
Existential Length Universality
Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Wrocław, Poland
gawry@cs.uni.wroc.pl

Martin Lange
School of Electr. Eng. and Comp. Sc., University of Kassel, Kassel, Germany
martin.lange@uni-kassel.de

Narad Rampersad
Department of Math/Stats, University of Winnipeg, Winnipeg, Canada
narad.rampersad@gmail.com

Jeffrey Shallit
School of Computer Science, University of Waterloo, Waterloo, Canada
shallit@cs.uwaterloo.ca

Marek Szykuła
Institute of Computer Science, University of Wrocław, Wrocław, Poland
msz@cs.uni.wroc.pl

Abstract
We study the following natural variation on the classical universality problem: given a language
L(M) represented by M (e.g., a DFA/RE/NFA/PDA), does there exist an integer ` ≥ 0 such that
Σ` ⊆ L(M)? In the case of an NFA, we show that this problem is NEXPTIME-complete, and
the smallest such ` can be doubly exponential in the number of states. This particular case was
formulated as an open problem in 2009, and our solution uses a novel and involved construction. In
the case of a PDA, we show that it is recursively unsolvable, while the smallest such ` is not bounded
by any computable function of the number of states. In the case of a DFA, we show that the problem
is NP-complete, and e

√
n log n(1+o(1)) is an asymptotically tight upper bound for the smallest such

`, where n is the number of states. Finally, we prove that in all these cases, the problem becomes
computationally easier when the length ` is also given in binary in the input: it is polynomially
solvable for a DFA, PSPACE-complete for an NFA, and co-NEXPTIME-complete for a PDA.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;
Theory of computation → Problems, reductions and completeness

Keywords and phrases decision problem, deterministic automaton, nondeterministic automaton,
pushdown automaton, regular expression, regular language, universality

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.16

Related Version A full version of the paper is available at https://arxiv.org/abs/1702.03961.

Funding Narad Rampersad: Supported in part by a grant from NSERC.
Jeffrey Shallit: Supported in part by a grant from NSERC.
Marek Szykuła: Supported in part by the National Science Centre, Poland under project number
2017/25/B/ST6/01920.

1 Introduction

The classical universality problem is the question, for a given language L over an alphabet Σ,
whether L = Σ∗. Depending on how L is specified, the complexity of this problem varies.
For example, when L is given as the language accepted by a DFA M , the problem is solvable

© Paweł Gawrychowski, Martin Lange, Narad Rampersad, Jeffrey Shallit, and
Marek Szykuła;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gawry@cs.uni.wroc.pl
mailto:martin.lange@uni-kassel.de
mailto:narad.rampersad@gmail.com
mailto:shallit@cs.uwaterloo.ca
mailto:msz@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.STACS.2020.16
https://arxiv.org/abs/1702.03961
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Existential Length Universality

in linear time (reachability of a non-final state) and further is NL-complete [10]. When L is
given by an NFA or a regular expression, it is PSPACE-complete [1]. When L is specified by
a PDA (push-down automaton) or a context-free grammar, the problem is undecidable [9].

Studies on universality problems have a long tradition in computer science and still
attract much interest. For instance, the universality has been studied for visibly push-down
automata [2], where the question was shown to be decidable in this model (in contrast
to undecidability in the ordinary model); timed automata [3]; the language of all prefixes
(resp., suffixes, factors, subwords) of the given language [14]; and recently, for partially (and
restricted partially) ordered NFAs [11].

In this paper, we study a basic variation of the universality problem, where instead of
testing the full language, we ask whether there is a single length that is universal for the
language. We focus on the following two problems:

I Problem 1 (Existential length universality). Given a language L represented by a machine
M of some type (DFA/RE/NFA/PDA) over an alphabet Σ of a fixed size, does there exist
an integer ` ≥ 0 such that Σ` ⊆ L?

I Problem 2 (Specified-length universality). Given a language L by a machine M of some
type (DFA/RE/NFA/PDA) over an alphabet Σ of a fixed size and an integer ` (given in
binary), is Σ` ⊆ L?

Furthermore, if such an ` exists, we are interested in how large the smallest ` can be.

I Definition 3. The minimum universality length of a language L over an alphabet Σ is the
smallest integer ` ≥ 0 such that Σ` ⊆ L.

1.1 Motivation
From the mathematical point of view, Problems 1 and 2 are natural variations of universality
that surprisingly, to the best of our knowledge, have not been thoroughly investigated in
the literature. Both problems can be seen as an interesting generalization of the famous
Chinese remainder theorem to languages, in the sense that given periodicities with multiple
periods, we ask where all these periodicities coincide. Hence, languages stand as succinct
representations of integers. Moreover, both problems are motivated by potential applications
in verification listed below. Finally, the techniques developed to study them are interesting
on their own and are likely to find applications elsewhere. In particular, to solve the case of
an NFA, we develop a novel formalism that helps to build NFAs with particular properties.
Indeed, similar constructions to some of the first ingredients in our proof (variables and the
Incrementation Gadget), were recently independently discovered to solve the problem of a
maximal chain length of the Green relation components of the transformation semigroup of
a given DFA [5].

Games with imperfect information
We consider games with imperfect information on a labeled graph [4], which are used to
model, e.g., reactive systems. In such a game there are two players, P modeling the program
and E modeling the environment. The game starts at the initial vertex. In one round, P
chooses a label (action) and E chooses an edge (effect) from the current vertex with this
label. If P is deterministic and cannot see the choices of E, then a strategy for P is just a
word over the alphabet of labels. The game can end under various criteria, and the sequence
of the resulting labels determines which player wins.



