
Typical Sequences Revisited – Computing Width
Parameters of Graphs
Hans L. Bodlaender
Department of Computer Science, Utrecht University, The Netherlands
h.l.bodlaender@uu.nl

Lars Jaffke
Department of Informatics, University of Bergen, Norway
lars.jaffke@uib.no

Jan Arne Telle
Department of Informatics, University of Bergen, Norway
jan.arne.telle@uib.no

Abstract
In this work, we give a structural lemma on merges of typical sequences, a notion that was introduced
in 1991 [Lagergren and Arnborg, Bodlaender and Kloks, both ICALP 1991] to obtain constructive
linear time parameterized algorithms for treewidth and pathwidth. The lemma addresses a runtime
bottleneck in those algorithms but so far it does not lead to asymptotically faster algorithms.
However, we apply the lemma to show that the cutwidth and the modified cutwidth of series parallel
digraphs can be computed in O(n2) time.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Math-
ematics of computing → Graph algorithms

Keywords and phrases typical sequences, treewidth, series parallel digraphs, cutwidth, modified
cutwidth

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.57

Related Version A full version of the paper is available at https://arxiv.org/abs/1905.03643.

Funding Hans L. Bodlaender : Partially supported by the Networks project, funded by the Nether-
lands Organization for Scientific Research (NWO).
Lars Jaffke: Supported by the Bergen Research Foundation (BFS).

Acknowledgements This work was started when the third author was visiting Universitat Politecnica
de Valencia, and part of it was done while the second author was visiting Utrecht University.

1 Introduction

In this paper we revisit an old key technique from what currently are the theoretically fastest
parameterized algorithms for treewidth and pathwidth, namely the use of typical sequences,
and give additional structural insights for this technique. In particular, we show a structural
lemma, which we call the Merge Dominator Lemma. The technique of typical sequences
brings with it a partial ordering on sequences of integers, and a notion of possible merges of
two integer sequences; surprisingly, the Merge Dominator Lemma states that for any pair
of integer sequences there exists a single merge that dominates all merges of these integer
sequences, and this dominating merge can be found in linear time. On its own, this lemma
does not lead to asymptotically faster parameterized algorithms for treewidth and pathwidth,
but, as we discuss below, it is a concrete step towards such algorithms.

The notion of typical sequences was introduced independently in 1991 by Lagergren and
Arnborg [15] and Bodlaender and Kloks [8]. In both papers, it is a key element in an explicit
dynamic programming algorithm that given a tree decomposition of bounded width `, decides

© Hans L. Bodlaender, Lars Jaffke, and Jan Arne Telle;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 57; pp. 57:1–57:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9297-3330
mailto:h.l.bodlaender@uu.nl
https://orcid.org/0000-0003-4856-5863
mailto:lars.jaffke@uib.no
mailto:jan.arne.telle@uib.no
https://doi.org/10.4230/LIPIcs.STACS.2020.57
https://arxiv.org/abs/1905.03643
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Typical Sequences Revisited

if the pathwidth or treewidth of the input graph G is at most a constant k. Lagergren
and Arnborg build upon this result and show that the set of forbidden minors of graphs of
treewidth (or pathwidth) at most k is computable; Bodlaender and Kloks show that the
algorithm can also construct a tree or path decomposition of width at most k, if existing, in
the same asymptotic time bounds. The latter result is a main subroutine in Bodlaender’s
linear time algorithm [3] for treewidth-k. If one analyses the running time of Bodlaender’s
algorithm for treewidth or pathwidth ≤ k, then one can observe that the bottleneck is in
the subroutine that calls the Bodlaender-Kloks dynamic programming subroutine, with
both the subroutine and the main algorithm having time O(2O(k3)n) for treewidth, and
O(2O(k2)n) for pathwidth. See also the recent work by Fürer for pathwidth [13], and the
simplified versions of the algorithms of [3, 8] by Althaus and Ziegler [1]. Now, over a quarter
of a century after the discovery of these results, even though much work has been done on
treewidth recognition algorithms (see e.g. [2, 5, 11, 12, 13, 14, 16, 17]), these bounds on
the function of k are still the best known, i.e. no O(2o(k3)nO(1)) algorithm for treewidth,
and no O(2o(k2)nO(1)) algorithm for pathwidth is known. An interesting question, and a
long-standing open problem in the field [4, Problem 2.7.1], is whether such algorithms can
be obtained. Possible approaches to answer such a question is to design (e.g. ETH or SETH
based) lower bounds, find an entirely new approach to compute treewidth or pathwidth in a
parameterized setting, or improve upon the dynamic programming algorithms of [15] and [8].
Using our Merge Dominator Lemma we can go one step towards the latter, as follows.

The algorithms of Lagergren and Arnborg [15] and Bodlaender and Kloks [8] are based
upon tabulating characteristics of tree or path decompositions of subgraphs of the input
graph; a characteristic consists of an intersection model, that tells how the vertices in the
current top bag interact, and for each part of the intersection model, a typical sequence of bag
sizes.1 The set of characteristics for a join node is computed from the sets of characteristics
of its (two) children. In particular, each pair of characteristics with one from each child
can give rise to exponentially (in k) many characteristics for the join node. This is because
exponentially many typical sequences may arise as the merges of the typical sequences that
are part of the characteristics. In the light of our Merge Dominator Lemma, only one of
these merges has to be stored, reducing the number of characteristics arising from each pair
of characteristics of the children from 2O(k) to just 1. Moreover, this dominating merge can
be found in O(k) time, with no large constants hidden in the “O”.

Merging typical sequences at a join node is however not the only way the number of
characteristics can increase throughout the algorithm, e.g. at introduce nodes, the number of
characteristics increases in a different way. Nevertheless, the number of intersection models
is O(kO(k)) for pathwidth and O(kO(k2)) for treewidth; perhaps, with additional techniques,
the number of typical sequences per part can be better bounded – in the case that a single
dominating typical sequence per part suffices, this would reduce the number of table entries
per node to O(kO(k)) for pathwidth-k, and to O(kO(k2)) for treewidth-k, and yield O(kO(k)n)
and O(kO(k2)n) time algorithms for the respective problems.

We give direct algorithmic consequences of the Merge Dominator Lemma in the realm
of computing width parameters of directed acyclic graphs (DAGs). Specifically, we show
that the (Weighted) Cutwidth and Modified Cutwidth problems on DAGs, which
given a directed acyclic graph on n vertices, ask for the topological order that minimizes the

1 This approach was later used in several follow up results to obtain explicit constructive parameterized
algorithms for other graph width measures, like cutwidth [18, 19], branchwidth [9], different types of
search numbers like linear width [10], and directed vertex separation number [7].

H. L. Bodlaender, L. Jaffke, and J. A. Telle 57:3

cutwidth and modified cutwidth, respectively, can be solved in O(n2) time on series parallel
digraphs. Note that the restriction of the solution to be a topological order has been made as
well in other works, e.g. [6].

