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Abstract
A breakthrough result of Cygan et al. (FOCS 2011) showed that connectivity problems parameterized
by treewidth can be solved much faster than the previously best known time O∗(2O(tw log tw)). Using
their inspired Cut&Count technique, they obtained O∗(αtw) time algorithms for many such problems.
Moreover, they proved these running times to be optimal assuming the Strong Exponential-Time
Hypothesis. Unfortunately, like other dynamic programming algorithms on tree decompositions,
these algorithms also require exponential space, and this is widely believed to be unavoidable. In
contrast, for the slightly larger parameter called treedepth, there are already several examples of
matching the time bounds obtained for treewidth, but using only polynomial space. Nevertheless,
this has remained open for connectivity problems.

In the present work, we close this knowledge gap by applying the Cut&Count technique to
graphs of small treedepth. While the general idea is unchanged, we have to design novel procedures
for counting consistently cut solution candidates using only polynomial space. Concretely, we obtain
time O∗(3d) and polynomial space for Connected Vertex Cover, Feedback Vertex Set, and
Steiner Tree on graphs of treedepth d. Similarly, we obtain time O∗(4d) and polynomial space for
Connected Dominating Set and Connected Odd Cycle Transversal.
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1 Introduction

The goal of parameterized complexity is to reign in the combinatorial explosion present in
NP-hard problems with the help of a secondary parameter. This leads us to the search for
fixed-parameter tractable (FPT) algorithms, i.e., algorithms with running time O(f(k)nc)
where n is the input size, k is the secondary parameter, f is a computable function, and c is
a constant. There are several books giving a broad overview of parameterized complexity
[10, 12, 13, 28]. One of the success stories of parameterized complexity is a graph parameter
called treewidth. A large swath of graph problems admit FPT-algorithms when parameterized
by treewidth as witnessed by, amongst other things, Courcelle’s theorem [9]. However, the
function f resulting from Courcelle’s theorem is non-elementary [16]. Thus, a natural goal
is to find algorithms with a smaller, or ideally minimal, dependence on the treewidth in
the running time, i.e. algorithms where f is as small as possible. Problems only involving
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29:2 Solving Connectivity Problems Parameterized by Treedepth

local constraints usually permit a single-exponential dependence on the treewidth (tw) in
the running time, i.e. time O∗(αtw) for some small constant α,1 by means of dynamic
programming on tree decompositions [1, 31, 32, 33]. For many of these problems we also
know the optimal base α if we assume the strong exponential-time hypothesis (SETH) [22].
For a long time a single-exponential running time seemed to be out of reach for problems
involving global constraints, in particular for connectivity constraints. This changed when
Cygan et al. [11] introduced the Cut&Count technique, which allowed them to obtain single-
exponential-time algorithms for many graph problems involving connectivity constraints.
Again, many of the resulting running times can be shown to be optimal assuming SETH [11].

The issue with treewidth-based algorithms is that dynamic programming on tree decom-
positions seems to inherently require exponential space. In particular, Chen et al. [8] devised
a model for single-pass dynamic programming algorithms on tree decompositions and showed
that such algorithms require exponential space for Vertex Cover and 3-Coloring. Algo-
rithms requiring exponential time and exponential space usually run out of available space
before they hit their time limit [34]. Hence, it is desirable to reduce the space requirement
while maintaining the running time. As discussed, this seems implausible for treewidth. In-
stead, we consider a different, but related, parameter called treedepth. Treedepth is a slightly
larger parameter than treewidth and of great importance in the theory of sparse graphs
[25, 26, 27]. It has been studied under several names such as minimum elimination tree height
[7], ordered chromatic number [19], and vertex ranking [6]. Fürer and Yu [17] established an
explicit link between treedepth and tree decompositions, namely that treedepth is obtained
by minimizing the maximum number of forget nodes in a root-leaf-path over all nice tree
decompositions (see [20] for a definition). Many problems parameterized by treedepth allow
branching algorithms on elimination forests, also called treedepth decompositions, that match
the running time of the treewidth-algorithms, but replacing the dependence on treewidth by
treedepth, while only requiring polynomial space [8, 17, 29].

Our contribution. The Cut&Count technique reduces problems with connectivity con-
straints to counting problems of certain cuts, called consistent cuts. We show that for several
connectivity problems the associated problem implied by the Cut&Count technique can be
solved in time O∗(αd) and polynomial space, where α is a constant and d is the depth of a
given elimination forest. Furthermore, the base α matches the base in the running time of
the corresponding treewidth-algorithm. Concretely, given an elimination forest of depth d
for a graph G we prove the following results:

Connected Vertex Cover, Feedback Vertex Set, and Steiner Tree can be
solved in time O∗(3d) and polynomial space.
Connected Dominating Set and Connected Odd Cycle Transversal can be
solved in time O∗(4d) and polynomial space.

Related work. The Cut&Count technique leads to randomized algorithms as it relies on
the Isolation Lemma. At the cost of a worse base in the running time, Bodlaender et
al. [5] present a generic method, called the rank-based approach, to obtain deterministic
single-exponential-time algorithms for connectivity problems parameterized by treewidth; the
rank-based approach is also able to solve counting variants of several connectivity problems.
Fomin et al. [15] use matroid tools to, amongst other results, reobtain the deterministic
running times of the rank-based approach. In a follow-up paper, Fomin et al. [14] manage to

1 The O∗-notation hides polynomial factors in the input size.
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improve several of the deterministic running times using their matroid tools. Multiple papers
adapt the Cut&Count technique and rank-based approach to graph parameters different
from treewidth. Bergougnoux and Kanté [3] apply the rank-based approach to obtain single-
exponential-time algorithms for connectivity problems parameterized by cliquewidth. The
same authors [4] generalize, incurring a loss in the running time, this approach to a wider
range of parameters including rankwidth and mim-width. Pino et al. [30] use the Cut&Count
technique and rank-based approach to obtain fast deterministic and randomized algorithms
for connectivity problems parameterized by branchwidth.