P. Gawrychowski, M. Lange, N. Rampersad, J. Shallit, and M. Szykuła 16:3

Under one of the simplest ending criteria, the game lasts for a given number of steps
known to P. This models the situation when we are interested in the status of the system
after some known amount of time. For example, this occurs if a system must work effectively
for a specified duration, but in the end, we must be able to shut it down, which requires
that there are no incomplete processes still running inside. Another example could be a
distributed system, where processes have limited possibilities to communicate with the others
and are affected by the environment; in general, processes do not know if the system has
reached its global goal; hence, for a given strategy, we may need a guarantee of reaching the
goal after a known number of rounds, instead of monitoring termination externally.

The main question for such a game is: does P have a winning strategy? This is equivalent
to asking whether all strategies of P are losing. In other words, if L is the language of
all losing strategies of P, then we ask whether all words of the given length are in L. For
instance, if the winning criterion for P is just being in one of the specified vertices, then L is
directly defined by the NFA obtained from the graph, where we mark all the non-specified
vertices to be final. We can also ask whether the system is unsafe, i.e., we cannot find a
strategy for some number of steps, which corresponds to existential length universality.

One can mention the relationship with the “firing squad synchronization problem” [12, 13].
In this classical problem, we are given a cellular automaton of n cells, with one active cell,
and the goal is to reach a state in which all cells are simultaneously active. Thinking of an
evolving device where the state at time i is represented by the strings of length i in L, our
problem concerns how many time steps are needed until “all cells are active”, that is, until
all strings of length i are accepted.

Formal specifications

Our problems are strongly related to a few other questions that can be applied in formal
verification, where program correctness is often expressed through inclusion problems [17].
The universality problem is closely related to the inclusion problem: clearly, universality is a
special case of inclusion if the underlying language model can express Σ∗; and inclusion can
be reduced to universality when this model is closed under unions and includes some (simple)
regular languages (possibly folklore, cf. [6]). These reductions carry through to the given and
the existential length inclusion problems. We can consider the constrained inclusion problems
corresponding to the universality problems mentioned above; for instance, existential length
inclusion asks for two languages K and L whether K ∩ Σ` ⊆ L for some `. Specified-length
inclusion contains the essence of a specialized program verification problem: do all program
runs of a particular duration adhere to a given specification? Likewise, existential length
universality can be used to check whether there is some number ` such that running the
given program for exactly ` steps ensures that the specification is met.

Another question of potential interest in program verification is the bounded-length
universality problem, i.e., whether Σ≤` ⊆ L for a given `, resp. its inclusion variant. This
could then be used to check whether an implementation meets its specification up to some
point, in order to know, for example, whether the safety of a program can be guaranteed
for as long as it is terminated externally at some point. The complexity of bounded-length
universality is the same as that of specified-length universality, which is easy to show by
modifying our proofs.

STACS 2020



16:4 Existential Length Universality

Table 1 Computational complexity of universality problems.

DFA RE NFA PDA
Universality NL-c PSPACE-c PSPACE-c Undecidable
Existential length universality NP-c PSPACE-hard, NEXPTIME-c Undecidable(Problem 1) in NEXPTIME
Specified-length universality PTIME PSPACE-c PSPACE-c co-NEXPTIME-c(Problem 2)
Minimal universality length subexponential open doubly exponential uncountable

1.2 Contribution
We have studied the problems in four cases, when L is represented by a DFA, NFA, regular
expression, or PDA.

In the case where M is a DFA, existential length universality is NP-complete, and there
exist n-state DFAs for which the minimal universality length is of the form e

√
n log n(1+o(1)),

which is the best possible even when the input alphabet is binary. Specified-length universality
is solvable in polynomial time.

The case of existential length universality where M is an NFA was formulated as an open
question in May 2009, as mentioned in [15], and our solution requires the most involved
construction of all problems studied in this paper. We show that this problem is NEXPTIME-
complete.

In the case when M is a regular expression, existential length universality is PSPACE-
hard and in NEXPTIME, and there are examples where the minimal universality length
is exponential. The question about the exact complexity class remains open in this case.
Specified-length universality for REs and also for NFAs is PSPACE-complete, which follows
from modifying the PSPACE-hardness proof of the usual universality [1, Section 10.6].

Finally, in the case where M is a PDA, existential length universality is recursively
unsolvable, while the minimal universality length grows faster than any computable function,
which follows from the undecidability of the universality of a PDA. On the other hand,
specified-length universality is co-NEXPTIME-complete, which we show by another original
construction1, though less involved than that for NFAs, reducing from an exponential variant
of the tiling problem [16].

While for proving hardness we use larger alphabets, a standard binarization applies to
our problems, so all the complexity results remain valid when the alphabet is binary.

Our results are summarized in Table 1. In the conference version, we present only the
most involved case of the NEXPTIME-completeness of the existential length universality of
an NFA. Due to the length of the proof, the main ideas are exposed, with some technical
details omitted. These, and all the other proofs, are available in the full version of the paper.

