a
regular function.

To prove the first claim, we show that whenever two histories are indistinguishable τ ∼ τ ′,
they yield the same observation sequence β̂(τ) = β̂(τ ′). The rank of a history is determined
by its information set. Since τ ∼ τ ′, every pair (ρ, ρ′) of prefix histories of the same length
are also indistinguishable, and therefore yield the same rank β(ρ) = β(ρ′). By definition of
β̂, it follows that β̂(τ) = β̂(τ ′). Conversely, to verify that β̂(τ) = β̂(τ ′) implies τ ∼ τ ′, we
proceed by induction on the length of histories. The basis concerns only the empty history
and thus holds trivially. For the induction step, suppose β̂(τc) = β̂(τ ′c′). By definition of β̂,
we have in particular β̂(τ) = β̂(τ ′), which by induction hypothesis implies τ ∼ τ ′. Hence,
the information sets of the continuations τc and τ ′c′ are successors of the same information
set [τ ]∼ = [τ ′]∼ in the information tree Γ∗/∼. As we assumed that the histories τc and τ ′c′
have the same rank, it follows that they indeed belong to the same information set, that is
τc ∼ τ ′c′.

To verify the second claim on the regularity of the observation function β, we first notice
that the following languages are regular:
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the (synchronous) lexicographical order {(τ, τ ′) ∈ (Γ× Γ)∗ | τ ≤lex τ
′},

the set of representatives {τ ∈ Γ∗ | τ ≤lex τ
′ for all τ ′ ∼ τ}, and

the representation relation {(τ, τ ′) ∈ ∼ | τ ′ is a representative}.
Given automata recognising these languages, we can then construct, for each k ≤ n, an
automaton Ak that recognises the set of histories of rank at least k: together with the
representative of the input history, guess the k − 1 representatives that are below in the
lexicographical order. Finally, we take the synchronous product of the automata A1 . . .Ak
and equip it with an output function as follows: for every transition in the product automaton
all components of the target state, up to some index k, are accepting – we define the output
of the transition to be just this index k. This yields a Mealy automaton that outputs the
rank of the input history, as desired. J

For further use, we estimate the size of the Mealy automaton defining the rank function
as outlined in the proof. Suppose that an indistinguishability relation ∼ ⊆ (Γ× Γ)∗ given
by a two-tape dfa R of size m gives rise to an information tree Γ∗/L(R) of degree n. The
lexicographical order is recognisable by a two-tape dfa of size O(|Γ|2), bounded by O(m);
to recognise the set of representatives we take the product of this automaton with R, and
apply a projection and a complementation, obtaining a dfa of size bounded by 2O(m2));
for the representation relation, we take a product of this automaton with R and obtain
a two-tape dfa of size still bounded by 2O(m2). For every index k ≤ n, the automaton
Ak can be constructed via projection from a product of n such automata, hence its size
bounded is by 22O(nm2) . The Mealy automaton for defining the rank runs all these n automata
synchronously, so it is of the same order of magnitude 22O(nm2) .

To decide whether the information tree represented by a regular indistinguishability
relation has bounded degree, we use a result from the theory of word-automatic structures [14,
4]. For the purpose of our presentation, we define an automatic presentation of a tree
T = (V,E) as a triple (AV ,A=,AE) of automata with input alphabet Γ, together with a
surjective naming map h : L→ V defined on a set of words L ⊆ Γ∗ such that

L(AV ) = L,
L(A=) = kerh, and
L(AE) = {(u, v) ∈ L× L | (h(u), h(v)) ∈ E}.

In this case, h is an isomorphism between T = (V,E) and the quotient (L,L(AE))/L(A=).
The size of such an automatic presentation is the added size of the three component automata.
A tree is automatic if it has an automatic presentation.

For an information partition given by a indistinguishability relation ∼ defined by a
two-tape-dfa R on a move alphabet Γ, the information tree Γ∗/∼ admits an automatic
presentation with the naming map that sends every history τ to its information set [τ ]∼, and

as domain automaton AV , the one-state automaton accepting all of Γ∗ (of size Γ);
as the equality automaton A=, the two-tape dfa R, and
for the edge relation, a two-tape dfa AE that recognises the relation

{(τ, τ ′c) ∈ Γ∗ × Γ∗ | (τ, τ ′) ∈ L(R)}.

The latter automaton is obtained from R by adding transitions from each accepting state,
with any move symbol on the first tape and the padding symbol on the second tape, to a
unique fresh accepting state from which all outgoing transitions lead to the rejecting sink qrej.
Overall, the size of the presentation will thus be bounded by O(|R|).

Now, we can apply the following result of Kuske and Lohrey.
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(b) Mealy automaton.

Figure 3 A synchronous two-tape automaton with 2k states (here k = 3) for which an equivalent
observation Mealy automaton requires exponential number of states (2k).

I Proposition 8 ([17, Propositions 2.14–2.15]). The question whether an automatic structure
has bounded degree is decidable in exponential time. If the degree of an automatic structure
is bounded, then it is bounded by 22mO(1)

in the size m of the presentation.

This allows to conclude that the criterion of Theorem 7 characterising regular indistin-
guishability relations that are representable by regular observation functions is effectively
decidable. By following the construction for the rank function outlined in the proof of the
theorem, we obtain a fourfold exponential upper bound for the size of a Mealy automaton
defining an observation function.

I Theorem 9.
(i) The question whether an indistinguishability relation given as a two-tape dfa admits a

representation as a regular observation function is decidable in exponential time (with
respect to the size of the dfa).

(ii) Whenever this is the case, we can construct a Mealy automaton of fourfold-exponential
size and with at most doubly exponentially many output symbols that defines a corres-
ponding observation function.

5 Improving the Construction of Observation Automata

Theorem 9 establishes only a crude upper bound on the size of a Mealy automaton cor-
responding to a given indistinguishability dfa. In this section, we present a more detailed
analysis that allows to improve the construction by one exponential.

Firstly, we point out that an exponential blowup is generally unavoidable, for the size of
the automaton and for its observation alphabet.
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I Example 10. Figure 3a shows a two-tape dfa that compares histories over a move alphabet
{a, b} with an embargo period of length k. Every pair of histories of length less than k is
accepted, whereas history pairs of length k and onwards are rejected if, and only if, they are
different. (The picture illustrates the case for k = 3). A Mealy automaton that describes
this indistinguishability relation needs to produce, for every different prefix of length k, a
different observation symbol. To do so, it has to store the first k symbols, which requires 2k
states and 2k observation symbols (see Figure 3b). J

5.1 Structural properties of regular indistinguishability relations
For the following, let us fix a move alphabet Γ and a two-tape dfa R = (Q,Γ× Γ, qε, δ, F )
defining an indistinguishability relation L(R) = ∼. We assume thatR is a minimal automaton
in the usual sense that all states are reachable from the initial state, and the languages
accepted from two different states are different. Let m be the size of R. We usually write
δ(qε, ττ ′) for δ(q, (τ, τ ′)).

First, we classify the states according to the behaviour of the automaton when reading
the same input words on both tapes. On the one hand, we consider the states reachable from
the initial state on such inputs, which we call reflexive states:

Ref = {q ∈ Q | ∃τ ∈ Γ∗ : δ(qε, ττ ) = q}.

On the other hand, we consider the states from which it is possible to reach the rejecting
sink by reading the same input word on both tapes, which we call ambiguous states,

Amb = {q ∈ Q | ∃τ ∈ Γ∗ : δ(q, ττ ) = qrej}.

For instance, in the running example of Figure 1, the reflexive states are Ref = {q1, q2} and
the ambiguous states are Amb = {q3, q4, qrej}.

Since indistinguishability relations are reflexive, all the reflexive states are accepting and
by reading any pair of identical words from a reflexive state, we always reach an accepting
state. Therefore, a reflexive state cannot be ambiguous. Perhaps less obviously, the converse
also holds: a non-reflexive state must be ambiguous.

I Lemma 11 (Partition Lemma). Q \ Ref = Amb.

Proof. The inclusion Amb ⊆ Q\Ref (or, equivalently, that Amb and Ref are disjoint) follows
from the definitions and the fact that ∼ is a reflexive relation, and thus δ(qε, ττ ) 6= qrej for all
histories τ .

To show that Q\Ref ⊆ Amb, let us consider an arbitrary state q ∈ Q\Ref. By minimality
of R, the state q is reachable from qε: there exist histories τ, τ ′ such that δ(qε, ττ ′) = q.
Let qτ = δ(qε, ττ ) be the state reached after reading τ

τ (see figure). Thus, qτ ∈ Ref and in
particular qτ 6= q. Again by minimality of R, the languages accepted from q and qτ are
different. Hence, there exist histories π, π′ such that π

π′ is accepted from q and rejected
from qτ , or the other way round. In the former case, we have that τπ ∼ τ ′π′ and τπ 6∼ τπ′,
which by transitivity of ∼, implies τπ′ 6∼ τ ′π′. This means that from state q reading π′

π′ leads
to qrej, showing that q ∈ Amb, which we wanted to prove. In the latter case, the argument is
analogous. J

We say that a pair of histories accepted by R is ambiguous, if, upon reading them,
the automaton R reaches an ambiguous state other than qrej. Histories τ, τ ′ that form
an ambiguous pair are thus indistinguishable, so they must map to the same observation.
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However, there exists a suffix π such that the extensions τ ·π and τ ′ ·π become distinguishable.
Therefore, any observation automaton for R has to reach two different states after reading τ
and τ ′ since otherwise, the extensions by the suffix π would produce the same observation
sequence, making τ · π and τ ′ · π wrongly indistinguishable. The argument generalises
immediately to collections of more than two histories. We call a set of histories that are
pairwise ambiguous an ambiguous clique.

We shall see later, in the proof of Lemma 15, that if the size of ambiguous cliques is
unbounded, then the information tree Γ∗/L(R) has unbounded branching, and therefore there
exists no Mealy automaton corresponding to R. Now, we show conversely that whenever the
size of the ambiguous cliques is bounded, we can construct such a Mealy automaton.

We say that two histories τ, τ ′ ∈ Γ∗ of the same length are interchangeable, denoted by
τ ≈ τ ′, if δ(qε, τπ ) = δ(qε, τ

′

π
), for all π ∈ Γ∗. Note that ≈ is an equivalence relation and that

τ ≈ τ ′ implies δ(qε, ττ ′) ∈ Ref. The converse also holds.

I Lemma 12. For all histories τ, τ ′ ∈ Γ∗, we have δ(qε, ττ ′) ∈ Ref if, and only if, τ ≈ τ ′.

Proof. One direction, that τ ≈ τ ′ implies δ(qε, ττ ′) ∈ Ref), follows immediately from the
definitions (take π = τ ′ in the definition of interchangeable histories).

For the reverse direction, let us suppose that δ(qε, ττ ′) ∈ Ref. We will show that, for all
histories τ ′′, the states q1 = δ(qε, ττ ′′) and q2 = δ(qε, τ

′

τ ′′ ) accept the same language. Towards
this, let π1, π2 be an arbitrary pair of histories such that π1

π2
is accepted from q1. Then,

τπ1 ∼ τ ′π1, because δ(qε, ττ ′) ∈ Ref, and from a reflexive state reading π1
π1

does not lead
to qrej (by Lemma 11).
τπ1 ∼ τ ′′π2, because δ(qε, ττ ′′) = q1 and π1

π2
is accepted from q1.

By transitivity of ∼, it follows that τ ′π1 ∼ τ ′′π2, hence π1
π2

is accepted from q2 = δ(qε, τ
′

τ ′′ ).
Accordingly, the language accepted from q1 is included in the language accepted from q2; the
converse inclusion holds by a symmetric argument. Since the states q1 and q2 accept the
same languages, and because the automaton R is minimal, it follows that q1 = q2, which
means that τ and τ ′ are interchangeable. J

According to Lemma 12 and because qrej 6∈ Ref, all pairs of interchangeable histories
are also indistinguishable. In other words, the interchangeability relation ≈ refines the
indistinguishability relation ∼, and thus [τ ]≈ ⊆ [τ ]∼ for all histories τ ∈ Γ∗. In the running
example (Figure 1), the sets {aa, ab, bb} and {ba} are ∼-equivalence classes, and the sets
{aa, bb}, {ab}, and {ba} are ≈-equivalence classes.

Let us lift the lexicographical order ≤lex to sets of histories of the same length by comparing
the smallest word of each set: we write S ≤ S′ if minS ≤lex minS′. This allows us to rank
the ≈-equivalence classes contained in a ∼-equivalence class, in increasing order. In the
running example, if we consider the ∼-equivalence class {aa, ab, bb}, {aa, bb} gets rank 1,
and {ab} gets rank 2 because {aa, bb} ≤ {ab}. On the other hand, the ∼-equivalence class
{ba}, as a singleton, gets rank 1.

Now, we denote by idx(τ) the rank of the ≈-equivalence class containing τ . For example,
idx(bb) = 1 and idx(ab) = 2. Further, we denote by mat(τ) the square matrix of dimension
n = maxτ ′∈[τ ]∼ idx(τ ′) where we associate to each coordinate i = 1, . . . , n the i-th ≈-
equivalence class Ci contained in [τ ]∼. The (i, j)-entry of mat(τ) is the state qij = δ(qε, τi

τj
)

where τi ∈ Ci and τj ∈ Cj . Thanks to interchangeability, the state qij is well defined being
independent of the choice of τi and τj .

It is easy to see that diagonal entries in such matrices are reflexive states (Lemma 12).
We can show conversely that non-diagonal entries are ambiguous states.
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I Lemma 13. For all histories τ , the non-diagonal entries in mat(τ) are ambiguous states.

Proof. Non-diagonal entries in mat(τ) correspond to pair of histories that are not ≈-
equivalent, therefore those entries are not reflexive states (Lemma 12), hence they must be
ambiguous states (Lemma 11). J

Finally, we can define a successor operation on matrix-index pairs and moves to obtain a
homomorphic image of Γ∗.

I Lemma 14. For every move c ∈ Γ, we can define a function succc such that for all histories
τ ∈ Γ∗, if (M, i) = (mat(τ), idx(τ)), then succc(M, i) = (mat(τc), idx(τc)).

5.2 Construction
For the remainder of the paper, let us assume that the branching degree of the information
tree Γ∗/L(R) is bounded.

We define a Mealy automaton F = (P,Γ,Σ, pε, δ, λ) over the input alphabet Γ and an
output alphabet Σ in two phases: first, we define the semi-automaton F0 = (P,Γ, pε, δ)
and then we construct the output alphabet Σ and the output function λ. To define the
semi-automaton F0, we set:

P := {(M, i) |M = mat(τ) and i = idx(τ) for some history τ},
pε := (qε, 1),
for every state (M, i) ∈ P and every move c ∈ Γ, let δ((M, i), c) = succc(M, i).

The construction of the Mealy automaton for the two-tape dfa of Figure 1b is shown
in Figure 4a. The variables x, y, z, r, s, t, u, v represent the observation values of the output
function. We determine the value of the variables by considering pairs of histories in the
automaton, and in the Mealy automaton. For example, for τ = a and τ ′ = b, we have τ ∼ τ ′
(according to the dfa), and therefore we derive the constraint x = y in the Mealy automaton.
We can show that the constraints are satisfiable and that every satisfying assignment describes
an output function λ : P × Γ→ Σ such that (P,Γ,Σ, pε, δ, λ) is an observation automaton
equivalent to the dfa (see Figure 4b for the running example).

According to Lemma 14, the state space P is the closure of {pε} under the c-successor
operation, for all c ∈ Γ. It remains to show that P is finite. The key is to bound the
dimension of the largest matrix in P , which is the size of the largest ambiguous clique.

I Lemma 15. If the branching degree of the information tree Γ∗/L(R) is bounded, then the
largest ambiguous clique contains at most a doubly-exponential number of histories (with
respect to the size of R).

Proof. First we show by contradiction that the size of the ambiguous cliques is bounded. Since
the number of ambiguous states in R is finite, if there exists an arbitrarily large ambiguous
clique, then by Ramsey’s theorem [24], there exists an arbitrarily large set {τ1, τ2, . . . , τk}
of histories and a state q ∈ Amb \ {qrej} such that δ(qε, τi

τj
) = q for all 1 ≤ i < j ≤ k. By

definition of Amb, there exists a nonempty history τc such that δ(q, τcτc) = qrej. Consider such
a history τc of minimal length. The histories τiτ (i = 1, . . . , k) are in the same ∼-equivalence
class, but the equivalence classes [τiτc]∼ are pairwise distinct. Therefore, the number of
successors of [τiτ ]∼ is at least k, thus arbitrarily large, in contradiction with the assumption
that the branching degree the information tree Γ∗/L(R) is bounded.

Note that the size of the largest ambiguous clique corresponds to the maximum number
of ≈-equivalence classes contained in an ∼-equivalence class (Lemma 13). We show that this
number is at most doubly-exponential. Similarly to the proof of Theorem 7, we notice that the
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( ↓
q1

)

( ↓
q1 q3
q4 q2

)

( ↓
q1 q3
q4 q2

) ( ↓
q2

)

a 7→ x

b 7→ y

b 7→ rb 7→ t

a 7→ s

b 7→ v

a 7→ z

a 7→ u

(a) Transition structure.

a 7→ 1

b 7→ 1

b 7→ 1b 7→ 1

a 7→ 2

b 7→ 2

a 7→ 1

a 7→ 1

(b) Instantiated observations.

Figure 4 Construction of the Mealy automaton from the two-tape dfa of Figure 1b.

set of ≈-representatives defined by {τ ∈ Γ∗ | τ ≤lex τ
′ for all τ ′ ≈ τ} is regular, and therefore

the representation relation {(τ, τ ′) ∈ ∼ | τ ′ is a ≈-representative} is also regular. Using a
result of Weber [29, Theorem 2.1], there is a bound on the number of ≈-representatives
that a history can have that is exponential in the size ` of the two-tape dfa recognising the
representation relation, namely O(`)`, and ` is bounded by 2O(m2) by the same argument as
in the proof of Theorem 7 (where m is the size of R). This provides a doubly-exponential
bound 22O(m2) on the size of the ambiguous cliques. J

According to Lemma 15, the dimension k of the largest matrix in P is at most doubly
exponential in |R|. The number of matrices of a fixed dimension d is at most |Q|d2 . Overall
the number of matrices that appear in P is therefore bounded by k · |Q|k2 , and as the index
is at most k, it follows that the number of states in P is bounded by k2 · |Q|k2 , that is
exponential in k and triply exponential in the size of R.

I Theorem 16. For every indistinguishability relation given by a two-tape dfa R such that
the information tree Γ∗/L(R) is of bounded branching, we can construct a Mealy automaton of
size triply exponential (with respect to the size of R) that defines a corresponding observation
function.

6 Conclusion

The question of how to model information in infinite games is fundamental to defining
their strategy space. As the decisions of each player are based on the available information,
strategies are functions from information sets to actions. Accordingly, the information
structure of a player in a game defines the support of her strategy space.

The assumption of synchronous perfect recall gives rise to trees as information structures
(Lemma 1). In the case of observation functions with a finite range Σ, these trees are subtrees
of the complete |Σ|-branching tree Σ∗ – on which ω-tree automata can work (see [26, 13]
for surveys on such techniques). Concretely, every strategy based on observations can be
represented as a labelling of the tree Σ∗ with actions; the set of all strategies for a given game
forms a regular (that is, automata-recognisable) set of trees. Moreover, when considering
winning conditions that are also regular, Rabin’s Theorem [23] allows to conclude that winning
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strategies also form a regular set. Indeed, we can construct effectively a tree automaton that
recognises the set of strategies – for an individual player – that enforce a regular condition and,
if this set is non-empty, we can also synthesise a Mealy automaton that defines one of these
strategies. In summary, the interpretation of strategies as observation-directed trees allows
us to search the set of all strategies systematically for winning ones using tree-automatic
methods.

In contrast, when setting out with indistinguishability relations, we obtain more complic-
ated tree structures that do not offer a direct grip to classical tree-automata techniques. As
the example of Lemma 6 shows, there are cases where the information tree of a game is not
regular, and so the set of all strategies is not recognisable by a tree automaton. Accordingly,
the automata-theoretic approach to strategy synthesis via Rabin’s Theorem cannot be applied
to solve, for instance, the basic problem of constructing a finite-state strategy for one player
to enforce a given regular winning condition.

On the other hand, modelling information with indistinguishability relations allows for
significantly more expressiveness than observation functions. This covers notably settings
where a player can receive an unbounded amount of information in one round. For instance,
models with causal memory where one player may communicate his entire observation
history to another player in one round can be captured with regular indistinguishability
relation, but not with observation functions of any finite range. Even when an information
partition that can be represented by finite-state observation functions, the representation by
an indistinguishability relation may be considerably more succinct. For instance, a player
that observes the move history perfectly, but with a delay of d rounds can be described
by a two-tape dfa with O(d) many states, whereas any Mealy automaton would require
exponentially more states to define the corresponding observation function.

At the bottom line, as a finite-state model of information, indistinguishability relations are
strictly more expressive and can be (at least exponentially) more succinct than observation
functions. In exchange, the observation-based model is directly accessible to automata-
theoretic methods, whereas the indistinguishability-based model is not. Our result in
Theorem 9 allows to identify effectively the instances of indistinguishability relations for
which this gap can be bridged. That is, we may take advantage of the expressiveness
and succinctness of indistinguishability relations to describe a game problem and use the
procedure to obtain, whenever possible, a reformulation in terms of observation functions
towards solving the initial problem with automata-theoretic methods.

This initial study opens several exciting research directions. One immediate question
is whether the fundamental finite-state methods on strategy synthesis for games with
imperfect information can be extended from the observation-based model to the one based
on indistinguishability relations. Is it decidable, given a game for one player with a regular
winning condition against Nature, whether there exist a winning strategy? Can the set of all
winning strategies be described by finite-state automata? In case this set is non-empty, does
it contain a strategy defined by a finite-state automaton?

Another, more technical, question concerns the automata-theoretic foundations of games.
The standard models are laid out for representations of games and strategies as trees of a fixed
branching degree. How can these automata models be extended to trees with unbounded
branching towards capturing strategies constrained by indistinguishability relations? Likewise,
the automatic structures that arise as information quotients of indistinguishability relations
form a particular class of trees, where both the successor and the descendant relation (that is,
the transitive closure) are regular. On the one hand, this particularity may allow to decide
properties about games (viz. their information trees) that are undecidable when considering
general automatic trees, notably regarding bisimulation or other forms of game equivalence.
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Finally, in a more application-oriented perspective, it will be worthwhile to explore
indistinguishability relations as a model for games where players can communicate via
messages of arbitrary length. In particular this will allow to extend the framework of infinite
games on finite graphs to systems with causal memory considered in the area of distributed
computing.
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Abstract
The Continuous Polytope Escape Problem (CPEP) asks whether every trajectory of a linear
differential equation initialised within a convex polytope eventually escapes the polytope. We
provide a polynomial-time algorithm to decide CPEP for compact polytopes. We also establish a
quantitative uniform upper bound on the time required for every trajectory to escape the given
polytope. In addition, we establish iteration bounds for termination of discrete linear loops via
reduction to the continuous case.
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1 Introduction

In ambient space Rd, a continuous linear dynamical system is a trajectory x(t), where t
ranges over the non-negative reals, defined by a differential equation ẋ(t) = f(x(t)) in
which the function f is affine or linear. If the initial point x(0) is given, the differential
equation uniquely defines the entire trajectory. (Linear) dynamical systems have been
extensively studied in Mathematics, Physics, and Engineering, and more recently have played
an increasingly important role in Computer Science, notably in the modelling and analysis
of cyber-physical systems; two recent and authoritative textbooks on the subject are [1, 12].

In the study of dynamical systems, particularly from the perspective of control theory,
considerable attention has been given to the study of invariant sets, i.e., subsets of Rd from
which no trajectory can escape; see, e.g., [7, 4, 2, 13]. Our focus in the present paper is on
sets with the dual property that no trajectory remains trapped. Such sets play a key role
in analysing liveness properties in cyber-physical systems (see, for instance, [1]): discrete
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progress is ensured by guaranteeing that all trajectories (i.e., from any initial starting point)
must eventually reach a point at which they “escape” (temporarily or permanently) the set
in question, thereby forcing a discrete transition to take place.

More precisely, given an affine function f : Rd → Rd and a convex polytope P ⊆ Rd,
both specified using rational coefficients encoded in binary, we consider the Continuous
Polytope Escape Problem (CPEP) which asks whether, for all starting points x0 in P, the
corresponding trajectory of the solution to the differential equation{

ẋ(t) = f(x(t))
x(0) = x0

eventually escapes P.1
CPEP was shown to be decidable in [11], in which an algorithm having complexity

between NP and PSPACE was exhibited. It is worth noting that, when the polytope P is
unbounded in space, the time taken for a given trajectory to escape may be unboundedly
large. For example, consider the unbounded one-dimensional polytope P = {x ∈ R | x ≥ 1}
and differential equation ẋ(t) = −x(t). For any starting point x0, the trajectory x(t) = e−tx0
converges to 0 and thus all trajectories eventually escape. However, the escape time is at
least log(x0) and hence is not bounded over all initial points in P. Even if the polytope is
bounded, there still need not be a uniform bound on the escape time. For example, consider
the polytope P = (0, 1] and the equation ẋ(t) = x(t). Given an initial point x0, the trajectory
x(t) = etx0 necessarily escapes P: but the escape time is at least log(1/x0), which again is
not bounded over P.

Main contributions. We show that, for compact (i.e., closed and bounded) polytopes,
CPEP is decidable in polynomial time. Moreover, we show how to calculate uniform escape-
time upper bounds; these bounds are exponential in the bit size of the descriptions of the
differential equation and of the polytope, and doubly exponential in the ambient dimension.
In the case of differential equations specified by invertible or diagonalisable matrices, we
have singly exponential bounds.

In comparing the above with the results from [11], we note both a substantial improvement
in complexity (from PSPACE to PTIME) as well as the production of explicit uniform
bounds on escape times. It is worth pointing out that the mathematical approach pursued
in [11] is non-effective, and therefore does not appear capable of yielding any quantitative
escape-time bounds. The new constructive techniques used in the present paper, which
originate mainly from linear algebra and algebraic number theory, are applicable owing to the
fact that we focus our attention on compact polytopes. In practice, of course, this is usually
not a burdensome restriction; in most cyber-physical systems applications, for instance, all
relevant polytopes will be compact (see, e.g., [1]).

Another interesting observation is that the seemingly closely related question of whether
a given single trajectory of a linear dynamical system escapes a compact polytope appears
to be vastly more challenging and is not known to be decidable; see, in particular, [3, 8, 9].
However, whether a given trajectory eventually hits a given single point is known as the
Continuous Orbit Problem and can be decided in polynomial time [10].

1 By “escaping” P, we simply mean venturing outside of P – we are unconcerned whether the trajectory
might re-enter P at a later time or not.
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Finally, we also consider in the present paper a discrete analogue of CPEP for discrete-
time linear dynamical systems, namely the Discrete Polytope Escape Problem (DPEP). This
consists in deciding, given an affine function f : Rd → Rd and a convex polytope P ⊆ Rd,
whether for all initial points x0 ∈ P, the sequence (xn)n∈N defined by the initial point and
the recurrence xn+1 = f(xn) eventually escapes P . This problem – phrased as “termination
of linear programs” over the reals and the rationals respectively – was already studied and
shown decidable in the seminal papers [5, 15], albeit with no complexity bounds nor upper
bounds on the number of iterations required to escape. By leveraging our results on CPEP,
we are able to show that, for compact polytopes, DPEP is decidable in polynomial time, and
moreover we derive upper bounds on the number of iterations that are singly exponential in
the bit size of the problem description and doubly exponential in the ambient dimension.

2 Preliminaries

2.1 The Continuous Polytope Escape Problem
As noted in the previous section, the Continuous Polytope Escape Problem (CPEP) for
continuous linear dynamical systems consists in deciding, given an affine function f : Rd → Rd
and a convex polytope P ⊆ Rd, whether there exists an initial point x0 ∈ P for which the
trajectory of the unique solution of the differential equation ẋ(t) = f(x(t)),x(0) = x0, t ≥ 0, is
entirely contained in P . For T ∈ R∪{∞}, we denote by X(T ) the set {x(t) | t ∈ R≥0, t ≤ T}.
A starting point x0 ∈ P is said to be a fixed point if for all t ≥ 0, x(t) = x0, and it is trapped
if the trajectory of x(t) is contained in P (i.e., X(∞) ⊆ P); thus solving the CPEP amounts
to deciding whether there is a trapped point.

We will represent a d-dimensional instance of the CPEP by a triple (A,B, c), where
A ∈ Rd×d represents the linear function fA : x 7→ Ax 2 and B ∈ Rn×d, c ∈ Rn represent
the polytope PB,c = {x ∈ Rd | Bx ≤ c}. Given such an instance and an initial point x0,
the solution of the differential equation is x(t) = exp(At)x0 ∈ Rd. For the computation of
bounds, we assume that all the coefficients of A, B and c are rational and encoded in binary.
The decidability results and escape bounds computed in this paper can be adapted to the
case of algebraic coefficients, but we don’t pursue this here.

Decidability of the CPEP was shown in [11]. In this paper we are interested in the
following problem: given a positive instance of CPEP (i.e., one in which every trajectory
escapes), compute an upper bound on the time to escape that holds uniformly over all initial
points in the polytope. In other words, we wish to compute T ∈ R≥0 such that for all
points x0 ∈ P there exists t0 ∈ R such that t0 ≤ T and x(t0) 6∈ P. We call such a T an
escape-time bound.

As noted in the Introduction, such an escape-time bound need not exist in general. In
the remainder of this paper, we therefore restrict our attention to compact polytopes.

2.2 Jordan Normal Forms
Let A ∈ Qd×d be a square matrix with rational entries. The minimal polynomial of A is
the unique monic polynomial m(x) ∈ Q[x] of least degree such that m(A) = 0. By the
Cayley-Hamilton Theorem, the degree of m is at most the dimension of A. The set σ(A) of
eigenvalues of A is the set of roots of m. The index of an eigenvalue λ, denoted by ν(λ), is
defined as its multiplicity as a root of m.

2 We remark that by increasing the dimension by one, the general CPEP can be reduced to the homogeneous
case, in which the function f is linear.
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For each eigenvalue λ of A we denote by Vλ the subspace of Cd spanned by the set of
generalised eigenvectors associated with λ. We also denote by Vr the subspace of Cd spanned
by the set of generalised eigenvectors associated with some real eigenvalue; we likewise denote
by Vc the subspace of Cd spanned by the set of generalised eigenvectors associated with some
non-real eigenvalue.

It is well known that each vector v ∈ Cd can be written uniquely as v =
∑

λ∈σ(A)

vλ, where

vλ ∈ Vλ. It follows that v can also be uniquely written as v = vr + vc, where vr ∈ Vr and
vc ∈ Vc. Moreover, we can write any matrix A as A = Q−1JQ for some invertible matrix Q
and block diagonal Jordan matrix J = diag (J1, . . . , JN ), with each block Ji, associated to
the eigenvalue λi having the following form:

λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · λi

 .

Given a rational matrix A, its Jordan Normal Form J = QAQ−1 can be computed in
polynomial time, as shown in [6]. Note that each vector v appearing as a column of the
matrix Q−1 is a generalised eigenvector. We also note that the index ν(λ) of some eigenvalue
λ corresponds to the dimension of the largest Jordan block associated with it. Given Ji, a
Jordan block of size k associated with some eigenvalue λ, the closed-form expression for its
exponential is

exp(Jit) = exp(λt)


1 t · · · tk−1

(k−1)!

0 1 · · · tk−2

(k−2)!
...

...
. . .

...
0 0 · · · t

0 0 · · · 1

 .

Using this, for all j ≤ d, the closed form of the j-th component of a trajectory is,
x(j)(t) =

∑
λ∈σ(A) pλ(t) exp(λt) where for all λ ∈ σ(A), pλ is a polynomial of degree at most

ν(λ)− 1.

2.3 The Discrete Polytope Escape Problem
We shall also consider the Discrete Polytope Escape Problem (DPEP). The DPEP consists
in deciding, given an affine function f : Rd → Rd and a convex polytope P ⊆ Rd, whether
there exists an initial point x0 ∈ P for which the sequence (xn)n∈N defined by the initial
point and the recurrence xn+1 = f(xn) is entirely contained in P. The definitions of fixed
and trapped points are immediately transposed to the discrete setting by considering the
sequence instead of the trajectory.

As with the CPEP, a d-dimensional instance of the DPEP is represented by a triple
(A,B, c), where A ∈ Rd×d represents the function fA : x ∈ Rd 7→ Ax ∈ Rd and B ∈ Rn×d
and c ∈ Rn represent the polytope PB,c = {x ∈ Rd | Bx ≤ c}. Using the Jordan Normal
form, one can see that the general form of the j-th component of the sequence (xn)n∈N
is x(j)

n =
∑
λ∈σ(A) pλ(n)λn, where for all λ ∈ σ(A), pλ is a polynomial of degree at most

ν(λ)− 1. We assume that all the coefficients of A, B and c are rational.
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The examples showing one cannot build a bound when the polytope is open or unbounded
for the CPEP can easily be carried over to the DPEP. Thus, when considering the DPEP,
we also only consider compact polytopes.

3 Deciding the Polytope Escape Problem for Compact Polytopes

While the result of [11] allows us to decide the existence of a trapped point for continuous
linear dynamical systems, the method is quite involved. When restricting ourselves to
compact polytopes, however, we can use the following proposition, which shows that the
existence of a trapped point is equivalent to the existence of a fixed point.

I Theorem 1. Given a CPEP instance (A,B, c), the polytope PB,c contains a trapped point
iff it contains a fixed point.

Proof. For the “if” direction, observe that a fixed point x0 ∈ PB,c is necessarily trapped.
Conversely, assume that there exists a trapped point x0 ∈ PB,c. Let H be the closure of

the convex hull of X(∞) = {x(t) | t ∈ R≥0}. Then H is convex, compact, and is contained
in PB,c. For each n ∈ N we define a function sn : H → H by sn(x) = eA2−nx. Note that
this function is well-defined: clearly X(∞) is invariant under sn; moreover, since sn is linear,
the convex hull of X(∞) is also invariant under sn; finally, since sn is continuous, the closure
of the convex hull of X(∞) (i.e., H) is invariant under sn.

For all n ∈ N, as the function sn is continuous, by Brouwer’s fixed-point theorem sn
admits at least one fixed point on H. Let Fn be the non-empty set of fixed points of sn in H.
Since sn = sn+1 ◦ sn+1 we have that Fn+1 ⊆ Fn for all n ∈ N. Moreover, by continuity of
the function fA, Fn is a closed set for all n ∈ N. Therefore, the intersection F∞ =

⋂
n∈N Fn

is non-empty. By continuity of fA, any point y ∈ F∞ satisfies fA(y) = 0. Therefore, the
CPEP instance admits at least one fixed point within PB,c, which concludes the proof. J

Since the set F = {x | Ax = 0} of fixed points is easy to calculate, we simply need to
check whether its intersection with the polytope is empty in order to decide CPEP. Since the
latter can be formulated as a linear program, we can decide CPEP for compact polytopes in
polynomial time.

The proof of Theorem 1 carries over with very small changes (considering the function
fA directly, instead of the family (sn)n∈N) to prove an analogous result for DPEP:

I Theorem 2. Given a DPEP instance (A,B, c), PB,c has a trapped point iff it contains a
fixed point.

4 Bounding the Escape Time for a Positive CPEP Instance

The goal of this section is to establish a uniform bound on the escape time of a positive
CPEP instance. The main result is as follows:

I Theorem 3. Given a d-dimensional positive instance of the CPEP, described by a tuple
of bit size b, the time to escape the polytope is bounded by

T = 4 exp
(
640bd4d+10) = ebd

O(d)
.

We prove this bound in four steps. First, in Subsection 4.1, we show that one can ignore
the component of the initial vector lying in the complex eigenspace Vc after a certain amount
of time. Intuitively speaking, this stems from the fact that a convex polytope that contains
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a spiral must contain the centre of that spiral. Thus whenever we have a complex eigenvalue
we can ignore the effects of the rotation by focusing on the axis of the helix formed by the
trajectory.

We could then try to find a bound on escape time by looking at positivity of expressions
of the form bT exp(At)y0, where b is the normal to a hyperplane supporting a face of the
polytope. Unfortunately, these expressions contain terms corresponding to many different
eigenvalues, which significantly complicates the analysis. We get around this problem in
Subsection 4.2 by bounding the distance of the polytope to the origin and to the set of fixed
points of the differential equation using hypercubes in the Jordan basis. This allows us to
disentangle the effects of the different eigenvalues. We prove that the trajectories of the
system escape the enclosing hypercube, and use the escape time of the hypercube as an
upper bound on the escape time of the polytope.

Our next step is then, in Subsection 4.3, to compute a uniform escape bound for our
hypercube. Finally, Subsection 4.4 combines the results from the previous sections to get the
desired bound on the escape time of the original polytope.

4.1 Removing the Complex Eigenvalues
Let (A,B, c), be a positive CPEP instance. Assume for now that A is given in Jordan normal
form. This assumption is not without cost as we will see in the next subsection. In this
subsection, we consider a single block Ji of A corresponding to a non-real eigenvalue λi.
Considering only the dimensions associated to the Jordan block Ji (i.e., the space Vλ) and
writing k = ν(λi), we have that given an initial point x0 = [x(1), . . . , x(k)], the components
of the trajectory x(t) are

x(1)(t)
x(2)(t)

...
x(k)(t)

 = exp(λit)


x(1) + x(2)t+ x(3)t2/2 + · · ·+ x(k)tk−1/(k − 1)!

x(2) + x(3)t+ · · ·+ x(k)tk−2/(k − 2)!
...

x(k)

 .
In order to compute the escape times in the presence of non-real eigenvalues we use the

fact that if a convex set contains a spiralling or helical trajectory, it must contain the axis
of that trajectory. A trajectory starting on this axis is not affected by the eigenvalue that
generates the rotation, moreover, if the trajectory starting in the axis escapes, then the
original trajectory also escapes (albeit, potentially a bit later). This allows us to reduce to
the case where we only have real eigenvalues. The following lemma formalizes this intuition.

I Lemma 4 (Zero in convex hull). Let

x(t) = (p1,0(t)eλ1t, . . . , p1,ν(λ1)−1(t)eλ1t , . . . , pr,0(t)eλrt, . . . , pr,ν(λr)−1(t)eλrt)T

be a trajectory where, for all j, λj = ηj+ iθj , θj is non-zero, and pj,k is the Taylor polynomial
corresponding to the factor eλjt of degree k. Then there exists a time T such that Conv(X(T ))
contains the origin (where Conv represents the convex hull). In particular, this T satisfies

T ≤
r∑
j=1

ν(λj)
π

θj
.

Proof Sketch. The basic idea is to take an initial point parametrized by t, travel along the
trajectory to the point of opposite phase for a particular component, and create a new point
where this component is equal to 0 by adding together a suitable convex combination of
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the opposite-phase point and the initial one. Since both these points were parametrized by
t, we can take the trajectory starting in the newly created point (which lies in the convex
hull of the original trajectory) and repeat for the other dimensions until every component
corresponding to the Vc subspace is equal to 0. J

4.2 Replacing the Polytopes with Hypercubes
Let (A,B, c) be a d-dimensional positive CPEP instance, J ∈ Rd×d a matrix in Jordan
normal form, and Q ∈ Rd×d be such that A = Q−1JQ.

Let us assume that all eigenvalues of A are real. Our approach is to work in the Jordan
basis. To this end we note that the trajectory x(t) = exp(At)x0 escapes the polytope PB,c
for all x0 ∈ Rd if and only if the trajectory y(t) = exp(Jt)y0 escapes the polytope PBQ−1,c
for all y0 ∈ Rd. (Note that all entries of Q−1 are real algebraic.) Below we analyse the latter
version of CPEP, i.e., with a matrix J in Jordan form with real algebraic entries.

The key intuition is that for every initial vector y0 ∈ Rd the trajectory y(t) = exp(Jt)y0
will either converge to a fixed point of the system or otherwise will diverge to infinity in
some component. In either case the trajectory must exit the polytope since the polytope is
bounded and does not meet the set F := {y ∈ Rd | Jy = 0} of fixed points. We are thus led
to define constants C, ε > 0 such that every trajectory y(t) = exp(Jt)y0 that either exits the
hypercube [−C,C]d or comes within distance ε of the set F of fixed points will necessarily
have left the polytope PBQ−1,c. More precisely, we seek C > 0 and ε > 0 such that:
1. PBQ−1,c ⊆ [−C,C]d,
2. For all y ∈ F the hypercube {y + x | x ∈ [−ε, ε]n} does not meet PBQ−1,c.
Note that such a positive ε must exist since, PBQ−1,c ∩F = ∅, PBQ−1,c is compact, and F is
closed. Having computed C and ε, we obtain the escape bound for the polytope PBQ−1,c by
computing the time to either exit the hypercube in Item 1 or enter one of the hypercubes
mentioned in Item 2.

In order to compute the escape bound, we only need the upper bound on the ratio C/ε
given in the following lemma.

I Lemma 5. Let (A,B, c), be a d-dimensional positive CPEP instance involving rationals,
each of at most b ∈ N bits. One can select C ∈ R and ε > 0 satisfying Conditions 1 and 2,
above, and such that

C

ε
≤ exp

(
640bd3d+8) .

Sketch of proof. The proof relies on Liouville’s inequality, which states that the size of
an algebraic number can be upper- and lower-bounded in terms of the degree and height
(coefficient size) of its minimal integer polynomial, and an arithmetic complexity lemma
which bounds the logarithmic height of the output of an arithmetic circuit in terms of the
heights of the inputs. We apply these bounds to the vertices of the polytope in the Jordan
basis (which are computed using the entries of B, c and Q−1). J

Let us illustrate how the change of basis can lead to an exponential size polytope. Consider
the matrix

A =

1 1 0
0 1 1
0 0 1.01

 ,
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its associated Jordan decomposition

A = Q−1JQ =

1 0 10000
0 1 100
0 0 1

1 1 0
0 1 0
0 0 1.01

1 0 −10000
0 1 −100
0 0 1


and the polytope P = {(0, 1, x3) ∈ R3 | 0 ≤ x3 ≤ 1}. This polytope is contained in the
hypercube of size C = 1 and every point is at least at distance ε = 1 from any fixed
point. However, in the Jordan basis, this polytope becomes equal to the set {(−10000x3, 1−
100x3, x3) ∈ R3 | (0, 1, x3) ∈ P}, which forces a choice of C and ε such that C

ε ≥ 10000.
In general, using the same reasoning on the matrix of dimension d

A =


1 1 0 · · · 0
0 1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 1 + 1/2b

 ,

leads to a blowup in the value for C/ε of 2b(d−1), thus exponential in the dimension.
The bound obtained in Lemma 5 is however doubly exponential in the dimension.

Analysing the proof of the lemma, in order to obtain an example for which the bound is tight,
one would need to build a family of polynomials with splitting fields of degree exponential in
the degree of the polynomial. Such polynomials unfortunately seem hard to find.

4.3 Computing an Upper Bound on the Escape Time for each
Eigenspace

Consider a real eigenvalue λ of the Jordan matrix J associated with a Jordan block of size
k. Let x0 = (x(1), x(2), . . . , x(k)) be a point in the polytope. By construction of C, we know
that ∀i ≤ k, x(i) ≤ C. The trajectory x(t), in that generalized eigenspace is

x(1)

x(2)

...
x(k)

(t) = exp(λt)


x(1) + x(2)t+ x(3)t2

2 + · · ·+ x(k)tk−1

(k−1)!

x(2) + x(3)t+ · · ·+ x(k−1)tk−2

(k−2)!
...

x(k)

 .
The trajectory, limited to this Jordan block, will either escape the hypercube [−C,C]d

that encloses PBQ−1,c , or will become so small that it will be at distance less than ε from the
fixed point 0. We therefore consider three cases: λ = 0 and λ > 0 for which the trajectory
will grow, and λ < 0 which decreases the coefficients. Once we have an escape bound for
each eigenvalue, we will deduce a uniform bound for the entire trajectory.

Note that escaping the hypercube or converging to a fixed point do not give symmetric
results: If we find a single component that grows larger than C, this is enough to escape the
polytope, but all dimensions need to become smaller than ε in order to escape via entering
the ε-region around the fixed point.

Case λ < 0. For all j ≤ k, x(j)(t) = exp(λt)
∑k
i=j x

(i) ti−j

(i−j)! . Using the bounds on the
coefficients, we thus have when t > 1

|x(j)(t)| = | exp(λt)
k∑
i=j

x(i) ti−j

(i− j)! | ≤ exp(λt)kCtk for j ∈ {1, . . . , k}
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In order to have |x(j)(t)| < ε, it is enough to have exp(λt)kCtk < ε, which is equivalent
to kCtk

ε < exp(−λt), and t > 1
−λ log

(
kC
ε

)
+ k
−λ log t

Here we need a small technical lemma.

I Lemma 6 (Lemma A.1 and A.2 from [14]). Suppose a ≥ 1 and b > 0, then t ≥ a log t+ b if
t ≥ 4a log(2a) + 2b.

Applying this lemma with a = max{1, k
−λ} (we assume k

−λ > 1 in the following in order
not to overload the formulas) and b = 1

−λ log
(
kC
ε

)
, we get a bound Tλ such that for all j ≤ k,

x(j)(T ) < ε, namely

Tλ ≤
4k
−λ

log
(

2k
−λ

)
+ 2
−λ

log
(
kC

ε

)
.

Case λ = 0. In this case, the trajectory restricted to this eigenspace is

x(j)(t) =
k∑
i=j

x(i) ti−j

(i− j)! for j ∈ {1, . . . , k}.

Assume that there exists j ≥ 2 such that |x(j)| > ε. This holds because by the definition
of ε a point of the polytope is at distance at least ε from a fixed point. In particular, the
line {xj = 0 | j 6= 1} is a line of fixed points of the differential equation. Now we require
a time Tλ such that at least one of these components is larger in magnitude than |C|. We
construct an upper bound on this time iteratively, using the fact that at least one coefficient
x(j) is greater than ε, and all of them are less than C, giving the following bound on Tλ:

Tλ ≤
1
k

(
k2C

ε

)2k−1

.

Case λ > 0. This case proceeds similarly to the λ = 0 case, although the presence of an
exponential factor gives us a much better bound Tλ:

Tλ ≤
2k−1

λ
log
(
kC

ε

)
.

4.4 Constructing a Uniform Bound
We can now combine the results of the previous sections to get a uniform escape bound,
considering all eigenvalues (real or not) simultaneously. Let the complex eigenvalues of
A be {η1 + iθ1, η1 − iθ1 . . . , ηr + iθr, ηr − iθr} and the real eigenvalues be {λ1, . . . , λs}.
Consider an arbitrary trajectory x(t) satisfying the differential equation ẋ(t) = Ax(t). By
Lemma 4 we know that for Tc :=

∑r
j=1 ν(ηj + iθj) πθj

there exists a point in the convex hull
of {x(t) | 0 ≤ t ≤ Tc} that lies in the real eigenspace of A. This allows us to derive a bound
on the escape time of the polytope P from a bound on the escape time of P ∩Vr. Indeed, let
Tr be such that every “real” trajectory escapes the polytope in time Tr. Then any “complex”
trajectory of duration Tc + Tr contains in its convex hull a “real” trajectory of duration Tr
which thus must have escaped the polytope. As the polytope is convex, this means that the
complex trajectory itself escaped.

As for the subspace Vr, we can derive from the escape bounds Tλ on each eigenspace
computed in Subsection 4.3 a time bound beyond which every real point has escaped the
polytope.
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I Lemma 7 (Real Time Bound). Given an initial point x0 ∈ Rn with zero components in Vc,
the trajectory x(t) escapes within time Tr = 2 maxλ Tλ.

Proof. Within a time Tr/2 = maxλ Tλ, thanks to the analysis of subsection 4.3, there are
three possibilities:

the trajectory escapes the hypercube of size C, this occurs if there was a coefficient
associated to a non-negative eigenvalue that was larger than ε;
all coefficients are now smaller than ε, entering the hypercube of size ε and escaping the
polytope since all the purely imaginary coefficients are zero;
some component corresponding to a positive or zero eigenvalue originally less than ε

has become greater than ε. In this case, waiting another Tr/2 amount of time puts the
trajectory in the first case, ensuring it escapes.

Thus in all cases the trajectory has escaped by time Tr. J

From the above, we can deduce that every trajectory escapes within time Tr + Tc. We
finally obtain Theorem 3 by analysing the complexity of this time bound in terms of the
number of bits of the instance and its dimension.

The magnitude of the resulting escape bound is singly exponential in the bit size of the
matrix entries and doubly exponential in the dimension of the matrix. However, if the matrix
is diagonalizable or invertible, we can ignore the case where the eigenvalue is zero. Then the
bound becomes O(4bd2) which is singly exponential in the bit size and dimension.

In Subsection 4.2 we showed how the change of basis explained the exponential factor in
the number of dimensions. It is clear that the escape time can also be exponential in the bit
size of the matrix.

For a very simple example, consider a 1-dimensional case where the polytope is the
interval [1, 2] and the differential equation is ẋ(t) = 2−bx(t) (which obviously can be written
using constants of bit size at most b). Then the initial point x0 = 1 yields a trajectory
x(t) = exp(2−bt)x0 whose escape time is 2b log 2, which is exponential in b.

5 The Discrete Case

Tiwari [15] and Braverman [5] have shown decidability for the DPEP over the rationals and
reals. In general, even if every trajectory is known to be escaping, it is not possible to place
a uniform bound on the number of steps. However if the polytope is compact, we can use
techniques similar to those used for the CPEP in order to provide a bound.

I Theorem 8. Given a d-dimensional positive DPEP instance (A,B, c) where the rational
numbers use at most b ∈ N bits and an initial point x0, then for N = ebd

O(d) , we have
xN 6∈ PB,c.

Sketch of proof. We reduce the problem to the continuous case. Assuming every eigenvalue
is positive, the matrix logarithm G of A is well defined. The trajectory of a continuous linear
dynamical system generated by G is of the form x(t) = exp(Gt)x(0). In particular, for an
initial point x0 and n ∈ N, we have

x(n) = exp(Gn)x0 = exp(G)nx0 = Anx0 = xn

Therefore, we can relate the escape time of the CPEP instance (G,B, c) to the escape time
of the DPEP instance (A,B, c).

The eigenvalues that are not positive are dealt with using a variant of the convex hull
Lemma 4. J
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Abstract
We precisely determine the SDP value (equivalently, quantum value) of large random instances
of certain kinds of constraint satisfaction problems, “two-eigenvalue 2CSPs”. We show this SDP
value coincides with the spectral relaxation value, possibly indicating a computational threshold.
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1 Introduction

This work is concerned with the average-case complexity of constraint satisfaction problems
(CSPs). In the theory of algorithms and complexity, the most difficult instances of a given
CSP are arguably random (sparse) instances. Indeed, the assumed intractability of random
CSPs underlies various cryptographic proposals for one-way functions [31, 35], pseudorandom
generators [11], public key encryption [6], and indistinguishability obfuscation [39], as well
as hardness results for learning [21] and optimization [27]. Random CSPs also provide a
rich testbed for algorithmic and lower-bound techniques based on statistical physics [44] and
convex relaxation hierarchies [36, 52].
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50:2 The SDP Value for Random Two-Eigenvalue CSPs

For a random, say, Max-Cut instance average degree d, its optimum value is with high
probability (whp) concentrated around a certain function of d. Similarly, given a random
3SAT instance where each variable participates in an average of d clauses, the satisfiability
status is whp determined by d. However explicitly working out the optimum/satisfiability as
a function of d is usually enormously difficult; see, for example, Ding–Sly–Sun’s landmark
verification [25] of the kSAT threshold for sufficiently large k, or Talagrand’s proof [55] of the
Parisi formula for the Sherrington–Kirkpatrick model (Max-Cut with random Gaussian edge
weights). The latter was consequently used by Dembo–Montanari–Sen [23] (see also [54]) to
determine that the Max-Cut value in a random d-regular graph is a 1

2 + P∗√
d
(1±od(1)) fraction

of edges (whp), where P ∗ ≈ .7632 is an analytic constant arising from Parisi’s formula.

Computational gaps for certification. Turning to computational issues, there are two main
algorithmic tasks associated with an n-variable CSP: searching for an assignment achieving
large value (hopefully near to the optimum), and certifying (as, e.g., convex relaxations do)
that no assignment achieves some larger value. Let’s take again the example of random
d-regular Max-Cut, where whp we have OPT ≈ 1

2 + P∗√
d
. It follows from [41] there is an efficient

algorithm that whp finds a cut of value at least 1
2 + 2/π√

d
. One might say that this provides a

2
πP∗ -approximation for the search problem, where 2

πP∗ ≈ .83. On the other side, the Max-Cut
in a d-regular graph G is always at most 1

2 + −λmin(G)
2d , and Friedman’s proof of Alon’s

Conjecture [29] shows that −λmin(G) 6 2
√
d− 1 + on(1) whp; thus computing the smallest

eigenvalue efficiently certifies OPT / 1
2 + 1√

d
. One might say that this efficient spectral

algorithm provides a 1
P∗ -approximation for the certification problem, where 1

P∗ ≈ 1.31.
It is a very interesting question whether either of these approximation algorithms can

be improved. On one hand, it would seem desirable to have efficient algorithms that come
arbitrarily close to matching the “true” answer on random inputs. On the other hand,
the nonexistence of such algorithms would be useful for cryptography and hardness-of-
approximation and -learning results.

Speaking broadly, efficient algorithms for the search problem seem to do better than
efficient algorithms for the certification problem. For example, given a random 3SAT
instance with clause density slightly below the satisfiability threshold of ≈ 4.2667, there
are algorithms [42] that seem to efficiently find satisfying assignments whp. On the other
hand, the longstanding Feige Hypothesis [27] is that efficient algorithms cannot certify
unsatisfiability at any large constant clause density, and indeed there is no efficient algorithm
that is known to work at density o(

√
n). Similarly, for the Sherrington–Kirkpatrick model,

Montanari [47] has recently given an efficient PTAS for the search problem1, whereas the best
known efficient algorithm for the certification problem is again only a 1/P ∗-approximation.
These kinds of gaps seem to be closely related to “information-computation gaps” and
Kesten–Stigum thresholds for information recovery and planted-CSP problems.

In this work we focus on potential computational thresholds for random CSP certifi-
cation/refutation problems in the sparse setting, and in particular how these thresholds
depend on the “type” of the CSP. For CSPs with a predicate supporting a pairwise-uniform
distribution – such as kSAT or kXOR, k > 3 – there is solid evidence that the computational
threshold for efficient certification of unsatisfiability is very far from the actual unsatis-
fiability threshold. Such CSPs are whp unsatisfiable at constant constraint density, but
any polynomial-time algorithm using the powerful Sum-of-Squares (SoS) algorithm fails to

1 Modulo a widely believed analytic assumption.
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refute unless the density is Ω(
√
n/ logn) [36]. But outside the pairwise-supporting case,

and especially for “2XOR-like” CSPs such as Max-Cut and NAE-3SAT (Not-All-Equal 3SAT),
the situation is much more subtle. For one, the potential gaps are much more narrow; e.g.,
in random NAE-3SAT, even a simple spectral algorithm efficiently refutes satisfiability at
constant constraint density. Thus one must look into the actual constants to determine
if there may be an “information-computation” gap. Another concern is that evidence for
computational hardness in the form of SoS lower bounds (degree 4 or higher) seems very
hard to come by (see, e.g., [46]).

Prior work. Let us describe two prior efforts towards computational thresholds for upper-
bound-certification in “2XOR-like” random CSPs. Montanari and Sen [48] (see also [8])
investigated the Max-Cut problem in random d-regular graphs, where the optimum value is
1
2 + P∗√

d
whp (ignoring 1±od(1) factors). Friedman’s Theorem implies that the basic eigenvalue

bound efficiently certifies the value is at most 1
2 + 1√

d
. By using a variant of the Gaussian

Wave [26, 20, 34] construction for the infinite d-ary tree, Montanari and Sen were able to
show that even the Goemans–Williamson semidefinite programming (SDP) relaxation [22, 30]
is still just 1

2 + 1√
d
whp. This may be considered evidence that no polynomial-time algorithm

can certify upper bounds better than 1
2 + 1√

d
, as Goemans–Williamson has seemed to be

the optimal polynomial-time Max-Cut algorithm in all previous circumstances. Of course it
would be more satisfactory to see higher-degree SoS lower bounds, but as mentioned these
seem very difficult to come by.

Recently, Deshpande et al. [24] have given similar results for random “c-constraint-
regular” NAE-3SAT CSPs; i.e., random instances where each variable participates in exactly c
NAE-3SAT constraints.2 Random c-constraint-regular instances of NAE-3SAT are easily
shown to be unsatisfiable (whp) for c > 8. Deshpande et al. identified an exact threshold
result for when the natural SDP algorithm is able to certify unsatisfiability: it succeeds
(whp) if c > 13.5 and fails (whp) if c < 13.5. Indeed, since c is always an integer, they show
that for c > 14 even the basic spectral algorithm certifies unsatisfiability, whereas for c 6 13
even the SDP augmented with “triangle inequalities” fails to certify unsatisfiability. Again,
this gives evidence for a gap between the threshold for unsatisfiability and the threshold for
computationally efficient refutation. The techniques used by Deshpande et al. are similar
to those of Montanari–Sen, except with random (b, c)-biregular graphs replacing random
c-regular graphs. (The reason is that the primal graph of a random c-constraint-regular
NAE-3SAT instance resembles the square of a random (3, c)-biregular graph.)

In fact, the Deshpande et al. result is more refined, being concerned not just with
satisfiability of random NAE-3SAT instances, but their optimal value as maximization
problems. Letting f(c) = 9

8 −
3
8 ·

(
√
c−1−

√
2)2

c for c > 3, they determined that in a random
c-constraint-regular NAE-3SAT instance, the SDP value is whp f(c)± o(1); and furthermore,
this is also the basic eigenvalue bound and the SDP-with-triangle-inequalities bound. (Note
that f(13.5) = 1.) Again, this may suggest that in these instances, computationally
efficient algorithms can only certify that at most an f(c) + o(1) fraction of constraints are
simultaneously satisfiable.

2 We have changed terminology to avoid a potential future confusion; we will be associating NAE-3SAT
constraints with triangle graphs, so c-constraint-regular NAE-3SAT instances will be associated to
2c-regular graphs.
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1.1 Our results
The goal of the present work is to generalize the preceding Montanari–Sen and Deshpande et al.
results to a broader class of sparse random 2CSPs and 2XOR-like optimization problems,
obtaining precise values for their SDP values. Along the way, we need to come to a deeper
understanding of the combinatorial and analytic tools used (nonbacktracking walks, Ihara–
Bass formulas, eigenvalues of random graphs and infinite graphs) and we need to extend these
tools to graphs that do not locally resemble trees (as in Montanari–Sen and Deshpande et al.).
We view this aspect of our work as a main contribution, beyond the mere statement of SDP
values for specific CSPs. We defer to Section 1.2.1 more detailed discussions of the technical
conditions under which we can obtain Ihara–Bass and Friedman-, and Gaussian Wave-type
theorems. But roughly speaking, we are able to analyze the SDP value for random regular
instances of optimization problems where each “constraint” (not necessarily a predicate) is an
edge-signed graph with two eigenvalues. Such constraints include: a single edge (corresponding
to random regular Max-Cut or 2XOR as in Montanari–Sen); a complete graph (studied by
Deshpande et al., with the K3 case corresponding to random regular NAE-3SAT); the Sort4
(a.k.a. CHSH) predicate; and, Forrelationk constraints. These last two have motivation from
quantum mechanics, and in fact the SDP value of the associated CSPs is precisely their
“quantum value”. We discuss quantum connections further in Section B.1.

We state here two theorems that our new techniques allow us to prove. Recall the Sort4
predicate, which is satisfied iff its 4 Boolean inputs x1, x2, x3, x4 satisfy x1 6 x2 6 x3 6
x4 or x1 > x2 > x3 > x4. We precisely define “random c-constraint-regular CSP instance”
in Section 2, but in brief, we work in the “random lift” model, each variable participates in
exactly c constraints, and each constraint is given random negations.3

I Theorem 1. For random c-constraint-regular instances of the Sort4-CSP, the SDP-
satisfiability threshold occurs (in a sense) at c = 4 + 2

√
2 ≈ 6.83. Indeed, if c > 7 then even

the basic eigenvalue bound certifies unsatisfiability (whp); and, if c 6 6 then the basic SDP
relaxation fails to certify unsatisfiability (whp).

We remark that the trivial first-moment calculation shows that a random c-constraint-regular
Sort4-CSP is already unsatisfiable whp at degree c = 4. Thus we again have evidence for a
gap between the true threshold for unsatisfiability and the efficiently-certifiable threshold.

Generalizing this, the Forrelationk constraint is a certain (quantum-inspired) map
{±1}2k+2k → [−1,+1] that measures how correlated one k-bit Boolean function is with the
Fourier transform of a second k-bit Boolean function. We give precise details in Section B.1;
here we just additionally remark that Forrelation1 corresponds to the “CHSH game”, and
that 1

2 + Forrelation1 is equivalent to the Sort4 predicate.

I Theorem 2. For random c-constraint-regular instances of the Forrelationk-CSP and any
constant ε > 0, the SDP value is whp in the range 2

√
c−1

c·2k/2 ± ε. This is also true of the
eigenvalue bound.

Note that the formula above decreases on [2−k/2,∞]. When considering the SDP value for
1
2 + Forrelation1, the formula above crosses the threshold of 1 when c = 4 + 2

√
2, yielding the

statement in Theorem 1 about the SDP-satisfiability threshold of random c-constraint-regular
Sort4-CSPs.

3 Our result holds for either of the following two negation models: (i) each constraint is randomly negated;
or, (ii) the constraints are not negated, but each constraint is applied to random literals rather than
random variables.
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1.2 Sketch of our techniques
Here we sketch how our results like Theorem 1 and Theorem 2 are proven, using random
Sort4-CSPs as a running example. A key property of the Sort4 predicate is that it is essentially
equivalent to the “2XOR” instance on the left picture of Figure 1.

More precisely, suppose (x1, x2, x3, x4) ∈ {±1}4 satisfies the Sort4 predicate. Then in the
graph on the left picture of Figure 1, exactly 3 out of 4 edges will be “satisfied” – where an
edge is considered satisfied when the product of its endpoint-labels equals the edge’s label.
Conversely, if (x1, x2, x3, x4) doesn’t satisfy Sort4 then exactly 1 out of the 4 edges above
will be satisfied. Now suppose we choose a random n-vertex c-constraint-regular instance
I of the Sort4-CSP with, say, c = 2. A small piece of such an instance might look like the
middle picture of Figure 1.

Up to a trivial affine shift in the objective function, the optimization task is now to
label the variables/vertices of I with ±1 values x1, . . . , xn so as to maximize 1

n

∑
ij Aijxixj ,

where A ∈ {0,±1}n×n is the adjacency matrix of the edge-signed graph partially depicted
above. The “eigenvalue upper bound” EIG(I) arises from allowing the xi’s to be arbitrary
real numbers, subject to the constraint

∑
i x

2
i = n. The “SDP upper bound” SDP(I) (which

can be shown to be at least as tight: SDP(I) 6 EIG(I)) arises from allowing the xi’s to be
arbitrary unit vectors in Rn, with the inner product 〈xi, xj〉 replacing xixj in the objective
function. Our goal is to identify some quantity f(c) (it will be 1+

√
2

2 in the c = 2 case)
such that

EIG(I) . f(c) . SDP(I) (1)

up to 1± o(1) factors, with high probability. This establishes that all three quantities are
equal (up to 1± o(1), whp), since SDP(I) 6 EIG(I) always.

In this section we mainly describe how to obtain the optimal inequality on the left in (1);
i.e., how to give a tight bound on the eigenvalues of (the edge-signed graph induced by) I.
Notice that if we were studying just random Max-Cut or 2XOR CSPs, we would have to get
tight bounds on the eigenvalues of a standard random c-regular graph.4 Excluding the top
eigenvalue of c in the case of Max-Cut, these eigenvalues are (whp) all at most 2

√
c− 1+on(1)

in magnitude. This is thanks to Friedman’s (difficult) proof of Alon’s Conjecture [29], made
moderately less difficult by Bordenave [12]. The “magic number” 2

√
c− 1 is precisely the

spectral radius of the infinite c-regular tree – i.e., the infinite graph that random c-regular
graphs “locally resemble”.

Returning to random 2-constraint-regular instances of the Sort4-CSP, the (edge-signed)
infinite graph X that they “locally resemble” is the right picture of Figure 1.

Here X := Sort4 + Sort4 is the so-called additive product of 2 copies of the Sort4 graph,
a notion recently introduced in [45]. By analogy with Alon’s Conjecture, it’s natural to
guess that the spectral radius of a random 2-constraint-regular Sort4-CSP instance is whp
ρ(X)± on(1), where ρ(X) denotes the spectral radius of X (which can be shown to be 2

√
2).

Indeed, our main effort is to prove the upper bound of ρ(X) + on(1), thereby establishing
the left inequality in (1) with f(c) = ρ(X).

4 More precisely, for random Max-Cut we have to lower-bound the smallest eigenvalue; for random 2XOR
– which includes randomly negating edges – we have to upper-bound the largest eigenvalue. In the
Max-Cut version with no negations, there is the usual annoyance that there is always a first “trivial”
eigenvalue of c, and one essentially wants to bound the second-largest (in magnitude) eigenvalue. The
effect of random negations is generally to eliminate the trivial eigenvalue, allowing one to focus simply
on the spectral radius of the adjacency matrix. This technical convenience is one reason we will always
work in a model that includes random negations.
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50:6 The SDP Value for Random Two-Eigenvalue CSPs

Figure 1 The Sort4 predicate, a piece of Sort4 instance and Sort4 infinite graph.

Regarding this proof of the left inequality, Xinyu Wu has brought to our attention the
relevance to our work of a recent paper by Bordenave and Collins [13]. Briefly put, their
paper establishes a Friedman/Bordenave theorem for large random graphs whose adjacency
matrices are noncommutative polynomials in a fixed number of independent random matching
matrices and permutation matrices (together with their transposes), analogously to our
Theorem 22 (which we will state in one of the following sections). We detail how both
theorems compare in Section A. As for the right inequality, it can proven using the “Gaussian
Wave” idea, allowing one to convert approximate eigenvectors of the infinite graph X to
matching SDP solutions on random finite graphs I. We carry this out in Section E.

1.2.1 Friedman/Bordenave Theorems for two-eigenvalue additive lifts
As stated, our main task in the context of large random 2-constraint-regular Sort4-CSP
instances is to show that their spectral radius is at most ρ(X) + on(1) whp. Incidentally,
the lower bound of ρ(X)− on(1) indeed holds; it follows from a generalization of the “Alon–
Boppana Bound” due to Grigorchuk and Żuk [32]. As for the upper bound, the recent
work [45] implies the analogous “Ramanujan graph” statement; namely, that there exist
arbitrarily large 2-constraint-regular Sort4-CSP instances with largest eigenvalue exactly
upper-bounded by ρ(X). However we need the analogue of Friedman/Bordenave’s Theorem.
Unlike in [45] we are not able to prove it for arbitrary additive products; we are able to prove
it for additive products of “two-eigenvalue” edge-signed graphs. To explain why, we first
have to review the proofs of the Alon Conjecture (that c-regular random graphs have their
nontrivial eigenvalues bounded by 2

√
c− 1 + on(1)).

Both Friedman’s and Bordenave’s proof of the Alon Conjecture rely on very sophisticated
uses of the Trace Method. Roughly speaking, this means counting closed walks of a fixed
length k in random c-regular graphs, and (implicitly) comparing these counts to those in the
c-regular infinite tree. Actually, both works instead count only nonbacktracking walks. The
fact that one can relate nonbacktracking walk counts to general walk counts is thanks to
an algebraic tool called the Ihara–Bass Formula (more on which later); this idea was made
more explicit in Bordenave’s proof. Incidentally, use of the nonbacktracking walk operator
has played a major role in recent algorithmic breakthroughs on community detection and
related results (e.g., [37, 49, 43, 14]).

A reason for passing to nonbacktracking closed walks is that it greatly simplifies the
counting. Actually, in the case of the infinite c-regular tree, it oversimplifies the counting;
infinite trees have no nonbacktracking closed walks at all! However, the correct quantity to
look at is “almost” nonbacktracking walks of length k, meaning ones that are nonbacktracking
for the first k/2 steps, and for the last k/2 steps, but which may backtrack once right in
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the middle. There are essentially (c − 1)k/2 of these in the c-regular infinite tree (one
may take k/2 arbitrary steps out, but then one must directly walk back home), yielding a
value of ((c − 1)k/2)1/k =

√
c− 1 for the spectral radius of the nonbacktracking operator

of the c-regular infinite tree. Bordenave uses (a very tricky version of) the Trace Method
to analogously show that the spectral radius of the nonbacktracking operator of a random
c-regular graph is

√
c− 1 + on(1) whp. Thanks to the Ihara–Bass Formula, this translates

into a bound of 2
√
c− 1 + on(1) for the spectral radius of the usual adjacency operator.

Returning now to our scenario of random 2-constraint-regular Sort4-CSP instances (with
their analogous infinite edge-signed graph X), we encounter a severe difficulty. Namely,
passing to nonbacktracking walks no longer creates a drastic simplification in the counting,
since there are nonbacktracking cycles within the constraint graphs themselves (in our
example, 4-cycles graphs). Thus nonbacktracking closed walks in large random instances can
have complicated structures, with many internal nonbacktracking cycles.

A saving grace in the case of Sort4-CSPs, and also ones based on Forrelationk or complete-
graph constraints for example, is that the adjacency matrices of these graphs have only two
distinct eigenvalues. (We will also use that their edge weights are ±1.) For example, after
rearranging the variables in the Sort4 predicate, its adjacency matrix is

A =


0 0 +1 +1
0 0 +1 −1

+1 +1 0 0
+1 −1 0 0

 , (2)

which has eigenvalues of ±
√

2 (with multiplicity 2 each). The two-eigenvalue property implies
that A satisfies a quadratic equation, and hence any polynomial in A is equivalent to a
polynomial of degree at most 1. The upshot is that we can relate general walks in Sort4-CSPs
(or more generally, CSPs with two-eigenvalue constraints) to what we call nomadic walks:
ones that take at most 1 consecutive step within a single constraint. We will formally define
and better motivate these in Section 2.3.

2 Preliminaries

2.1 2XOR optimization problems and their relaxations
All of the CSPs studied in this work (Max-Cut, NAE-3SAT, Sort4, Forrelationk, etc.) will
effectively reduce to 2XOR optimization problems – equivalently, the problem maximizing a
homogeneous degree-2 polynomial with ±1 coefficients over the Boolean hypercube.

I Definition 3 (Optimization of 2XOR instances). Let G = (V,E) be an undirected graph
(possibly with parallel edges), with edge-signing wt : E → {±1}. We call the pair I = (G,wt)
an instance. The associated 2XOR optimization problem is to determine the (true) optimum
value

OPT(I) = max
x:V→{±1}

avg
e={u,v}∈E

{wt(e)xuxv} ∈ [−1,+1].

The special case in which wt ≡ −1 is referred to as the Max-Cut problem on G, as in this case
1
2 + 1

2 OPT(I) = Max-Cut(G), the maximum fraction of edges that can be cut by a bipartition
of V .

Determining OPT(I) is NP-hard in the worst case, leading to the study of computationally
tractable approximations/relaxations. Two such approximations are the eigenvalue bound
and the SDP bound, which we now recall.
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I Definition 4 (Adjacency matrix/operator). The adjacency matrix A of a finite weighted
graph (G,wt) has rows and columns indexed by V ; the entry A[u, v] equals the sum of wt(e)
over all edges with endpoints {u, v}. In case G is infinite we can more generally define the
adjacency operator A on `2(V ) as follows:

for F ∈ `2(V ), AF (u) =
∑

e=(u,v)∈E

wt(e)F (v).

I Definition 5 (Eigenvalue bound). The eigenvalue bound EIG(I) for 2XOR instance I
with adjacency matrix A is n

2|E|λmax(A), where λmax denotes the maximum eigenvalue. We
have OPT(I) 6 EIG(I) always, as the eigenvalue bound captures the relaxation of 2XOR
optimization where we allow any x : V → R satisfying ‖x‖2 = n.

The SDP value provides an even tighter upper bound on OPT(I), and is still efficiently
computable.The SDP bound dates back to Lovász’s Theta Function in the context of the
IndependentSet problem [40], and was proposed in the context of the Max-Cut problem by
Delorme and Poljak [22].

I Definition 6 (SDP bound). The SDP bound SDP(I) for 2XOR instance I is

SDP(I) = max
~x:V→Sm−1

avg
e={u,v}∈E

{wt(e)〈~xu, ~xv〉} ∈ [−1,+1],

where Sm−1 refers to the set of unit vectors in Rm and the maximum is also over m (though
m = n is sufficient). The following holds for all I:

OPT(I) 6 SDP(I) 6 EIG(I).

The left inequality is obvious. One way to see the right inequality is to use the fact [22], based
on SDP duality, that SDP(I) is also equal to the minimum value of the eigenvalue bound
applied to A+ Y , where A is the adjacency matrix and Y ranges over all matrices of trace 0.

Goemans and Williamson [30] famously showed that
1
2 + 1

2 SDP(I) 6 1.138( 1
2 + 1

2 OPT(I))

holds for every 2XOR instance, and Feige–Schechtman [28] showed their bound can be tight
in the worst case. As for directly comparing SDP(I) and OPT(I), we have the following:

([17]) SDP(I) 6 O(OPT(I) · log(1/OPT(I))) always holds.
When G is bipartite (a special case of particular interest, see Section B.1), it holds that
SDP(I) 6 K ·OPT(I) for constant K. This is known as Grothendieck’s inequality [33],
and the constant is known [15] to satisfy K < π/(2 ln(1 +

√
2)) ≈ 1.78.

2.2 2XOR graphs with only 2 distinct eigenvalues
As mentioned, the class of constraints that we treat in this work are those that can be
modeled as 2XOR instances with 2 distinct eigenvalues. The Forrelationk constraint is a prime
example; when viewed as an edge-signed graph (i.e., ignoring the 2−2k scaling factors), its
eigenvalues are all ±2k/2. Another example is the complete graph constraint on r variables,
which has eigenvalues of r − 1 and −1 (the latter with multiplicity r − 1). The r = 3
complete-graph case, after a trivial affine shift, also corresponds to a Boolean predicate that
is well known in the context of CSPs: the NAE-3SAT predicate, as studied in [24]. This is
because

NAE-3SAT(x1, x2, x3) = 3
4 −

3
4(x1x2 + x2x3 + x3x1).

Let us make some definitions we will use throughout the paper.
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I Definition 7 (2-eigenvalue graphs). We call an undirected, edge-weighted simple graph I a
2-eigenvalue graph if there are two real numbers λ1 and λ2 such that each eigenvalue of I’s
(signed) adjacency matrix A is equal to either λ1 or λ2.

See, e.g., [53] for a paper studying such graphs. In this section, let us use the notation from
Definition 7 and prove some properties that will be used throughout the paper.

First, since A is symmetric, its eigenvectors are spanning and therefore every vector can
be written as the sum of a vector in ker(A− λ11) and one in ker(A− λ21). Thus:

I Proposition 8. (A− λ11)(A− λ21) = 0, where 1 denotes the identity matrix.

This proposition implies that A2 = (λ1 +λ2)A−λ1λ21. Thus we can deduce the following
two facts:

I Fact 9. For any v ∈ V (G),
∑

u∈V (G)

A[u, v]2 = A2[v, v] = −λ1λ2.

I Fact 10. For any pair of distinct vertices u, v ∈ V (G),∑
w∈V (G)

A[u,w]A[w, v] = A2[u, v] = (λ1 + λ2)A[u, v].

2.3 Random constraint graphs, instance graphs, and additive products
I Definition 11 (Constraint graphs). An r-ary, c-atom constraint graph is any n-fold lift H
of the complete bipartite graph Kr,c. Each vertex on the c-regular side is called a variable
vertex, and is typically depicted by a circle. The variable vertices are partitioned into r

variable groups each of size n, called the 1st variable group, the 2nd variable group, etc.
Each vertex on the r-regular side is called a constraint (or atom) vertex, and is typically
depicted by a square. Again, the constraint vertices are partitioned into c constraint (or atom)
groups of size n, called the 1st constraint/atom group, 2nd constraint/atom group, etc. When
n = 1, we call H a base constraint graph. We also allow “n =∞”: this means we take the
infinite (r, c)-biregular tree and partition its variable vertices into r groups and its constraint
variables into c groups in such a way that every variable vertex in the ith group has exactly
one neighbor from each of the c constraint groups, and similarly every constraint vertex in
the jth group has exactly one neighbor from each of the r variable groups.

I Definition 12 (Instance graphs). Let A = (A1, . . . , Ac) be a sequence of atoms, meaning
edge-weighted undirected graphs on a common vertex set [r]. (In this paper, the edge-weights
will usually be ±1.) We also think of each atom as a collection of “2XOR-constraints” on
variable set r. Now given an r-ary, c-atom constraint graph H, we can combine it with the
atom specification A to form the instance graph I := A(H). This edge-weighted undirected
graph I has as its vertex set all the variable vertices of H. The edges of I are formed as
follows: We iterate through each j ∈ [c] and each constraint vertex f in the jth constraint
group of H. Given f , with variables neighbors v1, . . . , vr in H, we place a copy of atom Aj
onto these vertices in I. (I may end up with parallel edges.) We refer to the graph obtained
by placing a copy of Aj on vertices v1, . . . , vr as Af , and for any edge e in I that came from
placing Aj, we define Atom(e) := Af . We use v ∼ Af to denote that v is one of v1, . . . , vr.
For u, v ∈ {v1, . . . , vr}, Af (u, v) denotes the edge in Af between u and v. And finally, denote
the set {Af : f constraint vertex in H} with Atoms(I).
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I Remark 13. Forming I from H is somewhat similar to squaring H (in the graph-theoretic
sense) and then restricting to the variable vertices. With this in mind, here is an alternate
way to describe the edges of I: For each pair of distinct vertices v, v′ in I (in variable groups
i and i′, respectively) we consider all length-2 paths joining v and v′ in H. For each such
path passing through a constraint vertex in constraint group j, we add the edge (v, v′) into
I with edge-weight Aj [i, i′] (which may be 0).

I Remark 14. We treat atoms as edge-weighted, undirected, complete graphs. Thus, for a
constraint vertex f in constraint-graph H, if there is an edge between vertices u and v, and
an edge between vertices v and w in the atom Af , then there is an edge between u and w in
Af . This view is significant in light of the proof of Theorem 38.

The following notions of additive lifts and additive products were introduced in [45]:

I Definition 15 (Random additive lifts). In the context of r-ary, c-atom constraint graphs,
a random n-lifted constraint graph simply means a usual random n-lift H (see, e.g., [10])
of the base constraint graph. Given atoms A = (A1, . . . , Ac), the resulting instance graph
I = A(H) is called a random additive lift of A.

I Definition 16 (Additive products). If instead H is the “∞-lift” of Kr,c, the resulting
infinite instance graph I = A(H) is called the additive product of A1, . . . , Ac, denoted
A1 + A2 + · · · + Ac.

We will also extend Definition 12 to allow random additive lifts with negations. Eventually
we will define a general notion of “1-wise uniform negations”, but let us begin with two
special cases. In the “constraint negation” model, we assign to each constraint vertex f
in H (from group j) an independent uniformly random sign ξf . Then, when the instance
graph I is formed from H, each edge engendered by the constraint f has its weight multiplied
by ξf . (Thus the edges in this copy of the atom Aj are either all left alone or they are
simultaneously negated, with equal probability.) In the “variable negation” model, for each
group-j constraint vertex f , adjacent to variable vertices v1, . . . , vr, we assign independent
and uniformly random signs (ξfi )i∈[r] to the variables. Then when the copy of Aj is added
into I, the {i, i′}-edge has its weight multiplied by ξfi ξ

f
i′ . This corresponds to the constraint

being applied to random literals, rather than variables.
Notice that in both of these negation models, every time a copy of atom Aj is placed

into I, its edges are multiplied by a collection of random signs (ξfij)i,j∈[r] which are “1-wise
uniform”. This is the only property we will require of a negation model.

I Definition 17 (Random additive lifts with negations). A random additive lift with 1-wise
uniform negations is a variant of Definition 12 where, for each constraint vertex f there are
associated random signs ξ(f)

i ∈ {±1}, where i ∈ [r]. For each fixed f , the random variables
ξ

(f)
i are required to be ±1 with probability 1/2 each, but they may be arbitrarily correlated;

across different f ’s, the collections (ξ(f)
i )i∈[r] must be independent. When the instance graph I

is formed as A(H), and a copy of Aj placed into I thanks to constraint vertex f , each new
edge {i, i′} has its weight Aj [i, i′] multiplied by ξ(f)

ii′ := ξ
(f)
i ξ

(f)
i′ .

I Remark 18. For a given constraint-vertex f of an instance graph I obtained via a random
additive lift with negations, the matrix Adj(Af ) has the same spectrum as Adj(Af ) where
Af denotes the subgraph prior to applying random negations, since there is a sign diagonal
matrix D such that Adj(Af ) = D ·Adj(Af ) ·D†.
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2.4 Nomadic walks operators
I Definition 19 (Nomadic walks). Let H be a constraint graph, A = (A1, . . . , Ac) a sequence
of atoms, and I = A(H) the associated instance graph. For initial simplicity, assume the
atoms are unweighted (i.e., all edge weights are +1). A nomadic walk in I is a walk where
consecutive steps are prohibited from “being in the same atom”. Note that if r = 2 and the
atoms are single edges, a nomadic walk in I is equivalent to a nonbacktracking walk.