Lokshtanov and Nederlof [23] present a framework using algebraic techniques, such
as Fourier, Möbius, and Zeta transforms, to reduce the space usage of certain dynamic
programming algorithms from exponential to polynomial. Fürer and Yu [17] adapt this
framework to the setting where the underlying set (or graph) is dynamic instead of static, in
particular for performing dynamic programming along the bags of a tree decomposition, and
obtain a O∗(2d)-time, where d is the depth of a given elimination forest, and polynomial-space
algorithm for counting perfect matchings. Using the same approach, Belbasi and Fürer [2]
design an algorithm counting the number of Hamiltonian cycles in time O∗((4k)d), where k is
the width and d the depth of a given tree decomposition, and polynomial space. Furthermore,
they also present an algorithm for the traveling salesman problem with the same running
time, but requiring pseudopolynomial space.

Organization. We describe the preliminary definitions and notations in Section 2. In
Section 3 we first discuss the Cut&Count setup and give a detailed exposition for Connected
Vertex Cover. Afterwards, we explain what general changes can occur for the other
problems and then discuss Feedback Vertex Set; the remaining problems can be found in
the full version. We conclude in Section 4. Proofs that are delegated to the full version [18]
are denoted by ?.

2 Preliminaries

2.1 Notation

Let G = (V,E) be an undirected graph. We denote the number of vertices by n and the
number of edges by m. For a vertex set X ⊆ V , we denote by G[X] the subgraph of G that is
induced by X. The open neighborhood of a vertex v is given by N(v) = {u ∈ V | {u, v} ∈ E},
whereas the closed neighborhood is given by N [v] = N(v)∪{v}. We extend these notations to
sets X ⊆ V by setting N [X] =

⋃
v∈X N [v] and N(X) = N [X] \X. Furthermore, we denote

by cc(G) the number of connected components of G.
A cut of a set X ⊆ V is a pair (XL, XR) with XL ∩XR = ∅ and XL ∪XR = X, we also

use the notation X = XL ·∪XR. We refer to XL and XR as the left and right side of the cut,
respectively. Note that either side may be empty, although usually the left side is nonempty.

For two integers a, b we write a ≡ b to indicate equality modulo 2, i.e., a is even if and
only if b is even. We use Iverson’s bracket notation: for a predicate p, we have that [p]
is 1 if p is true and 0 otherwise. For a function f we denote by f [v 7→ α] the function
(f \ {(v, f(v))}) ∪ {(v, α)}. By F2 we denote the field of two elements. For a field or ring F
we denote by F[Z1, Z2, . . . , Zt] the ring of polynomials in the indeterminates Z1, Z2, . . . , Zt

with coefficients in F. With O∗ we hide polynomial factors, i.e. O∗(f(n)) = O(f(n)poly(n)).
For a natural number n, we denote by [n] the set of integers from 1 to n.

STACS 2020



29:4 Solving Connectivity Problems Parameterized by Treedepth

2.2 Treedepth
I Definition 2.1. An elimination forest of an undirected graph G = (V,E) is a rooted forest
T = (V,ET ) such that for every edge {u, v} ∈ E either u is an ancestor of v in T or v is an
ancestor of u in T . The depth of a rooted forest is the largest number of nodes on a path
from a root to a leaf. The treedepth of G is the minimum depth over all elimination forests
of G and is denoted by td(G).

We slightly extend the notation for elimination forests used by Pilipczuk and Wrochna [29].
For a rooted forest T = (V,ET ) and a node v ∈ V we denote by tree[v] the set of nodes
in the subtree rooted at v, including v. By tail[v] we denote the set of all ancestors of v,
including v. Furthermore, we define tree(v) = tree[v] \ {v}, tail(v) = tail[v] \ {v}, and
broom[v] = {v} ∪ tail(v) ∪ tree(v). By child(v) we denote the children of v.

Note that an elimination forest T of a connected graph consists only of a single tree.

2.3 Isolation Lemma
I Definition 2.2. A function w : U → Z isolates a set family F ⊆ 2U if there is a unique
S′ ∈ F with w(S′) = minS∈F w(S), where for subsets X of U we define w(X) =

∑
u∈X w(u).

I Lemma 2.3 (Isolation Lemma, [24]). Let F ⊆ 2U be a nonempty set family over a universe
U . Let N ∈ N and for each u ∈ U choose a weight w(u) ∈ [N ] uniformly and independently
at random. Then P[w isolates F ] ≥ 1− |U |/N .

When counting objects modulo 2 the Isolation Lemma allows us to avoid unwanted
cancellations by ensuring with high probability that there is a unique solution. In our
applications, we will choose N so that we obtain an error probability of less than 1/2.

3 Cut&Count

In this section G = (V,E) always refers to a connected undirected graph. For the sake of a
self-contained presentation, we state the required results, with their proofs in the appendix,
for the Cut&Count technique again, mostly following the presentation of Cygan et al. [11].
Our approach only differs from that of Cygan et al. [11] in the counting sub-procedure.

We begin by describing the Cut&Count setup and then present the counting sub-procedure
for Connected Vertex Cover. Afterwards we explain how to adapt the counting sub-
procedure for the other problems. Our exposition is the most detailed for Connected
Vertex Cover, whereas the analogous parts of the other problems will not be discussed in
such detail.