2 The Case Where M is an NFA

The classical universality problem for regular expressions and so for NFAs is known to be
PSPACE-complete [1, Section 10.6]. Also, if the NFA does not accept Σ∗, then the length
of the shortest non-accepted words is at most exponential. Specified-length universality
for NFAs is also PSPACE-complete, which can be shown by a modification of the usual
proof for universality. However, we show that existential length universality is harder: it

1 We thank an anonymous referee for pointing out that coNEXPTIME-hardness of given-length universality
for PDA could also be obtained through a modification of the proof of [18, Theorem 8.1].



P. Gawrychowski, M. Lange, N. Rampersad, J. Shallit, and M. Szykuła 16:5

is NEXPTIME-complete, and there are examples where the minimal universality length is
approximately doubly exponential in the number of states of the NFA.

We begin with upper bounds, which follow by determinization and the results for DFAs.

I Proposition 4. Let M be an NFA with n states. If there exists an ` such that M accepts
all strings of length `, then the smallest such ` is ≤ e2n/2

√
n log 2(1+o(1)).

I Proposition 5. Existential length universality (Problem 1) for NFAs is in NEXPTIME.

The difficult part is to show that existential length universality for NFAs is NEXPTIME-
hard. Note that the usual method which is applied to show PSPACE-hardness of the classical
universality problem does not seem enough in this case and, after a suitable modification,
results only in a proof of PSPACE-hardness. The reason for this difficulty is that, to show
NEXPTIME-hardness, we need to be able to construct NFAs whose minimum universality
length is larger than exponential, which is a non-trivial task in itself. The NFA constructed
by the reduction must have a polynomial size, whereas to solve an NEXPTIME-complete
problem we may need exponential memory. If the length of a word is superexponential, then
some subsets of the states of the NFA must be repeated multiple times.

To overcome this major technical hurdle we construct an NFA with minimum universality
length being roughly doubly exponential by using an indirect approach. We design the
automaton such that there are many exponentially long cycles on subsets of the states and it
accepts all words only for the lengths that are solutions given by the Chinese Remainder
Theorem for these cycle lengths. By exhibiting a family of NFAs with large minimal
universality lengths we show that our construction is essentially tight. The techniques are
rather involved, and hence we first develop an intermediate formalism that will be used for
both tasks. Having developed our formalism, we are able to solve the first task. To solve the
second task, we proceed in two steps. First, we reduce an auxiliary logic decision problem
concerning the divisibility of integers to existential length universality through our formalism.
Second, we reduce a canonical NEXPTIME-complete problem to this divisibility problem.

2.1 A Programming Language
We define a simple programming language that will be used to construct NFAs with particular
properties in a convenient way. Our language is nondeterministic, i.e., the programs can
admit many possible computations of the same length. In contrast to the usual programming
languages, we are interested only in this set of admitted computations by the program.

A program will be translated in polynomial time directly to an NFA, or, more precisely, to
an extended structure called a gadget, which is defined below. A computation of the program
will correspond to a word for the constructed NFA. If the computation is not admitted, the
word will be always accepted. Otherwise, usually, the word will not be accepted, with some
exceptions when we additionally make some states final in the NFA.

2.1.1 Gadget Definition
Let m ≥ 1 be a fixed integer. A variable V is a set of states {v1, . . . , vm, v̄1, . . . , v̄m}. These
states are called variable states, and m is the width of the variable. Besides variable states,
in our NFAs there will be also control flow states, and the unique special final state qacc,
which will be fixed by all transitions.

A gadget G is a 7-tuple (PG,VG,ΣG, δG, sG, tG, FG). When specifying the elements of
such a tuple, we usually omit the superscript if it is clear from the context. P is a set of
control flow states, V is a set of (disjoint) variables on which the gadget operates, s, t ∈ P

STACS 2020



16:6 Existential Length Universality

are distinguished start and target control flow states, respectively, and F ⊆ P is a set of
final states. The set of states of G is Q = {qacc} ∪ P ∪

⋃
V ∈V V . Then δ : Q×Σ→ 2Q is the

transition function, which is extended to a function 2Q ×Σ∗ → 2Q as usual. We always have
δ(qacc, a) = {qacc} for every a ∈ Σ.

The NFA of G is (Q,Σ, δ, s, F ). A configuration is a subset C ⊆ Q. Given a configuration
C, we say a state is active if it belongs to C. We say a configuration C is proper if it does
not contain qacc. Given a proper configuration C and a word w, we say that w is a proper
computation from C if the obtained configuration after reading w is also proper, i.e., δ(C,w)
is proper. Therefore, from a non-proper configuration we cannot obtain a proper one after
reading any word since qacc is always fixed, and so every non-proper computation from {s}
is an accepted word by the NFA.

We say that a variable V is valid in a configuration C ⊆ Q if for all 1 ≤ i ≤ m, vi ∈ C if
and only if v̄i /∈ C. In other words, the states v̄1, . . . , v̄m are complementary to the states
v1, . . . , vm. A valid variable stores an integer from {0, . . . , 2m − 1} encoded in binary; the
states v1 and vm represent the least and the most significant bit, respectively. Formally, if V
is valid in a configuration C, then its value V (C) is defined as V (C) =

∑
1≤i≤m

vi∈V ∩C
2i−1.