To make the definition completely precise requires “remembering” the constraint graph
structure H. Each step along an edge of I corresponds to taking two consecutive steps in H
(starting and ending at a variable vertex). The walk in I is said to be nomadic precisely
when the associated walk in H is nonbacktracking.

Finally, in the general case when the atoms Aj have weights, each walk in I gets a weight
equal to the product of the edge-weights used along the walk.

Figure 2 The figure on the left shows a nonbacktracking walk on a subset of a 3-ary constraint
graph and the one on the right the same nomadic walk on the corresponding instance graph.

I Definition 20 (Nomadic walk operator). In the setting of the previous definition, the
nomadic walk operator B for I is defined as follows. Each edge e = {u, v} in I is regarded
as two opposing directed edges ~e = (u, v) and ~e−1 = (v, u), each having the same edge-weight
as e; i.e., wt(~e) = wt(~e−1) = wt(e). Let ~E denote the collection of all directed edges. Now B

is defined to be the following linear operator on `2( ~E):

for F ∈ `2( ~E), BF (~e) =
∑
~e′

wt(~e′)F (~e′),

where the sum is over all directed edges ~e′ such that the pair (~e,~e′) forms a nomadic walk of
length-2. In the finite-graph case we also think of B as a matrix; the entry B[~e,~e′] = wt(~e′)
whenever (~e,~e′) is a length-2 nomadic walk. Again, in the case where r = 2 and all atoms are
single edges, the nomadic walk operator B coincides with the nonbacktracking walk operator.
(See, e.g., [5] for more on nonbacktracking walks operators.)

3 Outline of our proof

The utility of the nomadic walk operator is twofold for us. First, for two-eigenvalue CSPs
we can relate the eigenvalues of the usual adjacency operator to those of the nomadic walk
operator through the following generalization of the Ihara–Bass Formula:

I Theorem 21. Let A be a sequence of atoms such that every atom has the same pair of
exactly two distinct eigenvalues, λ1 and λ2, and let H be a constraint graph on variable set
V . Let I = A(H) be the corresponding instance graph with vertex set V and denote by A
and B the adjacency matrix and nomadic walk matrix respectively of I.
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Let L(t) := 1−At+ (λ1 + λ2)t1+ (c− 1)(−λ1λ2)t2. Then we have:

(1 + λ1t)|V |
cλ2

λ2−λ1
−1(1 + λ2t)|V |

cλ1
λ1−λ2

−1 detL(t) = det(1−Bt).

We prove Theorem 21 in Section C.
The second utility of nomadic walks is that they provide the key simplification needed to

make closed-walk counting in non-tree-like CSPs tractable. Because of this, we are able to
establish the following modification of Bordenave’s proof of Friedman’s Theorem in Section F:

I Theorem 22. Let A = (A1, . . . , Ac) be a sequence of r-vertex atoms with edges weights ±1.
Let |I1| denote the instance graph A(Kr,c) associated to the base constraint graph when the
edge-signs are deleted (i.e., converted to +1), and let |B1| denote the associated nomadic
walk matrix. Also, let Hn denote a random n-lifted constraint graph and In = A(Hn) an
associated instance graph with 1-wise uniform negations (ξfii′). Finally, let Bn denote the
nomadic walk matrix for In. Then for every constant ε > 0,

Pr[ρ(Bn) >
√
ρ(|B1|) + ε] 6 δ,

where δ = δ(n) is on→∞(1).

And we can use our version of Ihara–Bass, Theorem 21, to conclude bounds on the
spectrum of the adjacency matrix A from Theorem 22, which is worked out in Section D.

I Theorem 23. Let In be a random additive n-lift of A with adjacency matrix AIn , and
let ε > 0. Then:

Pr
[
ρ(AIn) ∈ [λ1 + λ2 − 2

√
(c− 1)(−λ1λ2)− ε, λ1 + λ2 + 2

√
(c− 1)(−λ1λ2) + ε

]
= 1− on(1)

Yet another advantage of using nomadic walks instead of closed walks is that in Theorem 23
we are able to bound the left and right spectral edge of AIn by different values, whereas
counting closed walks would, at best, only give an upper bound on |λ|max(AIn).

Theorem 23 lets us conclude an upper bound on the SDP value, and we complement that
with a lower bound via the construction of an SDP solution that nearly matches the upper
bound. In particular, we prove the following in Section E.

I Theorem 24. For every ε > 0, for large enough n, there are |V (In)| × |V (In)| positive
semidefinite matrices M+ and M− with all-ones diagonals such that

〈AIn ,M+〉 > (λ1 + λ2 + 2
√

(c− 1)(−λ1λ2)− ε)n

〈AIn ,M−〉 6 (λ1 + λ2 − 2
√

(c− 1)(−λ1λ2) + ε)n.

with probability 1− on(1).

As detailed out in Section G, this lets us conclude the main theorem of this paper:

I Theorem 25. For random c-constraint-regular instances of a CSP with 2 distinct eigen-
values λ1 and λ2, the SDP value is in the range

λ1 + λ2 + 2
√

(c− 1)(−λ1λ2)
c(−λ1λ2) ± ε

with high probability, for any ε > 0.

Theorem 2 can be viewed as a special case of Theorem 25.
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A Relationship to the work of Bordenave–Collins

The paper of Bordenave–Collins[13] establishes a Friedman/Bordenave theorem for large
random graphs whose adjacency matrices are noncommutative polynomials in a fixed number
of independent random matching matrices and permutation matrices (together with their
transposes). As a most basic example, it recovers the following form of Friedman’s Theorem:
whp, the sum of d random perfect matchings has all nontrivial eigenvalues bounded in
magnitude by ρ(Z2∗· · · (d times) · · ·∗Z2)+on(1) = 2

√
d− 1+on(1). However, the Bordenave–

Collins work gives much more than this. For example, let G be the n-vertex graph formed as

P + P> +M − PMP>,
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where M is a random matching matrix and and P is an independent random permutation
matrix. It is not hard to see that G will essentially “locally resemble” a 2-constraint-regular
Sort4-CSP instance. And, the Bordenave–Collins work implies that the eigenvalues of G are
bounded (whp) by ρ(Sort4 + Sort4). Using the theory of free probability, it is possible to
directly compute that ρ(Sort4 + Sort4) = 2

√
2. In this way, our Theorem 23 in the case

of 2-constraint-regular Sort4-CSPs is covered by Bordenave and Collins. Indeed, it is not
hard to generalize this example to the case of c-constraint-regular Sort4-CSPs for any even
integer c.

Indeed, the Bordenave–Collins work also treats some kinds of graphs that our work
cannot; for example, Wu gave the example when G is the n-vertex graph generated by the
polynomial

P1 + P>1 + P2 + P>2 + P3 + P>3 + P4 + P>4 + P1P2P3P4 + P>4 P>3 P>2 P>1 ,

where P1, . . . ,P4 are independent uniformly random permutation matrices. This G “locally
resembles” the infinite free product graph X = Z4 ∗Z4 ∗Z4 ∗Z4, and the Bordenave–Collins
work implies that whp, G’s nontrivial eigenvalues are bounded in magnitude by ρ(X) + on(1).
(We remark that computing the numeric value of this ρ(X) is difficult, but possible; see,
e.g., [58, Ch. 9C]). Since the 4-cycle graph Z4 has more than two distinct eigenvalues, it is
not covered by our work.

This said, the Bordenave–Collins work does not subsume our Theorem 23, as there are
plenty of graph families that our theorem handles but Bordenave–Collins’s does not (seem to).
For example, Wu has sketched to us a proof that one cannot obtain c-constraint-regular Sort4
instances for odd c through any straightforward use of [13]. Additionally, even in the cases of
interest to us where Bordenave–Collins applies, we can point to some (minor) advantages
of our methods. For one, our model of random graph generation clearly corresponds to
precisely-regular CSP instances, whereas in the Bordenave–Collins model there will be (in
expectation) a constant number of local “blemishes” where one cannot interpret a piece of
the graph as a constraint. For another, our work directly yields the numerical values of the
appropriate spectral radii ρ(X) (though in the cases where our results apply, these can be
obtained through standard methods in free probability).

B Further preliminaries

B.1 Quantum games, and some quantum-relevant constraints
In the case when the underlying graph G is bipartite, SDP(I) has another important
interpretation: it is the true quantum value of the 2-player 1-round “nonlocal game” associated
to I. We give definitions below, but let us mention that the Sort4 (equivalently, CHSH) and
Forrelationk constraints from Theorem 1 and Theorem 2 are both: (a) bipartite; (b) directly
inspired by quantum theory. Thus those two theorems can be interpreted as determining
the true quantum value of random c-constraint-regular nonlocal games based on CHSH and
Forrelationk.

Let us now recall the relevant quantum facts.

I Definition 26 (Nonlocal 2XOR games). Given a 2XOR instance I = (G,wt) with G =
(U, V,E) bipartite, the associated nonlocal (2XOR) game is the following. There are spatially
separated players Alice and Bob. A referee chooses e = (u, v) ∈ E uniformly at random,
tells u to Alice, and tells v to Bob. Without communicating, Alice and Bob are required to
respond with signs xu, yv ∈ {±1}. The value to the players is the expected value of wt(e)xuyv.
It is easy to see that if Alice and Bob are deterministic, or are allowed classical shared
randomness, then the optimum value they can achieve is precisely OPT(I).
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I Theorem 27 ([19, 56]). In a nonlocal 2XOR game, if Alice and Bob are allowed to
share unlimited quantumly entangled particles, then the optimal value they can achieve is
precisely SDP(I).

The fact that there exist bipartite edge-signed I for which SDP(I) > OPT(I) is foundational
for the experimental verification of quantum mechanics, as the following example attests:

I Example 28. Consider the 2XOR instance depicted in Figure 3, called CHSH after Clauser,
Horne, Shimony, and Holt [18]. It has

OPT(CHSH) = 1/2 < 1/
√

2 = SDP(CHSH).

The upper bound 4·OPT(CHSH) 6 2 is often called Bell’s inequality [9], and the higher lower

+1

+1
+1

−1

x1 x3

x4x2

Figure 3 The CHSH game/CSP.

bound 1/
√

2 6 SDP(CHSH) is from [18] (with SDP(CHSH) 6 1/
√

2 due to Tsirelson [56]).
Aspect and others [7] famously experimentally realized this gap between what can be achieved
with classical vs. quantum resources.

In fact, the CHSH instance is nothing more than the Sort4 predicate in disguise! More
precisely (cf. (2)),

CHSH(x1, x2, x3, x4) = 1
4 (x1x3 + x2x3 + x1x4 − x2x4) = Sort4(x2, x3, x1, x4)− 1

2 .

Thanks to its degree-2 Fourier expansion, CSPs based on the Sort4/CHSH constraint have
been studied in a variety of contexts, including concrete complexity [3, 4, 51] and fixed
parameter algorithms [57].

Though Sort4 is a “predicate”, in the sense that it takes 0/1 (unsat/sat) values, there’s
nothing necessary about basing a large CSP on predicates. An interesting family of constraints
that can be modeled by 2XOR optimization, originally arising in quantum complexity
theory [1], is the family of “Forrelation” functions. For any k ∈ N, the Forrelationk function
is defined by

Forrelationk : {±1}2k×{±1}2k → [−1,+1], Forrelationk(x1, . . . , x2k , y1, . . . , y2k ) = 2−2kx>Hky,

where Hk =
(

+1 +1
+1 −1

)⊗k
is the kth Walsh–Hadamard matrix. Note that Forrelation0

corresponds to the single-(positive-)edge 2XOR CSP, and Forrelation1 is CHSH.

B.2 Operator Theory
The results in this section can be found in a standard textbook on functional analysis or
operator theory (see, for e.g. [38]).

Let V be an some countable set and let T : `2(V ) → `2(V ) be a bounded, self-adjoint
linear operator.
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I Definition 29. We refer to the spectrum of T , Spec(T ), as the set of all complex λ such
that λ1− T is not invertible. Spec(T ) is a nonempty, compact set.

I Definition 30. We call λ an approximate eigenvalue of T if for every ε > 0, there is
unit x in X such that ‖Tx− λx‖ 6 ε. We call such an x an ε-approximate eigenvector or
ε-approximate eigenfunction.

I Theorem 31. If T is a self-adjoint operator, then every λ ∈ Spec(T ) is an approximate
eigenvalue.

I Theorem 32 (Consequence of Proposition 4.L of [38]). If λ is an isolated point in Spec(T ),
then it is an eigenvalue of T , i.e., it is a 0-approximate eigenvalue.

I Corollary 33. λmin := min{Spec(T )} and λmax := max{Spec(T )} are both approximate
eigenvalues of T .

I Fact 34. Additionally,

λmin(T ) = inf
‖x‖=1

〈x, Tx〉,

λmax(T ) = sup
‖x‖=1

〈x, Tx〉.

I Definition 35. The spectral radius ρ(T ) is defined as maxσ∈Spec(T ) |σ|.

I Definition 36. The operator norm of T , denoted ‖T‖op, is defined as

sup
‖x‖=1,‖y‖=1

〈y, Tx〉 = sup
‖x‖=1

‖Tx‖.

I Fact 37. ρ(T ) = lim
k→∞

‖T k‖1/k
op .

C An Ihara–Bass formula for additive lifts of 2-eigenvalue atoms

Let A be a sequence of atoms such that every atom has the same pair of exactly two distinct
eigenvalues, λ1 and λ2, and let H be a constraint graph on variable set V . Let I = A(H) be
the corresponding instance graph. In this section, we use A and B to refer to the adjacency
matrix and nomadic walk matrix respectively of I. The vertex set of I is V . This section is
devoted to proving our generalization of the Ihara–Bass formula, stated below.

I Theorem 38. Let L(t) := 1−At+ (λ1 + λ2)t1+ (c− 1)(−λ1λ2)t21. Then we have

(1 + λ1t)|V |
cλ2

λ2−λ1
−1(1 + λ2t)|V |

cλ1
λ1−λ2

−1 detL(t) = det(1−Bt).

Our proof is a modification of one of the proofs of the Ihara–Bass formula from [50].

Nomadic Polynomials. Our first step is to define the following sequence of polynomials.

p0(x) = 1
p1(x) = x

p2(x) = x2 − (λ1 + λ2)x− c(−λ1λ2)
pk(x) = xpk−1(x)− (λ1 + λ2)pk−1(x)− (c− 1)(−λ1λ2)pk−2(x) for k > 3

and introduce the key player in the proof: the matrix of generating functions F (t) defined by

F (t)u,v =
∑
k>0

pk(A)uvtk.
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We use wt(e) to denote the weight on edge e, and define the weight of a walk W = e1e2 . . . e`
as

wt(W ) :=
∏̀
i=1

wt(ei).

We first establish combinatorial meaning for the polynomials pk(A).

B Claim 39. pk(A)uv is equal to the total weight of nomadic walks of length k from u to v.

Proof. When k = 0 and 1, the claim is clear. We proceed by induction.
Supposing the claim is indeed true for ps(A) when s 6 k − 1, then Apk−1(A)uv is the

total weight of length-k walks from u to v whose first k − 1 steps are nomadic and whose
last step is arbitrary. Call the collection of these walks Wuv. For W ∈ Wuv, let Wi denote
the edge walked on by the i-th step of W and let W(i) denote the length-i walk obtained by
taking the length-i prefix of W . We use lowercase wi to denote the vertex visited by the ith
step of the walk. Each W ∈ Wuv falls into one of the following three categories.
1. W is a nomadic walk. Call the collection of these walks W(1)

uv .
2. Wk = W−1

k−1. Call the collection of these walks W(2)
uv .

3. Wk−1 and Wk are in the same atom but Wk 6= W−1
k−1. Call the collection of these walks

W(3)
uv .

Suppose k > 3.∑
W∈W(2)

uv

wt(W ) =
∑

W∈W(2)
uv

wt(Wk−1)wt(W−1
k−1)wt(W(k−2))

=
∑

W∈W(2)
uv

wt(Wk−1)2wt(W(k−2))

=
∑

W ′ (k − 2)-length nomadic walk
from u to v

wt(W ′)
∑

e/∈Atom(W ′
k−2)

wt(e)2

We apply Fact 9 and get

=
∑

W ′ (k − 2)-length nomadic walk
from u to v

wt(W ′)(c− 1)(−λ1λ2)

= (c− 1)(−λ1λ2)pk−2(A)uv.

An identical argument shows that when k = 2,∑
W∈W(2)

uv

wt(W ) = c(−λ1λ2)

We do a similar calculation for W(3)
uv for k > 2. Observe that Wk−1 and Wk have to be

in the same atom, which we denote Atom(Wk−1). Thus, there is an edge e∗ between wk−2
and v in Atom(Wk−1) too (see Remark 14).
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∑
W∈W(3)

uv

wt(W )

=
∑

W∈W(3)
uv

wt(Wk−1)wt(Wk)wt(W(k−2))

=
∑

W ′ length-(k − 2) nomadic walk
W ′0=u,

e∗ s.t. (e∗)1 = wk−2, (e∗)2 = v

Atom(W ′
k−2) 6=Atom(e∗)

∑
e(1),e(2):

Atom(e(1))=Atom(e(2))=Atom(e∗)
(e(1))1=wk−2,(e(1))2=(e(2))1,(e(2))2=v

wt(e(1))wt(e(2))wt(W ′)

By applying Fact 10, we get

=
∑

W ′ length-(k − 2) nomadic walk
W ′0=u,

e∗ s.t. (e∗)1 = wk−2, (e∗)2 = v

Atom(W ′k−2) 6=Atom(e∗)

(λ1 + λ2)wt(e∗)wt(W ′)

= (λ1 + λ2)
∑

W ′ length-(k − 1) nomadic walk from u to v

wt(W ′)

= (λ1 + λ2)pk−1(A)uv.

Now, we have for k > 3,∑
W∈Wuv

wt(W ) =
∑

W∈W(1)
uv

wt(W ) +
∑

W∈W(2)
uv

wt(W ) +
∑

W∈W(3)
uv

wt(W )

Apk−1(A)uv =
∑

W∈W(1)
uv

wt(W ) + (c− 1)(−λ1λ2)pk−2(A)uv + (λ1 + λ2)pk−1(A)uv

∑
W∈W(1)

uv

wt(W ) = Apk−1(A)uv − ((c− 1)(−λ1λ2)pk−2(A)uv + (λ1 + λ2)pk−1(A)uv)

∑
W∈W(1)

uv

wt(W ) = pk(A)uv.

For the case of k = 2, we carry out the above calculation by replacing (c− 1)(−λ1λ2) with
c(−λ1λ2), thus completing the inductive step. C

Generic generating functions facts. Before returning to the specifics of our problem, we
give some “standard” generating function facts. These are extensions of the following simple
idea: if f(t) is a polynomial, then d

dt log f(t) = f ′(t) · f(t)−1 is (up to minor manipulations)
the generating function for the power sum polynomials of its roots. We start with a general
matrix version of this, which is sometimes called Jacobi’s formula (after minor manipulations):

I Proposition 40. Let M(t) be a square matrix polynomial of t. Then

d

dt
log detM(t) = tr

(
M ′(t)M(t)−1)

for all t ∈ R such that M(t) is invertible.

I Corollary 41. Taking M(t) = 1−Ht for a fixed square matrix H yields

d

dt
log det(1−Ht) = tr

(
−H(1−Ht)−1) =⇒ −t d

dt
log det(1−Ht) =

∑
k>1

tr(Hk)tk.
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Regarding this corollary, we can derive the statement about the power sums of the roots
of a polynomial f(t) by taking H = diag(λ1, . . . , λn) where the λi’s are the roots of f . On
the other hand, it actually suffices to prove Corollary 41 in the case of diagonal H, since
det(1−Ht) is invariant to unitary conjugation.

Growth Rate. A key term that shows up in our Ihara–Bass formula is the “growth rate” of
the additive product of A. Suppose we take t-step nomadic walk starting at a vertex v in the
additive product graph, take a t-step nomadic walk back to v, and then sum over the total
weight of such walks. What we get is ((c− 1)(−λ1λ2))t (see Lemma 49 for a proof). Thus,
the total weight of aforementioned walks grows exponentially in t at a rate of (c− 1)(−λ1λ2),
which in this section we will refer to as αgr.

The fundamental recurrence. We now relate the generating function matrix F (t) to A.
Using the recurrence used to generated the polynomials pk(x), one can conclude

I Lemma 42. F (t) = AF (t)t− (λ1 + λ2)F (t)t− αgrF (t)t2 + (1 + tλ1)(1 + tλ2)1.

From this recurrence one may express the inverse of F (t) in terms of A and c:

I Corollary 43. (1 + λ1t)−1(1 + λ2t)−1 · (1−At+ (λ1 + λ2)t1+ αgrt
2
1)F (t) = 1. In other

words, F (t) = (1 + λ1t)(1 + λ2t)1 · L(t)−1, where L(t) := 1−At+ (λ1 + λ2)t1+ αgrt
2
1 is

the “deformed Laplacian” appearing in the statement of our Ihara–Bass theorem.

Strategy for the rest of the proof. The strategy will be to apply Proposition 40 with the
deformed Laplacian L(t). On the left side we’ll get a determinant involving A. On the
right side we’ll get a trace involving L(t)−1, which is essentially F (t). In turn, tr(F (t)) is a
generating function for nomadic closed walks, which we can hope to relate to B (although
there will be an edge case to deal with).

Let’s begin executing this strategy. By Proposition 40 we have

−t d
dt

log detL(t) = −t · tr
(
L′(t)L(t)−1)

= −t · tr
(
(1(λ1 + λ2)−A+ 2αgrt1) · ((1 + λ1t)(1 + λ2t))−1F (t)

)
= 1

(1 + λ1t)(1 + λ2t)
tr
(
−(λ1 + λ2)F (t)t+AF (t)t− 2αgrF (t)t2

)
where we used Corollary 43. Now using Lemma 42 again we may infer

−(λ1 + λ2)F (t)t+AF (t)t− 2αgrF (t)t2 = (1− αgrt
2)F (t)− (1 + λ1t)(1 + λ2t)1;

combining the previous two identities yields

−t d
dt

log detL(t) = tr
(

1− αgrt
2

(1 + λ1t)(1 + λ2t)
F (t)− 1

)
. (3)

Nomadic walks. The right side above is tr(F (t)) up to some scaling/translating. By
definition, tr(F (t)) is the generating function for nomadic circuits (closed walks) with any
starting point. A first instinct is therefore to expect that

tr(F (t)) ?=
∑
k>0

tr(Bk)tk, (4)
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as tr(Bk) is the weight of closed length-k circuits of direct edges in the nomadic world.
However this is not quite right: tr(Bk) only weighs the nomadic circuits whose first and last
edge are not in the same atom. The nomadic circuits that are not weighed can be identified
either as (i) “tailed” nomadic circuits, i.e., those where the last directed edge is the reverse
of the first directed edge; (ii) “stretched” nomadic circuits, i.e., those where the last directed
edge is distinct from but in the same atom as the first directed edge. E.g., tr(Bk) would fail
to count the following:

u

Figure 4 A length-9 nomadic walk from u to u with a tail of length 2.

Thus we need to correct (4).

I Definition 44. With the −1 taking care of the omission of k = 0, we define

Tails(t) =
∑
k>1

(weight of nomadic circuits of length k)tk = tr(F (t)− 1). (5)

We also define

NoTails(t) =
∑
k>1

(weight of tail-less nomadic circuits of length k)tk

and

Simple(t) =
∑
k>1

(weight of non-stretched, tail-less nomadic circuits of length k)tk (6)

=
∑
k>1

tr(Bk)tk = −t d
dt

log det(1−Bt),

where the last equality used Corollary 41.

Tails vs. no tails vs. simple: more generating functions. We finish by relating Tails(t),
NoTails(t) and Simple(t). This is the recipe:

A general nomadic circuit of length k is constructed from a tail-less nomadic circuit
of length k − 2` with a tail of length-` attached to one of its vertices.

Tail-less nomadic circuits can be classified as (i) non-stretched tail-less nomadic circuits, and
(ii) stretched, tail-less nomadic circuits, for which,

NoTails(t)− Simple(t) =
∑
k>1

(weight of stretched, tail-less nomadic walks of length k)tk.

Consider a stretched, tail-less nomadic walk of length k that starts at vertex v, takes the
edge e from v to u, goes on a nomadic walk W from u to w, and finally takes edge e′ from w

to v to end the walk at v. Note that e and e′ are part of the same atom Ai. Summing over
all v in atom Ai and applying Fact 10 gives
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∑
v∼Ai

wt(Ai(v, u))wt(Ai(w, v))wt(W ) = (λ1 + λ2)wt(Ai(w, u))wt(W ) = (λ1 + λ2)wt(W ′)

where W ′ is a nomadic circuit of length k − 1 that starts at w, takes edge Ai(w, u) in the
first step, and then takes walk W . From this, we derive

NoTails(t)− Simple(t) = (λ1 + λ2)t · Simple(t).

It’s easy to count the total weight of tails of length ` one can attach to a given vertex of
a tail-less nomadic circuit: if the tail-less nomadic circuit is non-stretched, the first edge can
be chosen by picking any edge in (c− 2) atoms and each of the remaining `− 1 edges can be
chosen by picking any edge (c− 1) atoms; and if the tail-less nomadic circuit is stretched,
each edge (including the first one) can be chosen anywhere from (c− 1) atoms. From this
it’s easy to derive

Tails(t) =
(
1 + (−λ1λ2)(c− 2)t2 + (−λ1λ2)2(c− 2)(c− 1)t4 + · · ·

)
Simple(t) (7)

+
(
1 + (−λ1λ2)(c− 1)t2 + (−λ1λ2)2(c− 1)2t4 + · · ·

)
(NoTails(t)− Simple(t))

= 1− (−λ1λ2)t2

1− (c− 1)(−λ1λ2)t2 Simple(t) + (λ1 + λ2)t
1− (c− 1)(−λ1λ2)t2 Simple(t)

⇐⇒ Simple(t) = 1− αgrt
2

(1 + λ1t)(1 + λ2t)
Tails(t).

Using Tails(t) = tr(F (t)− 1) (i.e., (5)), we obtain:

I Corollary 45. Simple(t) = tr
(

1− αgrt
2

(1 + λ1t)(1 + λ2t)
(F (t)− 1)

)
.

But this is almost the same as (3). The difference is

tr
(
1− 1− αgrt

2

(1 + λ1t)(1 + λ2t)
1

)
= tr

(
(λ1 + λ2)t+ (c− 2)(−λ1λ2)t2

(1 + λ1t)(1 + λ2t)
1

)
= |V | · (λ1 + λ2)t+ (c− 2)(−λ1λ2)t2

(1 + λ1t)(1 + λ2t)
.

Combining the above with (3), Corollary 45, and (6), we finally conclude

−t d
dt

log detL(t) + |V | · (λ1 + λ2)t+ (c− 2)(−λ1λ2)t2

(1 + λ1t)(1 + λ2t)
= −t d

dt
log det(1−Bt).

Finally, dividing by −t, integrating (which leaves an unspecified additive constant), and
exponentiating (now there is an unspecified multiplicative constant) yields

(const.) · (1 + λ1t)|V |
cλ2

λ2−λ1
−1(1 + λ2t)|V |

cλ1
λ1−λ2

−1 detL(t) = det(1−Bt).

By consideration of t = 0 we see that the constant must be 1.

D Connecting the adjacency and nomadic spectrum

Let A = (A1, . . . , Ac) be a sequence of atoms with two distinct eigenvalues λ1 and λ2, let
H be an r-ary, c-atom constraint graph, and let I = A(H) be the corresponding instance
graph. We use A for the adjacency matrix of I, B for its nomadic walk matrix, V for its
vertex set, and E for its edge set. Recall that αgr is defined as (c− 1)(−λ1λ2).

STACS 2020



50:24 The SDP Value for Random Two-Eigenvalue CSPs

We want to use Theorem 38 to describe the spectrum of B with respect to that of A. We
will refer to eigenvalues of B with the letter µ and eigenvalues of A with the letter ν.

First, notice that if t is such that det(1− Bt) = 0, then µ = 1/t has det(µ1− B) = 0,
meaning µ is an eigenvalue of B. Thus we want to find for which values of t does the left-hand
side of the expression in Theorem 21 become 0 in order to deduce the spectrum of B.

It is easy to see that when t = −1/λ1 and t = −1/λ2 the left-hand side is always 0, so
−λ1 is an eigenvalue of B with multiplicity |V |( cλ2

λ2−λ1
− 1) and −λ2 is an eigenvalue with

multiplicity |V |( cλ1
λ1−λ2

− 1). The remaining eigenvalues are given by the values of t for which
det(L(t)) = 0. Let t be such that det(L(t)) = 0; then we have that L(t) is non-invertible,
which means there is some vector v in the nullspace of L(t). By rearranging the equality
L(t)v = 0 we get:

Av = 1 + (λ1 + λ2)t+ αgrt
2

t
v.

This implies that 1+(λ1+λ2)t+αgrt
2

t is an eigenvalue of A. Let ν be some eigenvalue of A;
then we have that ν = 1+(λ1+λ2)t+αgrt

2

t for some t. If we rearrange the previous expression
we get the following quadratic equation in t:

1 + (λ1 + λ2 − ν)t+ αgrt
2 = 0.

By solving this expression for t and then using the fact that µ = 1/t we get (notice that
c > 1 and λ1λ2 6= 0):

µ = −2αgr

λ1 + λ2 − ν ±
√

(λ1 + λ2 − ν)2 − 4αgr
.

To analyze the previous we look at three cases:

1. ν > λ1 + λ2 + 2√αgr. In this case the discriminant is always positive. If we look at the
− branch of the ± we further get that the denominator of the previous formula is always
less than −2√αgr which means we have that µ is real and µ > √αgr. Additionally, we
have that in this interval µ is an increasing function of ν.

2. ν < λ1 + λ2 − 2√αgr. This is analogous to the previous case; if we look at the + branch
we have that µ is real and µ < −√αgr. Additionally, we have that in this interval µ is a
decreasing function of ν.

3. ν ∈ [λ1 + λ2 − 2√αgr, λ1 + λ2 + 2√αgr], for each such ν we get a pair of anti-conjugate
complex numbers, meaning a pair x, x̄ such that xx̄ = −1.

Finally, the spectrum of B also contains 0 with multiplicity
2|E| − |V |

(
2 + ( cλ1

λ1−λ2
− 1) + ( cλ2

λ2−λ1
− 1)

)
, which we get because the degrees of the polyno-

mials in the left-hand side and right-hand do not match; the right-hand side has degree 2|E|
but we only described |V |

(
2 + ( cλ1

λ1−λ2
− 1) + ( cλ2

λ2−λ1
− 1)

)
roots.

We can now summarize the eigenvalues of B in the following way:

−λ1 with multiplicity |V |( cλ2
λ2−λ1

− 1);
−λ2 with multiplicity |V |( cλ1

λ1−λ2
− 1);

for each eigenvalue ν of A we get two eigenvalues that are solutions to the previous
quadratic equation;
0 with multiplicity 2|E| − |V |

(
2 + ( cλ1

λ1−λ2
− 1) + ( cλ2

λ2−λ1
− 1)

)
;
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Figure 5 The spectrum of B for a additive 15-lift of 6 copies of a Sort4 graph. The blue dots are
eigenvalues that come from eigenvalues of A, the red dots are either −λ1, −λ2 or 0 and the yellow
line is the limit √αgr.
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Figure 6 A box plot of ρ(A) and ρ(B) of 100 samples of random instance graphs as a function
of c with n = 15, r = 4 and all atoms are the Sort4 graph. The dashed line shows the theoretical
bound prediction of 2√αgr for A and √αgr for B.

The distribution of the eigenvalues that come from A forms a sort of semicircle. To
showcase this behavior we display an example of the spectrum of typical lifted instance in
Figure 5.

We can now prove the central theorem of this section:

I Theorem 46. Let In be a random additive n-lift of A with adjacency matrix AIn , and
let ε > 0. Then:

Pr
[
ρ(AIn) ∈ [λ1 + λ2 − 2√αgr − ε, λ1 + λ2 + 2√αgr + ε

]
= 1− on(1)

Proof. First recall Theorem 23 (for fully formal statement, see Theorem 79) and notice that
ρ(|B|) = αgr, which follows by using the trivial upper bound of α2k

gr on tr
(
|B|k (|B|∗)k

)
.

From cases 1 and 2 in the previous analysis we get that if ρ(AIn) /∈ [λ1 + λ2 − 2√αgr −
ε, λ1 + λ2 + 2√αgr + ε] there is some constant δ such that ρ(Bn) > √αgr + δ, which happens
with on→∞(1) probability by Theorem 79. J
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Also, we note that even though throughout our proof we hide various constant factors,
the bounds obtained in Theorem 46 and Theorem 79 are empirically visible for very small
values of n and c. To justify this claim we show in Figure 6 a plot of samples of random
instance graphs for different values of c with a fixed small n.

E Additive products of 2-eigenvalue atoms

In this section, we let A = (A1, . . . , Ac) be a sequence of {±1}-weighted atoms with the same
pair of exactly two distinct eigenvalues, λ1 and λ2. We also let X := A1 + · · · + Ac be the
additive product graph. We use AX to denote the adjacency operator of X. In this section,
In is the instance graph of a random additive n-lift of A with negations, and we use AIn to
denote its adjacency matrix. Finally, we recall αgr := (c− 1)(−λ1λ2) and define the quantity
rX := 2√αgr.

The main results that this section is dedicated to proving are:

I Theorem 47. The following are true about the spectrum of X:
1. Spec(AX) ⊆ [λ1 + λ2 − rX , λ1 + λ2 + rX ];
2. λ1 + λ2 − rX and λ1 + λ2 + rX are both in Spec(AX).

I Theorem 48. For every ε > 0, for large enough n, there are |V (In)| × |V (In)| positive
semidefinite matrices M+ and M− with all-ones diagonals such that

〈AIn ,M+〉 > (λ1 + λ2 + rX − ε)n
〈AIn ,M−〉 6 (λ1 + λ2 − rX + ε)n.

with probability 1− on(1).

In this section, when we measure the distance between vertices u and v in an instance
graph In, we look at the corresponding vertices in the constraint graph H, and define
d(u, v) := dK(u,v)

2 . We use Puv to refer to the collection of edges comprising the shortest
path between u and v. We begin with a statement about the “growth rate” of X.

I Lemma 49. For all vertices v in V (X), for t > 1 we have∑
u:d(u,v)=t

∏
{i,j}∈Puv

(AX)2
ij = c(c− 1)t−1(−λ1λ2)t.

Proof. We proceed by induction. When t = 1, the statement immediately follows from
Fact 9. Suppose the equality is true for some t = `− 1, we will show how statement follows
for t = `.

∑
u:d(u,v)=`

∏
{i,j}∈Puv

(AX)2
ij =

∑
u:d(u,v)=`−1

 ∏
{i,j}∈Puv

(AX)2
ij

 ·
 ∑
u′∈N(u)
d(u′,v)=`

(AX)2
uu′


From Fact 9,

∑
u′∼u

d(u′,v)=t

(AX)2
uu′ is equal to (c− 1)(−λ1λ2), which means the above is equal to

=
∑

u:d(u,v)=`−1

 ∏
{i,j}∈Puv

(AX)2
ij

 (c− 1)(−λ1λ2)

= (c− 1)`−2c(−λ1λ2)`−1(c− 1)(−λ1λ2)
= c(c− 1)`−1(−λ1λ2)`. J
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I Corollary 50. Since all the weights of X are {±1}-valued, the degree of every vertex in X
equals c(−λ1λ2).

E.1 Enclosing the spectrum
Let BX denote the nomadic walk operator of X. In this section, we show

Spec(AX) ⊆ [λ1 + λ2 − rX , λ1 + λ2 + rX ] .

The first part of the proof will involve showing that the spectral radius of BX is bounded
by √αgr, and the second part translates this bound to the desired one on Spec(AX). Both
these components closely follow proofs from the work of Angel et al.; the former after [5,
Theorem 4.2] and the latter after [5, Theorem 1.5].

I Lemma 51. Spec(BX) ⊆
[
−√αgr,

√
αgr
]
.

Proof. Arbitrarily fix a root r of X. Recall that the spectral radius of BX is equal to
lim
(
‖BkX‖op

)1/k, and hence it suffices to bound
∣∣〈g,BkXf〉∣∣ for arbitrary f and g with

‖f‖ = ‖g‖ = 1.
We can decompose every nomadic walk of length k into two segments, a segment of i steps

towards r followed by a sequence of k − i steps away from r; henceforth, we call length-k
nomadic walks with such a decomposition (i, k)-nomadic walks. For every pair of directed
edges e and e′ such that e, e1, . . . , ek−1, e

′ is an (i, k)-nomadic walk, let a(e, e′) := α
k/2−i
gr .

From Lemma 49, the number of (i, k)-nomadic walks starting at a fixed e is at most c
c−1α

k−i
gr .

Similarly, the number of (i, k)-nomadic walks ending at fixed e′ is at most c
c−1α

i
gr. Now, we

are ready to bound
∣∣〈g,BkXf〉∣∣ by imitating the proof of [5, Theorem 4.2].∣∣〈g,Bk

Xf〉
∣∣

6

∣∣∣∣∣∣
∑

e,e1,...,ek−1,e′ nomadic

f(e′)g(e)

∣∣∣∣∣∣
6

∑
e,e1,...,ek−1,e′ nomadic

|f(e′)g(e)|

6
∑

e,e1,...,ek−1,e′ nomadic

a(e, e′)f(e′)2 + 1
a(e, e′)g(e)2

6 sup
e′

 ∑
e,e1,...,ek−1,e′ nomadic

a(e, e′)

 ‖f‖2
2 + sup

e

 ∑
e,e1,...,ek−1,e′ nomadic

1
a(e, e′)

 ‖g‖2
2

6
k∑

i=0

sup
e′

 ∑
(i,k)-nomadic walks ending at e′

a(e, e′)

+ sup
e

 ∑
(i,k)-nomadic walks starting at e

1
a(e, e′)


6

k∑
i=0

αk/2−i
gr · c

c− 1α
i
gr +

k∑
i=0

αi−k/2
gr · c

c− 1α
k−i
gr

= 2kc
c− 1α

k/2
gr

Thus, we have

‖BkX‖op 6
2kc
c− 1α

k/2
gr

and taking the limit of ‖BkX‖
1/k
op for k approaching infinity yields the desired statement. J
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I Lemma 52. If 0 is an approximate eigenvalue of Qt := (t2 + (c− 1)(−λ1λ2))1− AXt+
(λ1 + λ2)1t, then it is also an approximate eigenvalue of BX − t1 as long as t 6= −λ1,−λ2.

Proof. Let f be an ε-approximate eigenfunction of unit norm of Qt, then we construct a
Cε-approximate eigenfunction g of BX− t1 defined on pairs uv such that u and v are incident
to a common atom for an absolute constant C > 0 as follows,

guv :=

 ∑
w:{v,w}∈Atom({u,v})

(AX)vwfw

− (λ1 + λ2 + t)fv

for every edge {u, v} of X.

((BX − t1)g)uv

=

 ∑
w:

{v,w}/∈Atom({u,v})

(BX)uv,vwgvw

− tguv

=

 ∑
w:

{v,w}/∈Atom({u,v)}

(AX)vw

 ∑
x:

{w,x}∈Atom({v,w})

(AX)wxfx − (λ1 + λ2 + t)fw


− tguv

=

 ∑
w:

{v,w}/∈Atom({u,v)}

∑
x:

{w,x}∈Atom({v,w})

(AX)vw(AX)wxfx

−
 ∑

w:
{v,w}/∈Atom({u,v)}

(λ1 + λ2 + t)(AX)vwfw

− tguv

Using Fact 9 and Fact 10, the first term of the three above can be rewritten as

(c− 1)(−λ1λ2)fv + (λ1 + λ2)
∑

w:{v,w}/∈Atom({u,v})

(AX)vwfw

which lets us continue the chain of equalities

= (c− 1)(−λ1λ2)fv − t
∑

w:
{v,w}/∈Atom({u,v)}

(AX)vwfw

− t

 ∑
w:{v,w}∈Atom({u,v})

(AX)vwfw

+ t(λ1 + λ2 + t)fv

= (c− 1)(−λ1λ2)fv − t(Af)v + t(λ1 + λ2 + t)fv

= (Qtf)v.

Thus,

‖(BX − t1)g‖2
2 =

∑
{u,v}∈E(X)

((BX − t1)g)2
uv + ((BX − t1)g)2

vu = d
∑
v∈V

(Qtf)2
v 6 dε2

It remains to show that the norm of g is bounded from above and below. Fix a vertex u and
an atom Ã incident to u. Consider g(u,Ã), the restriction of g to entries uv such that the edge
{u, v} is in Ã, and f (Ã), the restriction of f to vertices v such that Ã is incident to v. Observe



S. Mohanty, R. O’Donnell, and P. Paredes 50:29

that g(u,Ã) = (A
Ã
− (λ1 + λ2 + t)1)f (Ã). Since the min eigenvalue of A

Ã
− (λ1 + λ2 + t)1 is

nonzero as long as t 6= −λ1,−λ2, the `2 norm of g is bounded from below. To prove that the
`2 norm of g is bounded from above, observe that

‖g‖2
2 =

∑
Ã∈Atoms(X)

∑
(u,v):{u,v}∈Ã


 ∑
w:{v,w}∈Ã

(AX)vwfw

− (λ1 + λ2 + t)fv


2

6 2
∑

Ã∈Atoms(X)

∑
(u,v):{u,v}∈Ã

 ∑
{v,w}∈Ã

(AX)2
vwf

2
w + (λ1 + λ2 + t)2f2

v



There is some coefficient α such that the weight on f2
v for each v in the above sum is bounded

by α, thereby giving a bound of

2
∑
v∈V

αf2
v 6 2α‖f‖2

2 6 2α. J

Proof of Item 1 in Theorem 47. Let Qt be as defined in the statement of Lemma 52. It
can be verified that 0 is an approximate eigenvalue of either Q−λ1 or Q−λ2 if and only if
dX := c(−λ1λ2), which we recall from Corollary 50 is the degree of every vertex in X, is in
the spectrum of AX . Let µ+ := λ1 + λ2 + rX + η be in spectrum of AX . If µ+ 6= dX , then
we can conclude from Lemma 52 that

αgr + η +
√
ηαgr + η2/4

is an approximate eigenvalue of BX . Since Spec(BX) is contained in [−√αgr,
√
gr], η cannot

be positive. A similar argument applied to µ− := λ1 + λ2 − rX − η precludes η from being
positive as long as µ− 6= dX . As a result, we can conclude that Spec(AX) is contained in
[µ−, µ+] ∪ {dX}. If dX is in the interval [µ−, µ+], then we are done. If not, then it remains
to show that dX is not in Spec(AX). Since X is {±1}-weighted and the degree of each vertex
is dX , any nonzero x satisfying AXx = dXx must have the same nonzero magnitude in all its
entries. However, such x has unbounded `2 norm, and hence AX has no eigenvectors with
eigenvalue dX in `2(V ). If dX is in Spec(AX), it is an isolated point in the spectrum, and
hence, by Theorem 32, is an eigenvalue of AX , which means dX cannot be in Spec(AX). J

E.2 Construction of Witness Vectors
I Lemma 53 (Item 2 of Theorem 47 restated). There exists λ− 6 λ1 + λ2 − rX and
λ+ > λ1 + λ2 + rX in the spectrum of AX .

Proof. Let δ > 0 be a parameter to be chosen later. First define ρ as

ρ(s) := s(1− δ)√
(c− 1)(−λ1λ2)

Then, for vertex v and define f (s)
v in the following way.

f (s)
v (u) := ρ(s)d(u,v)

∏
{i,j}∈Puv

(AX)ij where Puv is the unique nomadic walk between u and v

(8)
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To show the lemma, it suffices to prove the claim that for every ε > 0, there is suitable
choice of δ so that

〈f (−1)
v , AXf

(−1)
v 〉

〈f (−1)
v , f

(−1)
v 〉

< λ1 + λ2 − rX + ε

and

〈f (1)
v , AXf

(1)
v 〉

〈f (1)
v , f

(1)
v 〉

> λ1 + λ2 + rX − ε

We proceed by analyzing the expression 〈f (s)
v , AXf

(s)
v 〉.

〈f (s)
v , AXf

(s)
v 〉 =

∑
u∈V

f (s)
v (u)AXf (s)

v (u)

= f (s)
v (v)

∑
w∈N(v)

(AX)vw f
(s)
v (w) +

∑
u∈V,u6=v

f (s)
v (u)

∑
w∈N(u)

(AX)uwf (s)
v (w)

=
∑

w∈N(v)

(AX)2
vwρ(s) +

∑
u∈V,u6=v

f (s)
v (u)

∑
w∈N(u)

(AX)uwf (s)
v (w) (9)

Let w0, w1, . . . wT−1, wT be the sequence of vertices from the unique nomadic walk between
u and v where w0 = u and wT = v. Now, let u∗ = w1. Recall the notation Pu,v used to
denote the unique nomadic walk between u and v as a sequence of edges. Let Wu,v :=
ρ(s)d(u,v) ∏

{i,j}∈Pu,v
(AX)ij . Using the notation we just developed, along with applying Fact 9

on the first term of the above, we get

(9) = c(−λ1λ2)ρ(s) +
∑

u∈V,u6=v

ρ(s)Wu∗v(AX)uu∗ ·(AX)uu∗Wu∗v +
∑

w∈Atom({u∗,u})

ρ(s)(AX)u∗w(AX)wuWu∗v+

∑
w /∈Atom({u,u∗})

w∈N(u)

ρ(s)2(AX)u∗u(AX)2
uwWu∗v


= c(−λ1λ2)ρ(s) +

∑
u∈V,u6=v

ρ(s)W 2
u∗v(AX)2

uu∗ ·1 +

∑
w∈Atom({u∗,u})

ρ(s)(AX)u∗w(AX)wu

Auu∗
+

∑
w /∈Atom({u,u∗})

w∈N(u)

(AX)2
uwρ(s)2


Now we apply Fact 9 and Fact 10 and get

= c(−λ1λ2)ρ(s) +
∑

u∈V,u6=v

ρ(s)W 2
u∗v(AX)2

uu∗ ·
(
1 + ρ(s)(λ1 + λ2) + (c− 1)(−λ1λ2)ρ(s)2)

= c(−λ1λ2)ρ(s) +
∑

u∈V,u6=v

W 2
uv ·

1 + ρ(s)(λ1 + λ2) + (c− 1)(−λ1λ2)ρ(s)2

ρ(s)

= c(−λ1λ2)ρ(s) +
(
‖f (s)

v ‖2 − 1
)
· 1 + ρ(s)(λ1 + λ2) + (c− 1)(−λ1λ2)ρ(s)2

ρ(s)

= c(−λ1λ2)ρ(s) +
(
‖f (s)

v ‖2 − 1
)
·
(

1 + s2(1− δ)2

ρ(s) + (λ1 + λ2)
)
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When s = ±1, the above quantity is equal to

c(−λ1λ2)ρ(s) +
(
‖f (s)
v ‖2 − 1

)
·
(

1 + (1− δ)2

ρ(s) + (λ1 + λ2)
)

Now, note that

〈f (s)
v , AXf

(s)
v 〉

〈f (s)
v , f

(s)
v 〉

= c(−λ1λ2)ρ(s)
‖f (s)
v ‖2

+
(

1− 1
‖f (s)
v ‖2

)
·
(

1 + (1− δ)2

ρ(s) + (λ1 + λ2)
)

(10)

We now compute ‖f (s)
v ‖2, and we assume s is either +1 or −1.

‖f (s)
v ‖2 =

∞∑
t=0

ρ(s)2t
∑

u:d(u,v)=t

∏
{i,j}∈Puv

(AX)2
ij

=
∞∑
t=0

ρ(s)2tc(c− 1)t−1(−λ1λ2)t (by Lemma 49)

= c

c− 1

∞∑
t=0

(
(1− δ)2t

(c− 1)t(−λ1λ2)t

)
(c− 1)t(−λ1λ2)t

= c

c− 1

∞∑
t=0

(1− δ)2t

= c

c− 1 ·
1

δ(2− δ)

Plugging this back in to (10) gives

(10) = δ(2− δ)(c− 1)(−λ1λ2)ρ(s) +
(

1 + (1− δ)2

ρ(s) + (λ1 + λ2)
)
·
(

1− (c− 1)δ(2− δ)
c

)
= δ(2− δ)s(1− δ)

√
(c− 1)(−λ1λ2)+(

(1 + (1− δ)2)
√

(c− 1)(−λ1λ2) 1
s(1− δ) + (λ1 + λ2)

)
·
(

1− (c− 1)δ(2− δ)
c

)
For any ε > 0, we can choose δ small enough so that the above quantity is at least

λ1 + λ2 + 2
√

(c− 1)(−λ1λ2)− ε

when s = 1 and at most

λ1 + λ2 − 2
√

(c− 1)(−λ1λ2) + ε

when s = −1. J

E.3 SDP solution for random additive lifts
For ε > 0, consider f (1)

v constructed in the proof of Lemma 53, for which

〈f (1)
v , AXf

(1)
v 〉 > (λ1 + λ2 + rX − ε)‖f (1)

v ‖2

Let Lε be an integer chosen such that the total `2 mass of f(1)
v

‖f(1)
v ‖

on vertices at distance

greater than Lε from v is at most ε. Define gv as the vector obtained by zeroing out f(1)
v

‖f(1)
v ‖

on
vertices outside B(v, Lε) and normalizing to make its norm 1, where B(v, Lε) is the collection
of vertices within distance Lε of v.
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For any ε′ > 0, we can choose ε so that

〈gv, AXgv〉 > λ1 + λ2 + rX − ε′ (11)

gv enjoys the property of being determined by a constant number of vertices. For any instance
graph G such that there is a unique shortest nomadic walk between any pair of vertices u
and v, we can explicitly define

gv(u) =

0 if d(u, v) > Lε′

C
∏

{i,j}∈Puv

(1−δ)(AX)ij√
(c−1)(−λ1λ2)

Puv unique shortest nomadic walk from u to v

where C is a constant chosen so that gv has unit norm.
Recall that In is a random signed additive n-lift obtained from a sequence of atoms A.

I Definition 54. Let G be a graph and let φ : E(G)→ {±1} be a signing of the edges. We
call a signing φ balanced if for any cycle given by sequence of edges e1, . . . , ek in E(H), we
have φ(e1) · · ·φ(ek) = 1.

We use Aφ(G) to denote the adjacency operator of G signed with respect to φ – i.e.
(Aφ(G))uv = φ({u, v}) if {u, v} is an edge and 0 otherwise.

I Lemma 55. Suppose φ is a balanced signing of G. Then there exists a diagonal sign
operator D such that Aφ(G) = DAGD

†.

Proof. Without loss of generality, assume G is connected. Take a spanning tree of G
and root it at some arbitrary vertex r. Let Drr = 1 and for Px a path from r to x let
Dxx =

∏
e∈Px φ(e).

It remains to verify that DAGD† = Aφ(G). Let P be the path between x and y in the
spanning tree. By virtue of φ being balanced, we have φ({x, y})

∏
e∈P φ(e) = 1, which means

φ({x, y}) =
∏
e∈P φ(e). Also, note that

∏
e∈P φ(e) is equal to

∏
e∈Px φ(e)

∏
e∈Py φ(e), which

is equal to DxxDyy. Thus,

(Aφ(G))ij = φ({i, j})(AG)ij = DiiDjj(AG)ij =
(
DAGD

†)
ij

which proves the claim. J

I Lemma 56. Let XD be the graph with the adjacency operator DAXD† where D is a
diagonal sign matrix. There exists D such that XD covers In.

Proof. When In is generated, (i) the sequence of atoms A first undergoes an additive n-lift,
and then, (ii) the atoms in the lifted graph are given a random balanced signing. The
intermediate graph Ĩn between (i) and (ii) is covered by X via a map π : V (X)→ V (Ĩn).
Once (ii) is performed, construct X ′ by taking X and setting the signs on all edges in π−1(e)
to the sign on e for each e ∈ E(In). X ′ can be seen as a balanced signing applied on X,
and hence there exists such a D by Lemma 55. J

I Definition 57. Let π be a covering map from appropriate XD to In. Call a vertex
v ∈ V (In) L-bad if B(v, L) is not isomorphic to B(v∗, L) where v∗ ∈ V (XD) is such that
π(v∗) = v.

I Remark 58. The condition of a vertex v in V (In) being L-bad according to Definition 57
is equivalent to the corresponding variable v′ in the constraint graph having a cycle in its
distance 2L-neighborhood.
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With the observation of Remark 58 in hand, we can extract the following as a consequence
of [24].

I Lemma 59. The number of K-bad vertices in graph In for constant K is bounded by
O(logn) with probability 1− on(1).

Construct a vector g̃v for each vertex v of In.

g̃v =
{
ev if v is Lε′ -bad
gv otherwise

We are finally ready to prove Theorem 48.

Proof of Theorem 48. Let

M+ :=
∑

v∈V (In)

g̃v g̃
†
v

Writing out (M+)uu for arbitrary u

(M+)uu =
∑

v∈V (In)

g̃v(u)g̃v(u)

=
∑

v∈V (In)

g̃u(v)2

= ‖g̃u‖2 = 1

and writing out 〈AIn ,M+〉 gives the following with probability 1− on(1).

〈AIn ,M+〉 =
∑

v∈V (In)

〈g̃v, AIn g̃v〉

=
∑

v∈V (In)
v is not (Lε + 1)-bad

〈g̃v, AIn g̃v〉+
∑

v∈V (In)
v is (Lε + 1)-bad

〈g̃v, AIn g̃v〉

>
∑

v∈V (In)
v is not (Lε + 1)-bad

λ1 + λ2 + rX − ε′ +
∑

v∈V (In)
v is (Lε + 1)-bad

c(λ1λ2) (by (11))

> (n−O(logn))(λ1 + λ2 + rX − ε′)−O(logn) (by Lemma 59)
= (1− on(1))(λ1 + λ2 + rX − ε′)n

The desired inequality on 〈AIn ,M+〉 can be obtained by choosing ε′ small enough and n
large enough. The inequality on 〈AIn ,M−〉 can be proved by repeating the whole section
and proof by constructing vectors g̃v from f

(−1)
v . J

F Friedman/Bordenave for additive lifts

I Theorem 60. Let A = (A1, . . . , Ac) be a sequence of r-vertex atoms with edges weights ±1.
Let |I1| denote the instance graph A(Kr,c) associated to the base constraint graph when the
edge-signs are deleted (i.e., converted to +1), and let |B1| denote the associated nomadic
walk matrix. Also, let Hn denote a random n-lifted constraint graph and In = A(Hn) an
associated instance graph with 1-wise uniform negations (ξfii′). Finally, let Bn denote the
nomadic walk matrix for In. Then for every constant ε > 0,

Pr[ρ(Bn) >
√
ρ(|B1|) + ε] 6 δ,

where δ = δ(n) is on→∞(1).
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I Remark 61. It might seem that our bound involving |B1| may be poor, given that it ignores
sign information from the atoms. However, it is in fact sharp, and the reason is that the
main contribution to ρ(Bn) when using the Trace Method is from walks in which almost all
edges are traversed twice. And if an edge is traversed twice, it of course does not matter if
its sign is −1 or +1.
I Remark 62. In fact, it is evident from the theorem statement that without loss of generality
we may assume that the atoms are unweighted – i.e., that all weights are +1. The reason
is that for each constraint f in group j, if we multiply ξfii′ by the fixed value Aj [i, i′], the
resulting signs remain 1-wise uniform – and this has the effect of eliminating all signs from
the atoms. Thus henceforth we will indeed assume that the original atoms are all unweighted.

The idea of Friedman/Bordenave proofs. The standard method for trying to prove a
theorem such as Theorem 60 involves applying the Trace Method to Bn. Since Bn is not
a self-adjoint operator, a natural way to do this is to consider tr(B`

nB
∗
n
`) for some large `.

Roughly speaking, this counts the number of closed walks that walk nomadically in In
for the first ` steps, and then walk nomadically in the reverse of In for the next ` steps.
A major difficulty is the following: the Trace Method naturally incurs an “extra” factor
of n, and to overcome this one wants to choose ` � logn. However, Θ(logn) is precisely
the radius at which random constraint graphs become dramatically non-tree-like; i.e., they
are likely to encounter nontrivial cycles. Based on Friedman’s work, Bordenave overcomes
this difficulty as follows: First, ` is set to c logn for some small positive constant c > 0.
Nomadic walks of this length may well encounter cycles, but one can show that with high
probability, they will not encounter tangles – meaning, more than one cycle in a radius of `.
(This crucial concept of “tangles” was isolated by Friedman and refined by Bordenave.) Now
we set k = ωn(1) to be a slowly growing quantity and consider length-2k` walks formed
by doing ` nomadic steps, then ` nomadic reverse-steps, all k times in succession. In other
words, we consider tr((B`

nB
∗
n
`)k). On one hand, since 2k`� logn, bounding this quantity

will be sufficient to overcome the n-factor inherent in the Trace Method. On the other hand,
using tangle-freeness at radius ` along with very careful combinatorial counting allows us to
bound the number of closed length-2k` walks.

Our proof follows this methodology and draws ideas from Bordenave’s original proof
from [12] as well as [24] and [16]. However, our main technical lemma, Lemma 83, uses a
new tool that takes advantage of the random negations our model employs that simplifies
the equivalent proofs in the three mentioned papers and also allows us to generalize it to
our model.

F.1 Trace Method setup, and getting rid of tangles
To begin carrying out this proof strategy, we first define tangle-freeness.

I Definition 63 (Tangles-free). Let G be an undirected graph. A vertex v is said to be
`-tangle-free within G if the subgraph of G induced by v’s distance-4` neighborhood contains
at most one cycle.5

It is straightforward to show that random lifts have all vertices Θ(logn)-tangle-free; we can
quote the relevant result directly from Bordenave (Lemma 27 from [12]):

5 We chose the factor 4 here for “safety”. For quantitative aspects of our theorem, constant factors on `
will be essentially costless.
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I Proposition 64. There is a universal constant κ > 0 depending only on r, c such that,
for ` = κ logn, a random n-lift H of Kr,c has all vertices `-tangle free, except with probabil-
ity O(1/n.99).

We now begin the application of the Trace Method. We have:

tr((B`
nB
∗
n

`)k)

=
∑

~e0,...,~e2k`−1,~e2k`=~e0

Bn[~e0, ~e1] · · ·Bn[~e`−1, ~e`]B∗n[~e`, ~e`+1] · · ·B∗n[~e2`−1, ~e2`] · · ·B∗n[~e2k`−1, ~e2k`]

=
∑

~e0,...,~e2k`−1,~e2k`=~e0

Bn[~e0, ~e1] · · ·Bn[~e`−1, ~e`]Bn[~e`+1, ~e`] · · ·Bn[~e2`, ~e2`−1] · · ·Bn[~e2k`, ~e2k`−1]

=
∑

wt(e1)N~e0,~e1 · · ·wt(e`)N~e`−1,~e`wt(e`)N
~e−1
`

,~e−1
`+1
· · ·

· · ·wt(e2`−1)N
~e−1

2`−1···~e
−1
2`
· · ·wt(e2k`−1)N

~e−1
2k`−1,~e−1

2k`
,

(12)

where wt(e) is the sign on edge e coming from the random 1-wise negations (it is the same
for both directed versions of the edge), and where N~e,~f is an indicator that (~e, ~f) forms a
length-2 nomadic walk. Roughly speaking, this quantity counts (with some ±1 sign) closed
walks in In consisting of 2k consecutive nomadic walks of length `. However, there is some
funny business concerning the joints between these nomadic walks. To be more precise, in
each of the 2k segments we have a nomadic walk of `+ 1 edges; and, the last edge in each
segment must be the reverse of the first edge in the subsequent segment. We will call these
necessarily-duplicated edges “spurs”. Furthermore, when computing the sign with which the
closed walk is counted, spurs’ signs are counted either zero times or twice, depending on the
parity of the segment. Hence they are effectively discounted, since (−1)2 = (−1)0 = +1. Let
us make some definitions encapsulating all of this.

I Definition 65 (Nomadic linkages, and spurs). In an instance graph, a (2k × `)-nomadic
linkage L is the concatenation of 2k many nomadic walks (“segments”), each of length `+ 1,
in which the last directed edge of each walk is the reverse of first directed edge of the subsequent
walk (including wrapping around from the 2kth segment to the 1st). These 2k directed edges
which are necessarily the reverse of the preceding directed edge are termed spurs. The weight
of L, denoted wt(L), is the product of the signs of the non-spur edges in L.

I Definition 66 (Nonbacktracking A-linkages). Recall that, strictly speaking, the nomadic
property requires “remembering” which atom each edge comes from. Thus the L above is
really associated to what we will call a (2k × 2`)-nonbacktracking A-linkage – call it C – in
the underlying constraint graph. Formally:

(“linkage”) C is a closed concatenation of 2k walks (called “segments”) in the constraint
graph, each consisting of `+1 length-2 variable-constraint-variable subpaths. The last such
length-2 subpath in each segment (“spur”) is equal to (the reverse of) the first length-2
subpath in the subsequent segment (including wraparound from the 2kth segment to the
1st).
(“A-linkage”) For each length-2 subpath (v, f, v′) in C, where v is in variable group i, f is
in constraint group j, and v′ is in variable group i′, it holds that {i, i′} is an edge in Aj.
(“nonbacktracking”) Each of the 2k segments is a nonbacktracking walk of length 2(`+ 1)
in the constraint graph.

We write wt(C) ∈ {±1} for the weight of the associated nomadic linkage in the instance
graph.
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Given these definitions, (12) tells us:

tr((B`
nB
∗
n
`)k) =

∑
(2k×2`)-nonbacktracking
A-linkages C in Hn

wt(C). (13)

Next, we make the observation that if Hn proves to have all vertices `-tangle-free, then we
would get the same result if we only summed over “externally tangle-free” linkages.

I Definition 67 (Externally tangle-free linkages). We say that a (2k × 2`)-nonbacktracking
linkage in a constraint graph Hn is externally `-tangle-free if every vertex it touches is
`-tangle-free within Hn. (The “externally” adjective emphasizes that we are concerned with
cycles not just within the linkage’s edges, but also among nearby edges of Hn.)

Thus in light of Proposition 64 we have:

I Lemma 68. Provided ` 6 κ logn for a certain universal κ > 0, we get that tr((B`
nB
∗
n
`)k) =

S holds except with probability O(1/n.99) , where

S :=
∑

(2k×2`)-nonbacktracking
externally `-tangle-free
A-linkages C in Hn

wt(C).

In order to apply Markov’s inequality later, we will need the following technical claim:

B Claim 69. S is a nonnegative random variable.

Proof. Given In, recall that

B`
n[~e, ~f ] =

∑
nomadic walks

~e=~e0,~e1,...,~e`=~f in In

wt(e1)wt(e2) · · ·wt(e`).

Using a key idea of Bordenave (based on the “selective trace” of Friedman), define the related
operator B(`)

n via

B(`)
n [~e, ~f ] =

∑
externally `-tangle-free nomadic walks

~e=~e0,~e1,...,~e`=~f in In

wt(e1)wt(e2) · · ·wt(e`),

where again the walk is said to be “externally `-tangle-free” if every vertex it touches is
`-tangle-free with Hn. Then very similar to the analysis that gave us (12) and (13), we get
that

S = tr((B(`)
n (B(`)

n )∗)k).

Thus S is visibly always nonnegative, being the trace of the kth power of the positive
semidefinite matrix B(`)

n (B(`)
n )∗. J

With these results in place, we can proceed to the main goal of the Trace Method: bounding
E[S]. Such a bound can be used in the following lemma:

I Lemma 70. Assume that ` 6 κ logn and k` = ω(logn). Then from E[S] 6 R we may
conclude that ρ(Bn) 6 (1 + on(1)) ·R 1

2k` holds, except with probability O(1/n.99).
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Proof. Let T = tr((B`
nB
∗
n
`)k). On one hand, with λ denoting eigenvalues and σ denoting

singular values, we have

T > λmax((B`
nB
∗
n
`)k) = λmax

(√
B`
nB
∗
n
`

)2k
= σmax(B`

n)2k > ρ(B`
n)2k = ρ(Bn)2k`.

On the other hand, since S is a nonnegative random variable (Claim 69), we can apply
Markov’s Inequality to deduce that S 6 n · R except with probability at most 1/n. Now
from Lemma 68 we may infer that except with probability O(1/n.99),

T = S 6 n ·R =⇒ ρ(Bn)2k` 6 n ·R.

The result now follows by taking 2k`-th roots. J

F.2 Eliminating singletons, and reduction to counting
Our next step toward bounding E[S] is typical of the Trace Method: Rather than first
choosing Hn randomly and then summing over the linkages therein, we instead sum over
all potentially-appearing linkages and insert an indicator that they actually appear in the
realized random constraint graph. Defining

Kn = the “complete” constraint graph with cn constraint vertices and rn variable vertices,

this means that

S =
∑

(2k×2`)-nonbacktracking
A-linkages C in Kn

1[C is in Hn]·1[C is externally `-tangle-free within Hn]·wtIn(C).

(14)

Here we wrote wtIn(C) to emphasize that even once C is in Hn and is externally `-tangle-
free, its weight is still a random variable arising from the 1-wise uniform negations. These
negations will create another simplification (one not available to Friedman/Bordenave). For
this we will need another definition:

I Definition 71 (Singleton-free C’s). Let C be a (2k × 2`)-nonbacktracking circuit in Kn.
If there is an atom vertex that is passed through exactly once, we call it a singleton. If C
contains no singleton, we call it singleton-free.

Referring to (14), consider E[S]. If C contains any singleton, then it will contribute 0 to this
expectation. The reason is that, provided C appears in Hn and is externally `-tangle-free
therein, the 1-wise uniform negations will assign a uniformly random ±1 sign to the edge
engendered by C’s singleton, and this sign will be independent of all other signs that go
into wtIn(C). On the other hand, when C is singleton-free, we will simply upper-bound the
(conditional) expectation of wtIn(C) by +1. We conclude that

E[S] 6
∑

(2k×2`)-nonbacktracking
singleton-free

A-linkages C in Kn

Pr[C is in Hn and is externally `-tangle-free therein]. (15)

Let us now begin to simplify the probability calculation.
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I Definition 72 (E(C), V (C), G(C)). Let C be a (2k × 2`)-nonbacktracking A-linkage in Kn.
Write E(C) for the set of undirected edges in Kn formed by “undirecting” all the directed
edges in C (this includes reducing from a multiset to a set, if necessary). Then let G(C)
denote the undirected subgraph of Kn induced by E(C), and write V (C) for its vertices.

Let’s simplify the “tangle-freeness” situation.

I Definition 73 (Internal tangle-free linkages). We say that a (2k × 2`)-nonbacktracking
linkage C in Kn is internally `-tangle-free if every vertex it touches is `-tangle-free within
G(C).

We certainly have:

linkage C not even internally `-tangle-free
=⇒ Pr[C is in Hn and is externally `-tangle-free therein] = 0.

Thus we can restrict the sum in (15) to internally `-tangle-free linkages. Having done that,
we will upper bound the sum by dropping this insistence on external tangle-freeness. Thus

E[S] 6
∑

(2k×2`)-nonbacktracking
interally `-tangle-free, singleton-free

A-linkages C in Kn

Pr[C is in Hn]. (16)

We will now bound Pr[C is in Hn], so as to reduce all our remaining problems to counting.
Towards this, recall that Hn is a random n-lift of the complete graph Kr,c. One thing this
implies is that every group-i variable-vertex in Hn will have exactly one edge to each of
c groups of constraint-vertices, and vice versa. Let us codify the C’s that don’t flagrantly
violate this property:

I Definition 74 (Valid C’s). We say a (2k × 2`)-nonbacktracking A-linkage C in Kn is
valid if G(C) has the property that every variable-vertex in it is connected to at most 1
constraint-vertex from each of the c groups, and each constraint-vertex is connected to at
most 1 variable-vertex from each of the r groups.

Evidently, Pr[C is in Hn] = 0 if C is invalid. Thus from (16) we can deduce:

E[S] 6
∑

(2k×2`)-nonbacktracking
valid, internally `-tangle-free, singleton-free

A-linkages C in Kn

Pr[C is in Hn]. (17)

Next, it is straightforward to show the following lemma (see Proposition A.8 of [24] for
essentially the same observation):

I Lemma 75. If C is a valid (2k × 2`)-nonbacktracking A-linkage in Kn, and k` = o(
√
n),

then

Pr[C is in Hn] = (1 + on(1)) · n−|E(C)|.

Proof. (Sketch.) Proceed through the edges in E(C) in an arbitrary order. Each has
approximately a 1/n chance of appearing in Hn, even conditioned on the appearance of the
preceding edges. For example, this is exactly true for the first edge. For subsequent edges
e = {u, v}, validity ensures that no preceding edge already connects u to a vertex in v’s
part, or vice versa. Thus the conditional probability of e appearing in Hn is essentially the
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probability that a particular edge appears in a random matching on n+ n vertices (which is
1/n), except that a “small” number of vertex pairs may already have been matched. This
“small” quantity is at most |E(C)| 6 4k`, so the 1/n probability becomes 1/(n − 4k`) at
worst. Multiplying these conditional probabilities across all |E(C)| edges yields a quantity
that is off from n−|E(C)| by a factor of at most (1 +O(k`)/n)4k` 6 1 + on(1), the inequality
using (k`)2 = o(n). J

Combining this lemma with (17) and Lemma 70, we are able to reduce bounding ρ(Bn)
to a counting problem:

I Lemma 76. Assume that ` 6 κ logn and ω(logn) < k` < o(
√
n). Then except with

probability O(1/n.99),

ρ(Bn) 6 (1 + on(1)) ·R 1
2k` , where R :=

∑
(2k×2`)-nonbacktracking

valid, internally `-tangle-free, singleton-free
A-linkages C in Kn

n−|E(C)|.

F.3 Tangle-free, singleton-free linkages are nearly duplicative
Our goal in this subsection is to show that each linkage C we sum over in Lemma 76 is
“nearly duplicative”: the number of variable-vertices is at most (1 + o(1))k`, and the same is
true of constraint-vertices – even though the obvious a priori upper bound for each of them
is 2k`. This factor- 1

2 savings is precisely the source of the square-root in Theorem 60. We
begin with a graph-theoretic lemma and then deduce the nearly-duplicative property.

I Lemma 77. Let C be a (2k × 2`)-nonbacktracking, internally `-tangle-free linkage in Kn.
Assume log(k`) = o(`). Then G(C) has at most O(k log(k`)) vertices of degree exceeding 2.

Proof. For brevity, let us write G = G(C), w = |V (C)|, and note that we have a trivial upper
bound of w 6 4k`. Let t denote the number of cycles of length at most ` in G. By deleting
at most t edges, we can form a graph G̃ with girth at least `. A theorem of Alon, Hoory,
and Linial [2] implies that any (possibly irregular) graph with w vertices and girth at least `
must have average degree at most 2 + O(log(w)/`) (this uses log(w) = o(`)). Thus G̃ has
such a bound on its average degree. After restoring the deleted edges, we can still conclude
that the average degree in G is at most 2 +O(log(w)/`) + 2t

w . Writing w1, w2, w3+ for the
number of vertices in G of degree 1, 2, and 3-or-more respectively, this means

2 +O(log(w)/`) + 2t
w

>
w1 + 2w2 + 3w3+

w
= w1 + 2(w − w1 − w3+ ) + 3w3+

w
= 2− w1

w
+ w3+

w

=⇒ w3+ 6 O(w log(w)/`) + w1 + 2t.

The first term here is O(k log(k`)) as desired, since w 6 4k`. We will also show the next two
terms are O(k). Regarding w1, degree-1 vertices in G can only arise from the spurs of C, and
hence w1 6 2k. Finally, 2t 6 O(k) follows from the below claim combined with w 6 4k`:

t 6
w

2` + 1. (18)

We establish (18) using the tangle-free property of C. Recall that t is the number of “short”
cycles in G, meaning cycles of length at most `. By the `-tangle-free property of C (recalling
the factor 4 in its definition), every v ∈ V has at most one short cycle within distance 3` of
it. Thus if we choose paths in G that connect all short cycles (recall G is connected), then
to each short cycle we can uniquely charge at least 3`− 1 > 2` vertices from these paths. It
follows that w = |V | > 2`(t− 1), establishing (18). J
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I Corollary 78. In the setting of Lemma 77, assume also that C is singleton-free and valid.
Then the number of variable-vertices C visits is at most k`+O(k log(k`)), and the same is
true of constraint-vertices.

Proof. Think of C as a succession of 2k(`+ 1) “two-steps”, where a two-step is a length-2
directed path going from a variable-vertex, to a constraint-vertex, to a (distinct) variable-
vertex. Call two such two-steps “duplicates” if they use the same three variables (possibly
going in the opposite direction). We claim that “almost all” two-steps have at least one
duplicate. To see this, consider the constraint-vertex in some two-step a. Since C is singleton-
free, at least one other two-step b must pass through the constraint-vertex of a. If b is
not a duplicate of a, then this constraint-vertex will have degree exceeding 2 in G(C). By
Lemma 77 there are at most O(k log(k`)) such constraint-vertices. Further, by validity each
constraint-vertex can support at most

(
r
2
)

= O(1) unduplicated two-steps. Thus at most
O(k log(k`)) of the 2k(`+ 1) two-steps are unduplicated.

Now imagine we walk through the two-steps of C in succession. Each two-step can
visit at most one “new” variable-vertex and one “new” constraint-vertex. However each
two-step which is a duplicate of a previously-performed two-step visits no new vertices.
Among the 2k(` + 1) two-steps, at most O(k log(k`)) are unduplicated. Thus at least
(2k(`+ 1)−O(k log(k`)))/2 = k(`+ 1)−O(k log(k`)) two-steps are duplicates of previously-
performed two-steps. It follows that at most k(`+ 1) +O(k log(k`)) two-steps visit any new
vertex. This completes the proof. J

F.4 The final countdown
We now wish to count the objects summed in the definition of R from Lemma 76. The
remainder of this section will be devoted to proving:

I Theorem 79. For every ε > 0, except with probability O(1/n.99),

ρ(Bn) 6 (1 + on(1)) · (1 + ε) ·
√
ρ(|B1|).

The bulk of the technical matter in the proof of Theorem 79 will involve analyzing

(2k×2`)-nonbacktracking, valid, internally `-tangle-free, singleton-free, A-linkages C (19)

in Kn.

I Definition 80 (Steps: stale, fresh, and boundary). We call each of the 4k(`+ 1) directed
edges from which C is composed a step. If we imagine traversing these steps in order, they
“reveal” vertices and edges of G(C) as we go along. We call a step stale if the edge it traverses
was previously traversed in C (in some direction). Note that both endpoints of the edge must
also have been previously visited. Otherwise, if the step traverses a “new” edge, it will be
designated either “fresh” or “boundary”. It is designated fresh if the vertex it reaches was
never previously visited in C. Otherwise, the step is boundary; i.e., the step goes between two
previously-visited vertices, but along a new edge. For the purposes of defining fresh/boundary,
we specify that the initial vertex of C is always considered to be “previously visited”.

The following facts are immediate:

I Fact 81. The number of fresh steps in C is |V (C)| − 1. (The −1 accounts for the fact that
the initial vertex is considered “previously visited”.) Since the number of fresh and boundary
steps together is |E(C)|, it follows that the number of boundary steps is |E(C)| − |V (C)|+ 1.
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I Definition 82. We write Lkgs(f, b) for the collection of linkages as in (19) having exactly
f fresh edges and b boundary edges.
Our goal is to show:
I Lemma 83. For every ρ̂ > ρ(|B1|) we have:

|Lkgs(f, b)| 6 poly(k, `)b+k · nf+1 · ρ̂f/2

where the constants in the poly factor depend on ρ̂.
Before proving this lemma, observe that many linkages are the same modulo the labels

between 1 and n that are defined by the lifting. To make this formal we first introduce some
notation and follow by using it to aid in the proof of Lemma 83.

Given a linkage C we write C = ((v1, i1), (v2, i2), . . . , (v4k(`+1), i4k(`+1))), where (vj , ij) are
vertices from Kn and vj indicates the base vertex (from Kr,c) and ij is an integer (between 1
and n) that indicates the lifted copy. This notation means that C traverses this sequence of
vertices in this order.
I Definition 84 (Isomorphism of linkages). Given two linkages C and C′ that visit |V (C)| =
|V (C′)| vertices, we say they are isomorphic if are the same modulo the labels between 1 and
n that are defined by the lifting. Formally, letting C = ((v1, i1), . . . , (v4k(`+1), i4k(`+1))) and
C′ = ((v′1, i′1), . . . , (v′4k(`+1), i

′
4k(`+1))), there exist permutations πv on [n] for each v ∈ V (Kr,c)

such that for all j we have v′j = vj and i′j = πvj (ij).
This isomorphism relation induces equivalence classes for which we want to assign

representative elements. We do so as follows.
I Definition 85 (Canonical linkages). A linkage C is said to be canonical if for every vertex
v ∈ Kr,c, if C visits j distinct lifted copies of v then it first visits (v, 1), then (v, 2), . . ., and
finally (v, j). We write Lkgsc(f, b) for the collection of canonical linkages as in (19) having
exactly f fresh steps and b boundary steps.
I Proposition 86. |Lkgs(f, b)| 6 nf+1|Lkgsc(f, b)|.
Proof. It suffices to show that for every canonical linkage C ∈ Lkgsc(f, b), it has at most
nf+1 isomomorphic linkages C′ ∈ Lkgs(f, b). By Fact 81, C visits exactly f + 1 distinct
vertices, call them {(v(1), i(1)), . . . , (v(f+1), i(f+1))}. Every isomorphic C′ may be obtained by
taking a list of numbers (i′1, . . . , i′f+1) ∈ [n]f+1 and replacing all appearances of (v(j), i(j)) in
C with (v(j), i′j). (Not all such lists lead to isomorphic C′, but we don’t mind overcounting.)
This completes the proof, as there are nf+1 such lists. J

We now have all the tools to prove the desired lemma.

Proof of Lemma 83. With Proposition 86 in place, it suffices to bound the number of
canonical linkages as follows:

|Lkgsc(f, b)| 6 poly(k, `)b+k · ρ̂f/2.

Our strategy is to give an encoding of linkages in Lkgsc(f, b), and then bound the number
of possible encodings. Let C be an arbitrary linkage in Lkgsc(f, b). To encode C, we first
partition it into 2k many “2(`+ 1)-segments”, each of which corresponds to nonbacktracking
walks between spurs,and specify how to encode each 2(`+ 1)-segment. We then partition
each 2(`+ 1)-segment into maximal contiguous blocks of the same type of step (“type” as in
Definition 80) and store an encoding of information about the steps therein. Ultimately, it
will be possible to uniquely decipher C from its constructed encoding.

Towards describing our encoding, we first define the sequence Svisited, constructed from
the f + 1 vertices in V (C) sorted in increasing order of first-visit time.
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Encoding positions of blocks. We define Pfresh, Pboundary and Pstale, which are sequences
noting the starting positions and ending positions of fresh, boundary, and stale blocks
respectively, in the order visited in C.

Encoding fresh steps. Let Sfresh be the sequence obtained by replacing each vertex of
Svisited with its corresponding base vertex in Kr,c.

Encoding boundary steps. Let β be a block of boundary steps (v0, v1), . . . , (v|β|−1, v|β|).
Let ti be such that vi is the ti-th vertex in Svisited. We define Encb(β) as the sequence
(t0, t1), . . . , (t|β|−1, t|β|). Let β1, . . . , βT be the blocks of boundary steps in the order in which
they appear in C. We store the concatenation of Encb(β1), . . . ,Encb(βT ), which we call
Sboundary.

Encoding stale steps. For each block β of stale steps, let u be the first vertex and v

be the last vertex of β, and let p(β) be the position in C where the block β starts. Let
Sp(β),uv,|β| denote the list (in, say, lexicographic order) of all possible nonbacktracking walks
from u to v of length |β| that only use edges visited by C before position p(β); note that
β occurs in Sp(β),uv,|β|. We let Encs(β) = (t,m) such that the t-th vertex in Svisited is the
last vertex visited in β (that is v), and m is the position of β in Sp(β),uv,|β|. Let β1, . . . , βT
be the blocks of stale steps in the order they appear in C. We store the concatenation of
Encs(β1), . . . ,Encs(βT ), which we call Sstale.

We refer to the constructed (Pfresh, Pboundary, Pstale, Sfresh, Sboundary, Sstale) as the encod-
ing of C.

Unique reconstruction of linkage. In this part of the proof, we show that we can uniquely
recover C from its encoding. First, since C is a canonical linkage we can correctly reconstruct
Svisited from Sfresh because the labels are visited in canonical (increasing) order. From
Pfresh, Pboundary and Pstale, we can infer a partition of [4k(` + 1)] into blocks in order
β1, . . . , βT and the type of each block. We sketch an inductive proof that shows how C can
be uniquely recovered from its encoding. As our base case, the first block is a fresh block and
hence all the steps that comprise it can be recovered from Svisited. Towards our inductive
step, suppose we know the edges in C from blocks β1, . . . , βi, we show how to recover the
edges in βi+1 from the encoding of C. If βi+1 is a fresh or boundary block, its recovery is
straightforward. Suppose βi+1 is a stale block. Then from Pstale and Sstale, we can infer the
last vertex v visited by βi+1 and the length of the block |βi+1|. We know the first vertex u
in βi+1 and can reconstruct Sp(βi+1),uv,|βi+1| since we have complete information about the
steps in C prior to βi+1. We can then infer βi+1 from Sp(βi+1),uv,|βi+1| and Sstale.

