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Abstract
The discrete acyclic convolution computes the 2n + 1 sums∑

i+j=k

(i,j)∈[0,1,2,...,n]2

aibj

in O (n log n) time. By using suitable offsets and setting some of the variables to zero, this method
provides a tool to calculate all non-zero sums∑

i+j=k

(i,j)∈P ∩Z2

aibj

in a rectangle P with perimeter p in O (p log p) time.
This paper extends this geometric interpretation in order to allow arbitrary convex polygons P

with k vertices and perimeter p. Also, this extended algorithm only needs O
(
k + p(log p)2 log k

)
time.

Additionally, this paper presents fast algorithms for counting sub-cadences and cadences with 3
elements using this extended method.
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1 Introduction

The convolution is a well-known and very useful method, which is not only closely linked
to signal processing (e.g. [18]) but is also used to multiply polynomials (see [5, p. 905]) and
large numbers (e.g. [17] (written in German)) in quasi-linear time. The convolution can be
efficiently computed with the fast Fourier transform or its counterpart in residue class rings,
the number theoretic transform:
I Theorem 1. Let a = (a0, a1, a2, . . . , an) and b = (b0, b1, b2, . . . , bn) be two sequences. The
sequence c = (c0, c1, c2, . . . , c2n) with ck =

∑
i+j=k (aibj) can be computed in O (n logn)

operations.
The most well-known proofs use additions and multiplications of arbitrary complex

numbers. However, with the finite register lengths of real-world computers, one must either
cope with the roundoff errors or do all calculations in a different ring. In Appendix A, we
show that a suitable ring can be found deterministically in O

(
n(logn)2(log logn)

)
time if

the generalized Riemann hypothesis is true.
The convolution can also be interpreted geometrically: Let a = (a0, a1, a2, . . . , an) and

b = (b0, b1, b2, . . . , bn) be sequences. Then the convolution calculates the partial sums∑
i+j=k

(i,j)∈P∩Z2

aibj ,

where P is the square given by {(x, y) : 0 ≤ x, y ≤ n}.
This paper extends this geometric interpretation and shows that if P is an arbitrary

convex polygon with k vertices and perimeter p, the partial sums can be calculated in
O
(
k + p(log p)2 log k

)
time.

We also use this extended method to solve an open problem of a string pattern called
cadence. A cadence is given by an arithmetic progression of occurrences of the same character
in a string such that the progression cannot be extended to either side without extending
the string as well. For example, in the string 001001001 the indices (3, 6, 9) corresponding to
the “1”s form a 3-cadence. On the other hand, in the string 001010100 the indices (3, 5, 7)
corresponding to the “1”s do not form a 3-cadence since, for example, the index 1 is still
inside of the string.

3-cadences can be found naïvely in quadratic time. In the paper [2], a quasi-linear time
algorithm for detecting the existence of 3-cadences was proposed, but this algorithm also
detects false positives as the aforementioned string 001010100.

This paper fixes this issue and also extends the algorithm to the slightly more general
notion of (a, b, c)-partial-k-cadences. The resulting extended algorithm also allows counting
those partial-cadences with a given character of an alphabet Σ of a string with length n and
only needs O

(
n(logn)2) time. Using a method presented by Amir et al. in [2], this implies

that all (a, b, c)-partial-k-cadences can be counted in O
(
min(|Σ|n(logn)2, n3/2 logn)

)
time.

Furthermore, we show that the output of the counting algorithm also allows finding x
partial-cadences in O (xn) time.

This paper also gives similar results for 3-sub-cadences.
For the time complexity, we assume that arithmetic operations with O(logn) bits can be

done in constant time. In particular, we want to be able to get the remainder of a division
by a prime p < 2(2n log(2n))2 in constant time.

Also, in this paper, we assume a suitable alphabet. I.e. the characters are given by
sufficiently small integers in order to allow constant time reading of a given character in the
string and in order to allow sorting the characters.
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2 (Sub-)Cadences and Their Definitions

While the concept of cadences in the context of strings was already considered in [19] by
Van der Waerden, the term cadence dates back to 1964 and was first introduced by Gardelle
and Guilbaud in [8] (written in French). Since then, there were at least two other, slightly
different and non-equivalent definitions given by Lothaire in [15, Chapter 3.3] and Amir et
al. in [2].

This paper uses the most restrictive definition of the cadence, which was introduced by
Amir et al. in [2], and also uses their definition of the sub-cadence, which is equivalent to
Gardelle’s cadence in [8] and Lothaire’s arithmetic cadence in [15, Chapter 3.3].