We say that a configuration C is initial for a gadget G if it is proper, contains the start
state s but no other control flow states, and the gadget’s variables are valid in C (if not
otherwise stated, which is the case for some gadgets). A final configuration is a proper
configuration that contains the target state t and no other control flow states. A complete
computation is a proper computation from an initial configuration to a final configuration.
Every gadget will possess some properties about its variables and the length of complete
computations according to its semantics. These properties are of the form that, depending
on an initial configuration C, there exists or not a complete computation of some length
from C to a final configuration C ′, where C ′ also satisfies some properties. Usually, proper
computations from an initial configuration will have bounded length (but not always, as
we will also create cycles). Also usually, proper configurations will have exactly one active
control flow state (with the exception of the Parallel Gadget, introduced later). If a variable
is not required to be valid in C, then these properties will not depend on its active states
in C.

We start from defining basic gadgets, which are elementary building blocks, and then we
will define compound gadgets, which are defined using the other gadgets inside.

2.1.2 Basic Gadgets
Selection Gadget. This gadget is denoted by Select(V ), where V is a variable. It allows
a nondeterministic selection of an arbitrary value for V . An initial configuration for this
gadget does not require that V is valid. For every integer c ∈ {0, . . . , 2m − 1} and for every
initial configuration C, there exists a complete computation from C to a final configuration
C ′ such that V (C ′) = c.

The gadget is illustrated in Fig. 1. It consists of control flow states P = {s =
p0, p1, . . . , pm−1, pm = t}, one variable V , and letters Σ = {α0, α1}. The letters α0 and
α1 allow moving the active control flow state over the states p0, p1, . . . , pm and, at each
transition, choosing either v1 or v̄1 to be active. Also, each vi and v̄i are shifted to vi+1 and
v̄i+1, respectively, and both vm and v̄m are mapped to no state (∅), which ensures that the
initial content of V is neglected. Note that a word w = αb1 . . . αbm

, for bi ∈ {0, 1}, sets the
value of the variable to

∑
1≤i≤m 2i−1bi.

The semantic properties are summarized in the following



P. Gawrychowski, M. Lange, N. Rampersad, J. Shallit, and M. Szykuła 16:7

v1

v2 . . . vm ∅

v̄1

v̄2 . . . v̄m ∅

s=p0 p1 p2 . . . pm=t qacc

α0, α1

α0, α1 α0, α1 α0, α1 α0, α1

α0
α0

α0

α0

α1

α1

α1

α1

α0, α1

α0, α1
α0, α1 α0, α1 α0, α1

α0, α1

α0, α1 α0, α1 α0, α1

Figure 1 Selection Gadget.

I Lemma 6. Let C be an initial configuration for the Selection Gadget Select(V ). For
every value c ∈ {0, . . . , 2m − 1}, there exists a complete computation in Σm from C to a
proper configuration C ′ such that V (C ′) = c. Every complete computation has length m, and
every longer computation is not proper.

Equality Gadget. This gadget is denoted by U = V , where U and V are two distinct
variables. It checks if the values of valid variables U and V are equal in the initial configuration.
If so, the gadget admits a complete computation, which is of length m; otherwise, every word
of length at least m is a non-proper computation.

u1 . . . um−1 um

ū1
. . . ūm−1 ūm

v1. . .vm−1vm

v̄1. . .v̄m−1v̄m

p1 p2 . . . pm=ts=p0

qacc

α0, α1

α0, α1

α0, α1 α0, α1 α0

α1

α0, α1

α0, α1 α0, α1 α1

α0

α0, α1

α0, α1α0, α1α0
α1

α0, α1

α0, α1α0, α1α1

α0

α0, α1 α0, α1 α0, α1 α0, α1

α0, α1

Figure 2 Equality Gadget.

The gadget is illustrated in Fig. 2. It consists of control flow states P = {s =
p0, p1, . . . , pm = t}, two variables U and V , and letters Σ = {α0, α1}. The letters α0
and α1 allow moving the active control flow state over the states s = p0, p1, . . . , pm = t and,
at each transition, checking if the corresponding positions of U and V agree.

Inequality Gadget. This gadget is denoted by U 6= V , where U and V are two distinct
variables. It checks if the values of the valid variables U and V are different. The construction
is very similar to the Equality Gadget and its complete computations have length m+ 1.

Incrementation Gadget. This gadget is denoted by V++, where V is a variable. It increases
the value of the valid variable V by 1. If the value of V is the largest possible (2m − 1), then
the gadget does not allow to obtain a proper configuration by any word of length m + 1.
Variable V must be valid in an initial configuration. The construction is similar to Equality
and Inequality Gadgets and enforces a written addition of one to the value of V interpreted
in binary. All complete computations have length m+ 1.

STACS 2020



16:8 Existential Length Universality

Assignment Gadget. This gadget is denoted either by U ← c or by U ← V , where
c ∈ {0, . . . , 2m − 1} and U and V are two distinct variables. It assigns to U either the
fixed constant c or the value of the other variable V . Variable V must be valid in an initial
configuration, but U does not have to be. It consists of control flow states P = {s, t}, a
variable U or two variables U, V , and the unary alphabet Σ = {α}. The transitions of α map
s to t, and additionally map either s to the states of U encoding value c or the states of V
to the corresponding states of U .

In fact, the case U ← V could be alternatively implemented by a Selection Gadget
followed by an Equality Gadget, although it will add more states and letters.

Waiting Gadget. This gadget is denoted by WaitD, where D is a fixed positive integer.
This is a very simple gadget which just does nothing for D number of letters. There is exactly
one complete computation, which has length D.

