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Preface

The 23. International Conference on Database Theory (ICDT 2020) was held in Copenhagen,
Denmark, from March 30 to April 2, 2020. The Program Committee has selected 22 research
papers out of 69 submissions for publication at the conference. It has further decided to give
the best paper award to A Dichotomy for Homomorphism-Closed Queries on Probabilistic
Graphs by Antoine Amarilli and İsmail İlkan Ceylan. We congratulate the winners! Apart
from the 22 regular papers, these proceedings include abstracts for the invited (shared)
EDBT/ICDT keynotes by Benny Kimelfeld (Technion, Israel) and by Juan L. Reutter (PUC
Chile) and the invited paper associated with the ICDT invited talk by Jerzy Marcinkowski
(University of Wrocław, Poland).

A committee formed by Frank Neven, Andreas Pieris, and Jorge Pérez has decided to give
the Test of Time Award for ICDT 2020 to the ICDT 2010 paper Foundations of SPARQL
query optimizations by Michael Schmidt, Michael Meier, and Georg Lausen. We congratulate
also the winners of this award!

We would like to thank all people who contributed to the success of ICDT 2020, including
the authors of all submitted papers, keynote and invited talk speakers, and, of course, all
members of the Program Committee as well as the external reviewers, for the very substantial
work that they have invested over the two submission cycles of ICDT 2020. Their commitment
and sagacity were crucial to ensure that the final program of the conference satisfies the
highest standards. We would also like to thank the ICDT Council members for their support
on a wide variety of matters, the local organizers of the EDBT/ICDT 2020 conference, led by
General Chairs Yongluan Zhou and Marcos Antonio Vaz Salles, for the great job they did in
organizing the conference and co-located events. Finally, we wish to acknowledge Dagstuhl
Publishing for their support with the publication of the proceedings in the LIPIcs (Leibniz
International Proceedings in Informatics) series.

Carsten Lutz and Jean Christoph Jung
March 2020
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ICDT 2020 Test of Time Award

In 2013, the International Conference on Database Theory (ICDT) began awarding the
ICDT test-of-time (ToT) award, with the goal of recognizing one paper, or a small number
of papers, presented at ICDT a decade earlier that have best met the “test of time”. In 2020,
the award recognizes a paper from the ICDT 2010 proceedings that has had the most impact
in terms of research, methodology, conceptual contribution, or transfer to practice over the
past decade. The award was presented during the EDBT/ICDT 2020 Joint Conference,
March 30-April 2, 2020, in Copenhagen, Denmark.

The 2020 ToT Committee consists of Frank Neven (chair), Andreas Pieris and Jorge
Pérez. After careful consideration and soliciting external assessments, the committee has
chosen the following recipient of the 2020 ICDT Test of Time Award:

Foundations of SPARQL query optimization
Michael Schmidt, Michael Meier, Georg Lausen

This paper is one of the stepping stones that placed Semantic Web query languages
on the radar of Database Theory. The paper focuses on SPARQL, the standard language
for querying the graph-based model underlying Semantic Web data. It presents an elegant
complexity analysis of SPARQL pinpointing the impact of every single operator of the
language. It also derives an impressive set of optimization rules highlighting the similarities
as well as the important differences between SPARQL and more classical languages such as
relational algebra and SQL.

The paper has had a substantial impact counting more than 300 citations. It has influenced
the theoretical development of SPARQL and its extensions, the design and construction
of Benchmarks for comparing implementations, and also the now ubiquitous research on
knowledge-graph data and queries.

Frank Neven
Hasselt University

Andreas Pieris
University of Edinburgh

Jorge Pérez
Universidad de Chile

The ICDT Test-of-Time Award Committee for 2020
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Facets of Probabilistic Databases
Benny Kimelfeld
Technion – Israel Institute of Technology, Haifa, Israel
bennyk@cs.technion.ac.il

Abstract
Probabilistic databases are commonly known in the form of the tuple-independent model, where the
validity of every tuple is an independent random event. Conceptually, the notion is more general, as
a probabilistic database refers to any probability distribution over ordinary databases. A central
computational problem is that of marginal inference for database queries: what is the probability
that a given tuple is a query answer? In this talk, I will discuss recent developments in several
research directions that, collectively, position probabilistic databases as the common and natural
foundation of various challenges at the core of data analytics. Examples include reasoning about
uncertain preferences from conventional distributions such as the Mallows model, data cleaning
and repairing in probabilistic paradigms such as the HoloClean system, and the explanation of
query answers through concepts from cooperative game theory such as the Shapley value and the
Banzhaf Power Index. While these challenges manifest different facets of probabilistic databases, I
will show how they interrelate and, moreover, how they relate to the basic theory of inference over
tuple-independent databases.

2012 ACM Subject Classification Theory of computation → Incomplete, inconsistent, and uncertain
databases; Mathematics of computing → Probabilistic representations; Information systems → Data
model extensions

Keywords and phrases Probabilistic databases, data cleaning, preference models, Shapley value

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.1

Category Invited Talk

Funding This work was supported by the Israel Science Foundation (ISF) Grants 1295/15 and
768/19, the U.S.-Israel Binational Science Foundation (BSF) Grant 2017753, and the Deutsche
Forschungsgemeinschaft (DFG) Project 412400621 (DIP program).
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What Makes a Variant of Query Determinacy
(Un)Decidable?
Jerzy Marcinkowski
Institute of Computer Science, University of Wrocław, Poland

Abstract
This paper was written as the companion paper of the ICDT 2020 invited tutorial. Query determinacy
is a broad topic, with literally hundreds of papers published since late 1980s. This paper is not
going to be a “survey” but rather a personal perspective of a person somehow involved in the recent
developments in the area.

First I explain how, in the last 30+ years, the question of determinacy was formalized. There
are many parameters here: obviously one needs to choose the query language of the available views
and the query language of the query itself. But – surprisingly – there is also some choice regarding
what the word “to compute” actually means in this context.

Then I concentrate on certain variants of the decision problem of determinacy (for each choice
of parameters there is one such problem) and explain how I understand the mechanisms rendering
such variants of determinacy decidable or undecidable. This is on a rather informal level. No really
new theorems are presented, but I show some improvements of existing theorems and also simplified
proofs of some of the earlier results.

2012 ACM Subject Classification Theory of computation → Database theory

Keywords and phrases database theory, query, view, determinacy

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.2

Category Invited Talk

Funding Jerzy Marcinkowski: Supported by the Polish National Science Centre (NCN) grant
2016/23/B/ST6/01438.

Acknowledgements The author would not have been in a position to write this invited paper had
he not been first blessed with the opportunity to work with extraordinary students: Tomasz Gogacz,
Grzegorz Głuch and Piotr Ostropolski-Nalewaja.

1 Introduction (1)

“Assume that a set of derived relations is available in a stored form. Given a query, can it be
computed from the derived relations and, if so, how?” is the first sentence of [10], the oldest
paper I know addressing the Query Determinacy Problem (QDP). On the very informal level
this first sentence still does very good job explaining the idea of QDP. But in order to be
really able to work on it, to formulate theorems and to try to prove them, we need to be a
bit more precise.

And, as it turns out, there is a huge number of ways in which one can be more precise,
each way leading to one variant of QDP. One can choose (1) between various query languages
defining the stored views and (2) defining the given query, (3) between information-theoretic
notion of determinacy (this paper) and various rewriting languages (not this paper), (4)
between considering only finite database instances (QDP f ), or any relational structures, finite
or infinite (QDP∞), and finally (5) between exact (QDPe) and sound (QDPs) semantics.
Let us first stick to the exact semantics, which is (I think) simpler to understand (sound
semantics will be briefly discussed in Section 7).

© Jerzy Marcinkowski;
licensed under Creative Commons License CC-BY
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2:2 What Makes a Variant of Query Determinacy (Un)Decidable?

Each variant of QDP is a decision problem. The instance is always a set of queries
V = {V1, . . . Vk} in query language LV and another query Q in some query language LQ.
We are asked whether it is true that for each database instance D the query Q(D) can be
computed by a device from some set C, from the set of views V1(D), V2(D) . . ., Vk(D).

We are going to use notation QDP_
e (LV ,LQ,_) to denote the variant of QDP , under

exact semantics, with arguments reflecting our choice of parameters. So, for example,
QDP fe (UCQ,UCQ,FO) will be the version of QDP where views are defined by queries
V1, . . . Vk being unions of conjunctive queries, query Q is also a union of conjunctive queries,
only finite instances are allowed, and we ask whether there is a First Order rewriting of
a given query Q, computing, regardless of D, the query Q(D), when applied to the views
V1(D), V2(D) . . ., Vk(D). As another example QDP∞e (CQ,CQ) will denote the problem of
deciding, for a set of conjunctive queries V1, . . . Vk, and another conjunctive query Q, whether
Q(D) can in any way1 be computed from V1(D), V2(D) . . ., Vk(D) for any (possibly infinite)
structure D. Notice that we do not assume that it needs to be computed by an algorithm,
or a Turing machine2. The only thing that matters is that the complete information about
Q(D) is already in V1(D), V2(D) . . ., Vk(D). In other words, and more precisely:

I Definition 1. We say that a set V = {V1, V2 . . . , Vk} of queries, written in some query
language LV (finitely) determine query Q, written in some query language LQ, denoted as
[V, Q] ∈ QDP∞e (LV ,LQ) (resp. QDP fe (LV ,LQ)) if for each two database instances (resp.
finite database instances) D,D′ such that for each 1 ≤ i ≤ k there is Vi(D) = Vi(D′) there is
also Q(D) = Q(D′).

A pair of structures D, D′ as above will be sometimes called a counterexample for determinacy.
In this paper we will mainly be interested in complexity (or rather decidability) of

problems of the form QDP_
e (_,_) which we think of as of proper determinacy problems,

rather than “rewriting” problems (which require different methods). Among them, we mainly
concentrate on problems of the form QDP∞e (_,_). But, at least when talking about the
negative results, this is only for convenience – analysis for the unrestricted case is simpler and
more intuitive than in the finite case, but does not require, as far as we know, significantly
different tools than the respective QDP fe (_,_) variants3.

2 Preliminaries

We mainly try to use standard notions and notations of relational database theory. In
particular, for a query Ψ, with k free variables, and for a database instance D, the notation
Ψ(D) denotes the k-ary relation resulting from applying the query Ψ to D. For a conjunctive

1 The distinction between query rewritability and query determinacy in the information-theoretic sense,
as considered in this paper, was not really fully realized before the end of 1990s. The earliest paper I
know which makes a clear distinction is [3]. Let me quote it here: Unfortunately, many of [the previous
papers on view-based query answering] do not distinguish between view-based query answering and
view-based query rewriting, and give raise to a sort of confusion between the two notions. [...] So, in
spite of the large amount of work on the subject, the relationship between view-based query rewriting and
view-based query answering is not completely clarified yet.

2 There are only two arguments now – since there is no rewriting now there is also no need to specify the
rewriting language.

3 In order to translate an undecidability proof for some QDP ∞
e (LV , LQ) to a proof of the same result for

QDP f
e (LV , LQ) one usually needs to recall what recursively inseparable sets are.
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query ψ by the frozen body of ψ, denoted as [ψ], we mean the relational structure4 (unique
up to isomorphism) whose elements5 are the variables of ψ and whose relational atoms are
the atomic formulas of ψ.

A tuple generating dependency (TGD) is a formula of the form: ∀x̄, ȳ (φ(x̄, ȳ) ⇒
∃z̄ ψ(x̄, z̄)), where φ and ψ are conjunctions of atomic formulas (which means that our TGDs
are “multi-head”). Formula φ is called the body of the TGD and ψ is its head. The universal
quantifier in front of the formula is always omitted and implicit.

Another notion we often use is the one of disjunctive TGD. They are like TGDs except
that ψ is now of the form ψ =

∨
1≤i≤k ψi(x̄, z̄i), for some k, where each ψi is a conjunction

of atomic formulas and each z̄i is a subtuple of z̄ (in this way we are trying to say that there
is the same set x̄ of free variables in each of the disjuncts of ψ, but the sets of quantified
variables may differ). An analogous condition holds for φ.

2.1 The zoo of query languages
Let us now define the classes of languages which occur as LQ or as LV .

We have two kinds of them. First kind are the fundamental languages from the relational
databases tradition. CQ is the language of conjunctive queries, being conjunctions of atomic
formulas preceded by some existential quantifiers. UCQ are unions of conjunctive queries,
which means they are formulas of the form ψ =

∨
1≤i≤k ∃z̄i ψi(x̄, z̄i), for some k, where each

ψi is a conjunction of atomic formulas (notice that we again assume that free variables are
the same in each disjunct).

We will also consider languages of unary (monadic) CQs and unary (monadic) UCQs
(notations mCQ and mUCQ will be used). These are queries with only one free variable (so
that Ψ(D) is a unary relation, that is a set of elements of D).

DL queries are ones defined by Datalog programs. We only consider boolean DL queries,
which means that there is always one special arity zero predicate goal in each program, and,
for a program P and a database instance D we think that P (D) is true if P proves goal in D.
Monadic Datalog (mDL) are DL queries defined by a program with all the IDB predicates
(this means, the predicates that occur in a head of any rule) being unary.

Then there is the second sort of query languages, coming from the tradition of graph
databases. Path Queries (PQ) are conjunctive queries of the form:

∃z1, z2, zm−1 E1(x, z1) ∧ E2(z1, z2) ∧ . . . Em(zm−1, y)

A Path Query always has two free variables. It says, about two elements of the structure,
that there is a path between them, labelled with the particular sequence (word) of labels
(predicate names). We identify such query with this word, for example the above PQ is
usually denoted as simply E1E2 . . . Em.

A union of Path Queries (UPQ) is a UCQ whose CQs are path queries. Hence it also has
two free variables, and it says, about x and y, for some finite set of words W , that there is a
path, from x to y, labelled with a w ∈W .

Finally, a Regular Path Query (RPQ) is like a union of Path Queries, but the set W no
longer is assumed to be finite: it can be any regular set over the language of labels. In a
sense RPQ is, for the graph databases tradition, what DL is for the relational databases one.

4 The terms “relational structure” and “database instance” mean the same thing for us.
5 Relational structures have elements (vertices). We never call them “constants” or “nulls”: the term
“constant” is reserved (according to the tradition of mathematical logic) for the constants of the language.
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2.2 Unfoldings of Datalog programs
We often want to build a minimal structure satisfying some query Ψ. The word “minimal”
means minimal from the point of view of positive information. For such minimal structure M
and for any other structure D with D |= Ψ we would like to be sure that a homomorphism
exists from M to D. This is easy for CQs – the frozen body of Ψ is always such a minimal
structure. If Ψ is a UCQ we no longer have the minimal M , but we have a finite number
M1,M2 . . .Mk of structures (frozen bodies of the disjuncts of Ψ) such that if D |= Ψ then
we are sure that there exists a homomorphism from one of the Mi to D.

But how about Datalog queries? Here we no longer have a finite set of such minimal
structures (unless the program in question is bounded). The minimal structures are now the
unfoldings of the program – all the possible ways of proving goal. It will be helpful at some
point to see that:

I Exercise 2. For each Datalog program P there exists a constant c such that all the
unfoldings of P have tree width bounded by c.

3 Introduction (2)

3.1 Examples
Let us see an example or two.

Suppose Q is a Path Query BACA (see Section 2.1 for explanation) and:

V1 = {BAC,ACA,AC} V2 = {BAC,ACA,CA}

Then [V1, Q] ∈ QDP∞e (PQ,PQ) while [V2, Q] is a negative instance of QDP∞e (PQ,PQ) –
there is no determinacy.

In order to prove the second claim (the one about [V2, Q]) it is enough to take:

D1 = {B(a, b), A(b, c), C(c, d), A(d, e)}

D2 = {B(a, b′), A(b′, c′), C(c′, d), A(b, c), C(c, d′), A(d′, e)}

Then V2(D1) = V2(D2) (exercise!) and D1 |= Q but D2 6|= Q. This was easy. But how could
we possibly prove the first claim?

3.2 What is this paper about?
Definition 1 is precise and simple. But it does not usually mean that for given LV ,LQ one
can easily figure out if the problem QDP∞e (LV ,LQ) (or QDP fe (LV ,LQ)) is decidable or not.

The first obstacle is that it is not obvious at all how to work with this definition. How
can we make sure that something is true for “each two database instances”?

To deal with this problem we ([8]) invented the notion of Green-Red Chase. The idea to
explain determinacy in terms of Chase was not totally absent in some of the previous papers,
including [11]. The Green-Red Chase is just a very little step forward. But, as we are going
to explain, due to this little step we suddenly can see things we were unable to notice before.

Green-Red Chase will be introduced in Section 4. Then, in Section 5 we are going to
show how the insight provided by Green-Red Chase can be very easily used to prove some
positive results.
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It was shown in [11] that QDP∞e (mCQ,CQ) is decidable. In Section 5.1 the Reader
is going to see how this result can be significantly strengthened, and without using the
complicated argument from [11]. We will show that, for example, QDP∞e (mUCQ,CQ) is
decidable. And everything will be very simple, almost trivial.

Another known positive result is the one from [1] (later slightly improved by [12]). It is
shown, in [A11], that QDP∞e (PQ,PQ) is decidable. In Section 5.2 we are going to build on
the top of the technique from [1] to show a slightly stronger result, that QDP∞e (PQ,RPQ)
is also decidable.

Both the techniques we present in Section 5 rely, apart from the insight given by the
Green-Red Chase, on simple automata-theoretic arguments.

Then we are going to move to the negative results. It was proved in the paper [13]
that QDP∞e (UCQ,UCQ) is undecidable. Then, in [6] we have shown undecidability of
QDP∞e (RPQ,RPQ) (solving a problem left open in the series of papers on “loselessness” of
Regular Path Queries, including [4]). In [7] we refined the technique from [6] showing that
QDP∞e (UPQ,UPQ) is also undecidable (notice that this result is also strictly stronger than
the aforementioned negative result from [13] about QDP∞e (UCQ,UCQ)). As it turns out6,
the technique in [6] and [7] relies mainly on, as I call it here, the Cold/Hot Trick. Thanks to
this trick one can easily encode a Turing machine computation inside the Green-Red Chase.
All that is needed is disjunction, both in LV and in LQ. In Section 6 we explain the trick
and show how it can be used to prove undecidability of QDP∞e (UCQ,UCQ).

But how about query languages without disjunction, where the Cold/Hot Trick does not
work? It turns out that proving lower bounds for variants of the form QDP∞e (CQ,_) is
quite hard. Indeed, the only negative result for a variant of this form known before 2015
was the one from [5] where undecidability of QDP∞e (CQ,DL) is proved. And, as we explain
in Section 7, this result does not really, on the technical level, have much to do with the
phenomenon of determinacy. It is just a simple consequence of undecidability of Datalog
programs containment.

In Section 4.3 we reveal the reason behind this hardness, which is the Curse of Pâte
Feuilletée7. Then, in Section 8 we show how to break the Curse of Pâte Feuilletée. This is the
most complicated part of this paper and we are only able to explain some ideas of our proof
technique from [8] and [9], where undecidability of QDP∞e (CQ,CQ) and of QDP fe (CQ,CQ)
is proven.

In the meantime, in Section 7, we report some work in progress [2] regarding the sound
semantics, which means variants of the form QDP∞s (_,_). We explain how Green-Red
Chase is also relevant in this case, and also how the simple automata-theoretic techniques
from Section 5.1 can be helpful there. We also remark that the Cold/Hot Trick can be useful
for the variants of QDP∞s (_,_) where disjunction is available, and that the Curse of Pâte
Feuilletée seems to be in force for at least one variant of QDP∞s (_,_) (for which decidability
of determinacy remains open).

4 The Green-Red Chase

The notion of Chase is one of the ubiquitous notions of database theory. Suppose we have a
set T of TGDs, a database instance D and a conjunctive query Q. And, for some reason, we
want to know whether T , D |= Q, which means that Q is true in all superstructures D+ of

6 From the perspective, it seems to me, that when writing [6] and [7] we did not understood the technique
well enough yet, and we did a poor job explaining what constitutes the core of the technique there and
what is the implementation.

7 This is how we called it with Tomek Gogacz, who was my student at that time, when we struggled, in
the years 2012-13, to solve the problem of the decidability status of QDP ∞

e (CQ, CQ).
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D satisfying all the TGDs in T . Then we can construct Chase(T , D) and check whether
Chase(T , D) |= Q. If Q is satisfied in Chase(T , D) then it is satisfied in all structures D+

as above8. Due to this property Chase(T , D) is called a universal structure.
How is this universal structure built? We start from9 Chase0 = D. Suppose that Chasei

is defined. Then Chasei+1 is defined by applying the following step, in parallel, to all possible
TGDs T ∈ T and all tuples c̄ of elements of Chasei: suppose the body φ(c̄, l̄) of T is satisfied
in Chasei for some tuple l̄ and that T postulates that there exists some tuple of elements k̄
which, together with the tuple c̄ of elements of Chasei, satisfy the head ψ(c̄, k̄). Then we
simply invent a tuple k̄ of new elements, and add them to Chasei together with the atoms
which occur in ψ. And – importantly – we do it in the minimal way, from the point of
view of the amount of positive knowledge: the elements that are being added are all
new, and they are never equal unless the TGD T explicitly requires them to be equal.

Finally, Chase(T , D) =
⋃
i∈N Chasei turns out to be the universal structure.

We use the same idea in the context of Definition 1. Imagine we have an instance of the
problem QDP∞e (LV ,LQ). Such an instance, to recall, will be a pair I consisting of a set of
V of queries and a query Q. Following the idea of Chase, in order to check whether there is
determinacy, we should try to construct a “universal counterexample” – a pair of database
instances” DG (as green) and DR (as red) such that (♣1) V (DG) = V (DR) for each V ∈ V,
that10 (♣2) DG |= Q, and that the two conditions:

(♠1) DR |= Q and (♠2) I ∈ QDP∞e (LV ,LQ)

are equivalent, which means that if there exists any counterexample for determinacy for this
instance then DG and DR are such an example.

4.1 Green and red structures and queries

We prefer however (and this is exactly the idea of the Green-Red Chase from [GM15]) to,
instead of constructing two structures DG and DR, over some signature Σ, construct a single
structure over a new signature ΣG ∪ ΣR consisting of colored (green and red) versions of the
predicates from Σ.

To speak about objects over this new signature it will be convenient to have two operators:
G and R, painting any object over Σ green or red. So, for example, for a query Φ over Σ
we will have its red version R(Φ), over ΣR. Another operator we will sometimes need is
daltonization (denoted dalt()). It takes green or red objects (over the signature ΣG ∪ ΣR)
and returns the same objects with colors removed (over Σ).

Now, instead of producing two structures over the signature Σ of I we will construct
one structure DGR over ΣG ∪ ΣR such that for each V ∈ V there will be (♣1) R(V )(DGR) =
G(V )(DGR), such that (♣2) DGR |= G(Q) and that the conditions:

(♠1) DGR |= R(Q) and (♠2) I ∈ QDP∞e (LV ,LQ)

are equivalent.

8 The “only if” direction is of course trivially true.
9 From now on we will skip the arguments of Chase: we will write simply Chasen instead of Chasen(T , D).
Unless we think this can lead to any confusion.

10As it turns out, one can restrict the attention to Q being a boolean query, by which we mean a query
without free variables.
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4.2 The Green-Red chase. The CQ case.
Now, to begin with, imagine the simplest case, that LV = LQ = CQ.

We want to construct DGR satisfying (♣1) R(V )(DGR) = G(V )(DGR) for each V ∈ V.
Let V be ∃x̄ φ(x̄, ȳ), where φ is a conjunction of atoms. Then (♣1) is equivalent to the
conjunction of two TGDs:

G(φ)(x̄, ȳ)⇒ ∃x̄′ R(φ)(x̄′, ȳ) R(φ)(x̄, ȳ)⇒ ∃x̄′ G(φ)(x̄′, ȳ)

Let TV be the set of all TGDs generated in this way from the queries in V.
Since we also want to have DGR |= G(Q), first take a minimal, from the point of view of

the amount of positive knowledge structure which satisfies G(Q), and see it as Chase0. In
the CQ case, which we now consider, there is just one such minimal structure: the frozen
body of G(Q). So Chase0 = G([Q]).

And now it follows from all we know about the Chase, that DGR = Chase(TV , G([Q])) is
indeed the universal structure we were looking for.

4.3 Discussion and the Curse of Pâte Feuilletée
Let us go back to the instance [V1, Q] from Section 3.1. One of the views from V1, is the
conjunctive query BAC, or ∃z1, z2 B(x, z1), A(z1, z2), C(z2, y). Then the two Green-Red
TGDs generated by BAC are:

(♥gr) G(B)(x, z1), G(A)(z1, z2), G(C)(z2, y)⇒ ∃z′1, z′2 R(B)(x, z′1), R(A)(z′1, z′2), R(C)(z′2, y)

and:

(♥rg) R(B)(x, z1), R(A)(z1, z2), R(C)(z2, y)⇒ ∃z′1, z′2 G(B)(x, z′1), G(A)(z′1, z′2), G(C)(z′2, y)

Imagine how (♥gr) is applied. Suppose we have some Chase2k already constructed11 and
there are some a1, a2, a3 and a4 there, which form a green BAC-path in this Chase2k (or, in
other words, we have a green copy of the frozen body of BAC). The TGD (♥gr) tells us
that there also should also be such red BAC-path, from a1 to a4. If there is no such path
in Chase2k then a new copy R(B)(a′1, a′2), R(A)(a′2, a′3), R(C)(a′3, a′4) of the frozen body of
R(BAC) is created, it is added to Chase2k, with a′1 identified with a1 in the new structure
and a′4 identified with a4. The vertices a′2 and a′3 are not identified with anything in the old
structure – they are new in Chase2k+1.
An important take away from the example is that when constructing Chasen+1 from
Chasen we produce many copies of the (colored versions) of the frozen bodies of queries in V
and join them with Chasen by identifying the elements that relate to the free variables of the
respective V (like the x and y in the example) with elements of Chasen. The elements that
relate to the quantified variables of the respective V are the “new” elements of Chasen+1.
Back to the [V1, Q] from Section 3.1. Now we can prove that indeed [V1, Q] ∈
QDP∞e (PQ,PQ). Let us run the Green-Red chase. There will be12 Chase0 = {G(B)(a, b),
G(A)(b, c), G(C)(c, d), G(A)(d, e)} for some elements a, b, c, d, e. Then, Chase1 = Chase0 ∪
{R(B)(a, b1), R(A)(b1, c1), R(C)(c1, d), R(A)(b, c2), R(C)(c2, d), R(A)(b, c3), R(C)(c3, d3)}

There will be also, among some other atoms: G(A)(b1, c4), G(C)(c4, d) in Chase2 and
R(A)(b1, c5), R(C)(c5, d5) and R(A)(d5, e) in Chase3. But the last three atoms, together
with R(B)(a, b1) form R([Q]) and, by universality of the Green-Red chase we get that
[V1, Q] ∈ QDP∞e (PQ,PQ).

11Why 2k? Wait, Observation 3 is coming.
12The Reader is invited to run the chase herself, to make sure that what I write here makes sense.
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I Observation 3. When constructing Chase2k only green atoms are added. When construct-
ing Chase2k+1 only red atoms are added.

Proof. Induction. Clearly, since there is nothing red in Chase0 only red atoms will be added
when constructing Chase1. For the induction step, since nothing red (resp. green) was added
while constructing Chase2k (resp. Chase2k+1), all the TGDs of the form (♥rg) (resp. (♥gr))
TGDs are satisfied in Chase2k (resp. Chase2k+1). J

For the following Observation recall that we still assume that LV = CQ.

I Observation 4. For each n ∈ N there exists a homomorphism hn from dalt(Chasen) to
dalt(Chase0), with hn ⊆ hn+1.

Similar observation, in the context of the chase with two separate structures rather than
one green-red structure can be found in [13].

Proof. Induction. Clearly, h0 is the identity. For the induction step, in order to keep the
notations light, we will use the above example. Suppose some elements of Chasen+1 were
added by an application of the (♠gr), as in the example. Then define hn+1(a′2) = hn(a2) and
hn+1(a′3) = hn(a3). For any element a of Chasen define hn+1(a) = hn(a). J

It immediately follows from the observation that
⋃
n∈N hn is a homomorphism from⋃

n∈N dalt(Chasen) to dalt(Chase0).

The Curse of Pâte Feuilletée. When trying to prove a lower bound for a problem of the
form QDP∞e (CQ,_) one soon realizes that Observation 4 is the main obstacle. How can we
possibly encode anything in the structure of Chase if all we get there is basically Chase0
repeated infinitely many times? Each time something new is added to the structure it is
merely a (re-colored) version of something that already was there. What we get is a pâte
feuilletée, with infinite number of almost identical layers, each of them being a copy of G([Q])
and nothing but air between them.

4.4 The Green-Red Chase. The non-CQ case.
Now let LV = LQ = UCQ. Imagine we have an instance [V, Q] of QDP∞e (UCQ,UCQ) and
recall that we assume that for each V ∈ V all the disjuncts of V have the same free variables.

Again, we want to have DGR |= G(Q). But no longer the minimal, from the point of view
of the amount of positive knowledge structure which satisfies G(Q) exists. There are several
such minimal structures, namely the (green versions) of the frozen bodies of the CQs being
the disjuncts of Q.

We need to choose one of these disjuncts, call it Q′, and put Chase0 = G([Q′]).
But who is this “we” here? There was no need to ask this question in Section 4.2 as the

Chase there was a normal, deterministic chase, leading to the same result regardless of who
performs it. But now there is a choice, so who makes it and with what goal on mind?

In [6] and [7] we do not use the word “Chase” at all in this context. Instead, we consider
a game, with a single player, called the Fugitive, and we call this version of Chase “the game
of Escape”. The goal of this player is to show that the QDP instance in question is a negative
one – there is no determinacy. In the process of his Escape the Fugitive tries to construct
a green-red structure DGR for which it holds that (♣1) G(V)(DGR) = R(V)(DGR) and (♣2)
DGR |= G(Q) but DGR 6|= R(Q).
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So it is the Fugitive who begins the game choosing some disjunct Q′ of Q, and defining
Chase0 as G([Q′]). At this point he is already sure that (♣2) is satisfied. But how about
(♣1)?

Like in Section 4.2 we need to ask what it means, for a structure DGR, that (♣V1 )
R(V )(DGR) = G(V )(DGR) for a V ∈ V (which is a UCQ now). It is easy to see that now
(♣V1 ) is equivalent to the conjunction of two disjunctive TGDs:

(♥gr)
∨

0≤i<kG(φi)(x̄′i, ȳ)⇒
∨

0≤i<k ∃x̄′i R(φi)(x̄i, ȳ)

’ (♥rg)
∨

0≤i<k R(φi)(x̄′i, ȳ)⇒
∨

0≤i<k ∃x̄′i G(φi)(x̄i, ȳ)

where k is the number of disjuncts in V , the formula φi is the quantifier-free part of the i-th
disjunct, and ȳ are the free variables of (each conjunct of) V .

Now suppose the body of (♥gr) is satisfied in some13 Chase2n. Then Chase2n |=
G(φi)(ā, b̄) for some φi and some tuple ā, b̄ of elements of Chase2n. An application of our
disjunctive TGD will produce a tuple ā′ in Chase2n+1 such that Chase2n+1 |= R(φi′)(ā′, b̄).
But there is no reason for i′ to equal i, and it is the job of the Fugitive to choose the i′ which
suits him best (remember, his goal is to reach the fixpoint without satisfying R(Q)).

Now, a lemma in [6] and [7] is that such a game indeed characterizes determinacy: the
Fugitive has a winning strategy if and only if [V, Q] 6∈ QDP∞e (UCQ,UCQ). The proof of
the lemma goes in the footsteps of the standard proof of universality of Chase, which means
that “induction” and “homomorphism” are the keywords.

5 Some applications on the positive side

5.1 Unary queries
It is proven in [11] (it is not a long proof but the argument is not so easy to understand)
that QDP∞e (mCQ,CQ,CQ) equals to QDP∞e (mCQ,CQ). In other words, if a set of unary
conjunctive queries determines a CQ, then there exists a rewriting, which itself is a conjunctive
query. Then a corollary follows in [11] that QDP∞e (mCQ,CQ) is decidable.

But it seems to me that a stronger decidability result, not provable in any obvious way
by the aforementioned rewriting argument, can be easily proved using the insight given by
the Green-Red Chase14. Let LV be any query language, consisting of unary queries, and
such that (*) all the minimal bodies of queries are of bounded tree width (so, for example
LV may contain unions of unary conjunctive queries and/or Monadic DL queries). And let
also LQ be any15 query language satisfying (*). Then QDP∞e (LV ,LQ) is decidable.

Let us now explain the proof idea using the example of QDP∞e (mUCQ,CQ). Suppose
that we have given a set V of mUCQs and a CQ Q. Then (and this is the sentence
which summarizes the whole proof) any structure which the Fugitive can construct as his
Chase(TV , G([Q])) is a structure having the tree width bounded by some k: indeed, the bags
of the tree decomposition in question are the (red or green versions of) the frozen bodies
of the conjunctive queries being the disjuncts of the queries from V. This is because such

13There are many structures now which can be built by the Fugitive as his Chasem, and as his final
Chase. But – hoping this will not lead to additional confusion – we call each of them Chasem or Chase.

14While reading this subsection the Reader may notice that the idea of having, instead of two structures
over Σ, a single structure over a green-red signature is of critical importance here.

15 If it was a regular paper we should be slightly more formal here: condition (*) should also require that
the set of minimal bodies of queries is regular. This is of course satisfied for mUCQs and for mDL.
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a frozen body, when being added to Chase at some point, only connects to the current
structure via the elements being substituted for its free variables, which in this case is a
single element16.

Now one can construct an automaton A1 which, for a given structure A, of tree width
bounded by k, decides whether A |= TV and A |= G([Q]). It will accept any structure that
can be built as Chase(TV , G([Q])) and probably also many other structures which, while
satisfying TV and containing G([Q]), cannot be produced by a Green-Red Chase procedure.

One can also construct another automaton A2 which, on any structure with the tree
width bounded by k, decides whether R([Q]) is contained in this structure. Then we apply
the standard automata-theoretic procedure to check whether there exists a structure accepted
by A1 but not by A2.

5.2 Slightly beyond Path Queries
It is proved in [1] that QDP∞e (PQ,PQ) is decidable. And the decision algorithm, while
quite simple, gives a really very nice insight into PQ determinacy. In our language the
algorithm can be expressed as follows.

Given a path query Q and a set V of path queries first construct Chase0, which, as we
know, will be G([Q]). This structure is a green path. Let s be the starting point of this path
and let t be its endpoint.

Then construct Chase1. This means that a set of new red paths connecting some pairs
of elements of Chase0 will be added. Consider now the graph being the red part of Chase1
(that is all the edges that are in Chase1 but not in Chase0). It is not terribly hard to prove
(and is left for the Reader as a rather non-trivial exercise) that [V, Q] ∈ QDP∞e (PQ,PQ) if
and only if s and t are in the same connected component17 of this graph.

Notice that this really works for the [V1, Q] from Section 3.1: the a and e there indeed
are connected via the red edges of Chase1 (one needs to make 3 steps going “forward”, then
two steps “backward” and then again 3 steps “forward”).

Using the above “connectivity” criterion one18 can show that:

I Theorem 5. QDP∞e (PQ,RPQ) is decidable.

For the proof of the theorem suppose Q and V are given. Q is a query defined as a union
of some regular set R of path queries, and each of the queries in V is a path query, so there
is no disjunction there. This means that the only choice the Fugitive has here is when he
constructs Chase0. He can take, as Chase0, any green path G([w]), from some s to t, for
some w ∈ R

He is deemed to lose if for each such choice of w the vertices s and t will be in the
same connected component of the red part of Chase1(TV , G([w])). He wins (and so [V, Q] 6∈
QDP∞e (PQ,RPQ)) if he can find a w for which s and t will be in two different connected
components.

16As I learned from a discussion with Sebastian Rudolph, this argument holds true even for non-unary
queries if all the free variables always occur in a single atom of each disjunct of V . The general picture
is that what we actually do here is deciding query entailment for the theory TV , and this is decidable
for sets of TGDs which are frontier guarded. One can also notice here that for positive results for the
respective QDP f

e (LV , LQ) variants known theorems regarding Finite Controllability for certain sets of
TGDs can be applied.

17We think of an undirected connected component of a directed graph here.
18Theorem 5 comes from the unpublished master’s thesis by my student Grzegorz Głuch.
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How can we decide whether such w exists? First of all recall how Chase1(TV , G([w]))
is constructed: for two vertices a, b of G([w]) connected with some word G(v) (which is a
sub-word of w) a new red path from a to b, labelled with R(v) is created in Chase1 if and
only if v ∈ V. We imagine we have a green straight path from s to t, with w being the
sequence of the labels of its edges (this is Chase0), and red arcs over this green straight path
joining each two vertices which are connected with a path being some green v ∈ V.

It is now easy to construct a two-way non-deterministic finite automaton which will
accept w if and only if s and t are in the same connected component of the red part of
Chase1: the automaton starts its run in the head in s, and then, at each stage of the run19
it first guesses whether it should now walk down some red arc (towards the t) or up (back,
towards s), and which v ∈ V is the label of the arc it now takes. And then it just walks
down or up G([v]) imagining it moves down or up a red arc (and checking whether it indeed
is labelled with v). It accepts when t is reached after completing some number of stages.

Notice that in the case of of the instance [V1, Q] from Section 3.1 our two-way automaton
will first go towards t (the v will be BAC), then back towards s (the v will be AC), and
finally it will reach t after the third stage where v will be ACA.

Now, this two-way nondeterministic finite automaton can be translated into a normal
DFA AV . We also have a DFA AR, deciding the language R. All we need to do to see
whether the Fugitive is deemed to lose is to decide, using handbook methods, the containment
of languages for AR and AV .

I Exercise 6. Why doesn’t it prove that also QDP∞e (RPQ,RPQ) is decidable? Exactly the
same automata trick would work in this case.

Notice that, instead of building this two-way automaton we could just use the fact that
(since the red arcs are short and local) the structure Chase1 is of bounded tree width (and
the bound does not depend on w).

6 How disjunction leads to undecidability. QDP ∞
e (UCQ, UCQ).

If disjunction is available in LQ and LV then the Curse of Pâte Feuilletée is not in force:
the Fugitive can, while executing the Green-Red Chase, add to the structure something
that is not just a copy of Chase0. For example, suppose that some query V ∈ V equals
∃x̄ φ(y, z, x̄) ∧ φ′(y, z, x̄), for some CQs φ and φ′, and that R(V ) is satisfied in some Chasei,
because there is Chasei |= R(φ)(a, b) for some elements a and b. Suppose however that
G(V )(a, b) is not satisfied in Chasei. Then the Fugitive must satisfy G(V ) in Chasei+1 and
he can do it by adding to Chasei+1 a new copy of G([φ]), connected to Chasei via a and b
(“a re-colored copy of something we already saw”) or a new copy of G([φ′]) (connected in the
same way). So he can produce something new. But can we force him to? This is what the
Cold/Hot trick is about, which we are going to present in this Section.

The example we are going use is QDP∞e (UCQ,UCQ). We will show that the problem is
undecidable. The result comes from [11], but the proof we present here is based on the ideas
from [6], where we employed the cold/hot trick to show undecidability of QDP∞e (RPQ,RPQ)
(and of QDP fe (RPQ,RPQ) ) and from [7] where analogous results were shown for UPQ as
both LV and LQ. Clearly, both RPQ and UPQ support disjunction, and disjunction is all
we need for the Cold/Hot trick to work.

19The run will consist of an unbounded number of stages, each of them comprising a bounded number of
steps.
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6.1 The Cold/Hot Trick
Imagine that our signature Σ = ΣC ∪̇ ΣH , so it is a disjoint union of cold and hot relation
symbols20. This means that there can possibly be four kinds of atoms in the Green-Red
Chase: red-warm, red-cold, green-warm and green-cold. The idea is to construct21 Q and V
in such a way that if the Fugitive chooses anything green-hot or red-cold then he loses the
game immediately. In other words he will need to always make sure that the green part of
the Chase is entirely cold and the red part is entirely hot.

Let Lukewarm be the set of all conjunctive queries of the form22 C(x, x′)∧H(y, y′) where
– unsurprisingly – C is cold and H is hot. Our UCQ Q is:

∃x, x′, y, y′ αC(x, y) ∨ ωH(x, y) ∨
∨

φ∈Lukewarm

φ(x, x′, y, y′)

where αC is a certain cold relation symbol and ωH is a certain hot one. Our set of UCQs V
is the disjoint union of Vgood and Vbad.

Each UCQ V ∈ Vgood is of the form V H ∨ V C where V H is a CQ being a conjunction
of hot atoms and the V C is a CQ being a conjunction of cold ones. We assume that
αC(x, y) ∧ βH(x, y) is one of the queries in Vgood, for some hot βH , and that this is the
only place where αC occurs in Vgood The set of queries Vgood is where the instance of some
undecidable problem is going to be encoded. But we do not need to think of the details now.

At this point Vbad is more interesting, which is defined as the set containing all the queries
from Lukewarm and the query ωH(x, y). All the queries in Vbad are CQs.

Let, as always, TV be the set of all green-red disjunctive TGDs generated by V.
Now let us analyze what the Fugitive choices for Chase0 are:

I Observation 7. The Fugitive must pick G([αC ]) as Chase0 or he will lose immediately.

Proof. See what his other choices of minimal structures satisfying Q are. One is to pick
G([ωH ]). But notice that G(ωH)(x, y) ⇒ R(ωH)(x, y) is one of the TGDs in TV . Its body
would be satisfied in Chase0 so its head would need to be satisfied in Chase1. So, it would
be that Chase1 |= R(ωH) and hence Chase1 |= R(Q) and the game is over for the Fugitive.

The other choice would be to pick, as Chase0, the structure G([φ]) for some lukewarm
query φ. But then he loses again, since in this case G(φ) ⇒ R(φ) is one of the TGDs in
TV . J

Once we know that Chase0 = {G(αC)(s, t)} for some s, t, let the Fugitive build Chase1:

I Observation 8. Chase1 = Chase0 ∪ {R(βH)(s, t)} or the Fugitive loses immediately.

Proof. Recall that αC(x, y) ∧ βH(x, y) is one of the queries in Vgood. Hence the TGD:

G(αC)(x, y) ∨G(βH)(x, y)⇒ R(αC)(x, y) ∨R(βH)(x, y)

is in TV . So there either must be R(αC)(s, t) in Chase1 or R(βH)(s, t). But having R(αC)(s, t)
means that Chase1 |= R(Q) and loses the game for the Fugitive. J

20Let us also assume that all the relations in Σ are binary.
21This is an undecidability proof, so we construct Q and V, depending on the instance of our favourite

undecidable problem.
22Queries from the set Lukewarm, as defined here, are UCQs, but they are not UPQs (or RPQs). When

implementing the idea of the Cold/Hot Trick in order to prove undecidability of QDP ∞
e (UP Q, UP Q)

(or QDP ∞
e (RP Q, RP Q)) one needs to invent something that would play the same role as Lukewarm

but would also be expressible as path queries. This is easy in the RP Q case [6] but a bit complicated in
the case of UP Q [7].
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We are now sure that (unless the Fugitive is suicidal) there must be one green cold atom
(namely, G(αC)(s, t)) and one red hot atom (namely, G(βH)(s, t)) in Chase1. Finally:

I Observation 9. The Fugitive loses immediately if he ever produces a red cold atom or a
green hot atom.

Proof. Clearly, if a red cold atom was ever produced then it would satisfy, together with
R(βH)(s, t), some R(φ) for a lukewarm query φ. And red lukewarm queries are forbidden (by
Q) if the Fugitive wants to win23. Now notice that if a green hot atom was ever produced
then it would satisfy, together with G(αC)(s, t), some G(φ) for a lukewarm query φ. In this
case, in the next step of Chase, R(φ) would also be satisfied. J

6.2 Now undecidability follows easily
To explain the remaining part of the proof let us use an example. Imagine Vgood consists,
apart from αC(x, y) ∧ βH(x, y), of the queries:

(i) βH(x, y) ∨ CEFβ (x, y)
(ii) CEFβ (x, z) ∨ ∃y E(x, y) ∨ F (y, z)
(iii) F (x, y) ∨ CEFF (x, y)
(iv) CEFF (x, z) ∨ ∃y E(x, y) ∨ F (y, z)

Where E and F are hot and CEFβ and CEFF (x, y) are cold.
Now, let us recall that if the Fugitive wants to win, there must be R(β)(s, t) in Chase1.

Then the red-green TGD generated by (i) forces the Fugitive to have, in Chase2, either
G(βH)(s, t) or G(CEFβ )(s, t). But, by Observation 9, G(βH)(s, t) is forbidden, so there will
be G(CEFβ )(s, t) in Chase2. Then, by analogous reasoning, there will be a new element s1
in Chase3, such that Chase3 |= R(E)(s, s1), R(F )(s1, t).

I Exercise 10. There will be Chase5 |= R(E)(s, s1), R(E)(s1, s2), R(F )(s2, t) or the Fugitive
will lose.

In this way, using queries like (i)-(iv) we can easily encode the word problem for finitely
represented semigroups: for each word w which is, in the given semigroup, equivalent to the
word βH we will finally get a red path in Chase, from s to t, labelled with the symbols of
w. Like in our example, where the semigroup is represented by βH = EF and F = EF we
soon forced the Fugitive to produce the path EEF . The Fugitive of course loses if at some
point he is forced to produce atom ωH . But it is a very well known undecidable problem
whether, in a given finitely represented semigroup, there is any word w which contains ωH
and is equivalent to the word βH .

7 Aside: determinacy under sound semantics

A variant of Query Determinacy Problem, studied in a number of papers in 1990s and early
2000s, and enjoying some new interest recently [2] is determinacy under sound semantics.
It combines determinacy as formalized by Definition 1 with the observation that one never
can be sure whether a queried database represents all the facts about some phenomenon,

23Rev. 3:16 (ESV) “So, because you are lukewarm, and neither hot nor cold, I will spit you out of my
mouth.”
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and thus all the views should be seen as correct but potentially incomplete. The precise
definition is complicated24, and we decided not to copy it here. And we actually do not need
to copy it here, because we have another one, which happens to be equivalent25:

I Definition 11. QDP∞s (LV ,LQ) is the set of such instances [V, Q], with Q ∈ LQ, V ⊆ LV
that regardless of the strategy of the Fugitive it holds that Chase1 |= R(Q).

Notice that it is almost like our characterization of QDP∞e with the only difference, that
for determinacy under “exact semantics” to hold, the Fugitive must be deemed to satisfy R(Q)
anywhere at any point of the Green-Red Chase, while for sound semantics this must happen
already in Chase1. This in particular means that QDP∞s is a (much) stronger notion than
QDP∞e for the same parameters. It also follows directly from the definition that if languages
LQ and LV have the property that each query has only finitely many “minimal structures”
satisfying this query, then there are only finitely many possible structures Chase1 and
QDP∞s (LQ,LV ) is trivially decidable (so, for example QDP∞s (UCQ,UCQ) is decidable).

I Exercise 12 (CGLV02). Show that QDP∞s (RPQ,RPQ) is decidable.

Hint: Like in Section 5.2 (compare to Exercise 6). But easier: a one-way finite automaton is
sufficient here.

On the other hand, it is very easy to see that:

I Observation 13. QDP∞s (CQ,DL) is undecidable, even if the CQs defining the views are
projection-free.

Proof. For the proof of the observation first recall that the containment of Datalog programs
is undecidable. In other words it is undecidable whether, for two given programs φ and ψ, it
holds that for each database instance D if goal ∈ φ(D) then goal ∈ ψ(D). One can of course
assume here that the sets of IDB predicates of φ and of ψ are disjoint (except of course for
the arity zero predicate goal which is an IDB both in φ and in ψ). We also assume that both
the programs are over some set Σ0 of EDB predicates.

Now, let tr (like “trigger”) be a new arity zero EDB predicate, and let φ′ be a new
Datalog program, which is exactly like φ but with the additional atom tr in the body of each
rule. Which means that φ′ behaves exactly like φ on the instances where tr is true, and does
nothing at all on the instances where tr is false.

Let now our Q be the union of ψ and φ′ and let our V contain a query E(x̄) for each26
predicate E in Σ0. We claim that [V, Q] ∈ QDP∞s (CQ,DL) if and only if ψ contains φ.

To see why the claim is true first suppose that Chase0 is somehow constructed and notice
that, due to the way V is defined, each atom of Chase1 is either some G(A) which was
already in Chase0 or R(A). Or, in other words, Chase1 is a union of Chase0 and a red
version of Chase0. Except for tr: it may happen that Chase0 |= G(tr), but there is no way
to have R(tr) in Chase1. This in particular means that no rule of R(φ′) can ever be applied
in Chase1 and the only way to have Chase1 |= R(goal) is to prove the R(goal) using R(ψ).

Now let us go back one step and think of the ways in which the Fugitive can pick Chase0.
It is any minimal structure in which the program G(Q) proves G(goal), in other words it
is an “unfolding” of the Datalog program G(Q). There are infinitely many possible choices

24The notion of certain answers plays a role there.
25This equivalence, I understand, is proved in [2] (I didn’t have the opportunity to see the paper yet).
The main difficulty here is to understand the original definition of QDPs (see for example [4]).

26Recall that tr 6∈ Σ0.
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for the Fugitive (if there is any recursion in Q). But the main choice he has, from the point
of view of this argument, is whether he wants G(Q) to be proven by means of the program
G(ψ) or G(φ′).

In the first case, when Chase0 is an unfolding of G(ψ), it follows from the previous
paragraph, that the red part of Chase1 is an unfolding of R(ψ), so R(goal) can be proved
there and the Fugitive loses. So the only way for him is to take, as Chase0, an unfolding of
G(φ′).

Notice that in such case the red part of Chase1 is any (chosen by the Fugitive) unfolding
of R(φ) (not R(φ′) but R(φ), as there is no R(tr) in Chase1 !). Now, ψ contains φ if and
only if in every such unfolding R(goal) will be provable by R(ψ). J

The variants of QDP∞s (LV ,LQ) studied in [2] are ones with LQ being Datalog programs
syntactically restricted in such a way that containment is decidable, and the above very
simple argument cannot be applied. One of the theorems they prove is that:

I Theorem 14. QDP∞s (UCQ,mDL) is undecidable.

The proof is by a clever application of the cold/hot trick.
On the positive side [2] shows that:

I Theorem 15. QDP∞s (CQ,mDL) is decidable.

I did not have the opportunity to see the proof from [2] so far, but I understand that it
uses a tree automata argument, basically following the ideas presented in Section 5.1. Any
unfolding of a monadic datalog program (and thus also every possible Chase0) is a tree of
bounded tree width. Then, for a Pâte Feuilletée reason nothing really new is added, only
elements which were close to each other in Chase0 can be close to each other in Chase1, and
the red part of Chase1 is of bounded tree width too. And then, since the Datalog program
in question is monadic, it can be decided by an automaton whether R(goal) can be proven
on such a bounded tree width Chase1.

I am summarizing the proof of Theorem 15 in order to remark that things are a bit subtle
here. For example, one could ask, why isn’t Chase1 a structure of bounded tree width even
in the QDP∞s (UCQ,mDL) case? The answer is in a query:

(A(x) ∧B(y)) ∨ ∃z (E(x, z) ∧ E(y, z))

With such query in V two remote elements a, b of Chase0, such that Chase0 |= G(A(a))
and Chase0 |= G(B(b)) can be connected27, in Chase1, via a new element e such that
Chase1 |= R(E(a, e)), R(E(b, e)).

Another subtlety regards the situation where we allow constants in the language. Normally,
one would think, adding constants to the signature of a Datalog program should not change
much: we can always replace S(x, y, c) (where S is a relation symbol and c is a constant
of the language) with an atom of a new predicate S3=c(x, y). Since there are finitely many
constants, such an operation could possibly cost us in the terms of complexity of problems,
but should not impact their decidability.

But imagine that for every variable x occurring somewhere in the body of any rule
in Q, there is an atom E(x, c) in this body. Which means that every element of Chase0
will be connected, by G(E), to c. It looks innocent. But imagine also that the query

27This works because one of the CQs in our UCQ is connected and the other is not. It seems to me that
the version of QDP ∞

s (UCQ, mDL) where only such UCQs are allowed which have each of their CQs
connected, is decidable, by the same proof which works for QDP ∞

s (CQ, mDL).
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∃z E(x, z), E(y, z) is in V. Then, by the rules of the Green-Red Chase, for each pair of
elements a, b of Chase0 there will be a new element s in Chase1 such that Chase1 |=
R(E)(a, s), R(E)(b, s).

In consequence Chase1 will not have bounded tree width. Decidability of the version of
QDP∞s (mDL,CQ) where constants are allowed in Datalog is, to the best of my knowledge,
left open in [2].

8 Encoding. Spiders live here.

In Section 6 we explained how the Green-Red Chase can be used to simulate some computing
device (which, in this case, was the word problem for semigroups). The mechanism we
constructed there crucially required disjunction in the views from V (and in Q). Can anything
similar be done without disjunction? In [8] and [9] Spiders are the answer.

8.1 Spiders and spider queries
Let K ∈ N be a fixed natural number. Full Spider is any structure S isomorphic to
{H(a)} ∪ {Ti(a, bi), Ci(bi, ci) : 1 ≤ i ≤ K} ∪ {2 more atoms to come}. There can be of
course Full Red Spider, which is R(S), and Full Green Spider, G(S).

But the workhorses of our construction are Lame Spiders. An i-Lame Red Spider SiR, for
1 ≤ i ≤ K, is a Full Red Spider with the atom R(Ci)(bi, ci) replaced with G(Ci)(bi, ci). An
i-Lame Green Spider SiG is defined in an analogous way.

So a (Green or Red) Full Spider is a creature, either entirely red or entirely green, with a
head (where the predicate H is) and K legs of length two. Legs are distinguishable and each
of them comprises a thigh (predicate T ) and a calf (predicate C). A Lame Spider, from the
daltonized point of view, looks like a Full Spider, but has one calf of the opposite color.

To operate on Lame Spiders we define Spider Queries. For 1 ≤ i, j ≤ K we define the
spider query Ψi,j as a CQ (with variables of the form zn as free variables):

∃x, ȳ H(x) ∧ Ti(x, zi) ∧ Tj(x, zj) ∧
∧
k 6=i,j

(Tk(x, yk) ∧Ck(yk, zk) ∧ 2 more atoms to come

So each Spider Query looks like a colorless Full Spider, but with two calves missing.
A pivotal example now. Let K = 4, i = 2, j = 3 and imagine there is an i-Lame Red

Spider S somewhere28 in Chasel (with the nodes a, b1, . . . b4, c1 . . . c4). Suppose also that
Ψi,j is in V, meaning that the Red-Green TGD θ generated by Ψi,j must be satisfied in
Chase.

Let us convince ourselves that the body of θ matches with S: there is an atom R(H)(x)
in the body of θ and there indeed is R(H)(a) in S. There is R(T1)(x, y1) ∧ R(C1)(y1, z1)
in the body of θ and there indeed are R(C1)(a, b1) and R(C1)(b1, c1) in S (and same if we
took 4 instead of 1). Finally, there are R(T2)(x, z2) and R(T3)(x, z3) in the body of θ and
R(T2)(a, b2) and R(T3)(a, b3) in S.

I Exercise 16 (Important in order to understand the idea). Notice that there would be no such
match if we considered the same S but Ψ1,3 instead of Ψ2,3.

Back to our example. We have already noticed that the body of the TGD θ matches with
S. Now suppose the head of θ is not satisfied in Chasel (for this match). Let us see what
will be produced when the red-green TGD generated by θ is applied. We know that new

28 S is a copy, in some Chasel, of Si
R
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elements will be added in Chasel+1 for all existentially quantified variables in θ: new a′ will
be produced, with G(H)(a′) and with G(T2)(a′, b2) and G(T3)(a′, b3) . And also new b′1 and
b′4 will be created, with G(T1)(a′, b′1), G(C1)(b′1, c1) and G(T4)(a′, b′4), G(C4)(b′4, c4).

Now see, the newly produced atoms, together with atoms R(C2)(b2, c2) and G(C1)(b1, c1)
of S form a j-Lame Green Spider! We assumed that an i-Lame Red Spider is in Chasel
and that Ψi,j is in V and we proved that in this case there must be a j-Lame Green Spider
in Chasel+1! And of course the same holds true for the colors swapped. We proved (by
example):

I Observation 17 (The law of Spider Algebra). If there is SiG somewhere in Chase, and Ψi,j

is in V then SjR is also in the same Chase (and the same for the colors swapped).

And we almost29 proved:

I Observation 18. Let G = 〈{1, 2, . . .K}, E〉 be an undirected graph. Let V consist of all
the queries Ψi,j such that [i, j] ∈ E. Let 1 ≤ k, k′ ≤ K. Then the following two conditions
are equivalent:

k and k′ are in the same connected component of G;
some (red or green) k-Lame Spider is in Chase if and only if some k′-Lame Spider is.

Observation 18 shows how the mechanism of spiders (together with spider queries) can
do some computing for us. But of course proving that determinacy is at least as difficult
as graph reachability is not a big deal. And even if it was, the proof is not yet complete.
The input/output procedures still remain to be a small problem: we need to have G([Q])
as Chase0, which is entirely green. So where can we get our k-Lame Spider from? And we
know that determinacy holds once R([Q]) occurs somewhere in Chase, but R([Q]) is entirely
red, so it is not our k′-Lame Spider either. This small problem is solved in [8] by a minor
modification of the definition of spider query. But let us skip it here.

8.2 High level view of spiders
In the proof of undecidability of QDP∞e (UCQ,UCQ), as presented in Section 6, we con-
structed our example Vgood ⊆ V in such a way, that (for example) whenever there were two
vertices a, b in Chase such that R(EF )(a, b) was true in Chase (since it was true in some
Chasei) then also R(EEF )(a, b) was true in Chase (since it was true in some Chasei+2).
This example was meant to convince the Reader that any instance of the word problem for
finitely represented semigroups can be encoded.

If we wanted to be more precise we would probably have said that for a proof of
undecidability two tricks are needed: first, we need to be able to ensure that whenever
there are two vertices a, b in Chase such that if Chase |= R(AZ)(a, b) then also Chase |=
R(Z ′A′)(a, b) (this reflects a single operation of a Turing machine: think of Z as the machine
head, in certain state). Second, we need to always be able to give this Turing machine more
space, so we need to be able to ensure that whenever there are two vertices a, b in Chase
such that Chase |= R(B)(a, b) then also Chase |= R(BB)(a, b).

In [8] we show how to employ spiders for the two tricks. Two disjoint ideas are needed
for that, and here we only have room to try to explain one of them – the first one.

It is now time to reveal what the two more atoms in the definition of Spider are. They
are An(a, an) and Ta(ta, a). The elements an and ta are called the Spider’s antenna and tail
(a is , as it was earlier, its head). We also have respective two atoms An(x, xa) ∧ Ta(xt, x)
as the two more atoms in the definition of Spider Query.

29Clearly, the ⇐ implication is missing.
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So far nothing has changed, apart from things being slightly more complicated. Observa-
tion 17 still holds true.

But imagine now a complicated structure, full of Spiders (Lame and Full, Red and Green),
possibly some of them sharing some body parts (like they do in the Chase in Observation 18).
And imagine there are two kinds of vertices of this structure: major and minor ones. The
major elements serve only as antennas and tails of some Spiders (and each tail or antenna
is a major element). Minor elements are spiders’ heads and the elements of the legs. Now
imagine you are taking your reading glasses off and now you only see the major vertices – the
tails and antennas. And you also see the Spiders between them, but only as abstract objects,
without being able to notice the details. What you now get is a graph, whose vertices are
the major vertices of the old structure, and whose edges are labelled with labels from the set
{SiR,SiG : 1 ≤ i ≤ K} ∪ {SR,SG} – there is an edge labelled with SiR from a vertex a to b
in the “abstract” graph if there are major vertices a and b and a Spider SiR in the original
structure, with a being the tail of this Spider and b being its antenna. Nobody is going to be
surprised that we will think of such Spider as of an atom SiR(a, b).

8.3 Two-spider queries
Let now Ψi,j be a Spider Query, as defined in Section 8.1, with the two additional atoms
that came in Section 8.2. Let us write Ψi,j as ψi,j ∧An(x, xa) ∧ Ta(xt, x). Let also Ψ′i′,j′ be
a new spider query, like Ψi′,j′ , but with a fresh set of variables – every variable that occurs
in Ψi′,j′ is primed30 in Ψi′,j′ . Let Ψ′i′,j′ = ψ′i′,j′ ∧An(x′, x′a) ∧ Ta(x′t, x′).

Now define Φi
′,j′

i,j as the query31:

∃xt ψi,j ∧ ψ′i′,j′ ∧An(x, xa) ∧ Ta(xt, x) ∧An(x′, x′a) ∧ Ta(x′t, x′) ∧ xt = x′a

The query Ψi′,j′

i,j , like any other query, generates two Green-Red TGDs, call them ♥gr and
♥rg. Let us try to understand when the body of ♥gr is satisfied in some Chasel. The
no-glasses view is that there need to be three major vertices in the structure, a, b = a′ and
b′ and it must hold that Chasel |= SiG(a, b) (suppose this is the case) or Chasel |= SjG(a, b)
and that Chasel |= Si

′

G(a′, b′) (suppose this is the case) or Chasel |= Sj
′

G (a′, b′). Then the
TGD ♥gr will be applied, creating a new node c (matching with the existentially quantified
variable xt = x′a) , and – according to the Law of Spider Algebra – new spiders/edges between
the major vertices: SjR(a, c) and Sj

′

R (c, b′).
Notice that our Ψi′,j′

i,j (or, rather, the TGDs it generates) does exactly the “first trick”
from Section 8.2.

8.4 An easy hill to climb: undecidability of QDP ∞
e (CQ, MDL)

Without the second trick (as we called it in Section 8.2) we of course will not be able to
present the proof here, of the result from [8], that QDP∞e (CQ,CQ) is undecidable. But at
least we can briefly explain how one can use the “first trick” from Section 8.3 to prove:

I Theorem 19. QDP∞e (CQ,mDL) is undecidable.

30Of course, i′ and j′ are not variables. They are some fixed natural numbers, which may, or may not, be
different from i and j.

31We use equality in this CQ, which is of course only needed to keep the notation reasonably simple.



J. Marcinkowski 2:19

It is shown in [5] that QDP∞e (CQ,DL) is undecidable. The proof is essentially what the
Reader could see in Section 7, and relies on undecidability of Datalog programs containment.
Notice that Theorem 19 is already beyond the reach of the technique from [5], as containment
of monadic Datalog programs is decidable.

To cook a proof of Theorem 19 we will need three ingredients. First is a trivial lemma:

I Lemma 20. The following problem is undecidable:
Given a set of word equations32 of the form SiGSi

′

G = SjRS
j′

R , and three numbers33
1 ≤ k, k′, k′′ ≤ K. Is it true that, for each m ∈ N, the above equations imply that:

Sk
′

G (SkG)mSk
′′

G = Sk
′

R (SkR)mSk
′′

R ?

Our second ingredient, which we are not going to discuss in details here, is the the
input/output procedure. We can write a query, quite similar to a Spider Query, which will
add34, to the Chase, the edge SkR(a, b) everywhere where it was SG(a, b) and will add the
edge SR(a, b) everywhere where it was SkG(a, b). And also, we can write two more similar
queries, one of them will add Sk′

R (a, b) everywhere where it was SG(a, b) ∧ α(a), where α
is a new unary predicate, and the other one will add Sk′′

R (a, b) everywhere where it was
SG(a, b) ∧ ω(b), with ω being another new unary predicate. This may sound cryptic, but
only until you read about the third ingredient, which is our monadic Datalog program Q.
Let Φ be the conjunctive query whose frozen body is the Full Spider S, as defined at the
beginning of Section 8.1, with variables xa and xt matching with the spider’s antenna and
tail. The program Q will consist of 3 rules:

Φ(xt, xa), α(xt)⇒M(xa)
M(xt),Φ(xt, xa)⇒M(xa)

M(xt),Φ(xt, xa), ω(xa)⇒ goal

Now imagine a Green-Red chase forQ and TV , which are the Green-Red TGDs representing
our given set of word equations. The elements of V are two-spider queries, which are CQs,
so there will be no room for the Fugitive for any maneuver there. But he can choose Chase0,
as it is going to be the green version of some unfolding of Q. Unfoldings of Q are chains of
Full Spiders, with the antenna of a predecessor always being the tail of its successor, and
with the first tail marked with α and last antenna marked with ω. The input/output rules
will produce another chain, of Lame Red Spiders, with the same antennas and tails, and
with Sk′

R as the first Spider, Sk′′

R as the last one, and with SkR everywhere in between. Then,
in the process of Chase, all the words equal to Sk′

R (SkR)mSk′′

R (modulo the equations enforced
by TV) will be created. Which means that if Sk′

G (SkG)mSk′′

G = Sk′

R (SkR)mSk′′

R then the word
Sk′

G (SkG)mSk′′

G will be created in Chase at some stage. Then, in the next step of Chase, due
to the input/output queries, a red version of an unfolding of Q will be produced, causing the
Fugitive to lose the game. Of course many details remain unexplained here, including the
“only if” direction, but all the important ideas have been presented here.

32We consider a semigroup here, whose generators are (names of) Green and Red Lame Spiders.
33We already met these, or at least similar, k and k′, in Observation 18.
34More precisely, a red-green TGD generated by this query will add.
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Juan L. Reutter
School of Engineering, Pontificia Universidad Catolica, Santiago, Chile
IMFD, Santiago, Chile

Abstract
As graph databases grow in popularity, decades of work in graph query languages and models are
materialising in industry standards and in the construction of new graph database systems. However,
this surge in graph systems has in turn opened up a series of new, interesting research problems
related to graph databases.

Our first set of problems has to do with more efficient ways of computing the answers of graph
queries, specifically graph patterns, path queries, and combinations between them. Traditionally,
researchers in graph databases have pointed out that relational systems are ill-equipped to process
these types of queries, and if one looks at the performance of native graph database systems, there is
clearly a lot of room for improvement. The talk focuses on two possible directions for improving the
state of the art in graph query processing. The first is implementing worst-case optimal algorithms
for processing graph patterns that traduce in relational queries with several joins. Some advances are
already in development (see e.g. Nguyen, Dung, et al. “Join processing for graph patterns: An old
dog with new tricks.” GRADES’15. or Hogan, Aidan, et al. “A Worst-Case Optimal Join Algorithm
for SPARQL.” ISWC’19.), but we are still far from a full fledged solution: most algorithms require
complex data structures, or need further support in terms of heuristics to select an order in which
joins are processed. Second, we need to understand what is the best way of evaluating path queries
(that is, finding all pairs of nodes connected by a path), in such a way that these results can be
further integrated with other query results in a graph system pipeline. We already have complexity
results regarding path computation and enumeration for different semantics of path queries (see e.g.
Martens, Wim, and Tina Trautner. “Evaluation and enumeration problems for regular path queries.”
ICDT’18. or Bagan, Guillaume, Angela Bonifati, and Benoit Groz. “A trichotomy for regular simple
path queries on graphs.” PODS’13.), but still very little is known in terms of optimal processing of
path queries when inside a tractable fragment.

Our second set of problems is related to graph analytics, one of the current selling points of
graph databases. Systems should be able to run more complex analytical queries involving tasks
such as more complex path finding, centrality or clustering. It is also important to be able to run
these algorithms not over native graphs, but perhaps over a certain set of nodes or edges previously
selected by a graph query, and one may also want to pose further queries over the result of the
analytics task. Finally, all of this should be done in an efficient way, specially in the prospect that
graph databases may contain a huge amount of nodes. In this talk I will discuss possible approaches
to perform these operations, covering aspects from the design of languages for graph analytics
to efficient ways of processing them, and also comparing the expressive power of graph analytics
solutions with other forms of graph computation.
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Abstract
The logic of information flows (LIF) has recently been proposed as a general framework in the field
of knowledge representation. In this framework, tasks of a procedural nature can still be modeled in
a declarative, logic-based fashion. In this paper, we focus on the task of query processing under
limited access patterns, a well-studied problem in the database literature. We show that LIF is
well-suited for modeling this task. Toward this goal, we introduce a variant of LIF called “forward”
LIF, in a first-order setting. We define FLIFio, a syntactical fragment of forward LIF, and show
that it corresponds exactly to the “executable” fragment of first-order logic defined by Nash and
Ludäscher. The definition of FLIFio involves a classification of the free variables of an expression
into “input” and “output” variables. Our result hinges on inertia and determinacy laws for forward
LIF expressions, which are interesting in their own right. These laws are formulated in terms of the
input and output variables.
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1 Introduction

An information source is said to have a limited access pattern if it can only be accessed by
providing values for a specified subset of the attributes; the source will then respond with
tuples giving values for the remaining attributes. A typical example is a restricted telephone
directory D(name; tel) that will show the phone numbers for a given name, but not the other
way around.

© Heba Aamer, Bart Bogaerts, Dimitri Surinx, Eugenia Ternovska, and Jan Van den Bussche;
licensed under Creative Commons License CC-BY

23rd International Conference on Database Theory (ICDT 2020).
Editors: Carsten Lutz and Jean Christoph Jung; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2020.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Executable FO and LIF

The querying of information sources with limited access patterns has been quite intensively
investigated. The research is motivated by diverse considerations, such as query processing
using indices, or information integration on the Web. We refer to the review given by
Benedikt et al. [5, Chapter 3.12]. We also cite the work by Calì and collaborators [7, 8, 9].

In this paper, we offer a fresh perspective on querying with limited access patterns, based
on the Logic of Information Flows (LIF). This framework has been recently introduced
in the field of knowledge representation [18, 19]. The general aim of LIF is to model how
information propagates in complex systems. LIF allows machine-independent characteriza-
tions of computation; in particular, it allows tasks of a procedural nature to be modeled in a
declarative fashion.

In the full setting, LIF is a rich family of logics with higher-order features. The present
paper is self-contained, however, and we will work in a lightweight, first-order fragment, which
we call forward LIF (FLIF). Specifically, we will define a well-behaved, syntactic fragment of
FLIF, called io-disjoint FLIF. Our main result then is to establish an equivalence between
io-disjoint FLIF and executable first-order logic (executable FO).

Executable FO [15] is a syntactic fragment of FO in which formulas can be evaluated over
information sources in such a way that the limited access patterns are respected. Furthermore,
the syntactical restrictions are not very severe and become looser the more free variables are
declared as input.

The standard way of formalizing query processing with limited access patterns is by a
form of relational algebra programs, called plans [5]. In such plans, database relations can
only be accessed by joining them on their input attributes with a relation that is either
given as input or has already been computed. Apart from that, plans can use the usual
relational algebra operations. Plans can be expressed by executable FO formulas. The strong
result [6] is known that every (boolean) FO formula with the semantic property of being
access-determined can be evaluated by a plan. We will not need this result further on, but it
provides a strong justification for working with executable FO formulas.

Our language, FLIF, provides a new, navigational perspective on query processing with
limited access patterns. In our approach, we formalize the database as a graph of variable
bindings. Directed edges are labeled with the names of source relations (we are simplifying a
bit here). A directed edge ν1

R−→ ν2 indicates that, if we access R with input values given by
ν1, then the output values in ν2 are a possible result. In a manner very similar to navigational
or XPath-like graph query languages [16, 14, 4, 11, 17, 3], FLIF expressions represent paths
in the graph.

The io-disjoint fragment of FLIF is defined in terms of input and output variables that
are inferred for expressions. We establish inertia and input-determinacy properties for FLIF
expressions which are instrumental in proving our equivalence between io-disjoint expressions
and executable FO, but are also interesting in their own right. Apart from the intuitive
navigational nature, another advantage of io-disjoint FLIF is that it is very obvious how
expressions in this language can be evaluated by plans. As we will show, the structure of the
evaluation plan closely follows the shape of the expression, and all joins can be taken to be
natural joins; no attribute renamings are needed.

This paper is further organized as follows. Section 2 recalls the basic setting of executable
FO on databases with limited access patterns. Section 3 introduces the language FLIF.
Section 4 gives translations between executable FO and io-disjoint FLIF, showing that the
evaluation problems for the two languages can be naturally reduced to each other. Section 5
discusses evaluation plans. We conclude in Section 6.
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2 Executable FO

Relational database schemas are commonly formalized as finite relational vocabularies, i.e.,
finite collections of relation names, each name with an associated arity (a natural number).
To model limited access patterns, we additionally specify an input arity for each name. For
example, if R has arity five and input arity two, this means that we can only access R by
giving input values, say a1 and a2, for the first two arguments; R will then respond with all
tuples (x1, x2, x3, x4, x5) in R where x1 = a1 and x2 = a2.

Thus, formally, we define a database schema as a triple S = (Names, ar, iar), where
Names is a set of relation names; ar assigns a natural number ar(R) to each name R in
Names, called the arity of R; and iar similarly assigns an input arity to each R, such that
iar(R) ≤ ar(R).
I Remark 1. In the literature, a more general notion of schema is often used, allowing,
for each relation name, several possible sets of input arguments; each such set is called an
access method. In this paper, we stick to the simplest setting where there is only one access
method per relation, consisting of the first k arguments, where k is set by the input arity. All
subtleties and difficulties already show up in this setting. Nevertheless, our definitions and
results can be easily generalized to the setting with multiple access methods per relation. J

The notion of database instance remains the standard one. Formally, we fix a countably
infinite universe dom of atomic data elements, also called constants. Now an instance D of a
schema S assigns to each relation name R an ar(R)-ary relation D(R) on dom. We say that
D is finite if every relation D(R) is finite. The active domain of D, denoted by adom(D), is
the set of all constants appearing in the relations of D.

The syntax and semantics of first-order logic (FO, relational calculus) over S is well
known [2]. In formulas, we allow constants only in equalities of the form x = c, where x is a
variable and c is a constant. Also, in writing relation atoms, we find it clearer to separate
input arguments from output arguments by a semicolon. Thus, we write relation atoms in
the form R(x̄; ȳ), where x̄ and ȳ are tuples of variables such that the length of x̄ is iar(R)
and the length of ȳ is ar(R)− iar(R). The set of free variables of a formula ϕ is denoted by
FV(ϕ).

We use the “natural” semantics [2] and let variables in formulas range over the whole of
dom. Formally, a valuation on a set X of variables is a mapping ν : X → dom. Given an
instance D of S, an FO formula ϕ over S, and a valuation ν defined on FV(ϕ), the definition
of when ϕ is satisfied by D and ν, denoted by D, ν |= ϕ, is standard.

A well-known problem with the natural semantics for general FO formulas is that ϕ
may be satisfied by infinitely many valuations on FV(ϕ), even if D is finite. However, as
motivated in the Introduction, we will focus on executable formulas, formally defined in this
section. These formulas can safely be used under the natural semantics.

The notion of when a formula is executable is defined relative to a set of variables V,
which specifies the variables for which input values are already given. We first give a few
examples.

I Example 2.
Let ϕ be the formula R(x; y). As mentioned above, this notation makes clear that the
input arity of R is one. If we provide an input value for x, then the database will give
us all y such that R(x, y) holds. Indeed, ϕ will turn out to be {x}-executable. Giving
a value for the first argument of R is mandatory, so ϕ is neither ∅-executable nor {y}-
executable. However, it is certainly allowed to provide input values for both x and y; in
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that case we are merely testing if R(x, y) holds for the given pair (x, y). Thus, ϕ is also
{x, y}-executable. In general, a V-executable formula will also be V ′-executable for any
V ′ ⊇ V.
Also the formula ∃y R(x; y) is {x}-executable. In contrast, the formula ∃xR(x; y) is not,
because even if a value for x is given as input, it will be ignored due to the existential
quantification. In fact, the latter formula is not V-executable for any V.
The formula R(x; y) ∧ S(y; z) is {x}-executable, intuitively because each y returned by
the formula R(x; y) can be fed into the formula S(y; z), which is {y}-executable in itself.
The formula R(x; y) ∨ S(x; z) is not {x}-executable, because any y returned by R(x; y)
would already satisfy the formula, leaving variable z unconstrained. This would lead to
an infinite number of satisfying valuations. The formula is neither {x, z}-executable; if
S(x, z) holds for the given values for x and z, then y is left unconstrained. Of course, the
formula is {x, y, z}-executable.
For a similar reason, ¬R(x; y) is only V-executable for V containing x and y. J

Formally, for any set of variables V, the V-executable formulas are defined as follows.
An equality x = y, for variables x and y, is V-executable if at least one of x and y belongs
to V.
An equality x = c, for a variable x and a constant c, is always V-executable.
A relation atom R(x̄; ȳ) is V-executable if X ⊆ V , where X is the set of variables from x̄.
A negation ¬ϕ is V-executable if ϕ is, and moreover FV(ϕ) ⊆ V.
A conjunction ϕ ∧ ψ is V-executable if ϕ is, and moreover ψ is V ∪ FV(ϕ)-executable.
A disjunction ϕ∨ψ is V-executable if both ϕ and ψ are, and moreover FV(ϕ)4FV(ψ) ⊆ V .
Here, 4 denotes symmetric difference.
An existential quantification ∃xϕ is V-executable if ϕ is V − {x}-executable.

Note that universal quantification is not part of the syntax of executable FO.

I Remark 3. The naturalness of the above definition may be attested by its reinvention in
the context of a different application, namely, inferring bounds on result sizes of FO queries.
Indeed, the notion of “controlled” formula that was introduced for this purpose, strikingly
conforms to that of executable formula [10]. In the setting of controlled formulas, the input
arity k of an n-ary relation R is interpreted as an integrity constraint. An instance D satisfies
the constraint if for each k-tuple ā of constants, the number of n − k-tuples b̄ such that
ā · b̄ ∈ D(R) stays below a fixed upper bound. J

Given an FO formula ϕ and a finite set of variables V such that ϕ is V-executable, we
describe the following task:

Problem: The evaluation problem Evalϕ,V(D, νin) for ϕ with input variables V.
Input: A database instance D and a valuation νin on V.
Output: The set of all valuations ν on V ∪ FV(ϕ) such that νin ⊆ ν and D, ν |= ϕ.

As mentioned in the Introduction, this problem is known to be solvable by a relational
algebra plan respecting the access patterns. In particular, if D is finite, the output is always
finite: each valuation ν in the output can be shown to take only values in adom(D)∪ νin(V).1

1 Actually, a stronger property can be shown: only values that are “accessible” from νin in D can be
taken [5], and if this accessible set is finite, the output of the evaluation problem is finite. This will also
follow immediately from our equivalence between executable FO and FLIFio.
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3 Forward LIF, inputs, and outputs

In this section, we introduce the language FLIF.2 It will be notationally convenient here to
work under the following proviso:

I Proviso 4. When we write “valuation” without specifying on which variables it is defined,
we assume it is defined on all variables. (Formally, we assume a countably infinite universe
of variables.)

Importantly, we will define the semantics of an FLIF expression in such a way that it
depends only on the value of the valuations on the free variables of the expression. This
situation is comparable to the classical way in which the semantics of first-order logic is often
defined.

The central idea is to view a database as a graph. The nodes of the graph are all possible
valuations (hence the graph is infinite.) The edges in the graph are labeled with atomic
FLIF expressions. Over a schema S, there are five kinds of atomic expressions τ , given by
the following grammar:

τ ::= R(x̄; ȳ) | (x = y) | (x = c) | (x := y) | (x := c)

Here, R(x̄; ȳ) is a relation atom over S as in first-order logic, x and y are variables, and c is
a constant.

Given an instance D of S, and an atomic expression τ , we define the set of τ -labeled
edges in the graph representation of D as a set JτKD of ordered pairs of valuations, as follows.
1. JR(x̄; ȳ)KD is the set of all pairs (ν1, ν2) of valuations such that the concatenation

ν1(x̄) · ν2(ȳ) belongs to D(R), and ν1 and ν2 agree outside the variables in ȳ.
2. J(x := y)KD is the set of all pairs (ν1, ν2) of valuations such that ν2 = ν1[x := ν1(y)].

Thus, ν2(x) = ν1(y) and ν2 agrees with ν1 on all other variables.
3. Similarly, J(x := c)KD is the set of all pairs (ν1, ν2) of valuations such that ν2 = ν1[x := c].
4. J(x = y)KD is the set of all identical pairs (ν, ν) such that ν(x) = ν(y).
5. Likewise, J(x = c)KD is the set of all identical pairs (ν, ν) such that ν(x) = c.

The syntax of all FLIF expressions α is now given by the following grammar:

α ::= τ | α ; α | α ∪ α | α ∩ α | α− α

Here, τ ranges over atomic expressions as defined above. The semantics of ‘;’ is composition,
defined as follows:

Jα1 ; α2KD = {(ν1, ν3) | ∃ν2 : (ν1, ν2) ∈ Jα1KD and (ν2, ν3) ∈ Jα2KD}

The semantics of the set operations are standard union, intersection and set difference.
We see that FLIF expressions describe paths in the graph, in the form of source–target

pairs. Composition is used to navigate through the graph, and to conjoin paths. Paths can
be branched using union, merged using intersection, and excluded using set difference.
I Remark 5. The way the smantics of FLIF is defined is in line with first-order dynamic logic
or dynamic predicate logic (DPL) [13, 12]. DPL gives a dynamic interpretation to existential
quantification and interprets conjunction as composition. For example, the FLIF expression
R(x; y) ; S(y; z) would be expressed in DPL as ∃y R(x, y) ∧ ∃z S(y, z). On the other hand,
disjunction in DPL is always interpreted as a test. Because of this, FLIF expressions such as
R(x; y) ∪ S(u; v) seem inexpressible in DPL.

2 Pronounced as “eff-lif”.
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I Example 6. Consider a simple Facebook abstraction with a single binary relation F of
input arity one. When given a person as input, F returns all their friends. We assume that
this relation is symmetric. Suppose, for an input person x (say, a famous person), we want to
find all people who are friends with at least two friends of x. Formally, we want to navigate
from a valuation ν1 giving a value for x, to all valuations ν2 giving values to variables y1, y2,
and z, such that

ν1(x) is friends with both ν2(y1) and ν2(y2);
ν2(y1) and ν2(y2) are both friends with ν2(z); and
ν2(y1) 6= ν2(y2).

This can be done by the expression α− (α ; (y1 = y2)), where α is the expression

(F (x; y1) ; F (y1; z)) ∩ (F (x; y2) ; F (y2; z)).

I Remark 7. In the above example, it would be more efficient to simply write α ; (y1 6= y2).
For simplicity, we have not added nonequality tests in FLIF as they are formally redundant
in the presence of set difference, but they can easily be added in practice. J

In every expression we can identify the input and the output variables. Intuitively, the
output variables are those that can change value along the execution path; the input variables
are those whose value at the beginning of the path is needed in order to know the possible
values for the output variables. These intuitions will be formalized below. We first give some
examples.

I Example 8.
In the expression α from Example 6, the only input variable is x, and the other variables
are output variables.
FLIF, in general, allows expressions where a variable is both input and output. For
example, assume dom contains the natural numbers and consider a binary relation Inc
of input arity one that holds pairs of natural numbers (n, n+ 1). Then it is reasonable to
use an expression Inc(x;x) to increment the value x. Formally, this expression defines
all pairs of valuations (ν1, ν2) such that ν2(x) = ν1(x) + 1 (and ν2 agrees with ν1 on all
other variables).
Consider the expression R(x; y1) ∩ S(x; y2). Then not only x, but also y1 and y2 are
input variables. Indeed, the expression R(x; y1) will pair an input valuation ν1 with an
output valuation ν2 that sets y1 such that R(ν1(x), ν2(y1)) holds, but ν2 will have the
same value as ν1 on any other variable. In particular, ν2(y2) = ν1(y2). The expression
S(x; y2) has a similar behavior, but with y1 and y2 interchanged. Thus, the intersection
expression checks two conditions on the input valuation; formally, it defines all identical
pairs (ν, ν) for which R(ν(x), ν(y1)) and S(ν(x), ν(y2)) hold. Since the expression only
tests conditions, it has no output variables.
On the other hand, for the expression R(x; y1)∪ S(x; y2), the output variables are y1 and
y2. Indeed, consider an input valuation ν1 with ν1(x) = a. The expression pairs ν1 either
with a valuation giving a new value for y1, or with a valuation giving a new value for
y2. However, y1 and y2 are also input variables (together with x). Indeed, when pairing
ν1 with a valuation ν2 that sets y2 to some b for which S(a, b) holds, we must know the
value of ν1(y1) so as to preserve it in ν2. A similar argument holds for y2. J

Table 1 now formally defines, for any expression α, the sets I(α) and O(α) of input and
output variables. We denote the union of I(α) and O(α) by FV(α). We refer to this set as
the free variables of α, but note that it actually equals the set of all variables occurring in
the expression.
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Table 1 Input and output variables of FLIF expressions. In the case of R(x̄; ȳ), the set X is the
set of variables in x̄, and the set Y is the set of variables in ȳ. Recall that 4 is symmetric difference.

α I(α) O(α)

R(x̄; ȳ) X Y

(x = y) {x, y} ∅

(x := y) {y} {x}

(x = c) {x} ∅

(x := c) ∅ {x}

α1;α2 I(α1) ∪ (I(α2)−O(α1)) O(α1) ∪O(α2)

α1 ∪ α2 I(α1) ∪ I(α2) ∪ (O(α1)4O(α2)) O(α1) ∪O(α2)

α1 ∩ α2 I(α1) ∪ I(α2) ∪ (O(α1)4O(α2)) O(α1) ∩O(α2)

α1 − α2 I(α1) ∪ I(α2) ∪ (O(α1)4O(α2)) O(α1)

We next establish three propositions that show that our definition of inputs and outputs,
which is purely syntactic, reflects actual properties of the semantics. The first proposition
confirms an intuitive property and can be straightforwardly verified by induction.

I Proposition 9 (Law of inertia). If (ν1, ν2) ∈ JαKD then ν2 agrees with ν1 outside O(α).

The second proposition confirms, as announced earlier, that the semantics of expressions
depends only on the free variables; outside FV(α), the binary relation JαKD is cylindrical.
The proof for difference expressions is not immediate, and uses the law of inertia.

I Proposition 10 (Free variable property). Let (ν1, ν2) ∈ JαKD and let ν′1 and ν′2 be valuations
such that

ν′1 agrees with ν1 on FV(α), and
ν′2 agrees with ν2 on FV(α), and agrees with ν′1 outside FV(α).

Then also (ν′1, ν′2) ∈ JαKD.

The third proposition is the most important one, and is proven using the previous two. It
confirms that the values for the input variables determine the values for the output variables.

I Proposition 11 (Input determinacy). Let (ν1, ν2) ∈ JαKD and let ν′1 be a valuation that
agrees with ν1 on I(α). Then there exists a valuation ν′2 that agrees with ν2 on O(α), such
that (ν′1, ν′2) ∈ JαKD.

By the law of inertia, the valuation ν′2 given by the above proposition is unique.
We are now in a position to formulate the FLIF evaluation problem. Given an expression

α, we consider the following task:3

Problem: The evaluation problem Evalα(D, νin) for α.
Input: A database instance D and a valuation νin on I(α).
Output: The set {νout|FV(α) | ∃ν′in : νin ⊆ ν′in and (ν′in, νout) ∈ JαKD}.

3 For a valuation ν on a set of variables X (possibly all variables), and a subset Y of X, we use ν|Y to
denote the restriction of ν to X.
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By inertia and input determinacy, the choice of ν′in in the definition of the output does not
matter. Moreover, if D is finite, the output is finite as well. As was the case for executable FO,
the above problem can be solved by a relational algebra plan respecting the access patterns.
Unfortunately, since the sets of input and output variables of general FLIF expressions need
not be disjoint, the plan is a bit intricate; we have to work with relations that have two
copies for every variable, to keep track of how assignments are paired up.

For this reason, in the next section, we introduce a well-behaved fragment called io-disjoint
FLIF. Plans for expressions in this fragment can be generated in a very transparent manner,
as is shown in Section 5.

4 Executable FO and io-disjoint FLIF

Consider an FLIF expression α for which the set O(α) is disjoint from I(α). Then any
pair (ν1, ν2) ∈ JαKD satisfies that ν1 and ν2 are equal on I(α). Put differently, every
νout ∈ Evalα(D, νin) is equal to νin on I(α); all that the evaluation does is expand the input
valuation with output values for the new output variables. This makes the evaluation process
for expressions α where I(β) ∩O(β) = ∅, for every subexpression β of α (including α itself),
very transparent. We call such expressions io-disjoint.

The following proposition makes it easier to check if an expression is io-disjoint:

I Proposition 12. The following alternative definition of io-disjointness is equivalent to the
definition given above:

An atomic expression R(x̄; ȳ) is io-disjoint if X ∩ Y = ∅, where X is the set of variables
in x̄, and Y is the set of variables in ȳ.
Atomic expressions of the form (x = y), (x = c), (x := y) or (x := c) are io-disjoint.
A composition α1 ; α2 is io-disjoint if α1 and α2 are, and moreover I(α1) ∩O(α2) = ∅.
A union α1 ∪ α2 is io-disjoint if α1 and α2 are, and moreover O(α1) = O(α2).
An intersection α1 ∩ α2 is io-disjoint if α1 and α2 are.
A difference α1 − α2 is io-disjoint if α1 and α2 are, and moreover O(α1) ⊆ O(α2).

The fragment of io-disjoint expressions is denoted by FLIFio. We are going to show
that FLIFio is expressive enough, in the sense that executable FO can be translated into
FLIFio. The converse translation is also possible, so, FLIFio exactly matches executable FO
in expressive power.

Recall the evaluation problem for executable FO, as defined at the end of Section 2, and
the evaluation problem for α, as defined at the end of the previous section. We can now
formulate the translation result from executable FO to FLIFio as follows.

I Theorem 13. Let ϕ be a V-executable formula over schema S. There exists an FLIFio

expression α over S with the following properties:
1. I(α) = V.
2. O(α) ⊇ FV(ϕ)− V.
3. For every D and νin, we have Evalϕ,V(D, νin) = πFV(ϕ)∪V(Evalα(D, νin)).
The length of α is polynomial in the length of ϕ and the cardinality of V.

The above projection operator π restricts each valuation in Evalα(D, νin) to FV(ϕ) ∪ V. It
is imposed because we allow O(α) to have auxiliary variables not in FV(ϕ).

I Example 14. Before giving the proof, we give a few examples.
Suppose ϕ is R(x; y) with input variable x. Then, as expected, α can be taken to be
R(x; y).
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However, now consider T (x;x, y), again with input variable x. Intuitively, the formula
asks for outputs (u, y) where u equals x. Hence, a suitable io-disjoint translation is
T (x;u, y) ; (u = x).
If ϕ is R(x; y) ∧ S(y; z), still with input variable x, we can take R(x; y) ; S(y; z) for α.
The same expression also serves for the formula ∃y ϕ. However, if ϕ is ∃y R(x; y) with
V = {x, y}, we must use a fresh variable and use R(x;u) ; (y = y) for α. The test (y = y)
may seem spurious but is needed to ensure that I(α) = V.
Suppose ϕ is R(x;x) ∨ S(y; ) with V = {x, y}. For this V, we translate R(x;x) to
R(x;u) ; (x = u) ; (y = y). Similarly, S(y; ) is translated to S(y; ) ; (x = x). Unfortunately
the union of these two expressions is not io-disjoint. We can formally solve this by
composing the second expression with a dummy assignment to u. So the final α can be
taken to be R(x;u) ; (x = u) ; (y = y) ∪ S(y; ) ; (x = x) ; (u := 42). Since the output
valuations will be projected on {x, y}, the choice of the constant assigned to u is irrelevant.
A similar trick can be used for negation. For example, if ϕ is ¬R(x; y) with V = {x, y},
then α can be taken to be (u := 42) − R(x;u) ; (u = y) ; (u := 42).

Proof. We only describe the translation; its correctness, which hinges on the law of inertia
and input determinacy, also involves verifying that io-disjointness holds.

If ϕ is a relation atom R(x̄; ȳ), then α is R(x̄; z̄) ; ξ ; ξ′, where z̄ is obtained from ȳ

by replacing each variable from V by a fresh variable. The expression ξ consists of the
composition of all equalities (yi = zi) where yi is a variable from ȳ that is in V and zi is the
corresponding fresh variable. The expression ξ′ consists of the composition of all equalities
(u = u) with u a variable in V not mentioned in ϕ.

If ϕ is x = y, then α is
(x = y) ; ξ if x, y ∈ V
(x := y) ; ξ if x /∈ V
(y := x) ; ξ if y /∈ V,

where ξ is the composition of all equalities (u = u) with u a variable in V not mentioned
in ϕ.

If ϕ is x = c, then α is{
(x = c) ; ξ if x ∈ V
(x := c) ; ξ otherwise,

with ξ as in the previous case.
If ϕ is ϕ1∧ϕ2, then by induction we have an expression α1 for ϕ1 and V , and an expression

α2 for ϕ2 and V ∪ FV(ϕ1). Now α can be taken to be α1 ; α2.
If ϕ is ∃xϕ1, then without loss of generality we may assume that x /∈ V . By induction

we have an expression α1 for ϕ1 and V. This expression also works for ϕ.
If ϕ is ϕ1 ∨ ϕ2, then by induction we have an expression αi for ϕi and V, for i = 1, 2.

Fix an arbitrary constant c, and let ξ1 be the composition of all expressions (z := c) for
z ∈ O(α2)−O(α1); let ξ2 be defined symmetrically. Now α can be taken to be α1 ; ξ1∪α2 ; ξ2.

Finally, if ϕ is ¬ϕ1, then by induction we have an expression α1 for ϕ1 and V. Fix an
arbitrary constant c, and let ξ be the composition of all expressions (z := c) for z ∈ O(α1). (If
O(α1) is empty, we add an additional fresh variable.) Then α can be taken to be ξ − α1 ;ξ. J

We next turn to the converse translation. Here, a sharper equivalence is possible, since
executable FO has an explicit quantification operation which is lacking in FLIF.
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Table 2 Translation showing how FLIFio embeds in executable FO. In the table, ϕi abbreviates
ϕαi for i = 1, 2.

α ϕα

R(x̄; ȳ) R(x̄; ȳ)

(x = y) x = y

(x := y) x = y

x = c x = c

x := c x = c

α1;α2 (∃x1 . . .∃xk ϕ1) ∧ ϕ2 where {x1, . . . , xk} = O(α1) ∩O(α2)

α1 ∪ α2 ϕ1 ∨ ϕ2

α1 ∩ α2 ϕ1 ∧ ϕ2

α1 − α2 ϕ1 ∧ ¬ϕ2

I Theorem 15. Let α be an FLIFio expression over schema S. There exists an I(α)-
executable FO formula ϕα over S, with FV(ϕα) = FV(α), such that for every D and νin, we
have Evalα(D, νin) = Evalϕα,I(α)(D, νin). The length of ϕα is linear in the length of α.

I Example 16. To illustrate the proof, consider the expression R(x; y, u) ;S(x; z, u). Proced-
urally, this expression first retrieves a (y, u)-binding from R for the given x. It proceeds to
retrieve a (z, u)-binding from S for the given x, effectively overwriting the previous binding
for u. Thus, a correct translation into executable FO is (∃uR(x; y, u)) ∧ S(x; z, u).

For another example, consider the assignment (x := y). This translates to x = y

considered as a {y}-executable formula. The equality test (x = y) also translates to x = y,
but considered as an {x, y}-executable formula.

Proof. Table 2 shows the translation, which is almost an isomorphic embedding, except for
the case of composition. The correctness of the translation for composition again hinges on
inertia and input determinacy. J

Notably, in the proof of Theorem 13, we do not need the intersection operation. Hence,
by translating FLIFio to executable FO and then back to FLIFio, we obtain that intersection
is redundant in FLIFio, in the following sense:

I Corollary 17. For every FLIFio expression α there exists a FLIFio expression α′ with the
following properties:
1. α′ does not use the intersection operation.
2. I(α′) = I(α).
3. O(α′) ⊇ O(α).
4. For every D and νin, we have Evalα(D, νin) = πFV(α)(Evalα′(D, νin)).

I Remark 18. One may wonder whether the above corollary directly follows from the
equivalence between α1∩α2 and α1− (α1−α2). While these two expressions are semantically
equivalent and have the same input variables, they do not have the same output variables, so
a simple inductive proof eliminating intersection while preserving the guarantees of the above
corollary does not work. Moreover, the corollary continues to hold for the positive fragment
of FLIFio (without the difference operation). Indeed, positive FLIFio can be translated into
executable FO without negation, which can then be translated into positive FLIFio without
intersection.
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5 Relational algebra plans for io-disjoint FLIF

In this section we show how the evaluation problem for FLIFio expressions can be solved in
a very direct manner, using a translation into a particularly simple form of relational algebra
plans.

We generalize the evaluation problem so that it can take a set of valuations as input,
rather than just a single valuation. Formally, for an FLIFio expression α over database
schema S, an instance D of S, and a set N of valuations on I(α), we want to compute
Evalα(D,N) :=

⋃
{Evalα(D, νin) | νin ∈ N}.

Viewing variables as attributes, we can view a set of valuations on a finite set of variables
Z, like the set N above, as a relation with relation schema Z. Consequently, it is convenient
to use the named perspective of the relational algebra [2], where every expression has an
output relation schema (a finite set of attributes; variables in our case). We briefly review
the well-known operators of the relational algebra and their behavior on the relation schema
level:

Union and difference are allowed only on relations with the same relation schema.
Natural join (./) can be applied on two relations with relation schemas Z1 and Z2, and
produces a relation with relation schema Z1 ∪ Z2.
Projection (π) produces a relation with a relation schema that is a subset of the input
relation schema.
Selection (σ) does not change the schema.
Renaming will not be needed. Instead, however, to accommodate the assignment expres-
sions present in FLIF, we will need the generalized projection operator that adds a new
attribute with the same value as an existing attribute, or a constant. Let N be a relation
with relation schema Z, let y ∈ Z, and let x be a variable not in Z. Then

πZ,x:=y(N) = {ν[x := ν(y)] | ν ∈ N}
πZ,x:=c(N) = {ν[x := c] | ν ∈ N}

Plans are based on access methods, which have the following syntax and semantics. Let
R(x̄; ȳ) be an atomic FLIFio-expression. Let X be the set of variables in x̄ and let Y be
the set of variables in ȳ (in particular, X and Y are disjoint). Let N be a relation with a
relation schema Z that contains X but is disjoint from Y . Let D be a database instance. We
define the result of the access join of N with R(x̄; ȳ), evaluated on D, to be the following
relation with relation schema Z ∪ Y :

N
access
./ R(x̄; ȳ) := {ν valuation on Z ∪ Y | ν|Z ∈ N and ν(x̄) · ν(ȳ) ∈ D(R)}

This result relation can clearly be computed respecting the limited access pattern on R.
Indeed, we iterate through the valuations in N , feed their X-values to the source R, and
extend the valuations with the obtained Y -values.

Formally, over any database schema S and for any finite set of variables I, we define a
plan over S with input variables I as an expression that can be built up as follows:

The special relation name In, with relation schema I, is a plan.
If R(x̄; ȳ) is an atomic FLIFio expression over S, with sets of variables X and Y as above,
and E is a plan with output relation schema Z as above, then also E access

./ R(x̄; ȳ) is a
plan, with output relation schema Z ∪ Y .
Plans are closed under union, difference, natural join, and projection.
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Given a database instance D, a set N of valuations on I, and a plan E with input
variables I, we can instantiate the relation name In by N and evaluate E on (D,N) in the
obvious manner. We denote the result by E(D,N).

We establish:
I Theorem 19. For every FLIFio expression α over database schema S there exists a plan
Eα over S with input variables I(α), such that Evalα(D,N) = Eα(D,N), for every instance
D of S and set N of valuations on I(α).
I Example 20.

A plan for R(x; y) ; S(y; z) is (In access
./ R(x; y)) access

./ S(y; z).
A plan for R(x1; y, u) ; S(x2, y; z, u) is

πx1,x2,y(In access
./ R(x1; y, u)) access

./ S(x2, y; z, u).

Recall the expression R(x; y1) ∩ S(x; y2) from Example 8, which has input variables
{x, y1, y2} and no output variables. A plan for this expression is

(πx,y2(In) access
./ R(x; y1)) ./ In ∩ (πx,y1(In) access

./ S(x; y2)) ./ In.

The joins with In ensure that the produced output values are equal to the given input
values.

Proof. To prove the theorem we need a stronger induction hypothesis, where we allow N to
have a larger relation schema Z ⊇ I(α), while still being disjoint with O(α). The claim then
is that

Eα(D,N) = {ν on Z ∪O(α) | ν|FV(α) ∈ Evalα(D, ν|I(α))}.

The base cases are clear. If α is R(x̄; ȳ), then Eα is In access
./ R(x̄; ȳ) for Eα. If α is (x = y),

then Eα is the selection σx=y(In). If α is (x := y), then Eα is the generalized projection
πy,x:=y(In).

In what follows we use the following notation. Let P and Q be plans. By Q(P ) we mean
the plan obtained from Q by substituting P for In.

Suppose α is α1 ; α2. Plan Eα1 , obtained by induction, assumes an input relation schema
that contains I(α1) and is disjoint from O(α1). Since I(α) = I(α1) ∪ (I(α2) − O(α1)),
I(α1) ∩ O(α1) = ∅, and Z is disjoint from O(α) = O(α1) ∪ O(α2), we can apply Eα1 with
input relation schema Z. Let P1 be the plan πZ−O(α2)(Eα1). Then Eα is the plan Eα2(P1).
(One can again verify that this is a legal plan.)

Next, suppose α is α1 ∪ α2. Then I(α) = I(α1) ∪ I(α2), which is disjoint from O(α1) =
O(α2) (compare Proposition 12). Hence for Eα we can simply take the plan Eα1 ∪ Eα2 .

Next, suppose α is α1 ∩ α2. Note that I(α) = I(α1)∪ I(α2)∪ (O(α1)4O(α2)). Now Eα
is

Eα1(πI(α)−O(α1)(In)) ./ In ∩ Eα2(πI(α)−O(α2)(In)) ./ In.

Finally, suppose α is α1 − α2. Then Eα is

Eα1 − (Eα2(πI(α)−O(α2)(In)) ./ In.

In general, in the above translations, we follow the principle that the result of a subplan
Eαi must be joined with In whenever O(αi) may intersect with I(α). J

I Remark 21. When we extend plans with assignment statements such that common expres-
sions can be given a name [5], the translation given in the above proof leads to a plan Eα of
size linear of the length of α. Each time we do a substitution of a subexpression for In in
the proof, we first assign a name to the subexpression and only substitute the name.
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6 Conclusion

Nash and Ludäscher [15] deserve credit for having come up with executable FO as a
beautiful declarative query language that strikes a perfect balance between first-order logic
expressiveness and the limitations imposed by the access patterns on the information sources.
On the other hand, relational algebra plans are more operational and rather low-level. We
think of FLIF as an intermediate language between the two levels. FLIF is still declarative,
as it is still a logic, be it an algebraic one. On the other hand FLIF is also operational,
in view of its dynamic semantics akin to dynamic logics [13] and navigational graph query
languages. For us, the main novelty of FLIF lies in the mechanism of input and output
variables, and the law of inertia.

The book by Benedikt et al. [5] stands as an authoritative reference on the topic of
querying under limited access patterns. Remarkably, Benedikt et al. do not follow Nash and
Ludäscher’s proposal, but use their own, quite different notion of executable first-order query.
This notion involves a two-step process where, first, an executable UCQ (union of conjunctive
queries) retrieves a set of tuples from the sources, which is then filtered by a first-order
condition that is “executable for membership”. The filter condition must be expressed in a
range-restricted version of first-order logic. In a result similar to our Theorem 19, Benedikt
et al. then proceed to show [5, Theorem 3.4] that their executable FO queries are equivalent
in expressive power to plans. We feel that our work makes a contribution, enabled by the
LIF perspective, by providing a more declarative formalism, a simpler format of plans, and
more streamlined translations between the languages.

On the other hand we should stress that the main strength of the work by Benedikt
et al. lies elsewhere, namely, in matching semantic properties to syntactic restrictions, for
a variety of settings and languages. In this respect, we recall the result [5, Theorem 3.9]
already mentioned in the Introduction, to the effect that every “access-determined” boolean
first-order query has a plan. This result, proven using model-theoretic interpolation, assumes
access-determinacy over unrestricted structures (not necessarily finite). It is open whether a
similar result holds in restriction to finite structures.

Our three results (Theorems 13, 15 and 19) exploit the good properties enjoyed by
io-disjointness of FLIF expressions. However, as far as expressive power is concerned, io-
disjointness may not be a real restriction. Indeed, we conjecture that that every FLIF
expression is equivalent, modulo variable renaming, to a FLIFio expression that can use more
variables.

Another topic for further research concerns our definition of inputs and outputs of FLIF
expressions (Table 1). While guaranteeing the properties of inertia and input determinacy,
this definition cannot be complete in this respect, as said properties are undecidable. Yet, the
definition may be “locally” optimal in some sense analogous to an optimality result obtained
for the notion of controlled formula [10, Proposition 4.3].

Finally, it would be interesting to look more closely into the practical aspects of the plans
generated for FLIFio expressions. We have shown that these plans have linear size, do not
need renaming, and the only joins are natural joins. Does this lead to more efficiency or
better optimizability?

In closing, we note that querying under limited access patterns has applicability beyond
traditional data or information sources. For instance in the context of distributed data,
when performing tasks involving the composition of external services, functions, or modules,
limited access patterns are a way for service providers to protect parts of their data, while
still allowing their services to be integrated seamlessly in other applications. Limited access
patterns also have applications in active databases, where we like to think of FLIF as an
analogue of Active XML [1] for the relational data model.
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Abstract
We study the problem of probabilistic query evaluation (PQE) over probabilistic graphs, namely,
tuple-independent probabilistic databases (TIDs) on signatures of arity two. Our focus is the class of
queries that is closed under homomorphisms, or equivalently, the infinite unions of conjunctive queries,
denoted UCQ∞. Our main result states that all unbounded queries in UCQ∞ are #P-hard for PQE.
As bounded queries in UCQ∞ are already classified by the dichotomy of Dalvi and Suciu [17], our
results and theirs imply a complete dichotomy on PQE for UCQ∞ queries over probabilistic graphs.
This dichotomy covers in particular all fragments in UCQ∞ such as negation-free (disjunctive)
Datalog, regular path queries, and a large class of ontology-mediated queries on arity-two signatures.
Our result is shown by reducing from counting the valuations of positive partitioned 2-DNF formulae
(#PP2DNF) for some queries, or from the source-to-target reliability problem in an undirected graph
(#U-ST-CON) for other queries, depending on properties of minimal models.
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1 Introduction

The management of uncertain and probabilistic data is an important problem in many
applications, e.g., automated knowledge base construction [19, 25, 28], data integration
from diverse sources, predictive and stochastic modeling, applications based on (error-prone)
sensor readings, etc. To represent probabilistic data, the most basic model is that of tuple-
independent probabilistic databases (TIDs) [33]. In TIDs, every fact of the database is
viewed as an independent random variable, and is either kept or discarded according to some
probability. Hence, a TID induces a probability distribution over all possible worlds, that is,
all possible subsets of the database. The central inference task for TIDs is then probabilistic
query evaluation (PQE): Given a query Q, compute the probability of Q relative to a TID I,
i.e., the total probability of the possible worlds where Q is satisfied.

Dalvi and Suciu [17] obtained a dichotomy for PQE on unions of conjunctive queries
(UCQs), measured in data complexity, i.e., as a function of the input TID and with the query
being fixed. They have shown that PQE can be solved in polynomial time for some UCQs
(called safe), and that it is #P-hard for all other UCQs (called unsafe). Their result was the
foundation of many other studies of the complexity of PQE [2, 14, 21, 27, 29, 30, 32].
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Despite this extensive research on TIDs, there is little known about PQE for monotone
query languages beyond UCQs. In particular, only few results are known for languages
featuring recursion, which is an essential ingredient in many applications: it is unknown if
PQE admits a dichotomy for Datalog, or for ontology-mediated queries [13].

In this work, we focus on a large class of queries beyond first-order: we study the queries
that are closed under homomorphisms. We denote the class of such queries by UCQ∞ as
they are equivalent to infinite unions of conjunctive queries. We distinguish between bounded
UCQ∞ queries, which are logically equivalent to a UCQ, and unbounded UCQ∞ queries,
which cannot be expressed as a UCQ. Notably, UCQ∞ captures (negation-free) disjunctive
Datalog, regular path queries (RPQs) and a large class of ontology-mediated queries.

We study the framework of probabilistic graphs, i.e., probabilistic databases where all
relations have arity two. Arity-two relations are the formalism used in description logics, and
in works on knowledge graphs and information extraction such as NELL [28], Yago [25], and
Google’s Knowledge Vault [19]. In these contexts, we wish to evaluate unbounded queries
on the data, e.g., RPQs or other UCQ∞ queries, while taking into account its uncertainty.
Therefore, we study the complexity of query evaluation on probabilistic graphs, and ask if
PQE for the class UCQ∞ admits a data complexity dichotomy in this case.

The main result of this paper is to show that PQE is #P-hard for any unbounded UCQ∞
query over probabilistic graphs. Our result thus implies a dichotomy on PQE for UCQ∞ over
such graphs: as bounded UCQ∞ queries are equivalent to UCQs, they are already classified by
Dalvi and Suciu, and we show that all other UCQ∞ queries are unsafe, i.e., the PQE problem
is #P-hard for them. Of course, it is not surprising that some unbounded queries in UCQ∞
are unsafe for similar reasons as unsafe UCQs, but the challenge is to show hardness for
every unbounded UCQ∞ query. We conjecture that the same result holds also on arbitrary
arity signatures, but we leave this question open, as we explain in the Conclusion.

The proof has two main parts: First, we study UCQ∞ queries with a model featuring a
so-called non-iterable edge. For all such queries, we reduce from the problem of counting the
valuations of positive partitioned 2-DNF formulae (#PP2DNF). Second, for other unbounded
queries in UCQ∞, we reduce from the source-to-target reliability problem in an undirected
graph (#U-ST-CON): this second step is harder and relies on a study of minimal models.

Related work. Research on probabilistic databases is a well-established field; see e.g. [33].
The first dichotomy for queries on such databases was shown by Dalvi and Suciu [16]: a
self-join-free conjunctive query is safe if it is hierarchical, and #P-hard otherwise. They
then extended this result to a dichotomy on all UCQs [17]. Beyond UCQs, partial dichotomy
results are known for some queries with negation [21], with disequality (6=) joins in the
queries [29], or with inequality (<) joins [30]. Some results are known for extended models,
e.g., the dichotomy of Dalvi and Suciu has been lifted from TIDs to open-world probabilistic
databases [14]. However, we are not aware of dichotomies in the probabilistic database
literature that apply to Boolean queries beyond first-order logic, or to queries with fixpoints.

Query evaluation on probabilistic graphs has also been studied in the context of ontology-
mediated queries (OMQs) [27, 9, 10]. An OMQ is a composite query that typically consists of
a UCQ and an ontology, i.e., a logical theory on an arity-two signature. The only classification
result on PQE for OMQs beyond FO-rewritable languages is given for the description logic
ELI [27]. This result applies to a class of queries that go beyond first-order logic. Our work
generalizes this result (Theorem 6 of [27]) by showing hardness for any unbounded UCQ∞,
not just the ones expressible as OMQs based on ELI. Part of our techniques (Section 4) are
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related to theirs, but the bulk of our proof (Sections 5 and 6) uses new techniques, the need
for which had in fact been overlooked1 in [26, 27]. Our proof thus completes the proof of
Theorem 6 in [27], and generalizes it to all unbounded UCQ∞.

Paper structure. We introduce preliminaries in Section 2, and formally state our result
in Section 3. We prove the result in the rest of the paper. We first deal in Section 4 with
the case of queries having a model with a non-iterable edge (reducing from #PP2DNF),
then argue in Section 5 that unbounded queries must have a model with a minimal tight
edge, before explaining in Section 6 how to use this (when the edge is iterable) to reduce
from #U-ST-CON. We then conclude in Section 7. Detailed proofs can be found in the full
version [3].

2 Preliminaries

Vocabulary. We consider a relational signature σ which is a set of predicates. In this work,
the signature is required to be arity-two, i.e., consist only of predicates of arity two. Our
results can easily be extended to signatures with relations having predicates of arity one and
two (see the full version [3]), as is more common in some contexts such as description logics.

A σ-fact is an expression of the form F = R(a, b) where R is a predicate and a, b are
constants. By a slight abuse of terminology, we call F a unary fact if a = b, and a non-unary
fact otherwise. A σ-atom is defined in the same way with variables instead of constants. For
brevity, we will often talk about a fact or an atom when σ is clear from context. We also
speak of R-facts or R-atoms to specifically refer to facts or atoms that use the predicate R.

It will be convenient to write σ↔ the arity-two signature consisting of the relations of σ
and of the relations R− for R ∈ σ, with a semantics that we define below.

Database instances. A database instance over σ, or a σ-instance, is a set of facts over σ.
All instances considered in this paper are finite. The domain of a fact F , denoted dom(F ),
is the set of constants that appear in F , and the domain of an instance I, denoted dom(I),
is the set of constants that appear in I, i.e., the union of the domains of its facts.

Every σ-instance I can be seen as a σ↔-instance consisting of all the σ-facts in I, and
all the facts R−(b, a) for each fact R(a, b) of I. Thus, whenever we consider a σ-instance I,
choose some a ∈ dom(I), and say, e.g., that we consider all σ↔-facts of the form F = R(a, b)
in I, we mean all unary facts S(a, a) with some S ∈ σ, all facts S(a, b) of I with some S ∈ σ
and b ∈ dom(I), and also all facts S−(a, b) of I for some S ∈ σ and b ∈ dom(I), that is,
facts of the form S(b, a). If we say that, for one such fact F0 = R(a, b0), we create the fact
R(a′, b0) for some a′ ∈ dom(I), it means that we create S(a′, b0) if F0 = S(a, b0) with S ∈ σ,
and S(b0, a′) if F0 = S−(a, b0) with S ∈ σ.

The Gaifman graph of an instance I is the undirected graph having dom(I) as vertex
set, and having an edge {u, v} between any two u 6= v in dom(I) that co-occur in some
fact of I. An instance is connected if its Gaifman graph is connected. We then call {u, v}
an (undirected) edge of I, and the facts that realize the undirected edge e are the σ-facts
of I whose domain is a subset of {u, v}. Note that a fact of the form R(u, u) realizes all

1 Specifically, we identified a gap in the proofs of Theorem 6 of [27] and Theorem 5.31 of [26] concerning
a subtle issue of “back-and-forth” matches. We have communicated this with the authors of [26, 27],
which they kindly confirmed. The problem is related to the use of inverse roles of ELI, so we believe
that it does not occur for the description logic EL.
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edges involving u. Slightly abusing notation, we say that an ordered pair e = (u, v) is a
(directed) edge of I if {u, v} is an edge of the Gaifman graph. We then talk about the facts
that realize the directed edge e as the σ↔-facts of I defined as follows: all unary σ-facts of
the form R(u, u) and R(v, v), all σ-facts S(u, v) of I with S ∈ σ, and one fact S−(u, v) for
every σ-fact S(v, u) of I with S ∈ σ. Note that the facts that realize the directed edge (v, u)
would correspond to the same σ-facts of I, but they are not the same σ↔ facts: specifically,
each relation S ∈ σ has been exchanged with its reverse relation S− in non-unary facts.

In the course of our proofs, we will often modify instances in a specific way, which we call
copying an edge. Let I be an instance, let (u, v) be a directed edge of I, and let u′, v′ be any
elements of I. If we say that we copy the edge e on (u′, v′), it means that we modify I to add
a copy of each fact realizing the edge e, but using u′ and v′ instead of u and v. Specifically,
we create S(u′, v′) for all σ-facts of the form S(u, v) in I, we create S(v′, u′) for all σ-facts of
the form S(v, u) in I, and we create S(u′, u′) and S(v′, v′) for all σ-facts respectively of the
form S(u, u) and S(v, v) in I. Of course, if some of these facts already exist, they are not
created again. Note that (u′, v′) is an edge of I after this process.

An instance I is a subinstance of another instance I ′ if I ⊆ I ′, and I is a proper subinstance
of I ′ if I ⊂ I ′. Given a set S ⊆ dom(I) of domain elements, the subinstance of I induced
by S is the instance formed of all the facts F ∈ I such that dom(F ) ⊆ S.

A homomorphism from an instance I to an instance I ′ is a function h from dom(I)
to dom(I ′) such that, for every fact R(a, b) of I, the fact R(h(a), h(b)) is a fact of I ′. In
particular, whenever I ⊆ I ′ then I has a homomorphism to I ′. An isomorphism is a bijective
homomorphism whose inverse is also a homomorphism.

Query languages. Throughout this work, we focus on Boolean queries. A (Boolean) query
over a signature σ is a function from σ-instances to Booleans. An instance I satisfies a
query Q (or Q holds on I, or I is a model of Q), written I |= Q, if Q returns true when
applied to I; otherwise, I violates Q. We say that two queries Q1 and Q2 are equivalent if
for any instance I, we have I |= Q1 iff I |= Q2. In this work, we study the class UCQ∞ of
queries that are closed under homomorphisms (also called homomorphism-closed), i.e., if I
satisfies the query and I has a homomorphism to I ′ then I ′ also satisfies the query. Note
that queries closed under homomorphisms are in particular monotone, i.e., if I satisfies the
query and I ⊆ I ′, then I ′ also satisfies the query.

One well-known subclass of UCQ∞ is bounded UCQ∞: every bounded query in UCQ∞ is
logically equivalent to a union of conjunctive query (UCQ), without negation or inequalities.
Recall that a conjunctive query (CQ) is an existentially quantified conjunctions of atoms,
and a UCQ is a disjunction of CQs. For brevity, we omit existential quantification when
writing UCQs, and abbreviate conjunction with a comma. The other UCQ∞ queries are
called unbounded, and they can be seen as an infinite disjunction of CQs, with each disjunct
corresponding to a model of the query.

A natural language captured by UCQ∞ is Datalog, again without negation or inequalities.
A Datalog program defines a signature of intensional predicates, including a 0-ary predicate
Goal(), and consists of a set of rules which explain how intensional facts can be derived from
other intensional facts and from facts of the instance (called extensional). The interpretation
of the intensional predicates is defined by taking the (unique) least fixpoint of applying the
rules, and the query holds iff the Goal() predicate can be derived. For formal definitions
of this semantics, see, e.g., [1]. As Datalog queries are homomorphism-closed, we can see
each Datalog program as a UCQ∞, with the disjuncts intuitively corresponding to derivation
trees for the program. However, note that there are homomorphism-closed queries that are
not expressible in Datalog [18].
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Ontology-mediated queries or OMQs [8] are another subclass of UCQ∞. An OMQ is a pair
(Q, T ), where Q is a UCQ, and T is an ontology. A database instance I satisfies an OMQ
(Q, T ) if the instance I and the logical theory T entail the query Q in the standard sense –
see, e.g., [8], for details. There are ontological languages for OMQs based on description
logics [5] and on existential rules [11, 12]. Many such OMQs can be equivalently expressed
as a query in Datalog or in disjunctive Datalog on an arity-two signature [8, 20, 23], thus
falling in the class UCQ∞. In particular, this is the case of any OMQ involving negation-free
ALCHI (Theorem 6 of [8]), and of fragments of ALCHI, e.g., ELHI, and ELI as in [27].

Probabilistic query evaluation. We study the problem of probabilistic query evaluation
over tuple-independent probabilistic databases. A tuple-independent probabilistic database
(TID) over a signature σ is a pair I = (I, π) of a σ-instance I, and of a function π that maps
every fact F to a probability π(F ), given as a rational number in [0, 1]. Formally, a TID
I = (I, π) defines the following probability distribution over all possible worlds I ′ ⊆ I:

π(I ′) :=
(∏
F∈I′

π(F )
)
×

 ∏
F∈I′\I

(1− π(F ))

 .

Then, given a TID I = (I, π), the probability of a query Q relative to I, denoted PI(Q), is
given by the sum of the probabilities of the possible worlds that satisfy the query:

PI(Q) :=
∑

I′⊆I,I′|=Q

π(I ′).

The probabilistic query evaluation problem (PQE) for a query Q, written PQE(Q), is then
the task of computing PI(Q) given a TID I as input.

Complexity background. FP is the class of functions f : {0, 1}∗ 7→ {0, 1}∗ computable by
a polynomial-time deterministic Turing machine. The class #P, introduced by Valiant [34],
contains the computation problems that can be expressed as the number of accepting
paths of a nondeterministic polynomial-time Turing machine. Equivalently, a function
f : {0, 1}∗ 7→ N is in #P if there exists a polynomial p : N 7→ N and a polynomial-time
deterministic Turing machine M such that for every x ∈ {0, 1}∗, it holds that f(x) = |{y ∈
{0, 1}p(|x|) | M answers 1 on the input (x, y) }|.

For a query Q, we study the data complexity of PQE(Q), which is measured as a function
of the input instance I, i.e., the signature and Q are fixed. For a large class of queries, in
particular for any UCQ Q, the problem PQE(Q) is in the complexity class FP#P : we can
use a nondeterministic Turing machine to guess a possible world according to the probability
distribution of the TID (i.e., each possible world is obtained in a number of runs proportional
to its probability), and then check in polynomial time data complexity if Q holds, with
polynomial-time postprocessing to renormalize the number of runs to a probability. Our goal
in this work is to show that the problem is also #P-hard.

To show #P-hardness, we use polynomial-time Turing reductions [15]. A function f is
#P-complete under polynomial time Turing reductions if it is in #P and every g ∈ #P is
in FPf . Polynomial-time Turing reductions are the most common reductions for the class
#P and they are the reductions used to show #P-hardness in the dichotomy of Dalvi and
Suciu [17], so we use them throughout this work.
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Problems. We will show hardness by reducing from two well-known #P-hard problems.
For some queries, we reduce from #PP2DNF [31], which is a standard tool to show hardness
of unsafe UCQs. The original problem uses Boolean formulas; here, we give an equivalent
rephrasing in terms of bipartite graphs.

I Definition 2.1. Given a bipartite graph H = (A,B,C) with edges C ⊆ A×B, a possible
world of H is a pair ω = (A′, B′) with A′ ⊆ A and B′ ⊆ B. We call the possible world good
if it is not an independent set, i.e., if one vertex of A′ and one vertex of B′ are adjacent
in C; and call it bad otherwise. The positive partitioned 2DNF problem (#PP2DNF) is the
following: Given a bipartite graph, compute how many of its possible worlds are good.

It will be technically convenient to assume that H is connected. This is clearly without loss
of generality, as otherwise the number of good possible worlds is simply obtained as the
product of the number of good possible worlds of each connected component of H.

For other queries, we reduce from the undirected st-connectivity problem (#U-ST-CON) [31]:

I Definition 2.2. The source-to-target undirected reachability problem (#U-ST-CON) asks
the following: Given an undirected graph G with two distinguished vertices s and t, where
each graph edge has probability 0.5, determine the probability of obtaining a good possible
world, i.e., a subgraph ω of G where there is a path from s to t.

3 Result Statement

The goal of this paper is to extend the dichotomy of Dalvi and Suciu [17] on PQE for UCQs.
Their result states:

I Theorem 3.1 ([17]). Let Q be a UCQ. Then, PQE(Q) is either in FP or it is #P-hard.

We call a UCQ safe if PQE(Q) is in FP, and unsafe otherwise. This dichotomy characterizes
the complexity of PQE for UCQs, but does not apply to other homomorphism-closed queries
beyond UCQs. Our contribution, when restricting to the arity-two setting, is to generalize
this dichotomy to UCQ∞, i.e., to any query closed under homomorphisms. Specifically, we
show that all such queries are intractable unless they are equivalent to a safe UCQ.

I Theorem 3.2. Let Q be a UCQ∞ on an arity-two signature. Then, either Q is equivalent
to a safe UCQ and PQE(Q) is in FP, or it is not and PQE(Q) is #P-hard.

Our result relies on the dichotomy of Dalvi and Suciu for UCQ∞ queries that are equivalent
to UCQs. The key point is then to show intractability for unbounded UCQ∞ queries. Hence,
our technical contribution is to show:

I Theorem 3.3. Let Q be an unbounded UCQ∞ query on an arity-two signature. Then
PQE(Q) is #P-hard.

Examples of unbounded UCQ∞ queries include many Datalog queries, e.g., the following
program with one monadic intensional predicate U on extensional signature R,S, T :

R(x, y)→ U(x) U(x), S(x, y)→ U(y) U(x), T (x, y)→ Goal()

Thus, our result implies that the PQE problem is #P-hard for all Datalog queries that are
not equivalent to a UCQ, which is the case unless the Datalog program is nonrecursive or
recursion is bounded [24]. Unbounded UCQ∞ queries also include many regular path queries,
such as RS∗T which is equivalent to the Datalog program above.
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Effectiveness and uniformity. We do not study if our dichotomy result in Theorem 3.2 is
effective, i.e., given a query, the problem of determining whether it is safe or unsafe. The
dichotomy of Theorem 3.1 on UCQs is effective via the algorithm of [17]: this algorithm
has a super-exponential bound (in the query), with the precise complexity being open. Our
dichotomy concerns the very general query language UCQ∞, and its effectiveness depends
on how the input is represented, which we can fix by restricting to a syntactically defined
fragment. If we restrict to Datalog queries, it is not clear whether our dichotomy is effective,
because it is generally undecidable whether an input Datalog program is bounded [22] – but
this, on its own, does not imply undecidability for our dichotomy. However, our dichotomy
is effective for more restricted query languages for which boundedness is decidable, e.g.,
monadic Datalog or its generalization GN-Datalog [7], or C2RPQs [6].

For unsafe queries, we also do not study the complexity of reduction as a function of the
query, or whether this problem is even decidable. All that matters is that, once the query is
fixed, some reduction procedure exists, which can be performed in polynomial time in the
input instance. Such uniformity problems seem unavoidable, given that our language UCQ∞
is very general and includes some queries for which non-probabilistic evaluation is not even
decidable, e.g., “there is a path from R to T whose length is the index of a Turing machine
that halts”. We leave for future work the study of the query complexity of our reduction
when restricting to better-behaved query languages such as Datalog or RPQs.

Proof outline. Theorem 3.3 is proven in the rest of the paper. There are two cases,
depending on the query. We study the first case in Section 4, which covers queries for which
we can find a model with a so-called non-iterable edge. Intuitively, this is a model where we can
make the query false by replacing the edge by a back-and-forth path of some length between
two neighboring facts that it connects. For such queries, we can show hardness by a reduction
from #PP2DNF, essentially like the hardness proof for the query Q0 : R(w, x), S(x, y), T (y, z)
which is the arity-two variant of the unsafe query of [16, Theorem 5.1]. This hardness proof
covers some bounded queries (including Q0) and some unbounded ones.

In Section 5, we present a new ingredient, to be used in the second case, i.e., when there
is no model with a non-iterable edge. We show that any unbounded query must always have
a model with a tight edge, i.e., an edge where we can make the query false by replacing it by
two copies that disconnect its endpoints. What is more, we can find a model with a tight
edge which is minimal in some sense, which we call a minimal tight pattern.

In Section 6, we use minimal tight patterns for the second case, covering unbounded
queries that have a minimal tight pattern whose edge is iterable. This applies for all queries
to which Section 4 did not apply (and also for some queries to which it did). Here, we reduce
from the #U-ST-CON problem, intuitively using the iterable edge for a kind of reachability
test, and using the minimality and tightness of the pattern to show the soundness and
completeness of the reduction.

4 Hardness with Non-Iterable Edges

In this section, we present the hardness proof for the first case where we can find a model of
the query with a non-iterable edge. This notion will be defined relative to an incident pair of
a non-leaf edge:

I Definition 4.1. Let I be an instance. We say that an element u ∈ dom(I) of I is a leaf if
it occurs in only one undirected edge. We say that an edge (directed or undirected) is a leaf
edge if one of its elements (possibly both) is a leaf; otherwise, it is a non-leaf edge.
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Figure 1 Example of iteration from an instance Ie,Π (left) to I3
e,Π (middle). We write Π = (Fl, Fr)

and call el and er the edges of Fl and Fr. Each line represents an edge, realized in general by multiple
σ↔-facts. A key is given at the right.

Let I be an instance and let e = (u, v) be a non-leaf edge of I. A σ↔-fact of I is left-
incident to e if it is of the form Rl(l, u) with l /∈ {u, v}. It is right-incident to e if it is of the
form Rr(v, r) with r /∈ {u, v}. An incident pair of e is a pair of σ↔-facts Π = (Fl, Fr), where
Fl is left-incident to e and Fr is right-incident to e. We write Ie,Π to denote an instance I
with a non-leaf edge e and an incident pair Π of e in I.

Note that an incident pair chooses two incident facts (not edges): this is intuitively because
in the PQE problem, we will give probabilities to single facts and not edges. It is clear that
every non-leaf edge e must have an incident pair, as we can pick Fl and Fr from the edges
incident to u and v which are not e. Moreover, we must have Fl 6= Fr, and neither Fl nor Fr
can be unary facts. However, as the relations Rl and Rr are σ↔-relations, we may have
Rl = Rr or Rl = R−r , and the elements l and r may be equal if the edge (u, v) is part of a
triangle with some edges {u,w} and {v, w}.

Let us illustrate the notion of incident pair on an example.

I Example 4.2. Given an instance I = R(a, b), T (b, b), S(c, b), R(d, c), the edge (b, c) is
non-leaf and the only possible incident pair for it is (R(a, b), R−(c, d)).

We can now define the iteration process on an instance Ie,Π, which intuitively replaces
the edge e by a path of copies of e, keeping the facts of Π at the beginning and end of the
path, and copying all other incident facts:

I Definition 4.3. Let Ie,Π be an instance where e = (u, v), Π = (Fl, Fr), Fl = Rl(l, u),
Fr = Rr(v, r), and let n ≥ 1. The result of performing the n-th iteration of e in I relative to Π,
denoted Ine,Π, is a σ-instance with domain dom(Ine,Π) := dom(I)∪{u2, . . . , un}∪{v1, . . . , vn−1},
where the new elements are fresh, and where we use u1 to refer to u and vn to refer to v for
convenience. The facts of Ine,Π are defined by applying the following steps:

Copy non-incident facts: Initialize Ine,Π as the induced subinstance of I on dom(I)\{u, v}.
Copy incident facts Fl and Fr: Add Fl and Fr to Ine,Π, using u1 and vn, respectively.
Copy other left-incident facts: For each σ↔-fact F ′l = R′l(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′l 6= Fl, add to Ine,Π the fact R′l(l′, ui) for each 1 ≤ i ≤ n.
Copy other right-incident facts: For each σ↔-fact F ′r = R′r(v, r′) of I that is right-incident
to e (i.e., r′ /∈ {u, v}) and where F ′r 6= Fr, add to Ine,Π the fact R′r(vi, r′) for each 1 ≤ i ≤ n.
Create copies of e: Copy the edge e (in the sense defined in the Preliminaries) on the
following pairs: (ui, vi) for 1 ≤ i ≤ n, and (ui+1, vi) for 1 ≤ i ≤ n− 1.

The iteration process is represented in Figure 1. Note that, for n = 1, we obtain exactly
the original instance. Intuitively, we replace e by a path going back-and-forth between copies
of u and v (and traversing e alternatively in one direction and another). The intermediate
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vertices have the same incident facts as the original endpoints except that we have not copied
the left-incident fact and the right-incident fact of the incident pair.

We first notice that larger iterates have homomorphisms back to smaller iterates:

I Observation 4.4. For any instance I, for any non-leaf edge e of I, for any incident pair Π
for e, and for any 1 ≤ i ≤ j, it holds that Ije,Π has a homomorphism to Iie,Π.

Proof. Simply merge ui, . . . , uj , and merge vi, . . . , vj . J

Hence, choosing an instance I that satisfies Q, a non-leaf edge e of I, and an incident
pair Π, there are two possible regimes. Either all iterations Ine,Π satisfy Q, or there is some
iteration In0

e,Π with n0 > 1 that violates Q (and, by Observation 4.4, all subsequent iterations
also do). We call e iterable relative to Π in the first case, and non-iterable in the second case.

I Definition 4.5. A non-leaf edge e of a model I of a query Q is iterable relative to an
incident pair Π if Ine,Π satisfies Q for each n ≥ 1; otherwise, it is non-iterable.

The goal of this section is to show that if a query Q has a model with a non-leaf edge
which is not iterable, then PQE(Q) is intractable:

I Theorem 4.6. For every UCQ∞ Q, if Q has a model I with a non-leaf edge e that is
non-iterable relative to some incident pair, then PQE(Q) is #P-hard.

Note that this result applies to arbitrary homomorphism-closed queries, whether they are
bounded or not. Recall for instance the unsafe CQ Q0 : R(w, x), S(x, y), T (y, z). Then, the
model R(a, b), S(b, c), T (c, d) has an edge (b, c) which is non-leaf and non-iterable: indeed its
iteration with n = 2 relative to the only possible incident pair yields R(a, b), S(b, c′), S(b′, c′),
S(b′, c), T (c, d) which does not satisfy the query. Thus, Theorem 4.6 also shows that
PQE is #P-hard for this query. Of course, Theorem 4.6 is too coarse to show #P-
hardness for all unsafe UCQs; for instance, it does not cover Q′0 : R(x, x), S(x, y), T (y, y), or
Q1 : (R(w, x), S(x, y)) ∨ (S(x, y), T (y, z)). Theorem 4.6 will nevertheless be sufficient for our
purpose of showing hardness for all unbounded queries, as we will do in the next sections.

Hence, in the rest of this section, we prove Theorem 4.6. Let Ie,Π be the instance
with the non-iterable edge, and let us take the smallest n0 > 1 such that In0

e,Π violates the
query. The idea is to use Ie,Π and n0 to show hardness of PQE by reducing from #PP2DNF
(Definition 2.1). Thus, let us explain how we can use Ie,Π to code a bipartite graph H in
polynomial time into a TID I. The definition of this coding does not depend on the query Q,
but we will use the properties of Ie,Π and n0 to argue that it defines a reduction between
#PP2DNF and PQE, i.e., there is a correspondence between the possible worlds of H and
the possible worlds of I, such that good possible worlds of H are mapped to possible worlds
of I which satisfy Q. Let us first define the coding:

I Definition 4.7. Let Ie,Π be an instance where e = (u, v), Π = (Fl, Fr), Fl = Rl(l, u),
Fr = Rr(v, r), and let n ≥ 1. Let H = (A,B,C) be a connected bipartite graph. The coding
of H relative to Ie,Π and n is a TID I = (J, π) with domain dom(J) := (dom(I)\{u, v})∪{ua |
a ∈ A} ∪ {vb | b ∈ B} ∪ {uc,2, . . . , uc,n | c ∈ C} ∪ {vc,1, . . . , vc,n−1 | c ∈ C}, where the new
elements are fresh. The facts of J and the probability mapping π are defined as follows:

Copy non-incident facts: Initialize J as the induced subinstance of I on dom(I) \ {u, v}.
Copy incident facts Fl and Fr: Add to J the σ↔-fact Rl(l, ua) for each a ∈ A, and add
to J the σ↔-fact Rr(vb, r) for each b ∈ B.
Copy other left-incident facts: For each σ↔-fact F ′l = R′l(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′l 6= Fl, add to J the facts R′l(l′, ua) for each a ∈ A,
and add to J the facts R′l(l′, uc,j) for each 2 ≤ j ≤ n and c ∈ C.
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(d) Coding of the bipartite graph H relative to I2
e,Π. Bold elements

correspond to vertices of H.
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Figure 2 Example of the coding of a bipartite graph H shown in Figure 2a. We encode H relative
to an instance Ie,Π (Figure 2b), with a non-leaf edge e and an incident pair Π. The result I2

e,Π of
iterating e in I with n = 2 (Definition 4.3) is shown in Figure 2c. The coding of H relative to Ie,Π
and n = 2 (Definition 4.7) is shown in Figure 2d, with the probabilistic facts being the copies of Fl

and Fr in the edges in solid blue and black. A key explains the colors (bottom right).

Copy other right-incident facts: For each σ↔-fact F ′r = R′r(v, r′) of I that is right-incident
to e (i.e., r′ /∈ {u, v}) and where F ′r 6= Fr, add to J the facts R′r(vb, r′) for each b ∈ B
and add to J the facts R′r(vc,j , r′) for each 1 ≤ j ≤ n− 1 and c ∈ C.
Create copies of e: For each c ∈ C with c = (a, b), copy e on the following pairs: (uc,i, vc,i)
for 1 ≤ i ≤ n, and (uc,i+1, vc,i) for 1 ≤ i ≤ n− 1, where we use uc,1 to refer to ua and
vc,n to refer to vb.

Finally, we define the function π such that it maps all the facts created in the step “Copy
incident facts Fl and Fr” to 0.5, and all other facts to 1.

Observe how this definition relates to the definition of iteration (Definition 4.3): we
intuitively code each edge of the bipartite graph as a copy of the path of copies of e in
the definition of the n-th iteration of (u, v). Note also that there are exactly |A| + |B|
uncertain facts, by construction. It is clear that, for any choice of Ie,Π and n, this coding is
in polynomial time in H. The result of the coding is illustrated in Figure 2.

We now define the bijection φ, mapping each possible world ω of the connected bipartite
graph H to a possible world of the TID I. For each vertex a ∈ A, we keep the copy of Fr
incident to ua in φ(ω) if a is kept in ω, and we do not keep it otherwise; we do the same for vb,
and Fl. It is obvious that this correspondence is bijective, and that all possible worlds have
the same probability, namely, 0.5|A|+|B|. Furthermore, we can use φ to define a reduction,
thanks to the following property:
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(b) The way H is considered in the completeness proof
of Proposition 4.8.
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(c) The possible world φ(ω) of the coding (Figure 2d) for ω. The
edges (l, ub), (l, uc), and (vα, r) are changed to dashed lines, as they
correspond to vertices of H that are not kept in ω.
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Figure 3 Example for the completeness direction of the proof of Proposition 4.8. Figure 3a shows
a bad possible world ω of the bipartite graph. The corresponding possible world of the coding of
Figure 2d (using the instance I2

e,Π of Figure 2b) is given in Figure 3c. In the proof, we explore H
as depicted in Figure 3b to argue that Figure 3c has a homomorphism to I5

e,Π. A key explains the
colors (bottom right).

I Proposition 4.8. Let the TID I = (J, π) be the coding of a connected bipartite graph
H = (A,B,C) relative to an instance Ie,Π and to n ≥ 1 as described in Definition 4.7, and
let φ be the bijective function defined above from the possible worlds of H to those of I. Then:

1. For any good possible world ω of H, φ(ω) has a homomorphism from Ine,Π.

2. For any bad possible world ω of H, φ(ω) has a homomorphism to I3n−1
e,Π .

Proof sketch. The first direction is because φ(ω) then contains a subinstance isomorphic
to Ine,Π: keep the facts of the path corresponding to any edge witnessing that ω is good.

The harder part is the second direction as illustrated in Figure 3: when ω is bad, we
can show how to “fold back” φ(ω), going from the copies of Fl to the copies of Fr, into the
iterate I3n−1

e,Π . This uses the fact that ω is bad, so the copies of Fl and Fr must be sufficiently
far from one another. J

Proposition 4.8 allows us to conclude the proof of Theorem 4.6. Indeed, we can take Ie,Π
which satisfies Q, and choose the smallest n0 > 1 such that In0

e,Π violates Q. Hence, In0−1
e,Π

satisfies Q, but I3(n0−1)−1
e,Π does not. Then, by Proposition 4.8, good possible worlds of H

give a possible world of I that satisfies Q, and bad possible worlds of H give a possible world
of I that does not satisfy Q. This argument concludes the proof of Theorem 4.6.
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5 Finding a Minimal Tight Pattern

In the previous section, we have shown hardness for queries (bounded or unbounded) that
have a model with a non-iterable edge; leaving the case of unbounded queries open, for which,
in all models, all non-leaf edges can be iterated. We first note that such queries indeed exist:

I Example 5.1. Consider the following Datalog program:

R(x, y)→ A(y), A(x), S(x, y)→ B(y), B(x), S(y, x)→ A(y), T (x, y), B(x)→ Goal().

This program is unbounded, as it tests if the instance contains a path of the form R(a, a1),
S(a1, a2), S−(a2, a3), . . . , S(a2n+1, a2n+2), T (a2n+2, b). However, it has no model with a non-
iterable edge: in every model, the query is satisfied by a path of the form above, and we
cannot break such a path by iterating an edge (i.e., this yields a longer path of the same
form).

If we tried to reduce from #PP2DNF for this query as in the previous section, then the
reduction would fail because the edge is iterable: in possible worlds of the bipartite graph,
where we have not retained two adjacent vertices, we would still have matches of the query
in the corresponding possible world of the probabilistic instance, where we go from a chosen
vertex to another by going back-and-forth on the copies of e that code the edges of the
bipartite graph. These are the “back-and-forth matches” which were missed in [26, 27].

In light of this, we handle the case of such queries in the next two sections. In this section,
we prove a general result for unbounded queries (independent from the previous section): all
unbounded queries must have a model with a tight edge, which is additionally minimal in
some sense. Tight edges and iterable edges will then be used in Section 6 to show hardness
for unbounded queries which are not covered by the previous section.

Let us start by defining this notion of tight edge, via a rewriting operation on instances
called a dissociation.

I Definition 5.2. The dissociation of a non-leaf edge e = (u, v) in I is the instance I ′ where:
dom(I ′) = dom(I) ∪ {u′, v′} where u′ and v′ are fresh.
I ′ is I where we create a copy of the edge e on (u, v′) and on (u′, v), and then remove all
non-unary facts that realize e in I ′.

Dissociation is illustrated in the following example (see also Figure 4).

I Example 5.3. Consider the instance I = {R(a, b), S(b, a), T (b, a), R(a, c), S(c, b), S(d, b),
U(a, a), U(b, b)}. The edge (a, b) is non-leaf, as witnessed by the edges {a, c} and {b, c}. The
result of the dissociation is I ′ = {R(a, b′), S(b′, a), T (b′, a), R(a′, b), S(b, a′), T (b, a′), R(a, c),
S(c, b), S(d, b), U(a, a), U(a′, a′), U(b, b), U(b′, b′)}.

We then call an edge tight in a model of Q if dissociating it makes Q false.

I Definition 5.4. Let Q be a query and I be a model of Q. An edge e of I is tight if it is
non-leaf, and the result of the dissociation of e in I does not satisfy Q. A tight pattern for
the query Q is a pair (I, e) of a model I of Q and of an edge e of I that is tight.

Intuitively, a tight pattern is a model of a query containing at least three edges
{u, a}, {a, b}, {b, v} (possibly u = v) such that performing a dissociation makes the query
false. For instance, for the unsafe CQ Q0 : R(w, x), S(x, y), T (y, z) from [16], a tight pattern
would be R(a, b), S(b, c), T (c, d) with the edge (b, c). Again, not all unsafe CQs have a tight
pattern, e.g., Q′0 and Q1 from Section 4 do not.

For our purposes, we will not only need tight patterns, but minimal tight patterns:
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Figure 4 An instance (left) with a non-leaf edge (u, v), and the result (right) of dissociating
(u, v).

I Definition 5.5. Given an instance I with a non-leaf edge e = (a, b), the weight of e is
the number of facts that realize e in I (including unary facts). The side weight of e is the
number of σ↔-facts in I that are left-incident to e, plus the number of σ↔-facts in I that
are right-incident to e. Given a query Q, we say that a tight pattern (I, e) is minimal if:

Q has no tight pattern (I ′, e′) where the weight of e′ is strictly less than that of e; and
Q has no tight pattern (I ′, e′) where the weight of e′ is equal to that of e and the side
weight of e′ is strictly less than that of e.

We can now state the main result of this section:

I Theorem 5.6. Every unbounded query Q has a minimal tight pattern.

The idea of how to find tight patterns is as follows. We first note that the only instances
without non-leaf edges are intuitively disjoint unions of star-shaped subinstances. Now, if
a query is unbounded, then its validity cannot be determined simply by looking at such
subinstances (unlike Q′0 or Q1 above), so there must be a model of the query with an edge
that we cannot dissociate without breaking the query, i.e., a tight pattern. Once we know
that there is a tight pattern, then it is simple to argue that we can find a model with a tight
edge that is minimal in the sense that we require.

To formalize this intuition, let us first note that any iterative dissociation process, i.e.,
any process of iteratively applying dissociation to a given instance, will necessarily terminate.
More precisely, an iterative dissociation process is a sequence of instances starting at an
instance I and where each instance is defined from the previous one by performing the
dissociation of some non-leaf edge. We say that the process terminates if it reaches an
instance, where there is no edge left to dissociate, i.e., all edges are leaf edges.

I Observation 5.7. For any instance I, the iterative dissociation process will terminate in
n steps, where n is the number of non-leaf edges in I.

Proof sketch. Each dissociation decreases the number of non-leaf edges by 1. J

Let us now consider instances with no non-leaf edges. They are intuitively disjoint
unions of star-shaped subinstances, and in particular they homomorphically map to some
constant-sized subset of their facts, as will be crucial when studying our unbounded query.

I Proposition 5.8. For every signature σ, there exists a bound kσ > 0, ensuring the following:
For every instance I on σ having no non-leaf edge, there exists an instance I ′ ⊆ I such that
I has a homomorphism to I ′ and such that we have |I ′| < kσ.

Proof sketch. Connected instances where we cannot perform a dissociation can have at most
one non-leaf element, with all edges using this element and a leaf. Now, each edge can be
described by the set of facts that realize it, for which there are finitely many possibilities
(exponentially many in the signature size). We can thus show the result by collapsing together
edges having the same set of facts.
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Disconnected instances where we cannot perform a dissociation are unions of the connected
instances of the form above, so the number of possibilities up to homomorphic equivalence is
finite (exponential in the number of possible connected instances). We can then conclude by
collapsing together connected components that are isomorphic. J

We can now prove Theorem 5.6 by appealing to the unboundedness of the query. To do
this, we will rephrase unboundedness in terms of minimal models:

I Definition 5.9. A minimal model of a query Q is an instance I that satisfies Q and such
that every proper subinstance of I violates Q.

We can rephrase the unboundedness of a UCQ∞ Q in terms of minimal models: Q is
unbounded iff it has infinitely many minimal models. Indeed, if a query Q has finitely many
minimal models, then it is clearly equivalent to the UCQ formed from these minimal models,
because it is closed under homomorphisms. Conversely, if Q is equivalent to a UCQ, then it
has finitely many minimal models which are obtained as homomorphic images of the UCQ
disjuncts. Thus, we can clearly rephrase unboundedness as follows:

I Observation 5.10. A UCQ∞ query Q is unbounded iff it has a minimal model I with > k

facts for any k ∈ N.

We can now show Theorem 5.6. We first show how to find a tight pattern, which is not
necessarily minimal. To do this, take a sufficiently large minimal model I0 of the query
by Observation 5.10, and perform an iterative dissociation process, while it is possible to
dissociate edges without breaking the query. By Observation 5.7, this process eventually
terminates. If the result In of the process has a non-leaf edge which we did not dissociate,
then dissociating this edge breaks the query, so it is tight and we are done. Otherwise, we
reach a contradiction: as there are only leaf edges in In, Proposition 5.8 implies that In
has a homomorphism to a constant-sized subset I ′n, which also satisfies Q. Now, I ′n has
a homomorphism back into In (as a subset), then into I0 (by undoing the dissociations).
This identifies a constant-sized subset of I0 that satisfies the query, which contradicts the
definition of I0 as a large minimal model.