3.1 Setup
Suppose that we want to solve a problem on G involving connectivity constraints, then we
can make the following general definitions. The solutions to our problem are subsets of a
universe U which is related to G. Let S ⊆ 2U denote the set of solutions and we want to
determine whether S is empty or not. The Cut&Count technique consists of two parts:

The Cut part: We relax the connectivity constraints to obtain a set S ⊆ R ⊆ 2U of
possibly connected solutions. The set Q will contain pairs (X,C) consisting of a candidate
solution X ∈ R and a consistent cut C of X, which is defined in Definition 3.1.
The Count part: We compute |Q| modulo 2 using a sub-procedure. The consistent cuts
are defined so that non-connected candidate solutions X ∈ R\S cancel, because they are
consistent with an even number of cuts. Hence, only connected candidates X ∈ S remain.
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If |S| is even, then this approach does not work, because the connected solutions would
cancel out as well when counting modulo 2. To circumvent this difficulty, we employ the
Isolation Lemma (Lemma 2.3). By sampling a weight function w : U → [N ], we can instead
count pairs with a fixed weight and it is likely that there is a weight with a unique solution
if a solution exists at all. Formally, we compute |Qw| modulo 2 for every possible weight w,
where Qw = {(X,C) ∈ Q | w(X) = w}, instead of computing |Q| modulo 2.

I Definition 3.1 ([11]). A cut (VL, VR) of an undirected graph G = (V,E) is consistent
if u ∈ VL and v ∈ VR implies {u, v} /∈ E. A consistently cut subgraph of G is a pair
(X, (XL, XR)) such that X ⊆ V and (XL, XR) is a consistent cut of G[X]. For V ′ ⊆ V , we
denote the set of consistently cut subgraphs of G[V ′] by C(V ′).

To ensure that connected solutions are not compatible with an even number of consistent
cuts, we will usually force a single vertex to the left side of the consistent cut. This results
in the following fundamental property of consistent cuts.

I Lemma 3.2 (?, [11]). Let X be a subset of vertices such that v1 ∈ X ⊆ V . The number of
consistently cut subgraphs (X, (XL, XR)) such that v1 ∈ XL is equal to 2cc(G[X])−1.

With Lemma 3.2 we can distinguish disconnected candidates from connected candidates
by determining the parity of the number of consistent cuts for the respective candidate. We
determine this number not for a single candidate but we determine the total for all candidates
with a fixed weight. Corollary 3.3 encapsulates the Cut&Count technique for treedepth.

I Corollary 3.3 (?). Let S ⊆ 2U and Q ⊆ 2U×(V×V ) such that the following two properties
hold for every weight function w : U → [2|U |] and target weight w ∈ N:

1. |{(X,C) ∈ Q | w(X) = w}| ≡ |{X ∈ S | w(X) = w}|,

2. There is an algorithm CountC(w, w, T ) accepting weights w : U → [N ], a target weight w,
and an elimination forest T , such that CountC(w, w, T ) ≡ |{(X,C) ∈ Q | w(X) = w}|.

Then Algorithm 1 returns false if S is empty and true with probability at least 1/2 otherwise.

Algorithm 1 Cut&Count.

Input: Set U , elimination forest T , procedure CountC accepting w : U → [N ], w ∈ N
1 for v ∈ U do
2 Choose w(v) ∈ [2|U |] uniformly at random;
3 for w = 1, . . . , 2|U |2 do
4 if CountC(w, w, T ) ≡ 1 then return true;
5 return false;

We will use the same definitions as Cygan et al. [11] for Q and S, hence it follows from
their proofs that Condition 1 in Corollary 3.3 is satisfied. Our contribution is to provide the
counting procedure CountC for problems parameterized by treedepth.

Given the sets S, R, and Q, and a weight function w : U → [N ], we will define for
every weight w the sets Sw = {X ∈ S | w(X) = w}, Rw = {X ∈ R | w(X) = w}, and
Qw = {(X,C) ∈ Q | w(X) = w}.

STACS 2020
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3.2 Connected Vertex Cover

Connected Vertex Cover
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there a set X ⊆ V , |X| = k, such that G[X] is connected and X is a vertex cover

of G, i.e., e ∩X 6= ∅ for all e ∈ E?

In the considered problems, one usually seeks a solution of size at most k. For con-
venience we choose to look for a solution of size exactly k and solve the other case
in the obvious way. We define the objects needed for Cut&Count in the setting of
Connected Vertex Cover. We let U = V and define the candidate solutions by
R = {X ⊆ V | X is a vertex cover of G and |X| = k}, and the solutions are given by
S = {X ∈ R | G[X] is connected}.

To ensure that a connected solution is consistent with an odd number of cuts, we choose a
vertex v1 that is always forced to the left side of the cut (cf. Lemma 3.2). As we cannot be sure
that there is a minimum connected vertex cover containing v1, we take an edge {u, v} ∈ E
and run Algorithm 1 once for v1 := u and once for v1 := v. Hence, for a fixed choice of v1 we
define the candidate-cut-pairs by Q = {(X, (XL, XR)) ∈ C(V ) | X ∈ R and v1 ∈ XL}. We
must check that these definitions satisfy the requirements of Corollary 3.3.

I Lemma 3.4 (?, [11]). Let w : V → [N ] be a weight function, and let Q and S be as defined
above. Then we have for every w ∈ N that |Sw| ≡ |Qw|.

Next, we describe the procedure CountC for Connected Vertex Cover.

Algorithm 2 CountC for Connected Vertex Cover.

Input: Elimination forest T , weights w : V → [2n], target weight w ∈ [2n2]
1 Let r denote the root of T ;
2 P := calc_poly_inc(r, ∅);
3 return the coefficient of Zw

WZk
X in P ;

Algorithm 3 calc_poly_exc(v, f).