Our algorithm for Cutwidth of series parallel digraphs has the same structure as
the dynamic programming algorithm for undirected Cutwidth [6], but, in addition to
obeying directions of edges, we have a step that only keeps characteristics that are not
dominated by another characteristic in a table of characteristics. Now, with help of our
Merge Dominator Lemma, we can show that in the case of series parallel digraphs, there is a
unique dominating characteristic; the dynamic programming algorithm reverts to computing
for each intermediate graph a single “optimal partial solution”. This strategy also works in
the presence of edge weights, which gives the algorithm for the corresponding Weighted
Cutwidth problem on series parallel digraphs. Note that the cutwidth of a directed acyclic
graph is at least the maximum indegree or outdegree of a vertex; e.g., a series parallel digraph
formed by the parallel composition of n − 2 paths with three vertices has n vertices and
cutwidth n − 2. To compute the modified cutwidth of a series parallel digraph, we give a
linear-time reduction to the Weighted Cutwidth problem on series parallel digraphs.

This paper is organized as follows. In Section 2, we give a number of preliminary
definitions, and review existing results, including several results on typical sequences from [8].
In Section 3, we state and prove the main technical result of this work, the Merge Dominator
Lemma. Section 4 gives our algorithmic applications of this lemma, and shows that the
cutwidth and modified cutwidth of a series parallel digraph can be computed in polynomial
time. Some final remarks are made in Section 5.

Statements marked with “♣” are proved in the full version of the paper.

2 Preliminaries

We use the following notation. For two integers a, b ∈ N with a ≤ b, we let [a..b] ..=
{a, a + 1, . . . , b} and for a > 0, we let [a] ..= [1..a]. If X is a set of size n, then a linear
order is a bijection π : X → [n]. Given a subset X ′ ⊆ X of size n′ ≤ n, we define the
restriction of π to X ′ as the bijection π|X′ : X ′ → [n′] which is such that for all x′, y′ ∈ X ′,
π|X′(x′) < π|X′(y′) if and only if π(x′) < π(y′).

Sequences and Matrices. We denote the elements of a sequence s by s(1), . . . , s(n). We
denote the length of s by l(s), i.e. l(s) ..= n. For two sequences r = r(1), . . . , r(m) and
s = s(1), . . . , s(n), we denote their concatenation by r ◦ s = r(1), . . . , r(m), s(1), . . . , s(n).
For two sets of sequences R and S, we let R� S ..= {r ◦ s | r ∈ R ∧ s ∈ S}. For a sequence s
of length n and a set X ⊆ [n], we denote by s[X] the subsequence of s induced by X, i.e. let
X = {x1, . . . , xm} be such that for all i ∈ [m− 1], xi < xi+1; then, s[X] ..= s(x1), . . . , s(xm).
For x1, x2 ∈ [n] with x1 ≤ x2, we use the shorthand “s[x1..x2]” for “s[[x1..x2]]”.

Let Ω be a set. A matrix M ∈ Ωm×n over Ω is said to have m rows and n columns. For
sets X ⊆ [m] and Y ⊆ [n], we denote by M [X,Y] the submatrix of M induced by X and
Y , which consists of all the entries from M whose indices are in X × Y . For x1, x2 ∈ [m]
with x1 ≤ x2 and y1, y2 ∈ [n] with y1 ≤ y2, we use the shorthand “M [x1..x2, y1..y2]” for
“’M [[x1..x2], [y1..y2]]”. For a sequence s(1), s(2), . . . , s(`) of indices of a matrix M , we let

M [s] ..= M [s(1)],M [s(2)], . . . ,M [s(`)] (1)

be the corresponding sequence of entries from M .

STACS 2020

57:4 Typical Sequences Revisited

For illustrative purposes we enumerate the columns of a matrix in a bottom-up fashion
throughout this paper, i.e. we consider the index (1, 1) as the “bottom left corner” and the
index (m,n) as the “top right corner”.

Integer Sequences. Let s be an integer sequence of length n. We use the shorthand “min(s)”
for “mini∈[n] s(i)” and “max(s)” for “maxi∈[n] s(i)”; we use the following definitions. We let

argmin(s) ..= {i ∈ [n] | s(i) = min(s)} and argmax(s) ..= {i ∈ [n] | s(i) = max(s)}

be the set of indices at whose positions there are the minimum and maximum element of s,
respectively. Whenever we write i ∈ argmin(s) (j ∈ argmax(s)), then the choice of i (j) can
be arbitrary. In some places we require a canonical choice of the position of a minimum or
maximum element, in which case we will always choose the smallest index. Formally, we let

argmin?(s) ..= min argmin(s), and argmax?(s) ..= min argmax(s).

The following definition contains two notions on pairs of integer sequences that are
necessary for the definitions of domination and merges.

I Definition 1. Let r and s be two integer sequences of the same length n.
(i) If for all i ∈ [n], r(i) ≤ s(i), then we write “r ≤ s”.
(ii) We write q = r + s for the integer sequence q(1), . . . , q(n) with q(i) = r(i) + s(i) for all

i ∈ [n].

I Definition 2 (Extensions). Let s be a sequence of length n. We define the set E(s) of
extensions of s as the set of sequences that are obtained from s by repeating each of its
elements an arbitrary number of times, and at least once. Formally, we let

E(s) ..= {s1 ◦ s2 ◦ · · · ◦ sn | ∀i ∈ [n] : l(si) ≥ 1 ∧ ∀j ∈ [l(si)] : si(j) = s(i)}.

I Definition 3 (Domination). Let r and s be integer sequences. We say that r dominates
s, in symbols “r ≺ s”, if there are extensions r∗ ∈ E(r) and s∗ ∈ E(s) of the same length
such that r∗ ≤ s∗. If r ≺ s and s ≺ r, then we say that r and s are equivalent, and we write
r ≡ s.

If r is an integer sequence and S is a set of integer sequences, then we say that r dominates
S, in symbols “r ≺ S”, if for all s ∈ S, r ≺ s.

I Remark 4 (Transitivity of “≺”). In [8, Lemma 3.7], it is shown that the relation “≺” is
transitive. As this is fairly intuitive, we may use this fact without stating it explicitly
throughout this text.

I Definition 5 (Merges). Let r and s be two integer sequences. We define the set of all
merges of r and s, denoted by r⊕s, as r⊕s ..= {r∗+s∗ | r∗ ∈ E(r), s∗ ∈ E(s), l(r∗) = l(s∗)}.

2.1 Typical Sequences
We now define typical sequences, show how to construct them in linear time, and restate
several lemmas due to Bodlaender and Kloks [8] that will be used throughout this text.

I Definition 6. Let s = s(1), . . . , s(n) be an integer sequence of length n. The typical
sequence of s, denoted by τ(s), is obtained from s by an exhaustive application of the
following two operations:

H. L. Bodlaender, L. Jaffke, and J. A. Telle 57:5

0

∞

Figure 1 Illustration of the shape of a typical sequence.