Bounding the number of metadata encodings. A fresh block must either be followed by
a boundary step, or must occur at the end of a 2(`+ 1)-segment; analogously, a stale block
must either be preceded by a boundary step, or must occur at the start of a 2(`+ 1)-segment.
Thus, the number of fresh blocks and stale blocks are each bounded by b+ 2k. Further, the
number of boundary blocks is clearly bounded by b. Since there are at most (4k(` + 1))2

distinct combinations of starting and ending positions of a block, the number of distinct
possibilities that the triple (Pfresh, Pstale, Pboundary) can be bounded by (4k(`+ 1))6b+8k.

Bounding number of fresh step encodings. For a fixed Pfresh, we give an upper bound on
the number of possibilities for Sfresh. Fixing Pfresh fixes a number T as well as q1, . . . , qT
such that there are T fresh blocks in C and such that the i-th block has length qi. Let us



S. Mohanty, R. O’Donnell, and P. Paredes 50:43

focus on a single fresh block β. The sequence of vertices in Sfresh corresponding to β give a
nonbacktracking walk Wβ in the base constraint graph Kr,c. Additionally, for a consecutive
triple (i, j, i′) in this nonbacktracking walk, {i, i′} must be an edge in the corresponding base
instance graph I1 due C being an A-linkage. Let W̃β be the maximal subwalk of Wβ that
starts and ends with a variable vertex. Note that W̃β corresponds exactly to a nomadic walk
in I1 whose length is at most |β|/2. Now regarding Wβ , either Wβ is equal to W̃β (there is 1
way in which this can happen), or both the first and last steps of Wβ are not in W̃β (there
are c2 ways in which this can happen), or exactly one of the first and last steps of Wβ is not
in W̃β (there are 2c ways in which this can happen). This tells us that the number of distinct
possibilities for Wβ is bounded by (c+ 1)2δb|β|/2c, where δs denotes the number of nomadic
walks of length s in I1. Thus, we obtain an upper bound of (c + 1)2T ∏T

i=1 δbqi/2c on the
number of possibilities for Sfresh, which is bounded by (c + 1)2b+4k∏T

i=1 δbqi/2c. Towards
simplifying the expression, we bound δs. Observe that for a given edge e ∈ E(|I1|), the
number of nomadic walks of length s starting with e is given by ‖(|B1|)s1e‖1. This implies
that δs 6 ‖(|B1|)s‖1, where ‖(|B1|)s‖1 = sup{‖(|B1|)sx‖ : ‖x‖1 = 1}.

To bound the above, first observe that we have a simple bound ‖(|B1|)s‖1 6 κs provided
κ is a large enough constant (for example, the maximum degree of I1 is a possible such
value). Next, it is known that

lim
s→∞

(‖(|B1|)s‖)1/s = ρ(|B1|),

and hence for any ρ̂ > ρ(|B1|), there is a constant `0 such that ‖(|B|)s‖1 6 (ρ̂)s for all s > `0.
Putting these two bounds together we get that for any s > `0,

δs 6 ‖(|B1|)s‖1 6 (ρ̂)s−`0κ`0 .

Thus the number of possibilities for Sfresh is bounded by (c + 1)2b+4k∏T
i=1(ρ̂)bqi/2c−`0κ`0 ,

which can, in turn, be bounded by
(
(c+ 1)2κ`0 ρ̂−`0

)b+2k (ρ̂)f/2.

Bounding number of stale step encodings. For any stale block β, let u and v be the first
and last visited vertices respectively. Sstale specifies a number in [f + 1] to encode v, and
a number between 1 and M where M is the total number of nonbacktracking walks from
u to v of length |β|. Since the number of stale blocks is bounded by b+ 2k, the number of
possibilities for what Sstale can be is at most (M(f + 1))b+2k. We show that M 6 2, and
hence translate our upper bound to (2(f + 1))b+2k.

Since all blocks are contained within 2(`+ 1)-segments and the A-linkage being encoded
is 4`-tangle-free, the steps traversed by β are in a connected subgraph H with at most one
cycle. Our goal is to show that there are at most 2 nonbacktracking walks of a given length
L between any pair of vertices x, y. There is at most one nonbacktracking walk between x
and y that does not visit vertices on C, the single cycle in H, and if such a walk exists, it is
the unique shortest path. Any nonbacktracking walk between x and y that visits vertices of
C can be broken down into 3 phases – (i) a nonbacktracking walk from x to vx, the closest
vertex in C to x, (ii) a nonbacktracking walk from vx to vy, the closest vertex in C to y, (iii)
a nonbacktracking walk from vy to y. Phases (i) and (iii) are always of fixed length, whose
sum is some L′. Thus, it suffices to show that there are at most 2 nonbacktracking walks from
vx to vy of length L− L′. Any nonbacktracking walk takes r rotations in C and then takes
an acyclic path from vx to vy, whose length is observed to be strictly less than |C|, for r > 0.
The steps in a nonbacktracking walk from vx to vy are either all in a clockwise direction, or
all in an anticlockwise direction, and hence for any r there are at most 2 nonbacktracking
walks from vx to vy of length strictly between (r − 1)|C| and r|C|+ 1. In particular, there
are at most 2 nonbacktracking walks between vx and vy of length equal to L− L′.
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Bounding number of boundary step encodings. Sboundary is a sequence of b tuples in
[f + 1]2, and hence there are at most (f + 1)2b distinct sequences that Sboundary can be.

Final bound. The above gives us a final bound of:

(4k(`+ 1))6b+8k((c+ 1)2κ`0(ρ̂)−`0)b+2k(ρ̂)f/22b+2k(f + 1)3b+2k (20)

which, when combined with Proposition 86 gives the desired claim. J

We wrap everything up by combining the results of Lemma 83 with Lemma 76 to prove
Theorem 79.

Proof of Theorem 79. Let ` = κ logn, where κ is the universal constant from Proposition 64,
let k be chosen so that k` = ω(logn), let R be as in Lemma 76, and let ρ̂ be any constant
greater than ρ(|B1|). Then we have

R =
∑

(2k×2`)-nonbacktracking
valid, internally `-tangle-free, singleton-free

A-linkages C in Kn

n−|E(C)|

=
∞∑
f=0

∞∑
b=0
|Lkgs(f, b)|n−(f+b)

=
2k`+O(k log(k`))∑

f=0

∞∑
b=0
|Lkgs(f, b)|n−(f+b) (by Corollary 78)

6
2k`+O(k log(k`))∑

f=0

∞∑
b=0

poly(k, `)b · poly(k, `)k · (ρ̂)f/2 · n
nb

(by Lemma 83)

=
2k`+O(k log(k`))∑

f=0
n · poly(k, `)k · (ρ̂)f/2

∞∑
b=0

(
poly(k, `)

n

)b

=
2k`+O(k log(k`))∑

f=0
n · poly(k, `)k · (ρ̂)f/2 ·

(
1

1− poly(k,`)
n

)
6 2n · poly(k, `)k(2k`+O(k log(k`)))(ρ̂)k`+O(k log(k`))

For the choice of k and ` in the theorem statement, we can use Lemma 76 to conclude that

ρ(Bn) 6 (1 + on(1)) ·
√
ρ̂.

with probability 1−O(n.99). Since the above bound holds for any ρ̂ > ρ(|B1|), for any ε > 0,
it can be rewritten as

ρ(Bn) 6 (1 + on(1)) · (1 + ε) ·
√
ρ(|B1|). J

G The SDP value for random two-eigenvalue CSPs

In this section, we put all the ingredients together to conclude our main theorem. We start
with an elementary and well known fact and include a short proof for self containment.
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I Fact 87. Let A be a real n× n symmetric matrix. Then

1
n

max
X�0,Xii=1

〈A,X〉 6 λmax(A)

1
n

min
X�0,Xii=1

〈A,X〉 > λmin(A)

Proof. We prove the upper bound below. The proof of the lower bound is identical.

1
n

max
X�0,Xii=1

〈A,X〉 6 1
n

max
X�0,tr(X)=n

〈A,X〉

= max
X�0,tr(X)=1

〈A,X〉

= λmax(A). J

Recall αgr := (c− 1)(−λ1λ2) and rX := 2√αgr.

I Theorem 88. Let A = (A1, . . . , Ac) be a sequence of r-vertex atoms with edge weights ±1.
Let Hn denote a random n-lifted constraint graph and In = A(Hn) an associated instance
graph with 1-wise uniform negations (ξfii′). Let An be the adjacency matrix of In. Then,
with probability 1− on(1),

max
X�0,Xii=1

〈An, X〉 = (λ1 + λ2 + rX ± ε)n

min
X�0,Xii=1

〈An, X〉 = (λ1 + λ2 − rx ± ε)n.

Proof. maxX�0,Xii=1〈An, X〉 > (λ1 + λ2 + rX − ε)n follows from Theorem 48 and
maxX�0,Xii=1〈An, X〉 6 (λ1 + λ2 + rX + ε)n follows from Fact 87. The upper and lower
bounds on minX�0,Xii=1〈An, X〉 can be determined identically. J
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Abstract
The Schnorr-Stimm dichotomy theorem [31] concerns finite-state gamblers that bet on infinite
sequences of symbols taken from a finite alphabet Σ. The theorem asserts that, for any such sequence
S, the following two things are true.

(1) If S is not normal in the sense of Borel (meaning that every two strings of equal length
appear with equal asymptotic frequency in S), then there is a finite-state gambler that wins money
at an infinitely-often exponential rate betting on S.

(2) If S is normal, then any finite-state gambler betting on S loses money at an exponential rate
betting on S.

In this paper we use the Kullback-Leibler divergence to formulate the lower asymptotic divergence
div(S||α) of a probability measure α on Σ from a sequence S over Σ and the upper asymptotic
divergence Div(S||α) of α from S in such a way that a sequence S is α-normal (meaning that
every string w has asymptotic frequency α(w) in S) if and only if Div(S||α) = 0. We also use the
Kullback-Leibler divergence to quantify the total risk RiskG(w) that a finite-state gambler G takes
when betting along a prefix w of S.

Our main theorem is a strong dichotomy theorem that uses the above notions to quantify the
exponential rates of winning and losing on the two sides of the Schnorr-Stimm dichotomy theorem
(with the latter routinely extended from normality to α-normality). Modulo asymptotic caveats in
the paper, our strong dichotomy theorem says that the following two things hold for prefixes w of S.

(1′) The infinitely-often exponential rate of winning in 1 is 2Div(S||α)|w|.
(2′) The exponential rate of loss in 2 is 2−RiskG(w).
We also use (1′) to show that 1−Div(S||α)/c, where c = log(1/mina∈Σ α(a)), is an upper bound

on the finite-state α-dimension of S and prove the dual fact that 1− div(S||α)/c is an upper bound
on the finite-state strong α-dimension of S.
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1 Introduction

An infinite sequence S over a finite alphabet is normal in the 1909 sense of Borel [7] if every
two strings of equal length appear with equal asymptotic frequency in S. Borel normality
played a central role in the origins of measure-theoretic probability theory [6] and is intuitively
regarded as a weak notion of randomness. For a masterful discussion of this intuition, see
section 3.5 of [22], where Knuth calls normal sequences “∞-distributed sequences.”

The theory of computing was used to make this intuition precise. This took place in three
steps in the 1960s and 1970s. First, Martin-Löf [28] used constructive measure theory to
give the first successful formulation of the randomness of individual infinite binary sequences.
Second, Schnorr [30] gave an equivalent, and more flexible, formulation of Martin-Löf’s
notion in terms of gambling strategies called martingales. In this formulation, an infinite
binary sequences S is random if no lower semicomputable martingale can make unbounded
money betting on the successive bits of S. Third, Schnorr and Stimm [31] proved that an
infinite binary sequence S is normal if and only if no martingale that is computed by a
finite-state automaton can make unbounded money betting on the successive bits of S. That
is, normality is finite-state randomness.

This equivalence was a breakthrough that has already had many consequences (discussed
later in this introduction), but the Schnorr-Stimm result said more. It is a dichotomy theorem
asserting that, for any infinite binary sequence S, the following two things are true.
1. If S is not normal, then there is a finite-state gambler that makes money at an infinitely-

often exponential rate when betting on S.
2. If S is normal, then every finite-state gambler that bets infinitely many times on S loses

money at an exponential rate.

The main contribution of this paper is to quantify the exponential rates of winning and
losing on the two sides (1 and 2 above) of the Schnorr-Stimm dichotomy.

To describe our main theorem in some detail, let Σ be a finite alphabet. It is routine to
extend the above notion of normality to an arbitrary probability measure α on Σ. Specifically,
an infinite sequence S over Σ is α-normal if every finite string w over Σ appears with
asymptotic frequency α|w|(w) in S, where α` is the natural (product) extension of α to
strings of length `. Schnorr and Stimm [31] correctly noted that their dichotomy theorem
extends to α-normal sequences in a straightforward manner, and it is this extension whose
exponential rates we quantify here.

The quantitative tool that drives our approach is the Kullback-Leibler divergence [23],
also known as the relative entropy [12]. If α and β are probability measures on Σ, then the
Kullback-Leibler divergence of β from α is

D(α||β) = Eα log α
β
,
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i.e., the expectation with respect to α of the random variable log α
β : Σ→ R ∪ {∞}, where

the logarithm is base-2. Although the Kullback-Leibler divergence is not a metric on the
space of probability measures on Σ, it does quantify “how different” β is from α, and it has
the crucial property that D(α||β) ≥ 0, with equality if and only if α = β.

Here we use the empirical frequencies of symbols in S to define the asymptotic lower
divergence div(S||α) of α from S and the asymptotic upper divergence Div(S||α) of α from S

in a natural way, so that S is α-normal if and only if Div(S||α) = 0.
The first part of our strong dichotomy theorem says that the infinitely-often exponential

rate that can be achieved in 1 above is essentially at least 2Div(S||α)|w|, where w is the prefix
of S on which the finite-state gambler has bet so far. More precisely, it says the following.

1′. If S is not α-normal, then, for every γ < 1, there is a finite-state gambler G such that,
when G bets on S with payoffs according to α, there are infinitely many prefixes w of S
after which G’s capital exceeds 2γDiv(S||α)|w|.

The second part of our strong dichotomy theorem, like the second part of the Schnorr-
Stimm dichotomy theorem, is complicated by the fact that a finite-state gambler may, in
some states, decline to bet. In this case, its capital after a bet is the same as it was before
the bet, regardless of what symbol actually appears in S. Once again, however, it is the
Kullback-Leibler divergence that clarifies the situation. As explained in section 3 below, in
any particular state q, a finite-state gambler’s betting strategy is a probability measure B(q)
on Σ. If B(q) = α, then the gambler does not bet in state q. We thus define the risk that
the gambler G takes in state q to be

riskG(q) = D(α||B(q)),

i.e., the divergence of B(q) from not betting. We then define the total risk that the gambler
takes along a prefix w of the sequence S on which it is betting to be the sum RiskG(w) of
the risks riskG(q) in the states that G traverses along w. The second part of our strong
dichotomy theorem says that, if S is α-normal and G is a finite-state gambler betting on S,
then after each prefix w of S, the capital of G on prefixes w of S is essentially bounded above
by 2−RiskG(w). In some sense, then, G loses all that it risks. More precisely, the second part
of our strong dichotomy says the following.

2′. If S is α-normal, then, for every finite-state gambler G and every γ < 1, after all but
finitely many prefixes w of S, the gambler G’s capital is less than 2−γ RiskG(w).

A routine ergodic argument, already present in [31], shows that, if a finite-state gambler
G bets on an α-normal sequence S, then every state of G that occurs infinitely often along S
occurs with positive frequency along S. Hence 2 above follows from 2′ above.

Our strong dichotomy theorem has implications for finite-state dimensions. For each
probability measure α on Σ and each sequence S over Σ, the finite-state α-dimension
dimα

FS(S) and the finite-state strong α-dimension Dimα
FS(S) (defined in section 4 below) are

finite-state versions of Billingsley dimension [5, 10] introduced in [26]. When α is the uniform
probability measure on Σ, these are the finite dimension dimFS(S), introduced in [14] as a
finite-state version of Hausdorff dimension [20, 17], and the finite-state strong dimension
DimFS(S), introduced in [2] as a finite-state version of packing dimension [35, 34, 17].
Intuitively, dimα

FS(S) and Dimα
FS(S) measure the lower and upper asymptotic α-densities of

the finite-state information in S.
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Here we use part 1 of our strong dichotomy theorem to prove that, for every positive
probability measure α on Σ and every sequence S over Σ,

dimα
FS(S) ≤ 1−Div(S||α)/c,

where c = log(1/mina∈Σ α(a)). We also establish the dual result that, for all such α and S,

Dimα
FS(S) ≤ 1− div(S||α)/c.

Research on normal sequences and normal numbers (real numbers whose base-b expansions
are normal sequences for various choices of b) connected the theory of normal numbers so
directly to the theory of computing. Further work along these lines has been continued
in [21, 29, 3, 33]. After the discovery of algorithmic dimensions in the present century
[24, 25, 14, 2], the Schnorr-Stimm dichotomy led to the realization [8] that the finite-state
world, unlike any other known to date, is one in which maximum dimension is not only
necessary, but also sufficient, for randomness. This in turn led to the discovery of nontrivial
extensions of classical theorems on normal numbers [11, 36] to new quantitative theorems
on finite-state dimensions [19, 16], a line of inquiry that will certainly continue. It has
also led to a polynomial-time algorithm [4] that computes real numbers that are provably
absolutely normal (normal in every base) and, via Lempel-Ziv methods, to a nearly linear time
algorithm for this [27]. In parallel with these developments, connections among normality,
Weyl equidistribution theorems, and Diophantine approximation have led to a great deal
of progress surveyed in the books [15, 9]. This paragraph does not begin to do justice to
the breadth and depth of recent and ongoing research on normal numbers and their growing
involvement with the theory of computing. It is to be hoped that our strong dichotomy
theorem and the quantitative methods implicit in it will further accelerate these discoveries.

2 Divergence and normality

This section reviews the discrete Kullback-Leibler divergence, introduces asymptotic ex-
tensions of this divergence, and uses these to give useful characterizations of Borel normal
sequences.

2.1 The Kullback-Leibler divergence
We work in a finite alphabet Σ with 2 ≤ |Σ| < ∞. We write Σ` for the set of strings of
length ` over Σ, Σ∗ =

⋃∞
`=0 Σ` for the set of (finite) strings over Σ, Σω for the set of (infinite)

sequences over Σ, and Σ≤ω = Σ∗ ∪ Σω. We write λ for the empty string, |w| for the length
of a string w ∈ Σ∗, and |S| = ω for the length of a sequence S ∈ Σω. For x ∈ Σ≤ω and
0 ≤ i < |x|, we write x[i] for the i-th symbol in x, noting that x[0] is the leftmost symbol
in x. For x ∈ Σ≤ω and 0 ≤ i ≤ j < |x|, we write x[i..j] for the string consisting of the i-th
through j-th symbols in x. Specially, we write x � n to mean x[0..n− 1]. For x, y ∈ Σ≤ω,
we write x v y if x is a prefix of y. We write x @ y to denote x being a strict prefix of y,
which excludes the case x = y.

A (discrete) probability measure on a nonempty finite set Ω is a function π : Ω→ [0, 1]
satisfying∑

ω∈Ω
π(ω) = 1. (2.1)
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Figure 1 Two views of the simplex ∆({0, 1, 2}).

We write ∆(Ω) for the set of all probability measures on Ω, ∆+(Ω) for the set of all π ∈ ∆(Ω)
that are strictly positive (i.e., π(ω) > 0 for all ω ∈ Ω), ∆Q(Ω) for the set of all π ∈ ∆(Ω) that
are rational-valued, and ∆+

Q (Ω) = ∆+(Ω) ∩∆Q(Ω). In this paper we are most interested in
the case where Ω = Σ` for some ` ∈ Z+.

Intuitively, we identify each probability measure π ∈ ∆(Ω) with the point in R|Ω| whose
coordinates are the probabilities π(ω) for ω ∈ Ω. By (2.1) this implies that ∆(Ω) is the
(|Ω| − 1)-dimensional simplex in R|Ω| whose vertices are the points at 1 on each of the
coordinate axes. (See Figure 1 for an illustration with |Ω|= 3.) For each ω ∈ Ω, the vertex
on axis ω is the degenerate probability measures πω with πω(ω) = 1. The centroid of the
simplex ∆(Ω) is the uniform probability measure on Ω, and the (topological) interior of ∆(Ω)
is ∆+(Ω). We write ∂∆(Ω) = ∆(Ω) r ∆+(Ω) for the boundary of ∆(Ω).

I Definition. ([23]). Let α, β ∈ ∆(Ω), where Ω is a nonempty finite set. The Kullback-Leibler
divergence (or KL-divergence) of β from α is

D(α||β) = Eα log α
β
, (2.2)

where the logarithm is base-2.

Note that the right-hand side of (2.2) is the α-expectation of the random variable

log α
β

: Ω −→ R

defined by(
log α

β

)
(ω) = log α(ω)

β(ω)

for each ω ∈ Ω. Hence (2.2) is a convenient shorthand for

D(α||β) =
∑
ω∈Ω

α(ω) log α(ω)
β(ω) .

Note also that D(α||β) is infinite if and only if α(ω) > 0 = β(ω) the some ω ∈ Ω.
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The Kullback-Leibler divergence D(α||β) is a useful measure of how different β is from α.
It is not a metric (because it is not symmetric and does not satisfy the triangle inequality),
but it has the crucial property that D(α||β) ≥ 0, with equality if and only if α = β. The two
most central quantities in Shannon information theory, entropy and mutual information, can
both be defined in terms of divergence as follows.
1. Entropy is divergence from certainty. The entropy of a probability measure α ∈ ∆(Ω),

conceived by Shannon [32] as a measure of the uncertainty of α, is

H(α) =
∑
ω∈Ω

α(ω)D(πω||α), (2.3)

i.e., the α-average of the divergences of α from the “certainties” πω.
2. Mutual information is divergence from independence. If α, β ∈ ∆(Ω) have a joint

probability measure γ ∈ ∆(Ω×Ω) (i.e., are the marginal probability measures of γ), then
the mutual information between α and β, conceived by Shannon [32] as a measure of the
information shared by α and β, is

I(α ; β) = D(αβ||γ), (2.4)

i.e., the divergence of γ from the probability measure in which α and β are independent.

Two additional properties of the Kullback-Leibler divergence are useful for our asymptotic
concerns. First, the divergence D(α||β) is continuous on ∆(Ω)2 (as a function into [0,∞]).
Hence, if αn ∈ ∆(Ω) for each n ∈ N and lim

n→∞
αn = α in the sense of the Euclidean metric

on the simplex ∆(Ω), then lim
n→∞

D(αn||α) = lim
n→∞

D(α||αn) = 0. Second, the converse holds.
It is well known [12] that

D(α||β) ≥ 1
2 ln 2‖α− β‖

2
1,

where ‖α− β‖1 =
∑
ω∈Ω|α(ω)− β(ω)| is the L1-norm. Hence, if either lim

n→∞
D(αn||α) = 0

or lim
n→∞

D(α||αn) = 0, then lim
n→∞

αn = α.
More extensive discussions of the Kullback-Leibler divergence appear in [12, 13].

2.2 Asymptotic divergences
For nonempty strings w, x ∈ Σ∗, we write

#�(w, x) =
∣∣∣∣{m ≤ |x||w| − 1

∣∣∣ x[m|w|..(m+ 1)|w| − 1] = w}
∣∣∣∣

for the number of block occurrences of w in x. Note that 0 ≤ #�(w, x) ≤ |x|
|w| .

For each S ∈ Σω, n ∈ Z+, and λ 6= w ∈ Σ∗, the n-th block frequency of w in S is

πS,n(w) = #�(w, S[0..n|w|−1])
n

(2.5)

Note that (2.5) defines, for each S ∈ Σω and n ∈ Z+, a function

πS,n : Σ∗ r {λ} −→ Q.

For each such S and n and each ` ∈ Z+, let π(`)
S,n = πS,n � Σ` be the restriction of the function

πS,n to the set Σ` of strings of length `.
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I Observation 2.1. For each S ∈ Σω and n, ` ∈ Z+,

π
(`)
S,n ∈ ∆Q(Σ`),

i.e., π(`)
S,n is a rational-valued probability measure on Σ`.

We call π(`)
S,n the n-th empirical probability measure on Σ` given by S.

A probability measure α ∈ ∆(Σ) naturally induces, for each ` ∈ Z+, a probability measure
α(`) ∈ ∆(Σ`) defined by

α(`)(w) =
|w|−1∏
i=0

α(w[i]). (2.6)

The empirical probability measures π(`)
S,n provide a natural way to define useful empirical

divergences of probability measures from sequences.

I Definition. Let ` ∈ Z+, S ∈ Σω, and α ∈ ∆(Σ).
1. The lower `-divergence of α from S is div`(S||α) = lim inf

n→∞
D(π(`)

S,n||α
(`)).

2. The upper `-divergence of α from S is Div`(S||α) = lim sup
n→∞

D(π(`)
S,n||α

(`)).

3. The lower divergence of α from S is div(S||α) = sup
`∈Z+

div`(S||α)/`.

4. The upper divergence of α from S is Div(S||α) = sup
`∈Z+

Div`(S||α)/`.

A similar approach gives useful empirical divergences of one sequence from another.

I Definition. Let ` ∈ Z+ and S, T ∈ Σω.
1. The lower `-divergence of T from S is div`(S||T ) = lim inf

n→∞
D(π(`)

S,n||π
(`)
T,n).

2. The upper `-divergence of T from S is Div`(S||T ) = lim sup
n→∞

D(π(`)
S,n||π

(`)
T,n).

3. The lower divergence of T from S is div(S||T ) = sup
`∈Z+

div`(S||T )/`.

4. The upper divergence of T from S is Div(S||T ) = sup
`∈Z+

Div`(S||T )/`.

2.3 Normality
The following notions are essentially due to Borel [7].

I Definition. Let α ∈ ∆(Σ), S ∈ Σω, and ` ∈ Z+.
1. S is α-`-normal if, for all w ∈ Σ`,

lim
n→∞

πS,n(w) = α(`)(w).

2. S is α-normal if, for all ` ∈ Z+, S is α-`-normal.
3. S is `-normal if S is µ-`-normal, where µ is the uniform probability measure on Σ.
4. S is normal if, for all ` ∈ Z+, S is `-normal.

I Lemma 2.2. For all α ∈ ∆(Σ), S ∈ Σω, and ` ∈ Z+, the following four conditions are
equivalent.
(1) S is α-`-normal.
(2) Div`(S||α) = 0.
(3) For every α-`-normal sequence T ∈ Σω, Div`(S||T ) = 0.
(4) There exists an α-`-normal sequence T ∈ Σω such that Div`(S||T ) = 0.
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Lemma 2.2 (proved in the appendix) immediately implies the following.

I Theorem 2.3 (divergence characterization of normality). For all α ∈ ∆(Σ) and S ∈ Σω, the
following conditions are equivalent.
(1) S is α-normal.
(2) Div(S||α) = 0.
(3) For every α-normal sequence T ∈ Σω, Div(S||T ) = 0.
(4) There exists an α-normal sequence T ∈ Σω such that Div(S||T ) = 0.

3 Strong Dichotomy

This section presents our main theorem, the strong dichotomy theorem for finite-state
gambling. We first review finite-state gamblers.

Fix a finite alphabet Σ with |Σ| ≥ 2.

I Definition ([31, 18, 14]). A finite-state gambler (FSG) is a 4-tuple

G = (Q, δ, s,B),

where Q is a finite set of states, δ : Q× Σ→ Q is the transition function, s ∈ Q is the start
state, and B : Q→ ∆Q(Σ) is the betting function.

The transition structure (Q, δ, s) here works as in any deterministic finite-state automaton.
For w ∈ Σ∗, we write δ(w) for the state reached from s by processing w.

Intuitively, a gambler G = (Q, δ, s,B) bets on the successive symbols of a sequence
S ∈ Σω. The payoffs in the betting are determined by a payoff probability measure α ∈ ∆(Σ).
(We regard α and S as external to the gambler G.) We write dG,α(w) for the gambler G’s
capital (amount of money) after betting on the successive bits of a prefix w v S, and we
assume that the initial capital is dG,α(λ) = 1.

The meaning of the betting function B is as follows. After betting on a prefix w v S, the
gambler is in state δ(w) ∈ Q. The betting function B says that, for each a ∈ Σ, the gambler
bets the fraction B(δ(w))(a) of its current capital dG,α(w) that wa v S, i.e., that the next
symbol of S is an a. If it then turns out to be the case that wa v S, the gambler’s capital
will be

dG,α(wa) = dG,α(w)B(δ(w))(a)
α(a) . (3.1)

(Note: If α(a) = 0 here, we may define dG,α(wa) however we wish.)
The payoffs in (3.1) are fair with respect to α, which means that the conditional α-

expectation∑
a∈Σ

α(a)dG,α(wa)

of dG,α(wa), given that w v S, is exactly dG,α(w). This says that the function dG,α is an
α-martingale.

If δ(w) = q is a state in which B(q) = α, then (3.1) says that, for each a ∈ Σ, dG,α(wa) =
dG,α(w). That is, the condition B(q) = α means that G does not bet in state q. Accordingly,
we define the risk that G takes in a state q ∈ Q to be

riskG(q) = D(α||B(q)).
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i.e., the divergence of B(q) from not betting. We also define the total risk that G takes along
a string w ∈ Σ∗ to be

RiskG(w) =
∑
u@w

riskG (δ(u)).

We now state our main theorem.

I Theorem 3.1 (strong dichotomy theorem). Let α ∈ ∆(Σ), S ∈ Σω, and γ < 1.
1. If S is not α-normal, then there is a finite-state gambler G such that, for infinitely many

prefixes w v S,

dG,α(w) > 2γDiv(S||α)|w|.

2. If S is α-normal, then, for every finite-state gambler G, for all but finitely many prefixes
w v S,

dG,α(w) < 2−γ RiskG(w).

Proof. To prove the first part, let S be a non-normal sequence. Then by Theorem 2.3, we
know that Div(S||α) > 0. Let r < 1 and let ε > 0. By the definition of Div(S||α) there must
exist ` such that

Div`(S||α)/` > rDiv(S||α). (3.2)

That is

lim sup
n→∞

D(π(`)
S,n||α

(`)) > `rDiv(S||α).

We can pick a subsequence of indices nk’s, such that limk→∞D(π(`)
S,nk
||α(`)) = Div`(S||α).

Therefore by inequality (3.2)

D(π(`)
S,nk
||α(`)) > `rDiv(S||α) (3.3)

for sufficiently large k. In particular, by compactness of [0, 1]|Σ`| equipped with L1-norm, we
can further request that

lim
k→∞

π
(`)
S,nk

exists. (3.4)

Let π0 = π0(r,m) ∈ ∆Q(Σ`) be the m-th π
(`)
S,nk

that satisfies (3.3), indexed by k. By the
way we define π0, we have

D(πS,nk ||α(`)) ≥ D(π0||α(`)) > `rDiv(S||α), (3.5)

and

‖π0 − π
(`)
S,nk
‖ → 0, as m→∞ and k →∞, (3.6)

whence D’s continuity in section 2.1 tells us that

D(π(`)
S,nk
||π0)→ 0, as m→∞ and k →∞. (3.7)

Also note that,

lim
m→∞

D(π0||α(`)) = lim
k→∞

D(π(`)
S,nk
||α(`)) = Div`(S||α) > 0. (3.8)
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For a fixed π0 = π0(r,m), by the definition, for any nk sufficiently large, we have

D(π(`)
S,nk
||α(`)) > D(π0||α(`))(1− ε) > 0. (3.9)

By doing the above we pick a probability measure π0 that is “far” away from α(`), we
now hard code π0 in a gambler G = (Q, δ, s,B), where

Q = Σ≤`−1, δ(w, a) =
{
wa if |wa| < `

λ if |wa| = `
, s = λ, and B(w)(a) = π0(a|w),

where π0(a|w) describes the conditional probability (induced by π0) of occurrence of an a
after w ∈ Q, and is defined by π0(a|w) = π0(wa)/π0(w), where for u ∈ Q, the notation π0(u)
is defined recursively by π0(w) =

∑
a∈Σ π0(wa).

Let u = a0 · · · a`−1 be in Σ`. The following observation captures the above intuition:

B(λ)(a0) · · ·B(u[0..`− 2])(a`−1)
α(a0) · · ·α(a`−1) = π0(u)

α(`)(u)
.

Now let w = S � nk for some k. We can view w as

w = u0u1 · · ·un−1un, where |ui| = ` for 0 ≤ i ≤ n− 1 and un = a0 · · · am with m < `.

Then we have

dG,α(w) =
( n−1∏

0

π0(ui)
α(`)(ui)

)B(λ)(a0) · · ·B(un[0..m− 1])(am)
α(a0) · · ·α(am) ≥ C0

n−1∏
0

π0(ui)
α(`)(ui)

, (3.10)

where C0 is the minimum value of B(λ)(a0)···B(un[0..m−1])(am)
α(a0)···α(a`−1) , where un = a0 · · · am ranges

over Σ<`. Taking log on both sides of (3.10) we get

log dG,α(w)− logC0 ≥
n−1∑
i=0

log π0(ui)
α(`)(ui)

=
∑
|u|=`

#�(u,w) log π0(u)
α(`)(u)

,

= n
∑
|u|=`

#�(u,w)
n

log π0(u)
α(`)(u)

= n
∑
|u|=`

π
(`)
S,n(u) log π0(u)

α(`)(u)
,

= n
∑
|u|=`

[
π

(`)
S,n(u) log

π
(`)
S,n(u)
α(`)(u)

− π
(`)
S,n(u) log

π
(`)
S,n(u)
π0(u)

]
= n

(
D(π(`)

S,n||α
(`))−D(π(`)

S,n||π0)
)

(3.11)

Then by (3.9), for w = S � nk long enough, we have

log dG,α(w)− logC0 ≥ n
(
D(π(`)

S,n||α
(`))−D(π(`)

S,n||π0)
)

≥ n
(
D(π0||α(`))(1− ε)−D(π(`)

S,n||π0)
)
≥ |w|

`
D(π0||α(`))(1− 2ε).

Therefore, by (3.5) we have

dG,α(w) ≥ C02
|w|(1−2ε)

` D(π0||α(`)) ≥ 2|w|r(1−2ε) Div(S||α).

Since r and 1− 2ε can be picked arbitrary close to 1, take r(1− 2ε) > γ, then

dG,α(w) ≥ 2γDiv(S||α)|w|

for w = S � nk long enough.
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We now prove the second part of the main theorem.
Let S be a normal number, G an arbitrary finite-state gambler. By Proposition 2.5 of [31],

G = (Q, δ, s,B) will eventually reach a bottom strongly connected component (a component
that has no path to leave) when processing S. A similar argument can also be found in [33].
Without loss of generality, we will therefore assume that every state in G is recurrent in
processing S.

Let w = a0 · · · an−1 v S. Then

dG,α(w) = B(δ(λ))(a0) · · ·B(δ(w[a0..an−2]))(an−1)
α(a0) · · ·α(an−1)

=
∏
q∈Q

∏
a∈Σ

(B(q)(a)
α(a)

)#G,w(q,a)
, (3.12)

where the notation #G,w(q, a) denotes the number of times G lands on state q and the next
symbol is a while processing w. Similarly, we use the notation #G,w(q) to denote the number
of times G lands on q in the same process.

Taking the logarithm of both sides of (3.12), we have

log dG,α(w) =
∑
q∈Q

∑
a∈Σ

#G,w(q, a) log B(q)(a)
α(a)

=
∑
q∈Q

#G,w(q)
∑
a∈Σ

#G,w(q, a)
#G,w(q) log B(q)(a)

α(a) (3.13)

By a result of Agafonov [1], which extends easily to the arbitrary probability measures
considered here, we have that, for every state q, the limit of #G,w(q,a)

#G,w(s) along S exists and
converges to α(a). That is

lim
w→S

#G,w(q, a)
#G,w(s) = α(a), (3.14)

for every state q.
Therefore, by equations (3.13) and (3.14), and the fact that there are finitely many states,

we have

log dG,α(w) ≤
∑
q∈Q

#G,w(q)
∑
a∈Σ

(α(a) + o(1)) log B(q)(a)
α(a)

=
∑
q∈Q
− riskG(q)#G,w(q) +

∑
q∈Q

#G,w(q)
∑
a∈Σ

o(1) log B(q)(a)
α(a)

= −RiskG(w) +
∑
q∈Q

#G,w(q)
∑
a∈Σ

o(1) log B(q)(a)
α(a)

= RiskG(w)(−1 + o(1)).

It follows that

dG,α(w) ≤ 2−(1+o(1)) RiskB(w),

so part 2 of the theorem holds. J
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4 Dimension

Finite-state dimensions give a particularly sharp formulation of part 1 of the strong dichotomy
theorem, along with a dual of this result.

Finite-state dimensions were introduced for the uniform probability measure on Σ in
[14, 2] and extended to arbitrary probability measure on Σ in [26]. For each α ∈ ∆(Σ) and
each S ∈ Σω, define the sets

Gα(S) =
{
s ∈ [0,∞)

∣∣∣ (∃FSG G) lim sup
w→S

α|w|(w)1−sdG,α(w) =∞
}

and

Gαstr(S) =
{
s ∈ [0,∞)

∣∣∣ (∃FSG G) lim inf
w→S

α|w|(w)1−sdG,α(w) =∞
}

The limits superior and inferior here are taken for successively longer prefixes w v S. The
“strong” subscript of Gstr(S) refers to the fact that α|w|(w)1−sdG,α(w) is required to converge
to infinity in a stronger sense than in Gα(S).

I Definition ([26]). Let α ∈ ∆(Σ) and S ∈ Σω.
1. The finite-state α-dimension of S is dimα

FS(S) = inf Gα(S).
2. The finite-state strong α-dimension of S is Dimα

FS(S) = inf Gαstr(S)

It is easy to see that, for all α ∈ ∆+(Σ) and S ∈ Σω, 0 ≤ dimα
FS(S) ≤ Dimα

FS(S) ≤ 1.

I Theorem 4.1. For all α ∈ ∆(Σ) and S ∈ Σω let c = log(1/mina∈Σ α(a)). Then,

dimα
FS(S) ≤ 1−Div(S||α)/c

and

Dimα
FS(S) ≤ 1− div(S||α)/c.

Proof. Let t < Div(S||α)/c, and let s = 1− t. Fix ` such that Div`(S||α)/` > tc, then for
i.o. n, D(π(`)

S,n||α(`)) > `tc. Note that α|w|(w) ≥ (1/2c)|w| for every w ∈ Σ∗.
Define the gambler G be G = (Q, δ, s0, Bn), where Q = Σ≤`−1,

δ(w, a) =
{
wa if |wa| < `

λ if |wa| = `

s0 = λ, and Bn(w)(a) = π
(`)
S,n(a|w), where π

(`)
S,n(a|w) describes the conditional probability

(induced by π
(`)
S,n) of occurrence of an a after w ∈ Q.

Let u = a0 · · · a`−1 be in Σ`.

Bn(λ)(a0) · · ·Bn(u[0..`− 2])(a`−1)
α(a0) · · ·α(a`−1) =

π
(`)
S,n(u)
α(`)(u)

.

Then for z ∈ Σ∗ with z v S and |z|= `n, we have

α|z|(z)1−sdG,α(z) = α|z|(z)tdG,α(z)

= α|z|(z)t
∏
u∈Σ`

(
π

(`)
S,n(u)
α(`)(u)

)nπ(`)
S,n

(u)
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Therefore,

α|z|(z)tdG,α(z) ≥ 1
2c
|z|t

2nD(π(`)
S,n
||α(`))

≥ 2−c|z|t+c|z|t

Since the number of states is fixed, this implies dimα
FS(S) ≤ 1−Div(S||α)/c.

The proof of the other case is similar, where we use the fact that, for a.e. n,

D(π(`)
S,n||α

(`)) > `tc. J
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A Appendix

The following is a proof for Lemma 2.2.

Proof. Let α, S, and ` be as given.
To see that (1) implies (2), assume (1). Then lim

n→∞
π

(`)
S,n = α(`), so the continuity of

KL-divergence tells us that

Div`(S||α) = lim
n→∞

D(π(`)
S,n||α

(`)) = 0,

i.e., that (2) holds.
To see that (2) implies (3), assume (2). Then lim

n→∞
D(π(`)

S,n||α
(`)) = Div`(S||α) = 0,

whence the L1 bound in section 2.1 tells us that lim
n→∞

π
(`)
S,n = α(`). For any α-`-normal

sequence T ∈ Σω, we have lim
n→∞

π
(`)
T,n = α(`), whence the continuity of KL-divergence tells us

that

Div`(S||T ) = lim
n→∞

D(π(`)
S,n||π

(`)
T,n) = D(α(`)||α(`)) = 0,

i.e., that (3) holds.
Since α-`-normal sequences exist, it is trivial that (3) implies (4).
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Finally, to see that (4) implies (1), assume that (4) holds. Then we have

lim
n→∞

D(π(`)
S,n||π

(`)
T,n) = Div`(S||T ) = 0,

whence the L1 bound in section 2.1 tells us that

lim
n→∞

‖π(`)
S,n − π

(`)
T,n‖1 = 0. (A.1)

We also have

lim
n→∞

π
(`)
T,n = α(`),

whence

lim
n→∞

‖π(`)
T,n − α

(`)‖1 = 0. (A.2)

By (A.1), (A.2), and the triangle inequality for the L1-norm, we have

lim
n→∞

‖π(`)
S,n − α

(`)‖1 = 0,

whence

lim
n→∞

π
(`)
S,n = α(`),

i.e., (1) holds. J

Lemma 2.2 immediately implies the following.

I Theorem 2.3 (divergence characterization of normality). For all α ∈ ∆(Σ) and S ∈ Σω, the
following conditions are equivalent.
(1) S is α-normal.
(2) Div(S||α) = 0.
(3) For every α-normal sequence T ∈ Σω, Div(S||T ) = 0.
(4) There exists an α-normal sequence T ∈ Σω such that Div(S||T ) = 0.
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Abstract
Given a hypergraph H, the conflict-free colouring problem is to colour vertices of H using minimum
colours so that in every hyperedge e of H, there is a vertex whose colour is different from that of all
other vertices in e. Our results are on a variant of the conflict-free colouring problem considered by
Cheilaris et al.[4], known as the 1-Strong Conflict-Free (1-SCF) colouring problem, for which they
presented a polynomial time 2-approximation algorithm for interval hypergraphs. We show that
an optimum 1-SCF colouring for interval hypergraphs can be computed in polynomial time. Our
results are obtained by considering a different view of conflict-free colouring which we believe could
be useful in general. For interval hypergraphs, this different view brings a connection to the theory
of perfect graphs which is useful in coming up with an LP formulation to select the vertices that
could be coloured to obtain an optimum conflict-free colouring. The perfect graph connection again
plays a crucial role in finding a minimum colouring for the vertices selected by the LP formulation.
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1 Introduction

A vertex colouring function C : V → {0, 1, 2, . . . , k} of a hypergraph H = (V, E) using k
non-zero colours is a 1-SCF colouring of H, if for every hyperedge e ∈ E there exists a
non-zero colour j ∈ {1, 2, · · · , k} such that |e ∩ C−1(j)| = 1. This problem was first studied
by Cheilaris et al. [4] and is a variant of a well-studied hypergraph colouring problem
known as the Conflict-Free colouring problem. A Conflict-Free (CF, in short) colouring is
a vertex colouring of a hypergraph that colours every vertex of the hypergraph such that
every hyperedge e has at least one vertex whose colour is different from that of every other
vertex in e. The CF colouring problem seeks to find a CF colouring using minimum number
of colours. The number of colours used in any optimum CF colouring of a hypergraph H is
called the CF colouring number of H. In the 1-SCF colouring, the algorithm is presented
with an input in which all vertices are initially coloured with colour 0, and the goal is to
modify the colour of some vertices to a non-zero colour such that the resulting colouring is a
1-SCF colouring. We observe that a 1-SCF colouring can be used to find a CF colouring
of a given hypergraph by adding one interval of length 1 for each vertex in H (this simple
transformation ensures that each vertex must be given a non-zero colour). We refer to the
number of non-zero colours used in any optimum 1-SCF colouring of a hypergraph H as
the 1-SCF colouring number of H. Observe that the CF colouring number of a hypergraph
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H is at most one more than the 1-SCF colouring number of H. Our main result is an
algorithm that solves the 1-SCF colouring problem optimally in polynomial time for interval
hypergraphs, thus solving one part of an open problem posed by Cheilaris et al. [4].

I Theorem 1. The 1-SCF colouring problem in interval hypergraphs can be optimally solved
in polynomial time.

As a corollary the 1-SCF colouring number of a given interval hypergraph can be computed
in polynomial time.

Past Work in CF colouring. The survey due to Smorodinsky [17] presents a general
framework for CF colouring that involves finding a proper colouring in every iteration
and giving the largest colour class a new colour. Smorodinsky [17] showed that if for
every induced sub-hypergraph H ′ ⊆ H, the chromatic number of H ′ is at most k, then
χcf (H) ≤ log1+ 1

k−1
n = O(k logn), where n = |V|. Pach and Tardos [15] showed that if

|E(H)| <
(
s
2
)
for some positive integer s, and ∆ is the maximum degree of a vertex in H,

then χcf (H) < s and χcf (H) ≤ ∆ + 1. The CF colouring problem has also been studied
on different types of hypergraphs. Even et al. [8] have studied a number of hypergraphs
induced by geometric regions on the plane including discs, axis-parallel rectangles, regular
hexagons, and general congruent centrally symmetric convex regions in the plane. Let D
be a set of n finite discs in R2. For a point p ∈ R2, define r(p) = {D ∈ D : p ∈ D}.
The hypergraph (D, {r(p)}p∈R2), denoted by H(D), is called the hypergraph induced by
D. Smorodinsky showed that χcf (H(D)) ≤ log4/3 n [16, 17]. Similarly, if R is a set of n
axis-parallel rectangles in the plane, then, χcf (H(R)) = O(log2 n). There have been many
studies on hypergraphs induced by neighbourhoods in simple graphs. Given a simple graph
G = (V,E), the open neighbourhood (or simply neighbourhood) of a vertex v ∈ V is defined
as follows: N(v) = {u ∈ V | uv ∈ E}. The set N(v)∪ v is known as the closed neighbourhood
of v. Pach and Tardos [15] have shown that the vertices of a graph G with maximum degree
∆ can be coloured with O(log2+ε ∆) colours, so that the closed neighbourhood of every
vertex in G is CF coloured. They also showed that if the minimum degree of vertices in
G is Ω(log ∆), then the open neighbourhood can be CF coloured with at most O(log2 ∆)
colours. Abel et al. [1] gave the following tight worst-case bound for neighbourhoods in
planar graphs: three colours are sometimes necessary and always sufficient. Keller and
Smorodinsky [14] studied conflict-colourings of intersection graphs of geometric objects. They
showed that the intersection graph of n pseudo-discs in the plane admits a CF colouring
with O(logn) colours, with respect to both closed and open neighbourhoods. Ashok et al.
[2] studied an optimization variant of the CF colouring problem, namely Max-CFC. Given a
hypergraph H = (V, E) and integer r ≥ 2, the problem is to find a maximum-sized subfamily
of hyperedges that can be CF coloured with r colours. They have given an exact algorithm
running in O(2n+m) time. The paper also studies the problem in the parametrized setting
where one must find if there exists a subfamily of at least k hyperedges that can be CF
coloured using r colours. They showed that the problem is FPT and gave an algorithm with
running time 2O(k log log k+k log r)(n+m)O(1).

CF colouring in Interval Hypergraphs. A hypergraph Hn = ([n], In), where [n] =
{1, . . . , n} and In =

{
{i, i + 1, . . . , , j} | i ≤ j and i, j ∈ [n]

}
is known as a complete

interval hypergraph [4]. A hypergraph such that the set of hyperedges is a family of intervals
I ⊆ In is known as an interval hypergraph. One can view the CF colouring problem in
interval hypergraphs as modelling the frequency assignment problem in a chain of units discs
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[4, 8]. In the case of hypergraphs induced by arbitrary unit discs in the plane, the problem
is known to be NP-complete [13]. It was shown in [8] that a complete interval hypergraph
can be CF coloured using Θ(logn) colours. Chen et al.[5] presented results on an online
variant of CF colouring problem in complete interval hypergraphs. In the online variant,
points arrive online and a point has to be assigned a colour upon its arrival such that the
resulting colouring is conflict-free with respect to all intervals. Chen et al.[5] gave a greedy
algorithm that uses Ω(

√
n) colours, a deterministic algorithm that uses Θ(log2 n) colours

and a randomized algorithm that uses O(logn) colours. There have been some studies [4, 13]
on CF colouring in interval hypergraphs (instead of complete interval hypergraphs), in which
case a subset of intervals in In is given as part of the input.

1-SCF colouring in Interval Hypergraphs. Katz et al.[13] gave a polynomial-time approx-
imation algorithm for 1-SCF colouring an interval hypergraph with approximation ratio 4.
Cheilaris et al.[4] improved this result in their paper on k-Strong CF colouring (k-SCF )
problem. The k-SCF problem seeks to find a vertex colouring of the hypergraph such that in
every hyperedge e, there are at least min{|e|, k} vertices that are uniquely coloured. Cheilaris
et al.[4] gave a polynomial-time approximation algorithm with approximation ratio 2 for
k = 1 and 5− 2

k for k ≥ 2. Further, they presented a quasi-polynomial time algorithm for
the decision version of the k-SCF problem. This clearly ruled out the possibility of the
decision version being NP-complete, unless NP-complete problems have quasi-polynomial
time algorithms. The main result in this paper is a polynomial time optimum 1-SCF colour-
ing algorithm for interval hypergraphs. We achieve this by observing a natural connection
between the 1-SCF colouring problem and the problem of solving an exact hitting set problem
with some constraints. We then formulate this exact hitting set problem as a linear program
(LP) for interval hypergraphs, and show that this LP can be solved in polynomial time, and
the LP solution can be rounded to an integer solution in polynomial time. For the rest of
the paper, since we work entirely on 1-SCF colouring, we refer to non-zero colours as simply
“colours”.

Our Approach. We outline the approach towards proving our main result which is Theorem 1.
The initial steps of our approach are simple observations regarding a different view of 1-SCF
colouring which we present as Theorem 2 and Theorem 3. We present these observations as
theorems because they bring a different perspective on 1-SCF colouring which turns out to
be surprisingly useful for interval hypergraphs. However, in spite of the positive result with
interval hypergraphs, we do not know of other hypergraphs for which our approach yields a
better understanding of the 1-SCF colouring problem and the 1-SCF colouring number.
Theorem 2 brings into our perspective that 1-SCF colouring is actually the problem of
computing a special type of colouring of the vertices of an exact hitting set. We observe that
1-SCF colouring of a hypergraph can be naturally seen as the proper colouring of a related
simple graph which we call a co-occurrence graph. A co-occurrence graph is obtained from a
1-SCF colouring based on a function defined on E , and we call this function a representative
function. For a representative function t, the co-occurrence graph is denoted by Γt. We
show that the search for the co-occurrence graph with the minimum chromatic number is
equivalent to the search for the corresponding representative function.

I Theorem 2. Let H = (V, E) be a hypergraph. Let χcf (H) be the number of colours used
in any optimal 1-SCF colouring of H. Let χmin(H) be the minimum chromatic number over
all possible co-occurrence graphs of H. Then, χcf (H) = χmin(H).

STACS 2020
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We then show that the search for an appropriate representative function is answered by
finding an exact hitting set of some cliques in a graph Ĝ called the conflict graph of H. We
identify two sets of cliques in Ĝ, namely hyperedge cliques denoted by Q1 and colour cliques
denoted by Q2. These cliques are defined in Definition 7. The conflict graph is designed in
such a way that there exists an exact hitting set S of cliques in Q1 that hits every maximal
clique in Q2 at most q times if and only if there exists a 1-SCF colouring of H with q colours
(Lemma 9). We establish the relation between the conflict graph and a co-occurrence graph
of a hypergraph in the theorem below. Theorem 3 gives us a framework for searching for an
appropriate exact hitting set of the given hypergraph.

I Theorem 3. Let H = (V, E) be a hypergraph. Let t be a representative function of H and
let Ĝ be the conflict graph of H. Then, the set S = {(e, u) | (e, u) ∈ Ĝ, t(e) = u} is an exact
hitting set of cliques in Q1, ω(Ĝ[S]) ≤ ω(Γt), and χ(Ĝ[S]) ≤ χ(Γt).

We next state the following important structural properties of co-occurrence graphs and
conflict graphs specific to interval hypergraphs in Section 3.

I Theorem 4. Each co-occurrence graph of an interval hypergraph is perfect.

I Theorem 5. Let H = (V, I) be an interval hypergraph. Then the conflict graph Ĝ(H) is
perfect.

In order to find an optimal co-occurrence graph for interval hypergraphs, we formulate a
Linear Program (LP) for a constrained exact hitting set of a set of cliques of Ĝ in Section
4. We show that the LP can be solved in polynomial time using the ellipsoid method. The
ellipsoid method uses a separation oracle that we design specifically for interval hypergraphs,
and this oracle crucially relies on the fact that the conflict graph is perfect. Further, an
optimum fractional solution obtained from the LP is rounded to give an integer feasible
solution. This integer feasible solution naturally gives a representative function for the
given interval hypergraph, and we show that the corresponding co-occurrence graph has the
minimum chromatic number over all co-occurrence graphs of the given interval hypergraph.
The minimum colouring of the co-occurrence graph can also be computed in polynomial
time using known algorithms for minimum colouring of perfect graphs. We believe that
this technique can be used to design an optimal polynomial time algorithm for the k-SCF
problem of Cheilaris et al.[4]. The perfectness of co-occurrence graphs and conflict graphs in
the 1-SCF colouring are not dependent on k and hence we conjecture that the same approach
will work for the k-SCF problem with minimal tuning to the rounding procedure for the LP.
Finally, we have not been able to prove any other computationally useful structure on the
co-occurrence graphs and conflict graphs of interval hypergraphs. In particular, we know that
both these graphs can have induced cycles of length 4, and thus we cannot use techniques
from chordal graph colouring or interval graph hitting set (which uses the consecutive ones
property of the clique-vertex incidence matrix) algorithms.

1.1 Preliminaries
In an interval I = {i, i+ 1, . . . , j}, i and j are the left and right endpoints of I respectively,
denoted by l(I) and r(I), respectively. Since an interval is a finite set of consecutive integers,
it follows that |I| is well-defined. Throughout the paper, we assume that the hypergraph H
has n vertices and m hyperedges.
If vertex v ∈ e has been assigned a colour c that is different from the colour of all other
vertices in e, then we say that e is 1-SCF coloured by vertex v and by colour c. Note that
in our convention, we use colour 0 to indicate that a vertex with colour 0 does not 1-SCF
colour any hyperedge.
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For a set S of vertices in a simple graph G, G[S] denotes the induced subgraph of G on S.
Perfect graphs [9] are very well-studied and many hard problems are tractable on perfect
graphs. We use four well known properties of perfect graphs.
P1 Let G = (V,E) be a perfect graph. For a given subset V ′ ⊆ V , let G[V ′] = (V ′, EV ′) be

the subgraph induced by V ′, where EV ′ = {uv ∈ E | u, v ∈ V ′}. Then, it is known from
[9] that ω(G[V ′]) = χ(G[V ′]), where ω(G[V ′]) and χ(G[V ′]) are, respectively, the clique
number and the chromatic number of G[V ′]. Recall that the clique number of a simple
graph G is the size of its largest clique and the chromatic number of G is the number of
colours needed in an optimal proper colouring of G.

P2 A Berge graph is a simple graph that has neither an odd hole nor an odd anti-hole as an
induced subgraph [3, 6, 7, 9]. An odd hole is an induced cycle of odd length that has at
least 5 vertices and an odd anti-hole is the complement of an odd hole. It is known from
Theorem 1.2 in [7] that a graph is perfect if and only if it is Berge.

P3 The chromatic number of a perfect graph can be found in polynomial time [11].
P4 The maximum weighted clique problem can be solved in polynomial time in perfect

graphs [10],[11].
We use linear programming and combinatorial optimization concepts from [12] and [10]. All
other definitions and notations used in this paper are from West [19] and Smorodinsky [17].

2 Co-occurrence Graphs, Conflict Graphs and 1-SCF colouring

We define two types of simple graphs associated with a hypergraph H = (V, E). We also
establish the relationship between a proper colouring of these graphs and a 1-SCF colouring
of H. For a 1-SCF colouring function C defined on V, let t : E → V be a function such
that for each e ∈ E , t(e) is that vertex v in e such that the colour given to v by C is not
given to any other vertex in e. We refer to t as a representative function obtained from the
colouring C. Further, each function t : E → V such that for each edge e, t(e) ∈ e is referred
to as a representative function of H. We now define the Co-occurrence Graph, Γt(H), given
a representative function t of H. Let R ⊆ V denote the image of E under the function t.
The vertex set of the co-occurrence graph Γt(H) is R, and for u, v ∈ R, uv is an edge in
Γt(H) if and only if for some e ∈ E , u ∈ e and v ∈ e and t(e) is either u or v. Further, given
a representative function t of H, a proper colouring of the graph Γt(H) defines a 1-SCF
colouring of H for which t is a representative function obtained from the 1-SCF colouring.
Note that in this 1-SCF colouring, the vertices which are not present in Γt(H) get the 0
colour. Wherever H is implied, we use Γt to denote Γt(H). Define χmin(H) = min

t
χ(Γt)

where χ(Γt) is the chromatic number of the co-occurrence graph Γt and the minimum is
taken over all representative functions t of the hypergraph H.
We prove the equivalence stated in Theorem 2.

Proof of Theorem 2. Let t be a representative function such that χ(Γt) = χmin(H). We
extend a proper colouring C of Γt to a vertex colouring function C ′ of V(H) by assigning
the colour 0 to those vertices in V(H) \ R. C ′ is a 1-SCF colouring of H since for each
e ∈ E , the colour assigned to the vertex t(e) by C ′ is different from the colour assigned to
every other vertex in e. The reason for this is as follows: let v ∈ e be a vertex different
from t(e). If C ′(v) = 0, then definitely its colour is different from C ′(t(e)). On the other
hand, if C ′(v) 6= 0, then it implies that there is an e′ such that v = t(e′). Consequently,
v ∈ V (Γt), and since v ∈ e, {v, t(e)} is an edge in Γt by the definition of Γt. Further, since
C ′ is obtained from a proper colouring C of Γt it follows that C ′(v) is different from C ′(t(e)).

STACS 2020
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Thus χcf ≤ χmin(H). We prove that χmin(H) ≤ χcf (H) as follows: since a minimum
1-SCF colouring of H gives a representative function t as defined above, it follows that
χcf (H) ≥ χ(Γt) ≥ χmin(H). Therefore, it follows that χcf (H) = χmin(H). J

As a consequence of Theorem 2, to find a 1-SCF colouring with the least number of colours,
we need to find a co-occurrence graph for which the chromatic number is the least over all
co-occurrence graphs. This entails first computing the representative function corresponding
to the co-occurrence graph which has the minimum chromatic number, and then computing
a minimum colouring of the co-occurrence graph. We pose the problem of finding the
candidate representative function as a hitting set problem on a graph called the Conflict
Graph associated with a hypergraph. Given a hypergraph H = (V, E), we use Ĝ(H) = (V,E)
to denote the conflict graph of H. Wherever H is implied, we use Ĝ to denote Ĝ(H). The
elements of V (Ĝ) and V(H) are referred to as nodes and vertices, respectively. The node
set of Ĝ(H) is V =

{
(e, v) | e ∈ E , v ∈ e

}
. In a node (e, v), we refer to e as the hyperedge

coordinate and v as the vertex coordinate. Conceptually, a node (e, v) in Ĝ represents the
logical proposition that hyperedge e is 1-SCF coloured by vertex v ∈ e. E(Ĝ) is defined such
that each edge encodes a constraint to be satisfied by any 1-SCF colouring of H. The edge
set of Ĝ is E = Eedge ∪ Ecolour, where Eedge and Ecolour are defined as follows:
1. Eedge =

{(
(e, v), (e, u)

)
| {v, u} ⊆ e, u 6= v

}
. For each hyperedge e in H, the nodes in Ĝ

with e as the hyperedge coordinate form a clique.
2. Ecolour =

{(
(e, v), (g, u)

)
| {v, u} ⊆ e or {v, u} ⊆ g, u 6= v, e 6= g

}
. These edges encode

the proposition that if two vertices co-occur in a hyperedge, they must get two different
colours, irrespective of other hyperedges to which any of these vertex may belong to.

The following structural property of a conflict graph is crucial in the proof of Lemma 11.

I Observation 6. Given a hypergraph H = (V, E), for each vertex v ∈ V, the set of nodes
{(e, v) | e ∈ E , v ∈ e} in Ĝ forms an independent set.

We identify the following sets of “useful” cliques in a conflict graph.

I Definition 7 (Hyperedge Cliques and Colour Cliques). Hyperedge Clique is a clique in a
conflict graph formed by nodes having the same hyperedge coordinate. The set of hyperedge
cliques in a conflict graph is denoted by Q1. Colour Clique is a maximal clique in a conflict
graph that has at least one edge from Ecolour. The set of colour cliques in a conflict graph is
denoted by Q2.

We now prove Theorem 3 that states the relationship between the clique sizes of the co-
occurrence graph and the conflict graph.

Proof of Theorem 3. By our premise, t is a representative function and hence the set S,
obtained from t as defined above, hits every hyperedge clique exactly once. Therefore, it
follows from definition of an exact hitting set that S is indeed an exact hitting set of the
set of hyperedge cliques. Now, we show that ω(Γt) ≥ ω(Ĝ[S]). Let

{
(e, u), (f, v)

}
be an

edge in Ĝ[S] such that e 6= f . By definition of set S, t(e) = u and t(f) = v. Since e 6= f ,
the edge

{
(e, u), (f, v)

}
belongs to Ecolour of Ĝ. Hence u and v are both present together in

either e or f . Without loss of generality, let u, v ∈ e. Since (e, u) ∈ Ĝ[S], we have t(e) = u

by construction of S. Hence, {u, v} is an edge in Γt.
Therefore, for every edge

{
(e, u), (f, v)

}
in Ĝ[S], there exists an edge {u, v} in Γt. It follows

that for every clique in Ĝ[S], there exists a clique of same size in Γt. Hence, ω(Γt) ≥ ω(Ĝ[S]).
Given a proper colouring of Γt, let the colour given to the node (e, u) be the colour given to
vertex u in the proper colouring of Γt. From Observation 6, we know that there are no edges
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between two nodes with the same vertex coordinate. Further, for each edge
{

(e, u), (f, v)
}

in Ĝ[S], the edge {u, v} is in Γt, and hence it follows that the colouring of Ĝ[S] is a proper
colouring. Thus χ(Γt) ≥ χ(Ĝ[S]). J

As a consequence of Theorem 3, it follows that a representative function for H could be
computed by finding an exact hitting set S of hyperedge cliques in Ĝ such that the chromatic
number of Ĝ[S] is the minimum over all such exact hitting sets. We apply this approach to
find an optimum 1-SCF colouring in polynomial time for interval hypergraphs by showing
that such a hitting set can be computed in polynomial time for intervals. We show that
this hitting set indeed gives the representative function whose co-occurrence graph has the
minimum chromatic number. Further for interval hypergraphs, we show that the minimum
vertex colouring of the co-occurrence graph can be computed efficiently. These results rely
on the results in Section 3 which show that the co-occurrence graphs and the conflict graph
of interval hypergraphs are perfect graphs.

3 Perfectness of Co-occurrence graphs and Conflict graphs of
Interval Hypergraphs

We now prove two perfectness results when the given hypergraph is an interval hypergraph.
The perfectness of co-occurrence graphs proved in Theorem 4 enables us to find a proper
colouring of Γt in polynomial time. The perfectness of conflict graphs proved in Theorem 5
is used to prove Lemma 10. Lemma 10 is crucial in finding a hitting set of hyperedge cliques
in Ĝ. We first prove Theorem 4.

Proof of Theorem 4. We use property P2 of perfect graphs given in Section 1.1 to prove
this result. By property P2, we know that an induced odd cycle and its complement are
forbidden induced subgraphs for perfect graphs. Given an interval hypergraph H, let t be a
representative function and let Γt be the resulting co-occurrence graph. We first show that Γt
does not have an induced cycle of length at least 5. Note that we prove a stronger statement
than required by property P2 of perfect graphs which states that there are no induced odd
cycles of length at least 5. Our proof is by contradiction. Assume that F = {p1, p2 . . . pr} is
an induced Cr-cycle for r ≥ 5. Let the sequence of nodes in F be p1, p2 . . . pr, p1. Let pi be
the rightmost point of F on the line. In what follows, the arithmetic among the indices of p
is mod r. Observe that, due to cyclicity of Cr, if i = 1, then i− 1 = r. Similarly, if i = r,
then i + 1 = 1 and i + 2 = 2. Without loss of generality, let us assume that pi−1 < pi+1,
which are the two neighbours of pi in F . Therefore, pi−1 < pi+1 < pi. Since edge {pi−1, pi}
is in F , it follows that there exists an interval I for which t(I) = pi−1 or t(I) = pi. We claim
that t(I) is pi: if t(I) is pi−1, then {pi−1, pi+1} is an edge in Γt by definition. Therefore,
{pi−1, pi+1} is a chord in F , a contradiction to the fact that F is an induced cycle. Therefore,
t(I) = pi. Further, we claim that the point pi+2 < pi−1: if pi+2 > pi−1, then pi+2 belongs to
the interval I and by the definition of the edges in Γt, {pi, pi+2} is an edge in Γt. Therefore,
{pi, pi+2} is a chord in F . This contradicts the fact that F is an induced cycle. Therefore,
pi+2 < pi−1. At this point in the proof we have concluded that pi+2 < pi−1 < pi+1 < pi and
t(I) = pi. Since {pi+1, pi+2} is an edge in F , it follows that there exists an interval J such
that both pi+1 and pi+2 belong to J and t(J) = pi+1 or t(J) = pi+2, and therefore pi−1 ∈ J .
Since F is an induced cycle of length at least 5, {pi−1, t(J)} is an edge in Γt by definition.
Therefore, {pi−1, t(J)} is a chord in either case, that is when t(J) = pi+1 or t(J) = pi+2.
This contradicts the assumption that F is an induced cycle of length at least 5. Thus, Γt
cannot have an induced cycle of size at least 5. Next, we show that Γt does not contain the
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complement of an induced cycle of length ≥ 5, (Cr, r ≥ 5) as an induced subgraph. Again,
our proof is by contradiction. Assume that F is an induced Cr, r ≥ 5 in Γt. Let q1, q2, . . . , qr
be the nodes of F . Also, let q1 < q2 < . . . < qr be the left to right ordering of points on
the line corresponding to vertices of F . Since deg(qi) = r − 3 for all qi in F , it follows that
no interval I, such that t(I) ∈ F , contains more than r − 2 vertices from F . Otherwise, if
there exists an interval I such that t(I) ∈ F contains more than r − 2 vertices from F , then
deg(t(I)) ≥ r − 2 in F which is a contradiction. Therefore, there does not exist any interval
that contains both q1 and qr. Similarly, there does not exist any interval that contains both
q1 and qr−1 and any interval that contains both q2 and qr. Since deg(q1) = r − 3, it follows
that q1 must be adjacent to all vertices in {q2, q3, . . . , qr−2}. Similarly, qr must be adjacent
to all vertices in {q3, q4, . . . , qr−1}. Next, we consider the degrees of vertices q2 and qr−1 in F .
Since they are in F , q2 is adjacent to q1 and qr−1 is adjacent to qr. Now, q2 must be adjacent
to r− 4 more vertices. We show that q2 is not adjacent to qr−1. Suppose not, that is, if q2 is
adjacent to qr−1, then there exists an interval I that contains both q2 and qr−1 and t(I) = q2
or t(I) = qr−1. Then t(I) is adjacent to all points in the set {{q2, q3, . . . , qr−1} \ t(I)}. Thus,
by considering the one additional edge incident on t(I) depending on whether t(I) = q2 or
qr−1, it follows that deg(t(I)) ≥ r − 2, a contradiction to the fact that the degree of each
vertex inside F is r − 3. Therefore, the edge {q2, qr−1} does not exist in F . It follows that
in F , which we know is an induced cycle of length at least 5, there is an induced cycle
q1, qr−1, q2, qr, q1 of length 4. This contradicts the structure of an induced cycle of length at
least 5. Hence, we conclude that Γt does not have an induced cycle of length 5 or more or its
complement. Therefore Γt is a perfect graph. J

We now prove that for an interval hypergraph H, Ĝ(H) is perfect. In this proof, µ(H)
denotes the number of vertices in Ĝ. Note that µ(H) =

∑
I∈I |I|.

Proof of Theorem 5. By property P2 of perfect graphs given in Section 1.1, we know that
for each p > 1, induced odd cycle C2p+1 and its complement denoted by C2p+1 are forbidden
induced subgraphs for perfect graphs. We now show that for an interval hypergraph, the
graph Ĝ is perfect. Our proof is by starting with the hypothesis that the claim is false
and deriving a contradiction. Let H = (V,J ) be an interval hypergraph for which Ĝ is
not perfect, and among all such interval hypergraphs, H minimizes µ(H). Since Ĝ is not
perfect, let us consider a minimal induced subgraph of Ĝ, denoted by, say F for which
ω(F ) 6= χ(F ). We claim that for every interval I ∈ J such that |I| > 1, both the nodes
(I, l(I)) and (I, r(I)) belong to F . The proof of this claim is by contradiction to the fact that
H is an interval hypergraph that minimizes µ(H) and for which Ĝ is not perfect. Let I be
an interval in J such that |I| > 1 and the node (I, r(I)) /∈ V (F ). Consider the hypergraph
H ′ = (V,J ′) where J ′ = (J \ I)∪ (I \r(I)). Let Ĝ′ denote the conflict graph of H ′. Observe
that V (Ĝ′) = V (Ĝ) \ {(I, r(I))}. Since (I, r(I)) /∈ V (F ) and (I, r(I)) /∈ V (Ĝ′), it follows
that F is an induced subgraph of Ĝ′ also. Hence it follows that Ĝ′ is imperfect. Further,
µ(H ′) < µ(H). This contradicts the hypothesis that H is the interval hypergraph with
minimum µ(H) for which Ĝ is imperfect. Therefore, it follows that for each interval I ∈ J ,
(I, r(I)) is a node in F . An identical argument shows that for each interval I ∈ J , (I, l(I))
is also a node in F . Hence it follows that ∀I ∈ J such that |I| > 1, both the nodes (I, l(I))
and (I, r(I)) belong to F . We now consider two exhaustive cases to obtain a contradiction
to the known structure of F which we know is either a C2p+1 or a C2p+1 for some p > 1.
Case 1- When F is an induced odd cycle Cj , j ≥ 5: In the following proof we consider
different cases, and in each case we conclude that three nodes of Cj form a K3 in Ĝ. This is
a contradiction to the fact that induced cycles of length at least 4 do not have a K3, and we
refer to this as a contradiction.
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We know that all the intervals I such that |I| > 1 have both the nodes (I, l(I)) and (I, r(I))
in F . Therefore, if (I ′′, q) is a node such that for some I ′, q is in interval I ′ and q is different
from r(I ′) and l(I ′), then from the definition of Eedge and Ecolour, we know that the 3 nodes
(I ′, l(I ′)), (I ′, r(I ′)), (I ′′, q) form a K3, a contradiction. As a consequence of this observation,
it also follows that for any two nodes (I1, q1) and (I2, q2) in Cj for which |I1| > 1 and |I2| > 1,
l(I1) and l(I2) are different, and r(I1) and r(I2) are different. Therefore, for each node (I, q)
in Cj , q is either l(I) or r(I) or |I| = 1, and q is the left end point (right end point) of at
most one interval, and for each interval I ′, q is not an element of I ′ \ {l(I ′), r(I ′)} (we call
this set as the strict interior of I ′).
From the conclusions above, the intervals of length more than 1 contribute an even number
of distinct nodes to the cycle Cj . Since Cj is an induced odd cycle, it follows that in
Cj there is at least one more node (I ′′, q) for which |I ′′| = 1. It follows that I ′′ contains
only the point q. Let (I1, q1) and (I2, q2) be the two neighbours of (I ′′, q) in Cj . From
Observation 6, it follows that q is different from q1 and q2. From the analysis above, it
follows that q and q1 are end points of I1, and q and q2 are end points of I2. Again from the
conclusions above, since l(I1) and l(I2) are different, and since r(I1) and r(I2) are different,
without loss of generality, let us consider q = l(I1) = r(I2) and l(I2) = q2 < q < q1 = r(I1).
Therefore, the three nodes (I1, r(I1)), (I ′′, q), (I2, l(I2)) form a path in F . We know that
(I1, l(I1)) and (I2, r(I2)) are also vertices in Cj which is an induced (that is, chordless) cycle.
Therefore, (I1, l(I1)), (I1, r(I1)), (I ′′, q), (I2, l(I2)), (I2, r(I2)) is a path in Cj . In other words,
(I1, q), (I1, q1), (I ′′, q), (I2, q2), (I2, q) is an induced path of length 5 in Cj , since (I1, q) and
(I2, q) are not adjacent, by Observation 6. Since Cj is a cycle, it has at least one another
node, say (I3, q3), which is the second neighbour of (I1, l(I1)) in Cj . We now show that all
the points in I3 are at least r(I1), and thus they are all larger than q. By the definition of
E(Ĝ) we know that I3 ∩ I1 6= ∅. Further, q3 is an endpoint of I3, and q3 is not in the strict
interior of I1, and since q is in I1 and I2, and as per our convention each interval corresponds
to a single hyperedge in H, it follows that q3 is different from q. Consequently, it follows
that l(I3) = r(I1) and q3 is r(I3). Note that this argument includes the case when |I3| = 1,
in which case r(I1) = q3. It follows that I3 is an interval such that each point in I3 is at least
r(I1) which is larger than q.
Therefore from the conclusions made thus far, each node in Cj is one of two types: either
the hyperedge coordinate is such that all the points in the corresponding interval are at
most q or the hyperedge coordinate is such that all the points in the corresponding interval
are more than q. In particular, I2 is such that all the points are at most q and I3 is such
that all points are more than q. Since Cj is an induced cycle, it follows that there are two
adjacent nodes (Il, ql) and (Ir, qr) such that all points in Il are at most q, and all points
in Ir are more than q. In other words, Il and Ir are two disjoint intervals, and we have
concluded that (Il, ql) and (Ir, qr) are adjacent. This is a contradiction to the definition of
E(Ĝ) = Ecolour ∪ Eedge. This contradiction has been arrived at due to the assumption that
there is a Cj of odd length at least 5. Hence, in this case our hypothesis that there is a
minimal H for which Ĝ is not perfect is wrong.
Case 2- When F is the complement of an odd cycle, say Cj , j ≥ 5: Here we order the nodes in
non-decreasing order of their vertex coordinate. Let the order be (I1, p1), (I2, p2), . . . , (Ij , pj).
Since each node is adjacent to exactly j − 3 vertices in F , it follows that (I1, p1) is not
adjacent to (Ij−1, pj−1) and (Ij , pj) in Ĝ. Similarly, (Ij , pj) is not adjacent to (I1, p1) and
(I2, p2). The reason is that if there is an edge between (I1, p1) and (Ij−1, pj−1) then one of
the two nodes is adjacent to all the nodes whose vertex coordinates are between p1 and pj−1.
Such a node will have degree j − 2 which contradicts the fact that all the nodes in F have
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degree j − 3. Since the degree of each vertex is j − 3, it follows that (I1, p1) is adjacent to all
nodes from (I2, p2) to (Ij−2, pj−2). Similarly, (Ij , pj) is adjacent to all nodes from (I3, p3) to
(Ij−1, pj−1). Now, let us consider (I2, p2) and (Ij−1, pj−1). If these two nodes are adjacent in
F , then one of the two will have degree at least j − 2. Such a case cannot happen. Therefore,
the nodes (I1, p1), (Ij , pj), (I2, p2), (Ij−1, pj−1), (I1, p1) forms an induced 4-cycle in F . F is
an induced cycle Cj , j ≥ 5, and by definition does not contain an induced cycle of length 4.
Thus our hypothesis that Ĝ contains F is false.
In either case the assumption of the existence of a minimal H for which Ĝ is not perfect
leads to a contradiction to the known structure of perfect graphs. Hence, it follows that for
an interval hypergraph Ĝ is perfect. J

4 Computing the Optimal Co-occurrence Graph of Interval
Hypergraphs using Conflict Graphs

We present the algorithm to compute an optimal co-occurrence graph of a given interval
hypergraph from a constrained exact hitting set of hyperedge cliques in the conflict graph.

4.1 Representative Function from a Hitting Set of Hyperedge Cliques
In Lemma 8 below, we strengthen Theorem 3 for interval hypergraphs by proving the equality
of the chromatic number of the conflict graph and the co-occurrence graph. This plays a
crucial role in formulating an LP relaxation to compute a constrained exact hitting set of
hyperedge cliques. Let H = (V, I) be the given interval hypergraph and let Ĝ be its conflict
graph. Let qmin be the smallest positive integer such that there exists an exact hitting
set of hyperedge cliques that hits every maximal clique in the colour cliques at most qmin
times. Let Smin ⊆ V (Ĝ) be such an exact hitting set of hyperedge cliques that hits every
maximal clique in the colour cliques at most qmin times. Clearly, |Smin| = m since there are
m hyperedge cliques, each corresponding to an interval. Define the representative function
t : I → V as follows: t(I) = u if (I, u) ∈ Smin. We show that the chromatic number of the
co-occurrence graph Γt is upper bounded by qmin. Note that Theorem 3 proves the opposite
inequality for all hypergraphs.

I Lemma 8. Let t : I → V be the function as defined above. Then t is a representative
function obtained from some 1-SCF colouring and χ(Γt) ≤ qmin.

Proof. Since Smin is an exact hitting set of hyperedge cliques, it follows that for every
hyperedge I ∈ I, there exists exactly one node in Smin whose hyperedge coordinate is I.
Hence, t is indeed a function. Since every interval is assigned a unique representative by t, it
follows from the proof of Theorem 2 that any proper colouring of Γt is a 1-SCF colouring
of H. Therefore, t is a representative function obtained from such a 1-SCF colouring of H.
Now, we show that χ(Γt) ≤ qmin. In Theorem 4, we show that Γt is a perfect graph. It
follows from property P1 of perfect graphs in Section 1.1 that the clique number ω and the
chromatic number χ of every induced subgraph of Γt are equal. Hence it suffices to show that
ω(Γt) ≤ qmin. To prove this, we show that ω(Γt) is at most the size of the maximum clique
in Ĝ[Smin], and by assumption ω(Ĝ[Smin]) ≤ qmin. In particular, for each clique in Γt we
identify a clique of the same size in Ĝ[Smin]. The proof is by induction on the size of a clique
in Γt. The base case is for a clique of size 1 in Γt. Clearly, there is a clique of size 1 in Ĝ[Smin].
By the induction hypothesis, corresponding to a clique comprising of u1, u2, . . . , uq−1 in
Γt, there is a clique containing nodes (I1, u1), (I2, u2), . . . , (Iq−1, uq−1) in Ĝ[Smin]. Now, we
prove the claim when there are q vertices in a clique in Γt. Let u1, u2, . . . , uq be the set
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of vertices in the clique. Without loss of generality, assume that u1, u2, . . . , uq−1, uq is the
left to right ordering of points on the line. Since {u1, uq} ∈ E(Γt), there exists an interval,
say I ′ such that u1 and uq belong to I ′ and t(I ′) ∈ {u1, uq}. We prove the claim for the
case when t(I ′) is u1. It follows that the node (I ′, u1) ∈ Smin. Since both u1 and uq belong
to the interval I ′, it follows that u2, . . . , uq−1 also belong to interval I ′. By the induction
hypothesis, for the q − 1 sized clique u2, u3, . . . , uq in Γt, there is a clique containing the
nodes (I2, u2), (I3, u3), . . . , (Iq, uq) in Ĝ[Smin]. Therefore, it follows that (I ′, u1) is adjacent
to all the nodes (I2, u2), (I3, u3), . . . , (Iq, uq) in Ĝ. It follows that corresponding to the clique
u1, . . . , uq in Γt, there is a clique (I ′, u1), (I2, u2), . . . , (Iq, uq) in Ĝ[Smin]. In case t(I ′) is uq,
an identical argument is applied to the clique u1, . . . , uq−1 in Γt to prove the claim. Hence
the lemma is proved. J

We next show that finding a 1-SCF colouring using minimum colours is equivalent to finding
an exact hitting set of hyperedge cliques such that colour cliques are hit as few times as
possible.

I Lemma 9. There exists a set S ⊆ V (Ĝ) such that for each Q ∈ Q1, |S ∩Q| = 1 and for
each Q′ ∈ Q2, |S ∩Q′| ≤ q if and only if there is a 1-SCF colouring of H with q colours.