Input: Elimination forest T , weights w : V → [2n], vertex v ∈ V , previous choices
f : tail[v]→ {1L,1R,0}

1 if v is a leaf of T then return the result of equation (1);
2 else
3 P := 1;
4 for u ∈ child(v) do // cf. equation (2)

5 P := P · calc_poly_inc(v, f);
6 return P ;

I Lemma 3.5. Given a connected graph G = (V,E), a vertex v1 ∈ V , an integer k, a weight
function w : V → [2n], and an elimination forest T of G of depth d, we can determine
|Qw| modulo 2 for every 0 ≤ w ≤ 2n2 in time O∗(3d) and polynomial space. In particular,
Algorithm 2 determines |Qw| modulo 2 for a specified target weight w in the same time and
space.
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Algorithm 4 calc_poly_inc(v, g).

Input: Elimination forest T , weights w : V → [2n], vertex v ∈ V , previous choices
g : tail(v)→ {1L,1R,0}

1 for s ∈ {1L,1R,0} do
2 Ps := calc_poly_exc(v, g[v 7→ s]);

3 return P1L
Z

w(v)
W ZX + P1R

Z
w(v)
W ZX + P0; // cf. equation (3)

Proof. For the discussion of the algorithm, it is convenient to drop the cardinality constraint
in R and Q and to define these sets for every induced subgraph G[V ′] of G. Hence, we
define for every V ′ ⊆ V the set R̂(V ′) = {X ⊆ V ′ | X is a vertex cover of G[V ′]} and the
set Q̂(V ′) = {(X, (XL, XR)) ∈ C(V ′) | X ∈ R(V ′) and (v1 ∈ V ′ → v1 ∈ XL)}.

Similar to Pilipczuk and Wrochna [29], our algorithm will compute a multivariate poly-
nomial in the formal variables ZW and ZX , where the coefficient of Zw

WZi
X is the cardinality

of Q̂i
w(V ) = {(X,C) ∈ Q̂(V ) | w(X) = w, |X| = i} modulo 2, i.e., the formal variables track

the weight and size of candidate solutions. In particular, we have that Q̂k
w = Qw for every w.

Polynomials act as an appropriate data structure, because addition and multiplication of
polynomials naturally updates the weight and size trackers correctly.

The output polynomial is computed by a branching algorithm (see Algorithm 2) that
starts at the root r of the elimination forest T and proceeds downwards to the leaves. At
every vertex we branch into several states, denoted states = {1L,1R,0}. The interpretation
of the states 1L and 1R is that the vertex is inside the vertex cover and the subscript denotes
to which side of the consistent cut it belongs. Vertices that do not belong to the vertex cover
have state 0.

For each vertex v there are multiple subproblems on G[broom[v]]. When solving a
subproblem, we need to take into account the choices that we have already made, i.e.,
the branching decisions for the ancestors of v. At each vertex we compute two different
types of polynomials, which correspond to two different kinds of partial solutions. Those
that are subsets of tree(v) and respect the choices made on tail[v] and those that are
subsets of tree[v] and respect the choices made on tail(v). Distinguishing these two
types of partial solutions is important when v has multiple children in T . Formally, the
previous branching decisions are described by assignments f or g from tail[v] or tail(v) to
{1L,1R,0} respectively.

For every vertex v and assignment f : tail[v]→ {1L,1R,0} we define the partial solutions
at v, but excluding v, that respect f by

P(v)(f) = {(X, (XL, XR)) ∈ C(tree(v)) | X ′ = X ∪ f−1({1L,1R}),

C ′ = (XL ∪ f−1(1L), XR ∪ f−1(1R)), (X ′, C ′) ∈ Q̂(broom[v])}.

So, P(v)(f) consists of consistently cut subgraphs (X, (XL, XR)) of G[tree(v)] that are
extended by f to valid candidate-cut-pairs (X ′, C ′) for G[broom[v]], meaning that X ′ is a
vertex cover of G[broom[v]] and C ′ is a consistent cut of X ′.

Very similarly, for every vertex v and assignment g : tail(v)→ {1L,1R,0} we define the
partial solutions at v, possibly including v, that respect g by

P[v](g) = {(X, (XL, XR)) ∈ C(tree[v]) | X ′ = X ∪ g−1({1L,1R}),

C ′ = (XL ∪ g−1(1L), XR ∪ g−1(1R)), (X ′, C ′) ∈ Q̂(broom[v])}.

Thus, for the root r of T we have P[r](∅) = Q̂(V ).

STACS 2020



29:8 Solving Connectivity Problems Parameterized by Treedepth

We keep track of the partial solutions P(v)(f) and P[v](g) using polynomials which we
define now. For every vertex v and assignment f : tail[v]→ {1L,1R,0} we will compute a
polynomial P(v)(f) ∈ F2[ZW , ZX ] where P(v)(f) =

∑2n2

w=0
∑n

i=0 cw,iZ
w
WZi

X and

cw,i = |{(X,C) ∈ P(v)(f) | w(X) = w and |X| = i}| mod 2.

Similarly, for every vertex v and assignment g : tail(v) → {1L,1R,0} we will compute a
polynomial P[v](g) ∈ F2[ZW , ZX ] where P[v](g) =

∑2n2

w=0
∑n

i=0 c
′
w,iZ

w
WZi

X and

c′w,i = |{(X,C) ∈ P[v](g) | w(X) = w and |X| = i}| mod 2.

Algorithm 2 computes the polynomial P = P[r](∅), where r is the root of T , and extracts
the appropriate coefficient of P . To compute P we employ recurrences for P(v)(f) and P[v](g).
We proceed by describing the recurrence for P(v)(f).