2.1.3 Joining Gadgets Together
Compound gadgets are defined by other gadgets, which are joined together in the way
specified by a program. The method of definition is the only difference, as compound gadgets
are objects of the same type as basic gadgets. They will be also used incrementally to define
further compound gadgets.

The general scheme for creating a compound gadget by joining gadgets G1, . . . , Gk

operating on variables from the sets V1, . . . ,Vk (all of width m), respectively, is as follows:
1. There are fresh (unique) control flow states of the gadgets, and there are the variables

from V1 ∪ · · · ∪ Vk. Thus when gadgets operate on the same variable, its states are shared.
2. The alphabet contains fresh (unique) copies of the letters of the gadgets.
3. Final states in the gadgets are also final in the compound gadget.
4. The transitions are defined as in the gadgets, whereas the transitions of a letter from a

gadget Gi map every control flow state that does not belong to Gi to {qacc} and fix the
states of the variables on which Gi does not operate.

5. Particular definitions of compound gadgets may additionally identify some of the start
and target states of the gadgets and may add more (fresh) control flow states and letters.

In our constructions, the control flow states with their transitions will form a directed
graph, where the out-degree at every state of every letter is one (except the Parallel Gadget,
defined later, which is an exception from the above scheme) – it either maps a control flow
state to another one or to qacc. States of variables will never be mapped to control flow
states. This will ensure that during every proper computation from an initial configuration,
exactly one control flow state is active. The active control flow state will determine which
letters can be used by a proper computation, i.e., the letters from the gadget owning this
state (but in which it is not the target state).

Moreover, we will ensure that whenever a proper computation activates the start state of
an internal gadget Gi, the current configuration restricted to the states of Gi is an initial
configuration for Gi – this boils down to assuring that the variables required to be valid
have been already initialized (e.g., by a Selection Gadget or an Assignment Gadget). Hence,
complete computations for the compound gadget will contain complete computations for
the internal gadgets, and the semantic properties of the compound gadget are defined in a
natural way from the properties of the internal gadgets.

Now we define basic ways to join gadgets together. Let G1, . . . , Gk be some gadgets with
start states sG1 , . . . , sGk and target states tG1 , . . . , tGk , respectively.



P. Gawrychowski, M. Lange, N. Rampersad, J. Shallit, and M. Szykuła 16:9

Sequence Gadget. For each i = 1, . . . , k− 1, we identify the target state tGi with the start
state sGi+1 . Then sG1 and tGk are respectively the start and target states of the Sequence
Gadget. We represent this construction by writing I1 . . . Ik. Complete computations for
this gadget are concatenations of complete computations for the internal gadgets.

u1 u2 u3

∅

ū1 ū2 ū3

∅

v1 v2 v3

∅

v̄1 v̄2 v̄3

∅

s=p0 p1 p2 p3=q0 q1 q2 q3=r0 r1 r2 r3=t

qacc

Σ

α0, α1 α0, α1 α0, α1 β1, β2 β1, β2 β1, β2 γ1, γ2 γ1, γ2 γ1, γ2

α0 α0 α0

α1

α1

α1

β1 β1 β1

β2

β2

β2

β1, β2 β1, β2 β1, β2

α0, α1 α0, α1

α0, α1

β1, β2 β1, β2 β1, β2

α0, α1 α0, α1

α0, α1

γ1γ1, γ2

γ1, γ2

γ2γ1, γ2

γ1, γ2

α0, α1 α0, α1 α0, α1

β1, β2 β1, β2

β1, β2

α0, α1 α0, α1 α0, α1

β1, β2 β1, β2

β1, β2

γ1γ1, γ2

γ1, γ2

γ2γ1, γ2

γ1, γ2

Figure 3 The complete NFA of the Sequence Gadget select(U) select(V ) U = V . All
omitted transitions go to qacc. The states pi, qi, ri and letters αi, βi, γi belong to the three gadgets,
respectively, that is: pi = p

select(U)
i , αi = α

select(U)
i , qi = p

select(V )
i , βi = α

select(V )
i , ri = pU=V

i ,
γi = αU=V

i .

For example, for k = 3 and m = 3, the Sequence Gadget Select(U) Select(V ) U = V is
shown in Fig. 3. It has the property that every complete computation has length 3m = 9 and
is a concatenation of complete computations for the three gadgets; a final configuration C ′ is
such that U(C ′) = V (C ′). There exists a complete computation for every possible value of
both variables, and longer computations are not proper.

Choose Gadget. This gadget allows selecting one of the given gadgets nondeterministically.
We add a fresh start state s and k unique letters α1, . . . , αk. The action of a letter αi maps
s to {sGi}, maps control flow states from the gadgets to {qacc}, and fixes variables states.
All target states tGi are identified into the target state t of the Choose Gadget. We represent
this construction by: choose: I1 or: . . . or: Ik end choose.

Note that for this gadget there may exist complete computations of different lengths,
even for the same initial configuration. Nevertheless, there exists an upper bound on the
length such that every computation longer than this bound is not proper (which is 1 plus
the maximum from the bounds for the internal gadgets).

Using the above constructions, we can easily develop If-Else Gadget and While Gadget
(which use Equality or Inequality Gadgets for checking conditions). A special version of the
latter is While-True Gadget, which creates an unconditional loop by identifying the start
and target states of the internal gadget.