A string S of length n is the concatenation S = S[1..n] = S[1]S[2]S[3] . . . S[n] of characters
from an alphabet Σ.
I Definition 2. A k-sub-cadence is a triple (i, d, k) of positive integers such that

S[i] = S[i+ d] = S[i+ 2d] = · · · = S[i+ (k − 1)d]

holds.
In this paper, cadences are additionally required to start and end close to the boundaries

of the string:
I Definition 3. A k-cadence is a k-sub-cadence (i, d, k) such that the inequalities i− d ≤ 0
and n < i+ kd hold.

Since for any k-sub-cadence the inequality i + (k − 1)d ≤ n holds, for any k-cadence
i+ (k − 1)d ≤ n < i+ kd holds. This implies k − 1 ≤ n−i

d < k and thereby k =
⌊
n−i
d

⌋
+ 1.

It is therefore sufficient to omit the variable k of a k-cadence (i, d, k) and just denote this
k-cadence by the pair (i, d).
I Remark 4 (Comparison of the Definitions).

The cadence as defined by Lothaire is just an ordered sequence of unequal indices such
that the corresponding characters are equal.
The cadence as defined by Gardelle and Guilbaud additionally requires the sequence to
be an arithmetic sequence.
The cadence as defined by Amir et al. and as used in this paper additionally requires that
the cadence cannot be extended in any direction without extending the string as well.
For the analysis of cadences with errors, we need two more definitions:

I Definition 5. A k-cadence with at most m errors is a tuple (i, d, k,m) of integers such
that i, d, k ≥ 1 and i − d ≤ 0 and n < i + kd hold and such that there are k −m different
integers πj ∈ {0, 1, 2, . . . , k − 1} with j = 1, 2, 3, . . . , k −m and

S[i+ π1d] = S[i+ π2d] = S[i+ π3d] · · · = S[i+ πk−md].

A particularly interesting case of cadences with errors is given by the partial-cadences in
which we know all positions where an error is allowed:
I Definition 6. For some different integers πj ∈ {0, 1, 2, . . . , k − 1} with j = 1, 2, 3, . . . , p,
a (π1, π2, π3, . . . , πp)-partial-k-cadence is a triple (i, d, k) of positive integers with i− d ≤ 0
and n < i+ kd such that

S[i+ π1d] = S[i+ π2d] = S[i+ π3d] · · · = S[i+ πpd]

hold.
In this paper, we will only consider the case of k − 3 errors. I.e. k-cadences with at most

k − 3 errors and (a, b, c)-partial-k-cadences for three different integer a, b, c ∈ {0, 1, ..., k − 1}.

STACS 2020
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3 3-Sub-Cadences and Rectangular Convolutions

It is a direct consequence of van der Waerden’s theorem that sufficiently large strings are
guaranteed to have sub-cadences of a given length:

I Theorem 7 (Existence of sub-cadences (Van der Waerden [19] (written in German), see
Lothaire [15, Chapter 3.3])).

Let Σ be an alphabet and k an integer. There exists an integer N = N(|Σ|, k) such that
every string containing at least N characters has at least one k-sub-cadence

However, this theorem does not provide the number of k-sub-cadences of a given string.
In this section, we will show that 3-sub-cadences with a given character of a string of

length n can be efficiently counted in O (n logn) time. We will also show that arbitrary
3-sub-cadences of a string of length n can be counted in O

(
n3/2(logn)1/2) time and that

both counting algorithms allow us to output x different 3-sub-cadences in O (xn) additional
time if at least x different 3-sub-cadences exist.

Let σ ∈ Σ be a character. We will now count all 3-sub-cadences with character σ.
Let (i, d) be a 3-sub-cadence. Since i+d = i+(i+2d)

2 holds, the position i+d of the middle
occurrence of σ only depends on the sum of the index i of first occurrence and the index
i+ 2d of the third occurrence but does not depend on the individual indices of those two
positions. Therefore, it is possible to determine the candidates for the middle occurrences
with the convolution of the candidates of the first occurrence and the candidates of the third
occurrence.

Let the sequence δ = (δ0, δ1, δ2, . . . , δn) be given by the indicator function for σ in S:

δi :=
{

1 if S[i] = σ

0 if S[i] 6= σ (this includes i = 0)

With this definition, the product δiδj is 1 if and only if S[i] = S[j] = σ and otherwise
is 0. Therefore ck =

∑
i+j=k (δiδj) = #{i : S[i] = S[k − i] = σ} counts in how many ways

the index k
2 lies in the middle of two σ. These partial sums can be calculated in O (n logn)

time by convolution.
If k is odd or S

[
k
2
]
6= σ holds, the index k

2 cannot be the middle index of a 3-sub-cadence.
If S

[
k
2
]

= σ holds, the indicator function δ k
2
is 1, and therefore δ k

2
δ k

2
= 1 holds as well.