Proof. Let S be a subset of V (Ĝ) such that for each Q ∈ Q1, |S ∩ Q| = 1 and for each
Q′ ∈ Q2, |S ∩ Q′| ≤ q. Then by Lemma 8, there exists a representative function t such
that χ(Γt) ≤ q. It further follows from Theorem 2 that a proper colouring of Γt is a 1-SCF
colouring of H using χ(Γt) ≤ q colours. This completes the forward direction of the claim.
Next we prove the reverse direction. Let C be a 1-SCF colouring of H using q colours.
Then by Theorem 2, C gives a representative function t with the property q ≥ χ(Γt). Since
co-occurrence graphs are perfect by Theorem 4, it follows that q ≥ χ(Γt) = ω(Γt). Define
S , {(I, u) | I ∈ I, t(I) = u}. By Theorem 3, the set S is an exact hitting set of cliques
in Q1 and ω(Ĝ[S]) ≤ ω(Γt) ≤ q. Thus we conclude that if there is a 1-SCF colouring of H
using q colours, then there exists an exact hitting set of cliques in Q1 that intersects every
maximal clique in Q2 at most q times. J

4.2 Linear Program for Exact Hitting Sets of Hyperedge Cliques
From Lemma 9, it is clear that an optimal 1-SCF colouring of an interval hypergraph H can
be found by computing an exact hitting set of hyperedge cliques of Ĝ(H) such that each
colour clique is hit as few times as possible. We present an LP formulation for this exact
hitting set problem. In this LP, there is one variable corresponding to each node of Ĝ and
integer valued variable q. Define X , {xI,u | (I, u) ∈ Ĝ} to be the set of variables in the LP,
where

xI,u =
{

1, if node (I, u) hits hyperedge clique corresponding to I
0, otherwise

LP Formulation. Find values to variables {xI,u | u ∈ I, I ∈ I} subject to

(P.1)

∑
u∈I

xI,u = 1,∀I ∈ I (1)∑
(I,u)∈Q

xI,u ≤ q, for each maximal clique Q in Q2. (2)

xI,u ≤ 1, q ≥ 0
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The LP relaxation has a set of equations, which are given in (P.1):(1) and a set of inequalities,
which are given in (P.1):(2). Logically, an equation corresponds to choosing exactly one
vertex per interval; that is, each equation corresponds to choosing exactly one node from
one hyperedge clique. On the other hand, an inequality corresponds to a maximal clique
in the set of colour cliques. Logically, the inequality means that we pick at most q nodes
from every maximal clique in Q2. Together, any integral solution to the LP relaxation is
an exact hitting set of hyperedge cliques such that each maximal clique in the set of colour
cliques is hit at most q times. This LP relaxation is solved using the ellipsoid method which
uses a polynomial time separation oracle that we next design. Let x denote an optimum
solution to the LP relaxation. In Section 4.4 we present a rounding technique that converts
the fractional solution x to a feasible integer solution for the LP in polynomial time.

4.3 Separation Oracle based LP Algorithm SPAlg

A separation oracle is a polyomial time algorithm that given a point in Rd, where d is the
number of variables in a linear program relaxation, either confirms that this point is a feasible
solution, or produces a violated constraint (See Section 12.3.1 in[18]). A polynomial time
separation oracle is used by the ellipsoid method to give a P-time algorithm for finding a
feasible solution to the LP. In this section, we describe a polynomial time separation oracle
SPMaxWtClique for our LP for a fixed positive integer value q. For each (I, v) ∈ V (Ĝ), let
xI,v be a real value assigned to the corresponding variable in the LP relaxation. Given
this as an input, for a fixed positive integer value q, the separation oracle SPMaxWtClique
considers the vertex-weighted graph Ĝw corresponding to Ĝ, where the weight of node (I, v)
is xI,v for all (I, v) ∈ V (Ĝ). The oracle then computes the maximum weight clique of Ĝw.
If the weight of the maximum weight clique of Ĝw exceeds q, then it follows that there is
some maximal clique Q′ whose weight is more than q. This implies that the given point
violates the inequality corresponding to Q′, and this inequality is returned by the oracle as
the violated inequality. If the weight of the maximum weight clique is at most q, then the
oracle checks if all equalities hold. If any equality is violated, then we have found a violated
constraint, and the oracle returns the appropriate inequality as the violated inequality. If all
the constraints are satisfied, then the oracle reports that the given point is feasible. This
completes the description of the separation oracle SPMaxWtClique. We show in Lemma 10
that SPMaxWtClique runs in polynomial time.

I Lemma 10. For an input interval hypergraph and for each integer value q ≥ 0 the separation
oracle SPMaxWtClique runs in polynomial time.

Proof. For an interval hypergraph we know that Ĝ is perfect by Theorem 5. From property
P4 of perfect graphs listed in Section 1.1, it is known that the maximum weighted clique
problem in perfect graphs can be solved in polynomial time. Thus we can find the maximum
weighted clique in the graph vertex-weighted graph Ĝw. Thus, finding an inequality in the
LP corresponding to a maximal clique whose weight exceeds q can be done in polynomial
time. Also, since there are only a polynomial number of hyperedge cliques, it follows that
the check of whether there is a violated equation can also be done in polynomial time. It
follows that SPMaxWtClique runs in polynomial time. J

Let B be an instance of the given LP. Algorithm SPAlg takes as inputs the LP instance B. It
uses the separation oracle SPMaxWtClique and iterates over integer values of q and outputs a
solution x and a value q that satisfies the system of equations and inequalities. Otherwise, it
reports that the system is infeasible. Let qmin be the smallest value of q for which Algorithm
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SPAlg finds a feasible solution of the instance B and let Bopt be the solution returned by
Algorithm SPAlg for the integer qmin. If Bopt is an integral solution, then we have an integer
solution in polynomial time. If Bopt is not integral, then we present steps in Section 4.4 to
round the fractional values in Bopt that results in a feasible integral solution for the value
qmin.

I Lemma 11. For an input interval hypergraph, the algorithm SPAlg runs in polynomial
time.

Proof. We have shown in Lemma 10 that the separation oracle in SPMaxWtClique runs in
polynomial time. Since there is a polynomial time separation oracle, using the ellipsoid
method, a feasible solution in the polytope of B can be found in polynomial time for each q.
The number of values of q is at most the number of points in the interval hypergraph H.
This is because, from Observation 6, for each vertex u ∈ V each clique in Ĝ can contain at
most one node whose vertex coordinate is u. Hence the lemma is proved. J

4.4 Rounding the LP solution
RoundingFrac is a recursive function which takes as input a fractional feasible solution of
the LP B for the value qmin on the intervals I and returns a feasible integer solution for B
for the value qmin.
In every iteration of the while loop in Algorithm 1, at least one variable in X is rounded to

Algorithm 1 RoundingFrac(Bopt, I′).

Output: Fractional solution Bopt rounded to integer solution BoptI

1 i← 0 ;
2 Bopt(0)← Bopt ;
3 while ∃xI,v ∈ Bopt(i) that does not belong to {0, 1} do
4 i← i+ 1 ;
5 Bopt(i)← Bopt(i− 1) ;
6 Ii ← Longest Interval in I ′ with the smallest left endpoint ;
7 r ← r(Ii) ;
8 r − 1← vertex to the immediate left of r(Ii) on the line ;
9 for each interval I ′ that contains r and r − 1 do

10 xI′,r−1 ← xI′,r−1 + xIi,r ;
11 xI′,r ← xI′,r − xIi,r ;
12 Modify entries in Bopt(i) corresponding to the values changed above ;
13 end
14 I ′ ← I ′ \ Ii ;
15 Ii ← Ii \ r ; . Remove right end point of Ii;
16 I ′ ← I ′ ∪ Ii ;
17 end
18 BoptI ← Bopt(i) ;
19 return BoptI ;

an integer value. In iteration i, let Ii be the interval with the smallest left end point among
all intervals of maximum length. Let l(Ii) and r(Ii) denote the left and right endpoints of
interval Ii respectively. Since r(Ii) is removed during iteration i, it follows that the total
number of points (in all the intervals) in iteration i+ 1 is one less than the total number of
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points in iteration i. Hence the conflict graph corresponding to intervals in iteration i+ 1
has strictly fewer number of nodes than the conflict graph corresponding to intervals in
iteration i. In Lemma 13, we show that for every i ≥ 0, the solution Bopt(i) is feasible for the
linear program B for the value qmin. We show in Lemma 12 that for some positive integer j,
Bopt(j) will be an all integer solution for B, at which time algorithm exits.

I Lemma 12. Let Bopt be a fractional feasible solution returned by SPAlg(B, qmin). Then,
RoundingFrac returns an integer solution for B on the input Bopt in a polynomial number
of steps.

Proof. From the description of RoundingFrac, in each iteration i, xIi,r(Ii) becomes zero
and the variable xIi,r(Ii) does not become non-zero in any subsequent iteration. Then the
number of variables whose value is not 0 or 1 reduces in each iteration. Further, the rounding
is such that if a variable xI,r is reduced by a certain value then xI,r−1 is increased by the
exact same value. This ensures that after each iteration the equations in (P.1):(1) are all
satisfied, and in particular they add up to 1. Therefore, eventually in each equation there
will be a variable which is 1 and all others are 0. Further, it follows from Lemma 13 that the
inequalities in (P.1):(2) also hold after each iteration. It follows that the resulting values
are indeed a solution of the given LP and will be integral in at most µ(H) iterations, where
µ(H) is the number of nodes in Ĝ. J

Let BoptI be the integer solution returned by RoundingFrac. We show in Lemma 13 that
BoptI is feasible for the instance B for the value qmin. In other words, the values to the
variables in each inequality corresponding to the colour cliques add up to at most the same
value as it was adding up to in Bopt. We show that the solution returned on a smaller
instance after every iteration is feasible for B for the value qmin. In the proof of Lemma
13 below, we use r to denote r(Ii), where Ii is the longest interval with the smallest left
endpoint in iteration i. Similarly, denote the point to the immediate left of r on the number
line by r− 1. For every other interval I ′, denote its right endpoint and the point immediately
to the left of the right endpoint by r(I ′) and r(I ′)− 1, respectively.

I Lemma 13. Let Bopt be a fractional feasible solution returned by SPAlg(B, qmin). The
solution BoptI returned by RoundingFrac is a feasible solution for the LP instance B for the
value qmin.

Proof. The proof of correctness is by induction on the iteration number. We know that Bopt
is feasible for B for the value qmin. Let us assume that for an integer i ≥ 0 Bopt(i − 1) is
feasible for B for the value qmin. We show that Bopt(i) is also feasible for B for the value
qmin. From the description of the RoundingFrac, during iteration i, the value which is
subtracted from one variable from xI,r is added to the variable xI,r−1. This fact is crucial in
the analysis below. Hence all equations in (P.1):(1) are satisfied by Bopt(i). Now, we show
that the inequalities in (P.1):(2) corresponding to the maximal cliques are also satisfied by
Bopt(i). Let I ′ be an interval that contains the point r − 1 such that xI′,r−1 has increased
due to step 10 in Algorithm 1. By the choice of I ′ for which xI′,r−1 is increased, it follows
that xI′,r is reduced and thus I ′ contains the point r. It follows from the definition of the
edge set Ecolour that there is an edge between (I ′, r − 1) and (Ii, r) in Ĝ.

Let Q be a maximal clique that contains the node (I ′, r− 1). By Observation 6, all nodes
with the same vertex coordinate form an independent set. Hence Q does not contain any
node of the form (I ′′, r − 1), where I ′′ 6= I ′. Further, for any clique Q, there is at most one
node whose value increases. If Q contains the node (I ′, r), then xI′,r has reduced and hence
the inequality corresponding to Q is satisfied under Bopt(i). If Q does not contain the node
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(I ′, r) we now show that it must contain a node whose vertex coordinate is r. To prove this,
among all nodes in Q, consider two nodes - one for which the vertex coordinate is leftmost
and another for which the vertex coordinate is the rightmost on the line. We denote the
leftmost coordinate by λ and the rightmost coordinate by ρ. Let (J, λ) and (J ′, ρ) be two
nodes in Q.

First, we show that λ ≥ l(Ii). The proof is by contradiction. Suppose λ < l(Ii). Due to
the edge between nodes (J, λ) and (I ′, r− 1) in Q, it is clear that either J or I ′ contains both
λ and r − 1. Without loss of generality, assume that J contains both λ and r − 1. Since by
our assumption λ < l(Ii), it follows that J is at least as long as Ii and l(J) < l(Ii). This is a
contradiction to our choice of Ii being the longest interval with the smallest left endpoint. It
follows that λ ≥ l(Ii). We show using the following cases that the inequality corresponding
to Q is still feasible.
1. Case ρ < r − 1. We show that this case is not possible. Since (I ′, r − 1) belongs to Q,

and ρ is the rightmost vertex coordinate among all nodes in Q, it follows that ρ ≥ r − 1.
2. Case ρ = r− 1. Since λ ≥ l(Ii) and ρ = r− 1, it follows that all points from λ to ρ belong

to Ii. Therefore, by the definition of the edges of Ĝ, (Ii, r) is adjacent to all the nodes of
Q. This contradicts the premise that Q is a maximal clique that does not contain (Ii, r).
Therefore ρ = r − 1 is not possible.

3. Case ρ = r. Since (J ′, ρ), which is the same as (J ′, r) belongs to Q, it follows that the
inequality corresponding to Q is still feasible. Since the decrease in xJ′,r is exactly the
same as the increase in xIi,r−1.

4. Case ρ > r. Observe that there is an edge between nodes (J, λ) and (J ′, ρ) since they
are both in Q. It follows that either J or J ′ both contain λ and ρ. Without loss of
generality, let J be this interval. Since J contains all the points on the line from λ to ρ,
both included, it follows that the interval J contains both points r and r− 1. Further, by
the definition of the graph Ĝ, it follows that (J, r) is adjacent to all the nodes in Q whose
vertex coordinates which are different from r and lie between λ and ρ, both included.
Also, since there can be at most one node in a maximal clique with any particular vertex
coordinate, and since Q is a maximal clique, it follows that either (J, r) belongs to Q
or that Q contains a node (J ′′, r) where J 6= J ′′. Since xIi,r is reduced in iteration i,
follows that xJ,r and xJ′′,r are also reduced. Therefore, in the maximal clique Q the
increase in xI′,r−1 is compensated by a decrease in xJ,r or xJ′′,r whichever is present in
Q. Therefore, the inequality corresponding to Q is satisfied in by Bopt(i).

Therefore, in all the cases we have concluded the Bopt(i) satsfies B. This completes the proof
by induction. J

We show in Theorem 1 that the 1-SCF colouring problem in interval hypergraphs can be
solved in polynomial time. Finally, we prove the main result in this paper.

Proof of Theorem 1. By Lemma 11 the LP returns a feasible solution in polynomial time
using the separation oracle SPMaxWtClique. By Lemmas 12 and 13, a feasible integer
solution can be obtained from the fractional feasible solution in polynomial time. Further,
the representative function t and thereof, the co-occurrence graph Γt can also be obtained
in polynomial time. By Theorem 4, the co-occurrence graph Γt is perfect. Since a proper
colouring of a perfect graph can be found in polynomial time, it follows from Theorem 2 that
an optimal 1-SCF colouring of an interval hypergraph can be found in polynomial time. J
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Abstract
We give a fully dynamic (Las-Vegas style) algorithm with constant expected amortized time per
update that maintains a proper (∆ + 1)-vertex coloring of a graph with maximum degree at most ∆.
This improves upon the previous O(log ∆)-time algorithm by Bhattacharya et al. (SODA 2018).
Our algorithm uses an approach based on assigning random ranks to vertices and does not need to
maintain a hierarchical graph decomposition. We show that our result does not only have optimal
running time, but is also optimal in the sense that already deciding whether a ∆-coloring exists in a
dynamically changing graph with maximum degree at most ∆ takes Ω(logn) time per operation.
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1 Introduction

A (fully) dynamic graph algorithm is a data structure that provides information about a
graph property while the graph is being modified by edge updates such as edge insertions or
deletions. When designing a dynamic graph algorithm the goal is to minimize the time per
update or query operation. The lower bounds of Patrascu and Demaine [24] showed that in
the cell-probe model many fundamental graph properties, such as asking whether the graph
is connected, require Ω(logn) time per operation, where n is the number of nodes in the
graph. Their lower bound technique also gives logarithmic time lower bounds for further
dynamic problems such as higher types of connectivity, planarity and bipartiteness testing,
and minimum spanning forest, and it is an open research question for which other dynamic
graph problems non-constant time lower bounds exist.

Furthermore, there are only very few graph problems for which it is known that no such
lower bounds can exist. These are the following problems, which all have constant-time,
and thus optimal, algorithms: maintaining (a) a maximal matching (randomized) [25], (b) a
(2 + ε)-approximate vertex cover (deterministic) [7], and (c) a (2k − 1)-stretch spanner of
size O(n1+ 1

k log2 n) for constant k (randomized) [3]. All these are amortized time bounds
and each of these algorithms maintains a dynamically-changing sophisticated hierarchical
graph decomposition.

In this paper we present a dynamic algorithm with constant update time for a new
graph problem, expanding the above list. Additionally, our algorithm does not rely on a
dynamically changing hierarchical graph decomposition, making it (but not its analysis)
simpler. Our new result is a dynamic algorithm for the following problem: We call a dynamic
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graph ∆-bounded if throughout the updates, the graph has maximum degree at most ∆. A
proper coloring assigns to each vertex an integer value, called color, such that the endpoints
of every edge have a different color. A (∆ + 1)-vertex coloring is a proper coloring that
uses only colors from the range [1, . . . ,∆ + 1]. Note that a proper (∆ + 1)-vertex coloring
in a (static) graph with maximum degree at most ∆ always exists and can be found in
linear time by a simple greedy algorithm [27]. A fully dynamic graph algorithm is a data
structure that maintains a graph G = (V,E) while it is undergoing an arbitrary sequence of
the following operations: 1) Insert(u, v): insert the edge (u, v) in G; 2) Delete(u, v): delete
the edge (u, v) from G. In the dynamic (∆ + 1)-vertex coloring problem, the fully dynamic
graph algorithm maintains after each update operation a proper (∆ + 1)-vertex coloring
of the current graph in a ∆-bounded dynamic graph. When asked to perform a Query(u)
operation, the algorithm returns the color of the given vertex u.

Maintaining a proper (∆ + 1)-vertex coloring in a ∆-bounded dynamic graph can be done
trivially in O(∆) worst-case update time: the algorithm does nothing after an edge deletion or
an edge insertion between two nodes of different colors; once an edge is inserted between two
nodes of the same color it scans the whole neighborhood of one of the nodes and chooses an
unused color. Recently Bhattacharya et al. [5] presented a randomized (∆+1)-vertex coloring
algorithm with O(log ∆) expected amortized update time and a deterministic algorithm that
maintains a (∆+o(∆))-vertex coloring with O(poly log ∆) amortized time. Their randomized
algorithm works against the oblivious adversary: It is assumed that the sequence of update
operations is generated by an adversary whose goal is to maximize the running time, but has
to fix the sequence before the algorithm starts to run. This guarantees that the adversary is
oblivious to the random choices of the algorithm. Note that if ∆ is polynomial in n, their
algorithm takes time O(logn). In this paper, we improve upon this result as follows.

I Theorem 1. There exists a fully dynamic algorithm for maintaining a proper (∆+1)-vertex
coloring for a ∆-bounded graph against an oblivious adversary with O(1) expected amortized
update time.

Unlike the algorithm in [5] our algorithm does not need to maintain a hierarchical graph
decomposition. Furthermore, apart from having optimal running time, our result is also
optimal in the sense that deciding whether a proper coloring with only ∆ colors exists in a
dynamically changing graph (with maximum degree at most ∆) takes at least Ω(logn) time
per operation, as we show in Theorem 2. More precisely, we define the dynamic ∆-colorability
testing problem as follows: Besides operations Insert(u, v) and Delete(u, v), there is a
Query() operation that returns yes if the graph is ∆-colorable and no otherwise, where ∆ is
the maximum degree in the current graph. We show the following theorem.

I Theorem 2. Any data structure for dynamic ∆-colorability testing, where ∆ is the maximum
degree in the graph, must perform Ω(logn) cell probes, where each cell has size O(logn).

Our Techniques. We first give a brief overview of the algorithm in [5] that maintains a
proper (∆ + 1)-vertex coloring for a dynamic graph with maximum degree at most ∆. Let χ
be the current proper ∆ + 1-coloring. First note that after an edge deletion and after an
edge insertion (u, v) that does not cause a conflict, i.e., if χ(u) 6= χ(v), then the coloring
remains unchanged. If a conflict occurs (i.e., χ(u) = χ(v)), then one needs to fix the coloring
by recoloring one vertex from {u, v}, say u. Instead of scanning the whole neighborhood
of u to find the color (called a blank color) that has not been used by any of its neighbors,
the algorithm in [5] tries to sample a color from a set S that contains only blank colors and
colors (called unique colors) that have been used by exactly one neighbor of u. Note that S
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has size Ω(∆), which guarantees that a future conflict edge incident to u occurs with low
probability (i.e., with probability O(1/∆)). On the other hand, if a unique color is chosen,
one needs to recolor the corresponding vertex w (which is a neighbor of u), again, using a
new color sampled from the set of blank and unique colors for w. This procedure might cause
a cascade and even not terminate at all. The dynamic (∆ + 1)-vertex coloring algorithm
of [5] resolves this problem by maintaining a hierarchical graph decomposition, and when
recoloring a node it picks a color randomly out of all colors that are either (i) used by none
of the neighbors or (ii) used by at most one of the neighbors on a lower level in the graph
hierarchy. The resulting algorithm is then shown to have O(log ∆) amortized update time for
maintaining a proper coloring. However, maintaining such a hierarchical partition is not only
complicated, but also inefficient, as it alone already takes O(log ∆) amortized update time.

Now we describe our main ideas which lead to a constant-time dynamic coloring algorithm.
We show that an approach based on assigning random ranks to vertices outperforms the
graph-hierarchy based algorithm: During preprocessing each node v is assigned a random
rank r(v) from [0, 1] and a random color (assuming as usual that the initial graph is empty).
Let Lv denote the set of neighbors of a node v with rank lower than r(v) and for any set S of
neighbors of a node let S< denote the subset of S whose rank is at most the median rank of
the nodes in S. When recoloring v, we pick a color randomly out of all colors that are either
(i) used by none of its neighbors (called blank colors) or (ii) by at most one neighbor in Lv
and this node belongs to L<

v . (We show that there are always Ω(|Lv|) many such colors.)
In case (ii) this neighbor w must be recolored. Due to the definition of L<

v it is guaranteed
that r(w) is at most the median rank of the lower-ranked neighbors of v. Recoloring w is
done with a more refined recoloring procedure that additionally to the above information
takes into account which nodes of Lw also belong to N(v), the neighborhood of v. This
is necessary since on the one side (a) we need to guarantee that the new color is chosen
randomly from a set of Ω(|Lw|) colors and the other side (b) we have to apply a different
analysis depending on whether the new color belongs to N(v) or not.

More formally let Lw,new := Lw \N(v), let Lw,old := Lw ∩N(v), and let L∗ equal L<
w,new

if |Lw,new| > |Lw|/10 and L<
w,old otherwise. The algorithm randomly samples a color out of

the set which consists of (i) all blank colors and (ii) all colors which are used by exactly one
node in Lw and are used by a node in L∗. If the color of a node y in L∗ was chosen, y will
be recolored recursively taking N(x) for all previously visited nodes x into account. If y
was chosen from L<

w,new, y is called a good vertex, otherwise a bad vertex. This results in
a recoloring of nodes along a random recoloring path P in the graph until a blank color is
chosen. The latter is guaranteed to happen when a node y with Ly = ∅ is reached. We give
a data structure that implements each coloring step, i.e., the selection of a new color of a
vertex y on P , in time O(|Ly|). Thus, the total time for recoloring P is O(

∑
y∈P |Ly|).

This sampling routine guarantees that the rank of the next node is at most the median
rank of the lower-ranked neighbors of the previous node. If there were no dependencies
between the rank of the current node and the previous nodes on P , the expected rank would
halve in this coloring step. These dependencies are exactly why we introduced Ly,new, Ly,old,
and L∗, and labeled the vertices on P as good and bad. More specifically, we show that at
every good vertex y the expected rank and the expected size of Ly,new halves. This by itself
would not be sufficient, since we need the expected size of Ly, and not only the expected
size of Ly,new, to halve. Here we use the definition of L∗ to show that the expected size of
Ly decreases by a constant factor whenever Ly,new halves. This then implies that the total
expected time at the good vertices on P , i.e. O(

∑
y∈P,y:good |Ly|), forms a geometric series

adding up to O(r(v)∆), where v is the initial vertex of P .
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The main difficulty that the analysis still has to overcome is the fact that there might be
bad vertices. To deal with this we introduce a novel potential function Φ based on the nodes
on P , which allows us to bound the work, i.e., the number of (“standard” word) operations
that the algorithm performs, done at bad vertices by the work done at good vertices. More
specifically, we show that, when traversing P from an initial vertex v, at every bad vertex Φ
drops. As (i) Φ is always non-negative, (ii) Φ only increases at good vertices, and (iii) the
drop of Φ gives an upper bound of the time spent at bad vertices, we can bound the total
time for coloring all the vertices on P by the total time spent at the good vertices on P times
a constant. This allows us to prove that the total work done for recoloring all vertices on P
is O(r(v)∆), where v is the initial vertex of P (Lemma 4).

Finally, we combine this bound with the fact that (a) for many operations (such as all
deletions and many insertions) no recoloring is necessary and (b) the color of each node y
was picked uniformly at random from a set of Ω(|Ly|) many colors, to show that the expected
amortized time per update operation is constant.

Note that the refined sampling routine as well as the analysis that combines a potential
function analysis with a careful analysis of the expected size of the sets Ly along a random
path P is novel. The technique has the advantage that, unlike in a hierarchical graph
decomposition where the ordering of nodes by levels might change and needs to be updated,
the ordering of nodes by ranks is static and does not create update costs. However, it has
the disadvantage that, unlike in the hierarchical graph decomposition of [5], (1) we do not
have a worst-case upper bound on the number of nodes that are “lower” in the ordering and
(2) the length of P , which is limited by the longest strictly decreasing path in the ordering,
might be Θ(n) and not Θ(log ∆) in the worst case, as in [5].

As we recently learnt, Bhattacharya et al. [6] achieved the same result as Theorem 1
independently.

Our proof of Theorem 2 follows from a simple reduction from dynamic connectivity, whose
cell probe lower bound was known to be Ω(logn) [24].

Other Related Work. Partially due to the Ω(logn) lower bound for the fundamental
problem of testing connectivity [24], a large amount of previous research on dynamic graph
algorithms has focused on algorithms with polylogarithmic or super-polylogarithmic update
time. Examples include testing k-edge (or vertex) connectivity (see e.g., [14, 18, 17]),
maintaining minimum spanning tree (see e.g., [15, 14, 17, 16, 18, 19, 20, 28, 22, 23]), and
graph coloring [2, 1, 5, 26, 13]. There are also studies on incremental algorithms that only
allow edge insertions, and decremental algorithms that only allow edge deletions throughout
all the updates. In contrast to such studies, our work is focusing on fully dynamic algorithms,
in which both edge insertions and deletions are allowed.

The technique of maintaining random ranks for vertices was previously used for dynamic
maximal independent sets in the distributed setting [10] and very recently in the centralized
setting [11, 4]. However, our analysis is quite different from theirs.

2 Maintaining a Proper (∆ + 1)-Vertex Coloring

In this section, we give our constant-time dynamic algorithm and its analysis for maintaining
a proper (∆ + 1)-coloring in a dynamic ∆-bounded graph and present the proof of Theorem 1.
In Section 4, we discuss how to extend our algorithm to handle the case that the maximum
degree ∆ also changes. Recall that a dynamic graph is said to be ∆-bounded if throughout
the updates, it is ∆-bounded. Given ∆, let C := {1, · · · ,∆ + 1} denote the set of colors. A
coloring χ : V → C is proper if χ(u) 6= χ(v) for any (u, v) ∈ E.
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2.1 Data Structures and the Algorithm
Data structures. We use the following data structures.

(1) We maintain a vertex coloring χ as an array such that χ(v) denotes the color of the
current graph and guarantee that χ is a proper (∆ + 1)-vertex coloring after each update.

(2) For each vertex v ∈ V we maintain: (a) its rank r(v) that is chosen uniformly at random
from [0, 1] during preprocessing; (b) its degree deg(v); (c) the last time stamp, denoted
by τv, at which v was recolored; (d) two sets Lv := {u : (u, v) ∈ E, r(u) < r(v)}, Hv :=
{u : (u, v) ∈ E, r(u) ≥ r(v)}, which contain all neighbors of v with ranks less than v,
and all neighbors of v with ranks at least v (including v itself), respectively; (e) the sizes
of the previous two sets, i.e., |Lv| and |Hv|. Note that deg(v) = |Lv ∪Hv| = |Lv|+ |Hv|.
For each vertex v ∈ V note that every color of C is either (i) used by no neighbor of v
(and we call such color a blank color for v), (ii) used by a neighbor in Hv, or (iii) used
by a neighbor in Lv and by no neighbor in Hv. We call the corresponding sets of colors
(i) Bv, (ii) Cv(H), and (iii) Cv(L). We further partition Cv(L) into (iii.1) Uv(L), which
denotes the set of unique colors for v that have been used by exactly one vertex in Lv
and (iii.2)Mv(L), which denotes the set of colors that have been used by at least two
vertices in Lv. Thus, C = Cv(H) ∪̇ Bv ∪̇ Uv(L) ∪̇ Mv(L). As it will be useful in the
description of the algorithm, we finally define Cv(H) := Bv ∪ Uv(L) ∪Mv(L). Note that
for any fixed v, a color c can appear in exactly one of the two sets Cv(H) and Cv(H).

(3) (i) For every vertex v, we maintain Cv(H) and Cv(H) in doubly linked lists. (ii) For each
color c ∈ C and vertex v ∈ V , we keep the following information: (a) a pointer pc,v from
c to its position in either Cv(H) or Cv(H), depending on which list it belongs to; (b)
a counter µHv (c) such that µHv (c) equals the number of neighbors in Hv with color c if
c ∈ Cv(H); or equals 0 if c ∈ Cv(H). (iii) For any vertex v and color c ∈ C we keep the
pointer pc,v in a hash table Av which is indexed by c. (iv) For any vertex v and color
c ∈ Cv(H), we maintain the pairs (c, µHv (c)) in a hash table AHv which is indexed by the
pair (v, c).
More precisely, we use the dynamic perfect hashing algorithm by Dietzfelbinger et al. [12],
which takes amortized expected constant time per update and worst-case constant time
for lookups. (Alternatively we can get constant worst-case time for updates and lookups
by spending time O(n∆) during preprocessing to initialize suitable arrays).

To simplify the presentation and since the randomness in the hash tables is independent
of the randomness used by the algorithm otherwise, we will not mention the randomness
introduced through the usage of hash tables in the following.

Initialization. As the initial graph G0 is empty, we initialize as follows: (1) For each vertex
u ∈ V , sample a random number (called rank) r(u) ∈ [0, 1]. (2) Color each vertex u by
a random color χ(u) ∈ C := {1, · · · ,∆ + 1} and initialize all the data structures suitably.
In particular, for each u ∈ V , we initialize Cu(H) to be the empty list and Cu(H) to be
the doubly linked list containing all colors in C. Note that the latter takes O(n∆) time.
We discuss how to reduce the initialization time to O(n) while keeping constant expected
amortized update time in Section 4.

Time stamp reduction. Our algorithm does not use the actual values of the time stamps,
only their relative order. Thus, every poly(n) (say, n4) number of updates we determine the
order of the vertices according to the time stamps and set the time stamps of every vertex to
equal its position in the order and set the current time stamp to n+ 1. This guarantees that
we only need to use O(logn) bits to store the time stamp τv for each vertex v and it does
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not affect the ordering of the time stamps. The cost of the recomputation of time stamps
is O(n logn) and can be amortized over all the operations that are performed between two
updates, increasing their running time only by an additive constant.

Handling an edge deletion. As any edge deletion (u, v) does not lead to a violation of the
current proper coloring, we do not need to recolor any vertex, except to update the data
structures corresponding to u, v, the details of which are deferred to Section 2.1.1.

Handling an edge insertion. For an edge insertion (u, v), we note that if χ(u) 6= χ(v) before
the insertion, then we only need to update the basic data structures corresponding to the two
endpoints. If χ(u) = χ(v), i.e, the current coloring χ is not proper any more, then we need
to recolor one vertex w ∈ {u, v} as well as to update the relevant data structures. We always
recolor the vertex that was colored last, i.e., the one with larger τw. W.l.o.g., we assume
this vertex is v. Then we invoke a subroutine Recolor(v) to recolor v and potentially some
other lower level vertices, and update the corresponding data structures. That is, we will
first update Hu, Lu, Hv, Lv and their sizes trivially in constant time. Then if χ(u) 6= χ(v),
we update the data structures corresponding to u, v as described in Section 2.1.1.

If χ(u) = χ(v), and w.l.o.g., suppose that τv > τu, then we recolor v by invoking the
procedure Recolor(v) below, where Uv(L) denotes the set of colors that have been used by
exactly one vertex in Lv.

Recolor(v)
1. Run SetColor(v) and obtain a new color c (from Bv ∪ Uv(L)).
2. Set χ(v) = c. Update the data structures by the process (>) described in Section 2.1.1.
3. If c ∈ Uv(L),

a. Find the unique neighbor w ∈ Lv with χ(w) = c.
b. Recolor(w).

4. If c ∈ Bv, then remove all the visited marks generated from the calls to SetColor.

Note that the recursive calls will eventually terminate as for every call Recolor(w) in
Step 3 it holds that r(w) < r(v). Furthermore, no recursive call will be performed when
Lv = ∅ as it implies that Uv(L) = ∅. The subroutine ReColor(v) calls the following
subroutine Setcolor(v).

2.1.1 Updating the Data Structures

Case I: an edge deletion (u, v). Whenever an edge (u, v) gets deleted, we update the
data structures corresponding to u and v as follows. More precisely, we first update the sets
Hu, Lu, Hv, Lv and their sizes trivially in constant time. The lists Cu(H), Cu(H), Cv(H), Cv(H)
can be updated in constant worst-case time. The hash tables AHu ,AHv can also be maintained
in constant amortized expected update time. More precisely, suppose w.l.o.g., u ∈ Lv, then
we do the following:
1. Delete (χ(v), µHu (χ(v))) from AHu ; µHu (χ(v))← µHu (χ(v))− 1.
2. If µHu (χ(v)) = 0, then Cu(H)← Cu(H) \ {χ(v)}, Cu(H)← Cu(H) ∪ {χ(v)}.
3. Otherwise, insert (χ(v), µHu (χ(v))) to AHu .
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SetColor(v)
1. Mark v as visited. Initialize sets Lv,old := {v} and Lv,new := ∅.

Scan the list Lv: for any u ∈ Lv, if it is marked as visited, then add u to Lv,old;
otherwise (i.e., it is not marked), then add u to Lv,new and mark u as visited.

2. If |Lv|+ |Hv| < ∆
2 (i.e., deg(v) < ∆

2 ), repeatedly sample a color uniformly at random
from [∆ + 1] until we get a color c that is contained in Bv, the set of blank colors for v
that have not been used by any neighbor of v.

3. Otherwise, we let L<
v,new denote the subset of vertices in Lv,new with ranks at most

the median of all ranks of vertices in Lv,new. We let Uv(L<
new) denote the set of colors

that each has been used by exactly one vertex in Lv,new and additionally this vertex
belongs to L<

v,new. Define L<
v,old and Uv(L<

old) similarly.
a. If |Lv,new| ≥ 1

10 |Lv| or Lv = ∅, then we sample a random color c from the set of
the first min{|Bv ∪ Uv(Lg

new)|, |L<
v,new|+ 1} elements of Bv ∪ Uv(L<

new).
b. Else (i.e., |Lv,old| > 9

10 |Lv|) we sample a random color c from the set of the first
min{|Bv ∪ Uv(L<

old)|, |L<
v,old|+ 1} elements of Bv ∪ Uv(L<

old).
4. Update the relevant data structures (i.e. of v and its neighbors in Lv) and Return c.

Case II: an edge insertion (u, v) such that χ(u) 6= χ(v). In this case, w.l.o.g., suppose
that r(u) < r(v), we update the data structures as follows:
1. Cu(H)← Cu(H) ∪ {χ(v)}, Cu(H)← Cu(H) \ {χ(v)}, µHu (χ(v))← µHu (χ(v)) + 1
2. Delete (χ(v), µHu (χ(v))− 1) from AHu if µHu (χ(v)) > 1, insert (χ(v), µHu (χ(v))) to AHu .

Case III: procedure (>) in the subroutine Recolor(v). In the subroutine Recolor(v), if
the color of v is changed from c′ to c, then we update the relevant data structure as follows:

(>) For every w ∈ Lv:
1. µHw (c′)← µHw (c′)− 1
2. If µw(c′) = 0, then Cw(H)← Cw(H) \ {c′}, Cw(H)← Cw(H) ∪ {c′},
3. Cw(H)← Cw(H) ∪ {c}, Cw(H)← Cw(H) \ {c}, µHw (c)← µHw (c) + 1.
4. Delete (c, µHw (c)) from AHw if µHw (c) > 1, and insert (c, µHw (c)) to AHw .

2.2 The Analysis
Next we prove Theorem 1. Let v0 := v be the vertex that needs to be recolored after an
insertion and let v1, v2, · · · , v` denote the vertices on which the recursive calls of Recolor()
were executed. We call v0, v1, · · · , v` the recoloring path originated from v. In the following
lemma, we show that the expected total time for all calls Recolor(vi) is O(1 +

∑`
i=0 |Lvi |),

where the expectation is not over the random choices of ranks or colors at Step 3, but comes
from the use of hash tables and sampling colors at Step 2.

I Lemma 3. Subroutine SetColor(v) can be implemented to run in O(1 + |Lv|) expected
time. For any recoloring path v0, v1, · · · , v`, the expected time for subroutine Recolor(u)
for any u ∈ {v1, . . . , vl} excluding the recursive calls to Recolor() is O(|Lu|) if u 6= v`, and
is O(1 +

∑`
i=0 |Lvi

|) if u = v`.

Proof. Recall that we store Lv, Cv(H), and Cv(H) for every vertex v. We use them to build
all the sets needed in SetColor(v). First we use an array Rv,Lnew (resp. Rv,Lold) to store
ranks of vertices in Lv,new (resp. Lv,old), and then find the median mv,new (resp. mv,Lold) of
the set of ranks of vertices in Lv,new (resp. Lv,old) deterministically in O(|Rv,Lnew |) = O(|Lv|)
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time [8]. Traversing Lv again (and using an empty array of length ∆ that we clean again
after this step) we compute (1) the sets Uv(L<

new) and Uv(L<
old) of colors that contain all

colors that have been used by exactly one vertex in L<
v,new, and by exactly one vertex in

L<
v,old, respectively, and (2) the setsMv(L) of colors that contain all colors that have been

used by at least two vertices in Lv. Note that Uv(L) = Uv(L<
new) ∪ Uv(L<

old), and, thus, it
can be computed by copying these lists. All these lists have size O(|Lv|) and, thus, all these
steps take time O(|Lv|).

We will keep the setsMv(L), Uv(L), Uv(L<
new), Uv(L<

old) in four separate lists and build
hash tables for these sets with pointers to their positions in the lists. Next we delete all
colors in Mv(L) ∪ Uv(L) from the list Cv(H) and the resulting list will be Bv. Note that
the hash tables can be implemented in time linear in the size of corresponding sets, and
each lookup (i.e., check if an element is in the set) takes constant worst-case time [12]. This
completes the building of the data structure before Step 1.

Recall that |Lv| + |Hv| = deg(v). Then for Step 2, if deg(v) < ∆
2 , we know that

|Bv| > ∆−∆
2 = ∆

2 . Thus, a randomly sampled color from [∆+1] belongs to Bv with probability
at least 1/2, which implies that in O(1) expected time, we will sample a color c from Bv.
Note that a color c belongs to Bv if and only if c is not contained inMv(L)∪Uv(L)∪ Cv(H),
which can be checked by using the hash tables forMv(L), for Uv(L) and the hash table AHv .

All the other steps only write, read and/or delete lists or hash tables of size proportional
to |Lv| or |Mv(L) ∪ Uv(L)|, which is at most |Lv|. Though the list Bv ∪ Uv(L<

new) might
have size much larger than |L<

v,new|, it suffices to read at most |L<
v,new| elements from it in

Step 3 (similar for Bv ∪ Uv(L<
old) versus |L<

v,old|). In Step 4, to update the relevant data
structures, we add all colors inMv(L)∪Uv(L) back to the list Bv to construct Cv(H). Thus,
SetColor(v) takes O(1 + |Lv|) expected time.

To analyze the running time of Recolor(u) (apart from the recursive calls), for any
u ∈ v0, v1, . . . , v`, note that apart from calling Setcolor(u), Recolor updates the data
structures, determines the neighbor w that needs to be recolored next (if any) and if no such
neighbor w exists, i.e. c is a blank color and u is the last vertex of the recoloring path, then
it unmarks all vertices that were marked by all the calls to Setcolor on the recoloring
path. For this Setcolor has stored all the marked vertices on a list, which it returns to
Recolor. This list is then used by recolor to unmark these vertices. The time to update
the data structures is constant expected time (the expectation arises due to the use of hash
tables) to update its own data structure and O(|Lu|) to update the data structures of its
lower neighbors. Determining w requires O(|Lu|) time, as all lower neighbors of u have to
be checked. Finally, Recolor(u) for the last vertex u = v` on the recoloring path takes
expected time O(1 +

∑
i |Lvi

|) as it unmarks all vertices on the recoloring path and their
neighbors. J

Throughout the process we have two different types of randomness: one for sampling
the ranks for the vertices and the other for sampling the colors. These two types of
randomness are independent. Furthermore, only the very last vertex v` on the recoloring
path P = v0, v1, · · · , v` can satisfy the condition of Step 2 in SetColor, as once the
condition is satisfied, we will sample a blank color which will not cause any further recursive
calls. Thus, for all vertices on P , with the possible exception of v`, Step 3 will be executed.
We call a vertex w with deg(w) < ∆

2 a low degree vertex. Note that for a low degree vertex
w, SetColor(w) executes Step 2 and takes O(1) expected time, as with probability at least
1/2 a randomly sampled color will be blank. In the following, we consider the expected
time Tv of recoloring P that excludes the time of recoloring any low degree vertex (which, if
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exists, must be the last vertex on P ). We first present a key property regarding the expected
running time for recoloring a vertex v. Let N(v) denote the set of all neighbors of v in the
current graph.

I Lemma 4. Let G denote the current graph. For any vertex v with rank r(v) ≤ α, the
expected running time Tv (over the randomness of choosing ranks of other vertices) is

E[Tv|r(v) ≤ α] = O(α∆) (1)

Furthermore, conditioned on ranks of vertices in N(v) and r(v) ≤ α, it holds that the expected
running time Tv (over the randomness of sampling ranks of V \ (N(v) ∪ {v})) is

E[Tv|r(v) ≤ α, r(w)∀w ∈ N(v)] = O(|Lv|) +O(α∆) (2)

The proof of the above lemma is deferred to Section 2.2.1. We remark that Lemma 4 assumes
that for each operation, it is executed in any possible current graph G with any proper
(∆ + 1)-coloring (i.e. worst-case analysis for graph and coloring) and that each rank is
sampled uniformly at random from [0, 1] in G. This is true as the adversary is assumed to be
oblivious, i.e., the sequence of all updates has been written down before the algorithm starts
to process the updates. That is, for any current graph G, the random ranks of vertices still
follows from the same distribution as the one in the beginning. The above further implies
that we can bound the work for recoloring a conflicting vertex v in G by a function that
depends only on the randomness for sampling ranks (and not on the randomness for selecting
colors in previous updates).

We will also need the following lemma regarding the size of the sampled color set. The
proof of the lemma follows from a more refined analysis of the proof of Claim 3.1 in [5] and
can be found in the full version of the paper.

I Lemma 5. Let v be any vertex that needs to be recolored. Let s denote the size of the set
of colors that the algorithm samples from in order to choose a new color for v. Then it holds
that 1) if |Lv|+ |Hv| < ∆

2 , then s ≥
∆
2 + 1; 2) otherwise, s ≥ 1

100 |Lv|+ 1.

With the lemmas above, we are ready to prove Theorem 1.

Proof of Theorem 1. Note that an edge deletion does not lead to the recoloring of any
vertex. Let us consider an insertion (u, v). If χ(u) 6= χ(v), we do not need to recolor any
vertex. Otherwise, we need to recolor one vertex from {u, v}. Suppose w.l.o.g. that τv > τu,
where τu denotes the last time that u has been recolored. This implies that v is recolored
at the current time step, which we denote by τ . We will invoke Recolor(v) to recolor v.
Note that by definition, after calling subroutine Recolor, there will be no conflict in the
resulting coloring. This proves the correctness of the algorithm. In the following, we analyze
its running time.

Recall that we let Tv denote the running time of calling Recolor(v), including all the
recursive calls to Recolor, while excluding the time of recoloring any low degree vertex
(i.e. a vertex where SetColor(w) executed Step 2) on the recoloring path originated from
v (which, if exists, must be the last vertex on the path). If the last vertex is indeed a low
degree vertex, then the expected total running time (over all sources of randomness) of
Recolor(v) will be E[Tv]+O(1), where the expectation E[Tv] in turn is over the randomness
of sampling ranks of all vertices; otherwise, the expected total running time (over all sources
of randomness) of Recolor(v) will be E[Tv]. Let α0 = 4C log ∆

∆ for some constant C ≥ 1.
Now we consider two cases:
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Case I: r(v) ≤ α0. First we note that this case happens with probability at most α0 as r(v)
is chosen uniformly at random from [0, 1]. Furthermore, by Lemma 4, conditioned on the
event that r(v) ≤ α0, the expected time of the subroutine Recolor(v) is E[Tv|r(v) ≤
α0] = O(α0∆), where the expectation is taken over the randomness of choosing ranks of all
other vertices except v. Therefore, the expected time of Recolor(v) (over the randomness
of choosing ranks of all vertices) is at most α0 ·O(α0∆) = O(α2

0∆) = O( log2 ∆
∆ ) = O(1).

Case II: r(v) > α0. Let r(v) = α. Conditioned on the event that r(v) = α, by Lemma 4,
the expected running time (over the randomness of choosing ranks of other vertices) of
Recolor(v) at time τ is O(α∆).
We let Lv and L′v denote the set of neighbors of v with ranks lower than v in the graph at
(current) time τ and at time τv, (the latest time that v was recolored), respectively. Note
that τu < τv implies that neither χ(u) nor χ(v) changed between τv and τ . We define
Hv, H

′
v similarly. We let deg(v) = |Lv ∪Hv| and deg′(v) = |L′v ∪H ′v| denote the degree

of v at time τ and τv, respectively.

Case (a): deg′(v) < ∆/2. In this case, we know that at time τv, we will sample a color
from the set of blank colors B(v), which has size at least ∆/2. Thus, the probability
that we sampled any fixed color at time τv is at most 2/∆. This also applies to the
color χ(u). Thus, the probability that χ(v) = χ(u) at time τv is at most 2/∆. As
neither χ(v) nor χ(u) have changed between τv and τ (which implies that the random
choices of the algorithm between τv and τ have no influence on χ(v) or χ(u)), the
probability that χ(v) = χ(u) at time τ is at most 2/∆. On the other hand, at time
τ , we will spend at most O(α∆) = O(∆) expected time (over the randomness of
sampling ranks of vertices in V \ {v}). Thus, the expected time (over the randomness
of sampling ranks and of sampling colors at time τv) we spent on recoloring v at time
τ is O( 1

∆ ·∆) = O(1).
Case (b): deg′(v) ≥ ∆/2. We now consider two sub-cases.

Case (b1): If deg(v) < ∆/4, then there must have been at least deg′(v)/2 = Ω(∆)
deletions of edges incident to v between τv and τ . We can recolor v at time τ in
expected O(α∆) = O(∆) time. We charge this time to the updates incident to v
between τv and τ . Note that each update is only charged twice in this way, once
from each endpoint, adding a constant amount of work to each deletion.

Case (b2): If deg(v) ≥ ∆/4, then E[|Lv|] = α deg(v) ≥ α∆/4 ≥ α0∆/4 ≥ C log ∆ for
some constant C ≥ 1 and E[|Lv|] = α deg(v) ≤ α∆. Then over the randomness
of sampling ranks for vertices in N(v), it follows from a Chernoff bound that
with probability at least 1− 1

∆ , E[|Lv|]
2 ≤ |Lv| ≤ 3E[|Lv|]

2 , which implies that with
probability at least 1− 1

∆ ,
(α∆)/8 ≤ E[|Lv|]/2 ≤ |Lv| ≤ (3E[|Lv|])/2 ≤ (3α∆)/2 (3)

By Ineq. (2) in Lemma 4, over the randomness of sampling ranks for V \(N(v)∪{v}),
the expected work for recoloring v at time τ is O(|Lv|) +O(α∆) = O(α∆). We first
analyze the case that Ineq. (3) does not hold, which happens with probability at
most 1/∆. Then the work for recoloring is O(∆) as |Lv| ≤ ∆. Thus the expected
work of this case is 1

∆ ·O(∆) = O(1).
Next we analyze the case that Ineq. (3) holds and further distinguish two sub-cases.

Case (b2-1): If |Lv4L′v| > 1
10 |Lv|, then there must have been at least 1

10 |Lv| = Θ(α∆)
edge updates incident to v between τv and τ . By the same argument as above
we can amortize the expected work of O(α∆) over these edge updates, charging
each edge update at most twice. This adds an expected amortized cost of O(1) to
each update.
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Case (b2-2): If |Lv4L′v| ≤ 1
10 |Lv|, then it holds that |L′v| ≥ |Lv|− |Lv4L′v| ≥ 9

10 |Lv|.
By Lemma 5, χ(v) was picked at time τv from a set of Ω(|L′v|) many colors. By
similar argument for the Case (a), the probability that we picked the color χ(u) at
time τv is at most O( 1

|L′v|
) = O( 1

|Lv| ). As the expected work at time τ is at most
O(α∆) = O(|Lv|) (with the expectation over randomness of sampling ranks), the
expected amortized update time is O( 1

|Lv| ) ·O(|Lv|) = O(1).

This completes the proof of the theorem. J

2.2.1 Bounding the Expected Work per Recoloring: Proof of Lemma 4
Let v0, v1, · · · be the vertices on the recoloring path after an insertion. By Lemma 3 the
total expected time for all calls Recolor(vi) is O(1 +

∑
i≥0 |Lvi

|). Recall that the running
time Tv excludes the time spent on recoloring a low degree vertex (and a low degree vertex
can only be the last vertex of a recoloring path). Thus, for all vertices vi that contribute
to Tv only Step 3a or Step 3b of SetColor can occur. Let vi0 = v0, vi1 , vv2 , · · · be the
vertices for which Step 3a occurred during Setcolor(v), which we call good vertices. We
bound the expected value of ranks of good vertices and the expected size of the lower-ranked
neighborhood of these vertices in the following lemma. Note that the expectations are taken
over the randomness for sampling ranks of vertices, whose ranks are not in the conditioned
events.

I Lemma 6. For any j ≥ 0, it holds that

E[r(vij+1)|r(v0) ≤ α] ≤ α/2j , E[|Lvij
||r(v0) ≤ α] ≤ (10 · α ·∆)/2j−1.

Furthermore, for any j ≥ 1, it holds that

E[r(vij+1)|r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ α/2j−1,

E[|Lvij
||r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ (10 · α ·∆)/2j−2.

Proof. To prove the lemma, we use the principle of deferred decisions: Instead of sampling
the ranks for all vertices (independently and uniformly at random from [0, 1]) at the very
beginning, we sample the ranks of vertices sequentially by the following random process:

Starting from v0 with rank r(v0), we sample all the ranks of vertices in N(v0). We
will then choose v1 as described in the algorithm Recolor (if a non blank color has been
sampled). Now for each i ≥ 1, we note that the ranks of all the vertices in Nold(vi) :=
N(vi) ∩ (∪j<iN(vj) ∪ {v0}) have already been sampled, and then we only need to sample
(independently and uniformly at random from [0, 1]) the ranks for all vertices in Nnew(vi) :=
N(vi) \Nold(vi). In this case, we say that the ranks of vertices in Nnew(vi) are sampled when
we are exploring vi. Then we will choose vi+1 in the algorithm Recolor (if a non blank
color has been sampled). We iterate the above process until Recolor has sampled a blank
color.

For any i, we call Nnew(vi) the free neighbors of vi with respect to v0, v1, · · · , vi−1. In
particular, Nnew(v0) = N(v0) and N(vi) = Nnew(vi)∪̇Nold(vi). Now a key observation is
that

(?) for any vertex vi, it holds that Lvi,new (as defined in the algorithm SetColor(vi)) is
entirely determined by the ranks of the vertices Nnew(vi) and is independent of the
randomness for sampling ranks of Nold(vi).
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This is true since Lvi,new contains all the neighbors of vi with ranks less than r(vi) and have
not been visited so far: for any vertex in Nold(vi), either its rank is higher than vi, or its
rank is less than vi and it has been marked as visited before we invoke SetColor(vi).

We first prove the first part of the lemma. We assume for now that r(v0) is fixed and we
denote by R(ij) the randomness of sampling ranks for vertices in Nnew(vij ). We will prove
by induction on the index j that

ER(ij)[r(vij+1)] ≤ r(v0)/2j and ER(ij)[|Lvij
,new|] ≤ (r(v0) ·∆)/2j−1. (4)

Note that this holds for j = 0 since i0 = 0, r(v1) ≤ r(v0), Lvi0 ,new = Lv0 , and ER(0)[|Lv0 |] =
r(v0) · |N(v0)| ≤ r(v0) ·∆. Next we assume it holds for j−1, and prove it also holds for j. By
the definition of the good vertex vij , we know that vij+1 ∈ Lvij

, and that the rank of vij+1
is at most the median, denoted by mvij

,new, of all the ranks of vertices in Lvij
,new, which in

turn consists of all vertices in Nnew(vij ) with rank not larger than r(vij ). Furthermore, by
the observation (?), the rank of r(vij+1) depends only on r(vij ) and the ranks in Nnew(vij ).
This implies that

ER(ij)[r(vij+1)|r(vij )] ≤ ER(ij)[mvij
,new|r(vij )] ≤ r(vij )/2,

where the last inequality follows from the fact that mvij
,new is the median of a set of numbers

chosen independently and uniformly at random from [0, 1], conditioned on that they are at
most r(vij ) (see e.g., Lemma 8.2 and 8.3 in [21]). Since r(vij ) ≤ r(v(ij−1)+1) in all cases and,
by the induction assumption, ER(ij−1)[r(v(ij−1)+1)] ≤ r(v0)

2j−1 , it holds that

ER(ij)[r(vij+1)] ≤ Er(vij
)[ER(ij)[r(vij+1)|r(vij )]] ≤ 1

2Er(vij
)[r(vij )]

≤ 1
2ER(ij−1)[Er(vij

)[r(vij )|r(v(ij−1)+1)]] ≤ 1
2ER(ij−1)[r(v(ij−1)+1)] ≤ r(v0)

2j .

Furthermore, for any j ≥ 0, by the observation (?), Lvij
,new depends only on r(vij ) and

ranks in Nnew(vij ). Thus

ER(ij)[|Lvij
,new| |r(vij )] ≤ r(vij ) · |Nnew(vij )| ≤ r(vij ) ·∆.

This further implies that

ER(ij)[|Lvij
,new|] = Er(vij

)[ER(ij)[|Lvij
,new| |r(vij )]] ≤ Er(vij

)[r(vij )] ·∆ ≤ r(v0) ·∆
2j−1 .

Now let us no longer assume that r(v0) is fixed, but instead condition on the event that
r(v0) ≤ α. Then it follows that ER(ij)[r(vij+1)|r(v0) ≤ α] ≤ α

2j and ER(ij)[|Lvij
,new| |r(v0) ≤

α] ≤ α·∆
2j−1 .

Now by the definition of good vertices, we have |Lvij
,new| ≥ 1

10 |Lvij
|. This implies that

ER(ij)[|Lvij
| |r(v0) ≤ α] ≤ 10 · ER(ij)[|Lvij

,new| |r(v0) ≤ α] ≤ 10 · (α ·∆)/(2j−1).

This completes the proof of the first part of the lemma.
For the “Furthermore” part of the lemma, the analysis is similar as above. Now we start

with the assumption that r(v0), r(w)∀w ∈ N(v0) are fixed. Note that vi1 ∈ N(v0), which
implies that r(vi1) is also fixed. We will then prove by induction on the index j that

ER(ij)[r(vij+1)] ≤ (r(vi1))/(2j−1) and ER(ij)[|Lvij
,new|] ≤ (r(vi1) ·∆)/(2j−2).

In the case j = 1, the above two inequalities hold as r(vi1+1) ≤ r(vi1) and ER(i1)[|Lvi1 ,new|] =
r(vi1) · |Nnew(vi1)| ≤ r(vi1) · ∆. The inductive step from case j − 1 to j can be then
proven in the same way as we proved Inequalities (4). Then instead of assuming that
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r(v0), r(w)∀w ∈ N(v0), we condition on the event that r(v0) ≤ α, r(w)∀w ∈ N(v0), which
directly implies that r(vi1) ≤ α. Then it follows that ER(ij)[r(vij+1)|r(v0) ≤ α, r(w)∀w ∈
N(v0)] ≤ α

2j−1 and ER(ij)[|Lvij
,new| |r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ α·∆

2j−2 . Finally, by the
definition of good vertices, |Lvij

,new| ≥ 1
10 |Lvij

|, which implies that ER(ij)[|Lvij
| |r(v0) ≤

α, r(w)∀w ∈ N(v0)] ≤ 10 · ER(ij)[|Lvij
,new| |r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ 10α·∆

2j−2 . This
completes the “Furthermore” part of the lemma. J

Now we relate the total work to the work incurred by Step 3a. Note that the total work
Tv is proportional to the sum of sizes of all lower-ranked neighborhoods of v0, v1, . . . . We
will prove the following lemma, which implies that the total work of recoloring v is at most a
constant factor of the total work for recoloring all the good vertices on the recoloring path.

I Lemma 7. It holds that
∑
i |Lvi

| ≤ 3
∑
i : vi is good |Lvi

| = 3
∑
j |Lvij

|.

Proof. We first introduce the following definition. For any i and k < i, we let F(vk, vi)
denote the set of vertices whose ranks are less than r(vi), and are sampled when we are
exploring vk, i.e., F(vk, vi) = {w : w ∈ Nnew(vk), r(w) < r(vi)}. Note that as r(vi+1) < r(vi),
it always holds that for any 0 ≤ k < i, F(vk, vi+1) ⊆ F(vk, vi). Now we define the following
potential function Φ:

Φ(−1) := 0 and Φ(i) :=
∑
k:k≤i

|F(vk, vi+1)| ∀i ≥ 0, (5)

We have the following claim regarding the potential functions.

B Claim 8. For any i ≤ 0, Φ(i) ≥ 0. Furthermore, if vi is a good vertex, then Φ(i)−Φ(i−1) ≤
|Lvi
|/2, otherwise Φ(i)− Φ(i− 1) ≤ −7|Lvi

|/20.

Proof. Note that if Step 3a in subroutine SetColor is executed at vertex vi, i.e., vi is
good, then the potential Φ(i) might be larger or smaller than Φ(i− 1). If vi is good then
|F(vi, v1+i)| ≤

|L<
vi,new|

2 by the fact that r(v1+i) is at most the median rank in L<
vi,new.

Furthermore, it holds that

Φ(i) =
∑
k:k≤i

|F(vk, v1+i)| ≤
∑

k:k≤i−1
|F(vk, vi)|+ |F(vi, vi+1)|

≤ Φ(i− 1) + |L<
vi,new|/2 ≤ Φ(i− 1) + |Lvi

|/2

Now suppose that Step 3b is executed at vertex vi, i.e., vi is not good. Since v1+i is a vertex
from the lower half of the old lower neighbors of vi (i.e., v1+i ∈ L<

vi,old ⊆ ∪k<iF(vk, vi) ∩
Lvi,old), we have that to obtain the set ∪k<iF(vk, v1+i) from the set ∪k<iF(vk, vi), we need
to remove at least 1

2 |Lvi,old| ≥ 1
2 (1− 1

10 )|Lvi
| vertices. Furthermore, F(vi, v1+i) can contain

at most |Lvi,new| ≤ 1
10 |Lvi

| vertices. This implies that

Φ(i) =
∑
k:k≤i

|F(vk, v1+i)| =
∑

k:k≤i−1
|F(vk, v1+i)|+ |F(vi, v1+i)|

≤
∑

k:k≤i−1
|F(vk, vi)| −

1
2(1− 1

10)|Lvi |+
1
10 |Lvi | = Φ(i− 1)− 7

20 · |Lvi | C

Now we distinguish three types of indices. We call an index i, a type I index, if Step 3a
occurred during Setcolor(v) and the Φ(i) − Φ(i − 1) ≥ 0. By Claim 8 it holds that for
such an index i, |Lvi

| ≥ 2(Φ(i) − Φ(i− 1)). We call i a type II index, if Step 3a occurred
during Setcolor(v) and the Φ(i)− Φ(i− 1) ≤ 0. It holds that for such an index i (as for
any index), |Lvi

| ≥ 0. We call i a type III index, if Step 3boccurred during Setcolor(v),
i.e. vi is not a good vertex. By Claim 8 it holds that for such an index i, Φ decreases and

|Lvi
| ≤ (Φ(i− 1)− Φ(i)) · 20

7 < 3 · (Φ(i− 1)− Φ(i)).
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Now we bound the sum of sizes of lower-ranked neighborhoods of vertices corresponding
to Step 3b. It holds that∑

i: Step 3b
|Lvi | ≤

∑
i: type III

3(Φ(i− 1)− Φ(i)) ≤
∑

i: type II or III
3(Φ(i− 1)− Φ(i))

≤
∑

i: type I
3(Φ(i)− Φ(i− 1)) ≤

∑
i: type I

3 · 1
2 |Lvi | <

∑
i: type I

2|Lvi |

where the third inequality follows from the fact that Φ starts at 0 and is non-negative at the
end, and, thus, the total decrease of Φ is at most its total increase. Thus, it follows that∑

i

|Lvi
| =

∑
i: type I or II

|Lvi
|+

∑
i: type III

|Lvi
| ≤ 3

∑
i: type I or II

|Lvi
| = 3

∑
j

|Lvij
| J

Now we finish the proof of Lemma 4. By Lemma 7 and Lemma 6, it holds that

E[
∑
i

|Lvi
| |r(v) ≤ α] ≤ 3 · E[

∑
j

|Lvij
| |r(v) ≤ α] = O(α ·∆ ·

∑
j

1
2j ) = O(α∆).

Since the expected work Tv satisfies that Tv = O(
∑
i |Lvi

|), the first part of the lemma
follows. By the “Furthermore” part of Lemma 6, it holds that

E[
∑
i

|Lvi ||r(v) ≤ α, r(w)∀w ∈ N(v)]

≤3 · |Lv|+ 3 · E[
∑
j≥1
|Lvij

||r(v) ≤ α, r(w)∀w ∈ N(v)]

≤3 · |Lv|+ 3 · 10 · α ·∆ ·
∑
j

1
2j−2 = 3 · |Lv|+O(α ·∆ ·

∑
j

1
2j ) = O(|Lv|) +O(α∆).

Then the “Furthermore” part of Lemma 4 follows from the fact that Tv = O(
∑
i |Lvi

|).

3 Lower Bound for Dynamic ∆-Colorability Testing: Proof of
Theorem 2

In [24] Patrascu and Demaine construct an n-node graph and show that there exists a sequence
S of T edge insertion, edge deletion, and query operations such that any data structure for
dynamic connectivity must perform Ω(T logn) cell probes to process the sequence, where
each cell has size O(logn). This shows that the amortized number of cell probes per operation
is Ω(logn).

We now show how to use this result to get a lower bound for the dynamic ∆-colorability
testing problem with ∆ = 2.

The graph G in the proof of [24] consists of a
√
n×
√
n grid, where each node in column

1 has exactly 1 edge to a node of column 2 and no other edges, each node in column i, with
1 < i <

√
n has exactly 1 edge to a node of column i− 1 and 1 edge to a node of column

i + 1 and no other edges, and each node in column
√
n has exactly 1 edge to a node of

column
√
n− 1 and no other edges. Thus, the graph consists of

√
n paths of length

√
n− 1

and the edges between column i and i+ 1 for any 1 ≤ i <
√
n represent a permutation of

the
√
n rows. The sequence S consists of “batches” of O(

√
n) edge updates, replacing the

permutation of some column i by a new permutation for column i. Between the batches of
updates are “batches” of connectivity queries, each consisting of

√
n connectivity queries and

a parameter 1 ≤ k ≤
√
n, where the j-th query for 1 ≤ j ≤

√
n of each batch tests whether

the j-th vertex of column 1 is connected with a specific vertex of column k.
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Note that the maximum degree ∆ is 2. We now show how to modify each connectivity
query (u, v) such that it consists of a constant number of edge updates and one query whether
the resulting graph is ∆-colorable. The answer will be no iff u and v are connected. Thus,
in the resulting sequence S ′ the number of query operations equals the number of query
operations in S and the number of update operations is linear in the number of update and
query operations in S. Thus the total number of operations in S ′ is only a constant factor
larger than the number of operations in S, which, together with the result of [24], implies
that the amortized number of cell probes per operation is Ω(logn).

We now show how to simulate a connectivity query(u, v), where u is in column 1 and v is
in column k for some 1 ≤ k

√
n. We assume that k is even and explain below how to deal

with the case that k is odd. The instance for the dynamic ∆-colorability testing consists of G
with an additional node s added. To simulate a connectivity query(u, v) we (1) remove the
edge from v to its neighbor in column k+ 1 if k <

√
n, (2) add the edges (u, s) and (v, s) and

then (3) ask a ∆-colorability query. Note that the resulting graph still has maximum degree
2. Furthermore, if u and v are connected in G then there exists a unique path of odd length
k − 1 between them. Together with the edges (u, s) and (v, s) and the assumption that k is
even, this results in an odd length cycle, so that the answer to the 2-colorability query is no.
If, however, u and v are not connected in G, then adding the edges (u, s) and (v, s) creates a
path of length 2 +

√
n− 1 + k − 1 =

√
n+ k, but no cycle. Thus, the 2-colorability query

returns yes. Thus u and v are connected in G iff the 2-colorability query in the modified
graph returns no. Afterwards we remove the edges (u, s) and (v, s). Finally if k is odd, we
do not add a vertex s to G and to simulate the connectivity query(u, v) we simply insert the
edge (u, v). As before there exists an odd length cycle in the graph iff u and v are connected.
The rest of the proof remains unchanged.

This finishes the proof of Theorem 2.

I Remark 9. Let us recall Brooks’ theorem [9]: every connected graph admits a ∆-coloring,
except that it is an odd cycle or a complete graph. This implies that if the dynamic graph is
guaranteed to be connected, then we can answer ∆-colorability in constant time for ∆ ≥ 3
by checking if the graph is complete. However, since the graph is not necessarily connected,
it is unclear if the query can be answered in constant time for ∆ ≥ 3. In particular, testing
whether a dynamic graph is connected or not requires Ω(logn) time per operation [24].

4 Further Discussions

Initialization in O(n) Time. Now we describe how we can reduce the initialization time
from O(n∆) to O(n). Note that the only part that takes O(n∆) time is to initialize Cu(H)
for each vertex u, and the rest part of initialization already only takes O(n) time. The main
observation is that Cu(H) is only needed in the sampling subroutine of SetColor(u) and
even there only once the degree of a vertex is at least ∆/2. Since we make the standard
assumption that we start with an empty graph, this means that Ω(∆) insertions incident to
u must have happened. Thus, we build Cu(H) only once this is the case and amortize the
cost of building it over these previous Ω(∆) insertions.

To be more precise, we change the initialization phase as follows: We do not build Cu(H)
for any vertex u. Note that all other data structure are built as before, but they only have
size O(n) and only take time O(n) to build.

When an edge (u, v) is inserted, we check whether one of the endpoints, say u, of the
newly inserted edge reaches the degree ∆/2 and does not yet have the data structure Cu(H).
If so, we build Cu(H) and its hash table at this point in time O(∆). We amortize this cost
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over the ∆/2 updates that increased the degree of u to ∆/2, adding a constant amortized
cost to each of them. (If the other endpoint v also reaches the degree ∆/2, we handle it
analogously.)

Note that this does not affect the SetColor algorithm: as long as the degree of a vertex
u is less than ∆/2, SetColor(u) selects a new color by sampling in Step 2 from Bu. To
do so Cu(H) is not needed: In time O(|Lu|) time we build the lists and corresponding hash
tables forMu(L) ∪ Uu(L), which together with the maintained list and hash table for Cu(H)
suffice for us to sample a color from Bu in O(1) time: We pick a random color from C and
test whether it belongs to Bu by making sure that it does not belong toMu(L) ∪ Uu(L) or
Cu(H). The fact that the degree of u is at most ∆/2 implies that in expectation the second
randomly chosen color will belong to Bu.

Once Cu(H) and its hash table has been built, it is used in the way as we described before
and updated as in Section 2.1.

Extension to Work for Changing ∆. As we mentioned, we can extend our algorithm to
work with changing ∆. (A similar extension was also done in [5]). For any time stamp t ≥ 0,
we will maintain a global value ∆t := maxtj=1 maxv∈V degj(v), where degj(v) denotes the
degree of v in the graph after j edge updates, that is, ∆ is the maximum degree seen so
far (till time t). Then we have a randomized algorithm for maintaining a (∆t + 1)-coloring.
More precisely, for any time stamp j, for each vertex v, we only need to guarantee that the
color χ(v) is chosen from {1, . . . ,degj(v) + 1}. Then for each vertex v ∈ V , we let Cv(H) ⊆ C
consist of all the colors in {1, . . . ,degj(v) + 1} that have not been assigned to any neighbor
u of v for u ∈ Hv. It is easy to see that Lemma 3, 4 and 5 still hold, and our randomized
dynamic coloring algorithm maintains a proper (∆t + 1)-coloring of the graph Gt at time t
with constant amortized update time, for any t ≥ 0.

Additionally we can keep a variable ∆ such that we rebuild the data structure every ∆n
operations as follows: We determine the list of current edges and set ∆ to be the maximum
degree of the current graph. Then we build the data structure for an empty graph and
insert all edges using the insert operation. This increases the running time by an amortized
constant factor and guarantees that ∆ is the maximum degree in the graph within the last
∆n updates.
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1 Introduction

The Bitcoin Protocol [14, 15, 16], or Nakamoto Protocol, introduces a novel decentralized
network-consensus mechanism that is trustless and open for anyone connected to the Internet.
This open and dynamic topology is supported by means of an underlying currency (a so-called
cryptocurrency [16]), to encourage/discourage participants to/from taking certain actions.
The largest network running this protocol at the time of writing is the Bitcoin network, and
its underlying cryptocurrency is Bitcoin (BTC). The success of Bitcoin lead the way for
several other cryptocurrencies; some of them are replicas of Bitcoin with slight modifications
(e.g. Litecoin [27] or Bitcoin Cash [25]), while others introduce more involved modifications
(e.g. Ethereum [26, 22] or Monero [28]).

The data structure used in these protocols is an append-only record of transactions,
which are assembled into blocks, and appended to the record once they are marked as valid.
The incentive to generate valid new blocks is an amount of currency, which is known as the
block reward. In order to give value to the currencies, the proof-of-work framework mandates
that participants generating new blocks are required to solve some computationally hard
problem per each new block. This is known as mining, and the number of potential solutions
that a miner can generate per second is referred to as her hash power (or computational
power). Agents who participate in the generation of blocks are called miners. In Bitcoin, for
example, the hard problem corresponds to finding blocks with a header whose hash value,
when interpreted as a number, is less than a certain threshold. Since hash functions are
pseudo-random, the only way to generate a valid block is to try with several different blocks,
until one of them has a header with a hash value below the established threshold.

Miners are not told where to append the new blocks they produce. The only requirement
is that new blocks must include a pointer to a previous block in the data structure, which
then naturally forms a tree of blocks. The consensus data structure is generally defined as
the longest branch of such a tree, also known as the blockchain. In terms of cryptocurrencies,
this means that the only valid currency should be the one that originates from a transaction
contained in a block of the blockchain. Miners looking to maximise their rewards may then
attempt to create new branches out of the blockchain, to produce a longer branch that
contains more of their blocks (and earn more block rewards) or to produce a branch that
contains less blocks of a user they are trying to harm. This opens up several interesting
questions: under what circumstances are miners encouraged to produce a new branch in the
blockchain? What is the optimal strategy of miners assuming they have a rational behaviour?
Finally, how can we design new protocols where miners do not have incentives to deviate
from the main branch?

Our goal is to provide a model of mining that can incorporate different types of block
rewards (including the decreasing rewards used in e.g. Bitcoin, where rewards for block
decrease after a certain amount of time), as well as the economic concept of discount, i.e. the
fact that miners prefer to be rewarded sooner than later, and that can help in answering the
previous questions. Since mining protocols vary with each cryptocurrency, distilling a clean
model that can answer these questions while simultaneously covering all practical nuances
of currencies is far from trivial [10]. Instead, we abstract from these rules and focus on the
limit situation in which a miner does not receive the full reward for a block if it stops being
in the blockchain. More precisely, the reward for a block b is divided into an infinite number
of payments, and the miner loses some of them whenever b does not belong to the blockchain.
This limit situation represents miners with a strong incentive to put–and maintain–their
blocks in the blockchain, and is relevant when studying cryptocurrencies as a closed system,
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where miners do not wish to spend money right away but rather be able to cash-out their
wealth at any point in time. In terms of how mining is performed, we consider these two
simple rules: each player i is associated a fixed value hi specifying her proportion of the
hash power against the total hash power, and she tries in each step to append a new block
somewhere in the tree of blocks, being hi her probability of succeeding.

The last two rules mentioned above are the standard way of formalizing mining in a
cryptocurrency. On the other hand, the way a miner is rewarded for a block in our model
takes us on a different path from most of current literature, wherein agents typically mine
with the objective of cashing-out as soon as possible or after an amount of time chosen a
priori [10, 2]. Far from being orthogonal, our framework is complementary with these studies,
as it allows to validate some of the assumptions and results obtained in these articles with
miners who have stronger motives to mine and keep their blocks in the blockchain.

Contributions. Our first contribution is a model for mining, given as an infinite stochastic
game in which maximising the utility corresponds to both putting blocks in the blockchain
and maintaining them there for as long as possible. A benefit of our model is that using
few basic design parameters we can accommodate different cryptocurrencies, and not focus
solely on Bitcoin, while also allowing us to account for fundamental factors such as so-called
deflation, or discount in the block reward. The second contribution of our work is a set
of results about strategies in two different scenarios. First, we study mining under the
assumption that block rewards are constant (as it will eventually be in cryptocurrencies with
tail-emission such as Monero or Ethereum), and secondly, assuming that per-block reward
decreases over time (a continuous approximation to Bitcoin rewards).

In the first scenario of constant rewards, we show that the default strategy of always
mining on the latest block of the blockchain is indeed a Nash equilibrium and, in fact,
provides the highest possible utility for all players. Therefore with constant reward, we
prove that long forks should not happen, as it is not an optimal strategy. On the other
hand, if block reward decreases over time, we prove that strategies that involve forking the
blockchain can be a better option than the default strategy, and thus we study what is the
best strategy for miners when assuming everyone else is playing the default strategy. We
provide different strategies that involve branching at certain points of the blockchain, and
show how to compute their utility. When we analyse which one of these strategies is the best,
we see that the choice depends on the hash power, the rate at which block rewards decrease
over time, and the usual financial discount rate. We confirm the commonly held belief that
players should start deviating from the default strategy when they approach 50% of the
network’s hash power (also known as 51% attack), but we go further: there are more complex
strategies that prove better than default even with less than 50% of the hash power. Further
investigation is needed but these results complement and improve our current understanding
of mining strategies and tend to show that even with decreasing reward long forks should
not happen if no miner is holding close to 50% of the hash power, therefore validate the
assumption used in most previous works (see e.g. [10, 2]).

Related work. Our framework takes us on a different path that most of current literature
offering a game-theoretic characterisation for mining [10, 2, 11], which typically model the
reward of players as the proportion of their blocks with respect to the total number of blocks
(we pay for each block). Each choice has its own benefits; our choice allows us to analyse
different forms of rewards and also introduce a discount factor on the utility, which we view
as one of the main advantages of our model. It is also common to introduce assumptions
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that limit the set of strategies. For instance, Kiayias et.al. [10] assume that only one block
per depth generates reward, which is natural in their framework but limits the set of valid
strategies they consider. Moreover, Biais et.al.[2] assume that the reward of a block depends
on the proportion of hash-power dedicated to blockchains containing it at a time chosen a
priori. These assumptions do not take into account every potential forking strategies, or the
fact that a miner may want to adapt his cash-out strategy based on the situation. Lastly,
our framework cannot deal with strategies that feature a tactical release of blocks often
referred as selfish mining, in which miners opt not to release new blocks in hope that these
will give them a future advantage [19, 6, 8, 18, 17]. Our model can be extended to account
for most of those strategies, for example by defining states as a tuple of trees, one for each
player. However work studying precise problems and taking into account the intrinsic cost of
mining like electricity [23, 2] cannot easily be added to our framework, because it requires a
continuous time-based model for mining.

Among other works that approach cryptocurrency mining from a game-theoretical point
of view, we mention [12, 3], noting that these differ from our work either in the choice of a
reward function, the space of mining strategies considered, or both. As far as we are aware,
our work is the first to provide a model that can account for multiple choices in the reward
function (say, constant reward or decreasing reward), and without any assumption on the set
of strategies. Recently, the perks of adding new functionalities to bitcoin’s mining protocol
have been studied: In [11], it is shown that a pay-forward option would ensure optimality of
the default behaviour, even when miner rewards are mainly given as transaction fees. There
is also interesting work regarding mining strategies in multi-cryptocurrency markets [5, 20],
and a number of articles on network properties of the Bitcoin protocol, as well as technical
considerations regarding its security and privacy (see e.g. the survey by Conti et al. [4]).
Interestingly, some network settings can inflict undesired mining behaviour [1, 9, 24].

Proviso. Due to the lack of space, some proofs are deferred to the full version.

2 A Game-theoretic Formalisation of Crypto-Mining

The mining game is played by a set P = {0, 1, , . . . ,m− 1} of players, with m ≥ 2. In this
game, each player gains some reward depending on the number of blocks she owns. Every
block must point to a previous block, except for the first block which is called the genesis
block. Thus, the game defines a tree of blocks. Each block is put by one player, called the
owner of this block. Each such tree is called a state of the game, or just state, and represents
the knowledge that each player has about the blocks that have been mined thus far.

The key question for each player is, then, where do I put my next block? The general
rule in cryptocurrencies is that miners are only allowed to spend their reward if their blocks
belongs to the blockchain, which in this paper is simply the longest chain of blocks in the
current state (the model is general enough to consider other forms of blockchain such as
Ethereum’s notion, but some of the results may change with this other definition). Thus,
players face essentially two possibilities: put their blocks right after the end of the blockchain,
or try to fork, betting that a smaller chain will eventually become the blockchain. As the
likelihood of mining the next block is directly related to the comparative hash power of a
player, we model mining as an infinite stochastic game, in which the probability of executing
the action of a player p is given by her comparative hash power.

In what follows we define the components of the game considered in this paper. Our
formalisation is similar to others in the literature [10, 11], except for the way in which miners
are rewarded and the way in which these rewards are accumulated in the utility function. As
these elements are fundamental for our model, we analyse them in detail in Section 2.1.
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Blocks, states and the notion of blockchain. In a game played by m players, a block is
defined as a string b over the alphabet {0, 1, . . ., m−1}. We denote by B the set of all blocks,
that is, B = {0, 1, . . . ,m− 1}∗. Each block apart from ε has a unique owner, defined by the
function owner : (Br{ε})→ {0, 1, . . . ,m− 1} such that owner(b) is equal to the last symbol
of b. As in [10], a state of the game is defined as a tree of blocks. More precisely, a state of
the game, or just state, is a finite and nonempty set of blocks q ⊆ B that is prefix-closed.
That is, q is a set of strings over the alphabet {0, 1, . . . ,m− 1} such that if b ∈ q, then every
prefix of b (including the empty word ε) also belongs to q. Note that a prefix closed subset
of B uniquely defines a tree with ε as the root. The intuition here is that each element of
q corresponds to a block that was put into the state q by some player. The genesis block
corresponds to ε. When a player p decides to mine on top of a block b, she puts another block
into the state defined by the string b · p, where we use notation b1 · b2 for the concatenation
of two strings b1 and b2. Notice that with this terminology, given b1, b2 ∈ q, we have that b2
is a descendant of b1 in q if b1 is a prefix of b2, which is denoted by b1 � b2. Moreover, a
path in q is a nonempty set π of blocks from q for which there exist blocks b1, b2 such that
π = {b | b1 � b and b � b2}; in particular, b2 is a descendant of b1 and π is said to be a path
from b1 to b2. Finally, let Q be the set of all possible states in a game played by m players,
and for a state q ∈ Q, let |q| be its size, measured as the cardinality of the set q of strings
(or blocks).

The blockchain of a state q, denoted by bc(q), is the path π in q of largest length, in the
case this path is unique. If two or more paths in q are tied for the longest, then we say that
the blockchain in q does not exist, and we assume that bc(q) is not defined (so that bc(·) is
a partial function).

I Example 2.1. Consider the following state q of the game with players P = {0, 1}:

ε
0

1 11
110

111 1111 11110

In this case, we have that q = {ε, 0, 1, 11, 110, 111, 1111, 11110}, so q is a finite and prefix-
closed subset of B = {0, 1}∗. The owner of each block b ∈ q r {ε} is given by the the last
symbol of b; for instance, we have that owner(11) = 1 and owner(11110) = 0. Moreover,
the longest path in q is π = {ε, 1, 11, 111, 1111, 11110}, so that the blockchain of q is π (in
symbols, bc(q) = π). Finally, |q| = 8, as q is a set consisting of eight blocks (including the
genesis block ε).