Having found a tight pattern, we find a minimal tight pattern simply by minimizing first
on the weight, then on the side weight, which concludes the proof of Theorem 5.6.

6 Hardness with Tight Iterable Edges

In this section, we conclude the proof of Theorem 3.3 by showing that a minimal tight pattern
can be used to show hardness when it is iterable. Formally:

I Theorem 6.1. For every query Q, if we have a minimal tight pattern (I, e) where the
edge e is iterable, then PQE(Q) is #P-hard.

This covers all the queries to which Section 4 did not apply, and concludes the proof of
Theorem 3.3:

Proof of Theorem 3.3. Let Q be an unbounded UCQ∞. If we have a model of Q with a
non-iterable edge, then we conclude by Theorem 4.6 that PQE(Q) is #P-hard. Otherwise,
by Theorem 5.6, we have a minimal tight pattern, and its edge is then iterable (otherwise
the first case would have applied), so that we can apply Theorem 6.1. J
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e (with Fm)
e without Fm
el (with Fl)
el without Fl
er (with Fr)
er without Fr
other incident edges

Figure 5 Example of fine dissociation from an instance I (left) to I ′ (middle) for a choice of e,
of Π = (Fl, Fr), and of Fm. We call el and er the edges of Fl and Fr. A key is given at the right.

Thus, it only remains to show Theorem 6.1. The idea is to use the iterable edge e of the min-
imal tight pattern (I, e) for some incident pair Π to reduce from the undirected st-connectivity
problem #U-ST-CON (Definition 2.2). Given an input st-graph G for #U-ST-CON, we will
code it as a TID I built using Ie,Π, with one probabilistic fact per edge of G. To show a
reduction, we will argue that good possible worlds of G correspond to possible worlds J ′
of I containing some iterate of the instance Ine,Π (with n being the length of the path), and
J ′ then satisfies Q because e is iterable. Conversely, we will argue that bad possible worlds
of G correspond to possible worlds J ′ of I that have a homomorphism to a so-called fine
dissociation of e in I, and we will argue that this violates Q query thanks to our choice
of (I, e) as a minimal tight pattern. Let us first define this notion of fine dissociation:

I Definition 6.2. Let I be an instance, let e = (u, v) be a non-leaf edge in I, let Fl = Rl(l, u)
and Fr = Rr(v, r) be an incident pair of e in I, and let Fm be a non-unary fact realizing the
edge e. The result of performing the fine dissociation of e in I relative to Fl, Fr and Fm is
an instance I ′ on the domain dom(I ′) = dom(I) ∪ {u′, v′}, where the new elements are fresh.
It is obtained by applying the following steps:

Copy non-incident facts: Initialize I ′ as the induced subinstance of I on dom(I) \ {u, v}.
Copy incident facts Fl and Fr: Add the facts Fl and Fr to I ′.
Copy other left-incident facts: For every σ↔-fact F ′l = R′l(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′l 6= Fl, add to I ′ the fact R′l(l′, u′).
Copy other right-incident facts: For every σ↔-fact F ′r = R′r(v, r′) of I that is right-incident
to e (i.e., r′ /∈ {u, v}) and where F ′r 6= Fr, add to I ′ the fact R′r(v′, r′).
Create the copies of e: Copy e on the pairs (u, v′) and (u′, v) of I ′, and copy e except
the fact Fm on the pairs (u, v) and (u′, v′) of I ′.

The result of a fine dissociation is illustrated in Figure 5. If the only non-unary fact
realizing the edge e in I is Fm, then (u, v) and (u′, v′) are not edges in the result of the fine
dissociation; otherwise, they are edges but with a smaller weight than e. Observe that fine
dissociation is related both to dissociation (Section 5) and to iteration (Section 4). We will
study later when fine dissociation can make the query false.

We can now start the proof of Theorem 6.1 by describing the coding, which depends on
our choice of Ie,Π and of a fact Fm, but does not depend on the query Q. Given an input
st-graph, i.e., an undirected graph G with source s and target t, we construct a TID I whose
possible worlds will have a bijection to those of G.

I Definition 6.3. Let Ie,Π be an instance where e = (u, v), Π = (Fl, Fr), Fl = Rl(l, u),
Fr = Rr(v, r) and let Fm be a non-unary fact of I realizing e. Let G = (W,C, s, t) be an
undirected graph with source and target. The coding of G relative to Ie,Π and Fm is a TID
I = (J, π) with domain dom(J) := dom(I) ∪ {uc | c ∈ C} ∪ {vw | w ∈ W \ {t}}, where the
new elements are fresh, and where we use vt to refer to v for convenience. The facts of J
and the probability mapping π are defined as follows:

ICDT 2020
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Copy non-incident facts: Initialize J as the induced subinstance of I on dom(I) \ {u, v}.
Copy incident facts Fl and Fr: Add the facts Fl and Fr to J .
Copy other left-incident facts: For every σ↔-fact F ′l = R′l(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′l 6= Fl, add to J the facts R′l(l′, uc) for each edge c ∈ C.
Copy other right-incident facts: For every σ↔-fact F ′r = R′r(v, r′) of I that is right-
incident to e (i.e., r′ /∈ {u, v}) and where F ′r 6= Fr, add to J the facts R′r(vw, r′) for each
w ∈W .
Create copies of e: Copy e on the pair (u, vs) of J , and for each edge c = {a, b} in C,
copy e on the pairs (uc, va) and (uc, vb) of J .

Finally, we define the function π as follows. For each edge c of C, π maps the copy of the
fact Fm in the edge (uc, vw) to 0.5, for an arbitrary choice of w ∈ c. All other facts are
mapped to 1 by π.

The coding is exemplified in Figure 6. It is important to note that the edges are coded
by paths of length 2. This choice is critical, because the source graph to the reduction is
undirected, but the facts on edges are directed; so, intuitively, we symmetrize by having two
copies of the edge in opposite directions in order to traverse them in both ways. The choice
on how to orient the edges (i.e., the choice of w ∈ c when defining π) has no impact in how
the edges can be traversed when their probabilistic fact is present, but it has an impact when
the probabilistic fact is missing. Indeed, this is the reason why fine dissociation includes two
copies of e with one missing fact.

It is easy to see that the given coding is in polynomial time in the input G for every
choice of Ie,Π and Fm. Let us now define the bijection φ, mapping each possible world ω of G
to a possible world of the TID I as follows. For each edge c ∈ C, we keep the probabilistic
fact incident to uc in the instance φ(ω) if c is kept in the possible world ω, and we do not
keep it, otherwise. It is obvious that this correspondence is bijective and that all possible
worlds have the same probability 0.5|C|. We can now explain why φ defines a reduction:

I Proposition 6.4. Let the TID I = (J, π) be the coding of an undirected st-graph G relative
to an instance Ie,Π and to Fm as described in Definition 6.3. Let φ be the bijective function
defined above from the possible worlds of G to those of I. Then:
1. For any good possible world ω of G with a witnessing simple s, t-path traversing n edges,

φ(ω) has a homomorphism from In+1
e,Π .

2. For any bad possible world ω of G, φ(ω) has a homomorphism to the result of finely
dissociating e in I relative to Π and Fm.

Proof sketch. For the forward direction, we find In+1
e,Π as a subinstance of φ(ω) by following

the image in J of the witnessing path in ω.
The backward direction is again more challenging. We consider a cut in ω between s

and t. Then, any two vertices on different sides of the cut can only be connected by two
successive copies of e with one of them missing the fact Fm (it can be the first or second
copy depending on the orientation choice). We then construct the homomorphism to the
fine dissociation (Figure 5) by mapping the vertex u to u, mapping vertices on the s-side
of the cut (including vs) to v′, mapping the edges between these vertices back-and-forth to
(v′u) and (u, v′), mapping all vertices on the t-side (including vt = v) to v, mapping edges
between them back-and-forth to (v, u′) and (u′, v), and mapping the edges across the cut to
either (v′, u′) and (u′, v) or to (v′, u) and (u, v), depending on the orientation choice. J

Proposition 6.4 leads us to a proof of Theorem 6.1: good possible worlds of G give a
possible world of I that satisfies Q thanks to the iterability of e, and bad possible worlds
of G give a possible world of I having a homomorphism to the fine dissociation. The only
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(d) The image of an s-t path in the coding.

Figure 6 Example of the coding on an st-graph G shown in Figure 6a. We encode G relative to
an instance Ie,Π (Figure 6b) and to some choice of a non-unary fact Fm realizing e. The coding of G
relative to Ie,Π and Fm is shown in Figure 6c, with the probabilistic facts being exactly one copy
of Fm for one of every pair of purple edges adjacent to an element in {ue1 , . . . , ue9 }. Each st-path
in G gives rise to a subinstance in the coding: consider for instance the st-path which is via the
edges e1, e4, e8. The corresponding subinstance in the coding for this path is shown in Figure 6d,
which is an iterate of the form In+1

e,Π , where n is the number of edges on the path, and hence n = 3,
in this case.

missing piece is to argue that the fine dissociation does not satisfy the query. We can do this
using the minimality and tightness of the pattern:

I Lemma 6.5. Let Q be a query, let (I, e) be a minimal tight pattern for Q, let Π be an
arbitrary incident pair of e in I, and let Fm be an arbitrary non-unary fact realizing e in I.
Then, the result of the fine dissociation of e in I relative to Π and Fm does not satisfy Q.

Proof sketch. We assume that the fine dissociation I1 satisfies Q, and show a contradiction
by rewriting it in several steps. The process of the proof is illustrated as Figure 8. We first
dissociate the copies of e in I1 with Fm missing: as their weight is strictly less than e, the
minimality of e ensures that they are not tight, so the result I2 still satisfies Q. We then
homomorphically fold the dissociated edges into the copies of e, and obtain I3, which still
satisfies Q: it is like I1 but without the copies of e with Fm missing. Now, the copies of e
in I3 have a smaller side weight than in I1, so the minimality of e ensures that they are
not tight. We can dissociate them again, yielding I4, which still satisfies Q. We can now
homomorphically fold the dissociated edges and obtain I5, which still satisfies Q, and is
homomorphic to the dissociation of e in I1. As e was tight, I5 should not satisfy the query,
so we have reached a contradiction. J

This concludes the proof of Theorem 6.1, and thus of our main theorem (Theorem 3.3).
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(a) A possible world ω of G with no s, t-path
(dashed edges are the ones that are not kept):
the vertices are colored in red or green depend-
ing on their side of the cut.
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(b) Possible world of the coding in Figure 6c for the
possible world of G at the left. Copies of e are dashed when
they are missing the fact Fm. Vertices uei corresponding
to edges across the cut are in bold.

Figure 7 Illustration of a possible world (Figure 7a) of the graph G from Figure 6a, and the
corresponding possible world (Figure 7b) of the coding (Figure 6c). The homomorphism of Figure 7b
to the fine dissociation is given by the vertex colors: the red u-vertices are mapped to u, the red
v-vertices are mapped to v′, the green u-vertices are mapped to u′, and the green v-vertices are
mapped to v. The vertex colors are determined by the cut (Figure 7a) except for the bold vertices
where it depends on the orientation choice.
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Figure 8 Illustration of the proof of Lemma 6.5, with I1 being the fine dissociation I ′ of Figure 5,
and I5 being isomorphic to the dissociation on Figure 4.
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7 Conclusion

We have shown that PQE is #P-hard for any unbounded UCQ∞ on an arity-two signature,
and hence proved a dichotomy on PQE for all UCQ∞ queries: either they are unbounded and
PQE is #P-hard, or they are bounded and the dichotomy by Dalvi and Suciu applies. Our
result captures many query languages; in particular disjunctive Datalog over binary signatures,
regular path queries, and all ontology-mediated queries closed under homomorphisms.

There are three natural directions to extend our result. First, we could study queries
that are not homomorphism-closed, e.g., with disequalities or negation. We believe that this
would require different techniques as the problem is still open for UCQs (beyond the results
of [21]). Second, we could lift the arity restriction and work on signatures of arbitrary arity:
we conjecture that PQE is still #P-hard for any unbounded UCQ∞ in that case. Much
of our proof techniques may adapt, but we do not know how to extend the definitions of
dissociation, fine dissociation, and iteration. In particular, dissociation on a fact is difficult
to adapt because incident facts on arbitrary arity signatures may intersect in complicated
ways. For this reason, we leave the extension to arbitrary-arity signatures to future work.
Third, a natural question for future work is whether our hardness result on unbounded
homomorphism-closed queries also applies to the (unweighted) model counting problem, where
all facts of the TID must have probability 0.5: the hardness of this problem has only been
shown on the class of self-join free CQs [4].
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Abstract
We study the expressive power of the Lara language – a recently proposed unified model for
expressing relational and linear algebra operations – both in terms of traditional database query
languages and some analytic tasks often performed in machine learning pipelines. We start by
showing Lara to be expressive complete with respect to first-order logic with aggregation. Since
Lara is parameterized by a set of user-defined functions which allow to transform values in tables, the
exact expressive power of the language depends on how these functions are defined. We distinguish
two main cases depending on the level of genericity queries are enforced to satisfy. Under strong
genericity assumptions the language cannot express matrix convolution, a very important operation in
current machine learning operations. This language is also local, and thus cannot express operations
such as matrix inverse that exhibit a recursive behavior. For expressing convolution, one can relax
the genericity requirement by adding an underlying linear order on the domain. This, however,
destroys locality and turns the expressive power of the language much more difficult to understand.
In particular, although under complexity assumptions the resulting language can still not express
matrix inverse, a proof of this fact without such assumptions seems challenging to obtain.
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1 Introduction

Many of the actual analytics systems require both relational algebra and statistical func-
tionalities for manipulating the data. In fact, while tools based on relational algebra are
often used for preparing and structuring the data, the ones based on statistics and machine
learning (ML) are applied to quantitatively reason about such data. Based on the “impedance
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6:2 On the Expressiveness of LARA

mismatch” that this dichotomy creates [12], the database theory community has highlighted
the need of developing a standard data model and query language for such applications,
meaning an extension of relational algebra with linear algebra operators that is able to
express the most common ML tasks [4]. Noticeably, the ML community has also recently
manifested the need for what – at least from a database perspective – can be seen as a
high-level language that manipulates tensors. Indeed, despite their wide adoption, there
has been a recent interest in redesigning the way in which tensors are used in deep learning
code [8, 15, 16], due to some pitfalls of the current way in which tensors are abstracted.

Hutchinson et al. [10, 9] have recently proposed a data model and a query language that
aims at becoming the “universal connector” that solves the aforementioned impedance. On
the one hand, the data model proposed corresponds to the so-called associative tables, which
generalize relational tables, tensors, arrays, and others. Associative tables are two-sorted,
consisting of keys and values that such keys map to. The query language, on the other
hand, is called Lara, and subsumes several known languages for the data models mentioned
above. Lara is an algebraic language designed in a minimalistic way by only including three
operators; namely, join, union, and extension. In rough terms, the first one corresponds to
the traditional join from relational algebra, the second one to the operation of aggregation,
and the third one to the extension defined by a function as in a flatmap operation. It has
been shown that Lara subsumes all relational algebra operations and is capable of expressing
several interesting linear algebra operations used in graph algorithms [9].

Based on the proposal of Lara as a unified language for relational and linear algebra, it is
relevant to develop a deeper understanding of its expressive power, both in terms of the logical
query languages traditionally studied in database theory and ML operations often performed
in practical applications. We start with the former and show that Lara is expressive complete
with respect to first-order logic with aggregation (FOAgg), a language that has been studied
as a way to abstract the expressive power of SQL without recursion; cf., [13, 14]. (To be more
precise, Lara is expressive complete with respect to a suitable syntactic fragment of FOAgg
that ensures that formulas are safe and get properly evaluated over associative tables). This
result can be seen as a sanity check for Lara. In fact, this language is specifically tailored to
handle aggregation in conjunction with relational algebra operations, and a classical result in
database theory establishes that the latter is expressive complete with respect to first-order
logic (FO). We observe that while Lara consists of positive algebraic operators only, set
difference can be encoded in the language by a combination of aggregate operators and
extension functions. Our expressive completeness result is parameterized by the class of
functions allowed in the extension operator. For each such a class Ω we allow FOAgg to
contain all built-in predicates that encode the functions in Ω.

To understand which ML operators Lara can express, one then needs to bound the
class Ω of extension functions allowed in the language. We start with a tame class that can
still express several relevant functions. These are the FO-expressible functions that allow to
compute arbitrary numerical predicates on values, but can only compare keys with respect to
(in)equality. This restriction makes the logic quite amenable for theoretical exploration. In
fact, it is easy to show that the resulting “tame version” of Lara satisfies a strong genericity
criterion (in terms of key-permutations) and is also local, in the sense that queries in the
language can only see up to a fixed-radius neighborhood from its free variables; cf., [14]. The
first property implies that this tame version of Lara cannot express non-generic operations,
such as matrix convolution, and the second one that it cannot express inherently recursive
queries, such as matrix inverse. Both operations are very relevant for ML applications; e.g.,
matrix convolution is routinely applied in dimension-reduction tasks, while matrix inverse is
used for learning the matrix of coefficient values in linear regression.



P. Barceló, N. Higuera, J. Pérez, and B. Subercaseaux 6:3

We then look more carefully at the case of matrix convolution, and show that this query
can be expressed if we relax the genericity properties of the language by assuming the presence
of a linear order on the domain of keys. (This relaxation implies that queries expressible
in the resulting version of Lara are no longer invariant with respect to key-permutations).
This language, however, is much harder to understand in terms of its expressive power. In
particular, it can express non-local queries, and hence we cannot apply locality techniques to
show that the matrix inversion query is not expressible in it. To prove this result, then, one
would have to apply techniques based on the Ehrenfeucht-Fraïssé games that characterize the
expressive power of the logic. Showing results based on such games in the presence of a linear
order, however, is often combinatorially difficult, and currently we do not know whether
this is possible. In turn, it is possible to obtain that matrix inversion is not expressible in a
natural restriction of our language under complexity-theoretic assumptions. This is because
the data complexity of queries expressible in such a restricted language is Logspace, while
matrix inversion is complete for a class that is believed to be a proper extension of the latter.

The main objective of our paper is connecting the study of the expressive power of tensor-
based query languages, in general, and of Lara, in particular, with traditional database
theory concepts and the arsenal of techniques that have been developed in this area to study
the expressiveness of query languages. We also aim at identifying potential lines for future
research that appear in connection with this problem. Our work is close in spirit to the
recent study of Matlang [1, 6], a matrix-manipulation language based on elementary linear
algebra operations. It is shown that this language is contained in the three-variable fragment
of relational algebra with summation and, thus, it is local. This implies that the core of
Matlang cannot check for the presence of a four-clique in a graph (represented as a Boolean
matrix), as this query requires at least four variables to be expressed, and neither can it
express the non-local matrix inversion query. It can be shown that Matlang is strictly
contained in the tame version of Lara that is mentioned above, and thus some of our results
can be seen as generalizations of the ones for Matlang.

Organization of the paper. Basics of Lara and FOAgg are presented in Sections 2 and 3,
respectively. The expressive completeness of Lara in terms of FOAgg is shown in Section
4. The tame version of Lara and some inexpressibility results relating to it are given in
Section 5, while in Section 6 we present a version of Lara that can express convolution and
some discussion about its expressive power. We finalize in Section 7 with concluding remarks
and future work. Due to space constraints some of our proofs are in the appendix, or simply
reserved to a final version of the paper.

2 The LARA Language

For integers m ≤ n, we write [m,n] for {m, . . . , n} and [n] for {1, . . . , n}. If v̄ = (v1, . . . , vn)
is a tuple of elements, we write v̄[i] for vi. We denote multisets as {{a, b, . . . }}.

Data model

A relational schema is a finite collection σ of two-sorted relation symbols. The first sort
consists of key-attributes and the second one of value-attributes. Each relation symbol R ∈ σ
is then associated with a pair (K̄, V̄ ), where K̄ and V̄ are (possibly empty) tuples of different
key- and value- attributes, respectively. We write R[K̄, V̄ ] to denote that (K̄, V̄ ) is the sort
of R. We do not distinguish between K̄, resp., V̄ , and the set of attributes mentioned in it.

ICDT 2020
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There are two countably infinite sets of objects over which databases are populated: A
domain of keys, which interpret key-attributes and is denoted Keys, and a domain of values,
which interpret value-attributes and is denoted Values. A tuple of sort (K̄, V̄ ) is a function
t : K̄ ∪ V̄ → Keys ∪ Values such that t(A) ∈ Keys if A ∈ K̄ and t(A) ∈ Values if A ∈ V̄ . A
database D over schema σ is a mapping that assigns with each relation symbol R[K̄, V̄ ] ∈ σ
a finite set RD of tuples of sort (K̄, V̄ ). We often see D as a set of facts, i.e., as the set of
expressions R(t) such that t ∈ RD. For ease of presentation, we write R(k̄, v̄) ∈ D if R(t) ∈ D
for some tuple t with t(K̄) = k̄ and t(V̄ ) = v̄ (where k̄ ∈ Keys|K̄| and v̄ ∈ Values|V̄ |).

For a database D to be a Lara database we need D to satisfy an extra restriction: Key
attributes define a key constraint over the corresponding relation symbols. That is,

R(k̄, v̄), R(k̄, v̄′) ∈ D =⇒ v̄ = v̄′,

for each R[K̄, V̄ ] ∈ σ, k̄ ∈ Keys|K̄|, and v̄, v̄′ ∈ Values|V̄ |. Relations of the form RD are called
associative tables [10]. Yet, we abuse terminology and call associative table any set A of
tuples of the same sort (K̄, V̄ ) such that v̄ = v̄′ for each (k̄, v̄), (k̄, v̄′) ∈ A. In such a case, A
is of sort (K̄, V̄ ). Notice that for a tuple (k̄, v̄) in A, we can safely denote v̄ = A(k̄).

Syntax

An aggregate operator over domain U is a family ⊕ = {⊕0,⊕1, . . . ,⊕ω} of partial functions,
where each ⊕k takes a multiset of k elements from U and returns a single element in U .
If u is a collection of k elements in U , we write ⊕(u) for ⊕k(u). This notion generalizes
most aggregate operators used in practical query languages; e.g., SUM, AVG, MIN, MAX,
and COUNT. For simplicity, we also see binary operations ⊗ on U as aggregate operators
⊕ = {⊕0,⊕1, . . . ,⊕ω} such that ⊕2 = ⊗ and ⊕i has an empty domain for each i 6= 2.

The syntax of Lara is parameterized by a set of extension functions. This is a collection
Ω of user-defined functions f that map each tuple t of sort (K̄, V̄ ) to a finite associative table
of sort (K̄ ′, V̄ ′), for K̄ ∩ K̄ ′ = ∅ and V̄ ∩ V̄ ′ = ∅. We say that f is of sort (K̄, V̄ ) 7→ (K̄ ′, V̄ ′).
As an example, an extension function might take a tuple t = (k, v1, v2) of sort (K,V1, V2), for
v1, v2 ∈ Q, and map it to a table of sort (K ′, V ′) that contains a single tuple (k, v), where v
is the average between v1 and v2.

We inductively define the set of expressions in Lara(Ω) over schema σ as follows.

Empty associative table. ∅ is an expression of sort (∅, ∅).
Atomic expressions. If R[K̄, V̄ ] is in σ, then R is an expression of sort (K̄, V̄ ).
Join. If e1 and e2 are expressions of sort (K̄1, V̄1) and (K̄2, V̄2), respectively, and ⊗ is a
binary operator over Values, then e1 ./⊗ e2 is an expression of sort (K̄1 ∪ K̄2, V̄1 ∪ V̄2).
Union. If e1, e2 are expressions of sort (K̄1, V̄1) and (K̄2, V̄2), respectively, and ⊕ is an
aggregate operator over Values, then e1 ./⊕ e2 is an expression of sort (K̄1 ∩ K̄2, V̄1 ∪ V̄2).
Extend. For e an expression of sort (K̄, V̄ ) and f a function in Ω of sort (K̄, V̄ ) 7→ (K̄ ′, V̄ ′),
it is the case that Extf e is an expression of sort (K̄ ∪ K̄ ′, V̄ ′).

We write e[K̄, V̄ ] to denote that expression e is of sort (K̄, V̄ ).

Semantics

We assume that for every aggregate operator ⊕ over domain Values there is a neutral value
0⊕ ∈ Values. Formally, ⊕(V) = ⊕(V ′), for every multiset V of elements in Values and every
extension V ′ of V with an arbitrary number of occurrences of 0⊕. An important notion is
padding. Let V̄1 and V̄2 be tuples of value-attributes, and v̄ a tuple over Values of sort V̄1.
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i j v1 v2

0 0 1 5
0 1 2 6
1 0 3 7
1 1 4 8

j k v2 v3

0 0 1 1
0 1 1 2
1 0 1 1
1 1 2 1

Figure 1 Associative tables A and B used for defining the semantics of Lara.

Then padV̄2
⊕ (v̄) is a new tuple v̄′ over Values of sort V̄1 ∪ V̄2 such that for each V ∈ V̄1 ∪ V̄2

we have that v′(V ) = v(V ), if V ∈ V̄1, and v′(V ) = 0⊕, otherwise.
Consider tuples k̄1 and k̄2 over key-attributes K̄1 and K̄2, respectively. We say that k̄1

and k̄2 are compatible, if k̄1(K) = k̄2(K) for every K ∈ K̄1 ∩ K̄2. If k̄1 and k̄2 are compatible,
one can define the extended tuple k̄1 ∪ k̄2 over key-attributes K̄1 ∪ K̄2. Also, given a tuple k̄
of sort K̄, and a set K̄ ′ ⊆ K̄, the restriction k̄↓K̄′ of k̄ to attributes K̄ ′ is the only tuple of
sort K̄ ′ that is compatible with k̄. Finally, given a multiset T of tuples (k̄, ū) of the same
sort (K̄, V̄ ) we define Solve⊕(T ) as

Solve⊕(T ) := {(k̄, v̄) | there exists ū such that (k̄, ū) ∈ T and

v̄[i] =
⊕

v̄′ : (k̄,v̄′)∈T

v̄′[i], for each i ∈ [|V̄ |]}.

That is, Solve⊕(T ) turns the multiset T into an associative table T ′ by first grouping together
tuples that have the same value over K̄, and the solving key-conflicts by aggregating with
respect to ⊕ (coordinate-wise).

The evaluation of a Lara(Ω) expression e over schema σ on a Lara database D, denoted
eD, is inductively defined as follows. Since the definitions are not so easy to grasp, we use
the associative tables A and B in Figure 1 to construct examples. Here, i, j, and k are
key-attributes, while v1, v2, and v3 are value-attributes.

Empty associative table. if e = ∅ then eD := ∅.
Atomic expressions. If e = R[K̄, V̄ ], for R ∈ σ, then eD := RD.
Join. If e[K̄1 ∪ K̄2, V̄1 ∪ V̄2] = e1[K̄1, V̄1] ./⊗ e2[K̄2, V̄2], then

eD := {(k̄1 ∪ k̄2, v̄1 ⊗ v̄2) | k̄1 and k̄2 are compatible tuples such that

v̄1 = padV̄2
⊗ (eD1 (k̄1)) and v̄2 = padV̄1

⊗ (eD2 (k̄2))}.

Here, v̄1 ⊗ v̄2 is a shortening for (v1
1 ⊗ v1

2 , . . . , v
1
n ⊗ v2

n) assuming that v̄1 = (v1
1 , . . . , v

1
n)

and v̄2 = (v1
2 , . . . , v

n
2 ). For example, the result of A ./× B is shown in Figure 2, for ×

being the usual product on N and 0× = 1.
Union. If e[K̄1 ∩ K̄2, V̄1 ∪ V̄2] = e1[K̄1, V̄1] ./⊕ e2[K̄2, V̄2], then

eD := Solve⊕{{(k̄, v̄) | k̄ = k̄1↓K̄1∩K̄2
and v̄ = padV̄2

⊕ (eD1 (k̄1)) for some k̄1 ∈ eD1 ,

or k̄ = k̄2↓K̄1∩K̄2
and v̄ = padV̄1

⊕ (eD2 (k̄2)) for some k̄2 ∈ eD2 }}.

In more intuitive terms, eD is defined by first projecting over K̄1 ∩ K̄2 any tuple in
eD1 , resp., in eD2 . As the resulting set of tuples might no longer be an associative table
(because there might be many tuples with the same keys), we have to solve the conflicts
by applying the given aggregate operator ⊕. This is what Solve⊕ does.
For example, the result of A ./+ B is shown in Figure 2, for + being the addition on N.
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(a) Table A ./× B

i j k v1 v2 v3

0 0 0 1 5 1
0 0 1 1 5 2
0 1 0 2 6 1
0 1 1 2 12 1
1 0 0 3 7 1
1 0 1 3 7 2
1 1 0 4 8 1
1 1 1 4 16 1

(b) Table A ./+ B

j v1 v2 v3

0 4 14 3
1 8 17 2

(c) Table Extg A

i j z
0 0 1
0 1 1

Figure 2 The tables A ./× B, A ./+ B,and Extf A.

Extend. If e[K̄ ∪ K̄ ′, V̄ ′] = Extf e1[K̄, V̄ ] and f is of sort (K̄, V̄ ) 7→ (K̄ ′, V̄ ′), then

eD := {(k̄ ∪ k̄′, v̄′) | (k̄, v̄) ∈ eD1 , and (k̄′, v̄′) ∈ f(k̄, v̄)}.

Notice that in this case k̄ ∪ k̄′ always exists as K̄ ∩ K̄ ′ = ∅.
As an example, Figure 2 shows the results of Extg A, where g is a function that does the
following: If the key corresponding to attribute i is 0, then the tuple is associated with
the associative table of sort (∅, z) containing only the tuple (∅, 1). Otherwise, the tuple is
associated with the empty associative table.

Several useful operators, as described below, can be derived from the previous ones.

Map operation. An important particular case of Extf occurs when f is of sort (K̄, V̄ ) 7→
(∅, V̄ ′), i.e., when f does not extend the keys in the associative table but only modifies
the values. Following [10], we write this operation as Mapf .

Aggregation. This corresponds to an aggregation over some of the key-attributes of
an associative table. Consider a Lara expression e1[K̄1, V̄1], an aggregate operator ⊕
over Values, and a K̄ ⊆ K̄1, then e = ./

K̄
⊕ e1 is an expression of sort (K̄, V̄1) such that

eD := Solve⊕{{(k̄, v̄) | k̄ = k̄1↓K̄ and v̄ = eD1 (k̄1)}}. We note that ./

K̄
⊕ e1 is equivalent to

the expression e1 ./⊕ Extf (∅), where f is the function that associates an empty table of
sort (K̄, ∅) with every possible tuple.

Reduction. The reduction operator, denoted by ¯ ./, is just a syntactic variation of aggrega-
tion defined as ¯ ./

L̄
⊕ e1 ≡ ./

K̄\L̄
⊕ e1.

Next we provide an example that applies several of these operators.

I Example 1. Consider the schema Seqs[(time, batch, features), (val)], which represents a
typical tensor obtained as the output of a recurrent neural network that processes input
sequences. The structure stores a set of features obtained when processing input symbols
from a sequence, one symbol at a time. For efficiency the network can simultaneously process
a batch of examples and provide a single tensor as output.

Assume that, in order to make a prediction one wants to first obtain, for every example,
the maximum value of every feature over the time steps, and then apply a softmax function.
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One can specify all this process in Lara as follows.

Max = ¯ ./

(time)
max(·) Seqs (1)

Exp = Mapexp(·)Max (2)

SumExp = ¯ ./
(features)
sum(·) Exp (3)

Softmax = Exp ./÷ SumExp (4)

Expression (1) performs an aggregation over the time attribute to obtain the new tensor
Max[(batch, features), (val)] such that Max(b, f) = maxu=Seqs(t,b,f) u. That is, Max stores the
maximum value over all time steps (for every feature of every example). Expression (2)
applies a point-wise exponential function to obtain the tensor Exp[(batch, features), (val)]
such that Exp(b, f) = exp(Max(b, f)). In expression (3) we apply another aggregation to
compute the sum of the exponentials of all the (maximum) features. Thus we obtain the
tensor SumExp[(batch), (val)] such that

SumExp(b) =
∑
f

Exp(b, f) =
∑
f

exp(Max(b, f)).

Finally, expression (4) applies point-wise division over the tensors Exp[(batch, features), (val)]
and SumExp[(batch), (val)]. This defines a tensor Softmax[(batch, features), (val)] such that

Softmax(b, f) = Exp(b, f)
SumExp(b) = exp(Max(b, f))∑

f ′ exp(Max(b, f ′)) .

Thus, we effectively compute the softmax of the vector of maximum features over time for
every example in the batch. J

It is easy to see that for each Lara expression e and Lara database D, the result e(D)
is always an associative table. Moreover, although the elements in the evaluation e(D) of an
expression e over D are not necessarily in D (due to the applications of the operator Solve⊕
and the extension functions in Ω), all Lara expressions are safe, i.e., |eD| is finite.

I Proposition 2. Let e be a Lara(Ω) expression. Then eD is a finite associative table, for
every Lara database D.

3 First-order Logic with Aggregation

We consider a two-sorted version of FO with aggregation. We thus assume the existence of
two disjoint and countably infinite sets of key-variables and value-variables. The former are
denoted x, y, z, . . . and the latter i, j, k, . . . . In order to cope with the demands of the extension
functions used by Lara (as explained later), we allow the language to be parameterized by
a collection Ψ of user-defined relations R of some sort (K̄, V̄ ). For each R ∈ Ψ we blur the
distinction between the symbol R and its interpretation over Keys|K̄| × Values|V̄ |.

Syntax and semantics

The language contains terms of two sorts.
Key-terms: Composed exclusively by the key-variables x, y, z . . . .
Value-terms: Composed by the constants of the form 0⊕, for each aggregate operator
⊕, the value-variables i, j, . . . , and the aggregation terms defined next. Let τ(x̄, ȳ, ī, j̄)
be a value-term mentioning only key-variables among those in (x̄, ȳ) and value-variables
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6:8 On the Expressiveness of LARA

among those in (̄i, j̄), and φ(x̄, ȳ, ī, j̄) a formula whose free key- and value-variables are
those in (x̄, ȳ) and (̄i, j̄), respectively (i.e., the variables that do not appear under the
scope of a quantifier). Then for each aggregate operator ⊕ we have that

τ ′(x̄, ī) := Agg⊕ȳ, j̄
(
τ(x̄, ȳ, ī, j̄), φ(x̄, ȳ, ī, j̄)

)
(5)

is a value-term whose free variables are those in x̄ and ī.

Let Ψ be a set of relations R as defined above. The set of formulas in the language
FOAgg(Ψ) over schema σ is inductively defined as follows:

Atoms ⊥, x = y, and ι = κ are formulas, for x, y key-variables and ι, κ value-terms.
If R[K̄, V̄ ] ∈ σ ∪Ψ, then R(x̄, ῑ) is a formula, where x̄ is a tuple of key-variables of the
same arity as K̄ and ῑ is a tuple of value-terms of the same arity as V̄ .
If φ, ψ are formulas, then (¬φ), (φ∨ψ), (φ∧ψ), ∃xφ, and ∃iφ are formulas, where x and
i are key- and value-variables, respectively.

We now define the semantics of FOAgg(Ψ). LetD be a Lara database and η an assignment
that interprets each key-variable x as an element η(x) ∈ Keys and value-variable i as an
element η(i) ∈ Values. If τ(x̄, ī) is a value-term only mentioning variables in (x̄, ī), we write
τD(η(x̄, ī)) for the interpretation of τ over D when variables are interpreted according to η.
Also, if φ(x̄, ī) is a formula of the logic whose free key- and value-variables are those in (x̄, ī),
we write D |= φ(η(x̄, ī)) if D satisfies φ when x̄, ī is interpreted according to η, and φD for
the set of tuples η(x̄, ī) such that D |= φ(η(x̄, ī)) for some assignment η.

The notion of satisfaction is inherited from the semantics of two-sorted FO. The notion
of interpretation, on the other hand, requires explanation for the case of value-terms. Let
η be an assignment as defined above. Constants 0⊕ are interpreted as themselves and
value-variables are interpreted over Values according to η. Consider now an aggregate term
of the form (5). Let D be a Lara database and assume that η(x̄) = k̄, for k̄ ∈ Keys|x̄|,
and η(̄i) = v̄, for v̄ ∈ Values|̄i|. Let (k̄′1, v̄′1), (k̄′2, v̄′2), . . . , be an enumeration of all tuples
(k̄′, v̄′) ∈ Keys|ȳ| × Values|j̄| such that D |= φ(k̄, k̄′, v̄, v̄′), i.e. there is an assignment η′ that
coincides with η over all variables in (x̄, ī) and satisfies η′(ȳ, j̄) = (k̄′, v̄′). Then

τ ′(η(x̄, ī)) = τ ′(k̄, v̄) :=
⊕
{{τ(k̄, k̄′1, v̄, v̄′1), τ(k̄, k̄′2, v̄, v̄′2), . . . }} ∈ Values.

4 Expressive Completeness of LARA with respect to FOAgg

We prove that Lara(Ω) has the same expressive power as a suitable restriction of FOAgg(ΨΩ),
where ΨΩ is a set that contains relations that represent the extension functions in Ω. In
particular, for every extension function f ∈ Ω of sort (K̄, V̄ ) 7→ (K̄ ′, V̄ ′), there is a relation
Rf ⊆ Keys|K̄|+|K̄

′| × Values|V̄ |+|V̄
′| in ΨΩ such that for every (k̄, v̄) ∈ Keys|K̄| × Values|V̄ |:

f(k̄, v̄) = {(k̄′, v̄′) | (k̄, k̄′, v̄, v̄′) ∈ Rf}.

Since Lara is defined in a minimalistic way, we require some assumptions for our
expressive completeness result to hold. First, we assume that Keys = Values, which allows
us to interchangeably move from keys to values in the language (an operation that Lara
routinely performs in several of its applications [10, 9]). Moreover, we assume that there are
two reserved values, ♦ and ♥, which are allowed to be used as constants in both FOAgg(ΨΩ)
and Lara, but do not appear in any Lara database. In particular, we allow FOAgg(ΨΩ) to
express formulas of the form x = c and i = c, for x and i key- and value-variables, respectively,
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and c ∈ {♦,♥}. (Notice that, by definition, ♦ and ♥ are different to all neutral elements
of the form 0⊕, for ⊕ an aggregate operator). With these constants we can “mark” tuples
in some specific cases, and thus solve an important semantic mismatch between the two
languages. In fact, Lara deals with multisets in their semantics while FOAgg is based on
sets only. This causes problems, e.g., when taking the union of two associative tables A and
B both of which contain an occurrence of the same tuple (k̄, v̄). While Lara would treat
both occurrences of (k̄, v̄) as different in A ./ B, and hence would be forced to restore the
“key-functionality” of k̄ based on some aggregate operator, for FOAgg the union of A and B
contains only one occurrence of (k̄, v̄).

From LARA to FOAgg

We show first that the expressive power of Lara(Ω) is bounded by that of FOAgg(ΨΩ).

I Theorem 3. For every expression e[K̄, V̄ ] of Lara(Ω) there is a formula φe(x̄, ī) of
FOAgg(ΨΩ) such that eD = φDe , for every Lara database D.

Before proving the theorem, we present an example of how the join operation is translated,
as this provides a good illustration of the main ideas behind the proof. Assume that we are
given expressions e1[K1,K2,K3, V1, V2] and e2[K3,K2, V2, V3] of Lara(Ω). Inductively, there
are formulas φe1(x1, x2, x3, i1, i2) and φe2(x′3, x′2, i′2, i3) of FOAgg(ΨΩ) such that eD1 = φDe1

and eD2 = φDe2
, for every Lara database D. We want to be able to express e = e1 ./⊗ e2 in

FOAgg(ΨΩ). Let us define a formula α(x, y, z, i, j, k, f) as

∃i′, j′, k′
(
φe1(x, y, z, i′, j′) ∧ φe2(y, z, j′, k′)∧

(
(i = i′ ∧ j = j′ ∧ k = 0⊗ ∧ f = ♦) ∨ (i = 0⊗ ∧ j = j′ ∧ k = k′ ∧ f = ♥)

))
.

Notice that when evaluating α over a Lara database D we obtain the set of tuples
(k1, k2, k3, v1, v2, v3, f) such that there exist tuples of the form (k1, k2, k3, ·, ·) ∈ eD1 and
(k2, k3, ·, ·) ∈ eD2 , and either one of the following holds:

eD1 (k1, k2, k3) = (v1, v2); (v1, v2, v3) = pad(V2,V3)
⊗ (v1, v2); and f = ♦; or

eD2 (k2, k3) = (v2, v3); (v1, v2, v3) = pad(V1,V2)
⊗ (v2, v3); and f = ♥.

The reason why we want to distinguish tuples from eD1 or eD2 with a ♦ or a ♥ in the
position of variable f , respectively, it is because it could be the case that pad(V2,V3)

⊗ (v1, v2) =
pad(V1,V2)

⊗ (v2, v3). The semantics of Lara, which is based on aggregation over multisets of
tuples, forces us to treat them as two different tuples. The way we do this in FOAgg is by
distinguishing them with the extra flag f .

We finally define φe(x, y, z, i, j, k) in FOAgg(ΨΩ) as

∃i′, j′, k′, f ′
(
α(x, y, z, i′, j′, k′, f) ∧ i = Agg⊗i′, j′, k′, f ′

(
i′, α(x, y, z, i′, j′, k′, f ′)

)
∧

j = Agg⊗i′, j′, k′, f ′
(
j′, α(x, y, z, i′, j′, k′, f ′)

)
∧

k = Agg⊗i′, j′, k′, f ′
(
k′, α(x, y, z, i′, j′, k′, f ′)

))
.

That is, the evaluation of φe on D outputs all tuples (k1, k2, k3, v1, v2, v3) such that:
1. There are tuples (k1, k2, k3, w1, w2, 0⊗, ·,♦) and (k1, k2, k3, 0⊗, w′2, w′3,♥) in αD.
2. v1 = w1 ⊗ 0⊗ = w1; v2 = w2 ⊗ w′2; and v3 = 0⊗ ⊗ w′3 = w′3.
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Clearly, then, φDe = eD over every Lara database D.

Proof of Theorem 3. By induction on e.

If e = ∅, then φe = ⊥.
If e = R[K̄, V̄ ], for R ∈ σ, then φe(x̄, ī) = R(x̄, ī), where x̄ and ī are tuples of distinct
key- and value-variables of the same arity as K̄ and V̄ , respectively.
Consider the expression e[K̄1 ∪ K̄2, V̄1 ∪ V̄2] = e1[K̄1, V̄1] ./⊗ e2[K̄2, V̄2], and assume
that φe1(x̄1, ī1) and φe2(x̄2, ī2) are the formulas obtained for e1[K̄1, V̄1] and e2[K̄2, V̄2],
respectively, by induction hypothesis. Let us first define a formula αe(x̄1, x̄2, j̄, f) as

∃ī1, ī2
(
φe1(x̄1, ī1) ∧ φe2(x̄2, ī2) ∧ χK̄1∩K̄2

(x̄1, x̄2)∧

(
(j̄ = padV̄2

⊗ (̄i1) ∧ f = ♦) ∨ (j̄ = padV̄1
⊗ (̄i2) ∧ f = ♥)

))
,

assuming that x̄1 and x̄2 share no variables; the same holds for ī1 and ī2; and the formula
χK̄1∩K̄2

(x̄1, x̄2) takes the conjunction of all atomic formulas of the form y1 = y2, where
y1 and y2 are variables that appear in x̄1 and x̄2, respectively, in the position of some
attribute K ∈ K̄1 ∩ K̄2. Notice that j̄ = padV̄2

⊗ (̄i1) is expressible in FOAgg(ΨΩ) as a
conjunction of formulas of the form j = k, for each j ∈ j̄, where k is the corresponding
variable of ī1 if j falls in the position of an attribute in V̄1, and it is is 0⊗ otherwise. For
instance, if ī = (i1, i2) is of sort V̄1 = (V1, V2) and V̄2 = (V2, V3), then j̄ = padV̄2

⊗ (̄i) is the
formula j1 = i1 ∧ j2 = i2 ∧ j3 = 0⊗. Analogously we can define j̄ = padV̄1

⊗ (̄i2). As in the
example given before this proof, we use the value of f to distinguish whether a tuple
comes from eD1 or eD2 .
It is easy to see that for every Lara database D we have that αDe computes all tuples
of the form (k̄1, k̄2, v̄, w) such that k̄1 ∈ (∃ī1φe1)D, k̄2 ∈ (∃ī2φe2)D, and k̄1 and k̄2 are
compatible tuples, and either one of the following statements hold:
v̄1 = eD1 (k̄1), v̄ = padV̄2

⊗ (v̄1), and w = ♦; or
v̄2 = eD2 (k̄2), v̄ = padV̄1

⊗ (v̄2), and w = ♥.
Notice then that for every (k̄1, k̄2) that belongs to the evaluation of ∃j̄, f αe(x̄1, x̄2, j̄, f)
over D there are exactly two tuples of the form (k̄1, k̄2, v̄, w) ∈ αDe : the one which satisfies
v̄ = padV̄2

⊗ (eD1 (k̄1)) and w = ♦, and the one that satisfies v̄ = padV̄1
⊗ (eD2 (k̄2)) and w = ♥.

It should be clear then that φe(x̄1, x̄2, ī) can be expressed as:

∃j̄, f αe(x̄1, x̄2, j̄, f) ∧
∧

`∈[|j̄|]

ī[`] = Agg⊗j̄, f (j̄[`], αe(x̄, j̄, f)).

Notice here that the aggregation is always performed on multisets with exactly two
elements (by our previous observation). Clearly, the evaluation of φe on D, for D a
Lara database, contains all tuples (k̄1 ∪ k̄2, v̄1 ⊗ v̄2) such that k̄1 and k̄2 are compatible
tuples in eD1 and eD2 , respectively, and it is the case that v̄1 = padV̄2

⊗ (eD1 (k̄1)) and
v̄2 = padV̄1

⊗ (eD2 (k̄2)).
Consider the expression e[K̄1 ∩ K̄2, V̄1 ∪ V̄2] = e1[K̄1, V̄1] ./⊕ e2[K̄2, V̄2], and assume
that φe1(x̄1, ī1) and φe2(x̄2, ī2) are the formulas obtained for e1[K̄1, V̄1] and e2[K̄2, V̄2],
respectively, by induction hypothesis. We start by defining a formula αe1(x̄, j̄, f) as

∃x̄1, ī1
(
φe1(x̄1, ī1) ∧ ηK̄1∩K̄2

1 (x̄, x̄1) ∧ j̄ = padV̄2
⊕ (̄i1) ∧ f = ♦

)
,
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where ηK̄1∩K̄2
1 (x̄, x̄1) states that x̄ is the extension of x̄1 to represent a tuple in K̄1 ∪ K̄2.

Formally, each variable in x̄ that represents a position in K̄1 receives the same value than
the variable in the corresponding position of x̄, and each variable representing a position
in K̄2 \ K̄1 receives value ♦. As an example, if K̄1 = (K1,K2) and K̄2 = (K1,K3),
then ηK̄1∪K̄2

1 (x̄, x̄1) for x̄1 = (y1, y2) and x̄ = (z1, z2, z3) is z1 = y1 ∧ z2 = y2 ∧ z3 = 0.
Analogously, we define αe2(x̄, j̄, f) as

∃x̄2, ī2
(
φe2(x̄2, ī2) ∧ ηK̄1∩K̄2

2 (x̄, x̄2) ∧ j̄ = padV̄1
⊕ (̄i2) ∧ f = ♥

)
.

As before, we use distinguished constants ♦ and ♥ as a way to distinguish tuples coming
from eD1 and eD2 , respectively.
Let us now define α(x̄, j̄, f) := αe1(x̄, j̄, f) ∨ αe2(x̄, j̄, f). It is not hard to see then that
the evaluation of αe on a Lara database D consists precisely of the tuples of the form
(k̄, v̄, w) such that one of the following statements hold:

k̄1 = k̄↓K̄1
for some k̄1 ∈ (∃ī1φe1)D; k̄ takes value ♦ for those positions in K̄2 \ K̄1;

v̄ = padV̄2
⊕ (eD1 (k̄1)); and w = ♦; or

k̄2 = k̄↓K̄2
for some k̄2 ∈ (∃ī2φe2)D; k̄ takes value ♥ for those positions in K̄1 \ K̄2;

v̄ = padV̄1
⊕ (eD2 (k̄1)); and w = ♥.

Let us write α(x̄, j̄, f) as α(x̄′, x̄′′, j̄, f) to denote that x̄′ is the subtuple of x̄ that
corresponds to variables in K̄1 ∩ K̄2, while x̄′′ contains all other variables in x̄. Notice
that in the output of our desired formula φe we are only interested in the value that takes
the tuple x̄′. It should be clear then that φe(x̄, ī) can be expressed as:

∃x̄′, x̄′′, j̄, f
(
x̄ = x̄′ ∧ α(x̄′, x̄′′, j̄, f)∧∧

`∈[|j̄|]

ī[`] = Agg⊕x̄′′, j̄, f (j̄[`], α(x̄′, x̄′′, j̄, f)
)
.

Consider the expression e[K̄ ∪ K̄ ′, V̄ ′] = Extf e1[K̄, V̄ ], where f is of sort (K̄, V̄ ) 7→
(K̄ ′, V̄ ′), and assume that φe1(x̄1, ī1) is the formula obtained for e1[K̄1, V̄1] by induction
hypothesis. It is straightforward to see then that we can define

φe(x̄1, x̄, ī) := ∃ī1
(
φe1(x̄1, ī1) ∧ Rf (x̄1, x̄, ī1, ī)

)
.

This finishes the proof of the theorem. J

It is worth noticing that the translation from Lara to FOAgg given in the proof of
Theorem 3 does not require the use of negation. In the next section we show that at least
safe negation can be encoded in Lara by a suitable combination of aggregate operators and
extension functions.

From FOAgg to LARA

We now prove that the other direction holds under suitable restrictions and assumptions on
the language. First, we need to impose two restrictions on FOAgg formulas, which ensure
that the semantics of the formulas considered matches that of Lara. In particular, we need
to ensure that the evaluation of FOAgg formulas is safe and only outputs associative tables.

Safety. Formulas of FOAgg(ΨΩ) are not necessarily safe, i.e., their evaluation can have
infinitely many tuples (think, e.g., of the formula i = j, for i, j value-variables, or
Rf (x̄, x̄′, ī, ī′), for Rf ∈ ΨΩ). While safety issues relating to the expressive completeness
of relational algebra with respect to first order logic are often resolved by relativizing

ICDT 2020
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all operations to the active domain of databases (i.e., the set of elements mentioned in
relations in databases), such a restriction only makes sense for keys in our context, but
not for values. In fact, several useful formulas compute a new value for a variable based
on some aggregation terms over precomputed data (see, e.g., the translations of the join
and union operator of Lara into FOAgg provided in the proof of Theorem 3).
To overcome this issue we develop a suitable syntactic restriction of the logic that can
only express safe queries. This is achieved by “guarding” the application of value-term
equalities, relations encoding extension functions, and Boolean connectives as follows.

We only allow equality of value-terms to appear in formulas of the form φ(x̄, ī) ∧ j =
τ(x̄, ī), where j is a value-variable that does not necessarily appear in ī and τ is an
arbitrary value-term whose value only depends on (x̄, ī). This formula computes the
value of the aggregated term τ over the precomputed evaluation of φ, and then output
it as the value of j. In the same vein, atomic formulas of the form R(x̄, ῑ) must satisfy
that every element in ῑ is a value-variable.
Relations Rf ∈ ΨΩ can only appear in formulas of the form φ(x̄, ī) ∧ Rf (x̄, x̄′, ī, ī′),
i.e., we only allow to compute the set f(x̄, ī) for specific precomputed values of (x̄, ī).
Also, negation is only allowed in the restricted form φ(x̄, ī) ∧ ¬ψ(x̄, ī) and disjunction
in the form φ(x̄, ī) ∨ ψ(x̄, ī), i.e., when formulas have exactly the same free variables.

We denote the resulting language as FOsafe
Agg (ΨΩ). These restrictions are meaningful, as

the translation from Lara(Ω) to FOAgg(ΩΨ) given in the proof of Theorem 3 always
builds a formula in FOsafe

Agg (ΨΩ).
Key constraints. We also need a restriction on the interpretation of FOsafe

Agg (ΨΩ) formulas
that ensures that the evaluation of any such a formula on a Lara database is an associative
table. For doing this, we modify the syntax of FOsafe

Agg (ΨΩ) formulas in such a way that
every formula φ of FOsafe

Agg (ΨΩ) now comes equipped with an aggregate operator ⊕ over
Values. The operator ⊕ is used to “solve” the key violations introduced by the evaluation
of φ. Thus, formulas in this section should be understood as pairs (φ,⊕). The evaluation
of (φ,⊕) over a Lara database D, denoted φD⊕ , is Solve⊕(φD). This definition is recursive;
e.g., a formula in φ(x̄, ī) in FOsafe

Agg (ΨΩ) which is of the form α(x̄, ī) ∨ β(x̄, ī) should now
be specified as (φ,⊕) = (α,⊕α) ∨ (β,⊕β). The associative table φD⊕ corresponds then to

Solve⊕(αD⊕α ∪ β
D
⊕β ).

We also require some natural assumptions on the extension functions that Lara is allowed
to use. In particular, we need these functions to be able to express traditional relational
algebra operations that are not included in the core of Lara; namely, copying attributes,
selecting rows based on (in)equality, and projecting over value-attributes (the projection over
key-attributes, in turn, can be expressed with the union operator). Formally, we assume that
Ω contains the following families of extension functions.

copyK̄,K̄′ and copyV̄ ,V̄ ′ , for K̄, K̄ ′ tuples of key-attributes of the same arity and V̄ , V̄ ′
tuples of value-attributes of the same arity. Function copyK̄,K̄′ takes as input a tuple
t = (k̄, v̄) of sort (K̄1, V̄ ), where K̄ ⊆ K̄1 and K̄ ′ ∩ K̄1 = ∅, and produces a tuple
t′ = (k̄, k̄′, v̄) of sort (K̄1, K̄

′, V̄ ) such that t′(K̄ ′) = t(K̄), i.e., copyK̄,K̄′ copies the value
of attributes K̄ in the new attributes K̄ ′. Analogously, we define the function copyV̄ ,V̄ ′ .
copyV̄ ,K̄ , for V̄ a tuple of value-attributes and K̄ a tuple of key-attributes. It takes as
input a tuple t = (k̄, v̄) of sort (K̄1, V̄1), where V̄ ⊆ V̄1 and K̄ ∩ K̄1 = ∅, and produces a
tuple t′ = (k̄, k̄′, v̄) of sort (K̄1, K̄, V̄ ) such that t′(V̄ ) = t′(K̄), i.e., this function copies
the values in V̄ as keys in K̄. (Here it is important our assumption that Keys = Values).
The reason why this is useful is because Lara does not allow to aggregate with respect
to values (only with respect to keys), while FOAgg(ΨΩ) can clearly do this. Analogously,
we define copyK̄,V̄ , but this time we copy keys in K̄ to values in V̄ .
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addV,0⊕ , for V an attribute-value and ⊕ an aggregate operator. Function addV,0⊕ takes as
input a tuple t = (k̄, v̄′) of sort (K̄, V̄ ′), where V 6∈ V̄ ′, and produces a tuple t′ = (k̄, v̄′, 0⊕)
of sort (K̄, V̄ ′, V ), i.e., addV,0⊕ adds a new value-attribute V that always takes value 0⊕.
Analogously, we define functions addV,♦ and addV,♥.
eqK̄,K̄′ and eqV̄ ,V̄ ′ , for K̄, K̄ ′ tuples of key-attributes of the same arity and V̄ , V̄ ′ tuples
of value-attributes of the same arity. The function eqK̄,K̄′ takes as input a tuple t = (k̄, v̄)
of sort (K̄1, V̄ ), where K̄, K̄ ′ ⊆ K̄1, and produces as output the tuple t′ = (k̄, v̄) of sort
(K̄1, V̄ ), if t(K̄) = t(K̄ ′), and the empty associative table otherwise. Hence, this function
acts as a filter over an associative table of sort (K̄1, V̄ ), extending only those tuples t
such that t(K̄) = t(K̄ ′). Analogously, we define the function eqV̄ ,V̄ ′ .
In the same vein, extension functions neqK̄,K̄′ and neqV̄ ,V̄ ′ , for K̄, K̄ ′ tuples of key-
attributes of the same arity and V̄ , V̄ ′ tuples of value-attributes of the same arity. These
are defined exactly as eqK̄,K̄′ and eqV̄ ,V̄ ′ , only that we now extend only those tuples t
such that t(K̄) 6= t(K̄ ′) and t(V̄ ) 6= t(V̄ ′), respectively.
The projection πV̄ , for V̄ a tuple of value-attributes, takes as input a tuple (k̄, v̄′) of sort
(K̄, V̄ ′), where V̄ ⊆ V̄ ′, and outputs the tuple (k̄, v̄) of sort (K̄, V̄ ) such that v̄ = v̄′↓V̄ .

We now establish our result.

I Theorem 4. Let us assume that Ω contains all extension functions specified above. For
every pair (φ,⊕), where φ(x̄, ī) is a formula of FOsafe

Agg (ΨΩ) and ⊕ is an aggregate operator
on Values, there is a Lara(Ω) expression eφ,⊕[K̄, V̄ ] such that eDφ,⊕ = φD⊕ = Solve⊕(φD), for
each Lara database D.

Proof. When f is one of the distinguished extension functions f defined above, we abuse
notation and write simply f instead of Extf . We first define several useful operations and
expressions.

The projection π⊕
K̄
e over keys with respect to aggregate operator ⊕, defined as ¯ ./

K̄
⊕ e.

Notice that this removes key-, but not value-attributes from e, i.e., if e is of sort [K̄ ′, V̄ ]
then π⊕

K̄
e is of sort [K̄, V̄ ].

The rename operator ρK̄→K̄′ e as πK̄′ (copyK̄,K̄′ e), where π has no superscript ⊕ as no
aggregation is necessary in this case. This operation simply renames the key-attributes K̄
to a fresh set of key-attributes K̄ ′. Analogously, we define ρV̄→V̄ ′ e, ρV̄→K̄e and ρK̄→V̄ e.
The active domain expression eActDom, which takes as input a Lara database D and
returns all elements k ∈ Keys that appear in some fact of D. It is defined as follows. First
choose a key attribute not present in any table of D; say it is Z. For each R[K̄, V̄ ] ∈ σ
we define an expression RKeys := π∅R, which removes all attribute-values in V̄ from R.
For each K ∈ K̄ we then define RKeys

K := πK R
Keys as the set of keys that appear in the

position of attribute K in R[K̄, V̄ ] (no need to specify superscript ⊕ on π in this case).
Finally, we define eRActDom := ./K∈K̄ ρK→ZR

Keys
K and eActDom := ./R∈σ e

R
ActDom.

We now prove the theorem by induction on φ.
If φ = ⊥ then eφ,⊕ = ∅ for every aggregate operator ⊕.
If φ = (x = y), for x, y key-variables, then eφ,⊕[K,K ′] := eqK,K′

(
eActDom[K] ./

ρK→K′eActDom[K]
)
for every aggregate operator ⊕. Notice that there is no need to

specify an aggregate operator for ./ in this case as the tables that participate in the join
only consist of keys.
Consider now φ = R(x̄, ī), for R ∈ σ. We assume all variables in x̄ and ī, respectively, to
be pairwise distinct, as repetition of variables can always be simulated with equalities.
Then eφ,⊕[K̄, V̄ ] := R[K̄, V̄ ] for every aggregate operator ⊕.
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Assume that (φ,⊕) = (φ′,⊕′) ∧ ¬(φ′′,⊕′′). Let eφ′,⊕′ [K̄, V̄ ] and eφ′′,⊕′′ [K̄, V̄ ] be the
expressions obtained for (φ′,⊕′) and (φ′′,⊕′′), respectively, by induction hypothesis. We
construct the expression eφ,⊕ as follows.

First, we take the union of eφ′,⊕′ and eφ′′,⊕′′ , resolving conflicts with an aggregate
operator func that simply checks for which tuples of keys it requires to restore “key-
functionality” after performing the union. In particular, func takes as input a multiset
of values. If it contains more than one element, it returns the distinguished symbol ♦
which appears in no Lara database D. Otherwise it returns the only element in the
multiset. For instance, func({{a, a}}) = ♦ and func({{a}}) = a.
Let us define then e1[K̄, V̄ ] := eφ′,⊕′ ./func eφ′′,⊕′′ . Notice that eD1 , for D a Lara
database, contains the tuples (k̄, v̄) ∈ eDφ′,⊕′ such that there is no tuple of the form
(k̄, v̄′) ∈ eDφ′′,⊕′′ , plus the tuples of the form (k̄,♦, . . . ,♦) such that there are tuples
of the form (k̄, v̄′) ∈ eDφ′,⊕′ and (k̄, v̄′′) ∈ eDφ′′,⊕′′ . In other words, by evaluating e1 on
D we have marked with (♦, . . . ,♦) those tuples k̄ of keys that are candidates to be
removed when computing the difference eφ′,⊕′ \ eφ′′,⊕′′ .
Second, we take the join eφ′,⊕′ [K̄, V̄ ] ./ e′1[K̄, V̄ ′], where e′1[K̄, V̄ ′] := ρV̄→V̄ ′e1[K̄, V̄ ]
is obtained by simply renaming V̄ as V̄ ′ in e1 (there is no need to specify an aggregate
operator for ./ as V̄ and V̄ ′ have no attributes in common), and apply the extension
function eqV̄ ,V̄ ′ over it. It is easy to see that when evaluating the resulting expression
eα[K̄, V̄ ] := eqV̄ ,V̄ ′(eφ′,⊕′ ./ e′1) on a Lara database D, we obtain precisely the tuples
(k̄, v̄) ∈ eDφ′,⊗′ such that there is no tuple of the form (k̄, w̄) ∈ eDφ′′,⊗′′ . In fact, for those
tuples we also have that (k̄, v̄) belongs to e1, as explained above, and thus eqV̄ ,V̄ ′
applies no filter. On the contrary, if there is a tuple of the form (k̄, w̄) ∈ eDφ′′,⊕′′ then
(k̄,♦, . . . ,♦) ∈ eD1 as explained above. This means that the filter eqV̄ ,V̄ ′ is applied
and no tuple of the form (k̄, . . . ) appears in the result. (Notice that for the latter to
hold we use, in an essential way, the “key-functionality” of tables eDφ′,⊕′ and eDφ′′,⊕′′
and the fact that ♦ does not appear in D). By definition, then, eDα ⊆ eDφ,⊕.
Third, we take the join eφ′,⊕′ [K̄, V̄ ] ./ e′φ′′,⊕′′ [K̄, V̄ ′], where

e′φ′′,⊕′′ [K̄, V̄ ′] := ρV̄→V̄ ′eφ′′,⊕′′ [K̄, V̄ ]

is obtained by simply renaming V̄ as V̄ ′ in eφ′′,⊕′′ (there is no need to specify an
aggregate operator for ./ as V̄ and V̄ ′ have no attributes in common), and apply the
extension function neqV̄ ,V̄ ′ over it. It is easy to see that when evaluating the resulting
expression eβ [K̄, V̄ ] := πV̄ neqV̄ ,V̄ ′(eφ′,⊕′ ./ e′φ′′,⊕′′) on a Lara database D, we obtain
precisely the tuples (k̄, v̄) ∈ eDφ′,⊗′ such that there is a tuple of the form (k̄, w̄) ∈ eDφ′′,⊕′′
for which v̄ 6= w̄. This means that the evaluation of eβ on D contains precisely the
tuples (k̄, v̄) ∈ eDφ′,⊕′ that do not belong to eDα , yet they belong to eDφ′,⊕′ \ eDφ′′,⊕′′ .
(Notice that for the latter to hold we use, in an essential way, the “key-functionality”
of tables eDφ′,⊕′ and eDφ′′,⊕′′).
Summing up, we can now define eφ,⊕[K̄, V̄ ] as eα[K̄, V̄ ] ./ eβ [K̄, V̄ ]. Notice that there
is no need to specify an aggregate operator for ./ here, as by construction we have that
there are no tuples k̄ of keys that belong to both πK̄eDα and πK̄eDβ .

Assume that (φ,⊕) = (φ′,⊕′) ∧ (φ′′,⊕′′). Let eφ′,⊕′ [K̄, V̄ ] and eφ′′,⊕′′ [K̄, V̄ ] be the
expressions obtained for (φ′,⊕′) and (φ′′,⊕′′), respectively, by induction hypothesis. We
construct the expression eφ,⊕ by taking the join eφ′,⊕′ [K̄, V̄ ] ./ e′φ′′,⊕′′ [K̄, V̄ ′], where

e′φ′′,⊕′′ [K̄, V̄ ′] := ρV̄→V̄ ′eφ′′,⊕′′ [K̄, V̄ ]
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is obtained by simply renaming V̄ as V̄ ′ in eφ′′,⊕′′ (there is no need to specify an aggregate
operator for ./ as V̄ and V̄ ′ have no attributes in common), and apply πV̄ eqV̄ ,V̄ ′ over it.
In fact, if a tuple (k̄, v̄) is selected by this expression it means that (k̄, v̄) ∈ eDφ′,⊕′ ∩ eDφ′′,⊕′′
by definition of eqV̄ ,V̄ ′ . In turn, if (k̄, v̄) is not selected by the expression it means
either that there is no tuple of the form (k̄, w̄) ∈ eDφ′′,⊕′′ , or the unique tuple of the form
(k̄, w̄) ∈ eDφ′′,⊕′′ satisfies that v̄ 6= w̄ (due to the way in which eqV̄ ,V̄ ′ is defined). In any
of the two cases we have that (k̄, v̄) 6∈ eDφ′,⊕′ ∩ eDφ′′,⊕′′ .
Assume that (φ,⊕) = (φ′,⊕′) ∨ (φ′′,⊕′′). Let eφ′,⊕′ [K̄, V̄ ] and eφ′′,⊕′′ [K̄, V̄ ] be the
expressions obtained for (φ′,⊕′) and (φ′′,⊕′′), respectively, by induction hypothesis. We
construct the expression eφ,⊕ by taking the union of the following expressions.

An expression e1 such that, when evaluated on a Lara database D, it computes
the tuples (k̄, v̄) ∈ eDφ′,⊕′ for which there is no tuple of the form (k̄, w̄) ∈ eDφ′′,⊕′′ .
This can be done in the same way as we constructed eα for the case when (φ,⊕) =
(φ′,⊕′) ∧ ¬(φ′′,⊕′′) (see above).
Analogously, an expression e2 that computes the tuples (k̄, v̄) ∈ eDφ′′,⊕′′ for which there
is no tuple of the form (k̄, w̄) ∈ eDφ′,⊕′ .
An expression e3 such that, when evaluated on a Lara database D, it computes the
tuples (k̄, v̄) ∈ eDφ′,⊕′ for which there is a tuple of the form (k̄, w̄) ∈ eDφ′′,⊕′′ that satisfies
v̄ = w̄. This can be done in the same way as we did in the previous point.
An expression e4 such that, when evaluated on a Lara database D, it computes the
tuples (k̄, v̄) that are of the form (k̄, w̄1 ⊕ w̄2) for (k̄, w̄1) ∈ eDφ′,⊕′ and (k̄, w̄2) ∈ eDφ′′,⊕′′
with w̄1 6= w̄2. The expression e4 can be defined as eα ./ eβ , where eDα contains all
tuples (k̄, v̄) ∈ eDφ′,⊕′ such that there is a tuple of the form (k̄, w̄) ∈ eDφ′′,⊕′′ that satisfies
v̄ 6= w̄, and eDβ contains all tuples (k̄, v̄) ∈ eDφ′′,⊕′′ such that there is a tuple of the form
(k̄, w̄) ∈ eDφ′,⊕′ that satisfies v̄ 6= w̄. It is easy to see how to express eα and eβ by using
techniques similar to the ones developed in the previous points.

Assume that (φ,⊕) = (φ′,⊕′) ∧ k = τ(x̄, ī), for a formula φ′(x̄, ī) and a value-term τ of
FOsafe

Agg (ΨΩ), and k a value-variable not necessarily present in ī. We only consider the case
when k is not in ī. The other case is similar. Before we proceed we prove the following
lemma which is basic for the construction (the proof is omitted due to lack of space).
I Lemma 5. For every pair (α,⊕α), where α(x̄, ī) is a formula of FOsafe

Agg (ΨΩ) and ⊕α is
an aggregate operator over Values, and for every value-term λ(x̄, ī) of FOsafe

Agg (ΨΩ), there
is an expression eα,⊕α,λ[K̄, V̄ , V1] of Lara(Ω) such that for every Lara database D:

(k̄, v̄, v1) ∈ eDα,⊕α,λ ⇐⇒
(

(k̄, v̄) ∈ αD⊕α and λ(k̄, v̄) = v1
)
.

It should be clear then that eφ,⊕ = eφ′,⊕′,τ [K̄, V̄ , V1], where eφ′,⊕′,τ [K̄, V̄ , V1] is the
expression constructed for (φ′,⊕′) and τ by applying Lemma 5.
Assume that (φ,⊕) = (φ′,⊕′) ∧Rf (x̄, x̄′, ī, ī′), where φ(x̄, ī) is a formula of FOsafe

Agg (ΨΩ).
Let eφ′,⊕′ [K̄, V̄ ] be the expression obtained for (φ′,⊕′) by induction hypothesis. We can
then define the expression eφ,⊕ as Extf (eφ′,⊕′ [K̄, V̄ ]) ./ eφ′,⊕′ [K̄, V̄ ], assuming that f is
of sort (K̄, V̄ )→ (K̄ ′, V̄ ′). There is no need to specify an aggregate operator for ./ here,
since by assumption we have that V̄ ∩ V̄ ′ = ∅.
The cases (φ,⊕) = ∃x(φ′,⊕′) and (φ,⊕) = ∃i(φ′,⊕′) can be translated as
π⊕
K̄
eφ′,⊕′ [K, K̄, V̄ ] and πV̄ eφ′,⊕′ [K̄, V̄ , V ], respectively, assuming that eφ′,⊕′ is the ex-

pression obtained for (φ′,⊕′) by induction hypothesis.
This finishes the proof of the theorem. J
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Discussion

The results presented in this section imply that Lara has the same expressive power as
FOAgg, which in turn is tightly related to the expressiveness of SQL [13]. One might wonder
then why to use Lara instead of SQL. While it is difficult to give a definite answer to this
question, we would like to note that Lara is especially tailored to deal with ML objects,
such as matrices or tensors, which are naturally modeled as associative tables. As the proof
of Theorem 4 suggests, in turn, FOAgg requires of several cumbersome tricks to maintain the
“key-functionality” of associative tables.

5 Expressiveness of LARA in terms of ML Operators

We assume in this section that Values = Q. Since extension functions in Ω can a priori be
arbitrary, to understand what Lara can express we first need to specify which classes of
functions are allowed in Ω. In rough terms, this is determined by the operations that one
can perform when comparing keys and values, respectively. We explain this below.

Extensions of two-sorted logics with aggregate operators over a numerical sort N often
permit to perform arbitrary numerical comparisons over N (in our case N = Values = Q).
It has been noted that this extends the expressive power of the language, while at the
same time preserving some properties of the logic that allow to carry out an analysis of
its expressiveness based on well-established techniques (see, e.g., [14]).
In some cases in which the expressive power of the language needs to be further extended,
one can also define a linear order on the non-numerical sort (which in our case is the set
Keys) and then perform suitable arithmetic comparisons in terms of such a linear order.
A well-known application of this idea is in the area of descriptive complexity [11].

We start in this section by considering the first possibility only. That is, we allow
comparing elements of Values = Q in terms of arbitrary numerical operations. Elements of
Keys, in turn, can only be compared with respect to equality. This yields a logic that is
amenable for theoretical exploration – in particular, in terms of its expressive power – and
that at the same time is able to express many extension functions of practical interest (e.g.,
several of the functions used in examples in [9, 10]).

We design a simple logic FO(=,All) for expressing extension functions. Intuitively, the
name of this logic states that it can only compare keys with respect to equality but it can
compare values in terms of arbitrary numerical predicates. The formulas in the logic are
standard FO formulas where the only atomic expressions allowed are of the following form:

x = y, for x, y key-variables;
P (i1, . . . , ik), for P ⊆ Qk a numerical relation of arity k and i1, . . . , ik value-variables or
constants of the form 0⊕.

The semantics of this logic is standard. In particular, an assignment η from value-variables
to Q satisfies a formula of the form P (i1, . . . , ik), for P ⊆ Qk, whenever η(i1, . . . , ik) ∈ P .

Let φ(x̄, ȳ, ī, j̄) be a formula of FO(=,All). For a tuple t = (k̄, k̄′, v̄, v̄′) ∈ Keys|k̄|+|k̄
′| ×

Values|v̄|+|v̄
′| we abuse terminology and say that φ(k̄, k̄′, v̄, v̄′) holds if Dt |= φ(k̄, k̄′, v̄, v̄′),

where Dt is the database composed exclusively by tuple t. In addition, an extension function
f of sort (K̄, V̄ ) 7→ (K̄ ′, V̄ ′) is definable in FO(=,All), if there is a formula φf (x̄, ȳ, ī, j̄) of
FO(=,All), for |x̄| = |K̄|, |ȳ| = |K̄ ′|, |̄i| = |V̄ |, and |j̄| = |V̄ ′|, such that for every tuple (k̄, v̄)
of sort (K̄, V̄ ) it is the case

f(k̄, v̄) = {(k̄′, v̄′) | φ(k̄, k̄′, v̄, v̄′) holds}.



P. Barceló, N. Higuera, J. Pérez, and B. Subercaseaux 6:17

This gives rise to the definition of the following class of extension functions:

Ω(=,All) = {f | f is an extension function that is definable in FO(=,All)}.

Recall that extension functions only produce finite associative tables by definition, and hence
only some formulas in FO(=,All) define extension functions.

The extension functions copyK̄,K̄′ , copyV̄ ,V̄ ′ , addV,0⊕ , eqK̄,K̄′ , eqV̄ ,V̄ ′ , neqK̄,K̄′ , neqV̄ ,V̄ ′ ,
and πV̄ , as shown in the previous section, are in Ω(=,All). In turn, copyV̄ ,K̄ and copyK̄,V̄ are
not, as FO(=,All) cannot compare keys with values. Next we provide more examples.

I Example 6. We use i + j = k and ij = k as a shorthand notation for the ternary
numerical predicates of addition and multiplication, respectively. Consider first a function
f that takes a tuple t of sort (K1,K2, V ) and computes a tuple t′ of sort (K ′1,K ′2, V ′) such
that t(K1,K2) = t′(K ′1,K ′2) and t′(V ′) = 1 − t(V ). Then f is definable in FO(=,All) as
φf (x, y, x′, y′, i, j) :=

(
x = x′ ∧ y = y′ ∧ i + j = 1

)
. This function can be used, e.g., to

interchange 0s and 1s in a Boolean matrix.
Consider now a function g that takes a tuple t of sort (K,V1, V2) and computes a tuple t′ of

sort (K ′, V ′) such that t(K) = t′(K ′) and t′(V ) is the average between t(V1) and t(V2). Then
g is definable in FO(=,All) as φg(x, y, i1, i2, j) :=

(
x = y ∧ ∃i (i1 + i2 = i ∧ 2j = i)

)
. J

As an immediate corollary to Theorem 3 we obtain the following result, which formalizes
the fact that – in the case when Values = Q – for translating Lara(Ω(=,All)) expressions it is
not necessary to extend the expressive power of FOAgg with the relations in ΨΩ(=,All) as long
as one has access to all numerical predicates over Q. Formally, let us denote by FOAgg(All)
the extension of FOAgg with all formulas of the form P (ι1, . . . , ιk), for P ⊆ Qk and ι1, . . . , ιk
value-terms, with the expected semantics. Then one can prove the following result.

I Corollary 7. For every expression e[K̄, V̄ ] of Lara(Ω(=,All)) there is a formula φe(x̄, ī) of
FOAgg(All) such that eD = φDe , for every Lara database D.

It is known that queries definable in FOAgg(All) satisfy two important properties, namely,
genericity and locality, which allow us to prove that neither convolution of matrices nor
matrix inversion can be defined in the language. From Corollary 7 we obtain then that none
of these queries is expressible in Lara(Ω(=,All)). We explain this next.

Convolution

Let A be an arbitrary matrix and K a square matrix. For simplicity we assume that K is of
odd size (2n+ 1)× (2n+ 1). The convolution of A and K, denoted by A ∗K, is a matrix of
the same size as A whose entries are defined as

(A ∗K)k` =
2n+1∑
s=1

2n+1∑
t=1

Ak−n+s,`−n+t ·Kst. (6)

Notice that k − n+ s and `− n+ t could be invalid indices for matrix A. The standard way
of dealing with this issue is zero padding. This simply assumes those entries outside A to be
0. In the context of the convolution operator, one usually calls K a kernel.

We represent A and K over the schema σ = {EntryA[K1,K2, V ],EntryK [K1,K2, V ]}.
Assume that Keys = {k1, k2, k3, . . .} and Values = Q. If A is a matrix of values in Q of
dimension m× p, and K is a matrix of values in Q of dimensions (2n+ 1)× (2n+ 1) with
m, p, n ≥ 1, we represent the pair (A,K) as the Lara database DA,K over σ that contains all
facts EntryA(ki, kj , Aij), for i ∈ [m], j ∈ [p], and all facts EntryK(ki, kj ,Kij), for i ∈ [2n+ 1],
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j ∈ [2n + 1]. The query Convolution over schema σ takes as input a Lara database of
the form DA,K and returns as output an associative table of sort [K1,K2, V ] that contains
exactly the tuples (ki, kj , (A ∗K)ij). We can then prove the following result.

I Proposition 8. Convolution is not expressible in Lara(Ω(=,All)).

The proof is based on a simple genericity property for the language that is not preserved
by convolution.

Matrix inverse

It has been shown by Brijder et al. [1] that matrix inversion is not expressible in Matlang
by applying techniques based on locality. The basic idea is that Matlang is subsumed
by FOAgg(∅) = FOAgg, and the latter logic can only define local properties. Intuitively, this
means that formulas in FOAgg can only distinguish up to a fixed-radius neighborhood from
its free variables (see, e.g., [14] for a formal definition). On the other hand, as shown in
[1], if matrix inversion were expressible in Matlang there would also be a FOAgg formula
that defines the transitive closure of a binary relation (represented by its adjacency Boolean
matrix). This is a contradiction as transitive closure is the prime example of a non-local
property. We use the same kind of techniques to show that matrix inversion is not expressible
in Lara(Ω(=,All)). For this, we use the fact that FOAgg(All) is also local.

We represent Boolean matrices as databases over the schema σ = {Entry[K1,K2, V ]}.
Assume that Keys = N and Values = Q. The Boolean matrix M of dimension n ×m, for
n,m ≥ 1, is represented as the Lara databaseDM over σ that contains all facts Entry(i, j, bij),
for i ∈ [n], j ∈ [m], and bij ∈ {0, 1}, such that Mij = bij . Consider the query Inv over schema
σ that takes as input a Lara database of the form DM and returns as output the Lara
database DM−1 , for M−1 the inverse of M . Then:

I Proposition 9. Lara(Ω(=,All)) cannot express Inv over Boolean matrices. That is, there is
no Lara(Ω(=,All)) expression eInv[K1,K2, V ]over σ such that eInv(DM ) = Inv(DM ), for every
Lara database of the form DM that represents a Boolean matrix M .

6 Adding Built-in Predicates over Keys

In Section 5 we have seen that there are important linear algebra operations, such as matrix
inverse and convolution, that Lara(Ω(=,All)) cannot express. The following result shows, on
the other hand, that a clean extension of Lara(Ω(=,All)) can express matrix convolution. This
extension corresponds to the language Lara(Ω(<,All)), i.e., the extension of Lara(Ω(=,All))
in which we assume the existence of a strict linear-order < on Keys and extension functions
are definable in the logic FO(<,All) that extends FO(=,All) by allowing atomic formulas of
the form x < y, for x, y key-variables. Even more, the only numerical predicates from All we
need are + and ×. We denote the resulting logic as Lara(Ω(<,{+,×})).

I Proposition 10. Convolution is expressible in Lara(Ω(<,{+,×})).

It is worth remarking that Hutchison et al. [9] showed that for every fixed kernel K, the
query (A ∗K) is expressible in Lara. However, the Lara expression they construct depends
on the values of K, and hence their construction does not show that in general convolution
is expressible in Lara. Our construction is stronger, as we show that there exists a fixed
Lara(Ω(<,{+,×})) expression that takes A and K as input and produces (A ∗K) as output.

Current ML libraries usually have specific implementations for the convolution operator.
Although specific implementations can lead to very efficient ways of implementing a single
convolution, they could prevent the optimization of pipelines that merge several convolutions
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with other operators. Proposition 10 shows that convolution can be expressed in Lara
just using general abstract operators such as aggregation and filtering. This could open the
possibility for optimizing expressions that mix convolution and other operators.

Can LARA(Ω(<,{+,×})) express inverse?

We believe that Lara(Ω(<,{+,×})) cannot express Inv. However, this seems quite chal-
lenging to prove. First, the tool we used for showing that Inv is not expressible in
Lara(Ω(=,All), namely, locality, is no longer valid in this setting. In fact, queries expressible
in Lara(Ω(<,{+,×})) are not necessarily local.

I Proposition 11. Lara(Ω(<,{+,×})) can express non-local queries.

This implies that one would have to apply techniques more specifically tailored for the logic,
such as Ehrenfeucht-Fraïssé games, to show that Inv is not expressible in Lara(Ω(<,{+,×})).
Unfortunately, it is often combinatorially difficult to apply such techniques in the presence
of built-in predicates, e.g., a linear order, on the domain; cf., [5, 17, 7]. So far, we have not
managed to succeed in this regard.

On the other hand, we can show that Inv is not expressible in a natural restriction of
Lara(Ω(<,{+,×})) under complexity-theoretic assumptions. To start with, Inv is complete
for the complexity class Det, which contains all those problems that are logspace reducible
to computing the determinant of a matrix. It is known that Logspace ⊆ Det, where
Logspace is the class of functions computable in logarithmic space, and this inclusion is
believed to be proper [3].

In turn, most of the aggregate operators used in practical applications, including standard
ones such as SUM, AVG, MIN, MAX, and COUNT, can be computed in Logspace (see, e.g.,
[2]). Combining this with well-known results on the complexity of computing relational
algebra and arithmetic operations, we obtain that the fragment Larast(Ω(<,{+,×})) of
Lara(Ω(<,{+,×})) that only mentions the standard aggregate operators above, and whose
formulas defining extension functions are safe, can be evaluated in Logspace in data
complexity, i.e., assuming formulas to be fixed.

I Proposition 12. Let e[K̄, V̄ ] be a fixed expression of Larast(Ω(<,{+,×})). There is a
Logspace procedure that takes as input a Lara database D and computes eD.

Hence, proving Inv to be expressible in the language Larast(Ω(<,{+,×})) would imply
the surprising result that Logspace = Det.

7 Final Remarks and Future Work

We believe that the work on query languages for analytics systems that integrate relational
and statistical functionalities provides interesting perspectives for database theory. In this
paper we focused on the Lara language, which has been designed to become the core algebraic
language for such systems. As we have observed, expressing interesting ML operators in Lara
requires the addition of complex features, such as arithmetic predicates on the numerical
sort and built-in predicates on the domain. The presence of such features complicates the
study of the expressive power of the languages, as some known techniques no longer hold,
e.g., genericity and locality, while others become combinatorially difficult to apply, e.g.,
Ehrenfeucht-Fraïssé games. In addition, the presence of a built-in linear order might turn
the logic capable of characterizing some parallel complexity classes, and thus inexpressibility
results could be as hard to prove as some longstanding conjectures in complexity theory.
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A possible way to overcome these problems might be not looking at languages in its
full generality, but only at extensions of the tame fragment Lara(Ω(=,All)) with some of
the most sophisticated operators. For instance, what if we extend Lara(Ω(=,All)) directly
with an operator that computes Convolution? Is it possible to prove that the resulting
language (Lara(Ω(=,All)) + Convolution) cannot express matrix inverse Inv? Somewhat a
similar approach has been followed in the study of Matlang; e.g., [1] studies the language
(Matlang + Inv), which extends Matlang with the matrix inverse operator.

Another interesting line of work corresponds to identifying which kind of operations need
to be added to Lara in order to be able to express in a natural way recursive operations
such as matrix inverse. One would like to do this in a general yet minimalistic way, as adding
too much recursive expressive power to the language might render it impractical. It would
be important to start then by identifying the most important recursive operations one needs
to perform on associative tables, and then abstract from them the minimal primitives that
the language needs to possess for expressing such operations.
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Abstract
Computing joins is expensive, and often unnecessary when the output size is large. In 1999,
Chaudhuri et al. [7] posed the problem of random sampling over joins as a potentially effective
approach to avoiding computing the join in full, while obtaining important statistical information
about the join results. Unfortunately, no significant progress has been made in the last 20 years,
except for the case of acyclic joins. In this paper, we present the first non-trivial result on sampling
over cyclic joins. We show that after a linear-time preprocessing step, a join result can be drawn
uniformly at random in expected time O(INρ/OUT), where INρ is known as the AGM bound of the
join and OUT is its output size. This result holds for all joins on binary relations, as well as certain
joins on relations of higher arity. We further show how this algorithm immediately leads to a join
size estimation algorithm with the same running time.
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1 Introduction

A join query can be modeled as a hypergraph H = (V, E), with |V| = n vertices and m = |E|
hyperedges. Each vertex models an attribute, and for each hyperedge F ∈ E , there is a
relation RF on attribute set F . We use Q :=onF∈E RF to denote the set of join results. In
this paper, we consider the data complexity of query evaluation, i.e., the running time of the
algorithms will be measured by the total input size IN =

∑
F∈E |RF | and the output size

OUT = |Q|, while assuming n and m are constants.
Algorithms for computing Q have been extensively studied. It is well known that Q can

be computed in O(INρ) time, where ρ is the optimal solution of the following linear program
[3, 13, 14, 16]:

min
xF ,F∈E

logIN |RF | · xF

s.t.
∑
F,v∈F

xF ≥ 1, for every v ∈ V, (1)

0 ≤ xF ≤ 1, for every F ∈ E .

This is worst-case optimal since OUT can be as large as Θ(INρ) on some instances.
Alternatively, output-sensitive algorithms are known that compute Q in O(INw + OUT)
time, where w is certain notion of width of the hypergraph H [10, 11]. But this is still very
expensive for highly cyclic queries, for which w is close to ρ, or when OUT is large. Indeed,
computing multi-way joins is still the bottleneck in query evaluation in modern database
systems.
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One key observation made in as early as 1999 [7] is that rarely are full join results
required by the user. In almost all use cases, the join results are aggregated and presented
to the user in a succinct form. The aggregation function can be as simple as a count or
a sum, a random sample, or an arbitrary UDF. Thus, the intriguing question is, can we
compute the final query result without computing the join in full? To make the problem well
defined and amenable to theoretical investigation, in this paper we consider two particular
aggregation functions: random sampling and (approximate) counting. These are arguably
the two most basic aggregates, which other more complicated aggregations can be based
upon. For example, sum can be considered as a weighted version of the count, while many
UDFs (e..g, median and quantiles) can be computed approximated from a random sample in
lieu of full data.

1.1 Previous results on random sampling over joins
The starting observation from the pioneering work of Chaudhuri et al. [7] is that the
sampling operator cannot be pushed down through a join operator, i.e, sample(R1) on
sample(R2) 6= sample(R1 on R2). To see this, consider a binary join R1(A,B) on R2(B,C),
with R1 = {(a1, b1), (a1, b2), . . . , (aN , b2)} and R2 = {(b1, c1), (b1, c2), . . . , (b1, cN ), (b2, c1)}.
Note that the join size is OUT = 2N . Thus, to be able to sample a join result uniformly at
random from these 2N join results, one has to non-uniformly sample tuples from either R1
or R2. In particular, the (a1, b1) in R1 must be sampled with a probability that is N times
larger than the other tuples in R1, because it joins with N tuples in R2. More formally,
Chaudhuri et al. [7] prove that, without precomputing some auxiliary information from the
data, drawing a sample from R1 on R2 requires at least Ω(IN) time. In view of this negative
result, they first collect the frequency information from R2, i.e., |σB=bR2| for each distinct
b, and build a weighted sampling data structure on R1 using these frequencies as weights.
One can use the “alias method” [6] to build a weighted sampling structure in linear time,
which supports drawing a weighted sample in O(1) time. After drawing a weighted sample
t1 from R1, we randomly draw a tuple t2 from R2 n t1

1, which can be done in constant time
if there is an index on R2. Note that an index can also be built in linear time. Therefore,
the formal result of Chaudhuri et al. [7] is that a data structure can be built in linear time,
which allows one to draw a random sample from R1 on R2 in O(1) time.

At the same SIGMOD conference with Chaudhuri et al. [7], Acharya et al. [1] studied
the problem of random sampling over multi-way joins. However, their algorithm only works
for a very special type of joins with foreign-key constraints, which imply that there is a
one-to-one correspondence between the join results and tuples in the largest table. Thus,
random sampling from the join reduces to sampling from a single table, which is trivial.

This problem then stayed dormant for almost 20 years, until Zhao et al. [19] designed an
algorithm to sample from multi-way acyclic joins. They show that, on any acyclic join, a data
structure can be build in linear time that allows one to draw a random sample from the join
results in constant time. Their observation is that, on a multi-way join Q, one should sample
a tuple t with probability proportional to |Qt|, where Qt =onF∈E (RF n t) is the residual
query of t. Note that on the binary join R1(A,B) on R2(B,C), the size of the residual query
of some tuple t = (a, b) ∈ R1 is exactly the frequency of b in R2. Then, the idea is to do so
recursively, with the algorithm of Chaudhuri et al. [7] becoming the base case. Finally, they
make use of the (probably folklore) result that, for an acyclic join [18], all the residual query

1 We use R n t as an abbreviation for R n {t}.
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sizes can be computed in O(IN) time. Then they organize these residual query sizes in an
appropriate data structure so that a sample can be drawn in O(1) time. They also adapt
their algorithm to cyclic queries, but there is no formal guarantee on its performance.

1.2 Previous results on join size estimation
For an acyclic query Q, it is well known that OUT = |Q| can be computed in O(IN) time.
But the problem looks very difficult for cyclic queries. Even for the simplest cyclic query, the
triangle query Q4 = R{A,B} on R{B,C} on R{A,C}, we currently do not have any algorithm
that can compute OUT faster than O(INρ) time2, i.e., counting seems to be as difficult as
computing the full join results. On general cyclic queries, the O(INw + OUT)-time output-
sensitive join algorithm above can be modified so as to compute OUT in O(INw) time, but
this is still very expensive for highly cyclic queries.

In most applications, we do not need an accurate OUT, while a reasonable estimate would
be good enough. In the database literature, this is known as the “query size estimation”
problem, and has been extensively studied. However, most results in this area are heuristics
without formal guarantees on the accuracy of the estimate.

The problem of estimating |Q4|, i.e., counting triangles in a graph, has received particular
attention. A commonly used model in the algorithms community is the property testing
model, which assumes that the graph has already been preprocessed into some standard
graph data structure (e.g., adjacent lists with hash tables), so that one can perform the
following operations in constant time: randomly sampling a vertex, randomly sampling an
edge, returning the degree of a vertex, returning the i-th neighbor of a vertex, and testing if
an edge exist between two vertices. In this model, Eden et al. [8] designed an Õ

(
IN3/2

OUT

)
-time3

algorithm that returns a constant-factor approximation of OUT with constant probability,
and showed that this is optimal. Their algorithm has been later extended to counting length-
k cycles and size-k cliques for any constant k, and the running time becomes Õ

(
INk/2

OUT

)
[4, 9]. Very recently, Assadi et al. [2] extended this algorithm to computing a constant-factor
approximation of the join size of any query on binary relations in time of Õ

( INρ
OUT

)
. They

also proved a matching lower bound, which actually holds for the problem of distinguishing
between an input with no join result and one with OUT join results. So it holds for both
the sampling problem and the join size estimation problem. However, their algorithm only
works for the join size estimation problem, not sampling.

Unfortunately, the aforementioned algorithms perform very badly in practice, despite
their theoretical optimality. For the triangle counting problem, one of the most practically
efficient algorithms is wedge sampling [15], which departs from the property testing model
slightly. A wedge is just a length-2 path. The basic idea of wedge sampling is to first uniformly
sample a wedge, and then check if the wedge is closed, i.e., forms a triangle. The standard
property testing model does not allow one to uniformly sample a wedge in constant time, but
this can be easily supported by building a weighted sampling structure on all the vertices,
where the weight of each vertex v is d(v)(d(v)− 1)/2, which is exactly the number of wedges
centered at v. This weighted sampling data structure can be built cheaply in a linear-time

2 On the triangle query, the optimal solution to the linear program (1) is either x1 = x2 = x3 = 1/2, or
x1 = x2 = 1, x3 = 0 (ignoring the other two symmetric cases). In the former case, O(INρ) = O(IN3/2);
in the latter case, O(INρ) = O(|R1| · |R2|).

3 The bound stated in [8] has an extra term, since they did not use edge sampling, which is sometimes not
included in the standard property testing model. When edge sampling is allowed, the bound simplifies
to Õ

(
IN3/2

OUT

)
.
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preprocessing step. Extending the idea of wedge sampling, MOSS-5 [17] is an algorithm that
can count any pattern with up to 5 vertices. Instead of sampling wedges, MOSS-5 samples
spanning trees of up to 5 vertices, and then checks if the other required edges are present. The
same algorithm also applies to the join size estimation problem on joins over binary relations
involving up to 5 attributes, but it does not have any theoretical guarantees. Wander Join
[12] is an effective approach to answering join-aggregate queries approximately, with join
size estimation as a special case. It returns non-uniform samples from the join results, and
de-biases them using the Horvitz-Thompson estimator. The estimator is unbiased, but there
is no guarantee on its error.

1.3 Our results
In this paper, we present the first nontrivial algorithm for random sampling over arbitrary
cyclic queries. More formally, we show how to construct a data structure in linear time
(the size of the data structure is thus necessarily no more than linear), so that a sample
can be drawn uniformly at random from the join results in O

( INρ
OUT

)
time in expectation,

for the class of sequenceable queries. The precise definition of sequenceable queries is a bit
technical; please see Section 2.5 for details. They include all queries on binary relations,
as well as certain queries on relations of higher arity. For non-sequenceable queries, the
running time for drawing a sample is O

(
INρ+1

OUT

)
. These results hold for both full join queries

and join-project queries. Prior to this work, the only solution to this problem with formal
guarantees is to either precompute the full join results, which has O(INρ) preprocessing and
storage cost4, and O(1) sampling cost, or compute the full join at sampling time, which has
no preprocessing cost but O(INρ) sampling cost.

We also adapt our algorithm to solve the join size estimation problem. We show that
after drawing a constant number of samples, a constant-factor approximation to the join
size can be obtained with constant probability. This matches the recent result of Assadi
et al. [2] on joins over binary relations5. Compared with [2], our result is different in the
following aspects: (1) We have to build some additional data structures (still in linear time),
while only standard graph representations are needed in [2], so their result in stronger in
this respect. (2) Our algorithm supports random sampling from the join results, with join
size estimation as a simple corollary, while [2] does not support random sampling. (3) Our
algorithm supports certain queries on relations of higher arity, while [2] only supports binary
relations. (4) The algorithm of [2] has some hidden logarithmic factors, while ours does not.
(5) Unlike the algorithm [2] which is of only theoretical interest, our algorithm is actually
very practical. We conducted some experiments in Section A, showing that our algorithm is
competitive with the best known heuristics on the join size estimation problem.

The O
( INρ

OUT
)
bound may not look attractive when OUT is small. In particular, if

OUT = O(1), our algorithm is no better than computing the join results in full. However,
improving this can be very difficult. Note that when OUT = O(1), random sampling
from the join results is the same as finding all the results. Even for the triangle query,
the best algorithm to date still takes O(IN1.408) time when OUT = O(1) [5], using the
highly impractical fast matrix multiplication algorithm. This is only slightly better than
O(INρ) = O(IN1.5).

4 By combining the acyclic join sampling algorithm [19] with the generalized tree decomposition framework
[10], the preprocessing cost can be driven down to O(INfhw), where fhw is the fractional hypertree width
of the query, but ρ = fhw for highly cyclic queries.

5 In fact, our work was done independent of [2], which we just came to know before submitting this paper.
Also, our approach is completely different from [2].
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2 Random Sampling over Cyclic Queries

2.1 Overview of approach
Order the vertices (attributes) in V arbitrarily as v1, v2, . . . , vn. Let dom(vi) be the domain
of attribute vi. For any X ⊆ V, let EX = {F ∈ E | F ∩X 6= ∅}. We use I to denote the
attribute set {v1, v2, . . . , vi} and J denotes {vi+1, . . . , vn}, for i = 1, . . . , n. Define I = ∅
when i = 0. For a tuple t on attributes I, define the residual query on t as:

Qt =onF∈EJ πJ(RF n t). (2)

Our starting point is Generic-Join [14], an elegant worst-case optimal join algorithm. A
particular version of the algorithm is shown in Algorithm 1 . In the algorithm description, 〈〉
denotes the empty tuple; (t, y) denotes the concatenation of t and y, where t is a tuple on
attributes I, and y ∈ dom(vi+1).

Algorithm 1 Generic-Join(i, t):

1 // t is a tuple on I = {v1, . . . , vi} and t ∈ πIRF for all F ∈ EI
2 if i = n then return {〈〉}
3 Qt ← ∅
4 Lt ←

⋂
F∈E{vi+1}

πvi+1(RF n t)
5 foreach y ∈ Lt do
6 Q(t,y) ← Generic-Join(i+ 1, (t, y))
7 Qt ← Qt ∪ {y} ×Q(t,y)

8 return Qt

Let (xF , F ∈ E) be the optimal solution to linear program (1). It is known that the total
running time of the Generic-Join algorithm is bounded by the AGM bound [3] of the query:

AGM(Q) =
∏
F∈E
|RF |xF .

Furthermore, the time spent on each recursive call Generic-Join(i, t) is bounded by the AGM
bound on the residual query Qt (define 00 = 0):

AGM(Qt) =
∏
F∈EJ

|πJ(RF n t)|xF =
∏
F∈EJ

|RF n t|xF . (3)

Unfolding the recursion, the execution process of the Generic-Join algorithm forms a tree
T . The root node of T corresponds to the initial call Generic-Join(0, 〈〉); every node on
the i-th level of T corresponds to a tuple t on attribute I = (v1, . . . , vi); a leaf node on
level n corresponds to a join result. This tree has exactly OUT leaves. Below, we will not
differentiate between a node in the tree and its corresponding tuple t.

If we know the residual query size |Qt| for every t, then this algorithm immediately yields
a random sampling algorithm: At each node t of T , instead of exploring all its children (t, y)
for y ∈ Lt, we just sample one of them with probability proportional to its subtree size, i.e.,
sample (t, y) with probability |Q(t,y)|/|Qt|. This way, we will reach every leaf with equal
probability. In fact, this is exactly the basic idea of the random sampling algorithm over
acyclic queries [19].
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For cyclic queries, unfortunately, there is no efficient way to compute all the residual
query sizes |Qt|. Our idea is to assume that each node t had a subtree size of AGM(Qt),
and perform the sampling using these subtree size upper bounds. This can be equivalently
viewed as adding “rejection nodes” at various places of T , such that each node t has exactly
AGM(Qt) leaves below, which include |Qt| “accept nodes”, which correspond to true join
results, and AGM(Qt)− |Qt| rejection nodes, which correspond to failed sampling paths.

More precisely, to sample a join result, we start at the root of T . At each node t,
we randomly sample a child y ∈ Lt with probability AGM(Q(t,y))/AGM(Qt), and reject
with probability 1 −

∑
y∈Lt(AGM(Q(t,y))/AGM(Qt)). Note that the sum of the sampling

probabilities of all children y ∈ Lt will not exceed 1, due to the query decomposition lemma
[14], which states that∑

y∈Lt

AGM(Q(t,y)) ≤ AGM(Qt). (4)

Finally, the probability to reach any leaf t = (y1, y2, . . . , yn) ∈ Q is

AGM(Q(y1))
AGM(Q) ·

AGM(Q(y1,y2))
AGM(Q(y1))

· · · · ·
AGM(Q(y1,...,yn))

AGM(Q(y1,...,yn−1))
= 1

AGM(Q) ,

i.e., all join results are uniformly sampled. The probability to successfully reach a leaf node
is OUT

AGM(Q) , so it takes O
(

AGM(Q)
OUT

)
= O

( INρ
OUT

)
attempts in expectation to draw a sample, as

desired. Note that when Generic-Join is used as a sampling algorithm, there is no need to
materialize the whole tree T ; only one root-to-leaf path needs to be explored.

However, to achieve a running time of O
( INρ

OUT
)
, we only have constant time for each

attempt. This means that we need to perform the sampling of a child y ∈ Lt in constant
time, which poses the two main technical difficulties that we must resolve in the rest of the
paper: (1) How to avoid computing Lt, which would take super-constant time, and (2) how
to build appropriate weighted sampling data structures so as to sample a y with probability
AGM(Q(t,y))/AGM(Qt) in constant time. We resolve these two difficulties in the rest of this
section.

2.2 Avoid computing Lt

First, we order the attributes as V = {v1, . . . , vn} in a way such that for any 2 ≤ j ≤ n there
is an 1 ≤ i ≤ j − 1 with {vi, vj} ⊆ F for some F ∈ E . Here, we assume that the query is
connected; otherwise, we can just sample a result from each connected component Q1, . . . , Qk
and return their concatenation. The sampling time would be

AGM(Q1)
|Q1|

+ · · ·+ AGM(Qk)
|Qk|

≤ AGM(Q1)
|Q1|

· · · · · AGM(Qk)
|Qk|

= AGM(Q)
OUT .

We will also assume that there are no relations of arity 1. Such relations can be easily
removed in a preprocessing step: Suppose there is an arity-1 relation R{vi}. We just replace
every other relation RF with RF nR{vi}, and then we remove R{vi}.

Suppose t is a tuple on I = {v1, . . . , vi}. Computing Lt requires computing the set
intersection of πvi+1(RF n t) for F ∈ E{vi+1}, which we cannot afford. Instead, we take one
of these sets, chosen as follows:

F ∗t =
{

arg minF∈E{v1} |RF |, if i = 0;
arg minF∈E{vi+1}∩EI |RF n t|, if i ≥ 1. (5)
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Then we use

L′t = πvi+1(RF∗t n t) (6)

instead of Lt as the children of t in T . Note that we always have L′t ⊇ Lt.
Because every L′t depends on only one particular relation, they are readily available from

standard index structures (e.g., hash tables). More precisely, we build an index on each
relation RF , such that for any tuple t, the index returns the list πv(RF n t), as well as its
size, for any v ∈ F . This list is also known as the neighbor list of t in F on v, and its size
the degree of πF t in F on v. In fact, the Generic-Join algorithm requires exactly the same
index. Using these indexes, L′t can be found in O(1) time for any t on I = {v1, . . . , vi}. For
i = 0, F ∗t is a fixed relation, and L′t is simply πv1RF∗t . For i ≥ 1, F ∗t is one of the relations
in E{vi+1}. For any F ∈ E{vi+1}, the neighbor list πvi+1(RF n t) is available from the index.
By comparing their sizes, we can determine F ∗t and L′t in O(1) time. Finally, it is easy to
see that the total size of all the neighbor lists is linear.

2.3 The sampling algorithm
Replacing Lt with L′t, together with the discussion in Section 2.1, we obtain the Generic-
Join-Sample algorithm, as shown in Algorithm 2. In addition, we need to check the validity
of t in line 2. This is because we now sample from L′t, which is a superset of Lt, so the parent
call cannot guarantee its validity as in Algorithm 1.

Algorithm 2 Generic-Join-Sample(i, t):

1 // t is a tuple on I = {v1, . . . , vi}
2 if t 6∈ πIRF for any F ∈ EI then reject
3 if i = n then return t

4 Set F ∗t and L′t as in (5) and (6)
5 qt ←

∑
y∈L′t

AGM(Q(t,y))
6 y ← a random sample from L′t with probability AGM(Q(t,y))/qt
7 With probability qt/AGM(Qt) return Generic-Join-Sample(i+ 1, (t, y))
8 else reject

Note that AGM(Qt) is never zero in line 7. This is because in line 2, we reject t if
|RF n t| = 0 for any F ∈ EI , which implies that |RF n t| > 0 for any F ∈ EJ (assuming the
input relations are all nonempty).

Except line 5–6, all other operations in Algorithm 2 take O(1) time using the indexes.
Before describing how to implement line 5–6 efficiently, we first see an example.

An example

We illustrate the Generic-Join-Sample algorithm on the query R{A,B} on R{B,C} on R{A,C} on
R{C,D} on R{C,E} on R{D,E}, with the database instance shown in Figure 1. For simplicity, we
will write e.g. {A,B} as AB, then R{A,B} is written as RAB . Similarly, we write xAB , xBC , . . .
as the optimal solution to (1). Suppose we order the attributes as A,B,C,D,E. We start
the algorithm by calling Generic-Join-Sample(0, 〈〉). When i = 0, F ∗t is always AB, since
|πv1RAB | = 2 and |πv1RAC | = 3. So L′t = {a1, a2}. We sample each y ∈ L′t with probability

AGM(Qy)
AGM(Q) = |RAB n y|xAB |RAC n y|xAC |RBC |xBC |RCD|xCD |RCE |xCE |RDE |xDE

|RAB |xAB |RAC |xAC |RBC |xBC |RCD|xCD |RCE |xCE |RDE |xDE

= |RAB n y|xAB |RAC n y|xAC
|RAB |xAB |RAC |xAC

.
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7:8 Random Sampling Over Cyclic Joins

A

B

C

E

D

a1
a2

a3

b1
b2

b3

d1
d2

d3

e1
e2

e3

c1c1

c2
c3

c4

Figure 1 A database instance: The big circles represent attributes, the vertices inside a circle
represent values in the domain of that attribute. The edges between two attributes, say, A,B
represent tuples in the relation RAB .

So a1 and a2 are sampled with probabilities ( 2
4 )xAB ( 1

4 )xAC and ( 2
4 )xAB ( 2

4 )xAC , respectively,
and reject otherwise. Suppose a2 is sampled. Then we call Generic-Join-Sample(1, 〈a2〉).
When i = 1, F ∗t can only be AB and L′t = {b1, b2}. Canceling the common terms as above,
we sample each y ∈ L′t with probability

AGM(Q(t,y))
AGM(Qt)

= |RBC n (t, y)|xBC
|RAB n t|xAB |RBC |xBC

= |RBC n y|xBC
|RAB n t|xAB |RBC |xBC

.

So b1 and b2 are sampled with probabilities ( 1
2 )xAB ( 1

5 )xBC and ( 1
2 )xAB ( 3

5 )xBC , respectively.
Suppose b2 is sampled.

Then we call Generic-Join-Sample(2, 〈a2, b2〉), which is the most interesting step. When
i = 2, F ∗t is either AC or BC, depending on t. With t = 〈a2, b2〉, we take F ∗t = AC and thus
L′t = {c1, c2}. (If we had sampled b1 from B in the previous step, we would take F ∗t = BC

and L′t = {c3}.) Then we sample each y ∈ L′t with probability

AGM(Q(t,y))
AGM(Qt)

= |RCD n (t, y)|xCD |RCE n (t, y)|xCE
|RAC n t|xAC |RBC n t|xBC |RCD|xCD |RCE |xCE

= |RCD n y|xCD |RCE n y|xCE
|RAC n t|xAC |RBC n t|xBC |RCD|xCD |RCE |xCE

.

So c1 and c2 are sampled with probabilities ( 1
2 )xAC ( 1

3 )xBC ( 3
5 )xCD( 1

5 )xCE and
( 1

2 )xAC ( 1
3 )xBC ( 1

5 )xCD( 1
5 )xCE , respectively. Note that AGM(Q〈a2,b2,c2〉) 6= 0, although

〈a2, b2, c2〉 is not part of any valid join result. This is because the residual query Qt is
defined (see definition (2)) only over relations containing at least one free variable (i.e.,
attributes not appearing in t). This is exactly where we depart from Generic-Join: In
Generic-Join, c2 is not in Lt because it does not join with t = 〈a2, b2〉 in RBC . More precisely,
Lt = πC(RAB n t) ∩ πC(RBC n t), but L′t is only the smaller of the two sets. In general, L′t
is a superset of Lt, but as argued before, we cannot afford to compute this set intersection
during sampling time, so can only sample from L′t. In particular, this means that c2 also
has a chance to be sampled at this step, but it will be rejected immediately in the next
recursive call, in line 2 of Algorithm 2. Note that this line is not needed in the Generic-Join
algorithm, because every y ∈ Lt is guaranteed to join with t in every relation. Although we
have avoided computing L′t, one immediate concern is that whether the sum of the sampling
probabilities AGM(Q(t,y))

AGM(Qt) over all y ∈ L′t would still be at most 1, as the query decomposition
lemma only guarantees so when summed over Lt. We show in the next subsection that this
is indeed still the case, which can be actually considered as a stronger version of the query
decomposition lemma.
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a relation in Ci

a relation in Ai

a relation in Bi

vi+1

Figure 2 Three types of relations in E{vi+1}. The attributes in I are represented as solid disks
and attributes in J ′ are represented as hollow circles.

Let us finish the example. As mentioned above, if c2 is sampled, it will be rejected in the
next step and we will start over. Now suppose c1 is sampled. Then we move on to Generic-Join-
Sample(3, 〈a2, b2, c1〉). When i = 3, F ∗t can only be CD, and L′t = {d1, d2, d3}. Each of them
will be sampled with the same probability ( 1

3 )xCD ( 1
3 )xDE . Suppose d3 is sampled, we move

on to Generic-Join-Sample(4, 〈a2, b2, c1, d3〉). Then F ∗t = DE, L′t = {e1}. e1 will be sampled
with probability ( 1

2 )xCE ( 1
1 )xDE . Finally, we call Generic-Join-Sample(5, 〈a2, b2, c1, d3, e1〉),

which checks that e1 joins with c1 in RCE , and then returns 〈a2, b2, c1, d3, e1〉 as a sampled
join result.

2.4 Correctness
In each step of the Generic-Join-Sample algorithm, we sample from some L′t that is a superset
of Lt, so the algorithm can reach every valid join result. In addition, each y ∈ L′t is still
sampled with probability AGM(Q(t,y))/AGM(Qt), so the uniformity argument in Section 2.1
that every join result is sampled with probability 1/AGM(Q) is not affected. To prove
the correctness of the algorithm, it only remains to show that qt =

∑
y∈L′t

AGM(Q(t,y)) ≤
AGM(Qt), so that line 7 of Algorithm 2 is well defined.

I Lemma 1. For any i = 0, 1, . . . , n and any tuple t on attributes I = (v1, v2, . . . , vi), let F ∗t
and L′t be defined as in (5) and (6). Then∑

y∈L′t

AGM(Q(t,y)) ≤ AGM(Qt). (7)

As mentioned, if L′t is replaced by Lt in (7), this is just the query decomposition lemma.
However, since L′t is a superset of Lt, this requires another proof. Before giving the proof,
we first cancel out the common factors on both sides on (7). The remaining factors are all
on relations in E{vi+1}. Denote I ∪ {vi+1} as I ′ and J \ {vi+1} as J ′. We partition E{vi+1}
into the following three types:
1. Ai = E{vi+1} ∩ EI ∩ EJ′ .
2. Bi = E{vi+1} \ EI .
3. Ci = E{vi+1} \ EJ′ .
Please see Figure 2 for an illustration of these three types of relations. Note that Ai,Bi, Ci
depend on the particular ordering of the attributes, and these three types of relations will also
play an important role in characterizing the class of queries we can sample from efficiently.
Now F ∗t can be equivalently defined as F ∗t = arg minF∈Ai∪Ci |πvi+1(RF n t)|.
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7:10 Random Sampling Over Cyclic Joins

Note that Q(t,y) does not involve any relation in Ci, so (7) can be simplified to the
following:∑

y∈L′t

∏
F∈Ai∪Bi

|RF n (t, y)|xF ≤
∏

F∈Ai∪Bi∪Ci

|RF n t|xF . (8)

Since only the relations in Ai,Bi, Ci are relevant, we introduce the notation

AGM′(Q(t,y)) =
∏

F∈Ai∪Bi

|RF n (t, y)|xF ,

AGM′(Qt) =
∏

F∈Ai∪Bi∪Ci

|RF n t|xF .

Define q′t =
∑
y∈L′t

AGM′(Q(t,y)). Then to prove Lemma 1, we just need to prove

q′t ≤ AGM′(Qt) (9)

for all i ≥ 1.

Proof. We first consider the case when i = 0 and t = 〈〉. In this case, Lt =
⋂
F∈E{v1}

πv1RF .
Observe that for any y 6∈ Lt, there is some F ∈ E{v1} such that RF n y = ∅. Also, F
cannot be {v1} since we assumed that there are no relations of arity 1. Thus, AGM(Q(t,y)) =
AGM(Qy) = 0 for any y 6∈ Lt. So

∑
y∈L′t

AGM(Q(t,y)) =
∑
y∈Lt AGM(Q(t,y)) ≤ AGM(Qt),

following directly from the query decomposition lemma (4). Next we show the case for i ≥ 1.
In the following discussion, we fix an arbitrary i ∈ [1, n]. If |RF n t| = 0 for some

F ∈ Ai ∪Bi ∪ Ci, then (7) clearly holds because the both sides of (7) become 0. (In fact, the
Generic-Join-Sample algorithm will never reach this case – such a t would be rejected in line
2.) Below, we assume |RF n t| ≥ 1 for every F ∈ Ai ∪ Bi ∪ Ci.

Let xAiBi =
∑
F∈Ai∪Bi xF and xCi =

∑
F∈Ci xF . Consider the following three cases.

1. 0 < xAiBi < 1. In this case, we have

q′t =
∑
y∈L′t

∏
F∈Ai∪Bi

|RF n (t, y)|xF

=
∑
y∈L′t

(
1 ·

∏
F∈Ai∪Bi

|RF n (t, y)|xF
)

≤

∑
y∈L′t

1
1

1−xAiBi

1−xAiBi

·

∑
y∈L′t

∏
F∈Ai∪Bi

|RF n (t, y)|
xF

xAiBi

xAiBi

, (10)

where the last inequality is due to Hölder’s inequality. Applying Hölder’s inequality again
on the term in the second parentheses, we have

∑
y∈L′

t

∏
F∈Ai∪Bi

|RF n(t, y)|
xF

xAiBi ≤
∏

F∈Ai∪Bi

∑
y∈L′

t

|RF n (t, y)|


xF

xAiBi

≤
∏

F∈Ai∪Bi

|RF n t|
xF

xAiBi .

(11)

Meanwhile, the term in the first parentheses of (10) is∑
y∈L′t

1
1

1−xAiBi = |L′t| = |πvi+1(RF∗t n t)|. (12)
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Substituting (11) and (12) into (10), we obtain

q′t ≤ |πvi+1(RF∗t n t)|1−xAiBi ·
∏

F∈Ai∪Bi

|RF n t|xF . (13)

Note that when xAiBi < 1, Ci cannot be empty. By the definition of F ∗t , we have

|πvi+1(RF∗t n t)| ≤ |πvi+1(RF n t)| ≤ |RF n t|

for any F ∈ Ci. Also, since vi+1 is covered by Ai ∪ Bi ∪ Ci, xAiBi + xCi ≥ 1. Applying
these to (13), we obtain

q′t ≤|πvi+1(RF∗t n t)|xCi ·
∏

F∈Ai∪Bi

|RF n t|xF

=
∏
F∈Ci

|πvi+1(RF∗t n t)|xF ·
∏

F∈Ai∪Bi

|RF n t|xF

≤
∏
F∈Ci

|RF n t|xF ·
∏

F∈Ai∪Bi

|RF n t|xF = AGM′(Qt).

2. xAiBi = 0. Then xCi ≥ 1. Recall that we define 00 = 0. Thus,

q′t ≤
∑
y∈L′t

1 = |RF∗t n t| ≤ |RF∗t n t|xCi =
∏
F∈Ci

|RF∗t n t|xF ≤
∏
F∈Ci

|RF n t|xF , (14)

where the last inequality follows from the definition of F ∗t and the observation that
|πvi+1(RF n t)| = |RF n t| for any F ∈ Ci. If Ai ∪ Bi = ∅, then (14) is the same as the
RHS of (8). Otherwise, recall that we have assumed |RF n t| ≥ 1 for every F ∈ Ai ∪ Bi,
so (14) must be no more than AGM′(Qt).

3. xAiBi ≥ 1. In this case, we apply Hölder’s inequality directly on q′t:

q′t ≤
∏

F∈Ai∪Bi

∑
y∈L′t

|RF n (t, y)|

xF

≤
∏

F∈Ai∪Bi

|RF n t|xF . (15)

If Ci = ∅, then (15) is the same as the RHS of (8). Otherwise, recall that we have assumed
|RF n t| ≥ 1 for every F ∈ Ci, so (15) must be no more than AGM′(Qt). J

2.5 Weighted sampling
It remains to show how to perform the sampling step in line 5–7 of the Generic-Join-Sample
algorithm. Recall from Section 2.2 that L′t is just one of the neighbor lists, which are all
available in the index, and we can find the right one in O(1) time during each sampling step.
However, since we do weighted sampling, a simple list is not enough. If we can compute all
the sampling probabilities in advance, then we can build a weighted sampling data structure
[6] on every neighbor list, which can then support drawing a weighted sample in O(1) time
when we conduct the sampling. The total preprocessing time will be linear since the total
size of all the neighbor lists is linear, and the weighted sampling data structure can also be
built in linear time [6].

Lines 5–7 of the Generic-Join-Sample algorithm sample each y ∈ L′t with probability
p(t,y) = AGM(Q(t,y))

AGM(Qt) . Canceling out the common factors on the numerator and the denominator,
this can be simplified as (using the notation AGM′(Q(t,y)), AGM′(Qt), and q′t introduced
after Lemma 1)

p(t,y) =
AGM′(Q(t,y))

AGM′(Qt)
.
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7:12 Random Sampling Over Cyclic Joins

To sample a y ∈ L′t in constant time according to p(t,y), we perform rejection sampling in
the following two steps:

(1) Sampling: sample a y ∈ L′t with probability AGM′(Q(t,y))
q′t

.

(2) Rejection: keep the sample with probability q′t
AGM′(Qt) .

Note that AGM′(Qt) can be computed in constant time by looking up |RF n t| from the
index, so it only remains to describe how to do step (1) and compute q′t. For each i, the
corresponding sets Ai, Bi, Ci must be in the following there cases.

The case with Ai = ∅

In this case, AGM′(Q(t,y)) =
∏
F∈Bi |RF n (t, y)|xF =

∏
F∈Bi |RF n y|xF ; please also refer to

the example in Section 2.3, where we made the same simplification. Note that this does not
depend on t. Thus, we can precompute all AGM′(Q(t,y)) and construct a weighted sampling
structure on every neighbor list πvi+1(RF n t) to support sampling step (1) in constant time.
We also store the value of q′t together with the list to do the rejection sampling (2) in constant
time.

Going back to the example in Section 2.3, to support Generic-Join-Sample(2, t) for any
possible t, we precompute AGM′(Q(t,y)) for every y ∈ dom(C): AGM′(Q(t,c1)) = 3xCD2xCE ,
AGM′(Q(t,c2)) = AGM′(Q(t,c3)) = 1xCD1xCE , AGM′(Q(y,c4)) = 0. Note that they do not
actually depend on t. Using these as weights, we build a weighted sampling structure on
each neighbor list of RAC and RBC , i.e., πC(RAC n 〈A = a〉) for every a ∈ dom(A) and
πC(RBC n 〈B = b〉) for every b ∈ dom(B). Note that the total size of these neighbor list
is O(|RAC | + |RBC |). Then we store qt with each neighbor list. For example, with the
list πC(RAC n 〈A = a2〉), we store pt = AGM′(Q(t,c1)) + AGM′(Q(t,c2)). During the call to
Generic-Join-Sample(2, t), we first decide F ∗t , and then use the neighbor list πC(RF∗t n t) to
perform the sampling.

The case with |Ai| = 1 and Ci = ∅

When type-A relations are present, AGM′(Q(t,y)) will depend on t, which creates complications.
However, when there is just one type-A relation (call it A) and no type-C relations, then
we must have F ∗t = A. In this case, we are sampling a y ∈ L′t = πvi+1(RA n t) with weights
AGM′(Q(t,y)) = |RA n (t, y)|xA

∏
F∈Bi |RF n y|xF . Although this depends on t, the key

observation is that it only depends on the attributes of t that are included in F ∗t = A. Thus,
we can precompute all the AGM′(Q(t,y)) and construct a weighted sampling structure on
each neighbor list πvi+1(RAn t) to support sampling step (1) in constant time. We also store
the value of qt together with the list to do the rejection sampling (2) in constant time.

Other cases

Unfortunately, for other cases, we do not currently know how to preprocess the weights
AGM′(Q(t,y)) in linear time and support constant-time sampling. Nevertheless, we can always
compute all the AGM′(Q(t,y)) for y ∈ L′t on-the-fly, as well as qt, which takes O(|L′y|) = O(IN)
time. This means that each sampling attempt will take O(IN) time as opposed to constant
time.

We call a query Q sequenceable if there is an ordering of the attributes such that for every
i, there is either Ai = ∅, or |Ai| = 1 and Ci = ∅ for every i. Note that if Q is disconnected, Q
is sequenceable iff every connected component is sequenceable. We arrive at the main result
of this paper:
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A B C

D E F

(a) Sequenceable in order: A, B,
C, D, E, F.

F A G

D B E

H C I

(b) Sequenceable in order: A, B,
C, D, E, F, G, H, I.

(c) Not sequenceable.

Figure 3 Sequenceable and non-sequenceable queries.

I Theorem 2. Given a sequenceable join query, after a linear-preprocessing step, the Generic-
Join-Sample algorithm returns a join result uniformly at random in expected time O

( INρ
OUT

)
.

For a non-sequenceable query, it returns a sample in expected time O
(

INρ+1

OUT

)
.

As a type-A relation must have at least 3 attributes, any query over binary relations is
sequenceable. In addition, Figure 3 shows two sequenceable queries of higher arity, as well as
a query that is not sequenceable. Indeed, the definition of sequenceable queries is a rather
technical one, which follows from the two cases above that we know how to handle efficiently.
Whether more general queries can be handled remains an interesting open problem.

3 Sampling from Join-Project Queries

In this section, we extend our sampling algorithm to join-project queries πO(Q) (a.k.a.
conjunctive queries), where O ⊆ V is the set of output attributes. Let Ō = V − O. The
algorithm consists of two simple steps: (1) Use Generic-Join-Sample to sample a join result
t from QO =onF∈EO (πORF ). Note that it is possible that QO is disconnected; in which
case we take a sample from each connected component, as described at the beginning of
Section 2.2. (2) Check if QŌ(t) =onF∈EŌ (RF n t) is empty. If not, we return t as a sampled
result, otherwise we repeat.

The Correctness of the algorithm is straightforward: Observe that πO(Q) ⊆ QO. The
Generic-Join-Sample algorithm returns a sample t from QO uniformly at random. Then we
return it iff t ∈ πO(Q), so every t ∈ πO(Q) has equal probability to be returned. Next we
analyze its running time.

We will assume that QO is sequenceable. The analysis for the case when QO is not
sequenceable is similar. We iterate steps (1) and (2) until a t sampled from QO is in πO(Q),
which happens with probability p = |πO(Q)|

|QO| . Let Xi denote the running time of the i-th
iteration. Note that Xi = 0 if the i-th iteration does not take place. The total expected
running time is thus

∑
i≥1 E[Xi]. Conditioned on the i-th iteration taking place, step (1)

takes time O
(

AGM(QO)
|QO|

)
= O

(
AGM(Q)
|QO|

)
in expectation. Step (2) takes time O(AGM(QŌ(t)),

using any worst-case optimal join algorithm, e.g., Generic-Join. Because each t ∈ QO is
sampled with probability 1/|QO|, the expected running time of step (2) is (the big-Oh of)

∑
t∈QO

1
|QO|

· AGM(QŌ(t)) =
∑
t∈QO AGM(QŌ(t))

|QO|
≤ AGM(Q)

|QO|
,

where the last inequality follows from the query decomposition lemma. Thus, we have

ICDT 2020



7:14 Random Sampling Over Cyclic Joins

E[Xi | the i-th iteration takes place] = O
(

AGM(Q)
|QO|

)
. Since the i-th iteration takes place with

probability (1− p)i−1, we have E[Xi] = (1− p)i−1 ·O
(

AGM(Q)
|QO|

)
. Thus, the total expected

running time is∑
i≥1

(1−p)i−1 ·O
(

AGM(Q)
|QO|

)
= 1
p
·O
(

AGM(Q)
|QO|

)
= |QO|
|πO(Q)| ·O

(
AGM(Q)
|QO|

)
= AGM(Q)
|πO(Q)| .

I Theorem 3. Given a join-project query πO(Q), after a linear-preprocessing step, we can
return a query result uniformly at random in expected time O

( INρ
OUT

)
if QO is sequenceable,

and O
(

INρ+1

OUT

)
time otherwise.

Note that Theorem 3 degenerates into Theorem 2 when O = V.

4 Join Size Estimation

Because the Generic-Join-Sample algorithm succeeds in returning a random sample with
probability exactly OUT

INρ , this can be turned into a join size estimation algorithm using
standard techniques. More precisely, we simply make k attempts, and see how many of them
succeed. Suppose X out of the k attempts succeed, then we return INρ · Xk as an estimator
of OUT.

It is obvious that this estimator is unbiased. Its variance is(
INρ

k

)2
Var[X] ≤

(
INρ

k

)2
· k · OUT

INρ = INρ ·OUT
k

.

To obtain a constant-factor approximation with constant probability, it is sufficient to make
this variance smaller than OUT2/4, and it takes k = O

( INρ
OUT

)
attempts to achieve so. Since

each attempt takes O(1) time (assuming Q is sequenceable), this means that we can obtain
a constant-factor approximation of OUT in O

( INρ
OUT

)
time.

However, a technical issue is that k depends on OUT, which is exactly the value we want
to estimate. In [2], the standard technique of making repeated guesses for OUT by a binary
search is used, which results in a logarithmic-factor increase in the running time. For our
algorithm, a simpler strategy can be deployed: We simply keep repeating the attempts until
c samples have been successfully obtained, where c is some constant. Note that the total
running time is still O

( INρ
OUT

)
in expectation. Below, we show that it returns a constant-factor

approximation of OUT with constant probability.
Note that in this version of the algorithm, k becomes a random variable. We need to show

that with at least constant probability, we stop the algorithm with, say, c2 ·
INρ

OUT ≤ k ≤ 2c· INρ
OUT .

For k ≥ 2c· INρ
OUT to happen, we must have collected less than c samples when 2c· INρ

OUT attempts
have been made. We know that in expectation, we should have collected 2c · INρ

OUT ·
OUT
INρ = 2c

so far. As each attempt is independent, we can use the Chernoff inequality to bound

Pr
[
k ≥ 2c · INρ

OUT

]
≤ e−

( 1
2 )2·2c

2 = e−
c
4 ,

which can be made as small as possible by choose c large enough. Using a similar argument,
we can show that k ≤ c

2 ·
INρ

OUT also happens with a constant probability small enough. Then
by a union bound, c2 ·

INρ
OUT ≤ k ≤ 2c · INρ

OUT happens with at least a constant probability.
Finally, standard techniques can be applied to boost the accuracy and success probability

to achieve an (ε, δ) guarantee. We omit the detailed proof of the following result. This result
also holds for join-project queries.
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I Theorem 4. Given a join-project query πO(Q), after a linear-preprocessing step, we can
return a (1 + ε)-approximation of OUT with probability at least 1− δ. The running time is
O
( 1
ε2 log 1

δ ·
INρ

OUT
)
if QO is sequenceable, and O

(
1
ε2 log 1

δ ·
INρ+1

OUT

)
otherwise.

A more practical algorithm

If the goal is just to estimate the join size, not uniformly sampling, we can further improve
the efficiency of the algorithm, by simply omitting rejection step (2) in Section 2.5. This
means that a y ∈ L′t is always sampled and there is no rejection step in line 7 of the
Generic-Join-Sample algorithm (it may still be rejected in line 2 of the next recursive call,
though). This results in non-uniform samples, i.e., the sampling probability of a tuple t
in each attempt, denoted as pt, will be different for different t. We can no longer use the
simple estimator as above. Instead, after each sampling attempt, we return the following
Horvitz-Thompson estimator:

X̃ =
{

1
pt
, if the attempt successfully returns t;

0, otherwise.

Note that pt can be computed as t is sampled, which is simply the product of the sampling
probabilities used in sampling step (1) in Section 2.5. It can be easily shown that E[X̃] = OUT.
Thus, we repeat the attempts and return the average of the above estimator.

The variance of the estimator is Var[X̃] =
∑
t∈Q

1
pt
−OUT2. Since skipping the rejection

step only increases pt, we have pt ≥ 1
AGM(Q) for every t ∈ Q. Thus, Var[X̃] is always no larger

than O(INρ · OUT), and the same theoretical guarantee from above applies. In practice,
Var[X̃] can be much smaller, as demonstrated by the experimental results shown in the
appendix.

5 Open Questions

The obvious open problem is if it is possible to improve the sampling time to O(INρ/OUT)
for non-sequenceable joins. Another intriguing question is whether the bound O(INρ/OUT)
is optimal. Note that the Ω(INρ/OUT) lower bound [2] assumes that the algorithm can only
access the database through standard operations, such as sampling a tuple, looking up the
degree, sampling a neighbor, etc. Because our algorithm builds auxiliary data structures
(still in linear time though), this lower bound does not apply.
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A Experiments

After skipping the rejection sampling step, the join size estimation algorithm described above
is very practical. Here we report some preliminary experimental results, comparing it with
Wander Join [12] and MOSS-5 [17], two best heuristic algorithms for estimating the size of
a cyclic join. We have also implemented and tested the other algorithm [2] with the same
O
( INρ

OUT
)
running time guarantee, but its performance is far worse than the other three. We

used 4 real-world graph data sets and tested 2 cyclic queries as self-joins on each graph: a
length-5 cycle and the two-triangle query as shown in Figure 1.

We used a machine with an Intel Xeon E5-2650 v4 2.20GHz CPU and 256G main memory
for our experiments. To see how fast the estimator converges, when running an algorithm, we
collect the estimated counts reported by the algorithm at regular intervals, say, every 1 second.
Then we repeat the algorithm 100 times and compute the relative RMSE (root-mean-square
error) to the true count at each time interval. We ran all algorithms in single-thread mode,
but all algorithms can be easily parallelized as they all repeatedly take independent samples.

The experimental results are given in Figures 4–7. Note that the preprocessing time is
included, which is why the curves do not start from time 0. We see that Wander Join has
the shortest preprocessing time, as it only needs hash tables to be built. Our algorithm
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needs more preprocessing time to build weighted sampling data structures. MOSS-5 needs
the longest preprocessing time to prepare the weighted sampling structures for all spanning
trees. After preprocessing, the estimates returned by all algorithms converge to the true
value as they are all unbiased estimators. The convergence rates are different, though. While
Wander Join and MOSS-5 seem to behave differently on different data sets, our algorithm
consistently performs on par with the better of the two, probably due to the theoretical
guarantee it enjoys. On the other hand, the other O

( INρ
OUT

)
algorithm [2] performs extremely

poorly in the experiments, with no reasonable estimates returned after 60 seconds.
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1 Introduction

A plethora of paradigms have been developed over the past decades towards the challenge of
extracting structured information from text – a task generally referred to as Information
Extraction (IE). Common textual sources include natural language from a variety of sources
such as scientific publications, customer input and social media, as well as machine-generated
activity logs. Instantiations of IE are central components in text analytics and include
tasks such as segmentation, named-entity recognition, relation extraction, and coreference
resolution [38]. Rules and rule systems have consistently been key components in such
paradigms, yet their roles have varied and evolved over time. Systems such as Xlog [42] and
SystemT [4] use IE rules for materializing relations inside relational query languages. Machine-
learning classifiers and probabilistic graphical models (e.g., Conditional Random Fields)
use rules for feature generation [24, 44]. Rules serve as weak constraints (later translated
into probabilistic graphical models) in Markov Logic Networks [32] and in the DeepDive
system [43]. Rules are also used for generating noisy training data (“labeling functions”) in
the Snorkel system [34].

The framework of document spanners (spanners for short) provides a theoretical basis
for investigating the principles of relational rule systems for IE [13]. Specifically, a spanner
extracts from a document a relation over text intervals, called spans, using either atomic
extractors or a relational query on top of the atomic extractors. More formally, by a document
we refer to a string d over a finite alphabet, a span of d represents a substring of d by its start
and end positions, and a spanner is a function that maps every document d into a relation
over the spans of d. The most studied spanner language is that of the regular spanners:
atomic extraction is via regex formulas, which are regular expressions with capture variables,
and relational manipulation is via the relational algebra: projection, natural join, union,
and difference. Equivalently, the regular spanners are the ones expressible as variable-set
automata (vset-automata for short), which are nondeterministic finite-state automata that
can open and close variables (playing the role of the attributes of the extracted relation).
Interestingly, there has been an independent recent effort to express artificial neural networks
for natural language processing by means of finite-state automata [26,27,47].

To date, the research on spanners has focused on their expressive power [13, 17, 31], their
computational complexity [2,3,15,18], incompleteness [25,30], and other system aspects such
as cleaning [14] and distributed query planning [8]. That research has exclusively adopted a
Boolean approach: a tuple is either extracted or not. Nevertheless, when applied to noisy or
fuzzy domains such as natural language, modern approaches in artificial intelligence adopt
a quantitative approach where each extracted tuple is associated with a level of confidence
that the tuple coincides with the intent. When used within an end-to-end IE system, such
confidence can be used as a principled way of tuning the balance between precision and
recall. For instance, in probabilistic IE models (e.g., CRF), each extraction has an associated
probability. In systems of weak constraints (e.g., MLN), every rule has a numerical weight,
and the confidence in an extraction is an aggregation of the weights of the invoked rules that
lead to the extraction. IE via artificial neural networks typically involves thresholding over a
produced score or confidence value [5,29]. Numerical scores in extraction are also used for
quantifying the similarity between associated substrings, as done with sequence alignment
and edit distance in the analysis of biological sequences such as DNA and RNA [45,46].

In this work, we embark on the investigation of spanners that quantify the extracted tuples.
We do so by adopting the concept of annotated relations from the framework of provenance
semirings by Green et al. [20]. In essence, every tuple of the database is annotated with an
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element of a commutative semiring, and the positive relational algebra manipulates both
the tuples and their annotations by translating relational operators into semiring operators
(e.g., product for natural join and sum for union). An annotated relation is referred to as a
K-relation, where K is the domain of the semiring. The conceptual extension of the spanner
model is straightforward: instead of a function (i.e., spanner) that maps every document d
into a relation over the spans of d, we consider a function that maps every d into a K-relation
over the spans of d. We refer to such a function as a K-annotator. Interestingly, as in the
relational case, we can vary the meaning of the annotation by varying the semiring:

Confidence via the probability (a.k.a. inside) semiring and the Viterbi (best derivation)
semiring [19];
Support (i.e., number of derivations) via the counting semiring [19];
Access control via the semiring of the confidentiality policies [16] (e.g., does the extracted
tuple require reading top-secret sections? which level suffices for the tuple?);
The traditional spanners via the Boolean semiring.

As a specific instantiation of K-annotators, we study the class of K-weighted vset-automata.
Such automata generalize vset-automata in the same manner as weighted automata and
weighted transducers (cf., e.g., the Handbook of Weighted Automata [10]): transitions are
weighted by semiring elements, the cost of a run is the product of the weights along the run,
and the weight (annotation) of a tuple is the sum of costs of all the runs that produce the
tuple. Again, there has been recent research that studies the connection between models of
artificial neural networks in natural language processing and weighted automata [39]. Our
investigation answers several fundamental questions about K-weighted vset-automata:
1. Is this class closed under the positive relational algebra (according to the semantics of

provenance semirings [20])?
2. What is the computational complexity of computing the annotation of a tuple?
3. Can we enumerate the annotated tuples as efficiently as we can do so for ordinary

vset-automata (i.e., regular document spanners)?
4. In cases of numerical semirings (i.e., when K is a set of numbers), what is the complexity

of enumerating the answers in ranked order by decreasing weight?
Our answers are mostly positive, put the last question aside, and show that K-weighted
vset-automata possess appropriate expressivity and tractability properties. As for the last
question, we show that ranked enumeration is intractable and inapproximable for some of
the aforementioned semirings (e.g., the probability and counting semirings), but tractable
for positively ordered and bipotent semirings, such as the Viterbi semiring. Due to space
constraints, we sometimes omit proofs or only provide a proof sketch.

2 Preliminaries

Our annotators will read documents and produce annotated relations [20], which are relations
in which each tuple is annotated with an element from a semiring. In this section we revisit
the basic definitions and properties of annotated relations.

Semirings

A semiring (K,⊕,⊗, 0, 1) is an algebraic structure consisting of a set K, containing two
distinguished elements: the zero element 0 and the unit element 1, and equipped with two
binary operations, namely addition ⊕ and multiplication ⊗ such that:

(K,⊕) is a commutative monoid with identity element 0;

ICDT 2020
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(K,⊗) is a monoid with identity element 1;
multiplication distributes over addition, i.e., (a⊕b)⊗c = (a⊗c)⊕ (b⊗c) and c⊗ (a⊕b) =
(c⊗ a)⊕ (c⊗ b);
0 is absorbing for ⊗, i.e., 0⊗ a = a⊗ 0 = 0.

A semiring is called commutative if (K,⊗) is commutative. We follow Green et al. [20]
and assume that a semiring is commutative if not stated otherwise. Furthermore, following
Eilenberg [11], a semiring is positive if the following conditions hold:

0 6= 1,
If a⊕ b = 0, then a = 0 = b.
If a⊗ b = 0, then a = 0 or b = 0.

An element a ∈ K is a zero divisor if a 6= 0 and there is an element b ∈ K with b 6= 0 and
a ⊗ b = 0. Furthermore, an element a ∈ K has an additive inverse, if there is an element
b ∈ K such that a⊕ b = 0. In the following, we will also identify a semiring by its domain K
if the rest is clear from the context. When we do this for numeric semirings such as R and N,
we always assume the usual addition and multiplication.

I Example 2.1. The following are examples for commutative semirings. It is easy to verify
that all but the numeric semirings and the Łukasiewcz semiring are positive.
1. The numeric semirings (R,+, ·, 0, 1) and (Z,+, ·, 0, 1);
2. The counting semiring (N,+, ·, 0, 1);
3. The Boolean semiring (B,∨,∧, false, true) where B = {true, false};
4. The probability semiring (R+,+, ·, 0, 1).1 Rabin [33] and Segala [40] define probabilistic

automata over this semiring, where all edge weights must be between 0 and 1 and the
sum of all edge weights starting some state, labeled by the same label must be 1;

5. The Viterbi semiring ([0, 1],max, ·, 0, 1) which is used in probabilistic parsing [9];
6. The access control semiring A = ({P < C < S < T < 0},min,max, 0, P ), where P is

“public”, C is “confidential”, S is “secret”, T is “top secret”, and 0 is “so secret that
nobody can access it” [16];

7. The tropical semiring (N ∪ {∞},min,+,∞, 0) where min stands for the binary minimum
function. This semiring is used in optimization problems of networks [9].

8. The Łukasiewcz semiring, whose domain is [0, 1], with addition given by x⊕y = max(x, y),
with multiplication x⊗ y = max(0, x+ y − 1), zero element 0, and unit 1. This semiring
is used in multivalued logics [9].

Complexity-wise, we assume that single semiring elements can be stored in a single
register and that addition and multiplication can be carried out in constant time – in similar
spirit as the standard assumption for Random Access Machines. We use this assumption to
simplify the analysis of algorithms.

2.1 Annotated Relations
We assume infinite and disjoint sets D and Vars, containing data values (or simply values)
and variables, respectively. Let V ⊆ Vars be a finite set of variables. A V -tuple is a function
t : V → D that assigns values to variables in V . The arity of t is the cardinality |V | of V . For
a subset X ⊆ Vars, we denote the restriction of t to the variables in X by t�X. We denote
the set of all the V -tuples by V -Tup. We sometimes leave V implicit when the precise set is

1 One may expect the domain to be [0, 1], but this is difficult to obtain while maintaining the semiring
properties. For instance, defining a⊕ b as min{a + b, 1} would violate distributivity.
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not important. Let K be a set containing a distinguished element 0. A (K,D)-relation R over
V is a function R : V -Tup→ K such that its support defined by supp(R) def= {t | R(t) 6= 0} is
finite. The arity of a (K,D)-relation over V is |V |. When D is clear from the context or
irrelevant, we also use K-relations to refer to (K,D)-relations.

I Example 2.2. The bottom left table in Figure 1 shows an example (K,D)-relation, where
K is the Viterbi semiring. The variables are xpers and xloc, so the V -tuples are described in
the first two columns. The third column contains the element in K associated to each tuple.

Relational Algebra for Annotated Relations

Green et al. [20] defined a set of operators on (K,D)-relations that naturally correspond
to relational algebra operators and map K-relations to K-relations. Let (K,⊕,⊗, 0, 1) be
a commutative semiring. The algebraic operators2 union, projection, and natural join are
defined in the usual way, for all finite sets V1, V2 ⊆ Vars and for all K-relations R1 over V1
and R2 over V2, as follows.

Union: If V1 = V2 then the union R def= R1 ∪ R2 is a function R : V1-Tup → K defined
by R(t) def= R1(t)⊕R2(t). (Otherwise, the union is not defined.)
Projection: For X ⊆ V1, the projection R

def= πXR1 is a function R : X-Tup → K
defined by

R(t) def=
⊕

t=t′�X and R1(t′)6=0

R1(t′).

Natural Join: The natural join R
def= R1 ./ R2 is a function R : (V1 ∪ V2)-Tup → K

defined by

R(t) def= R1(t1)⊗R2(t2)

where t1 and t2 are the restrictions t�V1 and t�V2, respectively.
Selection: If P is a selection predicate that maps each tuple in V1-Tup to either 0 or 1
then R def= σP(R1) is a function R : V1-Tup→ K defined by

R(t) def= R1(t)⊗P(t).

I Proposition 2.3. [20] The above operators preserve the finiteness of the supports and
therefore they map K-relations into K-relations.

Hence, we obtain an algebra on K-relations.

3 K-Annotators

We start by setting the basic terminology. We fix a finite alphabet Σ that is disjoint from
Vars. A document is a finite sequence d = σ1 · · ·σn where σi ∈ Σ for each i = 1, . . . , n. By
Docs we denote the set of all documents. A (k-ary) string relation is a subset of Docsk for
some k ∈ N.

2 As in much of the work on semirings in provenance, e.g. Green et al. [20], we do not yet consider the
difference operator (which would require additive inverses).
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C a r t e rt f r o m t P l a i n s , t G e o r g i a , t W a s h i n g t o n t f r o m t W e s t m o r e l a n d , t V i r g i n i a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

xpers xloc annotation

Carter Plains,tGeorgia 0.9
Washington Westmoreland,tVirginia 0.9

Carter Georgia,tWashington 0.81
Carter Westmoreland,tVirginia 0.59049

xpers xloc annotation

[1, 7〉 [13, 28〉 0.9
[30, 40〉 [46, 68〉 0.9
[1, 7〉 [21, 40〉 0.81
[1, 7〉 [46, 68〉 0.59049

Figure 1 A document (top), a (K, D)-relation (bottom left), and an extracted annotated span
relation (bottom right).

A span identifies a substring of a document d by specifying its bounding indices, that
is, a span of d is an expression of the form [i, j〉 where 1 ≤ i ≤ j ≤ n + 1. By d[i,j〉 we
denote the substring σi · · ·σj−1. In case i = j it holds that d[i,j〉 is the empty string, which
we denote by ε. We denote by Spans(d) the set of all possible spans of a document d and
by Spans the set of all possible spans of all possible documents. Since we will be working
with relations over spans, we assume that D is such that Spans ⊆ D. A (K,d)-relation over
V ⊆ Vars is defined analogously to a (K,D)-relation over V but only uses V -tuples with
values from Spans(d).

I Definition 3.1. Let (K,⊕,⊗, 0, 1) be a semiring. A K-annotator (or annotator for short),
is a function S that is associated with a finite set V ⊆ Vars of variables and maps documents
d into (K,d)-relations over V . We denote V by Vars(S). We sometimes also refer to an
annotator as an annotator over (K,⊕,⊗, 0, 1) when we want to emphasize the semiring.

Notice that B-annotators, i.e., annotators over (B,∨,∧, false, true) are simply the document
spanners as defined by Fagin et al. [13].

I Example 3.2. We provide an example document d in Figure 1 (top). The table at the
bottom right depicts a possible (K,d)-relation obtained by a spanner that extracts (person,
hometown) pairs from d. Notice that for each span [i, j〉 occurring in this table, the string
d[i,j〉 can be found in the table to the left.

In this naïve example, which is just to illustrate the definitions, we used the Viterbi
semiring and annotated each tuple with (0.9)k, where k is the number of words between the
spans associated to xpers and xloc. The annotations can therefore be interpreted as confidence
scores.

Relational Algebra for K-Annotators

We now lift the relational algebra operators on K-relations to the level of K-annotators. For
all documents d and for all annotators S1 and S2 associated with V1 and V2, respectively,
we define the following:

Union: If V1 = V2 then the union S def= S1 ∪ S2 is defined by S(d) def= S1(d) ∪ S2(d).3

Projection: For X ⊆ V1, the projection S def= πXS1 is defined by S(d) def= πXS1(d).
Natural Join: The natural join S def= S1 ./ S2 is defined by S(d) def= S1(d) ./ S2(d).

3 Here, ∪ stands for the union of two K-relations as was defined previously. The same is valid also for
the other operators.
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String selection: Let R be a k-ary string relation. The string-selection operator σR
is parametrized by k variables x1, . . . , xk in V1 and may be written as σRx1,...,xk

. Then
the annotator S def= σRx1,...,xk

S1 is defined as S(d) def= σP(S1(d)) where P is a selection
predicate with P(t) = 1 if (dt(x1), . . . ,dt(xk)) ∈ R; and P(t) = 0 otherwise.

Due to Proposition 2.3 it follows that the above operators form an algebra on K-annotators.

4 Weighted Variable-Set Automata

In this section, we define the concept of a weighted vset-automaton as a formalism to represent
K-annotators. This formalism is the natural generalization of vset-automata [13] and weighted
automata [10]. Later in this section, we also present a formalism that is based on parametric
factors, and a specification can be translated into a weighted vset-automaton (Section 4.1).

Let V ∈ Vars be a finite set of variables. Furthermore, let ΓV = {v`,av | v ∈ V } be
the set of variable operations.4 Let (K,⊕,⊗, 0, 1) be a semiring. A weighted variable-set
automaton over semiring K (alternatively, a weighted vset automaton or a K-weighted vset-
automaton) is a tuple A def= (V,Q, I, F, δ) where V ⊆ Vars is a finite set of variables; Q is a
finite set of states; I : Q→ K is the initial weight function; F : Q→ K is the final weight
function; and δ : Q× (Σ ∪ {ε} ∪ ΓV )×Q→ K is a (K-weighted) transition function.