Since the arithmetic progression (δ k
2
, 0, 3) consisting of three times the number δ k

2
is not a

3-sub-cadence, the output element ck contains one false positive. Additionally, for i+ j = k

with i 6= j and S[i] = S[j] = σ, the output element ck counts the combination δiδj as well as
δjδi.

Therefore,

sk :=
{
c2k−1

2 if S[k] = σ

0 if S[k] 6= σ

counts exactly the number of 3-sub-cadences with character σ such that the second occurrence
of σ has index k. The sum of the sk is the number of total 3-sub-cadences with character σ.

Also, for each sk 6= 0, all those sk 3-sub-cadences can be found in O(k) ⊆ O(n) time by
checking for each index i < k whether S[i] = S[k] = S[2k − i] = σ holds.

If the character σ is rare, we can also follow the idea of Amir et al. in [2] for detecting
3-cadences with rare characters: If all nσ occurrences of the character are known, the ck can
be computed in O(n2

σ) time by computing every pair of those occurrences. Therefore:
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I Theorem 8. For every character σ ∈ Σ, the 3-sub-cadences with σ can be counted in
O(n logn) time. Also, if all nσ occurrences of σ are known, the 3-sub-cadences with σ can
be counted in O(n2

σ) time.

Following the proof in [2], we can get all occurrences of every character by sorting
the input string in O (n logn) time. This implies that the algorithm needs at most
O
(∑

σ∈Σ min(n2
σ, n logn)

)
⊆ O

(
n

(n logn)1/2n logn
)

= O(n3/2(logn)1/2) time.

I Theorem 9. The number of all 3-sub-cadences can be counted in

O
(

min(|Σ|n logn, n3/2(logn)1/2)
)

time.

I Theorem 10. After counting at least x 3-sub-cadences, it is possible to output x 3-sub-
cadences in O(xn) time.

4 Non-Rectangular Convolutions

In this section, we will extend the geometric interpretation of the convolution and show that
for convex polygons P with k vertices and perimeter p it is possible to calculate the partial
sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

aibj

in O
(
k + p(log p)2 log k

)
time.

Let us imagine a graph where all integer coordinates (i, j) have the value f(i, j) := aibj .
We do not need the convolution in order to determine the sum of the function values in a given
rectangle since we can use the simple factorization

∑n
i=0
∑m
j=0 (aibj) =

(∑n
i=0 ai

)(∑m
j=0 bj

)
in O(n+m) time. However, the convolution provides the 2n partial sums on the 45◦-diagonals
in almost the same time of O ((n+m) log(n+m)).

We will now extend this geometric interpretation firstly to triangles with a vertical
cathetus and a horizontal cathetus, then to arbitrary triangles and lastly to convex polygons.
In order to do this, we will cover the given polygon P in polygons P+

p and P−m such that for
each integer point (i, j) the equality

#{P+
p |(i, j) ∈ P+

p } −#{P−m |(i, j) ∈ P−m} =
{

1 if (i, j) ∈ P
0 if (i, j) /∈ P

holds, and we define

(cp)k :=
∑
i+j=k

(i,j)∈P+
p ∩Z

2

aibj and (cm)k := −
∑
i+j=k

(i,j)∈P−m∩Z
2

aibj .

By construction, ck = (
∑

(cp)k) + (
∑

(cm)k) holds. However, if the edges and vertices of the
polygons P+

p and P−m contain integer points, we need to carefully decide for every of these
polygons, which edges and vertices are supposed to be included in the polygons and which
are excluded from the polygons.

I Lemma 11. Let P be a triangle with a vertical cathetus and a horizontal cathetus and
perimeter p. Let also the sequences a = (a0, a1, a2, . . . , an) and b = (b0, b1, b2, . . . , bn) be
given.

STACS 2020
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0

yl

yl+yu

2

yu

xl xl+xu

2
xu

P ′′

P ′

Figure 1 The right-angled triangle P in Lemma 11.

Then the partial sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

aibj

can be calculated in O
(
p(log p)2) time.

Proof. The proof will be symmetrical with regard to horizontal and vertical mirroring.
Therefore, without loss of generality, we will assume that P is oriented as in Figure 1.

We first initialize the output vector c = (cxl+yl
, cxl+yl+1, cxl+yl+2, . . . , cxu+yu) with zero.

This takes O (p) time.
In the following proof, we assume that both catheti are included in the polygon and that

the hypotenuse as well as its endpoints are excluded. If this is not the expected behavior,
we can traverse the edges in O (p) time and for each integer point (i, j) on the edge, we can
decrease/increase the corresponding ci+j by aibj if necessary.