Then we can define Addition Gadget and Multiplication Gadget for performing the
corresponding arithmetic operations. We also need Primality Gadget testing if the value
of a variable is prime (there is also a negated version), and a Prime Number Gadget

STACS 2020



16:10 Existential Length Universality

computing the i’th prime number. For each of the defined gadgets so far, except for While
Gadget in general, there always exists an upper bound on the length of every complete
computation, and every longer computation is not proper. This bound is at most exponential
in the size of the gadget, because proper computations cannot repeat the same configuration.

2.2 An NFA With a Large Minimal Universality Length
Our first application is to show a lower bound on the maximum minimal universality length.
Alg. 1 gives the program encoding our NFA. The numbers in the brackets [ ] at the right
denote the length of complete computations for the gadget (or for a part of it) in the current
line. In line 7, the annotation indicates that the start control flow state of this Waiting
Gadget is final, so the NFA of the program has two final states in total.

Algorithm 1 Large minimal universality length.

Variables: X,Y
1: Select(Y ) . [m]
2: X ← 0 . [1]
3: while true do
4: choose: . [1]
5: X = Y . [m]
6: X ← 0 . [1]
7: [start final state] Waitm+1 . [m+ 1]
8: or:
9: X 6= Y . [m+ 1]

10: X++ . [m+ 1]
11: end choose
12: end while

The idea of the program is as follows: In the beginning, we select an arbitrary value
for Y , and then in an infinite loop, we increment X modulo Y + 1. The Choose Gadget in
lines 4–11 is, in fact, an If-Else Gadget with condition X = Y , unrolled for easier calculation
of computation lengths. Every iteration (complete computation of the Choose Gadget) of the
loop takes the same number of letters (2m+ 3), hence given a computation length we know
that we must perform d− 1 complete iterations and end in the d’th iteration, for some d. A
proper computation of this length can avoid the final state in line 7 only in the iterations
where the value of X does not equal the value of Y . We can ensure this for every length
smaller than lcm(1, 2, . . . , 2m) · (2m+ 3), as we can always select Y such that Y + 1 does not
divide d+ 1, but it is not possible for length lcm(1, 2, . . . , 2m) · (2m+ 3). After a detailed
technical analysis and a calculation we get:

I Theorem 7. For a 15-letter alphabet, the minimal universality length can be as large as

e2n/11(1+o(1)).

2.3 Controlling the Computation Length
As we noted, because of Choose Gadgets, complete computations may have different lengths.
For example, the Addition Gadget for an initial configuration C performs V (C) iterations
of its internal while loop. Moreover, two or more branches of a Choose Gadget may admit
complete computations of different lengths even for the same current configuration. This
is an obstacle that makes it difficult or impossible to further rely on the exact length |w|
of a proper computation, based on which we would like to decide if w must be accepted.
Therefore, if we want to still use our constructions, we need a possibility to ensure that all
complete computations have a fixed known length, and furthermore, that there are no proper
computations longer than that length.



P. Gawrychowski, M. Lange, N. Rampersad, J. Shallit, and M. Szykuła 16:11

Delaying Gadget. The first new ingredient is the Delaying Gadget DelayD, where D is a
fixed integer ≥ 0. It is a stronger version of Waiting Gadget. Using a While Gadget with
an Inequality Gadget and an Incrementation Gadget, it enforces proper computations that
incrementally count from 0 to D. Complete computations have length exactly T (D), which
is a function polynomial in D and exponential in the size of the gadget.

Parallel Gadget. The idea to control the computation length is to implement computation
in parallel. A given gadget for which there may exist complete computations of different
lengths is computed in parallel with a Delaying Gadget. When the computation is completed
for the given gadget, we still must wait in its target state until the computation for the
Delaying Gadget is also finished. In this way, as long as complete computations for the
Delaying Gadget are always longer than those for the given gadget (we can ensure this
by choosing D), complete computations for the joint construction will have fixed length
T (D) + 1. The joint computation is realized by replacing the alphabet with new letters for
every combined pair of actions in both gadgets.

2.4 Length Divisibility
In Subsection 2.2 we have constructed an NFA for which every word encoding a proper
computation must be accepted or can be not accepted depending on its length, namely, it is
always accepted if the length is divisible by lcm(1, 2, . . . , 2m) · O(m). We generalize this idea
so that we will be able to express more complex properties about the length of which all
words must be accepted.

We are going to test whether |w| satisfies some properties, in particular, whether a
function of |w| is divisible by some integers. This extends the idea from Alg. 1, which just
verifies whether |w|/r, for some constant r, is not divisible by some integer from 2 to 2m.
We define the divisibility program shown in Alg. 2. It is constructed for given numbers k
and m, and a verifying procedure, which is any gadget satisfying some technical properties:
Complete computations must be exponentially bounded by some L, longer computations
must not be proper, and all outgoing transitions from the target state must go to qacc; these
conditions will allow synchronizing the length of all complete computations to one length
T (D) + 1 > L with a Parallel Gadget. Furthermore, the values of variables Xi and X ′i may
not be modified and the existence of complete computations cannot depend on the setting of
any internal variables in the initial configuration; these conditions ensure that the gadget
can be activated repetitively in the same proper computation of the whole program. Finally,
there may not be final states.