Assume now that q′ is the following state of the game:

ε
0

1 11
110 · · · 11 0 · · · 0︸ ︷︷ ︸

n

111 · · · 11 1 · · · 1︸ ︷︷ ︸
n

We have that bc(q′) is not defined since the paths π1 = {ε, 1, 11, 110, · · · , 110n} and π2 =
{ε, 1, 11, 111, · · · , 111n} are tied for the longest path in q′.
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Actions of a miner. On each step, each miner chooses a block in the current state, and
attempts to mine on top of this block. Thus, in each step, each of the players race to place
the next block in the state, and only one of them succeeds. The probability of succeeding is
directly related to the comparative amount of hash power available to this player, the more
hash power the more likely it is that she will mine the next block. Once a player places a
block, this block is added to the current state, obtaining a different state from which the
game continues.

Let p ∈ P. Given a block b ∈ B and a state q ∈ Q, we denote by mine(p, b, q) an action
in the mining game in which player p decides to mine on top of block b. Such an action
mine(p, b, q) is considered to be valid if b ∈ q and b · p 6∈ q. The set of valid actions for player
p is collected in the set:

Ap = {mine(p, b, q) | b ∈ B, q ∈ Q and mine(p, b, q) is a valid action}.

Moreover, given a ∈ Ap with a = mine(p, b, q), the result of applying a to q, denoted by a(q),
is defined as the state q ∪ {b · p}. Finally, we denote by A the set of combined actions for
the m players, that is, A = A0 ×A1 × · · · ×Am−1.

Miner’s Pay-off. Most cryptocurrencies follow these rules for miner’s payment: (1) Miners
receive a possibly delayed one-time reward per each block they mine. (2) The only blocks
that are valid are those in the blockchain; if a block is not in the blockchain then the reward
given for mining this block cannot be spent.

The second rule enforces that we cannot just give miners the full block reward when they
put a block at the top of the current blockchain or after a delay, because blocks out of the
blockchain may eventually give the same reward as valid ones. To illustrate this, consider
the state q′ in Example 2.1, where we have two paths (π1 and π2) competing to be the
blockchain, and consider π2 to be the latest path to be mined upon to reach q′. If player
0 had already been fully paid for any blocks 110i, where i ≤ n, then if π2 wins the race
and becomes the blockchain, such block 110i would not be part of the blockchain anymore,
but still would have given the full reward to player 0. To the best of our knowledge other
attempts to formalize mining, especially bitcoin’s mining, partially emancipate from this
rule: only the first block to be confirmed will be paid, artificially nullifying the incentive to
engage in long races.

In the following sections we will show how different reward functions can be used to
understand different mining scenarios that arise in different cryptocurrencies. For now we
assume, for each player p ∈ P, the existence of a reward function rp : Q→ R such that the
reward of p in a state q is given by rp(q). Moreover, the combined reward function of the
game is R = (r0, r1, . . . , rm−1). In Section 2.1 we provide a detailed explanation of how our
pay-off model can be used to pay for blocks and at the same time to ensure that players try
to maintain their blocks in the blockchain.

Transition probability function. As a last component of the game, we assume that Pr :
Q×A×Q→ [0, 1] is a transition probability function satisfying that for every state q ∈ Q
and combined action a = (a0, a1, . . . , am−1) in A, we have that

∑m−1
p=0 Pr(q,a, ap(q)) = 1.

Notice that if p1 and p2 are two different players, then for every action a1 ∈ Ap1 , every
action a2 ∈ Ap2 and every state q ∈ Q, it holds that a1(q) 6= a2(q). Thus, we can think of
Pr(q,a, ap(q)) as the probability that player p places the next block, which will generate
the state ap(q). As we have mentioned, such a probability is directly related to the hash
power of player p, the more hash power the more likely it is that action ap is executed and
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p mines the next block before the rest of the players. In what follows, we assume that the
hash power of each player does not change during the mining game, which is captured by
the following condition: for each player p ∈ P, we have that Pr(q,a, ap(q)) = hp for every
q ∈ Q and a ∈ A with a = (a0, a1, . . . , am−1). We refer to such a fixed value hp as the hash
power of player p. Moreover, we assume that hp > 0 for every player p ∈ P, as if this is not
the case then p can be removed from the game.

The mining game: definition, strategy and utility. Putting together all the components,
a mining game is a tuple (P,Q,A,R,Pr), where P is the set of players, Q is the set of
states, A is the set of combined actions, R is the combined pay-off function and Pr is the
transition probability function.

A strategy for a player p ∈ P is a function s : Q → Ap. We define Sp as the set of
all strategies for player p, and S = S0 × S1 × · · · × Sm−1 as the set of combined strategies
for the game (recall that P = {0, . . . ,m − 1} is the set of players). To define the notions
of utility and equilibrium, we need some additional notation. Let s = (s0, . . . , sm−1) be a
combined strategy. Given q ∈ Q, define s(q) as the combined action (s0(q), . . . , sm−1(q)).
Moreover, given an initial state q0 ∈ Q, define the probability of reaching state q ∈ Q,
denoted by Prs(q | q0), as 0 if q0 6⊆ q (that is, if q is not reachable from q0), and otherwise it
is recursively defined following Bayes’ rule: if q = q0, then Prs(q | q0) = 1; otherwise, we
have that |q| − |q0| = k, with k ≥ 1, and

Prs(q | q0) =
∑

q′∈Q :
q0⊆q′ and |q′|−|q0|=k−1

Prs(q′ | q0) ·Pr(q′, s(q′), q).

In this definition, if for a player p we have that sp(q′) = a and a(q′) = q, then Pr(q′, s(q′), q) =
hp. Otherwise, we have that Pr(q′, s(q′), q) = 0 (this is well defined since there can be at
most one player p whose action in the state q′ leads us to the state q). For readability
we write Prs(q) instead of Prs(q | {ε}) to denote the probability of reaching state q from
the intial state {ε} that contains only the genesis block ε. The framework just described
corresponds to a Markov Decision Process [13], but we do not explore this connection in this
paper because we are not interested in the steady distributions of these processes.

Finally, we define the utility of players given a particular strategy. As is common when
looking at personal utilities, we define it as the summation of the expected rewards, where
future rewards are discounted by a factor of β ∈ (0, 1) which is used to model the fact that
money in the present is worth more than money in the future.

I Definition 2.1. The β–discounted utility of a player p for a strategy s from a state q0 in
the mining game, denoted by up(s | q0), is defined as:

up(s | q0) = (1− β) ·
∑

q∈Q : q0⊆q

β|q|−|q0| · rp(q) ·Prs(q | q0).

Notice that the value up(s | q0) may not be defined if this series diverges. To avoid this
problem, from now on we assume that for every pay-off function R = (r0, . . . , rm−1), there
exists a polynomial P such that |rp(q)| ≤ P (|q|) for every player p ∈ P and state q ∈ Q.
Under this simple yet general condition, which is satisfied by the pay-off functions considered
in this paper and in other game-theoretical formalisation’s of Bitcoin mining [10], we can
show that up(s | q0) is a real number. Moreover, as for the definition of the probability of
reaching a state from the initial state {ε}, we use notation up(s) for the β–discounted utility
of player p for the strategy s from {ε}, instead of up(s | {ε}).
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2.1 On the pay-off and utility of a miner

As mentioned earlier, we design our pay-off model with the goal of incentivising players to
mine on the blockchain, and to keep their blocks in the blockchain. In this sense, the payment
of a miner for a block b should be proportional to the amount of time b has been in the
blockchain; in particular, the miner should be penalised if b ceases to be in the blockchain,
and this penalty should decrease with time. In what follows, we explain how our pay-off
model meets this goal.

Given a player p and a state q, for every block b ∈ q assume that the reward obtained by
p for the block b in q is given by rp(b, q), so that rp(q) =

∑
b∈q rp(b, q). This decomposition

can be done in a natural and straightforward way for the pay-off functions considered in this
paper and in other game-theoretical formalisations of cryptomining [10, 11]. The reward for
a mined block b is not granted immediately according to Definition 2.1, instead, a portion of
rp(b, q) is paid in each state q where b is in. In other words, if a miner owns a block, then
she will be rewarded for this block in every state where this block is part of the blockchain,
in which case rp(b, q) > 0.

Hence, in our model, a miner is payed a portion of a block’s reward each time it is
included in the blockchain, and even though she gets payed infinitely many times for each
block, the discount factor in the definition of utility ensures that there is no overpay. In
other words, when a player mines a new block, she will receive the full amount for this block
only if she manages to maintain the block in the blockchain up to infinity. Otherwise, if
the block ceases to be in the blockchain even for a short period, the miner receives only a
fraction of the full amount. Formally, given a combined strategy s, we can define the utility
of a block b for a player p, denoted by ub

p(s), as follows:

ub
p(s) = (1− β) ·

∑
q∈Q : b∈bc(q)

β|q|−1 · rp(q, b) ·Prs(q).

For simplicity, here we assume that the game starts in the genesis block ε, and not in an
arbitrary state q0. The discount factor in this case is β|q|−1, since |{ε}| = 1.

To see that we pay the correct amount for each block, assume that there is a maximum
value for the reward of a block b for player p, which is denoted by Mp(b). Thus, we have
that there exists q1 ∈ Q such that b ∈ q1 and Mp(b) = rp(b, q1), and for every q2 ∈ Q such
that b ∈ q2, it holds that rp(b, q2) ≤Mp(b). Again, such an assumption is satisfied by most
currently circulating cryptocurrencies, by the pay-off functions considered in this paper, and
by other game-theoretical formalisations of cryptomining [10, 11]. Then we have that:

I Proposition 2.2. For every player p ∈ P, block b ∈ B and combined strategy s ∈ S, it
holds that: ub

p(s) ≤ β|b| ·Mp(b).

Thus, the utility obtained by player p for a block b is at most β|b| ·Mp(b), that is, the
maximum reward that she can obtained for the block b in a state multiplied by the discount
factor β|b|, where |b| is the minimum number of steps that has to be performed to reach
a state containing b from the initial state {ε}. Moreover, a miner can only aspire to get
the maximum utility for a block b if once b is included in the blockchain, it stays in the
blockchain in every future state. This tells us that our framework puts a strong incentive for
each player in maintaining her blocks in the blockchain.
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ε 1 10 100 1001
10011

10010

Figure 1 Although two paths are competing to become the blockchain, the blocks up to 1001
will contribute to the reward in both paths.

3 Equilibria with constant reward

The first version of the game we analyse is when the reward function rp(q) pays each block in
the blockchain the same amount c. This is important for understanding what happens when
currencies such as Ethereum or Monero switch to tail-emission, changing from a decreased
reward scheme to a constant reward scheme. Further, it also helps to establish the main
techniques used in this paper.

3.1 Defining constant reward
When considering the constant reward c for each block, rp(q) will equal c times the number
of blocks owned by p in the blockchain bc(q) of q, when the latter is defined. On the other
hand, when bc(q) is not defined it might seem tempting to simply define rp(q) = 0. However,
even if there is more than one longest path from the root of q to its leaves, it is often the
case that all such paths share a common subpath (for instance, when two competing blocks
are produced with a small time delay). While in this situation the blockchain is not defined,
the miners know that they will at least be able to collect their reward on the portion of the
state these two paths agree on. Figure 1 illustrates this situation.

Recall that a block b is a string over the alphabet P, and we use notation |b| for the
length of b as a string. Moreover, given blocks b1, b2, we use b1 � b2 to indicate that b1 is a
prefix of b2 when considered as strings. Then we define:

longest(q) = {b ∈ q | for every b′ ∈ q : |b′| ≤ |b|}
meet(q) = {b ∈ q | for every b′ ∈ longest(q) : b � b′}.

Intuitively, longest(q) contains the leaves of all longest paths in the state q, and meet(q) is
the path from the genesis block to the last block for which all these paths agree on. For
instance, if q is the state from Figure 1, then we have that longest(q) = {10011, 10010}, and
meet(q) = {ε, 1, 10, 100, 1001}. Notice that meet(q) is well defined as � is a linear order on
the finite and non-empty set {b ∈ q | for every b′ ∈ longest(q) : b � b′}. Also notice that
meet(q) = bc(q), whenever bc(q) is defined.

The reward function we consider in this section, which is called constant reward, is
then defined for a player p as follows :

rp(q) = c ·
∑

b∈meet(q)

χp(b),

where c is a positive real number, χp(b) = 1 if owner(b) = p, and χ(p) = 0 otherwise.
Notice that this function is well defined since meet(q) always exists. Moreover, if q has a
blockchain, then we have that meet(q) = bc(q) and, hence, the reward function is defined for
the blockchain of q.
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3.2 The default strategy maximizes the utility

Let us start with analysing the simplest strategy, which we call the default strategy: regardless
of what everyone else does, keep mining on the blockchain. More precisely, a player following
the default strategy tries to mine upon the final block that appears in the blockchain of a
state q. If the blockchain in q does not exist, meaning that there are at least two longest
paths from the genesis block, then the player tries to mine on the final block of the path
that maximizes her reward, which in the case of constant reward corresponds to the path
containing the largest number of blocks belonging to her (if there is more than one of these
paths, then between the final blocks of these paths she chooses the first according to a
lexicographic order on the strings in {0, . . . ,m− 1}∗). Notice that this is called the default
strategy as it reflects the desired behaviour of the miners participating in the Bitcoin network.
For a player p, let us denote this strategy by DFp, and consider the combined strategy
DF = (DF0,DF1, . . . ,DFm−1).

We can easily calculate the utility of player p under DF. Intuitively, a player p will
receive a fraction hp of the next block that is being placed in the blockchain, corresponding
to her hash power. Therefore, at stage i of the mining game, the blockchain defined by the
game will have i blocks, and the expected amount of blocks owned by the player p will be
hp · i. The total utility for player p is then

up(DF) = (1− β) · hp · c ·
∞∑

i=0
i · βi = hp · c ·

β

(1− β) .

The question then is: can any player do better? As we show in the following theorem,
the answer is no.

I Theorem 3.1. Let p be a player, β be a discount factor in (0, 1) and up be the utility
function defined in terms of β. Then for every combined strategy s: up(s) ≤ up(DF).

The proof of this theorem relies on the fact that, under constant rewards, forking becomes
less profitable because all blocks are worth the same amount of money, regardless of their
position. This fact, combined with the economic discount, provides little incentives for
players to sacrifice some time in order to fight for a longer blockchain: their reward is higher
if instead of fighting they just keep mining on the blockchain.

A strategy s is a Nash equilibrium from a state q0 in the mining game for m play-
ers if for every player p ∈ P and every strategy s for player p (s ∈ Sp), it holds that
up(s | q0) ≥ up((s−p, s) | q0) (here as usual we use (s−p, s) to denote the strategy
(s0, s1, . . . sp−1, s, sp+1, . . . , sm−1)). As a corollary of Theorem 3.1, we obtain

I Corollary 3.2. For every β ∈ (0, 1), the strategy DF is a Nash equilibrium.

Hence, miners looking to maximise their wealth are better off with the default strategy.
Especially this results prove that long forks should not happen and therefore validate the
underlying assumption of other models [10]. Interestingly, previous work shows that under a
setting in which miners are rewarded for the fraction of blocks they own against the total
number of blocks, and no financial discount is assumed, then default strategy may not be an
optimal strategy [10]. This suggests that miner’s behaviour can really deviate depending on
what are their short and long term goals, and we believe this is an interesting direction for
future work.
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4 Decreasing Reward

Miner’s fees in many cryptocurrencies, including Bitcoin and Monero, are not constant, but
decrease over time. We model such fees as a constant factor α ∈ [0, 1] that is lowered after
every new block in the blockchain. That is, we use the following reward function rp for all
players p ∈ P, denoted as the α-discounted reward:

rp(q) = c ·
∑

b∈meet(q)

α|b| · χp(b).

In this section, we show that forking can be a good strategy when miner’s fees decrease over
time. Not only we confirm the folklore fact that it is profitable to fork with more than half
of the hash power, but our exploration gives us a concrete strategy that beats the default
with less than half of the hash power.

4.1 When is forking a good strategy?
To understand when forking is a viable option, we consider a scenario when one of our m
players decides to deviate from the default strategy, while the remaining players all follow
the default strategy. In this case we can reduce the m player game to a two player game,
where all the players following the default strategy are represented by a single player with
the combined hash power of all these players. Therefore in this section we will consider that
the mining game is played by two players 0 and 1, where 0 represents the miners behaving
according to the default strategy, and 1 the miner trying to determine whether forking is
economically more viable than mining on the existing blockchain. We always assume that
player 1 has hash power h, while player 0 has hash power 1− h.

Let us first show the utility for player 1 when she uses the default strategy DF =
(DF0,DF1).

I Lemma 4.1. If h is the hash power of player 1, then

u1(DF) = h · c · α · β
(1− α · β) .

As in the case of constant reward, this corresponds to h times the utility of winning all the
blocks in the single blockchain generated by the default strategy.

Now suppose that player 1 deviates from the default strategy, and considers a strategy
based on forking the blockchain once player 0 mines a block. How would this new strategy
look? In this section we consider the strategy AF (for always fork), where player 1 forks
as soon as player 0 mines a block in the blockchain, and she continues mining on the new
branch until it becomes the blockchain. Here player 1 is willing to fork every time player
0 produces a block in the blockchain. In other words, in AF, player 1 tries to have all the
blocks in the blockchain. This strategy is depicted in Figure 2.

The utility of always forking. We want to answer two questions. On the one hand, we
want to know whether AF is a better strategy than DF1 for player 1, under the assumption
that player 0 uses DF0, and under some specific values of α, β and h. On the other hand,
and perhaps more interestingly, we can also answer a more analytical question: given realistic
values of α and β, how much hash power does player 1 need to consider following AF
instead of DF1? Answering both questions requires us to compute the utility for the strategy
AF = (DF0,AF).
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ε
1

0

11 111 1110

1111 11111

Figure 2 Dashed arrows indicate when player 1 does a fork. The first block (block 0) is mined
by player 0. At this point, player 1 decides to fork (mining the block 1), and successfully mines the
blocks 11 and 111 on this branch. When player 0 mines the block 1110, player 1 decides to fork
again, mining the blocks 1111 and 11111.

I Theorem 4.2. Let C(x) = 1−
√

1−4x
2x denote the generating function of Catalan numbers.

If h is the hash power of player 1, then

u1(AF) = Φ
1− Γ , where Φ and Γ are defined as:

Φ = α · β · h · c
(1− α) ·

[
C(β2 · h · (1− h))− α ·C(α · β2 · h · (1− h))

]
,

Γ = α · β · h ·C(α · β2 · h · (1− h))

Let us give some intuition on this result. Player 1, adopting the AF strategy, will always
start the game mining on ε, regardless of how many blocks player 0 manages to append,
and continues until her branch is the longest. Therefore, the only states that contribute to
player 1’s utility are those in where she made at least one successful fork (all others states
give zero reward to her). Having player 1 achieved the longest branch once, say, at block b,
both players will now mine on b and the situation repeats as if b were ε, with proper shifting
in the reward and β-discount. In other words, we have u1(AF) = Φ + Γ · u1(AF), where Φ
is the contribution of a single successful fork, and Γ is the shifting factor, from which we
obtain the expression for u1(AF) given before.

Now, in order to quantify the contribution of Φ on successful forks, we need to sum
over all possible moments of time in which this fork was finally made, weighted by the
possibility that such a fork was actually made. However, this is not direct because there may
be different paths leading to the same state, and therefore the probability of forking at a
certain stage depends on the length and the form of the state. We quantify these by bringing
out an analogy between Dyck words [21] and paths leading to states in which player 1 forks
successfully for the first time. Then the theorem uses the fact that the number of Dyck
words of length 2m is the m-th Catalan number.

When is AF better than DF? With the closed forms for u1(DF) and u1(AF), we can
compare the utilities of these strategies for player 1 for fixed and realistic values of α and
β, but varying her hash power. For α we calculate the compound version of the discount
in Bitcoin, that is, a value of α that would divide the reward by half every 210.000 blocks,
i.e.α = 0.9999966993. For β we calculate the 10-minute rate that is equivalent to the US
real interest rate in the last few years, which is approximately 2%. This gives us a value of
β = 0.9999996156.

Figure 4a shows the value of the utility of player 1 for the combined strategies AF and
DF (this figure also includes two other strategies that will be explained in the next section).
The plot data was generated using GMP C++ multi precision library [7]. The point where
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Figure 3 Difference between AF and G2
3 in terms of actions in two states.

the utility for AF and DF meet is h = 0.499805 ± 0.000001, which means that player 1
should use AF as soon as she controls more than this proportion of the hash power (a similar
result was obtained in [10], although in a model without discounted reward).

4.2 Giving up for more utility
By adding a little more flexibility to the strategy of always forking, we can identify approaches
that make a fork profitable with less hash power. The families of strategies that we study
in this section involve two parameters. The first parameter, denoted by k, regulates how
far back the miner will fork, when confronted with a chain of blocks she does not own. The
second parameter, called the give-up time, and denoted by `, tells us the maximum number
of blocks that the player’s opponent is allowed to extend the current blockchain with before
the player gives up mining on the forking branch. If the player does not manage to transform
her fork into the new blockchain before her opponent mines more than ` blocks, she will
restart the strategy treating the tail of the current blockchain as the new genesis block. We
denote these strategies by Gk

` .

I Example 4.3. Let us compare G2
3 and AF. Since k = 2, both strategies take the same

action when the state is {ε}, {ε, 0}, and {ε, 0, 00}, namely, mining at ε. Hence, assume that
both strategies are facing a chain of three blocks owned by player 0, as shown in Figure 3(a).
In this case, AF would again try to do a fork from the genesis block as no block belongs to
player 1. On the other hand, G2

3 would try to fork on the dotted line, that is, the second
block that does not belong to her. The second difference is provided by the give-up time,
which is shown in Figure 3(b). Normally, AF is willing to continue forking regardless of the
hope of winning, therefore the move for the state in Figure 3(b) would still be to mine upon
her own block 11. On the other hand, G2

3 has now seen 4 blocks from the start of the fork
(one more than the maximum ` = 3), so with this strategy player 1 instead gives up and
tries to mine upon 0000, rebooting the strategy as if 0000 was the genesis block. Note also
that AF = G∞∞.

Define Gk
` as the combined strategy (DF0,Gk

` ). We obtain an analytical form similar to
that of Theorem 4.2, except in this case the set of paths leading to winning states has a more
complex combinatorial nature, as expected when taking into account the parameters k and `.

I Theorem 4.4. For every pair of positive integers `, k with k < `, we have that:

u1(Gk
` ) = Φ`,k

1− Γ`,k
,

where Φ`,k and Γ`,k are rational functions of α, β and h.

In the proof of this theorem, available in the full version of this article, we develop precise
expressions for Φ`,k,Γ`,k. The proof extends the techniques used to show Theorem 4.2,
where we again look to compute the weighted sum of all states where player 1 manages to
fork. This weighted sum, however, requires much more involved computation; we use a new
combinatorial result that involves two sets of polynomials related to Dyck words.

STACS 2020



54:14 Cryptocurrency Mining Games with Economic Discount and Decreasing Rewards

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U
til
ity

DF
G1

4
G1

5
AF

(a) Utilities for player 1 of combined strategies, DF, G1
4,

G1
5 and AF.

0.467 0.486

DF
G1

4
G1

5

(b) Zoom in around the intersection.

Figure 4 Comparing the utilities of three forking strategies against the default strategy.

We use Theorem 4.4 to analyse these strategies, plotting them, as we did before, for
α = 0.9999966993 and β = 0.9999996156. Figures 4a and 4b give interesting information
about the advantages of these strategies. We fix k = 1, and plot in Figure 4a the utilities of
combined strategies DF, G1

4, G1
5 and AF. In Figure 4b, we zoom in around the values of

the hash power where DF intersects with G1
4 and G1

5. As we see in the figures, for a fork
window k = 1, the optimal amount time player 1 should be willing to fight for a branch
before giving up depends on the hash power. With little hash power the likelihood of winning
a branch is small, so player 1 should give up as early as possible. However, the more hash
power she obtains, the better it is to wait more. Interestingly, with more than 46.7% of the
hash power, player 1 already should start using strategy G1

4 to defeat the default strategy,
and with more than 48.6% hash power, she should adopt G1

5. We know that player 1 should
use AF not before around h = 0.499805, so this gives us a lot of extra room to look for
optimal strategies if we are willing to fork (especially considering that every percentage of
hash power in popular cryptocurrencies may cost millions).

Plots for strategies with k > 1 present a similar behaviour: the more hash power we have,
the more we should be willing to fight for our forks. The strategies we include in Figure 4
beat the default strategy under the least amount of hash power amongst any combination
of values for k and ` with k < ` ≤ 100. The comparison is much less straightforward when
looking at varying values of both k and `, but in general, the more hash power the bigger the
window of blocks one should aim to do a fork, and the more one should wait before giving up.

5 Concluding remarks

Our model of mining via a stochastic game allows for an intuitive representation of miners’
actions as strategies, and gives us a way of understanding the rational behaviour of miners
looking to accumulate cryptocurrency wealth. As it is the first model to provide payoff to
miners for every branching strategy we can validate the commonly accepted assumption that
long forks are not a viable strategy. In this respect, we would like to identify strategies that
are a Nash equilibrium for the case of decreasing rewards. However, this has proven to be a
difficult task. In particular, one can show that the default strategy can never be part of such
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an equilibrium, no matter how small the hash power is for one of the players, if the strategy
of another player involves forks of any length. This means that one must look for much more
complex strategies to find such an equilibrium.

One of the advantages of our model is its generality: it can be adapted to specify more
complex actions, study other forms of reward and include cooperation between miners. For
example, we are currently looking at strategies that involve withholding a mined block to
the rest of the network, for which we need a slight extension of the notions of action and
state. An interesting venue for future work is to study how this model and previous work
combine into a model where miner’s behavior can deviate depending on both their short-and
long-term goals. We would also like to study incentives under different models of cooperation
between miners, and also other forms of equilibria in a dynamic setting.
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Abstract
We study algorithmic randomness properties for probability measures on Cantor space. We say
that a measure µ on the space of infinite bit sequences is Martin-Löf absolutely continuous if the
non-Martin-Löf random bit sequences form a null set with respect to µ. We think of this as a weak
randomness notion for measures. We begin with examples, and a robustness property related to
Solovay tests. Our main work connects our property to the growth of the initial segment complexity
for measures µ; the latter is defined as a µ-average over the complexity of strings of the same
length. We show that a maximal growth implies our weak randomness property, but also that
both implications of the Levin-Schnorr theorem fail. We briefly discuss K-triviality for measures,
which means that the growth of initial segment complexity is as slow as possible. We show that
full Martin-Löf randomness of a measure implies Martin-Löf absolute continuity; the converse fails
because only the latter property is compatible with having atoms. In a final section we consider weak
randomness relative to a general ergodic computable measure. We seek appropriate effective versions
of the Shannon-McMillan-Breiman theorem and the Brudno theorem where the bit sequences are
replaced by measures.
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1 Introduction

The theory of algorithmic randomness is usually developed for bit sequences. A central
randomness notion based on algorithmic tests is the one due to Martin-Löf [11].

Let {0, 1}N denote the topological space of infinite bit sequences. A probability measure
µ on {0, 1}N can be seen as a statistical superposition of bit sequences. The bit sequences
Z form an extreme case: the corresponding measure µ is the Dirac measure δZ , i.e., µ is
concentrated on {Z}. The opposite extreme is the uniform measure λ which independently
gives each bit value the probability 1/2. The uniform measure represents the maximum
disorder as no bit sequence is preferred over any other.
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Recall that a measure µ on {0, 1}N is called absolutely continuous if each λ-null set is a
µ-null set. Our main concept is an algorithmic randomness notion for probability measures
that is a weakening of absolute continuity: we require that the λ-null set in the hypothesis
be effective in the sense of Martin-Löf. Given that there is a universal Martin-Löf test, and
hence a largest effective null set, all we have to require is that µ(C) = 0 where C is the class
of bit sequences that are not Martin-Löf random.

Our research is partly motivated by a recent definition of Martin-Löf randomness for
quantum states corresponding to infinitely many qubits, due to the first author and Scholz [18].
Using the terminology there, probability measures correspond to the quantum states ρ where
the matrix ρ�Mn is diagonal for each n, where Mn is the algebra of complex 2n× 2n matrices.
Subsequent work of Tejas Bhojraj has shown that for measures, the randomness notion defined
there is equivalent to the one proposed here. So the measures form a useful intermediate
case to test conjectures in the subtler setting of quantum states. This applies, for instance,
to the SMB theorem discussed at the end of this section, which is studied in the setting of
quantum states by the first author and Tomamichel (see the post in [20]).

Growth of initial segment complexity. Given a binary string x, by C(x) one denotes its
plain descriptive complexity, and by K(x) its prefix-free descriptive complexity. Our main
motivation is derived from the classical theory. Randomness of infinite bit sequences is
linked to the growth of the descriptive complexity of their initial segments. For instance, the
Levin-Schnorr theorem intuitively says that randomness of Z means incompressibility (up to
the same constant b) of all the initial segments of Z. We want to study how much of this is
retained in the setting of measures µ. One now takes the µ-average over the complexity of
all strings of a given length n. It turns out that interesting new growth behaviour is possible,
such as having maximal growth of C-complexity on all initial segments. This growth rate
is ruled out for bit sequences by a result of Katseff. However, using that “most strings are
incompressible” we verify in Fact 9 that the uniform measure λ has this growth behaviour,
namely C(λ�n) ≥+ n. On the other hand, we show that this type of fast growth implies our
weak randomness notion.

The formal growth condition in the Levin-Schnorr theorem says that K(x) ≥ |x| − b for
each initial segment x of Z, where K(x) is the prefix free version of Kolmogorov complexity of
a string x. The “n-th initial segment” of a measure µ is given by its values µ[x] for all strings
x of length n, where [x] denotes the set of infinite sequences extending x. As mentioned,
it is natural to define the initial segment complexities C(µ �n) and K(µ �n) of this initial
segment as the µ-average of the individual complexities of those strings. With this definition,
in Section 3 we show that both implications of the analog of the Levin-Schnorr theorem
fail. However, we also show in Proposition 25 that for measures that are random in our
weak sense, C(µ�n)/n, or equivalently K(µ�n)/n, converges to 1. Thus, such measures have
effective dimension 1; see Downey and Hirschfeldt [5, Section 12.3] on effective dimension.

Further results and potential avenues for future research. Opposite to random bit se-
quences are the K-trivial sequences, where the initial segment complexity grows no faster
than that of a computable set; for background see e.g. Nies [17, Section 5.3]. In Section 4
we briefly extend this notion to statistical superpositions of bit sequences: we introduce
K-trivial measures and show that they have countable support. This means that they are
countable combinations of Dirac measures.

Measures can be viewed points in a canonical computable probability space, in the sense
of [8]. This yields a notion of Martin-Löf randomness for measures. Culver [4, Th. 2.7.1]
has shown that no measure µ that is Martin-Löf random is absolutely continuous; in fact µ
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is orthogonal to λ in the sense that some null set is co-null with respect to µ. In contrast,
in Section 5 we show that this notion implies our weak notion of randomness, ML-absolute
continuity. The stronger randomness notion forces the measure to be atomless, so the
converse implication fails. Further questions can be asked about the relationships between
the different randomness notions for measures we have discussed. For instance, does the
strong notion imply maximal growth of initial segment complexity for the measure (in the
sense of C or of K)? We plan to address such questions in the upcoming journal version of
the paper.

The Shannon-McMillan-Breiman Theorem from the 1950s (see [24], where it is called
the Entropy Theorem) says informally that for an ergodic measure ρ on {0, 1}N, outside a
null set every bit sequence Z reflects the entropy of the measure ρ by the limiting weighted
information content on its sufficiently large initial segments. In the final Section 6 we study
what happens when Z is replaced by a measure µ that is Martin-Löf a.c. with respect to
ρ and we take the µ-average of the information contents at the same length. Here we only
obtain a partial result. However, in a similar vein, we establish an analog for measures of the
effective Brudno’s theorem [6, 7] that the entropy of ρ is given as the limit of K(Z �n)/n, for
any Z that is ρ-ML random. Obtaining a measure version of the effective Birkhoff ergodic
theorem would be interesting as well.

For general background on recursion theory and algorithmic randomness we refer the
readers to the textbooks of Calude [2], Downey and Hirschfeldt [5], Li and Vitányi [10], Nies
[17], Odifreddi [21, 22], and Soare [25]. Lecture notes on recursion theory are also available
online, e.g. [26].

2 Measures and Randomness

In this section we formally define our main notion (Definition 3), and collect some basic facts
concerning it. In particular, we verify that the well-known equivalence of Martin-Löf test and
Solovay tests extends to measures. We begin by briefly discussing algorithmic randomness
for bit sequences [5, 17]. We use standard notation: letters Z,X, . . . denote elements of the
space of infinite bit sequences {0, 1}N, σ, τ denote finite bit strings, and [σ] = {Z : Z � σ} is
the set of infinite bit sequences extending σ. Z �n denotes the string consisting of the first
n bits of Z. For quantities r, s depending on the same parameters, one writes r ≤+ s for
r ≤ s+O(1). A subset G of {0, 1}N is called effectively open if G =

⋃
i[σi] for a computable

sequence 〈σi〉i∈N of strings. A measure ρ on {0, 1}N is computable if the map {0, 1}<ω → R
given by σ 7→ ρ[σ] is computable.

I Definition 1. Let ρ be a computable measure on {0, 1}N. A ρ-Martin-Löf test (ρ-ML-test,
for short) is a sequence 〈Gm〉 of uniformly effectively open sets such that ρGm ≤ 2−m for
each m. A bit sequence Z fails the test if Z ∈

⋂
mGm, otherwise it passes the test. A bit

sequence Z is ρ- Martin-Löf random (ML-random) if Z passes each ρ-ML-test.

By λ one denotes the uniform measure on {0, 1}N. So λ[σ] = 2−|σ| for each string σ. If no
measure ρ is provided it will be tacitly assumed that ρ = λ, and we will use the term ML-
random instead of λ-ML-random etc. Let K(x) denote the prefix free version of descriptive
(i.e., Kolmogorov) complexity of a bit string x.

I Theorem 2 (Levin [9], Schnorr [23]). Z is ML-random ⇔ ∃b∀nK(Z �n) ≥ n− b.

Using the notation of [17, Ch. 3], let Rb denote the set of bit sequences Z such that
K(Z �n) < n − b for some n. It is easy to see that 〈Rb〉b∈N forms a Martin-Löf test. The
Levin-Schnorr theorem says that this test is universal: Z is ML-random iff it passes the test.

STACS 2020
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Unless otherwise stated, all measures will be probability measures. We use the letters
µ, ν, ρ for probability measures (and recall that λ denotes the uniform measure). We now
provide the formal definition of our weak randomness notion for measures.

I Definition 3 (Main). A measure µ is called Martin-Löf absolutely continuous in ρ (ρ-ML
a.c., for short) if infm µ(Gm) = 0 for each ρ-Martin-Löf test 〈Gm〉m∈N. We write µ�ML ρ.

If infm µ(Gm) = 0 we say that µ passes the test. If infm µ(Gm) ≥ δ where δ > 0 we say µ
fails the test at level δ.

Martin-Löf absolute continuity is a weakening of the usual notion of absolute continuity
µ� ρ. In fact, µ� ρ iff µ is ρ-MLX -a.c. for each oracle X.

In the definition it suffices to consider ρ-ML tests 〈Gm〉 such that Gm ⊇ Gm+1 for
each m, because we can replace 〈Gm〉 by the ρ-ML test Ĝm =

⋃
k>mGk, and of course

infm µ(Ĝm) = 0 implies infm µ(Gm) = 0. So we can change the definition above, replacing
the condition infmGm = 0 by the only apparently stronger condition limmGm = 0.

The intersection of a universal ρ-ML test consists of the non-ML random sequences. Since
such a test exists, we have:

I Fact 4. µ�ML ρ iff the sequences which are not ρ-ML random form a µ-null set.

We have already mentioned the two diametrically opposite types of examples:

I Example 5. (a) ρ�ML ρ.
(b) For a Dirac measure δZ , we have δZ �ML ρ iff Z is ρ-ML random.

For p 6= 1/2, a Bernoulli measure on {0, 1}N, that independently gives probability p to a 0
in each position, is not Martin-Löf a.c. To see this, note that each ML-random sequence Z
satisfies the law of large numbers

lim
n

1
n
|{i < n : Z(i) = 1}| = 1/2;

see e.g. [17, Prop. 3.2.19]. So if µ is Martin-Löf a.c., then µ-almost surely, Z satisfies the law
of large numbers. This is not the case for such Bernoulli measures.

For a measure ν and string σ with ν[σ] > 0 let νσ be the localisation:

νσ(A) = ν(A ∩ [σ])/ν[σ].

Clearly if ν is Martin-Löf a.c. then so is νσ.
A set S of probability measures is called convex if µi ∈ S for i ≤ k implies that the

convex combination µ =
∑
i αiµi is in S, where the αi are reals in [0, 1] and

∑
i αi = 1. The

extreme points of S are the ones that can only be written as convex combinations of length 1
of elements of S.

I Proposition 6. The Martin-Löf a.c. probability measures form a convex set. Its extreme
points are the Martin-Löf a.c. Dirac measures, i.e. the measures δZ where Z is a ML-random
bit sequence.

Proof. Let µ =
∑
i αiµi as above where the µi are Martin-Löf a.c. measures. Suppose 〈Gm〉

is a Martin-Löf test. Then limm µi(Gm) = 0 for each i, and hence limm µ(Gm) = 0.
Suppose that µ is Martin-Löf a.c. If µ is a Dirac measure then it is an extreme point of

the Martin-Löf a.c. measures. Conversely, if µ is not Dirac, there is a least number t such
that the decomposition

µ =
∑

|σ|=t,µ[σ]>0

µ[σ] · µσ

is nontrivial. Hence µ is not an extreme point. J
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Recall that a Solovay test is a sequence 〈Sk〉k∈N of uniformly Σ0
1 sets such that

∑
k λ(Sk) <∞.

A bit sequence Z passes such a test if Z 6∈ Sk for almost every k. (Each ML-test is a Solovay
test, but the passing condition is stronger for Solovay tests). A basic fact from the theory
of algorithmic randomness (e.g. [17, 3.2.9]) states that Z is ML-random iff Z passes each
Solovay test.

The following characterises the Martin-Löf a.c. measures with countable support.

I Fact 7. Let µ =
∑
k ckδZk

where ∀k [0 < ck ≤ 1] and
∑
k ck = 1. Then µ is Martin-Löf

a.c. iff all the Zk are Martin-Löf random.

Proof. The implication from left to right is immediate. For the converse implication, given
a Martin-Löf test 〈Gm〉, note that the Zk pass this test as a Solovay test. Hence for each r,
there is M such that Zk 6∈ Gm for each k ≤ r and each m ≥ M . This implies that
µ(Gm) ≤

∑
k>r ck for each m ≥M . So limm µ(Gm) = 0. J

We say that a measure µ passes a Solovay test 〈Sk〉k∈N if limk µ(Sk) = 0. The fact that
passing all Martin-Löf tests is equivalent to passing all Solovay tests generalises from bit
sequences to measures. We note that Tejas Bhojraj (in preparation) proved such a result in
even greater generality in the setting of quantum states, where the proof is more involved.

I Proposition 8. A measure µ is Martin-Löf a.c. iff µ passes each Solovay test.

Proof. Each Martin-Löf test is a Solovay test, and the passing condition limm µ(Gm) = 0
works for both types of tests by the remark after Definition 3. This yields the implication
from right to left.

For the implication from left to right, let µ be Martin-Löf a.c. and let 〈Sk〉k∈N be a
Solovay test. By lim supk Sk one denotes the set of bit sequences Z such that ∃∞k Z ∈ Sk,
that is, the sequences that fail the test. By the basic fact (e.g. [17, 3.2.9]) mentioned above,
the set of ML-random sequences is disjoint from lim supk Sk. By hypothesis on µ we have
µ(lim supk Sk) = 0. By Fatou’s Lemma, lim supk µ(Sk) ≤ µ(lim supk Sk). So µ passes the
Solovay test. J

3 Initial segment complexity of a measure µ

Let K(µ �n) =
∑
|x|=nK(x)µ[x] be the µ-average of all the K(x) over all strings x of

length n. In a similar way we define C(µ �n). Note that for a Dirac measure δZ , we have
K(δZ �n) = K(Z �n).

In this section we use standard inequalities such as C(x) ≤+ K(x), K(x) ≤+ |x|+2 log |x|
and K(0n) ≤+ 2 logn. We also use that for each r there are at most 2r − 1 strings such that
C(x) < r. See e.g. [17, Ch. 2]. Recall that λ denotes the uniform measure on {0, 1}N.

3.1 A fast growing initial segment complexity implies being ML-a.c.
Recall that C(x) ≤+ |x| and K(x) ≤+ |x| + K(|x|). The following says that the uniform
measure λ has the fastest growing initial segment complexity that is possible in both sense
of C and of K.

I Fact 9.
(a) C(λ�n) ≥+ n.
(b) K(λ�n) ≥+ n+K(n).
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Proof. Chaitin [3] showed that there is a constant c such that, for all d, there are at most
2n+c−d strings x ∈ {0, 1}n with C(x) ≤ n− d. Similarly, among the strings of length n, there
are at most 2n+c−d strings with K(x) ≤ n+K(n)− d. In other words, the fraction of strings
of length n where, for (a), C(x) ≤ n− d, and, for (b), K(x) ≤ n+K(n)− d, respectively, is
in each case at most 2c−d. Now for each d, from the estimated lower bound n and n+K(n),
respectively, one subtracts the fraction of the strings of length n for which the Kolmogorov
complexity is at least d below the average in order to correct the lower bound. For, if x is a
string of length n such that C(x) ≤ n− r (resp, K(x) ≤ n+K(n)− r), then in computing
C(λ�n) (resp, K(λ�n)) a correction of 2−n has to be subtracted r times, for d = 1, . . . , r.

Let cd be the fraction of strings of length n with C(x) ≤ n− d, and let kd be the fraction
of strings with K(x) ≤ n+K(n)− d. Then as argued above,

C(λ�n) ≥ n−
∑
d≥0

cd and K(λ�n) ≥ n+K(n)−
∑
d≥0

kd.

Using Chaitin’s bounds gives then the corrected estimates on the averages of

C(λ�n) ≥ n−
∑
d≥0

2c−d and K(λ�n) ≥ n+K(n)−
∑
d≥0

2c−d.

Now one uses that
∑
d≥0 2c−d ≤ 2c+1 and that 2c+1 is a constant independent of n and only

dependent on the universal machine in order to get that C(λ �n) ≥+ n and K(λ �n) ≥+

n+K(n). J

Recall [10] that a bit sequence Z ∈ {0, 1}N is called Kolmogorov random if there is r such
that C(Z �n) ≥ n− r for infinitely many n; Z is strongly Chaitin random if there is r such
that K(Z �n) ≥ n + K(n) − r for infinitely many n. For bit sequences these notions are
equivalent to 2-randomness by [19] and [13], respectively; also see [17, 8.1.14] or [5].

We may extend these notion to measures. We show that a measure satisfying either of
the notions is Martin-Löf a.c.:

I Theorem 10.
(a) Suppose that µ is a measure such that there is an r with C(µ�n) ≥ n− r for infinitely

many n. Then µ is Martin-Löf a.c.
(b) The same conclusion holds under the hypothesis that K(µ�n) ≥ n+K(n)−r for infinitely

many n.

Proof. Suppose that µ is not Martin-Löf a.c. So there is a Martin-Löf test 〈Gd〉d∈N and
δ > 0 such that µ(Gd) ≥ δ for each d. We view Gd as given by an enumeration of strings,
uniformly in d; thus Gd =

⋃
i[σi] for a sequence 〈σi〉i∈N that is computable uniformly in d.

Let G≤nd denote the clopen set generated by the strings in this enumeration of length at
most n. (Note that this set is not effectively given as a clopen set, but we effectively have a
description of it as a Σ0

1 set). Let c be a constant such that, for each x of length n, one has
C(x) ≤ n+ c in case (a), and K(x) ≤ n+K(n) + c in case (b).

I Lemma 11. If x is a string of length n such that [x] ⊆ G≤nd then C(x | d) ≤+ n− d and
K(x | n, d) ≤+ n− d.

To verify this, we first consider the case of plain complexity C. Let N be a fixed plain
machine that on input y and auxiliary input d prints out the y-th string x of length n = |y|+d
such that our enumeration of G≤nd asserts that [x] ⊆ G≤nd . (Here we view y as the binary
representation of a number, with leading zeros allowed.) Since λGd ≤ 2−d, sufficiently many
strings are available to print all such x. This machine shows that C(x | d) ≤+ n− d for any
x such that [x] ⊆ G≤nd , as required.
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For the case of prefix free complexity K, let N ′ be the slightly modified machine where
both n and d are auxiliary inputs. The machine N provides for a string x of length n a
description of length n− d. So for N ′, for the same pair n, d, the descriptions of different
strings form a prefix free set. This verifies the lemma.

Now such x satisfy (after increaing x, if necessary) that C(x) ≤ n− d+ 2 log d+ c and
K(x) ≤ n+K(n)− d+ 2 log d+ c. We complete the proof separately for (a) and (b).

(a) For each d, n, letting x range over strings of length n, we have

C(µ�n) =
∑
|x|=n

C(x)µ[x] =
∑

[x]⊆G≤n
d

C(x)µ[x] +
∑

[x]6⊆G≤n
d

C(x)µ[x].

The first summand is bounded above by µ(G≤nd )(n− d+ 2 log d+ c) via the lemma, the
second by (1− µ(G≤nd ))(n+ c). We obtain

C(µ�n) ≤ n+ c− µ(G≤nd )d/2.

Now for each d, for sufficiently large n we have µ(G≤nd ) ≥ δ. So given r let d = 2r/δ;
then for large enough n we have C(µ�n) ≤ n+ c− r.

(b) For each d, n, letting x range over strings of length n, we have

K(µ�n) =
∑
|x|=n

K(x)µ[x] =
∑

[x]⊆G≤n
d

K(x)µ[x] +
∑

[x] 6⊆G≤n
d

K(x)µ[x].

The first summand is bounded above by µ(G≤nd )(n+K(n)− d+ 2 log d+ c), the second
by (1− µ(G≤nd ))(n+K(n) + c). We obtain

K(µ�n) ≤ n+K(n) + c− µ(G≤nd )d/2.

Now for each d, for sufficiently large n we have µ(G≤nd ) ≥ δ. As before, given r let
d = 2r/δ; then for large enough n we have K(µ�n) ≤ n+K(n) + c− r. J

It would be interesting to know whether the above-mentioned coincidences of randomness
notions for bit sequences lift to measures; for instance, do the conditions in the theorem
above actually imply that the measure is ML-a.c. relative to the halting problem ∅′?

3.2 Both implications of the Levin-Schnorr Theorem fail for measures
We will show that both implications of the analog of the Levin-Schnorr Theorem 2 fail for
measures. One implication would say that a Martin-Löf a.c. measure cannot have initial
segment complexity in the sense of K growing slower than n−O(1). This can be disproved by
a simple example of a measure with countable support. On the other hand, by Proposition 25
below, we have limnK(µ �n)/n = 1 for each Martin-Löf a.c. measure µ, which provides a
lower bound on the growth.

I Example 12. Let θ ∈ (0, 1). There is a Martin-Löf a.c. measure µ such that K(µ�n) ≤+

n− nθ.

Proof. We let µ =
∑
ckδZk

where Zk is Martin-Löf random and 0nk ≺ Zk for a sequence
〈ck〉 of reals in [0, 1] that add up to 1, and a sufficiently fast growing computable sequence
〈nk〉 to be determined below. Then µ is Martin-Löf a.c. by Fact 7.
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For n such that nk ≤ n < nk+1 we have

K(µ�n) ≤+ (
k∑
l=0

cl) · (n+ 2 logn) + (
∞∑

l=k+1
cl) · 2 logn

≤+ (1− ck+1)n+ 2 logn.

Hence, to achieve K(µ �n) ≤+ n− nθ it suffices to ensure that ck+1nk ≥ nθk+1 + 2 lognk+1
for almost all k. For instance, we can let ck = 1

(k+1)(k+2) and nk = 2k+4. J

To disprove the converse implication, we need to provide a measure µ such that K(µ�n) ≥+ n

yet µ is not Martin-Löf a.c. This will be immediate from the following fact on the growth of
initial segment complexity for certain bit sequences.

I Theorem 13. There are a Martin-Löf random bit sequence X and a non-Martin-Löf
random bit sequence Y such that, for all n, K(X �n) +K(Y �n) ≥+ 2n.

Proof. Let X be a low Martin-Löf random set (i.e., X ′ ≡T ∅′). We claim that there is a
strictly increasing function f such that the complement of the range of f is a recursively
enumerable set E, and K(X �m) ≥ m + 3n for all m ≥ f(n). To see this, recall that
limnK(X �n)− n =∞. Since X is low there is a computable function p such that for all n,
lims p(n, s) is the maximal m such that K(X �m) ≤ m+ 3n.

Define f(n, s) for n ≤ s as follows. f(n, 0) = n; for s > 0 let n be least such that
p(n, s) ≥ f(n, s − 1) or n = s. If m ≥ n and n < s then let f(m, s) = s + m − n else let
f(m, s) = f(m, s− 1).

Note that for each n there are only finitely many s > 0 with f(n, s) 6= f(n, s− 1) and
that almost all s satisfy f(n, s) > p(n, s), as otherwise f(n, s) would be modified either at
n or some smaller value. Furthermore, f(n, s) 6= f(n, s− 1) can only happen if there is an
m ≤ n with f(m, s − 1) ≤ p(m, s) and that happens only finitely often, as all the p(m, s)
converge to a fixed value and every change of an f(m, s) at some time s leads to a value
above s. Furthermore, once an element is outside the range of f , it will never return, and
so the complement of the range of f is recursively enumerable. So f(n) = lims f(n, s) is a
function as required, which verifies the claim. (The complement E of the range of f is called
a Dekker deficiency set in the literature [21].)

Now let g(n) = max{m : f(m) ≤ n} (with the convention that max(∅) = 0). Since g is
unbounded, by a result of Miller and Yu [15, Cor. 3.2] there is a Martin-Löf random Z such
that there exist infinitely many n with K(Z �n) ≤ n+ g(n)/2; note that the result of Miller
and Yu does not make any effectivity requirements on g. Let

Y = {n+ g(n) : n ∈ Z}.

Note that K(Z �n) ≤ K(Y �n) + g(n) +K(g(n)), as one can enumerate the set E until there
are, up to n, only g(n) many places not enumerated and then one can reconstruct Z �n from
Y �n and g(n) and the last g(n) bits of Z �n. As Z is Martin-Löf random, K(Z �n) ≥+ n, so

K(Y �n) ≥+ n− g(n)−K(g(n)) ≥+ n− 2g(n).

The definitions of X, f, g give K(X �n) ≥ n+3g(n). This shows that K(X �n)+K(Y �n) ≥ 2n
for almost all n.

However, the set Y is not Martin-Löf random, as there are infinitely many n such that
K(Z �n) ≤+ n+ g(n)/2. Now Y �n+g(n) can be computed from Z �n and g(n), as one needs
only to enumerate E until the g(n) nonelements of E below n are found and they allow to see
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where the zeroes have to be inserted into the string Z �n in order to obtain Y �n+g(n). Note
furthermore, that K(g(n)) ≤ g(n)/4 for almost all n and thus K(Y �n+g(n)) ≤+ n+ 3/4 · g(n)
for infinitely many n, so Y cannot be Martin-Löf random. J

3.3 Failing a restricted type of test implies non-complex initial
segments

We say that a Solovay test 〈Sr〉r∈N is strong if each Sr is clopen and given by a strong
index for a finite set of strings Xr such that [Xr]≺ = Sr. For bit sequences, this means no
restriction: any Solovay test can be replaced by a strong Solovay test listing the strings
making up the Σ0

1 sets one-by-one. (We conjecture that this equivalence of test notions no
longer holds for measures.) The following is a weak version for measures of one implication
of the Miller-Yu theorem [14, Thm. 7.1.]. We use elements of the proof in Bienvenu et al. [1].
We note that the result is a variation on (the contrapositive of) Theorem 10(a), proving a
stronger conclusion from a stronger hypothesis.

I Proposition 14. Suppose that µ fails a strong Solovay test 〈Sr〉r∈N at level δ, namely
∃∞r [µ(Sr) ≥ δ]. Then there is a computable function f such that

∑
n 2−f(n) <∞ and

∃∞n [C(µ�n| n) ≤+ n− δf(n)].

Proof. Let 〈Xr〉 be as in the definition of a strong Solovay test. We may assume that∑
λSr ≤ 1/2, and all strings in Xr have the same length nr. Let f be computable such that

2−f(nr) ≥ λ(Sr) > 2−f(nr)−1

and f(m) = 2−m for m not of the form nr. There is a constant d such that each bit string x
in the set Xr satisfies (where n = nr)

C(x | n) ≤ n− f(n) + d =: g(r). (1)

For, r can be computed from n = nr, and each string x ∈ Xr is determined by r and
its position i < 2nλ(Xr) in the lexicographical listing of Xr. We can determine i by
log(2nλ(Xr)) ≤ n− f(n) + d bits for some fixed d. In fact we may assume the description
has exactly that many bits. Thus, there is a Turing machine L with two inputs such that for
each σ ∈ Xr, we have L(vσ;n) = σ for some bit string vσ of length g(r).

Let c be a constant such that C(x) ≤ |x| + c for each string x. Now suppose that
µ(Sr) ≥ δ. Then for n = nr,

C(µ�n| n) ≤+
∑
σ∈Xr

(n− f(n))µ[σ] +
∑
σ 6∈Xr

(n+ c)µ[σ]

≤+ n− f(n)
∑
σ∈Xr

µ[σ]

≤+ n− δf(n).

Since there are infinitely many such r by hypothesis, this completes the proof. J

4 K-triviality for measures

I Definition 15. A measure µ is called K-trivial if K(µ�n) ≤+ K(n) for each n.

For Dirac measures δA this is the same as saying that A is K-trivial in the usual sense. More
generally, any finite convex combination of such Dirac measures is K-trivial.

STACS 2020



55:10 Randomness for Probability Measures

I Proposition 16. If µ is K-trivial, then µ is supported by its set of atoms.
In fact the weaker hypothesis that ∃p∃∞n [K(µ�n) ≤ K(n) + p] suffices.

Proof. For a set R ⊆ {0, 1}∗, by [R]≺ one denotes the open set {Z : ∃nZ �n∈ R}.
Assume for a contradiction that µ gives a measure greater than ε > 0 to the set of its

non-atoms. Note that there is a constant b such that K(x) ≥ K(|x|)− b for each x. Fix c
arbitrary with the goal of showing that K(µ�n) ≥ K(n)− b+ εc/2 for large enough n.

There is d (in fact d = O(2c)) such that for each n there are at most d strings x of length
n with K(x) ≤ K(n) + c (see e.g. [17, 2.2.26]). Let Sn = {x : |x| = n ∧ µ[x] ≤ ε/2d}. By
hypothesis we have µ[Sn]≺ ≥ ε for large enough n. Therefore by choice of d we have

µ[Sn ∩ {x : K(x) > K(|x|) + c}]≺ ≥ ε/2.

Now we can give a lower bound for the µ-average of K(x) over all strings x of length n:∑
|x|=n

K(x)µ[x] ≥ (1− ε/2)(K(n)− b) + (ε/2)(K(n) + c) ≥ K(n)− b+ εc/2,

as required. Notice that we have only used the weaker hypothesis. J

Thus, if µ is K-trivial for constant p, then µ has the form
∑
r<N αrδAr where N ≤ ∞ and

each αr is positive and
∑
r<N αr = 1.

I Fact 17. Each Ar is K-trivial for constant (p+ c)/αr, for some fixed c.

Proof. Let c be a constant such that K(x) ≥ K(|x|)− c for each string x. We have

K(n) + p ≥ K(µ�n) =
∑
s

αsK(As �n) ≥ αrK(Ar �n) +
∑
s6=r

αs(K(n)− c).

Therefore αrK(n) + p+ c ≥ αrK(A�n), as required. J

It would be interesting to characterise the countable convex combinations of K-trivials that
yield K-trivial measures. The following is easily checked.

I Fact 18. Suppose that Ar is K-trivial with constant br, and
∑
r αrbr ≤ c <∞ where each

αr is positive and
∑
αr = 1. Then µ =

∑
r αrδAr

is K-trivial with constant c.

For instance, we can build a computable K-trivial measure with infinitely many atoms as
follows. Let Ar = 0r+11∞, so that K(Ar �n) ≤+ K(n) + 2 log r. Let µ =

∑
2−r+1Ar. By

the above fact µ is K-trivial. If we vary the construction by letting Ar = 0r+11B where B is
K-trivial but non-recursive, we obtain a K-trivial measure µ with infinitely many atoms,
and none of them recursive.

On the other hand, the following example shows that not every infinite convex combination
µ =

∑
k αkδAk

of K-trivial Dirac measures for constant bk yields a K-trivial measure, even
if αkbk is bounded. Let Ak = {` : ` ∈ Ω ∧ ` < k}, and αk = (k + 1)−1/2 − (k + 2)−1/2. All
sets Ak are finite and thus K-trivial for constant 2k +O(1). Furthermore, the sum of all αk
is 1 and αk = O(1/k). We have

K(µ�n) =
∑
|x|=n

K(x)µ(x) ≥ (
∑
m≥n

αm) ·K(Ω � n) ≥ (n+ 2)−1/2 · (n+ 2) =
√
n+ 2

for almost all n, and thus the average grows faster than K(n) + c. So the measure is not
K-trivial.

In a sense, an atomless measure can come arbitrarily close to being K-trivial.
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I Proposition 19. For each nondecreasing unbounded function f which is computably ap-
proximable from above there is a non-atomic measure µ such that K(µ�n) ≤+ K(n) + f(n).

Proof. There is a recursively enumerable set A such that, for all n, A ∩ {0, . . . , n} has up
to a constant f(n)/2 non-elements. One lets µ be the measure such that µ(x) = 2−m in
the case that all ones in x are not in A and µ(x) = 0 otherwise, where m is the number of
non-elements of A below |x|. One can see that when µ(x) = 2−m then x can be computed
from |x| and the string b0b1 . . . bm−1 which describes the bits at the non-elements of A. Thus

K(x) ≤+ K(|x|) +K(b0b1 . . . bm−1) ≤+ K(|x|) + 2m.

It follows that K(µ �n) ≤+ K(n) + f(n), as the µ-average of strings x ∈ {0, 1}n with
K(x) ≤+ K(n) + f(n) is at most K(n) + f(n) plus a constant. J

5 Full Martin-Löf randomness of measures

LetM({0, 1}N) be the space of probability measures on Cantor space (which is canonically
a compact topological space). A probability measure P on this space has been introduced
implicitly in Mauldin and Monticino [12]. Culver’s thesis [4] shows that this measure is
computable. So the framework of [8] yields a notion of Martin-Löf randomness for points in
the spaceM({0, 1}N).

To define P, first let R be the closed set of representations of probability measures; namely,
R consists of the functions X : {0, 1}∗ → [0, 1] such that X∅ = 1 and Xσ = Xσ0 +Xσ1 for
each string σ. P is the unique measure on R such that for each string σ and r, s ∈ [0, 1], we
have P(Xσ0 ≤ r | Xσ = s) = min(1, r/s). Intuitively, we choose Xσ0 at random w.r.t. the
uniformly distribution on the interval [0, Xσ], and the choices made at different strings are
independent.

I Proposition 20. Every probability measure µ that is Martin-Löf random wrt to P is
Martin-Löf absolutely continuous.

For the duration of this proof let µ range overM({0, 1}N). For an open set G ⊆ {0, 1}N, let

rG =
∫
µ(G)dP(µ).

Our proof of Prop. 20 is based on two facts.

I Fact 21. rG = λ(G).

Proof. Clearly, for each n we have∑
|σ|=n

r[σ] =
∫ ∑
|σ|=n

µ([σ])dP(µ) = 1.

Furthermore, rσ = rη whenever |σ| = |η| = n because there is a P-preserving transformation
T ofM({0, 1}N) such that µ([σ]) = T (µ)([η]). Therefore r[σ] = 2−|σ|.

If σ, η are incompatible then r[σ]∪[η] = r[σ] + r[η]. Now it suffices to write G =
⋃
i[σi]

where the strings σi are incompatible, so that λG =
∑
i 2−|σi|. J

I Fact 22. Let µ ∈ M({0, 1}N) and let 〈Gm〉m∈N be a ML-test such that there is δ ∈ Q+

with ∀mµ(Gm) > δ. Then µ is not ML-random w.r.t. P.
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Proof. Observe that by the foregoing fact

δ · P({µ : µ(Gm) ≥ δ}) ≤
∫
µ(Gm)dP(µ) = λ(Gm) ≤ 2−m.

Let Gm = {µ : µ(Gm) > δ} which is uniformly effectively open in the space of measures
M({0, 1}N). Fix k such that 2−k ≤ δ. By the inequality above, we have P(Gm) ≤ 2−m/δ ≤
2−m+k. Hence 〈Gm+k〉m∈N is a ML-test w.r.t. P that succeeds on µ. J

This argument also works for randomness notions stronger than Martin-Löf’s. For instance, if
there is a weak-2 test 〈Gm〉m∈N such that µGm > δ for eachm, then µ is not weakly 2-random
with respect to P. The converse of Prop. 20 fails. Culver [4] shows that each measure µ that
is Martin-Löf random w.r.t. P is non-atomic. So a measure δZ for a Martin-Löf random bit
sequences Z is Martin-Löf a.c. but not Martin-Löf random with respect to P.

6 Being ML-a.c. relative to computable ergodic measures

We review some notions from the field of symbolic dynamics, a mathematical area closely
related to Shannon information theory. We will consider effective “almost-everywhere
theorems” related to that area in the framework of randomness for measures.

It can be useful to admit alphabets other than the binary one. Let A∞ denote the
topological space of one-sided infinite sequences of symbols in an alphabet A. Randomness
notions etc. carry over from the case of A = {0, 1}. A dynamics on A∞ is given by the
shift operator T , which erases the first symbol of a sequence. A measure ρ on A∞ is called
shift invariant if ρ(G) = ρ(T−1(G)) for each open (and hence each measurable) set G. The
empirical entropy of a measure ρ along Z ∈ A∞ is given by the sequence of random variables

hρn(Z) = − 1
n

log|A| ρ[Z �n].

A shift invariant measure ρ on A∞ is called ergodic if every ρ integrable function f with
f ◦ T = f is constant ρ-almost surely. The following equivalent condition can be easier to
check: for any strings u, v ∈ A∗,

lim
N

1
N

n−1∑
k=0

ρ([u] ∩ T−k[v]) = ρ[u]ρ[v].

For ergodic ρ, the entropy H(ρ) is defined as limnHn(ρ), where

Hn(ρ) = − 1
n

∑
|w|=n

ρ[w] log ρ[w].

Thus, Hn(ρ) = Eρhρn is the expected value with respect to ρ. One notes that Hn+1(ρ) ≤
Hn(ρ) ≤ 1 so that the limit H(ρ) exists.

A well-known result from the 1950s due to Shannon, McMillan and Breiman states that
for an ergodic measure ρ, for ρ-a.e. Z the empirical entropy along Z converges to the entropy
of the measure. See e.g. [24], but note that the result is called the Entropy Theorem there.

I Theorem 23 (SMB theorem, e.g. [24]). Let ρ be an ergodic measure on the space A∞. For
ρ-almost every Z we have limn h

ρ
n(Z) = H(ρ).
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A measure ρ on A∞ is called computable if each real ρ[x] is computable, uniformly in x ∈ A∗.
For such a measure we can define Martin-Löf tests and Martin-Löf randomness with respect
to ρ (called ρ-ML randomness for short) as above. Recall from Fact 4 that a measure µ is
Martin-Löf a.c. with respect to ρ iff µ(C) = 0 where C is the class of sequences in A∞ that
are not ML-random with respect to ρ.

If a computable measure ρ is shift invariant, then limn h
ρ
n(Z) exists for each ρ-ML-

random Z by a result of Hochman [6]. Hoyrup [7, Thm. 1.2] gave an alternative proof for
ergodic ρ, and also showed that in that case we have limn h

ρ
n(Z) = H(ρ) for each ρ-ML

random Z. We extend this result to measures µ that are Martin-Löf a.c. with respect to
ρ, under the additional hypothesis that the hρn are uniformly bounded. This holds e.g. for
Bernoulli measures and the measures given by a Markov process. On the other hand, using a
renewal process it is not hard to construct an ergodic computable measure ρ over the binary
alphabet where this hypothesis fails. For instance, take a computable sequence of rationals
〈αk〉 with sum 1 which decreases quickly enough such that limk − 1

k+2 log2 αk =∞, and let
ρ be a shift invariant measure such that ρ(10k1 ≺ Z | Z0 = 1) = αk for each k ∈ N. This
method yields an example showing that the boundedness hypothesis in the proposition below
is necessary. See the Logic Blog 2020 posted from Nies’ website.

I Proposition 24. Let ρ be a computable ergodic measure on the space A∞ such that for
some constant D, each hρn is bounded above by D. Suppose the measure µ is Martin-Löf a.c.
with respect to ρ. Then limnEµh

ρ
n = H(ρ).

Proof. By Hoyrup’s result, limn h
ρ
n(Z) = H(ρ) for each ρ-ML random Z. Since the sequences

that are not ML-random w.r.t. ρ form a null set w.r.t. µ, we infer that limn h
ρ
n(Z) = H(ρ) for

µ-a.e. Z. The exception set V is measurable. Let h̃ρn be the function obtained by changing
the value of hρn to 0 on this set. Then h̃ρn(Z)→ H(ρ)1(A∞\V )(Z) for each Z. The Dominated
Convergence Theorem now shows that limn Eµhρn = H(ρ), as required. J

The next observation shows that the asymptotic initial segment complexity of a ML-a.c.
measure relative to ρ obeys some lower bound. Note that H(λ) = 1. So for ρ = λ, this shows
that in Example 12 we cannot subtract, say, n/4 instead of nθ.

I Proposition 25. Let ρ be a computable ergodic measure, and suppose µ is a Martin-Löf
a.c. measure with respect to ρ. Then

lim
n

1
n
K(µ�n) = lim

n

1
n
C(µ�n) = H(ρ).

Proof. We can use K and C interchangeably because C(x) ≤+ K(x) ≤+ C(x) +K(C(x))
[17, 2.4.1]. We choose K. Let kn(Z) = K(Z �n)/n. The argument is very similar to the one
in the theorem above, replacing the functions hn by kn. Note that kn is bounded above
by a constant because K(x) ≤+ |x| + 2 log |x|. Hoyrup’s result [7, Thm. 1.2] states that
limn kn(Z) = H(ρ) for each ρ-ML random Z. Now we can apply the Dominated Convergence
Theorem as in the proof of the foregoing proposition. J

A further interesting direction to tackle in the measure case would be the effective Birkhoff’s
ergodic theorem. This says that for ergodic computable ρ, if f{0, 1}N → R is ρ-integrable and
lower semicomputable and Z is ρ-ML-random, then the limit of the usual ergodic averages
Anf(Z) = 1

n

∑
k<n(f ◦ T k)(Z) equals

∫
fdρ. (For background see e.g. [16] which contains

references to original work.) If the Anf are bounded then an argument similar to the one
above shows that limn

∫
Anfdµ =

∫
fdρ for any µ �ML ρ, but without this additional

hypothesis the question remains open.
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Abstract
Shrub-depth is a width measure of graphs which, roughly speaking, corresponds to the smallest
depth of a tree into which a graph can be encoded. It can be thought of as a low-depth variant of
clique-width (or rank-width), similarly as treedepth is a low-depth variant of treewidth. We present
an fpt algorithm for computing decompositions of graphs of bounded shrub-depth. To the best of
our knowledge, this is the first algorithm which computes the decomposition directly, without use of
rank-width decompositions and FO or MSO logic.
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1 Introduction

Among the numerous width parameters used in graph theory and algorithmics, treewidth
and its dense counterparts clique-width and rank width are arguably the most prominent and
extensively studied. In recent years, more restrictive parameters, which could be collectively
called depth parameters, are attracting increasing attention. The best-known of these is
treedepth [10], which can be seen as a low-depth variant of treewidth. Inspired by the
usefulness of treedepth, the authors of [8] defined the notion of shrub-depth, which can be
seen as a low-depth variant of clique-width, analogously to the relation between treedepth
and treewidth.

Since shrub-depth is a more restrictive notion than clique-width, it is natural to ask
what algorithmic advantages it offers over clique-width, if any. The question whether some
problems which are parameterized intractable on graphs of bounded clique-width are fixed-
parameter tractable on graphs of bounded shrub-depth was addressed in [7], where it was
shown that the Hamiltonian path and the chromatic number problem remain hard on graph
classes of bounded shrub-depth. On the other hand, bounded shrub-depth offers certain
quantitative advantages over clique-width. For instance, a well-known result of Courcelle,
Makowski and Rotics [2] states that every MSO definable property ϕ of graphs can be solved
in time f(ϕ) · |V (G)| on any class of graphs of bounded clique-width. The price for the
generality of this result is that the function f is non-elementary, i.e. it grows like a tower of
exponentials whose height depends on the formula. But as shown in [5], on any graph class
shrub-depth d the function f is only d-fold exponential, i.e. its height does not depend on
the formula.
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Besides being interesting in their own right, shrub-depth has important consequences for
much more general graph classes. To explain this, we will first describe the analogous situation
in the case of sparse graphs and treedepth. Nešetřil and Ossona de Mendez introduced [11]
the notions of bounded expansion and nowhere denseness as a general approach to studying
sparse graphs in a unified setting. Graphs from classes of bounded expansion and nowhere
dense graph classes can be decomposed1 into several overlapping graphs each of small
treedepth. Such a decomposition has successfully been used for solving many problems on
graph classes of bounded expansion and nowhere dense graph classes efficiently. In some cases,
the problems can be reduced to solving them on the graphs of small treedepth obtained by
this decomposition, and in more complicated cases one can repeatedly perform computations
on graphs of small treedepth from the decomposition and then combine the results.

Recently a dense counterpart of the notion of bounded expansion has been studied under
the name structurally bounded expansion, and the results of [6] indicate that shrub-depth
could play a role analogous to treedepth in the sparse case: it was shown that every graph
from a class of graphs of structurally bounded expansion can be decomposed into a bounded
number of subgraphs of small shrub-depth and this decomposition can then be used for
algorithmic purposes. Given this promising application of shrub-depth in the theory of dense
but structurally simple graphs, it is very likely that a better structural understanding of
shrub-depth will be of increasing relevance in the near future.

All width and depth measures mentioned so far are defined by an associated concept
of decomposition. For shrub-depth this decomposition is called a tree-model. Unlike other
width measures, tree-models are defined in terms of two parameters, commonly denoted by d
and m. To use any of the mentioned depth or width measures algorithmically, one usually
needs to be able to compute the corresponding types of decompositions for an input graph
G. In most cases, the problem of finding an optimal decomposition of an input graph is
NP-hard, but often for fixed values of the relevant width parameters one can, in polynomial
time, either find a decomposition with the prescribed value or correctly decide that no such
decomposition exists. This is the case for treewidth [1], rank-width [9] and treedepth [12].
Algorithms like this are called parameterized algorithms and are studied in the framework of
parameterized complexity theory. We refer to [3] for an indepth introduction to parameterized
complexity and only briefly recall the concepts from parameterized complexity needed below.
A parameterized problem P is essentially a classical problem but in addition to the normal
input instance w we are given an integer k, the so-called parameter. The problem P is called
fixed-parameter tractable, or in the complexity class FPT, if there is a computable function f
and a constant c such that the problem can be solved by an algorithm whose running time
on input (w, k) is bounded by f(k) · |w|c. The class FPT can be seen as the parameterized
equivalent to the classical complexity class P as abstraction of efficiently solvable problems.

A much weaker requirement on the running time is imposed by the parameterized
complexity class XP. The problem P is in XP if there is a computable function f such
that the problem can be solved by an algorithm whose running time is bounded by |G|f(k).
Thus, a problem is in XP if it can be solved in polynomial time for every fixed value of the
parameter k.

Our contribution. We provide combinatorial and conceptually simple algorithms for com-
puting tree-models with given parameters d and m of input graphs G. To obtain our
algorithms, in Section 3 and 4, we introduce a new concept of k-modules and prove several

1 The precise meaning of this is rather technical and is not important for our purpose, so we omit the
precise definition.
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properties relating k-modules and tree-models of graphs. The structural results we obtain
provide a new and very different insight into the structure of graphs of low shrub-depth
which we believe will be of further interest. These results provide the basis for our algorithms
for computing tree-models, which we present in Section 5. Our main algorithmic result is an
fpt-algorithm for computing tree-models with prescribed parameters d and m in a graph G,
provided G has such a model. Finally, in Section 6, we present another application of our
results to forbidden induced subgraphs of graph classes of bounded shrub-depth.

Previous work. To the best of our knowledge, no papers explicitly address the problem of
computing tree-models with given parameters d and m of a given input graph. However,
there exists a folklore fpt algorithm for computing an optimal SC-decomposition of a given
graph, where SC-decomposition is a notion closely related to tree-model. This algorithm
requires computing a rank decomposition of the input graph G first and then uses a powerful
algorithmic metatheorem for MSO logic to obtain the SC-decomposition. Similarly, the
results and techniques of [5] can likely be adjusted to compute tree-models, but also in this
case one would have to rely on computing a rank decomposition first and using a logical
metatheorem.

2 Preliminaries

For n ∈ N we denote the set {1, . . . , n} by [n]. For sets A,B we denote by A∆B their
symmetric difference (A \B) ∪ (B \A).

Graphs. All graphs in this paper are finite, undirected and simple. We use standard graph
theoretic notation, see e.g. [4]. Let G be a graph. If X ⊆ V (G) we denote by G[X] the
subgraph of G induced by X and by G−X the subgraph induced by V \X. If X = {v} is a
singleton set, we simply write G− v for G− {v}. We denote by NG(v) the neighbourhood
of v ∈ V (G) in G. If G is understood we omit the index and just write N(v). Let G,H
be graphs and let λ : V (G) → [m] and λ′ : V (H) → [m] be labelling functions. A label
preserving isomorphism between (G,λ) and (H,λ′) is a bijective function f : V (G)→ V (H)
such that {u, v} ∈ E(G) if, and only if, {f(u), f(v)} ∈ E(H) and λ′(f(v)) = λ(v) for all
u, v ∈ V (G).

Trees. By a tree in this paper we mean a rooted connected acyclic graph. Let T be a tree
with root r. The ancestors of t in T are the vertices on the unique path from r to t in T other
than t itself. The parent of t is the ancestor of t adjacent to t. The root r itself does not have
a parent. For t ∈ V (T ) \ {r} we define the subtree Tt of T rooted at t as the component of
T − e containing t, where e is the edge incident to t and its parent. For t = r we set Tr = T .
The children of t are the neighbours of t other than the parent. The descendants of t are the
vertices in V (Tt) \ {t}.

A leaf of T is a node of degree 1 which is not the root. We denote the set of leaves of T
by leaves(T ). Nodes s, t ∈ V (T ) are comparable (in T ) if t ∈ V (Ts) or s ∈ V (Tt). Otherwise
they are incomparable. The height of t is the maximal length of a path from t to a leaf of
Tt. Given a set X ⊆ V (T ) we define the least common ancestor of X, denoted by lca(X), as
the node t ∈ V (T ) of minimal height such that X ⊆ V (Tt). We also write lca(u1, . . . , ut) for
lca({u1, . . . , ut}). The distance between two nodes s, t ∈ V (T ), denoted by distT (s, t), is the
length of the unique path between s and t in T .
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Shrub-depth. Shrub-depth was defined by Ganian et al. in [8]. It is defined using the
following notion of tree-model.

I Definition 2.1. Let d and m be non-negative integers and let G be a graph. A tree-model of
G is a triple (T, S, λ), where T is a tree, S ⊆ [m]2× [d] is a relation, and λ : leaves(T )→ [m]
is a function, such that
i. the length of each root-to-leaf path is exactly d,
ii. the set leaves(T ) of leaves is exactly V (G),
iii. (i, j, d) ∈ S if, and only, if (j, i, d) ∈ S (symmetry in the colours), and
iv. for any two vertices u, v ∈ V (G), if λ(v) = i, λ(v) = j and distT (u, v) = 2l, then
{u, v} ∈ E(G) if, and only if, (i, j, l) ∈ S.

Note that the leaves leaves(T ) of T are the vertices of G. Thus, if v ∈ V (G), then
v ∈ leaves(T ) and therefore λ(t) is defined. The number d in the above definition is referred
to as the depth of the tree-model. We will often speak of a (d,m)-tree-model instead of a
“tree-model of depth d with m colours”.

Note that every graph G has a tree-model of depth 1 with |V (G)| colours (each vertex
gets its own colour and the relation S is essentially E(G)). Thus it does not make sense
to ask about the smallest depth of a tree-model of a graph G. This is the reason why the
notion of shrub-depth is defined only for classes of graphs.

I Definition 2.2. The shrub-depth of a graph class C is the smallest d > 0 for which there
exists an m > 0 such that every graph G ∈ C has a (d,m)-tree-model.

We remark that even though the shrub-depth of a graph class C is defined as one number
(d in the above definition), to each class C of graphs of bounded shrub-depth there actually
correspond two numbers – d and m from the above definition. Thus, in what follows, we
usually work directly with (classes of) graphs which have a (d,m)-tree-model for some fixed
d and m.

I Definition 2.3. Let G be a graph and G′ ⊆ G be an induced subgraph of G. Let d,m > 0.
A (d,m)-tree-model (T, S, λ) of G extends a (d,m)-tree-model (T ′, S′, λ′) of G′ if T ′ ⊆ T ,
S = S′ and λ(v) = λ′(v) for all v ∈ V (G′).

We frequently use the following result from [8] which follows immediately from the
definition of shrub-depth: if (T, S, λ) is a (d,m)-tree-model of G, then we can obtain a (d,m)-
tree-model (T ′, S′, λ′) of G′ as follows: the tree T ′ is the minimal subtree of T containing
the root of T and all leaves form V (G′). Similarly, λ′ is the restriction of λ to V (G′) and
S′ = S. In particular, the tree-structure of T is preserved in the reduced tree-model T ′.

I Proposition 2.4 ([8]). Let d,m > 0. If G has a (d,m)-tree-model and G′ is an induced
subgraph of G, then G′ also has a (d,m)-tree-model.

3 Twin tuples, k-modules and outline of our approach

In this section we introduce the concepts of twin tuples and (strict) k-modules which will
be pivotal in the rest of the paper and briefly outline the key idea behind our algorithm for
finding a (d,m)-tree-model of an input graph G.
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3.1 Twin tuples and (strict) k-modules
I Definition 3.1. Let k ∈ N and let G be a graph. Two disjoint tuples (a1, . . . , ak),
(b1, . . . , bk) ∈ V (G)k are twin tuples if
1. the function f(ai) = bi, 1 ≤ i ≤ k, is an isomorphism between G[{a1, . . . , ak}] and

G[{b1, . . . , bk}],
2. {ai, bj} ∈ E(G) if, and only if, {aj , bi} ∈ E(G), for all 1 ≤ i < j ≤ k, and
3. N(ai) \ {a1, . . . , ak, b1, . . . , bk} = N(bi) \ {a1, . . . , ak, b1, . . . , bk} for all 1 ≤ i ≤ k.
For k = 1 we simply call a1 and b1 twins. A set M of pairwise disjoint k-tuples of vertices
of G is a structured k-module if all tuples in M are pairwise twin tuples.

The next definition introduces a different characterisation of k-modules which we will
use frequently in the sequel. The equivalence between the two definitions is easily seen (and
stated formally in the lemma thereafter).

I Definition 3.2. Let k ∈ N and let α, β be symmetric relations on [k]2. Let G be a graph.
A set M ⊆ V (G)k of pairwise disjoint k-tuples is an (α, β)–module if
1. for every (a1, . . . , ak) ∈M , {ai, aj} ∈ E(G) if, and only, if (i, j) ∈ α,
2. for all distinct tuples a1, . . . , ak, b1, . . . , bk ∈M , {ai, bj} ∈ E(G) if, and only, if (i, j) ∈ β,

and
3. N(ai) \ S = N(bi) \ S for all 1 ≤ i ≤ k and all (a1, . . . , ak), (b1, . . . , bk) ∈ M , where

S :=
⋃
{ai : 1 ≤ i ≤ k, (a1, . . . , ak) ∈M}.

We call k-tuples ā, b̄ ∈ V (G)k (α, β)-twins, if {ā, b̄} is an (α, β)-module in G.

I Lemma 3.3. A set M of pairwise distinct k-tuples is a structured k-module if, and only if,
there are symmetric relations α, β on [k]2 such that M is an (α, β)-module.

Thus, in a structured k-module M , the relation α determines the adjacency within each
tuple ā ∈M , or the isomorphism type of the subgraphs of G induced by the tuples in the
module and the relation β fixes the adjacency between different tuples from M . Furthermore,
any two vertices at the same position within their respective tuples have the same adjacency
to the vertices outside the module. The notion of k-module is illustrated on Figure 1.