If p is at most one, there is at most one integer point (i, j) in the triangle, and this point
can be found in constant time. In this case, we only have to increase ci+j by aibj .

If p is bigger than one, we will separate the triangle P into three disjoint parts as seen in
Figure 1.

The triangle P ′ of points with x-coordinate of at least
⌈
xl+xu

2
⌉
,

the triangle P ′′ of points with y-coordinate of at least
⌈
yl+yu

2
⌉
and

the red rectangle of points with x-coordinate of at most
⌈
xl+xu

2
⌉
− 1 and y-coordinate of

at most
⌈
yl+yu

2
⌉
− 1.

There are no integers bigger than
⌈
xl+xu

2
⌉
− 1 but smaller than

⌈
xl+xu

2
⌉
nor integers

bigger than
⌈
yl+yu

2
⌉
− 1 but smaller than

⌈
yl+yu

2
⌉
− 1. Therefore, each integer point in P is

in exactly one of the three parts.
For the red rectangle, we can calculate the convolution and thereby get the corresponding

partial sums in O (p log p) time. The partial sums corresponding to the sub-triangles are
calculated recursively. Increasing the ck by the partial results leads to the final result.

Hence, the algorithm takes

O

p+

log2 p∑
i=0

2i
( p

2i log p

2i
)+ 2log2 p

 ⊆ O(log p∑
i=0

p log p
)

= O
(
p(log p)2)

time. J

We will now further extend this result to arbitrary triangles:
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0 0

yl yl

yu yu

xl xlxu xu

Figure 2 The two possible triangles P in Lemma 12.

I Lemma 12. Let a triangle P with perimeter p and sequences a = (a0, a1, a2, . . . , an) and
b = (b0, b1, b2, . . . , bn) be given.

Then the partial sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

aibj

can be calculated in O
(
p(log p)2) time.

Proof. Let xl, yl, xu, yu be the minimal and maximal x-coordinates and y-coordinates of the
three vertices of the polygon P . As in the last lemma, we first initialize the output vector
c = (cxl+yl

, cxl+yl+1, cxl+yl+2, . . . , cxu+yu).
Similarly to the last lemma, we can remove/add edges and vertices in linear time with

respect to p. Since the number of edges and vertices is constant, we ignore them for the sake
of simplicity.

Let R be the rectangle {(x, y)|xl < x < xu ∧ yl < y < yu}. Since R has four edges but P
only has three vertices, at least one of the vertices of P is also a vertex of R. Without loss of
generality, this vertex is (xl, yl).

Case 1: The opposing vertex (xu, yu) in R also coincides with a vertex of P (as in the
left-hand side of Figure 2):
Without loss of generality, we can assume that the third vertex of P is above the diagonal
from (xl, yl) to (xu, yu). In this case, the partial sums corresponding to P are given by
the sum of the partial sums of the red triangles and the partial sums of the blue rectangle
minus the partial sums of the lighter triangle.
There are only three triangles and one rectangle involved, and each of those polygons
has perimeter O (p). Furthermore, all triangles have a vertical cathetus and a horizontal
cathetus. Therefore, using Lemma 11, we can calculate all partial sums in O

(
p(log p)2)

time.
Case 2: The opposing vertex (xu, yu) in R does not coincide with a vertex of P (as in the

right-hand side of Figure 2):
In this case, one vertex of P lies on the right edge of R and one vertex of P lies on the
upper edge of R.
The wanted partial sums are in this case the difference of the partial sums of the rectangle
and of the partial sums of the three red triangles. Again, we can calculate all partial
sums in O

(
p(log p)2) time.

Since both cases require O
(
p(log p)2) time, this concludes the proof. J

STACS 2020
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0

yl

yu

xl xu

Figure 3 A regular k-gon. All chords from the leftmost vertex to the vertices on the right-hand
side of the k-gon are at least p

4 long. The sum of all chords’ lengths is therefore Θ (kp).

Now we will extend this algorithm to convex polygons with k vertices by dissecting them
into k − 2 triangles by adding k − 3 chords. Since the time complexity of the triangular
convolution given by Lemma 12 depends on the sum of the triangles’ perimeters, it is not
sufficient to just select one vertex and connect it with every other vertex in the polygon (see
Figure 3). On the other hand, the triangulation algorithm itself should not take longer than
the convolutions. Additionally, the order in which the chords are added does not matter for
the convolutions. We will show that for convex polygons there is a triangulation which can
be computed in linear time and only increases the perimeter by the factor O (log k).

0 0

yl yl

yu yu

xl xlxu xu

B
C

D

A

V1

V2

V3

V4

V5

V6V7

P ′

Figure 4 Two possible convex polygons P with more than 3 vertices in Lemma 13.