Removal of Consecutive Repetitions. If there is an index i ∈ [n− 1] such that s(i) = s(i+ 1),
then we change the sequence s from s(1), . . . , s(i), s(i + 1), . . . , s(n) to s(1), . . . , s(i), s(i +
2), . . . , s(n).

Typical Operation. If there exist i, j ∈ [n] such that j − i ≥ 2 and for all i ≤ k ≤ j,
s(i) ≤ s(k) ≤ s(j), or for all i ≤ k ≤ j, s(i) ≥ s(k) ≥ s(j), then we change the sequence s
from s(1), . . . , s(i), s(i+ 1), . . . , s(j), . . . , s(n) to s(1), . . . , s(i), s(j), . . . , s(n), i.e. we remove
all elements (strictly) between index i and j.

To support intuition, we illustrate the rough shape of a typical sequence in Figure 1. It
is not difficult to see that the typical sequence can be computed in quadratic time, by an
exhaustive application of the definition. Here we discuss how to do it in linear time. We may
view a typical sequence τ(s) of an integer sequence s as a subsequence of s. While τ(s) is
unique, the choice of indices that induce τ(s) may not be unique. We show that we can find
a set of indices that induce the typical sequence in linear time, with help of the following
structural proposition.

I Proposition 7 (♣). Let s be an integer sequence and let i? ∈ {argmin?(s), argmax?(s)}.
Let 1 =.. j0 < j1 < j2 < . . . < jt < jt+1 ..= i? be pairwise distinct integers, such that
s(j0), . . . , s(jt+1) are pairwise distinct. If for all h ∈ [0..t],

if s(jh) > s(jh+1) then jh = argmax?(s[1..jh+1]) and jh+1 = argmin?(s[1..jh+1]), and
if s(jh) < s(jh+1) then jh = argmin?(s[1..jh+1]) and jh+1 = argmax?(s[1..jh+1]),

then the typical sequence of s restricted to [i?] is equal to s(j0), s(j1), . . . , s(jt), s(jt+1).

The idea of the algorithm is as follows. First, it is immediate that the typical sequence of
s must contain its minimum and its maximum. We then observe the structure of τ(s) between
i? ..= min argmin(s) ∪ argmax(s) and k? ..= max argmin(s) ∪ argmax(s). Next, we find a
set of indices from [i?] that satisfy the preconditions of Proposition 7 which gives indices
inducing the typical sequence on s[1..i?]. By symmetry, we can again use Proposition 7 to
find the indices inducing τ(s) on s[k?..n].

I Lemma 8 (♣). Let s be an integer sequence of length n. Then, one can compute τ(s), the
typical sequence of s, in time O(n).

We summarize several lemmas from [8] regarding integer sequences and typical sequences
that we will use in this work.

I Lemma 9 (Bodlaender and Kloks [8]). Let r and s be two integer sequences.
(i) (Cor. 3.11 in [8]). We have that r ≺ s if and only if τ(r) ≺ τ(s).
(ii) (Lem. 3.13 in [8]). Suppose r and s are of the same length and let y = r+ s. Let r0 ≺ r

and s0 ≺ s. Then there is an integer sequence y0 ∈ r0 ⊕ s0 such that y0 ≺ y.

STACS 2020

57:6 Typical Sequences Revisited

(iii) (Lem. 3.14 in [8]). Let q ∈ r ⊕ s. Then, there is an integer sequence q′ ∈ τ(r) ⊕ τ(s)
such that q′ ≺ q.

(iv) (Lem. 3.15 in [8]). Let q ∈ r ⊕ s. Then, there is an integer sequence q′ ∈ r ⊕ s with
τ(q′) = τ(q) and l(q′) ≤ l(r) + l(s)− 1.

(v) (Lem. 3.19 in [8]). Let r′ and s′ be two more integer sequences. If r′ ≺ r and s′ ≺ s,
then r′ ◦ s′ ≺ r ◦ s.

2.2 Directed Acyclic Graphs
A directed graph (or digraph) G is a pair of a set of vertices V (G) and a set of ordered pairs
of vertices, called arcs, A(G) ⊆ V (G)×V (G). (If A(G) is a multiset, we call G multidigraph.)
We say that an arc a = (u, v) ∈ A(G) is directed from u to v, and we call u the tail of a and
v the head of a. We use the shorthand “uv” for “(u, v)”. A sequence of vertices v1, . . . , vr
is called a walk in G if for all i ∈ [r − 1], vivi+1 ∈ A(G). A cycle is a walk v1, . . . , vr with
v1 = vr and all vertices v1, . . . , vr−1 pairwise distinct. If G does not contain any cycles, then
we call G acyclic or a directed acyclic graph, DAG for short.

Let G be a DAG on n vertices. A topological order of G is a linear order π : V (G)→ [n]
such that for all arcs uv ∈ A(G), we have that π(u) < π(v). We denote the set of all
topological orders of G by Π(G). We now define the width measures studied in this work.
Note that we restrict the orderings of the vertices that we consider to topological orderings.

I Definition 10. Let G be a directed acyclic graph and let π ∈ Π(G).
(i) The cutwidth of π is cutw(π) ..= maxi∈[n−1]|{uv ∈ A(G) | π(u) ≤ i ∧ π(v) > i}|.
(ii) The modified cutwidth of π is mcutw(π) ..= maxi∈[n]|{uv ∈ A(G) | π(u) < i∧π(v) > i}|.

We define the cutwidth and modified cutwidth of a directed acyclic graph G as the minimum
of the respective measure over all topological orders of G.

We now introduce series parallel digraphs. Note that the following definition coincides
with the notion of “edge series-parallel multidigraphs” in [20].

I Definition 11 (Series Parallel Digraph (SPD)). A (multi-)digraph G with an ordered pair
of terminals (s, t) ∈ V (G)× V (G) is called series parallel digraph (SPD), often denoted by
(G, (s, t)), if one of the following hold.
(i) (G, (s, t)) is a single arc directed from s to t, i.e. V (G) = {s, t}, A(G) = {(s, t)}.
(ii) (G, (s, t)) can be obtained from two series parallel digraphs (G1, (s1, t1)) and (G2, (s2, t2))

by one of the following operations.
(a) Series Composition. (G, (s, t)) is obtained by taking the disjoint union of G1 and

G2, identifying t1 and s2, and letting s = s1 and t = t2. In this case we write
(G, (s, t)) = (G1, (s1, t1)) ` (G2, (s2, t2)) or simply G = G1 ` G2.

(b) Parallel Composition. (G, (s, t)) is obtained by taking the disjoint union of G1 and
G2, identifying s1 and s2, and identifying t1 and t2, and letting s = s1 = s2 and
t = t1 = t2. In this case we write (G, (s, t)) = (G1, (s1, t1)) ⊥ (G2, (s2, t2)), or
simply G = G1 ⊥ G2.