Given α, β as above, we say that the structured k-module M is determined or induced by
α, β. Also, if ā and b̄ are twin tuples such that the adjacency within ā and b̄ and between ā
and b̄ is determined by relations α and β, we say that ā and b̄ are (α, β)-twin tuples. The
following simple fact will be used often in the sequel.

I Lemma 3.4. Let ā, b̄, c̄ ∈ V (G)k be tuples such that ā is an (α, β)-twin tuple of b̄ and b̄ is
an (α, β)-twin tuple of c̄. Then ā is an (α, β)-twin tuple of c̄. In other words, for any fixed α
and β the relation of being (α, β)-twin tuples is transitive.

The next lemma captures the intuition behind k-modules and their connection to tree-
models.

I Lemma 3.5. Let (T, S, λ) be a tree-model of a graph G and let u ∈ V (T ) be a node
with L ≥ 2 children {1, . . . , L} such that for any pair i, j of its children there exists a label
preserving isomorphism ιij between Ti and Tj. Then G contains a k-module with L tuples,
where k = |leaves(T1)|.

Proof. Fix an ordering ≤1 on leaves(T1). Then, for every j > 1, we define an order ≤j
on leaves(Tj) as follows: u ≤j v, for u, v ∈ leaves(T1), if, and only if, ιj1(u) ≤1 ιj1(v).
Each pair (leaves(Ti),≤i) can be thought of as a k-tuple, and it is easy to see that M :=
{(leaves(T1 ),≤1), . . . , (leaves(TL),≤L)} is a k-module with L tuples as claimed in the
statement of the lemma. J
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a1

a2

a3

a4 b4

b3

b2

b1 1

2

3

4

U ∩N(a1)
=

U ∩N(b1)

U ∩N(a2)
=

U ∩N(b2)

Figure 1 An example of a 4-module M with two tuples (a1, a2, a3, a4) and (b1, b2, b3, b4).
The set U is V (G) \ {a1, a2, a3, a4, b1, b2, b3, b4}. Relations α and β are defined as follows:
α = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}, β = {(1, 3), (3, 1), (2, 3), (3, 2), (3, 4), (4, 3)}. The conflict
graph of M (Definition 3.7) is on the right. Note that M ′ = {(a1, a2, a3)(b1, b2, b3)} is also a module,
and since its conflict graph (only on vertices 1, 2, 3) is connected, it is an example of a strict module
(Definition 3.8).

3.2 Outline of our approach
We now present an outline of our approach for computing tree-models. By Lemma 3.5, if
a tree-model of a graph G contains several isomorphic subtrees with common parent, then
these subtrees induce a k-module in G. If the converse statement

(∗) if ā, b̄, c̄, . . . , form a module M of G, then in every tree-model T of G the vertices
of tuples ā, b̄, c̄, . . . are the leaves of distinct but isomorphic subtrees T a, T b, T c, . . .
with a common parent u

was also true, then this could be used to compute tree-models as follows: compute a module
M = {ā, b̄, c̄} in the input graph G and remove c̄ from G to obtain G′ with moduleM ′ = {ā, b̄}.
Then it would be enough to find any (d,m)-tree-model T ′ of G′ which then can easily be
extended to a tree-model T of G – by (∗) the tree-model T ′ contains different isomorphic
subtrees T a and T b (representing ā and b̄) with a common parent u, and so we can create
a copy Tc of Ta and add it as a child of u to create a tree-model T of G. This essentially
means that by finding a module M in G we can, by deleting a tuple from M , reduce the
problem of computing a tree-model with parameters d and m of G to a problem of finding a
tree-model T ′ with the same parameters but for a smaller graph G′.

We will essentially follow this idea but use a weaker statement than (∗) instead. It turns
out that even less than having isomorphic subtrees is enough to make the above idea work –
it is enough to have a tree-model T ′ of G′ in which two tuples ā and b̄ are in a “good position”
with respect to each other, as shown in the following lemma, proved below, which is the
basis of our approach.

I Lemma 3.6. Let G be a graph and let {(a1, . . . , ak), (b1, . . . , bk), (c1, . . . , ck)} be a k-module
in G. Let G′ = G − {c1, . . . , ck} and let (T ′, S′, λ′) be a (d,m)-tree-model of G′, for some
d,m > 0, st.
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1. lca({a1, . . . , ak}) and lca({b1, . . . , bk}) are incomparable in T ′ and
2. for all i ∈ [k] the labels λ′(ai) and λ′(bi) are the same in T ′.
Then (T ′, S′, λ′) can be extended to a (d,m)-tree-model (T, S, λ) of G.

Unfortunately, the statement (∗) does not hold and neither does the following weaker
statement (∗∗) which would still be strong enough for our purpose: if M is a k-module in a
graph G, then in any tree model T of G there are at least two tuples (a1, . . . , ak), (b1, . . . , bk) ∈
M which satisfy the requirements of Lemma 3.6 with respect to T . In general, if ā and b̄
are twin tuples of graph G, the vertices (a1, . . . , ak) and (b1, . . . , bk) can be placed almost
arbitrarily “badly” in a tree-model T of G. In order to be able prove a variant of (∗∗), we
will have to restrict ourselves to a more structured notion of module, which we call a strict
module. Strict modules are modules in which the vertices in each tuple are forced to “stick
together” – we want to avoid the situation when it is possible to exchange ai for bi between
two tuples (a1, . . . , ak) and (b1, . . . , bk) without violating α or β. More generally, we want it
to be impossible for any non-empty subset I of [k] to exchange {ai}i∈I for {bi}i∈I between
two tuples (a1, . . . , ak) and (b1, . . . , bk) without violating α and β. This will be accomplished
using the notions of conflict and conflict graph.

I Definition 3.7. Let M be a k-module of a graph G induced by relations α, β. We say that
positions i, j ∈ [k] with i 6= j are in conflict if (i, j) ∈ α but (i, j) 6∈ β or vice versa. The
conflict graph C(M) of M is the graph with vertex set [k] and an edge between i and j if,
and only if, the positions i and j are in conflict.

I Definition 3.8. An (α, β)-module M is a strict k-module if its conflict graph is connected.

The definition of strict k-modules will allow us to prove Lemma 4.1, which can be seen
as a variant of (∗∗). Informally it says that if G is a graph with a large strict k-module M ,
then in any (d,m)-tree-model T of G there are two tuples in a “good” mutual position in T
(i.e. in the position required in Lemma 3.6). With Lemma 4.1 at hand, it remains to bound
the value k in terms of d and m and to show that sufficiently large strict k-modules always
exist in graphs which have (d,m)-tree-models (Corollary 4.6). Finally, we need to design
algorithms for computing large strict k-modules in an input graph G (Section 5).

We close this section by proving Lemma 3.6 and a corollary, which will be used in
Section 5.

Proof of Lemma 3.6. Let va, vb be the least common ancestors of {a1, . . . , ak} and
{b1, . . . , bk}, resp., and let v = lca(va, vb). Let Ta be the minimal subtree of Tv containing
va and {a1, . . . , ak}. Thus, Ta has exactly k leaves a1, . . . , ak. Let Td be an isomorphic copy
of Ta. Let d1, . . . , dk be the leaves of Td such that di is the copy of ai, for all 1 ≤ i ≤ k.

Let T be the tree obtained from T ′ ∪ Td by identifying the root of Td with v, i.e. T is the
tree T ′ ∪ S1 ∪ . . . ∪ Sl plus the edges {v, si}, for 1 ≤ i ≤ l, where S1, . . . , Sl are the subtrees
of Td rooted at the children s1, . . . , sl of the root of Td. We set S = S′ and define a labelling
function λ on the leaves of T by setting λ(t) = λ′(t), if t 6∈ {d1, . . . , dk} and λ(di) = λ′(ai).

Then (T, S, λ) is a tree-model of the same height as (T ′, S′, λ′) using the same set of
labels.

It remains to verify that the graph GT defined by T is isomorphic to G. By construction,
V (GT ) = V (G) \ {c1, . . . , ck} ∪ {d1, . . . , dk}. Let π : V (GT ) → V (G) be the function with
π(u) = u for all u ∈ V (G) \ {d1, . . . , dk} and π(di) = ci, for 1 ≤ i ≤ k. We claim that π is
an isomorphism between GT and G.
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As π is bijective by construction, it suffices to show that {u,w} ∈ E(GT ) if, and only if,
{π(u), π(w)} ∈ E(G). If u,w ∈ V (G) \ {c1, . . . , ck} there is nothing to show as the adjacency
of all vertices within G′ = G− {c1, . . . , ck} remains unchanged by attaching S1, . . . , Sl to T ′.

Now suppose u = di and w = dj , for some 1 ≤ i 6= j ≤ k. Then λ(di) = λ(ai) and
λ(dj) = λ(aj) and the distance 2l between di and dj in T is the same as the distance between
ai and aj . Thus

{di, dj} ∈ E(GT )⇔ (λ(di), λ(dj), l) ∈ S ⇔ {ai, aj} ∈ E(GT )⇔ {ai, aj} ∈ E(G),

as argued above. As {{a1, . . . , ak}, {c1, . . . , ck}} is a k-module in G, {ci, cj} ∈ E(G) if, and
only if, {ai, aj} ∈ E(G). Thus, the restriction of π to {d1, . . . , dk} is an isomorphism between
the subgraphs G[{c1, . . . , ck}] and GT [{d1, . . . , dk}].

The last case to consider is when u = di, for some 1 ≤ i ≤ k, and w 6∈ {d1, . . . , dk}.
Suppose first that w 6∈ V (Tv), where v = lca(va, vb). Then the distance between w and ai in
T is the same as between w and di and therefore

{di, w} ∈ E(GT )⇔ {ai, w} ∈ E(GT )⇔ {ai, w} ∈ E(G)⇔ {ci, w} ∈ E(G).

Finally, suppose w ∈ V (Tv). In this case either the path between w and ui contains v
and therefore the distance between w and ui is the same as the distance between w and ai,
or the path between w and ui does not contain v and the distance between w and ui is the
same as the distance between w and bi. As the adjacency between w, ai, w, bi and w, ci is
the same in G, this implies that {w, di} ∈ E(G) if, and only if, {w, ci} ∈ E(G). J

The next result follows easily by induction on |M \ {ā, b̄}| using Lemma 3.6.

I Corollary 3.9. Let d ≥ 0 and k,m ≥ 1. Let G be a graph and let M be a k-module in
G. Let ā, b̄ ∈ M and let G′ = G −

⋃
{c̄ : c̄ ∈ M \ {ā, b̄}}. If there is a (d,m)-tree-model

(T ′, S′, λ′) of G′ such that lca({a1, . . . , ak}) and lca({b1, . . . , bk}) are incomparable in T ′

and λ′(ai) = λ′(bi) for all i ∈ [k], then G has a (d,m)-tree-model (T, S, λ) which extends
(T ′, S′, λ′).

4 Strict modules in graphs of low shrub-depth

In this section we prove several results about strict k-modules and their relation to tree-
models. We start with Lemma 4.1 which states that if G contains a sufficiently large strict
k-module M , then in every tree-model T of G there are two tuples of M in a mutual position
which allows us to apply Lemma 3.6 and Corollary 3.9. We then establish Lemma 4.4, which
is an analogue of Lemma 3.5 and which establishes the connection between tuples in strict
k-modules and groups of isomorphic subtrees of unsplittable tree-models. Finally, we prove
the technical Lemma 4.5 and Corollary 4.6 which establish that for each d and m there exist
bounded values of k such that sufficiently large strict modules exist in large enough graphs
which have (d,m)-tree-models.

I Lemma 4.1. There exists a function L : N3 → N such that for all d,m, k > 0 the following
holds: if G is a graph and M is a strict k-module in G of size |M | ≥ L(m, d, k), then in any
(d,m)-tree-model (T, S, λ) of G there are at least two tuples (a1, . . . , ak) and (b1, . . . , bk) in
M such that
1. lcaT ({a1, . . . , ak}) and lcaT ({b1, . . . , bk}) are incomparable and
2. λ(ai) = λ(bi) for all i ∈ [k].
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Proof. Let T be a (d,m)-tree-model of G. Fix a linear order <ρ of the leaves of T such that
for any three leaves u, v, w of T the following holds: if u <ρ v <ρ w then v is a descendant of
lcaT (u,w) or v = lcaT (u, v). It is easy to see that such order exists – for example if we run
the DFS algorithm from the root T , then the order in which the leaves of T are visited by
the algorithm has this property. For any tuple ā = (a1, . . . , ak) let T ā denote the smallest
subtree of T which contains a1, . . . , ak and lcaT (a1, . . . , ak). We say that two tuples ā, b̄ are
(T, ρ)-similar if T ā and T b̄ are isomorphic, where we require that the isomorphism maps
ai to bi and respects the colors of leaves and also the order <ρ. It is easy to see that the
(T, ρ)-similarity relation is an equivalence with finitely many classes; let γ(m, d, k) denote
the number of equivalence classes. We set L(m, d, k) := (d+ 1)γ(m, d, k). Assume now that
a strict k-module M of G has size at least L(m, d, k). Then there are at least d+ 1 tuples in
M which are (T, ρ)-similar; let us denote this set of tuples by S. We claim that there exists
a pair of tuples ā = (a1, . . . , ak) and b̄ = (b1, . . . , bk) in S such that lcaT ({a1, . . . , ak}) and
lcaT ({b1, . . . , bk}) are incomparable, in which case we are done. Assume for contradiction
that there is no such pair. In this case there have to be two tuples ā = (a1, . . . , ak) and
b̄ = (b1, . . . , bk) in S such that lcaT (a1, . . . , ak) = lcaT (b1, . . . , bk), because the least common
ancestors of all tuples in S are comparable and |S| ≥ d+ 1. In the remainder of the proof
we show that there exist i, j with 1 ≤ i, j ≤ k such that i, j is a conflict pair in M but the
adjacency between ai, aj , bi, bj in G does not lead to a conflict, which is a contradiction.
Set v := lcaT (a1, . . . , ak) = lcaT (b1, . . . , bk). We take as the pair i, j any conflicting pair of
M such that lcaT (ai, ak) = v. To see that such pair exists, partition {a1, . . . , ak} into sets
A1, A2, . . . according to the following rule: two vertices of {a1, . . . , ak} are in the same set if
their least common ancestor is not v (note that in this case the least common ancestor is a
descendant of v as v = lcaT (a1, . . . , ak)). It is easily seen that this is an equivalence. Since
the conflict graph of M is connected, there have to be vertices ai ∈ A1 and aj ∈ A2 such
that i, j is a conflict pair. Since they are in different sets, it has to hold that lcaT (ai, ak) = v.
Without loss of generality we may assume that i = 1 and j = 2.

We now examine the adjacency of a1, a2, b1, b2 in G. To disprove that (1, 2) is a conflict
pair in M , it is enough to show that (i) the adjacency between a1 and a2 is the same as
the adjacency between a1 and b2 or (ii) the adjacency between b1 and b2 is the same as
the adjacency between b1 and a2 Without loss of generality assume that a1 <ρ a2 (which
also means that b1 <ρ b2 because ā and b̄ are isomorphic) and that a1 < b1 (otherwise
we just swap ā and b̄). There are two cases to consider. First, if a2 <ρ b1, then we have
a1 <ρ a2 <ρ b1 <ρ b2. In this case, since lcaT (a1, a2) = v we also have to have lcaT (a1, b2) = v

(this follows from the definition of <ρ), which means that the distance between a1 and a2 is
the same as the distance between a1 and b2. Since λ(a2) = λ(b2) (again, because ā and b̄
are isomorphic), we have {a1, a2} ∈ E(G)⇔ {a1, b2} ∈ E(G) and we have shown (i) above.
The second case to consider is when b1 <ρ a2. Then we have either a1 <ρ b1 <ρ a2 <ρ b2
or a1 <ρ b1 <ρ b2 <ρ a2. In the first situation we argue as in the previous case, and in the
second situation we know that since lcaT (b1, b2) = v it also has to hold lcaT (b1, a2) = v, and
we get that {b1, b2} ∈ E(G)⇔ {b1, a2} ∈ E(G), which is the situation (ii) above. J

Let T be a tree and A a subset of leaves of T . We define TA to be the smallest subtree
of T which contains the root of T and all vertices from A.

I Definition 4.2. A tree-model T is splittable if there exists a node u such that the leaves of
the tree Tu can be partitioned into two sets A and B such that if we remove Tu from T and
replace it by attaching TAu and TBu to the parent of u, then the resulting tree-model defines
the same graph as T . If T is not splittable, it is unsplittable.
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I Lemma 4.3. Every graph which has a (d,m)-tree-model has an unsplittable (d,m)-tree-
model.

Proof. Let T be a (d,m)-tree-model of G. If T is splittable, we keep splitting it (as in the
Definition 4.2) as long as possible. Each splitting increases the number of internal nodes in
T , and since there are at most |V (G)| · (d− 1) + 1 internal nodes in any tree-model of depth
d of G, the process has to stop. J

The next lemma captures the connection between unsplittable tree-models and strict
modules.

I Lemma 4.4. Let (T, S, λ) be an unsplittable tree-model of a graph G and let u be a node
of T with L ≥ 2 children {1, . . . , L} such that for any two of its children i and j there exists
a label preserving isomorphism ιij between Ti and Tj. Then G contains a strict k-module
with L tuples, where k is the number of leaves in T1.

Proof. Let Wi denote the set of leaves of Ti. Fix any ordering on W1 and for every j > 1 use
ιij to define the corresponding ordering on Wj , i.e. define ≤j on Wj by setting u ≤j v if, and
only if, ιj1(u) ≤1 ιj1(v). Each pair (Wi,≤i) can be thought of as an ordered k-tuple, and we
claim that M := {(W1,≤1), . . . , (WL,≤L)} is a strict k-module with L tuples claimed in the
statement of the lemma.

The fact that M is a k-module in G with L tuples is clear from its definition, and so it
remains to argue that M is in fact strict. For the sake of contradiction assume that M is not
strict, which means that its conflict graph C(M) on the vertex set [k] is not connected. Let C
be a connected component of C(M) on p < k vertices, and without loss of generality assume
that V (C) = [p]. We will prove that T is splittable, which is the contradiction with our
assumption on T . To simplify the notation in the rest of the proof, we will from now on denote
the tuples of M by the usual ā, b̄, . . . instead of (W1,≤1), (W2,≤2), . . .. Let ā be a tuple of
M . Let A := {a1, . . . , ap} be the set of the first p vertices in ā and let A′ = {a1, . . . , ak} \A.
We remove T1 from T and replace it by attaching to u the trees TAu and TA′

u to obtain a new
tree-model (T ′, S, λ) (the relation S and labeling function λ are the same as in T ). We claim
that (T ′, S, λ) is a tree-model of G. Since the transformation of T into T ′ does not change
any labels, the only change in the adjacency defined by T ′ compared to T can come from a
change of distance between two leaves. The only situation when distT (v, w) 6= distT ′(v, w)
is when v ∈ A and w ∈ A′ or vice versa – in this case it holds that distT ′(v, w) = 2l, where
l is the height of u in T (and also in T ′). We now argue that in this case the adjacency
between u and u remains unchanged, i.e. {v, w} ∈ E(GT )⇔ {v, w} ∈ E(GT ′). Since v ∈ A
and w ∈ A′ we have that v = ai for some i ≤ p and w = aj for some j > p. Assume that
{ai, aj} ∈ E(GT ). We need to show that {ai, aj} ∈ E(GT ′), which is the case exactly when
(λ(ai), λ(aj), 2l) ∈ S. Let α and β be the relations of M . Since ai and aj are in the same
tuple of M , it holds that {i, j} ∈ α. Since i and j are in different connected components
of the conflict graph C(M), it also holds that {i, j} ∈ β. Let b̄ := (b1, . . . , bk) be a tuple of
M different from ā. Since {i, j} ∈ β, there is an edge between ai and bj in G. Because the
distance between ai and bj in T is 2l, this means that (λ(ai), λ(bj), 2l) ∈ S. Because M is a
module, λ(aj) = λ(bj), and so (λ(ai), λ(aj), 2l) ∈ S, which means that {ai, aj} ∈ E(GT ′) as
desired. The other direction is proved analogously. J

I Lemma 4.5. For every d,m ≥ 1 and every sequence 0 < L1 ≤ L2 ≤ . . . there exist K
and N such that every graph which has a (d,m)-tree-model and has more than N vertices
contains, for some k ≤ K, a strict k-module with more than Lk tuples.
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Proof. For a tree-model T we say that two nodes u, v of T are T -isomorphic if they have
the same parent and there is a label preserving isomorphism between Tu and Tv.

We will prove by induction on d the following statement, which implies the lemma by
means of Lemma 4.4. For every d and m there exist numbers K(d,m) and N(d,m) such
that the following holds: In every (d,m)-tree-model with at least N(d,m) leaves there is a
node which, for some k ≤ K(d,m), has more than Lk pairwise T -isomorphic children each of
which has k leaves.

For d = 1 we set k(1,m) := 1 and N(1,m) := mL1. Let G be a graph on more than
N(1,m) vertices and let T be its tree-model of height 1. Then T has more than N(1,m)
leaves and for at least one label there are more than L1 leaves having this label, which means
that they form a set of more than L1 pairwise T -isomorphic children of the root.

Assume now that d > 1 and the statement holds for d− 1. Set K(d,m) := N(d− 1,m)
and N(d,m) := N(d − 1,m) · LK(d,m) · γ(d − 1,m), where γ(d − 1,m) is the number of
non-isomorphic (d − 1,m)-tree-models with at most N(d − 1,m) leaves, and where it is
understood that the isomorphisms are label preserving. Let T be a (d,m)-tree-model with
more than N(d,m) leaves. We distinguish two cases:
1. There is a child u of the root of T such that Tu has more than N(d− 1,m) leaves. Then

by the inductive assumption there is a node in Tu which, for some k ≤ K(d − 1,m),
has more than Lk pairwise T -isomorphic children each of which has k leaves. Since
K(d− 1,m) < K(d,m) we are done.

2. For every child u of the root r of T it holds that Tu has at most N(d − 1,m) leaves.
In this case r has more than N(d,m)

N(d−1,m) = LK(d,m) · γ(d − 1,m) children, each of which
corresponds to a subtree Tu of T with at most N(d− 1,m) leaves. We group the subtrees
of T determined by the children of r into groups C1, . . . , Cγ(d−1,m) according to their
labeled isomorphism type. Because there are more than LK(d,m) · γ(d− 1,m) of these
trees, at least one group Ci has more than LK(d,m) trees in it. All these trees are pairwise
isomorphic and have at most N(d− 1,m) = K(d,m) leaves; let us denote this number of
leaves by k. Since k ≤ K(d,m), we have Lk ≤ LK(d,m) and therefore Ci has more than
Lk trees, as desired. J

I Corollary 4.6. For every d,m ≥ 1 there exist K and N such that every graph which has a
(d,m)-tree-model and has more than N vertices contains, for some k ≤ K, a strict k-module
with more than L(m, d, k) tuples, where L(m, d, k) is the function from Lemma 4.1.

Proof. For every k set Lk to be the L(m, d, k) from Lemma 4.1 (where it is easily seen that
L(m, d, k − 1) ≤ L(m, d, k) for each k) and apply Lemma 4.5. J

5 Algorithms

In this section we use the results from the previous section to obtain two algorithms for
computing tree-models of graphs.

The results obtained in the previous section suggest the following strategy to compute,
given a graph G and d,m > 0 as input, a (d,m)-tree-model of G, provided such a tree-model
of G exists.

The main algorithmic strategy. Let G be a graph and d,m > 0 be integers.
Step 1. Given d,m, let K and N be the numbers stated in Corollary 4.6.
Step 2. As long as |G| > N , repeat the following steps.

a. find, for some k < K, a strict k-module M in G of size |M | > L(m, d, k)
b. choose a set M∗ ⊆M of order exactly L(m, d, k) and delete all elements of all tuples

in M \M∗. Remember the sets M and M∗ for each such step.
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Step 3. Let G′ be the remaining graph of order |G′| ≤ N . Compute a (d,m)-tree-model
(T ′, S′, λ′) of G′ by brute force.

Step 4. In reverse order of their creation, for each module M and set M∗ ⊆M constructed
in the iterations of Step 2
a. find tuples ā, b̄ in T ′ satisfying the requirements of Corollary 3.9.
b. Extend (T ′, S′, λ′) by adding the vertices in M \M∗ as described in Corollary 3.9.

The correctness of this approach follows from the results in Section 4. By Corollary 4.6,
given d and m, the numbers K and N used in Step 1 depending only on d and m but not on
G exist such that if |G| > N , then G contains a strict k-module M of size > L = L(m, d, k),
for some k < K. Here and below L(m, d, k) is the function defined in Lemma 4.1.

In Step 2 we iteratively reduce the size of G until its size is bounded by a function of
the parameters d and m. This creates a sequence G = G0 ⊃i G1 ⊃i . . . ⊃r= G′ of graphs,
where r is the number of iterations in Step 2. Notice that in each iteration, when we remove
M \M∗ from Gi to obtain Gi+1, we keep in Gi+1 enough tuples of M to be able to construct
a (d,m)-tree-model T i of Gi from a (d,m)-tree-model T i+1 of Gi+1. To see this, notice
that M∗ (which was not removed and is a strict k-module of Gi+1) has L(m, d, k) tuples,
and so by of Lemma 4.1 there are tuples (a1, . . . , ak) and (b1, . . . , bk) in M∗ such that the
vertices {a1, . . . , ak, b1, . . . , bk} are placed in T i+1 in accordance with the assumptions of
Corollary 3.9, the application of which allows us to put all tuples from M \M∗ into T i+1 to
obtain T i.

After completing Step 2 we are left with an induced subgraph G′ of G of size |G′| ≤ N .
In Step 3 we compute a (d,m)-tree-model (T ′, S′, λ′) of G′. As N only depends on the
parameters d and m we can compute T ′ by brute-force. If no such (d,m)-tree-model of G′
exists, then G does not have a (d,m)-tree-model as G′ is an induced subgraph of G and the
existance of tree-models is preserved by taking induced subgraphs.

Otherwise, if we find a (d,m)-tree-model (T ′, S′, λ′) of G′ we extend it to a (d,m)-tree-
model of the input graph G in Step 4. For this, we iterate again over all modules M and
subsets M∗ constructed in the iterations of Step 2 and apply Corollary 3.9 to extend T ′ so
that it contains the vertices in M \M∗.

This proves the general correctness of the algorithmic approach described above. In
the remainder of this section we show how the various steps in the algorithm above can be
implemented to eventually yield an fpt-algorithm for comptuting tree-models.

As a first step towards this goal we present a simple XP-algorithm implementing the
approach described above. The methods we use for this algorithm for the Steps 3 and 4 but
not for Step 2 are already good enough for an fpt-algorithm. What remains to be done is to
improve Step 2.

As a second step, we present an improved XP-algorithm with a better algorithm for Step
2. Finally we show how this new strategy for Step 2 can be implemented in a way to yield
an fpt-algorithm as required.

The XP algorithms. The first algorithmic step we prove is the following lemma, which is
an easy consequence of Lemma 3.6 and 4.1. The lemma essentially states that once we have
found a tree-model T ′ for the reduced graph G′ obtained from G by removing some tuples of
a k-module, the tree-model of G can be computed efficiently from T .

I Lemma 5.1. Let G be a graph which has a (d,m)-tree-model and let M be a strict k-module
containing more than L = L(m, d, k) tuples. Let Q ⊆ M be such that |M \Q| = L and let
G′ be the graph obtained from G by deleting all vertices contained in tuples in Q. Then any
(d,m)-tree-model T ′ of G′ can be extended in linear time to a (d,m)-tree-model T of G.
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Proof. Let (T ′, S′, λ′) be a (d,m)-tree-model of G′. SinceM \Q is a strict k-module in G′ con-
taining L = L(m, d, k) tuples, Lemma 4.1 guarantees that there are tuples ā := (a1, . . . , ak),
b̄ := (b1, . . . , bk) ∈ M \ Q in G such that lcaT ′({a1, . . . , ak}) and lcaT ′({b1, . . . , bk}) are
incomparable in T ′ and λ′(ai) = λ′(bi) for all i ∈ [k]. By Corollary 3.9, (T ′, S′, λ′) can be
extended to a (d,m)-tree-model (T, S, λ) of G. It is straight forward to verify that the proof
of 3.9 can be made algorithmic and can be implemented in linear time. Note that when we
delete the tuples in Q, we will store with Q also the tuples ā, b̄, as we need them to add the
elements of Q to the tree-model T ′. J

The previous lemma shows how Step 4 above can be implemented. Step 3 can be done
by brute-force, so all that remains is to provide an algorithm for Step 2.

Towards this aim, note that since k and Lk = L(m, d, k) depend only on d and m and
not on |V (G)|, we can simply go over all subsets X ⊆ V (G) of size |X| = k(Lk + 1) in time
|V (G)|k(Lk+1) and for each such X check whether it can be partitioned into a strict k-module.
Using this as a sub-routine for Step 2 above to obtain our first XP-algorithm for computing
tree-models.

However, this way of finding strict k-modules is highly inefficient, and in the remainder of
this section we argue that the runtime can be improved to |V (G)|3k+1 by using the following
simple greedy procedure. For every set X ⊆ V (G) of 2k vertices of G we 1) generate all
partitions of X into two disjoint sets Xa, Xb of k vertices each and 2) for each of these we
consider all possible ways to order the vertices in Xa and Xb so that we obtain ordered
k-tuples ā and b̄ and then we 3) check whether ā and b̄ are k-twin tuples. For any pair ā, b̄ of
twin tuples obtained in this way we let M := {ā, b̄} and iterate over all k-tuples c̄ of vertices
from V (G) \ V (M). For any such c̄ we check whether c̄ is a twin tuple of every tuple already
contained in M . If so, we add c̄ to M and repeat, extending M as long as possible.

Observe that this procedure is approximate in the following sense: it finds a strict
k-module with more than Lk tuples provided that a strict k-module with more than kLk
tuples exists in G. As this procedure requires G to contain a strict k-module of size kLk
instead of Lk, whenever we apply Lemma 4.5 in the general algorithm above, we use m, d
but with a different sequence L1 ≤ L2 ≤ . . . defined as Lk = kL(m, d, k) . This guarantees
that Lemma 4.5 applied to m, d and this new sequence L1 ≤ L2 ≤ . . . yields suitable K and
N that make the algorithm above work.

We show next that this revised procedure for Step 2a is correct in the sense that it indeed
produces a strict k-module of size > L(m, d, k) as required. Towards this aim, let Z be a
strict k-module of G with the maximum number of tuples (in particular note that Z has
more than kL(m, d, k) tuples).
1. At least one initial guess of ā and b̄ yields a pair of twin tuples from Z, because we go

over all sets of size 2k, all possible ways to split them into k-tuples ā and b̄. The pair ā, b̄
also determines relations α and β, which guarantees that these are the same for M and
Z.

2. Even if every tuple c̄ we find is suboptimal (i.e. c̄ is not one of the tuples in Z but
intersects several of these), it can intersect at most k tuples in Z. The remaining tuples
in Z which do not contain any vertex contained in a tuple in M are twin tuples of every
tuple in M and therefore also of c̄, as the relation of being an (α, β)-twin tuple with
respect to fixed α and β is transitive.

Item 2 implies that after the i-th iteration of adding a tuple c̄ to M there are more than
kLk − 2− ki tuples in Z left which can still be added to M . Thus, at least Lk − 1 iterations
will be performed and therefore M will have at least Lk + 1 tuples.
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The FPT-algorithm. We are now ready to present the fpt-algorithm for computing (d,m)-
tree-models. The reason why the previous algorithm is only an XP-algorithm is that it
iterates over all possible sets of vertices of size 2k to find a pair of twin tuples ā, b̄ and then
later on again iterates over all sets of size k to find a suitable tuple c̄.

In this section we prove that in order to find a pair of twin tuples ā, b̄ in G it is enough
to guess a pair u, v of vertices and then check in linear time whether they can be extened to
an (α, β)-twin tuple. Similarly, given a strict k-module M of G, to find a twin k-tuple c̄ of
all tuples in M it is enough to guess one vertex u of c̄ and the check in linear time whether
it can be extended appropriately.

I Lemma 5.2. Let k ∈ N and let α and β be relations on [k] such that they determine a
connected conflict graph. Let G be a graph and u, v be vertices of G. Then the number of
twin tuples (a1, . . . , ak), (b1, . . . , bk) such that u = a1 and v = b1 is bounded by a function in
k and there is an algorithm running in time f(k) · |V (G)| which, given G, u and v as input,
computes all such pairs of twin tuples.

Proof. We will prove that for every pair
(
(A, fA), (B, fB)

)
where A and B are disjoint

subsets of V (G) with |A| = |B| = p ≤ k and fA : A → [k] and fB : B → [k] are injective
functions with the same image in [k] we can generate in time f(k) · |V (G)| all pairs

(
(Ā, fĀ),

(B̄, fB̄)
)
such that:

Ā and B̄ are disjoint, |Ā| = |B̄| = k and A ⊆ Ā, B ⊆ B̄
fĀ : Ā→ [k] and fB̄ : B̄ → [k] are injective
Ā and B̄ with the orderings induced by fĀ and fB̄ in the obvious way are (α, β)-twin-
tuples.

Moreover, the number of such pairs (Ā, fĀ), (B̄, fB̄) will be bounded in terms of k.
We prove this by induction on j = k − p. If j = 0, then there is nothing to generate and

we only need to check whether (A, fA) and (B, fB) have the adjacency prescribed by α and
β. Now assume that the statement holds for all integers less than j and let (A, fA), (B, fB)
be an instance with |A| = |B| = p where j = k − p. First, we check whether G[A] and G[B]
and all edges between A and B in G[A ∪ B] are consistent with α and β (with respect to
the ordering induced by fA and fB). If this is not the case, we can immediately say that
(A, fA), (B, fB) cannot be extended.

So we may assume that G[A], G[B], and G[A ∪ B] are consistent with α and β. To
simplify the notation, in the rest of this proof we will denote by ai the element of A such
that fA(ai) = i and by bi the element of B with fB(bi) = i. For all i in the image im(fA) of
fA (and thus also in the image im(fB) of fB), let Si := (N(ai)∆N(bi)) \ (A ∪B). That is,
Si is the set of all vertices outside of A ∪B on which ai and bi differ. Let S :=

⋃
i∈im(fA) Si.

Since the conflict graph determined by α and β is connected, for any j > 0 and any pair
(A, fA), (B, fB) which can be extended to an (α, β)-twin pair (Ā, fĀ), (B̄, fB̄) the set S
will be non-empty. Moreover, all vertices in S have to be included in all extensions (Ā, fĀ),
(B̄, fB̄) satisfying the properties above. For, otherwise there would be an i such that ai and
bi are not twins in V (G)\ Ā∪ B̄, which contradicts the definition of twin-tuples. If S is larger
than 2k − 2j we know that A and B cannot be extended as desired, because then we would
have |Ā|+ |B̄| > 2k, again a contradiction. If S has size at most 2k − 2j, then we consider
all partitions of S into sets SA and SB of equal size, set A′ := A∪ SA and B′ := B ∪ SB and
consider all injective functions fA′ : A′ → [k], fB′ : B′ → [k] which have the same image and
which agree with fA and fB on A and B, respectively. Since |A′| > |A| and |B′| > |B|, we
have that k − |A| < j and we can apply the induction hypothesis to (A′, fA′), (B′, fB′).
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Clearly in the case when we use the induction hypothesis the size of the set S is bounded
by k, and so is the number of its bipartitions into SA and SB and also the number of different
functions fA′ and fB′ . This completes the proof. J

I Lemma 5.3. Let k ∈ N and let α and β be relations on [k] such that they determine
a connected conflict graph. Let G be a graph, M be a strict (α, β)-module in G and let
v ∈ V (G) \ V (M). Then in time g(k) · |V (G)| one can find a tuple c̄ := (c1, . . . , ck) in
V (G) \ V (M) with c1 = v such that c̄ is an (α, β)-twin of all tuples in M , or determine that
no such tuple exists.

Proof. Let ā be a tuple of M and let G′ be obtained from G by deleting all tuples of M
with the exception of ā. Note that if c̄ exists in G, then it is an (α, β)-twin tuple of ā in G′.
We apply Lemma 5.2 to a1 and v to obtain the set of all (α, β)-twin tuples which have a1
and v on their first positions, resp. If any of these pairs of tuples contains ā, then the the
second tuple of this pair can be taken as c̄. The fact that c̄ is also an (α, β)-twin tuple of all
tuples in M in G follows from trasitivity of being (α, β)-twin tuple. J

We are now ready to prove the main algorithmic result of this section.

I Theorem 5.4. Let G be a graph which contains a strict k-module Z with more than kL
tuples. Then it is possible to find a strict k-module M with more than L tuples in time
h(k) · |V (G)|4.

Proof. The algorithm iterates over all pairs of symmetric relations α and β on [k]2 which
determine a connected conflict graph and for each such pair proceeds as follows. For every
pair u, v of vertices in G it uses the algorithm from Lemma 5.2 to generate the set S of
all pairs of (α, β)-twin tuples which have u and v on their first positions. Then, for each
pair ā, b̄ ∈ S we set M := {ā, b̄} and by repeated application of Lemma 5.3 we extend M by
finding a tuple c̄ which is an (α, β)-twin of every tuple in M and adding c̄ to M for as long
as possible.

We now argue that at least for one choice of α, β, u and v the algorithm produces a strict
k-module with more than L elements. Set α and β to be the relations of Z and let u, v be
vertices which are on the first position of tuples ā, b̄ of Z. By applying the algorithm from
Lemma 5.2 to α, β, u, v we find all pairs of (α, β)-twin tuples which have u and v on their
first position. In particular we will find ā and b̄. We then set M := {ā, b̄} and try to extend
M as much as possible using Lemma 5.3. We can argue in exactly the same way as in the
previous section that the number of successful iterations of extending M by a tuple c̄ will be
at least L− 1. Thus, together with ā and b̄, the k-module M we find will have at least L+ 1
tuples. J

Using the algorithm of Theorem 5.4 in Step 2 of the general algorithmic strategy outlined
at the beginning of this section, we obtain our main algorithmic result.

I Theorem 5.5. There is an algorithm which, given a graph G and numbers m, d > 0 as
input, in time f(d,m) · |G|c, for a computable function f and a constant c both independent
of G, d, and m, either computes a (d,m)-tree-model of G or correctly determines that no
such module exists.

6 Application for forbidden induced subgraphs

As an easy consequence of our results from Section 4 we obtain a simple proof of the following
theorem, which was originally proven in [8].
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I Theorem 6.1. For every d,m there exists a finite set of graphs Fd,m such that a graph G
has a (d,m)-tree-model if, and only if, G does not have an induced subgraph isomorphic to a
member of Fd,m.

Compared to the proof of Theorem 6.1 given in [8], our proof given below has the advantage
of providing explicit bounds on the size of graphs in Fd,m and therefore being constructive.

Proof. Fix d and m. Let Fd,m be the set of all graphs H such that H does not have a
(d,m)-tree-model and every proper induced subgraph of H has a (d,m)-tree-model. It is
easy to see that for every graph G it holds that G has a (d,m)-tree-model if, and only if,
G does not have an induced subgraph isomorphic to a member of Fd,m. We will show that
there is a bound on the size of graphs in Fd,m.

Let K and N be the numbers obtained from Corollary 4.6 applied to d and m. We claim
that no graph in Fd,m has more than N vertices. Assume towards a contradiction that there
is a graph H from Fd,m which has more than N vertices. By Corollary 4.6 there is a strict
k-module M in H with more than L(d,m, k) tuples for some k ≤ K. Let H ′ be the graph
obtained from H by removing one tuple c̄ from M . Then H ′ is a proper induced subgraph of
H and has strict k-module M ′ with at least L(d,m, k) tuples. Since H ′ is a proper induced
subgraph of H, it has (d,m)-tree-model T ′. By Lemma 4.1 there are two tuples ā and b̄

in M ′ such that they are in different subtrees of T ′. By Lemma 3.6 we can extend T ′ (by
adding c̄ into it) to a (d,m)-tree-model T of H, which is a contradiction with the assumption
that H has no (d,m)-tree-model. Thus, no member of Fd,m has more than N vertices. J
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Abstract
In this work, we give a structural lemma on merges of typical sequences, a notion that was introduced
in 1991 [Lagergren and Arnborg, Bodlaender and Kloks, both ICALP 1991] to obtain constructive
linear time parameterized algorithms for treewidth and pathwidth. The lemma addresses a runtime
bottleneck in those algorithms but so far it does not lead to asymptotically faster algorithms.
However, we apply the lemma to show that the cutwidth and the modified cutwidth of series parallel
digraphs can be computed in O(n2) time.
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1 Introduction

In this paper we revisit an old key technique from what currently are the theoretically fastest
parameterized algorithms for treewidth and pathwidth, namely the use of typical sequences,
and give additional structural insights for this technique. In particular, we show a structural
lemma, which we call the Merge Dominator Lemma. The technique of typical sequences
brings with it a partial ordering on sequences of integers, and a notion of possible merges of
two integer sequences; surprisingly, the Merge Dominator Lemma states that for any pair
of integer sequences there exists a single merge that dominates all merges of these integer
sequences, and this dominating merge can be found in linear time. On its own, this lemma
does not lead to asymptotically faster parameterized algorithms for treewidth and pathwidth,
but, as we discuss below, it is a concrete step towards such algorithms.

The notion of typical sequences was introduced independently in 1991 by Lagergren and
Arnborg [15] and Bodlaender and Kloks [8]. In both papers, it is a key element in an explicit
dynamic programming algorithm that given a tree decomposition of bounded width `, decides
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if the pathwidth or treewidth of the input graph G is at most a constant k. Lagergren
and Arnborg build upon this result and show that the set of forbidden minors of graphs of
treewidth (or pathwidth) at most k is computable; Bodlaender and Kloks show that the
algorithm can also construct a tree or path decomposition of width at most k, if existing, in
the same asymptotic time bounds. The latter result is a main subroutine in Bodlaender’s
linear time algorithm [3] for treewidth-k. If one analyses the running time of Bodlaender’s
algorithm for treewidth or pathwidth ≤ k, then one can observe that the bottleneck is in
the subroutine that calls the Bodlaender-Kloks dynamic programming subroutine, with
both the subroutine and the main algorithm having time O(2O(k3)n) for treewidth, and
O(2O(k2)n) for pathwidth. See also the recent work by Fürer for pathwidth [13], and the
simplified versions of the algorithms of [3, 8] by Althaus and Ziegler [1]. Now, over a quarter
of a century after the discovery of these results, even though much work has been done on
treewidth recognition algorithms (see e.g. [2, 5, 11, 12, 13, 14, 16, 17]), these bounds on
the function of k are still the best known, i.e. no O(2o(k3)nO(1)) algorithm for treewidth,
and no O(2o(k2)nO(1)) algorithm for pathwidth is known. An interesting question, and a
long-standing open problem in the field [4, Problem 2.7.1], is whether such algorithms can
be obtained. Possible approaches to answer such a question is to design (e.g. ETH or SETH
based) lower bounds, find an entirely new approach to compute treewidth or pathwidth in a
parameterized setting, or improve upon the dynamic programming algorithms of [15] and [8].
Using our Merge Dominator Lemma we can go one step towards the latter, as follows.

The algorithms of Lagergren and Arnborg [15] and Bodlaender and Kloks [8] are based
upon tabulating characteristics of tree or path decompositions of subgraphs of the input
graph; a characteristic consists of an intersection model, that tells how the vertices in the
current top bag interact, and for each part of the intersection model, a typical sequence of bag
sizes.1 The set of characteristics for a join node is computed from the sets of characteristics
of its (two) children. In particular, each pair of characteristics with one from each child
can give rise to exponentially (in k) many characteristics for the join node. This is because
exponentially many typical sequences may arise as the merges of the typical sequences that
are part of the characteristics. In the light of our Merge Dominator Lemma, only one of
these merges has to be stored, reducing the number of characteristics arising from each pair
of characteristics of the children from 2O(k) to just 1. Moreover, this dominating merge can
be found in O(k) time, with no large constants hidden in the “O”.

Merging typical sequences at a join node is however not the only way the number of
characteristics can increase throughout the algorithm, e.g. at introduce nodes, the number of
characteristics increases in a different way. Nevertheless, the number of intersection models
is O(kO(k)) for pathwidth and O(kO(k2)) for treewidth; perhaps, with additional techniques,
the number of typical sequences per part can be better bounded – in the case that a single
dominating typical sequence per part suffices, this would reduce the number of table entries
per node to O(kO(k)) for pathwidth-k, and to O(kO(k2)) for treewidth-k, and yield O(kO(k)n)
and O(kO(k2)n) time algorithms for the respective problems.

We give direct algorithmic consequences of the Merge Dominator Lemma in the realm
of computing width parameters of directed acyclic graphs (DAGs). Specifically, we show
that the (Weighted) Cutwidth and Modified Cutwidth problems on DAGs, which
given a directed acyclic graph on n vertices, ask for the topological order that minimizes the

1 This approach was later used in several follow up results to obtain explicit constructive parameterized
algorithms for other graph width measures, like cutwidth [18, 19], branchwidth [9], different types of
search numbers like linear width [10], and directed vertex separation number [7].
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cutwidth and modified cutwidth, respectively, can be solved in O(n2) time on series parallel
digraphs. Note that the restriction of the solution to be a topological order has been made as
well in other works, e.g. [6].

Our algorithm for Cutwidth of series parallel digraphs has the same structure as
the dynamic programming algorithm for undirected Cutwidth [6], but, in addition to
obeying directions of edges, we have a step that only keeps characteristics that are not
dominated by another characteristic in a table of characteristics. Now, with help of our
Merge Dominator Lemma, we can show that in the case of series parallel digraphs, there is a
unique dominating characteristic; the dynamic programming algorithm reverts to computing
for each intermediate graph a single “optimal partial solution”. This strategy also works in
the presence of edge weights, which gives the algorithm for the corresponding Weighted
Cutwidth problem on series parallel digraphs. Note that the cutwidth of a directed acyclic
graph is at least the maximum indegree or outdegree of a vertex; e.g., a series parallel digraph
formed by the parallel composition of n − 2 paths with three vertices has n vertices and
cutwidth n − 2. To compute the modified cutwidth of a series parallel digraph, we give a
linear-time reduction to the Weighted Cutwidth problem on series parallel digraphs.

This paper is organized as follows. In Section 2, we give a number of preliminary
definitions, and review existing results, including several results on typical sequences from [8].
In Section 3, we state and prove the main technical result of this work, the Merge Dominator
Lemma. Section 4 gives our algorithmic applications of this lemma, and shows that the
cutwidth and modified cutwidth of a series parallel digraph can be computed in polynomial
time. Some final remarks are made in Section 5.

Statements marked with “♣” are proved in the full version of the paper.

2 Preliminaries

We use the following notation. For two integers a, b ∈ N with a ≤ b, we let [a..b] ..=
{a, a + 1, . . . , b} and for a > 0, we let [a] ..= [1..a]. If X is a set of size n, then a linear
order is a bijection π : X → [n]. Given a subset X ′ ⊆ X of size n′ ≤ n, we define the
restriction of π to X ′ as the bijection π|X′ : X ′ → [n′] which is such that for all x′, y′ ∈ X ′,
π|X′(x′) < π|X′(y′) if and only if π(x′) < π(y′).

Sequences and Matrices. We denote the elements of a sequence s by s(1), . . . , s(n). We
denote the length of s by l(s), i.e. l(s) ..= n. For two sequences r = r(1), . . . , r(m) and
s = s(1), . . . , s(n), we denote their concatenation by r ◦ s = r(1), . . . , r(m), s(1), . . . , s(n).
For two sets of sequences R and S, we let R� S ..= {r ◦ s | r ∈ R ∧ s ∈ S}. For a sequence s
of length n and a set X ⊆ [n], we denote by s[X] the subsequence of s induced by X, i.e. let
X = {x1, . . . , xm} be such that for all i ∈ [m− 1], xi < xi+1; then, s[X] ..= s(x1), . . . , s(xm).
For x1, x2 ∈ [n] with x1 ≤ x2, we use the shorthand “s[x1..x2]” for “s[[x1..x2]]”.

Let Ω be a set. A matrix M ∈ Ωm×n over Ω is said to have m rows and n columns. For
sets X ⊆ [m] and Y ⊆ [n], we denote by M [X,Y ] the submatrix of M induced by X and
Y , which consists of all the entries from M whose indices are in X × Y . For x1, x2 ∈ [m]
with x1 ≤ x2 and y1, y2 ∈ [n] with y1 ≤ y2, we use the shorthand “M [x1..x2, y1..y2]” for
“’M [[x1..x2], [y1..y2]]”. For a sequence s(1), s(2), . . . , s(`) of indices of a matrix M , we let

M [s] ..= M [s(1)],M [s(2)], . . . ,M [s(`)] (1)

be the corresponding sequence of entries from M .
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For illustrative purposes we enumerate the columns of a matrix in a bottom-up fashion
throughout this paper, i.e. we consider the index (1, 1) as the “bottom left corner” and the
index (m,n) as the “top right corner”.

Integer Sequences. Let s be an integer sequence of length n. We use the shorthand “min(s)”
for “mini∈[n] s(i)” and “max(s)” for “maxi∈[n] s(i)”; we use the following definitions. We let

argmin(s) ..= {i ∈ [n] | s(i) = min(s)} and argmax(s) ..= {i ∈ [n] | s(i) = max(s)}

be the set of indices at whose positions there are the minimum and maximum element of s,
respectively. Whenever we write i ∈ argmin(s) (j ∈ argmax(s)), then the choice of i (j) can
be arbitrary. In some places we require a canonical choice of the position of a minimum or
maximum element, in which case we will always choose the smallest index. Formally, we let

argmin?(s) ..= min argmin(s), and argmax?(s) ..= min argmax(s).

The following definition contains two notions on pairs of integer sequences that are
necessary for the definitions of domination and merges.

I Definition 1. Let r and s be two integer sequences of the same length n.
(i) If for all i ∈ [n], r(i) ≤ s(i), then we write “r ≤ s”.
(ii) We write q = r + s for the integer sequence q(1), . . . , q(n) with q(i) = r(i) + s(i) for all

i ∈ [n].

I Definition 2 (Extensions). Let s be a sequence of length n. We define the set E(s) of
extensions of s as the set of sequences that are obtained from s by repeating each of its
elements an arbitrary number of times, and at least once. Formally, we let

E(s) ..= {s1 ◦ s2 ◦ · · · ◦ sn | ∀i ∈ [n] : l(si) ≥ 1 ∧ ∀j ∈ [l(si)] : si(j) = s(i)}.

I Definition 3 (Domination). Let r and s be integer sequences. We say that r dominates
s, in symbols “r ≺ s”, if there are extensions r∗ ∈ E(r) and s∗ ∈ E(s) of the same length
such that r∗ ≤ s∗. If r ≺ s and s ≺ r, then we say that r and s are equivalent, and we write
r ≡ s.

If r is an integer sequence and S is a set of integer sequences, then we say that r dominates
S, in symbols “r ≺ S”, if for all s ∈ S, r ≺ s.

I Remark 4 (Transitivity of “≺”). In [8, Lemma 3.7], it is shown that the relation “≺” is
transitive. As this is fairly intuitive, we may use this fact without stating it explicitly
throughout this text.

I Definition 5 (Merges). Let r and s be two integer sequences. We define the set of all
merges of r and s, denoted by r⊕s, as r⊕s ..= {r∗+s∗ | r∗ ∈ E(r), s∗ ∈ E(s), l(r∗) = l(s∗)}.

2.1 Typical Sequences
We now define typical sequences, show how to construct them in linear time, and restate
several lemmas due to Bodlaender and Kloks [8] that will be used throughout this text.

I Definition 6. Let s = s(1), . . . , s(n) be an integer sequence of length n. The typical
sequence of s, denoted by τ(s), is obtained from s by an exhaustive application of the
following two operations:
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0

∞

Figure 1 Illustration of the shape of a typical sequence.

Removal of Consecutive Repetitions. If there is an index i ∈ [n− 1] such that s(i) = s(i+ 1),
then we change the sequence s from s(1), . . . , s(i), s(i + 1), . . . , s(n) to s(1), . . . , s(i), s(i +
2), . . . , s(n).

Typical Operation. If there exist i, j ∈ [n] such that j − i ≥ 2 and for all i ≤ k ≤ j,
s(i) ≤ s(k) ≤ s(j), or for all i ≤ k ≤ j, s(i) ≥ s(k) ≥ s(j), then we change the sequence s
from s(1), . . . , s(i), s(i+ 1), . . . , s(j), . . . , s(n) to s(1), . . . , s(i), s(j), . . . , s(n), i.e. we remove
all elements (strictly) between index i and j.

To support intuition, we illustrate the rough shape of a typical sequence in Figure 1. It
is not difficult to see that the typical sequence can be computed in quadratic time, by an
exhaustive application of the definition. Here we discuss how to do it in linear time. We may
view a typical sequence τ(s) of an integer sequence s as a subsequence of s. While τ(s) is
unique, the choice of indices that induce τ(s) may not be unique. We show that we can find
a set of indices that induce the typical sequence in linear time, with help of the following
structural proposition.

I Proposition 7 (♣). Let s be an integer sequence and let i? ∈ {argmin?(s), argmax?(s)}.
Let 1 =.. j0 < j1 < j2 < . . . < jt < jt+1 ..= i? be pairwise distinct integers, such that
s(j0), . . . , s(jt+1) are pairwise distinct. If for all h ∈ [0..t],

if s(jh) > s(jh+1) then jh = argmax?(s[1..jh+1]) and jh+1 = argmin?(s[1..jh+1]), and
if s(jh) < s(jh+1) then jh = argmin?(s[1..jh+1]) and jh+1 = argmax?(s[1..jh+1]),

then the typical sequence of s restricted to [i?] is equal to s(j0), s(j1), . . . , s(jt), s(jt+1).

The idea of the algorithm is as follows. First, it is immediate that the typical sequence of
s must contain its minimum and its maximum. We then observe the structure of τ(s) between
i? ..= min argmin(s) ∪ argmax(s) and k? ..= max argmin(s) ∪ argmax(s). Next, we find a
set of indices from [i?] that satisfy the preconditions of Proposition 7 which gives indices
inducing the typical sequence on s[1..i?]. By symmetry, we can again use Proposition 7 to
find the indices inducing τ(s) on s[k?..n].

I Lemma 8 (♣). Let s be an integer sequence of length n. Then, one can compute τ(s), the
typical sequence of s, in time O(n).

We summarize several lemmas from [8] regarding integer sequences and typical sequences
that we will use in this work.

I Lemma 9 (Bodlaender and Kloks [8]). Let r and s be two integer sequences.
(i) (Cor. 3.11 in [8]). We have that r ≺ s if and only if τ(r) ≺ τ(s).
(ii) (Lem. 3.13 in [8]). Suppose r and s are of the same length and let y = r+ s. Let r0 ≺ r

and s0 ≺ s. Then there is an integer sequence y0 ∈ r0 ⊕ s0 such that y0 ≺ y.
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(iii) (Lem. 3.14 in [8]). Let q ∈ r ⊕ s. Then, there is an integer sequence q′ ∈ τ(r) ⊕ τ(s)
such that q′ ≺ q.

(iv) (Lem. 3.15 in [8]). Let q ∈ r ⊕ s. Then, there is an integer sequence q′ ∈ r ⊕ s with
τ(q′) = τ(q) and l(q′) ≤ l(r) + l(s)− 1.

(v) (Lem. 3.19 in [8]). Let r′ and s′ be two more integer sequences. If r′ ≺ r and s′ ≺ s,
then r′ ◦ s′ ≺ r ◦ s.

2.2 Directed Acyclic Graphs
A directed graph (or digraph) G is a pair of a set of vertices V (G) and a set of ordered pairs
of vertices, called arcs, A(G) ⊆ V (G)×V (G). (If A(G) is a multiset, we call G multidigraph.)
We say that an arc a = (u, v) ∈ A(G) is directed from u to v, and we call u the tail of a and
v the head of a. We use the shorthand “uv” for “(u, v)”. A sequence of vertices v1, . . . , vr
is called a walk in G if for all i ∈ [r − 1], vivi+1 ∈ A(G). A cycle is a walk v1, . . . , vr with
v1 = vr and all vertices v1, . . . , vr−1 pairwise distinct. If G does not contain any cycles, then
we call G acyclic or a directed acyclic graph, DAG for short.

Let G be a DAG on n vertices. A topological order of G is a linear order π : V (G)→ [n]
such that for all arcs uv ∈ A(G), we have that π(u) < π(v). We denote the set of all
topological orders of G by Π(G). We now define the width measures studied in this work.
Note that we restrict the orderings of the vertices that we consider to topological orderings.

I Definition 10. Let G be a directed acyclic graph and let π ∈ Π(G).
(i) The cutwidth of π is cutw(π) ..= maxi∈[n−1]|{uv ∈ A(G) | π(u) ≤ i ∧ π(v) > i}|.
(ii) The modified cutwidth of π is mcutw(π) ..= maxi∈[n]|{uv ∈ A(G) | π(u) < i∧π(v) > i}|.

We define the cutwidth and modified cutwidth of a directed acyclic graph G as the minimum
of the respective measure over all topological orders of G.

We now introduce series parallel digraphs. Note that the following definition coincides
with the notion of “edge series-parallel multidigraphs” in [20].

I Definition 11 (Series Parallel Digraph (SPD)). A (multi-)digraph G with an ordered pair
of terminals (s, t) ∈ V (G)× V (G) is called series parallel digraph (SPD), often denoted by
(G, (s, t)), if one of the following hold.
(i) (G, (s, t)) is a single arc directed from s to t, i.e. V (G) = {s, t}, A(G) = {(s, t)}.
(ii) (G, (s, t)) can be obtained from two series parallel digraphs (G1, (s1, t1)) and (G2, (s2, t2))

by one of the following operations.
(a) Series Composition. (G, (s, t)) is obtained by taking the disjoint union of G1 and

G2, identifying t1 and s2, and letting s = s1 and t = t2. In this case we write
(G, (s, t)) = (G1, (s1, t1)) ` (G2, (s2, t2)) or simply G = G1 ` G2.

(b) Parallel Composition. (G, (s, t)) is obtained by taking the disjoint union of G1 and
G2, identifying s1 and s2, and identifying t1 and t2, and letting s = s1 = s2 and
t = t1 = t2. In this case we write (G, (s, t)) = (G1, (s1, t1)) ⊥ (G2, (s2, t2)), or
simply G = G1 ⊥ G2.

It is not difficult to see that each series parallel digraph is acyclic. One can naturally
associate a notion of decomposition trees with series parallel digraphs as follows. A decom-
position tree T is a rooted and ordered binary tree whose leaves are labeled with a single arc,
and each internal node t ∈ V (T ) with left child ` and right child r is either a series node or
a parallel node. We then associate an SPD Gt with t that is G` ` Gr if t is a series node and
G` ⊥ Gr if t is a parallel node. It is clear that for each SPD G, there is a decomposition tree
T with root r such that G = Gr. In that case we say that T yields G. Valdes et al. [20] have
shown that one can decide in linear time whether a directed graph G is an SPD and if so,
find a decomposition tree that yields G.
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I Theorem 12 (Valdes et al. [20]). Let G be a directed graph on n vertices and m arcs.
There is an algorithm that decides in time O(n+m) whether G is a series parallel digraph
and if so, it outputs a decomposition tree that yields G.

3 The Merge Dominator Lemma

In this section we prove the main technical result of this work. It states that given two
integer sequences, one can find in linear time a merge that dominates all merges of those two
sequences.

I Lemma 13 (Merge Dominator Lemma). Let r and c be integer sequences of length m and
n, respectively. There exists a dominating merge of r and c, i.e. an integer sequence t ∈ r⊕ c
such that t ≺ r ⊕ c, and this dominating merge can be computed in time O(m+ n).

Outline of the proof. First, we show that we can restrict our search to finding a dominating
path in a matrix that, roughly speaking, contains all merges of r and c of length at most
l(r) + l(c)− 1. The goal of this step is mainly to increase the intuitive insight to the proofs
in this section. Next, we prove the “Split Lemma” (Lemma 19 in Section 3.2) which asserts
that we can obtain a dominating path in our matrix M by splitting M into a submatrix
M1 that lies in the “bottom left” of M and another submatrix M2 in the “top right” of
M along a minimum row and a minimum column, and appending a dominating path in
M2 to a dominating path in M1. In M1, the last row and column are a minimum row and
column, respectively, and in M2, the first row and column are a minimum row and column,
respectively. This additional structure will be exploited in Section 3.3 where we prove the
“Chop Lemmas” that come in two versions. The “bottom version” (Lemma 20) shows that in
M1, we can find a dominating path by repeatedly chopping away the last two rows or columns
and remembering a vertical or horizontal length-2 path. The “top version” (Corollary 21)
is the symmetric counterpart for M2. The proofs of the Chop Lemmas only hold when r
and c are typical sequences, and in Section 3.4 we present the “Split-and-Chop Algorithm”
that computes a dominating path in a merge matrix of two typical sequences. Finally, in
Section 3.5, we generalize this result to arbitrary integer sequences, using the Split-and-Chop
Algorithm and one additional construction. J

3.1 The Merge Matrix, Paths, and Non-Diagonality
Let us begin by defining the basic notions of a merge matrix and paths in matrices.

I Definition 14 (Merge Matrix). Let r and c be two integer sequences of length m and n,
respectively. Then, the merge matrix of r and c is an m× n integer matrix M such that for
(i, j) ∈ [m]× [n], M [i, j] = r(i) + c(j).

I Definition 15 (Path in a Matrix). Let M be an m× n matrix. A path in M is a sequence
p(1), . . . , p(`) of indices from M such that
(i) p(1) = (1, 1) and p(`) = (m,n), and
(ii) for t ∈ [`− 1], let p(t) = (i, j); then, p(t+ 1) ∈ {(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}.

We denote by P(M) the set of all paths in M . For two paths p, q ∈ P(M), we may simply
say that p dominates q, if M [p] dominates M [q].

A path p(1), . . . , p(`) is called non-diagonal if the second condition is replaced by the
following.
(ii)’ For t ∈ [`− 1], let p(t) = (i, j); then, p(t+ 1) ∈ {(i+ 1, j), (i, j + 1)}.
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In analogy with extensions of integer sequences, an extension e of a path p in a matrix
M is as well a sequence of indices of M , and we again denote the corresponding integer
sequence by M [e]. A consequence of Lemma 9(i) and (iv) is that we can restrict ourselves to
all paths in a merge matrix when trying to find a dominating merge of two integer sequences:
it is clear from the definitions that in a merge matrix M of integer sequences r and c, P(M)
contains all merges of r and c of length at most l(r) + l(c)− 1.

I Corollary 16. Let r and c be integer sequences and M be the merge matrix of r and c.
There is a dominating merge in r ⊕ c, i.e. an integer sequence t ∈ r ⊕ c such that t ≺ r ⊕ c,
if and only if there is a dominating path in M , i.e. a path p ∈ P(M) such that p ≺ P(M).

We now consider a type of merge that corresponds to non-diagonal paths in the merge
matrix. These merges will be used in a construction presented in Section 3.5, and in the
algorithmic applications of the Merge Dominator Lemma given in Section 4. For two integer
sequences r and s, we denote by r � s the set of all non-diagonal merges of r and s, which
are not allowed to have “diagonal” steps: we have that for all t ∈ r� s and all i ∈ [l(t)− 1], if
t(i) = r(ir) + s(is), then t(i+ 1) ∈ {r(ir + 1) + s(is), r(ir) + s(is + 1)}. We now show that for
each merge that uses diagonal steps, there is always a non-diagonal merge that dominates it.

I Lemma 17. Let r and s be two integer sequences of length m and n, respectively. For any
merge q ∈ r ⊕ s, there is a non-diagonal merge q′ ∈ r � s such that q′ ≺ q. Furthermore,
given q, q′ can be found in time O(m+ n).

We define two special paths in a matrix M that will reappear in several places throughout
this section. These paths can be viewed as the “corner paths”, where the first one follows
the first row until it hits the last column and then follows the last column (py(M)), and the
second one follows the first column until it hits the last row and then follows the last row
(pp(M)). Formally, we define them as follows:

py(M) ..= (1, 1), (1, 2), . . . , (1, n), (2, n), . . . , (m,n)
pp(M) ..= (1, 1), (2, 1) . . . , (m, 1), (m, 2), . . . , (m,n)

We use the shorthands “py” for “py(M)” and “pp” for “pp(M)” whenever M is clear from the
context. These paths appear in the following special cases of the Merge Dominator Lemma,
which will be crucial for the proof of the Split Lemma.

I Lemma 18. Let r and c be integer sequences of length m and n, respectively, and let M
be the merge matrix of r and c. Let i ∈ argmin(r) and j ∈ argmin(c).
(i) If i = 1 and j = n, then py dominates all paths in M , i.e. py ≺ P(M).
(ii) If i = m and j = 1, then pp dominates all paths in M , i.e. pp ≺ P(M).

Proof. (i) For an illustration of this proof see the left side of Figure 2. Let q be any path in
M and let t∗ ..= argmax?(q). Let furthermore q(t∗) = (t∗r , t∗c). We divide py and q in three
consecutive parts each to show that py dominates q.

We let p1
y
..= py(1), . . . , py(t∗c − 1) and q1 ..= q(1), . . . , q(t∗ − 1).

We let p2
y
..= py(t∗c), . . . , py(n+ t∗r − 1) and q2 ..= q(t∗).

We let p3
y
..= py(n+ t∗r), . . . , py(m+ n− 1) and q3 ..= q(t∗ + 1), . . . , q(l(q)).

Since r(1) is a minimum row inM , we have that for all (k, `) ∈ [m]× [n],M [1, `] ≤M [k, `].
This implies that there is an extension e1 of p1

y of length t∗ − 1 such that M [e1] ≤ M [q1].
Similarly, there is an extension e3 of p3

y of length l(q)− t∗ such that M [e3] ≤M [q3]. Finally,
let f2 be an extension of q2 that repeats its only element, q(t∗), n − t∗c + t∗r times. Since
M [q(t∗)] is the maximum element on the sequence M [q] and r(1) is a minimum row and c(n)
a minimum column in M , we have that M [p2

y] ≤M [f2].
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Figure 2 Illustration of the proof strategy of the Split Lemma (Lem. 19).

We define an extension e of py as e ..= e1 ◦p2
y ◦e3 and an extension f of q as f ..= q1 ◦f2 ◦q3.

Note that l(e) = l(f) = l(q) + n+ t∗r − (t∗c + 1), and by the above discussion, we have that
M [e] ≤M [f ]. (ii) follows from a symmetric argument. J

3.2 The Split Lemma
In this section we prove the first main step towards the Merge Dominator Lemma. It is fairly
intuitive that a dominating merge has to contain the minimum element of a merge matrix.
(Otherwise, there is a path that cannot be dominated by that merge.) The Split Lemma
states that in fact, we can split the matrix M into two smaller submatrices, one that has
the minimum element in the top right corner, and one the has the minimum element in the
bottom left corner, compute a dominating path for each of them, and paste them together to
obtain a dominating path for M .

I Lemma 19 (Split Lemma). Let r and c be integer sequences of length m and n, respectively,
and let M be the merge matrix of r and c. Let i ∈ argmin(r) and j ∈ argmin(c). Let
M1 ..= M [1..i, 1..j] and M2 ..= M [i..m, j..n] and for all h ∈ [2], let ph ∈ P(Mh) be a
dominating path in Mh, i.e. ph ≺ P(Mh). Then, p1 ◦ p2 is a dominating path in M , i.e.
p1 ◦ p2 ≺ P(M).

Proof. Let q be any path in M . If q contains (i, j), then q has two consecutive parts, say
q1 and q2, such that q1 ∈ P(M1) and q2 ∈ P(M2). Hence, p1 ≺ q1 and p2 ≺ q2, so by
Lemma 9(v), p1 ◦ p2 ≺ q1 ◦ q2.

Now let p ..= p1 ◦ p2 and suppose q does not contain (i, j). Then, q either contains some
(i, j′) with j′ < j, or some (i′, j), for some i′ < i. We show how to construct extensions of p
and q that witness that p dominates q in the first case, and remark that the second case can
be shown symmetrically. We illustrate this situation in the right side of Figure 2.

Suppose that q contains (i, j′) with j′ < j. We show that p ≺ q. First, q also contains
some (i′, j), where i′ > i. Let h1 be the index of (i, j′) in q, i.e. q(h1) = (i, j′), and h2 denote
the index of (i′, j) in q, i.e. q(h2) = (i′, j). We derive the following sequences from q.

We let q1 ..= q(1), . . . , q(h1) and q+
1

..= q1 ◦ (i, j′ + 1), . . . , (i, j).
We let q12 ..= q(h1), . . . , q(h2).
We let q2 ..= q(h2), . . . , q(l(q)) and q+

2
..= (i, j), (i+ 1, j), . . . , (i′, j) ◦ q2.
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f12

e12

f1

e1

b1 bd

a1 ac

=
6

6 f ′x = f ′x−1 ◦

e′x = e′x−1 ◦

Figure 3 Constructing extensions in the proof of Lemma 19.

Since q+
1 ∈ P(M1) and p1 ≺ P(M1), we have that p1 ≺ q+

1 , similarly that p2 ≺ q+
2

and considering M3 ..= M [i′..i, j..j′], we have by Lemma 18(i) that p12 ..= py(M3) =
(i, j′), (i, j′ + 1), . . . , (i, j), (i+ 1, j), . . . , (i′, j) dominates q12. Consequently, we consider the
following extensions of these sequences.

(I) We let e1 ∈ E(p1) and f1 ∈ E(q+
1 ) such that l(e1) = l(f1) and M [e1] ≤M [f1].

(II) We let e12 ∈ E(p12), and f12 ∈ E(q12) such that l(e12) = l(f12) and M [e12] ≤M [f12].
(III) We let e2 ∈ E(p2), and f2 ∈ E(q+

2 ) such that l(e2) = l(f2) and M [e2] ≤M [f2].

We construct extensions e′ ∈ E(p) and f ′ ∈ E(q) as follows. Let z be the last index in q
of any element that is matched up with (i, j) in the extensions of (II). (Following the proof
of Lemma 18, this would mean z is the index of max(q12) in q.) We first construct a pair
of extensions e′j ∈ E(p1), and f ′j ∈ E(q[1..z]) with l(e′j) = l(f ′j) and M [e′j ] ≤M [f ′j ]. With a
symmetric procedure, we can obtain extensions of p2 and of q[(z + 1)..l(q)], and use them to
obtain extensions of p = p1 ◦ p2 and q = q[1..z] ◦ q[(z + 1)..l(q)] witnessing that p ≺ q.

We give the details of the first part of the construction. Let a be the index of the last
repetition in f1 of q(h1 − 1), i.e. the index that appears just before q(h1) = (i, j′) in f1. We
let e′j′−1[1..a] ..= e1[1..a] and f ′j′−1[1..a] ..= f1[1..a]. By (I), M [e′j′−1] ≤M [f ′j′−1].

For x = j′, j′ + 1, . . . , j, we inductively construct e′x and f ′x using e′x−1 and f ′x−1, for
an illustration see Figure 3. We maintain as an invariant that l(e′x−1) = l(f ′x−1) and that
M [e′x−1] ≤M [f ′x−1]. Let a1, . . . , ac denote the indices of the occurrences of (i, x) in f1, and
b1, . . . , bd denote the indices of the occurrences of (i, x) in e12. We let:

e′x
..= e′x−1 ◦ e1[a1, . . . , ac]; f ′x ..= f ′x−1 ◦ f12[b1, . . . , bd], if c = d

e′x
..= e′x−1 ◦ e1[a1, . . . , ac] ◦

d−c times︷ ︸︸ ︷
e1(ac), . . . , e1(ac); f ′x ..= f ′x−1 ◦ f12[b1, . . . , bd], if c < d

e′x
..= e′x−1 ◦ e1[a1, . . . , ac]; f ′x ..= f ′x−1 ◦ f12[b1, . . . , bd] ◦

c−d times︷ ︸︸ ︷
f12(bd), . . . , f12(bd), if c > d

In each case, we extended e′x−1 and f ′x−1 by the same number of elements; furthermore
we know by (I) that for y ∈ {a1, . . . , ac}, M [e1(y)] ≤M [f1(y)], by choice we have that for all
y′ ∈ {b1, . . . , bd}, f1(y) = e12(y′) and we know that M [e12(y′)] ≤M [f12(y′)] by (II). Hence,
M [e′x] ≤M [f ′x] in either of the above cases. In the end of this process, we have e′j ∈ E(p1)
and f ′j ∈ E(q[1..z]), and by construction, l(e′j) = l(f ′j) and M [e′j ] ≤M [f ′j ]. J

3.3 The Chop Lemmas
Assume the notation of the Split Lemma. If we were to apply it recursively, it only yields a
size-reduction whenever (i, j) /∈ {(1, 1), (m,n)}. Motivated by this issue, we prove two more
lemmas to deal with the cases when (i, j) ∈ {(1, 1), (m,n)}, and we coin them the “Chop
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Figure 4 Illustration of the ideas in the main step of the proof of the bottom version of the Chop
Lemmas (Lem. 20).

Lemmas”. It will turn out that when applied to typical sequences, a repeated application of
these lemmas yields a dominating path in M . This insight crucially helps in arguing that
the dominating path in a merge matrix can be found in linear time. We would like to stress
that up to this point, all results in this section were shown in terms of arbitrary integer
sequences. For the next lemma, we require the sequences considered to be typical sequences.
In Section 3.5 we will generalize the results that rely on the following lemmas to arbitrary
integer sequences.

I Lemma 20 (Chop Lemma – Bottom, ♣). Let r and c be typical sequences of length m ≥ 3
and n ≥ 3, respectively, and letM be the merge matrix of r and c. Suppose that m ∈ argmin(r)
and n ∈ argmin(c) and let M1 ..= M [1..(m− 2), 1..n] and M2 ..= M [1..m, 1..(n− 2)] and for
all h ∈ [2], let ph ≺ P(Mh). Let p+

1
..= p1 ◦ (m−1, n), (m,n) and p+

2
..= p2 ◦ (m,n−1), (m,n).

(i) If M [m− 2, n− 1] ≤M [m− 1, n− 2], then p+
1 ≺ P(M).

(ii) If M [m− 1, n− 2] ≤M [m− 2, n− 1], then p+
2 ≺ P(M).

Outline of the proof. We first argue that each path in M is dominated by at least one of
p+

1 and p+
2 . If a path contains either (m− 2, n), or (m,n− 2), then it is easily seen that it is

dominated by p+
1 or p+

2 , respectively. If a path does not contain either of them, then there
always is a path that dominates it, and contains either (m− 2, n) or (m,n− 2). This is due
to the fact that m− 1 is a maximum row and n− 1 a maximum column.

Next, consider the setting of (i), and for an illustration see Figure 4, beginning with
the left hand side. Most effort is spent in proving that p+

1 dominates p+
2 under the stated

assumption. Towards this claim, we first show that we can find a path p′2 in M2 that uses
(m− 2, n− 2), and dominates p2. This is done by considering situations such as in the middle
of Figure 4. Assume the notation used there, and note that p2 uses the element (m, j). Since
M [m− 2, n− 1] ≤M [m− 1, n− 2], and using the structure of typical sequences ending in the
minimum element, we can conclude thatM [m−2, j+1] ≤M [m−1, j]. We then show that in
the 3× 3-submatrix L, the corner path py(L) is a dominating path. Using the corresponding
extensions, we show that the path obtained from p2 by replacing the pp(L) path with the
py(L) path, dominates p2. Iteratively applying such arguments and transitivity of “≺” lets
us conclude that there is a path p′2 in M2 that uses (m− 2, n− 2), and dominates p2, see the
right hand side of Figure 4. Now, let p′′2 be the subpath of p′2 ending in (m− 2, n− 2), and
note that p′′2 ◦ (m− 2, n− 1), (m− 2, n) ∈ P(M1). Then,

p+
1 ≺ p′′2 ◦ (m− 2, n− 1), (m− 2, n), (m− 1, n), (m,n) (2)
≺ p′2 ◦ (m,n− 1), (m,n) (3)
≺ p+

2 , (4)
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Algorithm 1 The Split-and-Chop Algorithm.

Input :Typical sequences r(1), . . . , r(m) and c(1), . . . , c(n)
Output :A dominating merge of r and c

1 Let i ∈ argmin(r) and j ∈ argmin(c);
2 return Chop-bottom (r[1..i], c[1..j]) ◦ Chop-top (r[i..m], c[j..n]);
3 Procedure Chop-bottom(r and c as above)
4 if m ≤ 2 then return r(1) + c(1), r(m) + c(1), r(m) + c(2), . . ., r(m) + c(n);
5 if n ≤ 2 then return r(1) + c(1), r(1) + c(n), r(2) + c(n), . . ., r(m) + c(n);
6 if r(m− 2) + c(n− 1) ≤ r(m− 1) + c(n− 2) then return

Chop-bottom(r[1..(m− 2)], c) ◦ (r(m− 1) + c(n)), r(m) + c(n);
7 if r(m− 1) + c(n− 2) ≤ r(m− 2) + c(n− 1) then return

Chop-bottom(r, c[1..(n− 2)]) ◦ (r(m) + c(n− 1)), r(m) + c(n);
8 Procedure Chop-top(r and c as above)
9 if m ≤ 2 then return r(1) + c(1), r(1) + c(2), . . ., r(1) + c(n), r(m) + c(n);

10 if n ≤ 2 then return r(1) + c(1), r(2) + c(1), . . ., r(m) + c(1), r(m) + c(n);
11 if r(3) + c(2) ≤ r(2) + c(3) then return

r(1) + c(1), (r(2) + c(1)) ◦ Chop-top(r[3..m], c);
12 if r(2) + c(3) ≤ r(3) + c(2) then return

r(1) + c(1), (r(1) + c(2)) ◦ Chop-top(r, c[3..n]);

where (2) is due to p1 ≺ P(M1) and therefore p1 ≺ p′′2 ◦ (m− 2, n− 1), (m− 2, n), next (3)
follows from another application of the 3× 3-subcase, and (4) is guaranteed since p′2 ≺ p2 by
the iterative construction sketched above. J

By symmetry, these arguments also prove the “top” case of the Chop Lemmas.

I Corollary 21 (Chop Lemma - Top). Let r and c be typical sequences of length m ≥ 3 and
n ≥ 3, respectively, and let M be the merge matrix of r and c. Suppose that 1 ∈ argmin(r)
and 1 ∈ argmin(c) and let M1 ..= M [3..m, 1..n] and M2 ..= M [1..m, 3..n] and for all h ∈ [2],
let ph ≺ P(Mh). Let p+

1
..= (1, 1), (2, 1) ◦ p1 and p+

2
..= (1, 1), (1, 2) ◦ p2.

(i) If M [3, 2] ≤M [2, 3], then p+
1 ≺ P(M).

(ii) If M [2, 3] ≤M [3, 2], then p+
2 ≺ P(M).

3.4 The Split-and-Chop Algorithm

Equipped with the Split Lemma and the Chop Lemmas, we are now ready to give the
algorithm that computes a dominating merge of two typical sequences. Consequently, we call
this algorithm the “Split-and-Chop Algorithm”, the details are given in Algorithm 1. Note
that the base cases (lines 4, 5, 9, and 10) are easily justified: in the bottom case, the last
row and column are minimum, and in the top case, the first row and column are minimum.

I Lemma 22 (♣). Let r and c be typical sequences of length m and n, respectively. Then,
there is an algorithm that finds in O(m+ n) time a dominating path in the merge matrix of
r and c.
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· · ·

Figure 5 Illustration of the typical lift. On the left side, the view of the merge matrix M , with
the rows and columns corresponding to elements of the typical sequences highlighted. Inside there,
Mτ can be seen as a highlighted submatrix. The merge t′ is depicted as the large yellow squares
within Mτ and the small yellow squares outside of Mτ show its completion to the typical lift of t.
On the right side, an illustration that does not rely on the “matrix view”.

3.5 Generalization to Arbitrary Integer Sequences
In this section we show how to generalize Lemma 22 to arbitrary integer sequences. In
particular, we will show how to construct from a merge of two typical sequences τ(r) and
τ(s) that dominates all of their merges, a merge of r and s that dominates all merges of r
and s. The claimed result then follows from an application of Lemma 22. For an illustration
of the following construction, see Figure 5.

The Typical Lift. Let r and s be integer sequences and let t ∈ τ(r)⊕τ(s). Then, the typical
lift of t, denoted by ρ(t), is an integer sequence ρ(t) ∈ r ⊕ s, obtained from t as follows. For
convenience, we will consider ρ(t) as a path in the merge matrix M of r and s.

Step 1. We construct t′ ∈ τ(r) � τ(s) such that t′ ≺ t using Lemma 17. Throughout the
following, consider t′ to be a path in the merge matrix Mτ of τ(r) and τ(s).

Step 2. First, we initialize ρ1
t
..= t′(1) = (1, 1). For i = {2, . . . , l(t′)}, we proceed inductively

as follows. Let (ir, is) = t(i) and let (i′r, i′s) = t(i − 1). (Note that t(i − 1) and t(i)
are indices in Mτ .) Let furthermore (jr, js) be the index in M corresponding to (ir, is),
and let (j′r, j′s) be the index in M corresponding to (i′r, i′s). Assume by induction that
ρi−1
t ∈ P(M [1..j′r, 1..j′s]). We show how to extend ρi−1

t to a path in ρit in M [1..jr, 1..js].
Since t′ is non-diagonal, we have that (i′r, i′s) ∈ {(ir − 1, is), (ir, is − 1)}, so one of the
two following cases applies.

Case S2.1 (i′
r = ir − 1 and i′

s = is). In this case, we let ρit ..= ρi−1
t ◦(j′r+1, js), . . . , (jr, js).