I Theorem 13. Let P be a convex polygon with k vertices and perimeter p. Let also the
sequences a = (a0, a1, a2, . . . , an) and b = (b0, b1, b2, . . . , bn) be given.

Then the partial sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

aibj

can be calculated in O
(
k + p(log p)2 log k

)
time.

Proof. As in the last two Lemmata, we define xl, yl, xu, yu to be the minimal and maximal
x-coordinates and y-coordinates of the k vertices of P . Also, we first initialize the output
vector c = (cxl+yl

, cxl+yl+1, cxl+yl+2, . . . , cxu+yu). We further assume that none of the edges
and vertices of P is included in P .

If P is a triangle, then this Lemma simplifies to Lemma 12 and there is nothing left to
prove.

If P is a quadrilateral ABCD, as in the left-hand side of Figure 4, then it can be partitioned
into the triangles ABD and CDB where the edge BD is included in exactly one triangle and
all other edges are excluded. The triangle inequality proves that |BD| ≤ |DA|+ |AB| and
|BD| ≤ |BC|+ |CD| hold. Therefore, both triangles have a perimeter of at most p. This
implies that the partial sums can be calculated in O

(
p(log p)2).
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If P is a polygon V1V2V3 . . . Vk with more than four vertices, as in the right-hand side of
Figure 4, it can be partitioned into

the polygon P ′ = V1V3V5 . . . V2d k
2 e−1, which is given by the odd vertices without its

edges,
the red triangles ViVi+1Vi+2 with i = 1, 3, 5, . . . , 2

⌈
k
2
⌉
− 3 including the edge ViVi+2 but

excluding the other edges and the vertices,
if k is even, the triangle Vk−1Vk including the edge Vk−1Vk+1 but excluding the other
edges and the vertices.

By construction and triangle inequality, the perimeter p′ of P ′ is at most p. This, however,
also implies that the total perimeter

∑
pi of the triangles is at most 2p. The inequality∑

min
(
1, pi(log pi)2) ≤ k +

∑(
pi(log p)2) ≤ k + p(log p)2

implies that the algorithm needs O
(
k + p(log p)2) time plus the time we need for processing

P ′. Since each step almost halves the number of vertices, we need O (log k) steps. This
results in a total time complexity of O

(
k + p(log p)2 log k

)
. J

5 (a,b,c)-Partial-k-Cadences

In this section, we will show how the non-rectangular convolution helps counting the (a, b, c)-
partial-k-cadences as defined in Definition 6.

In particular, we will show that (a, b, c)-partial-k-cadences with a given character σ can
be counted in O

(
n(logn)2) time. We will further show that all (a, b, c)-partial-k-cadences

can be counted in O
(
min(|Σ|n(logn)2, n3/2 logn)

)
time and that both counting algorithms

allow us to output x of those partial-cadences in O (xn) time.
As a special case, these results also hold for 3-cadences.
We further conclude from these results that the existence of k-cadences with at most k−3

errors as defined in Definition 5 can be detected in O
(
min(|Σ|k3n(logn)2, k3n3/2 logn)

)
time.

Without loss of generality, we will only deal with the case a < b in this section.

I Lemma 14. Three positions x, y and z form a (a, b, c)-partial-k-cadence if and only if
the equation y−x

b−a = z−y
c−b ∈ Z holds,

the equation S[x] = S[y] = S[z] holds and
the inequalities

0 ≥ (b+ 1)x− (a+ 1)y
b− a

, (1)

0 < bx− ay
b− a

, (2)

n ≥ (b− k + 1)x− (a− k + 1)y
b− a

and (3)

n < i+ kd = (b− k)x− (a− k)y
b− a

hold. (4)

Proof. Define d := y−x
b−a and i := x− ad. Then x = i+ ad and y = i+ bd. Furthermore, the

equation y−x
b−a = z−y

c−b holds if and only if z = i+ cd and y−x
b−a ∈ Z holds if and only if d is an

integer.
Additionally, using x = i+ ad and y = i+ bd, the four inequalities can be simplified to

0 ≥ i− d, 0 < i, n ≥ i+ (k − 1)d and n < i+ kd.
Therefore, the lemma follows from the definition of the partial-cadence. J
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x

y

0 1
4n

2
4n

2
4n

3
4n

(1)(2)

(3)

(4)

(n, n)

A

B

CD

Figure 5 The four inequalities of Lemma 14 for (1, 2, 3)-partial-4-cadences.

The four inequalities hold if the points (x, y) lie inside the convex quadrilateral given, as
shown in Figure 5, by the corners

A =
(
an

k
,
bn

k

)
B =

(
(a+ 1)n
k + 1 ,

(b+ 1)n
k + 1

)
C =

(
(a+ 1)n

k
,

(b+ 1)n
k

)
D =

(
an

k − 1 ,
bn

k − 1

)
including the vertex C and the edges between B and C as well as between C and D but
excluding all other vertices and the edges between A and B as well as between D and A.