We define the transitions of A as the set of triples (p, o, q) with δ(p, o, q) 6= 0. Likewise,
the initial (resp., accepting) states are those states q with I(q) 6= 0 (resp., F (q) 6= 0). A run
ρ of A over a document d def= d1 · · · dn is a sequence

(q0, i0) o1→ · · · (qm−1, im−1) om−1→ (qm, im)

where
i0 = 1, im = n+ 1, and ij ∈ {1, . . . , n} for each j ∈ {1, . . . ,m− 1};
each oj is in Σ ∪ {ε} ∪ ΓV ;
ij+1 = ij whenever oj ∈ {ε} ∪ ΓV and ij+1 = ij + 1, otherwise;
δ(qj , oj , qj+1) 6= 0 for all j ≥ 0.

The weight of a run is obtained by ⊗-multiplying the weights of its constituent transitions.
Formally, the weight wρ of ρ is an element in K given by the expression

I(q0)⊗ δ(q0, o1, q1)⊗ · · · ⊗ δ(qm−1, om−1, qm)⊗ F (qm) .

We call ρ nonzero if wρ 6= 0. Notice that ρ is nonzero only if q0 and qm are initial and final,
respectively. A run is called valid if for every variable v ∈ V the following hold: there is
exactly one index i for which oi = v` and exactly one index j ≥ i for which oj = av.

For a nonzero and valid run ρ, we define tρ as the V -tuple that maps each variable
v ∈ V to the span [ij , ij′〉 where oij = v` and oij′ = av. We denote the set of all valid and
nonzero runs of A on d by P (A,d). We naturally extend the notion of functionality to apply
also to general (not necessarily Boolean) weighted vset-automata. A weighted functional
vset-automaton is a weighted vset-automaton whose runs are all valid.5

Notice that there may be infinitely many nonzero and valid runs of a weighted vset-
automaton on a given document, due to ε-cycles, which are sets of states {q1, . . . , qk} such
that (qi, ε, qi+1) is a transition for every i ∈ {1, . . . , k − 1}. Similar to much of the standard

4 The operation v` represents opening variable v and av represents closing v.
5 Notice that, while our notion of functionality indeed generalizes the notion on B-weighted vset-automata

[13], one needs positivity of K to ensure that a functional automaton has an output tuple for every valid
run.
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q0

q1

q2 q3 q4 q5

q6

q7 q8 q9

q10

1

Σ′; 1 t; 1

Σ′; 1

xpers`; 1
Pers; 1 axpers; 1

t; 1

Σ′; 1 t; 0.9

Σ′; 1

xloc`; 1
Loc; 1

axloc; 1

t; 1

Σ; 1 1

1

Figure 2 An example weighted vset-automaton over the Viterbi semiring with initial state q0

and two final states q9, q10. Σ′ = Σ \ {t}, Pers and Loc are sub-automata matching person and
location names respectively. All edges, including the edges of the sub-automata, have the weight 1
besides the transition from q6 to q5 with weight 0.9.

literature on weighted automata (see, e.g., [12]) we will assume that weighted vset-automata
do not have ε-cycles, unless mentioned otherwise. The reason for this restriction is that
automata with such cycles need K to be closed under infinite sums for their semantics to be
well-defined.6

As such, if A does not have ε-cycles, then the result of applying A on a document d,
denoted JAKK(d), is the (K,d)-relation R for which

R(t) def=
⊕

ρ∈P (A,d) and t=tρ

wρ.

Note that we only use runs ρ that are valid and nonzero here. Observe that if t is a V ′-tuple
with V ′ 6= V then R(t) = 0. In addition, JAKK is well defined since every V -tuple in the
support of JAKK(d) is a V -tuple over Spans(d). The size |A| of a weighted vset-automaton
A is its number of states plus its number of transitions.

We say that a K-annotator S is regular if there exists a weighted vset-automaton A

such that S = JAKK. Similar to our terminology on annotators, we use the term B-weighted
vset-automata to refer to the “classical” vset-automata of Fagin et al. [13], which are indeed
weighted vset-automata over the Boolean semiring.

I Example 4.1. Figure 2 shows an example weighted vset-automaton over the Viterbi
semiring, which is intended to extract (person, hometown)-tuples from a document. Here,
“Pers” and “Loc” should be interpreted as sub-automata that test if a string could be a
person name or a location. (Such automata can be compiled from publicly available regular
expressions7 and from deterministic rules and dictionaries as illustrated in SystemT [4].)

The relation extracted by this automaton from the document in Figure 1 is exactly the
annotated span relation of the same figure. The weight of a tuple t depends on the number
of spaces occurring between the span captured by xpers and the span captured by xloc. More
specifically the automaton assigns the weight (0.9)k to each tuple, where k is the number of
words between the two variables.

4.1 Annotators via Parametric Factors
We now describe another way of introducing weights (or softness) in document spanners.
This section can also be seen as an additional motivation for K-annotators. Indeed, we
will show that, if softness is introduced in document spanners [13] (i.e., B-annotators) in

6 The semirings need to fulfill additional properties as well such as distributivity, commutativity and
associativity must also hold for infinite sums. Such semirings are called complete [28].

7 For example, http://regexlib.com/.

http://regexlib.com/
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the standard manner that we recall here, the resulting annotators can be captured in our
framework.

Softness can be introduced in document spanners via the concept of parametric factors,
which is a very common concept that is used in a wide range of contexts. Examples are
the soft keys of Jha et al. [21], the PrDB model of Sen et al. [41], the probabilistic unclean
databases of De Sa et al. [36] which can be viewed as a special case of the Markov Logic
Network (MLN) [35]. Intuitively, a parametric factor is a succinct expression of numerical
factors of a probability via weighted rules: whenever the rule fires, a corresponding factor
(determined by the weight) is added to the product that constitutes the probability. What
we want to show in this section is that, if one has rules that involve B-annotators, and one
adds uncertainty or softness to these rules in this standard way – using parametric factors –
then the obtained formalism naturally leads to K-annotators.

Next, we give the precise definition of a soft spanner and show that, when the factors are
regular, a soft spanner can be translated into a weighted vset-automaton.

Formally, a soft spanner is a triple Q = (P,S, w), where:
P is a document spanner, i.e., a B-annotator,
S is a finite set of document spanners referred to as the factor spanners, and
w : S → R assigns a (positive or negative) numerical value to each factor spanner.

Given a document d, the soft spanner Q assigns to each t ∈ P (d) a probability as follows:

Q̂(d, t) def= exp

∑
S∈S

∑
u∈{t}onS(d)

w(S)

 =
∏
S∈S

ew(S)·|{t}onS(d)| ,

Q(d, t) def= Q̂(d, t)/Z(d),

where Z(d) is a normalization factor (or the partition function) defined in the usual way:

Z(d) =
∑

t∈P (d)

Q̂(d, t)

Note that {t} on S(d) is the join of the relation S(d) with the relation that consists of the
single tuple t. Hence, |{t} on S(d)| is the number of tuples t′ ∈ S(d) that are compatible
(joinable) with t, that is, t(x) = t′(x) whenever x is in the domain of both t and t′.

I Example 4.2. The same relation as discussed in Example 4.1 can also be extracted
using a soft spanner Q = (P, {S}, w). To this end, P is a boolean spanner extracting
(person, hometown)-tuples; S is the spanner, extracting (xpers, y, xloc)-triples of words, where
y matches a word between xpers and xloc; and the weight function w is the function assigning
w(S) = log(0.9). Note that S simply extracts words and does not test whether the words
matched by xpers or xloc correspond to a person or location.

We therefore see that K-annotators can also be defined by applying the standard technique
of parametric factors to document spanners. In fact, as we will see next, soft spanners can be
compiled into weighted vset-automata, which serves as an additional motivation for weighted
vset-automata. To prove the result, we use closure properties of weighted vset-automata that
we will obtain further in the paper (so the proof can be seen as a motivation for the closure-
and computational properties of weighted vset-automata as well).

For the following result, we say that a K-weighted vset-automaton A is unambiguous
if, for every document d and every tuple t ∈ JAKK(d), there exists exactly one valid and
nonzero run ρ of A on d such that t = tρ.

ICDT 2020
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I Theorem 4.3. Let Q = (P,S, w) be a soft spanner such that P and every S ∈ S is regular.
There exists an R-weighted vset-automaton A such that JAKR(d)(t) = log(Q̂(d, t)) for all
documents d and tuples t; Moreover, if the spanners of Q are represented as unambiguous
functional vset-automata, then A can be constructed in polynomial time in the size of Q.

Proof sketch. Let Pu be an unambiguous version of P , interpreted as an R-weighted vset-
automaton where true is associated with 1 and false with 0 and let VP be the variables of P .
Let Su be an unambiguous version of S. From Su we compute a weighted vset-automaton
Swu by interpreting it as an R-weighted vset-automaton and assigning to each accepting state
q of Su the weight F (q) = w(S). Then the automaton we need for computing log(Q̂(d, t)) is

A =
⋃
S∈S

πVP (Pu ./ Swu ) .

We show correctness, i.e., log(Q̂(d, t)) = JAKR(d)(t). Due to Pu and Swu being unambiguous,
it follows directly that Pu ./ Swu has exactly one accepting run with weight w(S) for
every tuple t ∈ JPu ./ Swu KR(d). Per definition of union and projection, it follows that
JAKR(d)(t) =

∑
S∈S

∑
u∈{t}onS(d) w(S) = log(Q̂(d, t)). As we will obtain in Theorem 5.5,

automaton A can be represented as an R-weighted vset-automaton and can be constructed
in PTIME, which concludes the proof. J

5 Fundamental Properties

We now study fundamental properties of annotators. Specifically, we will show that regular
annotators are closed under union, projection, and join. Furthermore, annotators over positive
semirings are closed under exactly the same string relations as document spanners. We begin
the section by showing that every regular K-annotator can be transformed into an equivalent
functional regular K-annotator without ε-transitions. We say that two vset-automata A and
A′ are equivalent if JAKK = JA′KK.

I Proposition 5.1. For every weighted vset-automaton A there is an equivalent weighted
vset-automaton A′ that has no ε-transitions. This automaton A′ can be constructed from A

in PTIME. Furthermore, A is functional if and only if A′ is functional.

Notice that non-functional vset-automata can be inconvenient to work with, since some
of their nonzero runs are not valid and therefore do not contribute to the weight of a tuple.
It is therefore desirable to be able to automatically convert weighted vset-automata into
functional weighted vset-automata.

I Proposition 5.2. Let A be a weighted vset-automaton. Then there is a functional weighted
vset-automaton Afun that is equivalent to A. If A has n states and uses k variables, then
Afun can be constructed in time polynomial in n and exponential in k.

The exponential blow-up in Proposition 5.2 cannot be avoided, since Freydenberger [17,
Proposition 3.9] showed that there is a vset-automaton A (over B) with one state and
k variables, such that every equivalent functional vset-automaton has at least 3k states.
Functionality of vset-automata can be checked efficiently, as we have the following result.

I Proposition 5.3. Given a weighted vset-automaton A with m transitions and k variables,
it can be decided whether A is functional in time O(km).
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I Observation 5.4 ((Similar to Freydenberger et al. [18])). Let A def= (V,Q, I, F, δ) be a
K-weighted functional vset-automaton. Then there exists a function C : Q× V 7→ {w, o, c}
that maps every state to its variable configuration, i.e., C(q, x) ∈ {w, o, c} depending on
whether x is waiting, open, or closed in state q. More formally, the function

C(q, v) =


w there is a nonzero run where v` does not occur before reaching q,
o there is a nonzero run where v` but not av occur before reaching q,
c there is a nonzero run where v` and av occur before reaching q.

is well-defined. Indeed, if C would not be well-defined, then two conflicting runs would
contradict the functionality of A.

5.1 Closure Under Join, Union, and Projection
Here we obtain the following result.

I Theorem 5.5. Regular annotators are closed under union, projection, and natural join.

Whereas union and projection are fairly standard, the case of join needs some care in
the case that the two automata A1 and A2 process variable operations in different orders.
(I.e., if A1 processes x` y` a ay ax and A2 processes y`x` a ax ay, then these two different
sequences produce the same result. The automata construction has to deal with this.) One
can also show that, if the annotators are given as functional weighted vset-automata, then
the construction for a single union, projection, and join can be done in polynomial time.
Furthermore, the constructions preserve functionality.

5.2 Closure under String Selection
A k-ary string relation is recognizable if it is a finite union of Cartesian products of regular
string languages [37]. Let REGK be the set of regular K-annotators. We say that a k-ary
string relation R is selectable by regular K-annotators if the following equivalence holds:

REGK = {σRx1,...,xk
(S) | S ∈ REGK and xi ∈ Vars(S) for all 1 ≤ i ≤ k} ,

that is, the class of K-annotators is closed under selection using R. If K = B, we say that R is
selectable by document spanners. Fagin et al. [13] proved that a string relation is recognizable
if and only if it is selectable by document spanners. Here, we generalize this result in the
context of weights and annotation. Indeed, it turns out that the equivalence is maintained
for all positive semirings.

I Theorem 5.6. Let (K,⊕,⊗, 0, 1) be a positive semiring and R be a string relation. The
following are equivalent:
(1) R is recognizable.
(2) R is selectable by document spanners.
(3) R is selectable by K-annotators.

Proof sketch. The equivalence between (1) and (2) is known [13, Theorem 4.16]. The proof
(2) ⇒ (3) is heavily based on the closure properties from Theorem 5.5 and does not use
positivity of the semiring. For (3) ⇒ (2) we use semiring morphisms to turn K-weighted
vset-automata into B-weighted vset-automata and need positivity of the semiring. J

Since the implication from (2) to (3) does not assume positivity of the semiring, it raises
the question if the equivalence can be generalized even further. One can show that this is
indeed the case, such as for the Łukasiewicz semiring, which is not positive.
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6 Evaluation Problems

We consider two types of evaluation problems in this section: answer testing and best weight
evaluation. The former is given an annotator, document d, and tuple t; and computes the
annotation of t in d according to the annotator. The latter does not receive the tuple as
input, but recieves a weight threshold and is asked whether there exists a tuple that is
returned with a weight that is at least the threshold.

6.1 Answer Testing

It follows from Freydenberger [17, Lemma 3.1] that answer testing is NP-complete for
B-weighted vset-automata in general. Indeed, he showed that, given a B-weighted vset-
automaton A, it is NP-complete to check if A returns any output on the empty document ε,
so it is even NP-complete to check if the tuple of empty spans is returned or not. However,
the proof makes extensive use of non-functionality of the automaton. Indeed, we can prove
that answer testing is tractable for functional weighted vset-automata.

I Theorem 6.1. Given a functional weighted vset-automaton A, a document d, and a tuple
t, the weight JAKK(d)(t) assigned to t by A on d can be computed in PTIME.

Proof sketch. Let A, d, and t be as stated. Per definition, the weight assigned to t by A is

JAKK(d)(t) def=
⊕

ρ∈P (A,d) and t=tρ

wρ.

Therefore, in order to compute the weight JAKK(d)(t), we need to consider the weights of all
runs ρ for which t = tρ. Furthermore, multiple runs can select the same tuple t but assign
variables in a different order.8

We first define an automaton At, such that JAtKK(d)(t′) = 1 if t = t′ and JAtKK(d)(t′) = 0
otherwise. Such an automaton At can be defined using a chain of |d|+ 2|V |+ 1 states, which
checks that the input document is d and which has exactly one nonzero run ρ, with wρ = 1
and tρ = t.

By Theorem 5.5 there is a weighted vset-automaton A′ such that JA′KK = JA ./ AtKK. It
follows directly from the definition of A′ that JAKK(d)(t) = JA′KK(d)(t). Furthermore, all
accepting runs ρ ∈ P (A′,d) have length |d|+ 2|V |. Therefore, the weight JA′KK(d)(t) can be
obtained by taking the sum of the weights of all accepting runs of A′. If we assume w.l.o.g.
that the states of A′ are {1, . . . , n} for some n ∈ N, then this sum can be computed as

JA′KK(d)(t) = vI × (Mδ)|d|+2|V | × (vF )T ,

where
vI is the vector (I(1), . . . , I(n)),
Mδ is the n× n matrix with Mδ(i, j) =

⊕
a∈Σ δ(i, a, j), and

(vF )T is the transpose of vector vF = (F (1), . . . , F (n)).
Since n is polynomial in the input, this product can be computed in polynomial time. J

8 This may happen when variable operations occur consecutively, i.e., without reading a symbol in
between.
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6.2 Best Weight Evaluation
In many semirings, the domain is naturally ordered by some relation. For instance, the
domain of the probability semiring is R+, which is ordered by the ≤-relation. This motivates
evaluation problems where we are interested in some kind of optimization of the weight,
which we will look into in this section.

I Definition 6.2 ((Dorste and Kuich [9])). A commutative monoid (K,⊕, 0) is ordered if
it is equipped with a partial order 6 preserved by the ⊕ operation. An ordered monoid is
positively ordered if 0 6 a for all a ∈ K. A semiring (K,⊕,⊗, 0, 1) is (positively) ordered if
the additive monoid is (positively) ordered and multiplication with elements 0 6 a preserves
the order.

We consider the following two problems.

Threshold
Given: Regular annotator A over an ordered semiring, document d ∈ Docs,

and a weight w ∈ K.
Question: Is there a tuple t with w 6 JAKK(d)(t)?

MaxTuple
Given: Regular annotator A over an ordered semiring and a document d ∈ Docs.
Task: Compute a tuple with maximal weight, if it exists.

Notice that, if MaxTuple is efficiently solvable, then so is Threshold. We therefore
prove upper bounds for MaxTuple and lower bounds for Threshold. The Threshold
problem is sometimes also called the emptiness problem in the weighted automata literature.
It turns out that, for positively ordered semirings that are bipotent (that is, a⊕ b ∈ {a, b}),
both problems are tractable.

I Theorem 6.3. Let (K,⊕,⊗, 0, 1) be a positively ordered, bipotent semiring. Furthermore,
let A be a functional K-weighted vset-automaton and let d ∈ Docs be a document. Then
MaxTuple for A and d can be solved in PTIME.

Proof sketch. Since a ⊕ b ∈ {a, b} for every a, b ∈ K, the weight of a tuple t ∈ JAKK(d) is
always equal to the weight of one of the accepting runs ρ with t = tρ. Thus in order to find
the tuple with maximal weight, we need to find the run of A on d with maximal weight.
This boils down to finding a maximal weight path in a DAG, which is obtained by taking a
“product” between A and d. J

If the semiring is not bipotent, however, the Threshold and MaxTuple problems
become intractable quickly.

I Theorem 6.4. Let (K,⊕,⊗, 0, 1) be a semiring such that
⊕m

i=1 1 is strictly monotonously
increasing for increasing values of m. Futhermore let A be a functional K-weighted vset-
automaton, let d ∈ Docs be a document, and k ∈ K be a weight threshold. Then Threshold
for such inputs is NP-complete.

Proof sketch. It is obvious that Threshold is in NP, as one can guess a tuple t and and
test in PTIME whether w 6 JAKK(d)(t) using Theorem 6.1.

For the NP-hardness, we will reduce from MAX-3SAT. To this end, let ψ = C1 ∧ · · · ∧ Cm
be a boolean formula in 3CNF over variables x1, . . . , xn such that each clause Ci = (`i,1∨`i,2∨
`i,3) is a disjunction of exactly three literals `i,j ∈ {xc,¬xc | 1 ≤ c ≤ n}, 1 ≤ i ≤ k, 1 ≤ j ≤ 3.
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Figure 3 The sub-branch of Aψ corresponding to C1 and x1 = x2 = 1, x4 = 0.
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Figure 4 Example gadgets for variable x.

W.l.o.g., we can assume that no clause has two literals corresponding to the same variable.
Observe that for each clause Ci there are 23 = 8 assignments of the variables corresponding to
the literals of Ci of which exactly 7 satisfy the clause Ci. Formally, let fCi be the function that
maps a variable assignment τ to a number between 1 and 8, depending on the assignments
of the literals of the clause Ci. W.l.o.g., we can assume that fCi(τ) = 8 iff Ci is not satisfied
by τ .

We will define a functional weighted automaton automaton Aψ over the unary alphabet
Σ = {a} such that JAψKK(an)(t) =

⊕m
i=1 1 if and only if the assignment corresponding to t

satisfies exactly m clauses in ψ and JAψKK(d) = ∅ if d 6= an.
To this end, each variable xi of ψ is associated with a corresponding capture variable xi

of Aψ. We associate a tuple tτ with every assignment τ such that

tτ (xi) =
{

[i, i〉 if τ(xi) = 0, and
[i, i+ 1〉 if τ(xi) = 1.

The automaton Aψ
def= (V,Q, I, F, δ) consists of m disjoint branches, where each branch

corresponds to a clause of ψ; we call these clause branches. Each clause branch is divided into
7 sub-branches, such that a path in the sub-branch j corresponds to a variable assignment τ
if fCi(τ) = j. Thus, each clause branch has exactly one run ρ with weight 1 for each tuple
tτ associated to a satisfying assignment τ of Ci.

More formally, the set of states Q = {qa,bi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ a ≤ 7, 1 ≤ b ≤ 5}
contains 5n states for every of the 7 sub-branches of each clause branch. Intuitively, Aψ has
a gadget, consisting of 5 states, for each variable and each of the 7 satisfying assignments of
each clause. Figure 4 depicts the three types of gadgets we use here. Note that the weights
of the drawn edges are all 1. We use the left gadget if x does not occur in the relevant clause
and the middle (resp., right) gadget if the literal ¬x (resp., x) occurs. Furthermore, within
the same sub-branch of Aψ, the last state of each gadget is the same state as the start state
of the next variable, i.e., qa,5i,j = qa,1i,j+1 for all 1 ≤ i ≤ k, 1 ≤ j < n, 1 ≤ a ≤ 7.

We illustrate the crucial part of the construction on an example. Let ψ = (x1 ∨ ¬x2 ∨
x4)∧ (x2 ∨x3 ∨x4). The corresponding weighted vset-automaton Aψ therefore has 14 = 2× 7
disjoint branches. Figure 3 depicts the sub-branch for clause C1 that corresponds to all
assignments with x1 = x2 = 1 and x4 = 0. J
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We note that Theorem 6.3 and Theorem 6.4 give us tight bounds for all semirings we
defined in Example 2.1.

Since MAX-3SAT is hard to approximate, we can turn Theorem 6.4 into an even stronger
inapproximability result for semirings where approximation makes sense. To this end, we
focus on semirings that contain (N,+, ·, 0, 1) (as a sub-semiring) in the following result.

I Theorem 6.5. Let K be a semiring that contains (N,+, ·, 0, 1) and let A be a weighted
vset-automaton over K. Unless PTIME = NP, there is no algorithm that approximates the
tuple with the best weight within a sub-exponential factor in PTIME.

7 Enumeration Problems

In this section we consider computing the output of annotators from the perspective of
enumeration problems, where we try to enumerate all tuples with nonzero weight, possibly
from large to small. Such problems are highly relevant for (variants of) vset-automata, as
witnessed by the recent literature on the topic [2,15]. We assume familiarity with terminology
in enumeration algorithms such as preprocessing time and delay. If the order of the answers
does not matter and the semiring is positive, we can guarantee a constant delay enumeration
algorithm with linear preprocessing time.

I Theorem 7.1. Given a weighted functional vset-automaton A over a positive semiring K,
and a document d, the K-Relation JAKK(d) can be enumerated with preprocessing linear in
|d| and polynomial in |A| and delay constant in |d| and polynomial in |A|.

Note that the proof of the theorem essentially requires to go through the entire proof of the
main result of Amarilli et al. [2, Theorem 1.1].

We now consider cases in which answers are required to arrive in a certain ordering.

Ranked Annotator Enumeration (RA-Enum)

Given: Regular functional annotator A over an ordered semiring
(K,⊕,⊗, 0, 1) and a document d.

Task: Enumerate all tuples t ∈ JAKK(d) in descending order on K.

I Theorem 7.2. Let (K,⊕,⊗, 0, 1) be an positively ordered, bipotent semiring, let A be a
functional K-weighted vset-automaton, and let d ∈ Docs be a document. Then RA-Enum
can be solved with polynomial delay and preprocessing.

Proof sketch. Our algorithm is a slight adaptation of Yen’s algorithm [48]. To this end, we
will use the DAG we defined in the proof of Theorem 6.3, but invest a bit more preprocessing.
In particular, we change the DAG so that it has a one-to-one correspondence between
output tuples and some of its paths. Using this correspondence, we can then revert to Yen’s
algorithm for enumerating simple paths in graphs. J

8 Concluding Remarks

We embarked on a study that incorporates annotations or weights in information extraction
and propose K-annotators as a candidate formalism to study this problem. The K-annotators
can be instantiated with weighted vset-automata, thereby obtaining regular K-annotators,
which are powerful enough to capture the extension of the traditional spanner framework with
parametric factors. Furthermore, the regular K-annotators have favorable closure properties,
such as closure under union, projection, natural join, and string selection using regular

ICDT 2020
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relations. The first complexity results on evaluation problems are encouraging: answer
testing is tractable and, depending on the semiring, problems such as the threshold problem,
the max tuple problem, and enumeration of answers are tractable too.

We note that the addition of weights to vset-automata also introduces new challenges.
For instance, some typical questions that we study in database theory are not yet fully
understood for weighted automata, which are the basis of weighted vset-automata. Examples
are equivalence and emptiness. Concerning equivalence, one can show that equivalence is
undecidable for weighted vset-automata over the tropical semiring, using techniques from
Krob [23] or Almagor et al. [1]. In general, however, it is not completely clear for which
semirings equivalence is decidable or not.

The emptiness problem that is usually studied in the weighted automata literature does
not ask if there exists a document d such that the automaton returns at least one tuple
with nonzero weight on d, but is additionally given a threshold (as in our Threshold
problem) and asks if the automaton returns a tuple with at least the threshold weight (which
requires an order on the semiring). It is not yet clear how much this threshold influences the
complexity of the problem.

An additional challenge is that determinization of weighted automata is a complex matter
and not always possible. It is well-known to be possible for the Boolean semiring but, for
the tropical semiring, i.e., (R ∪ {−∞},max,+,−∞, 0), deterministic weighted automata
are strictly less expressive than unambiguous weighted automata, which are strictly less
expressive than general weighted automata, cf. Klimann et al. [22].

A possible direction for further exploration could be the study of annotators which use
regular cost functions (cf. Colcombet [6]) instead of weighted automata. Since regular cost
functions are restructed to the domain of the natural numbers, this would probably be most
interesting in the case where the semiring domain is (a subset of) the natural numbers.
Indeed, in this case, it is known that regular cost functions are strictly more expressive than
weighted automata over the tropical semiring (cf. Colcombet et al. [7]) and therefore could
provide a useful tool to annotate document spanners. On the other hand, it is not yet clear
to us how to associate regular cost functions in a natural way to annotated relations, which
require semirings.
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Abstract
We study the containment problem for UC2RPQ, that is, two-way Regular Path Queries, closed
under conjunction, projection and union. We show a dichotomy property between PSpace-c and
ExpSpace-c based on a property on the underlying graph of queries. We show that for any class
C of graphs, the containment problem for queries whose underlying graph is in C is in PSpace if
and only if C has bounded bridgewidth. Bridgewidth is a graph measure we introduce to this end,
defined as the maximum size of a minimal edge separator of a graph.
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1 Introduction

Graph databases is a prominent area of study within database theory, in which the use of
recursive queries is crucial [4, 2]. A graph database is a finite edge-labeled directed graph.
The most basic navigational querying mechanism for graph databases corresponds to the class
of regular path queries (RPQs), which test whether two nodes of the graph are connected
by a path whose label belongs to a given regular language. RPQs are often extended with
the ability to traverse edges in both directions, giving rise to the class of two-way RPQs, or
2RPQs [9]. For example, an regular expression like (a+ a−)∗ states that there is a path that
can traverse a-labelled edges either in the forward or reverse direction. The core of the most
popular recursive query languages for graph databases is defined by conjunctive 2RPQs, or
C2RPQs, which are the closure of 2RPQs under conjunction and existential quantifications
[7]. As an example, a C2RPQ could be described as a formula γ like

x ya⇤
b⇤

(a + a�)⇤�(x) = (9y) x
a⇤
�! y ^ y

(a+a�)⇤�����! y ^ y
b⇤�! x.

Here γ is a unary formula that outputs all vertices vx of the graph database from which there
is an a labelled path to some vertex vy contained in some undirected a-cycle, and so that
there is a directed b-path from vy to vx. Note that the query can also be depicted as a graph
(on the right), edge-labelled with languages and with some highlighted vertices representing
free (output) variables. We also consider unions of C2RPQs, or UC2RPQs.
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The containment problem is arguably the most basic static analysis problem on monotone
query languages. In our case it is the problem of, given two UC2RPQ γ, γ′, whether
γ(G) ⊆ γ′(G) for all graph databases G.

The “four Italians” [7] have long ago shown that the containment problem for UC2RPQ
is decidable, ExpSpace-complete (in particular generalizing a prior ExpSpace upper bound
for CRPQ [11]). On the other hand, Barceló et al. [6] have shown that on the class A of
acyclic multi-graphs1, there is a measure of “width” so that for every acyclic class C ⊆ A of
bounded width, the containment problem on UC2RPQ whose underlying graph is in C is in
PSpace.

Contribution. Here we lift their notion of width to arbitrary multi-graphs. We call our
measure “bridgewidth” and we obtain that for every class C of multi-graphs:

If C has bounded bridgewidth, the containment problem for UC2RPQ whose underlying
graph is in C is in PSpace;
If C has unbounded bridgewidth, the containment problem for UC2RPQ whose underlying
graph is in C is ExpSpace-complete.

Further, the lower bound hold also if we replace UC2RPQ with CRPQ or even with Boolean
CRPQ, and the upper bounds hold also if we allow any arbitrary UC2RPQ in the left-hand
side of the containment problem.

But what is bridgewidth? It is a rather intuitive measure of graphs. A bridge is a
minimal edge separator, that is, a minimal set of edges whose removal increases the number
of connected components of the graph. The bridgewidth of a graph is the maximum size of a
bridge therein. As it turns out, on the class of acyclic graphs A , bridgewidth and [6]’s width
measure coincide.

Another related static analysis problem is the boundedness problem (i.e., whether a
UC2RPQ is equivalent to one whose languages are all finite). We have recently shown
that, similarly to the containment problem, this problem is ExpSpace-complete and that
on acyclic UCRPQ queries of bounded width it is in PSpace [5]. We conjecture that an
adaptation of bridgewidth may also characterize the complexity for this problem for UCRPQ
(see Section 7).

Organization. We start with necessary basic definitions of graphs, bridges, graph databases,
automata, and UC2RPQ in Section 2, and we formally state the main result in Section 3.
Section 4 contains some technical lemmas needed for the upper bound algorithm. Finally,
Sections 5 and 6 spell out the details of the upper and lower bounds of the main theorem,
respectively. We conclude with some remarks in Section 7.

2 Preliminaries

Graphs

Amulti-graphM = (V,E, η) is a finite set of vertices V and edges E together with a function
η : E → V ×V associating each edge with the source and target vertices. For convenience we
will sometimes use η1(e) and η2(e) to denote the vertex in the first and second components
of η(e). For economy, we will henceforth write “graph” to denote a multi-graph. For any set

1 In this context, by acyclic we mean any directed multi-graph such that every cycle of its underlying
undirected simple graph is a self-loop.
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of edges E′ ⊆ E and set of vertices V ′ ⊆ V , we write E′[V ′] to denote the set of all edges of
E′ incident to V ′, that is E′[V ′] = {e ∈ E′ : ηi(e) ∈ V ′ for some i ∈ {1, 2}}; for a vertex
v ∈ V , we write E′[v] as short for E′[{v}]. A connected component of M is a non-empty
minimal set of vertices V ′ ⊆ V so that η(e) ∈ (V ′×V ′) ∪̇((V \V ′)× (V \V ′)) for every e ∈ E.
A graph is connected if it has only one connected component. Henceforward, whenever we
write “minimal” it is with respect to set-containment. An isomorphism between graphs
M = (V,E, η) and M ′ = (V ′, E′, η′), noted M ∼= M ′, is a pair of bijections νV : V → V ′

and νE : E → E′ such that η(e) = (u, v) if and only if η′(νE(e)) = (νV (u), νV (v)). We
will henceforth always work modulo graph isomorphism. Given a set W ⊆ V , the graph
induced by W , written M |W , is 〈W, {e ∈ E : η(e) ∈W ×W}, {e 7→ η(e) : η(e) ∈W ×W}〉.
Similarly, for E′ ⊆ E, M |E′ = 〈V,E′, {e 7→ η(e) : e ∈ E′}〉. Given an equivalence relation
∼ ⊆ V ×V , the quotient graph M/∼ is defined as (V ′, E, η′) where V ′ has one vertex [v]∼
for every ∼ equivalence class, and η′(e) = ([v]∼, [v′]∼) for every e ∈ E such that η(e) = (v, v′).

Bridges

A bridge (a.k.a. minimal edge separator) of a graph M is a minimal set B ⊆ E of edges
(minimal in the sense of set-containment) whose deletion induces an increase on the number
of connected components of M . The bridgewidth of M , which we note bw(M), is the
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bridge of size 4
<latexit sha1_base64="qxDL1IUMGQ4IsGUm8cDfcWZmKtc=">AAAB+3icbVDJSgNBEK2JW4xbjEcvTRLBU5iJgt4MePEYwSyQDKGnpyZp0rPQ3SPGkF/x4kERr/6IN//CT7CzHDTxQcHjvSqq6nmJ4Erb9peVWVvf2NzKbud2dvf2D/KHhaaKU8mwwWIRy7ZHFQoeYUNzLbCdSKShJ7DlDa+nfusepeJxdKdHCboh7Uc84IxqI/XyBU9yv48kDojij0jK5+VevmRX7BnIKnEWpHT1DTPUe/nPrh+zNMRIM0GV6jh2ot0xlZozgZNcN1WYUDakfewYGtEQlTue3T4hJ0bxSRBLU5EmM/X3xJiGSo1Cz3SGVA/UsjcV//M6qQ4u3TGPklRjxOaLglQQHZNpEMTnEpkWI0Mok9zcStiASsq0iStnQnCWX14lzWrFOatUb6ulWnGeBmThGIpwCg5cQA1uoA4NYPAAT/ACr9bEerberPd5a8ZazBzBH1gfP8Q5lEk=</latexit>

not a bridge
(not a separator)

<latexit sha1_base64="2Kz9jL2m/JW+2bayU2VoDZOdBB4=">AAACJXicbVBNSwMxEJ312/Wr6tFLsAj1UnbrQQ+CBS8eFawK3VKy2WkbzCZLkhXK0j/jxb/ixYMigif/gj/BtFXQ1geBN2/mMZkXZ4IbGwTv3szs3PzC4tKyv7K6tr5R2ty6MirXDBtMCaVvYmpQcIkNy63Am0wjTWOB1/Ht6bB/fYfacCUvbT/DVkq7knc4o9ZJ7dJxFGOXy4KhtKgHvlSWUBJrnnQxivzKuDaYUU2t0vt+hDL5mW6XykE1GIFMk/CblE8+YYTzduklShTLU2dnghrTDIPMtgqqLWcCB36UDzexW9rFpqOSpmhaxejKAdlzSkI6SrsnLRmpvx0FTY3pp7GbTKntmcneUPyv18xt56hVcJnlFiUbL+rkglhFhpGRhGtkVvQdoUxz91fCei4P5jIwvgshnDx5mlzVquFBtXZRK9d3x2nAEuzALlQghEOowxmcQwMY3MMjPMOL9+A9ea/e23h0xvv2bMMfeB9f+9emQw==</latexit>

not a bridge
(not minimal)

<latexit sha1_base64="v45nB5g+9nhkqjUxanUrMtXJXhQ=">AAACIXicbVDLSgMxFL3j2/FVdekmtAh1U2bqQncKblwqWBU6pWQyt20wyQxJRihDf8WNv+LGhSLdiT/hJ5g+BLUeCJyccw/JPXEmuLFB8O7NzS8sLi2vrPpr6xubW6XtnWuT5pphg6Ui1bcxNSi4woblVuBtppHKWOBNfHc28m/uURueqivbz7AlaVfxDmfUOqldOo5i7HJVMFQW9cBXqSWUxJonXYwivzq6S664pOLAj1Al35PtUiWoBWOQWRJOSeXkE8a4aJeGUZKyXLo4E9SYZhhktlVQbTkTOPCj3GBG2R3tYtNRRSWaVjHecED2nZKQTqrdUZaM1Z+Jgkpj+jJ2k5LanvnrjcT/vGZuO8etgqsst6jY5KFOLohNyaguknCNzIq+I5Rp7v5KWI9qylwHxnclhH9XniXX9Vp4WKtf1iun5UkbsAJ7UIYqhHAEp3AOF9AABg/wBC/w6j16z96bN5yMznnTzC78gvfxBe4ZpLA=</latexit>

associated
E4 minor

<latexit sha1_base64="FjAJmxLkp22weWwJXjHBBwKI9Ws="></latexit>

5

9

31

2 4

8

76

not a bridge
(not minimal)

Figure 1 Examples of bridges.

maximum size of a bridge of M , or 0 if M has no edges. The bridgewidth of a class of graphs
C , which we write bw(C ), is defined as supM∈C bw(M). If bw(C ) <∞, we say that C has
bounded bridgewidth; otherwise, it has unbounded bridgewidth.

Two-way alternating automata

The upper bound algorithm makes use of automata, we give here our sui generis definition
of 2AFA: a simplified weaker version of the usual 2AFA which fulfills our needs. A 2-
way alternating finite state automaton (2AFA) is a tuple A = 〈A, Q, I, F, δ〉 where
A is a finite alphabet of letters; Q is a finite set of states; I, F ⊆ Q are sets of initial
and final states respectively; and δ : Q → B∨(B∧({+1,−1} × A × Q)) is the transition
function, where B∨(B∧(X)) stands for a disjunction of conjunction of elements from X

(e.g., “(+1, a, q) ∨ ((+1, a, p) ∧ (−1, b, p)) ∨ (−1, a, p)”). A non-deterministic two-way
finite automaton (2NFA) is a 2AFA that has no conjunctions “ ∧” in δ, that is, δ : Q→
B∨({+1,−1}×A×Q). If further δ has no “−1” elements (i.e., if δ : Q→ B∨({+1}×A×Q)),
it is a non-deterministic finite automaton (NFA). An run from position i on a word
w ∈ A∗ (where 0 ≤ i ≤ |w|) is a finite non-empty tree whose vertices are labelled by elements
from {0, . . . , |w|} ×Q such that the root is labeled by some element from {i} × I, and for
every vertex x labelled (j, q) there is a disjunct of δ(q) such that for every conjunct (n, a, p)
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9:4 Containment of UC2RPQ: The Hard and Easy Cases

thereof we have: (i) 0 ≤ j + n ≤ |w|, (ii) (n, a) ∈ {(+1, w[j + 1]), (−1, w[j])}, and (iii) there
is a child of x labelled (j +n, p). If the automaton is an NFA, note that the run has only one
leaf (j, qf ), in which case we say that the run starts at position i and ends at position j. A
run is accepting if every leaf is labeled by an element from {|w|}×F . In the sequel it will be
convenient to use these automata as unary querying devices on finite words; that is, for any
given word w ∈ A∗, the evaluation A(w) of the automaton on the word, outputs the set of
positions A(w) ⊆ {0, . . . , |w|} of w from which there is an accepting run. The language of
A is the set of all words w such that 0 ∈ A(w). For a word w, we will write w ∈ A to denote
that w is in the language recognized by A. For any given δ : Q→ B∨(B∧({+1,−1}×A×Q))
and I, F ⊆ Q we denote by δ[I, F ] the 2AFA having I and F as initial and final state sets
and δ as transition function (the alphabet and statespace being implicit).

Oftentimes 2-way automata are defined to have also “word delimiters”, in order to
recognize when we are at the leftmost or rightmost position of the word. We do not need
this feature in our construction (and its absence simplifies, albeit slightly, some definitions);
we therefore prefer to leave the definition as simple as possible.

Graph databases and UC2RPQ

A graph database is an edge-labelled finite graph, where labels come from some fix, finite
alphabet A. Formally, a graph database over an alphabet A (henceforth graph db)
G = 〈V,E, η, λ〉 is a graph 〈V,E, η〉 equipped with a function λ : E → A.

We work with query languages that can traverse edges in both directions: in the direction
of the edge as represented in the graph db (i.e., in the forward direction), or in the opposite
direction (i.e., in the reverse direction). Given a finite alphabet A we represent the instruction
of traversing an a-labelled edge in the forward direction by reading the letter a ∈ A, and the
instruction of traversing an a-labelled edge in the reverse direction by reading a−. Hence,
let A− be the set of all letters a− where a ∈ A, and let A± be A ∪̇A−. For every a ∈ A,
let (a−)¬ = a and a¬ = a−. A C2RPQ is the closure under conjunction and existential
quantification of 2RPQ queries, which are of the form L(x, y) where L is any regular language
over A± and x, y are free variables ranging over vertices of graph databases. Here, we prefer
to define C2RPQ directly in a graph form. Let us first define informally what a C2RPQ is –
we will later deal with all boring details. A C2RPQ γ is a graph whose edges are labelled
with regular languages over A±, equipped with a vector of “output” vertices. An expansion
of a C2RPQ is the result of replacing every edge from x to y labelled by L with a path
corresponding to some word w ∈ L, respecting the directions imposed by the alphabet A±.
As a result, we obtain a graph db and a vector of vertices. For example if w = a · b− · b, then
the path looks like x a−→ • b←− • b−→ y; and if w = ε then the path is empty, and it forces the
collapse of x and y. Some examples are shown in Figure 2. Observe that each expansion is

1

3

2

a⇤
<latexit sha1_base64="66imlLOFvS4/mt+UkxiAep7gb4A=">AAAB6nicbVDLSgNBEOyNrxhfUY9ehgRBPITdKOjNgBePEc0DkjXMTmaTIbMzy8ysEJZ8ghcPinj1i7z5F36Ck00OmljQUFR1090VxJxp47pfTm5ldW19I79Z2Nre2d0r7h80tUwUoQ0iuVTtAGvKmaANwwyn7VhRHAWctoLR9dRvPVKlmRT3ZhxTP8IDwUJGsLHSHX447RXLbsXNgJaJNyflq2/IUO8VP7t9SZKICkM41rrjubHxU6wMI5xOCt1E0xiTER7QjqUCR1T7aXbqBB1bpY9CqWwJgzL190SKI63HUWA7I2yGetGbiv95ncSEl37KRJwYKshsUZhwZCSa/o36TFFi+NgSTBSztyIyxAoTY9Mp2BC8xZeXSbNa8c4q1dvzcq00SwPycAQlOAEPLqAGN1CHBhAYwBO8wKvDnWfnzXmfteac+cwh/IHz8QNvNo6U</latexit>

(ab)⇤
<latexit sha1_base64="6IgLM/adJkJIelQqXKYmzUtDBVw=">AAAB7XicbVDLTgJBEOzFF+IL9ehlAjFBD2QXTfQmiRePmMgjgZXMDrMwMjuzmZk1IYR/8OJBY7z6P978Cz/BYeGgYCWdVKq6090VxJxp47pfTmZldW19I7uZ29re2d3L7x80tEwUoXUiuVStAGvKmaB1wwynrVhRHAWcNoPh9dRvPlKlmRR3ZhRTP8J9wUJGsLFSo4SDk/vTbr7olt0UaJl4c1K8+oYUtW7+s9OTJImoMIRjrdueGxt/jJVhhNNJrpNoGmMyxH3atlTgiGp/nF47QcdW6aFQKlvCoFT9PTHGkdajKLCdETYDvehNxf+8dmLCS3/MRJwYKshsUZhwZCSavo56TFFi+MgSTBSztyIywAoTYwPK2RC8xZeXSaNS9s7KldvzYrUwSwOycAQFKIEHF1CFG6hBHQg8wBO8wKsjnWfnzXmftWac+cwh/IHz8QPwUY9l</latexit>

(a�a)⇤
<latexit sha1_base64="umV5iC1ldddT/xlogZyrgwAltuU=">AAAB73icbVDLSgNBEOyNrxhfUY9ehgQhCobdKOjNgBePEcwDkk2YncwmQ2Zn15lZISz5CS8eFPHq73jzL/wEJ5scNLGgoajqprvLizhT2ra/rMzK6tr6RnYzt7W9s7uX3z9oqDCWhNZJyEPZ8rCinAla10xz2ookxYHHadMb3Uz95iOVioXiXo8j6gZ4IJjPCNZGapVw9wyfdE97+aJdtlOgZeLMSfH6G1LUevnPTj8kcUCFJhwr1XbsSLsJlpoRTie5TqxohMkID2jbUIEDqtwkvXeCjo3SR34oTQmNUvX3RIIDpcaBZzoDrIdq0ZuK/3ntWPtXbsJEFGsqyGyRH3OkQzR9HvWZpETzsSGYSGZuRWSIJSbaRJQzITiLLy+TRqXsnJcrdxfFamGWBmThCApQAgcuoQq3UIM6EODwBC/waj1Yz9ab9T5rzVjzmUP4A+vjBw8OkAM=</latexit>

bb⇤
<latexit sha1_base64="ZuV+Ukn4rXB8+fTgpJueBfNoWjw=">AAAB63icbVDLSgNBEOz1GeMr6tHLkCCIh7AbBb0Z8OIxgnlAsobZyWwyZGZ2mZkVwpJf8OJBEa/+kDf/wk9wdpODJhY0FFXddHcFMWfauO6Xs7K6tr6xWdgqbu/s7u2XDg5bOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfjm8xvP1KlWSTvzSSmvsBDyUJGsMmkIHg465cqbtXNgZaJNyeV62/I0eiXPnuDiCSCSkM41rrrubHxU6wMI5xOi71E0xiTMR7SrqUSC6r9NL91ik6sMkBhpGxJg3L190SKhdYTEdhOgc1IL3qZ+J/XTUx45adMxomhkswWhQlHJkLZ42jAFCWGTyzBRDF7KyIjrDAxNp6iDcFbfHmZtGpV77xau7uo1MuzNKAAx1CGU/DgEupwCw1oAoERPMELvDrCeXbenPdZ64oznzmCP3A+fgArYY8B</latexit>

ab�
<latexit sha1_base64="aXTx9PwWNV4fMjk83DMYh51LhCE=">AAAB63icbVDLSgNBEOz1GeMr6tHLkCB4MexGQW8GvHiMYB6QrGF2MpsMmZldZmaFsOQXvHhQxKs/5M2/8BOc3eSgiQUNRVU33V1BzJk2rvvlrKyurW9sFraK2zu7e/ulg8OWjhJFaJNEPFKdAGvKmaRNwwynnVhRLAJO28H4JvPbj1RpFsl7M4mpL/BQspARbDIJBw9n/VLFrbo50DLx5qRy/Q05Gv3SZ28QkURQaQjHWnc9NzZ+ipVhhNNpsZdoGmMyxkPatVRiQbWf5rdO0YlVBiiMlC1pUK7+nkix0HoiAtspsBnpRS8T//O6iQmv/JTJODFUktmiMOHIRCh7HA2YosTwiSWYKGZvRWSEFSbGxlO0IXiLLy+TVq3qnVdrdxeVenmWBhTgGMpwCh5cQh1uoQFNIDCCJ3iBV0c4z86b8z5rXXHmM0fwB87HDy5mjwM=</latexit>

1

3

2
a

<latexit sha1_base64="bSnZa1RXI7qNWtLsaoG9kMkNYcM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKlOe4WSW3YzkFXiLUjp5hsy1HqFz24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n2aFTcmaVPhlEypY0JFN/T6Q01HoSBrYzpGakl72Z+J/XSczg2k+5jBODks0XDRJBTERmX5M+V8iMmFhCmeL2VsJGVFFmbDZ5G4K3/PIqaVbK3kW5Ur8sVYvzNCAHp1CEc/DgCqpwBzVoAAOEJ3iBV+fBeXbenPd565qzmDmBP3A+fgBWHY34</latexit>

b
<latexit sha1_base64="tzJSq/exnU4VMZr3T8/EEp1d/Fc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKke9Aolt+xmIKvEW5DSzTdkqPUKn91+xJIQpWGCat3x3Nj4KVWGM4HTfDfRGFM2pkPsWCppiNpPs0On5MwqfTKIlC1pSKb+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJZsvGiSCmIjMviZ9rpAZMbGEMsXtrYSNqKLM2GzyNgRv+eVV0qyUvYtypX5ZqhbnaUAOTqEI5+DBFVThDmrQAAYIT/ACr86D8+y8Oe/z1jVnMXMCf+B8/ABXoY35</latexit>

a
<latexit sha1_base64="bSnZa1RXI7qNWtLsaoG9kMkNYcM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKlOe4WSW3YzkFXiLUjp5hsy1HqFz24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n2aFTcmaVPhlEypY0JFN/T6Q01HoSBrYzpGakl72Z+J/XSczg2k+5jBODks0XDRJBTERmX5M+V8iMmFhCmeL2VsJGVFFmbDZ5G4K3/PIqaVbK3kW5Ur8sVYvzNCAHp1CEc/DgCqpwBzVoAAOEJ3iBV+fBeXbenPd565qzmDmBP3A+fgBWHY34</latexit>

a
<latexit sha1_base64="bSnZa1RXI7qNWtLsaoG9kMkNYcM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKlOe4WSW3YzkFXiLUjp5hsy1HqFz24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n2aFTcmaVPhlEypY0JFN/T6Q01HoSBrYzpGakl72Z+J/XSczg2k+5jBODks0XDRJBTERmX5M+V8iMmFhCmeL2VsJGVFFmbDZ5G4K3/PIqaVbK3kW5Ur8sVYvzNCAHp1CEc/DgCqpwBzVoAAOEJ3iBV+fBeXbenPd565qzmDmBP3A+fgBWHY34</latexit>

a
<latexit sha1_base64="bSnZa1RXI7qNWtLsaoG9kMkNYcM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKlOe4WSW3YzkFXiLUjp5hsy1HqFz24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n2aFTcmaVPhlEypY0JFN/T6Q01HoSBrYzpGakl72Z+J/XSczg2k+5jBODks0XDRJBTERmX5M+V8iMmFhCmeL2VsJGVFFmbDZ5G4K3/PIqaVbK3kW5Ur8sVYvzNCAHp1CEc/DgCqpwBzVoAAOEJ3iBV+fBeXbenPd565qzmDmBP3A+fgBWHY34</latexit> b

<latexit sha1_base64="tzJSq/exnU4VMZr3T8/EEp1d/Fc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKke9Aolt+xmIKvEW5DSzTdkqPUKn91+xJIQpWGCat3x3Nj4KVWGM4HTfDfRGFM2pkPsWCppiNpPs0On5MwqfTKIlC1pSKb+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJZsvGiSCmIjMviZ9rpAZMbGEMsXtrYSNqKLM2GzyNgRv+eVV0qyUvYtypX5ZqhbnaUAOTqEI5+DBFVThDmrQAAYIT/ACr86D8+y8Oe/z1jVnMXMCf+B8/ABXoY35</latexit>b
<latexit sha1_base64="tzJSq/exnU4VMZr3T8/EEp1d/Fc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKke9Aolt+xmIKvEW5DSzTdkqPUKn91+xJIQpWGCat3x3Nj4KVWGM4HTfDfRGFM2pkPsWCppiNpPs0On5MwqfTKIlC1pSKb+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJZsvGiSCmIjMviZ9rpAZMbGEMsXtrYSNqKLM2GzyNgRv+eVV0qyUvYtypX5ZqhbnaUAOTqEI5+DBFVThDmrQAAYIT/ACr86D8+y8Oe/z1jVnMXMCf+B8/ABXoY35</latexit>

b
<latexit sha1_base64="tzJSq/exnU4VMZr3T8/EEp1d/Fc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKke9Aolt+xmIKvEW5DSzTdkqPUKn91+xJIQpWGCat3x3Nj4KVWGM4HTfDfRGFM2pkPsWCppiNpPs0On5MwqfTKIlC1pSKb+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJZsvGiSCmIjMviZ9rpAZMbGEMsXtrYSNqKLM2GzyNgRv+eVV0qyUvYtypX5ZqhbnaUAOTqEI5+DBFVThDmrQAAYIT/ACr86D8+y8Oe/z1jVnMXMCf+B8/ABXoY35</latexit>

a
<latexit sha1_base64="bSnZa1RXI7qNWtLsaoG9kMkNYcM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKlOe4WSW3YzkFXiLUjp5hsy1HqFz24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n2aFTcmaVPhlEypY0JFN/T6Q01HoSBrYzpGakl72Z+J/XSczg2k+5jBODks0XDRJBTERmX5M+V8iMmFhCmeL2VsJGVFFmbDZ5G4K3/PIqaVbK3kW5Ur8sVYvzNCAHp1CEc/DgCqpwBzVoAAOEJ3iBV+fBeXbenPd565qzmDmBP3A+fgBWHY34</latexit>

a
<latexit sha1_base64="bSnZa1RXI7qNWtLsaoG9kMkNYcM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKlOe4WSW3YzkFXiLUjp5hsy1HqFz24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n2aFTcmaVPhlEypY0JFN/T6Q01HoSBrYzpGakl72Z+J/XSczg2k+5jBODks0XDRJBTERmX5M+V8iMmFhCmeL2VsJGVFFmbDZ5G4K3/PIqaVbK3kW5Ur8sVYvzNCAHp1CEc/DgCqpwBzVoAAOEJ3iBV+fBeXbenPd565qzmDmBP3A+fgBWHY34</latexit>

12

3

a
<latexit sha1_base64="bSnZa1RXI7qNWtLsaoG9kMkNYcM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKlOe4WSW3YzkFXiLUjp5hsy1HqFz24/YkmI0jBBte54bmz8lCrDmcBpvptojCkb0yF2LJU0RO2n2aFTcmaVPhlEypY0JFN/T6Q01HoSBrYzpGakl72Z+J/XSczg2k+5jBODks0XDRJBTERmX5M+V8iMmFhCmeL2VsJGVFFmbDZ5G4K3/PIqaVbK3kW5Ur8sVYvzNCAHp1CEc/DgCqpwBzVoAAOEJ3iBV+fBeXbenPd565qzmDmBP3A+fgBWHY34</latexit>

b
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out = ( , , )1 32 out = ( , , )1 32 out = ( , , )312 12 out = ( , , )123 123 123

Figure 2 A C2RPQ (left) and three possible expansions. Highlighted vertices are output vertices.
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essentially a Conjunctive Query (CQ). A tuple of vertices of a graph db G is in the output
γ(G) of a UC2RPQ γ evaluated at G iff it is in the output Q(G) of the CQ Q corresponding
to some expansion of γ.

Formal details follow. A C2RPQ over the alphabet A is represented as

γ = 〈V,E, η,Q, δ, I, F, ō〉

where
(i) 〈V,E, η〉 is a graph,
(ii) Q is a finite set of states,
(iii) δ : Q→ B∨({+1} × A± ×Q) is the transition relation of an NFA over A±,
(iv) I, F : E → 2Q are functions indicating the set of initial and final state for each edge,

and
(v) ō is a (possibly null-ary) vector over V , called the output vector.

We henceforth write ∅̄ to denote the null-ary vector. We often write γ(ō), whenever ō 6= ∅̄, to
make explicit the output vector of γ. If ō = ∅̄, we say that γ is a Boolean C2RPQ. The
arity of γ is the dimension of ō (hence, 0 if ō = ∅̄). The underlying graph of γ is 〈V,E, η〉.
We denote by |γ| the size of any reasonable representation of γ.

For an equivalence relation ∼ ⊆ V × V , the quotient (G, ō)/ ∼ of a C2RPQ is defined as
for graphs, that is, the result of replacing every vertex v by a representative element [v]∼
from its equivalence class.

For every word w ∈ (A±)∗ of length n, let w[i] denote its i-th letter. The graph db
associated to w contains n+ 1 distinct vertices v0, . . . , vn and n edges e1, . . . , en so that for
every i: if w[i] ∈ A, then λ(ei) = w[i] and η(ei) = (vi−1, vi); if w[i] ∈ A−, then λ(ei) = (w[i])¬
and η(ei) = (vi, vi−1). We call this graph db the semipath for the word w that starts in
v0 and ends in vn. We will also refer to the i-th vertex of the semipath for w to denote
the vertex vi. Note that if w = ε then v0 = vn, and in this case we say that the semipath is
empty. By δ~

~

we denote transition function of a 2-way NFA having Q as statespace, defined
as q 7→

∨
{(+1, α, q′), (−1, α¬, q′) : (+1, α, q′) in δ(q)}. The intuition is that δ~

~

“implements”
the notion that by reading a− we traverse a-edges in the reverse direction. More concretely,
for a semipath Gw for w ∈ (A±)∗, consider Pw the graph db obtained by adding to Gw an
edge labelled a− from u to v for every edge labelled a from v to u. Observe then that a run of
δ~

~

between states p and q on w corresponds to a run of δ between p and q on a directed path
of Pw, and vice-versa. A semipath for an edge e of a C2RPQ as above is any non-empty
semipath for a word w ∈ δ[I(e), F (e)] which starts in η1(e) and ends in η2(e) (note that, in
particular, w 6= ε and η1(e) 6= η2(e)).

(X , x̄) is an expansion of γ(ō) (a.k.a. a canonical database for γ(ō)) if X is a graph db
over A, x̄ is a vector of vertices of X of the same arity as ō, and there exists a partition of E
into E0, E1(i.e., E = E0 ∪̇E1) so that

for each e ∈ E0, I(e) ∩ F (e) 6= ∅; and
for each e ∈ E1, there is a semipath πe for e,

and X is the union of all these semipaths, collapsing all pairs of vertices of E0. Formally,
(X , x̄) is defined as ((

⋃
e∈E1

πe), ō)/ ∼, where ∼ is the equivalence relation induced by the
connected components of X|E0 .

A UC2RPQ is a finite union γ = γ1 ∪ · · · ∪ γn of C2RPQ with the same arity. The set
of expansions of γ is the union of the sets of expansions of the γi’s.

A vector v̄ of vertices of a graph db G is in the output γ(G) of UC2RPQ γ evaluated
on G iff there is some expansion (X , x̄) of γ and a homomorphism h : X → G such that
h(x̄) = v̄. If γ is Boolean, we say that it is true in G iff ∅̄ ∈ γ(G), that is, if there exists a
homomorphism X → G for some expansion X .
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The bridgewidth of a UC2RPQ is the maximum bridgewidth of its underlying graphs,
and the bridgewidth of a graph db is the bridgewidth of its underlying graph.

Containment problem for query fragments

Given two UC2RPQ γ1, γ2 we say that γ1 is contained in γ2 (and we note it γ1 ⊆ γ2) if
γ1 and γ2 have the same arity (possibly 0) and γ1(G) ⊆ γ2(G) for all graph databases G.
For any fragment F of UC2RPQ, the F-containment problem is the problem of deciding,
given γ1, γ2 ∈ F , whether γ1 ⊆ γ2. Given a class of graphs C , the query class CRPQ(C )
[resp. C2RPQ(C ), UC2RPQ(C )] is the set of all CRPQ [resp. C2RPQ, UC2RPQ] whose
underlying graph is in C .

3 Main result

Let us say that a class of graphs is non-trivial, if it contains at least one graph with at
least one edge. The main result is the following.

I Theorem 1 (containment dichotomy). For every non-trivial class C of graphs,
1. if C has bounded bridgewidth, the UC2RPQ(C )-containment problem is PSpace-complete;
2. if C has unbounded bridgewidth, the UC2RPQ(C )-containment problem is ExpSpace-

complete.
Further, the lower bounds hold also for the fragment of Boolean CRPQ(C ).

Proofs for lower and upper bounds build upon known results and techniques in the area.
Although technical details are somewhat lengthy, they do not bring original ideas other than
verifying that bridgewidth is the “right” notion for a dichotomy result. In particular, Barceló
et al. [6] have already shown the result for the restricted case where C is any class of “acyclic”
graphs (meaning that the only allowed cycles in the underlying undirected simple graphs are
self-loops). They use a notion of “width” which coincides with bridgewidth on this class of
graphs. The lifting of this result to bridgewidth is considerably more involved, but it follows
the same philosophy.

4 A bridge maintenance toolkit

We state here some properties of bridges and definitions which shall be of use in the next
section.

For a graph M = 〈V,E, η〉, we say that a set of edges S ⊆ E separates X ⊆ V and
Y ⊆ V if all elements of X ∪ Y are in the same connected component of M , and for every
x ∈ X and y ∈ Y , x and y are in different connected components of M |E\S . In this case we
say that S is a separator of X and Y ; and if it is minimal with respect to this property, we
say that it is a minimal separator. Observe that a set of edges is a bridge if and only if it
is a minimal separator of two singleton sets {x}, {y}. However, minimal separators need not
be bridges in general; for example, the rightmost picture in Figure 1 (page 3) is a minimal
separator of {¬,®,³} and {±,´,²}.

For a bridge B ⊆ E we say that X ⊆ V is a side of B if X 6= ∅ and there is a connected
component Y of M \ B such that X = {y ∈ Y : B[y] 6= ∅}. Note that there are exactly
two sides for each bridge, and every bridge separates its sides. For example, the bridge in
the leftmost picture of Figure 1 has {°,®,²} and {­,³} as sides. For some set of vertices
Z ⊆ V we say the Z-side of B to denote the side of B that intersects Z (assuming there is
exactly one).
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Figure 3 Illustration for Lemma 5 (first two pictures) and Lemma 4 (last two pictures).

Bridgewidth can be also understood in terms of graph minors, as we show next. Given an
edge e ∈ E ofM = (V,E, η) with η(e) = (u, v) for some u 6= v, an e-edge contraction ofM
is the graph M ′ obtained by collapsing the endpoints of e. Formally, M ′ = (M |E\{e})/ ∼ for
∼ the finest equivalence relation such that u ∼ v (i.e., ∼ = {(z, z) : z ∈ V } ∪ {(u, v), (v, u)}).
A minor of M is any graph M ′ obtained from M by contracting edges and removing edges
and vertices. In particular, minors preserve boundedness of bridgewidth, so do subdivisions
and, as a consequence, so do expansions (since graphs corresponding to expansions are
subdivisions of minors).

I Lemma 2.
For every graph M and minor M ′ thereof, bw(M) ≥ bw(M ′).
For every UC2RPQ γ and expansion γ̂ thereof, bw(γ) ≥ bw(γ̂).

Let us call Ek the class of graphs containing two distinct nodes u, v and k edges between
these nodes. That is, the set of all graphs M = ({u, v}, {e1, . . . , ek}, η) for any η such that
η(ei) ∈ {(u, v), (v, u)} for every i. Note that |Ek| = 2k (actually, there are just dn2 e many
graphs up to isomorphism). It is easy to see that the presence of some Ek minor witnesses a
bridge of size at least k and vice-versa (see first two pictures of Figure 1).

I Lemma 3. A graph M has bridgewidth at least k if and only if it contains some graph
from Ek as minor.

I Lemma 4. If S ⊆ E is a minimal separator of Y and V \Y in a graph M = (V,E, η) such
that M |Y is connected, then there is a partition {Yi}i∈I of V \ Y and a pairwise disjoint set
of bridges {Bi}i∈I , computable in polynomial time, so that⋃

i∈I Bi = S; and
Bi separates Yi and V \ Yi for every i ∈ I.

Proof. Let {Yi}i∈I be the partition of V \ Y in the connected components of M |V \Y . For
every i, let Bi ⊆ S be the set of edges between Y and Yi. It follows that every Bi is a bridge
separating Yi from V \ Yi, no edge can belong to two distinct Bi’s, and every edge of S is in
some Bi. See last two pictures of Figure 3 for an example. J

I Lemma 5. If B ⊆ E is a bridge of a graph (V,E, η) separating X and V \X, and v ∈ V \X
is a vertex incident to B (i.e., so that B[v] 6= ∅), then there is a (possibly empty) partition
{Xi}i∈I of V \ (X ∪ {v}) and a pairwise disjoint set of bridges {Bi}i∈I such that⋃

i∈I Bi = (B ∪ E[v]) \B[v]; and
Bi separates Xi and V \Xi for every i ∈ I.

Proof. Consider Y = X ∪ {v} and observe that M |Y is connected. Then apply the previous
Lemma 4 to the minimal separator S = (B ∪ E[v]) \ B[v] of Y and V \ Y . See first two
pictures of Figure 3. J

ICDT 2020



9:8 Containment of UC2RPQ: The Hard and Easy Cases

I Lemma 6. For every graph M = (V,E, η) there is a vertex v ∈ V so that E[v] is a bridge.

Proof. Suppose wlog that M is connected. Observe that if there is a bridge separating X
and V \X and |V \X| = 1 we are done: the singleton set V \X yields the vertex v to choose.
Otherwise, we proceed by induction on the size of V \X. Take any bridge B separating
X from V \X, and take any v ∈ V \X incident to B. By Lemma 5, (B ∪ E[v]) \ B[v] is
a disjoint union of bridges. Take any such bridge B and observe that it separates X ′ and
V \X ′ for some X ′ ⊇ X ∪ {v}. Since |V \X ′| < |V \X|, we apply inductive hypothesis and
we conclude that there must be a vertex in V \X ′ verifying the property. J

I Lemma 7. Given a connected graph M and a partition X̃ ∪̇XL ∪̇XR of the set of vertices
therein, and given a bridge B of M separating X̃ and XL ∪̇XR; there is a partition {Xi}i∈I
of XL ∪̇XR and a set of bridges {Bi}i∈I of M , computable in polynomial time, such that
(i) every Bi separates Xi and V \Xi;
(ii) for every i there is Z ∈ {XL, XR} such that Bi contains only edges between Z and

V \ Z;
(iii) for every i, Bi ∩B[XL] = ∅ if and only if Bi ∩B[XR] 6= ∅;
(iv) for every e ∈ B, there is exactly one i ∈ I with e ∈ Bi.

Proof. Consider the partition {Yi}i∈J of XL ∪̇XR given by all the connected components
of M |XR and M |XL , and consider the set of sets of edges {Ei}i∈J where Ei is the set of
edges between Yi and V \ Yi. If follows that {Yi}i∈J and {Ei}i∈J satisfy all items above,
but some Ei’s may not be bridges. We show how to produce a partition into bridges from
this initial partition. If there is some Yi from which there is no edge to X̃ but there are
edges to Yi1 , . . . , Yi` , then remove all Yi, Yi1 , . . . , Yi` from the partition and replace them with
Y = Yi ∪ Yi1 ∪ · · · ∪ Yi` . Similarly, remove Ei, Ei1 , . . . , Ei` and add the set of edges between
Y and V \ Y . Note that this results in a strictly coarser partition of XL ∪̇XR which still
satisfies all items with respect to its associated set of sets of edges. Repeat this operation
until all sets of the partition have at least one edge to X̃. It follows that for each set Z of
the partition obtained, the edges between Z and V \ Z are a bridge B of M , and that the
set of all these bridges verify the conditions with respect to the partition. See Figure 4 for a
picture. J

X̃

XL XR

Figure 4 We amalgamate connected components that do not have incident edges with X̃. We
end up with a partition whose every element induces a connected subgraph, and a bunch of bridges
between partition elements. Each of the ovals shows a bridge and the component that it separates.
Left bridges (in blue) use some edge from B[XL], and right bridges (red) use some edge from B[XR],
but notice that no bridges use both an edge from B[XL] and an edge from B[XR].
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5 Upper bounds

We show an algorithm to solve the containment problem for UC2RPQ which uses space
exponential only in the bridgewidth of the underlying graph. Hence, if the bridgewidth is
bounded, the algorithm runs in polynomial space, and otherwise in exponential space.

No self-loops assumption. To simplify some developments, we will assume that the C2RPQs
we work with have no self-loops, that is, there are no edges e with η1(e) = η2(e). Any C2RPQ
can be transformed into a self-loop-less C2RPQ by adding, for every self-looping edge e
on a vertex v a new vertex ve and edge e′, redefining η(e) = (v, ve), η(e′) = (ve, v) and
I(e′) = F (e′) = F (e). Note that this is a linear time procedure that does not increase the
bridgewidth unless the bridgewidth is 1, in which case it becomes of bridgewidth 2. Hence,
this assumption is without loss of generality.

5.1 Proof strategy
We use the same proof strategy as in [6], which we review briefly here:
R1 By a result from [14, Theorem 4], there is a polynomial time reduction of this problem

to the containment of a Boolean single-edge C2RPQ γ′ into a Boolean UC2RPQ γ, and
it is easy to see that this reduction preserves bridgewidth – in fact, bw(γ′) = 1 and the
underlying graph of γ is left unaltered in the cited reduction.

R2 We can reduce, in turn, this problem to the non-emptiness of a NFA Aγ′⊆γ of size
O(2|γ′|+|γ|c·bw(γ)), which can de done in deterministic space O(|γ′| + |γ|c·bw(γ)). The
NFA runs over the exponential alphabet A± ∪̇Loops, where Loops = 2Q×Q and Q

is the statespace of γ. This NFA is obtained from three automata Acd,Aloop,Aγ as
Aγ′⊆γ def= Acd ∩ Aloop ∩ Aγ where:

(i) Acd is a singly exponential size NFA (with a polynomial number of states) depending on
γ′, recognizing all words L0a1L1 · · · anLn ∈ Loops · (A± · Loops)∗ such that a1 · · · an ∈
δ′[I(e), F (e)] for e the sole edge of γ′ (i.e., a1 · · · an represents an expansion of γ′).

(ii) Aloop is a singly exponential size NFA depending on γ, recognizing all words of the
form L0a1L1 · · · anLn ∈ Loops · (A± · Loops)∗ such that, for every i, (q, q′) ∈ Li if and
only if there is a 2-way run of δ~

~

[{q}, {q′}] on a1 · · · an that starts in position i with
state q and ends in the same position i with state q′.

(iii) Aγ is a 2AFA of size O(|γ|c·bw(γ)) for some constant c with the property that for every
word w = L0a1 · · · anLn ∈ Aloop, we have that w ∈ Aγ if and only if γ holds true in
Gw, where Gw is the semipath for a1 · · · an. Remember that this is equivalent to asking
whether there is an expansion of γ that can be homomorphically mapped to Gw. Aγ is
the automaton recognizing the complement language.

Since the complement of a 2AFA can be constructed as a NFA with a single exponential
blowup in the statespace [8, Theorem 8], it follows that the resulting NFA Aγ′⊆γ is of size
O(2|γ′|+|γ|c·bw(γ)). Consequently, it is of single exponential size whenever the bridgewidth
is bounded, and thus its emptiness can be checked using polynomial space. We invite the
curious reader to read [6, §4.2] for more details on the two reductions R1 and R2 above.

The sole contribution of this paper on the proof above lies in the definition of Aγ of item
(iii). In [6], Aγ was defined for the case of γ being acyclic, and shown to be exponential in
the “width of the acyclic query” (meaning the maximum number of edges between any two
distinct vertices), and hence polynomial if the width is bounded. Here we lift this result
to all queries with respect to the bridgewidth of the query, without assuming any further
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9:10 Containment of UC2RPQ: The Hard and Easy Cases

restriction (such as acyclicity). Bridgewidth is a generalization of their width measure, in the
sense that for all acyclic queries, bridgewidth coincides with [6]’s width notion. The price to
pay for this generalization is that now the definition of Aγ is considerably more involved.
The rest of this section will be devoted to defining Aγ in such a way that it is exponential
only in the bridgewidth of γ, and that satisfies the property described in item (iii).

5.2 Definition of Aγ

For a UC2RPQ γ = γ1 ∪ · · · ∪ γn, we define Aγ to be the union Aγ1 ∪ · · · ∪ Aγn , this is
why for simplicity we will henceforth assume that γ is a C2RPQ (i.e., no unions). Let
γ = 〈V,E, η,Q, δ, I, F, ∅̄〉 (remember, by R1 γ is Boolean), and let M = 〈V,E, η〉 be the
underlying graph of γ. IfM is not connected – say γ is equivalent to γ1∧· · ·∧γn for connected
C2RPQ’s – Aγ is defined as Aγ1 ∩ · · · ∩ Aγn , which can be done in polynomial time since
we are working with alternating automata. Therefore, let us also suppose, without loss of
generality, that M is connected. For any word w = L0a1L1 · · · anLn ∈ Loops · (A± · Loops)∗,
let Gw denote the semipath for a1 · · · an.

Let us first refresh what Aγ is supposed to do. Remember that property (iii) concerns the
case where the input is a word of the form w = L0a1L1 · · · anLn in which each Li contains
the loop information of δ~

~

on position i of the word a1 · · · an ∈ (A±)∗. Since γ is Boolean
(i.e., a property of graph db’s), upon reading such a word, Aγ must check whether γ is true
on Gw, possibly using the information contained in the labels Li’s. Further, Aγ must use a
“small” set of states (polynomial if bw(γ) is bounded).

A detour through non-Boolean queries. The definition of Aγ will make use of non-Boolean
subqueries of γ. Suppose B ⊆ E is a bridge separating Y from V \ Y in M , and let
X = {v ∈ Y : B[v] 6= ∅} be the Y -side of B. For any given a state assignment f : B → Q we
define the query γ[B,X, f ] as the result of modifying γ by:

removing all edges internal to X;
removing all vertices from Y \X (and the incident edges);
defining X as output vertices2; and
for every e ∈ B redefining I(e) [resp. F (e)] as f(e) if η1(e) ∈ X [resp. if η2(e) ∈ X].

See Figure 5 for an example.
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<latexit sha1_base64="TVoc0ghy9VWsgxw2mIuL3r9Eryw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69hBbBU0mqoDcLXjy2YD+kDWWznbRrN5uwuxFK6C/w4kERr/4kb/4Lf4LbtAdtfTDweG+GmXl+zJnSjvNl5dbWNza38tuFnd29/YPi4VFLRYmk2KQRj2THJwo5E9jUTHPsxBJJ6HNs++Obmd9+RKlYJO70JEYvJEPBAkaJNlLjvl8sOxUng71K3AUpX39Dhnq/+NkbRDQJUWjKiVJd14m1lxKpGeU4LfQShTGhYzLErqGChKi8NDt0ap8aZWAHkTQltJ2pvydSEio1CX3TGRI9UsveTPzP6yY6uPJSJuJEo6DzRUHCbR3Zs6/tAZNINZ8YQqhk5labjogkVJtsCiYEd/nlVdKqVtzzSrVxUa6V5mlAHk6gBGfgwiXU4Bbq0AQKCE/wAq/Wg/VsvVnv89actZg5hj+wPn4ASf2N8A==</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit>
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<latexit sha1_base64="6tsQUbHWlZKyiwO/JqQBTdotdAU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4jmgckS5id9CZDZmfXmVkhhHyCFw+KePWLvPkXfoKTTQ6aWNBQVHXT3RUkgmvjul/Oyura+sZmbiu/vbO7t184OGzoOFUM6ywWsWoFVKPgEuuGG4GtRCGNAoHNYHg99ZuPqDSP5b0ZJehHtC95yBk1Vrp76HrdQsktuxnIMvHmpHT1DRlq3cJnpxezNEJpmKBatz03Mf6YKsOZwEm+k2pMKBvSPrYtlTRC7Y+zUyfkxCo9EsbKljQkU39PjGmk9SgKbGdEzUAvelPxP6+dmvDSH3OZpAYlmy0KU0FMTKZ/kx5XyIwYWUKZ4vZWwgZUUWZsOnkbgrf48jJpVMreWblye16qFmdpQA6OoQin4MEFVOEGalAHBn14ghd4dYTz7Lw577PWFWc+cwR/4Hz8AJO3jqw=</latexit>

q2
<latexit sha1_base64="aZ4BeOM+JzfHh+lP+YXa/bfZpOg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4jmgckS5iddJIhs7PrzKwQlnyCFw+KePWLvPkXfoKTTQ6aWNBQVHXT3RXEgmvjul/Oyura+sZmbiu/vbO7t184OGzoKFEM6ywSkWoFVKPgEuuGG4GtWCENA4HNYHQ99ZuPqDSP5L0Zx+iHdCB5nzNqrHT30K10CyW37GYgy8Sbk9LVN2SodQufnV7EkhClYYJq3fbc2PgpVYYzgZN8J9EYUzaiA2xbKmmI2k+zUyfkxCo90o+ULWlIpv6eSGmo9TgMbGdIzVAvelPxP6+dmP6ln3IZJwYlmy3qJ4KYiEz/Jj2ukBkxtoQyxe2thA2poszYdPI2BG/x5WXSqJS9s3Ll9rxULc7SgBwcQxFOwYMLqMIN1KAODAbwBC/w6gjn2Xlz3metK8585gj+wPn4AZU7jq0=</latexit>

q3
<latexit sha1_base64="D5uAQ+4n3opJzGrTxt4APT3C44A=">AAAB6nicbVDLSgNBEOyJrxhfUY9ehgTBU9hNBL0Z8OIxonlAsoTZyWwyZHZ2nZkVwpJP8OJBEa9+kTf/wk9wsslBEwsaiqpuurv8WHBtHOcL5dbWNza38tuFnd29/YPi4VFLR4mirEkjEamOTzQTXLKm4UawTqwYCX3B2v74eua3H5nSPJL3ZhIzLyRDyQNOibHS3UO/1i+WnYqTAa8Sd0HKV9+QodEvfvYGEU1CJg0VROuu68TGS4kynAo2LfQSzWJCx2TIupZKEjLtpdmpU3xqlQEOImVLGpypvydSEmo9CX3bGRIz0sveTPzP6yYmuPRSLuPEMEnni4JEYBPh2d94wBWjRkwsIVRxeyumI6IINTadgg3BXX55lbSqFbdWqd6el+uleRqQhxMowRm4cAF1uIEGNIHCEJ7gBV6RQM/oDb3PW3NoMXMMf4A+fgCWv46u</latexit>

�[X, B, {e13 7! q1, e52 7! q2, e25 7! q3}]B = {e13, e52, e25}

I(e13) = {q1}
I(e52) = {q2}
F (e25) = {q3}

<latexit sha1_base64="C1BS8+Kma1f5Qqyxb/xvHsVcI4E=">AAACJXicbZDLSsNAFIZPvNZ6q7p0EyxK3ZQktehCsSCI7hRsKzQhTKZTHZxcnJkIJeRl3PgqblxYRHDlK/gITtIWtPrDwM93zuHM+b2IUSEN40Obmp6ZnZsvLBQXl5ZXVktr6y0RxhyTJg5ZyK89JAijAWlKKhm5jjhBvsdI27s7yertB8IFDYMr2Y+I46ObgPYoRlIht3R4XiFuYtbS3Z0jO7l3TTu17WIO69YYWjk8zaBVH8OanbqlslE1cul/jTky5eMvyHXhlgZ2N8SxTwKJGRKiYxqRdBLEJcWMpEU7FiRC+A7dkI6yAfKJcJL8ylTfVqSr90KuXiD1nP6cSJAvRN/3VKeP5K2YrGXwv1onlr0DJ6FBFEsS4OGiXsx0GepZZHqXcoIl6yuDMKfqrzq+RRxhqYItqhDMyZP/mpZVNWtV63Kv3NgapgEF2IQtqIAJ+9CAM7iAJmB4hGd4hYH2pL1ob9r7sHVKG81swC9pn9+xaKMK</latexit>

(otherwise, I(e), F (e) as in �)

�

Figure 5 Highlighted vertices are output vertices and edges e adorned with a state q means that
I(e) is replaced with {q} if the edge is outgoing from an output vertex, and that F (e) is replaced
with {q} if e is incoming to an output vertex.

How many distinct γ[B,X, f ]’s are there? The number of such queries is bounded by
(|Q|+ 1)bw(γ) · 2 · |E|bw(γ), hence a polynomial number if the bridgewidth is bounded by a
constant.

2 That is, defining any vector (v1, . . . , vn) as output if X = {v1, . . . , vn}, the order is inconsequential.
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For every such non-Boolean γ[B,X, f ] we define a 2AFA automaton Aγ[B,X,f ] with the
property that, for every 0 ≤ i ≤ n and w ∈ Aloop,

2i ∈ Aγ[B,X,f ](w) if and only if (vi, . . . , vi)︸ ︷︷ ︸
|X| times

∈ γ[B,X, f ](Gw), (†)

where vi is the i-th vertex of Gw. That is, the automaton Aγ[B,X,f ] checks whether there is
an expansion of γ[B,X, f ] that can map to Gw via a homomorphism that assigns the i-th
vertex of Gw to every vertex of X.

Once we know how to define the Aγ[B,X,f ]’s, the definition of Aγ follows easily: Choose
any vertex v of γ such that E[v] is a bridge (it exists due to Lemma 6), and guess a
function f : E[v] → Q such that f(e) ∈ I(e) if η1(e) = v, and f(e) ∈ F (e) if η2(e) = v.
Then, move non-deterministically to an even position, and run Aγ[E[x],{x},f ]. Note that,
assuming Aγ[E[x],{x},f ] satisfies (†), property (iii) holds on a word w if and only if there is
an even position 2i of w and a function f with the aforementioned properties such that
2i ∈ Aγ[E[x],{x},f ](w).

Why do we want to define Aγ in terms of Aγ[B,X,f ]? Because in this way Aγ[B,X,f ] can
be defined in an recursive way: each Aγ[B,X,f ] is defined using other Aγ[B′,X′,f ′]’s; which is
arguably simpler to define and understand, and it has an explicit invariant.

5.3 Definition of Aγ[B,X,f ]

We will show how to construct Aγ[B,X,f ] satisfying property (†) by possibly “calling”, as
subroutines, other automata Aγ[B′,X′,f ′]’s. Of course, we adopt this way of defining Aγ[B,X,f ]
just to simplify the description – the formal definition of Aγ[B,X,f ] will contain one separate
statespace for each distinct Aγ[B′,X′,f ′].

As an example, suppose we have γ[B,X, f ] with γ is as in Figure 5 (left picture), but with
X = {°} and B = E[X] (also depicted in Figure 8-a). And suppose we have a semipath Gw
for a word a1 · · · an ∈ (A±)∗. What does a mapping from an expansion of γ to Gw look like?
For example, if the word is abb−aab−a−bb and the expansion is obtained by choosing words
as in the left of Figure 6, we could obtain a mapping as shown on the right. Note that the

Gw
<latexit sha1_base64="+8RDT7iGhc5IiGxMw6rIyJtNBHE=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBKvgqsy0gu4suNBlBfuAdiiZNNOGZjJjkqmUod/hxoUibv0Yd/6Fn2Bm2oW2HggczrmXe3K8iDOlbfvLyq2srq1v5DcLW9s7u3vF/YOmCmNJaIOEPJRtDyvKmaANzTSn7UhSHHictrzRdeq3xlQqFop7PYmoG+CBYD4jWBvJ7QZYDwnmyc2099grluyynQEtE2dOSlffkKHeK352+yGJAyo04VipjmNH2k2w1IxwOi10Y0UjTEZ4QDuGChxQ5SZZ6Ck6NUof+aE0T2iUqb83EhwoNQk8M5mGVIteKv7ndWLtX7oJE1GsqSCzQ37MkQ5R2gDqM0mJ5hNDMJHMZEVkiCUm2vRUMCU4i19eJs1K2amWK3fnpdrJrA3IwxEcwxk4cAE1uIU6NIDAAzzBC7xaY+vZerPeZ6M5a75zCH9gffwApGiTXA==</latexit>

"
<latexit sha1_base64="0ejzTOpeKJDYgxL171O3eRIkH0Q=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBqPgKexGQW8GvHiMYB6wWcLsZDYZMjuzzMwGwpLP8OJBEa9+jTf/wk9wsslBEwsaiqpuurvChDNtXPfLKaytb2xuFbdLO7t7+wflw6OWlqkitEkkl6oTYk05E7RpmOG0kyiK45DTdji6m/ntMVWaSfFoJgkNYjwQLGIEGyv53TFWNNGMS9ErV9yqmwOtEm9BKrffkKPRK392+5KkMRWGcKy177mJCTKsDCOcTkvdVNMEkxEeUN9SgWOqgyw/eYrOrdJHkVS2hEG5+nsiw7HWkzi0nTE2Q73szcT/PD810U2QMZGkhgoyXxSlHBmJZv+jPlOUGD6xBBPF7K2IDLHCxNiUSjYEb/nlVdKqVb3Lau3hqlI/m6cBRTiBU7gAD66hDvfQgCYQkPAEL/DqGOfZeXPe560FZzFzDH/gfPwATSmSnA==</latexit>

ab�a�bb
<latexit sha1_base64="AbPbits2QKgOeGTrDgJnOGuhDPg=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIpp4geyiid4k8eIRE3kYWMjsMAsTZmY3M7MmhPAVXjxojFc/x5t/4Sc4LBwUrKSTSlV3uruCmDNtXPfLyaysrq1vZDdzW9s7u3v5/YO6jhJFaI1EPFLNAGvKmaQ1wwynzVhRLAJOG8HwZuo3HqnSLJL3ZhRTX+C+ZCEj2FjpAQedIu4Ug6CbL7glNwVaJt6cFK6/IUW1m/9s9yKSCCoN4VjrlufGxh9jZRjhdJJrJ5rGmAxxn7YslVhQ7Y/Tgyfo1Co9FEbKljQoVX9PjLHQeiQC2ymwGehFbyr+57USE175YybjxFBJZovChCMToen3qMcUJYaPLMFEMXsrIgOsMDE2o5wNwVt8eZnUyyXvvFS+uyhUTmZpQBaO4BjOwINLqMAtVKEGBAQ8wQu8Osp5dt6c91lrxpnPHMIfOB8/gHOQ5w==</latexit>

a�b
<latexit sha1_base64="8gseNQmCS5EJnQVXa8N0PnwrByw=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBS8GHajoDcDXjxGMA9I1jA7mU2GzMwuM7NCWPILXjwo4tUf8uZf+AnObnLQxIKGoqqb7q4g5kwb1/1ylpZXVtfWCxvFza3tnd3S3n5TR4kitEEiHql2gDXlTNKGYYbTdqwoFgGnrWB0k/mtR6o0i+S9GcfUF3ggWcgINpmEH86CXqnsVtwcaJF4M1K+/oYc9V7ps9uPSCKoNIRjrTueGxs/xcowwumk2E00jTEZ4QHtWCqxoNpP81sn6MQqfRRGypY0KFd/T6RYaD0Wge0U2Az1vJeJ/3mdxIRXfspknBgqyXRRmHBkIpQ9jvpMUWL42BJMFLO3IjLEChNj4ynaELz5lxdJs1rxzivVu4ty7XiaBhTgEI7gFDy4hBrcQh0aQGAIT/ACr45wnp03533auuTMZg7gD5yPHy7HjwU=</latexit>

b�aab�a�
<latexit sha1_base64="cJZJdePocTrySJonfN3Svju3uUs=">AAAB8nicbVDLSsNAFL3xWeur6tJNsApuWpIq6M6CG5cV7APStEymk3boZCbMTIQS+hluXCji1q9x51/4CU7SLrT1wAyHc+7l3nuCmFGlHefLWlldW9/YLGwVt3d29/ZLB4ctJRKJSRMLJmQnQIowyklTU81IJ5YERQEj7WB8m/ntRyIVFfxBT2LiR2jIaUgx0kbygl4FoezrVfqlslN1ctjLxJ2T8s035Gj0S5/dgcBJRLjGDCnluU6s/RRJTTEj02I3USRGeIyGxDOUo4goP81XntpnRhnYoZDmcW3n6u+OFEVKTaLAVEZIj9Sil4n/eV6iw2s/pTxONOF4NihMmK2Fnd1vD6gkWLOJIQhLana18QhJhLVJqWhCcBdPXiatWtW9qNbuL8v101kaUIBjOIFzcOEK6nAHDWgCBgFP8AKvlraerTfrfVa6Ys17juAPrI8foe+RhQ==</latexit>

b�b�
<latexit sha1_base64="0GeQ3nC906jdgQWL/XOSZnyAs3o=">AAAB7XicbVDLSgMxFL1TX7W+qi7dBKvgxjJTBd1ZcOOygn1AO5ZMmmljM8mQZIQy9B/cuFDErf/jzr/wE0ynXWjrIYHDOfdy7z1BzJk2rvvl5JaWV1bX8uuFjc2t7Z3i7l5Dy0QRWieSS9UKsKacCVo3zHDaihXFUcBpMxheT/zmI1WaSXFnRjH1I9wXLGQEGys1gvtT+7rFklt2M6BF4s1I6eobMtS6xc9OT5IkosIQjrVue25s/BQrwwin40In0TTGZIj7tG2pwBHVfpptO0bHVumhUCr7hUGZ+rsjxZHWoyiwlRE2Az3vTcT/vHZiwks/ZSJODBVkOihMODISTU5HPaYoMXxkCSaK2V0RGWCFibEBFWwI3vzJi6RRKXtn5crteal6NE0D8nAAh3ACHlxAFW6gBnUg8ABP8AKvjnSenTfnfVqac2Y9+/AHzscPT9uPpQ==</latexit>

a
<latexit sha1_base64="txKEcUmomvgUgj56lbkYNBMuhPo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFSj3WLJLbsZyDLx5qR08w0Zqt3iZ6cXszRCaZigWrc9NzH+mCrDmcBJoZNqTCgb0j62LZU0Qu2Ps0Mn5NQqPRLGypY0JFN/T4xppPUoCmxnRM1AL3pT8T+vnZrw2h9zmaQGJZstClNBTEymX5MeV8iMGFlCmeL2VsIGVFFmbDYFG4K3+PIyaZyXvYvyee2yVDmZpQF5OIJjOAMPrqACd1CFOjBAeIIXeHUenGfnzXmfteac+cwh/IHz8QNWt436</latexit>

ab�a�bb�bb�
<latexit sha1_base64="TDq3j3Gpjm1Wfjx5TWf4PboOP18=">AAAB+HicbVDLSgNBEOz1GeMjqx69DEbBS8JuFPRmwIvHCOYBySbMTGaTIbMPZmaFuORLvHhQxKuf4s2/8BOcZHPQxIKGoqqb7i4SC66043xZK6tr6xubua389s7uXsHeP2ioKJGU1WkkItkiWDHBQ1bXXAvWiiXDARGsSUY3U7/5wKTiUXivxzHzAjwIuc8p1kbq2QVMuiXcLRGSVc8uOmVnBrRM3DkpXn/DDLWe/dnpRzQJWKipwEq1XSfWXoql5lSwSb6TKBZjOsID1jY0xAFTXjo7fIJOjdJHfiRNhRrN1N8TKQ6UGgfEdAZYD9WiNxX/89qJ9q+8lIdxollIs0V+IpCO0DQF1OeSUS3GhmAqubkV0SGWmGqTVd6E4C6+vEwalbJ7Xq7cXRSrJ1kakIMjOIYzcOESqnALNagDhQSe4AVerUfr2Xqz3rPWFWs+cwh/YH38ALtoky4=</latexit>

bb�a
<latexit sha1_base64="oLgSX8Vzv+cFlyfXpUwgta6RRWw=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBW8WHaroDcLXjxWcNtCu5Zsmm1Ds9klyQpl6W/w4kERr/4gb/4Lf4LptgdtfTDweG+GmXlBIrg2jvOFlpZXVtfWCxvFza3tnd3S3n5Dx6mizKOxiFUrIJoJLplnuBGslShGokCwZjC8mfjNR6Y0j+W9GSXMj0hf8pBTYqzkBcHDGemWyk7FyYEXiTsj5etvyFHvlj47vZimEZOGCqJ123US42dEGU4FGxc7qWYJoUPSZ21LJYmY9rP82DE+sUoPh7GyJQ3O1d8TGYm0HkWB7YyIGeh5byL+57VTE175GZdJapik00VhKrCJ8eRz3OOKUSNGlhCquL0V0wFRhBqbT9GG4M6/vEga1Yp7XqneXZRrx9M0oACHcASn4MIl1OAW6uABBQ5P8AKvSKJn9Ibep61LaDZzAH+APn4A6cSPcQ==</latexit>

ab�
<latexit sha1_base64="GZZMc+aC7GLsodEhnOXJ9lLIv6Q=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBS8GHajoDcDXjxGMA9I1jA7mU2GzMwuM7NCWPILXjwo4tUf8uZf+AnObnLQxIKGoqqb7q4g5kwb1/1ylpZXVtfWCxvFza3tnd3S3n5TR4kitEEiHql2gDXlTNKGYYbTdqwoFgGnrWB0k/mtR6o0i+S9GcfUF3ggWcgINpmEg4ezXqnsVtwcaJF4M1K+/oYc9V7ps9uPSCKoNIRjrTueGxs/xcowwumk2E00jTEZ4QHtWCqxoNpP81sn6MQqfRRGypY0KFd/T6RYaD0Wge0U2Az1vJeJ/3mdxIRXfspknBgqyXRRmHBkIpQ9jvpMUWL42BJMFLO3IjLEChNj4ynaELz5lxdJs1rxzivVu4ty7XiaBhTgEI7gFDy4hBrcQh0aQGAIT/ACr45wnp03533auuTMZg7gD5yPHy8AjwU=</latexit>

a�bb
<latexit sha1_base64="6EhT5HlAipWQTVATV48LS4q7uBk=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBW8WHaroDcLXjxWcNtCu5Zsmm1Ds9klyQpl6W/w4kERr/4gb/4Lf4LptgdtfTDweG+GmXlBIrg2jvOFlpZXVtfWCxvFza3tnd3S3n5Dx6mizKOxiFUrIJoJLplnuBGslShGokCwZjC8mfjNR6Y0j+W9GSXMj0hf8pBTYqzkkYezIOiWyk7FyYEXiTsj5etvyFHvlj47vZimEZOGCqJ123US42dEGU4FGxc7qWYJoUPSZ21LJYmY9rP82DE+sUoPh7GyJQ3O1d8TGYm0HkWB7YyIGeh5byL+57VTE175GZdJapik00VhKrCJ8eRz3OOKUSNGlhCquL0V0wFRhBqbT9GG4M6/vEga1Yp7XqneXZRrx9M0oACHcASn4MIl1OAW6uABBQ5P8AKvSKJn9Ibep61LaDZzAH+APn4A6YePcQ==</latexit>

b�b�a
<latexit sha1_base64="yi5nCBwbc/bKozHSOqte08n9acA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBS8GHajoDcDXjxGMA9I1tA7mU2GzM4uM7NCCPkILx4U8er3ePMv/AQnmxw0sZiBoqqb7q4gEVwb1/1ylpZXVtfWcxv5za3tnd3C3n5dx6mirEZjEatmgJoJLlnNcCNYM1EMo0CwRjC4mfiNR6Y0j+W9GSbMj7AnecgpGis1gocz+7BTKLolNwNZJN6MFK+/IUO1U/hsd2OaRkwaKlDrlucmxh+hMpwKNs63U80SpAPssZalEiOm/VG27picWKVLwljZLw3J1N8dI4y0HkaBrYzQ9PW8NxH/81qpCa/8EZdJapik00FhKoiJyeR20uWKUSOGliBV3O5KaB8VUmMTytsQvPmTF0m9XPLOS+W7i2LleJoG5OAQjuAUPLiECtxCFWpAYQBP8AKvTuI8O2/O+7R0yZn1HMAfOB8/CbaQEA==</latexit>

a
<latexit sha1_base64="txKEcUmomvgUgj56lbkYNBMuhPo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFSj3WLJLbsZyDLx5qR08w0Zqt3iZ6cXszRCaZigWrc9NzH+mCrDmcBJoZNqTCgb0j62LZU0Qu2Ps0Mn5NQqPRLGypY0JFN/T4xppPUoCmxnRM1AL3pT8T+vnZrw2h9zmaQGJZstClNBTEymX5MeV8iMGFlCmeL2VsIGVFFmbDYFG4K3+PIyaZyXvYvyee2yVDmZpQF5OIJjOAMPrqACd1CFOjBAeIIXeHUenGfnzXmfteac+cwh/IHz8QNWt436</latexit>

b
<latexit sha1_base64="InJP4KddlzPlaOW/RMcREC3wIQY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFQLusWSW3YzkGXizUnp5hsyVLvFz04vZmmE0jBBtW57bmL8MVWGM4GTQifVmFA2pH1sWypphNofZ4dOyKlVeiSMlS1pSKb+nhjTSOtRFNjOiJqBXvSm4n9eOzXhtT/mMkkNSjZbFKaCmJhMvyY9rpAZMbKEMsXtrYQNqKLM2GwKNgRv8eVl0jgvexfl89plqXIySwPycATHcAYeXEEF7qAKdWCA8AQv8Oo8OM/Om/M+a80585lD+APn4wdYO437</latexit>

b
<latexit sha1_base64="InJP4KddlzPlaOW/RMcREC3wIQY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFQLusWSW3YzkGXizUnp5hsyVLvFz04vZmmE0jBBtW57bmL8MVWGM4GTQifVmFA2pH1sWypphNofZ4dOyKlVeiSMlS1pSKb+nhjTSOtRFNjOiJqBXvSm4n9eOzXhtT/mMkkNSjZbFKaCmJhMvyY9rpAZMbKEMsXtrYQNqKLM2GwKNgRv8eVl0jgvexfl89plqXIySwPycATHcAYeXEEF7qAKdWCA8AQv8Oo8OM/Om/M+a80585lD+APn4wdYO437</latexit>

b
<latexit sha1_base64="InJP4KddlzPlaOW/RMcREC3wIQY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFQLusWSW3YzkGXizUnp5hsyVLvFz04vZmmE0jBBtW57bmL8MVWGM4GTQifVmFA2pH1sWypphNofZ4dOyKlVeiSMlS1pSKb+nhjTSOtRFNjOiJqBXvSm4n9eOzXhtT/mMkkNSjZbFKaCmJhMvyY9rpAZMbKEMsXtrYQNqKLM2GwKNgRv8eVl0jgvexfl89plqXIySwPycATHcAYeXEEF7qAKdWCA8AQv8Oo8OM/Om/M+a80585lD+APn4wdYO437</latexit>

b
<latexit sha1_base64="InJP4KddlzPlaOW/RMcREC3wIQY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFQLusWSW3YzkGXizUnp5hsyVLvFz04vZmmE0jBBtW57bmL8MVWGM4GTQifVmFA2pH1sWypphNofZ4dOyKlVeiSMlS1pSKb+nhjTSOtRFNjOiJqBXvSm4n9eOzXhtT/mMkkNSjZbFKaCmJhMvyY9rpAZMbKEMsXtrYQNqKLM2GwKNgRv8eVl0jgvexfl89plqXIySwPycATHcAYeXEEF7qAKdWCA8AQv8Oo8OM/Om/M+a80585lD+APn4wdYO437</latexit>

b
<latexit sha1_base64="InJP4KddlzPlaOW/RMcREC3wIQY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFQLusWSW3YzkGXizUnp5hsyVLvFz04vZmmE0jBBtW57bmL8MVWGM4GTQifVmFA2pH1sWypphNofZ4dOyKlVeiSMlS1pSKb+nhjTSOtRFNjOiJqBXvSm4n9eOzXhtT/mMkkNSjZbFKaCmJhMvyY9rpAZMbKEMsXtrYQNqKLM2GwKNgRv8eVl0jgvexfl89plqXIySwPycATHcAYeXEEF7qAKdWCA8AQv8Oo8OM/Om/M+a80585lD+APn4wdYO437</latexit>

a
<latexit sha1_base64="txKEcUmomvgUgj56lbkYNBMuhPo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFSj3WLJLbsZyDLx5qR08w0Zqt3iZ6cXszRCaZigWrc9NzH+mCrDmcBJoZNqTCgb0j62LZU0Qu2Ps0Mn5NQqPRLGypY0JFN/T4xppPUoCmxnRM1AL3pT8T+vnZrw2h9zmaQGJZstClNBTEymX5MeV8iMGFlCmeL2VsIGVFFmbDYFG4K3+PIyaZyXvYvyee2yVDmZpQF5OIJjOAMPrqACd1CFOjBAeIIXeHUenGfnzXmfteac+cwh/IHz8QNWt436</latexit>

a
<latexit sha1_base64="txKEcUmomvgUgj56lbkYNBMuhPo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFSj3WLJLbsZyDLx5qR08w0Zqt3iZ6cXszRCaZigWrc9NzH+mCrDmcBJoZNqTCgb0j62LZU0Qu2Ps0Mn5NQqPRLGypY0JFN/T4xppPUoCmxnRM1AL3pT8T+vnZrw2h9zmaQGJZstClNBTEymX5MeV8iMGFlCmeL2VsIGVFFmbDYFG4K3+PIyaZyXvYvyee2yVDmZpQF5OIJjOAMPrqACd1CFOjBAeIIXeHUenGfnzXmfteac+cwh/IHz8QNWt436</latexit>

a
<latexit sha1_base64="txKEcUmomvgUgj56lbkYNBMuhPo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoDcDXjwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8uZf+AlONjloYkFDUdVNd1eQCK6N6345uZXVtfWN/GZha3tnd6+4f9DQcaoY1lksYtUKqEbBJdYNNwJbiUIaBQKbwfB26jcfUWkey3szStCPaF/ykDNqrFSj3WLJLbsZyDLx5qR08w0Zqt3iZ6cXszRCaZigWrc9NzH+mCrDmcBJoZNqTCgb0j62LZU0Qu2Ps0Mn5NQqPRLGypY0JFN/T4xppPUoCmxnRM1AL3pT8T+vnZrw2h9zmaQGJZstClNBTEymX5MeV8iMGFlCmeL2VsIGVFFmbDYFG4K3+PIyaZyXvYvyee2yVDmZpQF5OIJjOAMPrqACd1CFOjBAeIIXeHUenGfnzXmfteac+cwh/IHz8QNWt436</latexit>
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Figure 6 An expansion of γ[B,X, f ] and its homomorphic mapping into Gw.

automaton has to somehow guess both the expansion and the mapping. Of course, already
guessing the order of appearance of the homomorphic images of the vertices of γ (in our
case, from left to right: ±,², {³,¬}, {´,°},®, {¯,­}) would already yield an exponential
automaton, regardless of bounded bridgewidth, and we therefore need to avoid this kind of
brute-force guessing. Nevertheless, the automaton can first guess the non-output vertices
that will appear to the left and to the right, as in Figure 7, and then, based on this guessing,
find a way of decomposing the query into other, simpler, queries (as shown to the right).
While there are exponentially many ways of guessing, the statespace remains polynomial if
the bridgewidth is bounded. In the concrete case of the query of Figure 7, the automaton
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9:12 Containment of UC2RPQ: The Hard and Easy Cases
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Figure 7 The automaton guesses the vertices mapped to the left (XL) and to the right (XR) of
the current position vi as well as a state q, and it decomposes the query into a conjunction of the
two smaller queries on the right.

decomposes it by guessing a state q ∈ Q (intuitively, the state of the automaton for the edge
¬→ ® at the position where ° is mapped) and running the conjunction of the two smaller
queries on the right. There may be many ways of decomposing them, but not too many,
since the simpler queries will still be of the form γ[B,X, f ].

Suppose that Aγ[B,X,f ] guesses a set of vertices XR that will be mapped to the right of
vi, and a set of vertices XL that will be mapped to the left3 of vi (i.e., the gray blobs of
Figure 7). For any such given partition XL, X,XR of the vertices of γ[B,X, f ], Aγ[B,X,f ]
proceeds in different ways according to whether some of these sets are empty. In particular,
if both XL and XR are non-empty, it will need to guess what is the state of some edges that
“fly” across the current position, that is, edges with one endpoint in XL and one endpoint in
XR (in Figure 7, the edge from ¬ to ®). This is indeed an exponential operation (and hence
the construction may take exponential time) but it will not be reflected in the statespace of
the automaton if bw(γ) is bounded, nor in the space needed to perform this operation.

Now more concretely. Once XL, XR are fixed, applying the decomposition of Lemma 7
on the bridge B of M with X̃ = V \ (XL ∪XR), XL and XR, we obtain a set of bridges
{Bi}i and a partition {Xi}i of XL ∪XR. We divide these bridges into left and right bridges:
BL = {Bi : Bi ∩ B[XL] 6= ∅} and BR = {Bi : Bi ∩ B[XR] 6= ∅}. We guess any function
g :
⋃

(BL ∪ BR) → Q so that g(e) = f(e) for every e ∈ B. For each left-bridge B̂ ∈ BL
we consider γ[B̂,XL

B̂
, gB̂] where XL

B̂
is the (X ∪ XR)-side of B̂, and gB̂ is g restricted to

B̂. Similarly, for each right-bridge B̂ ∈ BR we consider γ[B̂,XR
B̂
, gB̂] where XR

B̂
is the

(X ∪XL)-side of B̂, and gB̂ is g restricted to B̂. Let Z be the (V \X)-side of B (i.e., the
side which is not X). Note that if XL ∩ Z = ∅, then BL = ∅ and BR = {B}; and similarly
for XR ∩ Z = ∅.

Thus, if we guess XL, XR as in our example of Figure 7, and if g is guessed so that
for the edge e13 from ¬ to ® we have g(e13) = q, we generate the two queries on the right
picture. Note that there is an expansion and homomorphism in accordance with the guessing
XL, XR, g and sending ° to vi if and only if there are homomorphisms from some expansions
of the two smaller queries on the right, mapping ¬ and ° [resp. ® and °] to vi. This
describes the idea of the most interesting case: how to cover homomorphisms that map some
vertices of Z to the left of vi and some to the right of vi (i.e., BL 6= ∅ and BR 6= ∅). There
are, however, two other remaining cases that need to be treated as well: (1) homomorphisms
that map every vertex of Z to the right of vi (i.e., Z ⊆ XR), which corresponds to simply
moving to the “next position” 2(i+ 1) of w (representing vi+1 in Gw) updating the function

3 The vertices not in X that are mapped at the same position as those in X could be placed either in XL
or XR (e.g., in the picture ´ is in XR).
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f accordingly; (2) symmetrically, when all vertices of Z are mapped to the left of vi; and (3)
homomorphisms where at least one vertex of Z is mapped to the current vertex vi, in which
case the query must also be updated. We now describe all these cases formally.

XL
<latexit sha1_base64="QDQFg4UiuEDuj4gw3oysr/tDyAg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx48RDQPSJYwO+lNhszOLjOzQgj5BC8eFPHqF3nzL/wEJ5scNLGgoajqprsrSATXxnW/nJXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHssHM0rQj2hf8pAzaqx03+redgslt+xmIMvEm5PS1TdkqHULn51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/zk6dkBOr9EgYK1vSkEz9PTGmkdajKLCdETUDvehNxf+8dmrCS3/MZZIalGy2KEwFMTGZ/k16XCEzYmQJZYrbWwkbUEWZsenkbQje4svLpFEpe2flyt15qVqcpQE5OIYinIIHF1CFG6hBHRj04Qle4NURzrPz5rzPWlec+cwR/IHz8QOWjY6u</latexit>

XR
<latexit sha1_base64="boaD4aGAm3PFHVvwNr0HQQXt8oU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx7jIw9IljA7mU2GzM4uM71CCPkELx4U8eoXefMv/AQnmxw0saChqOqmuytIpDDoul/Oyura+sZmbiu/vbO7t184OGyYONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXU7/5yLURsXrAUcL9iPaVCAWjaKX7VveuWyi5ZTcDWSbenJSuviFDrVv47PRilkZcIZPUmLbnJuiPqUbBJJ/kO6nhCWVD2udtSxWNuPHH2akTcmKVHgljbUshydTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsdmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUSl7Z+XK7XmpWpylATk4hiKcggcXUIUbqEEdGPThCV7g1ZHOs/PmvM9aV5z5zBH8gfPxA5+ljrQ=</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit>

XL
<latexit sha1_base64="QDQFg4UiuEDuj4gw3oysr/tDyAg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx48RDQPSJYwO+lNhszOLjOzQgj5BC8eFPHqF3nzL/wEJ5scNLGgoajqprsrSATXxnW/nJXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHssHM0rQj2hf8pAzaqx03+redgslt+xmIMvEm5PS1TdkqHULn51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/zk6dkBOr9EgYK1vSkEz9PTGmkdajKLCdETUDvehNxf+8dmrCS3/MZZIalGy2KEwFMTGZ/k16XCEzYmQJZYrbWwkbUEWZsenkbQje4svLpFEpe2flyt15qVqcpQE5OIYinIIHF1CFG6hBHRj04Qle4NURzrPz5rzPWlec+cwR/IHz8QOWjY6u</latexit>

XR
<latexit sha1_base64="boaD4aGAm3PFHVvwNr0HQQXt8oU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx7jIw9IljA7mU2GzM4uM71CCPkELx4U8eoXefMv/AQnmxw0saChqOqmuytIpDDoul/Oyura+sZmbiu/vbO7t184OGyYONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXU7/5yLURsXrAUcL9iPaVCAWjaKX7VveuWyi5ZTcDWSbenJSuviFDrVv47PRilkZcIZPUmLbnJuiPqUbBJJ/kO6nhCWVD2udtSxWNuPHH2akTcmKVHgljbUshydTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsdmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUSl7Z+XK7XmpWpylATk4hiKcggcXUIUbqEEdGPThCV7g1ZHOs/PmvM9aV5z5zBH8gfPxA5+ljrQ=</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit>

XL
<latexit sha1_base64="QDQFg4UiuEDuj4gw3oysr/tDyAg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx48RDQPSJYwO+lNhszOLjOzQgj5BC8eFPHqF3nzL/wEJ5scNLGgoajqprsrSATXxnW/nJXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHssHM0rQj2hf8pAzaqx03+redgslt+xmIMvEm5PS1TdkqHULn51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/zk6dkBOr9EgYK1vSkEz9PTGmkdajKLCdETUDvehNxf+8dmrCS3/MZZIalGy2KEwFMTGZ/k16XCEzYmQJZYrbWwkbUEWZsenkbQje4svLpFEpe2flyt15qVqcpQE5OIYinIIHF1CFG6hBHRj04Qle4NURzrPz5rzPWlec+cwR/IHz8QOWjY6u</latexit>

XR
<latexit sha1_base64="boaD4aGAm3PFHVvwNr0HQQXt8oU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx7jIw9IljA7mU2GzM4uM71CCPkELx4U8eoXefMv/AQnmxw0saChqOqmuytIpDDoul/Oyura+sZmbiu/vbO7t184OGyYONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXU7/5yLURsXrAUcL9iPaVCAWjaKX7VveuWyi5ZTcDWSbenJSuviFDrVv47PRilkZcIZPUmLbnJuiPqUbBJJ/kO6nhCWVD2udtSxWNuPHH2akTcmKVHgljbUshydTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsdmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUSl7Z+XK7XmpWpylATk4hiKcggcXUIUbqEEdGPThCV7g1ZHOs/PmvM9aV5z5zBH8gfPxA5+ljrQ=</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit>

XL
<latexit sha1_base64="QDQFg4UiuEDuj4gw3oysr/tDyAg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx48RDQPSJYwO+lNhszOLjOzQgj5BC8eFPHqF3nzL/wEJ5scNLGgoajqprsrSATXxnW/nJXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHssHM0rQj2hf8pAzaqx03+redgslt+xmIMvEm5PS1TdkqHULn51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/zk6dkBOr9EgYK1vSkEz9PTGmkdajKLCdETUDvehNxf+8dmrCS3/MZZIalGy2KEwFMTGZ/k16XCEzYmQJZYrbWwkbUEWZsenkbQje4svLpFEpe2flyt15qVqcpQE5OIYinIIHF1CFG6hBHRj04Qle4NURzrPz5rzPWlec+cwR/IHz8QOWjY6u</latexit>

XR
<latexit sha1_base64="boaD4aGAm3PFHVvwNr0HQQXt8oU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx7jIw9IljA7mU2GzM4uM71CCPkELx4U8eoXefMv/AQnmxw0saChqOqmuytIpDDoul/Oyura+sZmbiu/vbO7t184OGyYONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXU7/5yLURsXrAUcL9iPaVCAWjaKX7VveuWyi5ZTcDWSbenJSuviFDrVv47PRilkZcIZPUmLbnJuiPqUbBJJ/kO6nhCWVD2udtSxWNuPHH2akTcmKVHgljbUshydTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsdmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUSl7Z+XK7XmpWpylATk4hiKcggcXUIUbqEEdGPThCV7g1ZHOs/PmvM9aV5z5zBH8gfPxA5+ljrQ=</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit>

XL
<latexit sha1_base64="QDQFg4UiuEDuj4gw3oysr/tDyAg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx48RDQPSJYwO+lNhszOLjOzQgj5BC8eFPHqF3nzL/wEJ5scNLGgoajqprsrSATXxnW/nJXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHssHM0rQj2hf8pAzaqx03+redgslt+xmIMvEm5PS1TdkqHULn51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/zk6dkBOr9EgYK1vSkEz9PTGmkdajKLCdETUDvehNxf+8dmrCS3/MZZIalGy2KEwFMTGZ/k16XCEzYmQJZYrbWwkbUEWZsenkbQje4svLpFEpe2flyt15qVqcpQE5OIYinIIHF1CFG6hBHRj04Qle4NURzrPz5rzPWlec+cwR/IHz8QOWjY6u</latexit>

XR
<latexit sha1_base64="boaD4aGAm3PFHVvwNr0HQQXt8oU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx7jIw9IljA7mU2GzM4uM71CCPkELx4U8eoXefMv/AQnmxw0saChqOqmuytIpDDoul/Oyura+sZmbiu/vbO7t184OGyYONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXU7/5yLURsXrAUcL9iPaVCAWjaKX7VveuWyi5ZTcDWSbenJSuviFDrVv47PRilkZcIZPUmLbnJuiPqUbBJJ/kO6nhCWVD2udtSxWNuPHH2akTcmKVHgljbUshydTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsdmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUSl7Z+XK7XmpWpylATk4hiKcggcXUIUbqEEdGPThCV7g1ZHOs/PmvM9aV5z5zBH8gfPxA5+ljrQ=</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit>

XL
<latexit sha1_base64="QDQFg4UiuEDuj4gw3oysr/tDyAg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx48RDQPSJYwO+lNhszOLjOzQgj5BC8eFPHqF3nzL/wEJ5scNLGgoajqprsrSATXxnW/nJXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHssHM0rQj2hf8pAzaqx03+redgslt+xmIMvEm5PS1TdkqHULn51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/zk6dkBOr9EgYK1vSkEz9PTGmkdajKLCdETUDvehNxf+8dmrCS3/MZZIalGy2KEwFMTGZ/k16XCEzYmQJZYrbWwkbUEWZsenkbQje4svLpFEpe2flyt15qVqcpQE5OIYinIIHF1CFG6hBHRj04Qle4NURzrPz5rzPWlec+cwR/IHz8QOWjY6u</latexit>

XR
<latexit sha1_base64="boaD4aGAm3PFHVvwNr0HQQXt8oU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx7jIw9IljA7mU2GzM4uM71CCPkELx4U8eoXefMv/AQnmxw0saChqOqmuytIpDDoul/Oyura+sZmbiu/vbO7t184OGyYONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXU7/5yLURsXrAUcL9iPaVCAWjaKX7VveuWyi5ZTcDWSbenJSuviFDrVv47PRilkZcIZPUmLbnJuiPqUbBJJ/kO6nhCWVD2udtSxWNuPHH2akTcmKVHgljbUshydTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsdmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUSl7Z+XK7XmpWpylATk4hiKcggcXUIUbqEEdGPThCV7g1ZHOs/PmvM9aV5z5zBH8gfPxA5+ljrQ=</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit> XL

<latexit sha1_base64="QDQFg4UiuEDuj4gw3oysr/tDyAg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx48RDQPSJYwO+lNhszOLjOzQgj5BC8eFPHqF3nzL/wEJ5scNLGgoajqprsrSATXxnW/nJXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHssHM0rQj2hf8pAzaqx03+redgslt+xmIMvEm5PS1TdkqHULn51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/zk6dkBOr9EgYK1vSkEz9PTGmkdajKLCdETUDvehNxf+8dmrCS3/MZZIalGy2KEwFMTGZ/k16XCEzYmQJZYrbWwkbUEWZsenkbQje4svLpFEpe2flyt15qVqcpQE5OIYinIIHF1CFG6hBHRj04Qle4NURzrPz5rzPWlec+cwR/IHz8QOWjY6u</latexit>

XR
<latexit sha1_base64="boaD4aGAm3PFHVvwNr0HQQXt8oU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx7jIw9IljA7mU2GzM4uM71CCPkELx4U8eoXefMv/AQnmxw0saChqOqmuytIpDDoul/Oyura+sZmbiu/vbO7t184OGyYONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXU7/5yLURsXrAUcL9iPaVCAWjaKX7VveuWyi5ZTcDWSbenJSuviFDrVv47PRilkZcIZPUmLbnJuiPqUbBJJ/kO6nhCWVD2udtSxWNuPHH2akTcmKVHgljbUshydTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsdmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUSl7Z+XK7XmpWpylATk4hiKcggcXUIUbqEEdGPThCV7g1ZHOs/PmvM9aV5z5zBH8gfPxA5+ljrQ=</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit>

XL
<latexit sha1_base64="QDQFg4UiuEDuj4gw3oysr/tDyAg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx48RDQPSJYwO+lNhszOLjOzQgj5BC8eFPHqF3nzL/wEJ5scNLGgoajqprsrSATXxnW/nJXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHssHM0rQj2hf8pAzaqx03+redgslt+xmIMvEm5PS1TdkqHULn51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/zk6dkBOr9EgYK1vSkEz9PTGmkdajKLCdETUDvehNxf+8dmrCS3/MZZIalGy2KEwFMTGZ/k16XCEzYmQJZYrbWwkbUEWZsenkbQje4svLpFEpe2flyt15qVqcpQE5OIYinIIHF1CFG6hBHRj04Qle4NURzrPz5rzPWlec+cwR/IHz8QOWjY6u</latexit>

XR
<latexit sha1_base64="boaD4aGAm3PFHVvwNr0HQQXt8oU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx7jIw9IljA7mU2GzM4uM71CCPkELx4U8eoXefMv/AQnmxw0saChqOqmuytIpDDoul/Oyura+sZmbiu/vbO7t184OGyYONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXU7/5yLURsXrAUcL9iPaVCAWjaKX7VveuWyi5ZTcDWSbenJSuviFDrVv47PRilkZcIZPUmLbnJuiPqUbBJJ/kO6nhCWVD2udtSxWNuPHH2akTcmKVHgljbUshydTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsdmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUSl7Z+XK7XmpWpylATk4hiKcggcXUIUbqEEdGPThCV7g1ZHOs/PmvM9aV5z5zBH8gfPxA5+ljrQ=</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit>

XL
<latexit sha1_base64="QDQFg4UiuEDuj4gw3oysr/tDyAg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx48RDQPSJYwO+lNhszOLjOzQgj5BC8eFPHqF3nzL/wEJ5scNLGgoajqprsrSATXxnW/nJXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHssHM0rQj2hf8pAzaqx03+redgslt+xmIMvEm5PS1TdkqHULn51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/zk6dkBOr9EgYK1vSkEz9PTGmkdajKLCdETUDvehNxf+8dmrCS3/MZZIalGy2KEwFMTGZ/k16XCEzYmQJZYrbWwkbUEWZsenkbQje4svLpFEpe2flyt15qVqcpQE5OIYinIIHF1CFG6hBHRj04Qle4NURzrPz5rzPWlec+cwR/IHz8QOWjY6u</latexit>

XR
<latexit sha1_base64="boaD4aGAm3PFHVvwNr0HQQXt8oU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx7jIw9IljA7mU2GzM4uM71CCPkELx4U8eoXefMv/AQnmxw0saChqOqmuytIpDDoul/Oyura+sZmbiu/vbO7t184OGyYONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXU7/5yLURsXrAUcL9iPaVCAWjaKX7VveuWyi5ZTcDWSbenJSuviFDrVv47PRilkZcIZPUmLbnJuiPqUbBJJ/kO6nhCWVD2udtSxWNuPHH2akTcmKVHgljbUshydTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsdmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUSl7Z+XK7XmpWpylATk4hiKcggcXUIUbqEEdGPThCV7g1ZHOs/PmvM9aV5z5zBH8gfPxA5+ljrQ=</latexit>

X
<latexit sha1_base64="PCgBUFrLGuaezqXXKtWpBIkColI=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKne7hVKbtnNQFaJtyClm2/IUOsVPrv9iCUhSsME1brjubHxU6oMZwKn+W6iMaZsTIfYsVTSELWfZodOyZlV+mQQKVvSkEz9PZHSUOtJGNjOkJqRXvZm4n9eJzGDaz/lMk4MSjZfNEgEMRGZfU36XCEzYmIJZYrbWwkbUUWZsdnkbQje8surpFkpexflSv2yVC3O04AcnEIRzsGDK6jCHdSgAQwQnuAFXp0H59l5c97nrWvOYuYE/sD5+AFIeY3v</latexit>

✓ 

∧∨
q

<latexit sha1_base64="saJm77pmLfjdf6NGetB5pxq4QmQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69hBbBU0mqoDcLXjy2YD+gDWWznbRrN5u4uxFK6C/w4kERr/4kb/4Lf4LbtAdtfTDweG+GmXl+zJnSjvNl5dbWNza38tuFnd29/YPi4VFLRYmk2KQRj2THJwo5E9jUTHPsxBJJ6HNs++Obmd9+RKlYJO70JEYvJEPBAkaJNlLjoV8sOxUng71K3AUpX39Dhnq/+NkbRDQJUWjKiVJd14m1lxKpGeU4LfQShTGhYzLErqGChKi8NDt0ap8aZWAHkTQltJ2pvydSEio1CX3TGRI9UsveTPzP6yY6uPJSJuJEo6DzRUHCbR3Zs6/tAZNINZ8YQqhk5labjogkVJtsCiYEd/nlVdKqVtzzSrVxUa6V5mlAHk6gBGfgwiXU4Bbq0AQKCE/wAq/WvfVsvVnv89actZg5hj+wPn4Abl2OCA==</latexit>

q
<latexit sha1_base64="saJm77pmLfjdf6NGetB5pxq4QmQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69hBbBU0mqoDcLXjy2YD+gDWWznbRrN5u4uxFK6C/w4kERr/4kb/4Lf4LbtAdtfTDweG+GmXl+zJnSjvNl5dbWNza38tuFnd29/YPi4VFLRYmk2KQRj2THJwo5E9jUTHPsxBJJ6HNs++Obmd9+RKlYJO70JEYvJEPBAkaJNlLjoV8sOxUng71K3AUpX39Dhnq/+NkbRDQJUWjKiVJd14m1lxKpGeU4LfQShTGhYzLErqGChKi8NDt0ap8aZWAHkTQltJ2pvydSEio1CX3TGRI9UsveTPzP6yY6uPJSJuJEo6DzRUHCbR3Zs6/tAZNINZ8YQqhk5labjogkVJtsCiYEd/nlVdKqVtzzSrVxUa6V5mlAHk6gBGfgwiXU4Bbq0AQKCE/wAq/WvfVsvVnv89actZg5hj+wPn4Abl2OCA==</latexit>

q
<latexit sha1_base64="saJm77pmLfjdf6NGetB5pxq4QmQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69hBbBU0mqoDcLXjy2YD+gDWWznbRrN5u4uxFK6C/w4kERr/4kb/4Lf4LbtAdtfTDweG+GmXl+zJnSjvNl5dbWNza38tuFnd29/YPi4VFLRYmk2KQRj2THJwo5E9jUTHPsxBJJ6HNs++Obmd9+RKlYJO70JEYvJEPBAkaJNlLjoV8sOxUng71K3AUpX39Dhnq/+NkbRDQJUWjKiVJd14m1lxKpGeU4LfQShTGhYzLErqGChKi8NDt0ap8aZWAHkTQltJ2pvydSEio1CX3TGRI9UsveTPzP6yY6uPJSJuJEo6DzRUHCbR3Zs6/tAZNINZ8YQqhk5labjogkVJtsCiYEd/nlVdKqVtzzSrVxUa6V5mlAHk6gBGfgwiXU4Bbq0AQKCE/wAq/WvfVsvVnv89actZg5hj+wPn4Abl2OCA==</latexit>

p
<latexit sha1_base64="LDk+fBbiOXlJiYkB+vLiM3TpfJM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKke9wolt+xmIKvEW5DSzTdkqPUKn91+xJIQpWGCat3x3Nj4KVWGM4HTfDfRGFM2pkPsWCppiNpPs0On5MwqfTKIlC1pSKb+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJZsvGiSCmIjMviZ9rpAZMbGEMsXtrYSNqKLM2GzyNgRv+eVV0qyUvYtypX5ZqhbnaUAOTqEI5+DBFVThDmrQAAYIT/ACr86D8+y8Oe/z1jVnMXMCf+B8/ABs2Y4H</latexit>

p
<latexit sha1_base64="LDk+fBbiOXlJiYkB+vLiM3TpfJM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKke9wolt+xmIKvEW5DSzTdkqPUKn91+xJIQpWGCat3x3Nj4KVWGM4HTfDfRGFM2pkPsWCppiNpPs0On5MwqfTKIlC1pSKb+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJZsvGiSCmIjMviZ9rpAZMbGEMsXtrYSNqKLM2GzyNgRv+eVV0qyUvYtypX5ZqhbnaUAOTqEI5+DBFVThDmrQAAYIT/ACr86D8+y8Oe/z1jVnMXMCf+B8/ABs2Y4H</latexit>∨

p
<latexit sha1_base64="LDk+fBbiOXlJiYkB+vLiM3TpfJM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4CrtR0JsBLx4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefMv/AQnmxw0saChqOqmuyuIBdfGdb+ctfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfh25rceUWkeyXszidEP6VDyAWfUWKke9wolt+xmIKvEW5DSzTdkqPUKn91+xJIQpWGCat3x3Nj4KVWGM4HTfDfRGFM2pkPsWCppiNpPs0On5MwqfTKIlC1pSKb+nkhpqPUkDGxnSM1IL3sz8T+vk5jBtZ9yGScGJZsvGiSCmIjMviZ9rpAZMbGEMsXtrYSNqKLM2GzyNgRv+eVV0qyUvYtypX5ZqhbnaUAOTqEI5+DBFVThDmrQAAYIT/ACr86D8+y8Oe/z1jVnMXMCf+B8/ABs2Y4H</latexit>

∧ ∧
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(A;B1)⇤;A;B3

(A;B1)⇤;A;B3

a) b) c)

d)e)f)

1

A; B3

1

Figure 8 Schematic idea of a branch of an accepting run of Aγ[B,X,f ] as witnessed by the
homomorphism of Figure 6, and how the decomposition is done in terms of the γ[B′, X ′, f ′]’s.
Arrows are labelled by the type of transitions according to the cases 1, 2, A, B1, B2, B3; double-
arrows stand for a succession of (non-alternating) transitions being applied.

1 |BL ∪ BR| > 1. This is the case in our example. In this case, using alternation the
automaton verifies that 2i ∈ (

⋂
B∈BL Aγ[B,XL

B
,gB ] ∩

⋂
B∈BR Aγ[B,XR

B
,gB ])(w). For example,

this is the first kind of transition in our example of Figure 8, both in the transitions a→ b

and c→ d.
2 |BL ∪ BR| = 1. In this case we have necessarily that either XL ∩ Z or XR ∩ Z is empty.

Further, BL ∪ BR = {B}. The automaton proceeds as follows: first it reads the loop
information updating the states (case A below) and then it either moves right or left to
the 2(i+ 1) or 2(i− 1) position updating the states in f (cases B1, B2), or it guesses that
there is a vertex that is mapped to vertex vi of Gw and produces a new decomposition
into bridges generating the alternation of smaller queries (B3). Here are the details:

A The automaton first reads Li to the right (i.e., the letter at position 2i in w) updating,
nondeterministically, the states of f according to the loop type; that is, we replace f with
f ′ for any f ′ : B → Q satisfying (f(e), f ′(e)) ∈ Li for every e ∈ B. Then, it goes back
left to the original position 2i.

B Then it performs one of the three following actions, non-deterministically chosen:
B1 It checks Z∩XR 6= ∅ and moves right to position 2(i+1). That is, it reads Li and then

ai+1 to the right to end up at position 2(i+ 1) of w. It now updates the states of f ′
according to the label ai+1; that is, it guesses some f ′′ where for every e ∈ B we have
f ′′(e) = q for some (+1, ai+1, q) in δ~

~

(f ′(e)). It finally verifies 2(i+1) ∈ Aγ[B,X,f ′′](w).
For example, this is one of the actions implicit in the arrow b→c of Figure 8.

B2 It checks Z ∩XL 6= ∅ and moves left to position 2(i− 1). That is, it reads ai and then
Li−1 to the left to end up in position 2(i− 1) of w. It now updates the states of f ′
accordingly; that is, it guesses some f ′′ where for every e ∈ B we have f ′′(e) = q for
some (−1, ai, q) in δ~

~

(f ′(e)). It finally verifies 2(i− 1) ∈ Aγ[B,X,f ′′](w).
B3 It guesses that there is a vertex v in the (XL ∪XR)-side of B that will be mapped

to position i. That is, it non-deterministically chooses some v ∈ XL ∪ XR and
verifies I(e) ∩ F (e) 6= ∅ for every edge e ∈ B[v]. Consider now the separator S =
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9:14 Containment of UC2RPQ: The Hard and Easy Cases

(B∪E[v])\B[v]. The automaton chooses, non-deterministically, a state assignment for
all new edges S \B. That is, it picks some assignment g : S → Q so that: g(e) = f(e)
for every e ∈ B; g(e) ∈ I(e) if η1(e) = v; and g(e) ∈ F (e) if η2(e) = v. Now, using
Lemma 5, S can be decomposed into a disjoint union of bridges S =

⋃
i∈I Bi so that

each bridge will cover an independent part of the remaining graph of γ[B,X, f ′]. Thus,
using alternation, the automaton finally verifies 2i ∈ (

⋂
i∈I Aγ[Bi,XBi ,gBi ])(w), where

XBi is the (X ∪ {v})-side of Bi, and gBi is g restricted to Bi (in Figure 8, this case
corresponds to transitions b→c and d→e). In particular, if I = ∅, the automaton
simply accepts the word (in Figure 8, transition e→f).

Figure 8 contains an example of how these cases interact in a run. Summing up, the automaton
Aγ[B,X,f ] can be implemented using 4 states qB

′,X′,f ′

0 , qB
′,X′,f ′

A1 , qB
′,X′,f ′

A2 , qB
′,X′,f ′

B for each
possible γ[B′, X ′, f ′], plus one global final state F = {qf}. The initial set of states is
I = {qB,X,f0 }. For every possible BL, BR, if condition 1 holds, it uses alternation on states
qB
′,X′,f ′

0 for suitable B′, X ′, f ′. Otherwise, it uses: states qB,X,f
′

A1 , qB,X,f
′

A2 to perform the
transitions described in A (i.e., move to 2i + 1 with state qB,X,f

′

A1 for some f ′, and then
back to 2i with state qB,X,f

′

A2 ); states qB,X,f
′

B , qB,X,f
′′

0 to move finally to position 2(i+ 1) or
2(i− 1) as in B1 or B2 with the updated f ′′; and states qB

′,X′,f ′

0 ’s to perform B3 if possible.
Whenever it accepts, it shifts to state qf , from which it moves to the rightmost position to
accept the word.

5.4 Correctness

For any subquery γ[B,X, f ] we prove, by induction on the size of γ[B,X, f ], that the
automaton Aγ[B,X,f ] satisfies (†). Suppose B separates X̃ and V \ X̃ in M , for X ⊆ X̃.

The base case is when |V \ X̃| = 1. Note that in this case, by construction, Aγ[B,X,f ]
works as a non-deterministic two-way automaton (that is, there is no alternation).
⇒) Suppose 2i ∈ Aγ[B,X,f ](w). An accepting run consists basically on a number of applic-
ations of: the pair of back-and-forth transitions described in A, plus a transition from B1
or B2, until by B3 the automaton accepts. Assuming the word w is correctly labeled (i.e.,
w ∈ Aloop), such a run induces a homomorphism from an expansion of γ[B,X, f ] (given by
the letters and loops read along) into Gw that maps every x ∈ X to vi. Notice that the last
step in the accepting run is a collapse of the vertex of V \ X̃ by condition B3 where I = ∅.
⇐) On the other hand, if there is an expansion of γ[B,X, f ] with a homomorphism mapping
every x ∈ X to vi, then the sole vertex of V \ X̃ is mapped either to the right or to the left
of i. In the former case the automaton can perform a number of A,B2 steps until reaching
the desired position and finishing with an application of A,B3 steps accepting, and in the
latter case it performs A,B1 a number of times and then accepting with A,B3. Observe that
all the loops can be “factored away” by using the information in the Li’s. Hence, if there is
such a homomorphism, the automaton has an accepting run from position 2i on w.

The inductive case is when |V \ X̃| > 1.
⇒) Suppose 2i ∈ Aγ[B,X,f ](w). If the first transition of the accepting run comes from 1, then
by the inductive hypothesis we obtain (vi, . . . , vi) ∈ γ[B,X, f ](Gw) using the following claim.

B Claim. If there are expansions of γ[B,XL
B , gB] and γ[B,XR

B , gB] with homomorphisms
to Gw mapping every vertex of

⋃
B∈BL∪BR X

L
B ∪ XR

B to vi, then there is an expansion of
γ[B,X, g] mapping every vertex of X to vi. In fact, the desired homomorphism and expansion
is simply obtained as the union of the homomorphisms and expansions. This is because
Lemma 7 partitions the graph of γ[B,X, f ] using pairwise disjoint sets of bridges BL and BR.
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Otherwise, the accepting run of the automaton consists of a number of applications of steps
A,B1 or A,B2, followed by the application of steps A,B3 (this last one using alternation).
Again, since the alternation is performed on disjoint sets of bridges and graph connected
components by Lemma 5, once we have expansions and homomorphisms for these by inductive
hypothesis, we can build an expansion of γ[B,X, f ] using the information on the applications
of A,B1 or A,B2 that preceded this last B3 step.
⇐) If there is an expansion of γ[B,X, f ] with a homomorphism h mapping every x ∈ X
to vi, then the accepting run will depend on how the vertices are mapped to Gw. If the
(V \X)-side of B has vertices that map through h both to the left and to the right of vi
in Gw, then we follow 1 and we decompose into the conjunction of some γ[B′, X ′, f ′]’s as
directed by Lemma 7. Again, since the existence of h implies the existence of homomorphisms
from expansions of the simpler γ[B′, X ′, f ′]’s, it follows, by inductive hypothesis, that there
are accepting runs for each Aγ[B′,X′,f ′] starting in 2i, which in turns means that there is
an accepting run of Aγ[B,X,f ] starting in 2i. If, on the other hand, all vertices from the
(V \ X)-side of B are mapped through h to the right of vi (or all to the left) in Gw, we
follow the strategy to either go right (or left) by repeated applications of the transitions
A,B1 (or A,B2) until we arrive at some position 2(i+ `) (or 2(i− `)) to which some other
vertex is mapped, and by A,B3 we use alternation on some γ[B′, X ′, f ′] as directed by
Lemma 5. Similarly as before, the homomorphism h and expansion implies the existence of
homomorphisms from expansions of the γ[B′, X ′, f ′]’s from 2(i+ `), which in turns means
that there is an accepting run from 2i for Aγ[B,X,f ].

6 Lower bounds

The lower bounds of Theorem 1 are straightforward from known results. We give the proof
ideas here.

The PSpace-hardness of point 1 of Theorem 1 is a consequence of a straightforward
reduction from the containment problem for regular languages. Given two regular languages
L1, L2 over an alphabet A, given any two distinct symbols #,⊥ not in A, and given a graph
M ∈ C with some edge e between two vertices u1, u2, consider the Boolean queries γ1, γ2 ∈
CRPQ(C ) whose underlying graph is M over the alphabet A ∪̇{⊥,#}, where γi has the
language # · Li ·# at edge e and the language {⊥} at every other edge. It follows that γ1 is
contained in γ2 if and only if L1 ⊆ L2.

The ExpSpace-hardness of point 2 follows from a reduction from the following contain-
ment problem restricted to two-vertex Boolean CRPQ, which is ExpSpace-hard.

I Lemma 8. The problem of deciding, given a Boolean CRPQ γ1 with two vertices and one
edge and another Boolean CRPQ γ2 with two vertices and arbitrarily many edges in the same
direction, whether γ1 is contained in γ2, is ExpSpace-hard.

We show this lemma by an easy adaptation of the proofs of [7, Theorem 6] and [5, Lemma 14].

Proof. We reduce from the following 2n-tiling problem, which is ExpSpace-complete (see,
e.g., [10, Theorem 6.1]). An input instance consists of a number n ∈ N written in unary, a
finite set ∆ of tiles, two relations H,V ⊆ ∆×∆ specifying constraints on how tiles should be
placed horizontally and vertically, and the starting and final tiles tS , tF ∈ ∆. A solution to
the input instance is a “consistent” assignment of tiles to a finite rectangle having 2n columns.
Concretely, a solution is a function f : {1, . . . , 2n} × {1, . . . , k} → ∆, for some k ∈ N, such
that f(1, 1) = tS , f(2n, k) = tF , and f((i, j), f(i + 1, j)) ∈ H and f((i, j), f(i, j + 1)) ∈ V
for every i, j in range. We now show the following.
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9:16 Containment of UC2RPQ: The Hard and Easy Cases

B Claim 9. For every 2n-tiling problem T there are Boolean CRPQ γ1, γ2, computable in
polynomial time from T , such that γ1 ⊆ γ2 if, and only if, T has no solution. Further, γ1 is
of the form ∃x, y x L−→ y and γ2 is of the form ∃x, y

∧
0≤i≤n(x Li−→ y), where each Li is given

as a regular expression.

For any tiling instance as above, we show how to define the two CRPQ over the alphabet
A := ∆ ∪ {0, 1,#} so that containment fails if and only if there is a solution to T . We will
encode a solution of a tiling as a word of #((0 + 1)n ·∆)∗#, where the rectangle of tiles
is read left-to-right and top-to-bottom, and each block (i.e., each element of (0 + 1)n ∆)
represents the column number (in binary) and the tile. The symbols # at the beginning and
end of the word are used for technical reasons.

For enforcing this encoding, we define regular languages E, FC , FH and Gi for each i ≤ n
over A.

The language E gives the general shape of the encoding of solutions,

E = # 0n tS ((0 + 1)n∆)∗ 1n tF #,

in particular it enforces that it starts and ends with the correct tiles. The language FC
detects adjacent blocks with an error in the column number bit, which can be easily defined
with a polynomial size NFA (e.g., if n = 3 in particular FC contains every word having
“001 t 011”, “0000” or “t t′” as factor, for t, t′ ∈ ∆). The language FH checks that there are
adjacent blocks in which the tiles do not respect the horizontal adjacency relation H,

FH =
⋃

(t1,t2)∈∆2\H

t1 0n t2,

where 0n = (0 + 1)n \ {0n}. Finally, G0, . . . , Gn are used to check that there are two blocks
at distance 2n which do not respect the vertical adjacency relation V ; in other words, there
is a factor of the word whose first and last blocks have the same column number, it contains
not more than one block with column number 1n (otherwise we would be skipping a row),
and its first and last tiles are not V -related. First, G0 checks that the first and last blocks of
the factor we are interested in do not conform to V , and furthermore that there is exactly
one column number 1n in between

G0 =
⋃

(t1,t2)∈∆2\V

(0 + 1)n t1 (1n ∆)∗ 1n (∆ 1n)∗ t2,

where 1n = (0 + 1)n \ {1n}. For each b ∈ {0, 1} and i ∈ {1, . . . , n} we define Gbi to check that
the i-th bit of the address of both the first and last tile is set to b,

Gbi = (0 + 1)i−1 b (0 + 1)n−i ∆
(
(0 + 1)n ∆

)∗ (0 + 1)i−1 b (0 + 1)n−i ∆,

and we define Gi as G0
i + G1

i . For each one of these languages one can produce a regular
expression recognizing the language in polynomial time. Finally, the Boolean CRPQ are

γ1 = ∃x, y x
E−→ y γ2 = ∃x, y

∧
0≤i≤n

x
Gi∪FC∪FH−−−−−−−−→ y.

Observe that γ1 ⊆ γ2 iff every word of E contains an error in the encoding (i.e., it
contains a word from FC as factor), or it contains a pair of horizontally adjacent tiles which
do not respect the horizontal constraints (i.e., it contains a word from FH as factor) or,
otherwise, it contains a pair of vertically adjacent tiles which do not respect the vertical
constraints (i.e., it contains a word from

⋂
0≤i≤nGi as factor). Thus, γ1 ⊆ γ2 if, and only if,

T has no solution. J
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Now, in view of Lemma 8, suppose γ1 reads language L ⊆ A∗ at its only edge, and γ2
has ` edges with languages L1, . . . , L` ⊆ A∗. By the characterization of Lemma 3, it follows
that for every k, C contains a graph M with a minor from Ek. Hence, there is some graph
M ∈ C and two sets of vertices V1, V2 therein so that M |V1 and M |V2 are connected and M
has ` distinct edges e1, . . . , e` with source in V1 and target in V2. Consider the following two
Boolean CRPQ(C ) γ′1, γ′2 having M as underlying graph over the alphabet A ∪̇{⊥}, where
⊥ is some symbol not in A. First, γ′1 is defined as follows: every edge in M |V1 or M |V2 is
labelled with {ε}; every edge ei is labelled with L; and every other edge is labelled with {⊥}.
Second, γ′2 is defined as follows: every edge in M |V1 or M |V2 is labelled with {ε}; every edge
ei is labelled with Li; and every other edge is labelled with (A ∪ {⊥})∗. It is not hard to
see that γ′1 ⊆ γ′2 if and only if γ1 ⊆ γ2. See Figure 9 for an example. It then follows that
containment of Boolean CRPQ(C ) is ExpSpace-hard.
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Figure 9 Reduction from two vertices Boolean CRPQ containment (left) to Boolean CRPQ(C )
containment (right).

7 Final remarks

Observe that the following graph measures are all lower bounds for bridgewidth: maximum
vertex degree, maximum number of pairwise edge-independent paths between two vertices
(and hence also the size of a minimum cut set by Menger’s theorem), and the graph’s
treewidth.4 In particular, bounded bridgewidth implies bounded treewidth, and thus classes
of UC2RPQ of bounded bridgewidth can be evaluated in polynomial time. Classes of UC2RPQ
of bounded bridgewidth are somewhat more robust than those of bounded treewidth, in
the sense that both the evaluation and containment problems are “efficient”. This is what
happens for classes of Conjunctive Queries of bounded treewidth, where both these problems
– which in this case are essentially the same – are polynomial-time computable [13, 12]. On
the other hand, bounded treewidth does not imply bounded bridgewidth (take for instance⋃
i Ei). As for treewidth [3], the problem of whether a graph has bridgewidth k (where

both the graph and k are input) is NP-complete, by a simple reduction from the max-cut
problem (see, e.g., [1]).

What about boundedness? We conjecture that an adaptation of the bridgewidth measure
may also yield a similar result for the boundedness problem for UCRPQ (note: no 2-wayness).
More concretely, let the scc-minor of a graph M be the result of contracting all edges
belonging to the same strongly connected component (scc). Note that the resulting graph
is a directed acyclic graph (possibly with self-loops). The scc-bridgewidth of M is the
bridgewidth of the scc-minor of M .

4 For treewidth, the root of the tree decomposition is a bag containing a vertex whose set of incident
edges is a bridge (it exists due to Lemma 6), together with all its neighbors. We then apply iteratively
Lemma 4 to decompose the remaining graph into subtrees.

ICDT 2020
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I Conjecture. For every class C of graphs,
1. if C has bounded scc-bridgewidth, the UCRPQ(C )-boundedness problem is in PSpace;
2. if C has unbounded scc-bridgewidth, the UCRPQ(C )-boundedness problem is ExpSpace-

complete.
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yields a guess-and-check algorithm to decide equivalence, and shows that the problem is NP-complete.
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1 Introduction

Data Exchange

Data exchange is the problem of translating information structured under a source schema
into a target schema, given a source data set and a set of declarative schema mappings
between the source and target schemata. This problem has originally been studied for
traditional relational databases where a decade of intensive research brought up a number
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of foundational and system oriented work [2, 5, 7, 21, 26]. More recently research in data
exchange changed its focus in various directions that include non-relational [4] and temporal
data [13], knowledge bases [3], mapping discovery [27,28], and probabilistic settings [19,25].

In relational data exchange, a set of schema mappings M is defined as a set of source-
to-target tuple generating dependences [1] of the form φ(x̄, ȳ) → ψ(x̄, z̄), where φ(x̄, ȳ)
(resp. ψ(x̄, z̄)) is a query over the source (resp. target) schema with its variables. In general
such mappings only partially specify how to populate attributes of the target schema with
data from a given source instance [8], i.e., due to existential variables z̄ in ψ(x̄, z̄). Therefore,
data exchange can result in possibly multiple incomplete target instances A. Each such
A represents a set of possible complete target instances and there are several options on
how such correspondence, or semantics of incomplete instances, can be defined, including
Open World (OWA) [8,9], Closed World (CWA) [18], Open and Closed World (OCWA, with
annotated instances) [24], and Powerset Closed World (PCWA) [12], which we discuss in
detail in Section 2.

Problems for Data Exchange

In the context of data exchange the following questions have attracted considerable attention:
given a semantics for incomplete database instances, decide:

[Semantic Implication:] whether one incomplete instance semantically implies another;
[Equivalence:] whether two incomplete instances are semantically equivalent; and
[Minimality, Core:] whether a smaller or smallest (core) semantically equivalent
incomplete instance exists.

These questions form a natural progression, in that a characterization of semantic implication
leads to one for equivalence, which in turn allows the study of minimal equivalent instances.
The latter is important since, e.g., in some cases one can use the smallest minimal instance
for computing certain answers by naively’ evaluating queries directly on this instance.

How These Problems Have Been Addressed So Far

These three questions are the focus of this paper since they have only partially been answered.
Indeed, for OWA and CWA, these questions have been fully answered. For OWA, semantic
implication corresponds to the existence of a database homomorphism from one instance into
another, and a unique smallest equivalent instance (the core [9]) always exists, and is minimal
for several natural notions of minimality. Likewise, for CWA semantic implication corresponds
to the existence of a strongly surjective homomorphism from one instance to another [18].
This implies that equivalence corresponds to isomorphism, rendering the question of smallest
equivalent instance moot. For PCWA, semantic implication corresponds to the existence
of a homomorphic cover from one instance to another [12], while the question of smallest
equivalent instance remains open. For OCWA with annotated instances, both questions are
open, although preliminary results were previously presented by the authors [11]. Finally, we
are not aware that the question of semantic implication between PCWA and OCWA with
annotated instances has previously been considered.

Our Approach to Implication and Equivalence

Therefore, in this paper we address the questions of Semantic Implication, Equivalence, and
Minimality for PCWA and OCWA semantics. To this end we introduce a novel open-and-
closed-world semantics, OCWA*, based purely on the notion of homomorphic cover. We
show how both PCWA and OCWA semantics with annotated instances can be defined as
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special cases of OCWA*. This subsumption property allows us to characterize semantic
implication and equivalence for all three semantics using homomorphic covers, and thus also
semantic implication and equivalence between PCWA and OCWA with annotated instances.

Our Approach to Minimality and Cores

We study several natural notions of minimality, and show for all of them that there is
in general no unique minimal equivalent instance for PCWA nor, consequently, for the
more expressive OCWA*. This raises the question: How can one find a smaller or “better”
equivalent instance? Indeed, even if one can find all equivalent subinstances of a given
incomplete instance A and compare them using the characterization of equivalence, one still
does not know whether a there exists a smaller equivalent instance that is not a subinstance
of A.