In the case that v is a leaf node in T , i.e., tree(v) = ∅, we can compute P(v)(f) by

P(v)(f) = [f−1({1L,1R}) is a vertex cover of G[tail[v]]]
· [(f−1(1L), f−1(1R)) is a consistent cut of G[f−1({1L,1R})]]
· [v1 ∈ tail[v]→ f(v1) = 1L],

(1)

which checks whether the assignment f induces a valid partial solution. This is the only step
in which we explicitly ensure that we are computing only vertex covers; in all other steps
this will not be required. If v is not a leaf, then P(v)(f) is computed by the recurrence

P(v)(f) =
∏

u∈child(v)

P[u](f), (2)

which combines disjoint partial solutions. The equations (1) and (2) are used by Algorithm 3
to compute the polynomial P(v)(f).

We proceed by giving the recurrence that is used by Algorithm 4 to compute the
polynomial P[v](g):

P[v](g) = P(v)(g[v 7→ 1L])Zw(v)
W ZX + P(v)(g[v 7→ 1R])Zw(v)

W ZX + P(v)(g[v 7→ 0]). (3)

Equation (3) tests all three possible states for v in a candidate-cut-pair and multiplies by
Z

w(v)
W ZX if v is in the vertex cover to update the weight and size of the partial solutions.

Correctness. We will now prove the correctness of equations (1) through (3). First of
all, observe that when v1 ∈ tail[v] but f(v1) 6= 1L then we must have that P(v)(f) = 0;
similarly, we must have P[v](g) = 0 when g(v1) 6= 1L for v1 ∈ tail(v). This property is
ensured by equation (1) and preserved by the recurrences (2) and (3). To see that equation
(1) is correct, notice that when v is a leaf node in T we have that tree(v) = ∅ and hence
the only consistently cut subgraph of tree(v) is (∅, (∅, ∅)). Therefore, we only need to verify
whether this is a valid partial solution in P(v)(f), which reduces to the predicate on the
right-hand side of (1).

For equations (2) and (3), we have to establish bijections between the objects counted on
either side of the respective equation and argue that size and weight are updated correctly.
We proceed by proving the correctness of equation (2), which is the only equation where
the proof of correctness requires the special properties of elimination forests. We consider
any (X, (XL, XR)) ∈ P(v)(f). We can uniquely partition X into subsets Xu of tree[u] for
u ∈ child(v) by setting Xu = X ∩ tree[u]. Furthermore, by setting Xu

L = XL ∩ tree[u] and
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Xu
R = XR ∩ tree[u] we obtain (Xu, (Xu

L, X
u
R)) ∈ P[u](f), because we are only restricting the

vertex cover X ′ = X∪f−1({1L,1R}) and consistent cut (XL∪f−1(1L), XR∪f−1(1R)) to the
induced subgraph G[broom[u]] of G[broom[v]]. Vice versa, any combination of partial solutions
(Xu, (Xu

L, X
u
R)) ∈ P[u](f) for each u ∈ child(v) yields a partial solution (X, (XL, XR)) ∈

P(v)(f) as there are no edges in G between tree[u] and tree[u′] for u 6= u′ ∈ child(v) by
the properties of an elimination forest. Since the sets Xu partition X, we obtain the size
and weight of X by summing over the sizes and weights of the sets Xu respectively. Hence,
these values are updated correctly by polynomial multiplication.

It remains to prove the correctness of (3). This time, consider any (X, (XL, XR)) ∈ P[v](g).
Now, there are three possible cases depending on the state of v in this partial solution.
1. If v ∈ XL ⊆ X, then we claim that (X \{v}, (XL \{v}, XR)) ∈ P(v)(f), where f = g[v 7→

1L]. This is true due to the identities (X \{v})∪f−1({1L,1R}) = X∪g−1({1L,1R}), and
(XL \ {v})∪ f−1(1L) = XL ∪ g−1(1L), and XR ∪ f−1(1R) = XR ∪ g−1(1R), which mean
that this implicitly defined mapping preserves the definition of X ′ and C ′ in the predicates
of P[v](g) and P(v)(f). Vice versa, any partial solution in P(v)(f) can be extended to
such a partial solution in P(v)(g) by adding v to XL. Since |X| − |X \ {v}| = 1 and
w(X)−w(X \{v}) = w(v), multiplication by Zw(v)

W ZX updates size and weight correctly.
2. If v ∈ XR ⊆ X, the proof is analogous to case 1.
3. If v /∈ X, then we have that (X, (XL, XR)) ∈ P(v)(f), where f = g[v 7→ 0]. Vice versa,

any (X, (XL, XR)) ∈ P(v)(f) must also be in P[v](g). Since X does not change, we do not
need to update size or weight and do not multiply by further formal variables in this case.

If v = v1, then equation (3) simplifies to P[v](g) = P(v)(g[v 7→ 1L])Zw(v)
W ZX , because

P(v)(g[v 7→ 1R]) = P(v)(g[v 7→ 0]) = ∅ and hence only the first case occurs. Note that
by establishing these bijections in the proofs of correctness, we have actually shown that
equations (1) through (3) are also correct when working in Z instead of F2.

Time and Space Analysis. We finish the proof by discussing the time and space requirement.
Observe that the coefficients of our polynomials are in F2 and hence can be added and
multiplied in constant time. Furthermore, all considered polynomials consist of at most
polynomially many monomials as the weight and size of a candidate solution are polynomial
in n. Therefore, we can add and multiply the polynomials in polynomial time and hence
compute recurrences (1), (2), and (3) in polynomial time. Every polynomial P(v)(f) and
P[v](g) is computed at most once, because P(v)(f) is only called by P[v](g) where f is an
extension of g, i.e., f = g[v 7→ s] for some s ∈ states, and P[v](g) is only called by P(w)(g)
where w is the parent of v. Hence, the recurrences only make disjoint calls and no polynomial
is computed more than once. For a fixed vertex v there are at most 3d choices for f and g.
Thus, Algorithm 2 runs in time O∗(3d) for elimination forests of depth d. Finally, Algorithm 2
requires only polynomial space, because it has a recursion depth of 2d+ 1 and every recursive
call needs to store at most a constant number of polynomials, which require by the previous
discussion only polynomial space each. J

I Theorem 3.6. There is a Monte-Carlo algorithm that given an elimination forest of depth
d for a graph G solves Connected Vertex Cover on G in time O∗(3d) and polynomial
space. The algorithm cannot give false positives and may give false negatives with probability
at most 1/2.