For given x = i+ ad and y = i+ bd, the third occurrence z = i+ cd can be calculated
with the equation i+ cd = (b−c)(i+ad)+(c−a)(i+bd)

b−a directly without calculating i and d first.
The corresponding partial sums

ck =
∑
i+j=k

(i,j)∈P∩Z2

a i
(b−c)

b j
(c−a)

can be calculated by using the partial sums

ck =
∑
i+j=k

(i,j)∈P ′∩Z2

a′ib
′
j

with a′i :=
{
a i

b−c
if i ≡ 0 (mod b− c)

0 otherwise
and b′j :=

{
b j

c−a
if j ≡ 0 (mod c− a)

0 otherwise
and a poly-

gon P ′, which is derived from P by stretching the first coordinate by (b− c) and the second
coordinate by (c−a). The perimeter of P ′ is at most max(|b− c|, |c−a|) times the perimeter
of P . Using the quadrilateral P = ABCD with perimeter

p ≤ 2|Cx−Ax|+ 2|Cy−Ay| = 2
(

(a+ 1)n
k

− an

k

)
+ 2

(
(b+ 1)n

k
− bn

k

)
= 4n

k
∈ O

(n
k

)
,

the polygon P ′ has perimeter p′ ∈ O (n). This proves the following three theorems.
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I Theorem 15. For every character σ ∈ Σ, the (a, b, c)-partial-k-cadences with σ can be
counted in O(n(logn)2) time. Also, if all nσ occurrences of σ are known, the (a, b, c)-partial-
k-cadences with σ can be counted in O(n2

σ) time.

I Theorem 16. The number of all (a, b, c)-partial-k-cadences can be counted in

O
(

min(|Σ|n(logn)2, n3/2 logn)
)

time.

I Theorem 17. After counting at least x (a, b, c)-partial-k-cadences, it is possible to output
x (a, b, c)-partial-k-cadences in O(xn) time.

Since every 3-cadence is an (0, 1, 2)-partial-3-cadence, we also obtain the special case:

I Corollary 18. For every character σ ∈ Σ, the 3-cadences with σ can be counted in
O(n(logn)2) time. Also, if all nσ occurrences of σ are known, the 3-cadences with σ can be
counted in O(n2

σ) time.
Therefore, the number of all 3-cadences can be counted in

O
(

min(|Σ|n(logn)2, n3/2 logn)
)

time.

Also, after counting at least x 3-cadences, it is possible to output x 3-cadences in O(xn)
time.

Taking the sum over all possible triples (a, b, c), we can also search for k-cadences with at
most k − 3 errors. It can be checked in

O
(

min(|Σ|k3n(logn)2, k3n3/2 logn)
)

time whether the given string has a k-cadence with at most k − 3 errors. However, since
k-cadences with less than k− 3 errors are counted more than once, it seems to be difficult to
determine the exact number of k-cadences with at most k − 3 errors.

6 Conclusion

This paper extends convolutions to arbitrary convex polygons. One might wonder whether
these convolutions could be sped up or be further extended to non-convex polynomials.

Instead of just partitioning the interior of the polygon into triangles, it is also possible
to identify polygons by the difference of a slightly bigger but less complex polygon and a
triangle. However, if the algorithm presented in this paper is adapted to non-convex polygons,
it can generate self-intersecting polygons. While the time-complexity stays the same for
these polygons, it becomes hard to ensure that every vertex and every edge of the polygon is
counted exactly once.

Another approach is given by Levcopoulos and Lingas in [13]. This paper shows that
any simple polygon can be decomposed into convex components in O (k log k) time while
only increasing the total perimeter by the factor O (log k). This paper also shows that if the
input polygon is rectilinear, this partition only contains axis-aligned rectangles. Since the
convolution handles rectangles quicker and more easily than triangles, this saves a logarithm.
However, in general, it is not obvious how to transform arbitrary polygons into equivalent
simple rectilinear polygons in quasilinear time without blowing-up the number of vertices
too much.

The non-rectangular convolution, unlike the usual convolution, allows us to define a
dependence between the indices of the convoluted sequences. This dependence is not usable in
applications like the multiplication of polynomials, and for many signal processing applications
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this extended method does not seem to bring any benefits either. However, in order to count
the partial-cadences this dependence was essential. The non-rectangular convolution may
also have future applications in image processing and convolutional neural networks.