It is not difficult to see that each series parallel digraph is acyclic. One can naturally
associate a notion of decomposition trees with series parallel digraphs as follows. A decom-
position tree T is a rooted and ordered binary tree whose leaves are labeled with a single arc,
and each internal node t ∈ V (T) with left child ` and right child r is either a series node or
a parallel node. We then associate an SPD Gt with t that is G` ` Gr if t is a series node and
G` ⊥ Gr if t is a parallel node. It is clear that for each SPD G, there is a decomposition tree
T with root r such that G = Gr. In that case we say that T yields G. Valdes et al. [20] have
shown that one can decide in linear time whether a directed graph G is an SPD and if so,
find a decomposition tree that yields G.

H. L. Bodlaender, L. Jaffke, and J. A. Telle 57:7

I Theorem 12 (Valdes et al. [20]). Let G be a directed graph on n vertices and m arcs.
There is an algorithm that decides in time O(n+m) whether G is a series parallel digraph
and if so, it outputs a decomposition tree that yields G.

3 The Merge Dominator Lemma

In this section we prove the main technical result of this work. It states that given two
integer sequences, one can find in linear time a merge that dominates all merges of those two
sequences.

I Lemma 13 (Merge Dominator Lemma). Let r and c be integer sequences of length m and
n, respectively. There exists a dominating merge of r and c, i.e. an integer sequence t ∈ r⊕ c
such that t ≺ r ⊕ c, and this dominating merge can be computed in time O(m+ n).

Outline of the proof. First, we show that we can restrict our search to finding a dominating
path in a matrix that, roughly speaking, contains all merges of r and c of length at most
l(r) + l(c)− 1. The goal of this step is mainly to increase the intuitive insight to the proofs
in this section. Next, we prove the “Split Lemma” (Lemma 19 in Section 3.2) which asserts
that we can obtain a dominating path in our matrix M by splitting M into a submatrix
M1 that lies in the “bottom left” of M and another submatrix M2 in the “top right” of
M along a minimum row and a minimum column, and appending a dominating path in
M2 to a dominating path in M1. In M1, the last row and column are a minimum row and
column, respectively, and in M2, the first row and column are a minimum row and column,
respectively. This additional structure will be exploited in Section 3.3 where we prove the
“Chop Lemmas” that come in two versions. The “bottom version” (Lemma 20) shows that in
M1, we can find a dominating path by repeatedly chopping away the last two rows or columns
and remembering a vertical or horizontal length-2 path. The “top version” (Corollary 21)
is the symmetric counterpart for M2. The proofs of the Chop Lemmas only hold when r
and c are typical sequences, and in Section 3.4 we present the “Split-and-Chop Algorithm”
that computes a dominating path in a merge matrix of two typical sequences. Finally, in
Section 3.5, we generalize this result to arbitrary integer sequences, using the Split-and-Chop
Algorithm and one additional construction. J

3.1 The Merge Matrix, Paths, and Non-Diagonality
Let us begin by defining the basic notions of a merge matrix and paths in matrices.

I Definition 14 (Merge Matrix). Let r and c be two integer sequences of length m and n,
respectively. Then, the merge matrix of r and c is an m× n integer matrix M such that for
(i, j) ∈ [m]× [n], M [i, j] = r(i) + c(j).

I Definition 15 (Path in a Matrix). Let M be an m× n matrix. A path in M is a sequence
p(1), . . . , p(`) of indices from M such that
(i) p(1) = (1, 1) and p(`) = (m,n), and
(ii) for t ∈ [`− 1], let p(t) = (i, j); then, p(t+ 1) ∈ {(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}.

We denote by P(M) the set of all paths in M . For two paths p, q ∈ P(M), we may simply
say that p dominates q, if M [p] dominates M [q].

A path p(1), . . . , p(`) is called non-diagonal if the second condition is replaced by the
following.
(ii)’ For t ∈ [`− 1], let p(t) = (i, j); then, p(t+ 1) ∈ {(i+ 1, j), (i, j + 1)}.

STACS 2020

57:8 Typical Sequences Revisited

In analogy with extensions of integer sequences, an extension e of a path p in a matrix
M is as well a sequence of indices of M , and we again denote the corresponding integer
sequence by M [e]. A consequence of Lemma 9(i) and (iv) is that we can restrict ourselves to
all paths in a merge matrix when trying to find a dominating merge of two integer sequences:
it is clear from the definitions that in a merge matrix M of integer sequences r and c, P(M)
contains all merges of r and c of length at most l(r) + l(c)− 1.

I Corollary 16. Let r and c be integer sequences and M be the merge matrix of r and c.
There is a dominating merge in r ⊕ c, i.e. an integer sequence t ∈ r ⊕ c such that t ≺ r ⊕ c,
if and only if there is a dominating path in M , i.e. a path p ∈ P(M) such that p ≺ P(M).

We now consider a type of merge that corresponds to non-diagonal paths in the merge
matrix. These merges will be used in a construction presented in Section 3.5, and in the
algorithmic applications of the Merge Dominator Lemma given in Section 4. For two integer
sequences r and s, we denote by r � s the set of all non-diagonal merges of r and s, which
are not allowed to have “diagonal” steps: we have that for all t ∈ r� s and all i ∈ [l(t)− 1], if
t(i) = r(ir) + s(is), then t(i+ 1) ∈ {r(ir + 1) + s(is), r(ir) + s(is + 1)}. We now show that for
each merge that uses diagonal steps, there is always a non-diagonal merge that dominates it.

I Lemma 17. Let r and s be two integer sequences of length m and n, respectively. For any
merge q ∈ r ⊕ s, there is a non-diagonal merge q′ ∈ r � s such that q′ ≺ q. Furthermore,
given q, q′ can be found in time O(m+ n).

We define two special paths in a matrix M that will reappear in several places throughout
this section. These paths can be viewed as the “corner paths”, where the first one follows
the first row until it hits the last column and then follows the last column (py(M)), and the
second one follows the first column until it hits the last row and then follows the last row
(pp(M)). Formally, we define them as follows:

py(M) ..= (1, 1), (1, 2), . . . , (1, n), (2, n), . . . , (m,n)
pp(M) ..= (1, 1), (2, 1) . . . , (m, 1), (m, 2), . . . , (m,n)

We use the shorthands “py” for “py(M)” and “pp” for “pp(M)” whenever M is clear from the
context. These paths appear in the following special cases of the Merge Dominator Lemma,
which will be crucial for the proof of the Split Lemma.

I Lemma 18. Let r and c be integer sequences of length m and n, respectively, and let M
be the merge matrix of r and c. Let i ∈ argmin(r) and j ∈ argmin(c).
(i) If i = 1 and j = n, then py dominates all paths in M , i.e. py ≺ P(M).
(ii) If i = m and j = 1, then pp dominates all paths in M , i.e. pp ≺ P(M).

Proof. (i) For an illustration of this proof see the left side of Figure 2. Let q be any path in
M and let t∗ ..= argmax?(q). Let furthermore q(t∗) = (t∗r , t∗c). We divide py and q in three
consecutive parts each to show that py dominates q.