We address this challenge as follows. Focusing first on PCWA, we show that for all
instances A there exists a finite set $(A) of “PCWA-cores” which serves to determine
all minimal instances that are equivalent to A. More precisely, this set has the following
properties:
1. each member of $(A) is minimal (for all notions of minimality that we consider in this

paper) and a subinstance of A,
2. the union of the members of $(A) is equivalent to A,
3. A and B are equivalent if and only if $(A) = $(B), up to renaming of nulls, and
4. any instance which is equivalent to A and which is minimal in the sense of having no

equivalent subinstance must be an image of the union of the members of $(A). In
particular, all such instances can be found, up to renaming of nulls, from (the union of)
$(A).

We also apply the analysis of naïve evaluation of existential positive queries with Boolean
universal guards from [12] and show that such queries can be evaluated on the smaller
members in $(A) rather than on A itself. Finally, we extend the analysis to OCWA* and
show that, by resolving a question of “redundant annotation”, the function $(A) can be
extended also to annotated instances, yielding similar properties for OCWA*. In summary,
the contributions of this paper are:

A new semantics OCWA* which properly extends PCWA and OCWA with annotated
instances.
Characterization and analysis of semantic implication and equivalence for PCWA, OCWA
with annotated nulls, and OCWA*.
Negative results for the existence of unique minimal instances in PCWA and OCWA*.
A new concept of “PCWA-core” for PCWA; and in terms of it,
a new “powerset canonical representative function” $(−) for PCWA and OCWA*, with
the properties listed above.
An analysis of “annotation redundancy” in OCWA*.

The paper is organised as follows. In Section 2 we give preliminaries and introduce known
semantics for incomplete DBs. In Section 3 we present our OCWA* semantics and give its
basic properties. In Section 4 we study semantic implication and equivalence for OCWA*.
In Section 5 we show the non-existence of a subinstance minimal representative function for
PCWA and, consequently, for OCWA*. In Section 6 we move to positive results for PCWA
and then extend them in Section 7 for the general case of OCWA*.

ICDT 2020
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2 Preliminaries

We use boldface for lists and tuples; thus x instead of x̄ or −→x . N+ is the set of positive
(non-zero) natural numbers. P+(A) is the set of non-empty subsets of A. Pfin(A) is the set
of finite subsets of A. If S is a set of instances then S∪ denotes the closure of S under binary
unions.

2.1 Incomplete Databases

We assume that we are working with a fixed database schema. Let Const and Null be
countable sets of constants and labeled nulls. For the sake of readability, we will use lower
case letters late in the alphabet for nulls instead of the more common ⊥. Lower case letters
a, b, c, d will be used for constants. An (incomplete) instance A is a database instance whose
(active) domain is a subset of Const ∪ Null. A complete instance I is an instance without
nulls. (This is also known as a ground instance.) We write D for the set of all instances
and C for the set of all complete instances. We use upper case letters A, B, etc. from the
beginning of the alphabet for instances in general, and upper case letters I, J , etc. from the
middle of the alphabet for instances that are explicitly assumed to be complete.

Following [24] an annotated instance is an instance where each occurrence of a constant
or null is annotated with either o, standing for open, or c, standing for closed. The added
expressivity is used to define more fine-grained semantics for incomplete databases.

2.2 Homomorphisms and Disjoint Unions

We use the terms “homomorphism” and “isomorphism” to mean database homomorphism
and database isomorphism, respectively, and we distinguish these from “structure” homo-
morphisms. Explicitly, if A and B are instances – whether incomplete or complete, annotated
or not – a structure homomorphism h : A→ B is a function from the active domain of A to
the active domain of B such that for every relation symbol R, if a tuple u is in the relation
R in A then the tuple h(u) is in the relation R in B. We write Str(A,B) for the set of
structure homomorphisms from A to B. A structure isomorphism is an invertible structure
homomorphism.

If P ⊆ Const ∪ Null and h is a structure homomorphism we say that h fixes P pointwise
if h(p) = p for all p ∈ P on which h is defined. We say that h fixes P setwise if it restricts to
a bijection on the subset of P on which it is defined.

A (database) homomorphism from A to B is a structure homomorphism that fixes Const
pointwise. We write Hom(A,B) for the set of homomorphisms from A to B. A (database)
isomorphism is an invertible homomorphism.

A subinstance of A is an instance B with an inclusion homomorphism B ↪→ A – that
is, with a homomorphism that fixes Const ∪ Null pointwise. B is a proper subinstance if
A 6= B. We shall often be somewhat lax with the notion of a subinstance and regard B as a
subinstance if it is so up to renaming of nulls, that is to say, up to (database) isomorphism.
If we need to insist that the homomorphism B ↪→ A is an inclusion we say that B is a strict
subinstance.

If h : A→ B is a structure homomorphism then the image h(A) of h is the subinstance
of B defined by the condition that v is in the relation R in h(A) if there exists u in R in A
so that h(u) = v. If h(A) = B we say that h is strongly surjective and write h : A� B. If
h is not a structure isomorphism we say that h(A) is a proper image.
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A reflective subinstance of A is an instance B with an inclusion homomorphismm : B ↪→ A

and a strongly surjective homomorphism q : A � B such that q ◦m is the identity on B.
Again, we often say that B is a reflective subinstance if it is so up to renaming of nulls, and
say that it is a strict reflective subinstance if we want to insist that m is an inclusion, rather
than just an injective homomorphism.

If H = {hi : A→ B | i ∈ S} is a family of homomorphisms we say that H is a covering
family, or simply a cover, if B =

⋃
i∈S hi(A). We say that A covers B if Hom(A,B) is a

cover. If H = {hi : Ai → B | i ∈ S} is a family of homomorphisms with the same codomain
we say that H jointly covers B if B =

⋃
i∈S hi(Ai)

If A is an incomplete instance, a freeze of A is, as usual, a complete instance A together
with a structure isomorphism between A and A that fixes the constants in A. Whenever we
take a freeze of an instance, we tacitly assume that it is “fresh”, in the sense that the new
constants in it do not occur in any other instances currently under consideration (that is,
usually, that have been introduced so far in the proof).

We define the null-disjoint union A tNull B of two instances A and B to be the instance
obtained by renaming whatever nulls necessary to make sure that A and B have no nulls
in common, and then taking the union of the result. As such, the null-disjoint union is
only defined up to isomorphism. The key property of the null-disjoint union is the 1-1
correspondence Hom(AtNullB,C) ∼= Hom(A,C)×Hom(B,C) between homomorphisms from
A tNull B and pairs of homomorphisms from A and B.

The definition extends to n-ary and infinitary null-disjoint unions. (Infinitary null-disjoint
unions are, strictly speaking, not database instances in so far as they are not finite, but
they are an occasionally useful technical extrapolation, and we trust that they will cause
no confusion in the places where we make use of them.) We shall mostly be considering
the null-disjoint union of an instance with itself. For n ∈ N+ ∪ {∞}, we abuse notation
and simply write An for the null-disjoint union of A with itself n times, with the property
that Hom(An, C) ∼=

∏n
i=1 Hom(A,C). We denote by πm : A → An, for m ∈ N+ smaller or

equal to n, the homomorphism that sends A to the mth copy of it in An. If f : An → C

is a homomorphism we write f = 〈f1, . . . , fn〉 where fi = f ◦ πi : A → C. We denote by
∇ : An → A the homomorphism that corresponds to the n-tuple of identity homomorphisms
A→ A. That is to say, ∇ identifies all copies in An of a null in A with that null.

2.3 Semantics of Incomplete Databases
A semantics is a function [[−]] : D → P+(C) which assigns a non-empty set [[A]] of complete
instances to every instance A. We say that A represents [[A]].

A semantics [[−]] induces a preordering on D by A ≤ B ⇔ [[A]] ⊆ [[B]]1. We say that A
and B are semantically equivalent, and write A ≡ B, if A ≤ B and B ≤ A. Accordingly,
A ≡ B ⇔ [[A]] = [[B]]. The semantic equivalence class of an instance is denoted using square
brackets: [A] := {B ∈ D |A ≡ B}.

A representative function (cf. representative set, canonical function in [12]) is a function
χ : D → D which picks a representative of each semantic equivalence class. We shall
be content with χ(A) being defined up to isomorphism. A representative function χ is
subinstance minimal if χ(A) is a subinstance of all members of [A].

Next, we briefly recall the established semantics OWA, CWA, the Closed Powerset
semantics of [12], and the Open and Closed World Assumption as defined by Libkin and
Sirangelo [24].

1 Note that this is the opposite of the standard order as defined in e.g. [12]

ICDT 2020
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2.3.1 Open World Approach: OWA

Under OWA (Open World Assumption) an instance A represents the set of complete instances
to which A has a (database) homomorphism; [[A]]OWA = {I ∈ C | Hom(A, I) 6= ∅}.

Consequently, [[A]]OWA is closed under structure homomorphisms that fix the constants in
A pointwise, in the sense that if I ∈ [[A]]OWA and I → J is a structure homomorphism that
fixes the constants in A, then J ∈ [[A]]OWA. It is well known (see e.g. [9]) that the function
Core(−) that maps each instance to its core is a subinstance minimal representative function.

2.3.2 Closed World Approach: CWA

Under CWA (Closed World Assumption) an instance A represesents the set of its images;
[[A]]CWA = {I ∈ C | there exists h : A� I}

Note that [[A]]CWA is closed under strongly surjective structure homomorphisms that
fix the constants in A pointwise. Clearly, the only possible representative function (up to
isomorphism, as usual) is the identity.

2.3.3 Closed Powerset: PCWA

Under Closed Powerset semantics (PCWA) [12], A represents the set of its CWA-interpreta-
tions closed under union; [[A]]PCWA = [[A]]CWA

∪
= {I1 ∪ . . . ∪ In|n ∈ N+, I1, . . . , In ∈ [[A]]CWA}

Consequently, [[A]]PCWA is closed under unions and under strongly surjective homomorphisms
that fix the constants in A pointwise. Note that in [12] this semantics is denoted (|A|)CWA
We recall the following from [12, Thm 10.1];

I Proposition 1. A ≤PCWA B iff there exists a cover from B to A.

Thus, A ≡PCWA B iff there exists a cover both from B to A and from A to B. The existence
of minimal representative functions for PCWA is the subject of Section 5 and 6.

I Remark 2. The semantics GCWA introduced in [17] defines [[A]]GCWA as the set of unions
of minimal images of A. In [12] [[A]]GCWA is denoted by (|A|)min

CWA. As with OWA, Core(−) is
a minimal representative function for GCWA (see [12])

[[A]]GCWA is not in general closed under strong surjections preserving the constants in A
(cf. [12, 9.1]). It therefore cannot be represented in the semantics introduced in Section 3
below.

2.3.4 Mixed Approach: OCWALS

Let A be an annotated instance, i.e. such that each occurrence of a constant or null is
annotated as open or closed. Under OCWALS (Open and Closed World Assumption -
Libkin/Sirangelo ) the set of complete instances represented by A is defined in two steps as
follows [24]: for all complete instances I, I ∈ [[A]]OCWALS if
(i) there exists a homomorphism h : A→ I; and
(ii) for every R(t) in I there exists a R(t′) in A such that h(t′) and t agree on all positions

annotated as closed in t′.
OCWALS is subsumed by a more expressive semantics which we define next.
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3 Our Semantics: OCWA*

In this section we propose the semantics OCWA* for annotated instances as a properly more
expressive version of both OCWALSand PCWA. The semantics OCWA* presupposes that
instances are annotated according to certain conditions, which we define first:

I Definition 3. We say that an annotated instance A is in normal form if:
1. all occurrences of constants in A are annotated as closed; and
2. all occurrences in A of a null agree on the annotation of that null.

The following then allows us to restrict attention to instances in normal form without
loss of generality with respect to OCWALS .

I Proposition 4. Let A be an annotated instance. Then there exists an annotated instance
A′ in normal form such that [[A]]OCWALS = [[A′]]OCWALS .

Proof. For any atoms that contain open constants or open nulls annotated as closed elsewhere,
change the annotation to “closed” and add a copy of the atom where those terms are replaced
by fresh open nulls. J

I Definition 5. If A is a normal form annotated instance and B is an instance, an RCN-
cover H : A

RCN

⇒ B is a set H ⊆ Hom(A,B) such that the homomorphisms in H are jointly
strongly surjective and agree on the closed nulls of A.

I Definition 6 (OCWA*). Let A be a annotated instance in normal form. Then A represents
those complete instances under OCWA* that it RCN-covers; [[A]]OCWA∗ = {I ∈ C |∃H :A

RCN

⇒ I}.

I Remark 7. The definition of [[A]]OCWA∗ could equivalently be given as the set of finite unions
h1(A) ∪ . . . ∪ hn(A) of complete images of A such that the homomorphisms h1, . . . , hn agree
on the closed nulls of A. Thus OCWA* lies within what [12] call Powerset semantics; that is,
semantics that are defined in terms of a relation from instances to sets of complete instances
(certain finite sets of valuations, in this case) and a relation from sets of complete instances
to complete instances (unions, in this case).

OCWA* properly extends OCWALSin the following sense:

I Theorem 8. 1. For every normal form annotated instance A one can compute in time
linear in |A| a normal form annotated instance A′ such that [[A]]OCWALS = [[A′]]OCWALS =
[[A′]]OCWA∗ .

2. There is a normal form annotated instance A such that for every A′ it holds that
[[A]]OCWA∗ 6= [[A′]]OCWALS .

Proof. (1) Given A, extend it to a new instance A′ by: for each atom R(t) in A add an
atom R(t′) where t′ has every occurrence of an open null in t replaced by a fresh open null.
It is then straightforwardly verified that [[A]]OCWALS = [[A′]]OCWALS = [[A′]]OCWA∗ .

(2) Consider the annotated instance A = {R(ac, xo, xo)}. The instances in [[A]]OCWA∗

contain only tuples where the second and third coordinate are equal. However, the definition
of OCWALS requires only that one tuple in each instance from [[A]]OCWALS respects this
equality. Since there is no bound on the size of instances in [[A]]OCWA∗ , there is no A′ such
that [[A′]]OCWALS = [[A]]OCWA∗ . J
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Regarding PCWA, if A is a normal form annotated instance without any closed nulls,
then an RCN-cover A

RCN

⇒ C is simply a cover, since there are no closed nulls to agree upon.
Thus PCWA is OCWA* restricted to instances without closed nulls. Explicitly, let A be
an un-annotated instance, and let its canonical annotation be that which annotates each
constant as closed and each null as open. Then we have:

I Proposition 9. Let A be an (un-annotated) instance and let A[] be that instance with
canonical annotation. Then [[A[]]]OCWA∗ = [[A]]PCWA.

For the rest of this paper we assume that all annotated instances are in normal form. This
allows us to introduce some notational conventions that simplify the study of RCN-covers on
such instances. We also switch to annotating nulls by using lower and upper case instead of
superscripts, since this allows us to more clearly emphasize the distinguished status of the
closed nulls. We introduce the following conventions:

– Open nulls are written in lower case, x, y, z. Closed nulls are written in upper case, X,
Y , Z. (All instances are in normal form, so no null may occur both in lower and upper case
in an instance.)

– We display the closed nulls of an instance together with the instance; so that A[X] is
an annotated instance where X is a listing of the closed nulls of the instance. Thus X can be
the empty list. We allow ourselves to treat X as the set of closed nulls of A when convenient.
It is a list for purposes of substitution. In particular:

– If t is a list of constants or nulls, A[t/X] is the instance obtained by replacing X with
t. If clear from context, we use A[t] as shorthand.

– Let n ∈ N+ ∪ {∞}. Recall from Section 2.2 that we, for an un-annotated instance A,
write An as a shorthand for the n-ary null-disjoint union of A with itself. For an annotated
instance A[X] with closed nulls X, we extend this notation and write An[X] for the n-ary
open-null-disjoint union; that is, the result of taking the union of n copies of A[X] where
the open nulls have been renamed so that no two copies have any open nulls in common.
Accordingly, a homomorphism An[X] → C corresponds to an n-tuple of homomorphisms
A[X]→ C that agree on the closed nulls X.

We close this section by displaying some equivalent definitions of [[A[X]]]OCWA∗ , including
in terms of CWA and PCWA, which will be made use of in the sequel. Note that for
n ∈ N+ ∪ {∞}, the family {πm : A[X]→ An[X] |m ≤ n, m ∈ N+} forms a RCN cover from
A[X] to An[X].

I Theorem 10. Let A[X] be an annotated instance and I a complete instance. The following
are equivalent:

1. I ∈ [[A[X]]]OCWA∗ , i.e there exist an RCN-cover A[X]
RCN

⇒ I;
2. I ∈

⋃
n∈N+ [[An[X]]]CWA;

3. I ∈ [[A∞[X]]]CWA; and
4. I ∈

⋃
d∈Constk [[A[d/X]]]PCWA where k is the length of X.

I Corollary 11. [[A[X]]]OCWA∗ is closed under strongly surjective structure homomorphisms
that fix the constants in A[X] pointwise.

We now proceed to the study of implication and equivalence OCWA*.
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4 OCWA*: Implication, Equivalence

Since RCN-covers are closed under left composition with strong surjections, we have (by
Theorem 10) that [[A[X]]] ⊆ [[B[Y]]] iff there is an RCN-cover from B[Y] to An[X], for all
n ∈ N+, or, equivalently, that there is an RCN-cover from B[Y] to A∞[X] . We display
this and show that n can be bounded by a number depending on B, or indeed that n can
be bounded by 2 if one considers RCN-covers of a particular form. Note that the following
theorem can also be applied to OCWALS via the translations of Proposition 4 and Theorem 8.

I Theorem 12. Let A[X] and B[Y] be annotated instances. The following are equivalent:
(i) [[A[X]]]OCWA∗ ⊆ [[B[Y]]]OCWA∗ .
(ii) There is an RCN-cover from B[Y] to An[X], for all n ∈ N+.
(iii) There is an RCN-cover from B[Y] to A∞[X]
(iv) There is a strongly surjective homomorphism from B∞[Y] to A∞[X].
(v) There is an RCN-cover from B[Y] to An+1[X] where n is the number of closed nulls

in B[Y], i.e. the length of Y.
(vi) There exists a RCN-cover H from B[Y] to A2[X] such that H contains at least one

homomorphism h which factors through π1 : A[X]→ A2[X].

Proof. v⇒vi : Let n be the length of Y, and let H be an RCN-cover from B[Y] to An+1[X].
Choose an h in H. There are more copies of A[X] in An+1[X] than there are Ys, so we can
assume that for all closed nulls Yi in B[Y], if h(Yi) is in the n+1th copy, then h(Yi) is either a
closed null or a constant. Then the composite h′ = 〈π1, . . . , πn, πn〉 ◦ h : B[Y]→ An+1[X]→
An+1[X] agrees with H on all Y, so H ′ = H ∪ {h′} is an RCN-cover. Now, if we compose
H ′ with the strong surjection 〈π1, . . . , π1, π2〉 : An+1[X] → A2[X] which sends the n first
copies of An+1[X] to the first copy in A2[X] and the n+ 1th copy of An+1[X] to the second
in A2[X], we obtain an RCN-cover of A[X]→ A2[X] in which the map 〈π1, . . . , π1, π2〉 ◦ h′
factors through π1 : A[X]→ A2[X].

vi⇒ii: Let n be given, and let H be an RCN-cover from B[Y] to A2[X] such that
h ∈ H factors through π1 : A[X] → A2[X]. For 1 ≤ i ≤ n, π1 : A[X] → An[X] and
πi : A → An[X] is a pair of homomorphisms that agree on closed nulls, so correspond
to a homomorphism 〈π1, πi〉 : A2[X] → An[X]. The family {〈π1, πi〉 | 1 ≤ i ≤ n} of such
homomorphisms is an RCN-cover from A2[X] to An[X]. The composite of this cover
with H is RCN, since for any closed null Yi in B[Y], h′ ∈ H, 1 ≤ i ≤ n, we have that
〈π1, πi〉 (h′(Yi)) = 〈π1, πi〉 (h(Yi)) = π1(h(Yi)).

The remaining implications are straightforward. J

From Theorem 12 we can derive two guess-and-check algorithms to decide containment
between annotated instances. On the one hand, we may construct An+1[X], where n is the
length of Y, guess a set of homomorphisms from B[Y] to this instance, and check that it
is an RCN-cover. Alternatively, we may avoid this blowup of A[X] by constructing A2[X],
guessing a homomorphism h from B[Y] to A[X] as well as a set of homomorphisms H from
B[Y] to A2[X], and checking that {h} ∪H is an RCN-cover.

Complexity analysis

Since the instance An+1[X] has size at most |A[X]| × (|Y|+ 1), and the number of homo-
morphisms in any non-redundant cover is bounded by the number of tuples in the target
instance, the complexity of this problem stays in NP. For NP-hardness, we adapt the
reduction of 3-colourability for graphs to the problem of deciding whether a given graph
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has a homomorphism into K3, the complete graph on three vertices. It is easy to see that
any homomorphism from a graph with at least one edge into K3 extends to a cover of K3.
Therefore, the problem of deciding ≤PCWA, and consequently ≤OCWA∗, is likewise NP-complete.
It follows that the problem of deciding, given two instances A and B, whether A is a minimal
equivalent instance for B given a partial order among instances, belongs to the class DP,
as it involves checking the non-existence of a smaller instance. In other words, deciding
semantic implication and equivalence for annotated instances has the same complexity as
the homomorphism problem.

5 Issues with Minimality in OCWA*

In this section and the next we study the notion of OCWA* semantic equivalence and the
question of whether, or to what extent, there exists a unique “best” annotated instance to
choose among those that are semantically equivalent. For motivation and illustration, we first
recall the situation in OWA in some more detail. It is well known that A ≡OWA B if and only
if A and B are “homomorphically equivalent”, that is, if there exists a homomorphism both
from A to B and from B to A. Furthermore, there is, up to isomorphism, a least subinstance
of A to which it is homomorphically equivalent, known as the core of A. Instances A and
B are homomorphically equivalent if and only if their cores are isomorphic. Moreover, as
a consequence of being the least homomorphically equivalent subinstance of A, the core of
A is also the least reflective subinstance of A, and the least homomorphically equivalent
image of A. Thus there are three quite natural notions of minimality to which the core is
the answer in OWA. We say that an instance is a core if it is its own core, i.e. if it has no
homomorphically equivalent subinstances. Cores can be characterized as those instances C
with the property that any homomorphism C → C must be an isomorphism. (See [9, 10,16]
for more about cores.)

We show now that for OCWA* there does not in general exist least semantically equivalent
instances in any of the three senses above. We then turn to the question of whether a “good”
representative function can nevertheless be found, first for PCWA and then for OCWA* in
general. We begin by fixing some terminology.

I Definition 13. Let A and B be instances. In the context of a given semantics, we say that:
1. B is sub-minimal (subinstance minimal) if there are no proper semantically equivalent

subinstances of B;
2. B is rfl-minimal (reflective subinstance minimal) if there are no proper semantically

equivalent reflective subinstances of B;
3. B is a least semantically equivalent (reflective) subinstance of A if B ≡ A and B is a

(reflective) subinstance of all semantically equivalent (reflective) subinstances of A;
4. B is img-minimal (image minimal) if there are no proper semantically equivalent images

of B, and finally;
5. B is a least semantically equivalent image of A if B ≡ A and for all semantically

equivalent images C of A, B is an image of C.

We show by the examples that follow that in PCWA, and hence in OCWA*, least
semantically equivalent subinstances, reflective subinstances, and images do not in general
exist, and that when they do, they need not coincide. In the examples all instances consist
of nulls only.
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I Example 14. B1 and C1 are non-isomorphic PCWA-equivalent reflective subinstances of
A1. Both B1 and C1 are sub-minimal and rfl-minimal.

A1 R
x x y
x x x
v w w
v v v
z z r
z s s
z z z

B1 R
x x y
x x x
v w w
v v v

C1 R
z z r
z s s
z z z

I Example 15. The instances B2 and C2 are non-isomorphic PCWA-equivalent images of
the instance A2. Both B2 and C2 are img-minimal.

A2 R
x x u y z
x x x x z
x x x y x
x x x x x
v p p r s
p p p p s
p p p r p
p p p p p

B2 R
p p u r z
p p p p z
v p p r s
p p p p s
p p p r p
p p p p p

C2 R
p p u y s
p p p y p
v p p r s
p p p p s
p p p r p
p p p p p

I Example 16. The instance A3 has a least PCWA-equivalent reflective subinstance, a
least PCWA-equivalent subinstance, and a least PCWA-equivalent image, consisting of the
non-isomorphic instances A3, B3, and C3, respectively:

A3 R
x x’ y y z
v’ v s t s
x v u u u
x x x x x
v v v v v

B3 R
x x’ y y z
v’ v s t s
x x x x x
v v v v v

C3 R
w x’ y y z
v’ w s t s
w w w w w

We summarize:

I Theorem 17. In PCWA (OCWA*),
1. there exists an (annotated) instance A for which there exists two non-isomorphic se-

mantically equivalent sub-minimal subinstances;
2. there exists an (annotated) instance A for which there exists two non-isomorphic se-

mantically equivalent img-minimal images; and
3. there exists an (annotated) instance A for which there exists two non-isomorphic se-

mantically equivalent rfl-minimal reflective subinstances.

6 Minimality in PCWA

Recall from Section 2.3 that a representative function for a given semantics is a function
χ : D → D which chooses a representative for each equivalence class. That is to say,
A ≡ B ⇔ χ(A) = χ(B), for all A,B ∈ D, and χ(A) ≡ A, for all A ∈ D. Again, we only
require that χ(A) is defined up to isomorphism, i.e. up to renaming of nulls. Recall further
that a representative function is subinstance minimal if χ(A) is a subinstance of A (up
to isomorphism) for all A ∈ D. Similarly, we say that a representative function is image
minimal if χ(A) is an image of A, and that it is reflective subinstance minimal if χ(A) is a
reflective subinstance of A. The canonical example is the Core function, which is a minimal
representative function for OWA in all of these three senses.
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Theorem 17 showed that there can be no minimal representative function for PCWA,
for any of these three senses of “minimal”. However, we show that there is a function
$(−) : D → Pfin(D) that assigns a finite set {E1, . . . , En} to each instance A that is
representative in the sense that A ≡PCWA B ⇔ $(A) = $(B), for all A,B ∈ D, and⋃
E∈$(A)

E ≡PCWA A, for all A ∈ A; and “minimal” in the sense that

E is a reflective subinstance of A, for all A ∈ D and all E ∈ $(A), and
E is semantically minimal in the strong sense that if C ≡PCWA E then E is a reflective
subinstance of C, for all E ∈ $(A).

Thus the members of $(A) are both sub-, img-, and rfl-minimal, in the sense of Definition 13.
Furthermore, if $(A) = {E1, . . . , En} then

[[A]]PCWA = [[E1]]CWA ∪ . . . ∪ [[En]]CWA
∪
. (1)

We propose $(−) as a form of “power core” or “multi-core” function for PCWA; giving
for each A a finite set of PCWA-minimal instances which jointly embody the PCWA-relevant
structure of A, analogously to the role that the single instance Core(A) plays in OWA. In
addition to the properties just listed, we show the following as an instance of the usefulness
of $(−). For any given instance A, the set of sub-minimal subinstances of A is of course
finite. But this set may have no overlap with the set of sub-minimal subinstances of B, even
if A and B are semantically equivalent. Thus it is, on the face of it, not obvious that the set
Min([A]PCWA) of sub-minimal members of the whole equivalence class [A]PCWA must be finite
(up to renaming of nulls). However, we show that any sub-minimal member of [A]PCWA must
be an image of

⋃
E∈$(A)E, establishing thereby that $(A) both yields a finite bound on the

size of Min([A]PCWA), and a way to compute it.
Moreover, we show in Section 6.3 that for the class of queries known as existential positive

with Boolean universal guards, the so-called certain answers can in fact be computed directly
from the elements in $(A), rather than from the larger A.

In the rest of Section 6 we fix the semantics to be PCWA, and thus leave the subscripts
implicit.

6.1 PCWA-cores
Recall that A is a core if and only if every homomorphism A → A is an isomorphism. In
analogy, we introduce the notion of PCWA-core as follows.

I Definition 18. We say that an instance A is a PCWA-core if every self-cover H ⊆
Hom(A,A) contains an isomorphism.

I Example 19. D = {R(z, z, r), R(z, z, z)} is a PCWA-core, as the only endomorphism
hitting R(z, z, r) is the identity. The core of D is {R(z, z, z)}.

Accordingly, every core is a PCWA-core. It is also evident that cores have the property that
if C is a core and A is any instance, then A and C are OWA semantically equivalent if and
only if C is a reflective subinstance of A. For PCWA-cores we have the following:

I Proposition 20. Let A ≡ B and assume that A is a PCWA-core. Then A is a reflective
subinstance of B.

Proof. Hom(B,A) ◦ Hom(A,B) is a cover so it contains an isomorphism. J
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Consequently, if two PCWA-cores are semantically equivalent, they are isomorphic.
Section 5 introduced three different notions of minimality with respect to semantic

equivalence. We relate these to each other and to the property of being a PCWA-core.

I Proposition 21. Let A be an instance. The following implications hold and are strict.
1. If A is a PCWA-core then A is sub-minimal and img-minimal.
2. If A is sub-minimal or img-minimal then it is rfl-minimal.

Proof. 1) follows from Proposition 20 and 2) is immediate.That the implications are strict
is shown in Examples 14 and 16. Specifically, C1 of Example 14 is both sub-minimal and
img-minimal, but it is not a PCWA-core. And A3 of Example 16 is rfl-minimal, but neither
sub- nor img-minimal. J

In what follows it is convenient to fix a more compact notation for atoms R(t) that occur
in an instance A. We primarily use the variable k for atoms, and write k : A for “k is an
atom of A”. If f : A→ B is a homomorphism and k = R(t) :A then f(k) = R(f(t)).

We recall the notion of “core with respect to a tuple”:

I Definition 22. Let k :A. The core of A with respect to k, denoted CA
k , is the least strict

reflective subinstance of A containing k.

The instance CA
k can be regarded as the “core of A with k frozen”, and thus is unique, up to

isomorphism. As a reflective subinstance, it comes with an injective homomorphism to A
and a strong surjection from A, which we write mk : CA

k → A and qk : A→ CA
k , respectively.

When the instance A is clear from context, we leave the superscript implicit and just write
Ck. We display the following for emphasis.

I Lemma 23. Any homomorphism h : CA
k → CA

k that fixes k must be an isomorphism.

I Definition 24. We say that two atoms k, k′ :A are endomorphism-equivalent, and write
k ∼A k′, if there exist f, g ∈ Hom(A,A) such that f(k) = k′ and g(k′) = k. We say that k :A
is (endomorphism-)maximal if “only equivalent atoms map to it”. That is, for all k′ :A and
f ∈ Hom(A,A), f(k′) = k implies that k ∼A k′. If k is maximal we write MaxA(k).

I Lemma 25. Let A be an instance, and k, k′ :A. If k ∼A k′ then Ck
∼= Ck′ .

Proof. Suppose f, g ∈ Hom(A,A) such that f(k) = k′ and g(k′) = k and consider the
diagram

Ck′ Ck

qk◦f◦mk′
--

A

Ck′

qk′

ww

A

Ck

qk

��
Ck′ Ckmm

qk′◦g◦mk

A

Ck′

::

mk′

A

Ck

ZZ

mk

A

f,g

��

The homomorphism h := (q ◦ f ◦m′) ◦ (q′ ◦ g ◦m : Ck → Ck) fixes k. So h must be an
isomorphism. By symmetry, we obtain that Ck

∼= Ck′ . J
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I Lemma 26. If k :A is maximal, then Ck is a PCWA-core.

Proof. First note that for any instance B and any set of homomorphisms H ⊆ Hom(B,B),
if H is the closure of H under composition, then: 1) H is a cover if and only if H is a
cover; and 2) H contains an isomorphism if and only if H contains an isomorphism. Let
H ⊆ Hom(Ck, Ck) be a cover, and assume without loss of generality that it is closed under
composition. Then we can find k′ : Ck and f ∈ H such that f(k′) = k. Since k is maximal
in A it is maximal in Ck, so there is a homomorphism h : Ck → Ck such that h(k) = k′. But
then f ◦ h is an isomorphism, so f must be an isomorphism as well. J

Thus the maximal atoms of an instance determine a set of reflective subinstances which
are PCWA-cores. We show that these are invariant under semantic equivalence.

I Theorem 27. Let H ⊆ Hom(A,B) and G ⊆ Hom(B,A) be covers. Let kB :B be maximal.
Then there exist h ∈ H and kA :A such that kA is maximal and h(kA) = kB. Moreover, the
homomorphism qkB

◦ h ◦mkA
: CA

kA
→ CB

kB
is an isomorphism.

Proof. First, we show that, more generally, whenever A ≡ B, it is the case that for all
f : A→ B and all k :A, if MaxB(f(k)) then MaxA(k).

For suppose g : A → A and k′ : A is such that g(k′) = k. Choose f ′ : B → A and
k′′ : B such that f ′(k′′) = k′. Then f ◦ g ◦ f ′(k′′) = f(k) so there is f ′′ : B → B such that
f ′′(f(k)) = k′′, whence g ◦ f ′ ◦ f ′′ ◦ f(k) = k′. This establishes the first claim of the theorem.

Next, let MaxA(kA), MaxB(kB), and h ∈ H such that h(kA) = kB. Chose k′ : B and
g ∈ G such that g(k′) = kA. Then f ◦ g(k′) = kB, so there exists f : B → B such that
f(kB) = k′.

CA
kA

CB
kB

qkB
◦h◦mkA

++

A

CA
kA

qkA

����

A B

h

** B

CB
kB

qkB

����
CA

kA
CB

kB
kk

qkA
◦g◦f◦mkB

A

CA
kA

FF

mkA

) I

A Bjj
g B

CB
kB

FF

mkB

) I

B

f

��

Then qkB
◦ h ◦mkA

(kA) = kB and qkA
◦ g ◦ f ◦mkB

(kB) = kA, whence their composites are
isomorphisms. So they must themselves be isomorphisms. J

Finally, we note the following property of PCWA-cores which will be used in the next section.

I Lemma 28. An instance A is a PCWA-core if and only if there exists k : A with the
property that for all f ∈ Hom(A,A), if k is in the image of f then f is an isomorphism.

Proof. Suppose A is a PCWA core. For each maximal k, let fk : A→ A be the composition
of qk : A→ Ck and mk : Ck → A. Then Hom(A,A) ◦ {fk |MaxA(k)} is covering, so one of
its homomorphisms, and hence one of the fks, must be an isomorphism. The converse is
immediate. J
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6.2 PCWA Multicores
Consider the family {Ck |MaxA(k)} of (strict) reflective subinstances of A. From the definition
of maximality we have that for any atom t : A there exists a maximal atom k : A and an
endomorphism h : A→ A such that f(k) = t. Thus the family {Ck |MaxA(k)} jointly covers
A. Clearly, if we successively remove any member of {Ck |MaxA(k)} that is a reflective
subinstance of another member, we will retain a subset that still jointly covers A. Thus we
can summarize what we have so far with the following.

I Theorem 29.
1. For each A ∈ D there exists a finite set $(A) ⊆ D such that:

a. for all E ∈ $(A), E ∼= CA
k for some maximal k : A;

b. for all maximal k : A, there exists E ∈ $(A) such that CA
k is a reflective subinstance

of E; and
c. for all E,E′ ∈ $(A) if E is a reflective subinstance of E′ then E = E′.

2. for given A ∈ D the set $(A) is unique with properties 1.(a)–1.(c), up to isomorphisms
of its members. That is to say, if X is another set satisfying properties 1.(a)–1.(c), then
there exists a bijection f : $(A)→ X such that f(E) ∼= E.

3. A ≡ B if and only if $(A) = $(B), up to isomorphism of the members.

We refer to $(A) as the multicore of A. The multicore of an instance A is only defined
up to isomorphisms of its members, so we can assume without loss whenever it is convenient
that no nulls are shared between those members; i.e. that for all E,E′ ∈ $(A) we have
dom(E) ∩ dom(E′) ⊆ Cons. We also regard multicores as equal when their members are
isomorphic.

Before proceeding, we characterize when a set of instances is (up to isomorphism) $(A)
for some A. We need the following lemma.

I Lemma 30. Let A be an instance and B a reflective subinstance of A. Let k : A and
suppose that k is maximal. Then Ck is a reflective subinstance of B if and only if there exists
a homomorphism f : B → Ck and k′ : B such that f(k′) = k.

Proof. The left-to-right is immediate. Assume that there exists a homomorphism f : B → Ck

and k′ : B such that f(k′) = k. Since k is maximal in A there exists a homomorphism
g : Ck → B such that g(k) = k′. But then f ◦ g fixes k, so it is an isomorphism. J

I Theorem 31. Let F = {C1, · · · , Cn} be a family of instances (with no nulls in common).
The following are equivalent:
1. There exists an instance A such that F = $(A) (up to isomorphism of the members).
2. a. Ci and Cj have the same core (up to isomorphism) for all i, j ≤ n, and

b. there exists a selection of atoms ki : Ci, 1 ≤ i ≤ n, satisfying the condition that if
there exists h : Cj → Ci such that ki is in the image of h, then i = j and h is an
isomorphism.

Proof. Assume F = $(A). Then we can regard $(A) as {Ck | k ∈ I} for a set I of maximal
k : A. Firstly, the core of A is the core of Ck for all k ∈ I. Secondly, by Lemma 30, if
h : Cj → Ck such that k is in the image of h then Ck is a reflective subinstance of Cj , whence
by the definition of $(A) we have that j = k and h is an isomorphism.

Assume conditions in a) and b) are satisfied. b) ensures, together with Lemma 28, that
Ci is a PCWA core for all i ∈ I. Let A :=

⋃
k∈I

Ck (relying on the assumption that the

members of F have no nulls in common). Since the Cis share the same core, Ci is a reflective
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subinstance of A for all i ∈ I. Specifically, mi : Ci → A is the inclusion and qi : A → Ci

is the homomorphism induced by {fj,i : Cj → Ci | j ∈ I} where fj,i sends Cj to the core if
j 6= i, and fi,i is the identity. Next, to show that ci is maximal in A for all i ∈ I: suppose
there exists a homomorphism h : A→ A and a t : A such that h(t) = ci. Then t is contained
in some Cj . By composing

A Ci
qi //A A

h //Cj A
mj //

and by Lemma 30, we see that i = j and (qi ◦ h ◦ mi) is an isomorphism on Ci. Hence
mi ◦ (qi ◦ h ◦mi)−1 ◦ qi(ci) = t. Finally, if k : A is maximal, then k : Ci for some i ∈ I,
whence Ck is a reflective subinstance of Ci. J

Let χp(A) be the union of all members of the multicore, where these are chosen so as to
have no nulls in common, χp(A) :=

⋃
E∈$(A)

E. It is now easy to see that χp(A) ≡ A, so that

χp(−) is a representative function, in the sense of Section 2.3. χp(A) need not be minimal
either in terms of subinstances or images. However, an instance is sub-minimal only if it is
an image of χp(A), as we show by way of the following lemma.

I Lemma 32. Let A ∈ D. There exists a homomorphism m : χp(A) → A such that
χp(A) ≡ m(χp(A)) ≡ A.

Proof. We can regard $(A) as a set {CA
k | k ∈ S} for a suitable set S. For each k ∈ S

we have an inclusion ik : Ck → A, and a strong surjection sk : A → Ck. The family
{ik : Ck → A | k ∈ S} determines a homomorphism m : χp(A)→ A. For each k the inclusion

ik : Ck → A factors through m(χp(A)) and the composite Ck
ik //m(χp(A)) ⊆ A sk // Ck

is the identity. Thus χp(A) ≡ m(χp(A)) ≡ A. J

I Theorem 33. An instance A is sub-minimal only if there exists a strongly surjective
homomorphism m : χp(A)→ A.

I Corollary 34. Identifying isomorphic instances, the number of sub-minimal instances that
are semantically equivalent to A is bounded by the number of (semantically equivalent) images
of χp(A).

I Remark 35. We note that there will usually be proper semantically equivalent images
of χp(A). In particular, this always exists if the core of A has a null in it and $(A) has
more than one member. The reason is that members of $(A) can be “glued” along common
reflective subinstances; such subinstances induce a filter which yields a semantically equivalent
image of χp(A). Observe that if $(A) has a single member, then that member is equivalent
to A, and thus [A] has a least element both in terms of subinstances, reflective subinstances,
and images.

I Example 36. Consider Example 15. $(A2) consists of the two PCWA-cores Ck1 and Ck5 .
In addition to the core, Ck1 and Ck5 have the reflective subinstances V and W in common.

Ck1 R
k1 x x u y z
k2 x x x x z
k3 x x x y x
k4 x x x x x

Ck5 R
k5 v p p r s
k6 p p p p s
k7 p p p r p
k8 p p p p p

V R
x x x y x
x x x x x

W R
p p p p s
p p p p p
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The filter induced on Ck1 ∪ Ck5 = A2 by V identifies x with p and y with r. If we write out
the resulting image by overwriting x with p and y with r, we obtain B2 of Example 15. It
follows that B2 is a semantically equivalent image of A2. Similarly, from W we see that we
can produce a semantically equivalent image of A2 by overwriting x with p and z with s.
This results in C2.

6.3 Naïve Evaluation of Queries
Before proceeding to the study of minimality for OCWA* in general, we make an example
remark on the use of $(−) in the evaluation of queries. The motivation is, briefly, that it
may be significantly cheaper to evaluate a query separately on the smaller instances in $(A)
than on all of A.

Recall from e.g. [12] that that the certain answers of a query Q on an instance A
under a semantics [[−]] is the intersection of the answers obtained on [[A]]: certain(Q,A) :=⋂
{Q(I) | I ∈ [[A]]}. The naïve evaluation of Q on A is the result of removing all tuples with

nulls from Q(A). Naïve evaluation is said to work for Q if it produces precisely the certain
answers.

It is shown in [12] that naïve evaluation works for the class ∃Pos + ∀Gbool of existential
positive queries with Boolean universal guards with respect to PCWA. Here ∃Pos + ∀Gbool

is the least class of formulas containing all atomic formulas, including equality statements,
and closed under conjunction; disjunction; existential quantification; and the following rule:
if α is an atomic formula, φ a formula in ∃Pos + ∀Gbool, and x a list of distinct variables
containing all free variables in both α and φ, then ∀x(α→ φ) is a formula in ∃Pos + ∀Gbool.

I Theorem 37. Let Q be a query of arity n in ∃Pos + ∀Gbool. Then certain(Q,A) =⋂
{Q(E) | E ∈ $(A)} ∩ Constn.

Proof. The inclusion from left to right follows from the fact that naïve evaluation works
for Q, that Q is preserved under strong surjections, and that each E ∈ $(A) is an image
of A. For the inclusion from right to left, it is sufficient to show that if a is a tuple of
constants in

⋂
{Q(E) | E ∈ $(A)} then a ∈ Q(I) for all I ∈ ∪E∈$(A)[[E]]CWA

∪
. But this is

a straightforward modification of the proof that formulas in ∃Pos + ∀Gbool are preserved
under unions of strong surjections (Lemma 10.12) in [12]. J

7 Minimality in OCWA*

We return now to OCWA* in general and apply our results from the special case of the
previous section. Recall from Section 4 that in order to determine whether A[X] ≤OCWA∗ B[Y]
we have to look for an RCN-cover from B[Y] to Alength(Y)+1[X]. The reason is that RCN-
covers do not compose; it is insufficient just to know that we have an RCN-cover from B[Y]
to A[X]. This fact complicates the study of minimality for OCWA*. However, note that if
there exists an RCN-cover from B[Y] to A[X] which sends the closed nulls Y to closed terms
in A[X] – i.e. either to X or to constants – then, because such covers do compose, we have
A[X] ≤OCWA∗ B[Y]. But, on the face of it, we cannot restrict to such “closedness-preserving”
covers. Consider the following example.

I Example 38. The following annotated instances are all semantically equivalent.

A[V, W ] = {R(x, y), R(V, W )} A[V, w] = {R(x, y), R(V, w)} A[v, w] = {R(x, y), R(v, w)}
A[v, W ] = {R(x, y), R(v, W )} B[] = {R(x, y)}
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Although A[V,W ] and B[] are equivalent, there is no RCN-cover from A[V,W ] to B[] that
satisfies the restriction that closed nulls should be sent to closed terms, since everything in
B[] is open. It is the (ordinary) RCN-cover to B3[] that witnesses that B[] ≤OCWA∗ A[V,W ].
Nevertheless, Example 38 hints at a solution to this; the problem with A[V,W ], it can be
said, is that it has closed nulls that could equivalently have been annotated as open. Once we
re-annotate to A[v, w], the equivalence with B[] is witnessed by a cover to B[]. We show in
this section that if we restrict to annotated instances where no closed null can be equivalently
replaced by an open null, then any semantic equivalence is witnessed by RCN-covers which
preserve closed nulls. These closed nulls can then, essentially, be treated as constants, so
that the results of Section 6 can be applied.

We note, first, when an annotated instance is semantically equivalent to an instance
without closed nulls. Our fixed semantics in this section is OCWA*.

I Proposition 39. Let A[X] be an annotated instance. The following are equivalent:
1. A[X] is semantically equivalent to an instance B[] in which all nulls are open.
2. [[A[X]]] is closed under unions.
3. A[X] is semantically equivalent to the instance A[x] obtained by changing the annotation

of A[X] so that all nulls are open.

Proof. For 2. ⇒ 3., note that [[A[X]]] ⊆ [[A[x]]] is clear; and it is also clear that [[A[x]]]CWA ⊆
[[A[X]]]. But then, since [[A[X]]] is closed under unions, [[A[x]]] ⊆ [[A[X]]]. J

I Definition 40. Let A[X,Y] be an annotated instance. We say that X is annotation
redundant (relative to Y) if A[X,Y] ≡ A[x,Y] i.e. if changing the annotation of X to “open”
yields an equivalent instance. We say that an annotated incomplete instance is annotation
minimal is no subset of its closed nulls are annotation redundant (with respect to the rest).

I Lemma 41. Let A[X,Y] be an annotated incomplete instance and c a list of the same
length as Y of distinct constants not occurring in A . Then X is redundant with respect
to Yif and only if for all finite lists of instances I1, . . . , Ik ∈ [[A[X, c]]] it is the case that
I1 ∪ . . . ∪ Ik ∈ [[A[X,Y]]].

Proof. If : We must show that A[X,Y] ≡ A[x,Y]. Let m ≥ 1 be given, and consider
Am[x,Y]. Let J be a freeze of Am[x,Y] where Y is replaced by c and the other nulls by
fresh constants. Then J = I1 ∪ . . . ∪ Im where I1, . . . , Im ∈ [[A[X, c]]]. So J ∈ A[X,Y], by
assumption, and then A[X,Y] ≡ A[x,Y] by Theorem 12.

Only if : If I1, . . . , Ik ∈ [[A[X, c]]] then I1, . . . , Ik ∈ [[A[x, c]]], and then, since the latter is
closed under unions, I1 ∪ . . . ∪ Ik ∈ [[A[x, c]] ⊆ [[A[x,Y]]] = [[A[X,Y]]]. J

The following theorem displays the main property of annotation-minimal instances. The
proof is rather long and is omitted for reasons of space.

I Theorem 42. Let A[X] and B[Y] be two annotation-minimal instances such that A[X] ≡
B[Y]. Then for all strong surjections f : A∞[X]� B∞[Y] it is the case that f restricts to
a bijection f �X: X→ Y on the sets of closed nulls.

I Corollary 43. Let A[X] and B[Y] be two annotation-minimal instances. Then A[X] ≡ B[Y]
if and only if there exists RCN-covers {fi : A[X]→ B[Y]|1 ≤ i ≤ n} and {gj : B[Y]→ A[X]|
1 ≤ j ≤ m} such that fi restricts to a bijection fi �X: X → Y and gj to a bijection gj �Y:
Y→ X.
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I Corollary 44. Let A[X] and B[Y] be two annotation-minimal instances. Then A[X] ≡ B[Y]
if and only if X is of the same length as Y and there exists injective functions f : X→ Const
and g : Y → Const such that A[f(X)/X] ≡PCWA B[g(Y)/Y], where f(X) and g(Y) are
disjoint from the constants in A[X] and B[Y].

That is to say, A[X] and B[Y] are equivalent if there is a way to “freeze” the closed nulls so
that they become PCWA-equivalent.

Now, let A[X] be an annotation-minimal instance. Let c be a list of fresh constants, of the
same length as X. Then we can compute$(A[c]) = {E1, . . . , En} and χp(A[c]) = E1∪. . .∪En,
as in Section 6, and then substitute X back in for c. This yields a set $(A[X]) :=
{E1[X], . . . , En[X]} of annotated instances and an annotated instance χp(A)[X] := E1[X] ∪
. . .∪En[X]. Since χp(A)[X] is semantically equivalent to A[X] and has the same (number of)
closed nulls, χp(A)[X] is annotation-minimal. Thus we have a function $(−) from annotation
minimal annotated instances to finite sets of annotated instances, and χp(−) from annotation
minimal instances to annotation minimal instances. As in Section 6, we identify $(A[X]) and
$(B[Y]) if they “are the same up to renaming of nulls”, but in the presence of closed nulls
we have to add a condition to what this means: we say that $(A[X]) = $(B[Y]) if there is
a bijection of sets F between them; an isomorphism fE : E → F (E) for each E ∈ $(A[X]);
and for all E,E′ ∈ $(A[X]), the homomorphisms fE and fE′ restrict to one and the same
bijection of sets X→ Y. We now have:

I Theorem 45. Let A[X], B[Y] be an annotation-minimal instances. Then:
1. A[X] ≡ B[Y] if and only if $(A[X]) = $(B[Y]);
2. A[X] ≡ χp(A[X]), and χp(A[X]) is annotation-minimal;
3. if E[X] ∈ $(A[X]) and A[X] ≡ B[Y] then E[X] is a reflective subinstance of B[Y] (up

to annotation-preserving isomorphism); and
4. if A[X] ≡ B[Y] then B[Y] is sub-minimal only if there is a strongly surjective homo-

morphism
χp(A)[X]� B[Y] restricting to a bijection X→ Y.

Accordingly, $(−) is representative in the sense of (1) and (2) and minimal in the sense
of (3). χp(−) bounds the number of sub-minimal equivalent instances by (4). $(−) (and
χp(−)) can be extended to all annotated instances by first choosing an equivalent annotation
minimal instance and then applying $(−), and (1) ensures that the result does not depend
on the choice.

8 Discussion and Conclusion

In this work we study the problems of implication, equivalence, and minimality (and con-
sequently cores) in mixed open and closed worlds. These problems have particular importance
in the context of date exchange and remain open for several variants of mixed worlds. In
particular, we adress these problems for the Closed Powerset semantics and the OCWA
semantics. To this end, we define a novel semantics for mixed worlds that we called OCWA*
and subsumes both Closed Powerset and OCWA. Our semantics is introduced with the help
of homomorphic covers and it is characterised in terms of such covers. For the minimization
problem we presented negative results for several common notions of minimality. Then, we
showed that one can find cores using a different notion of minimality.

Observe that homomorphic covers have been already used in several related contexts.
In [15], Grahne et al. uses homomorphic covers in the context of source instance recovery
in data exchange. In [6], Chaudhuri and Vardi give the existence of a cover as a sufficient
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condition for conjunctive query containment under bag semantics. In [22], Kostylev et al. use
various notions of cover to study annotated query containment. On the other hand, Knauer
and Ueckerdt [20] apply this notion to coverage relations between graphs.

In our opinion several more data management scenarios can benefit from the concept
of homomorphic cover and the machinery that we have developed for it. For instance, two
conjunctive queries whose relational structures cover each other retrieve the same tuples
from every relation of any database instance, a fact of potential relevance in e.g. data privacy
settings. In the field of constraint programming, this property is closely connected to the
notion of a minimal constraint network [14], and may have applications there. For another
example, treating one conjunctive query as a view, it can be used to completely rewrite
another if there exists a cover from the view (cf. [23]). Thus in this setting, cover-equivalence
corresponds to mutual complete rewritability.
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Abstract
The present paper investigates the dynamic complexity of document spanners, a formal framework
for information extraction introduced by Fagin, Kimelfeld, Reiss, and Vansummeren (JACM 2015).
We first look at the class of regular spanners and prove that any regular spanner can be maintained
in the dynamic complexity class DynPROP. This result follows from work done previously on the
dynamic complexity of formal languages by Gelade, Marquardt, and Schwentick (TOCL 2012).

To investigate core spanners we use SpLog, a concatenation logic that exactly captures core
spanners. We show that the dynamic complexity class DynCQ is more expressive than SpLog and
therefore can maintain any core spanner. This result is then extended to show that DynFO can
maintain any generalized core spanner and that DynFO is more powerful than SpLog with negation.
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1 Introduction

Document spanners where introduced by Fagin, Kimelfeld, Reiss, and Vansummeren [4]
as a formalization of IBM’s information retrieval language AQL. Essentially, they can be
explained as a formalism of querying text like one would query a relational database.

The universe of document spanners are spans, intervals of positions in a text. For example,
if one searches for a word inside a larger text, every match can be understood as being one
span inside the text. Spanners generalize this by mapping an input text to a table of spans.

More specifically, the process can be described as follows. First, primitive spanners,
so-called extractors, are used to convert the input text into tables of spans. These extractors
can be assumed to be regex formulas, which are regular expressions with variables. The
tables can then be combined using relational algebra. As one might expect, different types
of spanners allow different choices of operators. In this paper, we deal with three types of
spanners that were introduced by Fagin et al. [4]. Regular spanners, currently the most
widely studied in literature, allow the operators ∪ (union), π (projection), and ./ (join).
Core spanners extend regular spanners by allowing the string equality selection operator ξ=,
which allows one to check whether spans describe the same string (but potentially at different
places). Generalized core spanners then extend these with the set difference \.
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11:2 Dynamic Complexity of Document Spanners

In the last few years, various aspects of spanners have received considerable attention
(see our related work section). The main focus was on evaluation and enumeration of results.
But very few papers have considered aspects of maintaining the results of spanners under
updates on the input text, and these have only focused on regular spanners.

In this paper, we examine the complexity of this problem from a dynamic complexity point
of view. The classic dynamic complexity setting was independently introduced by Dong, Su,
and Topor [3] and Patnaik and Immerman [16]. The “default setting” of dynamic complexity
assumes a big relational database that is constantly changing (where the updates consist of
adding or removing tuples from relations). The goal is then to maintain a set of auxiliary
relations that can be updated with “little effort”. As this is a descriptive complexity point of
view, little effort is defined as using only first-order formulas. The class of all problems that
can be maintained in this way is called DynFO.

A more restricted setting is DynPROP, where only quantifier-free formulas can be used. As
one might expect, restricting the update formulas leads to various classes between DynPROP
and DynFO. Of particular interest to this paper are DynCQ and DynUCQ, where the update
formulas are conjuctive queries or unions of conjunctive queries. As shown by Zeume and
Schwentick [21], DynCQ = DynUCQ holds; but it is open whether these are proper subclasses
of DynFO (see Zeume [20] for detailed background information).

As document spanners are defined on words, we adapt the dynamic complexity setting
for formal languages by Gelade, Marquardt, and Schwentick [10]. This interprets a word
structure as a linear order (of positions in the word) with unary predicates for every terminal
symbol. To account for the dynamic complexity setting, positions can be undefined, and the
update operations are setting a position to a symbol (an insertion or a symbol change) and
resetting a position to undefined (deleting a symbol).

We show that in this setting, regular spanners can be maintained in DynPROP, core
spanners in DynUCQ (and, hence, by [21] in DynCQ), and generalized core spanners in DynFO.
Here, the second of these results is the main result of the present paper (the third follows
directly from it, and the first almost immediately from [10]). To achieve it, we do not convert
core spanners directly, but use the concatenation logic SpLog as an intermediate model.

SpLog (short for spanner logic) was introduced by Freydenberger [6] and has the same
expressive power as core spanners (under some caveats that we discuss in Section 2.2). An
additional benefit of the main result is that SpLog can be used to simplify proofs that
languages or word relations can be maintained in DynCQ.

Related work. Recently, algorithmic and complexity theoretic aspects of evaluation and
enumeration of spanners have received a considerable amount of attention, see [1, 5, 7, 8,
6, 12, 13, 14, 17, 18]. But these almost exclusively consider spanners in a static setting.
To the authors’ knowledge, the only articles to also examine updates are Losemann [12]
and Amarilli, Bourhis, Mengel, and Niewerth [1]. Both do not take a DynFO point of view;
moreover, both only deal with regular spanners and there is no obvious way to also include
the string equalities that are required for core spanners and generalized core spanners.

Doleschal, Kimelfeld, Martens, Nahshon, and Neven [2] introduce the notion of split-
correctness. Without going into details, this examines spanners for which it is possible to
split the input word into subwords on which the spanner is then evaluated. This can be
viewed as a special case of update, but again was restricted to regular spanners.
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Gelade, Marquardt, and Schwentick [10] examined the dynamic complexity of formal
languages. Their result that DynPROP captures the regular languages is the basis for Propo-
sition 3.1 in the current paper. While they also established that every context free language
is in DynFO and that every Dyck-language is in DynQF (DynPROP with auxiliary functions),
they did not examine DynUCQ and DynCQ, which the present paper does.

Muñoz, Vortmeier, and Zeume [15] studied the dynamic complexity in a graph database
setting, namely for conjunctive regular path queries (CRQPs) and extended conjunctive regular
path queries (ECRPQs). In particular, Theorem 14 in [15] states that on acyclic graphs, even
a generalization of ECRPQs can be maintained in DynFO. Fagin et al. [4] established that on
marked paths (a certain type of graph) core spanners have the same expressive powers as a
CRPQs with string equalities (a fragment of ECRPQs). While marked paths are not acyclic
in a strict sense, Section 7 of [6] proposes a variant of this model that could be directly
combined with the construction from [15]. Thus, one could combine these results and observe
that core spanners can be maintained in DynFO. In contrast to this, the present paper allows
us to lower the upper bound to DynCQ. Moreover, if one is satisfied with DynUCQ, the
constructions in the present paper also guarantee that all auxiliary relations only contain
active nodes (nodes which carry a letter) of the word-structure, the only exception being the
special case where the word-structure represents the empty string.

Structure of the paper. Section 2 contains the central definitions. Section 3 establishes
dynamic upper bounds for the three central classes of document spanners (regular, core, and
generalized core spanners), in particular the main result (Theorem 3.13). Section 4 further
examines the relative expressive powers of core spanners and DynCQ. Section 5 concludes the
paper. Some of the longer proofs have been omitted, see the full version for those proofs [9].

2 Preliminaries

Let N := {0, 1, 2 . . . } and let N+ := N \ {0}, where \ denotes set difference. We write |S|
to represent the cardinality of a set S. We use ⊆ for subset and ⊂ for proper subset. We
denote the powerset of S by P(S). Let ∅ be the empty set. If R is a relation of arity 0, then
R is the empty set, or R is the set containing the empty tuple. We define [n] := {1, 2 . . . n}.

Let A be an alphabet1. We write |w| to denote the length of a word w ∈ A∗. The number
of occurrences of some a ∈ A in a word w ∈ A∗ is represented by |w|a. We use ε to denote
the empty word. Given two words u ∈ A∗ and v ∈ A∗, we write u · v, or simply uv for
concatenation. If w = v1uv2 where v1 ∈ A∗ and v2 ∈ A∗, then u is a subword of w. We
use v for subword and @ for the proper subword relation. If u is not a subword of w, we
write u 6v w. Let Σ be a finite alphabet of so-called terminal symbols. Let Ξ be an infinite
set of so-called variables, which is disjoint from Σ. Let L(A) (or L(α)) denote the language
of a nondeterministic finite automaton (NFA) A (or of a regular expression α).

The rest of this section is structured as follows: First, we define various types of document
spanners in Section 2.1 and equivalent logics (Section 2.2). After that, we define dynamic
complexity, with a particular focus on its application to document spanners (Section 2.3).

1 We use A here as a generic alphabet since we look at both the alphabet of terminal symbols and the
alphabet of variables, and the concepts defined here apply to both.
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2.1 Document Spanners and Spanner Algebra
In this section, we introduce document spanners and their representations. We begin with
primitive spanners (Section 2.1.1) and then combine these to spanner algebras (Section 2.1.2).

2.1.1 Primitive Spanner Representations
Let w := a1 · a2 · · · an be a word, where n ≥ 0 and a1, . . . , an ∈ Σ. A span of w is an interval
[i, j〉 with 1 ≤ i ≤ j ≤ n + 1 and i, j ≥ 0. Given a span [i, j〉 of a word w, we define the
subword w[i,j〉 as ai · ai+1 · · · aj−1.

I Example 2.1. Consider the word w := banana. As |w| = 6, the spans of w are the [i, j〉
with 1 ≤ i ≤ j ≤ 7. For example, we have w[1,2〉 = b and w[2,4〉 = w[4,6〉 = an. Although
both spans describe the same subword an, the two occurrences are at different locations
(and, thus, at different spans). Analogously, we have w[1,1〉 = w[2,2〉 = · · · = w[7,7〉 = ε, but
[i, i〉 6= [i′, i′〉 for all distinct 1 ≤ i, i′ ≤ 7.

Let V ⊆ Ξ and w ∈ Σ∗. A (V,w)-tuple is a function µ that maps each x ∈ V to a
span µ(x) of w. A set of (V,w)-tuples is called a (V,w)-relation. A spanner P is a function
that maps every w ∈ Σ∗ to a (V,w)-relation P (w). We write SVars (P ) to denote the set of
variables V of a spanner P . Two spanners P1 and P2 are equivalent if SVars (P1) = SVars (P2)
and P1(w) = P2(w) holds for all w ∈ Σ∗.

In the usual applications of spans and spanners, the word w is some type of text. Hence,
we can view a spanner P as mapping an input text w to a (V,w)-relation P (w), which can
be understood as a table of spans of w.

To define spanners, we use two types of primitive spanner representations, the so-called
regex formulas and variable-set automata. Both extend classical mechanisms for regular
languages (regular expressions and NFAs, respectively) with variables.

Regex formulas: The syntax of regex formulas is defined by the following α := ∅ | ε | a |
(α ∨ α) | (α · α) | (α)∗ | x{α}, where a ∈ Σ and x ∈ Ξ. We use α+ to denote α · α∗.

Like [6], we define the semantics of regex formulas using two step-semantics with ref-words
(originally introduced by Schmid [19] in a different context). A ref-word is a word over the
extended alphabet (Σ∪Γ) where Γ := {`x,ax | x ∈ Ξ}. The symbols `x and ax represent the
beginning and end of the span for the variable x. The first step in the definition of semantics
is treating each regex formula α as generators of languages of ref-words R(α) ⊆ (Σ ∪ Γ)∗,
which is defined by R(∅) := ∅, R(a) := {a} where a ∈ Σ∪{ε}, R(α1 ∨α2) := R(α1)∪R(α2),
R(α1 · α2) := R(α1) · R(α2), R(α∗) := R(α)∗, and R(x{α}) := `xR(α)ax.

Let SVars (α) be the set of all x ∈ Ξ such that x{} occurs somewhere in α. A ref-word
r ∈ R(α) is valid if for all x ∈ SVars (α), we have that |r|`x = 1. We denote the set of valid
ref-words in R(α) as Ref(α) and say that a regex formula is functional if R(α) = Ref(α).
We write RGX for the set of all functional regex formulas. By definition, for every α ∈ RGX,
every r ∈ Ref(α), and every x ∈ SVars (α), there is a unique factorization r = r1 `x r2 ax r3.

This allows us to define the second step of the semantics, which turns such a factorization
for some variable x into a span µ(x). To this end, we define a morphism clr : (Σ ∪ Γ)∗ → Σ∗
by clr(a) := a for a ∈ Σ and clr(g) = ε for all g ∈ Γ. For a factorization r = r1 `x r2 ax r3,
clr(r1) is the substring of w that appears before µ(x) and clr(r2) is the substring wµ(x).

We use this for the definition of the semantics as follows: For α ∈ RGX and w ∈ Σ∗, let
V := SVars (α) and (more importantly) Ref(α,w) := {r ∈ Ref(α) | clr(r) = w}.
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Every r ∈ Ref(α,w) defines a (V,w)-tuple µr in the following way: For every x ∈ SVars (α),
we use the unique factorization r = r1`xr2axr3 to define µr(x) := [|clr(r1)|+1, |clr(r1r2)|+1〉.
The spanner JαK is then defined by JαK(w) := {µr | r ∈ Ref(α,w)} for all w ∈ Σ∗.

Variable-set automata: Variable-set automata (short: vset-automata) are NFAs that may
use variable operations `x and ax as transitions. More formally, let V ⊂ Ξ be a finite set
of variables. A variable-set automaton over Σ with variables V is a tuple A = (Q, q0, qf , δ),
where Q is the set of states, q0 ∈ Q is the initial state, qf ∈ Q is the accepting state, and
δ : Q× (Σ ∪ {ε} ∪ ΓV )→ P(Q) is the transition function with ΓV := {`x,ax | x ∈ V }.

We define the semantics using a two-step approach analogous to the semantic definition
of regex formulas. Firstly, we treat A as an NFA that defines the ref-language defined by
R(A) := {r ∈ (Σ ∪ ΓV )∗ | qf ∈ δ∗(q0, r)}, where the function δ∗ : Q× (Σ ∪ ΓV )→ P(Q) is
defined such that for all p, q ∈ Q and r ∈ (Σ ∪ ΓV )∗, q ∈ δ∗(p, r) if and only if there exists a
path in A from p to q with the label r.

Secondly, let SVars (A) be the set of x ∈ V such that `x or ax appears in A. A ref-word
r ∈ R(A) is valid if for every x ∈ SVars (A), |r|`x = |r|ax = 1, and `x always occurs to the
left of ax. Then Ref(A), Ref(A,w) and JAK are defined analogously to regex formulas. We
denote the set of all vset-automata using VAset. As for regex formulas, a vset-automaton
A ∈ VAset is called functional if R(A) = Ref(A).

I Example 2.2. We define the functional regex formula α := Σ∗ · x{(wine) ∨ (cake)} · Σ∗.
We also define the functional vset-automaton A as follows:

Σ
`x

w

i n
e

c

a k
e

ax

Σ

For all w ∈ Σ∗, we have that JαK(w) = JAK(w) contains exactly those ({x}, w)-tuples µ that
have wµ(x) = wine or wµ(x) = cake.

2.1.2 Spanner Algebra
We now introduce an algebra on spanners in order to construct more complex spanners.

I Definition 2.3. Two spanners P1 and P2 are compatible if SVars (P1) = SVars (P2). We
define the following algebraic operators for all spanners P, P1, P2:

If P1 and P2 are compatible, their union (P1 ∪ P2) and their difference (P1 \ P2) are
defined by (P1 ∪ P2)(w) := P1(w) ∪ P2(w) and (P1 \ P2)(w) := P1(w) \ P2(w).
The projection πY P for Y ⊆ SVars (P ) is defined by πY P (w) := P |Y (w), where P |Y (w)
is the restriction of all µ ∈ P (w) to Y .
The natural join P1 ./ P2 is obtained by defining each (P1 ./ P2)(w) as the set of all
(V1 ∪ V2, w)-tuples µ for which there exists µ1 ∈ P1(w) and µ2 ∈ P2(w) with µ|V1(w) =
µ1(w) and µ|V2(w) = µ2(w), where Vi := SVars (Pi) for i ∈ {1, 2}.
For every k-ary relation R ⊆ (Σ∗)k and variables x1, . . . , xk ∈ SVars (P ), the selection
ξRx1...xk

P is defined by ξRx1...xk
P (w) := {µ ∈ P (w) | (wµ(x1), . . . , wµ(xk)) ∈ R} for w ∈ Σ∗.

Let SVars (P1 ∪ P2) := SVars (P1 \ P2) := SVars (P1) = SVars (P2), SVars (πY P ) := Y ,
SVars (P1 ./ P2) := SVars (P1) ∪ SVars (P2), and SVars

(
ξRx1...xk

)
:= SVars (P ).
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Note that the relations R in the selection are usually infinite; and they are never considered
part of the input.

Let O be a spanner algebra and let C be a class of primitive spanner representations, then
we use CO to denote the set of all spanner representations that can be constructed by repeated
combinations of the symbols for the operators from O with the spanner representation from C.
We denote the closure of JCK under the spanner operators O as JCOK.

I Example 2.4. Let α1 := Σ∗x{Σ∗}Σ∗y{Σ∗}Σ∗ and α2 := Σ∗ ·x{(wine)∨(cake)}·Σ∗ (recall
Example 2.2). We combine the two regex formulas into a core spanner P := πxξ

=
x,y(α1 ./ α2).

Then JP K(w) contains all ({x}, w)-tuples µ such that wµ(x) is an occurrence of wine or cake
in w that is followed by another occurrence of the same word.

Like Fagin et al. [4], we are mostly concerned with string equality selections ξ=. Follow-
ing [4, 18], we focus on the class of regular spanners JRGXregK, the class of core spanners2
JRGXcoreK and the class of generalized core spanners JRGXcore∪{\}K, where reg := {π,∪, ./}
and core := {π, ξ=,∪, ./}. As shown in [4], we have

JRGXregK = JVAreg
set K = JVAsetK ⊂ JRGXcoreK = JVAcore

set K ⊂ JRGXcore∪{\}K = JVAcore∪{\}
set K.

In other words, there is a proper hierarchy of regular, core, and generalized core spanners;
and for each of the classes, we can choose regex formulas or vset-automata as primitive
spanner representations. As shown in [6], functional vset-automata have the same expressive
power as vset-automata in general. The size difference can be exponential, but this does not
matter for the purpose of the present paper.

2.2 Spanner Logic
In this section, we define SpLog (spanner logic) and relate it to spanners. SpLog is a fragment
of ECreg, the existential theory of concatenation with regular constraints (a logic that is built
around the concatenation operator). It was introduced by Freydenberger [6] and has the
same expressive power as core spanners; and conversions between both models are possible
in polynomial time. To define SpLog, we first introduce word equations.

A pattern α is a word from (Σ ∪ Ξ)∗. In other words, patterns may contain variables and
terminal symbol. A word equation is a pair of patterns (ηL, ηR), which are called the left and
right side of the equation, respectively. We usually write a word equation as ηL =̇ ηR. The
set of all variables in a pattern α is denoted by var(α). This is extended to word equations
η = (ηL, ηR) by var(η) := var(ηL) ∪ var(ηR).

A pattern substitution is a morphism σ : (Σ ∪ Ξ)∗ → Σ∗ such that σ(a) = a holds for all
a ∈ Σ. As every substitution σ is a morphism, we have σ(α1 · α2) = σ(α1) · σ(α2) for all
patterns α1 and α2. Hence, to define σ, it suffices to define σ(x) ∈ Σ∗ for all x ∈ Ξ.

The main idea of SpLog is choosing a special main variable W that shall correspond to
the input string of a spanner. SpLog is then an existential-positive logic over words, where
the atoms are regular predicates or word equations of the form W =̇ ηR. Formally, we define
syntax and semantics as follows:

I Definition 2.5. Let W ∈ Ξ. Then SpLog(W), the set of all SpLog-formulas with main
variable W, is defined recursively as containing the following formulas:
B1. (W =̇ ηR) for every ηR ∈ (Ξ ∪ Σ)∗.

2 As this class captures the core functionality of SystemT.



D.D. Freydenberger and S.M. Thompson 11:7

R1. (ϕ1 ∧ ϕ2) for all ϕ1, ϕ2 ∈ SpLog(W).
R2. (ϕ1 ∨ ϕ2) for all ϕ1, ϕ2 ∈ SpLog(W) with free(ϕ1) = free(ϕ2).
R3. ∃x : ϕ for all ϕ ∈ SpLog(W) and x ∈ free(ϕ) \ {W}.
R4. (ϕ ∧ CA(x)) for every ϕ ∈ SpLog(W), every x ∈ free(ϕ), and every NFA A.

Let free(ϕ) be free(η) := var(η), free(ϕ1 ∧ ϕ2) := free(ϕ1 ∨ ϕ2) := free(ϕ1) ∪ free(ϕ2),
free(∃x : ϕ) := free(ϕ) \ {x}, and free(ϕ ∧ CA(x)) := free(ϕ).

For every pattern substitution σ and every ϕ ∈ SpLog(W), we define σ |= ϕ as follows:
σ |= (W =̇ ηR) if σ(W) = σ(ηR),
σ |= (ϕ1 ∧ ϕ2) if σ |= ϕ1 and σ |= ϕ2; and σ |= (ϕ1 ∨ ϕ2) is defined analogously,
σ |= ∃x : ϕ if σ x

w
|= ϕ for some w ∈ Σ∗, where σ x

w
(x) := w and σ x

w
(y) = σ(y) if y 6= x,

σ |= (ϕ ∧ CA(x)) if σ |= ϕ and σ(x) ∈ L(A).

Let SpLog be the union of all SpLog(W) with W ∈ Ξ. We add and omit parentheses, as
long as the meaning remains unambiguous. We also allow constraints of the form Cα(x),
where α is a regular expression. For readability, we use ϕ(W;x1, x2 . . . xk) to express that the
SpLog-formula ϕ has the main variable W and free variables {x1, x2 . . . xk}. As a convention,
assume that no word equation (W =̇ ηR) has the main variable W occur in the right side;
that is, that |ηR|W = 0 holds.

I Example 2.6. For the SpLog-formula ϕ(W) := ∃x :
(
(W =̇ xxx)∧Cab∗(x)

)
, we have σ |= ϕ

if and only if σ(W) = www for some w ∈ ab∗.

We also extend the definition of SpLog to SpLog¬, which we call SpLog with negation.

I Definition 2.7. Let W ∈ Ξ. Then SpLog¬(W), the set of SpLog¬-formulas with the
main variable W, is defined by extending Definition 2.5 with the additional rule that if
ϕ ∈ SpLog¬(W), then (¬ϕ) ∈ SpLog¬(W), with free(ϕ) = free(¬ϕ). We define σ |= ¬ϕ as:

σ(x) v σ(W) for all x ∈ free(ϕ), and
σ |= ϕ does not hold.

To compare the expressive power of SpLog and document spanners, we need to overcome
the difficulty that the former reasons about words, while the latter reason over positions in an
input word. To this end, we use the following notion that was introduced by Freydenberger
and Holldack [7] in the context of ECreg.

I Definition 2.8. Let ϕ ∈ SpLog with free(ϕ) := {W} ∪ {xp, xc | x ∈ SVars (P )}. Let P be
a spanner. Let JϕK(w) denote the set of all σ such that σ |= ϕ and σ(W) = w. We then say
that ϕ realizes P if for all w ∈ Σ∗, we have σ ∈ JϕK(w) if and only if µ ∈ P (w) where for
each x ∈ SVars (P ) and [i, j〉 := µ(x), both σ(xp) = w[1,i〉 and σ(xc) = w[i,j〉.

Intuitively, this definition uses two main ideas: Firstly, the spanner’s input word w is
represented by the main variable W. Secondly, every spanner variable x is represented by
two SpLog-variables xp and xc, such that in each (V,w)-tuple µ, we have that xc contains
the actual content wµ(x) and xp contains the prefix of w before the start of µ(x).

As shown in Section 4.1 of [6], under this lens, SpLog has exactly the same expressive
power as JRGXcoreK (the core spanners), and SpLog¬ exactly the same as JRGXcore∪{\}K
(the generalized core spanners).

One of the central questions in [4, 6] is which relations R can be added to spanners or
SpLog without increasing the expressive power (using ξR or a new constraint symbol for R,
respectively). This is reflected in the notion of selectable relations. A relation R ⊆ (Σ∗)k
is called SpLog-selectable if for every ϕ ∈ SpLog(W) and every sequence ~x = (x1, . . . , xk) of
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variables with x1, . . . , xk ∈ free(ϕ)\{W}, there is a SpLog-formula ϕR~x with free(ϕ) = free(ϕR~x ),
and σ |= ϕR~x if and only if σ |= ϕ and (σ(x1), . . . , σ(xk)) ∈ R. This is equivalent to the
analogously defined notion of core spanner selectable relations, see Section 5.1 of [6] for
details. We shall use selectability both in the way to our main result (namely, in Lemma 3.12)
and for further observations in Section 4.

2.3 Dynamic Complexity
Our definitions of dynamic complexity are based on the setting of dynamic formal languages
as described by Gelade, Marquardt, and Schwentick [10]. In this setting, strings are modeled
by a relational structure. Insertions and deletions of symbols can be performed on this
structure and (auxiliary) relations are maintained by logic formulas, called update formulas.
We extend this with a predetermined relation which is maintained to hold the result of
some spanner performed on the current word. The idea of dynamic complexity, which was
introduced by Patnaik and Immerman [16], is to have dynamic descriptive complexity classes
based upon the logic needed to maintain a relation, or in our case a spanner. We now
formally define these concepts.

Let Σ be a fixed and finite alphabet of terminal symbols. We represent words using a
word-structure. A word-structure has a fixed and finite set known as the domain D := [n+ 1]
as well as a 2-ary order relation < on D. We use the shorthands x ≤ y for (x < y) ∨ (x =̇ y).
We have in our word-structure the constant $ which is interpreted by the element n+ 1, the
<-maximal element of D. This <-maximal element marks the end of the word structure
and is required for dynamic spanners, which are defined later. For each symbol ζ ∈ Σ the
word-structure has a unary relation Rζ(i) and there is at most one ζ ∈ Σ such that Rζ(i) for
i ∈ [n]. If we have Rζ(i) then we write w(i) = ζ, otherwise we write w(i) = ε. If w(i) 6= ε for
some i ∈ D, then we call i a symbol-element.

Given a word-structure W, the word that W represents is denoted by word(W) and this
is defined as word(W) := w(1) ·w(2) · · ·w(n). Since for some j ∈ D it could be that w(j) = ε,
it follows that the length of the word word(W) is likely to be less than n. Let w := word(W),
we write w[i, j] to represent the subword w[i, j] := w(i) ·w(i+ 1) · · ·w(j) where i, j ∈ D such
that i < j.

We now define the set of abstract updates ∆ := {insζ | ζ ∈ Σ}∪{reset}. A concrete update
is insζ(i) or reset(i), for some i ∈ D \{$} and ζ ∈ Σ. The difference between abstract updates
and concrete updates is that concrete updates can be performed on a word-structure. Given
a word-structure with a domain of size n, we use ∆n to represent the set of possible concrete
updates. For some ∂ ∈ ∆n, we denote the word-structure W after an update is performed
by ∂(W) and this is defined as:

If ∂ = insζ(i), then Rζ(i) is true and Rζ′(i) is false for all ζ ′ ∈ Σ where ζ 6= ζ ′.
If ∂ = reset(i) then Rζ(i) is false for all ζ ∈ Σ.

All other elements keep the symbol they had before the update. For k ≥ 1, let
∂∗ := ∂1, ∂2, . . . ∂k be a sequence of updates. We use ∂∗(W) as a short hand to repre-
sent ∂k(. . . (∂2(∂1(W))) . . . ). We place the restriction that updates must change the string.
We do not allow reset(i) if w(i) = ε and we do not allow insζ(i) if w(i) = ζ.

I Example 2.9. Given a word-structure W over the alphabet Σ := {a, b} with domain
D = [6], where 6 = $. If we have that Ra = {2, 4} and Rb := {5}, it follows that
word(W) = aab. Performing the operation insb(1) would give us an updated word of baab.
Say if we then perform reset(4) on our new word structure, we would have the word bab.
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We define the auxiliary structure Waux as a set of relations over the domain of W. A
program state S := (W,Waux) is a word-structure and an auxiliary structure. An update
program ~P is a finite set of update formulas, which are of the form φRop(y;x1, . . . , xk). We have
an update formula for each R ∈ Waux and op ∈ ∆. An update, op(i), performed on S yields
S ′ = (∂(W),W ′aux) where all relations R′ ∈ W ′aux are defined by R′ := {~j | S̄ |= φRop(i;~j)},
where ~j is a k-tuple (where k is the arity of R) and where S̄ := (∂(W),Waux).

We use w to denote word(W) for some word structure W and we use w′ for word(∂(W))
where ∂ ∈ ∆n is some update performed on W.

Given some x ∈ D where w(x) 6= ε, we write that posw(x) = 1 if for all x′ ∈ D where
x′ < x we have that w(x′) = ε. Let z, y be elements from the domain such that z < y and
w(z) 6= ε and w(y) 6= ε. If for all x ∈ D where z < x < y we have that w(x) = ε then
posw(y) = posw(z) + 1. We write x w y if and only if posw(y) = posw(x) + 1. If it is not
the case that x w y then we write x 6 w y.

For every spanner P with SVars (P ) := {x1, x2 . . . xk} and every word-structure W,
the spanner relation RP is a 2k-ary relation over D where each spanner variable xi is
represented by two components xoi and xci . We obtain RP on W by converting each
µ ∈ P (w) into a 2k-tuple (xo1, xc1, xo2, xc2 . . . xok, xck), where for each i ∈ [k], we have µ(xi) =
[posw(xoi ), posw(xci )〉. The only exception is if µ(xi) = [j, k〉 and k > |w| then xci = $ for such
a tuple (xo1, xc1, xo2, xc2 . . . xok, xck). In Example 2.11 we give a spanner represented by a regex
formula and show the corresponding spanner-relation on a word-structure.

I Definition 2.10. A dynamic program is a triple, containing:
~P - an update program over (W,Waux).
INIT - a first-order initialization program.
RP ∈ Waux - a designated spanner-relation.

For each R ∈ Waux, we have some ψR(~j) ∈ INIT which defines the initial tuples of R
(before any updates to the input structure occur). Note that ~j is a k-tuple where the arity of
R is k. For our work ψR is a first-order logic formula.

A dynamic program maintains a spanner P if we have that RP ∈ Waux always corresponds
to P (∂∗(W)). We can then extend this to saying that we maintain a relation if there is
a designated R ∈ Waux which is always equivalent to some relation where the relation is
defined in terms of the input word.

I Example 2.11. Consider the regex formula α := Σ∗ ·x{a · b} ·Σ∗ where a, b ∈ Σ and x ∈ Ξ.
Now consider the following word-structure:

1 2 3 4 5 6 $
a ε b ε a ε ε

Note that the top row is the elements of the domain in order, and the bottom row is the
corresponding symbols. If we maintain the spanner relation of α, given the word-structure
above, we have the relation RP ∈ Waux such that RP := {(1, 5)}. Now assume we perform
the update insb(6). The word-structure is now in the following state:

1 2 3 4 5 6 $
a ε b ε a b ε

It must be that φRPinsb
(6;x, y) updates the relation RP to {(1, 5), (5, $)} for us to correctly

maintain the spanner.
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I Definition 2.12. DynFO is the class of all relations which can be maintained by update
formulas which are defined using first-order logic. DynPROP is a subclass of DynFO where
all the update formulas are quantifier-free.

A first-order formula is a conjunctive query, or CQ for short, if it is built up from atomic
formulae, conjunction and existential quantification. We also have unions of conjunctive
queries, or UCQ for short, which allows for the finite disjunction of conjunctive queries.
We therefore have the classes DynCQ and DynUCQ which use conjunctive queries and unions
of conjunctive queries as update formulas respectively.

For this work, we assume that the input structure is initially empty and that every
auxiliary relation is initialized by some first-order initialization. This is to allow us to use the
result from Zeume and Schwentick [21] that DynUCQ = DynCQ. However, in our work we
only require a very weak form of initialization and hence if DynUCQ is sufficient, one could
define the precise class needed for the precomputation. We do not do this as the dynamic
complexity class needed to maintain a spanner is the main focus of this work3.

For the proofs in the present paper, one could change the setting by allowing the insertion
of unmarked nodes at any point of the word-structure (with an update to the <-relation),
given that the word is non-empty. The auxiliary relations in our proofs do not operate on
unmarked nodes and do not need to be updated after this. In the same way, we can remove
unmarked nodes. However, the present paper does not look at this setting.

3 Core Spanners are in DynCQ

In this section, we first look at the dynamic complexity of regular spanners. We show that
any regular spanner can be maintained by a DynPROP program. We then turn our attention
to the main result of this paper, that any core spanner can be maintained by a DynCQ
program. In doing so, we also show that DynCQ is at least as expressive as SpLog. We then
extend this result to show that DynFO is at least as powerful as SpLog with negation, and
therefore any generalized core spanner can be maintained in DynFO.

I Proposition 3.1. Regular spanners can be maintained in DynPROP.

Proof. Due to the work done by Fagin et al. [4] we can assume that our vset-automaton
is a so called vset-path union. We define a vset-path as an ordered sequence of regular
deterministic finite automata A1, A2, . . .An for some n ∈ N. Each automaton Ai is of the
form (Q, qo, F, δ) where Q is the set of states, q0 ∈ Q is the initial state, F is the set of
accepting states, and δ is the transition function of the form δ : Q×Σ→ Q. We have the extra
assumption that each f ∈ F only has incoming transitions. All automata, A1, A2, . . . An
share the same set of input symbols Σ.

Let A be a vset-path. In A, each automata Ai where 1 < i ≤ n, the initial state for Ai
has incoming transitions from each accepting state from the automaton Ai−1. These extra
transitions between the sequence of automata are labeled, `x or ax where x ∈ SVars (A). We
treat the vset-path as a regular vset-automaton and all semantics follow from the definitions
in Section 2.1.1. We can assume that A is functional [6].

Any vset-automaton can be represented as a union of vset-paths [4]. Therefore to prove
that any regular spanner can be maintained in DynPROP, it is sufficient to prove that we can
maintain a spanner represented by a vset-path, since union can be simulated via disjunction.

3 As helpfully pointed out by one of the anonymous reviewers of this paper.
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Let A be a vset-path. From Gelade et al. [10], we know that the following relations can
be maintained in DynPROP:

For any pair of states p, q ∈ Q, Rp,q := {(i, j) | i < j and δ∗(p, w[i+ 1, j − 1]) = q}.
For each state q, RIq := {i | δ∗(q0, w[1, j − 1]) = q}.
For each state p, RFp := {j | δ∗(p, [i+ 1, n]) ∈ F}.

We maintain these relations for the vset-path. Some work is needed to deal with the
transitions labeled `x and ax. Let Ai and Ai+1 be two sub-automata such that 1 ≤ i < n,
where n is the number of sub-automata. Let si and si+1 be the starting states for automata
Ai and Ai+1 respectively. Likewise, let Fi and Fi+1 be the sets of accepting states of Ai and
Ai+1 respectively. The intuition is that if Rp,fi(x, y) where fi ∈ Fi holds, then so should
Rp,si+1(x, y) since the transition from an accepting state of Ai to the starting state of Ai+1
is `x or ax. To achieve this, we have the following update formula for Rp,si+1

φ
Rp,si+1
∂ (u;x, y) :=

∨
f∈Fi

φ
Rp,f
∂ (u;x, y).

We do the analogous for RIq and RFp . If RIfi(x) holds for any fi ∈ Fi, then so should
RIsi+1

(x). Similarly, if RFsi+1
(x) holds, then so should RFfi(x) for all fi ∈ Fi. To achieve this,

we proceed analogously to what was done for φRp,si+1
∂ (u;x, y). We also maintain the 0-ary

relation ACC to say whether the word-structure is a member of the language of the vset-path.
We will now give two useful subformulas

ψk
′

:=
∧

1≤i≤k′

( ∨
ζ∈Σ

(
Rζ(xoi ) ∧R′

I
si(x

o
i ) ∧

∨
p∈Q,

δ(si,ζ)=p

(
R′p,si+1

(xoi , xci ) ∧
∨
ζ2∈Σ

Rζ2(xci )
)))

and

ψ$ :=
∨
ζ∈Σ

(
Rζ(xok) ∧R′Isk(xok) ∧R′IFk(xck) ∧ (xck =̇ $)

)
.

We now give the update formula to maintain a vset-path spanner A with variables
SVars (A) := {x1, x2, . . . , xk}

φR
A

∂ (u;xo1, xc1, . . . , xok, xck) := φACC
∂ (u) ∧

(
ψk ∨ (ψk−1 ∧ ψ$)

)
.

Note that, without loss of generality, R′p,q(x, y) is used as a shorthand for φRp,q∂ (u;x, y). J

Since Gelade et al. [10] proved that DynPROP maintains exactly the regular languages,
it is somewhat unsurprising that we can extend that result to regular spanners. Some work
is needed in order to maintain the relation of the spanner, which is why a formal proof
of Proposition 3.1 is given.

I Definition 3.2. The next symbol relation is defined as RNext := {(x, y) ∈ D2 | x w y}.

As stated in Section 2.3, it is known that DynCQ = DynUCQ and therefore to show that
a relation can be maintained in DynCQ, it is sufficient to show that the relation can be
maintained with UCQ update formulas. We use this to prove many of our results.

I Lemma 3.3. The next symbol relation can be maintained in DynCQ.
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To prove Lemma 3.3, we maintain the relations Rfirst := {x ∈ D | posw(x) = 1} and
Rlast := {x ∈ D | posw(y) = |w|}. Note that these relations would be undefined for an empty
input structure (because posw(x) is undefined). Hence we have that if |w| = 0 then x ∈ Rfirst
if and only if x = $, and y ∈ Rlast if and only if y is the <-minimal element. This requires
the initialization of Rfirst := {$} and Rlast := {1}. This is the only initialization required
in our work, however the stated first-order initialization of auxiliary relations is needed to
ensure DynUCQ = DynCQ.

I Example 3.4. Consider the following word-structure:

1 2 3 4 5 6 $
ε a b ε b ε ε

We have that Rfirst = {2} and Rlast = {5} and RNext = {(2, 3), (3, 5)}.

We will now give an idea for the proof of Lemma 3.3. Let u be the node which is being
updated. For insertion, if x w y and x < u < y then x w′ u w′ y. If Rfirst(x) and u < x,
then R′first(u) and u  w′ x. The analogous is done if Rlast(x) and u > x. For deletion, if
x  w u  w y then x  w′ y. The full proof also looks at when x  w y and x  w′ y (for
example when u < x or when u > y). See the full version of the paper for the proof [9].

I Definition 3.5. The equal substring relation, Req, is the set of 4-tuples (xo, xc, yo, yc) such
that w[xo, xc] = w[yo, yc], xc < yo, and w[z] 6= ε for all z ∈ {xo, xc, yo, yc}.

Less formally, we have that if (xo, xc, yo, yc) ∈ Req then the word w[xo, xc] is equal to the
word w[yo, yc]. For our uses, we do not want these subwords to overlap, hence the constraint
xc < yo. The reason for this will become clear later on when we look at maintaining pattern
languages. We also wish that each tuple represents a unique pair of subwords, therefore we
have that xo, xc, yo, and yc each have symbols associated to them.

I Example 3.6. Consider the following word-structure:

1 2 3 4 5 6 7 8 9 10 $
a ε ε b a ε b ε a b ε

The equal substring relation for this structure is Req = {(1, 1, 5, 5), (1, 1, 9, 9), (4, 4, 7, 7),
(4, 4, 10, 10), (5, 5, 9, 9), (7, 7, 10, 10), (1, 4, 5, 7), (1, 4, 9, 10), (4, 5, 7, 9), (5, 7, 9, 10)}.

Although w[3, 5] = w[7, 9], this does not imply (3, 5, 7, 9) ∈ Req because w[3] = ε. We
also do not have (9, 10, 5, 7) ∈ Req because 10 > 5.

I Lemma 3.7. The equal substring relation can be maintained in DynCQ.

We now give a proof idea for Lemma 3.7. There are four main cases for the tuple (x1, y1, x2, y2)
we examine in the full proof.

Case 1: w[x1, y1] = w[x2, y2] and w′[x1, y1] 6= w′[x2, y2].
Case 2: w[x1, y1] = w[x2, y2] and w′[x1, y1] = w′[x2, y2].
Case 3: w[x1, y1] 6= w[x2, y2] and w′[x1, y1] = w′[x2, y2].
Case 4: w[x1, y1] 6= w[x2, y2] and w′[x1, y1] 6= w′[x2, y2].

Where we assume that y1 < x2. One can see that the main case out of these four is
Case 3. One of the interesting sub-cases of Case 3 is illustrated in Figure 1. Here, one can
think of the new symbol at node u as a “bridge” between the two equal substrings w[x1, v1]
and w[x2, v3] (which are the word w1) and the equal substrings w[v2, y1] and w[v4, y2] (which
are the word w2). Hence, after the update we have that w′[x1, y1] = w′[x2, y2] even though
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u

aw1 w2

x1 y1 v

aw1 w2

x2 y2v1 v2 v3 v4

Figure 1 Word after the insertion of the symbol a at node u..

w[x1, y1] 6= w[x2, y2] (under the assumptions that w(v) = a, v1  w′ u  w′ v2 and that
v3  w′ v  w′ v4). After examining a case like this, one would need to write an update
formula to realize it.

The proof of Lemma 3.7 looks through all the cases and produces a UCQ update formula
for each. These subformulae are joined together by disjunction to give us an update formula
φ
Req
∂ (u) which is in DynUCQ, and hence we have proven that we can maintain the equal

substring relation in DynCQ. See the full version for the proof [9].
Lemma 3.7 is a central part of the proof of our main result, and some may consider

maintaining this relation also to be the most technical aspect of the present paper. This
relation will be the main feature of a construction to maintain so-called pattern languages,
which we then extend with regular constraints to maintain any relations selectable by SpLog.

Given a pattern α ∈ (Σ ∪ Ξ)+, we define the non-erasing language it generates as
LNE,Σ(α) := {σ(α) | σ : (Σ∪Ξ)+ → Σ+ where σ is a substitution}. Given the same pattern α,
we have LE,Σ(α) := {σ(α) | σ : (Σ∪Ξ)+ → Σ∗ where σ is a substitution} which is the erasing
language α generates. Pattern languages are not only used as a part of word equations but
also as language generators (see [7] for more details, in particular regarding their relation to
document spanners).

I Example 3.8. Consider α := axxb where a, b ∈ Σ and x ∈ Ξ. Then ab ∈ LE,Σ(α) with
σ(x) = ε, but ab /∈ LNE,Σ(α). We can also see that ababab ∈ LNE,Σ(α) and ababab ∈ LE,Σ(α)
using σ(x) = ba.

We take the definition of maintaining a language from [10]. We can maintain a language
L if a dynamic program maintains a 0-ary relation which is true if and only if word(W) ∈ L.

I Lemma 3.9. Every non-erasing pattern language can be maintained in DynCQ.

Proof. To prove this lemma, we give a way to symbolically construct an update formula
to maintain a 0-ary relation P which updates to true if and only if w′ ∈ LNE,Σ(α) for any
specified α ∈ (Σ ∪ Ξ)+. Let |α| be the length of the pattern α. Let αi denote the ith symbol
(from Ξ or Σ) of the pattern α where 1 ≤ i ≤ |α|. We give the construction in Algorithm 1.

Note that occurrences of R′Next and R′eq in Algorithm 1 are the relations correct after the
update. To achieve this, we can replace occurrences of R′Next(. . . ) with φRNext

∂ (. . .), where ∂ is
the update for which the update formula of P is being constructed. The equivalent is done
for Req. J

I Example 3.10. Let α := axbx be a pattern such that a, b ∈ Σ and x ∈ Ξ. As stated, we
wish to maintain a 0-ary relation P such that P is true if and only if w′ ∈ LNE,Σ(α) where
w′ is our word after some update.

α1 = a: therefore α1 ∈ Σ and hence we have ω1 := Ra(t1) ∧R′first(t1).
α2 = x: therefore α2 ∈ Ξ therefore we have ω2 := R′Next(t1, x2) ∧ (x2 ≤ t2) ∧ ω1.
α3 = b: therefore α3 ∈ Σ and hence we have ω3 := Rb(t3) ∧R′Next(t2, t3) ∧ ω2.
α4 = x and α4 = α2: therefore ω4 := R′Next(t3, x4) ∧ (x4 ≤ t4) ∧R′eq(x2, t2, x4, t4) ∧ ω3.
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Algorithm 1 Pattern Language Update Formula Construction.

Input: A pattern α ∈ (Σ ∪X)+.
Output: Update formulas φPinsζ (u) and φPreset(u).
If α1 ∈ Σ then ω1 := Rα1(t1) ∧R′first(t1);
If α1 ∈ Ξ then ω1 := (x1 ≤ t1) ∧R′first(x1);
for i := 2 to |α| do

if αi ∈ Σ then
ωi := Rαi(ti) ∧R′Next(ti−1, ti) ∧ ωi−1;

if αi ∈ Ξ then
if there exists j ∈ N where j < i such that αi = αj then

jmax := Largest j value such that j < i and αi = αj ;
ωi := R′Next(ti−1, xi) ∧ (xi ≤ ti) ∧R′eq(xjmax , tjmax , xi, ti) ∧ ωi−1;

else
ωi := R′Next(ti−1, xi) ∧ (xi ≤ ti) ∧ ωi−1;

ω :=
(
ω|α| ∧R′last(t|α|)

)
;

For every occurrence of some ti in ω, where i ≤ |α|, add ∃ti to the front of ω;
For every occurrence of some xi in ω add ∃xi to the front of ω;
φPinsζ (u) := ω; φPreset(u) := ω;

We rearrange the atoms in ω to help with readability, giving us:

ω := R′first(t1) ∧Ra(t1) ∧R′Next(t1, x2) ∧ (x2 ≤ t2) ∧R′Next(t2, t3) ∧Rb(t3)
∧ R′Next(t3, x4) ∧ (x4 ≤ t4) ∧ R′eq(x2, t2, x4, t4) ∧ R′last(t4).

Hence φP∂ (u) := ∃t1, t2, t3, t4, x2, x4 : (ω) which holds for a word-structure of the form:

. . . t1 x2 . . . t2 t3 x4 . . . t4 . . .

ε a . . . b . . . ε

We have that x2, t2, x4, t4 are in bold to demonstrate the fact that it must be that
w′[x2, t2] = w′[x4, t4] for φP∂ (u) to hold. Note that t1 may not be < −minimal and t4 may
not be < −maximal, but because R′first(t1) and R′last(t4) must hold, t1 and t4 are the first
and last symbol-elements respectively.

One side effect of Lemma 3.9 is that we get the dynamic complexity upper bounds of a
class of languages, the pattern languages. Pattern languages were not looked at in [10] and
hence this result extends what is known about the dynamic complexity of formal languages.

I Corollary 3.11. Every erasing pattern language can be maintained in DynCQ.

Proof. From Jiang et al. [11] it is known that every erasing pattern language is the finite
union of non-erasing pattern languages. Therefore, we can create 0-ary relations for each
non-erasing pattern language and join them with a disjunction. There is the case where
ε ∈ LE,Σ(α) which we can deal with using the following: ∃x : (Rfirst(x) ∧ (x =̇ $)). We can do
this because Rfirst = {$} whenever w = ε. J

Since we are able to maintain any erasing pattern language in DynCQ, we can extend
this result to word-equations in SpLog-formulas. Using this along with the fact that regular
languages can be maintained in DynPROP, we can conclude the following:
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I Lemma 3.12. Any relation selectable in SpLog can be maintained in DynCQ.

Proof. We prove this lemma using structural induction with the recursive definition of a
SpLog formula, given in Definition 2.5.

B1. (W=̇ηR) for every ηR ∈ (Ξ∪Σ)∗: Since we are assuming that σ(W) ∈ Σ∗ and that ηR
does not contain W, we have that W =̇ ηR is equivalent to σ(W) ∈ LE,Σ(ηR). We have proven
in Corollary 3.11, that we can maintain a 0-ary relation which is true if and only if, given some
pattern α ∈ (Ξ∪Σ)∗, the word structure is currently a member of LE,Σ(α). According to the
construction which we gave in Lemma 3.9, given a variable x ∈ Ξ, where x = αi, we have
two variables xi, ti ∈ D such that the word w[xi, ti] represents σ(x) for some substitution σ.
Removing the existential quantifiers for xi and ti allows us to maintain the relation defined
by α.

R1. (ψ1 ∧ ψ2) for all ψ1, ψ2 ∈ SpLog(W): Under the assumption that we have update
formulas φψ1

∂ (u; ~v1) and φψ2
∂ (u; ~v2) for SpLog formulas ψ1 and ψ2 respectively, the update

formula for φψ1∧ψ2
∂ (u; ~v1 ∪ ~v2) is φψ1

∂ (u; ~v1) ∧ φψ2
∂ (u; ~v2).

R2. (ψ1 ∨ ψ2) for all ψ1, ψ2 ∈ SpLog(W) with free(ψ1) = free(ψ2): Assuming we have
update formulas φψ1

∂ (u;~v) and φψ2
∂ (u;~v) for SpLog formulas ψ1 and ψ2 respectively, the

update formula for φ(ψ1∨ψ2)
∂ (u;~v) is φψ1

∂ (u;~v) ∨ φψ2
∂ (u;~v).

R3. ∃x : ψ for all ψ ∈ SpLog(W) and x ∈ free(ψ)\{W}: If a variable x ∈ Ξ is existentially
quantified within the SpLog formula, then we existentially quantify the variables xi, ti ∈ D
where w[xi, ti] represents σ(x) for some substitution σ.

R4. (ψ ∧ CA(x)) for every ψ ∈ SpLog(W), every x ∈ free(ψ), and every NFA A: let
A := (Q, δ, s, F ) be an NFA. We have that Q is a finite set of states, δ : Q× Σ→ Q is the
transition function, s is the initial state and F ⊆ Q is the set of accepting states. We denote
the reflexive and transitive closure of δ as δ∗ : Q × Σ∗ → Q. For regular constraints, we
maintain the relation RA := {(i, j) ∈ D2 | w[i, j] ∈ L(A)}

From Proposition 3.3 in Gelade, Marquardt, and Schwentick [10], we know that the
following relations can be maintained in DynPROP, and from [20] (Theorem 3.1.5, part b)
we know that DynPROP is a strict subclass of DynCQ. Hence we can maintain the following
in DynCQ:

Rp,q :={(i, j) ∈ D2 | i < j and δ∗(p, w[i+ 1, j − 1]) = q},
Iq :={j ∈ D | δ∗(s, w[1, j − 1]) = q},
Fp :={i ∈ D | δ∗(p, w[i+ 1, n] ∈ F}.

Where p, q ∈ Q. We also know, from [10], that we can maintain the 0-ary relation ACC,
which is true if and only if w′ ∈ L(A).

We maintain RA with φRA∂ (u;x, y) := ψRA1 ∨ ψRA2 ∨ ψRA3 ∨ ψRA4 where each ψRAi is a
subformula which we now define for separate cases. Note that R′(~x) is shorthand for φR∂ (u; ~x).
We define ψRA1 as

ψRA1 := ∃x2, y2 :
(
R′Next(x2, x) ∧R′Next(y, y1) ∧

∨
f∈F

(R′s,f (x2, y2)
)
.

Since Rp,q(x, y) refers to the substring from position x+1 to y−1, and we wish to examine
the string from position x to y, we look at R′s,f (x2, y2) where x2  w′ x and y  w′ y2. If it
is indeed the case that x2  w′ x and y  w′ y2 then w′[x2 + 1, y2 − 1] = w[x, y]. Therefore
R′s,f (x2, y2), for f ∈ F , is true for such x2 and y2 if and only if δ∗(s, w[x, y]) ∈ F which is
the desired behavior for this case. Note that ψRA1 fails if there doesn’t exist x2 such that
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x2  w′ x or there doesn’t exists y2 such that y  w′ y2. This is dealt with using ψRA2 , ψRA3
and ψRA4 , which we explore next.

If R′last(y) then w′[x, y] = w′[x, n] where n = |D|. Therefore, we can use F ′s(x2) for some
x2 ∈ D where x2  w′ x and s is the initial state of the NFA, to see whether δ∗(s, w′[x, n]) ∈ F
and hence whether δ∗(s, w′[x, y]) ∈ F . To realize this behavior, we define ψRA2 as

ψRA2 := ∃x2 :
(
R′Next(x2, x) ∧R′last(y) ∧ F ′s(x2)

)
.

If R′first(x) then w′[1, y] = w′[x, y]. Therefore, we can use I ′f (y2) for some y2 ∈ D where
y  w′ y2 and f ∈ F , to see whether δ∗(s, w′[1, y]) ∈ F and hence whether δ∗(s, w′[x, y]) ∈ F .
To realize this behavior, we define ψRA3 as

ψRA3 := ∃y2 :
(
R′Next(y, y2) ∧R′first(x) ∧

∨
f∈F

(I ′f (y2))
)
.

If R′first(x) and R′last(y) then w′[x, y] = w′ and therefore it follows that w′[x, y] ∈ L(A) if
and only if w′ ∈ L(A). We only need to see if ACC′ is true for this case. We realize this
behavior by defining ψRA4 as

ψRA4 := R′first(x) ∧R′last(y) ∧ ACC′.

To simulate (ψ ∧ CA(x)) for every ψ ∈ SpLog(W), every x ∈ free(ψ), and every NFA A

within DynCQ, we do the following; let φψ∂ (u;~v) be an update formula for ψ ∈ SpLog and
since for some σ(x), where x ∈ free(ψ), has xi, ti ∈ D associated with it, we can use
φψ∂ (u;~v) ∧ φRA∂ (u;xi, ti) which is true if and only if w′[xi, ti] ∈ L(A). J

Most of the work for this proof follows from Lemma 3.9 and Corollary 3.11. Extra work
is done in order to simulate regular constraints, although this follows on from the fact that
DynPROP maintains the regular languages [10].

I Theorem 3.13. Core spanners can be maintained in DynCQ.

Proof. Although maintaining the SpLog relation that realizes a spanner is not the same as
maintaining the spanner relation as defined in Section 2.3, the changes we need to make are
trivial. Let P be a spanner and let ψP be a SpLog formula that realizes P . We know that
free(ψP ) = {xp, xc | x ∈ SVars (P )}, and for every x ∈ SVars (P ) where [i, j〉 := µ(x), we have
both σ(xp) = w[1,i〉 and σ(xc) = w[i,j〉. Let RP be a relation that maintains the spanner P .
The only difference between update formulas that maintain P and update formulas that
maintain the relation SpLog selects which realizes P is that the two elements xop, xcp ∈ D that
are used to represent the SpLog variable xp ∈ Ξ are existentially quantified whereas the two
variables xoc , xcc ∈ D which represent xc ∈ Ξ are not. J

Theorem 3.13 shows us that DynCQ is at least as expressive as SpLog. We will use this
along with Proposition 4.1 to show that DynCQ is more expressive than core spanners. Given
that we can maintain any relation selectable in SpLog using DynCQ, it is no big surprise that
adding negation allows us to maintain SpLog¬ in DynFO.

I Lemma 3.14. Any relation selectable in SpLog¬ can be maintained in DynFO.

Proof. Let ψ ∈ SpLog(W) and let Rψ be the relation maintaining ψ where the update
formulas for Rψ are in CQ. The extra recursive rule allowing for (¬ψ) ∈ SpLog¬(W) can be
maintained by φR¬ψ∂ (u; ~x) = ¬φRψ∂ (u; ~x). J
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As with Theorem 3.13, we can use the result from Lemma 3.14 along with Corollary 4.2
to show that DynFO is more expressive than SpLog¬.

I Theorem 3.15. Generalized core spanners can be maintained in DynFO.

Since SpLog¬ captures the generalized core spanners, it follows from Lemma 3.14 that any
generalized core spanner can be maintained in DynFO. In Section 4 we show that DynFO
is more expressive than SpLog¬, it therefore follows that DynFO is more expressive than
generalized core spanners.

4 Relations in SpLog and DynCQ

In this section, we examine the comparative expressive power of SpLog and DynCQ. Recall
that we defined the notion of SpLog-selectable relations at the end of Section 2.2. We now
define an analogous concept for DynCQ. For a relation R ⊆ (Σ∗)k, we define the corresponding
relation in the dynamic setting R̄ as the 2k-ary relation of all (x1, y1, . . . , xk, yk) ∈ D2k

such that (w[x1, y1], . . . , w[xk, yk]) ∈ R. We say that R is selectable in DynCQ if R̄ can be
maintained in DynCQ.

For example, the equal length relation is defined as Rlen := {(w1, w2) | |w1| = |w2|}. From
Fagin et al. [4] it is known that this relation is not selectable with core spanners. This
relation in the dynamic setting is R̄len = {(u1, u2, v1, v1) ∈ D4 | |w[u1, u2]| = |w[v1, v2]|}.

I Proposition 4.1. The equal length relation is selectable in DynCQ.

Proof. To maintain the equal length relation, we take the update formulas from Lemma 3.7
and omit any atoms relating to the symbol of an element of the domain D. We also remove
the constraint that the first subword must appear before the second. We also use R̄len in any
update formula, rather than Req. The only exception to omitting all atoms relating to the
symbol of an element, is to ensure that w[u1] 6= ε, w[u2] 6= ε, w[v1] 6= ε, and w[v2] 6= ε. J

While this allows us to separate the languages that are definable in SpLog from the ones
that can be maintained in DynCQ, we consider the following more wide-ranging example:

I Lemma 4.2. The language {w ∈ Σ∗ | |w| = 2n, n ≥ 0} is maintainable in DynCQ.

Proof. Let P be a 2-ary relation such that P (x, y) holds if and only if |w[x, y]| = 2n for
some n ∈ N. This can be maintained by having that P (x, y) holds if |w[x, y]| = 1 or if
there exists z1, z2 ∈ D such that P (x, z1), P (z2, y), R′Next(z1, z2) and that R̄len(x, z1, z2, y).
If we assume that |w[x, z1]| = 2n for some n ∈ N, which we do because we have the base
case of w[x, y] = a, and that |w[x, z1]| = |w[z2, y]|, then it follows that if R′Next(z1, z2) then
w[x, y] = w[x, z1] · w[z2, y] and therefore |w[x, y]| = 2|w[x, z1]| and hence |w[x, y]| = 2n+1.
We then have that |w| = 2n if ∃x, y :

(
R′first(x) ∧R′last(y) ∧ P ′(x, y)

)
. J

For every choice of Σ, this language is not expressible in SpLog¬ (and, hence, not in
SpLog). This is easily seen by considering the case that Σ is unary4. As shown in [7] for core
spanners and then in [18] for generalized core spanners, both classes collapse to exactly the
class of regular languages if |Σ| = 1. As the language of all words a2n is not regular, this
shows that even DynCQ can define languages that are not expressible in SpLog¬.

4 Larger alphabets then follow by observing that the class of SpLog¬-languages is trivially closed under
intersection with regular languages.
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Combining this with Theorem 3.13 and Theorem 3.15, we respectively conclude that
DynCQ is strictly more expressive than core spanners and that DynFO is strictly more
expressive than generalized core spanners.

As explained in Section 6 of [6], there are few inexpressibility results for SpLog that
generalize to non-unary alphabets (and basically none for SpLog¬), apart from straightforward
complexity observations that are not particularly illuminating. Nonetheless, Proposition 6.7
in [6] establishes that none of the following relations is SpLog-selectable:

I Proposition 4.3. The following relations are DynCQ-selectable but not SpLog-selectable:

Rnum(a) := {(w1, w2) | |w1|a = |w2|a} for a ∈ Σ,
Rperm := {(w1, w2) | |w1|a = |w2|a for all a ∈ Σ},
Rrev := {(w1, w2) | w2 = wR1 }, where wR1 is the reversal of w1,
R< := {(w1, w2) | |w1| < |w2|},

Rscatt := {(w1, w2) | w1 is a scattered subword of w2},

where w1 is a scattered subword of w2 if, for some n ≥ 1, there exist s1, . . . , sn, s̄0, . . . , s̄n ∈ Σ∗
such that w1 = s1 · · · sn and w2 = s̄0s1s̄1 · · · sns̄n.

Proof. The relations Rscatt, Rnum(a), and Rrev have case distinctions equivalent to the proof
of Lemma 3.7, therefore we give the overarching idea of the proof but without exploring
every case. See [9] for a full proof of Lemma 3.7.

Maintaining Rscatt: For insertion, we give three steps for this proof; inheritance, base case,
and an inductive step.
We have that if w[u1, u2] is a scattered subword of w[v1, v2] and u is outside of the
interval [u1, u2], then w′[u1, u2] remains a scattered subword of w′[v1, v2] and therefore
R′scatt(u1, u2, v1, v2) should hold. We call this step inheritance.
The base case is that given the update insζ(u) for some u ∈ D, if there exists v ∈ D such
that v1 ≤ v ≤ v2 and w(v) = w(u) = ζ, then it follows that w(u) is a scattered subword
of w[v1, v2] and therefore R′scatt(u, u, v1, v2) should hold.
For the inductive step, given that we have some update insζ(u), if w[u1, x1] is a scattered
subword of w[v1, x2] and w[x3, u2] is a scattered subword of w[x4, v2], it follows that
w[u1, u2] is a scattered subword of w[v1, v2] if x1  w′ u w′ x3 and w(u) is a scattered
subword of w[x2, x4]. Deletion is dealt with analogously, although without the base case.

Maintaining Rnum(a): We again give three steps; inheritance, the base case(s), and an
inductive step.
We have that if |w[u1, u2]|a = |w[v1, v2]|a and u is outside of the interval [u1, u2], then
|w′[u1, u2]|a = |w′[v1, v2]|a and therefore R′num(a)(u1, u2, v1, v2) should hold. We call this
step inheritance. We have that (u1, u2, v1, v2) is not inherited if u ∈ [u1, u2] or u ∈ [v1, v2],
but this should be dealt with by the inductive step.
To maintain Rnum(a), we have two base cases. Given the update insa(u), we have that
|w′(u)|a = |w′(v)|a if w′(v) = a.
For the inductive step, we have that if |w[u1, x1]|a = |w[v1, x2]|a and |w(u)|a = |w(v)|a
and |w[x3, u2]|a = |w[x4, v2]|a where x1  w′ u  w′ x3 and x2  w′ v  w′ x4, then
|w′[u1, u2]|a = |w′[v1, v2]|a. Dealing with deletion is analogous to insertion but without
the base case.

Maintaining Rrev: We can maintain this with a simple variation of the update formula which
maintains Req. Firstly, we remove the constraint that the first subword must appear
before the second. Then, whenever Req(·) is used as a subformula, one would need to
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use Rrev(·) instead. The more involved aspect of altering the update formulas would be
to reverse the ordering of certain indices. Informally, check y  w x instead of x w y

where necessary.
Maintaining Rperm: φRperm

∂ (u;u1, u2, v1, v2) :=
∧
ζ∈Σ

(
φ
Rnum(ζ)
∂ (u;u1, u2, v1, v2)

)
.

Maintaining R<:

φR<∂ (u;u1, u2, v1, v2) := ∃x1∃x2 :
(
Rlen(u1, u2, x1, x2)

∧ (x1 < v1) ∧ (v1 ≤ v2) ∧ (v2 < x2)
)
.

J

By Lemma 5.1 in [6], a k-ary relation R is SpLog-selectable if and only there is some SpLog-
formula ϕ(W;x1, . . . , xk) such that for all σ that satisfy σ(xi) v σ(W) for all i ∈ [k], we have
σ |= ϕ if and only if (σ(x1), . . . , σ(xk)) ∈ R. One can show with little effort that relations like
string inequality, the substring relation, or equality modulo a bounded Levenshtein-distance
are all SpLog-selectable (see Section 5.1 of [6]). By Lemma 3.12, we can directly use these
relations in constructions for DynCQ-definable languages and DynCQ-selectable relations.

I Example 4.4. For k ≥ 1 and w1, w2 ∈ Σ∗, we say that w1 is a k-scattered subword of w2 if
there exist s1, . . . , sk, s̄0, . . . , s̄k ∈ Σ∗ such that w1 = s1 · · · sk and w2 = s̄0s1s̄1 · · · sks̄k. This
relation is SpLog-selectable5, as demonstrated by the following SpLog-formula which uses
syntactic sugar from Section 5.1 of [6]:

ϕ(W;w1, w2) := ∃s1, . . . , sk, s̄0, . . . , s̄k :
(

(w1 =̇ s1 · · · sk) ∧ (w2 =̇ s̄0s1s̄1 · · · sks̄k)
)
.

Although one could show directly that the k-scattered subword relation is DynCQ-selectable,
using SpLog and Lemma 3.12 can avoid hand-waving.

We can even generalize this approach beyond SpLog. In the proof of Lemma 3.12, we use
the fact the every regular language is in DynCQ to maintain regular constraints for SpLog.
Analogously, we can extend SpLog with relation symbols for any DynCQ-sectable relation
and use the resulting logic for DynCQ. Of course, all this applies to SpLog¬ and DynFO.

5 Conclusions

From a document spanner point of view, the present paper establishes upper bounds for
maintaining the three most commonly examined classes of document spanners, namely
DynPROP for regular spanners, DynCQ for core spanners, and DynFO for generalized core
spanners. While the bounds for regular spanners and generalized core spanners are what one
might expect from related work, the DynCQ-bound for core spanners might be considered
surprising low (keeping in mind, of course, that it is still open whether DynCQ is less
expressive than DynFO).

By analyzing the proof of Lemma 3.12, the central construction of this main result, it
seems that the most important part of maintaining core spanners is updating the string
equality relation and the regular constraints. One big question for future work is whether
this might have any practical use for the evaluation of core spanners. Although some may
consider this unlikely, there is at least some possibility that some techniques might be useful.

5 Unlike a relation for unbounded scattered subword.
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In the present paper, we only examine updates that affect single letters. At least as far
as the main result is concerned, it should be possible to generalize this to cut and paste
operations, as they are commonly found in text editors. These other operations beyond
single letters are promising directions for further work.

From a dynamic complexity point of view, Section 4 describes how SpLog can be used as
a convenient tool that allows shorter proofs that languages can be maintained in DynCQ. One
consequence of this is that a large class of regular expressions with backreference operators
(see Section 5.3 of [6]) are in fact DynCQ-languages.
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Abstract
We investigate when two graphs, represented by their adjacency matrices, can be distinguished
by means of sentences formed in MATLANG, a matrix query language which supports a number
of elementary linear algebra operators. When undirected graphs are concerned, and hence the
adjacency matrices are real and symmetric, precise characterisations are in place when two graphs
(i.e., their adjacency matrices) can be distinguished. Turning to directed graphs, one has to deal
with asymmetric adjacency matrices. This complicates matters. Indeed, it requires to understand
the more general problem of when two arbitrary matrices can be distinguished in MATLANG. We
provide characterisations of the distinguishing power of MATLANG on real and complex matrices,
and on adjacency matrices of directed graphs in particular. The proof techniques are a combination
of insights from the symmetric matrix case and results from linear algebra and linear control theory.
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1 Introduction

The integration of linear algebra functionalities inside relational database systems is currently
high on the agenda [4, 5, 6, 12, 19, 31, 33, 34, 35, 36, 39, 40]. The need for such an integration
is due to the increased importance of linear algebra for scalable machine learning and data
analytics. From a query language perspective, it is challenging to combine classical relational
data operators with linear algebra operators. The Lara language is one such proposal [29]
and its connections to classical database query languages has been recently explored [3].
Logics extended with linear algebra operators have been considered as well in an attempt to
find logics capturing PTIME and to study the descriptive complexity of linear algebra [15,
16, 17, 18, 22, 26, 27]. An even more basic question is to design a query language for
matrices and linear algebra alone. In recent work, a query language for matrices, MATLANG,
was introduced in which some basic linear operators are supported [8, 7]. The design of
MATLANG is motivated by operations commonly supported by linear algebra packages. It
can be seen as a linear algebraic counterpart of the relational algebra on K-relations [9],
where K is a semiring representing the domain of matrix entries. We here continue the
study of the expressive power of MATLANG. What is known so far is that when MATLANG
is regarded as a query language on graphs, i.e., queries in MATLANG take the adjacency
matrix of a (directed/undirected) graph as input and return an adjacency matrix, then its
expressive power is bounded by aggregate logic with only three non-numerical variables.
Furthermore, when asked whether two undirected graphs G and H are indistinguishable by
means of sentences in MATLANG, denoted by G ≡MATLANG H, then this precisely corresponds
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to these graphs being C3-equivalent [20]. Here, C3 is the three-variable fragment of first-order
logic with counting. With a sentence in MATLANG one means a query which returns scalars
on input matrices, in analogy with sentences in logic. A more fine-grained analysis of the
impact of each of the operators in MATLANG as a graph query language was provided
in [20]. In particular, if L is a subset of the operators in MATLANG, then ML(L) refers to
the fragment of MATLANG supporting only those operators in L. Precise characterisations
were obtained for when two undirected graphs G and H are indistinguishable by sentences
in ML(L), denoted by G ≡ML(L) H [20]. In particular, a fragment ML(L) was identified
such that G ≡ML(L) H if and only if G ≡C2 H, where C2 is the two-variable fragment of
first-order logic with counting. We remark that G ≡C2 H is known to correspond to G and
H being fractional isomorphic [10, 30, 37, 38], i.e., there exists a doubly stochastic matrix
(non-negative and rows and columns sum up to one) S such that AG · S = S ·AH , where
AG and AH denote adjacency matrices of G and H, respectively. In [20], for each fragment
ML(L) a proper class of matrices was identified such that for undirected graphs G and H,
G ≡ML(L) H if and only if AG ·X = X ·AH for some matrix X in that class. For example,
for the fragment corresponding to C2-equivalence this class consists of all doubly stochastic
matrices. Such characterisations enable to assess the expressive power of the fragment ML(L).
Indeed, graph properties expressible by sentences in ML(L) should be invariant under such
transformations X. All of the above relates to undirected graphs only.

It seems natural to ask what changes when directed graphs (or digraphs, for short) are
considered, and this is the focus of this paper. More precisely, we investigate how the
operators in MATLANG interact with adjacency matrices of directed graphs. Compared to
the undirected graph case, the adjacency matrices are not necessarily symmetric anymore (i.e.
the entry Aij in a matrix A may be different from entry Aji). As a consequence, one cannot
rely on properties of symmetric matrices, the most important being that symmetric matrices
are diagonalisable. Some of the results in [20] relied on this. Furthermore, whereas algebraic
graph theory provides a comprehensive insight in the properties of undirected graphs, which
underly some of the results in [20], this is less so for directed graphs.

To obtain characterisations for digraphs, we are faced with the more general question of
when two general matrices (complex or real) can be discerned by sentences in our fragments
ML(L). We identify two techniques that allow us to answer this question:

A technique from linear algebra for testing when two matrices A and B are related by
means of an invertible matrix X, i.e., such that A ·X = X ·B holds. This technique
only works for fragments containing the trace operator (tr(·)), which takes the sum of
the diagonal entries of a matrix, and complex conjugate transposition (∗), which switches
rows and columns, followed by complex conjugation. We describe this technique in detail
and apply it for fragments ML(L) supporting tr(·) and ∗ in Section 5.
A technique originating from the study of linear systems in control theory which allows
to reduce matrices A and B to their so-called minimal realisations Â and B̂, for which
the existence of an invertible matrix X such that Â ·X = X · B̂ holds is guaranteed. We
show that this allows to link the original matrices A and B as well, and connect it to
indistinguishability by our fragments. Neither trace nor complex conjugate transposition
is needed here. We detail this technique and consider fragments without trace or complex
conjugate transposition in Section 6.

The main observation is that many of the results from [20] graciously generalise to general
matrices and to adjacency matrices of digraphs in particular. This is especially true for
fragments including the trace operator. The differences here are subtle and mostly relate
to the absence of complex conjugate transposition. This is not surprising. After all, this
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is the only operator in MATLANG that has access to the possible asymmetry of matrices.
For trace-less fragments, the generalisations are less straightforward, due to the minimal
realisation approach. We show, however, that the general results reported in this paper
collapse to precisely the same results as for the undirected graph case, when normal matrices
are used (normal matrices A satisfy A∗ ·A = A ·A∗ and they are known to inherit most of the
properties of symmetric matrices). As a pleasant side-effect, we thus recover results reported
in [20] as special cases of the more general approach used in this paper.

2 Background

We denote by R (C) the set of real (complex) numbers. The set of m× n-matrices over the
real (complex) numbers is denoted by Matm×n(R) (Matm×n(C)). Vectors are elements of
Matm×1(R) (or Matm×1(C)), or Mat1×m(R) (or Mat1×m(C)). The entries of an m×n-matrix
A are denoted by Aij , for i ∈ [1,m] and j ∈ [1, n]. The entries of a vector v are denoted by vi,
for i ∈ [1,m]. We often identify Mat1×1(R) with R, and Mat1×1(C) with C and refer to these
as scalars. The following classes of matrices are of interest in this paper: square matrices
(elements in Matn×n(R) or Matn×n(C)), symmetric matrices (such that Aij = Aji for all
i and j), doubly stochastic matrices (Aij ∈ R, Aij ≥ 0,

∑n
j=1Aij = 1 and

∑m
i=1Aij = 1

for all i and j), doubly quasi-stochastic matrices (
∑n

j=1Aij = 1 and
∑m

i=1Aij = 1 for all i
and j), orthogonal matrices (A ∈ Matn×n(R), At ·A = In×n = A ·At, where At denotes the
transpose of A obtained by switching rows and columns of A and In×n is the identity matrix
in Matn×n(R)), unitary matrices (A ∈ Matn×n(C), A∗ ·A = In×n = A ·A∗), and normal
matrices (A∗ ·A = A ·A∗). The matrix Jm×n ∈ Matm×n(R) denotes the matrix consisting
of all ones and Om×n ∈ Matm×n(R) denotes the zero matrix. We use I, J and O for In×n,
Jm×n and Om×n, respectively, when the dimensions are clear from the context. We assume
familiarity with standard concepts of linear algebra and refer to [2, 28] for more background.
A directed graph or digraph G = (V,E) is defined as usual. The order of a digraph is its
number of vertices. An adjacency matrix of a digraph G of order n, denoted by AG, is an
n × n-matrix whose entries (AG)ij are set to 1 if and only if (i, j) ∈ E, all other entries
are set to 0. We regard undirected graphs as digraphs such that (v, w) ∈ E implies that
also (w, v) ∈ E, i.e., their adjacency matrices are symmetric. Strictly speaking, to define an
adjacency matrix one requires an ordering on the vertices in G. In this paper, any ordering
will do and we thus speak about “the” adjacency matrix of a (di)graph.

3 Matrix Query Languages

As described in Brijder et al. [8], matrix query languages can be formalised as compositions
of linear algebra operators. By closing such operators under composition “matrix query
languages” are formed. More specifically, for a set L of linear algebra operators op1, . . . , opk

the corresponding matrix query language is denoted by ML(L) and consists of expressions
formed by the grammar:

e := X | op1
(
e1, . . . , ep1

)
| · · · | opk

(
e1, . . . , epk

)
,

where X denotes a matrix variable which serves to indicate the input to expressions and pi

denotes the number of inputs required by operator opi. We allow a single matrix variable X
in this paper, although some of the results can be generalised to multiple matrix variables.

The semantics of an expression e(X) in ML(L) is defined inductively, relative to an assign-
ment ν of X to a matrix ν(X) ∈ Matn×n(C), for some dimension n. In general, rectangular
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Table 1 Linear algebra operators (supported in MATLANG [8, 20]) and their semantics. In
the last column, +, × and denote addition, multiplication and complex conjugation of complex
numbers, respectively.

matrix multiplication (op(e1, e2) = e1 · e2)
e1(ν(X)) = A ∈ Matm×n(C)

e1(ν(X)) · e2(ν(X)) = C ∈ Matm×o(C) Cij =
∑n

k=1 Aik ×Bkj
e2(ν(X)) = B ∈ Matn×o(C)
matrix addition (op(e1, e2) = e1 + e2)
ei(ν(X)) = A(i) ∈ Matm×n(C) e1(ν(X)) + e2(ν(X)) = B ∈ Matm×n(C) Bij = A

(1)
ij +A

(2)
ij

scalar multiplication (op(e) = ce, c ∈ C)
e(ν(X)) = A ∈ Matm×n(C) ce(ν(X)) = B ∈ Matm×n(C) Bij = c×Aij

Schur-Hadamard product (op(e1, e2) = e1 � e2)
e1(ν(X)) = A ∈ Matm×m(C)

e1(ν(X))� e2(ν(X)) = C ∈ Matm×m(C) Cij = Aij ×Bij
e2(ν(X)) = B ∈ Matm×m(C)
complex conjugate transposition (op(e) = e∗)
e(ν(X)) = A ∈ Matm×n(C) e(ν(X))∗ = A∗ ∈ Matn×m(C) (A∗)ij = Āji

identity (op(e) = Id(e))
e(ν(X)) = A ∈ Matm×m(C) Id(e(ν(X)) = Im×m ∈ Matm×m(C) Iii = 1, Iij = 0, i 6= j

one-vector (op(e) = 1(e))
e(ν(X)) = A ∈ Matm×n(C) 1(e(ν(X)) = 1 ∈ Matm×1(C) 1i = 1
transpose one-vector (op(e) = 1t(e))
e(ν(X)) = A ∈ Matm×n(C) 1(e(ν(X)) = 1t ∈ Mat1×m(C) 1i = 1
trace (op(e) = tr(e))
e(ν(X)) = A ∈ Matm×m(C) tr(e(ν(X)) = c ∈ C c =

∑m

i=1 Aii

matrices are allowed but we only focus on square matrices in this paper. We denote by e
(
ν(X)

)
the result of evaluating e(X) on ν(X). As expected, opi(e1(X), . . . , epi(X))(ν(X)) :=
opi

(
e1(ν(X)), . . . , epi

(ν(X))
)
for linear algebra operator opi. In Table 1 we list operators

supported in the matrix query language MATLANG [8]. In the table we also show the
semantics of the operators and indicate restrictions on the dimensions such that the operators
are well-defined.

I Remark 1. We use a slightly modified list of operators than used in [8, 20]. For example, we
leave out general function applications and only focus on the Schur-Hadamard product (�).
The reason is that once two matrices are indistinguishably with regards to fragments including
�, then adding more general function applications does not increase the distinguishing
power [20]. We also leave out the diagonalisation operator (diag) which turns a vector into
a diagonal matrix with the input vector on the diagonal. Previous results show that the
real distinguishing power for fragments including diag comes from its ability to simulate
the Schur-Hadamard product on vectors [20]. We therefore omit diag and use the Schur-
Hadamard product on vectors, denoted by �v, instead. We assume that all fragments include
matrix multiplication, addition and scalar multiplication and we do not list these explicitly
in the set L of supported operators. J

4 Problem statement

As mentioned in the introduction we want to understand when two matrices can be distin-
guished by a sentence in fragments ML(L). We define an expression e(X) in ML(L) to be a
sentence if e(ν(X)) returns a scalar in C for any assignment ν of X. We note that the type
system of MATLANG [8] allows to check whether an expression in ML(L) is a sentence.
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I Definition 2. Two matrices A and B in Matn×n(C) are said to be ML(L)-equivalent,
denoted by A ≡ML(L)B, if and only if e(A) = e(B) for all sentences e(X) in ML(L). J

For (di)graphs G and H, we write G ≡ML(L) H if and only if AG ≡ML(L) AH , where AG and
AH denote the adjacency matrices of G and H, respectively.

We aim to characterise when A ≡ML(L) B holds by determining how A and B relate to
each other. A typical characterisation will be similarity-based, stating that A ≡ML(L) B if
and only if A ·X = X ·B for some matrix X with some specific properties, depending on the
fragment ML(L) under consideration. We will see that for some fragments more complicated
relationships than A ·X = X ·B are needed. When digraphs are concerned, we also provide
characterisations in terms of graph properties.

5 Fragments with the trace operation

We start with the equivalence of matrices for the fragments ML(tr, ∗), ML(tr, ∗,1) and
ML(tr, ∗,1,�v), and sub-fragments without ∗ but with 1t(·) instead. We leave out the biggest
fragment ML(tr, ∗,1,�, Id) since an inspection of the proof for that fragment (sketched in [20])
shows that it works for arbitrary matrices. In particular, we have that for (di)graphs G
and H, G ≡ML(tr,∗,1,�,Id) H if and only if G ≡C3 H. For all fragments considered, pairs of
undirected graphs are known that separate them [20]. We provide new separating pairs when
there is a distinction between graphs and digraphs. We will see that this occurs when ∗ is
not supported. We next outline a general proof strategy for characterising equivalence for
fragments with the trace operation and complex conjugate transposition (Section 5.1). This
strategy will then be applied to the various fragments under consideration (Section 5.2).

5.1 Proof strategy
We use Specht’s Theorem (see e.g., [32] or Theorem 2.2.6 in [28]) as the basis for our proof
strategy. It can be stated as follows. Let A = A1, . . . , Ak and B = B1, . . . , Bk be two
sequences of k matrices in Matn×n(C) which are closed under ∗, i.e., each A∗i is in A, and
similarly, each B∗i is in B. Then, A and B are called (simultaneously) unitary similar if
there exists a unitary matrix U such that for all i ∈ [1, k], Ai ·U = U ·Bi. Specht’s Theorem
provides necessary and sufficient conditions for this to hold. More precisely, A and B are
simultaneously unitary similar if and only if tr(w(A1, . . . , Ak)) = tr(w(B1, . . . , Bk)) for all
words w(x1, . . . , xk) over variables x1, . . . , xk. As an example of what w(A1, . . . , Ak) means,
if A = A,A∗ and w(x, y) = xxyx, then w(A,A∗) = A ·A ·A∗ ·A. So, variables in words are
substituted by matrices and concatenation is interpreted as matrix multiplication. The real
analogue of Specht’s Theorem is as follows [32]: Let A and B be two sequences of k matrices in
Matn×n(R) which are closed under transposition. Then, A and B are called (simultaneously)
orthogonal similar if there exists a (real) orthogonal matrix Q such that Ai ·Q = Q ·Bi for
all i ∈ [1, k]. Again, this is equivalent to requiring tr(w(A1, . . . , Ak)) = tr(w(B1, . . . , Bk)) for
all words w(x1, . . . , xk) over variables x1, . . . , xk

1.
We can use Specht’s Theorem to characterise ML(L)-equivalence for fragments with trace

and ∗, as follows. Let A and B be two matrices in Matn×n(C). Let Σ = e1(X), . . . , ek(X)
be a finite sequence of expressions such that (i) each ei(X) is in ML(L); (ii) each ei(X) ∈ Σ

1 For both the complex and real version of Specht’s Theorem there are bounds on the length of words
that one needs to consider, a rough bound being 2n2 [32]. Some recent progress and tighter bounds are
reported in [41]. These quantitative bounds do not play a role in what follows.
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12:6 When Can Matrix Query Languages Discern Matrices?

evaluates to a matrix, i.e., ei(A) ∈ Matn×n(C) (and hence also ei(B) ∈ Matn×n(C)); and
(iii) when ei(X) ∈ Σ also (ei(X))∗ ∈ Σ, i.e., Σ is closed under ∗.

Given Σ = e1(X), . . . , ek(X) and A and B, we then construct two sequences of matrices
in Matn×n(C): Σ(A) := e1(A), . . . , ek(A) and Σ(B) := e1(B), . . . , ek(B). Clearly, these
sequences are closed under complex conjugation by the definition of Σ. Let w(x1, . . . , xk) be
a word over x1, . . . , xk. For each such word we consider the ML(L)-sentence:

ew(X) := tr
(
w(e1(X), . . . , ek(X))

)
.

Then, A ≡ML(L) B implies that ew(A) = ew(B) for any word w(x1, . . . , xk) and hence, by
Specht’s Theorem, there exists a unitary matrix U such that ei(A) ·U = U · ei(B) for all
i ∈ [1, k]. We will always assume that in Σ, e1(X) := X, such that A ≡ML(L) B implies that
A ·U = U ·B and ei(A) ·U = U · ei(B) for i ∈ [2, k].

The sequences Σ of ML(L)-expressions which we will use ensure that the unitary/ortho-
gonal matrix is restricted such that similarity is preserved by the operators in ML(L). This
allows, by induction on the structure of expressions in ML(L), to show that when Σ(A) and
Σ(B) are simultaneously unitary equivalent, then A ≡ML(L) B. We will not detail these
inductive proofs as they are similar to those underlying the results in [20].

5.2 Results
ML(tr, ∗)-equivalence

For undirected graphs it is known that G ≡ML(tr,∗) H if and only if AG ·Q = Q ·AH for an
orthogonal matrix Q [20]. The proof relies on the Spectral Theorem of symmetric matrices
(see e.g., Theorem 2.5.3 in [28]), which does not apply for general matrices and, in particular,
for adjacency matrices of directed graphs. Instead, we here follow our proof strategy. Let
A and B be matrices in Matn×n(C). To apply Specht’s Theorem, we consider the sequence
Σ = e1(X) := X, e2(X) := X∗. Hence, Σ(A) = A,A∗ and Σ(B) = B,B∗ and A ≡ML(tr,∗) B

implies that A·U = U ·B and A∗ ·U = U ·B∗ for a unitary matrix U . This shows one direction
of the following proposition. The other direction is shown by induction on the structure of
expressions and uses that tr(·) is invariant under similarity, i.e., tr(A) = tr(P−1 ·A ·P ) for
any matrix A and invertible matrix P in Matn×n(C).

I Proposition 3. Let A and B be matrices in Matn×n(C). Then A ≡ML(tr,∗) B if and only
if A and B are unitary similar. When A and B are real matrices, then orthogonal similarity
can be used. J

Proposition 3 holds in particular for adjacency matrices representing digraphs, hereby
generalising the characterisation for undirected graphs. We can say a bit more by rephrasing
the trace conditions underlying Specht’s Theorem in terms of so-called semi-walks in digraphs.

Let π be a string in {←,→}∗ of length k. A semi-walk ρ of type π in a digraph G = (V,E)
is a sequence of k + 1 vertices v1, v2, . . . , vk+1 in V such that for each pair of consecutive
vertices vi and vi+1, (vi, vi+1) is an edge in G if πi =“→” or (vi+1, vi) is an edge if πi =“←”.
A closed semi-walk of type π is a semi-walk of that type which starts and ends in the
same vertex. Let w(x, y) be a word of length k over variables x and y. We define the
type of w(x, y) as the string π(w) ∈ {←,→}k such that π(w)i =“→” if the ith symbol in
w(x, y) is x, and π(w)i =“←” if the ith symbol of w(x, y) is y. It is now readily verified
that tr(w(AG, A

t
G)) counts the number of closed semi-walks of type π(w) in the digraph G

represented by adjacency matrix AG.
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I Corollary 4. Let G and H be digraphs of the same order. Then, G ≡ML(tr,∗) H if and only
if G and H have the same number of closed semi-walks of any type. J

We remark that when G and H are undirected graphs, semi-walks are simply walks and
the type is just the length of the walk. In this case, Corollary 4 implies that G ≡ML(tr,∗) H

if and only if G and H have the same number of closed walks of any length, as reported
in [20]. For undirected graphs, it was furthermore shown that G ≡ML(tr,∗) H if and only if
G ≡ML(tr) H [20]. After all, complex conjugate transposition on symmetric real matrices
does not have any effect. By contrast, we will see that the presence of ∗ has an impact on
digraphs. First, however, we look into ML(tr)-equivalence.

I Proposition 5. Let A and B be in Matn×n(C). Then, A ≡ML(tr) B if and only if A and B
have the same characteristic polynomial.

Proof. It is well-known that tr(Ak) = tr(Bk), for any k, is equivalent to A and B having the
same characteristic polynomial (and thus eigenvalues) (see e.g., Problem 2.4.P10 in [28]),
and having tr(Ak) = tr(Bk), for any k, is clearly equivalent to A ≡ML(tr) B. J

We can complement this proposition for digraphs G and H by: G ≡ML(tr) H if and only
if G and H have the same number of closed semi-walks of type “→k”, for any k.

Proposition 5 immediately implies that a simple similarity-based characterisation of
ML(tr)-equivalence does not exist. Indeed, suppose that A ≡ML(tr) B would be equivalent
to A ·X = X ·B for some unitary/orthogonal matrix X, then A and B must have the
same Jordan normal form (up to reordering of the Jordan blocks). Matrices with the same
characteristic polynomial, however, do not necessarily have the same Jordan normal form.

I Example 6. Consider the digraphs G1 ( ) and H1 ( ) with adjacency matrices
AG1 =

[
0 1 0
0 0 0
0 0 0

]
and AH1 =

[
0 1 0
0 0 1
0 0 0

]
, respectively. These matrices are in Jordan normal form,

but different. So AG1 and AH1 cannot be similar using an invertible matrix. From the
diagonals, however, we can see that both have z3 (eigenvalue 0 with multiplicity 3) as
characteristic polynomial. Hence, AG1 ≡ML(tr) AH1 by Proposition 5 (alternatively, one
simply observes that both digraphs have no closed semi-walks of type “→k” for any k.). J

We next show that ML(tr)- and ML(∗, tr)-equivalence of normal matrices relate just like
for undirected graphs. This is not surprising. Normal matrices are known to inherit many
properties of symmetric matrices (see e.g., Section 2.5 in [28]).

I Proposition 7. Let A and B be normal matrices in Matn×n(C). Then, A ≡ML(tr,∗) B if
and only if A ≡ML(tr) B.

Proof. (sketch) We note that A ≡ML(tr,∗) B trivially implies A ≡ML(tr) B. The reverse
implication holds because if A and B are normal matrices, then A∗ = p(A) and B∗ = p(B)
for some polynomial p(z) (see e.g., Problem 2.5.P26 in [28]). Intuitively, this implies that we
can eliminate occurrences of A∗ in tr(w(A,A∗)), hereby reducing such expressions to linear
combinations of tr(Ak) for some k’s, and ML(tr)-equivalence guarantees that tr(Ak) = tr(Bk)
for all k. Specht’s Theorem and Proposition 3 then imply that A ≡ML(tr,∗) B. J

The digraphs G1 ( ) and H1 ( ), with non-normal adjacency matrices, show that
Proposition 7 does not hold in general. Indeed, note that G1 has one closed semi-walk of
type “→←”, whereas H1 has two such walks. Hence, G1 6≡ML(tr,∗) H1 by Corollary 4.
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ML(tr, ∗, 1)-equivalence

Whereas the trace operator enables counting closed semi-walks in (di)graphs, the inclusion of
the 1(·)-operator enables to count the number of not necessarily closed (semi-)walks. Indeed,
one can use sentences (1(X))∗ ·w(X,X∗) · 1(X) in ML(tr, ∗,1) to count the number of semi-
walks of the type of the word w(x, y) when evaluated on an adjacency matrix of a digraph.
It was shown that for undirected graphs, G ≡ML(tr,∗,1) H if and only if AG ·Q = Q ·AH

for an orthogonal doubly quasi-stochastic matrix Q if and only if G and H have the same
number of closed and not necessarily closed walks of any length [20]. The proof relied on the
Spectral Theorem for symmetric matrices. Our proof strategy, however, allows to generalise
this result to digraphs and general matrices.

Let A and B be matrices in Matn×n(C). To apply Specht’s Theorem we use the sequence
Σ = e1(X) := X, e2(X) := X∗, e3(X) := 1(X) · (1(X))∗. Hence, Σ(A) = A,A∗, J and
Σ(B) = B,B∗, J and A ≡ML(tr,∗,1) B implies A ·U = U ·B (and thus also A∗ ·U = U ·B∗)
and J ·U = U · J for a unitary matrix U . We note that J ·U = U · J implies that U can be
chosen such that A ·U = U ·B and U · 1 = 1 hold (see Lemma 4 in [42]). In other words, U
can be chosen to be unitary and doubly quasi-stochastic. It is easily verified, along the same
lines as in [20], by induction on the structure of expressions, that the existence of such a
unitary matrix also implies A ≡ML(tr,∗,1) B. We thus have shown:

I Proposition 8. Let A and B be matrices in Matn×n(C). Then A ≡ML(tr,∗,1) B if and only
if A ·U = U ·B for a unitary doubly quasi-stochastic matrix U . When A and B are real
matrices, we can use an orthogonal doubly quasi-stochastic matrix instead. J

Specialised to adjacency matrices of digraphs G and H, we can further complement this by:

I Corollary 9. Let G and H be digraphs of the same order. Then, G ≡ML(tr,∗,1) H if and
only if G and H have the same number of semi-walks of any type and the same number of
closed semi-walks of any type.

Proof. (sketch) The only if direction requires some explanation. Suppose that AG and AH

have the same number of semi-walks of any type and the same number of closed semi-walks
of any type. We argue that tr(w(AG, A

∗
G, J)) = tr(w(AH , A

∗
H , J)) for any word w(x, y, z).

Specht’s Theorem together with Proposition 8 then imply that G ≡ML(tr,∗,1) H. It is easily
verified that tr(w(AG, A

∗
G, J)) is either of the form tr(w′(AG, A

∗
G)) (when J does not occur)

or can be reduced to an expression of the form c
∏

i∈[1,k] tr(wi(AG, A
∗
G) ·J) for some c ∈ N.

We note that tr(wi(AG, A
∗
G) ·J) = 1t ·wi(AG, A

∗
G) · 1. Hence, in both cases tr(w(AG, A

∗
G, J))

is fully determined by the number of semi-walks and closed semi-walks in G. Similarly, for
tr(w(AH , A

∗
H , J)). J

For undirected graphs, G ≡ML(tr,∗,1) H was also shown to be equivalent toG ≡ML(tr,1,1t) H [20]
and to AG and AH , and their complements ĀG and ĀH , having the same characteristic
polynomial [43]. Here, the complement Ā of a matrix A is defined as J −A− I, similarly for
B̄ of B. The latter equivalence extends more generally:

I Proposition 10. Let A and B be matrices in Matn×n(C). Then, A ≡ML(tr,1,1t) B if and
only if A and B, and Ā and B̄ have the same characteristic polynomial.

Proof. This is an immediate consequence of the following identity (see e.g., [21]) linking
characteristic polynomials of A and Ā to the walk generating function: pA(z)

pĀ(z) = 1−
∑

k≥0(−z−
1)ktr(Ak · J), where pA(z) and pĀ(z) denote the characteristic polynomials of A and Ā,
respectively. Indeed, when A ≡ML(tr,1) B holds, pA(z) = pB(z) (by Proposition 5) and also
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tr(Ak · J) = tr(Bk · J). Hence, the identity above tells that pĀ(z) = pB̄(z). Conversely, if
pA(z) = pB(z) and pĀ(z) = pB̄(z) we must have that tr(Ak · J) = tr(Bk · J). It is readily
verified, as in the proof of Corollary 9, that this implies that A ≡ML(tr,1,1t) B holds. J

Clearly, for digraphs, ML(tr,1,1t)-equivalence coincides with the digraphs having the same
number of semi-walks and closed semi-walks of type “→k”, for any k. However, no simple
similarity-based characterisation of ML(tr,1,1t)-equivalence for digraphs exists.

I Example 11. We use again the Jordan normal form argument as in Example 6. Indeed,

the digraphs G2 ( ) and H2 ( ) are easily seen to be ML(tr,1,1t)-equivalent (they have

no closed semi-walks of type “→k”, have both 7 semi-walks of length 0, 6 semi-walks of
type “→” and no semi-walks of type “→k”, for k > 1). Nevertheless, one can verify that
their Jordan normal forms are different. So no invertible matrix X can exist such that
AG2 ·X = X ·AH2 . J

We can say a bit more by allowing more complicated ways of linking A and B. We develop
this further in Section 6 when focusing on ML(1,1t)-equivalence. So, stay tuned.

A similar proof as for Proposition 7 shows that normal matrices simplify matters:

I Corollary 12. Let A and B be normal matrices in Matn×n(C). Then, A ≡ML(tr,∗,1) B if
and only if A ≡ML(tr,1,1t) B. J

We thus recover and generalise the characterisation for ML(tr,1,1t)-equivalence of undirected
graphs [20] to normal matrices. We note that graphs G2 and H2 show that Corollary 12
does not extend to non-normal matrices. Indeed, G2 ≡ML(tr,1,1t) H2 but G2 6≡ML(tr,∗,1) H2.
For example, G2 has 8 semi-walks of type “←→←→” while H2 has 48 semi-walks of that
type. So, Corollary 9 implies that G2 6≡ML(tr,∗,1) H2.