Proof. We pick an edge {u, v} ∈ E and branch on v1 := u and v1 := v. We run Algorithm 1
with U = V and the procedure CountC as given by Algorithm 2. Correctness follows from
Corollary 3.3 and Lemma 3.4. Running time and space bound follow from Lemma 3.5. J
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We remark that calling Algorithm 2 for each target weight w ∈ [2n2] (as in Algorithm 1)
would redundantly compute the polynomial P = P[r](∅) several times, although it suffices to
compute P once and then look up the appropriate coefficient depending on w.

If one is interested in solving Weighted Connected Vertex Cover, then it is
straightforward to adapt our approach to polynomially-sized weights: instead of using ZX

to track the size of the vertex covers, we let it track their cost and change recurrence (3)
accordingly.

3.3 Adapting to Other Problems
The high-level structure of the counting procedure for the other problems is very similar
to that of Algorithm 2 for Connected Vertex Cover. One possible difference is that
we might have to consider the solutions over a more complicated universe U than just the
vertex set V . Also, we might want to keep track of more data of the partial solutions and
hence use more than just two formal variables for the polynomials. Both of these changes
occur for Feedback Vertex Set, which is presented in the next section. The equation
for the base case (cf. equation (1)) and the recurrence for P[v](g) (cf. equation (3)) are also
problem-dependent.

Time and Space Analysis. The properties that we require of the polynomials and equations
in the time and space analysis, namely that the equations can be evaluated in polynomial
time and every polynomial is computed at most once, remain true by the same arguments as
for Connected Vertex Cover. The running time essentially results from the number
of computed polynomials, which increases when we use more states for the vertices. Again
denoting the set of states by states, we obtain a running time ofO∗(|states|d) on elimination
forests of depth d. The space analysis also remains valid, because the recursion depth remains
2d+ 1 and for each call we need to store only a constant number of polynomials each using
at most polynomial space.

3.4 Feedback Vertex Set

Feedback Vertex Set
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there a set X ⊆ V , |X| = k, such that G−X is a forest?

Feedback Vertex Set differs from the other problems in that we do not have a positive
connectivity requirement, but a negative connectivity requirement, i.e., we need to ensure
that the remaining graph is badly connected in the sense that it contains no cycles. Cygan
et al. [11] approach this via the well-known Lemma 3.7.

I Lemma 3.7. A graph with n vertices and m edges is a forest if and only if it has at most
n−m connected components.

Applying Lemma 3.7 requires that we count how many vertices and edges remain after
deleting a set X ⊆ V from G. We do not need to count exactly how many connected
components remain, it suffices to enforce that there are not too many connected components.
We will achieve this, like Cygan et al. [11], by the use of marker vertices. In this case, our
solutions are pairs (Y,M) with M ⊆ Y , where we interpret Y as the forest that remains after
removing a feedback vertex set X and the marked vertices are represented by the set M . To
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bound the number of connected components, we want that every connected component of
G[Y ] contains at least one marked vertex. By forcing the marked vertices to the left side
of the cut, we ensure that candidates (Y,M) where G[Y ] has a connected component not
containing a marked vertex, in particular those with more than |M | connected components,
cancel modulo 2. The formal definitions are R = {(Y,M) |M ⊆ Y ⊆ V and |Y | = n− k},
and S = {(Y,M) ∈ R | G[Y ] is a forest, every connected component of G[Y ] intersects M},
and Q = {((Y,M), (YL, YR)) | (Y,M) ∈ R and (Y, (YL, YR)) ∈ C(V ) and M ⊆ YL}.

Since our solutions (Y,M) are pairs of two vertex sets, we need a larger universe to make
the Isolation Lemma, Lemma 2.3, work. We use U = V × {F,M}, hence a weight function
w : U → [N ] assigns two different weights w(v,F) and w(v,M) to a vertex v depending on
whether v is marked or not. To make these definitions compatible with Corollary 3.3 we
associate to each pair (Y,M) the set Y × {F} ∪M × {M} ⊆ U , which also allows us to
extend the weight function to such pairs (Y,M), i.e. w(Y,M) = w(Y × {F} ∪M × {M}).

I Lemma 3.8 (?, [11]). Let (Y,M) be such that M ⊆ Y ⊆ V . The number of consistently
cut subgraphs (Y, (YL, YR)) such that M ⊆ YL is equal to 2ccM (G[Y ]), where ccM (G[Y ]) is the
number of connected components of G[Y ] that do not contain any vertex from M .

To apply Lemma 3.7, we need to distinguish candidates by the number of edges, and
markers, in addition to the weight, hence we make the following definitions for j, `, w ∈ N:

Rj,`
w = {(Y,M) ∈ R | w(Y,M) = w, |E(G[Y ])| = j, |M | = `},
Sj,`

w = {(Y,M) ∈ S | w(Y,M) = w, |E(G[Y ])| = j, |M | = `},
Qj,`

w = {(Y,M, (YL, YR)) ∈ Q | w(Y,M) = w, |E(G[Y ])| = j, |M | = `}.

I Lemma 3.9 (?, [11]). Let w : U → [N ] be a weight function, and Q and S as defined
above. Then we have for every w ∈ N and j ∈ [n− k − 1] that |Sj,n−k−j

w | ≡ |Qj,n−k−j
w |.

Note that by Lemma 3.7 a Feedback Vertex Set instance has a solution X if and
only if there is a choice of w, j ∈ N and M ⊆ Y := V \X such that (Y,M) ∈ Sj,n−k−j

w .