We let p1
y
..= py(1), . . . , py(t∗c − 1) and q1 ..= q(1), . . . , q(t∗ − 1).

We let p2
y
..= py(t∗c), . . . , py(n+ t∗r − 1) and q2 ..= q(t∗).

We let p3
y
..= py(n+ t∗r), . . . , py(m+ n− 1) and q3 ..= q(t∗ + 1), . . . , q(l(q)).

Since r(1) is a minimum row inM , we have that for all (k, `) ∈ [m]× [n],M [1, `] ≤M [k, `].
This implies that there is an extension e1 of p1

y of length t∗ − 1 such that M [e1] ≤ M [q1].
Similarly, there is an extension e3 of p3

y of length l(q)− t∗ such that M [e3] ≤M [q3]. Finally,
let f2 be an extension of q2 that repeats its only element, q(t∗), n − t∗c + t∗r times. Since
M [q(t∗)] is the maximum element on the sequence M [q] and r(1) is a minimum row and c(n)
a minimum column in M , we have that M [p2

y] ≤M [f2].

H. L. Bodlaender, L. Jaffke, and J. A. Telle 57:9

max(q)

m
in

n

1min

q

M1

M2

p1

p2

q

M3

i

j

Figure 2 Illustration of the proof strategy of the Split Lemma (Lem. 19).

We define an extension e of py as e ..= e1 ◦p2
y ◦e3 and an extension f of q as f ..= q1 ◦f2 ◦q3.

Note that l(e) = l(f) = l(q) + n+ t∗r − (t∗c + 1), and by the above discussion, we have that
M [e] ≤M [f]. (ii) follows from a symmetric argument. J

3.2 The Split Lemma
In this section we prove the first main step towards the Merge Dominator Lemma. It is fairly
intuitive that a dominating merge has to contain the minimum element of a merge matrix.
(Otherwise, there is a path that cannot be dominated by that merge.) The Split Lemma
states that in fact, we can split the matrix M into two smaller submatrices, one that has
the minimum element in the top right corner, and one the has the minimum element in the
bottom left corner, compute a dominating path for each of them, and paste them together to
obtain a dominating path for M .

I Lemma 19 (Split Lemma). Let r and c be integer sequences of length m and n, respectively,
and let M be the merge matrix of r and c. Let i ∈ argmin(r) and j ∈ argmin(c). Let
M1 ..= M [1..i, 1..j] and M2 ..= M [i..m, j..n] and for all h ∈ [2], let ph ∈ P(Mh) be a
dominating path in Mh, i.e. ph ≺ P(Mh). Then, p1 ◦ p2 is a dominating path in M , i.e.
p1 ◦ p2 ≺ P(M).

Proof. Let q be any path in M . If q contains (i, j), then q has two consecutive parts, say
q1 and q2, such that q1 ∈ P(M1) and q2 ∈ P(M2). Hence, p1 ≺ q1 and p2 ≺ q2, so by
Lemma 9(v), p1 ◦ p2 ≺ q1 ◦ q2.

Now let p ..= p1 ◦ p2 and suppose q does not contain (i, j). Then, q either contains some
(i, j′) with j′ < j, or some (i′, j), for some i′ < i. We show how to construct extensions of p
and q that witness that p dominates q in the first case, and remark that the second case can
be shown symmetrically. We illustrate this situation in the right side of Figure 2.

Suppose that q contains (i, j′) with j′ < j. We show that p ≺ q. First, q also contains
some (i′, j), where i′ > i. Let h1 be the index of (i, j′) in q, i.e. q(h1) = (i, j′), and h2 denote
the index of (i′, j) in q, i.e. q(h2) = (i′, j). We derive the following sequences from q.

We let q1 ..= q(1), . . . , q(h1) and q+
1

..= q1 ◦ (i, j′ + 1), . . . , (i, j).
We let q12 ..= q(h1), . . . , q(h2).
We let q2 ..= q(h2), . . . , q(l(q)) and q+

2
..= (i, j), (i+ 1, j), . . . , (i′, j) ◦ q2.

STACS 2020

57:10 Typical Sequences Revisited

f12

e12

f1

e1

b1 bd

a1 ac

=
6

6 f ′x = f ′x−1 ◦

e′x = e′x−1 ◦

Figure 3 Constructing extensions in the proof of Lemma 19.

Since q+
1 ∈ P(M1) and p1 ≺ P(M1), we have that p1 ≺ q+

1 , similarly that p2 ≺ q+
2

and considering M3 ..= M [i′..i, j..j′], we have by Lemma 18(i) that p12 ..= py(M3) =
(i, j′), (i, j′ + 1), . . . , (i, j), (i+ 1, j), . . . , (i′, j) dominates q12. Consequently, we consider the
following extensions of these sequences.

(I) We let e1 ∈ E(p1) and f1 ∈ E(q+
1) such that l(e1) = l(f1) and M [e1] ≤M [f1].

(II) We let e12 ∈ E(p12), and f12 ∈ E(q12) such that l(e12) = l(f12) and M [e12] ≤M [f12].
(III) We let e2 ∈ E(p2), and f2 ∈ E(q+

2) such that l(e2) = l(f2) and M [e2] ≤M [f2].

We construct extensions e′ ∈ E(p) and f ′ ∈ E(q) as follows. Let z be the last index in q
of any element that is matched up with (i, j) in the extensions of (II). (Following the proof
of Lemma 18, this would mean z is the index of max(q12) in q.) We first construct a pair
of extensions e′j ∈ E(p1), and f ′j ∈ E(q[1..z]) with l(e′j) = l(f ′j) and M [e′j] ≤M [f ′j]. With a
symmetric procedure, we can obtain extensions of p2 and of q[(z + 1)..l(q)], and use them to
obtain extensions of p = p1 ◦ p2 and q = q[1..z] ◦ q[(z + 1)..l(q)] witnessing that p ≺ q.

We give the details of the first part of the construction. Let a be the index of the last
repetition in f1 of q(h1 − 1), i.e. the index that appears just before q(h1) = (i, j′) in f1. We
let e′j′−1[1..a] ..= e1[1..a] and f ′j′−1[1..a] ..= f1[1..a]. By (I), M [e′j′−1] ≤M [f ′j′−1].