ML(tr, ∗, 1, �v)-equivalence

We next include pointwise vector multiplication (�v), i.e., the Schur-Hadamard product
on vectors. The proof of the characterisation of ML(tr, ∗,1,�v)-equivalence obtained for
undirected graphs in [20] generalises easily to digraphs and general matrices. The key insight
for undirected graphs was that pointwise multiplication of vectors allows to compute so-called
equitable partitions of undirected graphs. On graphs, equitable partitions correspond to
the partition obtained by vertex colour refinement [23]. For digraphs and general matrices,
equitable partitions and colour refinement have been considered as well (see e.g., [1, 25, 42, 24]).
We only need to use this general notion of equitable partition, and the proofs in [20] carry
over almost verbatim.

Let A ∈ Matn×n(C). A partition [n] =
⊎

i∈[1,q] Vi is row-equitable for A if there are
complex numbers rij such that for all k ∈ Vi,

∑
`∈Vj

Ak` = rij . That is, the sum of row
entries of A for columns in Vj is constant (rij) and independent of the chosen row in Vi.
Similarly, a partition [n] =

⊎
i∈[1,q] Vi is column-equitable for A if there are complex numbers

cij such that for all k ∈ Vi,
∑

`∈Vj
A`k = cij . A partition [n] =

⊎
i∈[1,q] Vi is equitable for A

if it is both row- and column-equitable2 for A. We remark that any matrix has an equitable
partition given by the trivial one consisting of singleton elements.

2 For symmetric matrices, such as adjacency matrices of undirected graphs, the notions of row- and
column-equitability coincide.
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In the following we represent partitions by indicator vectors. More specifically, if [n] =⊎
i∈[1,q] Vi is a partition, then we represent it by binary vectors 1V1 , . . . ,1Vq

such that 1Vi

holds a 1 at row j if j ∈ Vi and holds a 0 otherwise.
A matrix may have multiple equitable partitions, but only a unique coarsest one. That

is, there is unique equitable partition of which any other equitable partition is a refinement.
We can relate two matrices based on equitable partitions. More precisely, matrices A and
B in Matn×n(C) are said to have a common equitable partition if there exists partitions
[n] =

⊎
i∈[1,q] Vi and [n] =

⊎
i∈[1,q]Wj which are equitable for A and B, respectively, and

if rij and r′ij denote the complex numbers for row-equitability of the two partitions, and
cij and c′ij the complex numbers for column-equitability, then rij = r′ij and cij = c′ij for
i, j ∈ [1, q]. We can compute equitable partitions in ML(∗,1,�v) (the trace operator is not
needed) and we can test for the existence of a common equitable partition:
I Proposition 13 ([20]). Let A and B be matrices in Matn×n(C). Let [n] =

⊎
i∈[1,q] Vi be

the coarsest equitable partition for A. There exists expressions equitj(X) ∈ ML(1, ∗,�v),
depending on A, such that 1Vj

= equitj(A) for j ∈ [1, q]. Furthermore, A ≡ML(∗,1,�v) B

implies that A and B have a common equitable partition witnessed by the partitions represented
by equiti(A) and equiti(B), for i ∈ [1, q].
Proof. Compared to the proof for undirected graphs [20] we now need to use ∗ to ensure
both row- and column-equitability. The presence of �v allows one to simulate the colour
refinement process on matrices (see e.g., [24, 42]) by: extracting the indicator vectors from
matrices, and by intersecting indicator vectors in order to create a refined partition. J

A similarity-based characterisation of ML(tr, ∗,1,�v)-equivalence is obtained using
Specht’s Theorem. We consider the sequence Σ = e1(X) := X, e2(X) := X∗, equiti(X) ·
equit∗i (X), i ∈ [1, q], such that equiti(A) computes indicator vectors of an equitable parti-
tion [n] =

⊎
i∈[1,q] Vi of A. Hence, Σ(A) = A,A∗, E1 = 1V1 · 1t

V1
, . . . , Eq = 1Vq

· 1t
Vq

and
Σ(B) = B,B∗, F1 = 1W1 · 1t

W1
, . . . , Fq = 1Wq · 1t

Wq
, where [n] =

⊎
i∈[1,q]Wi is an equitable

partition of B. We have that A ≡ML(tr,∗,1,�v) B implies the existence of a unitary matrix
U such that A ·U = U ·B and Ei ·U = U · Fi for i ∈ [1, q]. The latter conditions imply
that U can be chosen such that 1Vi

= U · 1Wi
for i ∈ [1, q]. That the existence of such a

similarity between A and B implies that A ≡ML(tr,∗,1,�v) B holds, is not straightforward
but the argument given in [20] can be generalised to general matrices. We only need a
generalisation of Lemma 2.1 in [11] which states, translated to our setting, that all vectors
e(A) which can be computed by means of expressions e(X) in ML(tr, ∗,1,�v) can be written
as a linear combination of indicator vectors 1Vi

, for i ∈ [1, q]. Similarly for e(B). Since
1Vi = U ·1Wi , e(A) = U · e(B) and this can be used to show, by induction on the structure
of expressions, that A ≡ML(tr,∗,1,�v) B.
I Proposition 14. Let A and B be matrices in Matn×n(C). Then, A ≡ML(tr,∗,1,�v) B if and
only if A ·U = U ·B and 1Vi = U · 1Wi for i ∈ [1, q]. For real matrices A and B one can use
orthogonal matrices Q such that 1Vi

= Q ·1Wi
, for i ∈ [1, q] J

In the proposition, 1Vi
and 1Wi

, for i ∈ [1, q], witness that A and B have a common
equitable partition. This exactly matches the characterisation given for undirected graphs
in [20] but beware that row- and column-equitable partitions are used in this general setting.
We observe that 1Vi

= U · 1Wi
implies that U is doubly quasi-stochastic (simply note

that 1 =
∑

i∈[1,q] 1Vi
=
∑

i∈[1,q] 1Wi
). For undirected graphs G and H, we also have that

G ≡ML(tr,∗,1,�v) H if and only if G ≡ML(tr,1,1t,�v) H. This equivalence does not hold in
general, however. We remark that ML(tr,1,1t,�v)- and ML(tr, ∗,1,�v)-equivalence do
coincide when normal matrices are considered, just as for undirected graphs. It suffices again
to observe that ∗ can be eliminated for normal matrices (see e.g., the proof of Proposition 7).
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6 Fragments without the trace operator and/or complex conjugate
transposition

It should be clear by now that the absence of complex conjugate transposition has an impact
when digraphs and general matrices are concerned. Moreover, for fragments that do not
support tr(·), we cannot use the proof strategy based on Specht’s Theorem. We follow a
different route in this section, inspired by the theory of linear systems in control theory (see
e.g., [13]) and the notion of minimal realisation in particular. The fragments we consider
are: ML(1,1t), ML(∗,1), and ML(∗,1,�v).

6.1 Minimal realisations
In control theory, one analyses linear systems described by a triple 〈A,C,D〉 with A ∈
Matn×n(C), C ∈ Matm×n(C), and D ∈ Matn×o(C), and one wants to understand the
“dynamics” C ·Ak ·D, for k ≥ 0, of the system. To this aim, one typically finds a minimal
realisation of 〈A,C,D〉. That is, a system 〈Â, Ĉ, D̂〉 with Â ∈ Matq×q(C), Ĉ ∈ Matm×q(C),
and D̂ ∈ Matq×o(C) such that (i) C ·Ak ·D = Ĉ · Âk · D̂, for all k ≥ 0, i.e., it has the same
dynamics; and (ii) the dimension q, also called the order of the system, is minimal. The
importance of minimal realisations is that they are unique, up to unitary similarity. That
is, for any two minimal realisations 〈Â, Ĉ, D̂〉 and 〈Â′, Ĉ ′, D̂′〉 of 〈A,C,D〉, there exists a
unitary matrix Z ∈ Matq×q(C) such that Â = Z∗ · Â′ ·Z, Ĉ ·Z = Ĉ ′ and D̂ = Z∗ · D̂′. When
real matrices are concerned, they are unique up to orthogonal similarity. If one has given two
systems 〈A,C,D〉 and 〈B,C ′, D′〉 that have the same dynamics, i.e., C ·Ak ·D = C ′ ·Bk ·D′,
for k ≥ 0, then this implies that 〈A,C,D〉 and 〈B,C ′, D′〉 have the same minimal realisation
(up to similarity). We use this observation to link the matrices A and B. To see how this
relates to ML(L)-equivalence, consider the following examples.

I Example 15. Let A and B in Matn×n(C). Then, A ≡ML(1,1t) B implies 1t·Ak ·1 = 1t·Bk ·1
for all k ≥ 0. After all, we can consider sentences ek(X) := 1t(X) ·Xk · 1(X) in ML(1,1t)
and A ≡ML(1,1t) B implies that ek(A) = ek(B). So, when we consider the systems 〈A,1t,1〉
and 〈B, 1t,1〉, A ≡ML(1,1t) B implies that these have the same dynamics and hence, similar
minimal realisations. J

We note that for ML(1,1t)-equivalence we only need to consider systems of the form 〈A,C,D〉
with C = D∗. From now on, we denote such a system by 〈A,D〉 instead of 〈A,D∗, D〉.

I Example 16. Let A and B in Matn×n(C). Then, A ≡ML(∗,1) B implies 1t ·w(A,A∗) · 1 =
1t ·w(B,B∗) · 1 for all words w(x, y). We are here thus interested in the same systems as
before, i.e., 〈A,1〉 and 〈B, 1〉, but have in mind a more general notion of “dynamics” in which
arbitrary words w(x, y) are considered. J

One can show, following closely the proof for standard minimal realisations (see e.g., Chapter
25 in [14]), that results from control theory extend to this more general setting, provided that
we define a generalised minimal realisation of 〈A,D〉 as a system 〈Â, D̂〉 of minimal order
(i.e., the dimension of Â is minimal) and such that D∗ ·w(A,A∗) ·D = (D̂)∗ ·w(Â, (Â)∗) · D̂
for every word w(x, y). One can show that:

I Proposition 17. Let A ∈ Matn×n(C) and D ∈ Matn×o(C). Then, 〈A,D〉 has a unique
generalised minimal realisation, up to unitary similarity. Furthermore, orthogonal similarity
can be used when A and D are real matrices. J

ICDT 2020



12:12 When Can Matrix Query Languages Discern Matrices?

Standard minimal realisations can be computed in several ways. We here use the
Kalman decomposition method [13]. Let 〈A,D〉 and 〈B,D′〉 be two systems such that
D∗ ·Ak ·D = (D′)∗ ·Bk ·D′, for any k. The Kalman decomposition procedure can be used to
obtain two special unitary bases U and V in Matn×n(C), leveraging that minimal realisations
are similar, such that:

U∗·A·U =

Fp×p Fp×q Fp×r

Oq×p Â Fq×r

Or×p Or×q Fr×r

 , V ∗·B·V =

Fp′×p′ Fp′×q Fp′×r′

Oq×p′ Â Fq×r′

Or′×p′ Or′×q Fr′×r′

 ,
U∗·D =

Fp×o

D̂

Or×o

 , and V ∗·D′ =

Fp′×o

D̂

Or′×o

 ,
where each occurrence of F represents a different matrix of dimensions specified in the
subscripts. We can see that a minimal realisation 〈Â, D̂〉 (of order q) is embedded in
these matrices, albeit in different positions. The latter can be phrased by means of matrix
transformations. More specifically, one can show that

PA ·A ·S = S ·B ·PB , (1)

where PA and PB are matrices representing orthogonal projection operators on the controllable
and observable spaces of 〈A,D〉 and 〈B,D′〉, respectively, and S is a matrix such that

D = S ·D′ and D∗ ·S = (D′)∗. (2)

Intuitively, the controllable and observable space of a system 〈A,D〉, denoted by CO〈A,D〉,
consists of all vectors obtained by a linear combination of Ai ·D, for varying i, and which
are not in the null space of vectors obtained by a linear combination of D∗ ·Aj , for varying j.
When interested in the dynamics D∗ ·Ak ·D only those vectors matter and, in fact, Â is the
matrix representation of A restricted to this space3. So, equation (1) is just stating that A
and B are related (by matrix S) after appropriate projections are in place. Using properties
of projection operators PA and PB , and (2), the following can be verified:

I Theorem 18. Let A and B be in Matn×n(C) and D and D′ in Matn×o(C). Then, D∗ ·
Ak ·D = (D′)∗ ·Bk ·D′, for any k, if and only if there exists a matrix S such that D = S ·D′
and D∗ ·S = (D′)∗ and such that PA ·A ·S = S ·B ·PB for projection operators PA and PB

on CO〈A,D〉 ad CO〈B,D′〉, respectively. J

We can further show that this result also holds for our general notion of dynamics, using a
generalised notion of controllable and unobservable space based on words rather than powers
of matrices.

I Proposition 19. Let A and B be in Matn×n(C) and D and D′ in Matn×o(C). Then,
D∗ ·w(A,A∗) ·D = (D′)∗ ·w(B,B∗) ·D′ for all words w(x, y) if and only if there exists a
matrix S such that D = S ·D′ and D∗ · S = (D′)∗ and such that PA ·A · S = S ·B · PB

and PA ·A∗ ·S = S ·B∗ ·PB for projection operators PA and PB on C̃O〈A,D〉 and C̃O〈B,D′〉,
respectively. J

Here, C̃O indicates that we work with the generalised CO space. In all this, real matrices can
be used when A, B, D and D′ are real. These results directly translate into characterisations
of ML(L)-equivalence for the fragments considered in this section.

3 We refer to any textbook on linear systems, such as [13], for more background.
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6.2 Results
ML(1, 1t)-equivalence

For undirected graphs, G ≡ML(1,1t) H if and only if AG · S = S ·AH for a doubly quasi-
stochastic matrix S if and only if G and H have the same number of walks of any length [20].
For general matrices, we can say the following. Let A and B be matrices in Matn×n(C).
From Example 15, we know that A ≡ML(1,1t) B implies that the systems 〈A,1〉 and 〈B, 1〉
have the same dynamics. A direct application of Theorem 18 results in:

I Corollary 20. Let A and B be matrices in Matn×n(C). Then, A ≡ML(1,1t) B if and only
if there is a doubly quasi-stochastic matrix S such that PA ·A ·S = S ·B ·PB for projection
operators PA and PB. J

So, the only difference with the undirected graph case is the use of the projection operators.
This cannot be avoided, as shown in the example below. We also observe that for digraphs,
G ≡ML(1,1t) H is clearly equivalent to G and H having the same number of semi-walks of
type “→k” for any k, similar as in the undirected graph case.

I Example 21. Consider directed graphs G4 ( ) and H4 ( ). Both have 4 semi-walks
of type “→k” for any k, i.e., 1t ·Ak

G4
·1 = 4 = 1t ·Ak

H4
· 1, for all k ≥ 0. It is an easy exercise

to show that there is no doubly quasi-stochastic matrix S such that AG4 ·S = S ·AH4 . We
thus have to rely on Corollary 20. It can be verified that the minimal realisations of 〈AG4 ,1〉
and 〈AH4 ,1〉 consist of 〈Â = [1], 1̂ = [2]〉. So, indeed, 4 = [2]t · [1]k · [2] for any k, as desired.
Furthermore,

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


︸ ︷︷ ︸

PAG4

·AG4 ·


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


︸ ︷︷ ︸

S

=


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


︸ ︷︷ ︸

S

·AH4 ·


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


︸ ︷︷ ︸

PH4

.

That the same matrices are being used on both sides is just specific for this example. J

Corollary 20 begs the question why no projection operators are required when undirected
graphs are concerned. The reason is that for normal matrices, the transformation matrices
involved in the proof of Theorem 18 can be chosen to consist of eigenvectors of A and B
(recall that normal matrices have n independent eigenvectors). This allows to simplify the
expression PA ·A ·S = S ·B ·PB into A ·S = S ·B.

I Proposition 22. Let A and B be normal matrices in Matn×n(C). Then, A ≡ML(∗,1) B if
and only if A ≡ML(1,1t) B if and only if there exists a doubly quasi-stochastic matrix S such
that A ·S = S ·B. For real matrices, S can be assumed to be real. J

This is again analogous to the undirected graph case. We anticipated in Section 5 that
will say something more about ML(tr,1,1t)-equivalence. One can verify, by an analysis of
expressions, that A ≡ML(tr,1,1t) B if and only if A ≡ML(tr) B and A ≡ML(1,1t) B. Hence,
Proposition 10 and Corollary 20 result in:

I Corollary 23. Let A and B be matrices in Matn×n(C). Then, A ≡ML(tr,1,1t) B if and only
if A and B have the same characteristic polynomial and PA ·A ·S = S ·B ·PB for a doubly
quasi-stochastic matrix S. J
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In other words, compared to Proposition 10, we can replace the condition related to the
complements Ā and B̄ by the revised similarity condition.

I Example 24. The digraphs G2 ( ) and H2 ( ) from Example 11 are ML(tr,1,1t)-

equivalent. They have the same characteristic polynomial (pAG2
(z) = −z7 = pAH2

(z))
and one can verify that the minimal realisation of 〈AG2 ,1〉 and 〈AH2 ,1〉 is given by Â =[

6
7 − 1

7 (3
√

3)
4
√

3
7 − 6

7

]
and 1̂ =

[√
7

0

]
. We see that 1̂t ·1̂ = 7, 1̂t · Â·1̂ = 6 and for k ≥ 2, 1̂t · Âk ·1̂ = 0

because Â2 = O. This is in accordance with Example 11. We have seen that there is no
orthogonal similarity between AG2 and AH2 . One can also verify that no doubly quasi-
stochastic matrix links these matrices. We thus have to rely on Corollary 20 and one can
show that PAG2

·AG2 ·S = S ·AH2 ·PAH2
with

PAG2
= PAH2

=


1
4 0 1

4 0 1
4 0 1

4
0 1

3 0 1
3 0 1

3 0
1
4 0 1

4 0 1
4 0 1

4
0 1

3 0 1
3 0 1

3 0
1
4 0 1

4 0 1
4 0 1

4
0 1

3 0 1
3 0 1

3 0
1
4 0 1

4 0 1
4 0 1

4

 ,

and S the identity matrix. Again, that PAG2
= PAH2

is just a coincidence. J

ML(∗, 1)-equivalence

Consider two matrices A and B in Matn×n(C) and consider the systems 〈A,1〉 and 〈B, 1〉.
As we have seen in Example 16, A ≡ML(∗,1) B implies that 1t ·w(A,A∗) · 1 = 1t ·w(B,B∗) ·1
for every word w(x, y) and hence Proposition 19 applies, resulting in:

I Proposition 25. Let A and B be in Matn×n(C). Then, A ≡ML(∗,1) B if and only if
PA ·A ·S = S ·B ·PB and PA ·A∗ ·S = S ·B∗ ·PB for a doubly quasi-stochastic matrix S and
for projection operators PA and PB. J

We remark that PA and PB are now projection operators on the generalised controllable
spaces of 〈A,1〉 and 〈B, 1〉, respectively.

I Example 26. We do not have a digraph example at hand such that G ≡ML(∗,1) H holds
and which shows the necessity of the projection operators in Proposition 25. All efforts
resulted in AG ·S = S ·AH and At

G ·S = S ·At
H for a doubly quasi-stochastic matrix S, i.e.,

without needing the projection operators. Finding such a digraph example or showing that
the projection operators can be eliminated is left as an open problem. J

ML(∗, 1, �v)-equivalence

For undirected graphs, ML(∗,1,�v)-equivalence coincides with the graphs being fractionally
isomorphic, with having a common equitable partition, and with being C2-equivalent [37, 38,
10, 30, 20]. We recall that a fractional isomorphism between graphs G and H is a doubly
stochastic matrix S such AG ·S = S ·AH .

When considering ML(∗,1,�v)-equivalence of arbitrary matrices, we simply need to
use the corresponding notions of equitable partitions as in Section 5 for ML(tr, ∗,1,�v)-
equivalence. We can again use Proposition 19 to obtain a characterisation.
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I Example 27. Let A, B in Matn×n(C) and let 1Vi and 1Wi , for i ∈ [1, q], represent common
equitable partitions of A and B, respectively. We can obtain these indicator vectors by
expressions equiti(X) ∈ ML(∗,1,�v), for i ∈ [1, q] (Proposition 13). Hence, A ≡ML(∗,1,�v) B

implies that 1t
Vi
· w(A,A∗) · 1Vj = 1t

Wi
· w(B,B∗) · 1Wj for every word w(x, y) and any

i, j ∈ [1, q]. By letting D = [1V1 . . . 1Vp
] and D′ = [1W1 . . . 1Wp

], A ≡ML(∗,1,�v) B implies
that D∗ ·w(A,A∗) ·D = (D′)∗ ·w(B,B∗) ·D′ for every word w(x, y). Hence, 〈A,D〉 and
〈B,D′〉 have the same generalised dynamics. J

Hence, Proposition 19 implies that A ≡ML(∗,1,�v) B if and only if PA ·A ·S = S ·B ·PB

and PA ·A∗ ·S = S ·B∗ ·PB for a matrix S satisfying 1Vi
= S ·1Wi

and 1t
Vi
·S = 1t

Wi
, for all

i ∈ [1, q]. We remark again that this implies that S is doubly quasi-stochastic. We can do
better, however, and eliminate the projection operators and ensure that S is doubly-stochastic
and hence, A and B are fractionally isomorphic.

I Corollary 28. Let A and B be matrices in Matn×n(C). Then A ≡ML(∗,1,�v) B if and
only if there is a doubly stochastic matrix S such that A · S = S ·B and A∗ · S = S ·B∗,
1Vi

= S ·1Wi
and 1t

Vi
·S = 1t

Wi
, for all i ∈ [1, q], for indicator vectors describing a common

equitable partition of A and B.

Proof. (Sketch). It can be verified that the transformation matrices underlying the proof of
Proposition 19 for the systems 〈A,D〉 and 〈B,D′〉 from Example 27 are of a very particular
form. Indeed, using the fact that D and D′ represent equitable partitions, the column vectors
in these matrices can be shown to span the generalised controllable and observable space
of 〈A,D〉 and 〈B,D′〉. As a consequence, one obtains that PA = Π ·Πt, PV = Π′ · (Π′)t

and S = Π · (Π′)t, where Π = D · (Dt · D)−1/2 and Π′ = D′ · ((D′)t · D′)−1/2. Hence,
Π · (Πt) ·A ·Π · (Π′)t = Π · (Π′)t ·B ·Π′ · (Π′)t. A second crucial observation is that, in a
similar way as shown in the proof of Theorem 4.1 in [24], one can verify that Π ·Πt commutes
with A and similarly, Π′ · (Π′)t commutes with B, due to equitability. Further manipulation
then shows that PA and PB can be omitted, resulting in A ·Π · (Π′)t = Π · (Π′)t ·B. It now
suffices to observe that for S = Π · (Π′)t, we have that Svw = 1

|Vk| for the unique part Vk

such that i ∈ Vk and j ∈Wk, and Svw = 0 otherwise. It is now easy to verify that S satisfies
the conditions stated in the Corollary. J

For digraphs, the existence of a stochastic matrix S such that AG · S = S · AH and
At

G · S = S ·At
H hold is known to correspond to G ≡C2 H [1, 25]. Hence, the previous

Corollary implies that G ≡ML(∗,1,�v) H if and only if G ≡C2 H, just as for undirected graphs.
We also remark that Corollary 28 can be shown by relying on known correspondences between
fractional isomorphisms and equitable partitions of matrices [1, 25]. Nevertheless, proving it
by relying on minimal realisations (Proposition 19) further illustrates the usefulness of our
approach.

I Remark 29. We can obtain similar results for ML(1,1t,�v)-equivalence. In this case, we
have to use standard linear systems described by 〈A,Cc, Dr〉 where Cc consists of transposed
indicator vectors of a column-equitable partition of A and Dr consists of indicator vectors of
a row-equitable partition of A. Note that Cc is not necessarily equal to the transpose of Dr.
Then, given 〈A,Cc, Dr〉 and 〈B,C ′c, D′r〉, a generalisation of Theorem 18 allows to obtain a
relationship between A and B. We defer the precise analysis of ML(1,1t,�v)-equivalence to
future work. J
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7 Concluding remarks

While at first, it seemed daunting to understand the distinguishing power of MATLANG
on general matrices, we showed that moving to this more general setting (compared to
adjacency matrices of undirected graphs) makes the analysis more elegant. Of course, the
right tools are needed, such as the connection with Specht’s Theorem and mininal realisations
of linear systems. Considering the general setting has as additional advantage that previous
results can be seen as special cases. Although we focused on the setting where MATLANG
expressions only take a single matrix as input, some of our results can be generalised. This
is particularly true for cases relying on Specht’s Theorem. It is less clear how to deal with
multiple inputs by relying on linear systems theory.

In this work, we consider equivalence of matrices by sentences that allow an arbitrary
number of applications of the supported operators. In practice, one would like to understand
the impact of allowing, say only k matrix multiplications. Indeed, each operator application
has a computational cost attached. Developing the right tools for analysing such a quantified
setting is, we believe, an interesting line of research.

References

1 Albert Atserias and Elitza N. Maneva. Sherali-Adams Relaxations and Indistinguishability in
Counting Logics. SIAM J. Comput., 42(1):112–137, 2013. doi:10.1137/120867834.

2 Sheldon Axler. Linear Algebra Done Right. Springer, third edition, 2015. doi:10.1007/
978-3-319-11080-6.

3 Pablo Barceló, Nelson Higuera, Jorge Pérez, and Bernardo Subercaseaux. On the Expressiveness
of LARA: A Unified Language for Linear and Relational Algebra. In 23nd International
Conference on Database Theory, ICDT 2020, volume 155 of LIPIcs, pages 6:1–6:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICDT.2020.6.

4 Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Evfimievski,
Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick R. Reiss, Prithviraj
Sen, Arvind C. Surve, and Shirsih Tatikonda. SystemML: Declarative machine learning on
Spark. Proceedings of the VLDB Endowment, 9(13):1425–1436, 2016. doi:10.14778/3007263.
3007279.

5 Matthias Boehm, Arun Kumar, and Jun Yang. Data Management in Machine Learning
Systems. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2019.
doi:10.2200/S00895ED1V01Y201901DTM057.

6 Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfi-
mievski, and Niketan Pansare. On Optimizing Operator Fusion Plans for Large-scale Machine
Learning in SystemML. Proceedings of the VLDB Endowment, 11(12):1755–1768, 2018.
doi:10.14778/3229863.3229865.

7 Robert Brijder, Floris Geerts, Jan Van Den Bussche, and Timmy Weerwag. On the Expressive
Power of Query Languages for Matrices. ACM Trans. Database Syst., 44(4), 2019. doi:
10.1145/3331445.

8 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag. On the Expressive
Power of Query Languages for Matrices. In 21st International Conference on Database Theory,
ICDT, pages 10:1–10:17, 2018. doi:10.4230/LIPIcs.ICDT.2018.10.

9 Robert Brijder, Marc Gyssens, and Jan Van den Bussche. On Matrices and K-Relations. In
Andreas Herzig and Juha Kontinen, editors, Proceedings of 11th International Symposium on
Foundations of Information and Knowledge Systems, FoIKS 2020, volume 12012 of Lecture
Notes in Computer Science, pages 42–57. Springer, 2020. doi:10.1007/978-3-030-39951-1_3.

https://doi.org/10.1137/120867834
https://doi.org/10.1007/978-3-319-11080-6
https://doi.org/10.1007/978-3-319-11080-6
https://doi.org/10.4230/LIPIcs.ICDT.2020.6
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.2200/S00895ED1V01Y201901DTM057
https://doi.org/10.14778/3229863.3229865
https://doi.org/10.1145/3331445
https://doi.org/10.1145/3331445
https://doi.org/10.4230/LIPIcs.ICDT.2018.10
https://doi.org/10.1007/978-3-030-39951-1_3


F. Geerts 12:17

10 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

11 Ada Chan and Chris D. Godsil. Symmetry and eigenvectors, pages 75–106. Springer Nether-
lands, 1997. doi:10.1007/978-94-015-8937-6_3.

12 Lingjiao Chen, Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. Towards Linear
Algebra over Normalized Data. Proceedings of the VLDB Endowment, 10(11):1214–1225, 2017.
doi:10.14778/3137628.3137633.

13 Martin J. Corless and Art Frazho. Linear Systems and Control: An Operator Perspective.
Series: & Hall/CRC Pure and Applied Mathematics. CRC Press, 2003.

14 Mohammed Dahleh, Munther A. Dahleh, and George Verghese. Lectures Notes on Dynamic
Systems and Control (MIT OpenCourseWare), 2004.

15 Anuj Dawar. On the Descriptive Complexity of Linear Algebra. In Proceedings of the 15th
International Workshop on Logic, Language, Information and Computation, WoLLIC, pages
17–25, 2008. doi:10.1007/978-3-540-69937-8_2.

16 Anuj Dawar, Erich Grädel, and Wied Pakusa. Approximations of Isomorphism and Logics
with Linear-Algebraic Operators. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming, ICALP, pages 112:1–112:14, 2019. doi:10.4230/
LIPIcs.ICALP.2019.112.

17 Anuj Dawar, Martin Grohe, Bjarki Holm, and Bastian Laubner. Logics with Rank Operators.
In Proceedings of the 24th Annual IEEE Symposium on Logic In Computer Science, LICS,
pages 113–122, 2009. doi:10.1109/LICS.2009.24.

18 Anuj Dawar and Bjarki Holm. Pebble games with algebraic rules. Fund. Inform., 150(3-4):281–
316, 2017. doi:10.3233/FI-2017-1471.

19 Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold Reinwald.
Compressed linear algebra for large-scale machine learning. The VLDB Journal, pages 1–26,
2017. doi:10.1007/s00778-017-0478-1.

20 Floris Geerts. On the Expressive Power of Linear Algebra on Graphs. In Proceedings of the
22nd International Conference on Database Theory, ICDT, volume 127 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 7:1–7:19. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019. doi:10.4230/LIPIcs.ICDT.2019.7.

21 Chris Godsil. Cospectral Graph Complements and Generating Function of Walks. Mathematics
Stack Exchange. URL: https://math.stackexchange.com/q/2600510.

22 Erich Grädel and Wied Pakusa. Rank Logic is Dead, Long Live Rank Logic! In Proceedings
of the 24th EACSL Annual Conference on Computer Science Logic, CSL, pages 390–404, 2015.
doi:10.4230/LIPIcs.CSL.2015.390.

23 Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory.
Lecture Notes in Logic. Cambridge University Press, 2017. doi:10.1017/9781139028868.

24 Martin Grohe, Kristian Kersting, Martin Mladenov, and Erkal Selman. Dimension Reduction
via Colour Refinement. In 22th Annual European Symposium on Algorithms, ESA, pages
505–516, 2014. doi:10.1007/978-3-662-44777-2_42.

25 Martin Grohe and Martin Otto. Pebble games and linear equations. The Journal of Symbolic
Logic, 80(3):797–844, 2015. URL: http://doi.org/10.1017/jsl.2015.28.

26 Martin Grohe and Wied Pakusa. Descriptive complexity of linear equation systems and
applications to propositional proof complexity. In Proceedings of the 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS, pages 1–12, 2017. doi:10.1109/LICS.2017.
8005081.

27 Bjarki Holm. Descriptive Complexity of Linear Algebra. PhD thesis, University of Cambridge,
2010.

28 Roger A. Horn and Charles R. Johnson. Matrix Analysis 2nd ed. Cambridge University Press,
2013.

ICDT 2020

https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/978-94-015-8937-6_3
https://doi.org/10.14778/3137628.3137633
https://doi.org/10.1007/978-3-540-69937-8_2
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.1109/LICS.2009.24
https://doi.org/10.3233/FI-2017-1471
https://doi.org/10.1007/s00778-017-0478-1
https://doi.org/10.4230/LIPIcs.ICDT.2019.7
https://math.stackexchange.com/q/2600510
https://doi.org/10.4230/LIPIcs.CSL.2015.390
https://doi.org/10.1017/9781139028868
https://doi.org/10.1007/978-3-662-44777-2_42
http://doi.org/10.1017/jsl.2015.28
https://doi.org/10.1109/LICS.2017.8005081
https://doi.org/10.1109/LICS.2017.8005081


12:18 When Can Matrix Query Languages Discern Matrices?

29 Dylan Hutchison, Bill Howe, and Dan Suciu. LaraDB: A Minimalist Kernel for Linear
and Relational Algebra Computation. In Proceedings of the 4th ACM SIGMOD Workshop
on Algorithms and Systems for MapReduce and Beyond, BeyondMR, pages 2:1–2:10, 2017.
doi:10.1145/3070607.3070608.

30 Neil Immerman and Eric Lander. Describing Graphs: A First-Order Approach to Graph
Canonization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of
Juris Hartmanis on the Occasion of His Sixtieth Birthday, pages 59–81. Springer, 1990.
doi:10.1007/978-1-4612-4478-3_5.

31 Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jermaine, and
Zekai J. Gao. Declarative Recursive Computation on an RDBMS. Proceedings of the VLDB
Endowment, 12(7):822–835, 2019. URL: http://www.vldb.org/pvldb/vol12/p822-jankov.
pdf, doi:10.14778/3317315.3317323.

32 Naihuan Jing. Unitary and orthogonal equivalence of sets of matrices. Linear Algebra and its
Applications, 481:235–242, 2015. doi:10.1016/j.laa.2015.04.036.

33 Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian
Schleich. In-Database Learning with Sparse Tensors. In Proceedings of the 37th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS, pages 325–340, 2018.
doi:10.1145/3196959.3196960.

34 Andreas Kunft, Alexander Alexandrov, Asterios Katsifodimos, and Volker Markl. Bridging
the Gap: Towards Optimization Across Linear and Relational Algebra. In Proceedings of
the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond,
BeyondMR, pages 1:1–1:4, 2016. doi:10.1145/2926534.2926540.

35 Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Tilmann Rabl, and Volker Markl.
BlockJoin: Efficient Matrix Partitioning Through Joins. Proceedings of the VLDB Endowment,
10(13):2061–2072, 2017. doi:10.14778/3151106.3151110.

36 Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, and Christopher M.
Jermaine. Scalable Linear Algebra on a Relational Database System. IEEE Trans. Knowl.
Data Eng., 31(7):1224–1238, 2019. doi:10.1109/TKDE.2018.2827988.

37 Motakuri V. Ramana, Edward R. Scheinerman, and Daniel Ullman. Fractional isomorphism of
graphs. Discrete Mathematics, 132(1-3):247–265, 1994. doi:10.1016/0012-365X(94)90241-0.

38 Edward R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory: a Rational Approach
to the Theory of Graphs. John Wiley & Sons, 1997. URL: https://www.ams.jhu.edu/ers/
wp-content/uploads/sites/2/2015/12/fgt.pdf.

39 Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning Linear Regression Models
over Factorized Joins. In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD, pages 3–18, 2016. doi:10.1145/2882903.2882939.

40 Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q. Ngo, and XuanLong
Nguyen. A Layered Aggregate Engine for Analytics Workloads. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference 2019, pages 1642–
1659, 2019. doi:10.1145/3299869.3324961.

41 Yaroslav Shitov. An improved bound for the lengths of matrix algebras. Algebra Number
Theory, 13(6):1501–1507, 2019. doi:10.2140/ant.2019.13.1501.

42 Mario Thüne. Eigenvalues of matrices and graphs. PhD thesis, University of Leipzig, 2012.
43 Erwin R. van Dam, Willem H. Haemers, and Jack H. Koolen. Cospectral graphs and

the generalized adjacency matrix. Linear Algebra and its Applications, 423(1):33–41, 2007.
doi:10.1016/j.laa.2006.07.017.

https://doi.org/10.1145/3070607.3070608
https://doi.org/10.1007/978-1-4612-4478-3_5
http://www.vldb.org/pvldb/vol12/p822-jankov.pdf
http://www.vldb.org/pvldb/vol12/p822-jankov.pdf
https://doi.org/10.14778/3317315.3317323
https://doi.org/10.1016/j.laa.2015.04.036
https://doi.org/10.1145/3196959.3196960
https://doi.org/10.1145/2926534.2926540
https://doi.org/10.14778/3151106.3151110
https://doi.org/10.1109/TKDE.2018.2827988
https://doi.org/10.1016/0012-365X(94)90241-0
https://www.ams.jhu.edu/ers/wp-content/uploads/sites/2/2015/ 12/fgt.pdf
https://www.ams.jhu.edu/ers/wp-content/uploads/sites/2/2015/ 12/fgt.pdf
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/3299869.3324961
https://doi.org/10.2140/ant.2019.13.1501
https://doi.org/10.1016/j.laa.2006.07.017


Distribution Constraints:
The Chase for Distributed Data
Gaetano Geck
TU Dortmund University, Germany
gaetano.geck@tu-dortmund.de

Frank Neven
Hasselt University and transnational University of Limburg, Belgium
frank.neven@uhasselt.be

Thomas Schwentick
TU Dortmund University, Germany
thomas.schwentick@tu-dortmund.de

Abstract
This paper introduces a declarative framework to specify and reason about distributions of data
over computing nodes in a distributed setting. More specifically, it proposes distribution constraints
which are tuple and equality generating dependencies (tgds and egds) extended with node variables
ranging over computing nodes. In particular, they can express co-partitioning constraints and
constraints about range-based data distributions by using comparison atoms. The main technical
contribution is the study of the implication problem of distribution constraints. While implication is
undecidable in general, relevant fragments of so-called data-full constraints are exhibited for which
the corresponding implication problems are complete for EXPTIME, PSPACE and NP. These results
yield bounds on deciding parallel-correctness for conjunctive queries in the presence of distribution
constraints.
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1 Introduction

Distributed storage and processing of data has been used and studied since the 1970s and
became more and more important in the recent past. One of the most fundamental questions
in distributed data management is the following: how should data be replicated and partitioned
over the set of computing nodes? It is paramount to answer this question well as the placement
of data determines the reliability of the system and is furthermore critical for its scalability
including the performance of query processing.

On the one hand, despite the importance of this question and decades of research,
the placement strategies remained rather simple for a long time: horizontal or vertical
fragmentation of relations – or hybrid variants thereof [37]. These placement strategies often
require a reshuffling of the data for each binary join in the processed query which are commonly
based on a range or hash partitioning of the relevant attributes. Recently, however, more
elaborated schemes of data placement like co-partitioning, single hypercubes (for multiway-
joins) or multiple hypercubes (for skewed data) gained some attention [3, 12,30,39,41,45].
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On the other hand, there is a long tradition in studying tuple- and equality-generating
dependencies (tgds/egds) as a simple but versatile tool to describe relationships among
relational data. The research on these dependencies focuses mainly on the implication1
problem. More precisely, since the implication problem in general is undecidable, several
fragments have been considered in an attempt to locate the boundaries of decidability and
complexity. Commonly, these fragments are defined by syntactical restrictions on the sets of
dependencies, like weak acyclicity, weak guardedness, stickiness, wardedness, . . . [15–17,23].

It seems desirable to connect these two strands of research. Being able to reason about
the placement of data offers database management systems additional optimisation potential,
for instance, when it comes to the placement of new data or when the cost of a query
execution plan is estimated. In the latter case, a reshuffling phase, which often dominates the
processing time, can sometimes be omitted completely because the query at hand is already
parallel-correct2 under the current distribution.

The goal of this paper is to make a first step towards a connection between existing
partitioning schemes and well-known reasoning frameworks. With this intent, we introduce
distribution constraints – a variant of tgds/egds that is specifically geared towards distributed
data – and study its implication problem. In particular, we identify fragments of distribution
constraints by the complexity of the associated implication problem. Although the implication
problem is certainly not the only – and, admittedly, not the most innovative – problem
related to reasoning about distributed data, it is yet a basic problem that is likely to have
connections to other algorithmical questions centering around this topic (like how to derive a
new distribution for the next query, making use of the current distribution?).

Contributions. We start by defining distribution constraints as tgds and egds with atoms of
the form R(x, y)@κ, in which κ is understood as a node variable with the intended meaning
that fact R(x, y) is at node κ. To achieve decidability, we further require that distribution
tgds are data-full, i.e., only node variables may be quantified existentially.

We demonstrate that distribution constraints can express several common distribution
schemes, incorporating range and hash partitionings [37], co-partitionings [21,25], hierarchical
partitionings (as used in Google’s F1 [39,41]), predicate-based reference partitionings [45],
hypercube distributions [3, 12], and multi-round communication.

I Example 1. As an example, consider the following set of distribution tgds, describing a
“derived horizontal” fragmentation [37] of relation Msg based on the Range-predicate and the
message’s sender id s:

Range(`, u)→ Range(`, u)@κ,

Msg(s, r)→ Msg(s, r)@κ,

Msg(s, r)@κ, Range(`, u)@λ, ` ≤ s, s ≤ u→ Msg(s, r)@λ

The first two rules enforce that, for every Range- and every Msg-fact, there is a responsible
node (indicated by the node variable κ). The third rule ensures that every Msg-fact can be
found at every node whose Range-bounds match the sender id. We remark that the above
set of constraints implies the following distribution tgd:

Msg(s1, r), Msg(s2, r), Range(`, u), ` ≤ s1, s1 ≤ u, ` ≤ s2, s2 ≤ u→ Msg(s1, r)@κ, Msg(s2, r)@κ,

1 Does a dependency τ always hold if a set Σ of dependencies is satisfied, Σ |= τ?
2 Parallel correctness is a basic notion of distributed query evaluation [7], also addressed in Section 3.3.
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which states that all pairs of messages with the same receiver can be found at a common
node if their senders fall in the same range. In other words, if the above set of constraints is
satisfied over a distributed instance, then so is the just mentioned dtgd.

On the technical level, we show that the implication problem is EXPTIME-complete for
these constraints in general, and we identify classes of distribution constraints where the
complexity drops to PSPACE or even NP and classes where this is not the case. These classes
are determined by simple syntactic criteria based on the amount of data associated with
node variables.

Since distribution constraints incorporate all full tgds (without existential quantification),
EXPTIME-hardness of their implication problem readily follows from an early result by
Chandra, Lewis and Makowsky [19]. However, the latter result relies on the use of relation
atoms of arbitrarily high arity, while the EXPTIME-hardness results in this paper already
hold for a fixed schema of maximum arity of 3 (or 2, w.r.t. data variables). The corresponding
upper bounds are established by an adaptation of the standard chase procedure [23,36].

The fragments studied here are defined depending on, first, the sizes of the node variables’
contexts (the data variables occuring together with the node variable in some atom) and,
second, on the distinction of data-collecting tgds and node-creating tgds (without/with
existentially quantified node variable in the head). For a fixed integer b, a node variable has
bounded context if its context size is at most b. Thanks to the obvious relationship between
distribution constraints and standard constraints, the complexity results in this paper can
also be viewed as results on fragments of standard tgds/egds.

Related work. There is a rich literature on restrictions of (sets of) tgds that yield a decidable
(general and finite) implication problem [4,36]. We discuss how our distributed constraints
relate to classical constraints in Section 3. Restricting the use of existential variables in
tgds is a common approach to define fragments of tgds that yield a decidable implication
problem. Interestingly, the rather simple restriction to data-full dtgds studied here, is
orthogonal to prominent examples like weak acyclicity, weak guardedness, stickiness and
wardedness [15–17,23].

Dependencies with arithmetic comparisons have been used in the context of Data Exchange
[5, 43]. However, these papers mainly study full and weakly acyclic tgds and are thus
orthogonal to our framework. There is further work on dependencies with stronger arithmetic
constraints, e.g. [9, 11,22,33].

Declarative specifications for distributed data have also been studied before. Notable
examples are Webdamlog and the already mentioned Data Exchange setting (which can be
seen as a restricted form of distribution constraints with a global and a single local database).
We refer to the book [8] for a relatively recent overview of Data Exchange.

Our notation R(x)@κ for distributed atoms resembles that of Webdamlog, R@κ(x), a
dialect of datalog that was designed for distributed data management.3 Besides implementing
a system [2,34] based on this dialect, the theoretical research on this language has mostly
focussed on establishing a hierarchy among some of its fragments in terms of their express-
iveness [3]. Neglecting the notational similarities, there seems to be no overlap between
the research on Webdamlog – with its fixpoint evaluation mechanism (which even allows
facts to vanish) – and the results on distribution constraints that we present in this paper.

3 Annotated atoms have already been used before in Datalog dialects. For instance, in Dedalus [6], where
they describe timestamps.
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Particularly, Webdamlog seems to prohibit existential quantification of node variables and
assumes, accordingly, that the number of nodes is explicitly fixed with the input. Distribution
constraints, in contrast, do allow existential quantification of node variables, which affects
the modeling capabilities and the complexity of the reasoning process.

Organisation of this paper. After providing the necessary preliminaries in Section 2, we
formally define distribution constraints in Section 3, compare them with classical constraints,
and give examples of their versatility. In Section 4, we define the implication problem and
extend the standard chase to distribution constraints. In Section 5, we address the complexity
of the implication problem and, finally, conclude in Section 6.

Due to space limitations, most proofs and some examples will be given in a full version,
which we plan to publish on arXiv.

2 Preliminaries

In this section, we fix our notation for the basic concepts of this paper. Specific definitions
for our framework are given in Section 3.

2.1 Databases and queries
Let dom and var be disjoint infinite sets of data values and data variables, respectively. For
simplicity, we do not distinguish between different data types and assume that dom is linearly
ordered. We denote data variables as usual with x, y, z, . . . . A schema is a set S of relation
symbols, where each relation symbol R ∈ S has some fixed arity ar(R). We write ar(S) for
the maximum arity ar(R) of any R ∈ S. A relation atom over S is of the form R(t1, . . . , tk)
where R is a relation symbol of arity k and t1, . . . , tk ∈ dom ∪ var. A relation atom is a fact
if t1, . . . , tk ∈ dom. A comparison atom is of the form t < t′ or t ≤ t′ with t, t′ ∈ dom ∪ var.
The set of data values occuring in a set A of (relational or comparison) atoms is denoted
adom(A). Similarly, the set of variables in A is denoted var(A). Instances are finite sets of
facts over a given schema S.

A valuation for a set A of atoms is a mapping V : var(A) → dom. It satisfies A on
instance I if V (A) ∈ I holds for each relation atom A ∈ A and V (t)θV (t′) holds for each
comparison atom tθt′ in A. We often denote by V also the extension of V to dom defined by
V (a) = a for every a ∈ dom.

A conjunctive query Q is of the form S(x1, . . . , xm) :− R1(z1), . . . , R`(z`), where the
head of the query, headQ = S(x1, . . . , xm), has a relation atom S not in S and its body,
bodyQ = {R1(z1), . . . , R`(z`)}, is a finite set of relation atoms over S. In the following, all
queries are assumed to be safe, that is, each variable in the head occurs at least once in some
body atom. If V is a valuation that satisfies bodyQ, we say that V derives fact V (headQ).
The result Q(I) of query Q on instance I is the set of all derived facts.

2.2 Dependencies
A tgd σ is of the form A, C → A′, for sets A,A′ of relation atoms and a set C of comparison
atoms with var(C) ⊆ var(A). Here, A′ form its head, and A, C its body, denoted headσ = A′

and bodyσ = A ∪ C, respectively. We refer to A by rbodyσ. The tgd is called full if
var(A′) ⊆ var(A). An instance I satisfies a tgd σ if, for every valuation V of bodyσ that
satisfies bodyσ on I, there is an extension V ′ onto headσ that satisfies headσ on I.
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An egd σ is of the form A, C → x = y, for a set A of relation atoms and a set C
of comparison atoms with var(C) ∪ {x, y} ⊆ var(A). An instance I satisfies an egd σ if
V (x) = V (y) for every valuation V that satisfies bodyσ on I, where bodyσ is defined as for
tgds.

Sets of dependencies are satisfied by an instance if each dependency in the set is satisfied.
Satisfaction of a single dependency σ or a set Σ of dependencies by some instance I is denoted
I |= σ and I |= Σ, respectively.

A dependency τ is implied by a set Σ of dependencies, denoted Σ |= τ , if I |= Σ implies
I |= τ for every instance I. For more precise statements, we can mention the actual domain
in our notation. For example, we write I |=N τ if implication holds for all (finite) instances
over N.

We use the terms dependencies and constraints interchangeably.

2.3 Distributed Databases

We model a network of database servers as a finite set N of nodes and we denote its size by
|N |. We usually denote nodes by k and `. A distributed instance D = (G, I) consists of a
global instance G and a family I = (Ik)k∈N of local instances, one for each node of N , such
that

⋃
Ik ⊆ G. We denote G by global(D) and (Ik)k∈N by local(D).

We note that distributions allow redundant placement of facts, which is often desirable.
Furthermore, it is not necessary to place all facts of the global instance on some node. A
fact f is skipped4 by D if f ∈ global(D) but f does not occur in local(D).

We write f@Dk to denote that a fact f occurs at some node k, that is, f ∈ Ik. We drop
D if it is clear from the context. We call f@Dk a distributed fact. Sometimes we say that a
set of facts meet in D when they all occur in the same local instance.

I Example 2. Consider a network N = {1, 2} of size 2 and a distributed instance D =
(G, {I1, I2}) with G = {R(a, b), S(b), S(c), S(d)}, I1 = {R(a, b), S(b)} and I2 = {S(b), S(c)}.
Then fact S(d) is skipped by D. The instance D can also be represented by the distributed
facts {R(a, b), S(b), S(c), S(d), R(a, b)@1, S(b)@1, S(b)@2, S(c)@2}.

2.4 Parallel-correctness

Building on the computation model of massively parallel communication (MPC) [12], the naive
evaluation of a conjunctive query Q over a distributed instance D evaluates Q separately for
each local instance in local(D). For local(D) = (Ik)k∈N , we write Qnaive(D) for

⋃
k∈N Q(Ik).

Following [7], we say that a query Q is parallel-correct on D, if the naive evaluation produces
the correct result, i.e., if Qnaive(D) = Q(global(D)).

3 Distribution constraints

We first introduce our framework for distribution constraints and afterwards give examples
for its use.

4 We note that allowing skipped facts makes the framework more flexible. They can be disallowed by
simple distribution constraints, as discussed in Subsection 3.2.3.
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3.1 Definition
Let nvar be an infinite set of node variables disjoint from dom and var. A distributed atom
A@κ consists of a relation atom A and a node variable κ in nvar. Recall that we refer to the
variables of A as data variables. For a set of (distributed) atoms A, we denote by nvar(A)
the set of node variables occurring in atoms in A. For a set A of relation atoms and a node
variable κ, A@κ denotes the set {A@κ | A ∈ A}.

Distribution tgds (dtgds) are defined just as tgds but they can additionally have distributed
atoms in their body and their head. Distribution egds (degds) are defined just as egds but can
have distributed atoms in their body. We do not allow node variables in comparison atoms
(but we do allow them in the equality atom of a head in the case of degds). A degd A, C → A′

is node-identifying if the equality atom A′ refers to node variables only and value-identifying
if, instead, A′ refers to data variables only. We do not consider equality atoms where a node
variable is identified with a data variable. We are particularly interested in data-full dtgds,
for which the data variables in the head all occur in the body.

By Tall we denote the class of all dtgds and by Tdf the class of data-full dtgds. By Eall
we denote the class of all degds.

Satisfaction of dtgds and degds is defined in the obvious way with generalised valuations
that may additionally map node variables to nodes. For a distributed atom A′ = A@κ, we
write V (A′) ∈ D, if V (A)@V (κ) is a distributed fact of D. For a relation atom A, we write
V (A) ∈ D if V (A) ∈ global(D).

I Example 3. Given a schema S with binary relation symbols R and S, the following
dtgd σ = R(x, y), S(x, y) → R(x, y)@κ, S(x, y)@κ is satisfied on a distributed instance D
if, whenever global(D) contains two facts R(a, b) and S(a, b), for arbitrary data values
a, b ∈ dom, they meet in some local instance.

Below, in Section 3.2, we illustrate how distribution constraints can model global, local
and global-to-local constraints.

I Example 4. The dtgd E(x, y)@κ,E(y, z)@κ,E(z, x) → E(z, x)@κ stipulates that every
computing node has “complete” information w.r.t. open triangles on a binary relation E.
That is, whenever a node contains two legs of a triangle, it also contains the closing leg if it
exists in the global database.

Clearly, the differentiation between node and data variables in dtgds/degds can be seen
as just syntactic sugar for standard relational schemas. The above restrictions (at most one
node variable, at a fixed position, data-fullness) can then be seen as restrictions of classical
constraints. In this sense, a dtgd like R(x)@κ, S(x)@µ→ T (x)@κ could be rewritten into a
standard tgd of the form R(κ, x), S(µ, x)→ T (κ, x). The restriction to data-full dtgds thus
translates to the restriction of existential quantification to these first attributes.

However, as the following example illustrates, our restriction to existential quantification
of node variables does not translate into any of the restricted fragments with low complexity,
which we are aware of.

I Example 5. Let Σ consist of a node-creating dtgd R(x)@κ → T (x)@µ and a data-
collecting dtgd T (x)@κ, T (y)@κ, T (z)@µ, T (w)@µ→ U(x, y, z, w)@κ. The corresponding set
of standard tgds

R(κ, x) → T (µ, x),
T (κ, x), T (κ, y), T (µ, z), T (µ,w) → U(κ, x, y, z, w),
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is neither sticky nor weakly guarded nor warded.5 The set Σ has, however, bounded context
(and its associated implication problem is shown to be in NP in Section 5).

Furthermore, the set consisting of R(x, y)@κ → S(x, y)@µ and S(x, x)@κ → R(x, x)@µ is
not weakly acyclic but data-full with bounded context.

3.2 Examples of distribution constraints
In the following, we provide examples illustrating the versatility of distribution constraints.
We begin with an examination of certain uses of distributed atoms. In principle, distributed
atoms can be used in the body and in the head of constraints, referring to multiple node
variables. Some more restricted uses seem particularly useful however.

We use the schema {Emp(name, title), Sal(title, salary), Addr(name, address)} as a run-
ning example for the remainder of this section.

3.2.1 Global dtgds and degds
We call distribution constraints global if they do not contain any distributed atom. These
constraints refer to the global instance of a distributed database only – irrespective of the
local databases. Formally, a dtgd (resp., degd) σ is a global constraint if σ is a tgd (resp.,
egd).

I Example 6. The following constraints are examples of a global dtgd and a global degd:
Emp(n, t) → Sal(t, s), and Sal(t, s), Sal(t, s′) → s = s′. Together they specify that every
employee has a unique salary.

3.2.2 Local dtgds and degds
Distribution constraints where every relation atom is a distributed atom and where all these
atoms refer to the same node variable are called local. These constraints specify conditions
that hold on every local instance, viewed on its own – irrespective of the global instance or
other local instances.

I Example 7. The following is a local dtgd expressing that whenever a fact Emp(a, b) occurs
at node k there is a fact Sal(b, c), for some element c in dom, that occurs at node k as well:
Emp(x, y)@κ→ Sal(y, z)@κ. The following local value identifying degd expresses that, relative
to each node, each employee (name) has a unique address. Addr(x, y)@κ, Addr(x, y′)@κ→
y = y′.

3.2.3 Global-Local dtgds
Lastly, we call a dtgd global-local if none of its body atoms is distributed while all its heads
atoms are distributed and refer to the same node variable.

I Example 8. The global-local constraint Emp(x, y), Sal(y, z) → Emp(x, y)@κ, Sal(y, z)@κ

expresses that if there is an Emp-fact and a Sal-fact with the same title-attribute then these
facts meet at some node. This means that the join condition between Emp and Sal induced
by the schema is maintained in the horizontal decomposition of the global database.

5 The set Σ′ is not sticky because the marked variable µ occurs more than once in τ ′. It is not (weakly)
guarded because a single atom cannot contain both variables κ and µ that occur in affected positions
of τ ′. Finally, it is not warded because the dangerous variable κ appears in more than one atom in the
body of τ ′.
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Global-local constraints can also express that the database has no skipped facts, i.e.,
facts f ∈ global(D) with f /∈ local(D). To this end, for each relation symbol R a global-local
constraint R(x1, . . . , xar(R))→ R(x1, . . . , xar(R))@κ can be added. Indeed, it is this ability of
distributed constraints to disallow skipped facts that made us allow them in first place. For
a schema S, we denote by U(S) the set of all global-local constraints that express that there
are no skipped facts.

By symmetry also local-global constraints can be defined. An example would be the
dtgd Emp(x, y)@κ, Sal(y, z)@κ → Addr(x, z′) (even though for this particular schema, the
constraint is rather contrived). Nevertheless, local-global constraints allow to state explicitly
that every local fact is also a global fact, by stating R(x1, . . . , xm)@κ→ R(x1, . . . , xm), for
every relation R (with m = ar(R)).

3.3 Applications of distribution constraints
We give some applications of distribution constraints like defining range, hash and co-
partitionings and testing for parallel-correctness. In the full version, we illustrate how
hypercube distributions can be incorporated and discuss query answering and multi-round
query evaluation. The paper [35] further explores the use of distribution constraints to
model distributed evaluation strategies for Datalog in the context of parallel-correctness and
parallel-boundedness in the multi-round MPC model.

3.3.1 Range and hash partitioning
Distribution constraints can easily incorporate the commonly used range and hash partition-
ings (see for example [31,37]). Example 1 already illustrates range partitionings.

The following two distribution constraints define a hash partitioning of the relation
Emp(name,dept) on the attribute department:

Emp(n, d)→ Emp(n, d)@κ

Emp(n, d)@κ, Emp(n′, d)→ Emp(n′, d)@κ

The first rule enforces that every Emp-tuple occurs at a node while the second rule ensures
that Emp-tuples within the same department are placed together. The above approach
where hash functions are implicit should be contrasted with the modeling of Hypercube
distributions, discussed in the full version, where hash functions are made explicit.

3.3.2 Co-partitioning
A popular way to avoid expensive remote join operations – already used in early parallel
systems – is to co-partition tables on their join key [21, 25]. Generalizations of the latter
technique where co-partitioning is determined by more complex join predicates have been
shown to be effective in modern systems as well [38, 39,41,45].

Consider, for instance, the following (simplified) relations from the TPC-H schema [1]:
Lineitem(linekey, orderkey), Orders(orderkey, custkey), and Customer(custkey, cname).

Zamanian, Binnig, and Salama [45] exemplify the following co-partitioning scheme:
Lineitem is hash-partitioned by linekey, Orders tuples are co-partitioned with Lineitem
tuples with the same orderkey, and Customer tuples are co-partitioned with Orders tuples
with the same custkey. As a consequence, the join Lineitem ./ Orders ./ Customer can be
evaluated without expensive remote joins. We note that the work in [45] is by no means
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restricted to single-round or communication-free evaluation of queries. Knowledge of co-
location of tuples is used to rewrite query plans and to determine those parts that can be
evaluated without additional reshuffling. Partitionings are also not considered to be static
but should adapt over time to changes in workload and the data (e.g., [32, 40]).

I Example 9. The following distribution constraints define the co-partitioning scheme
mentioned above:

Lineitem(`, o)→ Lineitem(`, o)@κ (1)
Orders(o, c)→ Orders(o, c)@κ (2)

Customer(c, n)→ Customer(c, n)@κ (3)
Lineitem(`, o), Lineitem(`, o′)@κ→ Lineitem(`, o)@κ (4)

Lineitem(`, o)@κ, Orders(o, c)→ Orders(o, c)@κ (5)
Orders(o, c)@κ, Customer(c, n)→ Customer(c, n)@κ (6)

Basically, Constraint (1) expresses that every Lineitem fact in the global database occurs
at some node; similarly for Constraints (2) and (3). Constraint (4) then expresses that
Lineitem facts are hashed on the first attribute: for every item ` with order o′ stored on
some server, every other order of that item is stored there too. Constraint (5) expresses that
Orders(o, c) facts are co-located with Lineitem(`, o) facts, while Constraint (6) expresses
that Customer(c, n) facts are co-located with Orders(o, c) facts. All together the distribution
constraints imply that the join condition between the three relations is maintained in the
horizontal decomposition of the global database.

3.3.3 Hierarchical partitioning schemes
Recent database systems like Google’s F1 [39,41] use hierarchical partitioning schemes to
provide performance while ensuring consistency under updates. Hierarchical partitioning
is a variant of the co-partitioning approach [42], introduced as predicate-based reference
partitioning [45]. This approach allows to formulate a hashing condition for a relation S,
given that a relation R is already distributed, in the following style: first, every S-fact has to
be distributed, and second, if an S-fact joins with an R-fact on a predefined set of attributes,
then the S-fact is distributed to every node where such an R-fact exists.

This is easily modeled by the following dtgds:

S(z)→ S(z)@κ,

R(y)@κ, S(z)→ S(z)@κ,

where variables y and z share some common variables x1, . . . , xn representing the join
predicate. Notice that Example 9 follows this scheme. Another example, illustrating Google’s
AdWord scenario, is given in the full version.

3.3.4 Parallel-Correctness
We show that parallel-correctness of a conjunctive query can be captured by a dtgd but not
always by a data-full one.

I Example 10. Let Q = H(n, s)← Emp(n, t), Sal(t, s) be a conjunctive query. Then, Q is
parallel-correct on a distributed instance D if every fact from Q(global(D)) is derived at
some node (due to the monotonicity of CQs, we do not need to check the converse statement).
This can be expressed by the dtgd Emp(x, y), Sal(y, z)→ Emp(x, y′)@κ, Sal(y′, z)@κ. We note
that in this dtgd κ and y′ occur only in the head. So, this dtgd is not data-full.
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4 Reasoning

We consider the implication problem for distribution constraints in Section 4.1, and adapt
the chase to degds and data-full dtgds in Section 4.2, as a means to solve it.

4.1 The implication problem

We stress that the implied dependency τ in the definition below, is not required to belong to
the class C. That is, τ can be an arbitrary distribution constraint.

I Definition 11. The implication problem Imp(C, d), parameterised by a class C of depend-
encies and a domain d asks, for a finite set Σ from C and a single distribution constraint τ ,
whether Σ |=d τ . Possible choices for d are N, Z and Q. If the choice of d does not matter
or is clear from the context, we also write Imp(C). For each α ≥ 1, we denote by Impα(C, d)
the restriction of Imp(C, d) to inputs (Σ, τ) in which the arity of each relation symbol (with
respect to data) is at most α.

Since every tgd is a dtgd and the implication problem for tgds without comparison atoms is
undecidable, we instantly get the following.

I Observation 12 ([13,19]). Imp(Tall) is undecidable.

To facilitate automatic reasoning, it thus makes sense to consider restricted kinds of constraints.
An immediate observation is that most of the examples in Section 3 only use data-full
distribution constraints. In the remainder of this paper, we therefore restrict our attention
to this class.

I Remark 13. A full tgd σ = A, C → {A′
1, . . . , A

′
p} can be transformed into an equivalent

set of tgds {A, C → A′
1, . . . ,A, C → A′

p} with a singleton head.6In particular, this applies to
dtgds without existential quantification. Similarly, data-full dtgds with existentially quantified
node variables can be decomposed into data-full dtgds with at most one node variable in their
head. We thus assume w.l.o.g. in upper bound proofs that all dtgds in Σ are decomposed in
this fashion.

Since data-full dtgds have at most one node variable in their head, we can distinguish three
kinds of data-full dtgds:

node-creating dtgds like R(x, y) → R(x, y)@κ, in which the one node variable in their
head is existentially quantified;
data-collecting dtgds like S(x)@κ, T (x)@λ → T (x)@κ, which are dtgds that have one
distributed head atom without existential quantification (they collect facts in a local
node); and,
global dtgds like R(x, y)→ U(x) or R(x, y)@κ, T (x)@κ→ S(y) that have one head atom
without node variable (they contribute global facts).7

For brevity, we sometimes refer to generating and collecting dtgds.
We call the unique node variable that occurs in the head of a node-creating or data-

collecting dtgd σ the head variable of σ.

6 This observation is used also used the context of normalised schema mappings [24,28].
7 The term global dtgd thus represents a superset of global and local-global dtgds from Section 3.2.
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4.2 The chase for distribution constraints

The classical way for deciding implication of tgds and egds builds on the chase procedure. In
the following, we adapt the chase from [23] for distribution constraints from Tdf and Eall.

I Definition 14 (chase step). A dtgd σ is applicable to a distributed instance D with a
valuation W if W satisfies bodyσ on D and there exists no valuation W ′ for σ identical to W
on bodyσ such that W ′(headσ) ⊆ D. Furthermore, if σ is node-creating then W (κ) must
be a node k not occurring in D, where κ is the head variable of σ. The result chase(c,D)
of applying c = (σ,W ) on D is the distributed instance D′ = D ∪W (headσ) and we write
D

c−→D′.

For instance, if a distributed database D consists of facts R(a)@1 and S(a, b)@2, then
dependency σ = R(x)@κ, S(x, y)@λ → R(x)@µ, S(x, y)@µ is applicable to D, as witnessed
by the valuation W where W (x, y) = (a, b) and W (κ, λ, µ) = (1, 2, 3). Application leads to
D′ = D ∪ {R(a)@3, S(a, b)@3}.

If σ is node-creating, we say that the chase step generates the new node W (κ) with an
initial set W (headσ) of facts. If σ is data-collecting, we say that the chase step collects the
facts from W (headσ) in node W (κ). If σ is global, we say that the chase step targets the
global database. The chase step contributes the set W (headσ) of global facts.

IDefinition 15 (chase sequence). Let Σ be a set of distribution constraints and D a distributed
instance. A chase sequence for D with Σ is a sequence D = D0, D1, . . . of distributed instances
with D0 = D and Di

(σi,Wi)−−−−−→Di+1, for every i ≥ 0 and some σi ∈ Σ and valuation Wi. We
write chase(D) for the final instance of D, if D is finite.

A chase sequence D fails, if there is a degd σ ∈ Σ with a head t = t′ and a valuation W ,
such that W satisfies bodyσ on chase(D) and W (t) 6= W (t′). It is successful, if it is finite,
does not fail and chase(D) has no applicable chase step.

The following easy observation is crucial for our results.

I Proposition 16. For each distributed database D and each set Σ of constraints from Tdf
and Eall, there are no infinite chase sequences for D.

For classical tgds and egds, to test Σ |= τ , the chase is basically applied to a “canonical
database” V (rbodyτ ), for some one-one valuation V . Due to comparison atoms, this does
not suffice in our setting. Instead, we consider a set of canonical databases, which allows
for all possible linear orders on the variables of bodyτ . It depends on the general domain
d which we allow to be one of N, Z, Q. More precisely, it is defined over a set dom(Σ, τ, d)
of data values that contains all constants of Σ and τ and, between each pair of successive
constants all intermediate values from d or as many intermediate values as there are variables
in bodyτ . The set of canonical databases then consists of all databases of the form V (rbodyτ )
for valuations whose range is in dom(Σ, τ, d).

Towards a formal definition, c1 < · · · < c` denote the constants in Σ∪{τ} and letm be the
number of data variables in bodyτ . If d = Q then dom(Σ, τ, d) consists of c1, . . . , c`, all values
c1−m, . . . , c1− 1, all values c` + 1, . . . , c` +m and all values of the form ci + j

m+1 (ci+1− ci),
for i ∈ {1, . . . , ` − 1} and j ∈ {1, . . . ,m}. If d = Z, it consists of c1, . . . , c`, all values
c1 − m, . . . , c1 − 1, all values c` + 1, . . . , c` + m and all values of the form ci + j, for
i ∈ {1, . . . , `− 1} and j ∈ {1, . . . ,m} with ci + j < ci+1. If d = N, it is defined as for d = Z
with the additional constraint that elements of the form c1 − j must be non-negative.
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By D(Σ, τ, d) we denote the set of all distributed databases V (rbodyτ ), for which V maps
data variables to values in dom(Σ, τ, d) and node variables one-one to an initial segment of
(a disjoint copy of) the natural numbers.

The following result shows that, to decide implication, it suffices to apply the chase to all
databases in D(Σ, τ, d).

I Proposition 17. Let Σ ∪ {τ} be a set distribution constraints from Tdf and Eall and let d
be one of N, Z, Q. Then the following statements are equivalent.
(1) Σ |=d τ .
(2) For every database D = V (rbodyτ ) in D(Σ, τ, d) and every successful chase sequence D

for D with Σ, there is an extension V ′ of V that satisfies headτ on chase(D).
(3) For every database D = V (rbodyτ ) in D(Σ, τ, d) there exists a chase sequence D for

D with Σ, that fails or for which there is an extension V ′ of V that satisfies headτ on
chase(D).

The straightforward proof is given in the full version.

5 Complexity

In this section, we study the complexity of the implication problem for data-full dtgds
(and arbitrary degds). In general, this problem turns out to be in EXPTIME, in fact as
EXPTIME-complete. We then study restrictions of dtgds and degds that lower the complexity
of the implication problem. In fact, we identify fragments whose implication problems are
Πp

2-complete (NP-complete without comparison atoms) or PSPACE-complete. To wrap up
the picture, we finally identify fragments that already yield EXPTIME-hardness.

For most practical cases, the relevant complexity is Πp
2 or even NP: the former is the case,

e.g., if the database schema (or at least its arity) is fixed and if the number of atoms (or at
least the number of variables) is bounded by some a-priori constant. The latter is the case if,
additionally, there are no comparison atoms. In particular, the “natural” generalisations of
our examples have at most Πp

2 (or NP) complexity.
The first result of this section states that Imp(Tdf) is EXPTIME-complete. The upper

bound is very simple but shows that the problem is not harder than implication of full
(non-distributed) tgds. On the other hand, in the distributed setting, EXPTIME-hardness
already holds for fixed schemas with small arity, whereas this problem is easily seen to be
in Πp

2 for (non-distributed) full dependencies.

I Theorem 18. Imp(Tdf ∪ Eall) is EXPTIME-complete. The lower bound already holds for a
fixed schema of arity 2.

Proof sketch. The lower bound follows from Theorem 26, which is shown in Subsection 5.3
and offers a collection of types of distributed constraints that make the implication problem
EXPTIME-hard.

The upper bound uses Proposition 17. Since dom(Σ, τ, d) has polynomial size in |Σ|+ |τ |,
the set D(Σ, τ, d) contains only exponentially many databases, from which the chase needs
to start. Furthermore, each constraint in Σ can be applied at most an exponential number
of times, since there are only exponentially many different valuations, and each of them can
fire at most once. Therefore, each chase sequence is of at most exponential length. J

Intuitively, EXPTIME-hardness for the class Tdf of data-full dtgds (and even without
degds) follows from the need to keep track of an exponential number of nodes, as can be
seen from the proof of the lower bound of Theorem 26.
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In the following two subsections, we turn to restricted classes with lower complexity8 for
the implication problem. The fragments that we study are not motivated from practical
considerations (since there we already have “low” complexity). They were rather obtained
by considering syntactic properties under which the chase behaves better than in general.

First of all, these fragments require a fixed bound on the arity of relations. Furthermore,
they bound the amount of data that is associated with a single node in a dtgd, in various
ways. To state this more precisely, we use the following notions.

I Definition 19 (bounded context). The context contκ(A) of a node variable κ in a set A
of atoms is the set of (data) variables occurring in atoms referring to κ. The context
contκ(σ) of κ in a dtgd σ is contκ(rbodyσ ∪ headσ). The context contκ(σ) of κ in a degd σ
is contκ(rbodyσ).

A node variable κ has b-bounded context in σ if |contκ(σ)| ≤ b. It has b-bounded body
context if |contκ(rbodyσ)| ≤ b.

For instance, in the two following constraints,
dtgd σ1 = R(x, y, z), S(y)@κ→ T (x)@κ and
degd σ2 = S(x)@κ, S(y)@κ,R(x, y, z)@λ→ κ = λ,

node variable κ has context {x, y} and thus 2-bounded context. The body context of κ in σ1
is even 1-bounded. Note that, in σ2, node variable λ has 3-bounded body context and that,
since there is no other node variable, the body context of this constraint is bounded by
3 = max{2, 3} in general.

We sometimes simply speak of bounded context if b is clear from the, well, context.

5.1 Classes with Πp
2-reasoning

In this subsection, we consider two fragments which allow reasoning in Πp
2 in general, and

in NP, if there are no comparison atoms.
The first fragment requires only one restriction (besides the usual arity restriction).

The bounded generation fragment T bbg allows all global and data-collecting dtgds but only
node-creating dtgds, in which the head variable has b-bounded context. We refer to the
latter as node-creating dtgds of Type (G1), cf. Table 1.

I Theorem 20. For fixed α ≥ 1 and b ≥ 1, problem Impα(T bbg ∪ Eall) is
1. Πp

2-complete in general and
2. NP-complete, if restricted to inputs without comparison atoms.

Proof idea. The lower bounds follow by reductions from the containment problem for
conjunctive queries (with or without comparisons) [20,44]. For two queries Q and Q′ of the
respective classes, query Q is contained in Q′ if and only if {σ} |= τ , where σ = bodyQ′ →
headQ′ and τ = bodyQ → headQ are considered as global data-collecting dtgds (with or
without comparisons).

The proofs of the upper bounds use Condition (3) from Proposition 17 and rely on the
fact that, in each chase sequence, thanks to the (G1)-restriction only a polynomial number
of nodes is generated and thanks to the arity restriction, each can carry only a polynomial
number of facts. The Πp

2 upper bound can be almost directly inferred from the quantifier
structure of Condition (3). The NP upper bound follows since, essentially, only one initial
database needs to be considered. Below, we provide the details.

8 This statement holds under the common assumption that Πp
2 and PSPACE are smaller than EXPTIME.
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We begin by showing that all possible chase sequences have polynomial length. Let Σ be
a set of dependencies in T bbg∪Eall and τ be a distribution constraint. We recall that the chase
applies a node-creating chase step with a dtgd σ and a valuation W only if no node with
the facts from W (headσ) exists. However, for each σ ∈ Σ, the number of variables in headσ
occurring in atoms related to κ is at most b and thus the number of different valuations of
headσ (with the initial values derived from Dτ ) is at most |dom(Σ, τ, d)|b, and thus polynomial.
Therefore, the number of chase steps using a σ of Type (G1) is polynomially bounded. In
particular, the chase generates only a polynomial number of nodes. Since data-collecting
dtgds have only one atom in their head and α is a bound on the arity of atoms, there can only
be a polynomial number of chase steps using data-collecting dtgds, for each node. Similarly,
there can only be a polynomial number of chase steps using global dtgds. Altogether there can
be only a polynomial number of chase steps in each chase sequence. As mentioned before, the
Πp

2 upper bound follows from Condition (3) in Proposition 17. Universal quantification is over
all databases in D(Σ, τ, d), the chase sequence D is existentially quantified and that it fails
or there exists an appropriate extension can be verified by further existential quantification.

If there are no comparison atoms in Σ and τ it suffices to start the chase from one
canonical database of the form V (bodyτ ), for some one-one valuation V that does not map
any variables of bodyτ to constants of bodyτ . However, the chase needs to be defined in a
slightly different fashion: if a degd with a head of the form t = t′ is applicable via a valuation
W then in the result W (t) and W (t′) are identified, unless they are different constants from
bodyτ . If the latter is the case, the chase fails. For this version of the chase, Proposition 17
holds as well.

The NP upper bound then follows, since only one initial database needs to be used and
only one chase sequence of polynomial length needs to be guessed. J

The other class of dtgds considered in this subsection allows node-creating dtgds with head
variables with unbounded context. The simple argument of the proof of Theorem 20 therefore
does not work anymore. However, it turns out that there are simple (and still generous)
restrictions that guarantee a Πp

2 (NP) upper bound for the implication problem. To this end,
we define the bounded context fragment T bbc of dtgds as follows (cf. Table 1).

I Definition 21 (bounded context dtgds). A node-creating dtgd σ is in T bbc, if
(G1) its head variable has b-bounded context, or
(G2) all node variables in its body have b-bounded context.
A data-collecting dtgd σ is in T bbc, if
(C1) its head variable has b-bounded body context, or
(C2) all other node variables have b-bounded context.
For instance, all global dtgds and degds are in T bbc.

The bounded context fragment Ebbc of degds is defined similarly.

I Definition 22 (bounded context degds). A degd σ with only data variables in its head is in
Ebbc. A degd σ = A → κ = µ is in Ebbc, if
(E1) κ and µ have b-bounded context, or
(E2) µ and all node variables that do not occur in the head have b-bounded context.
The degds of Ebbc are illustrated in Table 1. In degds of Type (E2), we call κ (but not µ) the
head variable.

We can now state the second result of this subsection.
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I Theorem 23. For fixed α ≥ 1 and b ≥ 1, problem Impα(T bbc ∪ Ebbc) is
1. Πp

2-complete in general and
2. NP-complete, if restricted to inputs without comparison atoms.

Proof idea. For the upper bounds, we show that any chase sequence for T bbc ∪ Ebbc can be
normalised such that only a polynomial number of witness nodes are needed to trigger any
chase steps. Since every node has only a polynomial number of facts, this implies that it
suffices to consider chase sequences of polynomial length. The remaining arguments are then
as for Theorem 20. The lower bounds follow by the same reduction as in Theorem 20. J

5.2 Classes with PSPACE-reasoning
In this subsection, we consider a fragment of distribution constraints that does not guar-
antee polynomial-length chase sequences but, intuitively, sequences of polynomial “width”.
Consequently, their implication problem turns out as PSPACE-complete.

The fragment T bwbc is defined as follows (cf. Table 1).

I Definition 24 (weakly bounded distribution tgds). Let b ≥ 1. A dtgd σ is in the class T bwbc
of weakly bounded distribution tgds if it is in T bbc or it obeys the following restriction:
(G3) σ is node-creating and exactly one of its node variables does not have b-bounded body

context.

I Theorem 25.
1. Impα(T bwbc ∪ Ebbc) is in PSPACE, for every α ≥ 1 and b ≥ 1.
2. Impα(T bwbc) is PSPACE-hard for α ≥ 1 and b ≥ 0. This lower bound even holds without

comparison atoms.

Proof idea. The lower bound (2) is shown similarly as PSPACE-hardness of the implication
problem for inclusion dependencies over schemas of unbounded arity [4, 18]. In a nutshell, in
this reduction each node carries one tuple, encoded with unary relations.

For the upper bound, unlike for Tbc, we do not have a polynomial length bound for
chase sequences for Twbc. In fact, it might be the case that a chase sequence generates an
exponential number of nodes. However, we can still use a polynomially bounded set Z of
witness nodes for the bounded node variables of (G3) dtgds and for all other constraints.
They do not account for the unbounded node variables in (G3) constraints, but we show that
those only need to occur in linear succession. The basic idea of the algorithm is to guess Z
(and the facts on nodes from Z) and to verify in polynomial space, for each node in Z, that
it is produced by a chase sequence. These verifying computations all assume the same set Z.
We use a kind of timestamps to avoid cyclic reasoning. The details of this proof are given in
the full version. J

5.3 Classes with EXPTIME-hard reasoning
In this subsection, we turn to combinations of constraints that yield an EXPTIME-hard
implication problem. In particular, we complete the proof of Theorem 18. To this end, we
consider the following additional types of constraints:
(G4) node-creating dtgds with two unbounded node variables;
(C3) data-collecting dtgds with two unbounded node variables;
(E3) degds with two unbounded node variables; and,
(E4) degds with three unbounded node variables.

ICDT 2020
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I Theorem 26. Imp(Tdf) is EXPTIME-hard. This statement holds already without comparison
atoms and with only the following combinations of constraint types allowed:
(a) Node-creating dtgds of Type (G2) and data-collecting dtgds of Type (C3);
(b) Node-creating dtgds of Type (G2) and (G4);
(c) Node-creating dtgds of Type (G2) and degds of Type (E4);
(d) Node-creating dtgds of Types (G2) and (G3), and degds of Type (E3).
In all cases, schemas with (at most) binary relations suffice.

The four EXPTIME-hard fragments are illustrated in Table 1. The reductions use an
alternating Turing machine with linearly bounded space.

5.4 Parallel-correctness revisited
We lift parallel-correctness to the setting of distribution constraints. In particular, we say that
a query Q is parallel-correct w.r.t. a set of distribution constraints Σ if Q is parallel-correct
on every database that satisfies Σ.

As parallel-correctness of a conjunctive query can be expressed as a dtgd, the results of
the present section lead to the following:

I Corollary 27. For a CQ Q and a set of distribution constraints Σ, the complexity of
deciding parallel-correctness of Q w.r.t. Σ is in EXPTIME. Furthermore, it is in Πp

2 (or NP,
without comparsion atoms) and PSPACE if Σ ⊆ T bbc ∪ Ebbc and Σ ⊆ T bwbc ∪ Ebbc, respectively,
for a fixed b and a fixed bound α on the maximal arity of relation symbols.

6 Conclusion

In this work, we introduced a novel declarative framework based on classical tgds and egds with
comparison atoms to specify and reason about classes of data distributions. We illustrated
our framework by various examples and performed an initial study of the complexity of
the implication problem. As an application, we derived bounds (in Corollary 27) for the
complexity of parallel-correctness of conjunctive queries.

Of course, there are many immediate general directions for extending the line of work
started in this paper. For instance, one could study the implication problem for more
expressive distribution constraints than data-full ones. There is a plethora of work on
fragments of dependencies for improving the complexity of decision problems (e.g., [10,14,
16, 36]). It could be investigated if any of these or others lead to a decidable implication
problem. Another direction for future work is to study parallel-correctness w.r.t. distribution
constraints for more expressive query languages than conjunctive queries. Some possibilities
are unions of conjunctive queries [7], conjunctive queries with negation [26] or Datalog [29].

Example 9 and Section 3.3.3 illustrate how co-partitioning schemes can be translated into
distribution constraints. It would be interesting to investigate the converse direction. That is,
by design, distribution constraints specify in a declaratively way which properties a horizontal
partitioning should satisfy. They do not provide a direct operational way to compute an
actual partitioning. A natural question is to find an optimal partitioning satisfying a given
set of distribution constraints.

Section 3 mentions a translation of distribution constraints to classical tgds and egds by
increasing the arity of relations by one to take the node variables into account. It would be
interesting to see whether the resulting fragment of dependencies is worthwhile to study it
on its own in the classical setting.
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Table 1 Illustration of restricted classes of dtgds and degds. Node variables that have to be
bounded are shaded, others may be unbounded. The columns indicate the complexity of (some)
combinations of fragments.

Πp
2 (NP) PSPACE EXPTIME

(G1) λ1 ··· λr → κ X X X

(G2) λ1 ··· λr → κ X X X X X

(G3) λ1 ··· λr µ → κ X X

(G4) λ µ → κ X

Unrestricted data-collecting dtgds X

(C1) κ λ1 ··· λr → κ X X

(C2) κ λ1 ··· λr → κ X X

(C3) κ λ → κ X

Unrestricted degds X

(E1) κ µ λ1 ··· λr → κ = µ X X

(E2) κ µ λ1 ··· λr → κ = µ X X

(E3) κ λ → κ = λ X

(E4) κ λ µ → κ = λ X

Theorem 20 23 25 26(a) 26(b) 26(c) 26(d)

The main technical challenge left open from this work is whether the EXPTIME-hardness
result in Theorem 26(c) can be extended to rules of Type (E4) that contain two rather than
three unbounded node variables.
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Abstract
Complex event processing (CEP) has gained a lot of attention for evaluating complex patterns over
high-throughput data streams. Recently, new algorithms for the evaluation of CEP patterns have
emerged with strong guarantees of efficiency, i.e. constant update-time per tuple and constant-delay
enumeration. Unfortunately, these techniques are restricted for patterns with local filters, limiting
the possibility of using joins for correlating the data of events that are far apart.

In this paper, we embark on the search for efficient evaluation algorithms of CEP patterns with
joins. We start by formalizing the so-called partition-by operator, a standard operator in data
stream management systems to correlate contiguous events on streams. Although this operator
is a restricted version of a join query, we show that partition-by (without iteration) is equally
expressive as hierarchical queries, the biggest class of full conjunctive queries that can be evaluated
with constant update-time and constant-delay enumeration over streams. To evaluate queries with
partition-by we introduce an automata model, called chain complex event automata (chain-CEA),
an extension of complex event automata that can compare data values by using equalities and
disequalities. We show that this model admits determinization and is expressive enough to capture
queries with partition-by. More importantly, we provide an algorithm with constant update time
and constant delay enumeration for evaluating any query definable by chain-CEA, showing that all
CEP queries with partition-by can be evaluated with these strong guarantees of efficiency.
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1 Introduction

Streaming query evaluation is the most crucial problem in complex event processing (CEP).
Given a CEP query Q, the streaming evaluation of Q over a stream consists in continuously
reading events and outputting all complex events (i.e. sets of events) as soon as the last event
that fires Q arrives. This streaming evaluation can be divided in two parts: (1) the process
that continuously reads events and updates the state of the system whenever a new event
arrives and (2) the process that outputs (i.e. enumerates) all complex events that satisfy the
query. Both processes are required to run separately in such a way that the update process
calls the enumeration process whenever a new output is found [17].
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Given the high-throughput data streams in areas like Network Intrusion Detection [27],
Industrial Control Systems [19] or Real-Time Analytics [28], the time and space used by
these two processes must be severely restricted. As proposed in [7, 17, 22], an efficient
streaming evaluation process should satisfy at least the following two ideals: the update
process must take constant time per new event and the enumeration process must take
constant delay between two consecutive outputs. Intuitively, this is the best that a CEP
system can aim for efficiently processing high-throughput data streams in practice. In [17]
a streaming evaluation algorithm with constant update time per event and constant delay
enumeration was shown for a meaningful core of CEP query languages when only local filters
are allowed. Unfortunately, not all relevant queries in CEP can be evaluated with these
strong guarantees, which fosters the search of query operators that allow efficient evaluation.

One of the key features in CEP is correlation [12]: to associate different events that
might occur arbitrarily far in the input stream. Verifying that two users have the same
id, or verifying an increasing sequence of temperature events, are some examples of how
correlation is used in CEP. The most basic operator for adding correlation in CEP are
equalities, namely, joining two events which have the same data value. Unfortunately, the
evaluation of join queries is a difficult task even in a static setting [1], stressing the difficulties
of finding efficient evaluation algorithms of CEP queries with equality predicates. One special
operator usually included in CEP systems [5, 31, 15] for correlating events is partition-by [5]
(also referred as segmentation-oriented context in [16] or just context in [15]). As the name
suggests, this operator breaks up the events of a stream into partitions where all events of
the same partition have the same data value. Despite being a useful operator in CEP, there
is a lack of research in evaluating partition-by queries with solid efficiency guarantees, and
usually this operator is severely restricted in CEP systems [31].

In this paper, we embark on the search for efficient evaluation of CEP queries with
correlation when equality and disequality predicates are used. We first formalize the partition-
by operator by extending Complex Event Logic (CEL) [17, 18] with a simple and compositional
semantics. To motivate the expressive power of partition-by, we show that CEL with partition-
by (but without iteration) is equally expressive as hierarchical queries [7, 22], the biggest
subclass of conjunctive queries (CQ) that can be evaluated with constant update time and
constant delay enumeration [7].

With a well-defined operator for doing correlation, we study the evaluation of partition-by
through a machine model that we called chain Complex Event Automata (chain-CEA), an
extension of complex event automata with equality and disequality predicates [17]. Although
automata models over data words usually do not have good closure properties [29], we show
that the chain-CEA model admits determinization and is expressive enough to capture all
CEL queries with partition-by. The most important result of the paper is a streaming
evaluation algorithm for the full class of chain-CEA, with constant update time and constant
delay enumeration. In particular, this shows that all queries with partition-by can be
evaluated efficiently in a streaming fashion.

Related work. Streaming query evaluation has been studied in the context of data stream
management systems (DSMS) [5] and complex event processing (CEP) [31, 12, 21]. The
notion of constant update time per tuple/event and constant delay enumeration has not
been considered until recently [25, 20, 7] and, furthermore, in CEP systems these strong
guarantees of efficiency have not been adopted yet [17]. Therefore, the algorithmic approach
in CEP systems for evaluating queries with correlation is incomparable to our approach.

New techniques in dynamic query evaluation [8, 2, 9] have recently attracted a lot of
attention [7, 22, 23]. In [7, 22], the streaming evaluation of CQ is considered but this does
not include queries with order. In [23], inequalities over atoms are considered, but only for



A. Grez and C. Riveros 14:3

the case of CQ. Our setting also includes disjunction and iteration (but not conjunction),
which makes our work orthogonal to the work in [7, 22, 23].

Register automata [24] have been extensively studied in the context of automata theory
and XML [29]. Nevertheless, this model has not been studied in the context of CEP and
efficient query evaluation. Recently, in [4] a similar extension of complex event automata
with registers was proposed. However, this work does not study the determinization and
evaluation of this model with constant update time and constant delay enumeration.

2 Preliminaries

In this section, we recall the formal definitions for streams and complex events [17], and give
a simplified version of Complex Event Logic (CEL) [18, 17], originally called SO-CEL in [18].
We will later use CEL as a base language to model the partition-by operator.

Streams and complex events. Let A be a set of attribute names and D be an infinite set
of values. A database schema R is a finite set of relation names, where each relation name
R ∈ R is associated to a tuple of attributes denoted by att(R). If R is a relation name, then
an R-tuple is a function t : att(R)→ D. Given a ∈ att(R), we write t.a to denote the value
t(a), and att(t) to denote dom(t). We say that the type of an R-tuple t is R, and denote this
by type(t) = R. For any relation name R, tuples(R) denotes the set of all possible R-tuples.
Similarly, for any database schema R, tuples(R) =

⋃
R∈R tuples(R). Given a schema R, an

R-stream S is an infinite sequence S = t1t2 . . . where ti ∈ tuples(R). When R is clear from
the context, we refer to S simply as a stream. Given a stream S = t1t2 . . . and a position
i ∈ N, the i-th element of S is denoted by S[i] = ti.

A complex event C is defined as a non-empty and finite set of natural numbers. Intuitively,
given a stream S = t1t2 . . . a complex event C = {i1, . . . , in} determines the set of tuples
{ti1 , . . . , tin} and, thus, C represents the set of relevant events. We denote by min(C) and
max(C) the minimum and maximum element of C, respectively. Given two complex events
C1 and C2, we write C1 · C2 for their concatenation, which is defined as C1 · C2 := C1 ∪ C2
whenever max(C1) < min(C2) and empty otherwise. Given a complex event C we define
S[C] = {S[i] | i ∈ C}, namely, the set of tuples in S positioned at the indices specified by C.

Complex event logic (CEL). Let X be a finite set of monadic second-order (SO) variables.
An SO predicate of arity n is an n-ary relation P over sets of tuples, P ⊆ (2tuples(R))n. We
write arity(P ) = n. Let P be a set of SO predicates. An atom over P is an expression of the
form P (X1, . . . , Xn) where P ∈ P is a predicate of arity n, and X1, . . . , Xn ∈ X (we also
write P (X̄) for P (X1, . . . , Xn)). A CEL formula is defined by the following syntax:

ϕ := R | ϕ IN X | ϕ FILTER P (X̄) | ϕ OR ϕ | ϕ ; ϕ | ϕ+

where R ranges over relation names, X over variables in X and P (X̄) over atoms in P. We
say ϕ is an atomic formula if ϕ = R.

A valuation is a function µ : X→ 2N such that µ(X) is a complex event for every X ∈ X.
We define the support of µ by supp(µ) =

⋃
X∈X µ(X), and the union between µ1 and µ2 as

(µ1 ∪ µ2)(X) = µ1(X) ∪ µ2(X) for every X ∈ X. Given a formula ϕ and a stream S, we
say that a complex event C belongs to the evaluation of ϕ over S under the valuation µ
(denoted by C ∈ JϕK(S, µ)) if one of the following conditions holds:

ϕ = R, C = {i}, type(S[i]) = R and µ(X) = ∅ for every X.
ϕ = ρ IN X, µ(X) = C, and there exists a valuation µ′ such that C ∈ JρK(S, µ′) and
µ(Y ) = µ′(Y ) for all Y 6= X.
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type T R R R T R T R . . .
id 123 155 165 223 252 352 355 411 . . .

user-id 11 48 48 48 13 13 33 79 . . .
tweet-id 123 343 123 252 123 . . .

post/reply #vote #ihate #ihate #ihate #vote #ihate #ihate #stop . . .
index 1 2 3 4 5 6 7 8 . . .

Figure 1 A stream S of events from Twitter. T are tweets with an id, a user-id and a post
message, and R are responses with an id, a user-id, a tweet-id, and a reply message. The last line is
the index of each event in the stream, respectively.

ϕ = ρ FILTER P (X1, . . . , Xn), C ∈ JρK(S, µ) and (S[µ(X1)], . . . , S[µ(Xn)]) ∈ P .
ϕ = ρ1 OR ρ2 and ( C ∈ Jρ1K(S, µ) or C ∈ Jρ2K(S, µ) ).
ϕ = ρ1 ; ρ2 and there exist complex events C1 and C2, and valuations µ1 and µ2 such
that C = C1 · C2, µ = µ1 ∪ µ2, C1 ∈ Jρ1K(S, µ1) and C2 ∈ Jρ2K(S, µ2).
ϕ = ρ+, and C ∈ JρK(S, µ) or C ∈ Jρ ; ρ+K(S, µ).

We say that C belongs to the evaluation of a CEL formula ϕ over S at position n ∈ N,
denoted by C ∈ JϕKn(S), if C ∈ JϕK(S, µ) for some valuation µ, and max(C) = n.

I Example 1. As a running example, suppose that we consider the stream from Twitter.
For the sake of simplification, suppose that the stream is composed just by tweets (T ) and
replies (R). A tweet is composed by three attributes: an id, a user-id and a post message.
Instead, a reply is composed by four attributes: an id, a user-id, a tweet-id of the replied
message, and a reply message. Figure 1 shows an example of a stream with this schema.

As an example of a CEL formula, suppose that a journalist wants to detect all pairs of
events composed by a tweet followed by a response containing ‘#voteforjohn’ and ‘#ihatejohn’,
respectively, representing “hot” debates in Twitter about the election of a candidate called
John. This query can easily be defined with the following CEL-formula:

ϕ1 := (T IN X;R IN Y ) FILTER (X.post = ‘#vote’ AND Y.reply = ‘#ihate’)

Here we make use of three operators: sequencing ( ; ) to say we want to find complex events
consisting of a T -tuple followed by an R-tuple; variable names (IN) to assign variables X
and Y to T and R, respectively; and FILTER to define the conditions that the events must
satisfy. We use conjunction (i.e., AND) as a syntactic sugar, which is short for applying a
FILTER operator for each predicate of the conjunction. Predicates X.post = ‘#vote’ and
Y.reply = ‘#ihate’ are basically restricting the T and R tuples t and r so that t.post
contains ‘#voteforjohn’ and r.reply contains ‘#ihatejohn’. Given a stream S = t1t2 . . . and a
valuation µ, one can easily check that Jϕ1K(S, µ) contains complex events of the form {k1, k2}
with k1 < k2 such that tk1 .post contains ‘#voteforjohn’ and tk2 .reply contains ‘#ihatejohn’.
For example, {1, 2}, {1, 3} and {5, 6} in Figure 1 are some outputs of ϕ1 over S. Note that
the replies are not necessarily replying to the tweet they are paired with, contrary to what
one would like. We address this issue in the next section.

I Example 2. Suppose now that we want to find all sequences of debates that start with a
tweet with ‘#voteforjohn’, are followed by one or more responses with ‘#ihatejohn’, and end
with a response containing ‘#stophating’. This query can easily be defined in CEL using (+):

ϕ2 =
(
T IN X ;

(
R+

)
IN Y ; R IN Z

)
FILTER

(
X.post = ‘#vote’

AND Y.reply = ‘#ihate’ AND Z.reply = ‘#stop’
)
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In ϕ2 we use the (+) operator to extract an unbounded sequence of replies, which are then
assigned to Y so that the predicate Y.reply = ‘#ihate’ filters only the sequences where
all tuples contain ‘#ihatejohn’ (i.e. all tuples t in the complex event represented by Y

must satisfy t.reply = ‘#ihate’). The other predicates are used to ensure that the T -tuple
contains ‘#voteforjohn’ and the last R-tuple contains ‘#stophating’. Finally, one can check
that ϕ2 defines the desired property. For example, if we evaluate ϕ2 over S in Figure 1, then
{1, 2, 4, 8} and {1, 3, 4, 6, 8} will be some outputs in Jϕ2K8(S).

A relevant feature in CEP is to skip arbitrary events when a formula is evaluated [12].
For example, for ϕ1 it would make no sense looking for two contiguous events T and R. For
this reason, the sequencing operator allows to skip an arbitrary number of events between
two relevant events. The iteration operator has a similar semantics, which results in that
for every sequence captured by it, the powerset of events is also captured. To remedy this
problem CEL also includes the so-called selection strategies [17, 18], namely, operators for
filtering the set of output to a meaningful subset. In this paper, our results do not include
the evaluation over selection strategies. We leave this for future work.

CEL fragments and unary predicates. Given a set O of operators (e.g. OR, +), we define
CEL[O] to be the set of CEL formulas constructed from atomic formulas, IN, and operators
in O. For example, ϕ1 is in CEL[; , FILTER] and ϕ2 is in CEL[; , FILTER,+]. Furthermore,
we define CEL+O as the set of all CEL formulas extended with O.

Although CEL does not restrict the set of predicates that can be used by FILTER, not
necessarily all predicates can be evaluated efficiently (or are even computable). For this reason,
in [18] the analysis of CEL was restricted to SO-extensions of first-order unary predicates.
Formally, let U be the set of all unary predicates over tuples, i.e. U = {P ⊆ tuples(R)}.
Given P ∈ U we define the SO-extension P SO ⊆ 2tuples(R) of P such that A ∈ P SO if, and
only if, t ∈ P for all t ∈ A. We denote by USO the set of all SO-extensions of predicates in U.
When writing predicates with SO variables we are referring to the SO extension of the first
order predicate. For example, P := x.post = ‘#vote’ is a predicate in U such that t ∈ P iff t
has the attribute post and t.post contains #voteforjohn. Then P SO := (X.post = ‘#vote’)
is the SO-extension of P that defines all complex events whose tuples satisfy P .

In [17, 18], it was shown that all CEL formulas restricted to predicates in USO can be
evaluated efficiently. For this reason, from now on we assume that for any fragment or
extension of CEL, all FILTER are restricted to predicates in USO.

Streaming evaluation with constant-delay enumeration. As it is standard in the literat-
ure [7, 22], we consider evaluation algorithms on Random Access Machines (RAM) with
addition and uniform cost measure [3]. Furthermore, we assume the existence of a key-value
index (e.g. hash index) that allows insertions and deletions in O(1) time and the index uses
space linear in the number of insertions. In other words, we assume to have perfect hashing
of linear size [10]. Although this is not realistic for practical computers, it can be simulated
with a O(log(n))-factor in the evaluation process with n the number of insertions in the
index. Our complexity analysis is always in data complexity, namely, we assume that the
CEL query ϕ and the schema R of the stream are fixed. Finally, we restrict the set U to
unary predicates with constant time evaluation, namely, for every predicate P in U and
every tuple t, we assume that checking whether t ∈ P takes constant-time.

For efficient evaluation in CEP, we adapt the notion of constant-delay used in [6, 11]
for streaming evaluation. Our evaluation process is a streaming algorithm divided in two
parts: (1) consuming new events and updating the internal memory of the system and (2)
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generating complex events from the internal memory of the system. A streaming evaluation
algorithm with constant update time and constant-delay enumeration is an algorithm that
reads a stream S = t1t2 . . . sequentially and evaluates a formula ϕ over S such that (1) the
time spent between reading ti and ti+1 is bounded by O(|ti|), and (2) it maintains a data
structure D in memory, such that after reading tn, the set JϕKn(S) can be enumerated from
D with constant-delay. The enumeration requires the existence of a routine Enumerate that
enumerates JϕKn(S) = {C1, C2, . . . , Cm} one by one without repetitions. We call delay(Ci)
the time it takes between enumerating Ci and Ci+1, and we say Enumerate runs with
constant-delay if there exists a constant k depending only on ϕ such that delay(Ci) = k · |Ci|
for all i. We remark that (1) is a natural restriction for a streaming algorithm, while (2)
is the minimum requirement if an arbitrarily large set of arbitrarily large outputs must be
produced [30]. Given that our analysis is in data complexity (i.e. ϕ and R are fixed), then
the update time O(|t|) has a hidden factor that depends on |ϕ| and |R|.

3 Partition-by: syntax and semantics

Our main motivation in this paper is to study queries with correlation in CEP. One of
the main operators for joining multiple events is partition-by [15, 31] (also referred as
segmentation-oriented context in [16] or just context in [15]). Intuitively, events in a stream
are usually correlated by an attribute that has the same value, e.g. an id. Then this attribute
is “partitioning” the stream in multiple streams, where all events of the same stream contain
the same value. In this section, we formally define the PART-BY operator in CEL, and motivate
its usefulness by showing that it is expressive enough to define hierarchical queries.

Given two formulas ϕ1 and ϕ2, we denote by ϕ1 ⊆ ϕ2 when ϕ1 is a subformula of ϕ2.
Consider a formula ϕ and variables X1, . . . , Xk of ϕ. We say that X1, . . . , Xk form a variable
cover of ϕ if, for every atomic subformula ρ of ϕ, i.e. ρ ⊆ ϕ and ρ = R for some R, there
is some i ≤ k and formula ψ = ψ′ IN Xi such that ρ ⊆ ψ ⊆ ϕ, namely, all the events
captured by atomic subformulas will be captured by some of the variables X1, . . . , Xk in ϕ.
For example, in Example 2 variables X, Y and Z form a variable cover of ϕ2.

We extend the syntax of CEL with the operator PART-BY as follows. A formula ϕ is in
CEL+PART-BY if it satisfies the syntax of CEL, plus the following rule:

ϕ := ϕ PART-BY [X1.a1, . . . , Xk.ak]

where X1, . . . , Xk ∈ X form a variable cover of ϕ and a1, . . . , ak ∈ A are attributes. The
semantics of the PART-BY operator is defined as follows. Consider a complex event C, a
stream S = t1t2 . . . and a valuation µ. Then, C ∈ Jϕ PART-BY [X1.a1, . . . , Xk.ak]K(S, µ) if
C ∈ JϕK(S, µ) and for all i, j ∈ N, l ∈ µ(Xi) and m ∈ µ(Xj), it holds that S[l].ai = S[m].aj .
Thus, all events must contain the same data value in their attributes. For the case we only want
to partition using a single attribute a that is common among all events (e.g. an id), we add the
syntactic sugar ϕ PART-BY [a], which is defined as ϕ PART-BY [a] := (ϕ IN X) PART-BY [X.a],
where X is a fresh variable that does not appear in ϕ. Clearly, X is a variable cover of ϕ.

I Example 3. In Example 1 we wanted to extract all pairs of tweets and replies that contain
#voteforjohn and #ihatejohn, respectively. Although ϕ1 extract these complex events, it
fails to relate a reply with the tweet is replying to. For this, we can use the partition-by
operator as follows:

ϕ∗1 :=
(
(T IN X;R IN Y ) FILTER (X.post = ‘#vote’

AND Y.reply = #ihate’)
)

PART-BY (X.id, Y.tweet-id)
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Clearly, X,Y form a variable cover of ϕ1. Furthermore, PART-BY restricts the output to pairs
t and r with t.id = r.tweet-id. In Figure 1 now only {1, 2}, {1, 4} and {5, 6} are in Jϕ∗1K(S).

I Example 4. Now, we want to restrict formula ϕ2 in Example 2 in order to correlate tweets
and replies in a meaningful way. Suppose that we want to restrict ϕ2 such that all replies
are replying to T and all #ihatejohn replies are from the same user. Then we can extend ϕ2
with PART-BY to impose these restrictions (we omit the filters for the sake of readability):

ϕ∗2 =
[(
T IN X ;

(
R +

)
PART-BY (user-id) IN Y ; R IN Z

)
FILTER (· · · )

]
PART-BY (X.id, Y.tweet-id, Z.tweet-id)

This formula shows the advantage of using nesting of PART-BY. The internal PART-BY over
attribute user-id restricts all #ihatejohn replies to have the same identifier, namely, they
come from the same user. Then the external PART-BY forces all replies to have the same
tweet-id as the first tweet and, therefore, they are replies of the same tweet. In Figure 1,
{1, 3, 4, 6, 8} is no longer an output but {1, 2, 4, 8} still is.

Partition-by and hierarchical queries. Partition-by models a join operator that usually
appears in CEP systems [5, 15, 31]. Although this operator can be considered rather restrictive,
interestingly, it is related to the class of hierarchical queries [13, 26], the biggest class of
conjunctive queries without projection that can be evaluated in a streaming fashion [7, 22].
To formally define hierarchical queries we first introduce some notation. Given a database
schema R, we assume an arbitrary total order < over the attribute names A. For R ∈ R with
att(R) = {a1, . . . , ak} and a1 < . . . < ak, we write R(x1, . . . , xk) for variables x1, . . . , xk to
denote that xi is assigned to attribute ai. We call R(x1, . . . , xk) an atom. A (full) conjunctive
query Q is an expression R1(x̄1)∧ . . .∧Rk(x̄k) where each Ri(x̄i) is an atom (i.e. we restrict
our discussion to CQ without projection). Given a conjunctive query Q with k atoms and a
stream S = t1t2 . . . we say that a complex event C satisfies Q if |C| ≤ k and {ti | i ∈ C} |= Q.
We define JQKn(S) as all complex events C that satisfy Q and max(C) = n.

From now on, we restrict our analysis to hierarchical conjuctive queries. Specifically,
for a variable x define the set atom(x) of all atoms in Q where x is mentioned. Then
Q is hierarchical [13, 26] if for every x and y it holds that either atom(x) ⊆ atom(y),
atom(x) ⊇ atom(y), or atom(x) ∩ atom(y) = ∅. For example, the query R(x) ∧ S(x, y) is
hierarchical and R(x) ∧ S(x, y) ∧ T (y) is not.

Unfortunately, CEL+PART-BY is not enough to capture the expressiveness of hierarchical
queries. The reason is that partition-by combined with sequencing forces all events with
correlated values to be “adjacent”. On the other hand, hierarchical queries do not impose any
order over tuples. For this reason, we consider the ALL-operator, a standard CEP operator
studied in [18]. Formally, given formulas ϕ1 and ϕ2 we define the formula ϕ1 ALL ϕ2 such
that for a stream S and valuation µ it holds that C ∈ Jϕ1 ALL ϕ2K(S, µ) if there exist
complex events C1, C2, and valuations µ1, µ2 such that C1 ∈ Jρ1K(S, µ1), C2 ∈ Jρ2K(S, µ2),
C = C1 ∪ C2 and µ = µ1 ∪ µ2. In other words, ALL makes the pair union of complex events
coming from evaluating ϕ1 and ϕ2, separately. Interestingly, CEL[ALL, PART-BY] captures
exactly the expressiveness of hierarchical queries.

I Proposition 5. For every hierarchical query Q, there is a formula ϕ in CEL[ALL, PART-BY]
such that JQKn(S) = JϕKn(S) for every stream S and position n, and vice versa.

The previous proposition shows the motivation of partition-by from the perspective of
hierarchical CQ. Although CEL+PART-BY is not enough to capture the expressibility of
hierarchical CQ, it shows that partition-by is related with a subclass of CQ that can be
evaluated efficiently in a streaming fashion.
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q1 q2 q3
T1 R2, id = tweet-id

R1, id = tweet-id

Figure 2 An example of chain-CEA with unary predicates T1 := type(T ) ∧ post = ‘#vote’,
R1 := type(R) ∧ reply = ‘#ihate’, and R2 := type(R) ∧ reply = ‘#stop’.

4 Chain complex event automata

Similarly to [17], we base our evaluation approach on an automata model to represent
CEL+PART-BY. We present an automata model, called chain Complex Event Automata
(chain-CEA), and show that each formula in CEL+PART-BY can be represented by this model.

In order to express the PART-BY operator, the automata model needs to be able to handle
equality predicates. Given attributes a, b ∈ A define the equality and disequality predicates
as Pa=b = {(t1, t2) | a ∈ att(t1) ∧ b ∈ att(t2) ∧ t1.a = t2.b} and Pa 6=b = tuples(R) \ Pa=b.
A conjunctive binary predicate, or binary predicate for short, is a predicate B that is a
conjunction of equality and disequality predicates, i.e., B =

⋂n
i=1(Pai∼bi), where ai, bi ∈ A

and ∼i∈ {=, 6=}. For simplicity, we usually drop the predicate notation and denote B simply
as
∧n
i=1(ai ∼ bi). For example, (a = b ∧ c 6= d) represents the predicate B = Pa=b ∩ Pc6=d,

and thus (t1, t2) ∈ B if t1.a = t2.b and, if c ∈ att(t1) and d ∈ att(t2), then t1.c 6= t2.d. To
separate equalities and disequalities from B, we will usually denote B = B= ∧B6= where B=
and B 6= are binary predicates composed only by equalities and disequalities, respectively.
We denote by B the set of all binary predicates.

A chain complex event automaton (chain-CEA) is a tuple A = (Q,∆, I, F ) where Q is
a finite set of states, the transition relation ∆ is a set of tuples (p, P,B, q), where p, q ∈ Q,
P ∈ U and B ∈ B, and I, F ⊆ Q are the initial and final set of states, respectively. A
configuration of A is defined by a state and a position in the stream, i.e. a pair (q, i) ∈ Q×N.
An initial configuration is a pair (q, i) where q ∈ I and i = 0. A run ρ of A over a stream
S = t1t2 . . . is a sequence of configurations: (q0, i0) P1/B1−−→ (q1, i1) P2/B2−−→ . . . Pn/Bn−−→ (qn, in) such
that (q0, i0) is an initial configuration and, for every j ≤ n: ij−1 < ij , (qj−1, Pj , Bj , qj) ∈ ∆,
tij ∈ Pj and (tij−1 , tij ) ∈ Bj , where we consider t0 being the empty tuple with no attributes.
Further, the run ρ above induces the complex event Cρ = {ij | j > 0}. We say that ρ is an
accepting run if qn ∈ F . We define the set of complex events of A over S ending at position
n as JAKn(S) = {Cρ | ρ is an accepting run of A and max{C} = n}.

It is worth noting that, even though only conjunctions and negations of equality predicates
are allowed, in practice every logical combination (i.e. ∧, ∨ and ¬) can be managed by
simulating disjunction using multiple transitions. However, we need this restricted definition
to later simplify the evaluation algorithm in Section 5.

I Example 6. Recall our complex events in Example 2 of a tweet with #voteforjohn, followed
by one or more responses with #ihatejohn, and ending with a response saying #stophating.
Suppose now that instead of correlating all responses with the first tweet, we want to
extract a chain of responses, namely, for each contiguous responses r1 and r2 it holds that
r1.id = r2.tweet-id (i.e. r2 is a reply of r1). In Figure 2 we show a chain-CEA defining
this query. If the automaton is in the initial state q1 and receives a tweet t event containing
#voteforjohn, it moves to q2 and stores t. Then for each response r containing #ihatejohn
whose tweet-id is equivalent to the id of the stored event, it forgets that event and stores r.
Finally, when it receives an R-event containing #stophating which is responding the stored
event, it reaches a final state.
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The previous example shows a meaningful CEP query definable by a chain-CEA. This
type of queries are very useful in practice (see for example query (7) in [12]). The next result
shows that chain-CEA are expressive enough to cover the class of CEL+PART-BY formulas.

I Proposition 7. For any formula ϕ in CEL+PART-BY, there exists a chain-CEA A such
that JϕKn(S) = JAKn(S) for every S and n.

On the other hand, one can show that the chain-CEA from Example 6 cannot be defined by
any CEL+PART-BY formula. This, together with Proposition 7, shows that that CEL+PART-BY
is strictly included in the queries defined by chain-CEA.

Like in [17] for CEA, here the determinization of chain-CEA is a crucial property for
having efficient streaming evaluation and necessary property for removing duplicate runs
that produce the same output. We start by defining our notion of deterministic chain-CEA.
Similarly to [17], a deterministic chain-CEA must be “deterministic” with respect to the
input and output, namely, given a stream S and a complex event C, there exists at most
one run over S that produces C. Formally, we say that a chain-CEA A = (Q,∆, I, F )
is I/O deterministic (or just deterministic) if |I| = 1 and, for every pair of transitions
(p, P1, B1, q1) 6= (p, P2, B2, q2), it holds that (P1 ∩B1[t]) ∩ (P2 ∩B2[t]) = ∅ for every tuple t,
where Bi[t] is the set of all t′ such that (t, t′) ∈ Bi. In other words, the conditions (P1, B1)
and (P2, B2) must be disjoint. One can easily check that the chain-CEA from Example 6 is
deterministic.

I Theorem 8. Chain-CEA admit determinization, namely, for any chain-CEA A there
exists a deterministic chain-CEA A′ such that JAKn(S) = JA′Kn(S) for every S and n.

A natural question that arises from the definition of chain-CEA is whether disequalities
are strictly necessary in an automata model for CEP. For example, one can easily see that
disequalities are not necessary for defining CEL+PART-BY formulas, since the partition-by
operator only requires to check that the same value is used through a contiguous subsequence
of the output. In the next result, we show that disequalities are indeed necessary if we want
to find an automata model that admits determinization. More precisely, let chain-CEA= be
the class of chain-CEA where all transitions are restricted to equalities.

I Proposition 9. There exists a chain-CEA= A such that there exists no I/O deterministic
chain-CEA= equivalent to A.

We are ready to state the main result of the paper.

I Theorem 10. For every chain-CEA, there exists a streaming evaluation algorithm with
constant update time and constant delay enumeration.

By combining Proposition 7 and Theorem 10, we get that for any formula in CEL+PART-BY
there exists a streaming evaluation algorithm with constant update time per tuple and
constant delay enumeration. It is important to stress that chain-CEA is more general than
CEL+PART-BY, in particular, the chain-CEA in Figure 2 cannot be defined by a CEL+PART-BY
formula, but it can still be evaluated efficiently. We leave open whether there exists a set of
predicates P (like PART-BY) such that CEL+P characterizes what is definable by chain-CEA.

5 A streaming evaluation algorithm for chain-CEA

In this section we show how to evaluate a chain-CEA over a stream with constant update
time and constant-delay enumeration. We explain first the main data structures used by the
algorithm to later show how to evaluate a chain-CEA.
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The run DAG. In our algorithms, we compactly represent sets of runs by using a directed
acyclic graph (DAG) annotated with configurations. Formaly, let A = (Q,∆, q0, F ) be a
deterministic chain-CEA. A run DAG G of A (or just run DAG) is a tuple G = (V,E,⊥, κ)
consisting of a finite set of vertices V , a set of edges E ⊆ V × V , a special vertex ⊥ ∈ V ,
and a function κ that maps every v ∈ V to a configuration κ(v) ∈ Q×N of A. It is required
that the graph (V,E) is acyclic, κ(⊥) = (q0, 0), and for every v ∈ V there is a directed path
from v to ⊥. Furthermore, it is also required that for every (u, v) ∈ E with κ(u) = (q1, i1)
and κ(v) = (q2, i2), it holds that i1 > i2.

Intuitively, a vertex v labeled by κ(v) = (q, i) is encoding the last configuration of a run
over a stream S. Moreover, by the last two conditions every path starting in v and ending
in ⊥ is representing a run where configurations are listed in decreasing order. We make
this intuition more precise as follows. Let π = vn, . . . , v1,⊥ be a path from v = vn to ⊥
in G and κ(vj) = (qj , ij) for j ≤ n. Then κ(⊥), κ(v1), . . . , κ(vn) represents a run of A and
CE(π) = {i1, . . . , in} the complex event defined by π. We denote by CE(v) the set of all
complex events defined by paths from v to ⊥ in G, and CE(U) =

⋃
v∈U CE(v) for U ⊆ V .

Note that there could be two paths starting from v in G that define the same complex
event in CE(v). We say that a run DAG G is safe if CE(v1)∩CE(v2) = ∅ for every v1, v2 ∈ V .
Indeed, the safety property allows to enumerate all complex events in G without repetitions.

I Lemma 11. Let G = (V,E,⊥, κ) be a safe run DAG such that there is a procedure that,
given any vertex v ∈ V , enumerates its neighborhood {u | (v, u) ∈ E} with constant-delay.
Then there exists a procedure that, given U ⊆ V , it enumerates CE(U) with constant delay.

Therefore, by the previous lemma we can use a safe run DAG to encode the outputs of our
evaluation algorithm for chain-CEA and enumerate these outputs with constant delay.

An index for binary predicates. In our evaluation algorithm we will need a special index
over vertices of a run DAG to efficiently evaluate the binary predicates of a chain-CEA. Given
a new event t and a state p, we want to quickly retrieve all configurations (p, i) that have
reached p and such that (ti, t) ∈ B for some e = (p, P,B, q) ∈ ∆. The run DAG will encode
configurations (p, i), but we will need an index to store ti and quickly “check” (ti, t) ∈ B.

To define this index, we first need to introduce some notation. Let B =
∧n
i=1(ai ∼i bi) be

a binary predicate with ∼i∈ {=, 6=}. Without loss of generality, we assume that all conditions
ai ∼i bi in B are different. Let {(ai, bi)}i be a set of fresh attribute names not used in
the schema R. Given a tuple t, we define the left projection and right projection of t with
respect to B as the tuples ~πB(t) and ~πB(t), respectively, with attributes in {(ai, bi)}i such
that ~πB(t).(ai, bi) = t.ai whenever ai ∈ att(t) and ~πB(t).(ai, bi) = t.bi whenever bi ∈ att(t).
Otherwise, if ai /∈ att(t) or bi /∈ att(t), then ~πB(t).(ai, bi) and ~πB(t).(ai, bi) are not defined,
respectively. The left and right projections extract the relevant information of a tuple t to
define B[t]. To see this, we say that t1 and t2 are totally different, denoted by t1 6≡ t2, if and
only if t1.a 6= t2.a for every a ∈ att(t1) ∩ att(t2), that is, they are different point-wise.

I Lemma 12. Let B = B= ∧ B 6= be a binary predicate. Then (t, t′) ∈ B if, and only if,
~πB=(t) = ~πB=(t′) and ~πB 6=(t) 6≡ ~πB 6=(t′).

With the previous notation, we are ready to define our index of a transition, called the
equality-disequality index or ED-index for short. Let G = (V,E,⊥, κ) be a run DAG and
let e = (p, P,B= ∧ B6=, q) be a transition. We define the ED-index Indexe as a set of
triples (v, t=, t6=) where v ∈ V and t=, t 6= are left projections with respect to B= and B 6=,
respectively. Intuitively, Indexe will keep all configurations that are at state p and are
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Algorithm 1 Evaluation of a det. chain-CEA A = (Q, ∆, q0, F ) and a stream S = t1t2 . . ..
1: procedure Evaluation(A, S)
2: Init()
3: for i := 1 to ∞ do
4: FireTransitions(i)
5: UpdateIndices(i)
6: Enumerate(∪q∈F U iq)
7: procedure Init( )
8: G← NewMappingGraph(q0)
9: U0

q0
← {⊥}

10: for all e0 = (q0, P, ∅, q) ∈ ∆ do
11: Index0

e0
← {(⊥, t∅, t∅)}

12: procedure FireTransitions(i)
13: for all e = (p, P,B= ∧B 6=, q) ∈ ∆ do
14: (t=, t6=)← (~πB=(ti), ~πB6=(ti))
15: if ti ∈ P ∧ Indexi−1

e [t=, t6=] 6= ∅ then
16: v ← AddNewVertex(G, q, i)
17: Connect(G, v, Indexi−1

e [t=, t6=])
18: U iq ← U iq ∪ {v}
19: procedure UpdateIndices(i)
20: for all e = (p, P,B= ∧B 6=, q) ∈ ∆ do
21: Indexie ← Indexi−1

e

22: (t=, t6=)← ( ~πB=(ti), ~πB6=(ti))
23: for all v ∈ U ip do
24: Indexie ← Indexie ∪{(v, t=, t6=)}

“waiting” to trigger e. More specifically, given a stream S = t1t2 . . . if (v, t=, t6=) ∈ Indexe
then κ(v) = (p, i) and t= = ~πB=(ti) and t 6= = ~πB 6=(ti). Thanks to Lemma 12, whenever
we want to check if (ti, t) ∈ B= ∧ B 6= for a new tuple t, we only need to obtain the tuple
(v, t=, t6=) from Indexe and check whether t= = ~πB=(t) and t6= 6≡ ~πB 6=(t). This motivates the
following main query of an ED-index: given a pair of tuples t′= and t′6=:

Indexe[t′=, t′6=] = {v ∈ V | (v, t=, t6=) ∈ Indexe ∧ t= = t′= ∧ t6= 6≡ t′6=} (1)

That is, Indexe[t′=, t′6=] returns all vertices v representing configurations κ(v) = (p, i) such
that there is a tuple t′ with t′= = ~πB=(t′) and t′6= = ~πB6=(t′) and (ti, t′) ∈ B= ∧B 6=. We will
use the ED-index to store configurations and to quickly return them when e is fired.

The streaming evaluation algorithm. In Algorithm 1 we show how to evaluate a determ-
inistic chain-CEA over a stream. The main procedure is Evaluation that receives as
input a deterministic chain-CEA A = (Q,∆, q0, F ) and a stream S = t1t2 . . .. This pro-
cedure is composed of four subprocedures: Init for initializing the main data structures,
FireTransitions(i) for firing the transitions in ∆ given a new tuple ti, UpdateIndices(i)
for updating each Indexe given the previous tuple ti, and, finally, Enumerate for enumerat-
ing all complex events ending at position i. For the sake of presentation, instead of having
a yield function that provides each next tuple in the stream, we explicitly index each new
phase by i (i.e. associated to tuple ti) and iterate from 1 to “infinity” (the main for-loop at
line 3). Then, given the next tuple ti, in each i-phase we fire the transitions and update the
indices with ti, and enumerate all complex events at position i. In the sequel, we will first
explain the data structures used by the algorithm to later describe each subprocedure.

Algorithm 1 maintains three structures that are used by all subprocedures: the run DAG
G = (V,E,⊥, κ), the ED-indices Indexe for each e ∈ ∆, and set of vertices Uq ⊆ V for each
q ∈ Q. As it was explained before, G will encode runs of A and Indexe will allow us to
quickly evaluate the binary predicate at e. Moreover, for each q ∈ Q the set Uq will keep the
new vertices v (i.e. configurations) at q. These sets will be useful for updating the indices
and enumerating all new results. For the sake of presentation, we assume that G, Indexe,
and Uq are defined globally and accessible by all subprocedures.

In each i-phase, the algorithm will update G to represent all runs of A over S until
position i. To that end, it will use the following methods on run DAGs. The first method,
NewMappingGraph(q0), creates a new event DAG G containing only the vertex ⊥ with

ICDT 2020



14:12 Towards Streaming Evaluation of Queries with Correlation in CEP

κ(⊥) = (q0, 0) and empty sets of vertices V and edges E. The second method, AddNewVertex,
receives an event DAG G and a configuration (q, i), and creates a fresh vertex v with
κ(v) = (q, i), and adds it to V . Finally, the method returns the vertex v. The last method,
Connect, receives as input a run DAG G, a vertex v on G, and a nonempty set of vertices
U ⊆ V , and connects v with each vertex in U , namely, (v, u) is added to E for every
u ∈ U . Although AddNewVertex and Connect could temporary break the properties of G
(e.g. acyclicity), we will use it one after the other and it will be clear that the properties of
G are always preserved.

For the structures Indexe and Uq, the reader might have noticed that in Algorithm 1 we
use a superscript Indexie and U iq. This i is denoting the “version” of Indexe and Uq at phase i.
We assume that each new i-version is always initialized as empty (i.e. U iq = ∅ and Indexie = ∅).
It is important to note that for U iq we use the index i just to simplify the presentation (i.e.
we could have reuse a set Uq in each phase). However, for Indexie the superscript is crucial
to denote the version of Indexe when, for example, a vertex v is connected with the set
Indexie[t=, t6=] (see line 17). As it will be discussed later (see Section 6), Indexe is a (partially)
persistent data structure [14] and the superscript is denoting the i-version of the structure.

We are ready to describe each subprocedure in Algorithm 1. The algorithm starts with
Init that is in charge of initializing G, Index0

e, and U0
q before phase 1. For this, a new event

DAG G is created and the vertex with the initial configuration ⊥ is assigned to U0
q0

(recall that
U iq = ∅ for i ≥ 0 by assumption). Intuitively, this represents that the initial configuration is
ready to start. For initializing Indexe, we assume without loss of generality that all outgoing
transitions from q0 use trivial predicates, namely, B = ∅ for every e0 = (q0, P,B, q) ∈ ∆.
Then (⊥, t∅, t∅) is the only triple that must contain Index0

e0
with t∅ the empty tuple.

For each new phase i, we call FireTransitions(i) that check for each transition e =
(p, P,B= ∧B 6=, q) whether it can be fired or not given the new tuple ti (line 13). For this,
we extract from ti its right-projections t= and t6= with respect to B= and B 6=, respectively.
Then we check if ti satisfies P and whether there exists a previous configuration (p, j)
such that (tj , ti) satisfies B= ∧ B 6=. We do this through Indexe, t=, and t 6= by checking
if Indexi−1

e [t=, t6=] 6= ∅. If this is the case, all pairs of configurations (p, j) and (q, i) with
(p, j) ∈ Indexi−1

e [t=, t6=] satisfy e and we must extend G with a new configuration (q, i) that
represents all these new runs. For this, we create a new node v in G for configuration (q, i)
and connect v with each vertex in Indexi−1

e [t=, t6=] (lines 16-17). Finally, the new vertex v is
added to the set U iq of new vertices in state q at phase i.

The next step in phase i is to update Indexi−1
e to its new version Indexie given ti. For

this, we use the set U ip to update each transition e = (p, P,B= ∧B 6=, q). More specifically, in
UpdateIndices(i) we iterate over each transition e = (p, P,B= ∧B6=, q) and make Indexie
equal to its previous version. Then, we extract from ti its left-projections t= and t 6= with
respect to B= and B 6=, respectively, and add (v, t=, t6=) to Indexie for each v ∈ U ip. Recall
that U ip contains all the new vertices added during FireTransitions(i) and, in particular,
κ(v) = (p, i) for each v ∈ U ip. After UpdateIndices(i) is done, the ED-index Indexie contains
all the relevant information for checking B= ∧B 6= in the next phases.

Up to this point, it is straightforward to prove the following invariant after each phase i,
which leads to the correctness proof of Algorithm 1.

I Lemma 13. Consider {U iq}q∈Q and G after the end of the i-phase. Then, for every run
(q0, 0), (q1, i1) . . . , (qn, in) of A over S with in = i, there exist v ∈ U iqn

and a path vn, . . . , v0
in G with vn = v and v0 = ⊥ such that κ(vj) = (qj , ij) for every j ≤ n. Conversely, for every
v ∈ U iq and every path vn, . . . , v0 in G with vn = v and v0 = ⊥, it holds that κ(v0), . . . , κ(vn)
is a run of A over S. Moreover, if A is deterministic, then G is safe.



A. Grez and C. Riveros 14:13

The final step at phase i is to enumerate all complex events of accepting runs. For this,
we call the subprocedure Enumerate over the set of vertices ∪q∈FU iq. By Lemma 13, we
know that G correctly encodes all runs of A until the i-th tuple of S and, moreover, G is safe
(i.e each complex event is represented by exactly one path in G). Therefore, we can easily
enumerate all complex events JAKi(S) one-by-one and without repetitions, by enumerating
all paths in G starting at vertices in ∪q∈FU iq and ending at ⊥.

It is only left to show that Algorithm 1 satisfies constant update time and constant-delay
enumeration. To do this, we have to dig deeper into the implementation of Indexe, which is
the goal of the last section.

6 A persistent index structure for equalities and disequalities

Fix a transition e = (p, P,B= ∧B 6=, q). Let (v0, t0, r0), (v1, t1, r1), . . . be a sequence of triples
such that vi is a vertex and ti, ri are tuples for all i ∈ N. Furthermore, define Index0

e = ∅
and Indexie = Indexi−1

e ∪{(vi, ti, ri)}. Call (vi, ti, ri) an insertion and i the version of Indexe.
To have constant update time and constant-delay enumeration, Indexe must satisfy the

following properties, for every pair of tuples t, r and point in time i ∈ N:
1. every new insertion in Indexe takes constant time, and
2. for all j ≤ i, Indexje[t, r] can be can be enumerated with constant-delay.
The last condition implies that Indexe is a persistent data structure [14], namely, it preserves
the previous version (i.e. Indexje) of itself whenever it is modified.

We claim that, if Indexe satisfies the above three properties, then Algorithm 1 runs with
constant update time and constant-delay enumeration. First, given that A is fixed, then it is
clear that every step of Algorithm 1 can be done in constant time, except lines 15, 17, and 24.
Checking whether Indexe[t, r] 6= ∅ (line 15) or doing an insertion in Indexe (line 24) can be
done in constant time by properties (2) and (1), respectively. Furthermore, one can execute
Connect(G, v, Indexie[t, r]) (line 17) in constant time if, instead of coding the graph G with
adjacency lists, we represent the neighborhood of each vertex v by storing t, r, and i in v
and, because of (2), we can later call Indexie[t, r] whenever needed. Finally, from Lemma 11
we know that, if the neighborhood of each vertex from a safe run DAG can be enumerated
with constant delay, then CE(U) can also be enumerated with constant delay. Given that
Indexie[t, r] allows to enumerate the neighborhood of each vertex, then the enumeration with
constant-delay follows.

In the sequel, we show how to implement Indexe in order to satisfy properties (1) and (2).

Case without disequalities. If e does not have disequalities (i.e. B6= is trivial), then for
every (v, t, r) ∈ Indexe, we can drop r and keep only (v, t). To satisfy (1) and (2) we
use a key-value index DS where keys are tuples t and each value DS[t] is a list of pairs
(u0, i0), . . . , (un, in) where each uk is a vertex and ik is a “timestamp”, namely, the phase
when uk was inserted. Then, for every new insertion (ui, ti) in phase i, we go to DS[ti] and
insert (ui, i) at the end of the list. Finally, for every query of the form Indexje[t] we can go
into DS[t], jump into the pair (uk, ik) with ik = j and enumerate (uk, ik), . . . , (u0, i0) with
constant-delay. Recall that by our RAM model of computation, we can find the list DS[t]
and find the pair (uk, ik) inside DS[t] in constant time (in the latter case, we need another
key-value index for DS[t] that, given j, finds (DS[t])[j] = (uk, j)). Furthermore, by keeping
DS[t] as a linked list, one can easily enumerate (uk, ik), . . . , (u0, i0) with constant-delay.
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Figure 3 A list of tuples s1 . . . s7 with the additional bookkeeping to support disequalities.

Case with disequalities. If e includes disequalities (i.e. B 6= is non-trivial), then we need to
extend our lists DS[t] to support insertions (vi, ti, si) and queries Indexie[t, r]. For this, extend
DS[t] as a list of triples (u0, s0, i0), . . . , (un, sn, in) where uk and ik are as before, and sk is
the tuple for supporting disequalities. Similar to the case without disequalities, for every
new insertion (vi, ti, si) at phase i we go into the list DS[ti] and insert the triple (vi, si, i) at
the end of the list. Then for every query Indexie[t, r] we can jump into the list DS[t], jump
into the triple (uk, sk, ik) with ik = i and enumerate all ul with l ≤ k such that sl 6≡ r (i.e.
sl and r are totally different). Of course, this last enumeration step cannot be done with
constant delay, unless some extra bookkeeping is added to the data structure. The rest of
this section is then devoted to do this.

For the sake of simplification, from now on assume that each list DS[t] is composed only by
tuples s1, . . . , sn. Then the problem is reduced to, given a tuple r and position i, enumerate
the set {sk | k ≤ i ∧ sk 6≡ r}. Without loss of generality, assume also that all s1, . . . , sn have
the same set of attributes A, i.e. att(sk) = A, and define d = |A|. If not, complete each
tuple sk with the missing attributes and a fresh value for each new attribute. For example,
at the left of Figure 3 we give a list s1, . . . , s7 with attributes A = {a, b} and d = 2 where
each column is a tuple (over integers) and each row is an attribute.

Let ā = a1a2 . . . am be a sequence of non-repeating attributes of A, and define Ā to be the
set of all ā. For each tuple sk and each ā, we define a tuple sk[ā] = sj with j < k. Strictly
speaking, sk[ā] will be a (backward) pointer from sk to sj that allows us to jump to sk[ā] in
constant time. Given that our analysis is in data complexity, |Ā| is of constant size, so we
only store a constant number of pointers in each tuple sk (although exponential in d). In
Figure 3, the pointers [a], [b], [ab], and [ba] of s7 are displayed with arrows.

Now, for each sk in the list DS[t] = s1, . . . , sn, the tuple sk[ā] is defined recursively as
follows. First, for every attribute a ∈ A, sk[a] points to the maximum j < k such that
sk.a 6= sj .a. Next, for each sequence ā = a1a2 . . . am, sk[ā] points to the maximum j < k

such that, for all 1 ≤ l ≤ m, sj .al 6= sk[a1 . . . al−1].al where sk[ε] = sk (ε is the empty
sequence in Ā). In the case that there is no such tuple sj , then sk[ā] is not defined, which
means we reached the beginning of DS[t].

I Example 14. Consider the list s1, . . . , s7 at the left of Figure 3 and consider tuple s7.
Then s7[a] = s5 is the last tuple before s7 with a value different than 5, and s7[ab] = s4 is
the last before s7 with s4.a = 2 6= 5 = s7.a and s4.b = 4 6= 3 = s5.b. Similarly, s7[b] = s4 is
the last node before s7 with s4.b = 4 6= 3 = s7.b, and s7[ab] = s1 is the last before s7 with
s1.b = 4 6= 3 = s7.b and s1.a = 1 6= 2 = s4.a.
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With the previous structure over s1, . . . , sn, we show how to enumerate with constant
delay the set {sk | k ≤ i∧sk 6≡ r} given a tuple r and index i. For this, we define a procedure
findNext(sk, r) that returns the last tuple sj with j < k such that sj 6≡ r (and false if sj
does not exist). Note that, if findNext runs in constant time, then we can enumerate the set
{sk | k ≤ i∧ sk 6≡ r} with constant delay: first, if si 6≡ r then we enumerate si; then for every
last node sk we enumerated, we call findNext(sk, r) to get the next one, until findNext
returns false. For computing findNext(sk, r), let s := sk−1 be the node immediately before
sk in DS[t]. In the first step we check if s[ε] fulfills the condition, namely, if s 6≡ r. If so,
we return s[ε]; otherwise, there must be some attribute a1 such that s[ε].a1 = r.a1. In the
next step we consider s[a1] and check if s[a1].a 6= r.a for each a ∈ att(R) \ {a1}; if so, we
return s[a1]. Notice we do not need to compare r with all tuples between s[a1] and s[ε]
because, by definition, each tuple s′ between both satisfy s′.a1 = s[ε].a1 = r.a1. Furthermore,
we no longer need to check the value of a1 in s[a1] because s[a1].a1 6= s[ε].a1 = r.a1. We
repeat this procedure inductively. If we are in step 1 ≤ m < d and failed in all previous
steps, then for ā = a1 . . . am ∈ Ā, assume s[a1 . . . al−1].al = r.al for every l ≤ m. If
s[ā] 6≡ r, return s[ā]; otherwise consider some attribute am+1 ∈ A \ {a1, . . . , am} such that
s[ā].am+1 = r.am+1. Then we consider s[ā · am+1] in the next step. Again, we do not need
to compare r with all elements between s[ā · am+1] and s[ā]: each tuple s′ between both
satisfies s′.am+1 = s[ā].am+1 = r.am+1. Also we do not need to compare s[ā · am+1] with
r on {a1, . . . , am+1} given that, by induction, s[ā · am+1].am+1 6= s[ā].am+1 = r.am+1 and
s[ā · am+1].al 6= s[a1 . . . al−1].al = r.al. At some point we will find some tuple that fulfills
the conditions; in the worst-case scenario we iterate d times, in which case we are sure by
definition that s[a1 . . . ad] satisfies the condition or is undefined (i.e. it does not exists). All
in all, the procedure takes O(d) steps, which is constant. Moreover, this procedure does not
use the pointers of sk, but the ones of sk−1. This is an important property that we use next
when we want to insert a new node in DS[t].

It is left only to show how to update DS[t] = s1, . . . , sn when we read a new tuple sn+1.
For this, we add sn+1 to the end of the list and define sn+1[ā] for each ā ∈ Ā in the following
way. If the list is empty, then sn+1[ā] is undefined for all ā ∈ Ā. Otherwise, for each
ā = a1 . . . am we define sn+1[ā] incrementally over the length m. Suppose that, sn+1[a1 . . . al]
is already defined for every l < m. Define the tuple r such that r.al = sn+1[a1 . . . al−1].al
for all l < m. Then, define sn+1[a1 . . . am] := findNext(sn+1, r). In other words, we collect
all values c1 = sn+1[ε].a1, c2 = sn+1[a1].a2, . . . , cm = sn+1[a1 . . . am].am and find the last
tuple s such that s.al 6= cl for every l ≤ m. As it was mentioned above, since findNext only
uses the pointers of sn, and not of sn+1 itself, the function is well-defined. Moreover, given
that findNext(sn+1, r) can be found in constant time, then sn+1[a1 . . . am] is computed in
constant time as well.

I Example 15. Suppose that we want to add the node s8 = {a→ 2, b→ 3} to the list on
the left of Figure 3. The result is shown on the right of Figure 3 where s8 is the last dashed
column. We define s8[ā] incrementally using findNext. For a, we call findNext(n8, {a→ 2}),
which tries with the last tuple s7 and, because s7.a 6= 2, we set s8[a] := s7. For b, we call
findNext(s8, {b → 3}), which first tries with s7, but s7.b = 3, so it tries with s7[b] = s4;
since s4.b 6= s7.b, we set s8[b] = s4. For sequence ab, we have s8.a = 2 and s8[a].b = 3, so we
call findNext(s8, {a→ 2, b→ 3}). As s7 conflicts in b, it tries with s7[b] = s4, but this time
it conflicts with a, so it tries with s7[ba] = s1. As s1.a 6= 2 and s1.b 6= 3, we set s8[ab] = s1.
The same procedure is done for ba, resulting in s8[ba] = s1.

By combining the key-value index DS where the keys are tuples and the values are the
extended list with the additional bookkeeping mentioned above, we get properties (1) and(2)
needed for Algorithm 1 to have constant update time and constant-delay enumeration.
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7 Future work

This work rises several research opportunities regarding streaming evaluation of queries
with correlation in CEP. The first problem is to find a unified class of queries that includes
chain-CEA and hierarchical queries. Indeed, there are simple hierarchical queries (e.g.
R(x) ∧ S(y) ∧ T (x)) that are not definable by chain-CEA. Another relevant question is
whether partition-by queries with projection can be evaluated efficiently. Chain-CEA forbid
the use of projection and it is not clear how to extend Algorithm 1 to support it. In particular,
it is not clear how to extend this algorithm to support selection strategies [17], an important
operator in CEP to filter the number of outputs. Finally, this work studies the streaming
evaluation of equality and disequality predicates in CEP, but leaves open the evaluation of
other predicates for correlation, like inequalities.
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Abstract
Complex Event Recognition (CER for short) has recently gained attention as a mechanism for
detecting patterns in streams of continuously arriving event data. Numerous CER systems and
languages have been proposed in the literature, commonly based on combining operations from
regular expressions (sequencing, iteration, and disjunction) and relational algebra (e.g., joins and
filters). While these languages are naturally first-order, meaning that variables can only bind single
elements, they also provide capabilities for filtering sets of events that occur inside iterative patterns;
for example requiring sequences of numbers to be increasing. Unfortunately, these type of filters
usually present ad-hoc syntax and under-defined semantics, precisely because variables cannot bind
sets of events. As a result, CER languages that provide filtering of sequences commonly lack rigorous
semantics and their expressive power is not understood.

In this paper we embark on two tasks: First, to define a denotational semantics for CER that
naturally allows to bind and filter sets of events; and second, to compare the expressive power of
this semantics with that of CER languages that only allow for binding single events. Concretely, we
introduce Set-Oriented Complex Event Logic (SO-CEL for short), a variation of the CER language
introduced in [17] in which all variables bind to sets of matched events. We then compare SO-CEL
with CEL, the CER language of [17] where variables bind single events. We show that they are
equivalent in expressive power when restricted to unary predicates but, surprisingly, incomparable in
general. Nevertheless, we show that if we restrict to sets of binary predicates, then SO-CEL is strictly
more expressive than CEL. To get a better understanding of the expressive power, computational
capabilities, and limitations of SO-CEL, we also investigate the relationship between SO-CEL and
Complex Event Automata (CEA), a natural computational model for CER languages. We define a
property on CEA called the *-property and show that, under unary predicates, SO-CEL captures
precisely the subclass of CEA that satisfy this property. Finally, we identify the operations that
SO-CEL is lacking to characterize CEA and introduce a natural extension of the language that
captures the complete class of CEA under unary predicates.
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type T H H T H T H H T H . . .
value -2 30 20 -1 27 2 45 50 -2 65 . . .
index 0 1 2 3 4 5 6 7 8 9 . . .

Figure 1 A stream S of events measuring temperature (T ) in Celsius degrees and humidity (H)
as a percentage of water in the air.

1 Introduction

The timely processing of data streams, where new data is continuously arriving, is a key
ingredient of many contemporary Big Data applications. Examples of such applications
include the recognition of: attacks in computer networks [10, 9]; human activities in video
content [18]; traffic incidents in smart cities [4]; and opportunities in the stock market [20].
Numerous systems for processing streaming data have been proposed over the decades (see,
e.g., [19, 12] for surveys). Complex Event Recognition (CER for short) systems are specialized
stream processing systems that allow to detect higher-level complex events from streams of
simple events. In CER systems, users write so-called patterns that describe the sequences of
simple events that trigger the recognition of a complex event.

To support the above-mentioned application scenarios, numerous CER systems and
languages have been proposed in the literature – see e.g., the surveys [12, 3] and the references
therein. Most notably, CER is supported by several contemporary Big Data streaming
engines, such as Trill [8] and Flink [6]. However, as noted in [12], the literature focuses mostly
on the practical aspects of CER, resulting in many heterogeneous implementations with
fundamentally different capabilities. As a result, little is known on the formal foundations of
CER and, in contrast to the situation for relational databases, we currently lack a common
understanding of the trade-offs between expressiveness and complexity in the design of CER
languages, as well as an established theory for optimizing CER patterns.

Towards a better understanding of the formal foundations of CER, a subset of the authors
has recently proposed and studied a formal logic that captures the core features found in most
CER languages [17]. This logic, denoted CEL, combines the regular expression operators
(sequencing, to require that some pattern occurs before another somewhere in a stream;
iteration, to recognize a pattern a number of times; and disjunction) with data filtering
features as well as limited data outputting capabilities. CEL follows the approach that seems
to be taken by most of the CER literature (e.g., [14, 15, 1, 24, 11], see also [19, 12]) in that
data filtering is supported by binding variables to individual events in the stream, which can
later be inspected by means of one or more predicates. In this respect, variables in CEL are
first order variables, since they bind to individual events.

One of the main contributions of CEL is to provide formal semantics for a language that
combines filtering capabilities with iteration. In particular, a challenging yet common task in
CER systems is to filter variables occurring inside a Kleene closure in a wider scope, stating
properties that involve all the events captured in different iterations. For this reason, first
order variables interact rather awkwardly with Kleene closure. Indeed, if a variable is bound
inside Kleene closure, what does the variable refer to when used outside of a Kleene closure?
In many of the practical CER languages, first order variables are used inside Kleene Closure
to express properties on sequences of events rather than on individual events. In other words,
first order variables are used to express properties on second order objects.

To illustrate this semantics issue, let us introduce the following running example. Suppose
that sensors are positioned in a farm to detect freezing plantations. Sensors detect temperature
and humidity, generating a stream of events of two types, T and H, both of which have
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a value attribute that contains the measured temperature or humidity, respectively. We
encode each event as a relational tuple, and an event stream is an infinite sequence of events.
Furthermore, events are assumed to appear in generation order in the stream. Figure 1 shows
an example, where index marks the position of the event in the stream.

Suppose now that a farmer is interested in checking events of freezing plantations. One
possible specification representing freezing plantations events could be the following:

“after having a temperature below 0 degrees, there is a period where humidity increases
until humidity is over 60%”.

To motivate the semantics mismatch between first order variables and second order properties
in CER languages, let us consider how one can define this complex event with two of
the most influential CER languages in the literature [12], namely Cayuga [15, 14, 13] and
SASE [24, 1, 23]. The CER languages of contemporary big data systems such as Trill [8]
and Flink [6] are based on the former, and are therefore prone to the same mismatch.

1. In Cayuga, this complex event can be defined as follows:

FILTER{value < 0} T
FOLD

{
$2.value < $.value, $2.value ≥ $.value AND $2.value ≥ 60

}
H (1)

Here, the subexpression (FILTER {value < 0} T ) takes the stream of all events of type
T and produces a new stream only with those events satisfying value < 0. Then, this
output stream is processed by the FOLD operator. A stream expression of the form
S1 FOLD{filter_next,filter_stop} S2 is processed as follows1. Every time you receive an
event from the stream S1, start collecting all elements from the stream S2 that satisfy
filter_next, until you see an element from the stream S2 satisfying filter_stop. This allows
to perform some incremental computations and variables ‘$2’ and ‘$’ refer to the previous
and current iteration, respectively. In our Cayuga query, $2.value < $.value is checking
that we see an increasing sequence of H values, until we see the last non-increasing H
value that is over 60% (i.e. $2.value ≥ $.value AND $2.value ≥ 60).

2. In SASE, we can define the complex event more directly with the following query:

PATTERN SEQ(T t, H+ h1[], H h2)
WHERE t.value < 0 AND h1[i− 1].value < h1[i].value AND h2.value ≥ 60 (2)

The query looks for a T event (t), followed by one or more H events (collectively called
h1[]), followed by a final H event (h2). The query then states that t’s value is below zero,
that subsequent events in h1[] have increasing values, and h2’s value is above 60.

The two previous queries motivate the aforementioned ad-hoc semantics where first- and
second-order objects are mixed. Cayuga uses first order variables (e.g. $ and $2) to define,
in a procedural way, a property over a second order object: the set of H events. Instead,
the SASE query implicitly combines first order variables (e.g. t and h2) with second order
variables (e.g. h1[]). Indeed, SASE uses the ad-hoc notation h1[i− 1].value < h1[i].value
to declare a predicate over the second order object h1[]. It is important to mention that
in both languages the semantics of the second order objects is not formally defined and,

1 Cayuga’s FOLD operator actually also takes a third parameter that specifies the event to be output once
the termination condition is met; for the sake of simplification we omit this parameter here.
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moreover, second order objects are actually not acknowledged as such. As a consequence,
CER languages are designed without any understanding of what the expressive power is of
using first order versus second order variables, or how to compare them with other formalisms
proposed in the literature. Moreover, while both Cayuga and SASE propose a computational
model based on automata for evaluating queries, the exact relationship in expressive power
between the CER language and their computational models has never been studied before.

In this paper, we embark on the task of understanding the expressive power of CER
languages that only allow binding and filtering individual events versus those that allow
binding and filtering sets of events, as well as their corresponding computational models.
Concretely we consider CEL [17] as a model of the former class of languages, and we introduce
Set Oriented Complex Event Logic (SO-CEL for short) as a model for the second class of
languages. Variables in SO-CEL can only bind and filter sets of matched events. Specifically,
we compare CEL against SO-CEL and show that they are equivalent in expressive power
when equipped with the same unary predicates but, surprisingly, incomparable when equipped
with n-ary predicates, n > 1. In particular, when equipped with sets of binary predicates,
SO-CEL is strictly more expressive than CEL. However, when equipped with sets of ternary
predicates, the languages are incomparable. The intuition behind this is that SO-CEL cannot
distinguish the events captured by a single variable inside a Kleene closure, while this is
possible in CEL by using a clever trick that relies on ternary filters (Section 4).