In terms of cadences, this paper presents algorithms to count and find sub-cadences,
cadences and partial-cadences with three elements. However, if there are linearly many
c-positions of (a, b, c)-partial-k-cadences, the knowledge of those partial-cadences does not
lead to a sub-quadratic-time-algorithm for determining the existence 4-cadences. On the
other hand, it is also not shown that this problem needs quadratic time.

Also, the time-complexity O (xn) for finding x 3-cadences is quite pessimistic. If there
are many 3-cadences, it is very likely that quite a few of these 3-cadences share one of their
occurrences. These occurrences can be found in O(n) time. On the other hand, in the string
10n−112n, for example, there are linearly many 3-cadences but every second occurrence and
every third occurrence only occurs in at most one of those 3-cadences.
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A Convolutions

It is well-known that the discrete acyclic convolution can be calculated with O (n logn)
complex arithmetic operations. However, if the convolution is calculated with the fast Fourier
transform, the finite register lengths introduce roundoff errors. These errors can propagate
and accumulate throughout the calculation.

Therefore, in order to calculate the convolution of integer sequences, it seems more
convenient to use the number theoretic transform, which is the generalization of the fast
Fourier transform from the field of the complex numbers to certain residue class rings.

In this section, we will show that after some precomputation in O
(
n(logn)2(log logn)

)
time it is possible to calculate these convolutions in O (n logn) time.

Agarwal and Burrus show in [1] that the circular convolution of two integer vectors of
length n can be efficiently computed modulo a prime p if p− 1 is a multiple of n. Therefore
we want to find a prime p in the infinite arithmetic progression {n+ 1, 2n+ 1, 3n+ 1, . . . }.

The prime number theorem states that the number π(N) of primes smaller than N

asymptotically behaves like N
logN . Furthermore, Dirichlet’s prime number theorem states

that for a given n and a sufficiently large N , the prime numbers are evenly distributed in all
residue classes mn+ r with gcd(n, r) = 1.

Therefore, for a given n and sufficiently large N , we should expect circa N
ϕ(n) logN prime

numbers of the form mn+ 1 that are smaller than N . However, the “sufficient largeness” of
N depends on n. Therefore, these theorems do not provide the number of suitable primes
smaller than the given number N .

Since the primes are expected to behave similarly in all coprime residue classes, Heath-
Brown suggests in [12] that the least prime of the form mn+ 1 is in O

(
n(logn)2). Wagstaff

gives in [20] a heuristic argument to this conjecture and provides numerical evidence. However,
the best proven upper bounds are much larger, even if the generalized Riemann hypothesis
is assumed.

Linnik proves in [14] that there are constants c and L such that for each n, r with
gcd(n, r) = 1, there is a prime of the form mn + r with mn + r < cnL. While Linnik
himself did not provide the values of c and L, there are some upper bounds: For example,
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Xylouris proves in [21] (written in German) that there is a c such that for each n, r with
gcd(n, r) = 1, there is a prime of the form mn+ r with mn+ r < cn5. More explicitly, Bach
and Sorenson present in [4] that if the generalized Riemann hypothesis holds, for each n, r
with gcd(n, r) = 1, there is a prime of the form mn+ r with mn+ r < 2(n logn)2.

Without a shortcut allowing us to check the existence of a prime in a given finite arithmetic
progression quickly, we have to test for each single number in this progression whether it is
prime.

Therefore, using only the generalized Riemann hypothesis, we cannot expect to find a
prime deterministically in o

(
(n logn)2

n

)
= o

(
n(logn)2), even if we use on average only a

constant time for each possible prime number.
Since this is already too slow for fast multiplications, numerous ways to solve or circumvent

this problem have been established:
Harvey and van der Hoeven propose in [10] a multiplication algorithm which uses
O (n logn) time by using the fast Fourier transform based on complex numbers.
Some algorithms use stronger assumptions for the distribution of prime numbers. For
example, Harvey and van der Hoeven use in [11] an unproven lower bound for the number
of Mersenne primes and in [9] they assume that the least prime of the form mn+ c is in
all coprime residue classes in O

(
ϕ(n)(logn)2). Also, Covanov and Thomé use in [6] an

unproven lower bound for the number of generalized Fermat primes.
Many algorithms do not use convolution of length n but divide the number into blocks
first and then use shorter convolutions over large rings. For example De et al. use the
ring Z[α]/ (pc, αm + 1) in [7].
While De et al. do not use it in their multiplication algorithm, they provide in [7] a
randomized algorithm to find a suitable prime in expected running time Õ((logn)3).

In the next theorem, we will show that the sieve of Eratosthenes comes close to the
theoretical minimum of O

(
n(logn)2) for finding all primes of the formmn+1 up to (n logn)2.