For x = j′, j′ + 1, . . . , j, we inductively construct e′x and f ′x using e′x−1 and f ′x−1, for
an illustration see Figure 3. We maintain as an invariant that l(e′x−1) = l(f ′x−1) and that
M [e′x−1] ≤M [f ′x−1]. Let a1, . . . , ac denote the indices of the occurrences of (i, x) in f1, and
b1, . . . , bd denote the indices of the occurrences of (i, x) in e12. We let:

e′x
..= e′x−1 ◦ e1[a1, . . . , ac]; f ′x ..= f ′x−1 ◦ f12[b1, . . . , bd], if c = d

e′x
..= e′x−1 ◦ e1[a1, . . . , ac] ◦

d−c times︷ ︸︸ ︷
e1(ac), . . . , e1(ac); f ′x ..= f ′x−1 ◦ f12[b1, . . . , bd], if c < d

e′x
..= e′x−1 ◦ e1[a1, . . . , ac]; f ′x ..= f ′x−1 ◦ f12[b1, . . . , bd] ◦

c−d times︷ ︸︸ ︷
f12(bd), . . . , f12(bd), if c > d

In each case, we extended e′x−1 and f ′x−1 by the same number of elements; furthermore
we know by (I) that for y ∈ {a1, . . . , ac}, M [e1(y)] ≤M [f1(y)], by choice we have that for all
y′ ∈ {b1, . . . , bd}, f1(y) = e12(y′) and we know that M [e12(y′)] ≤M [f12(y′)] by (II). Hence,
M [e′x] ≤M [f ′x] in either of the above cases. In the end of this process, we have e′j ∈ E(p1)
and f ′j ∈ E(q[1..z]), and by construction, l(e′j) = l(f ′j) and M [e′j] ≤M [f ′j]. J

3.3 The Chop Lemmas
Assume the notation of the Split Lemma. If we were to apply it recursively, it only yields a
size-reduction whenever (i, j) /∈ {(1, 1), (m,n)}. Motivated by this issue, we prove two more
lemmas to deal with the cases when (i, j) ∈ {(1, 1), (m,n)}, and we coin them the “Chop

H. L. Bodlaender, L. Jaffke, and J. A. Telle 57:11

min

min2

max

m

m− 1

m− 2

m
in

m
in

2

m
ax

nn
−
1

n
−
2

M2

M1

min

min2

max

m

m− 1

m− 2

m
in

k
−
1

m
in

k

m
ax

k
−
1

j
+
2

j
+
1

j L
min

min2

max

m

m− 1

m− 2

m
in

m
in

2

m
ax

nn
−
1

n
−
2

M2

M1

Figure 4 Illustration of the ideas in the main step of the proof of the bottom version of the Chop
Lemmas (Lem. 20).

Lemmas”. It will turn out that when applied to typical sequences, a repeated application of
these lemmas yields a dominating path in M . This insight crucially helps in arguing that
the dominating path in a merge matrix can be found in linear time. We would like to stress
that up to this point, all results in this section were shown in terms of arbitrary integer
sequences. For the next lemma, we require the sequences considered to be typical sequences.
In Section 3.5 we will generalize the results that rely on the following lemmas to arbitrary
integer sequences.

I Lemma 20 (Chop Lemma – Bottom, ♣). Let r and c be typical sequences of length m ≥ 3
and n ≥ 3, respectively, and letM be the merge matrix of r and c. Suppose that m ∈ argmin(r)
and n ∈ argmin(c) and let M1 ..= M [1..(m− 2), 1..n] and M2 ..= M [1..m, 1..(n− 2)] and for
all h ∈ [2], let ph ≺ P(Mh). Let p+

1
..= p1 ◦ (m−1, n), (m,n) and p+

2
..= p2 ◦ (m,n−1), (m,n).

(i) If M [m− 2, n− 1] ≤M [m− 1, n− 2], then p+
1 ≺ P(M).

(ii) If M [m− 1, n− 2] ≤M [m− 2, n− 1], then p+
2 ≺ P(M).

Outline of the proof. We first argue that each path in M is dominated by at least one of
p+

1 and p+
2 . If a path contains either (m− 2, n), or (m,n− 2), then it is easily seen that it is

dominated by p+
1 or p+

2 , respectively. If a path does not contain either of them, then there
always is a path that dominates it, and contains either (m− 2, n) or (m,n− 2). This is due
to the fact that m− 1 is a maximum row and n− 1 a maximum column.

Next, consider the setting of (i), and for an illustration see Figure 4, beginning with
the left hand side. Most effort is spent in proving that p+

1 dominates p+
2 under the stated

assumption. Towards this claim, we first show that we can find a path p′2 in M2 that uses
(m− 2, n− 2), and dominates p2. This is done by considering situations such as in the middle
of Figure 4. Assume the notation used there, and note that p2 uses the element (m, j). Since
M [m− 2, n− 1] ≤M [m− 1, n− 2], and using the structure of typical sequences ending in the
minimum element, we can conclude thatM [m−2, j+1] ≤M [m−1, j]. We then show that in
the 3× 3-submatrix L, the corner path py(L) is a dominating path. Using the corresponding
extensions, we show that the path obtained from p2 by replacing the pp(L) path with the
py(L) path, dominates p2. Iteratively applying such arguments and transitivity of “≺” lets
us conclude that there is a path p′2 in M2 that uses (m− 2, n− 2), and dominates p2, see the
right hand side of Figure 4. Now, let p′′2 be the subpath of p′2 ending in (m− 2, n− 2), and
note that p′′2 ◦ (m− 2, n− 1), (m− 2, n) ∈ P(M1). Then,

p+
1 ≺ p′′2 ◦ (m− 2, n− 1), (m− 2, n), (m− 1, n), (m,n) (2)
≺ p′2 ◦ (m,n− 1), (m,n) (3)
≺ p+

2 , (4)

STACS 2020

57:12 Typical Sequences Revisited

Algorithm 1 The Split-and-Chop Algorithm.

Input :Typical sequences r(1), . . . , r(m) and c(1), . . . , c(n)
Output :A dominating merge of r and c

1 Let i ∈ argmin(r) and j ∈ argmin(c);
2 return Chop-bottom (r[1..i], c[1..j]) ◦ Chop-top (r[i..m], c[j..n]);
3 Procedure Chop-bottom(r and c as above)
4 if m ≤ 2 then return r(1) + c(1), r(m) + c(1), r(m) + c(2), . . ., r(m) + c(n);
5 if n ≤ 2 then return r(1) + c(1), r(1) + c(n), r(2) + c(n), . . ., r(m) + c(n);
6 if r(m− 2) + c(n− 1) ≤ r(m− 1) + c(n− 2) then return

Chop-bottom(r[1..(m− 2)], c) ◦ (r(m− 1) + c(n)), r(m) + c(n);
7 if r(m− 1) + c(n− 2) ≤ r(m− 2) + c(n− 1) then return

Chop-bottom(r, c[1..(n− 2)]) ◦ (r(m) + c(n− 1)), r(m) + c(n);
8 Procedure Chop-top(r and c as above)
9 if m ≤ 2 then return r(1) + c(1), r(1) + c(2), . . ., r(1) + c(n), r(m) + c(n);

10 if n ≤ 2 then return r(1) + c(1), r(2) + c(1), . . ., r(m) + c(1), r(m) + c(n);
11 if r(3) + c(2) ≤ r(2) + c(3) then return

r(1) + c(1), (r(2) + c(1)) ◦ Chop-top(r[3..m], c);
12 if r(2) + c(3) ≤ r(3) + c(2) then return

r(1) + c(1), (r(1) + c(2)) ◦ Chop-top(r, c[3..n]);

where (2) is due to p1 ≺ P(M1) and therefore p1 ≺ p′′2 ◦ (m− 2, n− 1), (m− 2, n), next (3)
follows from another application of the 3× 3-subcase, and (4) is guaranteed since p′2 ≺ p2 by
the iterative construction sketched above. J

By symmetry, these arguments also prove the “top” case of the Chop Lemmas.