Since CEL and SO-CEL coincide when they are restricted to unary predicates, we study
the expressiveness of this core CER language and compare it with a computational model
for detecting complex events called Complex Event Automata [17] (CEA for short). We
show that, in this setting, CEL and SO-CEL are strictly weaker than CEA, but capture the
subclass of CEA that satisfy the so-called ∗-property. Intuitively, this property indicates
that the CEA can only make decisions based on events that are part of the output. As a
by-product of our development we are able to show that certain additional CER operators
that have been proposed in the literature, such as AND and ALL, do not add expressive
power to CEL and SO-CEL while others, such as UNLESS, provide the languages with new
capabilities (Section 5).

Finally, we identify the operations that SO-CEL lacks to capture CEA and introduce a
natural extension that captures the complete class of CEA under unary predicates. This is
the first time that a CER language is proposed to capture the full expressive power of its
underlying computational model. As a result we are also able to give insight into the STRICT
selection policy and strict operator that are usually supported by CER languages (Section 6).

Related Work. As already mentioned, the focus in the majority of the CER literature is on
the systems aspects of CER rather than on the foundational aspects, and there is little formal
study of the expressiveness of CER languages. A notable exception is the work by Zhang et
al on SASE+ [24], which considers the descriptive complexity of a core CER language. It is
unfortunate, however, that this paper lacks a formal definition of the language under study;
and ignores in particular the aforementioned issues related to the scoping of variables under
Kleene closure, as well as the data output capabilities.

Extensions of regular expressions with data filtering capabilities have been considered
outside of the CER context. Extended regular expressions [2, 5, 7] extend the classical regular
expressions operating on strings with variable binding expressions of the form x{e} (meaning
that when the input is matched, the substring matched by regular expression e is bound to
variable x) and variable backreference expression of the form &x (referring to the last binding
of variable x). Variables binding expressions can occur inside a Kleene closure, but when
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referred to, a variable always refers to the last binding. Extended regular expressions differ
from SO-CEL and CEL in that they operate on finite strings over a finite alphabet rather
than infinite streams over an infinite alphabet of possible events; and use variables only to
filter the input rather than also using them to construct the output. Regular expressions
with variable bindings have also been considered in the so-called spanners approach to
information extraction [16]. There, however, variables are only used to construct the output
and cannot be used to inspect the input. In addition, variable binding inside Kleene closures
is prohibited.

Languages with second-order variables, such as monadic second order logic (MSO), are
standard in logic and databases [21]. However, to the best of our knowledge we are not aware
of any CER language such as SO-CEL that combines regular operators with variables that
bind sets of events.

2 Preliminaries

In this section we introduce the formal definitions for streams and complex events, and recall
the definition of CEL, as introduced in [17].

Schemas, Tuples and Streams. Let A be an infinite set of attribute names and D an
infinite set of values. A database schema R is a finite set of relation names, where each
relation name R ∈ R is associated to a tuple of attributes denoted by att(R). If R is a relation
name, then an R-tuple is a function t : att(R)→ D. We say that the type of an R-tuple t is
R, and denote this by type(t) = R. For any relation name R, tuples(R) denotes the set of
all possible R-tuples. Similarly, for any database schema R, tuples(R) =

⋃
R∈R tuples(R).

Given a schema R, an R-stream S is an infinite sequence S = t0t1 . . . where ti ∈ tuples(R).
When R is clear from the context, we refer to S simply as a stream. Given a stream
S = t0t1 . . . and a position i ∈ N, the i-th element of S is denoted by S[i] = ti, and the
sub-stream titi+1 . . . is denoted by Si. We consider in this paper that the time of each event
is given by its index, and defer a more elaborated time model (like [22]) to future work.

CEL syntax. Let X be a set of first order variables. Given a schema R, an FO predicate of
arity n is an n-ary relation P over tuples(R), P ⊆ tuples(R)n. If P is a set of FO predicates
then an atom over P is an expression P (x1, . . . , xn) with P ∈ P of arity n and x1, . . . , xn
FO variables in X. The set of formulas of CEL(P) over schema R is given by the grammar:

ϕ := R AS x | ϕ FILTER P (x̄) | ϕ OR ϕ | ϕ ; ϕ | ϕ+ .

Here, R ranges over relation names in R, x over variables in X and P (x̄) over P.

CEL semantics. For the semantics of CEL we first need to introduce the notion of complex
event. A complex event C is defined as a non-empty and finite set of natural numbers.
We denote by min(C) and max(C) the minimum and maximum element of C, respectively.
Given two complex events C1 and C2, we write C1 · C2 for their concatenation, which is
defined as C1 · C2 := C1 ∪ C2 whenever max(C1) < min(C2) and empty otherwise. Given
an CEL formula ϕ, we denote by vdef(ϕ) all variables defined in ϕ by a clause of the form
R AS x and by vdef+(ϕ) all variables in vdef(ϕ) that are defined outside the scope of all
+-operators. For example, in the formula:

ϕ = (T AS x ; (H AS y FILTER y.id = x.id)+; (T AS z)+) FILTER (u.id = 1)
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we have vdef(ϕ) = {x, y, z} and vdef+(ϕ) = {x}. A valuation is a function ν : X → N.
Given a finite subset U ⊆ X and two valuations ν1 and ν2, we define the valuation ν1[ν2/U ]
by ν1[ν2/U ](x) = ν2(x) whenever x ∈ U and ν1[ν2/U ](x) = ν1(x) otherwise.

Now we are ready to define the semantics of CEL. Given an CEL-formula ϕ, we say that
a complex event C belongs to the evaluation of ϕ over a stream S starting at position i,
ending at position j, and under the valuation ν (denoted by C ∈ JϕK(S, i, j, ν)) if i ≤ j and
one of the following conditions holds:

ϕ = R AS x, C = {ν(x)}, type(S[ν(x)]) = R and i ≤ ν(x) = j.2

ϕ = ρ FILTER P (x1, . . . , xn), and both C ∈ JρK(S, i, j, ν) and (S[ν(x1)], . . . , S[ν(xn)]) ∈ P
hold.
ϕ = ρ1 OR ρ2, and C ∈ Jρ1K(S, i, j, ν) or C ∈ Jρ2K(S, i, j, ν).
ϕ = ρ1 ; ρ2 and there exists k ∈ N and complex events C1 and C2 such that C = C1 · C2,
C1 ∈ Jρ1K(S, i, k, ν) and C2 ∈ Jρ2K(S, k + 1, j, ν).
ϕ = ρ+ and C ∈

⋃∞
k=1 Jρ[k]K(S, i, j, ν) where C ∈ Jρ[k]K(S, i, j, ν) if there exists a

valuation ν′ such that C ∈ JρK(S, i, j, ν[ν′/U ]) if k = 1 or C ∈ Jρ ; ρ[k − 1]K(S, i, j, ν[ν′/U ])
otherwise, where U = vdef+(ρ).

We say that C belongs to the evaluation of ϕ over S at position n ∈ N, denoted by
C ∈ JϕKn(S), if C ∈ JϕK(S, 0, n, ν) for some valuation ν. Notice that the definition of CEL
in [17] did not use the bounds i and j. We use them here just for consistency with the other
definitions in the paper (SO-CEL and SO-CEL+).

I Example 1. Consider that we want to use CEL to see how temperature changes at some
location whenever there is an increase of humidity from below 30 to above 60. Assume, for
this example, that the location of an event (i.e. the location of a sensor) is recorded in its id
attribute. Then, using a self-explanatory syntax for FO predicates, we would write:

[H AS x ; (T AS y FILTER y.id = x.id)+ ; H AS z]
FILTER (x.value < 30 ∧ z.value > 60 ∧ x.id = z.id)

Inside the Kleene closure, y is always bound to the current event being inspected. The filter
y.id = x.id ensures that the inspected temperature events are of the same location as the
first humidity event x. Note that, in this case, the output is a complex event, and includes
in particular the positions of the inspected T events.

3 Second-Order Complex Event Logic

In this section, we formally define SO-CEL, a core complex event recognition language in
which all variables bind complex events instead of individual events. Before giving the formal
definition, we first give a gentle introduction to SO-CEL and the design decisions behind its
syntax and semantics.

As discussed in the Introduction, practical CER languages use variables that bind both
single events (e.g. ‘$’ in (1) and t in (2)) and complex events (e.g. h[] in (2)). In SO-CEL
variables bind to complex events, and predicates are over complex events instead of individual
events. As an example, recall our statement for detecting freezing plantations: “after having

2 The fact that ν(x) = j implies that the event in position j will always be part of the matched complex
event. The reason behind this design decision is that one does not desire to wait for future events to
decide whether or not a complex event matches a certain pattern.
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a temperature below 0 degrees, there is a period where humidity increases until humidity is
over 60%”. This statement can be defined in SO-CEL with the following formula:

ϕ = T ; (H+ IN HS); (H IN LH) FILTER (T.value < 0∧ incr(HS)∧LH.value ≥ 60) (3)

To understand the meaning of this formula, note that T and H are relation names while HS
(Humidity Sequence) and LH (Last Humidity) are variables. These two variables, HS and
LH, are assigned to the complex events defined by the subformulas H+ and H, respectively,
by using the IN-operator. For example, if {4, 6, 7} is a complex event defined by H+ (i.e. a
sequence of one or more H-events) then HS will be assigned to {4, 6, 7}. We denote this as
HS → {4, 6, 7}. Similarly, if the subformula H (i.e. only one H event) defines the complex
event {9}, then LH → {9}. Strictly speaking LH represents a complex event, although
because of the pattern it will always contain only a single event. Note that T is not assigned
to any variable in ϕ despite that we later used T in the filter clause. In SO-CEL we use
relational names themselves also as variables; this generally decreases the number of variables
in a formula and aids readability. Thus, T is also used as a variable in ϕ and T → {3} is a
valid assignment of the T -events.

Now that all variables are assigned to complex events, we can check that they respect
the order imposed by the sequencing operator ( ; ): T → {3} is followed by the sequence
HS → {4, 6, 7}, which is followed by LH → {9}. All together they form the complex event
C = {3, 4, 6, 7, 9}. Indeed, variables T , HS and LH are assigned to the relevant part C
which are used in the filter clause to check through built-in predicates that they satisfy the
required conditions: (1) the temperature is below 0, (2) the humidity forms an increasing
sequence and (3) the last humidity is over 60%. The first and third properties are naturally
checked with the predicates T.value < 0 and LH.value ≥ 60. The second property can be
checked through a SO-CEL predicate that restricts the complex event in HS to form an
increasing sequence of humidity values (similar to the predicate h1[i− 1].value < h1[i].value
in (2)).

In SO-CEL we allow to use arbitrary predicates over complex events. This might seem
too relaxed at first, as predicates could specify arbitrary properties. However, the goal of
this approach is to separate what is inherent to a CER framework and what is particular to
an application. In particular, each application is free to choose any set of predicates that can
be useful and meaningful for users, as well as the algorithms and evaluation strategies to
evaluate them. Next, we give the syntax and semantics of SO-CEL.

SO-CEL syntax. Let L be a finite set of SO (Set-Oriented) variables containing all relation
names (i.e. R ⊆ L). An SO predicate of arity n is an n-ary relation P over sets of tuples,
P ⊆ (2tuples(R))n. We write arity(P ) for the arity of P . Let P be a set of SO predicates.
An atom over P is an expression of the form P (A1, . . . , An) where P ∈ P is a predicate of
arity n, and A1, . . . , An ∈ L (we also write P (Ā) for P (A1, . . . , An)). The set of formulas in
SO-CEL(P) is given by the following syntax:

ϕ := R | ϕ IN A | ϕ FILTER P (Ā) | ϕ OR ϕ | ϕ ; ϕ | ϕ+

where R ranges over relation names, A over labels in L and P (Ā) over P.

SO-CEL semantics. An SO valuation (or just valuation if clear from the context) is a
function µ : L→ 2N such that µ(A) is a finite set for every A ∈ L. The support of such a
valuation is defined as supp(µ) =

⋃
a∈L µ(A). Given two valuations µ1 and µ2, their union is

defined by (µ1 ∪ µ2)(A) = µ1(A) ∪ µ2(A) for every A ∈ L. Finally, given a complex event
C we define S[C] = {S[i] | i ∈ C}, namely, the set of tuples in S positioned at the indices
specified by C.
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Now we are ready to define the semantics of SO-CEL formulas. Given a SO-CEL formula
ϕ, a stream S, and positions i ≤ j, we say that a complex event C belongs to the evaluation
of ϕ over a stream S starting at position i and ending at position j, and under the SO
valuation µ (denoted by C ∈ JϕK(S, i, j, µ)) if one of the following conditions holds:

ϕ = R, C = µ(R) = {j}, type(S[j]) = R and µ(A) = ∅ for every A 6= R.
ϕ = ρ IN A, µ(A) = C, and there exists a valuation µ′ such that C ∈ JρK(S, i, j, µ′) and
µ(B) = µ′(B) for all B 6= A.
ϕ = ρ FILTER P (A1, . . . , An), and both C ∈ JρK(S, i, j, µ) and (S[µ(A1)], . . . , S[µ(An)]) ∈
P hold.
ϕ = ρ1 OR ρ2 and C ∈ Jρ1K(S, i, j, µ) or C ∈ Jρ2K(S, i, j, µ).
ϕ = ρ1 ; ρ2 and there exists k ∈ N, complex events C1 and C2, and valuations µ1 and µ2
such that C = C1 · C2, µ = µ1 ∪ µ2, C1 ∈ Jρ1K(S, i, k, µ1) and C2 ∈ Jρ2K(S, k + 1, j, µ2).
ϕ = ρ+, and C ∈

⋃∞
k=1 JρkK(S, i, j, µ) where ρk = ρ; · · · ; ρ k-times.

Observe that, by definition, if C ∈ JϕK(S, i, j, µ) then C is a subset of {i, . . . , j} and j ∈ C.
Furthermore, one can easily show by induction over the size of ϕ that the support of µ is
equal to C, namely, C = supp(µ). Similar to CEL we say that C belongs to the evaluation of
a SO-CEL formula ϕ over S at position n ∈ N, denoted by C ∈ JϕKn(S), if C ∈ JϕK(S, 0, n, µ)
for some SO valuation µ.

I Example 2. Consider the formula ϕ in (3) that detects possible freezing plantations. We
illustrate the semantics of ϕ over the stream S depicted in Figure 1 where event types T and
H have both a value attribute and an index attribute recording their index in the stream.

First, note that although conjunction of predicates is not directly supported in SO-CEL,
this can be easily simulated by a nesting of filter operators. Then, for the sake of sim-
plification, we can analyze ϕ by considering each filter separately. For the subformula
ϕT = T FILTER T.value < 0 we can see that (i) {3} ∈ JϕT K(S, 0, 3, µ1) with µ1(T ) =
{3}. On the other hand, the last event (i.e. 9) is the only event that satisfies ϕH =
(H IN LH) FILTER LH.value ≥ 60 and then (ii) {9} ∈ JϕHK(S, 8, 9, µ2) with µ2(LH) =
µ2(H) = {9}.

Now, the intermediate formula ϕ+ = (H+ IN HS) FILTER incr(HS) captures a sequence
of one or more H-events representing an increasing sequence of humidities. Because Kleene
closure allows for arbitrary events to occur between iterations, these sequences can be
selected from the powerset of all H-events that produced an increasing sequence like, for
example, {4, 6, 7} or {2, 4}. In particular, we have that (iii) {4, 6, 7} ∈ Jϕ+K(S, 4, 7, µ3)
with µ3(LH) = µ2(H) = {4, 6, 7}. Putting together (i), (ii) and (iii) and noticing that
ϕ = ϕT ;ϕ+;ϕH , we have that {3, 4, 6, 7, 9} ∈ JϕK(S, 0, 9, µ) with µ = µ1 ∪ µ2 ∪ µ3. Finally,
we remove µ and {3, 4, 6, 7, 9} is a complex event in JϕK9(S).

The reader might find the semantics of SO-CEL more flexible and simpler than the one
of CEL: the assignment of variables is more flexible and the semantics of iteration simpler
(since variables are not re-assigned). We argue that the reason for this relies on the use
of first-order variables in order to manage second-order objects (i.e. complex events). For
example, in CEL variables can only be assigned at the event definition, with the atomic
formula R AS x. In contrast, second-order variables can manage complex events, allowing to
use the IN-operator anywhere in a formula. Another more interesting example is iteration. In
order to use first-order variables in a formula of the form ϕ+ we are forced to reassign these
variables every time the subformula ϕ is evaluated (i.e. the use of the valuation ν1[ν2/U ]).
On the other hand, SO valuations can naturally be merged by union (i.e. µ1 ∪ µ2) and,
therefore, the iteration is just a simple generalization of the sequencing operator (;).
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It is important to notice that it is possible to define a more general language CEL that
includes first-order and second-order variables. Given that in this paper our expressiveness
analysis is always between CEL and SO-CEL, we decide to present both language separately.
We leave for future work the study of a CER query language that includes both approaches.

4 The Expressiveness of SO variables versus FO variables

In this section, we compare the expressiveness of CEL and SO-CEL. Since in traditional
logics second-order languages can encode everything a first-order language can, this could
suggest that SO-CEL is more expressive than CEL. We show that this is only partially true:
SO-CEL includes CEL for binary predicates but they are incomparable in general.

In order to make a fair comparison between CEL and SO-CEL we first need to agree on
how we relate the FO predicates that can be used in CEL to the SO predicates that can be
used in SO-CEL. Indeed, the expressive power of both languages inherently depends on the
allowed predicates, and we need to put them on equal ground in this respect. In particular,
without any restrictions on the predicates of SO-CEL we can easily express formulas that
are beyond the scope of CEL. For this reason, we will restrict ourselves to SO predicates
created as extensions of FO predicates. Given an FO predicate P (x1, . . . , xn), we define its
SO-extension P SO to be the SO predicate of the same arity as P such that (S1, . . . , Sn) ∈ P SO

iff ∀x1 ∈ S1, . . . , xn ∈ Sn it is the case that (x1, . . . , xn) ∈ P . We extend this definition to
sets of predicates: if P is a set of FO predicates, PSO is the set {P SO | P ∈ P}. In what
follows we will compare CEL(P) to SO-CEL(PSO).

I Example 3. Using the SO-extensions of the unary FO predicates (e.g. X.value < 30 :=
∀x ∈ X. x.value < 30) and the binary id-comparison predicate (e.g. X.id = Y.id := ∀x ∈
X.∀y ∈ Y. x.id = y.id), the CEL expression of Example 1 can be written in SO-CEL as:

(H IN X; (T + IN Y );H IN Z) FILTER

(X.value < 30 ∧ Z.value > 60 ∧X.id = Y.id ∧X.id = Z.id).

One could ask why do we focus on universal extensions of FO predicates. After all,
one could also consider existential extensions of the form P ∃ where (S1, . . . , Sn) ∈ P ∃ iff
∃x1 ∈ S1, . . . , xn ∈ Sn. (x1, . . . , xn) ∈ P . Under this notion, SO-CEL cannot meaningfully
filter events captured by a Kleene closure. For example, if X.id = Y.id is used with an
existential semantics in Example 3, it would include in Y the T events occurring between
the first H event and the second H event, as long as there is one such T event with the
corresponding id. Therefore, although existential extensions could be useful in some particular
CER use-cases, we compare CEL with SO-CEL by considering only universal extensions.

We now compare both languages, considering the arity of the allowed predicates. We
start by showing that if U is a set of unary FO predicates, CEL(U) and SO-CEL(USO) have
the same expressive power. Formally, we say that two formulas ψ and ϕ are equivalent,
denoted by ψ ≡ ϕ, if JψKn(S) = JϕKn(S) for every stream S and position n.

I Theorem 4. Let U be any set of unary FO predicates. For every formula ψ ∈ CEL(U)
there exists a formula ϕ ∈ SO-CEL(USO) such that ψ ≡ ϕ, and vice versa.

The previous theorem is of particular relevance since it shows that both languages coincide
in a well-behaved core. CEL with unary predicates was extensively studied in [17] showing
efficient evaluation algorithms and it is part of almost every CER language [12].
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Now we show that if we go beyond unary predicates there are SO-CEL formulas that
cannot be equivalently defined in CEL (under the same set of predicates). Let P= be the
smallest set of FO predicates that allows to express equality between attributes of tuples
and is closed under boolean operations.

I Theorem 5. There is a formula in SO-CEL(PSO
= ) that cannot be expressed in CEL(P=).

An example of a formula that can be defined in SO-CEL(PSO
= ) but cannot be defined

in CEL(P=) is ϕ := (R+ ; T+) FILTER R.id 6= T.id, where X.id 6= Y.id is defined as
∀x ∈ X∀y ∈ Y (x(id) 6= y(id)). Intuitively, an equivalent formula in CEL(P=) for ϕ would
need to compare every element in R with every element in T , which requires a quadratic
number of comparisons. The proof establishes that the number of comparisons in the
evaluation of an CEL formula is at most linear in the size of the output and, thus, ϕ cannot
be defined by any formula in CEL(P=). It is important to note that this result shows the
limitations of a CER language based on FO variables and what can be gained if SO variables
are used.

A natural question at this point is whether SO-CEL can define every CEL formula. For
binary predicates (e.g. x.id = y.id) the answer is positive, as the following result shows.

I Theorem 6. Let B be any set of FO binary predicates closed under complement. Then for
every formula ψ ∈ CEL(B) there exists a formula ϕ ∈ SO-CEL(BSO) such that ψ ≡ ϕ.

It is important to notice that closedness under complement is a mild restriction over B.
In particular, if the set B is closed under boolean operations (as usually every CER query
language supports), the condition trivially holds.

Interestingly, it is not true that SO-CEL is always more expressive than CEL. In
particular, there exists an CEL formula with ternary predicates that cannot be defined by
any SO-CEL formula. For the next result, consider the smallest set of FO predicates P+
containing the sum predicate x = y + z that is closed under boolean operations.

I Theorem 7. There is a formula in CEL(P+) that cannot be expressed in SO-CEL(PSO
+ ).

The formula R AS x ; (S AS y ; T AS z FILTER (x = y + z))+ cannot be defined in
SO-CEL(PSO

+ ). This formula injects the x-variable inside the Kleene closure in order to
check that each pair (y, z) sums x. This capability of injecting variables inside Kleene closure
cannot be simulated in SO-CEL given that in SO-CEL a sub-formula cannot filter variables
outside its own scope. It is important to recall that this does not occur if binary predicates
are used (Theorem 6), which are of common use in CER.

5 On the Expressiveness of Unary Formulas

What is the expressiveness of CEL(P) or SO-CEL(P)? To obtain more insight into the the
expressive power of the fundamental operators of these languages, we will study this question
in the setting where P is limited to the class U of unary FO predicates. As we showed
in Section 4, CEL(U) and SO-CEL(USO) are equally expressive in this setting, suggesting
that this is a robust subfragment of CER query languages. In this section, we compare
CEL and SO-CEL with complex event automata (CEA), a computational model proposed
in [17] for efficiently evaluating CEL with unary FO predicates. We show that the so-called
∗-property of CEA captures the expressiveness of CEL and SO-CEL with unary predicates.
Furthermore, we use this property to understand the expressiveness of CEL and SO-CEL
under the extension with new CER operators.
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q1 q2 q3
tuples(H) | ◦

TRUE | ◦ TRUE | ◦

tuples(T ) | •

Figure 2 A complex event automaton that has no equivalent formula in SO-CEL.

Let R be a schema and U be a set of unary FO predicates over R. We denote by U+

the closure of U ∪ {tuples(R) | R ∈ R} under conjunction. A complex event automaton [17]
(CEA) over R and U is a tuple A = (Q,∆, I, F ) where Q is a finite set of states, ∆ ⊆
Q× U+ × {◦, •} ×Q is a finite transition relation, and I, F ⊆ Q are the set of initial and
final states, respectively. Intuitively, the elements {◦, •} indicate whether or not the element
used to take the transition will be part of the output. Given an R-stream S = t0t1 . . ., a run
ρ of length n of A over S is a sequence of transitions ρ : q0

P0/m0−−→ q1
P1/m1−−→ · · · Pn/mn−−→ qn+1

such that q0 ∈ I, ti ∈ Pi and (qi, Pi,mi, qi+1) ∈ ∆ for every i ≤ n. ρ is accepting if
qn+1 ∈ F . Runn(A, S) denotes the set of accepting runs of A over S of length n. Further,
we define the complex event C ⊆ 2N induced by ρ as Cρ = {i ∈ [0, n] | mi = •}. Given
a stream S and n ∈ N, we define the set of complex events of A over S at position n as
JAKn(S) = {Cρ | ρ ∈ Runn(A, S)}.

In [17], it was shown that for every formula ϕ ∈ CEL(U) there exists an equivalent
CEA A such that JϕKn(S) = JAKn(S) for every stream S and position n. By Theorem 4,
it follows that for every formula ϕ ∈ SO-CEL(USO) there is an equivalent CEA A such
that JϕKn(S) = JAKn(S) for every stream S and position n. It is then natural to ask
whether the converse also holds, namely, if every CEA A over U has an equivalent formula in
SO-CEL(USO) (and thus in CEL(U)). Here, however, the answer is negative because CEA
can make decisions based on tuples that are not part of the output complex event, while
formulas cannot. Consider for example the CEA of Figure 2. This automaton will output
complex events of the form C = {i}, provided that S[i] is of type T and there is a previous
position j < i such that S[j] is of type H. It is straightforward to prove that this cannot be
achieved by SO-CEL formulas because such a formula would either not check that the H
event occurs, or include the position j of H in C – which the automaton does not.

In order to capture the exact expressiveness of CEL or SO-CEL formulas with unary
predicates, we restrict CEA to a new semantics called the ∗-semantics. Formally, let
A = (Q,∆, I, F ) be a complex event automaton and S = t1, t2, . . . be a stream. A ∗-run ρ∗ of
A over S ending at n is a sequence of transitions: ρ∗ : (q0, 0) P1/•−−→ (q1, i1) P2/•−−→ · · · Pk/•−−→(qk, ik)
such that q0 ∈ I, 0 < i1 < . . . < ik = n and, for every j ≥ 1, (qj−1, Pj , •, qj) ∈ ∆ and
S[ij ] ∈ Pj . We say that ρ∗ is an accepting ∗-run if qk ∈ F . Furthermore, we denote by
Cρ ⊆ 2N the complex event induced by ρ∗ as Cρ∗ = {ij | j ≤ k}. The set of all complex
events generated by A over S under the ∗-semantics is defined as: JAK∗n(S) = {Cρ∗ |
ρ∗ is an accepting ∗-run of A over S ending at n}. Notice that under this semantics, the
automaton no longer has the ability to verify a tuple without marking it but it is allowed to
skip an arbitrary number of tuples between two marking transitions.

We can now effectively capture the expressiveness of unary formulas as follows.

I Theorem 8. For every set U of unary FO predicates, SO-CEL(USO) has the same express-
ive power as CEA(U) under the ∗-semantics, namely, for every formula ϕ in SO-CEL(USO),
there exists a CEA A over U such that JϕKn(S) = JAK∗n(S) for every S and n, and vice versa.
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For every stream S and complex event C, let S[C〉 refer to the subsequence of S induced by C.
An interesting property of the ∗-semantics is that, for every CEA A, stream S, and complex
event C ∈ JAK∗(S), we can arbitrarily modify, add and remove tuples in S that are not
mentioned in S[C〉, and the original tuples in S[C〉 would still form a complex event of A over
the new stream. To formalize this, we need some additional definitions. A stream-function f
is a function f : streams(R)→ 2C, where streams(R) is the set of all R-streams and C is
the set of all complex events. Although f can be any function that returns a set of complex
events on input streams, we are interested in the processing-functions f that can be described
either by a SO-CEL formula ϕ (i.e. f = JϕK) or by a CEA A (i.e. f = JAK). Let S1, S2 be
two streams and C1, C2 be two complex events. We say that S1 and C1 are ∗-related with
S2 and C2, written as (S1, C1) =∗ (S2, C2), if S1[C1〉 = S2[C2〉.

Consider now a stream-function f . We say that f has the ∗-property if, for every stream
S and complex event C ∈ f(S), it holds that C ′ ∈ f(S′) for every S′ and C ′ such that
(S,C) =∗ (S′, C ′). A way to understand the ∗-property is to see S′ as the result of fixing the
tuples in S that are part of S[C] and adding or removing tuples arbitrarily, and defining C ′
to be the complex event that has the same original tuples of C. The following proposition
states the relation that exists between the ∗-property and the ∗-semantics over CEA.

I Proposition 9. If the stream-function defined by a CEA A has the ∗-property, then there
exists a CEA A′ such that JAKn(S) = JA′K∗n(S) for every S and n.

By combining Theorem 8 and Proposition 9 we get the following result.

I Corollary 10. Let f be a stream-function. Then f can be defined by a CEA over U and
has the ∗-property iff there exists a formula ϕ in SO-CEL(USO) such that f = JϕK.

With the previous corollary we have captured the exact expressiveness of CEL(U) and
SO-CEL(USO) based on a restricted subclass of CEA. Interestingly, we can use this character-
ization to show that other operators for CER that have been proposed in the literature [12]
can be captured by SO-CEL(USO). Some languages include additional useful operators like
AND, ALL and UNLESS, which have the following semantics in SO-CEL. Given a complex event
C, a stream S, a valuation µ, and i, j ∈ N:

C ∈ Jρ1 AND ρ2K(S, i, j, µ) iff C ∈ Jρ1K(S, i, j, µ) ∩ Jρ2K(S, i, j, µ).
C ∈ Jρ1 ALL ρ2K(S, i, j, µ) if and only if there are i1, i2, j1, j2 ∈ N, complex events C1,
C2, and valuations µ1, µ2 such that Ck ∈ JρkK(S, ik, jk, µk), C = C1 ∪ C2, µ = µ1 ∪ µ2,
i = min{i1, i2} and j = max{j1, j2}.
C ∈ Jρ1 UNLESS ρ2K(S, i, j, µ) iff C ∈ Jρ1K(S, i, j, µ) and, for every complex event C ′,
valuation µ′, and i′, j′ ∈ N such that i ≤ i′ ≤ j′ ≤ j, it holds that C ′ /∈ Jρ2K(S, i′, j′, µ′).

The AND operator selects those matches produced by both formulas. Although this is
natural for sets, it is restrictive for capturing events. On the contrary, ALL is more flexible
and allows to combine complex events. In this sense, ALL is similar to sequencing but allows
the complex events to occur at any point in time, even overlapping or intersecting. For
example, suppose that we want to capture a temperature below 0 degrees and a humidity
over 60% that can occur in any order. This can be written as (T ALL H) FILTER (T.value <
0∧H.value ≥ 60). The motivation for introducing UNLESS in CER languages is to have some
sort of negation [12]. It is important to mention that the negated formula (the right-hand
side) is restricted to complex events between the start and end of complex events for the
formula in the left-hand side. This is motivated by the fact that a complex event should not
depend on objects that are distant in the stream. For example, consider that we want to see
a drastic increase in temperature, i.e., a sequence of a low temperature (less than 20 degrees)
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followed by a high temperature (more than 40 degrees), where no other temperatures occur
in between. This can be expressed by the following pattern with the UNLESS operator:[

(T IN TF ; T IN TL) FILTER (TF.value < 20 ∧ TL.value > 40)
]

UNLESS [T FILTER (T.value >= 20 ∧ T.value <= 40)]

Interestingly, from a language design point of view, the operators AND and ALL are
redundant in the sense that AND and ALL do not add expressive power in the unary case.
Indeed, AND and ALL can be defined by CEA and both satisfy the ∗-property..

I Corollary 11. Let U be a set of unary FO predicates. For every expression ϕ of the form
ϕ1 OP ϕ2, with OP ∈ {AND, ALL} and ϕi in SO-CEL(USO), there is a SO-CEL(USO) formula
ϕ′ such that JϕKn(S) = Jϕ′Kn(S) for every S and n.

In contrast, the UNLESS operator can be defined by CEA but one can show that there
are formulas mentioning UNLESS that do not satisfy the ∗-property. Then, by Corollary 10,
UNLESS is not expressible in SO-CEL(USO) with U unary FO predicates. This shows that
UNLESS adds expressibility to unary SO-CEL formulas while remaining executable by CEA.

6 Capturing the Expressive Power of Complex Event Automata

As discussed in Section 5, given a set U of unary FO predicates, SO-CEL(USO) captures the
class of CEA over U that have the ∗-property (Corollary 10). However, in [17] it was shown
that all CEA can be evaluated efficiently, and not only those satisfying the ∗-property. It
makes sense then to study the origin of this lack of expressive power and extend the language
to precisely capture the expressiveness of the automata model.

6.1 Expressibility of CEA and Unary SO-CEL
By looking at the characterization of SO-CEL in terms of the ∗-property, one can easily
distinguish three shortcomings of SO-CEL. First, every event that is relevant for capturing a
complex event must be part of the output. Although this might be a desired property in some
cases, it disallows projecting over a subset of the relevant events. This limitation is explained
by the ∗-property, and suggests that to capture CEA we need an operator that allows to
remove or, in other words, project events that must appear in the stream but are irrelevant
for the output. Although projection is one of the main operators in relational databases, it is
rarely used in the context of CER, possibly because of the difficulties encountered when trying
to define a consistent semantics that combines projection with operators like Kleene closure.
Interestingly, we show below that by using second-order variables it is straightforward to
introduce a simple projection operator in SO-CEL.

The second shortcoming of SO-CEL is that it cannot express contiguous sequences. The
sequencing operators (; and +) allow for arbitrary irrelevant events in between. While this is
a typical requirement in CER, a user could want to capture contiguous events, which has been
considered in some CER language before [23] as a selection operator that keeps contiguous
sequences of events in the output (see Section 6.2 for further discussion). Given that this
can be naturally achieved by CEA and has been previously proposed in the literature, it is
reasonable to include some operators that allow to declare contiguous sequence of events.

A final feature that is clearly supported by CEA but not by SO-CEL is specifying that
a complex event starts at the beginning of the stream. This feature is not particularly
interesting in CER, but we include it as a new operator with the simple objective of capturing
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the computational model. Actually, this operator is intensively used in the context of regular
expression programing where an expression of the form “∧R” marks that R must be evaluated
starting from the beginning of the document. Therefore, it is not at all unusual in query
languages to include an operator that recognizes events from the beginning of the stream.

Given the discussion above, we propose to extend SO-CEL with the following operators:

ϕ := ϕ : ϕ | ϕ⊕ | πL(ϕ) | START(ϕ)

where L ⊆ L. Recall that for a valuation µ, supp(µ) is defined as supp(µ) =
⋃
A∈L µ(A).

Given a formula ϕ of one of the forms above, a complex event C, a stream S, a valuation µ,
and positions i, j, we say that C ∈ JϕK(S, i, j, µ) if one of the following conditions holds:

ϕ = ρ1 : ρ2 and there exists two non-empty complex events C1 and C2 and valuations
µ1 and µ2 such that C = C1 · C2, µ = µ1 ∪ µ2, C1 ∈ Jρ1K(S, i,max(C1), µ1), C2 ∈
Jρ2K(S,min(C2), j, µ2) and max(C1) = min(C2)− 1.
ϕ = ρ⊕ and C ∈

⋃∞
k=1 JρkK(S, i, j, µ) where ρk = ρ : · · · : ρ k-times.

ϕ = πL(ρ), C = supp(µ) and there is C ′ ∈ JρK(S, i, j, µ′) for some valuation µ′ such that
µ(A) = µ′(A) if A ∈ L and µ(A) = ∅ otherwise.
ϕ = START(ρ), C ∈ Jϕ′K(S, i, j, µ), and min(C) = i.

To denote the extension of SO-CEL with a set of operators O we write SO-CEL ∪ O. For
readability, we use the special notation SO-CEL+ to denote SO-CEL ∪ { : ,⊕, π, START}.

The idea behind : and ⊕ is to simulate ; and +, respectively, but imposing that irrelevant
events cannot occur in between. This allows us to recognize, for example, the occurrence of
an event of type R immediately after an event of type T (ϕ = R : T ), or an unbounded series
of consecutive events of type R (ϕ = R⊕). Note, however, that the operator ⊕ does not
impose that intermediate events are contiguous. For example the formula (R;S)⊕ imposes
that the last event S of one iteration occurs right before the first event R of the next iteration,
but in one iteration the R event and the S event do not need to occur contiguously.

I Example 12. Following the schema of our running example, suppose that we want to
detect a period of temperatures below 0◦ and humidities below 40%, followed by a sudden
increase of humidity (above 45%). Naturally, we do not expect to skip irrelevant temperatures
or humidities, as this would defy the purpose of the pattern. Assuming that we are only
interested in retrieving the humidity measurements, this pattern would be written as follows:

πH [((H IN X) OR T )⊕ : (H IN Y ) FILTER (X.value < 40∧T.value < 0∧ Y.value > 45)].

Having defined the previous operators, we proceed to show that for every set U of unary
predicates, SO-CEL+ (USO) captures the full expressive power of CEA over U . To this end,
we say that a formula ϕ in SO-CEL+ (USO) is equivalent to a CEA A over U (denoted by
ϕ ≡ A) if for every stream S and n ∈ N it is the case that JAKn(S) = JϕKn(S).

I Theorem 13. Let U be a set of unary FO predicates. For every CEA A over U , there
is a formula ϕ ∈ SO-CEL+ (USO) such that ϕ ≡ A. Conversely, for every formula ϕ ∈
SO-CEL+ (USO) there exists a CEA A over U such that ϕ ≡ A.

This result is particularly relevant because, as shown in [17], for every stream S and CEA
A, we can evaluate A by consuming the stream S using constant time to process every new
event, and after consuming the nth event of S the set JAKn(S) is enumerated with constant
delay. Although the constants here are measured under data complexity and might depend
exponentially on the size of the automaton, these are useful efficiency guarantees for CER in
practice, and therefore extending SO-CEL to a language that precisely captures the class of
CEA gives more expressive power while maintaining these efficiency guarantees.
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6.2 Strict Sequencing versus Strict Selection

For recognizing events that occur contiguously we introduced the strict-sequencing operators
(i.e. : and ⊕) that locally check this condition. These operators are the natural extension
of ; and +, and they resemble the standard operators of concatenation and Kleene star
from regular expressions. However, to the best of our knowledge strict-sequencing has not
been proposed before in the context of CER, possibly because adding this feature to a
language might complicate the semantics, specially when combined with other non-strict
operators. To avoid this interaction, the strict-contiguity selection (or strict-selection) has
been previously introduced in [23] by means of a unary predicate that basically forces a
complex event C to capture a contiguous set of events. Formally, for any formula ϕ in SO-CEL
let STRICT(ϕ) be the syntax for the strict-selection operator previously mentioned. Given a
stream S, a valuation µ, and two position i, j ∈ N, we say that C ∈ JSTRICT(ϕ)K(S, i, j, µ) if
C ∈ JϕK(S, i, j, µ) and C is an interval (i.e. there are no i, k ∈ C and j /∈ C s.t. i < j < k).

A reasonable question is whether the same expressiveness results of Theorem 13 could be
obtained with STRICT. We answer this by giving evidence that our decision of including strict-
sequencing operators instead of strict-selection was correct. We show that strict-sequencing
and strict-selection coincide if we restrict our comparison to unary predicates. Surprisingly, if
we move to binary predicates, strict-selection is strictly less expressive than strict-sequencing.

At a first sight, the strict-sequencing operators and the strict-selection predicates seem
equally expressive since each allows to force contiguity between pairs of events. At least, this
intuition holds whenever we restrict to unary predicates.

I Proposition 14. Let U be a set of unary SO predicates. For every ϕ in SO-CEL∪{ : ,⊕}(U),
there exists a formula ψ in SO-CEL ∪ {STRICT}(U) such that ϕ ≡ ψ, and vice-versa.

The connection between both operators change if we move to predicates of higher arity.
Note, however, that STRICT can always be simulated by the sequencing operators : and ⊕.

I Proposition 15. Let P be a set of SO predicates. Given a formula ϕ ∈ SO-CEL ∪
{STRICT}(P) there exists ψ ∈ SO-CEL ∪ { : ,⊕}(P) such that ϕ ≡ ψ.

To explain our decision of including the operators : and ⊕ instead of STRICT, we study the
opposite direction. First, it is not hard to see that the operator : can indeed be simulated by
means of the operator STRICT. Actually, for any formula ϕ1 : ϕ2 we can isolate the rightmost
and leftmost event definition of ϕ1 and ϕ2 respectively, change : by ; and surround it by a
STRICT operator. Now, if we include the operator ⊕, the situation becomes more complex.
In particular, for binary predicates, STRICT is not capable of simulating the ⊕-operator.

I Theorem 16. For any set P of SO predicates and for any formula ϕ ∈ SO-CEL ∪ {:}(P)
there is a formula ψ ∈ SO-CEL ∪ {STRICT}(P) such that ϕ ≡ ψ. In contrast, there exists a
set P containing a single binary SO predicate and a formula ϕ ∈ SO-CEL ∪ {⊕}(P) that is
not equivalent to any formula in SO-CEL ∪ {STRICT}(P).

This last theorem concludes our discussion on the operators for contiguity, and allows us
to argue that including the operators : and ⊕ is better than including the unary operator
STRICT. It is worth noting that the proof of Theorem 16 is a non-trivial result that requires
a version of the pumping lemma for CEA; the proof can be found in the Appendix.
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7 Discussion and future work

There are several future research directions regarding the relation between CER languages,
logics, and streaming evaluation. For example, one relevant problem is to understand the
connection between SO-CEL and monadic second-order logic (MSO). For unary filters, we
conjecture that SO-CEL+ has the same expressive power as MSO over unary filters. Another
natural question is to compare the expressiveness of SO-CEL+ and MSO extended with
binary predicates. Furthermore, a more fundamental question is what fragments of SO-CEL
or MSO (with binary predicates) can be evaluated with strong guarantees like constant-delay
enumeration. We believe that understanding the relation between SO-CEL, formal logics
(e.g. MSO), and constant delay algorithms is fundamental for the design of CER languages
and the implementation of CER systems.
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Abstract
Probabilistic databases (PDBs) are used to model uncertainty in data in a quantitative way. In the
standard formal framework, PDBs are finite probability spaces over relational database instances. It
has been argued convincingly that this is not compatible with an open-world semantics (Ceylan et al.,
KR 2016) and with application scenarios that are modeled by continuous probability distributions
(Dalvi et al., CACM 2009).

We recently introduced a model of PDBs as infinite probability spaces that addresses these
issues (Grohe and Lindner, PODS 2019). While that work was mainly concerned with countably
infinite probability spaces, our focus here is on uncountable spaces. Such an extension is necessary
to model typical continuous probability distributions that appear in many applications. However,
an extension beyond countable probability spaces raises nontrivial foundational issues concerned
with the measurability of events and queries and ultimately with the question whether queries have
a well-defined semantics.

It turns out that so-called finite point processes are the appropriate model from probability theory
for dealing with probabilistic databases. This model allows us to construct suitable (uncountable)
probability spaces of database instances in a systematic way. Our main technical results are
measurability statements for relational algebra queries as well as aggregate queries and Datalog
queries.
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1 Introduction

Probabilistic databases (PDBs) are used to model uncertainty in data. Such uncertainty
could be introduced by a variety of reasons like, for example, noisy sensor data, the presence
of incomplete or inconsistent information, or because the information is gathered from
unreliable sources [3, 63]. In the standard formal framework, probabilistic databases are
finite probability spaces whose sample spaces consist of database instances in the usual sense,
referred to as “possible worlds”. However, this framework has various shortcomings due
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to its inherent closed-world assumption [16] – in particular, any event outside of the finite
scope of such probabilistic databases is treated as an impossible event. There is also work on
PDBs that includes continuous probability distributions and hence goes beyond the formal
framework of finite probability space. Yet, these continuous PDBs lack a general formal basis
in terms of a possible worlds semantics [20]. While both open-world PDBs and continuous
probability distributions in PDBs have received some attention in the literature, there is no
systematic joint treatment of these issues with a sound theoretical foundation. In [38], we
introduced an extended model of PDBs as arbitrary (possibly infinite) probability spaces
over finite database instances. However, the focus there was on countably infinite PDBs.
An extension to continuous PDBs, which is necessary to model probability distributions
appearing in many applications that involve real-valued measurement data, raises new
fundamental questions concerning the measurability of events and queries.

In this paper, we lay the foundations of a systematic and sound treatment of infinite,
even uncountable, probabilistic databases, and we prove that queries expressed in standard
query languages have a well-defined semantics.

Our treatment is based on the mathematical theory of finite point processes [53, 49, 18].
Adopting this theory to the context of relational databases, we give a suitable construction
of measurable spaces over which our probabilistic databases can then be defined. The
only assumption that we need to make is that the domains of all attributes satisfy certain
topological assumptions (they need to be Polish spaces; all standard domains such as integers,
strings, reals, satisfy this assumption). For queries and views to have a well-defined open-
world semantics, we need them to be measurable mappings between probabilistic databases.
Our main technical result states that indeed all queries and views that can be expressed in the
relational algebra, even equipped with arbitrary aggregate operators (satisfying some mild
measurability conditions) are measurable mappings. The result holds for both a bag-based
and set-based relational algebra. We also prove the measurability of Datalog queries.

Measurability of queries may seem like an obvious minimum requirement, but one needs
to be very careful. We give an example of a simple, innocent looking “query” that is not
measurable (see Example 8). The proofs of the measurability results are not trivial, which
may already be seen from the fact that they depend on the topological assumption that the
attribute domains are Polish spaces (most importantly, they are complete topological spaces
and have a countable dense subset). At their core, the proofs are based on finding suitable
“countable approximations” of the queries.

In the last section of this paper, we briefly discuss queries for probabilistic databases that
go beyond “standard” database queries lifted to probabilistic databases via an open-world
semantics. Examples of such a queries are probabilistic threshold queries and rank queries.
Such queries refer not only to the facts in a database, but also to their probabilities, and
hence are inherently probabilistic.

Related Work. Early work on models for probabilistic databases dates back to the 1980s
[69, 35, 15] and 1990s [8, 56, 26, 34, 71]. These models may be seen as special cases or
variations of the now-acclaimed formal model of probabilistic databases that features a
usually finite set of database instances (the “possible worlds”) together with a probability
distribution among them [3, 63].

The work [45] presents a formal definition of the probabilistic semantics of relational
algebra queries as it is used in the MayBMS system [46]. A probabilistic semantics for
Datalog has already been proposed in the mid-90s [33]. More recently, a version of Datalog
was considered in which rules may fire probabilistically [25]. Aggregate queries in probabilistic
databases were first treated systematically in [59] and reappear in various works concerning
particular PDB systems [54, 28].
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The models of possible worlds semantics mentioned above are the mathematical backbone
of existing probabilistic database prototype systems such as MayBMS [46], Trio [68] and
MystiQ [12]. Various subsequent prototypes feature uncountable domains as well, such as
Orion [60], MCDB [41, 42], new versions of Trio [4] and PIP [44]. The MCDB system in
particular allows programmers to specify probabilistic databases with infinitely many possible
worlds with database instances that can grow arbitrarily large [42] and is therefore probably
the most general existing system. Its system-driven description does not feature a general
formal, measure theoretic account of its semantics though. In a spirit that is similar to our
presentation here, the work [64] introduced a measure theoretic semantics for probabilistic
data stream systems with probability measures composed from Gaussian mixture models but
(to our knowledge) on a per tuple basis and without the possibility of inter-tuple correlations.
Continuous probabilistic databases have already been considered earlier in the context of
sensor networks [27, 17, 24]. The first work to formally introduce continuous possible worlds
semantics (including aggregation) is [1] for probabilistic XML. However, the framework has
an implicit restriction bounding the number of tuples in a PDB.

Models similar in expressivity to the one we present have also been suggested in the
context of probabilistic modeling languages and probabilistic programming [51, 52, 58, 22, 7].
In particular notable are the measure theoretic treatments of Bayesian Logic (BLOG) [51] in
[70] and Markov Logic Networks (MLNs) [58] in [61]. While these data models are relational,
it is unclear, how suitable they are for general database applications and in particular, the
investigation of typical database queries is beyond the scope of these works.

Problems raised by the closed-world assumption [57] in probabilistic databases was
discussed initially by Ceylan et al. in [16] where they suggest the model of OpenPDBs. In
[10], the authors make a more fine-grained distinction between an open-world and open-
domain assumption, the latter of which does not assume the attribute values of the database
schema to come from a known finite domain. The work [31] considers semantic constraints on
open worlds in the OpenPDB framework. The semantics of OpenPDBs can be strengthened
towards an open-domain assumption by the means of ontologies [9, 10, 11].

The classification of views we discuss towards the end of this paper shares similarities
with previous classifications of queries such as [17] in the sense that it distinguishes how
aggregation is involved. The work [66] suggests a distinction between “traditional” and
“out-of-world aggregation” quite similar to the one we present.

2 Preliminaries

Throughout the paper, we denote the set of nonnegative integers by N, the set of rational
numbers by Q and the set of real numbers by R. We write N+, Q+ and R+ for the restrictions
of these sets to strictly positive numbers.

If M is a set and k ∈ N, then
(
M
k

)
denotes the set of subsets of M of cardinality k. The

set of all finite subsets of M is then given by
⋃
k≥0

(
M
k

)
=:
(
M
<ω

)
.

A bag (also called multiset) over a set U is an unordered collection of elements of U ,
possibly with repetitions. In order to distinguish sets and bags, we use double curly braces
{{· · ·}} when explicitly denoting bags. Similarly to the notation for sets, we let

((
M
k

))
denote

the set of bags over the set M of cardinality k ∈ N (that is, containing k elements, counting
copies). The set of all finite bags over M is given by

⋃
k≥0
((
M
k

))
=:
((
M
<ω

))
.

There are multiple equivalent ways to formalize the notion of bags. We introduce two
such definitions that we use interchangeably later:
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Multiplicity perspective A bag B over some set U is a function #B : U → N assigning a
multiplicity to every element of U . The cardinality of B is |B| :=

∑
u∈U #B(u).

Quotient perspective For all a, b ∈ Uk, let a ∼ b if b is a permutation of a. A bag B of
cardinality |B| = k is a ∼-equivalence class on Uk.

While the multiplicity perspective better matches the intuitive semantics of bags, the
quotient view later has a closer connection to the probability spaces we are going to construct.

2.1 Relational Databases
We follow the general terminology and notions of the named perspective of databases, see for
example [2]. We fix two countably infinite, disjoint sets Attributes and Relations of attribute
names and relation names, respectively. As usual, we drop the distinction between names of
attributes and relations and their model-theoretic interpretation. A database schema is a
pair S = (A,R) with the following properties:
A and R are finite subsets of Attributes resp. Relations.
For every attribute A ∈ A there exists a set domS(A), called its domain.
For every relation symbol R ∈ R there exists an associated k-tuple of distinct attributes
from A for some k, called its type typeS(R).

Implicitly, every relation R ∈ R has an arity arS(R) := |typeS(R)| and a domain domS(R) :=∏
A∈typeS(R) domS(A). Elements of the domain of R ∈ R are called R-tuples. Whenever a

pair (A,R) is given, we assume that all of the aforementioned mappings are given as well,
unless it is specified otherwise. Given a database schema S = (A,R) and a relation R ∈ R,
the set of R-facts in S is formally defined as factsS(R) = {R} × domS(R). The set of all
facts of schema S is given as factsS(R) :=

⋃
R∈R factsS(R).

As usual, we denote R-facts in the fashion of R(a1, . . . , ak) rather than (R, a1, . . . , ak).
If U ⊆ domS(R) for R ∈ R, we let R(U) := {R(u) : u ∈ U}. If U is a Cartesian product
involving singletons, like for example U = {a} × V , we may omit the braces of the singletons
and replace crosses with commas so that R(a, U) = {R(a, u) : u ∈ U}.

Finally, a database instance D of schema S = (A,R) is a finite bag of facts from factsS(R),
that is, an element of the set DS :=

((
factsS(R)

<ω

))
. We want to emphasize that in particular

we allow single facts to appear two or more times within an instance. That is, we use bag
semantics in our database instances.

2.2 Topology and Measure Theory
We assume that the reader is familiar with the basic notions of point set topology such as
open and closed sets and continuous mappings. For a more detailed introduction to the
concepts we refer to standard text books such as [14, 13]. In the following, we concentrate
on the background from measure theory. The definitions and statements are based upon [62]
and Chapter 1 of [43].

In topological terms, the spaces we use as our attribute domains later on are called
Polish spaces - complete, separable metrizable spaces. Such spaces are the default choice
for probability theory in a general setting, as they are quite general while still exhibiting
the nice behavior of closed intervals of the real line, in particular the ability to approximate
points by converging sequences of a countable collection of open sets.
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I Example 1 (see [32, ch. 18] and [62, pp. 52 et seqq.]).
All finite and countably infinite spaces (with the discrete topology) are Polish.
The spaces R and R ∪ {±∞} are Polish.
Closed subspaces of Polish spaces are Polish.
Countable disjoint unions and countable products of Polish spaces are Polish.

These examples already capture the most relevant cases for standard database applications.
Nevertheless we stick to the abstract notion of Polish spaces in order to keep the framework
as general as possible. When we work with Polish spaces, we will later always assume that
we work with a fixed metric on the space (turning it into a complete separable metric space).
In particular, we will use the standard notation Bε(x) for the ball of radius ε around the
point x (with respect to said metric).

Let X be some set. A σ-algebra on X is a family X of subsets of X such that X ∈ X and X

is closed under complementation and countable unions. If G is a family of subsets of X, then
the σ-algebra generated by G is the smallest σ-algebra X on X containing G. A measurable
space is a pair (X,X) where X is an arbitrary set and X is a σ-algebra on X. Subsets of
X are called X-measurable (or measurable if X is clear from context) if they belong to X.
A probability measure on X is a countably additive function P : X → [0, 1] with P (∅) = 0
and P (X) = 1. (P being countably additive means P

(⋃
i Xi
)

=
∑
i P (Xi) for any sequence

X0,X1,X2, . . . of disjoint measurable sets.) A measurable space equipped with a probability
measure is called a probability space. If Ξ is a probability space (X,X, P ), we also write
PrX∼Ξ(X ∈ X ) = P (X ) or even omit the subscript X ∼ Ξ, if the underlying probability
space is clear from context.

Let (X,X) and (Y,Y) be measurable spaces. A mapping ϕ : X → Y is called (X,Y)-
measurable (or simply measurable if the involved σ-algebras are clear from context) if the
preimage under ϕ of every Y-measurable set is X-measurable. That is, if

ϕ−1(Y ′) = {X ∈ X : ϕ(X) ∈ Y ′} ∈ X for all Y ′ ∈ Y.

I Fact 2 (cf. [43, Lemmas 1.4, 1.7 & 1.10]). Let (X,X), (Y,Y), (Z,Z) be measurable spaces.
Let G generate Y. If ϕ : X→ Y satisfies ϕ−1(G) ∈ X for all G ∈ G, then ϕ is measurable.
If ϕ : X→ Y and ψ : Y→ Z are measurable, then ψ ◦ ϕ : X→ Z is (X,Z)-measurable.
If Y is a metric space and (ϕn)n≥0 is a sequence of measurable functions ϕn : X → Y
with limn→∞ ϕn = ϕ, then ϕ is measurable as well.

If (X,TX) is a topological space, the Borel σ-algebra BorX on X is the σ-algebra generated
by TX. Sets in the Borel σ-algebra are also called Borel.

I Fact 3 (cf. [43, Lemma 1.5]). Any continuous function between the topological spaces
(X,TX) and (Y,TY) is (BorX,BorY)-measurable .

Two measurable spaces (X,X) and (Y,Y) are called isomorphic if there exists a bijection
ϕ : X → Y such that both ϕ and ϕ−1 are measurable. The mapping ϕ is then called an
isomorphism between the measurable spaces. If X = BorX and Y = BorY, then ϕ is called
a Borel isomorphism and the measurable spaces are called Borel isomorphic. Measurable
spaces that are isomorphic to some Polish space with its Borel σ-algebra are called standard
Borel spaces.

If Xi is a σ-algebra on Xi for all i ∈ I, the product σ-algebra
⊗

i∈I Xi of (Xi)i∈I is the
σ-algebra on

∏
i∈I Xi that is generated by the sets {π−1

j (X ) : X ∈ Xj}j∈I where πj is the
canonical projection map πj :

∏
i∈I Xi → Xj .
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I Fact 4 (cf. [43, Lemma 1.2]). Let (Xi)i∈I be a countable sequence of Polish spaces and
let Bori be the Borel σ-algebra of Xi. Then X =

∏
i∈I Xi is Polish and BorX =

⊗
i∈I Bori.

That is, countable products of standard Borel spaces are standard Borel.

2.3 (Finite) Point Processes
Point processes are a well-known concept in probability theory that is used to model
distributions of a discrete (but unknown or even infinite) number of points in some abstract
“state space”, say the Euclidean space Rn [18]. They are used to model a variety of both
practical and theoretical problems and appear in a broad field of applications such as, for
example, particle physics, ecology, geostatistics, astronomy and tracking [53, 18, 6, 50, 23].
A concrete collection of points that is obtained by a draw from such a distribution model
is called a realization of the point process. If all realizations are finite, we speak of a finite
point process [18]. We proceed to construct a finite point process over a Polish state space,
following the classic constructions of [53, 49]. While modern point process theory is much
more evolved by casting point processes in the more general framework of random measures
[19], the seminal model of [53, 49] suffices for our studies due to our restriction to finite point
processes.

Let (X,X) be a standard Borel space. Then for every n, the product measurable space
(Xn,X⊗n) with X⊗n := X ⊗ · · · ⊗ X (n times) is standard Borel as well (Fact 4). Letting
∼n denote the equivalence relation on Xn with (x1, . . . , xn) ∼n (y1, . . . , yn) if there exists a
permutation π of {1, . . . , n} with (y1, . . . , yn) = (xπ(1), . . . , xπ(n)), then elements of Xn/ ∼n
are basically unordered collections of n (not necessarily different) points, that is, bags (or
multisets). Formally, we identify Xn/ ∼n with the space (( X

n )) of all n-element bags from X.
The space of all possible realizations is then naturally defined as(( X

<ω

))
=
⋃
n∈N

(( X
n )) =

⋃
n∈N

Xn/ ∼n .

This is the canonical sample space for a finite point process [18, 53], but we need to define a
σ-algebra on this space. The original construction of [53] considers the symmetrization trans-
formation sym from X<ω to

(( X
<ω

))
where sym(x1, . . . , xn) = [(x1, . . . , xn)]∼n = {{x1, . . . , xn}}

and sym(X ) = {sym(x̄) : x̄ ∈ X} and defines the σ-algebra on X to be the set of all subsets of(( X
<ω

))
whose preimage under sym is measurable with respect to the σ-algebra on X<ω that

is generated using (X⊗n)n∈N (pursuing the idea to lift probability measures from well-known
product spaces to the new, in terms of measure theory inconvenient “bag-space” – note that
the construction above indeed yields a σ-algebra on

(( X
<ω

))
, see [43, Lemma 1.3]). An equiva-

lent, but technically more convenient construction (see [49]) is motivated by an interpretation
of point processes as “random counting measures” [53, 49, 19]: for X ∈ X and n ∈ N, the
set C(X , n) ⊆

(( X
<ω

))
is the set of bags C over X with #C(X ) :=

∑
X∈X #C(X) = n (that is,

with exactly n “hits” in X ) is called the counting event of X and n. We define CX to be the
σ-algebra that is generated by the family of counting events C(X , n) where X is Borel in X
and n is a nonnegative integer. The family CX is known as the counting σ-algebra on

(( X
<ω

))
.

It can be shown that the σ-algebra generated by the counting events is the same as the
σ-algebra defined from product σ-algebras and the symmetrization operation (see [53, 49]).

I Definition 5 (cf. [49, Def. 1]). Let (X,X) be a standard Borel space and let P be a probability
measure on

((( X
<ω

))
,CX

)
. Then

((( X
<ω

))
,CX, P

)
is called a finite point process with state

space (X,X).
A finite point process (Y,Y, P ) with state space (X,X) is called simple, if any realization

is almost surely a set, i. e. if Pr
(
#Y

(
{X}

)
∈ {0, 1} for all X ∈ X

)
= 1.
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3 Probabilistic Databases

In [38], we introduced a general notion of infinite probabilistic databases as probability spaces
of database instances, that is, probability spaces (D,D, P ), where D ⊆ DS for some database
schema S. Here D may be infinite, even uncountable. In fact, in [38] we only considered
instances that are sets rather than bags, but this does not make much of a difference here.
We left it open, however, how to construct such probability spaces, and in particular how to
define a suitable measurable spaces (D,D), which is nontrivial for uncountable D. In this
section, we provide a general construction for constructing such measurable spaces.

3.1 Probabilistic Databases as Finite Point Processes
Throughout this paper, we only consider database schemas S where for every attribute A
the domain domS(A) is a Polish space. This is no real restriction; all domains one might
typically find, such as the sets of integers, reals, or strings over a finite or even countable
alphabet have this property.

In the following, we fix a database schema S = (A,R). It follows from Fact 4 that
not only the domains domS(A) of the attributes A ∈ A, but also the spaces domS(R) and
factsS(R) for all R ∈ R are Polish. We equip all of these spaces with their respective Borel
σ-algebras and note that domS(R) and factsS(R) are Borel-isomorphic from the point of view
of measurable spaces. Thus, they can be used interchangeably when discussing measurability
issues with respect to a single relation. For the set factsS(R) of facts using relation symbol
R ∈ R, let FS(R) denote its (Borel) σ-algebra. We equip factsS(R), the set of all facts of
schema S with the σ-algebra

FS(R) = {F ⊆ factsS(R) : F ∩ factsS(R) ∈ FS(R) for all R ∈ R}.

Note that this is indeed a σ-algebra and, moreover, turns (factsS(R),FS(R)) into a standard
Borel space (cf. [30, p. 39] and [29, p. 166]).

Now a probabilistic database of schema S is supposed to be a probability space (D,D, P )
where D ⊆ DS . Without loss of generality we may assume that actually D = DS =

((
factsS(R)

<ω

))
,

because we can adjust the probability measure to be 0 on instances we are not interested in.
Thus a probabilistic database is a probability space over finite sets of facts. This is exactly
what a finite point process over the state space consisting of facts is. We still need to define
the σ-algebra D, but the theory of point processes gives us a generic way of doing this: we
let DS = CfactsS(R) be the counting σ-algebra of DS (cf. Section 2.3).

I Definition 6. A standard probabilistic database of schema S is a probability space
(DS ,DS , P ).

That is, a standard probabilistic database of schema S is a finite point process over the
state space (factsS(R),FS).

The reason we speak of “standard” PDBs in the definition is to distinguish them from
the more general PDBs introduced in [38, Definition 3.1]. In [38], we left the σ-algebra
unspecified and only required the (mild) property, that the occurrence of measurable sets of
facts is themselves measurable. This requirement corresponds to a set version of the counting
events defined above and is thus given by default in a standard probabilistic database.

Even though the construction of counting σ-algebras for point processes is nontrivial, we
are convinced that it is a natural generic construction of σ-algebras over spaces of finite (or
countable) sets and the extensive usage of these constructions throughout mathematics for
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more than fifty years now indicates their suitability for such tasks. Throughout this paper,
all probabilistic databases are standard. Therefore, we omit the qualifier “standard” in the
following and just speak of probabilistic databases (PDBs).

We defined instances of PDBs to be bags of facts. However, if a PDB, that is, a finite point
process is simple (see Section 2.3), then it may be interpreted as a PDB with set-instances.

I Example 7. Every finite probabilistic database (as introduced, for example, in [63]) can
be viewed as a standard PDB: Let D̃ be a finite set of set-valued database instances over
some schema S = (A,R) and let P̃ : D̃ → [0, 1] a probability measure on D̃ (equipped
with the power set as its σ-algebra). Then (D̃, P̃ ) corresponds to the simple finite point
process (D,D, P ) on the instance measurable space of S with state space (factsS(R),FS(R))
where P (D) = P̃ (D ∩ D̃) (interpreting D̃ with a (finite) collection of bags with {0, 1}-valued
multiplicities).

3.2 The Possible Worlds Semantics of Queries and Views
In the traditional database setting, views are mappings from database instances of an input
schema (or source schema) S = (A,R) to database instances of some output schema (or
target schema) S ′ = (A′,R′). Views, whose output schema S ′ consists of a single relational
symbol only are called queries. Queries and views are usually given by syntactic expressions
in some query language. As it is common, we will blur the distinction between a query (or
view) and its syntactic representation.

Let ∆ = (DS ,DS , P ) be a probabilistic database of schema S = (A,R) and let V be a
view of input schema S and output schema S ′ = (A′,R′). The image of a set D ⊆ D of
instances is V (D) = {V (D) : D ∈ D} ⊆ DS′ .

Now we would like to define a probability measure on the output space (DS′ ,DS′) by

P ′(D′) := P
(
V −1(D′)

)
= P

(
{D ∈ D : V (D) ∈ D′}

)
(1)

for all D′ ∈ DS′ . Then V would map ∆ to ∆′ := (DS′ ,DS′ , P ′). This semantics of views over
PDBs is known as the possible worlds semantics of probabilistic databases [36, 3, 63, 65].

However, P ′ (as defined in (1)) is only well-defined if for all D′ ∈ DS′ the set V −1(D′) is
in DS , that is, if V is a measurable mapping from (DS ,DS) to (DS′ ,DS′).

Measurability is not just a formality, but an issues that requires attention. The following
example shows that there are relatively simple “queries” that are not measurable.

I Example 8. Let S = S ′ be the schema consisting of a singe unary relation symbol R with
attribute domian R (equipped with the Borel σ-algebra), and let B be some Borel set in R2.

We define a mapping QB : DS → DS , our “query”, by

QB(D) :=
{
D if D is a singleton {{R(x)}} and there exists y ∈ R s. t. (x, y) ∈ B,
∅ otherwise.

Observe that Q−1
B (DS) = {{{R(x)}} : x ∈ proj1(B)}, where proj1(B) = {x ∈ R : there is y ∈

R s. t. (x, y) ∈ B}. It is a well known fact that there are Borel sets B ⊆ R2 such that the
projection proj1(B) is not a Borel set in R (see [62, Theorem 4.1.5]). For such sets B, the
query QB is not measurable.

The rest of this paper is devoted to proving that queries and views expressed in standard
query languages, specifically relational algebra, possibly extended by aggregation, and Datalog
queries, are measurable mappings and thus have a well-defined open-world semantics over
probabilistic databases.
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It will be sufficient to focus on queries, because views can be composed from queries
and the measurability results can be lifted (as we formally show in the next subsection).
Throughout the rest of the paper, we adopt the following notational conventions: queries are
denoted by Q and map a PDB ∆ = (D,D, P ) to a PDB ∆′ = (D′,D′, P ′) such that ∆ is of
schema S and ∆′ is of schema S ′.
I Observation 9. The task of establishing measurability of queries in our framework is
simplified by the following.
1. If we want to demonstrate the measurability of Q, it suffices to show that Q−1(D′) ∈ D

for all counting events D′ = C′(F, n) of (D′,D′). This is due to Fact 2 because they
generate D′.

2. Since compositions of measurable mappings are measurable (again from Fact 2), composite
queries are immediately measurable if all their components are measurable queries to
begin with. In particular, we can demonstrate the measurability of general queries of
some query language by structural induction.

I Remark 10. Let us again mention something related to the well-established knowledge on
point processes. The mappings (queries) we investigate map between point processes that are
defined on different measure spaces that are themselves a conglomerate of simpler measure
spaces of different shape. It is well-known that measurable transformations of the state space
of a point process define a new point process on the transformed state space (a strengthening
of this result is commonly referred to as the “mapping theorem” [48]). Our queries however
are in general already defined on point configurations and not on the state space of facts.
Thus, their measurability can in general not be obtained by the idea just sketched.

3.3 Assembling Views from Queries
We think of views as finite sets of queries, including one for every relation of the output
schema. Suppose V = {Q1, . . . , Qk} is a view consisting of measurable queries Q1, . . . , Qk
where the names of the target relations of the Qi are mutually distinct. The target schema
S ′ of V is given by the union of the target schemas of V s individual queries. Now every fact
f ∈ factsS′(R′) of the new schema originates from the target schema of exactly one of the
queries Q1, . . . , Qk. We refer to that query as Qf . Then for all D ∈ D and f ∈ factsS′(R′),
we define #V (D)(f) := #Qf (D)(f). Now if F ⊆ factsS′(R′), let Fi := F ∩ factsS′

i
(R′i) where

S ′i = (A′i,R′i) is the target schema of Qi. Then

#V (D)(F ) = n ⇔ there are n1, . . . , nk with
∑k
i=1 ni = n such that #Qi(D)(Fi) = ni.

Since the Fi are measurable if and only if F is measurable, the above describes a countable
union of measurable sets. Thus, V is measurable.

4 Relational Algebra

As motivated in Section 3.2, we now investigate the measurability of relational algebra queries
in our model. The concrete relational algebra for bags that we use here is basically the
(unnested version of the) algebra that was introduced in [21] and investigated respectively
extended and surveyed in [5, 40, 39]. It is called BALG1 (with superscript 1) in [40]. We
do not introduce nesting as it would yield yet another layer of abstraction and complexity
to the spaces we investigate, although by the properties that such spaces exhibit, we have
strong reason to believe that there is no technical obstruction in allowing spaces of finite
bags as attribute domains.
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The operations we consider are shown in the Table 1 below. As seen in [5, 40, 39], there
is some redundancy within this set of operations that will be addressed later. A particular
motivation for choosing this particular algebra is that possible worlds semantics are usually
built on top of set semantics and these operations naturally extend the common behavior of
relation algebra queries to bags. This is quite similar to the original motivation of [21] and
[5] regarding their choice of operations.

Table 1 BALG1-operators considered in this paper.

Base Queries Constructors Q = {{}} and Q = {{R(a)}}
Extractors Q = R

Renaming Q = %A→B(R)

Basic Bag Operations Additive Union Q = R1 ]R2

Difference Q = R1 −R2

Max-Union Q = R1 ∪R2

(Min-)Intersection Q = R1 ∩R2

Deduplication Q = δ(R)

SPJ-Operations Selection Q = σ(A1,...,Ak)∈B(R)
Projection Q = π(A1,...,Ak)(R)
Cross Product Q = R1 ×R2

The main result we establish in this section is the following theorem:

I Theorem 11. All queries expressible in the bag algebra BALG1 are measurable.

Since compositions of measurable mappings are measurable, the measurability of the operators
from Table 1 directly entails the measurability of compound queries by structural induction.

First note that the measurability of the base queries is easy to prove.

I Lemma 12. The queries {{}}, {{R(a)}} and R are measurable.

Proof. First consider Q = {{}} and fix some D′ ∈ D′. If {{}} ∈ D′, then Q−1(D′) = D ∈ D.
Otherwise, Q−1(D′) = ∅ ∈ D. Thus, Q is measurable. The same argument applies to
Q = {{R(a)}}.

Now consider the query Q = R and let C′(F, n) be a counting event in the output
measurable space. Then for every instance D ∈ D, #Q(D)(F ) = n if and only if #D(F ) = n

Thus, Q−1(C′(F, n)) is the counting event C(F, n) in (D,D). Hence, Q is measurable. J

4.1 Basic Bag Operations
We will obtain the measurability of the basic bag operations ], −, ∩, ∪, δ as a consequence
of the following, more general result that gives some additional insight into properties that
make queries measurable.

Consider a query Q of input schema S and output schema S ′ operating on relations R1
and R2 of S. Let R′ be the single (output) relation of S ′.

I Lemma 13. Suppose that given Q there exist functions q1 : factsS′(R′)→ factsS(R1) and
q2 : factsS′(R′)→ factsS(R2) with the following properties:
1. for all n ∈ N there exists a set M(n) ⊆ N2 with (0, 0) /∈M(n) for n > 0 such that for all

D ∈ D and all f ∈ factsS′(R′) it holds that

#Q(D)(f) = n if and only if
(
#D(q1(f)),#D(q2(f))

)
∈M(n);
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2. both q1 and q2 are injective and continuous;
3. the images of F under q1 and q2 are measurable: q1(F ) ∈ FS(R1) and q2(F ) ∈ FS(R2).
Then Q is measurable.

Let us briefly mention the impact of the various preconditions of the lemma before turning
to its proof. The existence of the functions q1 and q2 ensures that preimages of counting
events C′(F, n) under the query Q can be approximated by using the fact that our state
spaces are Polish. They “decompose” the set F of facts into disjoint (and measurable!) sets
of facts for the preimage in a continuous, invertible way that exactly captures how tuples in
the preimage relate to tuples in the image.

Proof (Lemma 13). Assume that q1 and q2 exist with properties 1 to 3. We fix F ∈ FS′(R′)
and n ∈ N+ and show that Q−1(C′(F, n)) is in D. Let F0 be a countable, dense set in
factsS′(R′). We claim that #Q(D)(F ) = n if and only if

there exist ` ∈ N+ and n1, . . . , n` ∈ N with
∑`
i=1 ni = n and

there exist (ni,1, ni,2) ∈M(ni) and k0 ∈ N+ and
there exist Cauchy sequences (fk1 )k∈N, . . . , (fk` )k∈N in F0 with

B1/k0(fki ) ∩B1/k0(fk
′

i′ ) = ∅ for all k, k′ and i 6= i′ such that for all k > k0

#D(q1(F ) ∩B1/k(q1(fki ))) = ni,1 and #D(q2(F ) ∩B1/k(q2(fki ))) = ni,2

for 1 ≤ i ≤ ` and

#D(q1(F ) \
⋃`
i=1B1/k(q1(fki ))) = 0 and #D(q2(F ) \

⋃`
i=1B1/k(q2(fki ))) = 0.

(∗)

Note that (∗) is a countable combination of counting events in (D,D) (using condition 3,
in particular). Thus, to show the measurability of Q it suffices to show the equivalence of
#Q(D)(F ) = n and (∗).

factsS′(R′)

F

f
fk

f ′

q1(F )

factsS(R1)

q2(F )

factsS(R2)

q1
q2

Figure 1 Example illustration of (∗) for two facts f and f ′. Both these facts are approximated
by Cauchy sequences that under q1 and q2 also approximate their images.

Assume #Q(D)(F ) = n. Let f1, . . . , f` be the facts from F with the property that
#D(q1(f)) > 0 or #D(q2(f)) > 0.

Let ni := #Q(D)(fi). From condition 1 we know that (#D(q1(fi)),#D(q2(fi))) ∈M(ni)
as well as

∑`
i=1 ni = n. Let (fk1 ), . . . , (fk` ) be Cauchy sequences from F0 that converge

to f1, . . . , f`. Since ` is finite, the balls around fki and fki′ do not intersect for sufficiently
large k as well as the balls around their images under q1 respectively q2 (since both of
them are injective and continuous). Thus, #D(q1(F ) ∩ B1/k(q1(fki ))) = #D(q1(fi)) and
#D(q2(F ) ∩B1/k(q2(fki ))) = #D(q2(fi)) for sufficiently large k. Therefore, D satisfies (∗).

Now for the other direction, suppose D satisfies (∗). As the fki are Cauchy sequences,
the spaces factsS′(Rj) are Polish and hence complete, and the qj are continuous there exists
(for every 1 ≤ i ≤ `) some fi ∈ F such that fki → fi, q1(fki )→ q1(fi) and q2(fki )→ q2(fi) as
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k →∞ and (#D(q1(fi)),#D(q2(fi))) = (ni,1, ni,2) ∈M(ni). By condition 1, Q(D) contains
fi with multiplicity ni and as

∑`
i=1 ni = n (and since D had no other facts with positive

multiplicity than the above), it follows that #Q(D)(F ) = n. J

Note that the result above easily generalizes to queries that depend on an arbitrary
number of relations of the input probabilistic database. Lemma 13 provides a criterion
to establish the measurability of queries. Checking its precondition for bag operations we
consider turns out to be quite easy and yields the following lemma.

I Lemma 14. The following queries are measurable:
1. (Additive Union) Q = R1 ]R2 with R1, R2 ∈ R of equal type.
2. (Difference) Q = R1 −R2 with R1, R2 ∈ R of equal type.
3. ((Min-)Intersection) Q = R1 ∩R2 with R1, R2 ∈ R of equal type.
4. (Max-Union) Q = R1 ∪R2 with R1, R2 ∈ R of equal type.
5. (Deduplication) Q = δ(R) with R ∈ R.

Proof. As ∪ and ∩ are expressible via ] and − (cf. [5]), we only show Statements 1, 2 and 5.

1. Define q1 and q2 by qi(R(x)) = Ri(x). Then qi, i ∈ {1, 2} is injective and contin-
uous and qi(F ) = Fi ∈ FS(Ri). Now let k ∈ N and let M(k) ⊆ N2 be the set of
pairs (k1, k2) with the property that k1 + k2 = k. Then #Q(D)(f) = k if and only if(
#D

(
q1(f)

)
,#D

(
q2(f)

))
∈M(k). Together, by Lemma 13, Q is measurable.

2. This works exactly like in the case of ] with M(k) being the set of pairs (k1, k2) with
max(k1 − k2, 0) = k.

5. In this case, we only use a single function q that maps R′(x) to R(x). Again, q is obviously
both continuous and injective and q(F ) ∈ FS(R) for every measurable F . If k = 1, we let
M(k) = N \ {0} and M(k) = {0} otherwise. Then clearly #Q(D)(R(x)) = k if and only if
#D(q(R(x)) ∈M(k) and again, Q is measurable by Lemma 13. J

4.2 Selection, Projection and Join
In this section, we investigate selection and projection as well as the cross product of two
relations. We start with the following helpful lemma that allows us to restructure our
relations into a more convenient shape to work with. Semantically, it might be seen as a
special case of a projection query.

I Lemma 15. Reordering attributes within the type of a relation yields a measurable query.

Proof. Recall that any permutation can be expressed as a composition of transpositions.
Thus, we only consider the case where two attributes, say A and B, switch places within
the type of some relation R ∈ R. Let q be the function that maps factsS(R) to factsS′(R′)
by swapping the entries for attribute A and B. Obviously, under q, the preimage of a
measurable rectangle in FS′(R) is a measurable rectangle itself. As #Q(D)(F ) = n if and
only if #D(q−1(F )) = n, Q is measurable. J

I Lemma 16. The query Q = σ(A1,...,Ak)∈B(R) is measurable for all R ∈ R, all pairwise
distinct attributes A1, . . . , Ak ∈ typeS(R) and all Borel subsets B of

∏k
i=1 domS(Ai).

Proof. Fix some F ∈ FS′(R′) and n ∈ N. By Lemma 15, we may assume that typeS(R) =
(A1, . . . , Am) where m ≥ k. Let FB := {R} × B × domS(Ak+1) × · · · × domS(Am). Note
that FB ∈ FS(R). (This is a consequence of Fact 4.) As #Q(D)(F ) = n if and only if
n = #Q(D)(F ∩ FB) = #D(F ∩ FB), Q is measurable. J
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I Example 17. Assume that domS(A) = domS(B) = R and both A and B appear in the
type of R ∈ R. It is well-known (and can be shown by standard arguments) that the
sets B= := {(x, y) ∈ R2 : x = y} and B< := {(x, y) ∈ R2 : x < y} are Borel in R2. Thus
σA=B(R) := σ(A,B)∈B=(R) and σA<B(R) := σ(A,B)∈B<

(R) are measurable by Lemma 16.

I Lemma 18. . The query Q = πA1,...,Ak
(R) is measurable for all R ∈ R and all mutual

distinct A1, . . . , Ak ∈ typeS(R).

Proof. Again, fix some F ∈ FS′(R′) and n ∈ N. Note that F is of the shape {R′} × B
where B is Borel in domS′(R′) =

∏k
i=1 domS(Ak). By Lemma 15, we may again assume that

typeS(R) = (A1, . . . , Am) with m ≥ k. Define FB exactly like in the proof of Lemma 16:
FB := {R} × B × domS(Ak+1) × · · · × domS(Am). Again, FB ∈ FS(R). Now, we have
#Q(D)(F ) = n if and only if #D(FB) = n and hence, Q is measurable. J

I Lemma 19. The query Q = R1 ×R2 is measurable for all R1, R2 ∈ R.

First we note that this turns out to be more involved than it seems on first sight. The
straight-forward approach would be to take a counting event C(F, n) in the output measurable
space and to decompose F into its “left and right parts” F1 ⊆ factsS(R1) and F2 ⊆ factsS(R2)
such that the instances from the preimage of the query are exactly those with #D(F1) = n1
and #D(F2) = n2 such that n1 · n2 = n, similar to the setting of Lemma 13. This approach
does not settle the case since the sets F1 and F2 need not be measurable in general (see [62,
Theorem 4.1.5]; we used the same argument in Example 8) which in particular violates the
second precondition of Lemma 13.

Proof Sketch. Using renaming, we may assume that the types of R1 and R2 are disjoint in
terms of attribute names. Consider F ∈ FS′(R′) and n ∈ N. If F is a measurable rectangle
F = F1×F2, it is easy to see that the naïve approach sketched above works via #Q(D)(F ) = n

if and only if #D(F1) ·#D(F2) = n.
In the general case of F being an arbitrary Borel set, we consider the k-coarse preimage

of C′(F, n) first. These are the database instances from D whose minimal inter-tuple distance
is at least 1

k for some fixed Polish metrics. One can show that these k-coarse preimages of
the query are measurable for all F, n and k. As the union of these preimages over all positive
integers k is exactly the preimage of C′(F, n), Q is measurable. The details of this proof can
be found in the full version of the paper [37]. J

Altogether, within the last three sections, we have established the measurability of all the
(bag) relational algebra operators from Table 1 and thus have proven Theorem 11. Of course
any additional operator that is expressible by a combination of operations from Table 1
is immediately measurable as well, including for example natural joins Q = R1 1 R2 or
selections where the selection predicate is a Boolean combinations of predicates of the shape
(A1, . . . , Ak) ∈ B.

5 Aggregate Queries

In this section, we study various kinds of aggregate operators. Let U and V be standard Borel
spaces. An aggregate operator (or aggregator) from U to V is a mapping Φ that sends bags
of elements of U to elements of V : Φ:

((
U
<ω

))
→ V . Every such aggregator Φ gives rise to a

query Q = $Φ(R) defined by Q(D) := {{R′(v)}} for v := Φ({{u : R(u) ∈ D}}). (The notation
we use for aggregation queries is loosely based on that of [28].) Observe that for every instance
D, #Q(D)

(
R′(v)

)
= 1 if and only if Φ({{u : R(u) ∈ D}}) = v (and 0 otherwise). It is easy to
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see that Q = $Φ(R) is a measurable query whenever Φ is measurable w. r. t. the counting
σ-algebra on

((
U
<ω

))
: we have #Q(D)(F ) = 1 if and only if D ∈ {R} × Φ−1({v : R′(v) ∈ F})

(and #Q(D)(F ) = 0 otherwise).

I Example 20. The following are the most common aggregate operators:
(Count) CNT({{a1, . . . , an}}) = n and CNTd({{a1, . . . , an}}) = |{a1, . . . , an}|.
(Sum) SUM({{a1, . . . , an}}) = a1 + · · ·+ an where ai are (for instance) real numbers.
(Minimum/Maximum) MIN({{a1, . . . , an}}) = min{a1, . . . , an} and MAX({{a1, . . . , an}}) =
max{a1, . . . , an} for ordered domains.
(Average) AVG({{a1, . . . , an}}) = 1

n

(
a1+· · ·+an

)
where the ai might again be real numbers.

Note that $CNT and $CNTd are trivially measurable within our framework by the usage of
the counting σ-algebra (and the measurability of deduplication for CNTd).

I Lemma 21. For all m ∈ N, let ϕm : Um → V be a symmetric function, i. e., ϕm(u) =
ϕm(u′) for all u ∈ Um and all permutations u′ of u. If ϕm is measurable for all m, then
Φ:
((

U
<ω

))
→ V defined via Φ({{u1, . . . , um}}) := ϕm(u1, . . . , um) is measurable w. r. t. the

counting σ-algebra on
((

U
<ω

))
.

Proof. It suffices to show that the restriction Φm of Φ to (( Um )) is measurable for all m ∈ N.
If V is Borel in V , then ϕ−1

m (V) is Borel in Um as ϕm is measurable. Moreover, since ϕm is
symmetric, ϕ−1

m (V) is a symmetric set (i. e. if ū ∈ ϕ−1
m (V), then every permutation of u is in

ϕ−1
m (V) as well). But then Φ−1

m (V) is measurable since there is a one-to-one correspondence
between the measurable sets of (( Um )) and the symmetric Borel sets of Um [49, Theorem1]. J

As an example application of this lemma we note that all the mappings Φ that were
introduced in Example 20 are measurable – the related mappings ϕm of Lemma 21 are all
continuous and thus measurable in all of the cases.

A concept closely tied to aggregation is grouping. Suppose we want to group a relation R
by its attributes A1, . . . , Ak and perform the aggregation only over the values of attribute
A, and separately for every distinct (A1, . . . , Ak)-entry in R. Without loss of generality, we
assume that the type of R is A1× · · ·×Ak×A. We define a query Q = $A1,...,Ak,Φ(A)(R) by

Q(D) = {{R′(ū, v) : R(ū) ∈ πA1,...,Ak
(R(D)) and v = Φ({{u : R(ū, u) ∈ D}})}}.

I Lemma 22. Let typeS(R) = A1 × · · · × Ak × A and U = domS(A). If Φ:
((

U
<ω

))
→ V is

measurable (with U and V standard Borel), then $A1,...,Ak,Φ(A)(R) is a measurable query.

Proof. Let Q = $A1,...,Ak,Φ(A)(R) and Ā = (A1, . . . , Ak). Observe that for every tuple
x1, . . . , xn, ε with xi ∈

∏k
j=1 domS(Aj) and ε > 0, the following query is a composition of

measurable queries and thus measurable itself:

Q̃(x1,...,xn,ε) =
⋃n
i=1 πĀ

(
σĀ∈Bε(xi)(R)

)
×$Φ

(
πA
(
σĀ∈Bε(xi)(R)

))
.

We have #Q(D)(F ) = n if and only if there exist pairwise distinct f1, . . . , fn ∈ F such that
Q(D) has 1 hit in each of the fi and nowhere else in F . Having D fixed, every fi determines
the value of the (A1, . . . , Ak)-part of an R-fact in D. Call this tuple yi. We can fix a
countable sequence of (n+ 1)-tuples (x1, . . . , xn, ε) such that (1) all xi are from a countable
dense set in

∏k
j=1 domS(Aj), (2) d(xi, yi) < ε for some fixed Polish metric, and, (3) ε→ 0.

Then Q is the (pointwise) limit of the Q̃(x1,...,xn,ε) and, as such, Q is measurable. J

As noted before, the aggregates of Example 20 easily satisfy the precondition of Lemma 22.

I Corollary 23. The query $A1,...,Ak,Φ(R) with A1, . . . , Ak ∈ typeS(R) is measurable for all
aggregates Φ ∈ {CNT,CNTd, SUM,MIN,MAX,AVG}.
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6 Datalog Queries

In this section, we want to show that our measurability results extend to Datalog queries
and in fact all types of queries with operators based on countable iterative (or inductive,
inflationary, fixed-point) processes. We will not introduce Datalog or any of the related query
languages. The details in the definitions do not matter when it comes to measurability of the
queries. Here, we only consider set PDBs and queries with a set (rather than bag) semantics.
The key observation is the following lemma.

I Lemma 24. Let Qi, for i ∈ N+, be a countable family of measurable queries of the same
schema such that Q =

⋃
i≥1Qi, defined by Q(D) :=

⋃
i≥0Qi(D) for every instance D, is a

well-defined query (that is, Q(D) is finite for every D). Then Q is measurable.

Proof. For every n ∈ N+, let Q(n) :=
⋃n
i=1Qi. As a finite union of measurable queries, Q(n)

is measurable. Since Q = limn→∞Q(n), the measurability of Q follows. J

As every Datalog query can be written as a countable union of conjunctive queries, we
obtain the following corollary.

I Corollary 25. Every Datalog query is measurable.

The same is true for queries in languages like inflationary Datalog or least fixed-point
logic. For partial Datalog / fixed-point logic, we cannot directly use Lemma 24, but a slightly
more complicated argument still based on countable limits works there as well.

7 Beyond Possible Worlds Semantics

In the literature on probabilistic databases, and motivated by real world application scenarios,
also other kinds of queries have been investigated that have no intuitive description in the
possible worlds semantics framework. A range of such queries is surveyed in [3, 67]. The
reason for the poor integration into possible worlds semantics is because such queries lack a
sensible interpretation on single instances that could be lifted to PDB events. Instead, they
directly refer to the probability space of all instances.

Notable examples of such queries (cf. [47, 3, 67]) are:
probabilistic threshold queries that intuitively return a deterministic table containing only
those facts which have a marginal probability over some specified threshold;
probabilistic top-k-queries that intuitively return a deterministic table containing the k
most probable facts;
probabilistic skyline queries [55] that consider how different instances compare to each
other with respect to some notion of dominance; and
conditioning [47] the probabilistic database to some event.

Note that the way we informally explained the first two queries above is only sensible if the
space of facts is discrete. In a continuous setting, we interpret these queries with respect to
a suitable countable partition of the fact space into measurable sets.

Let ∆∆S denote the class of probabilistic databases of schema S. Note that all PDBs in
∆∆S have the same instance measurable space (D,D). Queries and, more generally, views of
input schema S and output schema S ′ are now mappings V : ∆∆S → ∆∆S′ .

We classify views in the following way:

ICDT 2020



16:16 Infinite Probabilistic Databases

I Definition 26. Let V : ∆∆S → ∆∆S′ with V : ∆ = (D,D, P ) 7→ (D′,D′, P ′) = ∆′.
1. Every view V is of type I.
2. The view V is of type II (or, pointwise local) if for every ∆ ∈ ∆∆S there exists a measurable

mapping q∆ : D→ D such that P ′(D′) = P (q−1
∆ (D′)) for every D′ ∈ D.

3. The view V is of type III (or, uniformly local) if there exists a measurable mapping
q : D→ D such that P ′(D′) = P (q−1(D′)) for every D′ ∈ D′.

Letting VI, VII and VIII denote the classes of type I, type II and type III views (from ∆∆S to
∆∆S′). Then VIII captures the possible worlds semantics of views. Obviously, VIII ⊆ VII ⊆ VI.
The following examples show that these inclusions are strict.

I Example 27. Consider the query Q = Qα(D) = {f ∈ factsS(R) : P (C(f,> 0)) ≥ α} = q∆
for some α > 0. Note that the set of facts of marginal probability at least α is finite in every
PDB [38], hence the query is well-defined. This query is of type II. However, considering the
simple PDBs ∆1 and ∆2 and two distinct facts f and f ′ such that

the only possible world of positive probability in ∆1 is {{f}} with P∆1({{f}}) = 1;
similarly, ∆2 has the worlds {{f}} and {{f ′}} with P∆2({{f}}) = P∆2({{f ′}}) = 1

2 .
Suppose q exists like in the Definition 26, part 3 and consider the event D′ that f ′ occurs
(this is a set of instances in the target measurable space of Qα). Then P∆1(q−1(D′)) = 0
entails {{f}} /∈ q−1(D′). On the other hand P∆2(q−1(D′)) = 1 and thus {{f}}, {{f ′}} ∈ q−1(D′),
a contradiction. Thus, Q is type II, but not type III.

I Example 28. Fix some PDB ∆ with three possible worlds D1, D2 and D3 with probabilities
p1 = 1

6 , p2 = 1
3 and p3 = 1

2 . Now consider the query Q that conditions ∆ on the event
{D1, D2} and pick the database instance D = D1. Then P (D ∩ {D1, D2}) = P ({D1}) = 1

6
and P ({D1, D2}) = 1

6 + 1
2 = 4

6 . Thus, P (Q−1(D)) = 1
6/

4
6 = 1

4 , but there is no event D in ∆
with the property that P (D) = 1/4. Thus, Q is type I, but not type II.

8 Conclusions

In this work, we described how to construct suitable probability spaces for infinite probabilistic
databases, completing the picture of [38]. The viability of this model as a general framework
for finite and infinite databases is supported by its compositionality with respect to typical
database queries. Our main technical results establish that standard query languages have a
well-defined open-world semantics.

It might be interesting to explore, whether more in-depth results on point processes have
a natural interpretation when it comes to probabilistic databases. We believe for example
that there is a strong connection between the infinite independence assumptions that were
introduced in [38] and the class of Poisson point processes (cf. [48, p. 52]).

In the last section of the paper, we briefly discussed queries for PDBs that go beyond the
possible worlds semantics. Such queries are very relevant for PDBs and deserve a systematic
treatment in their own right in an infinite setting.
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Abstract
State-of-the-art fault-tolerant and federated data management systems rely on fully-replicated
designs in which all participants have equivalent roles. Consequently, these systems have only limited
scalability and are ill-suited for high-performance data management. As an alternative, we propose
a hierarchical design in which a Byzantine cluster manages data, while an arbitrary number of
learners can reliable learn these updates and use the corresponding data.

To realize our design, we propose the delayed-replication algorithm, an efficient solution to
the Byzantine learner problem that is central to our design. The delayed-replication algorithm is
coordination-free, scalable, and has minimal communication cost for all participants involved. In
doing so, the delayed-broadcast algorithm opens the door to new high-performance fault-tolerant
and federated data management systems. To illustrate this, we show that the delayed-replication
algorithm is not only useful to support specialized learners, but can also be used to reduce the
overall communication cost of permissioned blockchains and to improve their storage scalability.
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1 Introduction

Recently saw the introduction of several blockchain-inspired database systems and blockchain
fabrics [5, 6, 24, 25, 54, 55]. At the same time, there is also a huge interest from public
and private sectors in blockchain technology (e.g., [7, 11, 13, 16, 18, 27, 29, 34, 35, 40, 41,
52, 55, 61, 62, 65, 73]). In each of these systems and use cases, blockchain technology is
used to provide fault-tolerant and federated data management: systems in which independent
participants (e.g., different companies) together manage a single common database and that
continuously provide reliable services even when some of the participants are compromised.
The interest in fault-tolerant and federated data management is easy explained by the huge
societal and economic impact of recent cyberattacks on data-based services [31, 56, 57, 58, 68],
and on the huge negative economic impact of bad data [23, 39, 64].

Blockchain techniques build upon traditional distributed consensus [38, 53]: both tra-
ditional techniques and their blockchain counterparts provide fault-tolerant and federated
data management via a fully-replicated design in which all participants (replicas) main-
tain a full copy of all data and participate in modifying this data. To do so, traditional
consensus – which are also used in permissioned blockchains in which the identities of all
participants are known – requires vast amounts of communication between all participants
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(e.g., [8, 9, 14, 15, 45, 46, 59, 69, 70]). Consequently, systems using traditional consensus
have difficulty scaling up to hundreds of participants. Techniques used in anonymous per-
missionless blockchains such as Bitcoin can effectively support thousands of participants,
however. Unfortunately, these blockchain techniques incur massive computational costs on all
participants, which has raised questions about the sustainability of the energy consumption
of these systems [21, 72]. Even with these computational costs, the performance of Bitcoin is
abysmal, as Bitcoin can only process 7 transactions per second [61].

We see the necessity of fault-tolerant and federated data management but – as outlined
above – we also believe that the current state-of-the-art techniques are too limited and lack
scalability. To combat these limitations, we believe there is a strong need for the development
of more refined scalable designs that provide fault-tolerant and federated data management.

1.1 Our Vision: Specializing for Read-only Workloads
In many practical distributed database and data processing systems, a distinction is made
between read-only workloads and update-workloads [1, 19, 20, 22, 32, 60, 70]. Typically,
read-only workloads are isolated to a single replica, whereas update-workloads are executed
by all replicas (e.g., via a commit protocol [30, 36, 67]). In most cases this improves scalability
significantly, as the majority of workloads are read-only and can be processed in parallel
by individual replicas. Unfortunately, such read-only single-replica optimizations cannot
be applied to state-of-the-art fault-tolerant and federated data management: fault-tolerant
systems need to assure validity of the result of every read-only query in the presence of
malicious replicas. These systems do so by executing every query at all replicas, after which
the issuer of the query can compare the query outcomes and determine which outcome is
valid (supported by a majority).

In many practical situations, workloads need access to the full history of all the data
managed or to large portions thereof. Examples of such workloads are analytics, data
provenance, machine learning, and data visualization. For data-hungry workloads, it makes
little sense to retrieve all data in an inefficient way via read-only queries. Furthermore,
these workloads are typically computational complex, ruling out their integration within
a fault-tolerant system. To enable these practical workloads, we propose an alternative
hierarchical design. This hierarchical design is sketched in Figure 1.

Read-only workloads

Updates
(e.g., write transactions)









ë

Malicious

2Analytics

2Data Provenance

2Machine Learning

2Visualization

Figure 1 Schematic overview of hierarchical fault-tolerant and federated data management. At
the core is a Byzantine cluster that manages and stores all data in a fault-tolerant manner. Some of
the replicas in this core can crash or be malicious. The managed data is used by many independent
read-only participants, e.g., for analytics, data provenance, machine learning, and visualization. To
do so, these participants do not need to partake in managing and storing the data, they only need
to reliably learn the data.

In our design, we propose that a Byzantine cluster of replicas (e.g., a permissioned
blockchain system) manages the data by coordinating data updates. As the cluster is Byzan-
tine fault-tolerant, it can be used to provide fault-tolerant and federated data management.
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Dedicated learners, independent of the Byzantine cluster, can register themselves at the
Byzantine cluster to receive all data updates. These learners will receive the stream of
data updates made in the cluster and will receive these updates in an efficient and reliable
manner. On these learners, data-hungry and compute intensive read-only workloads (e.g.,
analytics, data provenance, machine learning, and data visualization) can be performed
efficiently without affecting the Byzantine cluster. Learners can also be deployed in trusted
environments close to end-users and act as read-only proxies. In this read-only proxy capacity,
learners provide end-users with high performance, low latency, read-only access to the data.
In this hierarchical design, learners cannot directly modify the data, but can still forward
data update requests to the Byzantine cluster. The Byzantine cluster can, in turn, assure
reliable processing of such updates.

1.2 The Need for the Byzantine Learner Problem
To enable the hierarchical design proposed in the previous section, we need to develop
techniques to reliably sent the data updates made by a Byzantine cluster to independent
learners – which we refer to as the Byzantine learner problem. In specific, our contributions
are as follows:
1. We formalize the Byzantine learner problem.
2. We demonstrate that the straightforward pull-based solution to this learning problem is

highly inefficient and enables several attacks.
3. To address the Byzantine learner problem, we propose the delayed-replication algorithm,

a coordination-free, push-based, scalable algorithm with minimal communication cost for
both the sending cluster and the receiving learner.

4. We provide three specialized variants of the delayed-replication algorithm, whose char-
acteristics are summarized in Figure 2. The basic variant does not use checksums and
can deal with clusters in which replicas can crash. We also provide a variant that uses
simple checksums to deal with Byzantine replicas that sent corrupted or otherwise invalid
messages. The final variant uses tree checksums to aid learners in discarding corrupted or
otherwise invalid messages with low computational costs. These tree checksums only add
minimal communication costs for all participants involved.

5. To further underline the strengths of the delayed-replication algorithm, we show that
the delayed-replication algorithm can be used to improve the design of permissioned
blockchain systems and other types of Byzantine clusters. First, we show how delayed-
replication techniques enables scalable shared storage designs for permissioned blockchain
systems, allowing them to turn away from wasteful state-of-the-art fully-replicated designs.
Then, we show how the delayed-replication algorithm can be used within permissioned
blockchain systems to reduce the communication complexity of coordinating data updates.

2 Formalizing the Byzantine Learner Problem

We model a system as a tuple (R,L), in which R is a Byzantine cluster of replicas that make
update decisions and L is a set of learners that want to learn these update decisions. We
assign each replica r ∈ R a unique identifier id(r) with 0 ≤ id(r) < |R|. We write B ⊆ R

to denote the set of Byzantine replicas that can behave in arbitrary, possibly coordinated
and malicious, manners; we write C ⊆ R to denote the set of crashed replicas that behave
correctly up till some point after which they stop participating; and we write G = R \ (B ∪ C)
to denote the set of non-faulty (good) replicas in R. We assume that non-Byzantine replicas

ICDT 2020
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System Checksum Complexity for the learner
Data sent per replica Data received Decode steps

b = 0 None O(s/g) O(s(n/g)) u/n
b < g Simple O(s/g) O(s(n/g))

(g+b
g

)
(u/n)

b < g Tree O(s/g + (u/n) log(n)) O(s(n/g) + u log(n)) u/n

Figure 2 Overview of delayed-replication algorithms running on a cluster of n replicas, of which
b are Byzantine and g are non-faulty. The first two columns describe the system conditions and the
checksums used. The last three columns provide the complexity to sent a journal with u updates
and storage size s to a learner in terms of the data sent per replica, data received by the learner,
and the worst-case number of decode steps the learner needs to perform.

behave in accordance to the algorithms and are deterministic: on identical inputs, non-faulty
replicas must produce identical outputs. Notice that we do not make any assumptions on
the learners, each learner can be malicious without affecting the operations in R. We write
n = |R|, b = |B|, c = |C|, and g = |G| to denote the number of replicas, Byzantine replicas,
crashed replicas, and non-faulty replicas, respectively. Finally, we assume that g > b, a
minimal condition to distinguish Byzantine and non-Byzantine behavior.

I Definition 2.1. Let (R,L) be a system. The Byzantine learner problem states that each
learner in L will eventually learn of the update decisions made by R.

We will formalize the Byzantine learner problem in terms of learning journal updates.
Let (R,L) be a system. We assume that each replica r ∈ R maintains an append-only
update journal Jr that consists of a sequence of data updates (e.g., write transactions in
a database system). To work with sequences, we introduce the following notations. Let
S = [s0, . . . , sm−1] be a sequence. We write S[i] to denote si, S[i : j] to denote [si, . . . , sj−1],
and |S| to denote the length m of S. Finally, if T is also a sequence, then S is a prefix of
T , denoted S � T , if |S| ≤ |T | and S = T [0 : |S|]. We refer to any subsequence S[i : i+ n],
imod n = 0, as a block.

We assume that the non-Byzantine replicas all make the same update decisions in the same
order (e.g., by utilizing a consensus protocol such as Paxos or Pbft [14, 15, 46, 47]). These
updates are not necessarily registered at each replica at exactly the same time. Consequently,
we can only assume that, for each r,q ∈ (G ∪ C), either Jr � Jq or Jq � Jr. We write JR to
denote the unique journal Jq, q ∈ G, that contains the maximum-length sequence of update
decisions all non-faulty replicas agree on. Hence, JR � Jr for all r ∈ G.

I Example 2.2. Consider a Byzantine cluster R = {r0,r1,r2,b} with

Jr0 = [u0, u1, u2, u3, u4, u5, u6, u7]; Jr1 = [u0, u1, u2, u3, u4, u5, u6];
Jr2 = [u0, u1, u2, u3, u4, u5, u6]; Jb = [u0, u1, u2, u

′
3, u
′
4].

The update journal of replica b diverges from the other replicas and, hence, b must be
Byzantine. The three non-faulty replicas share the update journal JR = [u1, u2, u3, u4, u5, u6].
Currently, the cluster is deciding on the eight update u7. This update is already fully
processed by r0, whereas replicas r1 and r2 are still processing this update.

I Definition 2.3. Let (R,L) be a system and l ∈ L a learner. For every i, 0 ≤ i < |JR|,
the Byzantine learner problem states that l will eventually learn of the i-th update decision
JR[i]. At the same time, no Byzantine replica b ∈ B can convince l that any other update
was the i-th update decision made.
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Notice that we only specified the data model of replicas. We did not specify how the
learners store data or process data, we only specified that the learners will receive all update
decisions made by the replicas. Indeed, the specifics of what a learner does with the updates
received depend on the workload for which the learner is designed.

I Example 2.4. Consider the Byzantine cluster R from Example 2.2. A learner l will be
able to learn the updates u0, u1, u2, u3, u4, u5, and u6. The learner will not yet be able to
learn u7, as this update is still being processed by some non-faulty replicas in R. Replica
b will never be able to convince the learner that the updates u′3 or u′4 happened, as b is
Byzantine. The learner l can store the updates it learned in a temporal database view that
provides access to historical data, e.g., for in-depth analysis.

As a simple solution to the Byzantine learner problem, consider a system in which each
replica can be queried for their journal content. Any learner l can now determine the i-th
journal update by simply querying different replicas in R. As soon as l receives b+1 identical
responses, it is ensured that at least one of these responses came from a non-Byzantine
replica and, hence, must be the valid i-th journal update. Unfortunately, this simple and
naive solution has several major weaknesses that can be exploited by malicious participants:

I Example 2.5. Firstly, there is the issue of load balancing due to a lack of coordination.
As all learners have to query for journal updates independently, they can all end up querying
the same non-faulty replica r ∈ G. Due to the amount of queries, r has to dedicate most of
its resources to answering these queries. Consequently, r will have fewer resources available
for its other tasks, e.g., for deciding on new data updates. In the worst case, this can reduce
the data update throughput of R. Secondly, the issue of load balancing can be exploited by
the ability of malicious learners to coordinately target some non-faulty replicas, which could
overload these replicas in an attempt to impede the services of R.

Moreover, as learners do not have a reliable way to distinguish between non-faulty replicas
that are slow, crashed replicas, and Byzantine replicas, they have to always query at least
b + c + 1 distinct replicas in R to have a guarantee on an outcome (as b + c replicas could
be Byzantine or have crashed and consequently not respond). Furthermore, an additional b
distinct replicas in R need to be queried to assure that the majority of all received outcomes
come from non-Byzantine replicas (as b replicas could be Byzantine and respond with invalid
or corrupted outcomes). This makes learning an update unnecessary expensive.

In Section 3, we propose the delayed-replication algorithm to provide reliable high-
performance Byzantine learning that does not suffer from the shortcomings of the above
naive simple solution.

In the following, we assume asynchronous reliable communication: all messages send by
non-faulty replicas will eventually arrive at their destination. We also assume authenticated
communication: on receipt of a message m from replica r ∈ R, one can determine that r did
sentm if r /∈ B; and one can only determine thatm was sent by a replica in C∪G if r ∈ (C∪G).
Hence, Byzantine replicas are able to impersonate each other, but are not able to impersonate
non-Byzantine replicas. Authenticated communication is a minimum requirement to deal
with Byzantine behavior and can be implemented using message authentication codes [43, 50].

3 The Delayed-Replication Algorithm

Next, we propose the delayed-replication algorithm, which provides an efficient solution to the
Byzantine learner problem. Our delayed-replication algorithm uses information dispersal [63]
to balance the load among all non-faulty replicas and to minimize overall communication
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costs. The delayed-replication algorithm itself consists of two parts: the information dispersal
step, which is executed by the replicas in R, and the information learning step, which is
executed by the learners in L.

3.1 Information Dispersal
We use an information dispersal algorithm that is able to encode any value v with storage
size ‖v‖ into n pieces vi, 0 ≤ i < n, such that v can be decoded from every set of g distinct
pieces. We assume that the information dispersal algorithm is optimal in the sense that
each piece vi has size ‖vi‖ ≤ d‖v‖/ge. Hence, the minimal number of pieces necessary for
recovering v by decoding, g pieces, have a combined storage size of g d‖v‖/ge ≈ ‖v‖. The
information dispersal algorithm (IDA) of Rabin provides these properties [63].

We assume that each non-Byzantine replica r ∈ (C ∪ G) is equipped with IDA. We write
slicer(v), for any value v, to denote the id(r)-th piece vid(r) obtained by encoding v. With
these assumptions and notations, we have ‖slicer(v)‖ ≤ d‖v‖/ge.

I Example 3.1. Consider a cluster R = {r0,r1,r2,b} with B = {b} and C = ∅. Hence,
g = 3 and b = 1. Let v be a piece of data. When using the encode step of IDA, we
obtain pieces v0, v1, v2, v3 with ‖v0‖ = ‖v1‖ = ‖v2‖ = ‖v3‖ = d‖v‖/3e. Consequently,
slicer0(v) = v0, slicer1(v) = v1, slicer2(v) = v2, and, finally, sliceb(v) = v3.

Now consider any learner l ∈ L. Upon obtaining any three valid and distinct pieces, l
can use the decode step of IDA to reconstruct v. As the replicas r0, r1, and r2 are non-faulty,
l will always be able to obtain v0, v1, and v2. Hence, l can reconstruct v. We notice
that ‖v0‖ + ‖v1‖ + ‖v2‖ = 3 d‖v‖/3e ≈ ‖v‖. Hence, the communication required for l to
reconstruct v is minimal (due to IDA being optimal).

3.2 The Information Dispersal Step
In the information dispersal step, every replica r ∈ R is instructed to broadcast the update
decisions appended to their journal after every block B of n appends. The pseudo-code
for the information dispersal step can be found in Figure 3. To minimize communication
costs, replicas will encode the block B using an optimal information dispersal algorithm
(Line 4). To allow learners to validate the correctness of the encoded block, replicas will
include a checksum of B. The exact type of checksum used depends on the type of attacks the
delayed-replication algorithm needs to be able to deal with, and we refer to the information
learning step for details on the types of checksums supported (Section 3.3 and Section 3.4).
After encoding, each replica broadcasts the encoded block and the checksum to all learners
(Line 5). In doing so, the information dispersal step provides reliable replication of sufficient
information among all learners such that each learner can reconstruct any segment of n
update decisions. We refer to Figure 4 for a schematic representation of the interactions
between replicas and a learner due to the information dispersal step.

We notice that the information dispersal step is a push-based algorithm that pushes the
update journal to all learners without any coordination. Additionally, the total communication
cost of the information dispersal step is shared equally among all participating replicas,
independent of the behavior of any faulty replicas. This is in sharp contrast with the simple
and naive pull-based approach of Section 2, which is at the basis of many practical checkpoint
algorithms (see, e.g., Section 4.2). Next, we show that the communication complexity of the
information dispersal step is low.
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1: event r appends a new decision to Jr do
2: if Jr 6= [ ] and |Jr|mod n = 0 then
3: B := Jr[|Jr| − n : |Jr|].
4: s, c := slicer(B), checksum(B).
5: Broadcast (|Jr|, s, c) to all learners l ∈ L.

Figure 3 The information dispersal step of the delayed-replication algorithm running at every
non-faulty replica r ∈ G.

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12
Update decision −→

No dispersal First 4 update decisions Second 4 update decisions

Learned
JR[0 : 4]

Learned
JR[4 : 8]

Figure 4 A schematic representation of the interactions between a cluster R = {r0, r1, r2, b}
and a learner l participating in the information dispersal step. The replica b is Byzantine and sends
invalid messages. The other replicas repeatedly send a valid message encoding 4 decisions from their
update journal. After receiving these messages, l is able to reconstruct (learn) the update decisions
made by R. In specific, after the n = 4-th update decision, l will start receiving messages from
which it can reconstruct the first four update decisions.

I Theorem 3.2. Consider the information dispersal step of Figure 3 running at replica
r ∈ G after r appends the ρ-th decision, ρ ≥ 1, to Jr. After this step, r has sent bρ/nc
messages to each learner with a total size of O(c(ρ/n) + ‖Jr‖/g), in which c is the size of a
checksum.

Proof. Notice that r only broadcasts messages after every i-th decision, i ≥ 1 and imod n = 0.
Hence, after the ρ-th decision, r will have broadcasted m = bρ/nc messages. Consider the
messages sent by r to any learner l ∈ L. In these messages, the pieces slicer(Jr[(i−1)n : in]),
1 ≤ i ≤ m, have a non-constant size and we assume that the remainder of each message has
size γ = Θ(c). Hence, in total, the m messages send to l have size σ at most

σ ≤
∑

1≤i≤m

(γ + ‖slicer(Jr[(i− 1)n : in])‖)

≤ γm+
∑

1≤i≤m

⌈
‖Jr[(i− 1)n : in]‖

g

⌉
≤ γm+

∑
1≤i≤m

(
1 + ‖Jr[(i− 1)n : in]‖

g

)
≤ γm+m+ ‖Jr[0 : nm]‖

g ≤ m(γ + 1) + ‖Jr‖
g = O(c(ρ/n) + ‖Jr‖/g). J

Based on Theorem 3.2, it is straightforward to determine the number and size of messages
received by each learner.
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I Corollary 3.3. Consider the learner l ∈ L after it has received all messages sent by the
information dispersal steps following the ρ-th decision in JR, ρ ≥ 1. The learner l has
received at most ρ messages with a total size of O(cρ+ ‖JR‖(n/g)), in which c is the size of
a checksum.

To conclude, we notice that the information dispersal step we provide assumes a steady
flow of update decisions. If update decisions are infrequent, then information dispersal can be
delayed arbitrary. To deal with periods of inactivity, the system can always resort to filling
the current block of n updates with null-values (although this will reduce communication
efficiency).

3.3 The Information Learning Step with Simple Checksums
In the previous section, we presented the information dispersal step that will broadcast an
encoded block of journal updates from JR to each learner l ∈ L. In this section, we show how
l can reliable reconstruct these journal updates from the encoded information. To provide
resilience against Byzantine replicas, we will use simple checksums checksum(B) = hash(B),
in which hash(·) is a collision-resistant hash function that maps an arbitrary value v to
a numeric value hash(v) in a bounded range [43, 50]. We assume that it is practically
impossible to find another value v′, v 6= v′, such that hash(v) = hash(v′). These simple
checksums have a constant size independent of n or g.

I Theorem 3.4. Consider the learner l ∈ L after it has received all messages sent by the
information dispersal steps following the ρ-th decision in JR, ρ ≥ 1. If g > b, then, after
receiving these messages, l can reconstruct the first nbρ/nc update decisions made by R

using at most
(g+b

g
)
bρ/nc information dispersal decode steps.

Proof. Let i = nbρ/nc be the last round after which l received update decisions. We assume
that l has already reconstructed the first (i− 1)n update decisions, and we show how l can
reconstruct the block B containing update decisions (i− 1)n, . . . , in− 1, this independent of
the behavior of the Byzantine replicas. To initiate reconstruction of B, l will collect messages
of the form (i, sj , cj), with sj an encoded piece of B and cj a checksum, of distinct replicas
rj with id(rj) = j. Eventually, l will receive g messages from replicas in C ∪ G, as all g
replicas in G will send messages to l. Using these messages, l can reconstruct B by decoding
the pieces contained in the received messages.

Byzantine replicas are able to send corrupted messages, however, which complicates
construction of B from the messages received. Learners do not a-priori know which replicas
are Byzantine. Hence, learners need to verify whether any block reconstructed from g
collected messages is equivalent to B. The first step in this verification process is to determine
the checksum hash(B). Consider the first z > b messages received. We distinguish two cases:
1. At least b + 1 messages have identical checksum c. In this case, at least one such message

must be sent by a non-faulty replica. Hence, we have c = hash(B).
2. At most b messages have identical checksums. In this case, some of the messages received

have been sent by Byzantine replicas. As l will eventually receive g > b messages from
non-faulty replicas, and all these messages will contain the same checksum hash(B), we
can wait until more messages are received to determine the checksum hash(B).

After determining hash(B), l can simply reconstruct B by trying to decode every combination
of g received pieces, this until eventually a block b is constructed with hash(b) = hash(B).
In the worst case, l will have to wait until it receives g + b messages before it receives g
uncorrupted messages and it will have to try to decode

(g+b
g
)
combinations of g pieces before

it finds g pieces sent by non-Byzantine replicas.
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The only way for Byzantine replicas to subvert the learning step is by finding a value w,
w 6= B, with hash(w) = hash(B). As we assumed that hash(·) is a collision-resistant hash
function, it is exceedingly hard for the Byzantine replicas to find such a value w. Furthermore,
as g pieces are used during decoding and g > b, the Byzantine replicas not only need to
find w, but must also find a way to encode w such that it can be reconstructed using pieces
provided by one or more non-faulty replicas. Hence, assuming reasonable limits on the
computational resources, the Byzantine replicas are unable to subvert the learning step.1 J

Notice that if the system has no Byzantine replicas (b = 0), then the checksums can
be omitted entirely, as every set of g pieces will decode to the searched-for block of update
decisions. This strongly reduces the computational costs for the learner. By combining
Theorem 3.2 and Theorem 3.4, we obtain:

I Corollary 3.5. Consider the learner l ∈ L and replica r ∈ G. If g > b, then the
delayed-replication algorithm with simple checksums guarantees
1. l will learn the update journal JR;
2. l will receive at most |JR| messages with a total size of O(‖JR‖(n/g));
3. l will only need worst-case

(g+b
g
)
(|JR|/n) information dispersal decode steps; and

4. r will sent at most |JR|/n messages to l with a total size of O(‖JR‖/g).

To conclude, we notice that Byzantine replicas that send corrupted messages are easily
detectable by the learners. After a learner l ∈ L has decoded g pieces into a valid block B, it
can simply encode this block and determine the exact value of each encoded piece a replica
should have sent to l. Hence, after trying to subvert a learning step of l, Byzantine replicas
can be recognized and be eliminated from future considerations. When the set of Byzantine
replicas is relatively stable over time, we can use this approach towards detecting Byzantine
behavior at l to prevent the worst-case upper bound on the number of information dispersal
decode steps,

(g+b
g
)
, from happening repeatedly.

3.4 The Information Learning Step with Tree Checksums
In the previous section, we have shown how learners can reliably reconstruct JR in the
presence of Byzantine replicas. In theory, this provided approach has a high computational
overhead for the learners due to the worst-case combinatorics involved. In this section, we
explorer a different checksum scheme that allows the learners to discard any invalid messages
with minimal effort, this with only a low communication overhead for the replicas and
learners involved. Consequently, the learners can directly select the appropriate messages
and perform only a single information dispersal decode step. Inspired by the fingerprints of
Alon et al. [2, 3], we base our checksum scheme on Merkle trees [51].

I Definition 3.6. Consider a block of n update decisions B = JR[(j−1)n : jn]. The replica r
with id(r) = i, 0 ≤ i < n, should produce the i-th encoded piece Bi = slicer(B). To simplify
presentation, we assume that the total number of such pieces is a power-of-two (otherwise,
we simply add null-pieces until we have a power-of-two number of pieces). A Merkle tree
build over these pieces is a balanced binary tree constructed as follows:
1. The i-th leaf of the tree has the value hash(Bi).
2. The value of an internal node of which the left-child has value w1 and the right-child has

value w2 is hash([w1, w2]).

1 A theoretical attack of this type can always be detected by the learner: this attack will yield at least
two sets of g pieces that decode to values w and B with w 6= B and hash(w) = hash(B).
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h0 = hash(B0) h1 = hash(B1) h2 = hash(B2) h3 = hash(B3) h4 = hash(B4) h5 = hash(B5) h6 = hash(B6) h7 = hash(B7)

h01 = hash([h0, h1]) h23 = hash([h2, h3]) h45 = hash([h4, h5]) h67 = hash([h6, h7])

h0123 = hash([h01, h23]) h4567 = hash([h45, h67])

h01234567 = hash([h0123, h4567])

Figure 5 A Merkle tree over eight data pieces B0, . . . ,B7. The leaf nodes are each labeled with
the hash of a data piece, while every internal node is labeled with the hash of the value of its two
children. The tree checksum for B5 is checksum(B5) = [h01234567, h0123, h67, h4].

Notice that this construction is deterministic. Hence, every non-faulty replica will construct
exactly the same Merkle tree for B. The tree checksum we propose for the i-th piece Bi,
checksum(Bi), consists of the value of the root of the Merkle tree and the values of the sibling
of each node on the path from the root to the i-th leaf.

We illustrate this further in the following example.

I Example 3.7. Assume n = 8 and consider a block B that encodes into pieces B0, . . . ,B7.
The Merkle tree for B can be found in Figure 5. The tree checksum checksum(B5) is
obtained as follows. First, the path from the root of the tree to the 5-th leaf visits the
nodes with values h4567, h45, and h5. The node with value h4567 has the sibling with value
h0123; the node with value h45 has the sibling with value h67; and, finally, the node with
value h5 has the sibling with value h4. The root of the tree has value h01234567. Hence,
checksum(B5) = [h01234567, h0123, h67, h4].

Next, we show that these tree checksums are sufficient to recognize messages corrupted
by Byzantine replicas.

I Theorem 3.8. Consider the learner l ∈ L after it has received all messages sent by the
information dispersal steps following the ρ-th decision in JR, ρ ≥ 1. If g > b, then, after
receiving these messages, l can reconstruct the first nbρ/nc update decisions made by R

using only bρ/nc information dispersal decode steps.

Proof. Let i = nbρ/nc be the last round after which l received update decisions. As in
the proof of Theorem 3.4, we only focus on how l can reconstruct the block B containing
update decisions (i − 1)n, . . . , in − 1, this independent of the behavior of the Byzantine
replicas. Every message sent by non-faulty replicas will include a valid tree checksums. Each
of these checksums is constructed over the same Merkle tree. Consequently, each of these
checksums share the same value for the root of the Merkle tree. Hence, using the reasoning
of Theorem 3.4, l can reliably learn the root value r of the Merkle tree after receiving at
least b + 1 messages with identical root values in their checksum.

Now consider the message (i, sj , cj) received from the replica r with id(r) = j. To
determine whether this message is valid and uncorrupted, we first check whether the root
value in cj matches r. If this check fails, we can already discard the message. Next, we
compute the hash hash(sj) to obtain the value of the j-th leaf in the Merkle tree. We observe
that cj contains the value of the sibling of the j-th leaf. Hence, we can construct the value
of the parent p of the j-th leaf. This can be repeated: for any ancestor of the j-th leaf, cj

also contains the value of the sibling of this ancestor. Hence, one can recompute the value of
every ancestor of the j-th leaf based on the value sj . When done, one will obtain the root
value r when the message is valid and uncorrupted. If any other value is obtained, then the
message must be corrupted and one can discard the message.
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As with the simple checksums, the only way in which Byzantine replicas can subvert
the learning step is by finding hash collisions. Hence, assuming reasonable limits on the
computational resources, the Byzantine replicas are unable to subvert the learning step. J

To further clarify the verification of messages, we illustrate how the verification process
of the proof of Theorem 3.8 works:

I Example 3.9. Consider the situation of Example 3.7. Let l be a learner that already
determined that the root value is h01234567. At some point, l receives a message containing
B′5 and the checksum checksum(B′5) = [w1, w2, w3, w4] from replica r with id(r) = 5. The
learner checks whether w1 = h01234567, as otherwise the message is discarded. We assume
w1 = h01234567. Next, l computes

h′5 = hash(B′5);
h′45 = hash([w4, h

′
5]);

h′4567 = hash([h′45, w3]);
h′01234567 = hash([w2, h4567]).

If B′5 = B5, w4 = h4, w3 = h67, and w2 = h0123, then h′01234567 = h01234567 and the message
received from r is valid and uncorrupted. In any other case, the resulting value h′01234567
will not match h01234567 and the message is discarded.

In Theorem 3.8, we analyzed the computational complexity of the information learning
step with tree checksums in terms of the number of information dispersal decode steps. As
we show in Example 3.9, one also needs to validate the correctness of each message via its
tree checksum, for which log(n) hashes need to be computed. In practice, the information
dispersal decode steps are much more costly than these validation steps (this is especially
true when using modern processors that provide hardware acceleration for hashing). Hence,
in our analysis, we only focus on the number of information dispersal decode steps.

Notice that, for any block B, we obtain ‖checksum(B)‖ = Θ(log(n)), this independent of
‖B‖. By combining Theorem 3.2 and Theorem 3.8, we obtain:

I Corollary 3.10. Consider the learner l ∈ L and replica r ∈ G. If g > b, then the
delayed-replication algorithm with tree checksums guarantees
1. l will learn the update journal JR;
2. l will receive at most |JR| messages with a total size of O(‖JR‖(n/g) + |JR| log(n));
3. l will only need at most |JR|/n information dispersal decode steps; and
4. r will sent at most |JR|/n messages to l with a total size of O(‖JR‖/g+(|JR|/n) log(n)).

4 Use Case: Improving Permissioned Blockchains

In this paper, we introduced the Byzantine learner problem and the delayed-replication
algorithm, this to support the hierarchical architecture for fault-tolerant and federated data
management systems that we envisioned in Section 1.1. Our hierarchical architecture relies on
a Byzantine cluster to manage the data. Typically, such Byzantine clusters are implemented
by permissioned fully-replicated blockchains that use traditional consensus techniques. Next,
we illustrate how the delayed-replication algorithm can be generalized to improve on such
permissioned blockchains by introducing scalable shared storage instead of full replication
and by reducing the cost of update decision making. Consequently, our techniques also
improves the applicability of permissioned blockchains to extend database systems towards
fault-tolerant and federated data management.
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4.1 Towards Scalable Shared Storage
As noted in the Introduction, state-of-the-art systems use fully replicated designs in which
every replica in a cluster R maintains the full update journal JR. Replicas r ∈ R typically
only need the current view V of the data to make update decisions, however, and do not
need access to the full history of all updates stored in JR. Hence, a fully replicated design
is unnecessary costly and limits scalability. Fortunately, the delayed-replication algorithm
already showed that full replication of JR is unnecessary to guarantee the ability to recover
and learn JR. Instead of storing all of JR at each r, each replica r can simply processes each
block B of n journal updates, compute slicer(B), and only keep this encoded piece around.
This lowers the storage cost for JR from ‖JR‖ per replica to ‖JR‖/g per replica, which makes
the storage capacity of R scalable with the number of non-faulty replicas without hampering
the availability of JR for replica recovery and for external learners.

I Example 4.1. Consider a federated inventory management system (R,L) used by several
companies to keep track of their inventories and of transactions between them. To decide
upon the updates on the data, replicas in R only need to be able to validate updates: e.g., a
transfer of ownership from company A to company B of a product is only a valid update if A
originally owned the product. Hence, for validation, it is not necessary that replicas in R

maintain full copies of the journal JR, they only need the status of the current inventory, a
much smaller dataset. Other tasks such as periodic analytics and data provenance will need
read-only access to the full history of the data, which they can obtain as learners via the
delayed-replication algorithm.

To further illustrate the necessity of storage scalability in blockchains, we only have to
look at the permissionless Bitcoin blockchain. The size of the Bitcoin ledger, which represents
a fully-replicated journal of financial transactions, is currently exceeding 256 GB and has
grown with 59 GB over the last year. As noted in the introduction, Bitcoin is only able
to process 7 transactions per second whereas Visa already processes 2000 transactions per
second on average [61]. The permissioned blockchains our work focusses on can easily process
hundreds to thousands transactions per second, as already exemplified by the BFS system
in 2002 [14, 15]. Hence, the size of the journal maintained by permissioned blockchains can
grow even more rapidly. We conclude:

I Proposition 4.2. Let R be a Byzantine cluster with update journal JR, current data
view V, and in which only V is necessary to make update decisions. If g > b, then the
delayed-replication algorithm can provide storage scalability with these guarantees:
1. If simple checksums are used, then the storage cost per replica r ∈ R is reduced from
O(‖JR‖+ ‖V‖) to O(‖JR‖/g + ‖V‖).

2. If tree checksums are used, then the storage cost per replica r ∈ R is reduced from
O(‖JR‖+ ‖V‖) to O(‖JR‖/g + (|JR|/n) log(n) + ‖V‖).

Proof. These results follow directly from Corollaries 3.5 and 3.10. J

4.2 Improved Checkpoints in Byzantine Consensus
Next, we will show how the delayed-replication algorithm can be used internally in Byzantine
clusters to reduce the cost of decision making. Typical permissioned blockchains use consensus
protocols to coordinate making update decisions [4, 8, 9, 10, 14, 15, 17, 28, 34, 42, 44, 45, 48,
69, 71]. Most practical consensus protocols can be traced back to the influential design of
the Practical Byzantine Fault Tolerance protocol (Pbft) of Castro et al. [14, 15].
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Figure 6 Two cases of possible malicious behavior. On the left, the primary p is malicious. On
the right, the replica r is malicious. Unfortunately, the non-faulty replica q receives the same set of
messages in both cases and, hence, cannot determine which replica is malicious in which case.

In Pbft, a replica is elected primary and is in charge of coordinating update decision
making among all replicas. To allow other replicas to determine whether the primary,
which could be Byzantine, is coordinating correctly, Pbft employs two phases of broadcast-
based communication among all replicas before any update decision is committed. This
communication ensures that update decisions are only committed if a majority of all non-
faulty replicas are aware of these decisions. Unfortunately, a malicious primary can keep some
non-faulty replicas in the dark by not sending them any update decisions. The remaining
Byzantine replicas can cover for this malicious behavior by acting as non-faulty replicas. Such
an attack cannot be reliably detected by the other replicas in the system, as the following
example illustrates.

I Example 4.3. Let R be a Byzantine cluster with n = 3b + 1. Let p ∈ R be the elected
primary, let r ∈ R be another replica, and let q ∈ G be a non-faulty replica. Assume that a
correct primary will send the same updates to all replicas. Consider the following two cases:
1. We have r ∈ G and p ∈ B. The primary sends updates via Update messages, except that

it excludes r. The replica r detects this, as it does not receive any messages, and notifies
q that the primary is malicious via a NoUpdateReceived message.

2. We have r ∈ B and p ∈ G. Independent of the actions of the primary, r notifies q that
the primary is malicious via a NoUpdateReceived message.

We have sketched these two cases in Figure 6. In both cases, q receives exactly the same
set of messages from p and r. Consequently, q cannot determine which of the replicas is
malicious and which of the replicas is non-faulty.

The issue of replicas being left in the dark is faced by not only Pbft, but also by
many other practical primary-backup protocols. The typical way to assure that all replicas
eventually learn the update decisions made, even when the primary is malicious, is by
using periodical checkpoints. Unfortunately, the usual checkpoint protocols employed use
broadcast-based primitives with very high communication complexity. Moreover, checkpoint
protocols typically have a pull-based component, which makes them vulnerable to the attacks
illustrated in Example 2.5. Fortunately, we can employ the push-based delayed-replication
algorithm to provide checkpoints with low costs for all replicas involved. To do so, we model
any replica left in the dark by a malicious primary as crashed. In the worst case, Pbft allows
for a situation in which g = b+1 and c = b (the maximum number of non-Byzantine replicas
a malicious primary can keep in the dark without being detected), making n ≥ 3b+1. Hence,
in all situations our delayed-replication algorithm can be employed as a checkpoint protocol
by making all replicas in R listeners. We conclude:
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I Proposition 4.4. Let R be a Byzantine cluster running Pbft. If g > b, then the delayed-
replication algorithm can provide Pbft-style checkpoints with these guarantees:
1. If simple checksums are used, then every replica r ∈ R will be able to learn JR and will

send and receive at most |JR| messages with a combined size of O(‖JR‖).
2. If tree checksums are used, then every replica r ∈ R will be able to learn JR and will

send and receive at most |JR| messages with a combined size of O(‖JR‖+ |JR| log(n)).

Proof. We choose L = R and we use the delayed-replication algorithm with c = b and, as
R is running Pbft, n > 3b. Hence, g = n− c− b = n− 2b ≥ b + 1 non-faulty replicas will
be senders in the delayed-replication algorithm, guaranteeing success.

Next, we consider the number of messages sent and received. First, consider the case
using simple checksums. Let r ∈ G be a non-faulty replica that is not left in the dark.
Applying the results of Corollaries 3.5, we learn that replica r sends at most |JR|/n messages
to each replica with a total size of O(‖JR‖/g). As n = |R|, r will send n(|JR|/n) = |JR|
messages with a total size of at most dn(‖JR‖/g), for some constant d. We have n > 3b
and g = n − 2b. Hence, n = 3b + j and g = n − 2b = b + j for some j, j ≥ 1. We have
n/g = (3b + j)/(b + j) = 1 + 2b/(b + j). As j ≥ 1, we have 0 ≤ 2b/(b + j) < 2 and
n/g ≤ 3. We conclude that the total size of all messages send by r is upper bounded by
3d‖JR‖ = O(‖JR‖). In a similar manner, we can derive the same upper bounds on the
number and size of the messages received by r. For the case using tree checksums, we apply
the results of Corollary 3.10 to the above reasoning, which leads to only adding a cost of
O(log(n)) to each message sent and received. J

Since the introduction of Pbft, many improvements on its design have been proposed.
Recently, there has been a surge in protocols that aim at bringing down the communication
cost of the normal-case operations of Pbft from a quadratic amount per update decision
to a linear amount, which vastly improves the scalability of consensus. Examples include
HotStuff [75], LinBFT [74], and SBFT [33]. These examples all use threshold signatures [66]
to summarize confirmation of any decision by the majority of all replicas in a constant-sized
signature – which eliminates the need for broadcast-based quadratic communication among
all replicas. None of the current approaches satisfactory deal with recovery of replicas that
are left in the dark, however. Hence, we believe that our highly-efficient delayed-replication
algorithm can fill in the checkpoint gap in such linear designs.

5 Related Work

There is an abundant literature on distributed systems, distributed scalable storage (e.g., via
information dispersal), and on fault-tolerant fully-replicated systems (e.g. [12, 60, 69, 70]). In
this paper, we primarily focused on bridging the gap between, on the one hand, fault-tolerant
systems and, on the other hand, scalable distributed systems.

Learners in fault-tolerant systems. Paxos, a consensus protocol that can be used to make
reliable update decisions in a cluster with only crash failures, and several Paxos-like protocols
have a concept of learners [46, 47, 49]. As the name suggests, these Paxos-learners will learn
all update decisions made by the cluster, not unlike the learners we propose. In Paxos, these
learners are also crucial to determine whether consensus is reached, are deeply involved
in the consensus protocol, cannot be arbitrarily selected, and perform significant amounts
of communication, however. This makes the architecture of Paxos incomparable with the
hierarchical architecture we propose.
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Most other consensus protocols, especially those based on the Practical Byzantine Fault
Tolerance protocol (Pbft) of Castro et al. [14, 15], do not distinguish between the roles of
replicas in a Byzantine cluster. In Pbft, some read-only optimizations are considered, but
even these optimizations require participation of all replicas involved. Hence, the approach of
Pbft towards read-only data processing is non-scalable, whereas our hierarchical architecture
benefits from the addition of non-faulty replicas to the Byzantine cluster.

The HyperLedger permissioned blockchain fabric does utilize a hierarchical design similar
to what we propose [6]. HyperLedger distinguishes between, on the one hand, endorsers and
orderers that coordinate data updates, and, on the other hand, peers that only learn of data
updates. Currently, HyperLedger relies on Apache Kafka [26] to provide only crash-tolerant
ordering and to broadcast updates to peers. The approach we propose – by using the
delayed-replication algorithm – is not only able to tolerate an arbitrary number of crashes,
but also addresses Byzantine behavior. Furthermore, our approach is highly scalable and
requires only a minimum of communication. Finally, our approach enables a way towards
permissioned blockchains with scalable storage, which is not provided by HyperLedger.

Finally, the Byzantine learner problem we study in this paper differs from the cluster-
sending problem of Hellings et al. [37]. On the one hand, we provide in this work techniques
to stream sequences of data updates from a single Byzantine cluster to learners, this with
minimal communication costs in terms of the data exchanged. On the other hand, the
cluster-sending problem of Hellings et al. [37] focusses on the problem of sending a single
value between two Byzantine clusters with minimal communication costs in terms of the
number of messages exchanged.

Information dispersal and scalable storage. IDA, the information dispersal algorithm we
utilize in the delayed-replication algorithm, was proposed by Rabin [63] to provide reliable
load-balanced storage and communication in a distributed setting. Alon et al. [2, 3] expanded
IDA towards recovery of failures by adapting the scheme used in IDA towards recognizing
faulty encoded pieces. Unfortunately, the methods employed by Alon et al. always introduce
a space overhead per participant. We build upon these information dispersal techniques by
using them to solve the Byzantine learner problem and we showed how these techniques can
be used to resolve current issues in state-of-the-art permissioned blockchains that provide
fault-tolerant and federated data management. Moreover, our results structurally improve
on the results of Rabin and Alon et al. via the delayed-replication algorithm with simple
checksums, which enables Byzantine fault-tolerant communication and storage without any
space overhead.

6 Conclusions and Future Work

In this paper, we studied the Byzantine learner problem – the problem of efficiently distributing
a sequence of data updates made by replicas in a Byzantine cluster to an arbitrary number
of learners. As our main result, we proposed the delayed-replication algorithm to address
this Byzantine learner problem. Our algorithm is coordination-free, equally distributes
communication costs among all replicas, and leverages information dispersal to achieve
Byzantine learning with minimal communication costs. Our delayed-replication algorithm
opens the door to hierarchical fault-tolerant and federated database systems that can
effectively deal with big read-only workloads, e.g., by running complex data processing
tasks on individual specialized learners and by providing trusted read-only proxies close
to end-users for fast query answering. Moreover, we showed that the delayed-replication
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algorithm and its underlying techniques open the door for the development of new high-
performance fault-tolerant database systems by improving the design of existing permissioned
blockchain-based database systems.

Our techniques are only a first step toward developing fault-tolerant, reliable, scalable,
and high-performance database systems and permissioned blockchains. To further these
developments, we need not only support big read-only workloads and storage scalability,
but also improve on other areas. To do so, we see several avenues of future research and
development:
1. Our techniques can be used to improve fault-tolerant and federated data management by

reducing the cost of read-only workloads and by introducing scalable shared storage. We
did not yet address the scalability of decision making (e.g., write workloads), however.
To improve decision making, we are interested in the development of efficient decision
making techniques in Byzantine settings that – for performance reasons – provides less
strict guarantees than traditional consensus-based techniques. To further aid scalability of
decision making, we are also interested in developing further non-fully-replicated designs,
e.g., by incorporating fault-tolerant sharding.

2. Our design is primarily intended to reduce the cost of read-only workloads that require
access to the full history of changes. Examples of such workloads include analytics,
data provenance, machine learning, visualization, and read-only proxies. Besides these
workloads, there are also many smaller read-only workloads, e.g., one-off relational
querying. Current fault-tolerant approaches toward such workloads remain non-scalable,
as they require the independent execution of such queries by all replicas in the Byzantine
cluster. We are interested in the development of techniques that can lift this burden on
scalability.
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Abstract
Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD)
are fundamental in database schema design. Likewise, probabilistic conditional independences (CI)
are crucial for reasoning about multivariate probability distributions. The implication problem
studies whether a set of constraints (antecedents) implies another constraint (consequent), and
has been investigated in both the database and the AI literature, under the assumption that all
constraints hold exactly. However, many applications today consider constraints that hold only
approximately. In this paper we define an approximate implication as a linear inequality between
the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem:
when does an exact implication relax to an approximate implication? We use information theory
to define the degree of satisfaction, and prove several results. First, we show that any implication
from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with
a factor at most quadratic in the number of variables; when the consequent is an FD, the factor
can be reduced to 1. Second, we prove that there exists an implication between CIs that does not
admit any relaxation; however, we prove that every implication between CIs relaxes “in the limit”.
Finally, we show that the implication problem for differential constraints in market basket analysis
also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several
previously known results about the implication problem: implication of MVDs can be checked by
considering only 2-tuple relations, and the implication of differential constraints for frequent item
sets can be checked by considering only databases containing a single transaction.
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1 Introduction

Traditionally, integrity constraints are assertions about a database that are stated by the
database administrator and enforced by the system during updates. However, in several
applications of Big Data, integrity constraints are discovered, or mined in a database instance,
as opposed to being asserted by the administrator [13, 34, 7, 3, 20]. For example, data cleaning
can be done by first learning conditional functional dependencies in some reference data, then
using them to identify inconsistencies in the test data [16, 7]. Causal reasoning [35, 28, 31] and
learning sum-of-product networks [29, 11, 26] repeatedly discover conditional independencies
in the data. Constraints also arise in many other domains, for example in the frequent itemset
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18:2 Integrity Constraints Revisited: From Exact to Approximate Implication

Table 1 Summary of results: relaxation bounds for the implication Σ⇒ τ for the sub-cones of
Γn under various restrictions. (1) General; no restrictions to either Σ or τ (2) Σ is a set of saturated
CIs and conditional entropies (i.e., MVDs+FDs in databases), and τ is a conditional entropy. (3) Σ
is a set of saturated CIs and conditional entropies, τ is any CI (4) Disjoint integrity constraints.
The terms in Σ are both saturated and disjoint (see definition 10 in Sec. 4), and τ is saturated.

Cone
Relaxation Bounds

General MVDs+FDs MVDs+FDs Disjoint MVDs+FDs
⇒ FD ⇒ any ⇒ MVD/FD

Γn (2n)! (Thm. 21) 1 (Thm. 6) n2

4 (Thm. 6) 1 (Thm. 11)
Γ∗n ∞ (Thm. 16) 1 (Thm. 6) n2

4 (Thm. 6) 1 (Thm. 11)
Pn 1 (Thm. 23) 1 (Thm. 23) 1 (Thm. 23) 1 (Thm. 23)

problem (FIS) [22, 5], or as measure based constraints [32] in applications like Dempster-Shafer
theory, possibilistic theory, and game theory (see discussion in [32]). In all these applications,
quite often the constraints are learned from the data, and are not required to hold exactly,
but it suffices if they hold only to a certain degree.

The classical implication problem asks whether a set of constraints, called the antecedents,
logically imply another constraint called the consequent. In this setting, both antecedents
and consequent are required to hold exactly, hence we refer to it as an exact implication
(EI). The database literature has extensively studied the EI problem for integrity constraints
and shown that the implication problem is decidable and axiomatizable for Functional
Dependencies (FDs) and Multivalued Dependencies (MVDs) [23, 19, 1, 2], and undecidable
for Embedded Multivalued Dependencies (EMVDs) [15]. The AI community has studied
extensively the EI problem for Conditional Independencies (CI), which are assertions of the
form X ⊥ Y | Z, stating that X is independent of Y conditioned on Z, and has shown that
the implication problem is decidable and axiomatizable for saturated CIs [12] (where XY Z =
all variables), but not finitely axiomatizable in general [36]. In the FIS problem, a constraint
like X → Y ∨ Z ∨ U means that every basket that contains X also contains at least one of
Y, Z, U , and the implication problem here is also decidable and axiomatizable [33].

The Relaxation Problem. In this paper we consider a new problem, called the relaxation
problem: if an exact implication holds, does an approximate implication hold too? For
example, suppose we prove that a given set of FDs implies another FD, but the input data
satisfies the antecedent FDs only to some degree: to what degree does the consequent FD
hold on the database? An approximate implication (AI) is an inequality that (numerically)
bounds the consequent by a linear combination of the antecedents. The relaxation problem
asks whether we can convert an EI into an AI. When relaxation holds, then any inference
system for proving exact implication, e.g. using a set of axioms or some algorithm, can be
used to infer an approximate implication.

In order to study the relaxation problem we need to measure the degree of satisfaction of
a constraint. In this paper we use Information Theory. This is the natural semantics for
modeling CIs of multivariate distributions, becauseX ⊥ Y | Z iff I(X;Y |Z) = 0 where I is the
conditional mutual information. FDs and MVDs are special cases of CIs [21, 8, 38] (reviewed
in Sec. 2.1), and thus they are naturally modeled using the information theoretic measure
I(X;Y |Z) or H(Y |X); in contrast, EMVDs do not appear to have a natural interpretation
using information theory, and we will not discuss them here. Several papers have argued
that information theory is a suitable tool to express integrity constraints [21, 8, 38, 24, 13].
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An exact implication (EI) becomes an assertion of the form (σ1 = 0 ∧ σ2 = 0 ∧ . . .)⇒
(τ = 0), while an approximate implication (AI) is a linear inequality τ ≤ λ ·

(∑
σi
)
, where

λ ≥ 0, and τ, σ1, σ2, . . . are information theoretic measures. We say that a class of constraints
can be relaxed if EI implies AI; we also say that it λ-relaxes, when we want to specify the
factor λ in the AI. We notice an AI always implies EI.

Results. We make several contributions, summarized in Table 1. We start by showing in
Sec. 4 that MVDs+FDs admit an n2/4-relaxation, where n is the number of variables. When
the consequent is an FD, we show that implication admits a 1-relaxation. Thus, whenever an
exact implication holds between MVD+FDs, a simple linear inequality also holds between
their associated information theoretic terms. In fact, we prove a stronger result that holds
for CIs in general, which implies the result for MVDs+FDs. In addition, under some mild
syntactic restrictions to the antecedents, we strengthen the result from a n2/4-relaxation to
a 1-relaxation, even when the consequent is an MVD; we leave open the question whether
1-relaxation exists in general.

So far, we have restricted ourselves to saturated or conditional CIs (which correspond to
MVDs or FDs). In Sec. 5 we remove any restrictions, and prove a negative result: there exists
an EI that does not relax (Eq. (9), based on an example in [17]). Nevertheless, we show that
every EI can be relaxed to an AI plus an error term, which can be made arbitrarily small,
at the cost of increasing the factor λ. This result implies that every EI can be proven from
some inequality, corresponding to the AI associated to the EI, plus an error term. In fact,
the EI in Eq. (9) follows from an inequality by Matúš [25], which is precisely the associated
AI plus an error term; our result shows that every EI can be proven in this style.

Next, we consider two restrictions, which are commonly used in model theory. First, in
Sec. 6 we restrict the class of axioms used to prove implications, to Shannon’s inequalities
(monotonicity and submodularity, reviewed in Sec. 2.2). In general, Shannon’s inequalities
are sound but incomplete for proving exact and approximate implications that hold for all
probability distributions [41, 42], but they are complete for deriving inequalities that hold
for all polymatroids [40]. We show that they are also complete for saturated+conditional
constraints (as we show in Sec 4), and for measure-based constraints [32] (Sec. 7). We
prove that every exact implication that holds for all polymatroids relaxes to an approximate
implication, and prove an upper bound λ ≤ (2n)!, and a lower bound λ ≥ 3; the exact bound
remains open. Second, in Sec. 7 we restrict the class of models used to check an implication,
to probability distributions with exactly 2 outcomes (tuples), each with probability 1/2; we
justify this shortly. We prove that, under this restriction, the implication problem has a
1-relaxation. Restricting the models leads to a complete but unsound method for checking
general implication, however this method is sound for saturated+conditional (as we show in
Sec 4) and is also sound for checking FIS constraints (as we show in Sec. 7).

Two Consequences. While our paper is focused on relaxation, our results have two con-
sequences for the exact implication problem. The first is a 2-tuple model property: an exact
implication, where the antecedents are saturated or conditional CIs, can be verified on
uniform probability distributions with 2 tuples. A similar result is known for MVD+FDs [30].
Geiger and Pearl [12], building on an earlier result by Fagin [10], prove that every set of CIs
has an Armstrong model: a discrete probability distribution that satisfies only the CIs and
their consequences, and no other CI. The Armstrong model is also called a global witness,
and, in general, can be arbitrarily large. Our result concerns a local witness: for any EI, if it
fails on some probability distribution, then it fails on a 2-tuple uniform distribution.
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The second consequence concerns the equivalence between the implication problem of
saturated+conditional CIs with that of MVD+FDs. It is easy to check that the former
implies the latter (Sec. 2). Wong et al. [38] prove the other direction, relying on the sound
and complete axiomatization of MVDs [2]. Our 2-tuple model property implies the other
direction immediately.

2 Notation and Preliminaries

We denote by [n] = {1, 2, . . . , n}. If Ω = {X1, . . . , Xn} denotes a set of variables and
U, V ⊆ Ω, then we abbreviate the union U ∪ V with UV .