The lengths of these primes is at most 4 times the length of n. Therefore, such a prime
number pn is a good modulus for the convolution of length n or any of its divisors.

I Theorem 19. Let n be an integer. A prime pn ≡ 1 (mod n) with pn < 2(n logn)2 can be
found in O(n(logn)2 log log(n)) time.

Proof. The main idea is to use the sieve of Eratosthenes to first find all primes up to 2n logn
and then sieve only the numbers up to 2(n logn)2 that are congruent to 1 modulo n with
these primes.

On the one hand, since (2n logn)2 > 2(n logn)2 holds, all numbers left after the second
sieving are primes. On the other hand, the result of Bach and Sorenson in [4] guarantees
that if the generalized Riemann hypothesis holds, there is a prime left. Also, by construction,
all primes pn left fulfill this theorem.

It remains to be shown that this algorithm can be done in O(n(logn)2 log log(n)) time.
For the usual sieve of Eratosthenes, one prepares a Boolean array for the first 2n logn

numbers. Then, for each number that has not been marked as non-prime, every multiple is
marked as non-prime. Afterwards, all non-marked numbers are returned. The majority of
the time is spent for the marking. This takes

O

 2n logn∑
p=2

p is prime

2n logn
p

 = O

n logn
2n logn∑
p=2

p is prime

1
p

 = O (n(logn)(log logn))
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time. The last equality is given by Mertens in [16, p. 46] (written in German) and the
inequality log log(2n logn) < 2 log log(n).

For the second part, we have a much larger interval of numbers. However, since we
only have to consider the first residue class, only every n-th number has to be considered.
Therefore we need

O

 2n logn∑
p=2

p is prime

2(n logn)2

np

 = O

n(logn)2
2n logn∑
p=2

p is prime

1
p

 = O
(
n(logn)2(log logn)

)

markings. Using the extended Euclidean algorithm, for every prime p, we can find the
smallest f such that fp ≡ 1 (mod n) in O (log p) ⊆ O (logn) time. Summing up over all
primes, this takes

O

 2n logn∑
p=2

p is prime

logn

 ⊆ O (n(logn)2)
time.

This concludes the proof. J

It is not only possible to find a suitable modulus for the number theoretic transform, but
we can also find a suitable 2t-th root in the corresponding residue ring:

I Theorem 20. Let p2t be a prime with p2t ≡ 1 (mod 2t) and p2t < 2(2t log(2t))2.
A 2t-th root of unity modulo p2t can be found in O

(
(log p2t)3) time.

Proof. Let p2t = 1 + o2r for an odd number o.
Firstly, we will show that a residue qo is a 2r-th root of unity modulo p2t if and only if q

is a quadratic nonresidue modulo p2t .
Since p2t is prime, there is a primitive root a modulo p2t .
Let q ≡ ai. Then qo = aio has the order o2r

gcd(io,o2r) = 2r

gcd(i,2r) . Therefore, q
o has order 2r

if and only if i is odd. On the other hand, if i is even, then q is a quadratic residue, and if i
is odd, then q ≡ ai = a

(
a

i−1
2

)2
is a quadratic nonresidue. This implies that qo is a 2r-th

root of unity modulo p2t if and only if q is a quadratic nonresidue modulo p2t .
Ankeny shows in [3] that if the generalized Riemann hypothesis holds, there is a quadratic

nonresidue in the first O
(
(log p2t)2) residue classes. For any residue q it can be tested with

O (log p2t) multiplications and modulo operations whether qo has order 2r. As byproduct we
get (qo)(2r−t). If and only if qo has order 2r, the power (qo)(2r−t) has order 2t.

Therefore, a 2t-th root of unity modulo p2t can be found in O
(
(log p2t)3) time. J

Therefore, we can efficiently compute the integer convolution with the help of the number
theoretic transform.

I Theorem 21. For a given integer N , we can find a modulus pN and a suitable root qN
in O

(
N(logN)2(log logN)

)
time such that it is possible to calculate the acyclic convolution

modulo pN of two sequences of length n ≤ N in O (n logn) time afterwards.

Proof. The acyclic convolution of sequences of length n can be derived from a circular
convolution of sequences with lengths of at least 2n. Therefore, we will first prepare circular
convolutions of length 2T with 2N ≤ 2T < 4N .
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For this length, the last two theorems state that a suitable modulus pN and a suitable
2T -th root qN of unity can be found in O

(
N(logN)2(log logN)

)
.

Afterwards, for every n ≤ N we can append zeros to get the length 2t with 2n ≤ 2t < 4n.
Since 2t is a divisor of 2T , we can use (qN )(2T−t) as 2t-th root of unity.

This allows the calculation of the acyclic convolution modulo pN in O (n logn) time. J
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