I Lemma 3.10. Given a connected graph G = (V,E), an integer k, a weight function
w : U → [4n] and an elimination forest T of G of depth d, we can determine |Qj,n−k−j

w |
modulo 2 for every 0 ≤ w ≤ 4n2, 0 ≤ j ≤ m, in time O∗(3d) and polynomial space.

Proof. Again, we drop the cardinality constraints from R and Q and define for induced
subgraphs G[V ′] the variants R̂(V ′) = {(Y,M) | M ⊆ Y ⊆ V ′} and Q̂(V ′) = {((Y,M),
(YL, YR)) | (Y,M) ∈ R̂(V ′) and (Y, (YL, YR)) ∈ C(V ′) and M ⊆ YL}.

We will compute a multivariate polynomial in the formal variables ZW , ZY , ZE , ZM ,
where the coefficient of Zw

WZi
Y Z

j
EZ

`
M is the cardinality modulo 2 of

Q̂i,j,`
w = {((Y,M), C) ∈ Q̂(V ) | w(Y,M) = w, |Y | = i, |E(G[Y ])| = j, |M | = `}.

The coefficients of Zw
WZn−k

Y Zj
EZ

n−k−j
M for every w and j then yield the desired numbers.

For Feedback Vertex Set we require three states which are given by states =
{1,0L,0R}. The state 1 represents vertices inside the feedback vertex set; the states 0L and
0R represent vertices inside the remaining forest and the subscript denotes to which side
of the consistent cut a vertex belongs. Perhaps surprisingly, there is no state to represent
marked vertices. It turns out that it is not important which vertices are marked; it is sufficient
to know the number of marked vertices.
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For every vertex v and assignment f : tail[v]→ {1,0L,0R} we define the partial solutions
at v, but excluding v, that respect f by

P(v)(f) = {((Y,M), (YL, YR)) ∈ Q̂(tree(v)) | Y ′ = Y ∪ f−1({0L,0R}),

C ′ = (YL ∪ f−1(0L), YR ∪ f−1(0R)), ((Y ′,M), C ′) ∈ Q̂(broom[v])}.

The partial solutions in P(v)(f) are consistently cut subgraphs (Y, (YL, YR)) of G[tree(v)]
where a subsetM of the left side is marked and the extension to (Y ′, C ′) by f is a consistently
cut subgraph of G[broom[v]].

Similarly, for every vertex v and assignment g : tail(v) → {1,0L,0R} we define the
partial solutions at v, possibly including v, that respect g by

P[v](g) = {((Y,M), (YL, YR)) ∈ Q̂(tree[v]) | Y ′ = Y ∪ g−1({0L,0R}),

C ′ = (YL ∪ g−1(0L), YR ∪ g−1(0R)), ((Y ′,M), C ′) ∈ Q̂(broom[v])}.

For every vertex v and assignment f : tail[v]→ {1,0L,0R} we will compute a polynomial
P(v)(f) ∈ F2[ZW , ZY , ZE , ZM ] where the coefficient of Zw

WZi
Y Z

j
EZ

`
M in P(v)(f) is given by

|{((Y,M), C) ∈ P(v)(f) | w(Y,M) = w, |Y | = i, |E(G[Y ])| = j, |M | = `}| mod 2.

For every vertex v and assignment g : tail(v)→ {1,0L,0R} we will compute a polynomial
P[v](g) ∈ F2[ZW , ZY , ZE , ZM ] where the coefficient of Zw

WZi
Y Z

j
EZ

`
M in P[v](g) is given by

|{((Y,M), C) ∈ P[v](g) | w(Y,M) = w, |Y | = i, |E(G[Y ])| = j, |M | = `}| mod 2.

The exponents of the monomials Zw
WZi

Y Z
j
EZ

`
M in P(v)(f) and P[v](g) range between 0 ≤

w ≤ 4n2, 0 ≤ i ≤ n, 0 ≤ j ≤ m, and 0 ≤ ` ≤ n.
We now present the recurrences used to compute the polynomials P(v)(f) and P[v](g). If

v is a leaf node in T , then we can compute P(v)(f) by

P(v)(f) = [(f−1(0L), f−1(0R)) is a consistent cut of G[f−1({0L,0R})]]. (4)

If v is not a leaf node, then we compute P(v)(f) by

P(v)(f) =
∏

u∈child(v)

P[u](f). (5)

To compute P[v](g) we use the recurrence

P[v](g) = P(v)(g[v → 1])
+P(v)(g[v → 0L]) Z

w(v,F)
W ZY Z

|N(v)∩tree[v]|
E

+P(v)(g[v → 0L]) Z
w(v,F)+w(v,M)
W ZY Z

|N(v)∩tree[v]|
E ZM

+P(v)(g[v → 0R]) Z
w(v,F)
W ZY Z

|N(v)∩tree[v]|
E .

(6)

This recurrence tests all three possible states for the vertex v and whether it is marked. In
the last case v has state 0L, but the formal variables ZW and ZM must be updated differently
from the case where v is not marked but has state 0L.

We will now prove the correctness of the equations (4) to (6). For the correctness of
equation (4), notice that tree(v) = ∅ when v is a leaf. Hence, Q̂(tree(v)) degenerates
to {((∅, ∅), (∅, ∅))} and we must check whether ((∅, ∅), (∅, ∅)) ∈ P(v)(f) which means that
((f−1({0L,0R}), ∅), (f−1(0L), f−1(0R))) ∈ Q̂(broom[v]) and checking the consistency of the
cut is the only nontrivial requirement in this case.
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The proof of correctness for equation (5) is similar to the proof for equation (2) of
Connected Vertex Cover. Any solution in P(v)(f) uniquely partitions into solutions in
P[u](f) for each u ∈ child(v). Vice versa, any combination of solutions for the children u of
v yields a unique solution in P(v)(f). The properties of an elimination forest are needed to
show that the union of consistent cuts remains a consistent cut. We omit further details.