I Corollary 21 (Chop Lemma - Top). Let r and c be typical sequences of length m ≥ 3 and
n ≥ 3, respectively, and let M be the merge matrix of r and c. Suppose that 1 ∈ argmin(r)
and 1 ∈ argmin(c) and let M1 ..= M [3..m, 1..n] and M2 ..= M [1..m, 3..n] and for all h ∈ [2],
let ph ≺ P(Mh). Let p+

1
..= (1, 1), (2, 1) ◦ p1 and p+

2
..= (1, 1), (1, 2) ◦ p2.

(i) If M [3, 2] ≤M [2, 3], then p+
1 ≺ P(M).

(ii) If M [2, 3] ≤M [3, 2], then p+
2 ≺ P(M).

3.4 The Split-and-Chop Algorithm

Equipped with the Split Lemma and the Chop Lemmas, we are now ready to give the
algorithm that computes a dominating merge of two typical sequences. Consequently, we call
this algorithm the “Split-and-Chop Algorithm”, the details are given in Algorithm 1. Note
that the base cases (lines 4, 5, 9, and 10) are easily justified: in the bottom case, the last
row and column are minimum, and in the top case, the first row and column are minimum.

I Lemma 22 (♣). Let r and c be typical sequences of length m and n, respectively. Then,
there is an algorithm that finds in O(m+ n) time a dominating path in the merge matrix of
r and c.

H. L. Bodlaender, L. Jaffke, and J. A. Telle 57:13

r

τ(r)

s

τ(s)

· · ·

Figure 5 Illustration of the typical lift. On the left side, the view of the merge matrix M , with
the rows and columns corresponding to elements of the typical sequences highlighted. Inside there,
Mτ can be seen as a highlighted submatrix. The merge t′ is depicted as the large yellow squares
within Mτ and the small yellow squares outside of Mτ show its completion to the typical lift of t.
On the right side, an illustration that does not rely on the “matrix view”.

3.5 Generalization to Arbitrary Integer Sequences
In this section we show how to generalize Lemma 22 to arbitrary integer sequences. In
particular, we will show how to construct from a merge of two typical sequences τ(r) and
τ(s) that dominates all of their merges, a merge of r and s that dominates all merges of r
and s. The claimed result then follows from an application of Lemma 22. For an illustration
of the following construction, see Figure 5.

The Typical Lift. Let r and s be integer sequences and let t ∈ τ(r)⊕τ(s). Then, the typical
lift of t, denoted by ρ(t), is an integer sequence ρ(t) ∈ r ⊕ s, obtained from t as follows. For
convenience, we will consider ρ(t) as a path in the merge matrix M of r and s.

Step 1. We construct t′ ∈ τ(r) � τ(s) such that t′ ≺ t using Lemma 17. Throughout the
following, consider t′ to be a path in the merge matrix Mτ of τ(r) and τ(s).

Step 2. First, we initialize ρ1
t
..= t′(1) = (1, 1). For i = {2, . . . , l(t′)}, we proceed inductively

as follows. Let (ir, is) = t(i) and let (i′r, i′s) = t(i − 1). (Note that t(i − 1) and t(i)
are indices in Mτ .) Let furthermore (jr, js) be the index in M corresponding to (ir, is),
and let (j′r, j′s) be the index in M corresponding to (i′r, i′s). Assume by induction that
ρi−1
t ∈ P(M [1..j′r, 1..j′s]). We show how to extend ρi−1

t to a path in ρit in M [1..jr, 1..js].
Since t′ is non-diagonal, we have that (i′r, i′s) ∈ {(ir − 1, is), (ir, is − 1)}, so one of the
two following cases applies.

Case S2.1 (i′
r = ir − 1 and i′

s = is). In this case, we let ρit ..= ρi−1
t ◦(j′r+1, js), . . . , (jr, js).

Case S2.2 (i′
r = ir and i′

s = is − 1). In this case, we let ρit ..= ρi−1
t ◦(jr, j′s+1), . . . , (jr, js).

Step 3. We return ρ(t) ..= ρ
l(t′)
t .

The following lemma captures the desired property of the typical lift, and its proof
essentially follows from Lemmas 9(iii) and 17.

I Lemma 23 (♣). Let r and s be integer sequences and let q ∈ r ⊕ s. Let t ∈ τ(r) ⊕ τ(s)
such that t ≺ τ(r)⊕ τ(s). Then, ρ(t) ≺ q (and ρ(t) ∈ r � s).

We can now prove the main result of this work. Note that the following lemma is a
strengthening of Lemma 13 in that it shows that there is always a non-diagonal dominating
merge. This will be important for the algorithmic applications given in Section 4.

I Lemma 24. Let r and c be integer sequences of length m and n, respectively. There exists
a dominating non-diagonal merge of r and c, i.e. an integer sequence t ∈ r � c such that
t ≺ r ⊕ c, and this dominating merge can be computed in time O(m+ n).

STACS 2020

57:14 Typical Sequences Revisited

Proof. The algorithm proceeds in the following steps.

Step 1. Compute τ(r) and τ(c).
Step 2. Apply the Split-and-Chop Algorithm on input (τ(r), τ(c)) to obtain t ≺ τ(r)⊕ τ(c).
Step 3. Return the typical lift ρ(t) of t.

Correctness of the above algorithm follows from Corollary 16 and Lemmas 22 and 23
which together guarantee that ρ(t) ≺ r ⊕ c, and that ρ(t) is a non-diagonal merge, i.e.
ρ(t) ∈ a� b. By Lemma 8, Step 1 can be done in time O(m+n), by Lemma 22, Step 2 takes
time O(m+ n) as well, and the typical lift of t can also be computed in time O(m+ n). The
overall runtime of the algorithm is O(m+ n). J

4 Directed Width Measures of Series Parallel Digraphs

In this section, we give algorithmic consequences of the Merge Dominator Lemma. We discuss
the (weighted) cutwidth on series parallel digraphs problem in Section 4.1 and (briefly) the
modified cutwidth on SPD’s problem in Section 4.2.

4.1 Cutwidth
In this section we provide an O(n2) time algorithm for the problem of computing the cutwidth
of a series parallel digraph on n vertices.

Input: A series parallel digraph G.
Question: What is the cutwidth of G?