There is an infinite while loop, which consists of two parts. In the first part, a nondeter-
ministic choice is made (line 4): either to run the verifying procedure or to wait. For the
verifying procedure (line 5) we use the Parallel Gadget; this ensures that this part finishes
after exactly T (D) + 1 > L letters. In the waiting case (line 7), we use the Delaying Gadget
with the same value of D as that in the Parallel Gadget. Then there is a single final state
(line 8). In the second part (lines 10–15), every variable X ′i counts the number of iterations
of the while loop modulo Xi. The for loop denotes that the body is instantiated for every i
(it is a Sequence Gadget). Every complete computation of the second part (lines 10–15) has
exactly (2m+ 3)k letters.

The idea is that, for certain lengths, every proper computation must end with a config-
uration with the non-final control flow states in line 5 (these are precisely the two target
states, of the verifying procedure and of the Delaying Gadget) or with the final state in line 8.
However, for the first option, it must succeed in the last iteration with the verifying procedure

STACS 2020



16:12 Existential Length Universality

Algorithm 2 Divisibility program.

Variables: X1, . . . , Xk, X
′
1, . . . , X

′
k

1: Select(X1), . . . ,Select(Xk). . [km]
2: X ′

1 ← 0, . . . , X ′
k ← 0 . [k]

3: while true do
4: choose: . [1]

5: execute
in parallel

{
DelayD

Verifying procedure . [T (D) + 1]

6: or:
7: DelayD . [T (D)]
8: [final state] Wait1 . [1]
9: end choose

10: for i = 1, . . . , k do
11: X ′

i++ . [m+ 1]
12: if X ′

i = Xi then . [m+ 1 if X ′
i = Xi, and m+ 2 otherwise]

13: X ′
i ← 0 . [1]

14: end if
15: end for
16: end while

when X ′i = `′ mod Xi. In other words, for some selection of the values for X1, . . . , Xk, there
must exist a complete computation of the verifying procedure from an initial configuration
with these values for Xi and X ′i = `′ mod Xi. Due to these auxiliary variables X ′i, the
verifying procedure can check the divisibility of ` by Xi.

I Lemma 8. Consider Alg. 2 for some k, m, and a verifying procedure. There exist integers
r1 ≥ 1 and r2 ≥ 1 such that the NFA of Alg. 2 accepts all words of a length ` if and only if
there exist an integer `′ ≥ 0 such that:

` = r1 · `′ + r2, and
for every initial configuration C of the verifying procedure where variables X1, . . . , Xk

are valid and X ′i(C) = `′ mod Xi(C) for all 1 ≤ i ≤ k, there does not exist a complete
computation for the verifying procedure.

2.4.1 Existential Divisibility Formulas
We develop a method for verifying the properties of the computation length in a flexible way.
We use a subset of first-order logic, where formulas are in a special form. For a given integer
m, we say that a formula ϕ is in existential divisibility form if its only free variable is `′ (not
necessarily occurring in ϕ) and it has the following form:

∃X1,...,Xk∈{0,...,2m−1} ψ(X1, . . . , Xk, `
′).

Formula ψ is any propositional logic formula that uses operators ∧, ∨, and whose simple
propositions are of the following possible forms:
1. (Xi = c), where c ∈ {0, . . . , 2m − 1},
2. (Xh = Xi +Xj),
3. (Xh = Xi ·Xj),
4. Xi is prime,
5. Xi is the Xj ’th prime number,
6. (Xi | `′) or (Xi - `′),
where Xi, Xj , Xh are some variables from {X1, . . . , Xk}.

Given a ϕ, we can ask for what integer values of `′ the formula is satisfied, and in
particular whether it is not a tautology over positive integers.



P. Gawrychowski, M. Lange, N. Rampersad, J. Shallit, and M. Szykuła 16:13

I Problem 9 (Non-satisfiability of existential divisibility formulas). Given an existential divisi-
bility formula ϕ, is there a positive integer `′ such that ϕ(`′) is not satisfied?

Verifying Gadget. For the formula ψ occurring in an existential divisibility formula ϕ, we
construct the gadget Verify(ψ) for verifying ψ. The gadget uses the external variables
X1, . . . , Xk, which are assumed to correspond with those in ψ, and the external auxiliary
variables X ′1, . . . , X ′k. There are also some fresh internal variables. The value of `′ is not
given, but instead, we assume that the value of every X ′i is equal to `′ mod Xi (and 0 when
Xi = 0), hence we will be able to check the divisibility of `′.

The construction uses our components designed so far. It is built using Sequence Gadgets
for conjunctions, Choose Gadgets for disjunctions, and other appropriate gadgets for (1)–(6).

The construction is such that, for an initial configuration C for Verify(ψ) with valid
variables X1, . . . , Xk and where X ′i(C) = `′ mod Xi(C), there exists a complete computation
if and only if ψ(X1, . . . , Xk, `

′) is satisfied. Note that the gadget meets the conditions of the
verifying procedure in Alg. 2.

2.4.2 Reduction from Problem 9
We already have all ingredients to reduce Problem 9 to Problem 1 (existential length
universality). Given an existential divisibility formula ϕ(`′), we construct the program from
Alg. 2 with the Verifying Gadget Verify(ψ) as the verifying procedure. Hence, the formula
is translated to an NFA in polynomial time. By Lemma 8, there exist integers r1, r2 ≥ 1
such that the NFA accepts all words of some length ` if and only if for some integer `′ ≥ 0,
` = r1 · `′ + r2 and ϕ(`′) is not satisfied. Hence, if ϕ is not satisfied for some `′, then the
NFA accepts all words of length `, and if the NFA accepts all words of a length `, then `
must be expressible as r1 · `′ + r2 and ϕ(`′) must be not satisfied.