To prove the correctness of equation (6) we consider a partial solution ((Y,M), (YL, YR)) ∈
P[v](g) and distinguish between four cases depending on the state of v.
1. If v /∈ Y , then ((Y,M), (YL, YR)) ∈ P(v)(f), where f = g[v 7→ 1], because there is no

constraint involving vertices with state 1. Vice versa, we have that any partial solution
((Y,M), (YL, YR)) ∈ P(v)(f) must also be in P[v](g). Since Y and M do not change, we
do not need to multiply by further formal variables.

2. If v ∈ YL ⊆ Y and v /∈ M , then ((Y \ {v},M), (YL \ {v}, YR)) ∈ P(v)(f), where
f = g[v 7→ 0L], because the definition of Y ′ and C ′ in the predicate in the definition of
P[v](g) and P(v)(f) do not change. Hence, we can also extend any partial solution of
P(v)(f) to such a partial solution of P[v](g) by adding v to YL. The number of vertices
in Y increase by 1, |E(G[Y ])| increases by |N(v) ∩ tree[v]|, and the weight increases by
w(v,F). Therefore, multiplication with Zw(v,F)

W ZY Z
|N(v)∩tree[v]|
E is the correct update.

3. If v ∈M ⊆ YL ⊆ Y , then ((Y \{v},M \{v}), (YL \{v}, YR)) ∈ P(v)(f), where f = g[v 7→
0L]. The argument is similar to case 2. Note that, again, the definition of Y ′ and C ′
do not change in the predicates. The set of marked vertices M does change, but we
only need to ensure that M remains a subset of the left side of the cut, which we do by
removing v from M . In addition to the changes in the number of vertices and edges from
case 2, the number of marked vertices has increased by 1 and the weight increases by an
additional w(v,M), to keep track of these changes we further multiply by Zw(v,M)

W ZM .
4. If v ∈ YR ⊆ Y , then the proof is analogous to case 2.
The running time and space bound follows from the general discussion in Section 3.3. J

I Theorem 3.11. There exists a Monte-Carlo algorithm that given an elimination forest of
depth d solves Feedback Vertex Set in time O∗(3d) and polynomial space. The algorithm
cannot give false positives and may give false negatives with probability at most 1/2.

Proof. We set U = V × {F,M}, but we need to slightly adapt the definition of S and
Q to be able to apply Corollary 3.3. We define S̃ = ∪n−k−1

j=0 ∪4n2

w=0 Sj,n−k−j
w and Q̃ =

∪n−k−1
j=0 ∪4n2

w=0Qj,n−k−j
w . Note that S is nonempty if and only if S̃ is nonempty by Lemma 3.7.

The procedure CountC is given by running the algorithm from Lemma 3.10 and for a given
target weight w adding up (modulo 2) the values of |Qj,n−k−j

w | for j = 0, . . . , n − k − 1,
thereby obtaining the cardinality of Q̃w modulo 2. The desired algorithm is then given by
running Algorithm 1. The correctness follows from Lemma 3.9 and Corollary 3.3 with S̃ and
Q̃ instead of S and Q. The running time and space bound follows from Lemma 3.10. J

Theorem 3.11 allows us to easily reobtain a result by Cygan et al. [11] on Feedback
Vertex Set parameterized by Feedback Vertex Set. Recently, this result has been
superseded by results of Li and Nederlof [21]; they present an O∗(2.7k)-time and exponential-
space algorithm and an O∗(2.8446k)-time and polynomial-space algorithm for this problem.

I Corollary 3.12 (?, [11]). There is a Monte-Carlo algorithm that given a feedback vertex
set of size s solves Feedback Vertex Set in time O∗(3s) and polynomial space. The
algorithm cannot give false positives and may give false negatives with probability at most
1/2.
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4 Conclusion

The Cut&Count technique of Cygan et al. [11] has provided single-exponential-time and
-space algorithms for many connectivity problems parameterized by treewidth. We have
shown that this technique is just as useful for parameterization by treedepth, where we have
obtained single-exponential-time and polynomial-space algorithms. Our algorithms run in
time O∗(αd), where α is a small constant and d is the depth of a given elimination forest.
The base α matches that obtained by Cygan et al. [11] for parameterization by treewidth.
Assuming SETH, this base is optimal for treewidth, or even pathwidth [11]. In principle,
since treedepth is a larger parameter than both treewidth and pathwidth, it may be possible
to obtain better running times when parameterizing by treedepth, possibly at the cost of
using exponential space. The style of construction, used to obtain lower bounds relative to
treewidth, used by Lokshtanov et al. [22] and Cygan et al. [11], necessitates long paths and
is thereby unsuitable for bounds relative to treedepth. Thus, the question remains whether
our running times are optimal; it is tempting to conjecture that they are.

While we have not given the proofs, our techniques also extend to other problems
like Connected Feedback Vertex Set and Connected Total Dominating Set.
However, there are several problems, including Cycle Cover and Longest Cycle, for
which Cygan et al. [11] obtain efficient algorithms, where it is yet unclear how to solve them
in polynomial space when parameterizing by treedepth. In particular, Hamiltonian Path
and Hamiltonian Cycle share the same issues, namely that the algorithms parameterized
by treewidth keep track of the degrees in the partial solutions and it is not clear how to do
that when branching on the elimination forest while only using polynomial space. Belbasi
and Fürer [2] can count Hamiltonian cycles in polynomial space, but their running time
also depends on the width of a given tree decomposition. An algorithm for any of these
problems parameterized by treedepth, with single-exponential running time and requiring
only polynomial space, would be quite interesting.
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