Cutwidth of Series Parallel Digraphs

Given a series parallel digraph G, we follow a bottom-up dynamic programming scheme
along the decomposition tree T that yields G. Each node t ∈ V (T) has a subgraph Gt of
G associated with it, that is also series parallel. Naturally, we use the property that Gt
is obtained either via series or parallel composition of the SPD’s associated with its two
children.

To make this problem amenable to be solved using merges of integer sequences, we define
the following notion of a cut-size sequence of a topological order of a directed acyclic graph
which records for each position in the order, how many arcs cross it.

I Definition 25 (Cut-Size Sequence). Let G be a directed acyclic graph on n vertices and let
π be a topological order of G. The sequence x1, . . . , xn−1, where for i ∈ [n− 1],

xi = |{uv ∈ A(G) | π(u) ≤ i ∧ π(v) > i}|,

is the cut-size sequence of π, and denoted by σ(π). For a set of topological orders Π′ ⊆ Π(G),
we let σ(Π′) ..= {σ(π) | π ∈ Π′}.

It is clear that when a cut-size sequence σ(π1) dominates another cut-size sequence
σ(π2), then cutw(π1) ≤ cutw(π2). The proof of the next theorem goes via the following two
steps. First, we show that in the dynamic programming algorithm, it is sufficient to store a
dominating cut-size sequence. Second, suppose that an SPD is obtained from two smaller
SPD’s G1 and G2, and let π1 and π2 be topological orders of G1 and G2, respectively, such
that σ(π1) dominates all cut-size sequences of G1, and σ(π2) dominates all cut-size sequences
of G2. For the case G = G1 ` G2, we show that π1 ◦ π2 yields a topological order that

H. L. Bodlaender, L. Jaffke, and J. A. Telle 57:15

dominates all cut-size sequences of G, and for the case G = G1 ⊥ G2, we show that the
topological order π of G such that σ(π) dominates σ(π1)� σ(π2) also dominates all cut-size
sequences of G.

The algorithm of the following theorem in fact works for the more general problem of
computing the weighted cutwidth of a series parallel digraph, where we are also given an
arc-weight function and the value of a cut is computed as the sum of the weights of the arcs
crossing the cut.

I Theorem 26 (♣). Let G be an SPD on n vertices (together with an arc-weight function).
There is an algorithm that computes in time O(n2) the (weighted) cutwidth of G, and outputs
a topological ordering that achieves the upper bound.

4.2 Modified Cutwidth
We now consider the following computational problem.

Input: A series parallel digraph G.
Question: What is the modified cutwidth of G?

Modified Cutwidth of Series Parallel Digraphs

In the full version, we provide a transformation that given a series parallel digraph G on
n vertices, outputs an instance of Weighted Cutwidth on series parallel digraphs whose
digraph has O(n) vertices that we can use to determine the modified cutwidth of G. Using
the algorithm for Weighted Cutwidth on series parallel digraphs due to Theorem 26, we
have the following result.

I Theorem 27 (♣). Let G be an SPD on n vertices. There is an algorithm that computes in
time O(n2) the modified cutwidth of G, and outputs a topological ordering of G that achieves
the upper bound.

5 Conclusions

In this paper, we obtained a new technical insight in a now over a quarter century old
technique, namely the use of typical sequences. The insight led to new polynomial time
algorithms. Since its inception, algorithms based on typical sequences give the best asymptotic
bounds for linear time FPT algorithms for treewidth and pathwidth, as functions of the target
parameter. It still remains a challenge to improve upon these bounds (2O(pw2), respectively
2O(tw3)), or give non-trivial lower bounds for parameterized pathwidth or treewidth. Possibly,
the Merge Dominator Lemma can be helpful to get some progress here.

As other open problems, we ask whether there are other width parameters for which
the Merge Dominator Lemma implies polynomial time or XP algorithms, or whether such
algorithms exist for other classes of graphs. For instance, for which width measures can we
give XP algorithms when parameterized by the treewidth of the input graph?

References
1 Ernst Althaus and Sarah Ziegler. Optimal tree decompositions revisited: A simpler linear-time

FPT algorithm, 2019. arXiv:1912.09144.
2 Eyal Amir. Approximation algorithms for treewidth. Algorithmica, 56(4):448–479, 2010.
3 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.

SIAM J. Comput., 25(6):1305–1317, 1996.

STACS 2020

http://arxiv.org/abs/1912.09144

57:16 Typical Sequences Revisited

4 Hans L. Bodlaender, Leizhen Cai, Jianer Chen, Michael R. Fellows, Jan Arne Telle, and
Dániel Marx. Open problems in parameterized and exact computation – IWPEC 2006.
Technical Report UU-CS-2006-052, Department of Information and Computing Sciences,
Utrecht University, 2006.

5 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016.

6 Hans L. Bodlaender, Michael R. Fellows, and Dimitrios M. Thilikos. Derivation of algorithms
for cutwidth and related graph layout parameters. J. Comput. Syst. Sci., 75(4):231–244, 2009.

7 Hans L. Bodlaender, Jens Gustedt, and Jan Arne Telle. Linear-time register allocation for a
fixed number of registers. In Proc. 9th SODA, pages 574–583. ACM/SIAM, 1998.

8 Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

9 Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time algorithms for
branchwidth. In Proc. 24th ICALP, volume 1256 of LNCS, pages 627–637. Springer, 1997.

10 Hans L. Bodlaender and Dimitrios M. Thilikos. Computing small search numbers in linear
time. In Proc. 1st IWPEC, volume 3162 of LNCS, pages 37–48. Springer, 2004.

11 Mikolaj Bojanczyk and Michal Pilipczuk. Optimizing tree decompositions in MSO. In Proc.
34th STACS, volume 66 of LIPIcs, pages 15:1–15:13, 2017.

12 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008.

13 Martin Fürer. Faster computation of path-width. In Proc. 27th IWOCA, volume 9843 of
LNCS, pages 385–396. Springer, 2016.

14 Jens Lagergren. Efficient parallel algorithms for graphs of bounded tree-width. J. Algorithms,
20(1):20–44, 1996.

15 Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite congruence.
In Proc. 18th ICALP, volume 510 of LNCS, pages 532–543. Springer, 1991.

16 Bruce A. Reed. Finding approximate separators and computing tree width quickly. In Proc.
24th STOC, pages 221–228. ACM, 1992.

17 Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem. J.
Combin. Theory, Ser. B, 63(1):65–110, 1995.

18 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005.

19 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: Algorithms for
partial w-trees of bounded degree. J. Algorithms, 56(1):25–49, 2005.

20 Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series-parallel
digraphs. SIAM J. Comput., 11(2):298–313, 1982.

	Introduction
	Preliminaries
	Typical Sequences
	Directed Acyclic Graphs

	The Merge Dominator Lemma
	The Merge Matrix, Paths, and Non-Diagonality
	The Split Lemma
	The Chop Lemmas
	The Split-and-Chop Algorithm
	Generalization to Arbitrary Integer Sequences

	Directed Width Measures of Series Parallel Digraphs
	Cutwidth
	Modified Cutwidth

	Conclusions