Case S2.2 (i′
r = ir and i′

s = is − 1). In this case, we let ρit ..= ρi−1
t ◦(jr, j′s+1), . . . , (jr, js).

Step 3. We return ρ(t) ..= ρ
l(t′)
t .

The following lemma captures the desired property of the typical lift, and its proof
essentially follows from Lemmas 9(iii) and 17.

I Lemma 23 (♣). Let r and s be integer sequences and let q ∈ r ⊕ s. Let t ∈ τ(r) ⊕ τ(s)
such that t ≺ τ(r)⊕ τ(s). Then, ρ(t) ≺ q (and ρ(t) ∈ r � s).

We can now prove the main result of this work. Note that the following lemma is a
strengthening of Lemma 13 in that it shows that there is always a non-diagonal dominating
merge. This will be important for the algorithmic applications given in Section 4.

I Lemma 24. Let r and c be integer sequences of length m and n, respectively. There exists
a dominating non-diagonal merge of r and c, i.e. an integer sequence t ∈ r � c such that
t ≺ r ⊕ c, and this dominating merge can be computed in time O(m+ n).
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Proof. The algorithm proceeds in the following steps.

Step 1. Compute τ(r) and τ(c).
Step 2. Apply the Split-and-Chop Algorithm on input (τ(r), τ(c)) to obtain t ≺ τ(r)⊕ τ(c).
Step 3. Return the typical lift ρ(t) of t.

Correctness of the above algorithm follows from Corollary 16 and Lemmas 22 and 23
which together guarantee that ρ(t) ≺ r ⊕ c, and that ρ(t) is a non-diagonal merge, i.e.
ρ(t) ∈ a� b. By Lemma 8, Step 1 can be done in time O(m+n), by Lemma 22, Step 2 takes
time O(m+ n) as well, and the typical lift of t can also be computed in time O(m+ n). The
overall runtime of the algorithm is O(m+ n). J

4 Directed Width Measures of Series Parallel Digraphs

In this section, we give algorithmic consequences of the Merge Dominator Lemma. We discuss
the (weighted) cutwidth on series parallel digraphs problem in Section 4.1 and (briefly) the
modified cutwidth on SPD’s problem in Section 4.2.

4.1 Cutwidth
In this section we provide an O(n2) time algorithm for the problem of computing the cutwidth
of a series parallel digraph on n vertices.

Input: A series parallel digraph G.
Question: What is the cutwidth of G?

Cutwidth of Series Parallel Digraphs

Given a series parallel digraph G, we follow a bottom-up dynamic programming scheme
along the decomposition tree T that yields G. Each node t ∈ V (T ) has a subgraph Gt of
G associated with it, that is also series parallel. Naturally, we use the property that Gt
is obtained either via series or parallel composition of the SPD’s associated with its two
children.

To make this problem amenable to be solved using merges of integer sequences, we define
the following notion of a cut-size sequence of a topological order of a directed acyclic graph
which records for each position in the order, how many arcs cross it.

I Definition 25 (Cut-Size Sequence). Let G be a directed acyclic graph on n vertices and let
π be a topological order of G. The sequence x1, . . . , xn−1, where for i ∈ [n− 1],

xi = |{uv ∈ A(G) | π(u) ≤ i ∧ π(v) > i}|,

is the cut-size sequence of π, and denoted by σ(π). For a set of topological orders Π′ ⊆ Π(G),
we let σ(Π′) ..= {σ(π) | π ∈ Π′}.

It is clear that when a cut-size sequence σ(π1) dominates another cut-size sequence
σ(π2), then cutw(π1) ≤ cutw(π2). The proof of the next theorem goes via the following two
steps. First, we show that in the dynamic programming algorithm, it is sufficient to store a
dominating cut-size sequence. Second, suppose that an SPD is obtained from two smaller
SPD’s G1 and G2, and let π1 and π2 be topological orders of G1 and G2, respectively, such
that σ(π1) dominates all cut-size sequences of G1, and σ(π2) dominates all cut-size sequences
of G2. For the case G = G1 ` G2, we show that π1 ◦ π2 yields a topological order that
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dominates all cut-size sequences of G, and for the case G = G1 ⊥ G2, we show that the
topological order π of G such that σ(π) dominates σ(π1)� σ(π2) also dominates all cut-size
sequences of G.

The algorithm of the following theorem in fact works for the more general problem of
computing the weighted cutwidth of a series parallel digraph, where we are also given an
arc-weight function and the value of a cut is computed as the sum of the weights of the arcs
crossing the cut.

I Theorem 26 (♣). Let G be an SPD on n vertices (together with an arc-weight function).
There is an algorithm that computes in time O(n2) the (weighted) cutwidth of G, and outputs
a topological ordering that achieves the upper bound.

4.2 Modified Cutwidth
We now consider the following computational problem.

Input: A series parallel digraph G.
Question: What is the modified cutwidth of G?

Modified Cutwidth of Series Parallel Digraphs

In the full version, we provide a transformation that given a series parallel digraph G on
n vertices, outputs an instance of Weighted Cutwidth on series parallel digraphs whose
digraph has O(n) vertices that we can use to determine the modified cutwidth of G. Using
the algorithm for Weighted Cutwidth on series parallel digraphs due to Theorem 26, we
have the following result.

I Theorem 27 (♣). Let G be an SPD on n vertices. There is an algorithm that computes in
time O(n2) the modified cutwidth of G, and outputs a topological ordering of G that achieves
the upper bound.

5 Conclusions

In this paper, we obtained a new technical insight in a now over a quarter century old
technique, namely the use of typical sequences. The insight led to new polynomial time
algorithms. Since its inception, algorithms based on typical sequences give the best asymptotic
bounds for linear time FPT algorithms for treewidth and pathwidth, as functions of the target
parameter. It still remains a challenge to improve upon these bounds (2O(pw2), respectively
2O(tw3)), or give non-trivial lower bounds for parameterized pathwidth or treewidth. Possibly,
the Merge Dominator Lemma can be helpful to get some progress here.

As other open problems, we ask whether there are other width parameters for which
the Merge Dominator Lemma implies polynomial time or XP algorithms, or whether such
algorithms exist for other classes of graphs. For instance, for which width measures can we
give XP algorithms when parameterized by the treewidth of the input graph?
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Abstract

The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order σ, the
smallest available color. The problem Grundy Coloring asks how many colors are needed for the
most adversarial vertex ordering σ, i.e., the maximum number of colors that the first-fit coloring
requires over all possible vertex orderings. Since its inception by Grundy in 1939, Grundy Coloring
has been examined for its structural and algorithmic aspects. A brute-force f(k)n2k−1

-time algorithm
for Grundy Coloring on general graphs is not difficult to obtain, where k is the number of colors
required by the most adversarial vertex ordering. It was asked several times whether the dependency
on k in the exponent of n can be avoided or reduced, and its answer seemed elusive until now. We
prove that Grundy Coloring is W[1]-hard and the brute-force algorithm is essentially optimal
under the Exponential Time Hypothesis, thus settling this question by the negative.

The key ingredient in our W[1]-hardness proof is to use so-called half-graphs as a building
block to transmit a color from one vertex to another. Leveraging the half-graphs, we also prove
that b-Chromatic Core is W[1]-hard, whose parameterized complexity was posed as an open
question by Panolan et al. [JCSS ’17]. A natural follow-up question is, how the parameterized
complexity changes in the absence of (large) half-graphs. We establish fixed-parameter tractability
on Kt,t-free graphs for b-Chromatic Core and Partial Grundy Coloring, making a step toward
answering this question. The key combinatorial lemma underlying the tractability result might be
of independent interest.
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1 Introduction

A coloring is said proper if no two adjacent vertices receive the same color. The chromatic
number of a graph G denoted χ(G) is the minimum number of colors required to properly
color G. Let us now consider a natural heuristic to build a proper coloring of a graph G.
Given an ordering σ of the vertices of G, consider each vertex of G in the order σ and assign
to the current vertex the smallest possible color (without creating any conflict), i.e., the
smallest color not already given to one of its already colored neighbors. The obtained coloring
is obviously proper and it is called a first-fit or greedy coloring. The Grundy number, denoted
by Γ(G), is the largest number of colors used by the first-fit coloring on some ordering of the
vertices of G. Thus Γ(G) is an upper-bound to the output of a first-fit heuristic.

The Grundy number has been introduced in 1939 [18], but was formally defined only
forty years ago, independently by Christen and Selkow [9] and by Simmons [32]. Grundy
Coloring in directed graphs already appears as a NP-complete problem in the monograph
of Garey and Johnson [15]. The undirected version remains NP-hard on bipartite graphs [21]
and their complements [35], chordal graphs [31] and line graphs [20]. When the input is
a tree, Grundy Coloring can be solved in linear time [23]. This result is generalized
to bounded-treewidth graphs with an algorithm running in time kO(w)2O(wk)n = O(n3w2)
for graphs of treewidth w and Grundy number k [33], but this cannot be improved to
O∗(2o(w log w)) under the ETH [4]. It is also possible to solve Grundy Coloring in time
O∗(2.443n) [4].

In 2006, Zaker [36] observed that since a minimal witness (we will formally define a
witness later) for Grundy number k has size at most 2k−1, the brute-force approach gives an
algorithm running in time f(k)n2k−1 , that is, an XP algorithm in the words of parameterized
complexity. Since then it has been open whether Grundy Coloring can be solved in FPT
time, i.e., f(k)nO(1) (where the exponent does not depend on k). FPT algorithms were
obtained in chordal graphs, claw-free graphs, and graphs excluding a fixed minor [4], or
with respect to the dual parameter n− k [21]. The parameterized complexity of Grundy
Coloring in general graphs was raised as an open question in several papers in the past
decade [31, 22, 16, 4].

Closely related to Grundy coloring is the notion of partial Grundy coloring and b-coloring.
Let G = (V,E) be a graph. We say that a proper coloring V1 ] · · · ] Vk is a partial Grundy
coloring of order k if there exists vi ∈ Vi for each i ∈ [k] such that vi has a neighbor in every
Vj with j < i. The problem Partial Grundy Coloring takes a graph G and a positive
integer k, and asks if there is a partial Grundy coloring of order k. Erdős et al. [13] showed
that the partial Grundy number coincides with the so-called upper ochromatic number. This
echoes another result of Erdős et al. [12] that Grundy number and ochromatic number
(introduced by Simmons [32]) are the same.

The b-chromatic core of order k of a graph G is a vertex-subset C of G with the following
property: C admits a partition into V1 ] · · · ] Vk such that there is vi ∈ Vi for each i ∈ [k]
which contains a neighbor in every Vj with j 6= i. The goal of the problem b-Chromatic
Core is to determine whether an input graph G contains a b-chromatic core of order k. This
notion was studied in [11, 30] in relation to b-coloring, which is a proper coloring such that for
every color i, there is a vertex of color i which neighbors a vertex of every other color. The
maximum number k such that G admits a b-coloring with k colors is called the b-chromatic
number of G. In [30], it was proven that deciding whether a graph G has b-chromatic number
at least k is W [1]-hard parameterized by k. The problem might be even harder since no
polytime algorithm is known when k is constant. The authors left it as an open question
whether b-Chromatic Core is W[1]-hard or FPT.
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Our contribution: the half-graph is key. We prove that Grundy Coloring is W[1]-
complete, thus settling the open question posed in [31, 22, 16, 4]. More quantitatively we
show that the double-exponential XP algorithm is essentially optimal. Indeed we prove
that there is no computable function f such that Grundy Coloring is solvable in time
f(k)no(2k−log k), unless the ETH fails. This further answers by the negative an alternative
question posted in [31, 22], whether there is an algorithm in time nkO(1) .

A key element in the hardness proof of Grundy Coloring is what we call a half-graph
(definition in Section 2.1). The main obstacle encountered when one sets out to prove
W[1]-hardness of Grundy Coloring is the difficulty of propagating a chosen color from a
vertex to another while keeping the Grundy number low (i.e., bounded by a function of k).
Employing half-graphs turns out to be crucial to circumvent this obstacle, which we further
examine in Section 4. Leveraging half-graphs as color propagation apparatus, we also prove
that b-Chromatic Core is W[1]-complete (albeit with a very different construction). This
settles the question posed by [30].

Our contribution: delineating the boundary of tractability. All three problems, Grundy
Coloring, Partial Grundy Coloring, and b-Chromatic Core are FPT for k = Γ(G)
on nowhere dense graphs. The existence of each induced witness can be expressed as a
first-order formula on at most 2k−1 variables in the case of Grundy Coloring, and on at
most k2 variables in the case of Partial Grundy Coloring and b-Chromatic Core.
The problem is therefore expressible in first-order logic as a disjunction of the existence of
every induced witness while the number of induced witnesses is bounded by 222(k−1) . And
first-order formulas can be decided in FPT time on nowhere dense graphs [17]. The next step
is Kt,t-free graphs, i.e., those graphs without a biclique Kt,t as a (non necessarily induced)
subgraph, which is a dense graph class that contains nowhere dense graphs and graphs of
bounded degeneracy. In the realm of parameterized complexity, Kt,t-free graphs have been
observed to admit FPT algorithms for otherwise W[1]-hard problems [34].

We prove that Partial Grundy Coloring and b-Chromatic Core are fixed-parameter
tractable on Kt,t-free graphs, even in the parameter k+ t, now assuming that t is not a fixed
constant. To this end, a combinatorial lemma plays a crucial role by letting us rule out the
case when many vertices have large degree: if there are many vertices of large degree in a
Kt,t-free graph, one can find a collection of k vertex-disjoint and pairwise non-adjacent stars
on k-vertices, which is a witness for b-Chromatic Core and Partial Grundy Coloring.
Now, we can safely confine the input instances to have bounded degrees, save a few vertices.
We present an FPT algorithm that works under this setting.

Statements marked with a ♠ symbol have their proof entirely deferred to the long version,
while statements marked with a ♣ come with a proof sketch or a partial proof. All the
missing proofs can be found in the full version [2] (or in one case in [4]).

2 Preliminaries

For any integer i, j, we denote by [i, j] the set of integers that are at least i and at most j,
and [i] is a short-hand for [1, i]. We use the standard graph notations [10]: for a graph G,
V (G) denotes the set of vertices of G, E(G) denotes the set of edges. A vertex u is a neighbor
of v if uv is an edge of G. The open neighborhood of a vertex v is the set of all neighbors of
v and N [v] denotes the closed neighborhood of v defined as N(v) ∪ {v}. The open (closed,
respectively) neighborhood of a vertex-set S is

⋃
v∈S N(v) \ S (

⋃
v∈S N(v) ∪ S, respectively).

For a vertex-set Y ⊆ V (G), we denote N(v) ∩ Y (N [v] ∩ Y , respectively) simply as NY (v)
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(NY [v], respectively) and the same applies the open and closed neighborhood of a vertex-set
S. For two disjoint vertex-sets X and Y , we say that X is (anti-)complete with Y if every
vertex of X is (non-)adjacent with every vertex of Y .

2.1 Half-graphs
We call anti-matching the complement of an induced matching. The anti-matching of height t
is the complement of t edges. It will soon be apparent that all the coloring numbers considered
in this paper are lowerbounded by t, in presence of an anti-matching of height t. Therefore
in the subsequent FPT reductions, we will not have the luxury to have anti-matchings of
unbounded size. This will constitute an issue since they are useful to propagate choices.
Imagine we have two sets A and B of size unbounded by the parameter, and we want to
relate a choice in A to the same choice in B. Let us put an antimatching between A and
B. Trivially independent sets of size 2 will correspond to consistent choices. So it all boils
down to expressing our problem in terms of finding large enough independent sets. Now this
option is not available, another way to propagate choices is to use half-graphs.

We call half-graph a graph whose vertices can be partitioned into (A,B) such that there
is no induced 2K2 in the graph induced by the edges with one endpoint in A and the
other endpoint in B, and G[A] and G[B] are both edgeless. These graphs are sometimes
called bipartite chain graphs. Equivalently we say that (A,B) induces, or by a slight
abuse of notation, is a half-graph if A and B can be totally ordered, say a1, . . . , a|A| and
b1, . . . , b|B| such that NB(a1) ⊇ NB(a2) ⊇ . . . ⊇ NB(at) and if aibj is an edge then for every
j′ ∈ [j + 1, t], aibj′ is also an edge. The orderings a1, . . . , a|A| and b1, . . . , b|B| are called
orders of the half-graph.

The half-graph of height t is a bipartite graph with partition (A = {a1, . . . , at}, B =
{b1, . . . , bt}) such that there is an edge between ai and bj if and only if i < j. We denote this
graph by Ht,t. The level of a vertex v ∈ A (v ∈ B) in the half-graph of height t is its index
in the ordering of A (or B). Note that this is not uniquely defined for a half-graph in general,
but it is for the (canonical) half-graph of height t. Any half-graph can be obtained from
the half-graph of height t (for some t) by duplicating some vertices. The name half-graph
actually comes from Erdős and Hajnal (see for instance [14]). More precisely what Erdős
defines as a half-graph corresponds in this paper to the (canonical) half-graph of height t.

A length-` path of half-graphs is a graph H whose vertex-set can be partitioned into
(H1, H2, . . . ,H`+1) such that the three following conditions hold:
(i) there is no edge between Hi and Hj when |i− j| > 2,
(ii) for every i ∈ [`], H[Hi ∪Hi+1] is a half-graph with bipartition (Hi, Hi+1), and
(iii) for every i ∈ [2, `], the ordering of Hi in the half-graph induced by (Hi−1, Hi) is the

same as in the half-graph (Hi, Hi+1).

2.2 Grundy coloring
We say that an induced subgraph H of G is a witness achieving (color) k if H has a Grundy
coloring of order at least k; in this case, we simply say that H is a k-witness (also called
atom by Zaker [36] or critical [19]). We say that a k-witness is minimal if there is no proper
induced subgraph of it whose Grundy number is at least k. A graph G has Grundy number
at least k if and only if it contains a minimal k-witness as an induced subgraph [36].

Let V1 ] · · · ] Vk be a Grundy coloring of order k. We say that a vertex u colored c′

supports v colored c if u and v are adjacent and c′ < c. A vertex v colored in c is said to be
supported if the colors of the vertices supporting v span all colors from 1 to c− 1.
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It was observed that the largest minimal k-witness uses 2k−1 vertices [36]. These witnesses
are implemented by a family of rooted trees called binomial trees (see for instance [4]). The
set of binomial trees (Tk)k>1 is defined recursively as follows:

T1 consists of a single vertex, declared as the root of T1.
Tk consists of two binomial trees Tk−1 such that the root of the first one is a child of the
root of the other. The root of the latter is declared as the root of Tk.

4
3

2

1 1

2

1 1

Figure 1 The binomial tree T4, where the labels denote the color of each vertex in a first-fit
coloring achieving the highest possible color.

We outline some basic properties of k-witnesses and binomial trees Tk.

I Observation 1. Any subset of k′ color classes of a k-witness, with k′ < k, induces a
k′-witness.

The following is shown in a more general form in Lemma 7 of [4].

I Lemma 2 (♣). Let i ∈ [2, k − 2], X ⊆ V (Tk) be a subset of roots of Ti whose parent is a
root of Ti+1, and T ′k be a tree obtained from Tk by removing the subtree Ti−1 of every vertex in
X. We assume that T ′k is an induced subgraph of a graph G and that N(V (G) \ V (T ′k)) = X.
Then the three following conditions are equivalent in G:
(i) There is a Grundy coloring that colors k the root of T ′k.
(ii) There is a Grundy coloring that colors i every vertex of X without coloring their parent

in T ′k first.
(iii) There is a Grundy coloring that colors i− 1 at least one neighbor of each vertex of X

without coloring any vertex of T ′k first.

Proof. (iii) implies (ii), and (ii) implies (i) are a direct consequence of the optimum Grundy
coloring of a binomial tree, as depicted in Figure 1. We show that (i) implies (ii). This
is equivalent to showing that the only way for a Grundy coloring of Tk to color its root k,
even when there is joker that enables us to give any color to a vertex of X, is to respect
the coloring of Figure 1. This holds since coloring a vertex of X with a color greater than i
prevents from coloring its parent w with color i + 1. Indeed in that case w cannot find a
neighbor colored i (which is not its own parent). Coloring a vertex of X with a color smaller
than i, simply will not work, since the Grundy coloring of Tk that gives color k to its root is
unique. Finally (ii) implies (iii), since for every vertex of X, its only neighbor that can obtain
color i− 1 and is not its parent is outside T ′k. For a complete proof, see Lemma 7 of [4]. J

I Lemma 3 (♠). If u and v are false twins in G, i.e., NG(u) = NG(v), then Γ(G) =
Γ(G− {v}).

I Lemma 4 (♠). Let H be an induced subgraph of G such that all the vertices of N(V (H))
have degree at most s. Then no vertex of V (H) can get a color higher than Γ(H) + s in a
Grundy coloring of G.

I Corollary 5. In any greedy coloring, a vertex with at most t neighbors that have degree at
most s cannot receive a color higher than s+ t+ 1.
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2.3 Partial Grundy and b-Chromatic Core
It is easy to see that admitting a partial Grundy coloring of order k is monotone under
taking an induced subgraph.

I Observation 6. A graph G admits a partial Grundy coloring of order at least k if and
only if there exists a vertex-set S ⊆ V (G) such that G[S] admits a partial Grundy coloring
of order k.

Following from the observation, we can formally define Partial Grundy Coloring as:

Partial Grundy Coloring Parameter: k
Input: An integer k > 0, a graph G.
Question: Is there a vertex-subset S ⊆ V (G) such that G[S] admits a partial Grundy
coloring of order k?

On the other hand, b-coloring is not monotone under taking induced subgraphs. This
leads us to the following monotone problem, which is distinct from deciding whether the
b-chromatic number of G is at least k.

b-Chromatic Core Parameter: k
Input: An integer k > 0, a graph G.
Question: Is there a vertex-subset S ⊆ V (G) such that G[S] admits a b-coloring of
order k?
For both Partial Grundy Coloring and b-Chromatic Core, the subgraph of G

induced by S is referred to as a k-witness if S ⊆ V (G) is a solution to the instance (G, k). A
k-witness H is called a minimal k-witness if H − v is not a k-witness for every v ∈ V (H).

Let V1 ] · · · ] Vk be a proper coloring of G. In the context of partial Grundy coloring
(b-coloring, respectively), we say that a vertex v colored c is supported by u if uv ∈ E(G)
and u is colored c′ < c (c′ 6= c, respectively). In the partial Grundy coloring (b-coloring,
respectively), a vertex v colored c is supported if the colors of the supporting vertices of v
span all colors from 1 to c − 1 (all colors of [k] \ c, respectively). Such a vertex v is also
called a center. A color c is said realized if a vertex v colored c is supported. That vertex v
is then realizing color c. Notice the crucial difference with Grundy colorings that these c− 1
vertices do not need to be supported themselves.

As each center requests at most k − 1 supporting vertices, a minimal k-witnesses of
Partial Grundy Coloring or b-Chromatic Core has size bounded by k2 [11]. We
denote by Γ′(G), respectively Γb(G), the maximum integer k such that G admits a k-witness
for Partial Grundy Coloring, respectively b-Chromatic Core.

3 Barriers to the Parameterized Hardness of Grundy Coloring

It is not difficult to see that deciding if a fixed vertex can get color k in a greedy coloring is
W[1]-hard. Let us call this problem Rooted Grundy Coloring.

I Observation 7. Rooted Grundy Coloring is W[1]-hard.

Proof. We design an FPT reduction from k-Multicolored Independent Set to Rooted
Grundy Coloring. Let H be an instance of k-MIS with partition V1, . . . , Vk. We build an
equivalent instance G of Rooted Grundy Coloring in the following way. We copy H in
G and we add a clique C of size k + 1. We call v a fixed vertex of C and we add a pendant
neighbor v′ to v. We number the vertices of C \ {v}, v1, . . . , vk, and we make vi adjacent to
all the vertices of Vi for each i ∈ [k]. A greedy coloring can color v by k + 2 if and only if
there is a k-multicolored independent set in H. J
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Of course this reduction does not imply anything for Grundy Coloring. Indeed the
vertices of V (H) could get much higher colors than v. This is precisely the issue with showing
the parameterized hardness of Grundy Coloring.
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(d) Half-graph long path.

Figure 2 The barriers in a propagation gadget for Grundy Coloring. The biclique has small
Grundy number but do not propagate, nor it imposes a unique choice. The three other propagations
have arbitrary large Grundy number, rendering them useless for a parameterized reduction.

A reduction starting from any W[1]-hard problem has to “erase” the potentially large
Grundy number of the initial structure. This can be done by isolating it with low-degree
vertices. However the degree ∆ of the graph should be large, and a large chunk of the
instance should have degree unbounded in k since Grundy Coloring is FPT parameterized
by ∆ + k [31, 4]. Besides, as it is the case with W[1]-hardness reductions where induced
subgraphs of the initial instance have to be tamed, we crucially need to propagate consistently
one choice among a number of alternatives unbounded in the parameter.

A natural idea for encoding one choice among t≫ k is to have a set S of t vertices, one of
which, the selected vertex, receiving a specific color, say, 1. Then a mechanism should ensure
that one cannot color 1 two or more vertices of S. Note that we cannot force that property
by cliquifying S, as this would elevate the Grundy number to at least t. Furthermore, by
Ramsey’s theorem, there will be independent sets of size 2Ω( log t

k ) in S. Thus we might as well
assume that S is an independent set, and look for another way of preventing two vertices
from getting color 1, than by adding edges inside S.

We are now facing the following task: Given a bipartite graph, or a “path” or “cycle” of
bipartite graphs whose partite sets are copies of S, ensure that exactly one vertex can receive
color 1 in each partite set, and that this corresponds to a single vertex in S. A biclique
certainly has low Grundy number (see Figure 2a) but does not propagate nor it actually
forces a unique choice. Anything more elaborate seems to have large Grundy number, be
it the complement of an induced matching, or anti-matching, (see Figure 2b), a “cycle” of
half-graphs (see Figure 2c), or even a long “path” of half-graphs (see Figure 2d). We remind
the reader that, as detailed in Section 2, half-graphs and anti-matchings are (the) two ways
of propagating a consistent independent set.

4 Overcoming the Barriers: Short Path of Half-Graphs

It might be guessed from the previous section that the solution will come from a constant-
length “path” of half-graphs. It is easy to see that half-graphs (that can be seen as length-one
path of half-graphs) have Grundy number at most 3. Due to the 2K2-freeness of the
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half-graph, there cannot be both color 1 and color 2 vertices present on both sides of the
bipartition, say (A,B). If A is the side missing a 1 or a 2 among its colors, then B in
turn cannot have a 3 (nor a 4). The absence of vertices colored 3 in B prevents vertices
colored 4 in A. Overall, no vertex with color 4 can exist. It takes more time to realize that a
length-two path of half-graphs have constant Grundy number. We crucially use the fact that
any constant-length path of half-graphs have constant Grundy number.

I Lemma 8. The Grundy number of a length-` path of half-graphs is at most 4`.

Proof. Achieving a (more) reasonable upper bound –the Grundy number of such graphs is
most likely polynomial or even linear in `– proves to be not so easy. We choose here to give
a short proof of an admittingly bad upper bound.

We show this bound by induction on `. Note that the statement trivially holds for
` = 0, and that we previously verified it for ` = 1. Assume that the Grundy number of any
length-(`− 1) path of half-graphs is at most 4`−1, for any ` > 2.

Let G be a length-` path of half-graphs, with partition V (G) = V0 ] V1 ] · · · ] V` where
G[Vi ∪ Vi+1] is a half-graph for each i ∈ [`− 1]. Observe that G− V0 and G− V` are both
length-(`− 1) path of half-graphs. Let H be a colored witness of G achieving color Γ(G). We
distinguish some cases based on the number of colors of H appearing in V0 or in V`. In each
case, we conclude with Observation 1. No more than 4`−1 colors of H can be missing in V0
(resp. in V`). Otherwise by Observation 1, the corresponding color classes form a k-witness
G− V0 (resp. in G− V`) with some k > 4`−1, contradicting the induction hypothesis.

So we may assume that at least Γ(G) − 4`−1 colors appear in V0 (resp. in V`). Thus
at least (2Γ(G) − 2 · 4`−1) − Γ(G) = Γ(G) − 2 · 4`−1 colors appears in both V0 and V`. If
Γ(G) > 4`, then Γ(G) − 2 · 4`−1 > 4`−1. We further claim that the corresponding color
classes would form a witness in G− V0, a contradiction. If not, it must be because a vertex
x ∈ V1 colored i was adjacent to a vertex y ∈ V0 colored j < i, and is not adjacent to any
vertex colored j in G − V0. But we know that V0 contains a vertex y′ colored i, which in
turn must be adjacent to a vertex x′ ∈ V1 colored j, forming an induced 2K2 in G[V0 ∪ V1],
a contradiction. Therefore, Γ(G) 6 4`.

We observe that our proof works for a more general notion of “path of half-graphs” where
one does not impose the orders of the successive half-graphs to have the same orientation
(see the second paragraph of Section 2.1). J

We are now ready to present the hardness construction. We reduce from k-Multicolored
Subgraph Isomorphism whose definition is the following.

k-Multicolored Subgraph Isomorphism Parameter: k
Input: An integer k > 0, a graph G whose vertex-set is partitioned into k sets V1, . . . , Vk,
and a graph H with V (H) = [k].
Question: Is there φ : i ∈ [k] 7→ vi ∈ Vi such that for all ij ∈ E(H), φ(i)φ(j) ∈ E(G)?

I Theorem 9. Grundy Coloring is W[1]-complete and, unless the ETH fails, cannot
be solved in time f(q)no(2q−log q) (nor in time f(q)n2o(q)) for any computable function f , on
n-vertex graphs with Grundy number q.

Proof. The membership to W[1] is given by the framework of Cesati [7], since there is
always a witness of size 2q−1. We show the W[1]-hardness of Grundy Coloring by
reducing from k-Multicolored Subgraph Isomorphism with 3-regular pattern graphs.
Let (G = (V1, . . . , Vk, E), H = ([k], F )) be an instance of that problem. We further assume
that k is a positive even integer and there is no edge between Vi and Vj in G whenever
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Figure 3 The encoding Hi of one Vi ordered u1 < u2 < u3 < u4 < u5. In bold, a possible
independent set intersecting the five sets and containing a consistent pair l(u), r(u).

ij /∈ E(H). The goal is now to find v1 ∈ V1, . . . , vk ∈ Vk such that H is isomorphic to
G[{v1, . . . , vk}]. Even with these restrictions k-Multicolored Subgraph Isomorphism
cannot be solved in time f(k)|V (G)|o(k/ log k) = f(|E(H)|)|V (G)|o(|E(H)|/ log |E(H)|), unless
the ETH fails (see [26, 27], and Theorem 5.5 in [28]).

We build an equivalent Grundy Coloring-instance (G′, q) with q = dlog ke+ 258 as
follows. For each color class Vi, we fix an arbitrary total ordering 6i on the vertices of Vi,
and we write u <i u

′ if u 6= u′ and u 6i u
′. Let i ∈ [k] and let i(1), i(2), i(3) ∈ [k] be the

three neighbors of i in H. Each Vi is encoded by a length-4 path of half-graphs denoted by
Hi (see Figure 3). We now detail the construction of Hi.

We set V (Hi) := Li ∪ Vi,i(1) ∪ Vi,i(2) ∪ Vi,i(3) ∪ Ri. The vertices of Li (resp. Ri) are in
one-to-one correspondence with the vertices of Vi. We denote by l(u) (resp. r(u)) the vertex
of Li (resp. Ri) corresponding to u ∈ Vi. For each p ∈ [3], the vertices of Vi,i(p) are in
one-to-one correspondence with the edges of E(Vi, Vi(p)). We denote by z(u, v) the vertex of
Vi,i(p) corresponding to the edge uv ∈ E(Vi, Vi(p)) with u ∈ Vi and v ∈ Vi(p).

We set E(Hi) := E(Li, Vi,i(1)) ∪ E(Vi,i(1), Vi,i(2)) ∪ E(Vi,i(2), Vi,i(3)) ∪ E(Vi,i(3), Ri):
l(u)z(u′, v) ∈ E(Li, Vi,i(1)) if and only if u <i u

′

for p ∈ [2], z(u, v)z(u′, v′) ∈ E(Vi,i(p), Vi,i(p+1)) if and only if u <i u
′

z(u, v)r(u′) ∈ E(Vi,i(3), Ri) if and only if u <i u
′.

For each pair of vertices u, u′ ∈ Vi such that u <i u
′, we add an edge between l(u) and

z(u′, v) ∈ Vi,i(1), respectively z(u, v) ∈ Vi,i(1) and z(u′, v′) ∈ Vi,i(2), respectively z(u, v) ∈
Vi,i(2) and z(u′, v′) ∈ Vi,i(3), respectively z(u, v) ∈ Vi,i(3) and r(u′) (see Figure 3).

For each ij ∈ E(H), we create |E(Vi, Vj)| copies of the binomial tree T5. So these trees
are in one-to-one correspondence with the edges of G between Vi and Vj , and we denote
by T5(uv) the tree corresponding to uv ∈ E(Vi, Vj). We denote by β(uv) and γ(uv) the
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two children getting color 2 of the only two vertices colored 3, in the Grundy coloring of
T5(uv) which gives color 5 to its root. We remove the pendant neighbor of β(uv) and of
γ(uv) (the two vertices getting color 1 and supporting β(uv) and γ(uv)). This results in a
fourteen-vertex tree. We denote this set of trees by Ti,j , and the |E(Vi, Vj)| roots of the T5
by Ri,j . For each ij ∈ E(H) and for every pair z(u, v) ∈ Vi,j , z(v, u) ∈ Vj,i, we make z(u, v)
and β(uv) adjacent, and we make z(v, u) and γ(uv) adjacent.

For every i ∈ [k], we create |Vi| copies of the binomial tree T5. These trees are in
one-to-one correspondence with Vi. Similarly as above, we denote by β(u) and γ(u) the two
vertices getting color 2, whose parents are colored 3, in T5(u) and we remove their pendant
neighbor (colored 1). For every pair l(u) ∈ Li and r(u) ∈ Ri, we link l(u) and β(u), and we
link r(u) and γ(u). We denote this set of trees by Ti, and the |Vi| roots of the T5 by Ri.

We finally create one copy of the binomial tree Tq. We observe that there are |E(H)| sets
Ri,j and |V (H)| sets Ri. The binomial tree Tq has at least |V (H)|+ |E(H)| = 2.5k vertices
getting color 7 in the greedy coloring giving color q to the root. Indeed the number of vertices
colored 7 is 2q−8, and it holds that q − 8 > log k + log 2.5. We map 2.5k distinct vertices
colored 6 in Tq, that are children of vertices colored 7, in a one-to-one correspondence with
V (H) ∪E(H). Let f(i) be the vertex mapped to i ∈ V (H) and f(ij) be the vertex mapped
to ij ∈ E(H). We further remove the subtree T5 of each of these 2.5k vertices colored 6. For
every i ∈ V (H), we link f(i) to all the vertices in Ri. Similarly for every ij ∈ E(H), we
link f(ij) to all the vertices in Ri,j . This finishes the construction of the graph G′. Solving
Grundy Coloring in time f(q)no(2q−log q) = f(dlog ke+ 258)no(k/ log k) would give the same
running time for k-Multicolored Subgraph Isomorphism, which is ruled out under the
ETH. We now prove that the reduction is correct.

A solution to k-Multicolored Subgraph Isomorphism implies Γ(G′) > q

Let v1 ∈ V1, v2 ∈ V2, . . . , vk ∈ Vk be a fixed solution to the k-Multicolored Subgraph
Isomorphism-instance (the colored isomorphism being i ∈ [k] 7→ vi). We say that each edge
vivj is in the solution (for i 6= j ∈ [k]). We color 1 all the vertices of G′ corresponding to edges
in the solution, that is, all the vertices z(vi, vj), as well as all vertices of G′ corresponding
to vertices in the solution, that is l(vi) and r(vi). This is possible since the five vertices
l(vi), z(vi, vi(1)), z(vi, vi(2)), z(vi, vi(3)), r(vi) form an independent set since ¬(vi <i vi).

We can now color 2 the vertices β(vi) and γ(vi). Therefore the root of T5(vi) can receive
color 5. Moreover, for every ij ∈ E(H) we can color 2 the vertices β(vivj) and γ(vivj).
Therefore the root of T5(vivj) can receive color 5. Since one vertex in each Ri, and one
vertex in each Ri,j get color 5, the vertices f(i) and f(ij) can all get color 6. Finally the
root of Tq can receive color q.

Γ(G′) > q implies a solution to k-Multicolored Subgraph Isomorphism

We first show that only the two vertices of Tq with degree q − 1 can get color q. Besides
these two vertices, the only vertices of Tq with sufficiently large degree to get color q are the
vertices f(i) and f(ij). But these vertices have at most one neighbor of degree more than
5. So according to Corollary 5, they cannot receive a color higher than 7 < q. Now we use
Lemma 8 to bound the color reachable outside of Tq. For every i ∈ [k], the induced subgraph
G′[Hi] is a length-four path of half-graphs. Thus by Lemmas 3 and 8, Γ(G′[Hi]) 6 44 = 256.
All the vertices in the open neighborhood of Vi,i(1) ∪ Vi,i(2) ∪ Vi,i(3) have degree at most 2.
So by Lemma 4 vertices outside Tq cannot receive a color beyond 258 < q.
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We now established that if Γ(G′) > q (actually Γ(G′) = q), then either one of the two
possible roots of Tq shall receive color q. By Lemma 2, this implies that all the vertices f(i)
and f(ij) receive color 6, and that in each Ri and each Ri,j there is at least one vertex
receiving color 5. For every i ∈ [k], let T5(ui) be one T5 of Ti whose root gets color 5. We
will now show that {u1, . . . , ui, . . . , uk} is a solution to the k-Multicolored Subgraph
Isomorphism-instance. Again by Lemma 2, this is only possible if β(ui) and γ(ui) both get
color 2, and their unique neighbor outside T5(ui) gets color 1. It means that l(ui) and r(ui)
both get color 1.

Since every Ri,j contains at least one vertex colored 5, Lemma 2 implies that every Vi,i(p)
(for each p ∈ [3]) gets at least one vertex colored 1. Let z(u, v) ∈ Vi,i(1), z(u′, v′) ∈ Vi,i(2), and
z(u′′, v′′) ∈ Vi,i(3) three vertices getting color 1. As {l(ui), z(u, v), z(u′, v′), z(u′′, v′′), r(ui)}
should be an independent set, we have ui >i u >i u

′ >i u
′′ >i ui. This implies that

ui = u = u′ = u′′. In turn that implies that no vertex z(u∗, v) ∈ Vi,i(1) ∪ Vi,i(2) ∪ Vi,i(3)
with u∗ 6= ui can get color 1. Indeed l(ui) prevents a 1 “above” z(ui, v) ∈ Vi,i(1) and
z(ui, v

′) ∈ Vi,i(2) prevents a 1 “below” z(ui, v). The same goes for the color classes Vi,i(2)
and Vi,i(3). Thus the only trees T5(uv) ∈ Ti,j that can get color 5 at their root are the ones
such that {u, v} ⊂ {u1, . . . , uk}. As all the 1.5k sets Ti,j have such a tree, it implies that
{u1, . . . , uk} is a solution to the k-Multicolored Subgraph Isomorphism-instance. J

5 Parameterized hardness of b-Chromatic Core

A length-two path of half-graphs have arbitrary large b-chromatic core. Nevertheless a simple
half-graph only admits b-chromatic cores of bounded size. We show how to still build a
W[1]-hardness construction in this furtherly constrained situation.

I Theorem 10 (♣). b-Chromatic Core is W[1]-complete.

Proof. The inclusion in W[1] is immediate by the characterization of Cesati [7], and the
facts that minimal witnesses have size at most k2, and that given the subgraph induced by a
minimal witness one can check if it is solution. To show W[1]-hardness, we reduce from k-by-k
Grid Tiling. In this problem, given k2 sets of pairs over [n], say, (Pi,j ⊆ [n]× [n])i,j∈[k]×[k],
“displayed in a k-by-k grid”, one has to find one pair (xi,j , yi,j) in each Pi,j such that
xi,j = xi,j+1 and yi,j = yi+1,j , for every i, j ∈ [k − 1]. This problem was introduced and
shown W[1]-hard by Marx [24]. It is called Matrix Tiling in [25], although subsequent
papers refer to it as Grid Tiling. We assume that k is dividable by 3, k2 > 33, and for the
sake of clarity, that each Pi,j contains the same number of pairs, say t 6 n2. This problem
remains W[1]-hard under these assumptions.

Construction

Let (Pi,j ⊆ [n]× [n])i,j∈[k]×[k] be the instance of Grid Tiling. For each (i, j), we have the
set of pairs Pi,j with |Pi,j | = t. For each (i, j), we add a biclique Kt,q−9(i, j) := Kt,q−9, where
q := 14k2. The part of Kt,q−9(i, j) with size t is denoted by Ai,j and the other part by Bi,j

(see Figure 4). We denote by Ai,j the t vertices to the left of Kt,q−9(i, j) on Figure 4, and by
Bi,j , the q − 9 vertices to the right. The vertices of Ai,j are in one-to-one correspondence
with the pairs of Pi,j . We denote by ai,j(x, y) ∈ Ai,j the vertex corresponding to (x, y) ∈ Pi,j .
We make the construction “cyclic”, or rather “toroidal”. So in what follows, every occurrence
of i+ 1 or j + 1 should be interpreted as 1 in case i = k or j = k.

For every vertically (resp. horizontally) consecutive pairs (i, j) and (i+ 1, j) (resp. (i, j)
and (i, j + 1)) we add a half-graph H(i→ i+ 1, j) (resp. H(i, j → j + 1)) with bipartition
H(i → i + 1, j) ∪ H(i → i+ 1, j) (resp. H(i, j → j + 1) ∪ H(i, j → j + 1)). Both sets
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H(i → i + 1, j) and H(i, j → j + 1) are in one-to-one correspondence with the vertices
of Ai,j , while the set H(i → i+ 1, j) is in one-to-one correspondence with the vertices
of Ai+1,j , and H(i, j → j + 1), with the vertices of Ai,j+1. We denote by hi→i+1,j(x, y)
(resp. hi→i+1,j(x′, y′)) the vertex corresponding to ai,j(x, y) (resp. ai+1,j(x′, y′)). Similarly
we denote by hi,j→j+1(x, y) (resp. hi,j→j+1(x′, y′)) the vertex corresponding to ai,j(x, y)
(resp. ai,j+1(x′, y′)). Every vertex in a half-graph H(i → i + 1, j) or H(i, j → j + 1) is
made adjacent to its corresponding vertex in Ai,j ∪Ai+1,j ∪Ai,j+1. Thus ai,j(x, y) is linked
to hi→i+1,j(x, y), hi−1→i,j(x, y), hi,j→j+1(x, y), and hi,j−1→j(x, y). Note that underlined
numbers are used to distinguish names, and to give information on its neighborhood. We
call vertical half-graph an H(i→ i+ 1, j), and horizontal half-graph an H(i, j → j + 1). We
now precise the order of the half-graphs. In vertical half-graphs, we put an edge between
hi→i+1,j(x, y) and hi→i+1,j(x′, y′) whenever y < y′. In horizontal half-graphs, we put an
edge between hi,j→j+1(x, y) and hi,j→j+1(x′, y′) whenever x < x′.

ai,j (1, 3)hi,j−1→j (1, 3)hi,j−1→j (1, 3) hi,j→j+1(1, 3)hi,j→j+1(1, 3)

ai,j (1, 4)hi,j−1→j (1, 4)hi,j−1→j (1, 4) hi,j→j+1(1, 4)hi,j→j+1(1, 4)

ai,j (2, 1)hi,j−1→j (2, 1)hi,j−1→j (2, 1) hi,j→j+1(2, 1)hi,j→j+1(2, 1)

ai,j (2, 5)hi,j−1→j (2, 5)hi,j−1→j (2, 5) hi,j→j+1(2, 5)hi,j→j+1(2, 5)

ai,j (3, 2)hi,j−1→j (3, 2)hi,j−1→j (3, 2) hi,j→j+1(3, 2)hi,j→j+1(3, 2)

ai,j (3, 4)hi,j−1→j (3, 4)hi,j−1→j (3, 4) hi,j→j+1(3, 4)hi,j→j+1(3, 4)

ai,j (3, 5)hi,j−1→j (3, 5)hi,j−1→j (3, 5) hi,j→j+1(3, 5)hi,j→j+1(3, 5)

ai,j (4, 1)hi,j−1→j (4, 1)hi,j−1→j (4, 1) hi,j→j+1(4, 1)hi,j→j+1(4, 1)

ai,j (4, 4)hi,j−1→j (4, 4)hi,j−1→j (4, 4) hi,j→j+1(4, 4)hi,j→j+1(4, 4)

ai,j (5, 3)hi,j−1→j (5, 3)hi,j−1→j (5, 3) hi,j→j+1(5, 3)hi,j→j+1(5, 3)

Ai,jHi,j−1→j Hi,j→j+1

Bi,j

hi,j−1→j (1, 2)hi,j−1→j (1, 2)

hi,j−1→j (1, 4)hi,j−1→j (1, 4)

hi,j−1→j (1, 5)hi,j−1→j (1, 5)

hi,j−1→j (2, 3)hi,j−1→j (2, 3)

hi,j−1→j (3, 1)hi,j−1→j (3, 1)

hi,j−1→j (3, 3)hi,j−1→j (3, 3)

hi,j−1→j (3, 5)hi,j−1→j (3, 5)

hi,j−1→j (4, 2)hi,j−1→j (4, 2)

hi,j−1→j (5, 1)hi,j−1→j (5, 1)

hi,j−1→j (5, 2)hi,j−1→j (5, 2)

hi,j→j+1(1, 1)hi,j→j+1(1, 1)

hi,j→j+1(1, 5)hi,j→j+1(1, 5)

hi,j→j+1(2, 3)hi,j→j+1(2, 3)

hi,j→j+1(2, 4)hi,j→j+1(2, 4)

hi,j→j+1(3, 5)hi,j→j+1(3, 5)

hi,j→j+1(4, 3)hi,j→j+1(4, 3)

hi,j→j+1(4, 4)hi,j→j+1(4, 4)

hi,j→j+1(5, 1)hi,j→j+1(5, 1)

hi,j→j+1(5, 3)hi,j→j+1(5, 3)

hi,j→j+1(5, 5)hi,j→j+1(5, 5)

Hi,j−1→j Hi,j→j+1

Figure 4 The biclique Kt,q−9(i, j) encoding the pairs Pi,j , and its connection to the two neigh-
boring horizontal half-graphs, with n = 5, t = 10, and q = 14.

We then add a global clique C of size q − k2. We attach k2 private neighbors to each
vertex of C. Among the q − k2 vertices of C, we arbitrarily distinguish 33 vertices: a set
D = {d1, . . . , d18} of size 18, and three sets C ′, C−, C+ each of size 5. We fully link dz to
every Bi,j if z takes one of the following values:

3(j mod 3− 1) + i mod 3,
succ(3(j mod 3− 1) + i mod 3),
3(i mod 3− 1) + j mod 3 + 9,
succ(3(i mod 3− 1) + j mod 3 + 9),

where the modulos are always taken in {0, 1, 2}, and succ(x) := x+ 1 if x is not dividable by
3 and succ(x) := x− 2 otherwise (see Figure 5). Note that each Bi,j is linked with dz for
two successive (indicated by the operator succ(x)) integers z in the range of [1, 3], [4, 6] or
[7, 9] depending on the coordinate j modulo 3. Likewise, each Bi,j is linked with dz for two
successive integers z in the range of [10, 12], [13, 15] or [17, 18] depending on the coordinate i
modulo 3.
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Figure 5 The rounded rectangles represent the Bi,j , and the numbers therein, the z ∈ [18] such
that dz is fully linked to it. These are the “colors” that a center in Ai,j will have to fight for. The
circles represent the half-graphs, and the number therein, the only z such that dz is not linked to
it. Red integers are offset by 9 (1 = 10, 2 = 11, and so on). The edges represent the non-empty
interaction between the Ai,j and the half-graphs. The structure is glued like a torus.

We observe that Bi,j and Bi+1,j are linked to exactly one common dz (z ∈ [18]), and we
fully link the half-graph H(i→ i+ 1, j) to D \ {z}. Similarly we fully link the half-graph
H(i, j → j + 1) to D \ {z} where z is the unique integer of [18] such that dz is fully linked to
both Bi,j and Bi,j+1. We fully link each Ai,j to C ′, each H(i→ i+ 1, j) and H(i, j → j + 1)
to C−, and each H(i→ i+ 1, j) and H(i, j → j + 1) to C+. This is just to prevent that one
uses a vertex of a Bi,j or of a half-graph as a center. As we will see, intended solutions have
all their centers in C ∪

⋃
i,j∈[k]Ai,j .

This ends our polytime construction. We denote by G the obtained graph. In the long
version [2], we show that G has b-chromatic number at least q if and only if the k-by-k Grid
Tiling-instance is positive. J

6 Partial Grundy Coloring and b-Chromatic Core on Kt,t-free graphs

In the following subsection, we prove that both b-Chromatic Core and Partial Grundy
Coloring can be solved in FPT time when all but a bounded number of vertices have
bounded degree. This is a preparatory step to show the tractability in Kt,t-free graphs.

6.1 FPT algorithm on almost bounded-degree graphs
The technique of random separation [6, 5], inspired by the color coding technique [3], comes
handy when one wants to separate a latent vertex-subset of small size from the rest of the
graph. A derandomize version of random separation can be obtained with splitters by Naor et
al. [29] (see also Chitnis et al. [8]) and is available in literature. For two disjoint sets A and
B of a universe U , we say that S ⊆ U is an (A,B)-separating set if A ⊆ S and B ∩ S = ∅.

STACS 2020
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I Lemma 11 (Chitnis et al. [8]). Let a and b be non-negative integers. For an n-element
universe U , there exists a family F of 2O(min(a,b) log (a+b)) logn subsets of U such that for any
disjoint subsets A,B ⊆ U with |A| 6 a and |B| 6 b, there exists an (A,B)-separating set S
in F . Furthermore, such a family F can be constructed in time 2O(min(a,b) log (a+b))n logn.

I Theorem 12. Let G be a graph in which at most s vertices have degree larger than d.
Then whether G has a k-witness for b-Chromatic Core (Partial Grundy Coloring,
respectively) can be decided in FPT time parameterized by k + d+ s.

Proof. Let X be the set of s vertices of degree larger than d. In order to explain the algorithm
and prove its correctness, it is convenient to assume that G does contain a k-witness H for
b-Chromatic Core (or Partial Grundy Coloring) as an induced subgraph. We define
I := V (H) ∩X,A := V (H) \X, and B := N(A) \X.

We can guess I by considering at most 2s subsets of X. To find A, we use Lemma 11.
From the fact that every vertex of V \ X has degree at most d and that H is a minimal
k-witness, we have |A| 6 k2 and |B| 6 dk2. Hence, by Lemma 11 with universe V (G)\X, we
can compute in time 2O(k2 log (k2+dk2))n logn a family F with 2O(k2 log (k2+dk2)) logn subsets
of V (G) \X, that contains an (A,B)-separating set.

We guess this (A,B)-separating set by iterating over all elements of F . Let S be a correct
guess, i.e., S is an (A,B)-separating set. So A ⊆ S and S ∩ B = ∅. Observe that every
connected component of G[A] appears in G[S] as a connected component.

Let CS be the set of connected components of G[S] of size at most k2. Since |A| 6 k2,
larger connected component of G[S] are clearly disjoint from A. Moreover, by definition of
B and since S is disjoint from B, each connected component of G[A] is an element of CS .

Since each element of CS has at most k2 vertices, the number of equivalence classes of CS

under graph isomorphism is bounded by a function of k. In fact, the number of equivalence
classes under a stronger form of isomorphism is bounded by a function of k. We define a
labeling function ` : S → 2I as `(v) := N(v) ∩ I. Let ∼S be a relation on CS such that, for
every C,C ′ ∈ C′S : C ∼S C ′ if and only if there is a graph isomorphism φ : C → C ′ with
`(v) = `(φ(v)) for every v ∈ C. Let [∼S ] be the partition of CS into equivalence classes
under ∼S . As members of CS have cardinality at most k2 and there are 2|I| 6 2k2 labels,
CS has at most 22k4 equivalence classes under ∼S . And thus we can compute [∼S ] in time
22k4

n. The definition of ∼S clearly implies that two equivalent sets C and C ′ under ∼S are
exchangeable as a connected component of H −X. That is, for any induced subgraph D of
G with V (D) ∩X = I, if C is a connected component of D − I, then G[(V (D) \ C) ∪ C ′] is
isomorphic to D.

We will now guess, by doing an exhaustive search, how many connected components
H − I takes from each part of the partition [∼S ]. There are 22k4k2 possible such guesses and
from the fact that the number of connected components in H − I is at most k2. Choose an
element (i.e. a connected vertex-set) from each part of [∼S ] as many times as the current
guess suggests (if this is impossible, then discard the current guess) and let W be the union
of the chosen connected vertex-sets. We can now verify by brute-force that G[W ∪ I] is
a k-witness for b-Chromatic Core or Partial Grundy Coloring, depending on the
problem at hand.

To complete the proof of correctness, note that if we find a k-witness for some choice of
I, S ∈ F and W , the input graph G clearly admits a k-witness. One can easily observe that
the running time is FPT in k + d+ s. J
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6.2 FPT algorithm on Kt,t-free graphs
In this subsection, we present an FPT algorithm on graphs which do not contain Kt,t as a
subgraph. A key element of this algorithm is a combinatorial result (Proposition 16), which
states that if there are many vertices of large degree, then one can always find a k-witness.

I Lemma 13 (♠). Let t and N be two positive integers with N > t, and let G be a graph on
a vertex-set A]B not containing Kt,t as a subgraph. If |A| > N2N+t and |B| > N + t, then
there exist two sets A′ ⊆ A and B′ ⊆ B, each of size at least N , such that there is no edge
between A′ and B′.

I Lemma 14 (♠). For any integers k and t, there exists an integer M such that the following
holds: given a Kt,t-free graph G and a partition A1 ] · · · ] Ak of V (G) such that each Ai

contains at least M vertices, there exists either a clique on k vertices, or an independent set
of size k2 which contains k vertices from each Ai.

The following statement is proved in [1].

I Lemma 15 (Aboulker et al. [1]). Let t be a positive integer and let ε ∈ (0, 1). Then there
is an integer N(t, ε) that satisfies the following: if H = (V,E) is a hypergraph on at least
N(t, ε) vertices, where all hyperedges have size at least ε|V |, and the intersection of any t
hyperedges has size at most t− 1, then |E| < t/εt.

We are ready to prove the key combinatorial result on Kt,t-free graphs.

I Proposition 16. Let t, k be positive integers. Let G be a Kt,t-free graph and let X ] Y be
a partition of V (G). There exist integers f(t, k) and g(t, k) such that the following holds: If
|X| > f(t, k), and |NY (x)| > g(t, k) for every x ∈ X, then G contains kK1,k as an induced
subgraph. In particular, G admits k-witnesses for b-Chromatic Core and thus for Partial
Grundy Coloring.

Proof. We first observe that kK1,k (even kK1,k−1) is a k-witness for b-Chromatic Core:
color the k centers with distinct colors, and assign colors from [k] \ {i} to the leaves of
the center colored i. Let N(t, 1/k) and M be the integers defined in Lemmas 14 and 15
respectively, and set M ′ := max(M,N(t, 1/k)), f(t, k) := 22t+k(tkt+t), g(t, k) := 2k(tkt+t)M ′.

By Ramsey’s theorem, any graph on at least f(t, k) vertices admits either a clique of size
2t or an independent set of size k(tkt + t). Since G[X] (which has at least f(t, k) vertices) is
Kt,t-free, the former outcome is impossible, so it has an independent set of size k(tkt + t). It
should be noted that the inductive proof of Ramsey’s theorem yields a greedy linear-time
algorithm which outputs a clique or an independent set of the required size. Hence we
efficiently find an independent set of size k(tkt + t) in G[X]. Starting from j = 1, we now
prove the following claim inductively for all j 6 k.

(?) If |X| > j(tkt + t) and |NY (x)| > 2j(tkt+t)M ′ for every x ∈ X, then there are j
vertices {b1, . . . , bj} ⊆ X and a family of j disjoint vertex-sets A1, . . . , Aj ⊆ Y each
of size at least M ′, such that each Ai are private neighbors of bi; that is, the vertices
of Ai are adjacent with bi and not adjacent with any other vertices from {b1, . . . , bj}.

The claim (?) trivially holds when j = 1. Suppose it holds for all integers smaller
than j, where 2 6 j 6 k. We may assume that X has precisely j(tkt + t) vertices by
discarding some vertices if its size exceeds the bound. For each ∅ 6= I ⊆ X, we define
NI =

⋂
v∈I NY (v) ∩

⋂
v∈X\I Y \NY (v). Thus NI corresponds to all the vertices of Y whose

neighborhood in X is exactly I. Observe that the NI ’s partition Y and that NI corresponds
to the set of vertices of Y that are complete with I and anti-complete with X − I.
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Choose a vertex x ∈ X that minimized |NY (x)|. As there are 2j(tkt+t) possible subsets
of X and |NY (x)| > 2j(tkt+t)M ′, there exists I∗ ⊆ X such that x ∈ I∗ and |NI∗ | >M ′.

Let Xx be the set of vertices in X adjacent with at least k-th fraction of NY (x), that is,

Xx = {v ∈ X : |NY (v) ∩NY (x)| > |NY (x)|
k

}.

Set X ′ = X − (I∗ ∪Xx), Y ′ = Y −NY (x) and let G′ = G[X ′ ∪ Y ′].
We want to apply the induction hypothesis on G′ with respect to X ′ and Y ′. For

this, we need to make sure that it satisfies the conditions of (?) for j − 1. To prove that
|X ′| > (j − 1)(tkt + t), we need to bound the size of I∗ and Xx. To bound the size of I∗,
notice that NI∗ is complete with I∗. Since |NI∗ | > M > t and G is Kt,t-free, we conclude
that |I∗| < t. To bound the size of Xx, we apply Lemma 15 with ε = 1/k to the hypergraph
on the vertex-set NY (x) and with hyperedge set {NY (v) ∩NY (x) : v ∈ X}. Each hyperedge
of size at least |NY (x)|

k corresponds to a vertex in Xx which gives us the bound |Xx| 6 tkt.
Notice that Lemma 15 can be legitimately applied on this hypergraph as NY (x) has at least
M ′ > N(t, 1/k) vertices. Therefore, we have |X ′| > |X| − t− tkt > (j − 1)(tkt + t).

It remains to verify that each v ∈ X ′ has at least 2(j−1)(tkt+t)M ′ neighbors in Y ′. Indeed

|NY ′(v)| > |NY (v)| − |NY (v) ∩NY (x)| > |NY (v)| − |NY (x)|
k

> |NY (v)| − |NY (v)|
k

>
k − 1
k

2j(tkt+t)M ′ > 2(j−1)(tkt+t)M ′.

This proves that G′ meets the requirement to apply the induction hypothesis, and thus
we can find {b2, . . . , bj} and sets A2, . . . , Aj in G′ as claimed in (?). Observe now that NI∗ is
anticomplete to {b2, . . . , bj} and recall that |NI∗ | >M ′. Hence, setting b1 = x and A1 = NI∗
complete the proof of (?). Now, applying Lemma 14 to the sets A1 ] · · · ]Ak given by (?)
gives us either a clique on k vertices or the announced set of stars. J

Combined with the main result of the previous subsection, this implies that b-Chromatic
Core and Partial Grundy Coloring can be solved in FPT time on Kt,t-free graphs.
Observe that our algorithm is FPT in the combined parameter k + t, which is a stronger
than having an FPT algorithm in k when t is a fixed constant.

I Theorem 17. There is a function h and an algorithm which, given a graph G = (V,E) not
containing Kt,t as a subgraph, decides whether G admits k b-Chromatic Core (Partial
Grundy Coloring, respectively) in time h(k, t)nO(1).

Proof. Let X ⊆ B be the set of all vertices whose degree is at least g(t, k) + f(t, k), where
g(t, k) and f(t, k) are the integers as in Proposition 16. If X contains at least f(t, k) vertices,
then we there exists a k-witness in G by Proposition 16. If X contains less than f(t, k)
vertices, the algorithm of Theorem 12 can be applied to correctly decide whether G contains
a k-witness. J
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Abstract
We continue the program of proving circuit lower bounds via circuit satisfiability algorithms.
So far, this program has yielded several concrete results, proving that functions in Quasi-NP =
NTIME[n(log n)O(1)

] and NEXP do not have small circuits (in the worst case and/or on average) from
various circuit classes C, by showing that C admits non-trivial satisfiability and/or #SAT algorithms
which beat exhaustive search by a minor amount.

In this paper, we present a new strong lower bound consequence of non-trivial #SAT algorithm
for a circuit class C. Say a symmetric Boolean function f(x1, . . . , xn) is sparse if it outputs 1 on O(1)
values of

∑
i
xi. We show that for every sparse f , and for all “typical” C, faster #SAT algorithms

for C circuits actually imply lower bounds against the circuit class f ◦ C, which may be stronger
than C itself. In particular:

#SAT algorithms for nk-size C-circuits running in 2n/nk time (for all k) imply NEXP does not
have f ◦ C-circuits of polynomial size.
#SAT algorithms for 2nε -size C-circuits running in 2n−nε time (for some ε > 0) imply Quasi-NP
does not have f ◦ C-circuits of polynomial size.

Applying #SAT algorithms from the literature, one immediate corollary of our results is that
Quasi-NP does not have EMAJ ◦ ACC0 ◦ THR circuits of polynomial size, where EMAJ is the
“exact majority” function, improving previous lower bounds against ACC0 [Williams JACM’14] and
ACC0 ◦ THR [Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower
bound against such a circuit class.
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1 Introduction

Currently, our knowledge of algorithms vastly exceeds our knowledge of lower bounds. Is it
possible to bridge this gap, and use the existence of powerful algorithms to give lower bounds
for hard functions? Over the last decade, the program of proving lower bounds via algorithms
has been positively addressing this question. A line of work starting with Kabanets and
Impagliazzo [15] has shown how deterministic subexponential-time algorithms for polynomial
identity testing would imply lower bounds against arithmetic circuits. Starting around
2010 [24, 25], it was shown that even slightly nontrivial algorithms could imply Boolean
circuit lower bounds. For example, a circuit satisfiability algorithm running in O(2n/nk)
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time (for all k) on nk-size circuits with n inputs would already suffice to yield the (infamously
open) lower bound NEXP 6⊂ P/poly. More generally, a generic connection was found between
non-trivial SAT algorithms and circuit lower bounds:

I Theorem 1 ([24, 25], Informal). Let C be a circuit class closed under AND, projections,
and compositions.1 Suppose for all k there is an algorithm A such that, for every C-circuit
of nk size, A determines its satisfiability in O(2n/nk) time. Then NEXP does not have
polynomial-size C-circuits.

To illustrate Theorem 1 with two examples, when C is the class of general fan-in 2 circuits,
Theorem 1 says that non-trivial Circuit SAT algorithms imply NEXP 6⊂ P/poly; when C is the
class of Boolean formulas, it says non-trivial Formula-SAT algorithms imply NEXP 6⊂ NC1.
Both are major open questions in circuit complexity. Theorem 1 and related results have been
applied to prove several concrete circuit lower bounds: super-polynomial lower bounds for
ACC0 [25], ACC0 ◦THR [21], quadratic lower bounds for depth-two symmetric and threshold
circuits [18, 1], and average-case lower bounds as well [7, 5].

Recently, the algorithms-to-lower-bounds connection has been extended to show a trade-
off between the running time of the SAT algorithm on large circuits, and the complexity of
the hard function in the lower bound. In particular, it is even possible in principle to obtain
circuit lower bounds against NP with this algorithmic approach.

I Theorem 2 ([16], Informal). Let C be a class of circuits closed under unbounded AND,
ORs of fan-in two, and negation. Suppose there is an algorithm A and ε > 0 such that, for
every C-circuit C of 2nε size, A solves satisfiability for C in O(2n−nε) time. Then Quasi-NP
does not have polynomial-size C-circuits.2

In fact, Theorem 2 holds even if A only distinguishes between unsatisfiable circuits from
those with at least 2n−1 SAT assignments; we call this easier problem GAP-UNSAT.

Intuitively, the aforementioned results show that as the circuit satisfiability algorithms
improve in running time and scope, they imply stronger lower bounds. In all known results,
to prove a lower bound against C, one must design a SAT algorithm for a circuit class that
is at least as powerful as C. Inspecting the proofs of the above theorems carefully, it is not
hard to show that, even if C did not satisfy the desired closure properties, it would suffice to
give a SAT algorithm for a slightly more powerful class than the lower bound. For example,
in Theorem 2, a SAT algorithm running in O(2n−nε) time for 2nε -size AND of ORs of three
(possibly negated) C circuits (on n inputs, of 2nε size) would still imply C-circuit lower bounds
for Quasi-NP. Our key point here is that these proof methods require a SAT algorithm for
a potentially more powerful circuit class than the class for which we can conclude a lower
bound. A compelling question is whether this requirement is an artifact of our proof method,
or is it inherent?

Lower bounds for more powerful classes from SAT algorithms?

We feel it is natural to conjecture that a SAT algorithm for a circuit class C implies a lower
bound against a class that is more powerful than C, because checking satisfiability is itself a
very powerful ability. Intuitively, a non-trivial SAT algorithm for C on n-input circuits is
computing a uniform OR of 2n C-circuits evaluated on fixed inputs, in o(2n) time. (Recall

1 It is not necessary to know precisely what these conditions mean, as we will use different conditions in
our paper anyway. The important point is that these conditions hold for most interesting circuit classes
that have been studied, such as AC0, TC0, NC1, NC, and general fan-in two circuits.

2 In this paper, we use the notation Quasi-NP :=
⋃

k
NTIME[n(log n)k ].
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that a “uniform” circuit informally means that any gate of the circuit can be efficiently
computed by an algorithm.) If there were an algorithm to decide the outputs of uniform
ORs of C-circuits more efficiently than their actual circuit size, perhaps this implies a lower
bound against OR ◦ C circuits.

Similarly, a #SAT algorithm for C on n-input circuits can be used to compute the output
of any circuit of the form f(C(x1), . . . , C(x2n)) where f is a uniform symmetric Boolean
function, C is a C-circuit with n inputs, and x1, . . . , x2n is an enumeration of all n-bit strings.
Should we therefore expect to prove lower bounds on symmetric functions of C-circuits, using
a #SAT algorithm? This question is particularly significant because in many of the concrete
lower bounds proved via the program [25, 21, 16], non-trivial #SAT algorithms were actually
obtained, not just SAT algorithms. So our question amounts to asking: how strong of a
circuit lower bound we can prove, given the SAT algorithms we already have? We use SYM
to denote the class of Boolean symmetric functions.

I Conjecture 1 (#SAT Algorithms Imply Symmetric Function Lower Bounds, Informal). Non-
trivial #SAT algorithms for circuit classes C imply size lower bounds against SYM◦C circuits.
In particular, all statements in Theorem 1 and Theorem 2 hold when the SAT algorithm is
replaced by a #SAT algorithm, and the lower bound consquence for C is replaced by SYM ◦ C.

If Conjecture 1 is true, then existing #SAT algorithms would already imply super-
polynomial lower bounds for SYM ◦ ACC0 ◦ THR circuits, a class that contains depth-two
symmetric circuits (for which no lower bounds greater than n2 are presently known) [18, 1].

More intuition for Conjecture 1 can be seen from a recent paper of the second author, who
showed how #SAT algorithms for a circuit class C can imply lower bounds on (real-valued)
linear combinations of C-circuits [23]. For example, known #SAT algorithms for ACC0 circuits
imply Quasi-NP problems cannot be computed via polynomial-size linear combinations of
polynomial-size ACC0◦THR circuits. However, the linear combination representation is rather
constrained: the linear combination is required to always output 0 or 1. Applying PCPs of
proximity, Chen and Williams [6] showed that the lower bound of [23] can be extended to
“approximate” linear combinations of C-circuits, where the linear combination does not have
to be exactly 0 or 1, but must be closer to the correct value than to the incorrect one, within
an additive constant factor. These results show, in principle, how a #SAT algorithm for a
circuit class C can imply lower bounds for a stronger class of representations than C.

1.1 Conjecture 1 Holds for Sparse Symmetric Functions
In this paper, we take a concrete step towards realizing Conjecture 1, by proving it for
“sparse” symmetric functions. We say a symmetric Boolean function f(x1, . . . , xn) is k-sparse
if f is 1 on at most k values of

∑
i xi. The 1-sparse symmetric functions are called the exact

threshold (ETHR with polynomial weights) or exact majority (EMAJ) functions, which have
been studied for years in both circuit complexity (e.g. [11, 4, 12, 13, 14]) and structural
complexity theory, where the corresponding complexity class (computing an exact majority
over all computation paths) is known as C=P [20].

I Theorem 3. Let C be closed under AND2, negation, and suppose the all-ones and parity
function are in C. Let f = {fn} be a family of k-sparse symmetric functions for some
k = O(1).

If there is a #SAT algorithm for nk-size C-circuits running in 2n/nk time (for all k),
then NEXP does not have f ◦ C-circuits of polynomial size.
If there is a #SAT algorithm for 2nε-size C-circuits running in 2n−nε time (for some
ε > 0), then Quasi-NP does not have f ◦ C-circuits of polynomial size.

STACS 2020
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Applying known #SAT algorithms for AC0[m] ◦ THR circuits from [22], we obtain:

I Corollary 4. For all constant depths d ≥ 2 and constant moduli m ≥ 2, Quasi-NP does not
have polynomial-size EMAJ ◦ AC0[m] ◦ THR circuits.

1.2 Intuition
Here we briefly explain the new ideas that lead to our new circuit lower bounds.

As in prior work [23, 6], the high-level idea is to show that if (for example) Quasi-NP has
polynomial-size EMAJ ◦ C, and there is a #SAT algorithm for C circuits, then we can design
a nondeterministic algorithm for verifying GAP Circuit Unsatisfiability (GAP-UNSAT) on
generic circuits that beats exhaustive search. In GAP-UNSAT, we are given a generic circuit
and are promised that it is either unsatisfiable, or at least half of its possible assignments
are satisfying, and we need to nondeterministically prove the unsatisfiable case. (Note this is
a much weaker problem than SAT.) As shown in [24, 25, 16], combining a nondeterministic
algorithm for GAP-UNSAT with the hypothesis that Quasi-NP has polynomial-size circuits,
we can derive that nondeterministic time 2n can be simulated in time o(2n), contradicting
the nondeterministic time hierarchy theorem.

Our key idea is to use probabilistically checkable proofs (PCPs) in a new way to exploit
the power of a #SAT algorithm. First, let’s observe a task that a #SAT algorithm for C can
compute on an EMAJ ◦ C circuit. Suppose our EMAJ ◦ C circuit has the form

D(x) =
[

t∑
i=1

Ci(x) = s

]
,

where each Ci(x) is a Boolean C-circuit on n inputs, s is a threshold value, and our circuit
outputs 1 if and only if the sum of the Ci’s equals s.3 Consider the expression

E(x) :=
(

t∑
i=1

Ci(x)− s
)2

. (1)

Treated as a function, E(x) outputs integers; E(a) = 0 when D(a) = 1, and otherwise
E(a) ∈ [1, (t+ s)2]. We first claim that the quantity∑

a∈{0,1}n
E(a) (2)

can be compute faster than exhaustive search using a faster #SAT algorithm. To see this,
using distributivity, we can rewrite (1) as

E(x) =
∑
i,j

(Ci ∧ Cj)(x)− 2s
∑
i

Ci(x) + s2.

Assuming C is closed under conjunction, each Ci∧Cj is also a C-circuit, and we can compute

∑
a∈{0,1}n

E(a) =
∑
i,j

 ∑
a∈{0,1}n

(Ci ∧ Cj)(a)

− 2s
∑
i

 ∑
a∈{0,1}n

Ci(a)

+ s2 · 2n

by making O(t2) calls to a #SAT algorithm. Thus we can compute (2) using a #SAT
algorithm.

3 We are using the standard Iverson bracket notation, where [P ] is 1 if predicate P is true, and 0 otherwise.
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How is computing (2) useful? This is where PCPs come in. We cannot use (2) to directly
solve #SAT for D (otherwise as #SAT algorithms imply SAT algorithms we could apply
existing work [25], and be done). But we can use (2) to obtain a multiplicative approximation
to the number of assignments that falsify D. In particular, each satisfying assignment is
counted zero times in (2), and each falsifying assignment is counted between 1 and (less than)
(t+ s)2 times. We want to exploit this, and obtain a faster GAP-UNSAT algorithm. Given a
circuit which is a GAP-UNSAT instance, we start by using an efficient hitting set construction
[10] to increase the gap of GAP-UNSAT. We obtain a new circuit C(x) which is either UNSAT
or has at least 2n − o(2n) satisfying assignments (Section 2.1). Next (Lemma 15) we apply a
PCP of Proximity and an error correcting code to C, yielding a 3-SAT instance over x and
extra variables, with constant gap (similar to Chen-Williams [6]), and we amplify this gap
using standard serial repetition. Finally, we apply the FGLSS [9] reduction (Lemma 19) to
the 3-SAT instance, obtaining Independent Set instances with a large gap between the YES
case and NO case. In particular, for all inputs x, when C(x) = 1 there is a large independent
set in the resulting graph, and when C(x) = 0, there are only small independent sets in
the resulting graph (see Lemma 14). Returning to the assumption that Quasi-NP has small
EMAJ ◦ C circuits, and applying an easy witness lemma [16], it follows that the solutions
to the independent set instance can be encoded by EMAJ ◦ C circuits. Because of the large
gap between the YES case and NO case, our multiplicative approximation to the number
of UNSAT assignments can be used to distinguish the unsatisfiable case and the “many
satisfying assignments” case of GAP-UNSAT, which finishes the argument.

One interesting bottleneck is that we cannot directly apply serial repetition and the
FGLSS reduction in our argument; we need the PCP machinery we use to behave similarly
on all inputs x to the original circuit C. This translates to studying the behavior of these
reductions with respect to partial assignments. While for these two reductions we are able to
prove that they behave “nicely” with respect to partial assignments, it is entirely unclear that
this is true for other PCP reductions such alphabet reduction, parallel repetition, and so on.

Our approach is very general; to handle k-sparse symmetric functions, we can simply
modify the function E accordingly.

2 Preliminaries and Organization

We assume general familiarity with basic concepts in circuit complexity and computational
complexity [2]. In particular we assume familiarity with AC0, ACC0, P/poly, NEXP, and so on.

Circuit Notation

Here we define notation for the relevant circuit classes. By sizeC(h(n)) we denote circuits
from circuit class C with size at most h(n).

IDefinition 5. An EMAJ◦C circuit (a.k.a. “exact majority of C circuit”) has the general form
EMAJ(C1(x), C2(x), . . . , Ct(x), u), where u is a positive integer, x are the input variables,
Ci ∈ C, and the gate EMAJ(y1, . . . , yt, u) outputs 1 if and only if exactly u of the yi’s
output 1.

I Definition 6. A SUM≥0 ◦ C circuit (“positive sum of C circuits”) has the form

SUM≥0(C1(x), C2(x), . . . , Ct(x)) =
∑
i∈[t]

Ci(x)

where Ci is either a C-circuit or −1 times a C-circuit and we are promised that
∑
i∈[t] Ci(x) ≥ 0

over all x ∈ {0, 1}n.

STACS 2020
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Given a set of circuits {Ci}, we say that f : {0, 1}n → {0, 1} is represented by the positive-
sum circuit SUM≥0(C1(x), C2(x), . . . , Ct(x)) if for all x, f(x) = 1 when

∑
i∈[t] Ci(x) > 0,

and f(x) = 0 when
∑
i∈[t] Ci(x) = 0.

I Definition 7. A circuit class C is typical if there is a k > 0 such that the following hold:
Closure under negation. For every C circuit C, there is a circuit C ′ computing the
negation of C where size(C ′) ≤ size(C)k.
Closure under AND. For every C circuits C1 and C2, there is a circuit C ′ computing
the AND of C1 and C2 where size(C ′) ≤ (size(C1) + size(C2))k.
Contains all-ones. The function 1n : {0, 1}n → {0, 1} has a C circuit of size O(nk).

The vast majority of circuit classes that are studied (AC0, ACC0, TC0, NC1, P/poly) are
typical.4 The next lemma shows that the negation of an exact-majority of C circuit can be
represented as a “positive-sum” of C circuit, if C is typical.

I Lemma 8. Let C be typical. If a function f has a EMAJ ◦ C circuit D of size s, then ¬f
can be represented by a SUM≥0 ◦ C circuit D′ of size poly(s). Moreover, a description of the
circuit D′ can be obtained from a description of D in polynomial time.

Proof. Suppose f is computable by the EMAJ ◦ C circuit D = EMAJ(D1, D2, . . . , Dt, u),
where u ∈ {0, 1, . . . , t}. Consider the expression

E(x) := (SUM(D1, D2, . . . , Dt)− u)2.

Note that E(x) = 0 when D(x) = 1, and E(x) > 0 when D(x) = 0. So in order to prove the
lemma, it suffices to show that E can be written as a SUM≥0 ◦ C circuit. Expanding the
expression E,

E(x) = SUM(D1, D2, . . . , Dt)2 − 2u · SUM(D1, D2, . . . , Dt) + u2

=
t∑

i,j=1
(Di ∧Dj)−

2u∑
j=1

t∑
i=1

Di + u2.

By Definition 7 AND2 ◦ C = C, each Di ∧Dj is a circuit from C of size poly(s). Since the all-
ones function is in C, the function x 7→ u2 also has a SUM ◦ C circuit of size O(t2). Therefore
there are circuits D′i ∈ C and t′ ≤ O(t2) such that by defining D′ := SUM≥0(D′1, . . . , D′t′)
we have D′(x) = E(x) for all x. J

Error-Correcting Codes

We will need a (standard) construction of binary error correcting codes with constant rate
and constant relative distance.

I Theorem 9 ([17]). There are universal constants c ≥ 1 and δ ∈ (0, 1) such that for all
sufficiently large n, there are linear functions ENCn : (F2)n → (F2)cn such that for all x 6= y

with |x| = |y| = n, the Hamming distance between ENCn(x) and ENCn(y) is at least δn.

In what follows, we generally drop the superscript n for notational brevity. Note that each bit
of output ENCni (x) (for i = 1, . . . , cn) is a parity function on some subset of the input bits.

4 A notable exception (as far as we know) is the class of depth-d exact threshold circuits for a fixed d ≥ 2,
because we do not know if such classes are closed under negation. Similarly, we do not know if the class
of depth-d threshold circuits is typical. (In that case, the only non-trivial property to check is closure
under AND; we can compute the AND of two threshold circuits with a quasi-polynomial blowup using
Beigel-Reingold-Spielman [3], but not with a polynomial blowup.)
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2.1 Weak CAPP Algorithms Are Sufficient For Lower Bounds
Murray and Williams [16] showed that CAPP/GAP-UNSAT algorithms, i.e., algorithms which
distinguish between unsatisfiable circuits and circuits with ≥ 2n−1 satisfying assignments are
enough to give lower bounds. For our results, it is necessary to strengthen the “gap”, which
can be done using known hitting set constructions.

I Lemma 10 (Corollary C.5 in [10], Hitting Set Construction). There is a constant ψ > 0 and a
poly(n, log g) time algorithm S such that, given a (uniform random) string r of n+ψ ·log g bits,
S outputs t = O(log g) strings x1, x2, . . . , xt ∈ {0, 1}n such that for every f : {0, 1}n → {0, 1}
with

∑
x f(x) ≥ 2n−1, Prr[ORti=1f(xi) = 1] ≥ 1− 1/g.

We will use the following “algorithms to lower bounds” connections as black box:

I Theorem 11 ([16]). Suppose for some constant ε ∈ (0, 1) there is an algorithm A that for
all 2nε-size circuits C on n inputs, A(C) runs in 2n−nε time, outputs YES on all unsatisfiable
C, and outputs NO on all C that have at least 2n−1 satisfying assignments. Then for all k,
there is a c ≥ 1 such that NTIME[2logck

4/ε n] 6⊂ SIZE[2logk n].

Applying Lemma 10 to Theorem 11, we observe that the circuit lower bound consequence
can be obtained from a significantly weaker-looking hypothesis. This weaker hypothesis will
be useful for our lower bound results.

I Theorem 12. Suppose for some constant ε ∈ (0, 1) there is an algorithm A that for all 2nε-
size circuits C on n inputs, A(C) runs in 2n/g(n)ω(1) time, outputs YES on all unsatisfiable
C, and outputs NO on all C that have at least 2n(1− 1/g(n)) satisfying assignments, for
g(n) = 2n2ε . Then for all k, there is a c ≥ 1 such that NTIME[2logck

4/ε n] 6⊂ SIZE[2logk n].

Proof. Our starting point is Theorem 11 ([16]): we are given an m-input, 2mδ -size circuit D′
that is either UNSAT or has at least 2m−1 satisfying assignments, and we wish to distinguish
between the two cases with a 2m−mδ -time algorithm. We set δ = ε/2

We create a new circuit D with n inputs, where n satisfies

n = m+ ψ · log g(n),

and ψ > 0 is the constant from Lemma 10. (Note that, since g(n) is time constructible and
g(n) ≤ 2o(n), such an n can be found in subexponential time.) Applying the algorithm from
Lemma 10, D treats its n bits of input as a string of randomness r, computes t = O(log g(n))
strings x1, x2, . . . , xt ∈ {0, 1}m with a poly(m, log g)-size circuit, then outputs the OR of
D′(xi) over all i = 1, . . . , t. Note the total size of our circuit D is poly(m, log g) +O(log g) ·
size(D′) = poly(n) +O(n2ε) · 2mδ < 2n2δ = 2nε as ε = 2δ.