I Remark 10. With a few more technical steps, which require, e.g., adding the negation
and controlling variable bounds, it is possible to represent the negated Problem 9 as the
satisfiability problem of the Presburger arithmetic with the prefix class ∃∀∗ and whose
formulas are of a specific form. The Presburger arithmetic with the prefix class ∃∀∗ is
NEXPTIME-hard [7], and a little more general one with the prefix class ∃∗∀∗ is ΣEXP

1 -
complete [8]. However, our problem is a strict subclass of the first case, because the first and
the only unbounded variable `′ can be checked only for divisibility, all the other variables
are exponentially bounded, and the propositions are of particular forms. Hence, we cannot
directly infer the hardness from that known result. In the last reduction step, we show that
NEXPTIME-hardness still holds for our restricted problem.

2.5 Reduction to the non-satisfiability of existential divisibility formulas
In the final step, we reduce from the canonical NEXPTIME-complete problem: whether a
nondeterministic Turing machine N with s states accepts the empty input after at most
2s steps. The idea is encoding by `′ a 2s × 2s table representing a proper computation of
the machine. Each symbol placed at each cell has assigned a unique prime number, and we
define that the symbol is present if and only if `′ modulo its prime number is non-zero. Then
we construct an existential divisibility formula ϕ(`′) that is satisfied for an `′ if and only if
the encoded computation by `′ is not correct. Thus, the formula is a disjunction of several
cases that express a possible error in the computation.

This reduces (by a polynomial reduction) an NEXPTIME-complete to Problem 9, which
was reduced to Problem 1 (existential length universality). Then we can further reduce to
the binary case by a standard binarization.

STACS 2020



16:14 Existential Length Universality

I Theorem 11. Existential length universality (Problem 1) for NFAs is NEXPTIME-hard,
even if the alphabet is binary.

References
1 A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer Algorithms. Addison-

Wesley Longman Publishing Co., Inc., 1st edition, 1974.
2 R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. of the 36th Annual ACM

Symposium on Theory of Computing, STOC 2004, pages 202–211. ACM, 2004.
3 N. Bertrand, P. Bouyer, T. Brihaye, and A. Stainer. Emptiness and universality problems in

timed automata with positive frequency. In Proceedings of the 38th International Conference
on Automata, Languages and Programming - Volume Part II, ICALP 2011, pages 246–257.
Springer, 2011.

4 L. Doyen and J.-F. Raskin. Games with imperfect information: theory and algorithms. In
Krzysztof R. Apt and Erich Grädel, editors, Lectures in Game Theory for Computer Scientists,
pages 185–212. Cambridge University Press, 2011.

5 L. Fleischer and M. Kufleitner. Green’s relations in finite transformation semigroups. In Pascal
Weil, editor, CSR, pages 112–125. Springer, 2017.

6 O. Friedmann and M. Lange. Ramsey-Based Analysis of Parity Automata. In TACAS, volume
7214 of LNCS, pages 64–78. Springer, 2012.

7 E. Grädel. Dominoes and the Complexity of Subclasses of Logical Theories. Annals of Pure
and Applied Logic, 43(1):1–30, 1989.

8 C. Haase. Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy. In CSL–LICS,
CSL–LICS, pages 47:1–47:10. ACM, 2014.

9 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, 1979.

10 N. D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Computer
and System Sciences, 11(1):68–85, 1975.

11 M. Krötzsch, T. Masopust, and M. Thomazo. On the complexity of universality for partially
ordered NFAs. In MFCS, pages 61:1–61:14, 2016.

12 J. Mazoyer. A six-state minimal time solution to the firing squad synchronization problem.
Theoretical Computer Science, 50(2):183–238, 1987.

13 F. R. Moore and G. G Langdon. A generalized firing squad problem. Information and Control,
12(3):212–220, 1968.

14 N. Rampersad, J. Shallit, and Z. Xu. The computational complexity of universality problems
for prefixes, suffixes, factors, and subwords of regular languages. Fundamenta Informaticae,
116(1–4):223–236, 2012.

15 J. Shallit. Open problems in automata theory: an idiosyncratic view, LMS Keynote Address
in Discrete Mathematics, BCTCS 2014, April 10 2014, Loughborough, England. https:
//cs.uwaterloo.ca/~shallit/Talks/bc4.pdf.

16 P. van Emde Boas. The convenience of tilings. In Complexity, Logic, and Recursion Theory,
pages 331–363. Marcel Dekker Inc., 1997.

17 M. Y. Vardi and P. Wolper. Reasoning About Infinite Computations. Information and
Computation, 115(1):1–37, 1994.

18 G. Zetzsche. The complexity of downward closure comparisons. https://arxiv.org/abs/
1605.03149, 2016.

https://cs.uwaterloo.ca/~shallit/Talks/bc4.pdf
https://cs.uwaterloo.ca/~shallit/Talks/bc4.pdf
https://arxiv.org/abs/1605.03149
https://arxiv.org/abs/1605.03149

	Introduction
	Motivation
	Contribution

	The Case Where M is an NFA
	A Programming Language
	Gadget Definition
	Basic Gadgets
	Joining Gadgets Together

	An NFA With a Large Minimal Universality Length
	Controlling the Computation Length
	Length Divisibility
	Existential Divisibility Formulas

	Reduction to the non-satisfiability of existential divisibility formulas