2.1 Integrity Constraints and Conditional Independence
A relation instance R over signature Ω = {X1, . . . , Xn} is a finite set of tuples with attributes
Ω. Let X,Y, Z ⊆ Ω. We say that the instance R satisfies the functional dependency (FD)
X → Y , and write R |= X → Y , if forall t1, t2 ∈ R, t1[X] = t2[X] implies t1[Y ] = t2[Y ].
We say that R satisfies the embedded multivalued dependency (EMVD) X � Y | Z, and
write R |= X � Y | Z, if for all t1, t2 ∈ R, t1[X] = t2[X] implies ∃t3 ∈ R such that
t1[XY ] = t3[XY ] and t2[XZ] = t3[XZ]. One can check that X � Y | Y iff X → Y . When
XY Z = Ω, then we call X � Y | Z a multivalued dependency, MVD; notice that X,Y, Z are
not necessarily disjoint [2].

A set of constraints Σ implies a constraint τ , in notation Σ⇒ τ , if for every instance R,
if R |= Σ then R |= τ . The implication problem has been extensively studied in the literature;
Beeri et al. [2] gave a complete axiomatization of FDs and MVDs, while Herrman [15] showed
that the implication problem for EMVDs is undecidable.

Recall that two discrete random variables X,Y are called independent if p(X = x, Y =
y) = p(X = x) · p(Y = y) for all outcomes x, y. Fix Ω = {X1, . . . , Xn} a set of n jointly
distributed discrete random variables with finite domains D1, . . . ,Dn, respectively; let p be
the probability mass. For α ⊆ [n], denote by Xα the joint random variable (Xi : i ∈ α)
with domain Dα

def=
∏
i∈αDi. We write p |= Xβ ⊥ Xγ |Xα when Xβ , Xγ are conditionally

independent given Xα; in the special case β = γ, then p |= Xβ ⊥ Xβ |Xα iff Xα functionally
determines1 Xβ , and we write p |= Xα → Xβ .

An assertion Y ⊥ Z|X is called a Conditional Independence statement, or a CI; this
includes X → Y as a special case. When XY Z = Ω we call it saturated, and when Z = ∅
we call it marginal. A set of CIs Σ implies a CI τ , in notation Σ⇒ τ , if every probability
distribution that satisfies Σ also satisfies τ . This implication problem has also been extensively
studied: Pearl and Paz [27] gave a sound but incomplete set of graphoid axioms, Studeny [36]
proved that no finite axiomatization exists, while Geiger and Pearl [12] gave a complete
axiomatization for saturated, and marginal CIs.

Lee [21] observed the following connection between database constraints and CIs. The
empirical distribution of a relation R is the uniform distribution over its tuples, in other
words, ∀t ∈ R, p(t) = 1/|R|. Then:

I Lemma 1. ([21]) Forall X,Y, Z ⊂ Ω such that XY Z = Ω.

R |=X → Y ⇔ p |= X → Y and R |=X � Y |Z ⇔ p |= (Y ⊥ Z|X) (1)

1 This means: ∀u ∈ Dα, if p(Xα = u) 6= 0 then ∃v ∈ Dβ s.t. p(Xβ = v|Xα = u) = 1, and v is unique.
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The lemma no longer holds for EMVDs, and for that reason we no longer consider EMVDs
in this paper. The lemma immediately implies that if Σ, τ are saturated and/or conditional
CIs and the implication Σ⇒ τ holds for all probability distributions, then the corresponding
implication holds in databases, where the CIs are interpreted as MVDs or FDs respectively.
Wong [38] gave a non-trivial proof for the other direction; we will give a much shorter proof
in Corollary 8.

2.2 Background on Information Theory
We adopt required notation from the literature on information theory [40, 6]. For n > 0, we
identify vectors in R2n with functions 2[n] → R.

Polymatroids. A function2 h ∈ R2n is called a polymatroid if h(∅) = 0 and satisfies the
following inequalities, called Shannon inequalities:
1. Monotonicity: h(A) ≤ h(B) for A ⊆ B
2. Submodularity: h(A ∪B) + h(A ∩B) ≤ h(A) + h(B) for all A,B ⊆ [n]
The set of polymatroids is denoted Γn ⊆ R2n , and forms a polyhedral cone (reviewed in
Sec. 5). For any polymatroid h and subsets A,B,C ⊆ [n], we define3

h(B|A) def= h(AB)− h(A) (2)

Ih(B;C|A) def= h(AB) + h(AC)− h(ABC)− h(A) (3)

Then, ∀h ∈ Γn, Ih(B;C|A) ≥ 0 and h(B|A) ≥ 0. The chain rule is the identity:

Ih(B;CD|A) = Ih(B;C|A) + Ih(B;D|AC) (4)

We call Ih(B;C|A) saturated if ABC = [n], and elemental if |B| = |C| = 1; h(B|A) is a
special case of Ih, because h(B|A) = Ih(B;B|A).

Entropic Functions. If X is a random variable with a finite domain D and probability mass
p, then H(X) denotes its entropy

H(X) def=
∑
x∈D

p(x) log 1
p(x) (5)

For a set of jointly distributed random variables Ω = {X1, . . . , Xn} we define the function
h : 2[n] → R as h(α) def= H(Xα); h is called an entropic function, or, with some abuse, an
entropy. The set of entropic functions is denoted Γ∗n. The quantities h(B|A) and Ih(B;C|A)
are called the conditional entropy and conditional mutual information respectively. The
conditional independence p |= B ⊥ C | A holds iff Ih(B;C|A) = 0, and similarly p |= A→ B

iff h(B|A) = 0, thus, entropy provides us with an alternative characterization of CIs.

2-Tuple Relations and Step functions. 2-tuple relations play a key role for the implication
problem of MVDs+FDs: if an implication fails, then there exists a witness consisting of only
two tuples [30]. We define a step function as the entropy of the empirical distribution of a

2 Most authors consider rather the space R2n−1, by dropping h(∅) because it is always 0.
3 Recall that AB denotes A ∪B.
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X1 X2 U1 U2 Pr
0 0 0 0 1/2
1 1 0 0 1/2

(a)

X Y Z Pr
0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

(b)

A B C D Pr
0 0 0 0 1/2− ε
0 1 0 1 1/2− ε
1 0 1 0 ε

1 1 0 0 ε

(c)

Figure 1 Two relations and their empirical distribution (a),(b); a distribution from [17] (c).

2-tuple relation; R = {t1, t2}, t1 6= t2, and p(t1) = p(t2) = 1/2. We denote the step function
by hU , where U ( Ω is the set of attributes where t1, t2 agree. One can check:

hU (W ) =

0 if W ⊆ U
1 otherwise

(6)

If we set U = Ω in (6) then hΩ ≡ 0. Unless otherwise stated, in this paper we do not consider
hΩ to be a step function. Thus, there are 2n − 1 step functions and their set is denote Sn.
We will use the following fact extensively in this paper: IhU

(Y ;Z|X) = 1 if X ⊆ U and
Y, Z 6⊆ U , and IhU

(Y ;Z|X) = 0 otherwise.

I Example 2. Consider the relational instance in Fig. 1 (a). It’s entropy is the step
function hU1U2(W ), which is 0 for W ⊆ U1U2 and 1 otherwise. R |= X1 → X2 because
h(X2|X1) = h(X1X2) − h(X1) = 1 − 1 = 0, and R 6|= U1 → X1 because h(X1|U1) =
h(X1U1)− h(U1) = 1− 0 6= 0.

The relational instance R = {(x, y, z) | x+ y + z mod 2 = 0} in Fig. 1 (b) is called the
parity function. It’s entropy is h(X) = h(Y ) = h(Z) = 1, h(XY ) = h(XZ) = h(Y Z) =
h(XY Z) = 2. We have that R |= Y ⊥ Z because Ih(Y ;Z) = h(Y ) + h(Z) − h(Y Z) =
1 + 1− 2 = 0, but R 6|= Y ⊥ Z|X because Ih(Y ;Z|X) = 1 4.

2.3 Discussion
This paper studies exact and approximate implications, expressed as equalities or inequalities
of entropic functions h. For example, the augmentation axiom for MVDs [2] A� B|CD ⇒
AC � B|D is expressed as Ih(B;CD|A) = 0⇒ Ih(B;D|AC) = 0, which holds by the chain
rule (4). Thus, our golden standard is to prove that (in)equalities hold forall entropic functions,
Γ∗n. It is known that Γ∗n is not topologically closed [40]; its topological closure, cl (Γ∗n), is
called the set of almost entropic functions. If an inequality holds for all entropic functions
h ∈ Γ∗n, then, by continuity, it also holds for all almost entropic functions h ∈ cl (Γ∗n).
However, this observation does not extend to implications of (in)equalities; Kaced and
Romashchenko [17] gave an example of an exact implication that holds only for entropic
functions but fails for almost entropic functions. Thus, when discussing an EI, it matters
whether we assume that it holds for Γ∗n or for cl (Γ∗n). The only result in this paper where
this distinction matters are the two main theorems in Sec. 5: the negative result Theorem 16
holds for both Γ∗n and for cl (Γ∗n), while the positive result Theorem 17 holds only for cl (Γ∗n).
The results in Sec. 4 apply to any set of polymatroids K that contains all step functions, i.e.
Sn ⊆ K ⊆ Γn, thus they apply to both Γ∗n and cl (Γ∗n), while those in Sec 6 and Sec. 7 are
stated only for Γn and only for (the conic closure of) Sn respectively.

4 h(XY ) + h(XZ)− h(X)− h(XY Z) = 2 + 2− 1− 2 = 1
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3 Definition of the Relaxation Problem

We now formally define the relaxation problem. We fix a set of variables Ω = {X1, . . . , Xn},
and consider formulas of the form σ = (Y ;Z|X), where X,Y, Z ⊆ Ω, which we call a
conditional independence, CI; when Y = Z then we write it as X → Y and call it a
conditional. An implication is a formula Σ⇒ τ , where Σ is a set of CIs called antecedents
and τ is a CI called consequent. For a CI σ = (B;C|A), we define h(σ) def= Ih(B;C|A), for a
set of CIs Σ, we define h(Σ) def=

∑
σ∈Σ h(σ). Fix a set K s.t. Sn ⊆ K ⊆ Γn.

I Definition 3. The exact implication (EI) Σ⇒ τ holds in K, denoted K |=EI (Σ⇒ τ) if,
forall h ∈ K, h(Σ) = 0 implies h(τ) = 0. The λ-approximate implication (λ-AI) holds in K,
in notation K |= λ · h(Σ) ≥ h(τ), if ∀h ∈ K, λ · h(Σ) ≥ h(τ). The approximate implication
holds, in notation K |=AI (Σ⇒ τ), if there exist a λ ≥ 0 such that the λ-AI holds.

We will sometimes consider an equivalent definition for AI, as
∑
σ∈Σ λσh(σ) ≥ h(τ),

where λσ ≥ 0 are coefficients, one for each σ ∈ Σ; these two definitions are equivalent, by
taking λ = maxσ λσ. Notice that both EI and AI are preserved under subsets of K in the
sense that K1 ⊆ K2 and K2 |=x (Σ⇒ τ) implies K1 |=x (Σ⇒ τ), for x ∈ {EI,AI}.

AI always implies EI. Indeed, h(τ) ≤ λ · h(Σ) and h(Σ) = 0, implies h(τ) ≤ 0, which
further implies h(τ) = 0, because h(τ) ≥ 0 for every CI τ , and every polymatroid h. In this
paper we study the reverse.

I Definition 4. Let I be a syntactically-defined class of implication statements (Σ⇒ τ), and
let K ⊆ Γn. We say that I admits a relaxation in K if, every implication statement (Σ⇒ τ)
in I that holds exactly, also holds approximately: K |=EI Σ⇒ τ implies K |=AI Σ⇒ τ . We
say that I admits a λ-relaxation if every EI admits a λ-AI.

I Example 5. Let Σ={(A;B|∅), (A;C|B)} and τ=(A;C|∅). Since Ih(A;C|∅) ≤ Ih(A;B|∅)+
Ih(A;C|B) by the chain rule (4), then the exact implication Γn |=EI Σ⇒ τ admits a 1-AI.

4 Relaxation for FDs and MVDs: Always Possible

In this section we consider the implication problem where the antecedents are either saturated
CIs, or conditionals. This is a case of special interest in databases, because the constraints
correspond to MVDs, or FDs. Recall that a CI (B;C|A) is saturated if ABC = Ω (i.e., the
set of all attributes). Our main result in this section is:

I Theorem 6. Assume that each formula in Σ is either saturated, or a conditional, and let
τ be an arbitrary CI. Assume Sn |=EI Σ⇒ τ . Then:
1. Γn |= n2

4 h(Σ) ≥ h(τ).
2. If τ is a conditional, Z → X, then Γn |= h(Σ) ≥ h(τ).

Before we prove the theorem, we list two important consequences.

I Corollary 7. Let Σ consist of saturated CIs and/or conditionals, and let τ be any CI. Then
Sn |= Σ⇒EI τ implies Γn |= Σ⇒EI τ

Proof. If Sn |= Σ⇒EI τ then ∀h ∈ Γn, h(τ) ≤ n2

4 h(Σ), thus h(Σ) = 0 implies h(τ) = 0. J

The corollary has an immediate application to the inference problem in graphical mod-
els [12]. There, the problem is to check if every probability distribution that satisfies all CIs
in Σ also satisfies the CI τ ; we have seen that this is equivalent to Γ∗n |=EI Σ ⇒ τ . The
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corollary states that it is enough that this implication holds on all of the uniform 2-tuple
distributions, i.e. Sn |= Σ ⇒EI τ , because this implies the (even stronger!) statement
Γn |= Σ⇒EI τ . Decidability was already known: Geiger and Pearl [12] proved that the set
of graphoid axioms is sound and complete for the case when both Σ and τ are saturated,
while Gyssens et al. [14] improve this by dropping any restrictions on τ .

The second consequence is the following:

I Corollary 8. Let Σ, τ consist of saturated CIs and/or conditionals. Then the following two
statements are equivalent:
1. The implication Σ⇒ τ holds, where we interpret Σ, τ as MVDs and/or FDs.
2. Γn |=EI Σ⇒ τ .

Proof. We have shown right after Lemma 1 that (2) implies (1). For the opposite direction,
by Th. 6, we need only check Sn |=EI Σ ⇒ τ , which holds because on every uniform
probability distribution a saturated CI holds iff the corresponding MVD holds, and similarly
for conditionals and FDs. Since the 2-tuple relation satisfies the implication for MVDs+FDs,
it also satisfies the implication for CIs, proving the claim. J

Wong et al. [38] have proven that the implication for MVDs is equivalent to that of the
corresponding saturated CIs (called there BMVD); they did not consider FDs. For the proof
in the hard direction, they use the sound and complete axiomatization of MVDs in [2]. In
contrast, our proof is independent of any axiomatic system, and is also much shorter. Finally,
we notice that the corollary also implies that, in order to check an implication between
MVDs and/or FDs, it suffices to check it on all 2-tuple databases: indeed, this is equivalent
to checking Sn |=EI Σ ⇒ τ , because this implies Item (2), which in turn implies item (1).
This rather surprising fact was first proven in [30].

We now turn to the proof of Theorem 6. Before proceeding, we note that we can assume
w.l.o.g. that Σ consists only of saturated CIs. Indeed, if Σ contains a non-saturated term,
then by assumption it is a conditional, X → Y , and we will replace it with two saturated
terms: (Y ;Z|X) and XZ → Y , where Z = Ω \XY . Denoting Σ′ the new set of formulas,
we have h(Σ) = h(Σ′), because h(Y |X) = Ih(Y ;Z|X) + h(Y |XZ). Thus, we will assume
w.l.o.g. that all formulas in Σ are saturated.

Theorem 6 follows from the next result, which is also of independent interest. We say
that a CI (X;Y |Z) is elemental if |X| = |Y | = 1. We say that σ covers τ if all variables in τ
are contained in σ; for example σ = (abc; d|e) covers τ = (cd; be). Then:

I Theorem 9. Let τ be an elemental CI, and suppose each formula in Σ covers τ . Then
Sn |=EI (Σ⇒ τ) implies Γn |= h(τ) ≤ h(Σ).

Notice that this result immediately implies Item (1) of Theorem 6, because every τ =
(Y ;Z|X) can be written as a sum of |Y | · |Z| ≤ n2/4 elemental terms (by the chain rule). In
what follows we prove Theorem 9, then use it to prove item (2) of Theorem 6.

Finally, we consider whether (1) of Theorem 6 can be strengthened to a 1-relaxation; we
give in Th. 11 below a sufficient condition, whose proof uses the notion of I-measure [40] and
is included in the full paper [18], and leave open the question whether 1-relaxation holds in
general for implications where the antecedents are saturated CIs and conditionals.

I Definition 10. We say that two CIs (X;Y |Z) and (A;B|C) are disjoint if at least one of
the following four conditions holds: (1) X ⊆ C, (2) Y ⊆ C, (3) A ⊆ Z, or (4) B ⊆ Z.

If τ = (X;Y |Z) and σ = (A;B|C) are disjoint, then for any step function hW , it cannot be
the case that both hW (τ) 6= 0 and hW (σ) 6= 0. Indeed, if such W exists, then Z,C ⊆W and,
assuming (1) X ⊆ C (the other three cases are similar), we have ZX ⊆W thus hW (τ) = 0.
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I Theorem 11. Let Σ be a set of saturated, pairwise disjoint CI terms (Def. 10), and τ be
a saturated mutual information. Then, Sn |=EI (Σ⇒ τ) implies Γn |= h(τ) ≤ h(Σ).

4.1 Proof of Theorem 9
The following holds by the chain rule (proof in the appendix), and will be used later on.

I Lemma 12. Let σ = (A;B|C) and τ = (X;Y |Z) be CIs such that X ⊆ A, Y ⊆ B, C ⊆ Z
and Z ⊆ ABC. Then, Γn |= h(τ) ≤ h(σ).

We now prove theorem 9. We use lower case for single variables, thus τ = (x; y|Z) because
it is elemental. We may assume w.l.o.g. x, y 6∈ Z (otherwise Ih(x; y|Z) = 0 and the lemma
holds trivially). The deficit of an elemental CI τ = (x; y|Z) is the quantity |Ω − Z|. We
prove by induction on the deficit of τ that Sn |=EI Σ⇒ τ implies Γn |= h(τ) ≤ h(Σ).

Assume Sn |=EI Σ ⇒ τ , and consider the step function at Z. Since hZ(τ) = 1, there
exists σ ∈ Σ, σ = (A;B|C), such that hZ(σ) = 1; this means that C ⊆ Z, and A,B 6⊆ Z. In
particular x, y 6∈ C, therefore x, y ∈ AB, because σ covers τ . If x ∈ A and y ∈ B (or vice
versa), then Γn |= h(τ) ≤ h(σ) by Lemma 12, proving the theorem. Therefore we assume
w.l.o.g. that x, y ∈ A and none is in B. Furthermore, since B 6⊆ Z, there exists u ∈ B − Z.

Base case: τ is saturated. Then u 6∈ xyZ, contradicting the assumption that τ is saturated;
in other words, in the base case, it is the case that x ∈ A and y ∈ B.

Step: Let ZA = Z∩A, and ZB = Z∩B. Since C ⊆ Z, and σ = (A;B|C) covers τ , then
Z = ZAZBC. We also write A = xyA′ZA (since x, y ∈ A) and B = uB′ZB. So, we have
that σ = (A;B|C) = (xyA′ZA;uB′ZB |C), and we use the chain rule to define σ1, σ2:

h(σ) =Ih(xyA′ZA;uB′ZB |C) = Ih(xyA′ZA;uZB |C︸ ︷︷ ︸
def= σ1

) + Ih(xyA′ZA;B′|uCZB︸ ︷︷ ︸
def= σ2

)

We also partition Σ s.t. h(Σ) = h(σ1) + h(Σ2), where Σ2
def= (Σ \ {σ}) ∪ {σ2}.

Next, define τ ′ def= (x;uy|Z) and use the chain rule to define τ1, τ2:

h(x; y|Z︸ ︷︷ ︸
τ

) ≤ Ih(x;uy|Z︸ ︷︷ ︸
τ ′

) = Ih(x;u|Z︸ ︷︷ ︸
def= τ1

) + Ih(x; y|uZ︸ ︷︷ ︸
def= τ2

) (7)

By Lemma 12, Γn |= h(σ1) ≥ h(τ1). We will prove: Sn |=EI Σ2 ⇒ τ2. This implies the
theorem, because Σ2 is saturated, and by the induction hypothesis Γn |= h(Σ2) ≥ h(τ2)
(since the deficit of τ2 is one less than that of τ), and the theorem follows from h(Σ) =
h(σ1) + h(Σ2) ≥ h(τ1) + h(τ2) = h(τ ′) ≥ h(τ). It remains to prove Sn |=EI Σ2 ⇒ τ2, and we
start with a weaker claim:

B Claim 13. Sn |=EI Σ⇒ τ2.

Proof. By Lemma 12 we have that h(σ) = Ih(xyA′ZA;uB′ZB |C) ≥ Ih(xy;u|Z) =
Ih(y;u|Z) + Ih(x;u|yZ). Therefore, Σ ⇒ (x;u|yZ). Since Σ ⇒ (x; y|Z), then by the
chain rule we have that Σ⇒ (x;uy|Z) = τ ′, and the claim follows from (7). C

Finally, we prove Sn |=EI Σ2 ⇒ τ2. Assume otherwise, and let hW be a step function such
that hW (τ2) = IhW

(x; y|uZ) = 1, and hW (Σ2) = 0. This means that uZ ⊆ W . Therefore
uZB ⊆W , implying IhW

(xyA′ZA;uZB |C) = hW (σ1) = 0 (because uZBC ⊆ uZ). Therefore,
hW (Σ) = hW (σ1) + hW (Σ2) = 0, contradicting the fact that Sn |=EI Σ⇒ τ2.
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4.2 Proof of Theorem 6 Item 2
I Lemma 14. Suppose Sn |=EI Σ⇒ τ , where τ = (X;Y |Z). Let σ ∈ Σ such that τ, σ are
disjoint (Def. 10). Then: Sn |=EI

(
Σ\{σ}

)
⇒ τ.

Proof. Let Σ′ def= Σ \ {σ}. Assume by contradiction that there exists a step function hW
such that hW (Σ′) = 0 and hW (τ) = 1. Since σ, τ are disjoint, hW (σ) = 0. Then hW (Σ) = 0,
contradicting the assumption Sn |=EI Σ⇒ τ . J

I Lemma 15. Let Σ be a set of saturated CIs s.t. Sn |=EI Σ⇒ τ . Suppose τ = (Z → uX)
(which, recall, is a shorthand for (uX;uX|Z)), and define τ1 = (Z → u), τ2 = (uZ → X);
thus, h(τ) = h(τ1)+h(τ2). Then there exists Σ1 and Σ2 such that: (1) h(Σ) = h(Σ1)+h(Σ2);
we say that Σ1,Σ2 form a parition of Σ. (2) Σ1 covers τ1 and Sn |=EI Σ1 ⇒ τ1. (3) Σ2 is
saturated and Sn |= Σ2 ⇒ τ2.

Proof. We partition Σ into Σ1 and Σ2 as follows. For every σ = (A;B|C) ∈ Σ, if u ∈ C then
we place σ in Σ2. Otherwise, assume w.l.o.g that u ∈ A, and we write A = uAZAXA

′ where
AZ = A ∩ Z, AX = A ∩X, and A′ = A\{uAZAX}. We use the chain rule to define σ1, σ2:

Ih(A;B|C) = Ih(uAZAXA′;B|C) = Ih(uAZ ;B|C︸ ︷︷ ︸
def= σ1

) + I(AXA′;B|uAZC︸ ︷︷ ︸
def= σ2

) (8)

We place σ1 in Σ1, and σ2 in Σ2. We observe that σ1 covers τ1 (because Z = AZBZCZ ⊆
AZBC) and σ2 is saturated. Furthermore, h(Σ1) + h(Σ2) = h(Σ). We prove Σ1 |=EI τ1.
By assumption, Σ |=EI τ1 = (Z → u). Let any σ2 = (A;B|C) ∈ Σ2; since u ∈ C, by
Lemma 14 we can remove it, obtaining Σ \ {σ2} |=EI τ1; repeating this process proves
Σ1 |=EI τ1. Finally, we prove Σ2 |=EI τ2. By assumption, Σ |=EI τ2 = (uZ → X). Let
any σ1 = (uAZ ;B|C) ∈ Σ1; since uAZ ⊆ uZ, by Lemma 14 we can remove it, obtaining
Σ \ {σ1} |=EI τ2; repeating this process proves Σ2 |=EI τ2. J

We now complete the proof of Theorem 6 item 2. Let τ = (Z → X), and Σ be saturated.
We show, by induction on |X|, that if Sn |=EI Σ⇒ τ then Γn |= h(τ) ≤ h(Σ). If |X| = 1,
then X = {x}, h(x|Z) = I(x;x|Z) is elemental, and the claim follows from Th. 9. Otherwise,
let u be any variable in X, write τ = (Z → uX ′), and apply Lemma 15 to τ1 = (Z → u),
τ2 = (Zu→ X ′), which gives us a partition of Σ into Σ1,Σ2. On one hand, Sn |=EI Σ1 ⇒ τ1,
and from Th. 9 we derive h(τ1) ≤ h(Σ1) (because τ1 is elemental, and covered by Σ1);
on the other hand Sn |=EI Σ2 ⇒ τ2 where Σ2 is saturated, which implies, by induction,
h(τ2) ≤ h(Σ2). The result follows from h(τ) = h(τ1) + h(τ2) ≤ h(Σ1) + h(Σ2) = h(Σ),
completing the proof.

5 Relaxation for General CIs: Sometimes Impossible

We consider the relaxation problem for arbitrary Conditional Independence statements.
Recall that our golden standard is to check (in)equalities forall entropic functions, h ∈ Γ∗n.
As we saw, for MVD+FDs, these (in)equalities coincide with those satisfied by Sn, and with
those satisfied by Γn. In general, however, they differ. We start with an impossibility result,
then prove that relaxation with an arbitrarily small error term always exists. Both results
are for the topological closure, cl (Γ∗n). This makes the negative result stronger, but the
positive result weaker; it is unlikely for the positive result to hold for Γ∗n, see [17, Sec.V.(A)]
and Appendix A.
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I Theorem 16. There exists Σ, τ with four variables, such that cl (Γ∗4) |=EI (Σ⇒ τ) and
cl (Γ∗4) 6|=AI (Σ⇒ τ).

For the proof, we adapt an example by Kaced and Romashchenko [17, Inequality (I5′)
and Claim 5], built upon an earlier example by Matúš [25]. Let Σ and τ be the following:

Σ ={(C;D|A), (C;D|B), (A;B), (B;C|D)} τ =(C;D) (9)

We first prove that, for any λ ≥ 0, there exists an entropic function h such that:

Ih(C;D) >λ · (Ih(C;D|A) + Ih(C;D|B) + Ih(A;B) + Ih(B;C|D)) (10)

Indeed, consider the distribution shown in Fig. 1 (c) (from [17]). By direct calculation,
Ih(C;D) = ε + O(ε2) = Ω(ε), while Ih(C;D|A) = Ih(C;D|B) = Ih(A;B) = 0 and
Ih(B;C|D) = O(ε2) and we obtain Eq.(10) by choosing ε small enough. Next, we prove
cl (Γ∗n) |=EI (Σ⇒ τ). Matúš [25] proved the following5 ∀h ∈ Γ∗n and ∀k ∈ N:

Ih(C;D) ≤Ih(C;D|A) + k+3
2 Ih(C;D|B) + Ih(A;B) + k−1

2 Ih(B;C|D) + 1
k
Ih(B;D|C) (11)

The inequality obviously holds for cl (Γ∗n) too. The EI follows by taking k →∞. Inequality
(11) is almost a relaxation of the implication (9): the only extra term is the last term, which
can be made arbitrarily small by increasing k. Our second result generalizes this:

I Theorem 17. Let Σ, τ be arbitrary CIs, and suppose cl (Γ∗n) |= Σ⇒ τ . Then, for every
ε > 0 there exists λ > 0 such that, forall h ∈ cl (Γ∗n):

h(τ) ≤λ · h(Σ) + ε · h(Ω) (12)

Intuitively, the theorem shows that every EI can be relaxed in cl (Γ∗n), if one allows for an
error term, which can be made arbitrarily small. We notice that the converse of the theorem
always holds: if h(Σ) = 0, then (12) implies h(τ) ≤ ε · h(Ω), ∀ε > 0, which implies h(τ) = 0.

Proof of Theorem 17. For the proof we need a brief review of cones [37, 4]. A set C ⊆ RN
is convex if, for any two points x1, x2 ∈ C and any θ ∈ [0, 1], θx1 + (1 − θ)x2 ∈ C; and
it is called a cone, if for every x ∈ C and θ ≥ 0 we have that θx ∈ C. The conic hull of
C, conhull (C), is the set of vectors of the form θ1x1 + · · · + θkxk, where x1, . . . , xk ∈ C
and θi ≥ 0,∀i ∈ [k]. A cone K is finitely generated if K = conhull (L) for some finite set
L ⊂ RN , and is polyhedral if there exists u1, . . . , ur ∈ RN s.t. K = {x | ui·x ≥ 0, i ∈ [r]}; a
cone is finitely generated iff it is polyhedral. For any K ⊆ RN , the dual is the set K∗ ⊆ RN
defined as:

K∗
def= {y | ∀x ∈ K,x·y ≥ 0} (13)

K∗ represents the linear inequalities that hold for all x ∈ K, and is always a closed, convex
cone (it is the intersection of closed half-spaces). We warn that the ∗ in Γ∗n does not represent
the dual; the notation Γ∗n for entropic functions is by now well established, and we adopt it
here too, despite it’s clash with the standard notation for the dual cone. The following are
known properties of cones (reviewed and proved in the Appendix):
(A) For any set K, cl

(
conhull (K)

)
= K∗∗.

5 Matus [25] proved I(C;D) ≤ I(C;D|A) + I(C;D|B) + I(A;B) + I(C;E|B) + 1
k I(B;E|C) +

k−1
2 (I(B;C|D) + I(C;D|B)). Inequality (11) follows by setting E = D.
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(B) If L is a finite set, then conhull (L) is closed.
(C) If K1 and K2 are closed, convex cones then: (K1 ∩K2)∗ =

(
cl
(
conhull (K∗1 ∪K∗2 )

))
.
J

Theorem 17 follows from a more general statement about cones:

I Theorem 18. Let K ⊆ RN be a closed, convex cone, and let y1, . . . , ym, y be m+ 1 vectors
in RN . The following are equivalent:
(a) For every x ∈ K, if x · y1 ≤ 0, . . . , x · ym ≤ 0 then x · y ≤ 0.
(b) For every ε > 0 there exists θ1, . . . , θm ≥ 0 and an error vector e ∈ RN such that
||e||∞ < ε and, for every x ∈ K, x · y ≤ θ1x · y1 + · · ·+ θmx · ym + x · e.

Proof. Let L def= {−y1,−y2, . . . ,−ym}. Statement (a) is equivalent to −y ∈ (K ∩ L∗)∗.
Consider statement (b). It asserts ∀ε > 0,∃||e||∞ < ε such that

∃θ1 ≥ 0, . . . ,∃θk ≥ 0,∀x ∈ K,x · y ≤ x · (
∑

θiyi + e)︸ ︷︷ ︸
−y+

∑
θiyi+e∈K∗

In other words, −y + e ∈ conhull (K∗ ∪ L) and, since this must hold for arbitrarily small
||e||∞, statement (b) is equivalent to −y ∈ cl

(
conhull (K∗ ∪ L)

)
. We prove equivalence of

(a) and (b):

(K ∩ L∗)∗ =cl
(
conhull (K∗ ∪ L∗∗)

)
Item (C)

=cl
(

conhull
(
K∗ ∪ cl

(
conhull (L)

)))
Item (A)

=cl
(

conhull
(
K∗ ∪ conhull (L)

))
Item (B)

=cl
(
conhull (K∗ ∪ L)

)
Def. of conhull (−) J

We now prove Theorem 17, using the fact that K def= cl (Γ∗n) is a closed cone [40]. Let
Σ = {σ1, . . . , σm}. Associate to each term σi = (Bi;Ci|Ai) the vector yi ∈ R2n such that,
forall h ∈ R2n , h · yi = Ih(Bi;Ci|Ai) = h(AiBi) + h(AiCi)− h(AiBiCi)− h(Ci) (i.e. yi has
two coordinates equal to +1, and two equal to −1), for i = 1,m. Denote by y the similar
vector associated to τ . To prove Theorem 17, let ε > 0. By assumption, cl (Γ∗n) |= Σ⇒ τ ,
thus condition (a) of Th. 18 holds, and this implies condition (b), where we choose e such
that ||e||∞ < ε/2n. Then, condition (b) becomes:

h(τ) = h · y ≤
∑
i

θih · yi + h · e =
∑
i

θih(σi) +
∑
W⊆[n]

|eW |h(W ) ≤ λh(Σ) + εh(Ω)

where λ = maxi θi. This completes the proof of Theorem 17.

6 Restricted Axioms

The characterization of the entropic cone cl (Γ∗n) is currently an open problem [40]. In
other words, there is no known decision procedure capable of deciding whether an exact
or approximate implication holds for all entropic functions. In this section, we consider
implications that can be inferred using only the Shannon inequalities (e.g., (2), and (3)),
and thus hold for all polymatroids h ∈ Γn. Several tools exists (e.g. ITIP or XITIP [39]) for
checking such inequalities.
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This study is important for several reasons. First, by restricting to Shannon inequalities
we obtain a sound, but in general incomplete method for deciding implications. All axioms
for reasoning about MVD, FD, or semi-graphoid axioms6 [2, 27, 12] are, in fact, based on
Shannon inequalities. Second, under some syntactic restrictions, they are also complete; as we
saw, they are complete for MVD and/or FDs, for saturated constraints and/or conditionals,
and also for marginal constraints [12]. Third, Shannon inequalities are complete for reasoning
for a different class of constraints, called measure-based constraints, which were introduced by
Sayrafi et al. [32] (where Γn is denoted byMSI) and shown to have a variety of applications.

We start by showing that every exact implication of CIs can be relaxed over Γn. This
result was known, e.g. [17]; we re-state and prove it here for completeness.

I Theorem 19. Let Σ, τ be arbitrary CIs. If Γn |=EI Σ ⇒ τ , then there exist λ ≥ 0, s.t.
Γn |= h(τ) ≤ λ · h(Σ). In other words, CIs admit relaxation over Γn.

Proof. (Sketch) We set K = Γn in Th. 18. Then K is polyhedral, hence K∗ is finitely
generated. Therefore, in the proof of Th. 18, the set K∗ ∪ L is finitely generated, hence
conhull (K∗ ∪ L) is closed, therefore there is no need for an error vector e in Statement (b)
of Th. 18, and, hence, no need for ε in AI (12) J

It follows that Shannon inequalities are incomplete for proving the implication Σ⇒ τ ,
where Σ, τ are given by Eq. (9). This is a “non-Shannon” exact implication, i.e. it holds only
in cl (Γ∗n), but fails in Γn, otherwise it would admit a relaxation. The explanation is that
Matus’ inequality (11) is a non-Shannon inequality. (The first example of a non-Shannon
inequality is due to Yeung and Zhang [42].) Next, we turn our attention to the size of the
factor λ. We prove a lower bound of 3:

I Theorem 20 ([9]). The following inequality holds for all polymatroids h ∈ Γn:

h(Z) ≤ Ih(A;B|C) + Ih(A;B|D) + Ih(C;D|E) + Ih(A;E) + 3h(Z|A) + 2h(Z|B) (14)

but the inequality fails if any of the coefficients 3, 2 are replaced by smaller values. In particular,
denoting τ,Σ the terms on the two sides of Eq.(14), the exact implication Γn |=EI Σ ⇒ τ

holds, and does not have a 1-relaxation.

We have checked the two claims in the theorem using the ITIP7 tool. For the positive
result, we also provide direct (manual) proof in the full version of this paper [18]. Since some
EIs relax only with λ ≥ 3, the next question is, how large does λ need to be? We prove this
upper bound in [18]:

I Theorem 21. If Γn |= Σ⇒ τ then Γn |= τ ≤ (2n)! ·h(Σ). In other words, every implication
of CIs admits a (2n)!-relaxation over Γn.

7 Restricted Models

In this section we restrict ourselves to models of uniform 2-tuple distributions. Recall
that their entropic functions are the step functions, Sn. Denoting their conic hull by
Pn

def= conhull (Sn), we prove here that all EI’s admit a 1-relaxation on Pn. This study has
two motivations. First, it leads to a complete, but unsound procedure for implication. A

6 Semi-graphoid axioms restricted to “strictly positive” distributions, which fail Γ∗n.
7 http://user-www.ie.cuhk.edu.hk/~ITIP/
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model checking system may verify an EI or AI by checking it on all 2-tuple distributions. As
we saw in Sec. 4 this procedure is sound and complete for saturated or conditional CI’s, but
it may be unsound in general, for example the inequality Ih(X;Y |Z) ≤ Ih(X;Y ) holds for all
step functions, but fails on the “parity function” in Fig. 1 (b). Second, this model checking
procedure is sound and complete in an important application, namely for checking differential
constraints in market basket analysis [33]. Differential constraints are more general than the
CIs we discussed so far, yet we prove here that they, too, admit a 1-relaxation in Pn. Thus,
our relaxation result has immediate application to market basket constraints.

Consider a set of items Ω = {X1, . . . , Xn}, and a set of baskets B = {b1, . . . , bN}
where every basket is a subset bi ⊆ Ω. The support function f : 2Ω → N assigns to
every subset W ⊆ B the number of baskets in B that contain the set W : f(W ) = |{i |
i ∈ [N ],W ⊆ bi ∈ B}|. A constraint f(W ) = f(WX) asserts that every basket that contains
W also contains X. Sayrafi and Van Gucht [33] define the density of a function f : 2Ω → N
as df (W ) def=

∑
Z:W⊆Z(−1)|Z−W |f(Z); we show below this equals the number of baskets

bi ∈ B s.t. W = bi. Then, they define a differential constraint to be a statement of the form
df (W ) = 0, for some W ⊆ Ω, and study the implication problem of differential constraints.

We now explain the connection to step functions Sn; for the purpose of this discussion we
consider hΩ to be a step function, which is hΩ ≡ 0 (Sec 2.2). Fix i ∈ [N ] and consider the
single basket bi ∈ B. Define fbi

to be the support function for the singleton set {bi}, that is
fbi

(W ) = 1 if W ⊆ bi and 0 otherwise. It follows that hbi
(W ) def= 1− fbi

(W ) is precisely the
step function at bi. The support function for B = {b1, . . . , bN} is f =

∑
i∈[N ] fbi

= N − h,

where h def=
∑
i∈[N ] hbi ∈ Pn. Thus, any support function f gives rise to a polymatroid

h
def= N − f ∈ Pn. By linearity, their densities are related by df = dN − dh, where dN is the

density of the constant function N : dN (W ) = N ·
∑
Z:W⊆Z⊆Ω(−1)|Z−W |, thus dN (Ω) = N

and dN (W ) = 0 for W ( Ω; in particular, df (W ) = −dh(W ) for W ( Ω. Conversely, any
h =

∑
U(Ω cUhU ∈ Pn, where cU ≥ 0, and any N ≥

∑
U cU gives rise to a set of baskets B

of size N , where each set U ( Ω occurs exactly cU times and Ω occurs exactly N −
∑
U cU

times, such that the support function of B is f = |B|−h. Therefore, the implication problem
of differential constraints studied in [33] is equivalent to the implication problem for Pn. We
prove that the latter admits a 1-relaxation. We start with a lemma (proof in Appendix):

I Lemma 22. Fix a function h : 2Ω → R s.t. h(∅) = 0. Then h =
∑
Z(Ω(−dh(Z)) · hZ . In

other words, the step functions hZ form a basis for the vector space {h ∈ R2n | h(∅) = 0}.

Fix a step function, h = hW . By the Lemma, hW admits a unique decomposition
hW =

∑
Z(Ω(−dhW

(Z))hZ ; it follows that dhW
(Z) = −1 when Z = W and dhW

(Z) = 0
otherwise. In particular, dh ≤ 0 forall h ∈ Pn. Fix a set of baskets B = {b1, . . . , bN}, and let f
be its support function. We prove that df (Z) is equal to the number of baskets bi s.t. Z = bi;
in particular df ≥ 0. Indeed, for Z = Ω this follows from the definition of the differential df ,
while for Z ( Ω we use the fact that f = N −

∑
i hbi and df (Z) = −

∑
i dhbi

(Z).
The quantity Ih(y1; y2; · · · ; ym|W ) def= −

∑
Z:W⊆Z⊆{y1,...,ym}(−1)|Z−W |h(Z) is called the

conditional multivariate mutual information, thus, −dh(W ) is a saturated conditional mul-
tivariate mutual information. We show in the full paper [18] that −dh(W ) is precisely the
I-measure of an atom in I-measure theory [40].

Once we have motivated the critical role of the negated densities −dh(W ), we define
an I-measure constraint to be an arbitrary sum σ = −

∑
i dh(Wi); the exact constraint is

the assertion σ = 0, while an approximate constraint asserts some bound, σ ≤ c. The
differential constraints [33] are special cases of I-measure constraints. Any CI constraint
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is also a special case of an I-measure, for example h(Y |X) = −
∑
W :X⊆W,Y 6⊆W dh(W ), and

Ih(Y ;Z|X) = −
∑
W :X⊆W,X 6⊆W,Y 6⊆W dh(W ). Since dh ≤ 0 for h ∈ Pn, it follows that all

I-measure constraints are ≥ 0. We prove8:

I Theorem 23. Exact implications of I-measure constraints admit a 1-relaxation in Pn.

Proof. Consider an implication Σ⇒ τ where all constraints in Σ, τ are I-measure constraints.
Let τ = −

∑
i dh(Wi). Then, for every i, there exists some constraint σ = −

∑
j dh(Wj) ∈ Σ

such thatWi = Wj for some j, proving the theorem. If not, then for the step function h def= hWi

we have h(σ) = 0 forall σ ∈ Σ, yet h(τ) = 1, contradicting the assumption Pn |= Σ⇒ σ. J

I Example 24. Consider Example 4.3 in [33]: d1 = f(A) +f(ABCD)−f(ABC)−f(ACD),
d2 = f(C)− f(CD), and d = f(AB)− f(ABD). Sayrafi and Van Gucht prove d1 = d2 = 0
implies d = 0 for all support functions f . The quantity d1 represents the number of baskets
that contain A, but do not contain BC nor CD, while d2 is the number of baskets that
contain C but not D. Our theorem converts the exact implication into an inequality as follows.
Denote by σ1

def= Ih(BC;CD|A), σ2
def= h(D|C), τ def= h(D|AB), Pn |= (σ1 = σ2 = 0⇒ τ = 0)

relaxes to Pn |= σ1 + σ2 ≥ τ , which translates into d1 + d2 ≤ d forall support functions f .

8 Discussion and Future Work

Number of Repairs. A natural way to measure the degree of a constraint in a relation
instance R is by the number of repairs needed to enforce the constraint on R. In the case of
a key constraint, X → Y , where XY = Ω, our information-theoretic measure is naturally
related to the number of repairs, as follows. If h(Y |X) = c, where h is the entropy of the
empirical distribution on R, then one can check |R|/|ΠX(R)| ≤ 2c. Thus, the number of
repairs |R| − |ΠX(R)| is at most (2c − 1)|ΠX(R)|. We leave for future work an exploration
of the connections between number of repairs and information theoretic measures.

Small Model Property. We have proven in Sec. 4 that several classes of implications
(including saturated CIs, FDs, and MVDs) have a “small model” property: if the implication
holds for all uniform, 2-tuple distributions, then it holds in general. In other words, it suffices
to check the implication on the step functions Sn. One question is whether this small model
property continues to hold for other tractable classes of implications in the literature. For
example, Geiger and Pearl [12] give an axiomatization (and, hence, a decision procedure) for
marginal CIs. However, marginal CIs do not have the same small model property. Indeed,
the implication (X ⊥ Y )&(X ⊥ Z)⇒ (X ⊥ Y Z) holds for all uniform 2-tuple distributions
(because Ih(X;Y Z) ≤ Ih(X;Y ) + Ih(X;Z) holds for all step functions), however it fails for
the “parity distribution” in Fig.1(b). We leave for future work an investigation of the small
model property for other classes of constraints.

Proof Techniques. Since we had to integrate concepts from both database theory and
information theory, we had to make a choice of which proof techniques to favor. In particular,
Pn, the cone closure of the step functions, is better known in information theory as the
set of entropic functions with a non-negative I-measure. After trying both alternatives, we
have chosen to favor the step functions in most of the proofs, because of their connection
to 2-tuple relations. We explain in the full paper [18] the connection to the I-measure, and
include the proof of Th. 11, which is easier to express in that language.

8 A version of this proof based on I-measure theory appears in the full version of the paper [18].
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Bounds on the factor λ. In the early stages of this work we conjectured that all CIs in Γn
admit 1-relaxation, until we discovered the counterexample in Th. 20, where λ = 3. On the
other hand, the only general upper bound is (2n)!. None of them is likely to be tight. We
leave for future work the task of finding tighter bounds for λ.
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A Example for Section 5

Theorem 16 states that some EI does not relax to an AI. The example, based on [17], uses
4 random variables, hence it is essentially a statement about R15, making it difficult to
visualize its underlying geometry. We give here a simpler counterexample, in R3, albeit in a
vector space unrelated to information theory.

Let K def= {
(
x1 x2
x2 x3

)
| x1 ≥ 0, x3 ≥ 0, x1x3 ≥ x2

2} be the cone of semi-positive def-

inite 2 × 2 matrices. This is known to be a convex cone, also called the positive semi-
definite cone [4]. Equivalently, we view K as a cone in R3, namely K = {(x1, x2, x3) |
x1 ≥ 0, x3 ≥ 0, x1x3 ≥ x2

2} Then K satisfies the following Exact Implication:

∀(x1, x2, x3) ∈ K : x1 ≤ 0⇒ x2 ≤ 0

because x1 ≤ 0 is equivalent to x1 = 0, implying x2
2 ≤ 0 thus x2 = 0. However, K does not

satisfy the corresponding Approximate Implication, more precisely the following is false:

∃λ > 0,∀(x1, x2, x3) ∈ K : x2 ≤ λx1 (this is false)

Indeed, for every choice of λ > 0, choose 0 < x1 < 1/λ, and let x2 = 1, x3 = 1/x1. Then
(x1, x2, x3) ∈ K, yet x2 > λx1.

Instead, Theorem 18 states that, for every ε > 0, there exists λ > 0, and an error term
e = (e1, e2, e3), with e1, e2, e3 < ε, such that:

∀x ∈ K : x2 ≤ λx1 + e1x1 + e2x2 + e3x3

In our simple example, this statement is easily verified. Indeed, given ε > 0, define λ def= 1/ε
and e def= (0, 0, ε/4). Then λx1 + (e1x1 + e2x2 + e3x3) = 1

εx1 + ε
4x3 ≥ 2

√
1
4x1x3 = √x1x3 ≥
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|x2| ≥ x2 proving the AI. This simple example explains why the error term is necessary in
Theorem 18.

Geometrically, the error term is necessary whenever the cone conhull (K∗ ∪ L) used in
the proof of Theorem 18 is not closed. In our example K∗ = K because the positive, semi-
definite cone is self-dual [4], and L def= {(−1, 0, 0)}, and will check that conhull (K∗ ∪ L) =
conhull (K ∪ L) is not closed. For that, consider the sequence yn

def= (0, 1, 1/n). On one
hand, we have (n, 1, 1/n) ∈ K, therefore yn = (0, 1, 1/n) = (n, 1, 1/n) + n(−1, 0, 0) ∈
conhull (K ∪ L). On the other hand, limn→∞ yn = (0, 1, 0) 6∈ conhull (K ∪ L). To see this,
it suffices to notice that every vector in conhull (K ∪ L) has the form (x1 − λ, x2, x3) for
some (x1, x2, x3) ∈ K and λ ≥ 0, and, therefore, it satisfies the EI x3 = 0 ⇒ x2 = 0; our
limit vector (0, 1, 0) does not satisfy this EI, hence it is not in conhull (K ∪ L). This proves
the fact that conhull (K∗ ∪ L) is not closed, and hence taking its closure in the proof of
Theorem 18 is necessary, leading to the error term.

B Proof of Cone Properties and Identities from Section 5

We need several known properties of cones; we give the proofs of some of them, for complete-
ness, and refer for the others to [4].

I Theorem 25. Let K,K1,K2 ⊆ Rn. The following holds.
1. K1 ⊆ K2 ⇒ K∗2 ⊆ K∗1
2. K1 ⊆ K∗2 iff K∗1 ⊇ K2.
3. If K 6= ∅ then cl

(
conhull (K)

)
= K∗∗.

4. K∗ =
(

cl
(
conhull (K)

))∗
.

5. If K1 and K2 are closed, convex cones then: (K1 ∩K2)∗ =
(

cl
(
conhull (K∗1 ∪K∗2 )

))
.

6. A cone K is finitely generated iff K∗ is finitely generated.

Proof.
Proof of (1) Let x ∈ K∗2 , and let y ∈ K1. Since x · z ≥ 0 for every vector z ∈ K2, and since

K2 ⊇ K1 then x · y ≥ 0 as well. Therefore, x ∈ K∗1 .
Proof of (2) Both statements assert ∀x ∈ K1,∀y ∈ K2, x·y ≥ 0.

We omit the proofs of (3) and (4) and refer to [4].
Proof of (5) By definition of union we have that: K∗i ⊆ cl

(
conhull (K∗1 ∪K∗2 )

)
for

i ∈ {1, 2}. By item (1) we have that K∗∗i ⊇
(

cl
(
conhull (K∗1 ∪K∗2 )

))∗
for i ∈ {1, 2}.

Since K1 and K2 are closed convex cones then by item (3) it holds that K∗∗1 = K1 and
K∗∗2 = K2. Therefore, for i ∈ {1, 2} we have that Ki ⊇

(
cl
(
conhull (K∗1 ∪K∗2 )

))∗
.

From the above we get that K1 ∩K2 ⊇
(

cl
(
conhull (K∗1 ∪K∗2 )

))∗
. By property (1) we

get that:
(K1 ∩K2)∗ ⊆

(
cl
(
conhull (K∗1 ∪K∗2 )

))∗∗
. By property (3) we have that

(
cl
(
conhull (K∗1 ∪K∗2 )

))∗∗
= cl

(
conhull (K∗1 ∪K∗2 )

)
.

Overall, we get that (K1 ∩K2)∗ ⊆ cl
(
conhull (K∗1 ∪K∗2 )

)
.

Proof of (6). Suppose K is finitely generated, K = conhull({x1, . . . , xn}). Then K∗ = {y |
x1 · y ≥ 0, . . . , xn · y ≥ 0}, hence it is polyhedral by definition. J
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C Proof of Lemma 22

Recall that h(Ω|Z) = h(Ω)− h(Z). Define δh(W ) to be the Möbius inverse of h(Ω|W ), in
other words:

∀W : δh(W ) =
∑

Z:W⊆Z
(−1)|Z−W |h(Ω|Z) ∀W : h(Ω|W ) =

∑
Z:W⊆Z

δh(Z) (15)

We claim that, for W ( Ω, δh(W ) = −dh(W ). Indeed, δh(W ) =∑
Z:W⊆Z(−1)|Z−W |h(Ω|Z) = h(Ω)

∑
Z:W⊆Z⊆Ω(−1)|Z−W | − dh(W ) and the claim follows

from
∑
Z:W⊆Z⊆Ω(−1)|Z−W | = 0 when W ( Ω. We prove that h =

∑
Z(Ω δh(Z) · hZ , by

using the right part of Eq.(15):

h(W ) =h(Ω|∅)− h(Ω|W ) =
∑
Z

δh(Z)−
∑

Z:W⊆Z

δh(Z) =
∑

Z:W 6⊆Z

δh(W ) =
∑
Z

δh(Z) · hZ(W )

because hZ(W ) = 1 iff W 6⊆ Z, and h(W ) = 0 otherwise. This proves that the 2n − 1 step
functions span the vector space {h ∈ R2n | h(∅) = 0}; since the latter has dimension 2n − 1,
it follows that the step functions form a basis.
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Abstract
Positive Datalog has several nice properties that are lost when the language is extended with negation.
One example is that fixpoints of positive Datalog programs are robust w.r.t. the order in which facts
are inserted, which facilitates efficient evaluation of such programs in distributed environments. A
natural question to ask, given a (stratified) Datalog program with negation, is whether an equivalent
positive Datalog program exists.

In this context, it is known that positive Datalog can express only a strict subset of the monotone
queries, yet the exact relationship between the positive and monotone fragments of semi-positive and
stratified Datalog was previously left open. In this paper, we complete the picture by showing that
monotone queries expressible in semi-positive Datalog exist which are not expressible in positive
Datalog. To provide additional insight into this gap, we also characterize a large class of semi-positive
Datalog programs for which the dichotomy ‘monotone if and only if rewritable to positive Datalog’
holds. Finally, we give best-effort techniques to reduce the amount of negation that is exhibited by
a program, even if the program is not monotone.
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1 Introduction

Within classical model theory, several results exist that equate syntactic with semantic
restrictions of first-order logic (FOL). One example is the homomorphism preservation
theorem [22], which states that the fragment of FOL that is preserved under homomorphisms
has the same expressive power as the set of existential positive FOL formulas. Analogously,
Lyndon’s preservation theorem states that the fragment preserved under surjective homo-
morphisms equals the set of positive FOL formulas. (Recall that query q is preserved under
homomorphisms if, for all instances I, J and mappings h, h(I) ⊆ J implies h(q(I)) ⊆ q(J).)

For finite structures, which are the central interest in database theory, it is well-known
that most of such equalities fail. For example, for Lyndon’s theorem this was shown in the
80’s by Ajtai and Gurevich [4] (and by Stolboushkin [25], using a simplified counterexample).
One of the only exceptions is the homomorphism theorem, which Rossman [22] proved to
hold in the finite as well. A similar result exists in the context of Datalog. Here, Feder and
Vardi [12] showed that the fragment of semi-positive Datalog (in which negation is allowed
only over extensional atoms) preserved under homomorphisms has the same expressive power
as the positive fragment of Datalog. That the latter result does not transfer to general
fixpoint logics was shown by Dawar and Kreutzer [10].
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Negation
bounded
Datalog

Pos-Datalog
= Sp-Datalog(6=)∩H
= Sp-Datalog ∩M

Pos-Datalog( 6=)

H

Sp-Datalog(6=) ∩M Sp-Datalog

Sp-Datalog( 6=)

M

Figure 1 Schematic overview of the different fragments of semi-positive Datalog that we consider
and the relationship between their expressive power and the classes of homomorphically closed
queries (denoted H) and monotone queries (denotedM). Here, arrows mean subsumption.

In this paper, we study the relationship between the positive and the monotone fragment
of stratified Datalog (which allows negation in a stratified fashion) and semi-positive Datalog
(which allows negation over existential predicates only; thus consisting of the single stratum
programs). Their positive fragment is the fragment in which all forms of negation are
forbidden. Their monotone fragment is the subclass of programs expressing a monotone
query q; thus with I ⊆ J implying q(I) ⊆ q(J) for all instances I and J . It is known that
positive Datalog can only express monotone queries [3, 5, 18], and that some polynomial time
computable monotone queries are not expressible in positive Datalog [3, 10]. To the best of
our knowledge it remained open whether such queries exist that are themselves expressible
in stratified Datalog.

Our first set of contributions addresses this gap and proves the relationships that were
previously left open:

(a) The monotone fragment of stratified Datalog without inequalities is strictly more express-
ive than positive Datalog, even when restricted to two-stratum programs. (Theorem 7.2)

(b) The monotone fragment of stratified Datalog with inequalities is strictly more expressive
than positive Datalog, even when restricted to single-stratum programs. (Theorem 4.1)

(c) The monotone fragment of semi-positive Datalog without inequalities is equally expressive
as positive Datalog without inequalities. (Theorem 5.1)

Motivated by contributions (a) and (b), we explore further the expressivity gap between
the monotone fragment of semi-positive Datalog and positive Datalog:

(d) Based on the notion conflict-freedom, we identify a large fragment of semi-positive Datalog,
called negation-bounded Datalog, for which the two restrictions coincide. (Theorem 6.2)
We show that deciding conflict freedom is exp-complete, respectively, conp-complete if a
bound is assumed on the arities of relations. (Theorem 3.13)

Our motivation to study the monotone fragment and the positive fragment of Datalog with
negation is driven by an underlying interest in the declarative networking paradigm [1, 19],
which is concerned with the design of network programs in extensions of Datalog. In this
setting, it is folklore knowledge that positive Datalog programs can be computed efficiently
via asynchronous pipelined joins [19, 16], because Datalog rules without negation can fire
independently of each other, without a need for synchronisation. This is in stark contrast to
the case where rules have negated atoms, as then a round of consensus is needed to reach
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agreement on the absence of facts. A model-theoretic explanation for this observation is that
fixpoints of positive Datalog programs are robust w.r.t. the order in which facts are inserted.
Monotonicity on the other hand is recognized as the facilitating property for this observation
and as theoretical upper-bound on what can be computed efficiently [6, 16, 17, 28]. Not
surprisingly, the terms positive and monotone are often mentioned in the same breath.

Our contributions (a-b) shows that the terms positive and monotone do not always
interchange, even in the context of a language as simple as semi-positive Datalog.

We note that avoiding negation completely is usually not desirable, as this puts a significant
limitation on the type of programs that can be formulated. Nevertheless, it is common in
practice to strive for both goals: To find an optimal rewrite for a program (i.e., equivalent
with less exposure to negation) as well as to give up robustness in favour of computational
properties (i.e., less exposure to negation at the cost of some expressive power). A real-world
example of the latter is the choice of the 2-phase commit (2PC) protocol to support atomicity
of distributed transactions: While it is well-known that 2PC blocks under certain types
of failures, it is usually favoured over more robust alternatives, because their robustness
comes at the cost of additional rounds of consensus, and thus higher latency [14, 15]. When
formulated in a logical language, consensus is recognisable as universal quantification, which
in Datalog-like languages is encoded through negation.

In non-distributed contexts a similar trade-off exists, which is in terms of the number of
strata that the program admits. Indeed, while there are several well-known optimization
techniques to evaluate single-stratum programs, like semi-naive evaluation and magic-set
optimization, traditional Datalog engines evaluate the strata of a stratified Datalog program
one after another and thus benefit from techniques that reduce the number of strata.

Our final contribution elaborates on this by addressing the negation elimination problem:
(e) We describe how the exposure to negation in stratified Datalog programs can be reduced

even if the program is not monotone. Together, these techniques form a best effort
procedure to remove negated atoms from programs, which we show to run with exponential
space (respectively polynomial space if a bound on the arity of relations is assumed).
(Theorem 8.5) Given that almost all properties for Datalog are undecidable, this is
essentially the best one can hope for.

Outline

In Section 2, we give the essential definitions that are used throughout the paper. Section 3
covers the concept of conflict-free proof trees, which is central in several of our results. In
Section 4, we show that the monotone fragment of semi-positive Datalog is not expressible
in positive Datalog. In Section 5 and Section 6, we give positive results on this equality for
when no inequalities occur in the considered programs, or when a bound exists on the number
of negated facts that can occur in proof trees of a program. Finally, in Section 7, we describe
best-effort techniques that can be used to remove negation from programs independent of
whether these programs are monotone.

2 Preliminaries

In this section, we give an overview of the necessary concepts and definitions that are used
throughout the paper.

For positive integers n, henceforth we abbreviate the set {1, . . . , n} by [n].
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2.1 Schemas and Instances
As usual, a (database) schema σ is a set of relation names R with associated arities arity(R).
We often write R(r) ∈ σ, as abbreviation for R ∈ σ with arity(R) = r.

Throughout the paper, we assume the existence of an infinite domain dom of data values.
Given schema σ, a fact f over σ is then defined as a tuple f := R(t), with R(r) ∈ σ and
t ∈ domr. By Facts(σ) we denote the infinite set consisting of all facts over σ. A (database)
instance I over σ is a finite subset of Facts(σ).

2.2 Queries
A query q is a mapping from instances over some database schema σ1 to instances over
another database schema σ2. We call σ1 the input schema and σ2 the output schema of q.
As usual, we assume queries to be generic, which means that π(q(I)) = q(π(I)), for every
permutation π of dom.

For two instances I and J over σ1, we call a mapping h a homomorphism from I

to J , if h(I) ⊆ J . We say that query q is preserved under homomorphisms (also called
strongly monotone [3]) if for every homomorphism h from some instance I to instance J ,
h(q(I)) ⊆ q(J). We say that q is monotone if I ⊆ J implies q(I) ⊆ q(J), for every pair of
instances I and J , Henceforth, we denote the class of all queries that are preserved under
homomorphisms by H and the class of all monotone queries byM.

A query q is contained in a query q′, denoted q ⊆ q′, if q(I) ⊆ q′(I) for every instance I.

2.3 Datalog with Negation
We define semi-positive Datalog. For this, let var be an infinite domain of variables, disjoint
from dom, and let σ be a schema. An atom R(x) over σ consists of a relation name R(r) ∈ σ
and a tuple x from varr. We do not allow constants in atoms. For a set U of atoms, we
write Vars(U) to denote the set of all variables used by the atoms in U .

A Datalog rule τ over σ has the following form:

H(y)← R1(x1), . . . , R`(xk),¬S1(z1), . . . ,¬Sm(zm), β1, . . . , βn.

Here, for every i ∈ [`] and j ∈ [m], H(y), Ri(xi) and Sj(zj) are atoms over σ, and, for
every k ∈ [n], βi is an inequality of the form x 6= y, with {x, y} ⊆ var. Henceforth, we
also refer to H(y) by headτ (the head of τ); to {Ri(xi) | i ∈ [`]} by Posτ (the positive body
atoms in τ); to {Si(zi) | i ∈ [m]} by Negτ (the negated body atoms in τ); and finally to
{β1, . . . , βn} by Ineqτ (the inequalities in τ). As usual, we only consider safe rules, thus with
Vars(Negτ ∪ Ineqτ ∪ {headτ}) ⊆ Vars(Posτ ).

For a schema σ, a Semi-positive Datalog program P over σ is a set of Datalog rules P .
As usual, we call relation names from σ that occur in the head of a rule in P intensional
and all others extensional. For rules τ in P , the set Negτ must contain only atoms with
extensional relation names. By Sp-Datalog(6=) we denote the class of all semi-positive
Datalog programs. We also consider the following subclasses: Sp-Datalog (semi-positive
Datalog without inequalities) denotes the programs in which Ineqτ is empty for every rule τ ;
Pos-Datalog(6=) (positive Datalog) denotes the programs in which Negτ is empty for every
rule τ ; and Pos-Datalog (Positive Datalog without inequalities) denotes the intersection of
the latter two, thus in which Ineqτ and Negτ are empty for every rule τ .

Since we are interested in Datalog programs that express queries, we assume that the
schema σ that a Datalog program P is defined over has distinguished input and output
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relation names. We denote these by in(P ) ⊆ σ and out(P ) ⊆ σ, respectively. When not
explicitly mentioned, we assume that in(P ) coincides with the extensional relation names in
P and that out(P ) = {Output(k)}, for some integer k ≥ 0.

I Example 2.1. As a running example throughout this paper, we consider semi-positive Data-
log program P∆. This program is defined over schema σ := {Edge(2),T1(2),T2(2),Output(2)},
with in(P∆) = {Edge} and out(P∆) = {Output}, and has the following rules:

T1(x, y)← Edge(x, y),Edge(y, z),¬Edge(z, x). (1)
T2(x, y)← Edge(x, y),¬Edge(y, z),Edge(z, x). (2)

Output(x, y)← Edge(x, y),Edge(y, z),Edge(z, x). (3)
Output(x, y)← T1(x, y),T2(x, y), x 6= y. (4)

Intuitively, P∆ expects a directed graph as input and asks for edges (a, b) for which one
of the following properties is true: (a, b) is part of a triangle; or (a, b) is part of two open
triangles, one in which the edge to a is missing, the other in which the edge from b is missing.
We will later show (in Proposition 3.12) that P∆ is of particular interest because it expresses
a monotone query.

2.4 Proof Tree Semantics
The semantics of Datalog is usually defined bottom-up, in terms of an immediate consequence
operator. We use the equivalent top-down definition via proof trees. (We refer to [2] for a
detailed discussion on their equivalence.) For a formal definition, we first define a prevaluation
v for a Datalog rule τ as a mapping from the variables occurring in τ to values from dom. A
prevaluation v for τ is a valuation for τ if each inequality x 6= y ∈ Ineqτ admits v(x) 6= v(y).
Before defining the concept proof tree, we first define a slightly weaker concept, which we
call a candidate proof tree:

I Definition 2.2. Given a fact f , instance I and program P ∈ Sp-Datalog(6=), a candidate
proof tree T of f from I and P is a labeled tree with the following properties:
1. Each vertex is labeled with a fact;
2. Each leaf is labeled with a fact g over an extensional relation name, and with either sign

‘+’, if g ∈ I, or ‘-’, if g 6∈ I.
3. The root is labeled with f ;
4. Each intermediary vertex is associated with a rule τ ∈ P and prevaluation v for τ , such

that its label equals v(headτ ), and for each atom A ∈ Bodyτ it has a child whose label
equals v(A). If A has an extensional relation name this child must have a sign that equals
‘+’ if A ∈ Posτ and ‘-’ if A ∈ Negτ .

Unless stated otherwise, we assume throughout the paper that the root of a candidate
proof tree is always labeled with a fact from an output relation. Further, we denote by
Fringe+

T the set of all extensional facts that occur as labels for leafs in T with sign ‘+’, and
by Fringe−T the set of extensional facts for leafs with sign ‘−’.

I Definition 2.3. A proof tree T of f from I and P ∈ Sp-Datalog( 6=) is a candidate proof
tree of f from I and P in which all prevaluations are valuations (for the respective rule),
Fringe+

T ⊆ I, and Fringe−T ∩ I = ∅.

We sometimes refer to a (candidate) proof tree T from program P without specifying a fact
or instance. In that case, we assume that T is a (candidate) proof tree of the fact that its
root is labeled with, and that it is a proof tree from some instance I and P .
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19:6 Datalog with Negation and Monotonicity

Every semi-positive Datalog program P expresses a unique query qP : in(P ) 7→ out(P )
that is defined by P and its distinguished input and output relation names. Its evaluation
over instances I ⊆ Facts(in(P )), denoted by qP (I), is defined by the set of all facts f ∈
Facts(out(P )) for which a proof tree of f from I and P exists. Henceforth, we say that two
programs P1 and P2 having the same input and output relation names are equivalent if they
express the same query, thus with qP1(I) = qP2(I) for every instance I ⊆ Facts(in(P1)). For
every class of Datalog programs we consider also the class of queries that are expressed
by these programs. To distinguish between the two, the latter are always in boldface.
For example, Sp-Datalog(6=) refers to the class of queries expressible with Sp-Datalog(6=)
programs.

3 Conflicts

In this section, we introduce the main machinery that we use to reason about the relationship
between proof trees from different programs. We start with two simple constructions. Given
a semi-positive Datalog program P , P+ denotes the program in Pos-Datalog(6=) obtained
by removing all negated atoms from rules in P ; P ∗ denotes the program in Pos-Datalog
obtained by removing, in addition to the negated atoms, also all inequalities from rules
in P+. We leave the schema definitions untouched, thus in(P ) = in(P+) = in(P ∗), and
out(P ) = out(P+) = out(P ∗).

I Example 3.1. For an example of the constructions, take program P∆ from Example 2.1.
Then, P+

∆ contains the following rules:

T1(x, y)← Edge(x, y),Edge(y, z).
T2(x, y)← Edge(x, y),Edge(z, x).

Output(x, y)← Edge(x, y),Edge(y, z),Edge(z, x).
Output(x, y)← T1(x, y),T2(x, y), x 6= y.

Program P ∗∆ has the next rules:

T1(x, y)← Edge(x, y),Edge(y, z).
T2(x, y)← Edge(x, y),Edge(z, x).

Output(x, y)← Edge(x, y),Edge(y, z),Edge(z, x).
Output(x, y)← T1(x, y),T2(x, y).

Both constructions result in well-defined Datalog programs. Particularly notice that
the constructions preserve safeness of the programs by only removing negated atoms and
inequalities, whose variables all occur also in non-negated atoms (due to safeness of the
original program P ).

We conclude this section with the following observation:

I Proposition 3.2. Let σ be a database schema and P a semi-positive Datalog program over
σ. Then, qP ⊆ qP+ ⊆ qP∗ .

3.1 Fringe and Inequality Conflicts
To reason about the other direction of the containments in Proposition 3.2 (that is, qP∗ ⊆ qP
and qP+ ⊆ qP ), we need to reason about subtle differences in the proof trees that these
programs admit. For this purpose, our distinction between proof trees and candidate proof
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trees comes in handy. First, recall that every proof tree T from an instance I and program
P ∈ Sp-Datalog( 6=) is a candidate proof tree from I and P (by definition). The opposite
direction is not true, because a candidate proof tree T may admit

fringe conflicts, a term we use to refer to facts in Fringe+
T ∩ Fringe

−
T ; and

inequality conflicts, a term we use to refer to inequalities in rules (associated to vertices
of T ) that are not made true by the associated prevaluation.

I Example 3.3. For an example of a proof tree with fringe conflicts, consider the proof tree
for program P∆ from Example 2.1 that is given below.

(T1(a, b))

(Output(a, b))

(T2(a, b))

(Edge(a, b),+)
(Edge(a, b),+)

(Edge(b, c),+)
(Edge(c, a),−)

(Edge(b, c),−)
(Edge(c, a),+)

The following relationship applies:

I Proposition 3.4. A candidate proof tree T from semi-positive Datalog program P is a
proof tree from P if and only if T is free of fringe and inequality conflicts.

3.2 Expansion Trees
A special type of candidate proof tree is the (unfolding) expansion tree [9], which we generalize
here for semi-positive Datalog:

I Definition 3.5. An expansion tree is a candidate proof tree T in which every intermediate
vertex n (including the root) is associated with a rule τ and prevaluation V , such that V
maps every pair of different variables not occurring in headτ onto different values that all
occur only in the subtree of T with n as root.

While a candidate proof tree for a semi-positive Datalog program is not necessarily an
expansion tree, it always is the homomorphic image of an expansion tree. Henceforth we use
the following naming conventions: We denote expansion trees by Te. For a mapping g over
dom and candidate proof tree T , g(T ) denotes the candidate tree obtained by substituting
all facts f occurring as labels in T and all valuations v associated to vertices in T by their
respective images g(f) and g ◦ v under g.

I Proposition 3.6. Let P ∈ Sp-Datalog(6=). For every candidate proof tree T from P , there
is an expansion tree Te and mapping g such that g(Te) = T . Moreover, if T is free of fringe
and inequality conflicts, then Te is free of fringe and inequality conflicts.

I Example 3.7. The below tree is an example expansion tree for P∆.

(T1(a, b))

(Output(a, b))

(T2(a, b))
(Edge(a, b),+)
(Edge(a, b),+)
(Edge(b, c),+)
(Edge(c, a),−)

(Edge(b, d),−)
(Edge(d, a),+)
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3.3 Conflicts and Monotonicity
In the remainder of this section, we show the relevance of conflicts in the relationship between
monotone and positive programs. First, we distinguish two categories of programs depending
on which conflicts their candidate proof trees admit.

I Definition 3.8. Let P ∈ Sp-Datalog(6=). Program P is conflict-free if each candidate proof
tree from P without inequality conflicts is without fringe conflicts. Program P is free of
explicit conflicts if each expansion tree from P is without fringe and inequality conflicts.

The intuition behind the term explicit conflict is that expansion trees are less diverged
from the rules of the program than arbitrary candidate proof trees are, and that conflicts in
expansion trees therefore can be observed more easily than fringe conflicts by looking at the
wiring of variables throughout rules in the program.

I Proposition 3.9. For P ∈ Sp-Datalog( 6=) we have the following equivalences:
1. qP = qP∗ if qP ∈ H and P is free of explicit conflicts;
2. qP = qP+ if qP ∈M and P is conflict-free.

Proof. Since qP ⊆ qP∗ and qP ⊆ qP+ follow from Proposition 3.2, we need to show only
qP∗ ⊆ qP and qP+ ⊆ qP .
(1) Let I be an arbitrary instance and f an arbitrary fact in qP∗(I). Let T ∗ denote the proof
tree of f from I and P ∗. We show f ∈ qP (I).

By Proposition 3.6, there exists an expansion tree T ∗e for P ∗ that is without fringe and
inequality conflicts and a mapping g, with g(T ∗e ) = T ∗. It follows from the construction of
P ∗ that T ∗e can be extended to an expansion tree Te from P : For vertices n, let τ∗n and Vn
denote its associated rule and valuation. Then let Te be the candidate proof tree obtained
from T ∗e by replacing, for each vertex n, its rule τ∗n by a rule τ from P with Posτ = Posτ∗ ;
and by adding, for every fact g in Vn(Negτ ), a leaf under n with label g and sign ‘−’. Note
that rules τ exist by definition of P ∗ and that Te is an expansion tree because rules in P are
safe and T ∗e is an expansion tree. Furthermore, rootTe

= rootT ∗e and Fringe+
Te

= Fringe+
T ∗e

.
It follows from the assumption that P is without explicit conflicts that Te is free of

fringe and inequality conflicts, thus with rootTe ∈ qP (Fringe+
Te

), and from qP ∈ H and
homomorphism g with g(Fringe+

Te
) = I, that f = g(rootT ∗e ) = g(rootTe

) ∈ qP (I).
(2) Let I be an arbitrary instance over in(P ), and f an arbitrary fact in qP+(I).

To show f ∈ qP (I), we observe that the presence of f in qP+(I) implies the existence
of a proof tree T + for P+ with root f and Fringe+

T + ⊆ I. By Proposition 3.6, there is an
expansion tree T +

e for P+ that is without fringe and inequality conflicts; and a mapping g,
with g(T +

e ) = T . We observe that T +
e can be extended to an expansion tree Te for P by

adding ‘−’ signed leafs. Indeed, for every intermediate vertex n in T +
e , say with label fn

and associated rule τn and valuation vn, there is a rule τ ∈ P that differs from τn only w.r.t.
the set of negated atoms (by construction of P+). Due to safeness of rules, negated atoms
do not introduce new variables that are not already in τn, hence, for every A ∈ Negτ we just
add a new leaf under vertex n with label vn(A) and sign ‘−’.

Another consequence of the safeness of rules is that g is a total mapping for Te. Moreover,
since P is free of fringe conflicts, and g(Te) is a correctly defined candidate proof tree, it
must be that g(Te) is free of fringe conflicts. Since all inequalities in Te already exist in T +

e ,
the fact that g(T +

e ) is free of inequality conflicts transfers to g(Te).
As a consequence, T := g(Te) is a proof tree for f from P , with Fringe+

T = Fringe+
T + ,

and Fringe+
T ∩ Fringe−T = ∅, thus f ∈ qP (Fringe+

T ). We conclude from qP ∈ M and
Fringe+

T = Fringe+
T + ⊆ I that f ∈ qP (I). J
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Proposition 3.9(1) reveals a relation that was also observed by Feder and Vardi [12], albeit
less explicit, to show the following result:

I Theorem 3.10 ([12]). Sp-Datalog(6=) ∩H = Pos-Datalog.

More precisely, the construction in [12] implies the next proposition, which together with
Proposition 3.9 is a proof for Theorem 3.10.

I Proposition 3.11. For every program P ∈ Sp-Datalog(6=) there is a program P ′ ∈
Sp-Datalog(6=) that is free of explicit conflicts and with qP = qP ′ .

For an example of a program that is monotone but not conflict-free, one can take program
P∆ from Example 2.1.

I Proposition 3.12. Program P∆ expresses a monotone query and is not conflict-free.

Since each program in Pos-Datalog(6=) is conflict-free by definition, it is immediate that
a query q ∈ Sp-Datalog( 6=) ∩M is in Pos-Datalog(6=) if and only if it can be expressed
by a program in Sp-Datalog(6=) that is conflict-free. We conclude this section by showing
that conflict freedom is a decidable property.

I Theorem 3.13. The problem of deciding whether a given program in Sp-Datalog( 6=) is
conflict-free is polynomial-time equivalent with the non-satisfiability problem for programs in
Pos-Datalog(6=):

exp-complete in general; and
conp-complete if a bound on the arity of relations is assumed.

4 Semi-Positive Datalog

In this section, we answer one of the central questions of the paper and show that not all
monotone queries expressible in semi-positive Datalog have an equivalent in positive Datalog.

I Theorem 4.1. Sp-Datalog( 6=) ∩M 6⊆ Pos-Datalog(6=).

The proof for Theorem 4.1 is similar to a recent proof by Rudolph and Thomazo [23],
which shows that the homomorphically closed queries expressible in order-invariant semi-
positive Datalog do not all have an equivalent in order-invariant Datalog without negation
(and without inequality). Before proceeding with the details, we first give a definition of
order-invariant Datalog.

4.1 Order-Invariant Semi-Positive Datalog
Let σ be a database schema and σ≤ the extension of σ with relation names Succ(2), Min(1),
and Max(1). (We assume of course that Succ, Min and Max do not already occur in σ.)
Then for an instance I over σ, by I≤ we denote the extension of I over σ≤ in which Succ is
interpreted as the successor relation of some linear order over the active domain of I, and in
which Min and Max are interpreted to contain exactly the minimal, respectively maximal,
value that occurs in I according to the assumed linear order.

An order-invariant Sp-Datalog(6=) program P over schema σ then is defined as an
Sp-Datalog(6=) program, say P ′, over schema σ≤, whose output is independent of the chosen
linear order. That is, qP ′(I≤) = qP ′(I ′≤), for every instance I over σ and pair of extensions
I≤ and I ′≤ of I. Due to the latter, the semantics of qP itself can be defined in terms of
instances I over σ, as qP (I) := qP (I≤) for arbitrary extension I≤ of I. Henceforth, we refer
by Sp-Datalog(≤, 6=) to the class of order-invariant Sp-Datalog(6=) programs.
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4.2 The perfect Matching Problem over Ordered Graphs
The query qPM that we use to show Sp-Datalog(6=) ∩M ( Pos-Datalog(6=) expresses a
variant of the perfect matching problem. Given a graph G = (V,E), the perfect matching
problem asks whether a subset M ⊆ E of edges exists such that every vertex in V is
incident to exactly one edge in M . For the definition of qPM , consider schemas σ1 :=
{Edge(2),Next(2),First(1), Last(1)} and σ2 := {Output(0)}. Given an instance I over σ1, we
denote by Ge the graph obtained by interpreting relation Edge as edge relation and its set
of end-points as vertices. Graph Gn is defined analogously, by interpreting relation Next as
edge relation and its set of end-points as vertices. We say that a vertex has label first if its
associated value is in relation First and that it has label last if its value is in relation Last.

I Definition 4.2 (Separating Query). Let qPM be the boolean query over input schema σ1
and output schema σ2, and with Output() ∈ qPM (I) if (and only if) one of the following
conditions is true:
1. At least two different vertices have label first or last;
2. Some vertex in Gn has either label first and an incoming edge, label last and an

outgoing edge, two incoming edges, two outgoing edges, or a self-loop; or
3. For set C, defined as the vertices in connected components of Ge that connect a vertex

with label first to one with label last, graph Ge induced by the vertices in C has a
perfect matching.

Next, we show that qPM has the desired properties.

I Proposition 4.3. The following properties are true for qPM :
1. qPM is in Sp-Datalog( 6=);
2. qPM is monotone; and
3. qPM is not in Pos-Datalog(6=).

Proof Sketch. (1) Since the perfect matching problem is well-known to be in ptime, we can
assume an implementation in Sp-Datalog(6=). The latter is due to another well-known result,
that the language Sp-Datalog(≤, 6=) captures exactly the ptime computable queries [2].

To write a program in Sp-Datalog(6=) that expresses qPM , we make use of program P (in
which the relations Succ, Min, and Max are now intensional and no longer interpreted), and
feed it a conservative fragment of the extensional relations Next, First, and Last.
(2) Monotonicity can be verified easily from Definition 4.2.
(3) The proof is analogous to a recent proof by Rudolph and Thomazo [23] for the statement
Sp-Datalog(≤) ∩H ( Pos-Datalog(≤). While our query is slightly different to the query
used in [23] and admits inequalities, it uses the same key ingredients:
(a) A result by Razborov [21], which states that no family of monotone boolean circuits

exists that answers the perfect matching problem and has circuits of polynomial size in
the number of input gates.

(b) The existence of an algorithm that converts programs in Pos-Datalog(6=) that express
qPM into a family of monotone boolean circuits that answers the perfect matching
problem and has circuits of polynomial size in the number of input gates. J

5 Semi-Positive Datalog without Inequalities

This section is devoted to showing Theorem 5.1.

I Theorem 5.1. Sp-Datalog ∩M = Pos-Datalog.
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Theorem 5.1 is a consequence of the observation that, for semi-positive Datalog without
inequalities, the fragment of monotone queries and the fragment of queries preserved under
homomorphisms collapses (cf. Proposition 5.2). That is, Sp-Datalog∩M = Sp-Datalog∩
H. Given this observation, Theorem 5.1 follows directly from Theorem 3.10.

I Proposition 5.2. For a program P ∈ Sp-Datalog, qP ∈M implies qP ∈ H.

Proof. We show that for an arbitrary fact f , instance I, and homomorphism h from I to
h(I), the fact h(f) is in qP (h(I)). The proof is by an iterative procedure that searches for
an instance I(i), with the following properties:
1. There is a proof tree T of f from I(i) and P ;
2. adom(I(i)) = adom(I);
3. h(I(i)) = h(I); and
4. h(Fringe−T ) ∩ h(Fringe+

T ) = ∅.

Suppose that the described instance I(i) exists, then the combination of Property (1)
and Property (2) allows to apply homomorphism h to all valuations and facts associated
to vertices in T . The result is a candidate proof tree T ′ from P with Fringe+

T ′ ⊆ h(I(i))
and rootT ′ = h(f). Since rules in P have no inequalities, T ′ is without inequality conflicts.
Property (4) implies that T ′ is also without fringe conflicts, thus T ′ is a proof tree of h(f) from
P and Fringe+

T ′ witnessing h(f) ∈ qP (Fringe+
T ′). Now, the desired result h(f) ∈ qP (h(I))

follows from Property (3), implying Fringe+
T ′ ⊆ h(I(i)) = h(I), and qP ∈M.

It remains to describe the procedure to find I(i), which uses an inductive argument
taking conditions (1), (2), and (3) as invariants over the tentative instances that are being
considered. As base case, we observe that the three invariants are true on I itself, by taking
as T the proof tree of f from I and P . We now refer to I as I(0).

If Property (4) is true on the currently considered instance I(i), then we terminate the
procedure. Otherwise, (†) there must be a fact g ∈ Fringe−T , such that h(g) ∈ h(Fringe+

T ) ∩
h(Fringe−T ), with T the proof tree as defined by Property (1). It also follows from Property (1)
that g 6∈ Fringe+

T ⊆ I(i).
We now construct a new instance I(i+1) by adding g to I(i). Clearly, Property (3) is

true, since h(g) ∈ h(Fringe+
T ) ⊆ h(I(i)) = h(I), which implies h(I(i+1)) = h(I(i)) = h(I).

Property (2) is straightforward as well, since the safeness of rules in P and g ∈ Fringe−T imply
adom(g) ⊆ adom(Fringe+

T ) ⊆ adom(I(i)) = adom(I). Finally, I(i) ⊆ I(i+1) and qP ∈ M
imply f ∈ qP (I(i+1)), which means that Property (1) is also as well.

Since the active domain of I is fixed and the number of facts g 6∈ I with adom(g) ⊆ adom(I)
is finite, eventually I(i) cannot grow further and (†) must fail. From this, we conclude that
the desired instance I(i) exists. J

6 Negation-Bounded Datalog

In Section 4, we have formally shown that some monotone queries in Sp-Datalog(6=) have no
equivalent in Pos-Datalog( 6=). This result implies that restricting ourselves to write programs
in the positive variant of Sp-Datalog(6=) as a convenient way to write monotone programs in
Sp-Datalog(6=), comes at the cost of some loss in expressive power. While a theoretician may
be satisfied with this observation alone, a practitioner would likely wonder whether this gap
matters in practice, for example, within a specific application domain. To help answer this
question, an interesting direction is to consider conservative fragments of Pos-Datalog( 6=) for
which the monotone and positive fragment coincide. In Section 5, we have already seen that
programs in Sp-Datalog have this property.
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In this section, we define an orthogonal fragment, which we call negation-bounded Datalog.

I Definition 6.1. Let P ∈ Sp-Datalog( 6=) be over some schema σ and R ∈ σ. Program P is
negation-bounded if a positive integer k exists, such that for every instance I over σ and
fact f ∈ qP (I), there is a proof tree T of f from I and P with |Fringe−T | ≤ k.

We immediately proceed with the main result of this section:

I Theorem 6.2. For every program P in Sp-Datalog(6=) that is negation bounded, qP ∈M
implies there is a program P ′ in Pos-Datalog(6=), with qP ′ = qP .

For a proof of Theorem 6.2, we combine Proposition 3.9 with the below result.

I Proposition 6.3. For every program P in Sp-Datalog(6=) that is negation bounded, there
is a conflict-free program P ′ in Sp-Datalog( 6=), with qP = qP ′ .

The proof of Proposition 6.3 uses a technique that is inspired by the indexing technique
in [12] to show Theorem 3.10, but rather than statically annotating relation names with
associated dependencies, we encode indexes in a prefix of the intensional relations, which
serve as pivot through the program evaluation. More precisely, program P ′ encodes the
facts whose absence it observes while simulating program P in the prefix of intensional
relation names and fires a rule of P in the simulation only if it is consistent with the index at
hand. That is, if the index does not encode a fact that is required by the rule or any of its
children. The latter is enforced via inequalities. (We note that similar techniques are used
in, e.g., [27, 8, 17].) As the proof of Proposition 6.3 is tedious, we illustrate the construction
by an example.

I Example 6.4. Let P∆ be again the program from Example 2.1. We notice that expansion
trees for P∆ have at most two negated atoms, corresponding, respectively, to the negated
atom in the first and second rule of program P∆. Program P∆ is thus clearly negation
bounded. After applying the construction underlying Proposition 6.3, we obtain the following
rules. First, two rules to collect in relation Adom the active domain of the input instance:

Adom(x)← Edge(x, y). Adom(x)← Edge(y, x).

Then, for every choice β ∈ {x 6= z, y 6= x}, γ ∈ {y 6= z, z 6= x}, χ ∈ {x 6= y, y 6= z} of
inequalities, we consider variants of the T1 and T2 generating rules in P∆, in which their
negated facts are encoded as a prefix in the head of the rule:

T1(z, x, x2, y2, x, y)←Edge(x, y),Edge(y, z),¬Edge(z, x),Adom(x2),Adom(y2), β, γ.
T2(x1, y1, y, z, x, y)←Edge(x, y),¬Edge(y, z),Edge(z, x),Adom(x1),Adom(y1), χ, γ.

Rules without negated atoms forward the prefix of body atoms that are over intensional
relation names, or (if no intensional relation name occurs in the body) generate facts with
arbitrary prefix:

Output′(x1, y1, x2, y2, x, y)←Edge(x, y),Edge(y, z),Edge(z, x),
Adom(x1),Adom(y1),Adom(x2),Adom(y2).

Output′(x1, y1, x2, y2, x, y)←T1(x1, y1, x2, y2, x, y),T2(x1, y1, x2, y2, x, y), x 6= y.
Output(x, y)←Output′(x1, y1, x2, y2, x, y).
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Finally, we have to deal also with proof trees for P∆ that have no leafs with sign ‘−’. To
support this case, we augment the program with all rules from P∆ that are without negation:

Output(x, y)←Edge(x, y),Edge(y, z),Edge(z, x).

It is easy to verify that the program consisting of the above listed rules is conflict-free,
since every fringe conflict now implies an inequality conflict. Equivalence follows from the
observation that the constructed program simulates P∆ with some additional bookkeeping.

We remark that the concept negation boundedness is related to the well-known concept
boundedness for Datalog programs: A program P in Sp-Datalog( 6=) is bounded if there is a
positive integer k such that, for every instance I and fact f ∈ qP (I), there is a proof tree
of f from I and P with depth at most k. Since the latter implies existence of a bound on
the size of Fringe+

T , and thus on the domain of Fringe+
T ∪ Fringe−T , it follows directly that

boundedness implies negation boundedness. Not surprisingly, the decision problem that asks
whether a given program P ∈ Sp-Datalog( 6=) is negation bounded is undecidable.

I Proposition 6.5. No algorithm exists that decides for an arbitrary program
P ∈ Sp-Datalog(6=) whether it is negation bounded.

Analogously to the classical result that the class of bounded programs is equally ex-
pressive as UCQ(¬, 6=) (the subset of Sp-Datalog( 6=) programs in which the body of rules
are constructed solely out of extensional relation names), we have the following syntactical
characterisation:

I Proposition 6.6. For every negation bounded program P in Sp-Datalog(6=) there is an equi-
valent program P ′ in Sp-Datalog(6=) that has a stratification P1, P2, with P1 ∈ Pos-Datalog(6=)
and P2 ∈ UCQ(¬, 6=) (with no intensional relation name of P2 occuring in P1).

Finally, we remark that the class of negation bounded programs can be extended a little,
for example, by requiring a bound on the number of negated atoms only for relation symbols
that occur positively in the program; or, by extension, for relation symbols that are not
excluded from generating fringe conflicts due to some other syntactic reason. It is currently
unclear whether a more fundamental generalization of Theorem 5.1 and Theorem 6.2 exists.

7 Stratified Datalog

A stratified Datalog program P is a set of rules as defined in Section 2.3, for which a
stratification exists in a sequence of disjoint subprograms P1, . . . , Pm, with the following
constraints: Every intensional relation name R in P occurs as a head in at most one
subprogram Pi (we refer to Pi as the stratum in which R is defined).

If an intensional relation name occurs positively in the body of a rule in subprogram Pi,
then it is defined in a subprogram Pj , with j ≤ i.
If an intensional relation name occurs negated in the body of a rule in subprogram Pi,
then it is defined in a subprogram Pj , with j < i.

We denote the class of stratified Datalog programs by Str-Datalog(6=). Since the subprograms
Pi can be considered semi-positive, the semantics is defined as follows: qP (I) = qPm

◦ qPm−1 ◦
· · · ◦ qP1(I). Here, we assume that for the subprograms Pi, with i < m all relation names are
output relation names, and for Pm only the distinguished output relations as defined by P .
Similarly as before, we write Str-Datalog( 6=) to denote the class of all queries expressible
by programs in Str-Datalog(6=).

The following corollary is a straightforward consequence of Theorem 4.1.
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I Corollary 7.1. Str-Datalog( 6=) ∩M 6⊆ Pos-Datalog( 6=).

Despite Theorem 5.1, the gap between the monotone and positive fragment of stratified
Datalog remains also without the interpreted inequality relation. The proof argument
combines Theorem 4.1 with the observation that inequality is expressible through negation
over intensional relation names.

I Theorem 7.2. Str-Datalog ∩M 6⊆ Pos-Datalog( 6=).

8 A Best-Effort Approach to Negation Elimination

In this section, we consider the scenario in which an arbitrary Str-Datalog( 6=) program is
given and we are interested in finding an equivalent program with better computational
properties (i.e., with less exposure to negation). Here, a program without negation is the
ideal. Unfortunately, results like Proposition 3.9 do not help much to find such a program:

Firstly, the question if a given program in semi-positive Datalog is monotone is undecidable.
Therefore, we cannot automatically infer whether a given program is in one of the desired
subclasses.

I Proposition 8.1. Testing whether a program in Sp-Datalog is monotone is undecidable.

Secondly, these results only indicate whether an ideal equivalent rewriting (i.e., a rewriting
to a positive program) “certainly exists” or “may not exist”. They do not help, especially in
the latter case, to find such a program. Thirdly, even if no equivalent positive program exists,
we may still be interested in finding an equivalent program with less exposure to negation.

The section proceeds as follows: In Section 8.1, we define a formal cost measure that
allows to compare programs with negation. In Sections 8.2 and 8.3, we describe best-effort
approaches towards improving the cost of a program as defined by this cost measure.

8.1 Cost Measure
We base our cost measure on observations from distributed Datalog evaluation (cf. Section 1):
In an asynchronous distributed context (e.g., [19, 16]), deciding the absence of a fact is
significantly more difficult than deciding its presence, as it requires a round of consensus
between the participating machines. One way to translate this observation into a formal cost
measure is by hypothesising a correlation between the time it takes to derive an output fact
for the first time and the minimal number of negated facts that its proof trees admit.

Notice that, in this hypothesis, positive programs are a conservative ideal (because proof
trees of positive programs admit no negated facts), but programs that admit negated atoms
are not necessarily considered worse (i.e., if the rules with negated atoms are redundant).

For a formal definition, let P be an arbitrary program in Sp-Datalog(6=). We call a proof
tree T from P minimal if no other proof tree T ′ from P exists that agrees with T on the label
of its root, and has Fringe+

T ′ ⊆ Fringe+
T and Fringe−T ′ ⊆ Fringe−T . Clearly, for every instance

I and fact f ∈ qP (I), we can always assume that a witnessing proof tree T exists that
is minimal. Now, for two programs P1, P2 ∈ Sp-Datalog( 6=), we write cost(P1) ≤ cost(P2)
if for every minimal proof tree T1 for P1, with root an output fact, there is a proof tree
T2 for P2 that agrees with T1 on the label of its root, and with Fringe+

T2
⊆ Fringe+

T1
and

Fringe−T2
⊆ Fringe−T1

. We write cost(P1) < cost(P2) if cost(P1) ≤ cost(P2) and for at least
one such pair of proof trees T1 and T2, we have Fringe−T2

( Fringe−T1
. We notice that our

cost measure is defined over Sp-Datalog(6=) programs only, as we will use it to compare
single-stratum fragments of Str-Datalog( 6=) programs.
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As can be expected, deciding properties about cost(·) quickly become undecidable.

I Proposition 8.2. No algorithm exists that can decide for arbitrary equivalent programs
P1, P2 ∈ Sp-Datalog(6=) if cost(P1) < cost(P2).

8.2 Containment Testing

We start with an exploration of containment tests. Given a program P ∈ Sp-Datalog(6=), we
call a program P ′ ∈ Sp-Datalog(6=) a superior equivalent of P if it is obtained by removing
(some) negated atoms in rules from P . Clearly, P+ is the extreme case, but now we are
interested in programs P ′ that remain equivalent to the original program P . We note that
qP ⊆ qP ′ holds for every superior equivalent P ′ of P (the proof is a simple generalization of
the proof argument for Proposition 3.2). Unfortunately, the other direction is undecidable.

I Proposition 8.3. No procedure exists that decides qP ′ ⊆ qP for arbitrary programs P ∈
Sp-Datalog(6=) and superiorequivalent P ′ of P .

To overcome this limitation, we test for UCQ(¬, 6=) containment instead (which is conexp-
complete [13], respectively Πp

2-complete [26, 20], if the arity of relations is bounded).
To formulate the next proposition, we need some additional notation: Given a program

P ∈ Sp-Datalog(6=), we denote by #(P ) the program in UCQ(¬, 6=) obtained by adding a
prime to all relation names occurring in the heads of rules (i.e., T(x, y) ← E(x, z),T(z, y)
becomes T′(x, y)← E(x, y),T(z, y)). Then, for P1, P2 ∈ Sp-Datalog( 6=) we test q#(P1) ⊆ q#(P2)
instead of qP1 ⊆ #(P2). Alternatively, one can consider uniform containment [24], which
means that containment is tested for the queries described by P1 and P2, but taking as
input schema the set of all extensional and intensional relation names of P1 (resp, P2) and
as output schema the set of all intensional relation names of P1 (resp, P2). For the bounded
arity case, a Πp

2-completeness result is known due to Eiter and Fink [11]. The complexity
for the non-bounded case appears to be open (albeit at least conexp-hard due to the earlier
mentioned result for UCQ(¬, 6=) containment).

I Proposition 8.4. For a program P ∈ Sp-Datalog( 6=) and superior equivalent P ′ of P ,
#(P ′) ⊆ #(P ) implies qP ′ = qP and cost(P ′) ≤ cost(P ).

Let P be a stratified Datalog program. Then Proposition 8.4 admits a naive procedure,
which we call neg-elim, that applies to every stratum of P the following steps:
1. Test for every combination of negated atoms whether qP is contained in qP ′ , with P ′ the

superior equivalent of P in which the selected atoms are removed.
2. Choose the superior equivalent of P that minimizes the total number of negated atoms,

among those for which the test succeeds.

I Theorem 8.5. Procedure neg-elim runs with exponential space (respectively polynomial
space, if a bound on the arity of considered relations is assumed).

We remark that the special structure of #(P ) and #(P ′) (i.e., P ′ is a superior equivalent
of P ), does not admit a more efficient containment test.

I Proposition 8.6. Testing for an arbitrary program P ∈ Sp-Datalog(6=) and superior
equivalent P ′ of P whether q#(P ′) ⊆ q#(P ) is conexp-hard (respectively Πp

2-hard, if a bound
on the arities of considered relations is assumed).
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8.3 Rule Expansions
One way to make the procedure from the previous section more powerful, is by doing
containment tests for partially expanded program.

Let P ∈ Sp-Datalog(6=) and τ ∈ P . By exp(P ) we denote the set of all 1-step expansions
of rules in P . That is, the set of rules obtain from P by considering all possible replacements
of intensional atoms in rules by the bodies of rules whose head matches the respective atom
(after doing the necessary variable renaming).

I Proposition 8.7. For every P ∈ Sp-Datalog( 6=), qexp(P ) = qP and cost(exp(P )) = cost(P ).

I Example 8.8. For an example illustrating the use of expansions in combination with
algorithm neg-elim, consider the two stratum program P , whose second stratum is pro-
gram P∆ from Example 2.1, and whose first stratum is a program P ′ over schema σ′ :=
{Arc(2),Edge(2),Adom(1)} with the next rules:

Adom(x)← Arc(x, y).
Adom(x)← Arc(y, x).

Edge(x, y)← ¬Arc(x, y),Adom(x),Adom(y).

Now consider the expansion exp(P∆) of the second stratum:

Output(x, y)← Edge(x, y), Edge(y, z), Edge(z, x).
Output(x, y)← Edge(x, y), Edge(y, z),¬Edge(z, x), Edge(x, y),¬Edge(y, w), Edge(w, x), x 6= y.

While directly applying algorithm neg-elim over P∆ does not improve the program, an
application over exp(P∆) finds a negation-free equivalent:

Output(x, y)← Edge(x, y),Edge(y, z),Edge(z, x).
Output(x, y)← Edge(x, y),Edge(y, z),Edge(x, y),Edge(w, x), x 6= y.

Hence, while P is not monotone, and therefore has no equivalent in Pos-Datalog(6=), we do
obtain an equivalent single-stratum program P1 ∪ P ′2.

9 Conclusion

Motivated by applications in network programming, we studied fundamental questions about
the relationship between the monotone and positive fragments of several variants of Datalog
with negation (an overview is given by Figure 1). We also showed how the amount of negation
that such programs admit can be decreased independently of whether they are monotone.

Related to monotonicity is the concept preservation under extensions (E). While it is
known that Sp-Datalog(6=) ⊆ E [3], to the best of our knowledge, it is still an open question
whether Str-Datalog(6=) ∩ E ?= Sp-Datalog(6=). The latter question is of particular interest,
because E is another notion that is associated with coordination in distributed systems [7].

The techniques that we discuss in Section 8, to remove negation from stratified Datalog
programs, are by no means exhaustive. We also do not provide formal guarantees on the
effectiveness of the approach. An interesting question therefore is whether other decidable
techniques exist that can be of use for this purpose. Additionally, it would be interesting to
perform an experimental study to see if these techniques can be combined into an effective
procedure that is of use for real-live programs. The techniques that we present in Section 8
aim for a best-effort approach to automatically reduce the need for consensus in a program,
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which in the context of Datalog, translates to the elimination of (stratified) negation. While
it is obvious that such a procedure cannot beat optimization by hand, we see it useful in
complex systems, that a program may be composed out of multiple programs and views.
Then, optimization of individual subprograms does not necessarily imply optimization of the
program as a whole, and a best-effort approach may be the only way to achieve improvement.
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Abstract
We investigate the application of the Shapley value to quantifying the contribution of a tuple to
a query answer. The Shapley value is a widely known numerical measure in cooperative game
theory and in many applications of game theory for assessing the contribution of a player to a
coalition game. It has been established already in the 1950s, and is theoretically justified by being
the very single wealth-distribution measure that satisfies some natural axioms. While this value
has been investigated in several areas, it received little attention in data management. We study
this measure in the context of conjunctive and aggregate queries by defining corresponding coalition
games. We provide algorithmic and complexity-theoretic results on the computation of Shapley-based
contributions to query answers; and for the hard cases we present approximation algorithms.
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1 Introduction

The Shapley value is named after Lloyd Shapley who introduced the value in a seminal 1952
article [33]. He considered a cooperative game that is played by a set A of players and is
defined by a wealth function v that assigns, to each coalition S ⊆ A, the wealth v(S). For
instance, in our running example the players are researchers, and v(S) is the total number of
citations of papers with an author in S. As another example, A might be a set of politicians,
and v(S) the number of votes that a poll assigns to the party that consists of the candidates
in S. The question is how to distribute the wealth v(A) among the players, or from a
different perspective, how to quantify the contribution of each player to the overall wealth.
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20:2 The Shapley Value of Tuples in Query Answering

For example, the removal of a researcher r may have zero impact on the overall number of
citations, since each paper has co-authors from A. Does it mean that r has no contribution
at all? What if the removal in turns of every individual author has no impact? Shapley
considered distribution functions that satisfy a few axioms of good behavior. Intuitively,
the axioms state that the function should be invariant under isomorphism, the sum over all
players should be equal to the total wealth, and the contribution to a sum of wealths is equal
to the sum of separate contributions. Quite remarkably, Shapley has established that there
is a single such function, and this function has become known as the Shapley value.

The Shapley value is informally defined as follows. Assume that we select players one by
one, randomly and without replacement, starting with the empty set. Whenever we select
the player p, its addition to the set S of players selected so far may cause a change in wealth
from v(S) to v(S ∪ {p}). The Shapley value of p is the expectation of change that p causes
in this probabilistic process.

The Shapley value has been applied in various areas and fields beyond cooperative game
theory (e.g., [1, 2]), such as bargaining foundations in economics [14], takeover corporate
rights in law [27], pollution responsibility in environmental management [20,29], influence
measurement in social network analysis [26], and utilization of multiple Internet Service
Providers (ISPs) in networks [22]. Closest to database manegement is the application of
the Shapley value to attributing a level of inconsistency to a statement in an inconsistent
knowledge base [17, 36]; the idea is natural: as wealth, adopt a measure of inconsistency for
a set of logical sentences [12], and then associate to each sentence its Shapley value.

In this paper, we apply the Shapley value to quantifying the contribution of database
facts (tuples) to query results. As in previous work on quantification of contribution of
facts [24, 31], we view the database as consisting of two types of facts: endogenous facts and
exogenous facts. Exogenous facts are taken as given (e.g., inherited from external sources)
without questioning, and are beyond experimentation with hypothetical or counterfactual
scenarios. On the other hand, we may have control over the endogenous facts, and these are
the facts for which we reason about existence and marginal contribution. Our focus is on
queries that can be viewed as mapping databases to numbers. These include Boolean queries
(mapping databases to zero and one) and aggregate queries (e.g., count the number of tuples
in a multiway join). As a cooperative game, the endogenous facts take the role of the players,
and the result of the query is the wealth. The core computational problem for a query is
then: given a database and an endogenous fact, compute the Shapley value of the fact.

We study the complexity of computing the Shapley value for Conjunctive Queries (CQs)
and aggregate functions over CQs. Our main results are as follows. We first establish a
dichotomy in data complexity for the class of Boolean CQs without self-joins. Interestingly,
our dichotomy is the same as that of query inference in tuple-independent probabilistic
databases [9]: if the CQ is hierarchical, then the problem is solvable in polynomial time, and
otherwise, it is FP#P-complete (i.e., complete for the intractable class of polynomial-time
algorithms with an oracle to, e.g., a counter of the satisfying assignments of a propositional
formula). The proof, however, is more challenging than that of Dalvi and Suciu [9], as the
Shapley value involves coefficients that do not seem to easily factor out. Since the Shapley
value is a probabilistic expectation, we show how to use the linearity of expectation to extend
the dichotomy to arbitrary summations over CQs without self-joins. For non-hierarchical
queries (and, in fact, all unions of CQs), we show that both Boolean and summation versions
are efficiently approximable (i.e., have a multiplicative FPRAS) via Monte Carlo sampling.

The general conclusion is that computing the exact Shapley value is notoriously hard,
but the picture is optimistic if approximation is allowed under strong guarantees of error
boundedness. Our results immediately generalize to non-Boolean CQs and group-by operators,
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where the goal is to compute the Shapley value of a fact to each tuple in the answer
of a query. For aggregate functions other than summation (where we cannot apply the
linearity of expectation), the picture is far less complete, and remains for future investigation.
Nevertheless, we give some positive preliminary results about special cases of the minimum
and maximum aggregate functions.

Various formal measures have been proposed for quantifying the contribution of a fact f
to a query answer. Meliou et al. [24] adopted the quantity of responsibility that is inversely
proportional to the minimal number of endogenous facts that should be removed to make
f counterfactual (i.e., removing f transitions the answer from true to false). This measure
adopts earlier notions of formal causality by Halpern and Pearl [16]. This measure, however,
is fundamentally designed for non-numerical queries, and it is not at all clear whether it can
incorporate the numerical contribution of a fact (e.g., recognizing that some facts contribute
more than others due to high numerical attributes). Salimi et al. [31] proposed the causal
effect: assuming endogenous facts are randomly removed independently and uniformly, what
is the difference in the expected query answer between assuming the presence and the absence
of f? Interestingly, as we show here, this value is the same as the Banzhaf power index that
has also been studied in the context of wealth distribution in cooperative games [11], and is
different from the Shapley value [30, Chapter 5]. While the justification to measuring fact
contribution using one measure over the other is yet to be established, we believe that the
suitability of the Shapley value is backed by the aforementioned theoretical justification as
well as its massive adoption in a plethora of fields. In addition, the complexity of measuring
the causal effect has been left open, and we conjecture that all of our complexity results are
applicable to (and, in fact, simpler to prove in) the causal-effect framework.

The remainder of the paper is organized as follows. In the next section, we give preliminary
concepts, definitions and notation. In Section 3, we present the Shapley value to measure the
contribution of a fact to a query answer, along with illustrating examples. In Section 4, we
study the complexity of calculating the Shapley value. Finally, we discuss past contribution
measures in Section 5 and conclude in Section 6. For lack of space, missing proofs are given
in the extended version of the paper [21].

2 Preliminaries

Databases. A (relational) schema S is a collection of relation symbols with each relation
symbol R in S having an associated arity that we denote by ar(R). We assume a countably
infinite set Const of constants that are used as database values. If ~c = (c1, . . . , ck) is a tuple
of constants and i ∈ {1, . . . , k}, then we use ~c[i] to refer to the constant ci. A relation r is
a set of tuples of constants, each having the same arity (length) that we denote by ar(r).
A database D (over the schema S) associates with each relation symbol R a finite relation
r, which we denote by RD, such that ar(R) = ar(RD). We denote by DB(S) the set of all
databases over the schema S. Notationally, we identify a database D with its finite set of
facts R(c1, . . . , ck), stating that the relation RD over the k-ary relation symbol R contains
the tuple (c1, . . . , ck) ∈ Constk. In particular, two databases D and D′ over S satisfy D ⊆ D′
if and only if RD ⊆ RD′ for all relation symbols R of S.

Following prior work on explanations and responsibility of facts to query answers [23, 25],
we view the database as consisting of two types of facts: exogenous facts and endogenous
facts. Exogenous facts represent a context of information that is taken for granted and
assumed not to claim any contribution or responsibility to the result of a query. Our concern
is about the role of the endogenous facts in establishing the result of the query. In notation,
we denote by Dx and Dn the subsets of D that consist of the exogenous and endogenous
facts, respectively. Hence, in our notation we have that D = Dx ∪Dn.

ICDT 2020
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Author (endo)
name affil

fa
1 Alice UCLA

fa
2 Bob NYU

fa
3 Cathy UCSD

fa
4 David MIT

fa
5 Ellen UCSD

Inst (exo)
name state

f i
1 UCLA CA

f i
2 UCSD CA

f i
3 NYU NY

f i
4 MIT MA

Pub (exo)
author pub

fp
1 Alice A

fp
2 Alice B

fp
3 Bob C

fp
4 Cathy C

fp
5 Cathy D

fp
6 David C

Citations (exo)
paper cits

fc
1 A 18

fc
2 B 2

fc
2 C 8

fc
3 D 12

Figure 1 The database of the running example.

I Example 1. Figure 1 depicts the database D of our running example from the domain
of academic publications. The relation Author stores authors along with their affiliations,
which are stored with their states in Inst. The relation Pub associates authors with their
publications, and Citations stores the number of citations for each paper. For example,
publication C has 8 citations and it is written jointly by Bob from NYU of NY state, Cathy
from UCSD of CA state, and David from MIT of MA state. All Author facts are endogenous,
and all remaining facts are exogenous. Hence, Dn = {fa

1 , f
a
2 , f

a
3 , f

a
4 , f

a
5 } and Dx consists of

all fxj for x ∈ {i,p, c} and relevant j. J

Relational and conjunctive queries. Let S be a schema. A relational query is a function
that maps databases to relations. More formally, a relational query q of arity k is a function
q : DB(S)→ Constk that maps every database over S to a finite relation q(D) of arity k. We
denote the arity of q by ar(q). Each tuple ~c in q(D) is an answer to q on D. If the arity of q
is zero, then we say that q is a Boolean query; in this case, D |= q denotes that q(D) consists
of the empty tuple (), while D 6|= q denotes that q(D) is empty.

Our analysis will focus on the special case of Conjunctive Queries (CQs). A CQ
over the schema S is a relational query definable by a first-order formula of the form
∃y1 · · · ∃ymθ(~x, y1, . . . , ym), where θ is a conjunction of atomic formulas of the form R(~t)
with variables among those in ~x, y1, . . . , ym. In the remainder of the paper, a CQ q will be
written shortly as a logic rule, that is, an expression of the form

q(~x) :- R1(~t1), . . . , Rn(~tn)

where each Ri is a relation symbol of S, each ~ti is a tuple of variables and constants with the
same arity as Ri, and ~x is a tuple of k variables from ~t1, . . . ,~tn. We call q(~x) the head of q,
and R1(~t1), . . . , Rn(~tn) the body of q. Each Ri(~ti) is an atom of q. The variables occurring
in the head are called the head variables, and we make the standard safety assumption
that every head variable occurs at least once in the body. The variables occurring in the
body but not in the head are existentially quantified, and are called the existential variables.
The answers to q on a database D are the tuples ~c that are obtained by projecting to ~x all
homomorphisms from q to D, and replacing each variable with the constant it is mapped to.
A homomorphism from q to D is a mapping of the variables in q to the constants of D, such
that every atom in q is mapped to a fact in D.

A self-join in a CQ q is a pair of distinct atoms over the same relation symbol. For
example, in the query q() :- R(x, y), S(x), R(y, z), the first and third atoms constitute a
self-join. We say that q is self-join-free if it has no self-joins, or in other words, every relation
symbol occurs at most once in the body.
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Let q be a CQ. For a variable y of q, let Ay be the set of atoms Ri(~ti) of q that contain y
(that is, y occurs in ~ti). We say that q is hierarchical if for all existential variables y and y′
it holds that Ay ⊆ Ay′ , or Ay′ ⊆ Ay, or Ay ∩ Ay′ = ∅ [8]. For example, every CQ with at
most two atoms is hierarchical. The smallest non-hierarchical CQ is the following.

qRST() :- R(x), S(x, y), T (y) (1)

On the other hand, the query q(x) :- R(x), S(x, y), T (y), which has a single existential
variable, is hierarchical.

Let q be a Boolean query and D a database, both over the same schema, and let f ∈ Dn
be an endogenous fact. We say that f is a counterfactual cause (for q w.r.t. D) [23,24] if the
removal of f causes q to become false; that is, D |= q and D \ {f} 6|= q.

I Example 2. We will use the following queries in our examples.

q1() :- Author(x, y),Pub(x, z)
q2() :- Author(x, y),Pub(x, z),Citations(z, w)

q3(z, w) :- Author(x, y),Pub(x, z),Citations(z, w)
q4(z, w) :- Author(x, y),Pub(x, z),Citations(z, w), Inst(y, CA)

Note that q1 and q2 are Boolean, whereas q3 and q4 are not. Also note that q1 and q3 are
hierarchical, and q2 and q4 are not. Considering the database D of Figure 1, none of the
Author facts is a counterfactual cause for q1, since the query remains true even if the fact
is removed. The same applies to q2. However, the fact fa

1 is a counterfactual cause for the
Boolean CQ q′1() :- Author(x, UCLA),Pub(x, z), asking whether there is a publication with
an author from UCLA, since D satisfies q′1 but the removal of Alice causes q′1 to be violated
by D, as no other author from UCLA exists. J

Numerical and aggregate-relational queries. A numerical query α is a function that maps
databases to numbers. More formally, a numerical query α is a function α : DB(S)→ R that
maps every database D over S to a real number α(D).

A special form of a numerical query α is what we refer to as an aggregate-relational query:
a k-ary relational query q followed by an aggregate function γ : P(Constk) → R (where
P(Constk) is the power set of Constk that consists of all subsets of Constk) that maps the
resulting relation q(D) into a single number γ(q(D)). We denote this aggregate-relational
query as γ[q]; hence, γ[q](D) def= γ(q(D)).

Special cases of aggregate-relational queries include the functions of the form γ = F 〈ϕ〉
that transform every tuple ~c into a number ϕ(~c) via a feature function ϕ : Constk → R,
and then contract the resulting bag of numbers into a single number. Formally, we define
F 〈ϕ〉[q](D) def= F ({{ϕ(~c) | ~c ∈ q(D)}}) where {{·}} is used for bag notation. For example, if we
assume that the ith attribute of q(D) takes a numerical value, then ϕ can simply copy this
number (i.e., ϕ(~c) = ~c[i]); we denote this ϕ by [i]. As another example, ϕ can be the product
of two attributes: ϕ = [i] · [j]. We later refer to the following aggregate-relational queries.

sum〈ϕ〉[q](D) def=
∑

~c∈q(D)

ϕ(~c)

max〈ϕ〉[q](D) def=
{

max {ϕ(~c) | ~c ∈ q(D)} if q(D) 6= ∅;
0 if q(D) = ∅.

ICDT 2020
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Other popular examples include the minimum (defined analogously to maximum), average
and median over the feature values. A special case of sum〈ϕ〉[q] is count[q] that counts the
number of answers for q. That is, count[q] is sum〈1〉[q], where “1” is the feature function
that maps every k-tuple to the number 1. A special case of count[q] is when q is Boolean; in
this case, we may abuse the notation and identify count[q] with q itself. Put differently, we
view q as the numerical query α defined by α(D) = 1 if D |= q and α(D) = 0 if D 6|= q.

I Example 3. Following are examples of aggregate-relational queries over the relational
queries of Example 2.

α1
def= sum〈[2]〉[q3] calculates the total number of citations of all published papers.

α2
def= count[q3] counts the papers in Citations with an author in the database.

α3
def= sum〈[2]〉[q4] calculates the total number of citations of papers by Californians.

α4
def= max〈[2]〉[q3] calculates the number of citations for the most cited paper.

For D of Figure 1 we have α1(D) = 40, α2(D) = 4, α3(D) = 40 and α4(D) = 18. J

In terms of presentation, when we mention general functions γ and ϕ, we make the implicit
assumption that they are computable in polynomial time with respect to the representation of
their input. Also, observe that our modeling of an aggregate-relational query does not allow
for grouping, since a database is mapped to a single number. This is done for simplicity of
presentation, and all concepts and results of this paper generalize to grouping as in traditional
modeling (e.g., [6]). This is explained in the next section.

Shapley value. Let A be a finite set of players. A cooperative game is a function v : P(A)→
R, such that v(∅) = 0. The value v(S) represents a value, such as wealth, jointly obtained
by S when the players of S cooperate. The Shapley value [33] measures the share of each
individual player a ∈ A in the gain of A for the cooperative game v. Intuitively, the gain of a
is as follows. Suppose that we form a team by taking the players one by one, randomly and
uniformly without replacement; while doing so, we record the change of v due to the addition
of a as the random contribution of a. Then the Shapley value of a is the expectation of the
random contribution.

Shapley(A, v, a) def= 1
|A|!

∑
σ∈ΠA

(
v(σa ∪ {a})− v(σa)

)
(2)

where ΠA is the set of all possible permutations over the players in A, and for each permutation
σ we denote by σa the set of players that appear before a in the permutation.

An alternative formula for the Shapley value is the following.

Shapley(A, v, a) def=
∑

B⊆A\{a}

|B|! · (|A| − |B| − 1)!
|A|!

(
v(B ∪ {a})− v(B)

)
(3)

Note that |B|! · (|A| − |B| − 1)! is the number of permutations over A such that all players in
B come first, then a, and then all remaining players. For further reading, we refer the reader
to the book by Roth [30].

3 Shapley Value of Database Facts

Let α be a numerical query over a schema S, and let D be a database over S. We wish to
quantify the contribution of every endogenous fact to the result α(D). For that, we view α

as a cooperative game over Dn, where the value of every subset E of Dn is α(E ∪Dx).



E. Livshits, L. Bertossi, B. Kimelfeld, and M. Sebag 20:7

IDefinition 4 (Shapley Value of Facts). Let S be a schema, α a numerical query, D a database,
and f an endogenous fact of D. The Shapley value of f for α, denoted Shapley(D,α, f), is
the value Shapley(A, v, a) as given in (2), where:

A = Dn;
v(E) = α(E ∪Dx)− α(Dx) for all E ⊆ A;
a = f .

That is, Shapley(D,α, f) is the Shapley value of f in the cooperative game that has the
endogenous facts as the set of players and values each team by the quantity it adds to α.

As a special case, if q is a Boolean query, then Shapley(D, q, f) is the same as the value
Shapley(D, count[q], f). In this case, the corresponding cooperative game takes the values
0 and 1, and the Shapley value then coincides with the Shapley-Shubik index [32]. Some
fundamental properties of the Shapley value [33] are reflected here as follows:

Shapley(D, a · α+ b · β, f) = a · Shapley(D,α, f) + b · Shapley(D,β, f).
α(D) = α(Dx) +

∑
f∈Dn

Shapley(D,α, f).

I Remark 5. Note that Shapley(D,α, f) is defined for a general numerical query α. The
definition is immediately extendible to queries with grouping (producing tuples of database
constants and numbers [6]), where we would measure the responsibility of f for an answer
tuple ~a and write something like Shapley(D,α,~a, f). In that case, we treat every group as a
separate numerical query. We believe that focusing on numerical queries (without grouping)
allows us to keep the presentation considerably simpler while, at the same time, retaining
the fundamental challenges. J

In the remainder of this section, we illustrate the Shapley value on our running example.

I Example 6. We begin with a Boolean CQ, and specifically q1 from Example 2. Recall that
the endogenous facts correspond to the authors. As Ellen has no publications, her addition
to any Dx ∪E where E ⊆ Dn does not change the satisfaction of q1. Hence, its Shapley value
is zero: Shapley(D, q1, f

a
5 ) = 0. The fact fa

1 changes the query result if it is either the first
fact in the permutation, or it is the second fact after fa

5 . There are 4! permutations that
satisfy the first condition, and 3! permutations that satisfy the second. The contribution of
fa

1 to the query result is one in each of these permutations, and zero otherwise. Therefore, we
have Shapley(D, q1, f

a
1 ) = 4!+3!

120 = 1
4 . The same argument applies to fa

2 , fa
3 and fa

4 , and so,
Shapley(D, q1, f

a
2 ) = Shapley(D, q1, f

a
3 ) = Shapley(D, q1, f

a
4 ) = 1

4 . We get the same numbers
for q2, since every paper is mentioned in the Citations relation. Note that the value of the
query q1 on the database is 1, and it holds that

∑5
i=1 Shapley(D, q1, f

a
i ) = 4 · 1

4 + 0 = 1;
hence, the second fundamental property of the Shapley value mentioned above is satisfied.

While Alice, Bob, Cathy and David have the same Shapley value for q1, things change if
we consider the relation pub endogenous as well: the Shapley value of Alice and Cathy will
be higher than Bob’s and David’s values, since they have more publications. Specifically,
the fact fa

1 , for example, will change the query result if and only if at least one of fp
1 or

fp
2 appears earlier in the permutation, and no pair among {fa

2 , f
p
3 }, {fa

3 , f
p
3 }, {fa

3 , f
p
4 }, and

{fa
4 , f

p
3 } appears earlier than fa

1 . By rigorous counting, we can show that there are: 2 such
sets of size one, 17 such sets of size two, 56 such sets of size three, 90 such sets of size four,
73 such sets of size five, 28 such sets of size six, and 4 such sets of size seven. Therefore, the
Shapley value of fa

1 is:
Shapley(D, q1, fa

1 ) = 2 · (11− 2)!1!
11! + 17 · (11− 3)!2!

11! + 56 · (11− 4)!3!
11! + 90 · (11− 5)!4!

11!

+ 73 · (11− 6)!5!
11! + 28 · (11− 7)!6!

11! + 4 · (11− 8)!7!
11! = 442

2520
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We can similarly compute the Shapley value for the rest of the authors, concluding that
Shapley(D, q1, f

a
2 ) = Shapley(D, q1, f

a
4 ) = 241

2520 and Shapley(D, q1, f
a
3 ) = 442

2520 . Hence, the
Shapley value is the same for Alice and Cathy, who have two publications each, and lower
for Bob and David, that have only one publication. J

The following example, taken from Salimi et al. [31], illustrates the Shapley value on
(Boolean) graph reachability.

I Example 7. Consider the following database G defined via the relation symbol Edge/2.

e3

e1

e5

e4 e6
e2 c

d e

ba

Here, we assume that all edges ei are endogenous facts. Let pab be the Boolean query
(definable in, e.g., Datalog) that determines whether there is a path from a to b. Let us
calculate Shapley(G, pab, ei) for different edges ei. Intuitively, we expect e1 to have the
highest value since it provides a direct path from a to b, while e2 contributes to a path only
in the presence of e3, and e4 enables a path only in the presence of both e5 and e6. We show
that, indeed, it holds that Shapley(G, pab, e1) > Shapley(G, pab, e2) > Shapley(G, pab, e4).

To illustrate the calculation, observe that there are 25 subsets of G that do not con-
tain e1, and among them, the subsets that satisfy pab are the supersets of {e2, e3} and
{e4, e5, e6}. Hence, we have that Shapley(G, pab, e1) = 35

60 (the detailed computation is in
the extended version of the paper [21]). A similar reasoning shows that Shapley(G, pab, e2) =
Shapley(G, pab, e3) = 8

60 , and that Shapley(G, pab, ei) = 3
60 for i = 4, 5, 6. J

Lastly, we consider aggregate functions over conjunctive queries.

I Example 8. We consider the queries α1, α2, and α4 from Example 3. Ellen has no
publications; hence, Shapley(D,αj , fa

5 ) = 0 for j ∈ {1, 2, 4}. The contribution of fa
1 is the

same in every permutation (20 for α1 and 2 for α2) since Alice is the single author of two
published papers that have a total of 20 citations. Hence, Shapley(D,α1, f

a
1 ) = 20 and

Shapley(D,α2, f
a
1 ) = 2. The total number of citations of Cathy’s papers is also 20; however,

Bob and David are her coauthors on paper C. Hence, if the fact fa
3 appears before fa

2 and fa
4

in a permutation, its contribution to the query result is 20 for α1 and 2 for α2, while if fa
3

appears after at least one of fa
2 or fa

4 in a permutation, its contribution is 12 for α1 and 1 for
α2. Clearly, fa

2 appears before both fa
3 and fa

4 in one-third of the permutations. Thus, we
have that Shapley(D,α1, f

a
3 ) = 1

3 · 20 + 2
3 · 12 = 44

3 and Shapley(D,α2, f
a
3 ) = 1

3 · 2 + 2
3 · 1 = 4

3 .
Using similar computations we obtain that Shapley(D,α1, f

a
2 ) = Shapley(D,α1, f

a
4 ) = 8

3 and
Shapley(D,α2, f

a
2 ) = Shapley(D,α2, f

a
4 ) = 1

3 .
Hence, the Shapley value of Alice, who is the single author of two papers with a total

of 20 citations, is higher than the Shapley value of Cathy who also has two papers with a
total of 20 citations, but shares one paper with other authors. Bob and David have the same
Shapley value, since they share a single paper, and this value is the lowest among the four,
as they have the lowest number of papers and citations.

Finally, consider α4. The contribution of fa
1 in this case depends on the maximum value

before adding fa
1 in the permutation (which can be 0, 8 or 12). For example, if fa

1 is the first
fact in the permutation, its contribution is 18 since α4(∅) = 0. If fa

1 appears after fa
3 , then its

contribution is 6, since α4(S) = 12 whenever fa
3 ∈ S. We have that Shapley(D,α4, f

a
1 ) = 10,

Shapley(D,α4, f
a
2 ) = Shapley(D,α4, f

a
4 ) = 2 and Shapley(D,α4, f

a
3 ) = 4 (we omit the

computations here). We see that the Shapley value of fa
1 is much higher than the rest, since
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Alice significantly increases the maximum value when added to any prefix. If the number
of citations of paper C increases to 16, then Shapley(D,α4, f

a
1 ) = 6, hence lower. This is

because the next highest value is closer; hence, the contribution of fa
1 diminishes. J

4 Complexity Results

In this section, we give complexity results on the computation of the Shapley value of facts.
We begin with exact evaluation for Boolean CQs (Section 4.1), then move on to exact
evaluation on aggregate-relational queries (Section 4.2), and finally discuss approximate
evaluation (Section 4.3). In the first two parts we restrict the discussion to CQs without
self-joins, and leave the problems open in the presence of self-joins. However, the approximate
treatment in the third part covers the general class of CQs (and beyond).

4.1 Boolean Conjunctive Queries
We investigate the problem of computing the (exact) Shapley value w.r.t. a Boolean CQ
without self-joins. Our main result in this section is a full classification of (i.e., a dichotomy
in) the data complexity of the problem. As we show, the classification criterion is the same
as that of query evaluation over tuple-independent probabilistic databases [9]: hierarchical
CQs without self-joins are tractable, and non-hierarchical ones are intractable.

I Theorem 9. Let q be a Boolean CQ without self-joins. If q is hierarchical, then computing
Shapley(D, q, f) can be done in polynomial time, given D and f . Otherwise, the problem is
FP#P-complete.

Recall that FP#P is the class of functions computable in polynomial time with an oracle
to a problem in #P (e.g., counting the number of satisfying assignments of a propositional
formula). This complexity class is considered intractable, and is known to be above the
polynomial hierarchy (Toda’s theorem [35]).

I Example 10. Consider the query q1 from Example 2. This query is hierarchical; hence,
by Theorem 9, Shapley(D, q1, f) can be calculated in polynomial time, given D and f . On
the other hand, the query q2 is not hierarchical. Thus, Theorem 9 asserts that computing
Shapley(D, q2, f) is FP#P-complete. J

In the rest of this subsection, we discuss the proof of Theorem 9. While the tractability
condition is the same as that of Dalvi and Suciu [9], it is not clear whether and/or how
we can use their dichotomy to prove ours, in each of the two directions (tractability and
hardness). The difference is mainly in that they deal with a random subset of probabilistically
independent (endogenous) facts, whereas we reason about random permutations over the facts.
We stary by discussing the algorithm for computing the Shapley value in the hierarchical
case, and then we discuss the proof of hardness for the non-hierarchical case.

Tractability side. Let D be a database, let f be an endogenous fact, and let q be a Boolean
query. The computation of Shapley(D, q, f) easily reduces to the problem of counting the
k-sets (i.e., sets of size k) of endogenous facts that, along with the exogenous facts, satisfy q.
More formally, the reduction is to the problem of computing |Sat(D, q, k)| where Sat(D, q, k)
is the set of all subsets E of Dn such that |E| = k and (Dx ∪ E) |= q. The reduction is
as follows, where we denote m = |Dn| and slightly abuse the notation by viewing q as a
0/1-numerical query, where q(D′) = 1 if and only if D′ |= q.

ICDT 2020
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Shapley(D, q, f) =
∑

E⊆(Dn\{f})

|E|!(m− |E| − 1)!
m!

(
q(Dx ∪ E ∪ {f})− q(Dx ∪ E)

)
(4)

=
∑

E⊆(Dn\{f})

|E|!(m− |E| − 1)!
m!

(
q(Dx ∪ E ∪ {f})

)
−

∑
E⊆(Dn\{f})

|E|!(m− |E| − 1)!
m!

(
q(Dx ∪ E)

)
=

(
m−1∑
k=0

k!(m− k − 1)!
m! × |Sat(D′, q, k)|

)
−

(
m−1∑
k=0

k!(m− k − 1)!
m! × |Sat(D \ {f}, q, k)|

)
In the last expression, D′ is the same as D, except that f is viewed as exogenous instead of
endogenous. Hence, to prove the positive side of Theorem 9, it suffices to show the following.

I Theorem 11. Let q be a hierarchical Boolean CQ without self-joins. There is a polynomial-
time algorithm for computing the number |Sat(D, q, k)| of subsets E of Dn such that |E| = k

and (Dx ∪ E) |= q, given D and k.

To prove Theorem 11, we show a polynomial-time algorithm for computing |Sat(D, q, k)|
for q as in the theorem. The pseudocode is depicted in Figure 2.

We assume in the algorithm that Dn contains only facts that are homomorphic images
of atoms of q (i.e., facts f such that there is a mapping from an atom of q to f). In the
terminology of Conitzer and Sandholm [7], the function defined by q concerns only the subset
C of Dn consisting of these facts (i.e., the satisfaction of q by any subset of D does not
change if we intersect with C), and so, the Shapley value of every fact in Dn \ C is zero
and the Shapley value of any other fact is unchanged when ignoring Dn \ C [7, Lemma 4].
Moreover, these facts can be found in polynomial time.

As expected for a hierarchical query, our algorithm is a recursive procedure that acts
differently in three different cases: (a) q has no variables (only constants), (b) there is a root
variable x, that is, x occurs in all atoms of q, or (c) q consists of two (or more) subqueries
that do not share any variables. Since q is hierarchical, at least one of these cases always
applies [10].

In the first case (lines 1-7), every atom a of q can be viewed as a fact. Clearly, if one
of the facts in q is not present in D, then there is no subset E of Dn of any size such that
(Dx ∪ E) |= q, and the algorithm will return 0. Otherwise, suppose that A is the set of
endogenous facts of q (and the remaining atoms of q, if any, are exogenous). Due to our
assumption that every fact of Dn is a homomorphic image of an atom of q, the single choice
of a subset of facts that makes the query true is A; therefore, the algorithm returns 1 if
k = |A| and 0 otherwise.

Next, we consider the case where q has a root variable x (lines 9-21). We denote by Vx
the set {v1, . . . , vn} of values that D has in attributes that correspond to an occurrence of
x. For example, if q contains the atom R(x, y, x) and D contains a fact R(a, b, a), then a
is one of the values in Vx. We also denote by q[x→vi] the query that is obtained from q by
substituting vi for x, and by Dvi the subset of D that consists of facts with the value vi in
every attribute where x occurs in q.

We solve the problem for this case using a simple dynamic program. We denote by P `i the
number of subsets of size ` of

⋃i
r=1D

vr
n that satisfy the query (together with the exogenous

facts in
⋃i
r=1D

vr
x ). Our goal is to find P kn , which is the number of subsets E of size k of⋃n

r=1D
vr
n . Note that this union is precisely Dn, due to our assumption that Dn contains

only facts that can be obtained from atoms of q via an assignment to the variables. First, we
compute, for each value vi, and for each j ∈ {0, . . . , k}, the number fi,j of subsets E of size
j of Dvi

n such that (Dvi
x ∪ E) |= q, using a recursive call. In the recursive call, we replace q

with q[x→vi], as Dvi contains only facts that use the value vi for the variable x; hence, we can
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Algorithm 1 CntSat(D, q, k).
1: if Vars(q) = ∅ then
2: if ∃a ∈ Atoms(q) s.t. a 6∈ D then
3: return 0
4: A = Atoms(q) ∩Dn
5: if |A| = k then
6: return 1
7: return 0
8: result← 0
9: if q has a root variable that occurs in all atoms then
10: x← a root variable of q
11: Vx ← the set {v1, . . . , vn} of values for x
12: for all i ∈ {1, . . . , |Vx|} do
13: for all j ∈ {0, . . . , k} do
14: fi,j =← CntSat(Dvi , q[x→vi], j)
15: P `1 = f1,` for all ` ∈ {0, . . . , k}
16: for all i ∈ {2, . . . , |Vx|} do
17: for all ` ∈ {0, . . . , k} do
18: P `i ← 0
19: for all j ∈ {0, . . . , `} do
20: P `i ← P `i +P `−ji−1 · fi,j +

[(∑i−1
r=1
|Dvr

n |
`−j

)
−P `−ji−1

]
· fi,j +P `−ji−1 ·

[(|Dvi
n |
j

)
− fi,j

]
21: result← P kn
22: else
23: let q = q1 ∧ q2 where Vars(q1) ∩ Vars(q2) = ∅
24: let D1 and D2 be the restrictions of D to the relations of q1 and q2, respectively
25: for all k1, k2 s.t. k1 + k2 = k do
26: result← result + CntSat(D1, q1, k1) · CntSat(D2, q2, k2)
27: return result

Figure 2 An algorithm for computing |Sat(D, q, k)| where q is a hierarchical Boolean CQ without
self-joins.

reduce the number of variables in q by substituting x with vi. Then, for each ` ∈ {0, . . . , k}
it clearly holds that P `1 = f1,`. For each i ∈ {2, . . . , |Vx|} and ` ∈ {0, · · · , k}, we compute P `i
in the following way. Each subset E of size ` of

⋃i
r=1D

vr
n contains a set E1 of size j of facts

from Dvi
n (for some j ∈ {0, . . . , `}) and a set E2 of size `− j of facts from

⋃i−1
r=1D

vr
n . If the

subset E satisfies the query, then precisely one of the following holds:

1. (Dvi
x ∪ E1) |= q and (

⋃i−1
r=1D

vr
x ∪ E2) |= q,

2. (Dvi
x ∪ E1) |= q, but (

⋃i−1
r=1D

vr
x ∪ E2) 6|= q,

3. (Dvi
x ∪ E1) 6|= q, but (

⋃i−1
r=1D

vr
x ∪ E2) |= q.

Hence, we add to P `i the value P `−ji−1 · fi,j that corresponds to Case (1), the value

((⋃i−1
r=1 |Dvr

n |
`− j

)
− P `−ji−1

)
· fi,j
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g
R T

S

D0

R T
S

D2

f f f

R T
S

D|V |+1

f ...

R T
S

D3

f

R T
S

D1

Figure 3 Constructions in the reduction of the proof of Lemma 12. Relations R/1 and T/1
consist of endogenous facts and S/2 consists of exogenous facts.

that corresponds to Case (2), and the value

P `−ji−1 ·
((
|Dvi

n |
j

)
− fi,j

)
that corresponds to Case (3). Note that we have all the values P `−ji−1 from the previous
iteration of the for loop of line 16.

Finally, we consider the case where q has two nonempty subqueries q1 and q2 with disjoint
sets of variables (lines 23-26). For j ∈ {1, 2}, we denote by Dj the set of facts from D that
appear in the relations of qj . (Recall that q has no self-joins; hence, every relation can appear
in either q1 or q2, but not in both.) Every subset E of D that satisfies q must contain a
subset E1 of D1 that satisfies q1 and a subset E2 of D2 satisfying q2. Therefore, to compute
|Sat(D, q, k)|, we consider every pair (k1, k2) of natural numbers such that k1 + k2 = k,
compute |Sat(D1, q1, k1)| and |Sat(D2, q2, k2)| via a recursive call, and add the product of
the two to the result.

Hardness side. We now sketch the proof of the negative side of Theorem 9. (The complete
proof is in [21].) Membership in FP#P is straightforward since, as aforementioned in
Equation (4), the Shapley value can be computed in polynomial time given an oracle to the
problem of counting the number of subsets E ⊆ Dn of size k such that (Dx ∪ E) |= q, and
this problem is in #P. Similarly to Dalvi and Suciu [9], our proof of hardness consists of
two steps. First, we prove the FP#P-hardness of computing Shapley(D, qRST, f), where qRST
is given in (1). Second, we reduce the computation of Shapley(D, qRST, f) to the problem
of computing Shapley(D, q, f) for any non-hierarchical CQ q without self-joins. The second
step is the same as that of Dalvi and Suciu [9], so we do not discuss it here. Hence, in what
follows, we focus on the first step – hardness of computing Shapley(D, qRST, f), as stated
next by Lemma 12. The proof, which we discuss after the lemma, is considerably more
involved than the corresponding proof of Dalvi and Suciu [9] that computing the probability
of qRST in a tuple-independent probabilistic database (TID) is FP#P-hard.

I Lemma 12. Computing Shapley(D, qRST, f) is FP#P-complete.

The proof of Lemma 12 is by a (Turing) reduction from the problem of computing the
number |IS(g)| of independent sets of a given bipartite graph g, which is the same (via
immediate reductions) as the problem of computing the number of satisfying assignments of
a bipartite monotone 2-DNF formula, which we denote by #biSAT. Dalvi and Suciu [9] also
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proved the hardness of qRST (for the problem of query evaluation over TIDs) by reduction
from #biSAT. Their reduction is a simple construction of a single input database, followed
by a multiplication of the query probability by a number. It is not at all clear to us how such
an approach can work in our case and, indeed, our proof is more involved. Our reduction
takes the general approach that Dalvi and Suciu [10] used (in a different work) for proving
that the CQ q() :- R(x, y), R(y, z) is hard over TIDs: solve several instances of the problem
for the construction of a full-rank set of linear equations. The problem itself, however, is
quite different from ours. This general technique has also been used by Aziz et al. [2] for
proving the hardness of computing the Shapley value for a matching game on unweighted
graphs, which is again quite different from our problem.

In more detail, the idea is as follows. Given an input bipartite graph g = (V,E) for
which we wish to compute |IS(g)|, we construct n+ 1 different input instances (Dj , f), for
j = 1, . . . , n + 1, of the problem of computing Shapley(Dj , qRST, f), where n = |V |. Each
instance provides us with an equation over the numbers |IS(g, k)| of independent sets of size
k in g for k = 0, . . . , n. We then show that the set of equations constitutes a non-singular
matrix that, in turn, allows us to extract the |IS(g, k)| in polynomial time (e.g., via Gaussian
elimination). This is enough, since |IS(g)| =

∑n
k=0 |IS(g, k)|.

Our reduction is illustrated in Figure 3. Given the graph g (depicted in the leftmost
part), we construct n + 2 graphs by adding new vertices and edges to g. For each such
graph, we build a database that contains an endogenous fact R(v) for every left vertex v,
an endogenous fact T (u) for every right vertex u, and an exogenous fact S(v, u) for every
edge (v, u). In each constructed database Dj , the fact f represents a new left node, and
we compute Shapley(Dj , qRST, f). In D0, the node of f is connected to every right vertex.
We use Shapley(D0, qRST, f) to compute a specific value that we refer to later on. For
j = 1, . . . , n+ 1, the database Dj is obtained from g by adding f and facts of j new right
nodes, all connected to f . We show the following for all j = 1, . . . , n+ 1.

Shapley(Dj , qRST, f) = 1−
cj · v0 +

∑n
k=0 |IS(g, k)| · k!(n+ j − k)!

(n+ j + 1)!

where v0 is a value computed using Shapley(D0, qRST, f), and cj is a constant that depends
on j. From these equations we extract a system Ax = y of n+1 equations over n+1 variables
(i.e., |IS(g, 0)|, . . . , |IS(g, n)|), where each Sj stands for Shapley(Dj , qRST, f).

0!(n+ 1)! 1!n! . . . n!1!
0!(n+ 2)! 1!(n+ 1)! . . . n!2!

...
...

...
...

0!(2n+ 1)! 1!(2n)! . . . n!(n+ 1)!



|IS(g, 0)|
|IS(g, 1)|

...
|IS(g, n)|

 =


(n+ 2)!S1 − c1v0
(n+ 3)!S2 − c2v0

...
(2n+ 2)!Sn+1 − cn+1v0


By an elementary algebraic manipulation of A, we obtain the matrix with the coefficients
ai,j = (i+ j + 1)! that Bacher [3] proved to be non-singular (and, in fact, that

∏n−1
i=0 i!(i+ 1)!

is its determinant). We then solve the system as discussed earlier to obtain |IS(g, k)|.

4.2 Aggregates over Conjunctive Queries
Next, we study the complexity of aggregate-relational queries, where the internal relational
query is a CQ. We begin with hardness. The following theorem generalizes the hardness side
of Theorem 9 and states that it is FP#P-complete to compute Shapley(D,α, f) whenever α
is of the form γ[q], as defined in Section 2, and q is a non-hierarchical CQ without self-joins.
The only exception is when α is a constant numerical query (i.e., α(D) = α(D′) for all
databases D and D′); in that case, Shapley(D,α, f) = 0 always holds.
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I Theorem 13. Let α = γ[q] be a fixed aggregate-relational query where q is a non-hierarchical
CQ without self-joins. Computing Shapley(D,α, f), given D and f , is FP#P-complete, unless
α is constant.

For instance, it follows from Theorem 13 that, whenever q is a non-hierarchical CQ without
self-joins, it is FP#P-complete to compute the Shapley value for the aggregate-relational
queries count[q], sum〈ϕ〉[q], max〈ϕ〉[q], and min〈ϕ〉[q], unless ϕ(~c) = 0 for all databases D
and tuples ~c ∈ q(D). Additional examples follow.

I Example 14. Consider the numerical query α3 from Example 3. Since q4 is not hierarchical,
Theorem 13 implies that computing Shapley(D,α4, f) is FP#P-complete. Actually, comput-
ing Shapley(D,α, f) is FP#P-complete for any non-constant aggregate-relational query over
q4. Hence, computing the Shapley value w.r.t. count[q4] (which counts the number of papers
in Citations with an author from California) or w.r.t. max〈[2]〉[q4] (which calculates the
number of citations for the most cited paper by a Californian) is FP#P-complete as well. J

To prove hardness in Theorem 13, we break q into connected components q1, . . . , qm, such
that Vars(qi) ∩ Vars(qj) = ∅ for all i, j ∈ {1, . . . ,m}. Since q is non-hierarchical, at least one
of these connected components is non-hierarchical. We assume, without loss of generality,
that this is q1. Next, since α is not a constant function, there exists a database D̃ such that
α(D̃) 6= α(∅). We select one answer ~a from q(D̃) and substitute the free variables of q1 with
the corresponding constants from ~a to obtain the Boolean CQ q′1. Theorem 9 states that
computing Shapley(D, q′1, f) is FP#P-complete. We then reduce the problem of computing
Shapley(D, q′1, f) to the problem of computing Shapley(D,α, f), and show that

Shapley(D, q′1, f) = Shapley(D′, α, f)
α(D̃)− α(∅)

where D′ is a database obtained by combining facts from D with facts from D̃. As usual,
the full proof is given in the extended version of the paper [21].

Interestingly, it turns out that Theorem 13 captures precisely the hard cases for computing
the Shapley value w.r.t. any summation over CQs without self-joins. In particular, the
following argument shows that Shapley(D, sum〈ϕ〉[q], f) can be computed in polynomial time
if q is a hierarchical CQ without self-joins. Let q = q(~x) be an arbitrary CQ. For ~a ∈ q(D),
let q[~x→~a] be the Boolean CQ obtained from q by substituting every free variable xj with the
value of xj in ~a. Hence, we have that sum〈ϕ〉[q] =

∑
~a∈q(D) ϕ(~a) · q[~x→~a]. The linearity of

the Shapley value (stated as a fundamental property in Section 3) implies that

Shapley(D, sum〈ϕ〉[q], f) =
∑

~a∈q(D)

ϕ(~a) · Shapley(D, q[~x→~a], f) . (5)

Then, from Theorem 9 we conclude that if q is a hierarchical CQ with self-joins, then
Shapley(D, q[~x→~a], f) can be computed in polynomial time for every ~a ∈ q(D). Hence, we
have the following corollary of Theorem 9.

I Corollary 15. Let q be a hierarchical CQ without self-joins. If α is an aggregate-relational
query sum〈ϕ〉[q], then Shapley(D,α, f) can be computed in polynomial time, given D and f .
In particular, Shapley(D, count[q], f) can be computed in polynomial time.

Together with Theorem 13, we get a full dichotomy for sum〈ϕ〉[q] over CQs without self-joins.
The complexity of computing Shapley(D,α, f) for other aggregate-relational queries

remains an open problem for the general case where q is a hierarchical CQ without self-joins.
We can, however, state a positive result for max〈ϕ〉[q] and min〈ϕ〉[q] for the special case
where q consists of a single atom (i.e., aggregation over a single relation).
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I Proposition 16. Let q be a CQ with a single atom. Then, Shapley(D,max〈ϕ〉[q], f) and
Shapley(D,min〈ϕ〉[q], f) can be computed in polynomial time.

As an example, if α is the query max〈[2]〉[q], where q is given by q(x, y) :- Citations(x, y),
then we can compute in polynomial time Shapley(D,α, f), determining the responsibility of
each publication (in our running example) to the maximum number of citations.

4.3 Approximation
In computational complexity theory, a conventional feasibility notion of arbitrarily tight
approximations is via the Fully Polynomial-Time Approximation Scheme, FPRAS for short.
Formally, an FPRAS for a numeric function f is a randomized algorithm A(x, ε, δ), where x
is an input for f and ε, δ ∈ (0, 1), that returns an ε-approximation of f(x) with probability
1− δ (where the probability is over the randomness of A) in time polynomial in x, 1/ε and
log(1/δ). To be more precise, we distinguish between an additive (or absolute) FPRAS:

Pr [f(x)− ε ≤ A(x, ε, δ) ≤ f(x) + ε)] ≥ 1− δ ,

and a multiplicative (or relative) FPRAS:

Pr
[
f(x)
1 + ε

≤ A(x, ε, δ) ≤ (1 + ε)f(x)
]
≥ 1− δ .

Using the Chernoff-Hoeffding bound, we easily get an additive FPRAS of Shapley(D, q, f)
when q is any monotone Boolean query computable in polynomial time, by simply taking
the ratio of successes over O(log(1/δ)/ε2) trials of the following experiment:
1. Select a random permutation (f1, . . . , fn) over the set of all endogenous facts.
2. Suppose that f = fi, and let Di−1 = Dx ∪ {f1, . . . , fi−1}. If q(Di−1) is false and

q(Di−1 ∪ {f}) is true, then report “success;” otherwise, “failure.”
In general, an additive FPRAS of a function f is not necessarily a multiplicative one, since
f(x) can be very small. For example, we can get an additive FPRAS of the satisfaction of a
propositional formula over Boolean i.i.d. variables by, again, sampling the averaging, but
there is no multiplicative FPRAS for such formulas unless BPP = NP. Nevertheless, the
situation is different for Shapley(D, q, f) when q is a CQ, since the Shapley value is never
too small (assuming data complexity).