Clearly, if D′ is unsatisfiable, then D is also unsatisfiable. By Lemma 10, if D′ has
2m−1 satisfying assignments, then D has at least 2n(1− 1/g(n)) satisfying assignments. As
size(D) ≤ 2nε , by our assumption we can distinguish the case where D is unsatisfiable from
the case where D has at least 2n(1 − 1/g(n)) satisfying assignments, with an algorithm
running in time 2n/g(n)ω(1). This yields an algorithm for distinguishing the original circuit
D′ on m inputs and 2mδ size, running in time

2n/g(n)ω(1) = 2mg(n)O(1)/g(n)ω(1) = 2m/g(n)ω(1) ≤ 2m2−n
2ε
≤ 2m2−n

δ

≤ 2m−m
δ

,

since g(n) = 2n2ε . By Theorem 11, this implies that for all k, there is a c ≥ 1 such that
NTIME[2logck

4/δ n] 6⊂ SIZE[2logk n]. As, ε = 2δ we get that NTIME[2log2ck4/ε n] 6⊂ SIZE[2logk n].
But as the constant 4 can be absorbed in the constant c hence we get that for all k, there is
a c ≥ 1 such that NTIME[2logck

4/ε n] 6⊂ SIZE[2logk n]. J
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2.2 Organization
In Section 3 we give a reduction from Circuit SAT to “Generalized” Independent Set. Section 4
uses this reduction to prove lower bounds for EMAJ◦C assuming #SAT algorithms for C with
running time 2n−nε . Section 4.1 uses this result to give lower bound for EMAJ◦ACC0 ◦THR.
Section 5 generalizes these results to f ◦ C lower bounds where f is a sparse symmetric
function. In the full version of the paper [19] we give lower bounds for EMAJ ◦ C assuming
#SAT algorithms for C with running time 2n/nω(1).

3 From Circuit SAT to Independent Set

The goal of this section is to give the main PCP reduction we will use in our new algorithm-to-
lower-bound theorem. First we need a definition of “generalized” independent set instances,
where some vertices have already been “assigned” in or out of the independent set.

I Definition 13. Let G = (V,E) be a graph. Let π : V → {0, 1, ∗} be a partial Boolean
assignment to V . We define G(π) to be a graph with the label function π on its vertices
(where each vertex gets the label 0, or 1, or no label). We construe G(π) as an generalized
independent set instance, in which any valid independent set (vertex assignment) must
be consistent with π: any independent set must contain all vertices labeled 1, and no vertices
labeled 0.

I Lemma 14. Let k be a function of n. Given a circuit D on X with |X| = n bits and of
size m > n, there is a poly(m, 2O(k))-time reduction from D to a generalized independent set
instance on graph GD = (VD, ED), with the following properties.

Each vertex v ∈ VD is associated with a set of pairs Sv of the form {(i, b)} ⊆ [O(n)]×{0, 1}.
The set {Sv} is produced as part of the reduction.
Each assignment x to X defines a partial assignment πx to VD such that

πx(v) =
{

0 if ∃(i, b) ∈ Sv such that ENCi(x) 6= b

∗ otherwise,

where ENC is the error-correcting code from Theorem 9.
If D(x) = 0, the maximum independent set in GD(πx) equals κ for an integer κ, and
furthermore given x, it can be found in time poly(n,m, 2O(k)).
If D(x) = 1, then the maximum independent set in GD(πx) has size at most κ/2k.

Intuitively, the use of Lemma 14 is that we will start with a “no satisfying assignment” vs
“most assignments are satisfying” GAP-UNSAT instance from Theorem 12. Now in the “no
satisfying assignment” case for all x the reduced independent set instance GD(πx) has a large
independent set instance. Counting the sum of independent sets over x gives a high value.
On the other hand in the “most assignments are satisfying” case for most x the reduced
independent set instance GD(πx) has a small independent set and for a very few x, GD(πx)
can have a large independent set. Hence in this case counting the sum of independent sets
over all x gives a low value. The difference between the high value and low value is big
enough that even a approximate counting of these values as outlined in Section 1.2 is enough
to distinguish and hence solve the GAP-UNSAT instance.

The remainder of this section is devoted to the proof of Lemma 14.
Let us set up some notation for variable assignments to a formula. Let F be a SAT

instance on a variable set Z, and let τ : Z → {0, 1, ?} be a partial assignment to Z. Then we
define F (τ) to be the formula obtained by setting the variables in F according to τ . Note
that we do not perform further reduction rules on the clauses in F (τ): for each clause in F
that becomes false (or true) under τ , there is a clause in F (τ) which is always false (true).
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For every subsequence Y of variables from Z, and every vector y ∈ {0, 1}|Y |, we define
F (Y = y) to be the formula F in which the ith variable in Y is assigned yi, and all other
variables are left unassigned.

I Lemma 15 (PCPP+ECC, [6]). There is a polynomial-time transformation that, given a
circuit D on n inputs of size m ≥ n, outputs a 3-SAT instance F on the variable set Y ∪ Z,
where |Y | ≤ poly(n), |Z| ≤ poly(m), and the following hold for all x ∈ {0, 1}n:

If D(x) = 0 then F (Y = ENC(x)) on variable set Z has a satisfying assignment zx.
Furthermore, there is a poly(m)-time algorithm that given x outputs zx.
if D(x) = 1 then there is no assignment to the Z variables in F (Y = ENC(x)) satisfying
more than a (1− Ω(1))-fraction of the clauses.

where ENC : {0, 1}n → {0, 1}O(n) is the linear encoding function from Theorem 9. As it is a
linear function, the ith bit of output ENCi(x) satisfies ENCi(x) = ⊕j∈Uixj for some set Ui.

Serial Repetition [8] is a basic operation on CSPs/PCPs, in which a new CSP is created
whose constraints are ANDs of k uniformly sampled clauses from the original CSP. Serial
repetition is usually done for the purpose of reducing soundness, i.e., reducing the fraction of
satisfiable clauses. We now state a derandomized version of serial repetition.

I Lemma 16 (Serial repetition [8]). Given a 3-SAT instance F on n variables denoted by
Y with m clauses we can construct a O(k)-SAT formula F ′ on the same n variables with
m2O(k) clauses such that:
1. If Y = y satisfies F then y satisfies F ′.
2. If F (Y = y) is at most 1− Ω(1) satisfiable then F ′(Y = y) is at most 1/2k satisfiable.

Next we prove a stronger version of derandomized serial repetition with guarantees
for partial assignments. The proof directly follows from the guarantees of standard Serial
Repetition (Lemma 16).

I Lemma 17 (Serial repetition with partial assignments). Let k be a function of n. Given
a 3-SAT instance F on n variables denoted by Y,Z with m clauses we can construct a
O(k)-SAT formula F ′ on the same n variables with m · 2O(k) clauses such that:
1. If Y,Z = y, z satisfies F then y, z satisfies F ′.
2. If F (Y = y) is at most 1− Ω(1) satisfiable then F ′(Y = y) is at most 1/2k satisfiable.

Proof. We prove that just standard serial repetition from Lemma 16 suffices for proving this
stronger property.

Property 1 directly follows from Property 1 in Lemma 16.
Define Fy = F (Y = y) where we treat any clauses that became FALSE or TRUE under

Y = y as normal clauses. Let F ′y be the O(k)-SAT formula obtained by applying serial
repetition to fy from Lemma 17.

In Serial Repetition [8] it is clear that clauses in F ′ are just ANDs of clauses in F and
which clauses are part of the “AND” is only dependent on their index.

Due to this F ′(Y = y) i.e. first applying serial repetition then setting Y = y is equivalent
to first setting Y = y and then applying serial repetition i.e. F ′y.

By our assumption Fy is at most 1−Ω(1) satisfiable and hence by Property 2 of Lemma 16
F ′y is at most 1/2k satisfiable. As F ′y = F ′(Y = y) we have that F ′(Y = y) is at most 1/2k
satisfiable. J

The FGLSS reduction [9] maps a CSP Φ to a graph GΦ such that the MAX-SAT value
in Φ is equal to the size of the maximum independent set in GΦ.
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I Lemma 18 (FGLSS [9]). Let F be a k-SAT instance on variable set Y with |Y | = n

and m clauses. There exists a poly(n,m, 2O(k)) time reduction graph from F to a graph
GF = (VF , EF ) such that: the size of maximum independent set in GF is exactly equal to
maximum clauses satisfiable in F .

We note that a stronger version of the FGLSS reduction [9] holds with guarantees for
partial assignments. The proof is very similar to the proof of the standard FGLSS reduction
(Lemma 18).

I Lemma 19 (FGLSS with partial assignments). Let F be a k-SAT instance on variable set
Y, Z with |Y |+ |Z| = n and m clauses. There exists a poly(n,m, 2O(k)) time reduction graph
from F to an independent set instance on graph GF = (VF , EF ). Each vertex v ∈ VF is a
associated to a set Tv of (i ∈ [|Y |], b ∈ {0, 1}) pairs. For each partial assignment of the form
τ : Y → {0, 1} define a partial assignment πτ to VF such that:

πτ (v) =
{

0 if ∃(i, b) ∈ Tv such that τ(Yi) 6= b

∗ otherwise,

Then the max independent set in GF (πτ ) equals the max number of clauses satisfiable in
F (τ).

Proof. Let w be a clause in F and wi denote the ith variable in w. Let ` denote a satisfying
assignment to w. For every w, ` pair create a vertex in VF . Let v be the vertex associated
with a particular w, `. Let Tv = {(wi, `i} represent the assignment wi = `i for 1 ≤ i ≤ k.

Make an edge between vertex u and vertex v if the assignment Tu and Tv contradict each
other. Note that this means that there is always an edge between two vertices associated to
the same clause but different satisfying assignments i.e. vertices associated with the same
clause form a clique.

Let x be a assignment for F satisfying κ clauses. We now give an independent set in GF
of size κ. For every satisfied clause w and and ` the assignment to variables of w in x we
choose the vertex w, ` in the independent set. As there are κ satisfied clauses we choose κ
vertices. These vertices form and independent set as if two of these vertices u, v had an edge
between them it would mean that the assignments Tu and Tv contradict each other. This is
not possible as all these assignments are partial assignments of x.

Consider S to be an independent set in GF of size κ. We now give an assignment to F
which satisfies κ clauses. Note that from vertices corresponding to the same clauses only 1
vertex can be a part of independent set as they all form a clique. Hence vertices associated
with κ different clauses must be part of the independent set. For a vertex u associated with
w, ` the partial assignment Tu satisfies w. For two vertices u, v in the independent set the
partial assignments from Tv and Tu do not contradict as otherwise there would be an edge
between u and v. Hence we can join all the partial assignments Tv for vertices v in the
independent set to get a partial assignment which satisfies κ clauses in F (τ). Hence the
maximum independent set in GF (πτ ) has size at most the maximum number clauses satisfied
in F (τ). J

We next present the proof of Lemma 14 which just follows by combining Lemma 15, 17,
and 19 sequentially.

Proof of Lemma 14. The proof follows by applying Lemma 15, 17 and 19 sequentially.
We start from a circuit D with input variables X (|X| = n) and size m > n. Lemma 15

transform this into a 3-SAT instance F with poly(m) clauses on the variable set Y ∪ Z,
where |Y | ≤ poly(n), |Z| ≤ poly(m), and the following hold for all x ∈ {0, 1}n:
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If D(x) = 0 then F (Y = ENC(x)) on variable set Z has a satisfying assignment zx.
Furthermore, there is a poly(m)-time algorithm that given x outputs zx.
if D(x) = 1 then there is no assignment to the Z variables in F (Y = ENC(x)) satisfying
more than a (1− Ω(1))-fraction of the clauses.

where ENC : {0, 1}n → {0, 1}O(n) is the linear encoding function from Theorem 9.
Applying Lemma 17 on F gives us a O(k)-SAT formula F ′ on the same Y ∪ Z variables

with poly(m) · 2O(k) clauses such that:
1. If Y,Z = y, z satisfies F then y, z satisfies F ′.
2. If F (Y = y) is at most 1− Ω(1) satisfiable then F ′(Y = y) is at most 1/2k satisfiable.

which implies that:
If D(x) = 0 then F ′(Y = ENC(x)) on variable set Z has a satisfying assignment zx.
Furthermore, there is a poly(m)-time algorithm that given x outputs zx.
if D(x) = 1 then there is no assignment to the Z variables in F ′(Y = ENC(x)) satisfying
more than a 1/2k-fraction of the clauses.

Finally applying Lemma 19 to F ′ where we consider partial assignments τ which assign
Y to ENC(x) for some x. Hence τ(Yi) = ENCi(x). As τ is fixed by fixing x we rename πτ
to πx. Sv is just a renaming of Tv. Size of the graph is poly(n+m,poly(m) · 2O(k), 2O(k)) =
poly(m, 2k) as m > n. J

4 Main Result

We now turn to the proof of the main result, Theorem 3. We will prove the result for
EMAJ ◦ C first, and sketch how to extend to f ◦ C for sparse symmetric f in Section 5. Below
we prove EMAJ ◦ C lower bounds for Quasi-NP when we have 2n−nε time algorithms for
#SAT on C circuits of size 2nε . For the other parts of Theorem 3 (on #SAT algorithms with
running time 2n/nω(1)), see the full version of the paper [19].

We note here that in Theorem 3 we mentioned polynomial size lower bounds for EMAJ◦C
we in fact prove quasi-polynomial size lower bounds below.

I Theorem 20. Suppose C is typical, and the parity function has poly(n)-sized C circuits.
Then for every k, quasi-NP does not have EMAJ ◦ C = H circuits of size O(nlogk n), if for
some ε ∈ (0, 1) there is a #SAT algorithm running in time 2n−nε for all circuits from class
C of size at most 2nε .

Proof. Let us assume that for a fixed k > 0, quasi-NP has H = EMAJ ◦ C circuits of size
O(n(logk n)) which implies that quasi-NP ∈ size(nO(logk n)) for general circuits. By Theorem 12,
we obtain a contradiction if for some constant δ ∈ (0, 1) and g(n) = 2n2δ we can give a
2n/g(n)ω(1) time nondeterministic algorithm for distinguishing between:
1. YES case: D has no satisfying assignments.
2. NO case: D has at least 2n (1− 1/g(n)) satisfying assignments
given a generic fan-in 2 circuit D with n inputs and size m ≤ h(n) := 2nδ . Under the
hypothesis, we will give such an algorithm for δ = ε/4.

Using Lemma 14, we reduce the circuit D to an independent set instance GD (with
k = log h(n)) on n2 = poly(m, 2O(k)) = poly(m, 2O(k)) = poly(m,h(n)O(1)) = poly(h(n))
vertices. We also find subsets Si for every vertex i ∈ [n2]. Let πx be the partial assignment
which assigns a vertex i to 0 if there exist (j′, b) ∈ Si such that ENCj′(x) 6= b. Note that πx
does not assign any vertex to 1. By Lemma 14, GD has the following properties:

STACS 2020



59:12 Lower Bounds Against Sparse Symmetric Functions of ACC Circuits

1. If D(x) = 0, then GD(πx) has an independent set of size κ. Furthermore, given x we can
find this independent set in poly(h(n)) time.

2. If D1(x) = 1, then in GD(πx), all independent sets have size at most κ/h(n).

This means it suffices for us to distinguish between the following two cases:
1. YES case: For all x, GD(πx) has an independent set of size κ.
2. NO case: For at most 2n/g(n) values of x,GD(πx) has an independent set of size ≥ κ/h(n).

Guessing a succinct witness circuit: As guaranteed by Lemma 14 given an x such that
D(x) = 0 we can find the assignment A(x) to GD which is consistent with πx and represents
an independent set of size κ in poly(h(n)) time. Let A(x, i) denote the assignment to the ith
vertex in A(x). Given x and vertex i ∈ [n2], in time poly(h(n)) we can produce ¬A(x, i).

B Claim 21. Under the hypothesis, there is a h(n)o(1)-sized EMAJ ◦ C circuit U of size
h(n)o(1) with x, i as input representing ¬A(x, i).

Proof. Under the hypothesis, for some constant k, we have quasi-NP ⊆ sizeH[nlogk n]. Specif-
ically, for p(n) = nlogk+1 n we have NTIME[p(n)] ⊆ sizeH[p(n)1/ logn] ⊆ sizeH[p(n)o(1)].
As h(n) = 2nε � p(n), a standard padding argument implies NTIME[poly(h(n))] ⊆
sizeH[(poly(h(n)))o(1)] = sizeH[h(n)o(1)]. Since ¬A(x, i) is computable in poly(h(n)) time,
we have that ¬A(x, i) can be represented by a h(n)o(1)-sized H = EMAJ ◦ C circuit. C

Our nondeterministic algorithm for GAP-UNSAT begins by guessing U guaranteed by
Claim 21 which is supposed to represent ¬A. Then by the reduction in Lemma 8 we can
covert U to a SUM≥0 ◦ C circuit R for A(x, i) of size poly(h(n)o(1)) = h(n)o(1). Note that if
our guess for U is correct, i.e., U = ¬A, then R represents A.

Let the subcircuits of R be R1, R2, . . . , Rt, so that R(x) =
∑
j∈[t]Rj , where Rj ∈ C and

t ≤ h(n)o(1). The number of inputs to Rj is n′ = |x|+ logn2 = n+O(log h(n)), and the size
of Rj is h(n)o(1).

Note that R(x, i) = 0 represents that the ith vertex is not in the independent set of GD
in a solution corresponding to x, while R(x, i) > 0 represents that it is in the independent set
of GD in a solution corresponding to x. For all x and i we have 0 ≤ R(x, i) ≤ t ≤ h(n)o(1).

Verifying that R encodes valid independent sets: We can verify that the circuit R produces
an independent set on all x by checking each edge over all x. To check the edge between
vertices i1 and i2 we need to verify that at most one of them is in the independent set.
Equivalently, for all x we check that R(x, i1) ·R(x, i2) = 0. As R(x, i) ≥ 0 for all x and i we
can just verify∑

x∈{0,1}n
R(x, i1) ·R(x, i2) = 0.

Since R(x, i) =
∑
j∈[t]Rj(x, i) it suffices to verify that∑

x∈{0,1}n

∑
j1,j2∈[t]

Rj1(x, i1) ·Rj2(x, i2) = 0.

Let Rj1,j2(x, i1, i2) = Rj1(x, i1) ·Rj2(x, i2). Since C is closed under AND (upto polynomial
factors) Rj1,j2 also has a poly(h(n)o(1)) = h(n)o(1) sized C circuit. Exchanging the order of
summations is suffices for us to verify

∑
j1,j2∈[t]

 ∑
x∈{0,1}n

Rj1,j2(x, i1, i2)

 = 0.
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For fixed i1, i2, j1, j2 the number of inputs to Rj1,j2 is |x| = n and its size is h(n)o(1) ≤ 2nε .
Hence, for fixed i1, i2, j1, j2 we can compute

∑
xRj1,j2(x, i1, i2) using the #SAT algorithm

from our assumption, in time 2n−nε . Summing over all j1, j2 pairs only adds another
multiplicative factor of t2 = h(n)o(1). This allows us to verify that the edge (i1, i2) is satisfied
by R. Checking all edges of GD only adds another multiplicative factor of poly(h(n)). Hence
the total running time for verifying that R encodes valid independent sets on all x is still
2n−nεpoly(h(n)).

Verifying consistency of independent set produced by R with πx: As we care about the
sizes of independent sets in GD(πx) over all x we need to check if the assignment by R

is consistent with πx. As πx only assigns vertices to 0, we need to verify that all vertices
assigned to 0 in πx are in fact assigned to 0 by the assignment given by R(x, ·). From
Lemma 14, we know that πx assigns a vertex i to 0 if for some (j′, b) ∈ Si, ENCj′(x) 6= b. To
check this condition we need to verify that R(x, i) = 0 if for some (j′, b) ∈ Si, ENCj′(x) 6= b.
Equivalently, we cn check (ENCj′(x) ⊕ b) · R(x, i) = 0 for all x, i, (j′, b) ∈ Si. Since
(ENCj(x)⊕ b)R(x, i) ≥ 0 for all possible inputs we can just check that∑

x∈{0,1}n
(ENCj′(x)⊕ b) ·R(x, i) = 0

for all i, (j′, b) ∈ Si. As R(x, i) =
∑
j∈[t]Rj(x, i) we can equivalently verify that∑

x∈{0,1}n

∑
j∈[t]

(ENCj′(x)⊕ b) ·Rj(x, i) = 0

for all i, (j′, b) ∈ Si. Note that Rj′(x, i) has a h(n)o(1) sized C circuit. By our assumption
parity has a poly(n)-sized C-circuit so (ENCj(x)⊕b) also has a poly(n)-sized C circuit. Hence
(ENCj(x)⊕ b) ·Rj′(x, i) has a poly(n, h(n)o(1)) = h(n)o(1)-sized C circuit, since C is closed
under AND.

For fixed (i, j, j′), (ENCj′(x)⊕ b) ·Rj(x, i) ∈ C has |x| = n inputs and size h(n)o(1) < 2nε .
Hence we can use our assumed #SAT algorithm to calculate

∑
x∈{0,1}n(ENCj′(x)⊕b)·Rj(x, i)

in time 2n−nε . Summing over all j ∈ [t] introduces another multiplicative factor of h(n)o(1).
This allows us to verify the desired condition for a fixed i, (j′, b) ∈ Si. To check it for all
i, (j′, b) ∈ Si (recall |Si| = O(n) by Theorem 9) only introduces another multiplicative factor
of poly(h(n)) · O(n) = poly(h(n)) in time. Therefore the total running time for verifying
consistency w.r.t. πx is 2n−nεpoly(h(n)).

At this point, we now know that R represents an independent set, and that R is consistent
with πx. We need to distinguish between:
1. YES case: For all x, R(x, ·) represents an independent set of size κ.
2. NO case: For at most 2n/g(n) values of x,R(x, ·) represents an independent set of size
≥ κ/h(n).

I Lemma 22. For all x such that R(x, ·) represents an independent set of size a. we have
a ≤

∑
i∈[n2]R(x, i) ≤ at.

Proof. For every vertex i in the independent set, 1 ≤ R(x, i) ≤ t. For all vertices i not in
the independent set, we have R(x, i) = 0. Hence a ≤

∑
i∈[n2]R(x, i) ≤ at. J

Distinguishing between the YES and NO cases: To distinguish between the YES and NO
cases, we now compute∑

x∈{0,1}n

∑
i∈[n2]

R(x, i) (3)
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This allows us to distinguish between the YES case and NO case as:
1. YES case: We have for at least 2n(1− 1/g(n)) values of x we have an independent set of

size at most κ/h(n). By Lemma 22 for such x,
∑
i∈[n2]R(x, i) ≤ tκ/h(n). for the rest of

2n/g(n) values of x the independent set could be all the vertices in the graph GD. Hence
by Lemma 22 for such values of x,

∑
i∈[n2]R(x, i) ≤ tn2 = poly(h(n)). Hence∑

x∈{0,1}n

∑
i∈[n2]

R(x, i) ≤ (2n/g(n))poly(h(n)) + 2ntκ/h(n)

≤ o(2n) + 2ntκ/h(n) [As h(n) = g(n)o(1)]

≤ o(2n) + o(2nκ) [As t = h(n)o(1)]
≤ 2nκ [As κ > 1]

2. NO case: We have for all x ∈ {0, 1}n the independent set is at least of size κ. Hence by
Lemma 22 the sum is

∑
x∈{0,1}n

∑
i∈[n2]R(x, i) > 2nκ.

All that remains is how to compute (3). As R(x, i) =
∑
j∈[t]Rj(x, i), we can compute∑

x∈{0,1}n

∑
i∈[n2]

∑
j∈[t]

Rj(x, i) =
∑
j∈[t]

∑
i∈[n2]

∑
x∈{0,1}n

Rj(x, i)

For a fixed i, j, Rj(x, i) ∈ C, it has |x| = n inputs and size ≤ poly(h(n)o(1)) = h(n)o(1) <

2nε . Hence we can use the assumed #SAT algorithm to calculate
∑
x∈{0,1}n Rj(x, i) in

time 2n−nε . Summing over all j ∈ [t], i ∈ [n2] only introduces another h(n)o(1)poly(h(n)) =
poly(h(n)) multiplicative factor. Thus the running time for distinguishing the two cases is
2n−nεpoly(h(n)).

In total our running time comes to 2n−nεpoly(h(n)) = 2n−n4δ+O(nδ) ≤ 2n−n3δ =
2n/g(n)ω(1) as g(n) = 2n2δ and ε = 4δ. By Theorem 12, this gives us a contradiction
which completes our proof. J

The above theorem when combined with known #SAT algorithms for ACC0 ◦ THR gives
an quasi-NP lower bound for EMAJ ◦ ACC0 ◦ THR.

4.1 EMAJ ◦ ACC0 ◦ THR Lower bound
We will apply a known #SAT algorithm for ACC ◦ THR circuits.

I Theorem 23 ([22]). For every pair of constants d,m, there exists a constant ε ∈ (0, 1)
such that #SAT can be solved in time 2n−nε time for AC0[m] ◦ THR circuits of depth d and
size 2nε .

I Theorem 24. For constants k, d,m, quasi-NP does not have size(nlogk n) EMAJ ◦ ACC0 ◦
THR circuits of depth d.

Proof. We first note that ACC0 ◦ THR is indeed typical and can represent ENC(x) by
poly(n)-sized circuits as ENC(x) : {0, 1}n → {0, 1}O(n) is a linear function.

By Theorem 23 we know that for all constants d there exists some constant ε ∈ (0, 1)
such that there exists a #SAT algorithm running in time 2n−nε for all circuits from class
ACC0 ◦ THR of size ≤ 2nε and depth d.

The above properties imply that ACC0◦THR satisfies the preconditions of Theorem 20 and
hence for every pair of constant k, d, quasi-NP does not have size(nlogk n) EMAJ◦ACC0◦THR
circuits of depth d. J
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The above theorem can be rewritten as: For constants k, d,m, there exists a constant e
such that NTIME[nloge n] does not have nlogk n-size EMAJ ◦ACC0 ◦THR circuits of depth d.
Here the constant e depends on d and m. Using a standard trick (as in [16]) this dependence
can be removed as we show below.

I Corollary 25. There exists an e such that NTIME[nloge n] does not have polynomial size
EMAJ ◦ ACC0 ◦ THR circuits.

Proof. Assume for contradiction that for all e, there exists constants d,m such that
NTIME[nloge n] has poly-sized EMAJ ◦ AC0[m] ◦ THR circuit of depth d. This implies
that P has poly-sized EMAJ ◦ AC0[m] ◦ THR circuits, which further implies that CIRCUIT
EVALUATION problem has poly-sized EMAJ ◦ AC0[m0] ◦ THR circuit of a fixed constant
depth d0 and fixed constant m0. Hence any circuit of size s has an equivalent poly(s)-sized
EMAJ◦AC0[m0]◦THR circuit of depth d0. Combining this with our assumption yields: For all
e, there exists constants d,m such that NTIME[nloge n] has poly-sized EMAJ◦AC0[m0]◦THR
circuit of depth d0. This contradicts Theorem 24 and hence our assumption was wrong,
which completes the proof. J

5 Extension to All Sparse Symmetric Functions

Our lower bounds extend to circuit classes of the form f ◦ C where f denotes a family of
symmetric functions that only take the value 1 on a small number of slices of the hypercube.
Formally, let f : {0, 1}n → {0, 1} be a symmetric function, and let g : {0, 1, . . . , n} → {0, 1}
be its “companion” function, where for all x, f(x) = g(

∑
i xi) (here, xi denotes the i-th bit

of x). For k ∈ {0, 1, . . . , n}, we say that a symmetric function f is k-sparse if |g−1(1)| = k.
For example, the all-zeroes function is 0-sparse, the all-ones function is n-sparse, and the
EMAJ function is 1-sparse.

I Theorem 26. Let k < n/2. Every k-sparse symmetric function f : {0, 1}n → {0, 1} can
be represented as an exact majority of nO(k) ANDs on k inputs.

Proof. Given a k-sparse f and its companion function g, consider the polynomial expression

E(x) :=
∏

v∈g−1(1)

(∑
i

xi − v

)
.

Then E(x) = 0 whenever f(x) = 1, and E(x) 6= 0 otherwise. Expanding E into a sum of
products, we can write E as a multilinear n-variate polynomial of degree at most k, with
integer coefficients of magnitude at most nO(k) (since each v ≤ n). We can therefore write E
as the EMAJORITY of nO(k) distinct ANDs on up to k inputs. J

The above theorem immediately implies that for every k-sparse symmetric function fm,
any circuit with an fm at the output gate can be rewritten as a circuit with an EMAJ of
fan-in at most mO(k) at the output gate (and ANDs of fan-in up to k below that).

I Corollary 27. For every fixed k, and every k-sparse symmetric function family f = {fn},
Quasi-NP does not have polynomial-size f ◦ ACC0 ◦ THR circuits.
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Abstract
We show a new connection between the space measure in tree-like resolution and the reversible
pebble game in graphs. Using this connection, we provide several formula classes for which there
is a logarithmic factor separation between the space complexity measure in tree-like and general
resolution. We show that these separations are not far from optimal by proving upper bounds for
tree-like resolution space in terms of general resolution clause and variable space. In particular we
show that for any formula F , its tree-like resolution space is upper bounded by space(π) log

(
time(π)

)
,

where π is any general resolution refutation of F . This holds considering as space(π) the clause
space of the refutation as well as considering its variable space. For the concrete case of Tseitin
formulas, we are able to improve this bound to the optimal bound space(π) logn, where n is the
number of vertices of the corresponding graph.
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1 Introduction

Resolution is one of the best-studied systems for refuting unsatisfiable propositional formulas.
This is due to its theoretical simplicity, as well as its practical importance since it is the
proof system at the root of many modern SAT solvers. Several complexity measures for
the analysis of resolution refutations have been used in the last decades. In this paper, we
will mainly concentrate on space bounds, which measure the amount of memory that is
needed in a resolution refutation. Intuitively, the clause space (CS) measures the number of
clauses required simultaneously in a refutation, while the variable space (VS) measures the
maximum number of distinct variables kept simultaneously in memory during this process.
Experimental results have shown that space measures for resolution correlate well with the
hardness of refuting unsatisfiable formulas with SAT solvers in practice [2, 18].

1 Corresponding author.

© Jacobo Torán and Florian Wörz;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 60; pp. 60:1–60:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2168-4969
mailto:jacobo.toran@uni-ulm.de
https://orcid.org/0000-0003-2463-8167
mailto:florian.woerz@uni-ulm.de
https://doi.org/10.4230/LIPIcs.STACS.2020.60
https://eccc.weizmann.ac.il/report/2019/097/
https://eccc.weizmann.ac.il/report/2019/097/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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Tree-like resolution is a restricted kind of resolution that is especially important since the
original DPLL algorithm [13, 12] on which many SAT solvers are based, is equivalent to this
restriction of the resolution system. Contrary to general resolution, in tree-like resolution,
if a clause is needed more than once in a refutation, it has to be rederived each time. It is
known that general resolution can be exponentially more efficient than tree-like resolution
in terms of length (number of clauses in a refutation) [8, 3]. In [3], the authors give an
almost optimal separation between general and tree-like resolution. They show that for each
natural number n, there are unsatisfiable formulas in O(n) variables that have resolution
refutations of length L, linear in n, but for which any tree-like resolution refutation of the
formula requires length exp

(
Ω( L

logL )
)
. They also give an almost matching upper bound of

exp
(
O
(
L log logL

logL
))

for the tree-like resolution length of any formula that can be refuted in
length L by general resolution.

In this paper we study space separations between general and tree-like resolution. Space
separations are much more modest than the ones for length. It is known from [15] that all
space measures considered here for a formula with n variables are between constant and n+2.
Also, it is not hard to see that variable space coincides in general and tree-like resolution.
Therefore, we only consider the clause space measure for the case of tree-like resolution.
The first space separation between general and tree-like resolution was given in [16]. There,
a family of formulas (Fn)∞n=1 was presented which require tree-resolution clause space sn
but have a general resolution refutation in clause space c · sn, for some constant c < 1.
More recently, in [18], a family of formulas (Fn)∞n=1 is presented with O(n) variables that
can be refuted by general resolution in constant clause space but requires Θ(logn) tree-like
resolution space, thus showing that both measures are fundamentally different.

In this paper, we present a systematic study of tree-like resolution space providing upper
bounds for this measure, which show that the logarithmic factor in the separation of [18]
as well as in other separations provided here are basically optimal. Our main tools are
several versions of pebbling games played on graphs, which have been extensively used in
the past for analysing different computation models and in particular for analysing proof
systems (see [20] for an excellent survey). We formally define these games in the preliminaries.
Intuitively, the idea of the pebble game is to measure the number of pebbles needed by a
single player in order to place a pebble on the sink of a directed acyclic graph following
certain rules. In the standard game, pebbles can only be placed on a vertex if it is a source
or if all its direct predecessors already have a pebble, but they can be removed at any time.
In the reversible pebble game, pebbles can only be placed or removed from a vertex if all
the direct predecessors of the vertex contain a pebble. Based on the pebble game, a class of
contradictory formulas, called pebbling formulas, was introduced in [6]. These formulas have
been extremely useful for analysing several proof systems. The reason for this is that some
of the pebbling properties of the underlying graphs can be translated into parameters for the
complexity of their corresponding pebbling contradictions. Known results of pebbling can
therefore be translated into proof complexity results.

Our main contribution is a new connection between tree-like resolution clause space and
the reversible pebble game. We show that for any graph G, the tree-like resolution space of a
(certain kind of) pebbling contradiction of the graph is at least the reversible pebbling number
of G and at most twice this number. More interestingly, we show that for any unsatisfiable
CNF formula F , the tree-like resolution clause space of a refutation of F is at most the
reversible pebbling number of any refutation graph of F , not necessarily a tree-like refutation.
This result adds one more connection to the rich set of interrelations between pebbling and
resolution [20]. A central tool in the proofs of these results is the Raz–McKenzie game [23], a
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two-player game on graphs, and the fact that this game is equivalent to reversible pebbling in
a precise sense [10]. The clause space measure for any formula can be exactly characterised
in terms of the black pebble game on a refutation graph of the formula [15]. We find the fact
that tree-like clause space is upper bounded by the reversible pebble game quite surprising.

Using these bound and known results on reversible pebbling [11, 30], we show in Sec-
tion 3 that there are families of pebbling formulas (Fn)∞n=1 with O(n) variables, that
have general clause space O(s) and tree-like resolution space Ω(s logn) for any func-
tion s smaller than n1/2−ε. This separation (as well as the one in [18]) is almost optimal
since we also show that for any pebbling formula F , its tree-like clause space is at most
minP

(
space(P) · log time(P)

)
, where P is a black pebbling of the underlying graph of F .

This means that for graphs of size n where the smallest black pebbling space is achieved in a
one-shot pebbling strategy, that is, a strategy in which every vertex in the graph is pebbled at
most once, the logn factor in the separation is optimal and the only room for improvement is
with graph families in which the space-optimal black pebbling is not one-shot. It is possible
that for one such family, the logn separation factor can be improved to a log time(P) factor.
We provide, however, for the first time a family of graphs for which the minimum pebbling
space is obtained in a strategy that is not one-shot, but for which the clause space separation
between general and tree-like resolution is also only a logn factor. We conjecture that this is
optimal, and that this separation cannot be improved for other graph classes. This question
is closely related to proving optimal upper bounds for reversible pebbling in terms of black
pebbling. Another motivation for providing this new graph family is to increase the set of
examples of formulas with concrete resolution space bounds that can be used for the testing
of SAT solvers, as done for example in [18].

In Section 4, we prove upper bounds on the tree-like clause space for any unsatisfiable
CNF formula F in terms of the variable space and clause space for general resolution of
the formula. We use the amortised space measures for resolution introduced by Razborov
in [24], that penalise configurational proofs for being unreasonably long. In his paper
he defined the notations VS∗(F `�) := minπ:F `�

(
VS(π) · log L(π)

)
and CS∗(F `�) :=

minπ:F `�
(
CS(π)·log L(π)

)
, where L(π) is the length of the configurational proof π. We show

the upper bounds Tree-CS(F `�) ≤ VS∗(F `�)+2 and Tree-CS(F `�) ≤ CS∗(F `�)+2.
The first inequality is especially interesting since it shows that clause space can be meaningfully
bounded in terms of variable space, a question posed by Razborov in [24]: CS(F `�) ≤
VS∗(F `�) + 2. Again, from the separations in Sections 3 and 5, the only room for
improvement in this upper bounds is to decrease the log L(π) factor to a logn factor,
where n is the size of the formula F .

Finally, in Section 5, we give optimal separations for the space in tree-like resolution
for the class of Tseitin formulas. We show that for any graph G with n vertices and
odd marking χ, the inequalities Tree-CS

(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· logn+ 2 and

Tree-CS
(
Ts(G,χ) `�

)
≤ VS

(
Ts(G,χ) `�

)
· logn+ 2 hold, thus improving the upper bound

from the previous sections from logarithmic in the resolution length down to a logn factor.
We also provide a class of formulas with a matching space separation showing that this
is optimal.

2 Preliminaries

For a positive integer n we let [n] := {1, 2, . . . , n}. The base of all logarithms in this paper
is 2. The size of a graph is the number of vertices of it. Given a directed acyclic graph (DAG)
G = (V,E), we say that a vertex u is a direct predecessor of a vertex v, if there is a directed
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edge from u to v. We denote by predG(v) the set of all direct predecessors of v in G. The
maximal in-degree of a graph G is defined to be maxv∈V |predG(v)|. A vertex in a DAG with
no incoming edges is called a source and a vertex with no outgoing edges is called a sink.

2.1 Pebble Games
Black pebbling was first mentioned implicitly in [21]. Note, that there exist several variants
of the pebble game in the literature. In this paper, we focus on the variant without sliding
and requiring the sink of the graph to be pebbled at the end. For differences between these
variants, we refer to the survey [20], from which we borrowed most of our notation. For the
following definitions, let G = (V,E) be a DAG with a unique sink vertex z.

I Definition 1 (Black pebble game). The black pebble game on G is the following one-player
game: At any time i of the game, we have a pebble configuration Pi, where Pi ⊆ V is the
set of black pebbles. A pebble configuration Pi−1 can be changed to Pi by applying exactly one
of the following rules:
Black pebble placement on v: If all direct predecessors of an empty vertex v have pebbles

on them, a black pebble may be placed on v. More formally, letting Pi = Pi−1 ∪ {v} is
allowed if v 6∈ Pi−1 and predG(v) ⊆ Pi−1. In particular, a black pebble can always be
placed on an empty source vertex s, since predG(s) = ∅.

Black pebble removal from v: A black pebble may be removed from any vertex at any time.
Formally, if v ∈ Pi−1, then we can set Pi = Pi−1 \ {v}.

A black pebbling of G is a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such that
P0 = ∅, Pt = {z}, and for all i ∈ [t] it holds that Pi can be obtained from Pi−1 by applying
exactly one of the above-stated rules. It is one-shot if each v ∈ V is pebbled at most once.

Finally, we mention the reversible pebble game introduced in [7]. In the reversible pebble
game, the moves performed in reverse order should also constitute a legal black pebbling,
which means that the rules for pebble placements and removals have to become symmetric.

I Definition 2 (Reversible pebble game). The reversible pebble game on G is the following
one-player game: At any time i of the game, we have a pebble configuration Pi ⊆ V . A pebble
configuration Pi−1 can be changed to Pi by applying exactly one of the following rules:
Pebble placement on v: Letting Pi = Pi−1∪{v} is allowed if v 6∈ Pi−1 and predG(v) ⊆ Pi−1.

In particular, a pebble can always be placed on an empty source vertex.
Reversible pebble removal from v: Letting Pi = Pi−1 \ {v} is allowed if v ∈ Pi−1 and

predG(v) ⊆ Pi−1. In particular, a pebble can always be removed from a source vertex.
A reversible pebbling of G is a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such
that P0 = ∅, Pt = {z}, and for all i ∈ [t] it holds that Pi can be obtained from Pi−1 by
applying exactly one of the above-stated rules.

I Definition 3 (Time, space, and price of pebblings). The time of a pebbling P = (P0,P1, . . . ,Pt)
is time(P) := t and the space of it is space(P) := maxi∈[t] |Pi|. The black pebbling price
(or number) of G, denoted by Black(G), is the minimum space of any black pebbling of G,
whereas the reversible pebbling price of G, which we will denote by Rev(G), is the minimum
space of any reversible pebbling of G.

2.2 Resolution
A literal over a Boolean variable x is either x itself (also denoted as x1) or its negation x (also
denoted as x0). A clause C = a1 ∨ · · · ∨ a` is a (possibly empty) disjunction of literals ai over
pairwise disjoint variables. The set of variables occurring in a clause C will be denoted by
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Vars(C). A clause C is called unit if |Vars(C)| = 1. We let � denote the contradictory empty
clause (the clause without any literals). A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction
of clauses. It is often advantageous to think of clauses and CNF formulas as sets. The notion
of the set of variables in a clause is extended to CNF formulas by taking unions. A CNF
formula is a k-CNF, if all clauses in it have at most k variables. An assignment/restriction α
for a CNF formula F is a function that maps some subset of Vars(F ) to {0, 1}. It is applied
to F , which we denote by F �α, in the usual way (see e. g. [6, 25]). We denote the empty
assignment with ∅.

The standard definition of a resolution derivation of a clause D from a CNF formula F
(denoted by π : F `D) is an ordered sequence of clauses π = (C1, . . . , Ct) such that Ct = D,
and each clause Ci, for i ∈ [t], is either an axiom clause Ci ∈ F , or is derived from clauses
Cj and Ck, with j, k < i, by the resolution rule B∨x C∨x

B∨C . In the resolution rule, we call
B ∨ x and C ∨ x the parents and B ∨ C the resolvent. A derivation π : F `� of the empty
clause from an unsatisfiable CNF formula F is called refutation. Note, that resolution is a
sound and complete proof system for unsatisfiable formulas in CNF.

To study space in resolution, we consider the following definitions of the resolution proof
system from [15, 1].

I Definition 4 (Configuration-style resolution). A resolution refutation π : F `� of an
unsatisfiable CNF formula F is an ordered sequence of memory configurations (sets of
clauses) π = (M0, . . . ,Mt) such that M0 = ∅, � ∈ Mt and for each i ∈ [t], the configura-
tion Mi is obtained from Mi−1 by applying exactly one of the following rules:
Axiom Download: Mi = Mi−1 ∪ {C} for some axiom clause C ∈ F .
Erasure: Mi = Mi−1 \ {C} for some C ∈Mi−1.
Inference: Mi = Mi−1 ∪ {D} for some resolvent D inferred from C1, C2 ∈ Mi by the

resolution rule.
The proof π is said to be tree-like, if we replace the inference rule with the following rule [15]:
Tree-like Inference: Mi =

(
Mi−1 ∪ {D}

)
\ {C1, C2} for some resolvent D inferred from

C1, C2 ∈Mi by the resolution rule, i. e., we delete both parent clauses immediately.

To every configurational refutation π we can associate a refutation-DAG Gπ, with the
clauses of the refutation labelling the vertices of the DAG and with edges from the parents
to the resolvent for each application of the resolution rule. There might be several different
derivations of a clause C during the course of the refutation, but if so, we can label each
occurrence of C with a timestamp when it was derived and keep track of which copy of C is
used where (cf. [20]). Using this representation, if π is tree-like, then Gπ is a tree.

I Definition 5 (Complexity measures for resolution). The length of a resolution refutation
π = (M0, . . . ,Mt) is defined to be L(π) := t.

The clause space of a memory configuration M is defined as CS(M) := |M|, i. e., the
number of clauses in M. The variable space of a memory configuration M is defined
as VS(M) :=

∣∣⋃
C∈M Vars(C)

∣∣, i.e., the number of distinct variables mentioned in M.
The clause space (variable space) of a refutation π = (M0, . . . ,Mt) is defined by CS(π) :=

maxi∈[t] CS(Mi) and VS(π) := maxi∈[t] VS(Mi), respectively.
Taking the minimum over all refutations of a formula F , we define L(F `�) :=

minπ:F `� L(π), CS(F `�) := minπ:F `� CS(π) and VS(F `�) := minπ:F `� VS(π) as
the length, clause space and variable space of refuting F in resolution, respectively. We
define Tree-CS(F `�) := minπ′:F `� CS(π′), where the minimum is taken over all tree-like
refutations π′ of the formula F .
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I Proposition 6 ([15]). Let F be an unsatisfiable formula. Then it holds CS(F `�) =
minπ:F `� Black(Gπ).

Razborov introduced amortised space measures for resolution in [24], that penalise
configurational proofs for being unreasonably long.

I Definition 7 (Amortised space measures for resolution). The amortised clause space
(amortised variable space) of a resolution refutation π is defined by CS∗(π) := CS(π) · log L(π)
and VS∗(π) := VS(π) · log L(π), respectively.

Taking the minimum over all refutations of a formula F , we define CS∗(F `�) :=
minπ:F `� CS∗(π) and VS∗(F `�) := minπ:F `� VS∗(π).

2.3 Formula Families
Pebbling Formulas and Their XORification
In the last years, there has been renewed interest in pebbling in the context of proof complexity.
This is so, because pebbling results can be partially translated into proof complexity results
by studying so-called pebbling formulas [6, 5]. These are unsatisfiable CNF formulas encoding
the pebble game played on a DAG G. We define them next.

I Definition 8 (Pebbling formulas). Let G = (V,E) be a DAG with a set of sources S ⊆ V
and a unique sink z. We identify every vertex v ∈ V with a Boolean variable v. The pebbling
contradiction over G, denoted PebG, is the conjunction of the following clauses:

for all sources s ∈ S, a unit clause s, ( source axioms)
for all non-source vertices v, the clause

∨
u∈predG(v) u ∨ v, (pebbling axioms)

for the unique sink z, the unit clause z. ( sink axiom)

Often, it turns out, that the formulas in Definition 8 are a bit too easy to refute. A good
way to make them slightly harder is to substitute some suitable Boolean function f(x1, . . . , xd)
of arity d for each variable x and expand the result into CNF. This general case is discussed
in [20]. We restrict ourselves to the special case of the second degree XORification.

For notational convenience, we assume that the formula F we are trying to make harder
only has variables x, y, z, et cetera, without subscripts, so that x1, x2, y1, y2, z1, z2, et cetera,
are new variables not occurring in F .

I Definition 9 (Substitution formulas, [4]). For a positive literal x define the XORification
of x to be x[⊕2] := {x1 ∨ x2, x1 ∨ x2}. For a negative literal y, the XORification is y[⊕2] :=
{y1 ∨ y2, y1 ∨ y2}. The XORification of a clause C = a1 ∨ · · · ∨ ak is the CNF formula

C[⊕2] :=
∧

C1∈a1[⊕2]

· · ·
∧

Ck∈ak[⊕2]

(C1 ∨ · · · ∨ Ck)

and the XORification of a CNF formula F is F [⊕2] :=
∧
C∈F C[⊕2].

I Remark 10 ([4]). If G has n vertices and maximal in-degree `, then PebG[⊕2] is an
unsatisfiable 2(`+ 1)-CNF formula with at most 2`+1 · n clauses over 2n variables.

Tseitin Formulas
Tseitin formulas encode the combinatorial principle that for all graphs the sum of the degrees
of the vertices is even. This class of formulas was introduced in [28] and has been extremely
useful for the analysis of proof systems.



J. Torán and F. Wörz 60:7

I Definition 11 (Tseitin formulas). Let G = (V,E) be a connected undirected graph and
let χ : V → {0, 1} be a marking of the vertices of G. A marking χ is called odd if it
satisfies the property

∑
v∈V χ(v) ≡ 1 (mod 2) otherwise it is called even. Associate to every

edge e ∈ E a propositional variable e. The CNF formula PARITYv,χ(v) states that the parity
of the values of the edges that have vertex v as endpoint coincides with χ(v), i. e.,

PARITYv,χ(v) :=
∧{∨

e3v
ea(e) : a(e) ∈ {0, 1}, such that

⊕
e3v

(
a(e)⊕ 1

)
6≡ χ(v)

}
.

Then, the Tseitin formula associated to the graph G and the marking χ is the CNF formula
defined by Ts(G,χ) :=

∧
v∈V PARITYv,χ(v).

For a partial truth assignment α, applying α to Ts(G,χ) corresponds to the following
simplification of the underlying graph: Setting a variable e = {u, v} to 0 corresponds to
deleting the edge e in the graph, and setting it to 1 corresponds to deleting the edge from
the graph and toggling the value of χ(u) and χ(v) in G. We denote by G�α and by χ�α the
remaining graph and marking after applying α according to this process.

I Fact 12 ([28, 29, 15]). Let χ be an odd marking of of a connected graph G and e an
edge in G that, when deleted divides G in two connected components G1 and G2. Then for
i ∈ {1, 2} there is a partial assignment αi of variable e so that χ�αi is an odd marking of Gi.

2.4 Combinatorial Games for Tree-Like Clause Space in Resolution
Important tools for our results are two two-player combinatorial games. The Prover-Delayer
game is played on formulas and was introduced in [22] in order to prove lower bounds for
tree-like resolution length. Later it was shown in [16] that the game exactly characterises
tree-like resolution space. The Raz–McKenzie game is played on DAGs and was introduced
in [23] as a tool for studying the depth complexity of decision trees for search problems.

I Definition 13 (Prover-Delayer game, [22, 16, 3]). The Prover-Delayer game is a game
between two players, called Prover (he), and Delayer (she), played on an unsatisfiable CNF
formula F . The game is played in rounds. Each round starts with Prover querying the
value of a variable. Delayer can give one of three answers: 0, 1, or ∗. If 0 or 1 is chosen
by Delayer, no points are scored by her and the queried variable is set to the chosen bit.
If Delayer answers ∗, then Prover gets to decide the value of that variable, and Delayer
scores one point. The game finishes when any clause in F has been falsified by the partial
assignment constructed this way. If this is not the case, the next round begins. The aim of
Delayer is to win as many points as possible, while Prover aims to minimise this quantity.

I Definition 14 (Game value of the Prover-Delayer game). Let F be an unsatisfiable CNF
formula. The game value of the Prover-Delayer game played on F , denoted by PD(F ), is the
greatest number of points Delayer can score on F against an optimal strategy of Prover.

The Prover-Delayer game exactly characterises the tree-like clause space of a formula.
The constant term of the original result in [16, Theorem 2.2] was slightly modified to match
our definitions of clause space and the pebble game (without sliding).

I Theorem 15 ([16]). If F is an unsatisfiable CNF formula, Tree-CS(F `�) = PD(F ) + 2.

I Definition 16 (Raz–McKenzie game). The Raz–McKenzie game is played on a single-sink
DAG G by two players, Pebbler and Colourer. The game is played in rounds. In the first
round, Pebbler places a pebble on the sink and Colourer colours it red. In all subsequent
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rounds, Pebbler places a pebble on an arbitrary empty vertex of G and Colourer colours this
new pebble either red or blue. The game ends when there is a vertex with a red pebble that is
either a source vertex or all its direct predecessors in the graph have blue pebbles.

I Definition 17 (Raz–McKenzie price). The Raz–McKenzie price R-Mc(G) of a single sink
DAG G is the smallest number r such that Pebbler has a strategy to make the game end in
at most r rounds against an optimal strategy of Colourer.

I Theorem 18 ([10]). For any single-sink DAG G we have R-Mc(G) = Rev(G).

3 Separations Between Tree-Like and General Resolution Space for
Pebbling Formulas Using the Raz–McKenzie Game

We will now establish a connection between tree-like clause space in resolution and the
Raz–McKenzie price. We simplify the proof by following the intuition behind the game and
identify the colour blue with 1 and the colour red with 0.

I Theorem 19. For any single-sink DAG G it holds

R-Mc(G) + 2 ≤ Tree-CS(PebG[⊕2] `�) ≤ 2 · R-Mc(G) + 2.

Proof. Let G be a fixed DAG with a unique sink. We prove that R-Mc(G) ≤ PD(PebG[⊕2])
and PD(PebG[⊕2]) ≤ 2 · R-Mc(G). The result then follows from Theorem 15. We first
show the inequality PD(PebG[⊕2]) ≤ 2 · R-Mc(G) =: 2r by giving a strategy for Prover,
such that Delayer can score at most 2r points. Prover basically simulates the strategy of
Pebbler in the Raz–McKenzie game: If Pebbler pebbles a vertex v of G, Prover will query
the variables v1 and v2 of PebG[⊕2] in this order. The Raz–McKenzie game ends after at
most r rounds. We will argue, that the Prover-Delayer game also ends after at most 2r queries.
Thus, Delayer only gets a chance to score 2r points (if a variable pair gets queried for the
first time, she can always answer ∗; only the second variable of the pair matters due to the
XORification). In case the second variable of a pair gets queried, the best choice Delayer
has is to follow the strategy of Colourer (Colourer is following an optimal strategy, thus, if
Delayer had a better answer, this would correspond to a better answer for Colourer) and to
ensure that v1⊕v2 is true under her constructed assignment if v is coloured 1; and false if v is
coloured 0. At the end of the Raz–McKenzie game either a source vertex s in G is coloured 0,
or a vertex v of G is coloured 0, while all its direct predecessors are coloured 1. In the first
case, the source s being coloured 0 leads to the falsification of the corresponding source
axiom s[⊕2] by Delayer. In the second case, Delayer will falsify a clause of the corresponding
pebbling axiom

(∧
u∈predG(v) u ∨ v

)
[⊕2].

Next, we show the inequality PD(PebG[⊕2]) ≥ R-Mc(G) =: r by giving a strategy for
Delayer, such that under any strategy of Prover, she scores at least r points. By Definition 17,
there is a strategy of Colourer, such that Pebbler has to pebble r vertices to end the game.
Delayer will essentially copy this strategy: The first time a variable pair gets queried, she
can answer ∗. The second time, she can copy the response of Colourer. Thus, she scores at
least r points. J

From the equivalence between the Raz–McKenzie game and reversible pebbling we get:

I Corollary 20. It holds Rev(G) + 2 ≤ Tree-CS(PebG[⊕2] `�) ≤ 2 · Rev(G) + 2 for all
DAGs G with a unique sink.
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The result that for any DAG G it holds CS(PebG[⊕2] `�) = O
(
Black(G)

)
is considered

as folklore (the idea behind it is that the pebbling formula can be resolved following the order
in which the vertices of the graph are being pebbled). Combining this fact with Corollary 20,
it follows that for any graph G with a gap between its black and reversible pebbling prices,
the same separation can be obtained between the general and tree-like clause space of the
corresponding pebbling formula. We mention some examples for which such a separation
is known:

The path graphs. Consider Pn to be a directed path with n vertices. Bennett [7] noticed,
that these graphs provide a separation between black and reversible pebbling, proving that
Rev(Pn) = dlogne. It was shown in [18], using a direct proof, that CS(PebPn

[⊕2] `�) =
O(1) while Tree-CS(PebPn [⊕2] `�) = Θ(logn).
The road graphs from [11] provide a class of graphs for which the black pebbling price is
non-constant and the reversible pebbling number is larger by a logarithmic factor.

I Theorem 21 ([11]). For any function s(n) = O
(
n1/2−ε) with 0 < ε < 1

2 constant there is
a family of DAGs (Gn)∞n=1 of size Θ(n) with a single sink and maximal in-degree 2 such that
Black(Gn) = O

(
s(n)

)
and Rev(Gn) = Ω

(
s(n) logn

)
.

I Corollary 22. For any function s(n) = O
(
n1/2−ε) with 0 < ε < 1

2 constant there is a family
of pebbling formulas (PebGn [⊕2])∞n=1 with Θ(n) variables such that CS(PebGn [⊕2] `�) =
O
(
s(n)

)
and Tree-CS(PebGn

[⊕2] `�) = Ω
(
s(n) logn

)
.

The logarithmic factor in the number of vertices is almost the largest separation that can
be obtained using this method since it is known that the reversible pebbling price can be
upper bounded in terms of black pebbling space and time:

I Theorem 23 ([19]). If a DAG G has a black pebbling of time t and space s, the graph G
has a reversible pebbling price of at most sdlog te.

By virtue of this result and Corollary 20 we obtain:

I Corollary 24. For any DAG G with a unique sink vertex it holds

Tree-CS(PebG[⊕2] `�) = O
(

min
P

(
space(P) · log time(P)

))
,

where the minimum is taken over all black pebblings P of G.

This shows that the given separations cannot be improved for graphs for which the
minimum black pebbling space is obtained with a one-shot strategy as it is the case for the
path and road graphs, since the pebbling time for such a strategy is n. We present the first
graph class for which the best pebbling strategy is not one-shot with a separation between
black and reversible pebbling space. We do not obtain, however, any better separation than
the logn factor obtained in the previous examples. We conjecture that this is in fact optimal.
Our graphs Ĝ(c, k) are simplified versions of the original Carlson–Savage graphs [9]. Another
adaptation of the original graphs is the family Γ(c, r) studied in [20], for which an upper
bound on the reversible pebble price was recently shown in [14]. We have simplified the
graphs, eliminating the original pyramids since we are not analysing the black-white pebbling
price, but our lower bound on reversible pebbling can be adapted to the original graphs or
those in the family

(
Γ(c, r)

)∞
c,r=1.

I Definition 25 (Simplified Carlson–Savage graphs). The class of DAGs
(
G(c, k)

)∞
c,k=1 with

parameters c, k ≥ 1 is inductively defined in k. The base case G(c, 1) is the graph with
one source node connected to c sink nodes. The graph G(c, k + 1) is composed of the graph
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G(c, k) and c spines. A spine is just a path of length 2c2k. The last node of each of the
spines is a sink for G(c, k + 1). A spine is divided into 2ck sections of c consecutive vertices
each. For each section and for each i with 1 ≤ i ≤ c, there is an edge from the i-th sink
of G(c, k) to the i-th vertex in the section. In order to have single sink graphs, for k ≥ 2
we also define Ĝ(c, k) exactly as G(c, k) but with just one spine at the k-th level (all other
levels have c spines). The last vertex of this spine is the only sink of Ĝ(c, k). For all c, the
graph Ĝ(c, 1) consists of just one edge.

I Lemma 26. The following claims hold:
(i) Ĝ(c, k) has Θ(c3k2) vertices,
(ii) Black

(
Ĝ(c, k)

)
≤ k + 1 for any c, k ≥ 1, while

(iii) Rev
(
Ĝ(c, k)

)
≥ min

{
c, (k − 1) log c+ log(k!)

}
for any c, k ≥ 1.

Proof. The first part follows easily by inductive counting.
For part (ii) of the lemma, we show inductively over k that any sink of G(c, k) can be

pebbled using k + 1 pebbles. The result follows since Ĝ(c, k) is a subgraph of G(c, k). The
claim is trivial for k = 1. For bigger values of k, the first vertex in any of the spines in G(c, k)
can be pebbled by placing a pebble on the corresponding sink of G(c, k − 1), removing all
the pebbles except this one, and then pebbling the first vertex in the spine. The following
strategy can be used for any other vertex v in the spine once its direct predecessor in the
spine is pebbled: remove all the pebbles in the graph except the one on the direct spine
predecessor of v, pebble the sink connected to v in G(c, k− 1), remove all the pebbles except
the 2 on the direct predecessors of v, and then place a pebble on v. For this, by the induction
hypothesis, at most k + 1 pebbles are needed.

Part (iii) is more involved. We use the equivalence between reversible pebbling and the
Raz–McKenzie game and show, also by induction over k, that the number of rounds to
finish a game on Ĝ(c, k) starting from a configuration in which less than c vertices have been
coloured blue, and no vertex in the unique spine of Ĝ(c, k) (except the sink) is coloured,
is at least min

{
c, (k − 1) log c + log(k!)

}
. We give a strategy for Colourer obtaining this

bound on the number of rounds. The base case is trivial. For k ≥ 2, initially the only vertex
coloured red is the unique sink of Ĝ(c, k). Let us denote the unique spine from Ĝ(c, k) as
the k-spine. The game is divided in k stages (starting at stage k and finishing at stage 1).
Stage k finishes when there is a blue vertex in the k-spine at a distance less than 2c from a
red vertex. In stage k, if Colourer gives the colour red to a vertex v, this vertex has to be in
the k-spine. If some vertex in G(c, k − 1) is queried by Pebbler, Colourer always answers
with the blue colour. Because of this, the game cannot finish before the end of stage k. For
simplicity we may assume that the first vertex of the k-spine has been coloured blue (for
free, this can only make the strategy of Colourer harder), also for the clarity of exposition
let us say that the k-spine is directed from left to right. The strategy of Colourer on the
k-spine is to keep the gap between the rightmost blue vertex a (initially the initial node of
the spine) and the leftmost red vertex b (initially the sink) as large as possible. That is, for
any queried vertex v in the k-spine, if v lies at the left of a, it is coloured blue, if it is at the
right of b it is coloured red and otherwise (i. e., if v is between a and b) if the distance from
a to v is smaller that or equal to the distance from v to b, then v is coloured blue, otherwise
it is coloured red. This strategy is followed by Colourer as long as the gap between a and b
is at least 2c. Once it is smaller than 2c, stage k ends. If at this moment at least c vertices
have been queried, there have been at least c rounds and the result follows. Otherwise there
has to be a spine in G(c, k − 1) without any coloured vertex on it (there are c spines). Let
us call t the sink of this spine and t′ its rightmost uncoloured successor in the k-spine. We
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can suppose that at this moment Colourer colours (for free) t, t′ as well as all uncoloured
vertices to the right of t′ in the k-spine with colour red, and all the uncoloured vertices
to the left of t′ in the k-spine with blue. Again this only makes the strategy of Colourer
harder since we are not counting these rounds. But now the game has been reduced to the
instance of the graph Ĝ(c, k − 1) containing the sink t. The number of rounds in stage k is
at least log( 2c2k

2c ) = log c+ log k (this would happen with a binary search strategy of Pebbler
on the k-spine). If in all the stages less than c vertices are queried, by induction, the rounds
to finish the game on Ĝ(c, k − 1) are at least (k − 2) log c + log

(
(k − 1)!

)
. Adding these

rounds to those from stage k we get the result. J

I Theorem 27. For any function s(n) = Θ
(
n1/5−ε) with 0 < ε < 1

5 constant there is a family
of pebbling formulas (PebGn [⊕2])∞n=1 with O(n) variables such that CS(PebGn [⊕2] `�) =
O
(
s(n)

)
and Tree-CS(PebGn

[⊕2] `�) = Ω
(
s(n) logn

)
, and the best strategy for pebbling the

graphs Gn is not one-shot.

Proof. We show that for any such function s there is a graph family
(
Ĝ
(
c(n), ds(n)e

))∞
n=1

with the corresponding gap between its black and reversible pebbling prices. The result
follows from Corollary 20.

Given any such space function s(n) = Θ
(
n1/5−ε) with 0 < ε < 1

5 constant, we define
c(n) := ds(n) · logne. This allows us to consider the graphs Ĝ

(
c(n), ds(n)e

)
. By Lemma 26 (i),

this graph has O
(
c(n)3 · ds(n)e2

)
= O

(
s(n)5 · log3 n

)
= O

(
n1−5ε · log3 n

)
= O(n) vertices. By

Lemma 26 (ii), the graph has a black pebbling number upper bounded by ds(n)e+1 = O(s(n)).
It only remains to show, that the reversible pebbling number of the graph is asymptotically
lower bounded by s(n) logn. For this, we consider two cases.

Case 1: min
{
c(n),

(
s(n)− 1

)
log c(n) + log

(
s(n)!

)}
= c(n). In this case, Lemma 26 (iii)

implies, that the reversible pebbling number of the graph is lower bounded by c(n), which,
by definition, is greater than or equal to s(n) logn.

Case 2: min
{
c(n),

(
s(n) − 1

)
log c(n) + log

(
s(n)!

)}
=
(
s(n) − 1

)
log c(n) + log

(
s(n)!

)
.

In this case, one can notice, that already the first term, i. e.,
(
s(n)− 1

)
log c(n) is in

Ω
((
s(n)− 1

)
log
(
s(n) logn

))
= Ω

((
s(n)− 1

)
log
(
s(n)

)
+
(
s(n)− 1

)
log logn

)
= Ω

((
s(n)− 1

)(
1/5− ε

)
logn+

(
s(n)− 1

)
log logn

)
= Ω

(
s(n) logn

)
.

J

4 Upper Bounds for Tree-CS for General Formulas

Next, we provide generalisations of Corollary 24 for general formulas.

I Theorem 28. For any unsatisfiable formula F it holds

Tree-CS(F `�) ≤ VS∗(F `�) + 2 = min
π:F `�

(
VS(π) · log L(π)

)
+ 2.

Proof of Theorem 28. Consider a configurational refutation π = (M0, . . . ,Mt) of F . Let α
be the current partial assignment constructed in the Prover-Delayer game played on the
formula F . At the beginning we have α = ∅. We give a strategy for Prover that allows him to
finish the game with at most VS(π)·log L(π) points scored by Delayer regardless of her answers.
The strategy of Prover proceeds in bisection steps indexed with k. Prover keeps as an invariant
in these steps an interval Ik = [ak, bk] ⊆ [0, t] such that π[ak,bk]�α:=

(
Mak
�α, . . . ,Mbk

�α
)
is a
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configurational refutation of F�α for all k. Initially, I0 := [0, t], thus π[0,t]�∅= π is obviously
a refutation of F�∅= F . In each bisection step, Prover starts querying the variables present
in the configuration Mmk

, with mk = bak+bk

2 c, that have not been assigned yet, in any order.
If Delayer answers ∗ to some variable, Prover will assign 0 to it (actually, Prover could assign
any value). In this way α is extended to all the variables in the configuration Mmk

. Prover
then proceeds according to the following cases:
(i) If after the assignment to the queried variables, a clause in the configuration Mmk

is falsified, Prover continues with the upper half of the proof (i. e., he sets Ik+1 =
[ak+1, bk+1] := [ak,mk]) and proceeds with the next bisection step.

(ii) If after the assignment to the queried variables, all the clauses in Mmk
are satisfied,

Prover continues with the lower half of the proof (i. e., he sets Ik+1 = [ak+1, bk+1] :=
[mk, bk]) and proceeds with the next bisection step.

Prover queries at most VS(π) variables in each bisection step. It remains to show that the
invariant is indeed kept and that Prover wins the game by following this strategy.

First, we show inductively, that the invariant is kept. In case (i) this is true by following the
Resolution Restriction Lemma (see e.g. [25]) because Mbk+1�α= Mmk

�α contains the empty
clause and thus (Mak+1�α, . . . ,Mmk

�α) is a configurational refutation of F�α. In case (ii) we
have Mmk

�α= ∅ and Mbk
�α3 � by the induction hypothesis, yet π was a refutation for F .

Hence, for i ∈ (ak, bk) the axioms contained in the memory configurations Mi�α must be
downloaded from F�α. Thus, (Mak+1�α, . . . ,Mbk+1�α) is a legal refutation of F�α.

Prover has to win the game since for every k, the formula F �α has a configurational
refutation, namely πIk

�α, of length upper bounded by 1
2 L(πIk−1). The strategy proceeds

until F�α has a configurational refutation of length 1. Then, � ∈ F�α. In other words, the
constructed assignment α falsifies a clause in F and Prover wins the game.

Summarising, Prover queries at most VS(π) variables in each bisection step and since
there are at most dlog L(π)e configurations that get queried, Prover in total queries at most
VS(π) · log L(π) variables. Theorem 15 yields the desired inequality. J

We prove now that Theorem 28 also works for clause space. For this, we show that the
tree-like clause space of a formula F is always upper bounded by the reversible pebble game
played on a refutation of F . Note, that the minimum in the theorem is taken over all possible
refutations of F , not only over the tree-like ones. The inequality in Theorem 29 works only
in one direction. For example the formula with a clause with n negated variables and n unit
clauses containing one of the variables each, has constant tree-resolution space while the
reversible pebbling price for any refutation graph is at least logn.

I Theorem 29. For any unsatisfiable formula F with n variables it holds

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2, and

min
π:F `�

Rev(Gπ) ≤ Tree-CS(F `�)
(
dlogne+ 1

)
.

Proof. Let F be an unsatisfiable formula with n variables.
For proving the first inequality, let π be a resolution refutation of F with a refutation-

graph Gπ and Rev(Gπ) =: k. We will use Theorem 15, as well as Theorem 18 applied to Gπ:
It suffices to give a strategy for Prover in the Prover-Delayer game played on F under which
he has to pay at most k points. Prover basically simulates the strategy of Pebbler in the
Raz–McKenzie game played on Gπ, which coincides with reversible pebbling. By doing so, a
partial assignment α falsifying an initial clause of F will be produced. The game is divided
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in stages. Initially the partial assignment is the empty assignment. In each stage, if Pebbler
chooses a clause C ∈ V (Gπ), Prover queries the variables in C not yet assigned by α one by
one, extending the partial assignment α with the answers of Delayer, until either:
(i) the clause C is satisfied or falsified by α, or
(ii) a variable x in C is given value ∗ by Delayer.
In case (i), Prover moves to the next stage, simulating the strategy of Pebbler assuming
Colourer has given clause C the colour C�α. In case (ii), Prover extends α by assigning x with
the value that satisfies C and moves to the next stage, simulating the strategy of Pebbler,
assuming Colourer has given clause C the colour 1. The game is played until α falsifies a
clause in F . After at most k stages the Raz–McKenzie games finishes and therefore Delayer
can score at most k points. It is only left to show that at the end of the game a clause in F
is falsified by α. When the Raz–McKenzie game finishes, either a source in Gπ is assigned
colour 0 by Colourer, or a vertex with all its direct predecessors being coloured 1 is coloured 0.
Since α defines Colourer’s answers, the first situation corresponds to α falsifying a clause
in F . The second situation is not possible since for any partial assignment α it cannot be
that α satisfies two parent clauses in a resolution proof, while falsifying their resolvent.

For the proof of the second inequality, let k := Tree-CS(F `�). By Proposition 6, we
know that there is a refutation π of F whose underlying graph Gπ is a tree with black
pebbling price k. We can suppose that the refutation is regular, that is, in every path from
the empty clause to a clause in F in the refutation tree, each variable is resolved at most
once [15, Theorem 5.1]. This implies that the depth of the tree is at most n. For any node v
in the refutation tree let Tv be the subtree of Gπ rooted at v. For the sake of convenience,
we refer to Black(Tv) as the pebbling number of v.

We show by induction on κ that for any vertex v in Gπ, if Black(Tv) = κ then there is
a strategy for Pebbler in the Raz–McKenzie game on Tv with most κ(dlogne+ 1) rounds.
For the base case κ = 1, the vertex v must be a leaf node and the game needs only
one round. For κ > 1, the game starts, according to the rules, by Pebbler querying the
root v of the subtree and Colourer answering 0. We consider two cases, depending on
whether for both predecessors v1 and v2 of v in Gπ, Black(Tv1) = Black(Tv2) = κ − 1
or not. In the former case, Pebbler queries one of them, say v1. If the answer is 0, he
continues on Tv1 and otherwise continues on Tv2 . By induction, the number of rounds in
this case is at most 2 + (κ − 1)(dlogne + 1) ≤ κ(dlogne + 1). In case, it is not true, that
Black(Tv1) = Black(Tv2) = κ− 1, since Black(Tv) = κ, and Gπ is a tree, one of the trees Tv1

or Tv2 leading to v must have pebbling number κ and the other one must have pebbling
number smaller than κ. Pebbler considers the path of nodes starting at v and going towards
the leaves, having all the nodes in the path pebbling number κ, until a node u is reached, for
which both predecessors have pebbling number κ− 1. Such a node u must exist because Gπ
is a tree. Let u1 be one of the predecessors of u. The length of the path from v to u1 is at
most n since the refutation is regular. Pebbler queries the vertices in the path between v
and u1 with binary search, until a vertex t is found that is coloured with colour 0 by Colourer,
while its predecessor in the path v  u1 has been coloured 1. At this point, Pebbler continues
playing the game on the tree rooted at the uncoloured predecessor of t. It is also possible that
all the queried nodes in the path from v to u1 (including u1) are coloured 0 by Colourer. In
this case Pebbler continues with Tu1 . In all situations at most 1 + dlogne vertices have been
queried and the game has been reduced to a subgraph with smaller pebbling number. J

I Corollary 30. For any unsatisfiable formula F it holds

Tree-CS(F `�) ≤ CS∗(F `�) + 2 = min
π:F `�

(
CS(π) · log L(π)

)
+ 2.

STACS 2020
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Proof. By Theorem 23, minπ:F `� Rev(Gπ) + 2 ≤ minP
(
space(P) · log time(P)

)
+ 2, where

the minimum is taken over all black pebblings P of Gπ. The result follows with (a slight
adaption of) Proposition 6 since every black pebbling P of Gπ defines a configurational
refutation of F with clause space equal to space(P) and length time(P). J

5 Optimal Separations for Tseitin Formulas

In this section, we prove optimal separations between tree-like clause space and variable
space, as well as clause space in the context of Tseitin formulas. This complements the
relations between clause space and variable space of Tseitin formulas recently given in [17].

I Theorem 31. For any connected graph G with n vertices and odd marking χ we have

Tree-CS
(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· logn+ 2, and

Tree-CS
(
Ts(G,χ) `�

)
≤ VS

(
Ts(G,χ) `�

)
· logn+ 2.

Proof. The proof is based on the one for the lower bound for CS of Tseitin formulas from [27].
Let G = (V,E) be a connected graph with n vertices, χ an odd marking, and π = (M0, . . . ,Mt)
a refutation of Ts(G,χ) with CS(π) =: k. We use π to give a strategy for Prover in the
Prover-Delayer game for which he has to pay at most k logn points. We say that a partial
assignment α of some of the variables in Ts(G,χ) is non-splitting if after applying α to the
formula, the resulting graph still has a connected component with an odd marking (odd
component) of size at least

⌈ |V |
2
⌉
, and the rest are components with even markings. Consider

the last configuration Ms in π for which there is a partial assignment α fulfilling:
(i) α simultaneously satisfies all clauses in Ms, and
(ii) α is non-splitting.

This stage must exist since before the initial step the empty truth assignment is trivially
a non-splitting partial assignment satisfying the clauses in M0 = ∅. At the end, the last
configuration Mt in the refutation contains the empty clause which cannot be satisfied by
any assignment. Thus, stage s must exist in between.

The step from s to s+ 1 was no deletion step (otherwise this would be a contradiction
to the maximality of s). The only new clause in Ms+1 must be an axiom C of Ts(G,χ)
since any other clause that could be added to the list of clauses in memory at stage s+ 1
would be a resolvent of two clauses from stage s, but in this case any partial assignment
satisfying the clauses at stage s would also satisfy those at s+ 1. For some vertex v in G,
this axiom clause C introduced at stage s+ 1 belongs to the formula PARITYv,χ(v). Let α
be a partial assignment of minimal size satisfying the conditions at stage s. It is possible to
extend α to satisfy the clause C�α since v either belongs to an even component in (G�α, χ�α)
or to the large odd component in this graph and therefore C�α 6= �. Because of this, vertex
v must belong to the unique odd component since otherwise α could be extended in a
non-splitting way.

Let C�α= (`1, . . . , `m), m ≥ 1, where the `i’s are literals corresponding to the edges with
endpoint v in G�α. Observe that deleting any of these edges ei in C�α cuts the connected
component of v in two pieces because otherwise assigning any value to the corresponding
edge would not modify the size of the connected components in C�α and there would be
a non-splitting way to extend α to e satisfying C. Also, any component remaining after
assigning all the literals in C�α must have size at most

⌊ |V |
2
⌋
since otherwise there would be a

way to extend α satisfying C and producing an odd marking for the largest such component
(Fact 12), and this extension would be non-splitting.
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The strategy of Prover is to query the variables assigned in α thus paying at most k − 1
points and obtaining a partial assignment γ from Delayer. If at this point one of the
connected components of size at most

⌊ |V |
2
⌋
is odd then Prover moves to this component

and starts playing the game on it. Otherwise Prover queries the variables in C�γ one by
one. If for a variable ei Delayer answers with ∗, Prover just has to assign ei so that the
smallest of the two components that appear in G�γ after assigning ei is odd (not necessarily
satisfying C �γ). This is always possible because of Fact 12. If no ∗ is answered, Prover
queries the next variable until no variable in C�γ is left. Let γ′ be the assignment obtained
this way. Either γ′ falsifies C and the game ends, or it satisfies the clause and in this case all
the components (odd or even) remaining after applying γ′ have size at most

⌊ |V |
2
⌋
. In every

case, after applying γ′ Prover wins the game or there is an odd connected component of size
at most half as large as the initial graph. The original problem has been reduced to another
in a graph with at most n

2 many vertices. Also Prover has to pay at most k for obtaining γ′.
After repeating this process at most logn times, an initial clause is falsified.

The second part of the theorem is a little simpler and follows by considering a configura-
tional proof π of variable space k. Everything in the above proof works in the same way,
observing that the partial assignment α satisfying all clauses in memory at stage s, when
extended to all the variables in the new clause at stage s+1 needs to assign at most k variables
(all those included in the configuration) and is either splitting or falsifies the axiom. Observe
that this implies that in every configurational proof there is a point in which every assignment
to the variables in the configuration is spliting. J

Next, we show, that the upper bounds in Theorem 31 are tight by proving that there
is a family of Tseitin formulas that provide matching lower bounds. These are formulas
corresponding to grid graphs with constant width, which can be considered as the Tseitin
version of path graphs.

I Definition 32 (Grid graphs). For a natural number ` ≥ 1, the grid graphs G2×` are given
by the vertex set V (G2×`) := [2]× [`] and the edge set

E(G2×`) :=
{{

(i, j), (i′, j′)
}

: i, i′ ∈ [2], j, j′ ∈ [`], and |i− i′|+ |j − j′| = 1
}
.

I Theorem 33. For the family of Tseitin formulas
(
Ts(G2×`, χ`)

)∞
`=1 with 3`− 2 variables

it holds Tree-CS
(
Ts(G`, χ`) `�

)
= Θ(log `), and CS

(
Ts(G`, χ`) `�

)
= O(1), as well as

VS
(
Ts(G`, χ`) `�

)
= O(1).

Proof. To show the lower bound on tree-like clause space with Theorem 15, we give a
strategy for Delayer such that he scores Ω(log `) points playing on G2×`. In the following,
for a subgraph G′ of G2×`, we define Block(G′) := max

{
b ∈ N : there is a subgraph of G′

that is isomorphic to G2×b
}
. The strategy of Delayer is as follows:

(a) If an edge e in an even component is queried, Delayer should answer according to some
assignment satisfying this component.

(b) If an edge e in an odd component is queried, Delayer proceed as follows:
(i) If the deletion of e does not increase the number of connected components in G,

Delayer should answer ∗.
(ii) If the deletion of e cuts the graph and both endpoints of e are separated in different

connected components, Delayer should answer in a way, that from these two
components, the component G′ with largest Block(G′) receives the odd marking.

At the beginning of the Prover-Delayer game we have Block(G2×`) = `. After each assignment
of a variable in the game we have Block(G′) ≥ b 1

2 Block(G)c, where we let G denote the
underlying graph before the assignment and G′ the graph after the assignment: Notice, that

STACS 2020
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rule (b)(ii) guarantees that the component with the largest Block-value always receives an
odd marking. If Delayer plays according to this strategy, we must have Block(G) = 0 at the
beginning of some round. This means that the Block-value, starting the game with G2×`,
has to change at least Ω(log `) times before the game can end. It is easy to see, that if the
Block-value changes in a step, the number of connected components does not increase in this
step. According to rule (b) (i), Delayer has answered ∗ in this round and has scored a point.

For the second part, consider the variables (edges) ordered (from left to right) with{
(1, j), (2, j)

}
≺
{

(1, j), (1, j + 1)
}
≺
{

(2, j), (2, j + 1)
}
and edges with lower j defined to

be smaller (with respect to ≺) than those with higher j for 1 ≤ j ≤ `− 1, and consider a
resolution refutation completely resolving the variables in decreasing order (from right to
left). That is, the clauses containing variable

{
(1, `), (2, `)

}
will be first resolved with all

clauses containing this variable in negated form (in case it is possible to resolve), and so
on. Since the graph has degree at most 3, there is a small number of clauses containing this
variable. Also observe that after resolving the last three variables in the ordering in this way,
the set of derived clauses plus the initial clauses contain a subset of clauses encoding the
formula Ts(G2×(`−1), χ

′) for some odd marking χ′. The set of newly derived clauses in this
subset has constant size, and the number of clauses in all the resolution configurations until
this point is also constant. Continuing in this order with the complete resolution of all the
variables, we obtain a refutation of Ts(G2×`, χ) with constant clause and variable space. J

6 Conclusions and Open Problems

By introducing a new connection between tree-like resolution space and the reversible pebble
game, we have studied the relation between tree-like space and space measures for general
resolution, obtaining almost optimal separations between these measures. We conjecture
that these separations are optimal and that in fact, the log

(
time(π)

)
factors in the upper

bounds of Theorems 23 and 28 and Corollaries 24 and 30 can be improved to a logn factor
(n being the number of graph vertices or formula size, depending on the setting). We have
been able to prove this for the restricted case of the Tseitin contradictions.

We have seen that a source for obtaining space separations between tree-like and general
resolution are graph classes with a gap between their reversible and black pebbling prices
and we have provided a new class of such graphs. An interesting question is whether there
exists a graph class with such a separation for a space function larger than n1/2.
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