I Proposition 17. Let q be a fixed Boolean CQ. There is a polynomial p such that for all
databases D and endogenous facts f of D it is the case that Shapley(D, q, f) is either zero
or at least 1/(p(|D|)).

Proof. We denote m = |Dn|. If there is no subset S of Dn such that f is a counterfactual
cause for q w.r.t. S, then Shapley(D, q, f) = 0. Otherwise, let S be a minimal such set (i.e.,
for every S′ ⊂ S, we have that (S′ ∪Dx) 6|= q). Clearly, it holds that S ≤ k, where k is the
number of atoms of q. The probability to choose a permutation σ, such that σf is exactly
S \ {f} is (|S|−1)!(m−|S|)!

m! ≥ (m−k)!
m! (recall that σf is the set of facts that appear before f in

σ). Hence, we have that Shapley(D, q, f) ≥ 1
(m−k+1)·...·m , and that concludes our proof. J

It follows that whenever Shapley(D, q, f) = 0, the above additive approximation is also zero,
and when Shapley(D, q, f) > 0, the additive FPRAS also provides a multiplicative FPRAS.
Hence, we have the following.

I Corollary 18. For every fixed Boolean CQ, the Shapley value has both an additive and a
multiplicative FPRAS.

ICDT 2020
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Interestingly, Corollary 18 generalizes to a multiplicative FPRAS for summation (including
counting) over CQs. By combining Corollary 18 with Equation (5), we immediately obtain a
multiplicative FPRAS for Shapley(D, sum〈ϕ〉[q], f), in the case where all the features ϕ(~a)
in the summation have the same sign (i.e., they are either all negative or all non-negative).
In particular, there is a multiplicative FPRAS for Shapley(D, count[q], f).

I Corollary 19. For every fixed CQ q, Shapley(D, sum〈ϕ〉[q], f) has a multiplicative FPRAS
if either ϕ(~a) ≥ 0 for all ~a ∈ q(D) or ϕ(~a) ≤ 0 for all ~a ∈ q(D).

Observe that the above FPRAS results allow the CQ q to have self-joins. This is in
contrast to the complexity results we established in the earlier parts of this section, regarding
exact evaluation. In fact, an easy observation is that Proposition 17 continues to hold when
considering unions of conjunctive queries (UCQs). Therefore, Corollaries 18 and 19 remain
correct in the case where q is a UCQ.

5 Related Measures

Causality and causal responsibility [15, 28] have been applied in data management [24],
defining a fact as a cause for a query result as follows: For an instance D = Dx ∪Dn, a fact
f ∈ Dn is an actual cause for a Boolean CQ q, if there exists Γ ⊆ Dn, called a contingency set
for f , such that f is a counterfactual cause for q in D r Γ. The responsibility of an actual
cause f for q is defined by ρ(f) := 1

|Γ|+1 , where |Γ| is the size of a smallest contingency
set for f . If f is not an actual cause, then ρ(f) is zero [24]. Intuitively, facts with higher
responsibility provide stronger explanations.2

I Example 20. Consider the database of our running example, and the query q1 from
Example 2. The fact fa

1 an actual cause with minimal contingency set Γ = {fa
2 , f

a
3 , f

a
4 }. So,

its responsibility is 1
4 . Similarly, fa

2 , fa
3 and fa

4 are actual causes with responsibility 1
4 .

I Example 21. Consider the database G and the query pab from Example 7. All facts
in G are actual causes since every fact appears in a path from a to b. It is easy to verify
that all the facts in D have the same causal responsibility, 1

3 , which may be considered as
counter-intuitive given that e1 provides a direct path from a to b.

As shown in Example 7, the Shapley value gives a more intuitive degree of contribution
of facts to the query result than causal responsibility. Actually, Example 7 was used in [31]
as a motivation to introduce an alternative to the notion of causal responsibility, that of
causal effect, that we now briefly review.

To quantify the contribution of a fact to the query result, Salimi et al. [31] view the data-
base as a tuple-independent probabilistic database where the probability of each endogenous
fact is 0.5 and the probability of each exogenous fact is 1 (i.e., it is certain). The causal
effect of a fact f ∈ Dn on a numerical query α is a difference of expected values [31]:

CE(D,α, f) def= E(α(D) | f)− E(α(D) | ¬f) .

where f is the event that the fact f is present in the database, and ¬f is the event that the
fact f is absent from the database.

2 These notions can be applied to any monotonic query (i.e., whose answer set can only grow when the
database grows, e.g., UCQs and Datalog queries) [4, 5].



E. Livshits, L. Bertossi, B. Kimelfeld, and M. Sebag 20:17

I Example 22. Consider again the database of our running example, and the query q1
from Example 2. We compute CE(D, q1, f

a
1 ). It holds that: E(q1 | ¬fa

1 ) = 0 · P (q1 =
0 | ¬fa

1 ) + 1 · P (q1 = 1 | ¬fa
1 ) = 1 − P (¬fa

2 ∧ ¬fa
3 ∧ ¬fa

4 ) = 7
8 . Similarly, we have that

E(q1 | fa
1 ) = P (q1 = 1 | fa

1 ) = 1. Then, CE(D, q1, f
a
1 ) = 1 − 7

8 = 1
8 . Using similar

computations we obtain that CE(D, q1, f
a
2 ) = CE(D, q1, f

a
3 ) = CE(D, q1, f

a
4 ) = 1

8 .
For G and pab of Example 7, we have that CE(G, pab, e1) = 0.65625, CE(G, pab, e2) =

CE(G, pab, e3) = 0.21875, CE(G, pab, e4) = CE(G, pab, e5) = CE(G, pab, e6) = 0.09375. J

Although the values in the two examples above are different from the Shapley values
computed in Example 6 and Example 7, respectively, if we order the facts according to their
contribution to the query result, we will obtain the same order in both cases. Note that
unlike the Shapley value, for causal effect the sum of the values over all facts is not equal to
the query result on the whole database. In the next example we consider aggregate queries.

I Example 23. Consider the query α1 of Example 3. If fa
1 is in the database, then the

result can be either 20, 28, or 40. If fa
1 is absent, then the query result can be either 0, 8,

or 20. By computing the expected value in both cases, we obtain that CE(D,α1, f
a
1 ) = 20.

Similarly, it holds that CE(D,α1, f
a
2 ) = CE(D,α1, f

a
4 ) = 1, and CE(D,α1, f

a
3 ) = 14. J

Interestingly, the causal effect coincides with a well known wealth-distribution function
in cooperative games, namely the Banzhaf Power Index (BPI) [11, 18, 19]. This measure
is defined similarly to the definition of the Shapley value in Equation (3), except that we
replace the ratio |B|!·(|A|−|B|−1)!

|A|! with 1
2|A|−1 .

I Proposition 24. Let α be a numerical query, D be a database, and f ∈ Dn. Then,

CE(D,α, f) = 1
2|Dn|−1 ·

∑
E⊆(Dn\{f})

[α(Dx ∪ E ∪ {f})− α(Dx ∪ E)]

Hence, the causal effect coincides with the BPI.

We conjecture that all of the complexity results (exact and approximate) obtained in this
work for the Shapley value apply to the causal effect (and BPI), with some of them being
easier to obtain than for the Shapley value, via a connection to probabilistic databases [34].

6 Conclusions

We introduced the problem of quantifying the contribution of database facts to query results
via the Shapley value. We investigated the complexity of the problem for Boolean CQs and
for aggregates over CQs. Our dichotomy in the complexity of the problem establishes that
computing the exact Shapley value is often intractable. Nevertheless, we also showed that the
picture is far more optimistic when allowing approximation with strong precision guarantees.

Many questions, some quite fundamental, remain for future investigation. While we have
a thorough understanding of the complexity for Boolean CQs without self-joins, very little is
known in the presence of self-joins. For instance, the complexity is open even for the simple
query q() :- R(x, y), R(y, z). We also have just a partial understanding of the complexity for
aggregate functions over CQs, beyond the general hardness result for non-hierarchical queries
(Theorem 13). In particular, it is important to complete the complexity analysis for maximum
and minimum, and to investigate other common aggregate functions such as average, median,
percentile, and standard deviation. Another direction is to investigate whether and how
properties of the database, such as low treewidth, can reduce the (asymptotic and empirical)
running time of computing the Shapley value. Interestingly, the implication of a low treewidth
to Shapley computation has been studied for a different problem [13].
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Abstract
Worst-case optimal join algorithms have gained a lot of attention in the database literature. We
now count with several algorithms that are optimal in the worst case, and many of them have been
implemented and validated in practice. However, the implementation of these algorithms often
requires an enhanced indexing structure: to achieve optimality we either need to build completely new
indexes, or we must populate the database with several instantiations of indexes such as B+-trees.
Either way, this means spending an extra amount of storage space that may be non-negligible.

We show that optimal algorithms can be obtained directly from a representation that regards
the relations as point sets in variable-dimensional grids, without the need of extra storage. Our
representation is a compact quadtree for the static indexes, and a dynamic quadtree sharing subtrees
(which we dub a qdag) for intermediate results. We develop a compositional algorithm to process
full join queries under this representation, and show that the running time of this algorithm is
worst-case optimal in data complexity. Remarkably, we can extend our framework to evaluate more
expressive queries from relational algebra by introducing a lazy version of qdags (lqdags). Once
again, we can show that the running time of our algorithms is worst-case optimal.
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1 Introduction

The state of the art in query processing has recently been shaken by a new generation of
join algorithms with strong optimality guarantees based on the AGM bound of queries:
the maximum size of the output of the query over all possible relations with the same
cardinalities [2]. One of the basic principles of these algorithms is to disregard the traditional
notion of a query plan, favoring a strategy that can take further advantage of the structure of
the query, while at the same time taking into account the actual size of the database [14, 16].

Several of these algorithms have been implemented and tested in practice with positive
results [8, 18], especially when handling queries with several joins. Because they differ from
what is considered standard in relational database systems, the implementation of these
algorithms often requires additional data structures, a database that is heavily indexed, or
heuristics to compute the best computation path given the indexes that are present. For
example, algorithms such as Leapfrog [21], Minesweeper [15], or InsideOut [10] must select
a global order on the attributes, and assume that relations are indexed in a way that is
consistent with these attributes [18]. If one wants to use these algorithms with more flexibility
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in the way attributes are processed, then one would probably need to instantiate several
combinations of B+ trees or other indexes [8]. On the other hand, more involved algorithms
such as Tetris [9] or Panda [11] require heavier data structures that allow reasoning over
potential tuples in the answer.

Our goal is to develop optimal join algorithms that minimize the storage for additional
indexes while at the same time being independent of a particular ordering of attributes. We
address this issue by resorting to compact data structures: indexes using a nearly-optimal
amount of space while supporting all operations we need to answer join queries.

We show that worst-case optimal algorithms can be obtained when one assumes that
the input data is represented as quadtrees, and stored under a compact representation for
cardinal trees [4]. Quadtrees are geometric structures used to represent data points in grids
of size `× ` (which can be generalized to any dimension). Thus, a relation R with attributes
A1, . . . , Ad can be naturally viewed as a set of points over grids of dimension d, one point per
tuple of R: the value of each attribute Ai is the i-th coordinate of the corresponding point.

To support queries under this representation, our main tool is a new dynamic version of
quadtrees, which we denote qdags, where some nodes may share complete subtrees. Using
qdags, we can reduce the computation of a full join query J = R1 ./ · · · ./ Rn with d

attributes, to an algorithm that first extends the quadtrees for R1, . . . , Rn into qdags of
dimension d, and then intersects them to obtain a quadtree. Our first result shows that such
algorithm is indeed worst-case optimal:

I Theorem 1.1. Let R1(A1), . . . , Rn(An) be n relations with attributes in [0, `− 1], and let
d = |

⋃
iAi|. We can represent the relations using only

∑
i(|Ai|+2+o(1))|Ri| log `+O(n log d)

bits, so that the result of a join query J = R1 ./ · · · ./ Rn over a database instance D, can
be computed in Õ(AGM) time1.

Note that just storing the tuples in any Ri requires |Ai||Ri| log ` bits, thus our representation
adds only a small extra space of (2 + o(1))|Ri| log `+O(n log d) bits (basically, two words
per tuple, plus a negligible amount that only depends on the schema). Instead, any classical
index on the raw data (such as hash tables or B+-trees) would pose a linear extra space,
O(|Ai||Ri| log `) bits, often multiplied by a non-negligible constant (especially if one needs
to store multiple indexes on the data).

Our join algorithm works in a rather different way than the most popular worst-case
algorithms. To illustrate this, consider the triangle query J = R(A,B) ./ S(B,C) ./ T (A,C).
The most common way of processing this query optimally is to follow what Ngo et al. [16]
define as the generic algorithm: select one of the attributes of the query (say A), and iterate
over all elements a ∈ A that could be an answer to this query, that is, all a ∈ πa(R) ∩ πa(T ).
Then, for each of these elements, iterate over all b ∈ B such that the tuple (a, b) can be an
answer: all (a, b) in (R ./ πB(S)) ./ πA(T ), and so on.

Instead, quadtrees divide the output space, which corresponds to a grid of size `3, into
8 subgrids of size (`/2)3, and for each of these grids it recursively evaluates the query. As
it turns out, this strategy is as good as the generic strategy defined by Ngo et al. [16] to
compute joins, and can even be extended to other relational operations, as we explain next.

Our join algorithm boils down to two simple operations on quadtrees: an Extend
operation that lifts the quadtree representation of a grid to a higher-dimensional grid,
and an And operation that intersects trees. But there are other operations that we can
define and implement. For example, the synchronized Or of two quadtrees gives a compact

1 Õ hides poly-log N factors, for N the total input size, as well as factors that just depend on d and n
(i.e., the query size), which are assumed to be constant. We provide a precise bound in Section 3.3.
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representation of their union, and complementing the quadtree values can be done by a Not
operation. We integrate all these operations in a single framework, and use it to answer more
complex queries given by the combination of these expressions, as in relational algebra.

To support these operations we introduce lazy qdags, or lqdags for short, in which nodes
may be additionally labeled with query expressions. The idea is to be able to delay the
computation of an expression until we know such computation is needed to derive the output.
To analyze our framework we extend the idea of a worst-case optimal algorithm to arbitrary
queries: If a worst-case optimal algorithm to compute the output of a formula F takes time T
over relations R1, . . . , Rn of sizes s1, . . . , sn, respectively, of a database D, then there exists
a database D′ with relations R′1, . . . , R′n of sizes O(s1), . . . , O(sn), respectively, where the
output of F over R′1, . . . , R′n is of size Ω(T ). We prove that lqdags allow us to maintain
optimality in the presence of union and negation operators:

I Theorem 1.2. Let Q be a relational algebra query built with joins, union and complement,
and where no relation appears more than once in Q. Then there is an algorithm to evaluate
Q that is worst-case optimal in data complexity.

Consider, for example, the query J ′ = R(A,B) ./ S(B,C) ./ T (A,C), which joins R and
S with the complement T of T . One could think of two ways to compute this query. The
first is just to join R and S and then see which of the resulting tuples are not in T . But if T
is dense (T is small), it may be more efficient to first compute T and then proceed as on the
usual triangle query. Our algorithm is optimal because it can choose locally between both
strategies: by dividing into quadrants one finds dense regions of T in which computing T is
cheaper, while in sparse regions the algorithm first computes the join of R and S.

Our framework is the first in combining worst-case time optimality with the use of
compact data structures. The latter can lead to improved performance in practice, because
relations can be stored in faster memory, higher in the memory hierarchy [13]. This is
especially relevant when the compact representation fits in main memory while a heavily
indexed representation requires resorting to the disk, which is orders of magnitude slower.
Under the recent trend of maintaining the database in the aggregate main memory of a
distributed system, a compact representation leads to using fewer computers, thus reducing
hardware, communication, and energy costs, while improving performance.

2 Quadtrees

A Region Quadtree [6, 19] is a structure used to store points in two-dimensional grids of `× `.
We focus on the variant called MX-Quadtree [22, 19], which can be described as follows.
Assume for simplicity that ` is a power of 2. If ` = 1, then the grid has only one cell and the
quadtree is an integer 1 (if the cell has a point) or 0 (if not). For ` > 1, if the grid has no
points, then the quadtree is a leaf. Otherwise, the quadtree is an internal node with four
children, each of which is the quadtree of one of the four `/2 × `/2 quadrants of the grid.
(The deepest internal nodes, whose children are 1× 1 grids, store instead four integers in
{0, 1} to encode their cells.)

Assume each data point is described using the binary representation of each of its
coordinates (i.e., as a pair of log `-bit vectors). We order the grid quadrants so that the first
contains all points with coordinates of the form (0 · cx, 0 · cy), for log `− 1 bit vectors cx and
cy, the second contains points (0 · cx, 1 · cy), the third (1 · cx, 0 · cy), and the last quadrant
stores the points (1 · cx, 1 · cy). Fig. 1 shows a grid and its deployment as a quadtree.
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Figure 1 A quadtree representing R(A, B) = {(4, 3), (7, 2), (5, 6), (6, 4), (3, 12), (6, 12), (6, 13),
(7, 12), (7, 13), (8, 5), (14, 1), (15, 0)}. (a) Representation of R(A, B) in a 24 × 24 grid, and representa-
tion of the hierarchical partition defining the quadtree. The black cells correspond to points in R.
(b) The quadtree representing R. The shadowed leaf of the tree corresponds to the point p = (3, 12).
Concatenating the labels in the path down to p yield the bit-string ‘01011010’ which encodes the
first (resp. second) coordinate of p in the bits at odd (resp. even) positions (3 = 0011, 12 = 1100).

Quadtrees can be generalized to higher dimensions. A quadtree of dimension d is a tree
used to represent data points in a d-dimensional grid G of size `d. Here, an empty grid is
represented by a leaf and a nonempty grid corresponds to an internal node with 2d children
representing the 2d subspaces spanning from combining the first bits of each dimension.
Generalizing the case d = 1, the children are ordered using the Morton [12] partitioning of
the grid: a sequence of 2d subgrids of size (`/2)d in which the i-th subgrid of the partition,
represented by the binary encoding bi of i, is defined by all the points (bc1 , . . . , bcd

) in which
the word formed by concatenating the first bit of each string bcj

is precisely the string bi.
A quadtree with p points has at most p log ` nodes (i.e., root-to-leaf paths). A refined

analysis in two dimensions [7, Thm. 1] shows that quadtrees have fewer nodes when the points
are clustered: if the points distribute along c clusters, pi of them inside a subgrid of size
`i× `i, then there are in total O(c log `+

∑
i pi log `i) nodes in the quadtree. The result easily

generalizes to d dimensions: the cells are of size `di and the quadtree has O(c log `+
∑
i pi log `i)

internal nodes, each of which stores 2d pointers to children (or integers, in the last level).
Brisaboa et al. [4] introduced a compact quadtree representation called the kd-tree. They

represent each internal quadtree node as the 2d bits telling which of its quadrants is empty
(0) or nonempty (1). Leaves and single-cell nodes are not represented because their data
is deduced from the corresponding bit of their parent. The kd-tree is simply a bitvector V
obtained by concatenating the 2d bits of every (internal) node in levelwise order. Each node
is identified with its order in this deployment, the root being 1. Navigation on the quadtree
(from a parent to its children, and vice-versa) is simulated in constant time using o(|V |)
additional bits on top of V . On a quadtree in dimension d storing p points, the length of
the bitvector V is |V | ≤ 2dp log `, increasing exponentially with d. This bitvector is sparse,
however, because it has at most p log ` 1s, one per quadtree node. We then resort to a
representation of high-arity cardinal trees introduced by Benoit et al. [3, Thm. 4.3], which
requires only (d+ 2)p log `+ o(p log `) +O(log d) bits, and performs the needed tree traversal
operations in constant time.

I Observation 2.1 (cf. Benoit et al. [3], Thm. 4.3). Let Q be a quadtree storing p points
in d dimensions with integer coordinates in the interval [0, log ` − 1]. Then, there is a
representation of Q which uses (d + 2 + o(1))p log ` + O(log d) bits, can be constructed in
linear expected time, and supports constant time parent-children navigation on the tree.

From now on, by quadtree we refer to this compact representation. Next, we show how
to represent relations using quadtrees and evaluate join queries over this representation.
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3 Multi-way Joins using Qdags

We assume for simplicity that the domain D(A) of an attribute A consists of all binary
strings of length log `, representing the integers in [0, `− 1], and that ` is a power of 2.

A relation R(A) with attributes A = {A1, . . . , Ad} can be naturally represented as a
quadtree: simply interpret each tuple in R(A) as a data point over a d-dimensional grid
with `d cells, and store those points in a d-dimensional quadtree. Thus, using quadtrees
one can represent the relations in a database using compact space. The convenience of this
representation to handle restricted join queries with naive algorithms has been demonstrated
practically on RDF stores [1]. In order to obtain a general algorithm with provable perfor-
mance, we introduce qdags, an enhanced version of quadtrees, together with a new algorithm
to efficiently evaluate join queries over the compressed representations of the relations.

We start with an example to introduce the basics behind our algorithms and argue for
the need of qdags. We then formally define qdags and explore their relation with quadtrees.
Finally, we provide a complete description of the join algorithm and analyze its running time.

3.1 The triangle query: quadtrees vs qdags
Let R(A,B), S(B,C), T (A,C) be relations over the attributes {A,B,C} denote the domains
of A,B and C respectively, and consider the triangle query R(A,B) ./ S(B,C) ./ T (A,C).
The basic idea of the algorithm is as follows: we first compute a quadtree Q∗R that represents
the cross product R(A,B)×All(C), where All(C) is a relation with an attribute C storing
all elements in the domain [0, `−1]. Likewise, we compute Q∗S representing S(B,C)×All(A),
and Q∗T representing T (A,C)×All(B). Note that these quadtrees represent points in the
three-dimensional grid with a cell for every possible value in D(A)×D(B)×D(C), where
we assume that the domains D(·) of the attributes are all [0, `− 1]. Finally, we traverse the
three quadtrees in synchronization building a new quadtree that represents the intersection
of Q∗R, Q∗S and Q∗T . This quadtree represents the desired output because

R(A,B) ./ S(B,C) ./ T (A,C) =
(R(A,B)×All(C)) ∩ (S(B,C)×All(A)) ∩ (T (A,C)×All(B)).

Though this algorithm is correct, it can perform poorly in terms of space and running
time. The size of Q∗R, for instance, can be considerably bigger than that of R, and even than
the size of the output of the query. If, for example, the three relations have n elements each,
the size of the output is bounded by n3/2 [2], while building Q∗R costs Ω(n`) time and space.
This inefficiency stems from the fact that quadtrees are not smart to represent relations of
the form R∗(A) = R(A′)×All(A\A′), where A′ ⊂ A, with respect to the size of a quadtree
representing R(A′). Due to its tree nature, a quadtree does not benefit from the regularities
that appear in the grid representing R∗(A). To remedy this shortcoming, we introduce qdags,
quadtree-based data structures that represent sets of the form R(A′)×All(A\A′) by adding
only constant additional space to the quadtree representing R(A′), for any A′ ⊆ A.

A qdag is an implicit representation of a d-dimensional quadtree Qd (that has certain
regularities) using only a reference to a d′-dimensional quadtree Qd′ , with d′ ≤ d, and an
auxiliary mapping function that defines how to use Qd′ to simulate navigation over Qd.
Qdags can then represent relations of the form R(A′)×All(A \A′) using only a reference to
a quadtree representing R(A′), and a constant-space mapping function.

To illustrate how a qdag works, consider a relation S(B,C), and let Q∗S be a quadtree
representing S∗(A,B,C) = All(A)× S(B,C). Since Q∗S stores points in the `3 cube, each
node in Q∗S has 8 children. As All(A) contains all ` elements, for each original point (b, c) in

ICDT 2020



21:6 Optimal Joins Using Compact Data Structures

0 0 1 0 1 1 1 1

0 0 0

C 0 1 1 1 1 1

0 0 0 0 0 0

0 0

(a) (b)

0 2 4 6

1

3

5

7
B

B

A

0 2 4 6

1

3

5

7

C
2
4 6

0 0 0 1 1 1 1

0 0

0 0 0 0 0 0

0 0

0 0

0 0 0

101

010

010

1

Figure 2 An illustration of a qdag for S∗({A, B, C}) = All(A) × S(B, C), with S(B, C) =
{(3, 4), (6, 4), (6, 5), (7, 4), (7, 5)}. a) A geometric representation of S(B, C) (left), and S∗({A, B, C})
(right). b) A quadtree QS for S(B, C) (left), and the directed acyclic graph induced by the qdag
(QS , M = [0, 1, 2, 3, 0, 1, 2, 3]), which represents S∗({A, B, C}). The red cell in (a) corresponds to the
point p = (4, 3, 4). The leaf representing p in the qdag can be reached following the path highlighted
in (b). Note the relation between the binary representation (100,010,100) of p, and the Morton
codes 101, 010, 010 of the nodes in the path from the root to the leaf for p.

S, S∗ contains ` points corresponding to elements (0, b, c), . . . , (`− 1, b, c). We can think of
this as extending each point in S to a box of dimension `× 1× 1. With respect to Q∗S , this
implies that, among the 8 children of a node, the last 4 children will always be identical to
the first 4, and their values will in turn be identical to those of the corresponding nodes in
the quadtree QS representing S. In other words, each of the four subgrids 1a1a2 is identical
to the subgrid 0a1a2, and these in turn are identical to the subgrid a1a2 in S (see Fig. 2 for
an example). Thus, we can implicitly represent Q∗S by the pair (QS ,M = [0, 1, 2, 3, 0, 1, 2, 3]):
the root of Q∗S is the root of QS , and the i-child of the root of Q∗S is represented by the pair
(C,M), where C is the M [i]-th child of the root of QS .

3.2 Qdags for relational data
We now introduce a formal definition of the qdags, and describe the algorithms which allow
the evaluation of multijoin queries in worst-case optimal time.

I Definition 3.1 (qdag). Let Qd′ be a quadtree representing a relation with d′ attributes.
A qdag Qd, for d ≥ d′, is a pair (Qd′ ,M), with M : [0, 2d − 1] → [0, 2d′ − 1]. This qdag
represents a quadtree Q, which is called the completion of Qd, as follows:
1. If Qd′ represents a single cell, then Q represents a single cell with the same value.
2. If Qd′ represents a d′-dimensional grid empty of points, then Q represents a d-dimensional

grid empty of points.
3. Otherwise, the roots of both Qd′ and Q are internal nodes, and for all 0 ≤ i < 2d, the

i-th child of Q is the quadtree represented by the qdag (C(Qd′ ,M [i]),M), where C(Qd′ , j)
denotes the j-th child of the root node of quadtree Qd′ .

We say that a qdag represents the same relation R represented by its completion. Note
that, for any d-dimensional quadtree Q, one can generate a qdag whose completion is Q
simply as the pair (Q,M), where M is the identity mapping M [i] = i, for all 0 ≤ i < 2d.
We can then describe all our operations over qdags. Note, in particular, that we can use
mappings to represent any reordering of the attributes.

In terms of representation, the references to quadtree nodes consist of the identifier of the
quadtree and the index of the node in level-wise order. This suffices to access the node in
constant time from its compact representation. For a qdag Q′ = (Q,M), we denote by |Q′|
the number of internal nodes in the base quadtree Q, and by ||Q′|| the number of internal
nodes in the completion of Q′.
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Algorithm 1 Value.
Require: qdag (Q, M) with grid side `.
Ensure: The integer 1 if the grid is a single point,

0 if the grid is empty, and ½ otherwise.
1: if ` = 1 then return the integer Q

2: if Q is a leaf then return 0
3: return ½

Algorithm 2 ChildAt.
Require: qdag (Q, M) on a grid of dimension d and

side `, and a child number 0 ≤ i < 2d. Assumes
Q is not a leaf or an integer.

Ensure: A qdag (Q′, M) corresponding to the i-th
child of (Q, M).

1: return (C(Q, M [i]), M)

Algorithm 3 Extend.
Require: A qdag (Q, M ′) representing a relation R(A′), and a set A such that A′ ⊆ A.
Ensure: A qdag (Q, M) whose completion represents the relation R(A′)×All(A \ A′).
1: create array M [0, 2d − 1]
2: d← |A|, d′ ← |A′|
3: for i← 0, . . . , 2d − 1 do
4: md ← the d-bits binary representation of i
5: md′ ← the projection of md to the positions in which the attributes of A′ appear in A
6: i′ ← the value in [0, 2d′ − 1] corresponding to md′

7: M [i]←M ′[i′]
8: return (Q, M)

Algorithms 1 and 2, based on Definition 3.1, will be useful for the navigation of qdags.
Operation Value yields a 0 iff the subgrid represented by the qdag is empty (thus the qdag
is a leaf); a 1 if the qdag is a full single cell, and ½ if it is an internal node. Operation
ChildAt lets us descend by a given child from internal nodes representing nonempty grids.
The operations “integer Q”, “Q is a leaf”, and “C(Q, j)” are implemented in constant time
on the compact representation of Q.

Operation Extend. We introduce an operation to obtain, from the qdag representing a
relation R, a new qdag representing the relation R extended with new attributes.

I Definition 3.2. Let A′ ⊆ A be sets of attributes, let R(A′) be a relation over A′, and let
QR = (Q,M) be a qdag that represents R(A′). The operation Extend(QR,A) returns a
qdag Q∗R = (Q,M ′) that represents the relation R×All(A \ A′).

To provide intuition on its implementation, let A′ be the set of attributes {A,B,D} and
let A = {A,B,C,D}, and consider R(A′), QR and Q∗R from Definition 3.2. Each node of QR
has 8 children, while each node of Q∗R has 16 children. Consider the child at position i = 12
of Q∗R. This node represents the grid with Morton code m4=‘1100’ (i.e., 12 in binary), and
contains the tuples whose coordinates in binary start with 1 in attributes A,B and with 0 in
attributes C,D. This child has elements if and only if the child with Morton code m3=‘110’
of QR (i.e., its child at position j = 6) has elements; this child is in turn the M [6]-th child of
Q. Note that m3 results from projecting m4 to the positions 0,1,3 in which the attributes
A,B,D appear in {A,B,C,D}. Since the Morton code 1110’ (i.e., 14 in binary) also projects
to m3, it holds that M ′[12] = M ′[14] = M [6]. We provide an implementation of the Extend
operation for the general case in Algorithm 3. The following lemma states the time and
space complexity of our implementation of Extend. For simplicity, we count the space in
terms of computer words used to store references to the quadtrees and values of the mapping
function M .

I Lemma 3.3. Let |A| = d in Definition 3.2. Then, the operation Extend(QR,A) can be
supported in time O(2d) and its output takes O(2d) words of space.
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Algorithm 4 MultiJoin.
Require: Relations R1, . . . , Rn,

stored as qdags Q1, . . . , Qn; each
relation Ri is over attributes Ai

and A =
⋃
Ai.

Ensure: A quadtree representing the
output of J = R1 ./ . . . ./ Rn.

1: for i← 1, . . . , n do
2: Q∗i ← Extend(Ri,A)

3: return And(Q∗1, . . . , Q∗n)

Algorithm 5 And.
Require: n qdags Q1, Q2, . . . ,Qn representing relations

R1(A), R2(A), . . . , Rn(A).
Ensure: A quadtree representing the relation

⋂n

i=1 Ri(A).
1: m← min{Value(Q1), . . . , Value(Qn)}
2: if ` = 1 then return the integer m

3: if m = 0 then return a leaf
4: for i← 0, . . . , 2d − 1 do
5: Ci ← And(ChildAt(Q1, i), . . . , ChildAt(Qn, i))
6: if max{Value(C0), . . . , Value(C2d−1)} = 0 then return

a leaf
7: return a quadtree with children C0, . . . , C2d−1

Proof. We show that Algorithm 3 meets the conditions of the lemma. The computations
of md and i′ are immaterial (they just interpret a bitvector as a number or vice versa).
The computation of m′d is done with a constant table (that depends only on the database
dimension d) of size O(23d):2 The argument A is given as a bitvector of size d telling which
attributes are in A, the qdag on A′ stores a bitvector of size d telling which attributes are in
A′, and the table receives both bitvectors and md and returns m′d. J

3.3 Join algorithm
Now that we can efficiently represent relations of the form R(A′)×All(A \ A′), for A′ ⊆ A,
we describe a worst-case optimal implementation of joins over the qdag representations
of the relations. Our algorithm follows the idea discussed for the triangle query: we first
extend every qdag to all the attributes that appear in the query, so that they all have the
same dimension and attributes. Then we compute their intersection, building a quadtree
representing the output of the query. The implementation of this algorithm is surprisingly
simple (see Algorithms 4 and 5), yet worst-case optimal, as we prove later on. Using qdags
is key for this result; this algorithm would not be at all optimal if computed over relational
instances stored using standard representations such as B+ trees. First, we describe how to
compute the intersection of several qdags, and then analyze the running time of the join.

Operation And. We introduce an operation And, which computes the intersection of several
relations represented as qdags.

I Definition 3.4. Let Q1, . . . , Qn be qdags representing relations R1, . . . , Rn, all over the
attribute set A. Operation And(Q1, . . . , Qn) returns a quadtree Q that represents the relation
R1 ∩ . . . ∩Rn.

We implement this operation by simulating a synchronized traversal among the comple-
tions C1, . . . , Cn of Q1, . . . , Qn, respectively, obtaining the quadtree Q that stores the cells
that are present in all the quadtrees Ci (see Algorithm 5).We proceed as follows. If ` = 1,
then all Ci are integers with values 0 or 1, and Q is an integer equal to the minimum of the n
values. Otherwise, if any Qi represents an empty subgrid, then Q is also a leaf representing
an empty subgrid. Otherwise, every Ci is rooted by a node vi with 2d children, and so is Q,
where the j-th child of its root v is the result of the And operation of the j-th children of the

2 They can be reduced to two tables of size O(22d), but we omit the details for simplicity.
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nodes v1, . . . , vn. However, we need a final pruning step to restore the quadtree invariants
(line 6 of Algorithm 5): if Value(vi) = 0 for all the resulting children of v, then v must
become a leaf and the children be discarded. Note that once the quadtree is computed, we
can represent it succinctly in linear expected time so that, for instance, it can be cached for
future queries involving the output represented by Q3.

Analysis of the algorithm. We compute the output Q of And(Q1, . . . , Qn) in time O(2d ·
(||Q1||+ · · ·+ ||Qn||)). More precisely, the time is bounded by O(2d · |Q+|), where Q+ is the
quadtree that would result from Algorithm 5 if we remove the pruning step of line 6. We
name this quadtree Q+ as the non-pruned version of Q. Although the size of the actual
output Q can be much smaller than that of Q+,we can still prove that our time is optimal in
the worst case. We start with a technical result.

I Lemma 3.5. The And operation can be supported in time O(M · 2dn log `), where M is
the maximum number of nodes in a level of Q+.

Proof. We show that Algorithm 5 meets the conditions of the lemma. Let mj be the number
of nodes of depth j in Q+, and then M = max0≤j<log `mj . The number of steps performed
by Algorithm 5 is bounded by n · (

∑
0≤j<log `mj · 2d) ≤ n ·M · log ` · 2d: In each depth we

continue traversing all qdags Q1, . . . , Qn as long as they are all nonempty, and we generate
the corresponding nodes in Q+ (even if at the end some nodes will disappear in Q). J

All we need to prove (data) optimality is to show that |Q+| is bounded by the size of the
real output of the query. Recall that, for a join query J on a database D, we use 2ρ∗(J,D) to
denote the AGM bound [2] of the query J over D, that is, the maximum size of the output
of J over any relational database having the same number of tuples as D in each relation.

I Theorem 3.6. Let J = R1 ./ . . . ./ Rn be a full join query, and D a database over
schema {R1, . . . , Rn}, with d attributes in total, and where the domains of the relations are
in [0, `− 1]. Let Ai be the set of attributes of Ri, for all 1 ≤ i ≤ n and N =

∑
i |Ri| be the

total amount of tuples in the database. The relations R1, . . . , Rn can then be stored within∑
i(|Ai|+ 2 + o(1))|Ri| log `+O(n log d) bits, so that the output for J can be computed in

time O(2ρ∗(J,D) · 2dn log min(`,N)) = Õ(2ρ∗(J,D)).

Proof. The space usage is a simple consequence of Observation 2.1. As for the time, to
solve the join query J we simply encapsulate the quadtrees representing R1, . . . , Rn in qdags
Q1, . . . , Qn, and use Algorithm 4 to compute the result of the query. We now show that
Algorithm 4 runs in time within the bound of the theorem. First, assume that log ` is
O(logN). Let each relation Ri be over attributes Ai, and A =

⋃
Ai with d = |A|. Let

Q∗i = Extend(Qi,A), Q = And(Q∗1, . . . , Q∗n), and Q+ be the non-pruned version of Q. The
cost of the Extend operations is only O(2dn), according to Lemma 3.3, so the main cost
owes to the And operation.

If the maximumM of Lemma 3.5 is reached at the lowest level of the decomposition, where
we store integers 0 or 1, then we are done: each 1 at a leaf of Q+ exists in Q as well because
that single tuple is present in all the relations R1, . . . , Rn. Therefore, M is bounded by the
AGM bound of J and the time of the And operation is bounded by O(2ρ∗(J,D) · 2dn log `).

Assume instead that M is the number of internal nodes at depth 0 < j < log ` of Q+ (if
M is reached at depth 0 thenM = 1). Intuitively, we will take the relations at the granularity
of level j, and show that there exists a database D′ where such a (2j)d relation arises in the
last level and thus the answer has those M tuples.

3 This consumes linear expected time due to the use of perfect hashing in the compact representation [3].
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We then construct the following database D′ with relations R′i: For a binary string c, let
pre(c, j) denote the first j bits of c. Then, for each relation Ri and each tuple (c1, . . . , cdi

)
in Ri, where di = |Ai|, let R′i contain the tuples (0log `−jpre(c1, j), 0log `−jpre(c2, j) . . . ,
0log `−jpre(cdi , j)), corresponding to taking the first j bits of each coordinate and prepending
them with a string of log `− j 0s. While this operation may send two tuples in a relation
in D to a single tuple in D′, we still have that each relation R′i in D′ contains at most as
many tuples as relation Ri in D. Moreover, if we again store every R′i as a qdag and process
their join as in Algorithm 4, then by construction we have in this case that the leaves of the
tree resulting from the And operation contain exactly M nodes with 1, and that this is the
maximum number of nodes in a level of this tree. Since the leaves represent tuples in the
answer, we have that M ≤ 2ρ∗(J,D′) ≤ 2ρ∗(J,D), which completes the proof for the case when
log ` is O(logN).

Finally, when logN is o(log `), we can convertO(log `) toO(logN) in the time complexities
by storing R1, . . . , Rn using quadtrees, with a slight variation. We store the values of the
attributes appearing in any relation in an auxiliary data structure (e.g., an array), and
associate an O(logN)-bits identifier to each different value in [0, `−1] that appears in D (e.g.,
the index of the corresponding value in the array). In this case, we represent the relations in
quadtrees, but using the identifiers of the attribute values instead of the values themselves.
This representation requires at most dN log ` bits for the representation of the distinct
attribute values and O(dN logN) bits for the representation of the quadtrees. Thus, in total
it requires dN log `+O(dN logN) = dN log `(1+O(logN/ log `)) = dN log `(1+o(1)), which
is within the stated bound. Note that in both cases, the height of the quadtrees representing
the relations is O(logN), and this is the multiplying factor in the time complexities. J

4 Extending Worst-Case Optimality to More General Queries

In this section we turn to design worst-case optimal algorithms for more expressive queries.
At this point it should be clear that we can deal with set operations: we already studied the
intersection (which corresponds to operation And over the qdags), and will show that union
(operation Or) and complement (operation Not) can be solved optimally as well. What
is most intriguing, however, is whether we can obtain worst-case optimality on combined
relational formulas. We introduce a worst-case optimal algorithm to evaluate formulas
expressed as combinations of join, union, and complement operations (which we refer to
as JUC-queries; note that intersection is a particular case of join). We do not study other
operations like selection and projection because these are easily solved in time essentially
proportional to the size of the output, but refer to Appendix A for more details on how
projection interplays with the rest of our framework.

The key ingredient of our algorithm is to deal with these operations in a lazy form,
allowing unknown intermediate results so that all components of a formula are evaluated
simultaneously. To do this we introduce lazy qdags (or lqdags), an alternative to qdags that
can navigate over the quadtree representing the output of a formula without the need to
entirely evaluate the formula. We then give a worst-case optimal algorithm to compute the
completion of an lqdag, that is, the quadtree of the grid represented by the lqdag.

4.1 Lqdags for relational formulas
To support worst-case optimal evaluation of relational formulas we introduce two new ideas:
we add “full leaves” to the quadtree representation to denote subgrids full of 1s, and we
introduce lqdags to represent the result of a formula as an implicit quadtree that can be
navigated without fully evaluating the formula.
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Algorithm 6 Value on extended qdags.
Require: qdag (Q, M) with grid side `.
Ensure: Value 0 or 1 if the grid represented by Q is totally empty or full, respectively, otherwise ½.
1: if Q is a leaf then return the integer 0 or 1 associated with Q

2: return ½

While quadtree leaves representing a single cell store the cell value, 0 or 1, quadtree leaves
at higher levels always represent subgrids full of 0s. We now generalize the representation, so
that quadtree leaves at any level store an integer, 0 or 1, which is the value of all the cells
in the subgrid represented by the leaf. The generalization impacts on the way to compute
Value, depicted in Algorithm 6. We will not use qdags in this section, however; the lqdags
build directly on quadtrees. In terms of the compact representation, this generalization is
implemented by resorting to an impossible quadtree configuration: an internal node with all
zero children [5]. Note that replacing a full subgrid with this configuration can only decrease
the size of the representation.

The second novelty, the lqdags, are defined as follows.

I Definition 4.1 (lqdag). An lqdag L is a pair (f, o), where f is a functor and o is a list of
operands. The completion of L is the quadtree QR = QR(A) representing relation R(A) if L
is as follows:
1. (QTREE, QR), where the lqdag just represents QR;
2. (NOT, QR), where QR is the quadtree representing the complement of QR;
3. (AND, L1, L2), where L1 and L2 are lqdags and QR represents the intersection of their

completions;
4. (OR, L1, L2), where L1 and L2 are lqdags and QR represents the union of their completions;
5. (EXTEND, L1,A), where lqdag L1 represents R′(A′), A′ ⊆ A, and QR represents R(A) =

R′(A′)×All(A \ A′).

Note that, for a quadtree QR representing a relation R(A′), and a set of attributes A,
the qdag Q∗R = (QR,MA) that represents the relation R×All(A \ A′) can be expressed as
the lqdag (EXTEND, (QTREE, QR),A). In this sense, lqdags are extensions of qdags. To further
illustrate the definition of lqdags, consider the triangle query R(A,B) ./ S(B,C) ./ T (A,C),
with A = {A,B,C} and the relations represented by quadtrees QR, QS , and QT . This query
can then be represented as the lqdag

(AND, (AND, (EXTEND, (QTREE, QR),A), (EXTEND, (QTREE, QS),A)), (EXTEND, (QTREE, QT ),A)).

It is apparent that one can define other operations, like JOIN and DIFF, by combining the
operations defined above:

(JOIN, L1(A1), L2(A2)) = (AND, (EXTEND, L1,A1 ∪ A2), (EXTEND, L2,A1 ∪ A2))
(DIFF, L1, L2) = (AND, L1, (NOT, L2))

Note that in the definition of the lqdag for NOT, the operand is a quadtree instead of an
lqdag, and then, for example, L2 should be a quadtree in the definition of DIFF, in principle.
However, we can easily get around that restriction by pushing down the NOT operators until
the operand is a quadtree or the NOT is cancelled with another NOT. For instance, a NOT
over an lqdag (AND, Q1, Q2) is equivalent to (OR, (NOT, Q1), (NOT, Q2)), and analogously with
the other functors. The restriction, however, does limit the types of formulas for which we
achieve worst-case optimality, as shown later.
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Algorithm 7 Value function for NOT.
Require: A Quadtree Q.
Ensure: Value of the root of (NOT, Q).

1: return 1−Value(Q)

Algorithm 8 ChildAt function for NOT.
Require: A Quadtree Q in dimension d, and an integer

0 ≤ i < 2d.
Ensure: An lqdag for the i-th child of (NOT, Q).
1: return (NOT, ChildAt(Q, i))

Algorithm 9 Value function for AND.
Require: Lqdags L1 and L2.
Ensure: The value of the root of (AND, L1, L2).
1: if Value(L1) = 0 or Value(L2) = 0 then

return 0
2: if Value(L1) = 1 then return Value(L2)
3: if Value(L2) = 1 then return Value(L1)
4: return ♦

Algorithm 10 ChildAt function for AND.
Require: Lqdags L1 and L2 in dimension d, integer

0 ≤ i < 2d.
Ensure: An lqdag for the i-th child of (AND, L1, L2).
1: if Value(L1) = 1 then return ChildAt(L2, i)
2: if Value(L2) = 1 then return ChildAt(L1, i)

3: return (AND, ChildAt(L1, i), ChildAt(L2, i))

To understand why we call lqdags lazy, consider the operation Q1 And Q2 over quadtrees
Q1, Q2. If any of the values at the roots of Q1 or Q2 is 0, then the result of the operation is
for sure a leaf with value 0. If any of the values is 1, then the result of the operation is the
other. However, if both values are ½, one cannot be sure of the value of the root until the
And between the children of Q1 and Q2 has been evaluated. Solving this dependency eagerly
would go against worst-case optimality: it forces us to fully evaluate parts of the formula
without considering it as a whole. To avoid this, we allow the Value of a node represented
by an lqdag to be, apart from 0, 1, and ½, the special value ♦. This indicates that one
cannot determine the value of the node without computing the values of its children.

As we did for qdags, in order to simulate the navigation over the completion Q of
an lqdag L we need to describe how to obtain the value of the root of Q, and how to
obtain an lqdag whose completion is the i-th child of Q, for any given i. We implement
those operations in Algorithms 7–14, all constant-time. Note that ChildAt can only be
invoked when Value = ½ or ♦. The base case is Value(QTREE, Q) = Value(Q) and
ChildAt((QTREE, Q), i) = ChildAt(Q, i), where we enter the quadtree and resort to the
algorithms based on the compact representation of Q. We will assume that Value(Q) returns
½ for internal nodes, and thus the implementation of Value for EXTEND is trivial (compare
Algorithms 6 and 13 under this assumption).

Note that the recursive calls of Algorithms 7-14 traverse the nodes of the relational formula
(fnodes, for short), and terminate immediately upon reaching an fnode of the form (QTREE, Q).
Therefore, their time complexity depends only on the size of the formula represented by the
lqdag. We show next how, using these implementations of Value and ChildAt, one can
efficiently evaluate a relational formula using lqdags.

4.2 Evaluating JUC queries
To evaluate a formula F represented as an lqdag LF , we compute the completion QF of LF ,
that is, the quadtree QF representing the output of F .

To implement this we introduce the idea of super-completion of an lqdag. The super-
completion Q+

F of LF is the quadtree induced by navigating LF , and interpreting the values
♦ as ½ (see Algorithm 15). Note that, by interpreting values ♦ as ½, we are disregarding
the possibility of pruning resulting subgrids full of 0s or 1s and replacing them by single
leaves with values 0 or 1 in QF . Therefore, Q+

F is a non-pruned quadtree (just as Q+ in
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Algorithm 11 Value function for OR.
Require: Lqdags L1 and L2.
Ensure: The value of the root of (OR, L1, L2).
1: if Value(L1) = 1 or Value(L2) = 1 then

return 1
2: if Value(L1) = 0 then return Value(L2)
3: if Value(L2) = 0 then return Value(L1)
4: return ♦

Algorithm 12 ChildAt function for OR.
Require: Lqdags L1 and L2 in dimension d, integer

0 ≤ i < 2d.
Ensure: An lqdag for the i-th child of (OR, L1, L2).
1: if Value(L1) = 0 then return ChildAt(L2, i)
2: if Value(L2) = 0 then return ChildAt(L1, i)

3: return (OR, ChildAt(L1, i), ChildAt(L2, i))

Algorithm 13 Value function for EXTEND.

Require:
Lqdag L1(A′), set A ⊇ A′.

Ensure:
Value of the root of (EXTEND, L1,A).

1: return Value(L1)

Algorithm 14 ChildAt function for EXTEND.
Require:

Lqdag L1(A′), set A ⊇ A′, integer 0 ≤ i < 2|A|.
Ensure: An lqdag for the i-th child of (EXTEND, L1,A).
1: d← |A|, d′ ← |A′|
2: md ← the d-bits binary representation of i
3: md′ ← the projection of md to the positions in

which the attributes of A′ appear in A
4: i′ ← the value in [0, 2d′ − 1] corresponding to md′

5: return (EXTEND, ChildAt(L1, i′),A)

Section 3.3) that nevertheless represents the same points of QF . Moreover, Q+
F shares with

QF a key property: all its nodes with value 1, including the last-level leaves representing
individual cells, correspond to actual tuples in the output of F .

To see how lqdags are evaluated, let us consider the query F = R(A,B) ./ S(B,C) ./
T (A,C). This corresponds to an lqdag QF :

(AND, (AND, (EXTEND, (QTREE, QR),A), (EXTEND, (QTREE, QS),A)), (EXTEND, (NOT, QT ),A)).

Assuming some of the trees involved have internal nodes, the super-completion Q+
F first

produces 8 children. Suppose the grid of T is full of 1s in the first quadrant (00). Then
the first child (00) of QT has value 1, which becomes value 0 in (NOT, QT ). This implies
that (EXTEND, (NOT, QT )) also yields value 0 in octants 000 and 010. Thus, when function
ChildAt is called on child 000 of QF , our 0 is immediately propagated and ChildAt returns
0, meaning that there are no answers for F on this octant, without ever consulting the
quadtrees QR and QS (see Figure 3 for an illustration). On the other hand, if the value
of the child 11 of T is 0, then (EXTEND, (NOT, QT )) will return value 1 in octants 101 and
111. This means that the result on this octant corresponds to the result of joining R and S;
indeed ChildAt towards 101 in QF returns

(AND,ChildAt((EXTEND, (QTREE, QR),A), 101),ChildAt((EXTEND, (QTREE, QS),A), 101)).

If ChildAt((EXTEND, (QTREE, QR),A), 101) and ChildAt((EXTEND, (QTREE, QS),A), 101) are
trees with internal nodes, the resulting AND can be either an internal node or a leaf with
value 0 (if the intersection is empty), though not a leaf with value 1. Thus, for now, the
Value of this node is unknown, a ♦. See Figure 3 for an illustration.

Note that the running time of Algorithm 15 is O(|Q+
F |). One can then compact Q+

F to
obtain QF , in time O(|Q+

F |) as well, with a simple bottom-up traversal. Thus, bounding |Q+
F |

yields a bound for the running time of evaluating F . While |Q+
F | can be considerably larger

than the actual size |QF | of the output, we show that |Q+
F | is bounded by the worst-case

output size of formula F for a database with relations of approximately the same size. To
prove this, the introduction of values ♦ plays a key role.4

4 In an implementation, we could simply use ½ instead of ♦, without indicating that we are not yet sure
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Figure 3 Illustration of the syntax tree of an lqdag for the formula (R(A, B) ./ S(B, C)) ./

T (A, C). The quadtrees QR, QS , QT represent the relations R, S, T , respectively. We show the top
values of Q+

F on top and of QT on the bottom. The gray upward arrows show how the value 1 in
the quadrant 00 of QT becomes 0s in octants 000 and 010 of Q+

F without accessing QR or QS . The
red upward arrows show how the value 0 in the quadrant 11 of QT makes the quadrants 101 and
111 of Q+

F depend only on their left child (and, assuming their value is ½, becomes a ♦ in Q+
F ).

Algorithm 15 SCompletion.
Require: An lqdag LF whose completion represents a formula F over relations with d attributes.
Ensure: The super-completion Q+

F of LF .
1: if Value(LF ) ∈ {0, 1} then return a leaf with value Value(LF )
2: return an internal node with children

.
(

SCompletion
(
ChildAt(LF , 0)

)
, . . . , SCompletion

(
ChildAt(LF , 2d − 1)

))

The power of the ♦ values. Consider again Algorithm 15. The lowest places in LF where
♦ values are introduced are the Value of AND and OR lqdags where both operands have
Value = ½. We must then set the Value to ♦ instead of ½ because, depending on the
evaluation of the children of the operands, the Value can turn out to be actually 0 for AND
or 1 for OR. Once produced, a value ♦ is inherited by the ancestors in the formula unless the
other value is 0 (for AND) or 1 (for OR).

Imagine that a formula F involves n relations R1, . . . , Rn represented as quadtrees in
dimension d, including no negations. Suppose that we trim the quadtrees of R1, . . . , Rn by
removing all the levels at depth higher than some j (thus making the j-th level the last
one) and assuming that the internal nodes at level j become leaves with value 1. We do
not attempt to compact the resulting quadtrees, so their nodes at levels up to j − 1 stay
identical and with the same Value. If we now compute Q+

F over those (possibly non-pruned)
quadtrees, the computation will be identical up to level j − 1, and in level j every internal
node in the original Q+

F , which had value ½, will now operate over all 1s, and thus will
evaluate to 1 because And and Or are monotonic.

that the value is ½: we build Q+
F assuming it is, and only make sure later, when we compact it into QF .
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Thus, these nodes belong to the output of F over the relations R′1, . . . , R′n induced by the
trimmed quadtrees (on smaller domains of size `′ = 2j), with sizes |R1|′ ≤ |R1|, . . . ,|Rn|′ ≤
|Rn|. This would imply, just as in the proof of Theorem 3.6, a bound on the maximum
number of nodes in a level of Q+

F , thus proving the worst-case optimality of the size of Q+
F (up

to logmin(`,N)-factors, and factors depending on the query size), and thus the worst-case
optimality of Algorithm 15 in data complexity.

However, this reasoning fails when one trims at the j-th level a quadtree Q that appears
in an lqdag L = (NOT, Q), because the value 1 of the nodes at the j-th level of Q after the
trimming changes to 0 in L. So, to prove that our algorithm is worst-case optimal we cannot
rely only on relations obtained by trimming those that appear in the formula. We need to
generate new quadtrees for those relations under a NOT operation that preserve the values of
the completion of NOT after the trimming. Next we formalize how to do this.

Analysis of the algorithm. Let LF be an lqdag for a formula F . The syntax tree of F is
the directed tree formed by the fnodes in F , with an edge from fnode L to fnode L′ if L′ is
an operand of L. The leaves of this tree are always atomic expressions, that is, the fnodes,
with functors QTREE and NOT, that operate on one quadtree (see Figure 3 again). We say
that two atomic expressions L1 and L2 are equal if both their functors and operands are
equal. For example, in the formula

F = (OR, (AND, (QTREE, QR), (QTREE, QS)), (AND, (QTREE, QR), (QTREE, QT )))

there are three different atomic expressions, (QTREE, QR), (QTREE, QS), and (QTREE, QT ),
while in F ′ = (AND, (QTREE, QR), (NOT, QR)) there are two atomic expressions. Notice that in
formulas like F ′, where a relation appears both negated and not negated, the two occurrences
are seen as different atomic expressions. We return later to the consequences of this definition.

The following lemma is key to bound the running time of Algorithm 15 while evaluating
a formula F .

I Lemma 4.2. Let F be a relational formula represented by an lqdag LF in dimension d, and
let Q+

F be the super-completion of F . Let Q1, . . . , Qn be the quadtree operands of the different
atomic expressions of F , and R1(A1), . . . , Rn(An) be the (not necessarily different) relations
represented by these quadtrees, respectively. Let M be the maximum number of nodes in a
level of Q+

F . Then, there is a database with relations R′1(A1), . . . , R′n(An) of respective sizes
O(2d|Q1|), . . . , O(2d|Qn|), such that the output of F evaluated over it has size Ω(M/2d).

Proof. Let ml be the number of nodes in level l of Q+
F and j be a level where M = mj is

maximum. We assume that j > 1, otherwise M = O(1) and the result is trivial. We first
bound the number of nodes with value ½ at the (j − 1)-th level. By hypothesis, mj ≥ mj−1,
and since a node in Q+

F is present at level j only if its parent at level j − 1 has value ½, in
the (j − 1)-th level there are at least mj/2d nodes with value ½.

Now, let A1, . . . , An be the atomic expressions of F , and let Q′1, . . . , Q′n be the quadtrees
that result from trimming the levels at depths higher than j−1 from Q1, . . . , Qn, respectively.
Consider the completion A∗i of Ai evaluated over Qi, and the completion A∗i ′ of Ai evaluated
over (the possibly non-pruned) Q′i, for all 1 ≤ i ≤ n. If it is always the case that the first
j − 1 levels of A∗i are respectively equal to the j − 1 levels of A∗i ′ then we are done. To see
why, let Q+

F

′ be the super-completion of F when evaluated over Q′1, . . . , Q′n. The first j − 2
levels of Q+

F will be the same as those of Q+
F

′ because the same results of the operations
are propagated up from the leaves of the syntax tree of F before and after the trimming.
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Moreover, in the (j − 1)-th level Q+
F

′ (its last level) the nodes with value 1 are precisely the
nodes with value 1 or ½ in Q+

F , where we note that: (i) there are at least mj/2d of them; and
(2) they belong to the output of F over the relations R′1, . . . , R′n represented by Q′1, . . . , Q′n.

We know that |R′1| ≤ |R1|, . . . , |R′n| ≤ |Rn|. However, the values of R′1, . . . , R′n correspond
to a smaller universe. This can be remedied by simply appending (log ` − j) 0’s at the
beginning of the binary representation of these values. This would yield the desired result:
we have n relations over the same set of attributes as the original ones, with same respective
cardinality, and such that when F is evaluated over them the output size is Ω(mj/2d).

However, for atomic expressions of the type Ai = (NOT, Qi) it is not the case that the
first j − 1 levels of A∗i coincide with the j − 1 levels of A∗i ′. Anyway, we can deal with this
case: their first j − 2 levels will coincide, and in the last level, the value of a node present in
A∗i is the negation of the value of the homologous node in A∗i ′. Thus, instead of choosing the
quadtree Q′i that results from trimming Qi, we choose the quadtree Q′′i in which the first
j − 2 levels are the same as Q′i, and the (j − 1)-th level results from negating the value of
every node in Q′i. Note that if we let now A∗i

′ be the completion of Ai evaluated over Q′′i ,
then the first j − 1 levels of A∗i will be exactly same as the j − 1 levels of A∗i ′. Finally, note
that the size of the relation represented by Q′′i cannot be larger than 2d|Qi|. The result of
the lemma follows. J

Using the same reasoning as before we can bound the time needed to compute the super-
completion Q+

F of an lqdag LF in dimension d involving quadtrees representing R1, . . . , Rn.
Since M is the maximum number of nodes in a level of Q+

F , the number of nodes in Q+
F

is at most M log `. Now, each node in Q+
F results from the application of |F | operations

on each of the 2d children being generated, all of which take constant time. Thus the
super-completion can be computed in time O(M · 2d|F | log `). If we use F (D)∗ to denote
the size of the maximum output of the query F over instances with relations R1, . . . , Rn of
respective sizes O(2d|Q1|), . . . , O(2d|Qn|), then by Lemma 4.2 the query F can be computed
in time O(F (D)∗ · 22d|F | log `). This means that the algorithm is indeed worst-case optimal.

The requirement of different atomic expressions is because we need to consider R and
Not R as different relations. To see this, consider again our example formula F ′ =
(AND, (QTREE, QR), (NOT, QR)). We clearly have that the answer of this query is always empty,
and therefore |QF ′ | = 0. However, here |Q+

F ′ | = Θ(|R|) for every R, and thus our algorithm
is worst-case optimal only if we consider the possible output size of a more general formula,
F ′′ = (AND, (QTREE, QR), (NOT, Q′R)). This impacts in other operations of the relational
algebra. We can write all of them as lqdags, but for some of them we will not ensure their
optimal evaluation. For instance, the expression QR And (Not (QR And QS)), which
expresses the antijoin between R and S, is not optimal because both QR and Not QR
appear in the formula. A way to ensure that our result applies is to require that the atomic
expressions (once the NOT operations are pushed down) refer all to different relations.

I Theorem 4.3. Let F be a relational formula represented by an lqdag LF . If the number
of different relations involved in F equals the number of different atomic expressions, then
Algorithm 15 evaluates F in worst-case optimal time in data complexity.

Note that this result generalizes Theorem 3.6. Moreover, it does not matter how we write
our formula F to achieve worst-case optimal evaluation. For example, our algorithms behave
identically on ((R ./ S) ./ T ) and on (R ./ (S ./ T )).
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5 Final Remarks

The evaluation of join queries using qdags provides a competitive alternative to current
worst-case optimal algorithms [9, 11, 15, 17, 21]. When compared to them, we find the
following time-space tradeoffs.

Regarding space, qdags require only just a few extra words per tuple, which is generally
much less than what standard database indexes require, and definitely less than those required
by current worst-case optimal algorithms (e.g. [9, 17, 21]). Moreover, in both NPRR [17] and
leapfrog [21], the required index structure only works for a specific ordering of the attributes.
Thus, in order to efficiently evaluate any possible query using these two algorithms, a separate
index is required for every possible attribute order (i.e., d! indexes). In contrast, all we need
to store is one quadtree per relation, and that works for any query. Even if we resort to the
(simpler) kd-tree representation by Brisaboa et al. [4], the extra space increases by a factor
of 2d bits, which is still considerably less than the alternative of d! standard indexes for any
order of variables (e.g., for d = 10, 2d = 1024, while d! = 3628800, i.e., ≈ 3500 times bigger).

Regarding time, the first comparison that stands aside is the log(N) factor, present in
our solution but not in others like NPRR [17] and leapfrog [21]. Note, however, that NPRR
assumes to be able to compute a join of two relations R and S in time O(|R|+ |S|+ |R ./ S|),
which is only possible when using a hash table and when time is computed in an amortized
way or in expectation [17, footnote 3]. This was also noted for leapfrog [21, Section 5], where
they state that their own log(N) factor can be avoided by using hashes instead of tries, but
they leave open whether this is actually better in practice. More involved algorithms such as
PANDA [11] build upon algorithms to compute joins of two relations, and therefore the same
log(N) factor appears if one avoids hashes or amortized running time bounds. Our algorithm
incurs in an additional 2d factor in time when compared to NPRR or leapfrog, similarly to
other worst-case optimal solutions based on geometric data structures [9, 15]. This is, as far
as we are aware, unavoidable: it is the price to pay for using so little space. Note, however,
that this factor does not depend on the data, and that it can be compensated by the fact
that our native indexes are compressed, and thus might fit entirely in faster memory.

One important benefit of our framework is that answers to queries can be delivered in
their compact representation. As such, we can iterate over them, or store them, or use them
as materialized views, either built eagerly, as quadtrees, or in lazy form, as lqdags. One
could even cache the top half of the (uncompacted) tree containing the answer, and leave the
bottom half in the form of lqdags. The upper half, which is used the most, is cached, and the
bottom half is computed on demand. Our framework also permits sharing lqdags as common
subexpressions that are computed only once. Additionally, we envision two main uses for
the techniques presented in this paper. On one hand, one could take advantage of the low
storage cost of these indexes, and add them as a companion to a more traditional database
setting. Smaller joins and selections could be handled by the database, while multijoins
could be processed faster because they would be computed over the quadtrees. On the other
hand, we could use lqdags instead, so as to evaluate more expressive queries over quadtrees.
Even if some operations are not optimal, what is lost in optimality may be gained again
because these data structures allow operating in faster memory levels.

There are several directions for future work. For instance, we are trying to improve
our structures to achieve good bounds for acyclic queries (see Appendix A), and we see an
opportunity to apply quadtrees in the setting of parallel computation (see, e.g., Suciu [20]).
We also comment in Appendix A on bounds for clustered databases, another topic deserving
further study.
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A Appendix

A.1 Additional comments on Projections

Including projection in our framework is not difficult: in a quadtree Q storing a relation R
with attributes A, one can compute the projection πA′(R), for A′ ⊆ A as follows. Assume
that |A| = d and |A′| = d′. Then the projection is the quadtree defined inductively as follows.
If Value(Q) is 0 or 1 then the projection is a leaf with the same value. Otherwise Q has 2d
children. The quadtree for πA′(R) has instead 2d′ children, where the i-th child is defined as
the Or of all children j of Q such that the projection of the d-bit representation of j to the
positions in which attributes in A′ appear in A is precisely the d′-bit representation of i. For
example, computing πA1,A2R(A1, A2, A3) means creating a tree with four children, resulting
of the Or of children 0 and 1, 2 and 3, 4 and 5 and 6 and 7, respectively.

Having defined the projection, a natural question is whether one can use it to obtain finer
bounds for acyclic queries or for queries with bounded treewidth. For example, even though
the AGM bound for R(A,B) ./ S(B,C) is quadratic, one can use Yannakakis’ algorithm [23]
to compute it in time O(|R|+ |S|+ |R ./ S|). This is commonly achieved by first computing
πB(R) and πB(S), joining them, and then using this join to filter out R and S. Unfortunately,
adopting this strategy in our lqdag framework would still give us a quadratic algorithm, even
for queries with small output, because after the projection we would need to extend the
result again. The same holds for the general Yannakakis’ algorithm when computing the
final join after performing all necessary semijoins.

More generally, this also rules out the possibility to achieve optimal bounds for queries
with bounded treewidth or similar measures. Of course, this is not much of a limitation
because one can always compute the most complex queries with our compact representation
and then carry out Yannakakis’ algorithms on top of these results with standard database
techniques, but it would be better to resolve all within our framework. We are currently
looking at improving our data structures in this regard.

A.2 Geometric representation and finer analysis

As quadtrees have a direct geometric interpretation, it is natural to compare them to the
algorithm based on gap boxes proposed by Khamis et al. [9]. In a nutshell, this algorithm
uses a data structure that stores relations as a set of multidimensional cubes that contain no
data points, which the authors call gap boxes. Under this framework, a data point is in the
answer of the join query R1 ./ · · · ./ Rn if the point is not part of a gap box in any of the
relations Ri. The authors then compute the answers of these queries using an algorithm that
finds and merges appropriate gap boxes covering all cells not in the answer of the query, until
no more gap boxes can be found and we are left with a covering that misses exactly those
points in the answer of the query. Perhaps more interestingly, the algorithm is subject of a
finer analysis: the runtime of queries can be shown to be bounded by a function of the size
of a certificate of the instance (and not its size). The certificate in their case is simply the
minimum amount of gap boxes from the input relations that is needed to cover all the gaps
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in the answer of the query. Finding such a minimal cover is NP-hard, but a slightly restricted
notion of gap boxes maintains the bounds within an O(logd `) approximation factor.

While any index structure can be thought of as providing a set of gap boxes [9], quadtrees
provide a particularly natural and compact representation. Each node valued 0 in a quadtree
signals that there are no points in its subgrid, and can therefore be understood as a d-
dimensional gap box. We can understand qdags as a set of gap boxes as well: precisely those
in its completion. Now let J = R1 ./ · · · ./ Rn be a join query over d attributes, and let
R∗1, . . . , R

∗
n denote the extension of each Ri with the attributes of J that are not in Ri. As in

Khamis et al. [9], a quadtree certificate for J is a set of gap boxes (i.e., empty d-dimensional
grids obtained from any of the R∗i s) such that every coordinate not in the answer of J is
covered by at least one of these boxes. Let CJ,D denote a certificate for J of minimum size.

I Proposition A.1. Given query J and database D, Algorithm 4 runs in time O((|CJ,D|+
|J(D)|) · 2dn log `), where J(D) is the output of the query J over D.

Now, one can easily construct instances and queries such that the minimal certificate CJ,D
is comparable to 2ρ∗(J,D). So this will not give us optimality results, as discovered [9, 15]
for acyclic queries or queries with bounded treewidth. This is a consequence of increasing
the dimensionality of the relations. Nevertheless, the bound does yield a good running
time when we know that CJ,D is small. It is also worth mentioning that our algorithms
directly computes the only possible representation of the output as gap boxes (because its
boxes come directly from the representation of the relations). This means that there is a
direct connection between instances that give small certificates and instances for which the
representation of the output is small.

A.3 Better runtime on clustered databases
Quadtrees have been shown to work well in applications such as RDF stores or web graphs,
where data points are distributed in clusters [4, 1]. It turns out that combining the analysis
described in Section 2 for clustered grids with the technique we used to show that joins are
worst-case optimal, results in a better bound for the running time of our algorithms, and a
small refinement of the AGM bound itself.

Consider again the triangle query R(A,B) ./ S(B,C) ./ T (A,C), and assume the points
in each relation are distributed in c clusters, each of them of size at most s× s, and with
p points in total. Then, at depth log(`/s), the quadtrees of T , R, and S have at most 2d
internal nodes per cluster (where we are in dimension d = 3): at this level one can think of the
trimmed quadtree as representing a coarser grid of cells of size sd, and therefore each cluster
can intersect at most two of these coarser cells per dimension. Thus, letting Q′R, Q′S , and Q′T
be the quadtrees for R, S and T trimmed up to level log(`/s) (and where internal nodes take
value 1), then the proof of Theorem 3.6 yields a bound for the number of internal nodes at
level log(`/s) of the quadtree Q+ of the output before the compaction step (or, equivalently,
of the super-completion of the lqdag of the triangle query): this number must be bounded by
the AGM bound of the instances given by Q′R, Q′S and Q′T , which is at most (c ·2d)3/2. Going
back to the data for the quadtree Q+, the bound on the number of internal nodes means
that the points of the output are distributed in at most (c · 2d)3/2 clusters of size at most sd.
In turn, the maximal number of 1s in the answer is bounded by the AGM bound itself, which
here is p3/2. This means that the size of Q+ is bounded by O((c · 2d)3/2 log `+ p3/2 log s),
and therefore the running time of the algorithm is O

(
((c · 2d)3/2 log `+ p3/2 log s) · 2d

)
. This

is an important reduction in running time if the number c of clusters and their width s are
small, as we now multiply the number of answers by log s instead of log `.
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To generalize, let us use Dc,d as the database “trimmed” to c · 2d points. The discussion
above can be extended to prove the following.

I Proposition A.2. Let J = R1 ./ · · · ./ Rn be a full join query, and D a database over
schema {R1, . . . , Rn}, with d attributes in total, where the domains of the relations are in
[0, `− 1], and where the points in each relation are distributed in c clusters of width s. Then
Algorithm 4 works in time O

(
(2ρ∗(J,Dc,d) log `+ 2ρ∗(J,D) log s) · 2dn).
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Abstract
Motivated by the problem of filtering candidate pairs in inner product similarity joins we study
the following inner product estimation problem: Given parameters d ∈ N, α > β ≥ 0 and unit
vectors x, y ∈ Rd consider the task of distinguishing between the cases 〈x, y〉 ≤ β and 〈x, y〉 ≥ α

where 〈x, y〉 =
∑d

i=1 xiyi is the inner product of vectors x and y. The goal is to distinguish these
cases based on information on each vector encoded independently in a bit string of the shortest
length possible. In contrast to much work on compressing vectors using randomized dimensionality
reduction, we seek to solve the problem deterministically, with no probability of error. Inner product
estimation can be solved in general via estimating 〈x, y〉 with an additive error bounded by ε = α−β.
We show that d log2

(√
1−β
ε

)
±Θ(d) bits of information about each vector is necessary and sufficient.

Our upper bound is constructive and improves a known upper bound of d log2(1/ε) +O(d) by up to
a factor of 2 when β is close to 1. The lower bound holds even in a stronger model where one of the
vectors is known exactly, and an arbitrary estimation function is allowed.
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1 Introduction

Modern data sets increasingly consist of noisy or incomplete information, which means that
traditional ways of matching database records often fall short. One approach to dealing
with this in database systems is to provide similarity join operators that find pairs of tuples
satisfying a similarity predicate. We refer to the book of Augsten and Böhlen [5] for a survey
of similarity joins in relational database systems, and to [30] for an overview of theoretical
results in the area. Note that joins can be implemented using similarity search indexes
that allow searching a relation for tuples that satisfy a similarity predicate with a given
query q. Thus we include works on similarity search indexes in discussion of previous work
on similarity join.
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In this paper we consider inner product similarity predicates of the form 〈x, y〉/geqα,
where x, y ∈ Rd are real-valued vectors, i.e., the predicate is true for vectors whose inner
product

∑d
i=1 xiyi exceeds a user-specified threshold α. This notion of similarity is important,

for example, in neural network training and inference, (see [38]). In that context, an inner
product similarity join can be used for classifying a collection of vectors according to a neural
network model.

Inner product similarity join is a special case of similarity join under Euclidean distance,
implemented for example in the Apache Spark framework1. Conversely, it generalizes
cosine similarity, which has been studied for more than a decade (see, e.g., the influential
papers [8, 11] and more recent works such as [4, 7, 13, 35]). In recent years the general inner
product similarity join problem has attracted increasing attention (see e.g. [2, 34, 37, 39, 43]).
Recently proposed practical inner product similarity join algorithms work by reducing the
general problem to a number of instances with unit length vectors, which is equivalent to
join under cosine similarity [43].

Candidate generation approach. State-of-the-art algorithms computing similarity joins on
high-dimensional vectors use a two-phase approach:
1. Generate a set of candidate pairs (x, y) that contains all pairs satisfying the predicate

(keeping track of the corresponding tuples in the relations).
2. Iterate over the candidate pairs to check which ones satisfy the predicate.
Suppose for simplicity that both relations in the similarity join contain n tuples. A naïve
candidate generation phase would output all n2 corresponding pairs of vectors. For many
data sets it is possible to reduce the number of candidate pairs significantly below n2, but
the check phase remains a bottleneck. A direct implementation of the check phase would
require full information about the vectors (x, y), in practice d floating point numbers per
vector. Though the inner product computation is trivial, for high-dimensional vectors the
cost of transferring data from memory can be a bottleneck.

Filtering candidate pairs using approximation. An approach to reducing communication
is to approximate inner products, which is enough to handle those candidate pairs that do
not have inner product close to the threshold α. The exact inner product is computed only
for the remaining pairs, often a small fraction of the set of all candidates. We stress that
globally, the join computation we consider is not approximate, but approximations are used
to speed up parts of the algorithm. (Note that under common assumptions in fine-grained
complexity, the inner product similarity join problem is difficult in the worst case, even with
approximation [1, 2].)

Such additional filtering of candidate pairs has been successfully used in “Monte Carlo”
style randomized algorithms that allow the algorithm to sometimes fail to identify a pair
satisfying the predicate, e.g. [35, 6]. While the error in Monte Carlo algorithms can usually
be made very small at a reasonable computation cost, such algorithms are not suitable in all
settings. For example:

Firm guarantees may be needed to comply with regulation, or to ensure a clear and
consistent semantics of a system (such as a DBMS) in which the similarity estimation
algorithm is part.
Guarantees on accuracy are shown under the assumption that the input data is independent
of the random choices made by the algorithm. Technically this assumption may not hold

1 https://spark.apache.org/

https://spark.apache.org/
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if output from the algorithm can affect future inputs. Maybe more seriously, if vectors can
be chosen adversarially based on (partial) knowledge of the randomness of the algorithm,
for example obtained by timing attacks, the guarantees cease to hold (see e.g. [14] for
more discussion of adversarial settings).

In this paper we study what kind of approximation is possible without randomization,
targeting settings where false negatives are not permitted, or where we cannot ensure that
inputs are independent of any randomization used by the algorithm.

We seek to efficiently eliminate all candidate pairs that have inner product less than β,
for some β smaller than the threshold α, so that the number of remaining candidate pairs
(for which an expensive inner product computation must be done) may be significantly
reduced. In order to not eliminate any candidate pair passing the threshold it is necessary
and sufficient that the approximation is strong enough to distinguish the cases 〈x, y〉 ≤ β

and 〈x, y〉 ≥ α.

Similarity join memory bottlenecks. The complexity of similarity joins in the I/O model
was studied in [31], which assumes that a block transfer moves B vectors from or to external
memory, and that internal memory can hold M vectors. Reducing the amount of data
that needs to be transferred to evaluate a similarity predicate leads to a larger capacity of
blocks as well as internal memory, in turn leading to a reduction in I/O complexity that
is roughly proportional to the reduction in size. The exact improvement is a bit more
complicated because additional I/Os are needed to evaluate the exact inner products of pairs
with similarity above β. McCauley and Silvestri [29] studied the related problem of similarity
joins in MapReduce where considerations similar to the I/O model can be made.

1.1 Our results

Without loss of generality we can consider unit vectors, since the general estimation problem
can be reduced to this case by storing an (approximate) norm of each vector in space
independent of the number of dimensions. Similarly, lower bounds shown for unit vectors
imply lower bounds for arbitrary vector lengths by a scaling argument

We study the following version of the inner product estimation problem for unit vectors:
Distinguish inner products smaller than β from inner products larger than α, for threshold
parameters α and β. This problem can of course be solved by estimating the inner product
with additive error less than α− β. However, we will see that the number of bits needed is
not a function of α− β, and that guarantees can be improved when these parameters have
values close to 1.

Let x and y be vectors from the d-dimensional Euclidean unit sphere Sd−1. When
represented in a computer with limited precision floating or fixed-point numbers, the precision
we can obtain when computing the inner product 〈x, y〉 will of course depend on the precision
of the representation of x and y. Suppose we round coordinates x and y to the nearest
integer multiple of ε/d, for some parameter ε > 0, to produce “uniformly quantized” vectors
x′ and y′. Then it is easy to see that the difference between 〈x, y〉 and 〈x′, y′〉 is at most ε.
The space required to store each coordinate x′i, y′i ∈ [−1,+1] is dlog2(2d/ε)e bits, so we get
d log2(d/ε) +O(d) bits in total using standard, uniform quantization. On the upper bound
side we know that the number of bits per dimension can be made independent of d. The
following lemma appears to be folklore – a proof can be found in [3, Theorem 4.1].
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I Lemma 1. For every ε > 0 there exists a mapping E : Sd−1 → {0, 1}`, where ` =
d log2(1/ε) +O(d) such that 〈x, y〉 can be estimated from E(x) and E(y) with additive error
at most ε.

In this paper we ask if this space usage is optimal for the problem of distinguishing
between two specific inner product values. Our methods will work through a decoding
function that produces a unit vector from a bit representation (i.e., the approximation is a
result of quantizing the input vectors). Specifically, we consider the following problem:

I Definition 2. For positive integers d and `, and α, β ∈ [0, 1] with α > β the (α, β, d, `)-
InnerProduct problem is to construct mappings E : Sd−1 → {0, 1}` and D : {0, 1}` → Sd−1

and choose t ∈ R, such that for every choice of unit vectors x, y ∈ Sd−1 we have:

〈x, y〉 ≥ α =⇒ 〈D(E(x)),D(E(y))〉 ≥ t and
〈x, y〉 ≤ β =⇒ 〈D(E(x)),D(E(y))〉 < t .

We refer to the parameter ` as the space usage of a construction. Whenever d and ` are
understood from the context we omit them and talk about the (α, β)-InnerProduct problem.

On the upper bound side our main technical lemma is the following:

I Theorem 3. (α, β)-InnerProduct can be solved using space ` = d log2

(√
1−β
α−β

)
+O(d).

Theorem 3 upper bounds the space needed to approximate inner products between unit
vectors. For example we can distinguish pairs with inner product α = 1− ε from pairs with
inner product less than β = 1− 2ε using space d

2 log2
1
ε +O(d). The problem is closely linked

to estimation, so it is unsurprising that it matches the bound in Lemma 1 for α − β = ε

in the worst case of β = 0. What is interesting is that for β close to 1 we get improved
constants, saving up to a factor 2 on the space when α approaches 1.

Our proof uses a variant of pyramid vector quantization [15] and the technique is essentially
an implementation of a grid-based ε-net as described in [3], though the analysis is different.
The exposition is supposed to be self-contained, and in particular we do not assume that the
reader is familiar with pyramid vector quantization or ε-nets.

Finally, we show a tight lower bound. Consider a communication protocol where Alice
is given x ∈ Sd−1 and Bob is given y ∈ Sd−1. For parameters α, β ∈ (0, 1), with α = β + ε,
known to both parties, how many bits of information does Alice need to send to Bob in order
for Bob to be able to distinguish the cases 〈x, y〉 ≥ α and 〈x, y〉 ≤ β? Specifically, how many
bits must Alice send, in the worst case over all vectors x, to allow Bob to answer correctly
for every vector y? We note that a solution for the (α, β)-InnerProduct problem implies
a communication protocol using ` bits, but our lower bound applies more generally to any
one-way communication protocol, not necessarily based on quantization.

I Theorem 4. For each choice of α, β ∈ (0, 1) with α > β, suppose that there exists a
mapping E : Sd−1 → {0, 1}` such that for all x, y ∈ Sd−1 we can determine from E(x)
and E(y) whether 〈x, y〉 ≤ β or 〈x, y〉 ≥ α (or output anything if 〈x, y〉 ∈ (β, α)). Then

` ≥ d log2

(√
1−β
α−β

)
−O(d).

This matches the upper bound up to the additive term of O(d) bits.
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2 Further related work

Motivating applications. Calculating the inner product of two vectors is a frequently used
sub-routine in linear algebra, and many machine learning algorithms rely heavily on inner
product calculation. For example, the inner loop of algorithms for training of complex neural
networks uses millions and millions of inner product computations. Often what is ultimately
learned is an embedding onto a high dimensional unit sphere where the inner product can be
used directly as a similarity measure.

In such large scale computations the bottleneck is often the limited bandwidth of the
hardware in question, and having slightly smaller vector representations can massively
improve the execution time. This gives rise to the idea of computing inner products with
reduced precision. Recently, several studies showed that deep neural networks can be trained
using low precision arithmetic, see e.g. [12, 18, 19]. This has led to a new generation of
software and reduced-precision hardware for machine learning algorithms:

NVIDIA’s TensorRT GPU framework and Google’s TensorFlow and Tensor Processing
Unit, that both operate with 8- or 16-bit fixed point number representations, and
Intel’s Nervana processor that uses the so-called FlexPoint vector representation [28],
combining 16-bit uniform quantization with a shared exponent that allows representing
vectors in a large dynamic range of magnitudes.

From a theoretical point of view these hardware representations use at least log2 d±O(1)
more bits per dimension than what is required to ensure a given additive error.

Reduced precision inner products have also been employed in knowledge discovery [9]
and similarity search [17, 25].

Dimensionality reduction. There is a large literature on the space complexity of estimating
Euclidean distances, usually studied in the setting where a certain failure probability δ > 0
is allowed, and with number of dimensions (rather than bits) as the measure of space. For
certain “random projection” mappings f : Rd → RD one can estimate the Euclidean distance
||x−y||2 from f(x) and f(y) up to a multiplicative error of 1+ε, with failure probability δ. It
is known that using D = O(log(δ−1)ε−2) dimensions is necessary [24, 27] and sufficient [26].
For unit vectors this implies an approximation of inner products with O(ε) additive error
through the identity

〈x, y〉 = 1
2 (||x||22 + ||y||22 − ||x− y||22) . (1)

Using (a specific type of) random projections to estimate inner products, with an additive
error guarantee, is known as “feature hashing” [42].

Indyk et al. [20, 21] considered the bit complexity of representing all distances, up to a
given relative error 1 + ε, within a given set S of n vectors in Rd. For this problem one can
assume without loss of generality that d = O(ε−2 logn), using dimension reduction. Suppose
that we only need to preserve distances of unit vectors up to an additive ε, which implies that
inner products are preserved up to O(ε). Then for d = ε−2 logn the space usage per point of
the method described in [21] is O(d log(1/ε)). This is within a constant factor of our upper
bound, but not directly comparable to our result which works for all unit vectors. Recently,
Indyk and Wagner [22] studied the space required to solve the d-dimensional Euclidean
(1 + ε)-approximate nearest neighbor problem in the setting where vector coordinates are
integers in a bounded range (e.g. of size nO(1)). While this method gives guarantees for
new vectors outside of S their method is randomized and can fail to correctly determine an
approximate nearest neighbor, while our method is deterministic.
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Vector quantization. In a nutshell, vector quantization [16] is the process of mapping
vectors in a space (usually a bounded subset of Euclidean space) to the nearest in a finite
set of vectors Q. The goal is to minimize the size of Q and the distance between vectors
and their quantized versions, often with respect to a certain distribution of source (or input)
vectors. Fischer first described pyramid vector quantization [15], showing that it is near-
optimal for Laplacian sources. Since high-dimensional Laplacian vectors have lengths that
are tightly concentrated around the expectation, it is natural to speculate if the method is
also near-optimal for fixed-length (or unit) vectors. It turns out to be easier to analyze a
variant of pyramid vector quantization for which we can show that this is indeed the case.
This is described in section 3.

Quantization methods have previously been used to speed up nearest neighbor search.
The technique of product quantization [25] has been particularly successful for this application.
Product quantization uses an initial random rotation of input vectors followed by application
of an optimal quantization method on low-dimensional blocks. Since the size of the codebook
is fixed for each block the resulting quantization error cannot be bounded with probability 1.

Quantization of the unit sphere has been studied in complexity theory as ε-nets for
spherical caps. Rabani and Shpilka [33] give a construction in which |Q| is polynomially
related to the best size possible with a given quantization error. Along and Klartag [3] use
such nets to achieve |Q| that is within a factor exp(O(d)) of optimal, improving [33] whenever
the quantization error is o(1), such that |Q| must be superexponential in d.

In the literature on machine learning (and its application areas) there is a myriad of
methods for learning a data-dependent quantization mapping that exploits structure in a
data set to decrease the quantization error. We refer to the survey of Wang et al. [41] for
details. In contrast to such methods, we seek guarantees for all vectors, not just vectors from
a given data set or distribution.

Communication complexity. Consider a communication protocol in which Alice and Bob
are given unit vectors x, y ∈

{
± 1√

d

}d
and need to approximate 〈x, y〉. The gap hamming

problem is the special case where the task is to distinguish between cases of weak positive and
negative correlation: Is 〈x, y〉 > 1/

√
d or is 〈x, y〉 < −1/

√
d? This problem is known to require

Ω(d) bits of communication [10, 23, 36], even for randomized protocols with error probability,
say, 1/3. In turn, this implies a lower bound for the space complexity of estimating inner
products, since a space complexity of ` bits implies a (one-way) communication protocol
using ` bits of communication. The lower bound extends to arbitrary thresholds α and β with
α− β = Θ(1/

√
d) by translation. In this paper we consider general unit vectors x, y ∈ Rd

and are able to show a higher lower bound of 1
2d log2 d−O(d) bits for distinguishing inner

products of distance ε = Θ(1/
√
d).

3 Upper bound

We use a well-known grid-based rounding method to construct our representation, see
e.g. [3, 15]. For completeness we provide a simple, self-contained description of a representation
and show that it has the properties described in Theorem 3. The grid resolution is controlled
by a parameter δ ∈ [0, 1]. For every vector x ∈ Rd let f(x) ∈ Rd be defined by

f(x) = x′/||x′||2, where x′i =
⌊
xi
√
d
δ + 1

2

⌋ δ√
d
for i = 1, . . . , d . (2)
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It is clear that the number of bits for storing a single integer coordinate x′i can be large in
high dimensions, up to log2(2

√
d/δ) bits, but we can give a much better bound on the average

number of bits per coordinate. If ‖x‖ ≤ 1 we can store f(x) using ` = d log2(1/δ) +O(d) bits
of space. To compute x′ it suffices to know the integers zi = bxi

√
d
δ + 1

2c. We first allocate d
bits to store the set {i | zi < 0}, such that it only remains to store the sequence of absolute
values |z1|, . . . , |zd|. Next, using ‖x‖2 ≤ 1 we observe that

d∑
i=1
|zi| ≤ ‖x‖1

√
d
δ + d/2 ≤

√
d ‖x‖2

√
d
δ + d/2 ≤ d/δ + d/2 .

Thus if we set s = bd/δ + d/2c we can encode |z1|, . . . , |zd| by specifying a partitioning of s
elements into d+ 1 parts. There are

(
s+d
d

)
such partitionings so we can assign each vector a

unique representation of ` =
⌈
log2

(
s+d
d

)⌉
+ d = d log2 (1/δ) +O(d) bits.

Before proving Theorem 3 we give a simple space bound for distance distortion which is
useful in it own right.

I Lemma 5. For δ ≤ 1 and every choice of x, y ∈ Rd, defining f according to (2) we have:

‖x− y‖2 − δ ≤ ‖f(x)− f(y)‖2 ≤ ‖x− y‖2 + δ .

Proof. Observe that |xi − x′i| ≤ δ
2
√
d
. This means that:

‖x− x′‖2 =

√√√√ d∑
i=1

(xi − x′i)2 ≤

√√√√ d∑
i=1

δ2

4d = δ

2 .

Since δ ≤ 1 the angle between x and x′ is bounded by π/3, and hence ‖x− f(x)‖2 ≤ 1. This
implies that ‖x − f(x)‖22 = 2 − 2 〈x, x′/||x′||2〉 ≤ 1 + ‖x′‖2 − 2 〈x, x′〉 = ‖x − x′‖22, and in
particular we get ‖x− f(x)‖2 ≤ ‖x− x′‖2 ≤ δ/2. Finally, using the triangle inequality:

‖f(x)− f(y)‖2 ≤ ‖x− f(x)‖2 + ‖x− y‖2 + ‖y − f(y)‖2 ≤ ‖x− y‖2 + δ, and
‖f(x)− f(y)‖2 ≥ ‖x− y‖2 − ‖x− f(x)‖2 − ‖y − f(y)‖2 ≥ ‖x− y‖2 − δ . J

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let the encoding function E(·) map a vector x to the `-bit representa-
tion of x′ as defined in (2). The decoding function D(·) is defined such that D(E(x)) = f(x).

By Lemma 5 we have:

max{0, ‖x− y‖ − δ} ≤ ‖f(x)− f(y)‖ ≤ ‖x− y‖+ δ .

Using the distance bounds and the identity (1) several times we get:

〈f(x), f(y)〉 = 1
2 (‖f(x)‖2 + ‖f(y)‖2 − ‖f(x)− f(y)‖2)

≤ min{1, 1
2 (2 + 2‖x− y‖δ − ‖x− y‖2 − δ2)}

= min{1, 〈x, y〉+ ‖x− y‖δ − δ2/2}, and

〈f(x), f(y)〉 ≥ 1
2 (2− 2‖x− y‖δ − ‖x− y‖2 − δ2)

= 〈x, y〉 − ‖x− y‖δ − δ2/2 .

ICDT 2020



22:8 The Space Complexity of Inner Product Filters

We can then see

〈x, y〉 ≥ α =⇒ 〈D(E(x)),D(E(y))〉 ≥ α− δ
√

2− 2α− δ2/2 and

〈x, y〉 ≤ β =⇒ 〈D(E(x)),D(E(y))〉 ≤ min{1, β + δ
√

2− 2β − δ2/2}

Setting δ = α−β
2
√

2−2β
and t = α − δ

√
2− 2α − δ2/2 we get a valid solution to the (α, β)-

InnerProduct problem. J

The same grid, as specified by δ, works for every (α′, β′)-InnerProduct instance (with
a suitable choice of threshold t) as long as

δ <
α′ − β′√

2− 2α′ +
√

2− 2β′
. (3)

Note that Lemma 1 also follows from Theorem 3: For a given inner product value p
consider α′ = p+ ε/2 and β′ = p− ε/2. Setting δ = ε/4, we satisfy (3) for all p and get that
for every choice of unit vectors x, y ∈ Sd−1:

〈x, y〉 − ε ≤ 〈D(E(x)),D(E(x))〉 ≤ 〈x, y〉+ ε .

4 Lower bound

Consider a one-way communication protocol solving the (α, β)-InnerProduct problem
where Alice sends a string E(x) to Bob, and Bob must be able to output a real number
p(E(x), y) and a threshold t ∈ R such that

〈x, y〉 ≥ α =⇒ p(E(x), y) ≥ t, and

〈x, y〉 ≤ β =⇒ p(E(x), y) < t .

Note that there is no requirement on p(E(x), y) whenever 〈x, y〉 ∈ (β, α). We wish to answer
the following question: How many bits must Alice send, in the worst case over all vectors x,
to allow Bob to answer correctly for every vector y?

Let d > 1 be an integer. For ε > 0 and x ∈ Rd let Bε(x) = {y ∈ Rd | ||x− y||2 ≤ ε} be
the ball of radius ε centered at x, let B1 = B1(0) be the unit ball centered at the origin, and
denote by capΘ(x) = {y ∈ Sd−1 | 〈x, y〉 ≥ cos Θ} the unit spherical cap around x with polar
angle Θ.

4.1 Preliminaries
The gamma function is an extension of the factorial function to complex numbers. We will
need the following formulas for the value of the gamma function on integers and half-integers
(see e.g. [40]). For integer n > 0:

Γ(n+ 1
2 ) = (2n)!

√
π

22nn!
Γ(n+ 1) = n! (4)

I Lemma 6. For integer d > 1, Γ(d/2 + 1
2 )/Γ(d/2 + 1) > 1/(3

√
d).
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Proof. We use Stirling’s approximation to the factorial:
√

2πnn+1/2e−n ≤ n! ≤ e nn+1/2e−n

Together with (4) we get, for even d:

Γ(d/2 + 1
2 )/Γ(d/2 + 1) = d!

√
π

2d((d/2)!)2 ≥
√

2π dd+1/2e−d

2de2(d/2)d+1e−d
= 2
√

2π
e2
√
d
> 1/(3

√
d) .

The case of odd d is similar. J

I Lemma 7. Let cd = πd/2

Γ(d/2+1) , r > 0, and δ ∈ (0, 1). Then:
1. The volume of Bdr , the d-dimensional ball of radius r, is cd rd.
2. The surface area of Sd−1

r , the d-dimensional sphere of radius r, is cd d rd−1.
3. The surface area of capdΘ(x), a unit spherical cap with polar angle Θ, is at most

cd−1 d (2(1− cos Θ))(d−1)/2 .

Proof. Volume bound 1. is standard, see e.g. [32, page 11]. Differentiating with respect to r
gives the surface area in line 2. For the upper bound 3. we express the surface area as an
integral. Let r(h) =

√
h(2− h) <

√
2h be the radius of the d− 1-dimensional sphere at the

base of the cap of height h. Note that the sphere has surface area cd−1 d r(x)d−1. Integrating
over cap heights from 0 to 1− cos Θ we bound the surface area:∫ 1−cos Θ

0
cd−1 d r(x)d−1dx ≤ (1− cos Θ)cd−1 d (2(1− cos Θ))(d−1)/2 .

The inequality uses that r(x) ≤ r(1− cos Θ) ≤
√

2(1− cos Θ) for x ∈ [0, 1− cos Θ]. J

I Lemma 8. For every Θ ∈ (0, π/2) there exists a code CΘ ⊂ Sd−1 of size

|CΘ| ≥ (2(1− cos Θ))(d−1)/2/(3
√
d)

such that for all x, y ∈ CΘ with x 6= y we have 〈x, y〉 ≥ cos Θ.

Proof. We follow the outline of the standard non-constructive proof of the Gilbert-Varshamov
bound. That is, we argue that CΘ can be constructed in a greedy manner by adding an
additional point from

Sd−1\
⋃
x∈CΘ

capdΘ(x)

until this set is empty. Clearly this construction produces a set CΘ with the property that
every pair of points have angle greater than Θ. We observe that the procedure can stop only
when the area of

⋃
x∈CΘ capΘ(x) exceeds that of Sd−1. The number of iterations, and thus

the size of CΘ is at least the ratio between the surface area of the unit sphere and a spherical
cap, capΘ(·). In turn, this is lower bounded by the ratio of bound number 2 (with r = 1)
and 3 from Lemma 7. Using Lemma 6 we get:

cd d

cd−1 d (2(1− cos Θ))(d−1)/2 ≥ (2(1− cos Θ))−(d−1)/2/(3
√
d) . J

ICDT 2020
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4.2 Space complexity
Define Θ = arccosβ − arccosα. We claim that for every pair of vectors x1, x2 ∈ Sd−1 with
angle θ = arccos 〈x1, x2〉 ≥ Θ there exists a vector y ∈ Sd−1 such that 〈x1, y〉 = β and
〈x2, y〉 ≥ α. Specifically, let

y = y(x1, x2) =
(
β −

√
1− β2 cos θ

sin θ

)
x1 +

√
1−β2

sin θ x2 . (5)

To see that y is indeed a unit vector we compute ||y||22 = 〈y, y〉. Since 〈x1, x2〉 = cos θ (by
definition of θ) and 〈x1, x1〉 = 〈x2, x2〉 = 1 (since x1 and x2 are unit vectors) we get:

〈y, y〉 =
(
β −

√
1− β2 cos θ

sin θ

)2
+
(√

1−β2

sin θ

)2
+ 2

(
β −

√
1− β2 cos θ

sin θ

)(√
1−β2

sin θ

)
cos θ

= β2 + 1−β2

sin2 θ (1− cos2 θ)
= β2 + (1− β2) = 1 .

The third equality uses the Pythagorean identity cos2 θ + sin2 θ = 1. Next, we check that y
has the claimed inner products with x1 and x2:

〈x1, y〉 =
(
β −

√
1− β2 cos θ

sin θ

)
+
√

1− β2 cos θ
sin θ = β,

〈x2, y〉 =
(
β −

√
1− β2 cos θ

sin θ

)
cos θ +

√
1−β2

sin θ

= 〈(β,
√

1− β2), (cos θ, 1−cos2 θ
sin θ )〉

= 〈(β,
√

1− β2), (cos θ, sin θ)〉 ≥ α .

The final inequality follows since the angle between the vectors (β,
√

1− β2) and (cos θ, sin θ)
is at most arccos(β)− θ ≤ arccos(β)−Θ = arccosα.

Now consider the code CΘ. For distinct x1, x2 ∈ CΘ we must have, for y = y(x1, x2)
as defined in (5), p(e(x1), y) < t ≤ p(e(x2), y), which means that e(x1) 6= e(x2). Hence
R = {E(x) | x ∈ Sd−1} must contain at least |CΘ| binary strings, and in particular

` ≥ log2 |CΘ| ≥ log2

(
(2(1− cos Θ))−(d−1)/2/(3

√
d)
)

≥ d
2 log2

(
1

1− cos Θ

)
−O (d)

≥ d log2(1/Θ)−O (d) .

For the final inequality we use that 1− cos Θ ≤ Θ2, which holds when Θ ∈ (0, π/2). To finish
the proof we will show that whenever 0 ≤ β ≤ α ≤ 1:

Θ = arccosβ − arccosα ≤ π
2
α−β√

1−β
. (6)

For each fixed β ∈ [0, 1] we must show that arccosα ≥ arccosβ − π
2
α−β√

1−β
for all α ∈ [β, 1].

Since α 7→ arccosα is concave for α ∈ [0, 1], and the function α 7→ arccosβ − π
2
α−β√

1−β
is

linear, it suffices to check the inequality at the endpoints where α = β and α = 1. In the
former case we clearly get equality. In the latter we use the fact arccosβ − π

2
√

1− β ≤ 0 for
β ∈ [0, 1] to see that the inequality (6) holds.

This proves that ` ≥ d log2

(√
1−β
α−β

)
−O(d) bits are needed, establishing Theorem 4.
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Table 1 Space usage and absolute inner product error using the method of Section 3 on pairs of
vectors from various real-life data sets. The space usage is measured against a baseline of using a
32-bit floating point numbers to represent each of the d dimensions. Observed errors are smaller
than our worst-case bound of 4δ, probably due to cancellation effects.

Dataset d δ space median 90th pct. max
MNIST 784 0.1 16% 0.0019 0.0052 0.0165
SIFT 128 0.1 16% 0.0034 0.0084 0.0181
DLIB 128 0.1 16% 0.0028 0.0071 0.0135
MNIST 784 0.05 19% 0.0008 0.0027 0.0103
SIFT 128 0.05 19% 0.0019 0.0044 0.0091
DLIB 128 0.05 19% 0.0012 0.0033 0.0075
MNIST 784 0.01 26% 0.0002 0.0007 0.0027
SIFT 128 0.01 26% 0.0004 0.0008 0.0100
DLIB 128 0.01 26% 0.0002 0.0005 0.0011

5 Experiments

Since the encoding in our upper bound is potentially practical, we evaluated the accuracy of
the method experimentally on several data sets. We also computed the space usage of each
set of vectors, based on an optimal encoding of the method of Section 3 with various values
of parameter δ, and compared it to a baseline of using 32-bit floating point numbers.

We considered three data sets, MNIST (handwritten digits), SIFT (image features), and
DLIB-FACES (neural net embeddings of faces on a 128-dimensional unit sphere). The data
sets are chosen to span different distributions of entry magnitude. Whereas MNIST vectors
are approximately sparse, DLIB vectors have smoothly distributed magnitudes. MNIST and
SIFT are not natively unit vectors, so we normalized the vectors prior to encoding.

We computed the inner product error for 2000 vector pairs in each data set. Table 1 shows
the maximum absolute error observed when calculating inner products using the decoded
vectors compared to using the original vectors. It also shows the median absolute error and
the error at the 90th percentile.

In all cases the observed errors are well below the worst case bound of ε = 4δ. This can
partly be explained by sparsity of vectors, since our method represents zero entries in vectors
with no error. Also, while the effect of d rounding errors is d times the individual error in
the worst case (which is what our theoretical results bound), in the typical case errors will
tend to cancel since not all errors go in the same direction. Heuristically we could imagine
that errors are independent and random, in which case we would expect the sum of all errors
to be proportional to

√
d rather than d.

6 Conclusion

We have established tight upper and lower bounds for the problem of representing unit vectors
such that inner products can be estimated within a given additive error (with probability 1).
An interesting possibility would be to consider relative error estimates of Euclidean distances
(as in the recent work [22]) while not allowing any failure probability. Another potential
direction would be to achieve provably smaller expected error, while preserving the worst-case
guarantees, by applying an initial random rotation to all data vectors.
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Abstract
We present the theoretical foundations of a new approach in centrality measures for graph data. The
main principle of our approach is very simple: the more relevant subgraphs around a vertex, the more
central it is in the network. We formalize the notion of “relevant subgraphs” by choosing a family of
subgraphs that, give a graph G and a vertex v in G, it assigns a subset of connected subgraphs of
G that contains v. Any of such families defines a measure of centrality by counting the number of
subgraphs assigned to the vertex, i.e., a vertex will be more important for the network if it belongs
to more subgraphs in the family. We show many examples of this approach and, in particular, we
propose the all-subgraphs centrality, a centrality measure that takes every subgraph into account.
We study fundamental properties over families of subgraphs that guarantee desirable properties
over the corresponding centrality measure. Interestingly, all-subgraphs centrality satisfies all these
properties, showing its robustness as a notion for centrality. Finally, we study the computational
complexity of counting certain families of subgraphs and show a polynomial time algorithm to
compute the all-subgraphs centrality for graphs with bounded tree width.
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1 Introduction

Which are the most important or “central” nodes in a network? This is a crucial question
that has been asked in several areas like social science [21], biology [19], computer science [9]
and essentially every area where graph data is relevant [25]. Given the graph structure of
data one expects that more central nodes are more important for the network and they
will be relevant in understanding its underlying structure. Several centrality measures has
been proposed like closeness [4], betweenness [15], Page Rank [9], Katz index [20], among
others [25], trying to give an answer or explanation to our first question.

Which centrality measure is the most meaningful for network analysis? This has been
behind all proposals of centrality measures and it is an old question that has been discussed
from the beginning of network analysis [7, 16, 27]. Over the years, some axioms or properties
have been risen as crucial for a centrality measure and several centrality measures has been
axiomatized [28, 29, 31]. However, as it was shown in [6] many commonly used centrality
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measures do not satisfy even a simple set of “desirable” axioms (i.e. properties). The question
above then remains unanswered: how to naturally and formally define a centrality measure
that has reasonable properties?

To motivate our approach that aims both questions, consider the following setting from
graph data management. Suppose a graph database G and a query language L for extracting
patterns from G. Further, suppose Q is a query in L such that the evaluation of Q over G,
denoted by Q(G), retrieves a set of nodes in G. How should we rank Q(G) in order to output
the most meaningful outputs first? More specifically, suppose that G is a property graph
and L is a language of basic graph patterns [1]. Given that queries dynamically change over
time [10, 22], one would expect that, if v ∈ Q(G) satisfies more patterns from L, it will have
more chances to appear latter as an extension of Q. More general, one would expect that the
more queries from L where v is included, the more important is v on G with respect to L.
Furthermore, depending whether L is designed to look for paths, trees, or maybe triangles [1]
on G, maybe the user would like its measure of centrality to focus more on these patterns
than in all basic graph patterns.

In this paper, we tackle the first question following the simple idea motivated from the
graph data management setting: the more relevant subpatterns around a node, the more
central it is in the network. Several proposals in the literature (e.g degree, betweenness [15],
cross-clique [14]) already have considered relevant subpatterns like edges, paths, or cliques to
define meaningful centrality measures. We generalize this approach by defining centrality
measures based on families of subgraphs. Specifically, we formalize the notion of “relevant
subgraphs” by choosing any family of subgraphs that, given a graph G and a vertex v in G, it
assigns a subset of connected subgraphs from G that contains v. Any of such families defines
a measure of centrality by counting the number of subgraphs assigned to the vertex, i.e., a
vertex will be more important for the network if it belongs to more subgraphs in the family.
We show several examples that can be derived by following this approach. In particular, a
natural family of subgraphs is to consider all connected subgraphs around a vertex, that we
called all-subgraphs centrality, and we show that it defines a well-behaved notion of centrality.

With a family of centrality measures at hand we embark on answering the second question.
Generally speaking, we can consider any property on the family of subgraphs and see what
“axiom” it implies in the respectively centrality notion that it defines. With this strategy,
we no longer depend on comparing centrality measures of different nature (e.g. Page Rank
vs Betweenness). Instead, we can understand all centrality notions proposed in this paper
by just understanding the properties that satisfy the families of subgraphs. We consider
simple axioms that has been proposed in the literature (e.g. monotonicity [27] or isolated
vertex [16]). Then, look for simple properties in the family of subgraph that imply them.
Interestingly, we can show natural examples of families of subgraphs that do not satisfy these
properties and whose corresponding centrality notions do not satisfy the axioms. This allows
to have a more deep understanding of why a centrality measure does not behave as expected
and, moreover, to look into ways on how to “fix” it. Finally, the all-subgraphs centrality
proposed in this paper satisfies all these properties and axioms, showing its robustness as a
measure for centrality.

The general definition of centrality based on subgraphs allows us to easily extend the
idea from vertices to sets of vertices, also called group centrality. We propose an approach to
extend every centrality measure to groups, and prove a natural way to reduce the computation
of all-subgraph centrality from groups to vertices. We show that this extension over sets
allows to answer simple questions on the dynamic of graphs, like how to maximize the
centrality of a vertex when an edge is added.
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Towards the end of the paper, we study the computational complexity of counting certain
families of subgraphs. Unfortunately, we show that the centrality measures defined from
families of subgraphs like all subgraphs or trees lead to intractability. In terms of good news,
we show that these centralities can be efficiently computed in acyclic graphs (i.e. trees).
Moreover, we show that this result can be extended to more classes of graphs, by showing a
polynomial time algorithm to compute the all-subgraphs centrality over all classes of graphs
with bounded tree width.

Related work. Centrality measures have been extensively studied since the 50’s [4, 21] and
the subject is spread in different research areas. Moreover, the literature contains several
alternative proposals that, given space restrictions, it will be impossible to cover all of them
here (see [25]). Instead, we review here the work that is more closed in spirit to our proposal
by stressing the main differences.

Centrality measures based on some relevant subgraphs have been studied before (e.g.
betweenness [15], cross-clique [14]). The difference with our approach is that we take a step
further and studied families of subgraphs in a more general setting. In particular, to the
best of our knowledge all-subgraphs centrality and trees centrality (see Section 3 and 4) are
new measures and have not been studied before.

There are several papers that have studied centrality measures in terms of properties [7,
16, 27]. Furthermore, in the last years there are several proposals to axiomatize standard
centrality measures [5, 6, 28,29, 31]. In this paper, we study properties and axioms in terms
of families of subgraphs, which is a different goal compared to previous approaches.

Finally, a centrality measure called subgraph centrality was proposed in [13]. Although
the name resemble our approach and the paper also motivates the use of subgraphs, subgraph
centrality sums the number of closed-walks weighted by its length and not all the connected
subgraphs that contains a nodes, as in our case.

2 Preliminaries

For a finite set V , we denote by edges(V ) = {{u, v} ⊆ V | u 6= v} all subsets of V of size two.
Sometimes, we consider a function f as a relation and write f ′ ⊆ f when f ′ is a (partial)
function resulting to take a subset of the order pairs from f . In the sequel, all logarithms
are in base 2 unless it is stated differently.

Undirected graphs. We consider finite undirected graphs of the form G = (V,E) where V
is a finite non-empty set and E ⊆ edges(V ). Given a graph G, we will denote by V (G) and
E(G) the set of vertices and edges, respectively. We will usually use u and v for denoting
vertices and e and f for edges. Furthermore, we will use edges as sets and write v ∈ e when
e is an edge incident to v. We denote by N(v,G) = {u | {u, v} ∈ E(G)} the neighborhood of
v in G. We say that a graph G′ is a subgraph of G, denoted G′ ⊆ G, if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). If two graphs G1 and G2 are isomorphic, we write G1 ∼= G2. Furthermore,
we write G1, v1 ∼= G2, v2 for v1 ∈ V (G1) and v2 ∈ V (G2) if G1 ∼= G2 and v1 is equivalent to
v2 under the bijective function between G1 and G2.

Multigraphs. We also work with graphs with multiple edges between vertices, called multi-
graphs. A multigraph M is a triple M = (V,E, r) such that V is a finite non-empty set, E is
a finite set, and r : E → edges(V ) (i.e. the edge-assignment function). Intuitively, E is a set
of identifiers for edges and r assigns identifiers to edges (i.e. there could be multiple edges
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between two pair of vertices). Similar than for graphs, we denote by V (M), E(M), and r(M)
the corresponding set of vertices, edges, and edge-assignment of M , respectively. We say
that a multigraph M ′ is a sub-multigraph of M , denoted by M ′ ⊆ M , if V (M ′) ⊆ V (M),
E(M ′) ⊆ E(M), and r(M ′) ⊆ r(M).

Note that a simple graph is a multigraph M where r(M) is an injective function. For
this reason, in the future we will not make distinction between graphs and multigraphs.
Furthermore, we will usually work with graphs but all definitions and results also extend to
multigraphs. When this is not the case, we will make the distinction explicitly.

Connected graphs. A path in a graph G is a sequence of nodes π = v0, . . . , vn such that
{vi, vi+1} ∈ E(G) for every i < n and we say that the length of π is n. Note that v0 is the
trivial path from v0 to itself of length 0. We say that G is connected if there exists a path
between any pair of vertices. Furthermore, we say that G′ ⊆ G is a connected component of
G if G′ is connected and its maximal element over all subgraphs of G under ⊆. We denote
by ConnComp(G) the set of all connected components of G. For u, v ∈ V (G) we say that u
is at distance d of v if there exists a path from u to v of length d and every path from u to v
is of length at least d. We denote the distance d from u and v in G by distG(u, v). Given
this distance, the diameter of G is defined as maxu,v∈V (G) distG(u, v).

Families. We consider several families of graphs through the paper to give examples or
show some properties of our centrality measures. Given a vertex v, we denote by Gv the
graph with one vertex v (i.e. V (Gv) = {v}) and no-edges (i.e. E(Gv) = ∅). Given an
edge e = {u, v}, we denote by Ge the graph only containing e (i.e. V (Ge) = {u, v} and
E(Ge) = {e}). For any n ≥ 1, we write Sn for the star with n + 1 vertices such that
V (Sn) = {0, 1, . . . , n} and all nodes are connected to 0, namely, E(Sn) = {{0, i} | 0 < i ≤ n}.
Similarly, we write Ln for the line with n vertices where V (Ln) = {0, . . . , n − 1} and
E(Ln) = {{i, i + 1} | 0 ≤ i < n − 1}. The circuit with n vertices is denoted by Cn with
V (Cn) = {0, . . . , n−1} and E(Cn) = {{i, (i+1) mod n} | 0 ≤ i ≤ n−1}. Finally, the clique
of size n is denoted by Kn where V (Kn) = {0, . . . , n− 1} and E(Kn) = edges(V (Kn)).

Operations. Through the paper, we use several operations to create, modify, or combine
graphs. Given v ∈ V (G), we denote by G − v the result of removing v from G and all its
incident edges, namely, V (G− v) = V (G) \ {v} and E(G− v) = {e ∈ E(G) | v /∈ e}. Given
e = {u, v}, we write G+ e for the result of adding e into G, formally, V (G+ e) = V (G) ∪ e
and E(G + e) = E(G) ∪ {e} (i.e. if u or v are not in G, then they are included as new
vertices). Instead, we write G − e for the result of removing all edges between u and
v, namely, V (G − e) = V (G) and E(G − e) = E(G) \ {e}. Note that if G is a (simple)
graph, then at most one edge is removed, but if G is a multigraph then all edges between
u and v are removed. For G1 and G2, we denote by G1 ∪G2 the union of the two graphs,
namely, V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). In particular,
G+ e = G ∪Ge.

Let G be a graph and U ⊆ V (G). We define the set contraction of U on G as the
multigraph G/U by merging the vertices U to one vertex (called U) and keeping multi-
edges into U . Formally, G/U is the multigraph M such that V (M) = (V (G) \ U) ∪ {U},
E(M) = {e ∈ E(G) | e 6⊆ U} and for every e ∈ E(M) either r(M)(e) = e whenever e∩U = ∅,
or r(M)(e) = {v, U} whenever e = {v, u} with v /∈ U and u ∈ U . Note that we use U (i.e.
the set) as the new vertex that represent the contraction in M/U . When G is a multigraph,
the set contraction G/U easily follows from the above definition.
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3 The all-subgraphs centrality

We start by introducing our first centrality measure based on all subgraphs, called the all-
subgraphs centrality. In the next section, we generalize this idea to any family of subgraphs.

Fix a graph G and a vertex v ∈ V (G). We denote by A(v,G) the set of all connected
subgraphs of G that contains v, formally, A(v) = {G′ ⊆ G | G′ is connected ∧ v ∈ V (G′)}.
The all-subgraphs centrality of v in G is defined as:

CA(v,G) := log
(
|A(v,G)|

)
namely, the logarithm of the number of connected subgraphs of G that contains v. Intuitively,
the all-subgraphs centrality of a node only considers connected graphs since it captures the
importance of the node in the neighborhood that it belongs. We add more importance to
a node if its neighborhood is richer in substructures. Furthermore, we consider connected
subgraphs since there is no argument to say that a node has more centrality by counting
another component that is not directly connected to it.

The function CA naturally induces a ranking between nodes: the higher the centrality
CA(v,G), the more important is v in G. We define the ranking <A over V (G) induced by
CA (or just A-ranking for short) such that u <A v if, and only if, CA(u,G) > CA(v,G).
Strictly speaking, <A is not an order in V (G), given that there could exist vertices u and v
such that CA(u,G) = CA(v,G) (e.g. u and v are isomorphic in G). In this case, we write
u =A v.

I Example 1. Let v be a vertex. Recall that Gv is the trivial graph with one vertex v

and no edges. Then one can easily check that CA(v,Gv) = 0 given that A(v,Gv) = {Gv}
and then log(|A(v,Gv)|) = log(1) = 0. Note that this is the only vertex and graph (up to
isomorphism) where the centrality is equal to 0. This follows the intuition that an isolated
vertex must have 0 centrality since no one is connected to him.

I Example 2. Recall that Sn denotes the star graph with n+ 1 vertices. Note that every
connected subgraph of Sn corresponds to a subset of E(Sn), and there are 2n subsets of
E(Sn). Therefore, the centrality of the center of the star (i.e. the 0 vertex) is CA(0, Sn) = n.
Interestingly, the all-subgraphs centrality of the center of a star coincides with its degree-
centrality [25], following the intuition of what should be the centrality in this case. One
can easily show that, for any i 6= 0, CA(i, Sn) = n− 1 + ε with ε ∈ o(1). Thus, in terms of
ranking we have that 0 <A i and i =A j for every i, j > 0.

The all-subgraphs centrality is measuring the worst-case entropy [12,24] of the set A(v,G),
namely, the minimum number of bits that are required to represent the set A(v,G) with
bit-codes. Of course, using the size of |A(v,G)| will give the same ranking of centrality over
the vertex of G. Nevertheless, the log-function gives a better interpretation of the centrality
in terms of information theory. Moreover, it normalizes the value |A(v,G)| in a scale that is
in correspondence with the intuition of a centrality notion, e.g. Examples 1 and 2 above.

The next lemma is another result that validates the use of worst-case entropy and it will
be useful for computing the all-subgraphs centrality over simple graphs. Recall that a vertex
v ∈ V (G) is a cut vertex of G if |ConnComp(G − v)| < |ConnComp(G)|, namely, whose
removal increases the number of connected components of G.
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I Lemma 3. Let v be a cut-vertex of graph G and G1, . . . , Gn are all the subgraphs that
partition G and whose pairwise intersection is v, that is, V (G) = ∪n

i=1V (Gi), E(G) =
∪n

i=1E(Gi), and V (Gi) ∩ V (Gj) = {v} for i 6= j. Then

CA(v,G) =
n∑

i=1
CA(v,Gi).

Namely, the centrality of v in G is the sum of its centrality in all the components Gi.
This property is usually known in the literature as cut-vertex additivity [29]. Since

not every centrality measure satisfies it, this can be seen as the first distinction between
all-subgraphs centrality and commonly used centrality measures (e.g. pagerank, betweenness).
I Example 4. Let G be any graph, u ∈ V (G), and v be a new vertex not in G. For e = {u, v},
recall that Ge is the graph only containing e. Then one can easily see that CA(u,Ge) = 1.
Since G+ e = G ∪Ge and u is a cut-vertex of G+ e, by Lemma 3 we get:

CA(u,G+ e) = CA(u,G) + CA(u,Ge) = CA(u,G) + 1

Thus, by connecting one new vertex directly to u its centrality grows exactly in one unit.
This property is very appealing for a centrality measure and follows verbatim the intuition
of the score-monotonicity axiom in [6] (see Section 5 for more discussion). On the other
hand, one can check that the new vertex v in G+ e absorbs part of the centrality of u in G.
Specifically, one can easily see that |A(v,G+ e)| = |A(u,G)|+ 1 and then CA(v,G+ e) =
log(|A(u,G)|+ 1) = CA(u,G) + ε, where ε is a negligible factor.
I Example 5. For n ≥ 1, recall that Ln is the line with n nodes starting from 0 and ending
in n− 1. For the 0-vertex in Ln there are n-different subgraphs, one for each vertex, and
then CA(0, Ln) = log(n). The line graph is the most sparse graph with n vertices and 0 is
the most extreme vertex in the graph. As one could expect, the centrality of 0 grows very
slow, logarithmic in the number of vertex.

For the i-vertex in Ln, we can easily compute its centrality by using Lemma 3. Indeed,
the centrality for i is the composition of two lines with i+ 1 and n− i vertices, respectively.
Therefore, by Lemma 3:

CA(i, Ln) = CA(0, Li+1) + CA(0, Ln−i) = log(i+ 1) + log(n− i).

If n is odd, the vertex with maximum centrality is reached by the middle node n−1
2 and

CA( n−1
2 , Ln) = 2(log(n+ 1)− 1). Thus, the middle point of a line doubles the centrality of

the extreme vertices, nevertheless, the grow of its centrality is still logarithmic in n. Finally,
note that the centrality is maximized in the middle node and the ranking decreases towards
the extremes (i.e. i <A i+ 1 for every i < n−1

2 ).
A natural question at this point is to think in lower and upper bounds of the centrality

with respect to the number of edges of a graph. Indeed, the number of subgraphs A(v,G)
could be exponential in G but its entropy is bounded by the number of edges as follows.
I Proposition 6. For any connected graph G and v ∈ V , it holds that:

log(|E(G)|+ 1) ≤ CA(v,G) ≤ |E(G)|.

From Example 2 above, we can infer that the upper bound is reached by the central vertex
of a star. This follows the intuition that the central vertex of a star must be the most central
vertex regarding the number of edges (i.e. all edges are pointing to him). Furthermore, in
Example 5 we show that the extreme vertex of a line Ln has centrality log(n) = log(|E|+ 1).
That is, the minimum centrality is reached in the extreme points of a line, agreeing with the
intuition that the line graph is the most sparsest graph over all undirected graphs.
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4 A family of centralities based on subgraphs

The idea of measuring the centrality of a vertex based on relevant substructures is not
new [14, 15]. For example, the degree centrality counts how many edges are incident to a
vertex and the betweenness centrality [15] counts how many geodesic paths passed through a
vertex. In our case, all-subgraphs centrality measures all connected subgraphs including v,
but maybe for an expert not all subgraphs are equally important and he will be interested in
counting some of them. In this section we generalize the notion of all-subgraphs centrality
to propose a framework of centrality notions based on measuring the worst-case entropy of
relevant substructures surrounding a vertex.

A family of substructures is a function F that, given a graph G and a vertex v ∈ V (G),
it assigns a non-empty subset of connected subgraphs in G that contains v. Formally, F is
a function such that F(v,G) ⊆ A(v,G) and F(v,G) 6= ∅. We also assume that F is closed
under isomorphism, namely, if G1, v1 ∼= G2, v2 then F(v1, G1) is isomorphic to F(v2, G2), by
extending the isomorphism between G1, v1 and G2, v2 to subgraphs. For example, A is a
family of substructures where A(v,G) contains all connected subgraphs in G containing v
and is closed under isomorphism. Given a family of substructures we define the F -subgraph
centrality (denoted by CF (v,G)) as:

CF (v,G) := log (|F(v,G)|)

for any graph G and vertex v ∈ V (G). In other words, following the idea of all-subgraphs
centrality it measures the worst-case entropy of the substructures F(v,G). We could have left
the framework open to any monotone positive function over F(v,G) instead of the logarithm,
leading to the same ranking of centrality between vertices. Of course, this will derive in a
more complex and enriched theory, however, for the purpose of this paper we will keep the
simplicity of the logarithm as it still give place to novel results.

Note that F(v,G) is non-empty and, therefore, CF (v,G) is always well-defined. Similar
to all-subgraphs centrality, the centrality measures induced a ranking between nodes: we
define the F-ranking <F over V (G) such that u <F v if, and only if, CF (u,G) < CF (v,G).

I Example 7. Given a graph G and v ∈ V (G), denote by T (v,G) all subgraphs T ∈ A(v,G)
such that T is a tree. Note that an isolated vertex is defined as a trivial tree, so T (v,G)
is always non-empty. Furthermore, the family T is closed under isomorphism. Then
CT measures the centrality of a vertex based on trees and we call it the trees centrality.
For example, if Ln is a line graph with n vertices (see Example 5) then we have that
CA(v,G) = CT (v,G). Indeed, if T is a tree, then CA(v,G) = CT (v,G) for every v ∈ V (G).
However, this is not always the case if G has cycles and one can find examples where the
two measures give different values and ranking.

The motivation behind trees centrality is to considered substructures defined by acyclic
graphs like trees or paths. For example, path queries [1] are at the core of graph queries
languages and they are used to find path substructures between pair of nodes. Also, basic
graph patterns that are acyclic (e.g. tree-shaped queries) forms a well-behaved core of graph
query languages that can be evaluated efficiently [18]. Therefore, if the query languages
mostly uses queries that are acyclic, maybe it makes sense to rank the results by a centrality
notion based on trees.

The generalization of all-subgraphs centrality to any family of subgraphs opens the
possibilities of defining any centrality notion based on a particular group of relevant subgraphs.
In the next section, we use this framework to understand which properties in the family
leads to desirable properties in the corresponding centrality measure. This will help to
guide the design of a centrality notion based on subgraphs and, moreover, to have a better
understanding of this framework and all-subgraphs centrality.
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5 What families of subgraphs define good centrality measures?

Several attempts have been taken to define which properties a centrality measure should
satisfy and how to axiomatize them [3,28,29]. In our framework, each family of subgraphs
defines a new centrality measure, so it is not our purpose here to axiomatize them. In some
sense, each family of subgraphs captures the know-how of an expert who knows what are
the relevant subpatterns around a vertex. From this point of view, it does not make sense
to prefer one notion of centrality over the other. Instead, we study here which properties
over the family of subgraphs lead to desirable properties on the corresponding centrality
notion. We hope that these properties will guide experts on the design of a centrality based
on subgraphs and they will help to understand the benefits and problems of choosing one
family over the other. Towards this goal, we consider several axioms of centrality that has
been proposed in the literature and study which natural property on the family of subgraphs
is enough to satisfy it. We also give several examples for showing what happens when a
property is not satisfied.

In the sequel, a centrality measure is any function C that given a graph G and v ∈ V (G),
it outputs a non-negative value, i.e., C(v,G) ≥ 0.

Default axioms. We start our discussion by showing three natural axioms proposed in the
literature that any CF satisfies, for any family of substructures F . We discuss these three
axioms briefly and show that they are naturally satisfied by definition.

In [28] they present the so-called locality axiom, which says that the centrality of a vertex
should only depend on the connected component it belongs. In other words, after removing
components that are not connected to a vertex v the centrality of v should not change. This
natural axiom is satisfied by any centrality measure based on subgraphs because we define
a family of substructures as a subset of connected subgraphs. This might be seen as an
irrelevant detail but it is an important design decision of our approach. In second place, an
axiom called anonymity is introduced in [27]. This is the same as saying that a centrality
measure is closed under isomorphism. In our definition we explicitly say that any feasible
substructure must be closed under isomorphism, which means that the centrality measure
as defined will satisfy this axiom. Finally, in [17] the authors propose a minimum value
for any centrality. More specifically, the centrality of an isolated vertex is the minimum
possible and it should be 0. These two properties are called isolated minimization and
isolated zero, respectively. In our case, these axioms are satisfied by definition, because the
set of substructures associated to a vertex must be always non-empty, which means that
|F(v,Gv)| = 1 for any family of substructures. Therefore, the minimum possible value for
any centrality measure defined in this way is 0.

Monotonicity. The monotonicity axiom is probably the property that more people [6,27,28]
agree that any centrality notion should satisfy. In [6], the definition of this axiom says that if
an edge is added to the graph, then the centrality of the vertex that is incident with the new
edge should not decrease. Clearly, a vertex is more central the more edges it has and, thus, a
new edge should help to increase its relevance in the graph. A more general definition of this
axiom was introduced in [27] where the effect of adding any new edge in the graph should
not decrease the centrality of every vertex.

I Axiom 1 (Monotonicity). A centrality measure C satisfies the monotonicity axiom if for
every graph G, v ∈ V (G) and e /∈ E(G), it holds that C(v,G) ≤ C(v,G+ e).
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Note that the axiom implies that if G1 is a subgraph of G2 and v ∈ V (G1), then
C(v,G1) ≤ C(v,G2). This coincides with the intuition that v in G2 has the same or more
connections than in G1 and, thus, its relevance in G2 should be at least the one in G1.

What property should a family of subgraphs F satisfy in order that CF satisfy Axiom 1?
Intuitively, when edge e is added to G we have G ⊆ G+ e and all subgraphs that are relevant
for v in G should also be relevant for v in G+ e. Moreover, if a subgraph S is relevant for v
in G+ e but S is a subgraph of v in G, then it should also be a relevant subgraph of v in G.
That is, all subgraphs of G that are relevant should also be relevant in G+ e and vice versa
We call this the containment property.

I Property 1 (Containment). A family of subgraphs F satisfies the containment property if
for every graphs G1 and G2 such that G1 ⊆ G2 and for every v ∈ V (G1) and S ∈ A(v,G1),
it holds that S ∈ F(v,G1) if, and only if, S ∈ F(v,G2).

In particular, the containment property implies that F(v,G1) ⊆ F(v,G2) whenever G1 ⊆ G2.
As one could expect, the containment property is enough to satisfy the monotonicity axiom.

I Theorem 8. If a family of subgraphs F satisfies the containment property, then the
corresponding centrality measure CF satisfies the monotonicity axiom.

One can easily see that the family of all-subgraphs and trees satisfies the containment
property and, therefore, the all-subgraphs centrality and trees centrality satisfy monotonicity
as expected. Next, we show that this is not always the case.

I Example 9. Given a graph G and v ∈ V (G), denote byW(v,G) all subgraphs P ∈ A(v,G)
such that P = v0, . . . , vn is a geodesic path in G, namely, it is a path of minimal distance
between v0 and vn. We assume here that the isolated vertex v is the only geodesic path from v

to v. In [8], |W(v,G)| is defined as the stress centrality of vertex v. Then we define log-stress
centrality of v in G as CW(v,G). Of course, CW(v,G) is not equivalent to Betweenness(v,G)
as a value and in how we aggregate the number of geodesic paths. Nevertheless, it will be
useful below to understand Betweenness in the context of counting subgraphs.

One can easily show that the family W does not satisfy the containment condition.
Consider just a line L3 = . Then if we connect the black vertices and make a triangle
K3 = , then the geodesic path is inW(1, L3) but is not inW(1,K3). Coincidentally,
log-stress centrality (and betweenness centrality as well) do not satisfy the monotonicity
axiom. Actually, one can show pathological examples where monotonicity does not hold [16].
For example, if one compares the circuit Cn with the clique Kn one can see that Cn << Kn

but CW(0, Cn) > CW(0,Kn), and Betweenness(0, Cn) > Betweenness(0,Kn) as well.

It is important to note that, for some axiomatic approaches [28], it is desirable that the
center of a star Sn−1 is the most central node in a graph with n vertices, namely, a centrality
measure C satisfies this axiom if, for any n and for any graph G with |V (G)| = n, it holds
that C(v,G) ≤ C(0, Sn−1) for every v ∈ V (G). Unfortunately, this assumption contradicts
the idea behind the monotonicity axiom, since we can add edges to Sn−1 but the centrality
of the center will never increase. Thus, given that this axiom contradicts the monotonicity
axiom, we do not consider it in our analysis.

Rank monotonicity. Another axiom that has been remarked as important in the literature
is rank monotonicity [5, 6, 11, 27]. Similar than for monotonicity, this axiom says that if v is
more central than u in G, then when we add a new edge e to v the ranking between u and
v is preserved. In particular, if v is the most central vertex in G, then it will be the most
central vertex in G+ e as well. We generalize this intuition as follows.
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I Axiom 2 (Rank monotonicity). A centrality measure C satisfies the rank monotonicity
axiom if for every graph G, u, v ∈ V (G) and e /∈ E(G) with v ∈ e, then C(u,G) ≤ C(v,G)
implies that C(u,G+ e) ≤ C(v,G+ e).

Note that with e = {u, v} it could happen that the increment in centrality for u is bigger
than the increment on v, but the axiom says that the centrality of v will be still bigger than
the centrality of u. In other words, if I meet Donald Trump, my centrality will rise more
than his centrality, however, Donald Trump will still be the president of US.

It is important to say that in [6] an axiom called density axiom was proposed, which is a
special case of rank monotonicity. Specifically, take a clique Kn, a circuit Cn, and vertices
u ∈ V (Kn) and v ∈ V (Cn). Then the density axiom says that if we connect u and v with
an edge e = {u, v}, then G = (Kn ∪ Cn) + e satisfies C(u,G) > C(v,G) for a centrality
measure C. Intuitively, given that the neighborhood of u is more dense that in v, then its
centrality should be bigger. One can see that if C satisfies monotonicity (i.e. vertices in
Kn has more centrality than in Cn), then rank monotonicity implies the density axiom [6].
Therefore, we can see rank monotonicity as a generalization of the density axiom in [6].

The containment property is useful to imply rank monotonicity but it is not enough. One
can easily find centrality measures that satisfies Axiom 1 but it does not satisfy Axiom 2
(see Example 11 below). For this, one needs a notion of “fairness” in the family of subgraphs.
Intuitively, if S is a relevant subgraph for v in G and S contains a vertex u, then S should
also be relevant for u in S.

I Property 2 (Fairness). A family of subgraphs F satisfies the fairness property if for every
graph G, u, v ∈ V (G) and S ⊆ G with u, v ∈ V (S) it holds that S ∈ F(u,G) iff S ∈ F(v,G).

As we show next, fairness is what you need if you want to preserve the ranking between
vertices in a graph.

I Theorem 10. If a family of subgraphs F satisfies the containment property and fairness,
then the corresponding centrality measure CF satisfies the rank monotonicity axiom.

The family of all-subgraphs, trees and even betweenness (i.e. geodesic paths) satisfy
fairness. Given that all-subgraphs and trees also satisfy the containment property, we
conclude that both satisfy the rank monotonicity axiom. Next we show a natural family that
satisfy the containment property but does not satisfy fairness.

I Example 11. A natural approach to define a family of subgraphs is to consider subpatterns
on a neighborhood of bounded size around a vertex. Intuitively, an expert would not care
if a vertex v can reach a far vertex u as long as there are many other substructures close
to v. To formalize this, let k ≥ 1. For a graph G, fix a vertex v and let Nk be the induced
subgraph of all vertices at distance at most k of v, i.e., V (Nk) = {u ∈ V (G) | distG(u, v) ≤ k}
and E(Nk) = {e ∈ E(G) | e ⊆ V (Nk)}. We define the family of subgraphs Nk such that
Nk(v,G) = A(v,Nk), that is, all subgraphs in the neighborhood of v with radius k. Then
we define the k-neighborhood centrality of v on G as CNk

(v,G). Note that if the diameter of
the graph is less than k then Nk(v,G) and A(v,G) coincide.

The family of k-neighborhood satisfies monotonicity but it does not satisfy fairness.
Moreover, it does not satisfy the rank monotonicity axiom. To see this, consider the family
N2 and G1 = . By counting, one can check that the left white vertex, called u, and
the right white vertex, called v, satisfy |N2(u,G1)| = 8 and |N2(v,G1)| = 5, respectively.
Then CN2(u,G1) > CN2(v,G1). However, if we add an edge e between the two and create the
graph G1 + e = , then one can check that N2 does not satisfy fairness. For instance,
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the whole graph G1 + e ∈ N2(v,G1 + e), contains u and v, but G1 + e /∈ N2(u,G1 + e).
One can also check by counting that |N2(u,G1 + e)| = 24 and |N2(v,G1 + e)| = 45. Thus,
CN2(u,G1 + e) < CN2(v,G1 + e) and 2-neighborhood does not satisfy the rank monotonicity
axiom as well.

The previous example shows that, if we want to approximate all-subgraphs centrality by
only counting subgraphs up to a certain radius, one will have to loose some natural properties,
like rank monotonicity.

Line minimization. Everyone would agree that any reasonable notion for centrality should
assign 0 centrality to an isolated vertex [3,28]. Basically, there is nothing less central to a
community than the vertex that is not connected to any other vertex. One can generalize
this idea by considering, what is the most sparse connected graph with n vertices. Clearly,
the line Ln should be this graph: it is the only graph with n vertices that maximizes the
diameter. Then the vertices that minimize the centrality in the line Ln are its extreme points,
0 and n− 1, and one would expect that this should be the vertices that have less centrality
over all connected graphs with n-vertices.

I Axiom 3 (Line minimization). A centrality measure C satisfies the line minimization axiom
if for every n and every connected graph G with |V (G)| = n it holds that C(0, Ln) ≤ C(v,G)
for every v ∈ V (G).

All centralities that we consider in this paper satisfy the line minimization axiom. Of
course, one can manage to find unnatural families of subgraphs that produce centrality
measures not satisfying this axiom. Still, one would like to find under which circumstances
a centrality measure defined from a family of subgraphs satisfies it. For this, we need to
introduce the following property.

I Property 3 (Inclusion). A family of subgraphs F satisfies the inclusion property if for every
graph G, v ∈ V (G), and S ∈ F(v,G), if S′ ⊆ S and v ∈ V (S′), then S′ ∈ F(v,G).

Intuitively, this property is saying that every subgraph of a relevant subgraph should also
be relevant for the family. Actually, this property is satisfied by all families of subgraphs
proposed so far.

I Theorem 12. If a family of subgraphs F satisfies the containment and inclusion properties,
then the corresponding centrality measure CF satisfies the line minimization axiom.

Continuity. The inclusion property plus the containment property actually imply a natural
property over centrality measures defined by family of subgraphs. Given that all subgraphs
of a relevant subgraph are also included, it gives a sense of “continuity” in the centrality
notion. Specifically, each time that we add a set of edges that rises the centrality of a vertex,
there exists a way to add them, one at a time, in such a way that the centrality of the vertex
always increases. We formalize this intuition as follows.

I Axiom 4 (Continuity). A centrality measure C satisfies the continuity axiom if for every
graphs G and F , and v ∈ V (G), if C(v,G) < C(v,G∪F ), then there exists edges e1, . . . , ek ∈
E(F ) such that: C(v,G) < C(v,G+ e1) < . . . < C(v,G+ e1 + . . .+ ek) = C(v,G ∪ F ).

To the best of our knowledge, the continuity axiom has not been proposed before in
the literature. Furthermore, the inclusion and containment property implies the continuity
axiom over the corresponding centrality measure.
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I Theorem 13. If a family of subgraphs F satisfies the inclusion and containment properties,
then the corresponding centrality measure CF satisfies the continuity axiom.

All families of subgraphs so far satisfy the inclusion property and their corresponding
centrality measures satisfy the continuity axiom as well. We give below a centrality measure
based on cliques as a counter-example of this theorem.

I Example 14. Cliques are relevant substructure in network analysis and they are usually
used to measure the importance of vertices [25]. In [14], this idea has been taken a step further
by counting the number of cliques that a vertex belongs, which is called the cross-clique
centrality. We can define this centrality with families of subgraphs as follows. Define the
family K such that K(v,G) contains all subgraphs K ∈ A(v,G) such that K is a clique of size
1 (i.e. v) or size greater than 2 for every graph G and v ∈ V (G). Then the clique centrality
of v on G is defined as CK(v,G). Note that CK(v,G) = log(Cross-Clique(v,G) + 1) and,
thus, we can use CK as a proxy to understand cross-clique centrality.

Cliques K is a family that does not satisfy the inclusion property. Indeed, any subgraph
of a clique is not necessarily a clique. One can also check that its centrality CK also does
not satisfy the continuity property. For example, consider a single edge G = where the
white vertex v has clique centrality CK(v,G) = 0. Then, if a triangle F = is added to
G, producing the graph G + F = with CK(v,G + F ) = 1, there is no way to rise the
centrality of v from 0 to 1 by adding the edges of the triangle one-by-one.

Size. The last axiom that we study here is the one proposed in [6] about size. This was
formalized as follows: for any n > 0 if we consider clique Kn and a circuit Cn, for a centrality
measure C one would expect that C(0,Kn) > C(0, Cn). Then no matter how big is C(0,Kn),
there should exists a value m > n where the centrality of the cycle Cm passes the centrality
of the clique Kn, namely, C(0,Kn) < C(0, Cm). This argument is related to the size of
graphs in the sense that no matter how slow the centrality of Cm grows, at some point it
should beat the clique of size n. We propose a generalization of this axiom as follows.

I Axiom 5 (Size). A centrality measure C satisfies the size axiom if for every infinite
sequence {Gn}0≤n of connected graphs with V (Gn) = {0, . . . , n} and for every value N there
exists m such that C(0, Gm) ≥ N .

Here the sequence {Gn}0≤n is playing the role of the circuits and N the role of the
centrality in the clique. Thus, if a centrality measures satisfies Axiom 5 then it satisfies the
size axiom of [6], but the converse of course is not true.

This axiom is clearly satisfied by all-subgraphs and trees centrality. Indeed, by Proposi-
tion 6 we know that CA(v,G) is always bounded below by log(n) and thus the all-subgraphs
satisfy the axiom (similar argument can be given for trees centrality). Typical centrality
measures that do not satisfy the size axiom are “local measures” that only consider subgraphs
of bounded size, i.e., degree or k-neighborhood centrality. However, there are families of
subgraphs of unbounded size that also do not satisfy this axiom, i.e., clique centrality. In
both cases, if we consider the sequence of lines {Ln}0≤n, we can see that the centrality on
the vertex 0 is not growing and, thus, for a reasonable N the axiom does not hold. Actually,
the next theorem shows that this counter-example is enough to show whether a centrality
measure satisfy the size axiom or not.

I Theorem 15. Let F be a family of subgraphs that satisfies the line minimization axiom.
Then CF satisfies the size axiom if, and only if, limn→∞ |F(0, Ln)| =∞.
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We remark that all centrality measures consider in this paper satisfies the line minimization
axiom. Therefore, it is enough to check whether the family of subgraphs grows on the line to
see whether the centrality notion is “local” or not.

We want to end this section by pointing out that in [6] it was shown that all standard
notions of centrality in the literature (like closeness [4], betweenness [15], Page Rank [9],
Katz index [20], etc) do not satisfy at least one of its axioms and, therefore, do not satisfy at
least one of the general axioms stated above. This shows that all the standard notions for
centrality studied in the literature are different with all-subgraphs centrality.

6 Extension to group centrality measures

Any natural centrality measure should come with a simple extension to measure the centrality
of sets of vertices (also called group centrality). Although this is a desirable property, it is
not always clear how to do it (i.e. not many centrality measures in the literature have a
standard extension to group centrality). In this section, we embark on extending our families
of centralities from vertices to sets and give a natural characterization for all-subgraphs group
centrality. Towards the end, we show an application of this notion regarding the centrality
maximization of a vertex.

Given an arbitrary family of subgraphs F , what should be its extension to groups? A
first approach is to consider all connected subgraphs in F that contains all elements in the
group. Formally, given U ⊆ V (G) one could consider the family of relevant subgraphs:

F∗(U,G) = {S ⊆ G | U ⊆ V (S) ∧ ∃v ∈ U. S ∈ F(v,G) }.

In other words, all relevant subgraphs of vertices in U that cover U . Although this is the
direct extension for connected subgraphs, this definition rises two issues. First, some local
families (e.g. k-neighborhood) could not keep the restriction of having all vertices in U

inside a subgraph (i.e. U ⊆ V (S)). Moreover, if the size of U grows then there will be less
subgraphs satisfying such restriction, making the definition impractical for some families
of subgraphs. Second, sets that have more relevant subgraphs under this definition are
likely to be closer in the graph. For example, if we look at the extension of all-subgraphs
A∗(U,G), then in a circuit Cn a set U of k-vertices that has maximum centrality will be any
set of k contiguous vertices. Clearly, if one looks for a central group of k-vertices in Cn, one
would prefer a set of k-vertices that are equidistant in Cn because they cover more relevant
structures of the graph as a group.

Given the previous discussion, we define the group extension of F to sets of vertices U
on G, denoted as F(U,G), as follows:

F(U,G) = {S ⊆ G | U ⊆ V (S) ∧ ∀H ∈ ConnComp(S). ∃v ∈ U. H ∈ F(v,G) }.

Note that this extension is similar to the one discussed above (i.e. F∗(U,G)), but we asked
that each connected component from S comes from a relevant subgraph of a vertex in U .
This allows to use disconnected subgraphs to cover U and, at the same time, each connected
component comes from connected subgraphs in F . Unlike our first extension, this definition
is not local anymore and gives meaningful results for any set U . In particular, when U = {v}
this definition generalizes the family of subgraphs for vertices given that F(U,G) = F(v,G).

With a family of subgraphs for sets of vertices, it is natural to develop its corresponding
group centrality. Similar than for vertices, given a set U ⊆ V (G) from a graph G, we define
the F-group centrality measure of U in G as the worst-case entropy of F(U,G), namely:

CF (U,G) = log (|F(U,G)|) .
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All families introduced in previous sections have a corresponding group centrality measure.
From now, we restrict our analysis to the all-subgraphs family and its centrality over groups,
and leave the understanding of other families for future work.

I Example 16. Let Cn be a circuit of length n ≥ 3 and consider all sets U ⊆ V (Cn) of two
vertices. Then one can check that the set U that maximizes CA(U,Cn) is any pair of vertices
that are at distance n

2 (assuming n even). Furthermore, if U are sets of k vertices with k a
factor of n, then CA(U,Cn) is maximized when all vertices in U are distributed in Cn with
equal distance. Intuitively, this is the best way of covering a circuit Cn with k vertices.

Next we show that all-subgraphs group centrality over U can be reduced to computing
the centrality of a vertex. Recall that we denote by G/U the set contraction of U on G,
namely, to merge the vertices U to one vertex and keeping multi-edges into U (see Section 2).
In particular, recall that U is a vertex in the multigraph G/U .

I Theorem 17. Let G be a graph and U ⊆ V (G). Then:

CA(U,G) = CA(U,G/U) + |{e ∈ E(G) | e ⊆ U}|

The all-subgraphs group centrality of a set U in G is then reduced to the centrality of U
(i.e. as a vertex) in the set-contraction of U on G plus the number of edges between vertices
in U . Note that, in particular, this shows that if we look for k-sets of high centrality, then
the all-subgraphs centrality is balancing between the number of edges of the set (i.e. how
similar is the set to a clique) versus how central it is if we contract it into a vertex.

This connection between both definitions (i.e. vertices and sets) for all-subgraphs centrality
is strictly related to the properties of the family. Given two subgraphs G1 and G2 of G with
V (G1) ∩ V (G2) 6= ∅, we can generate a new subgraph G1 ∪G2 by merging the nodes they
share. Unfortunately, this is not possible for all families like the family of trees T , that is, the
union of two trees is not necessarily in T . This means that Theorem 17 cannot be directly
extended for families like trees, in particular, for trees centrality.

To end this section, we show an example how the all-subgraphs group centrality allows us
to study simple questions regarding the maximization of the centrality of a vertex. Given a
graph G and a vertex v ∈ V (G), with whom should we connect v in G in order to maximize
its centrality? In other words, if I am in a social network, with whom should I connect in
order to maximize my centrality? A naive answer to this question is to connect v to the
most central vertex in G. Actually, from the perspective of all-subgraphs centrality this
is not the right answer: connecting to the most central node will rise its centrality but
maybe the centrality of the most central vertex is highly dependent of v’s centrality. Instead,
all-subgraphs centrality says that v must be connected to the vertex u where {u, v} (as a
group) is more central in G.

I Theorem 18. Given G and v ∈ V (G) with {u ∈ V (G) | {u, v} /∈ E(G)} 6= ∅, it holds that:

arg max
u∈V (G)

CA(v,G+ {v, u}) = arg max
{u,v}/∈E(G)

CA({v, u}, G)

7 On computing centrality measures based on subgraphs

We study here the problem of computing centrality measures based on subgraphs. In
particular, we study the problem of computing the all-subgraphs centrality. We state the
problem as follows: given a family of subgraphs F , consider the problem
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Problem: Count(F)
Input: A graph G and a vertex v ∈ V (G)
Output: |F(v, G)|

Furthermore, given a class of graphs G we write Count(F)[G] for the parametrized version
of Count(F) when input graph G is restricted to G. Of course, given a family F computing
its centrality CF requires also taking the logarithm to the output of Count(F). Although
these are not the same problems, the conclusions obtained here sheds light on the pitfalls of
computing a centrality based on a family F .

We start by giving an algorithm for computing Count over all-subgraphs A. Algorithm 1
shows a simple recursive algorithm for counting all connected subgraphs that contains a
vertex v ∈ V (G) in a (multi)graph G. The main idea is indeed very simple. Recall that
N(v,G) denotes the neighborhood of v in G (see Section 2). If N(v,G) = ∅, the vertex v
is an isolated vertex and there is exactly one subgraph. Otherwise, v is connected to at
least one vertex, called it u ∈ N(v,G), and by some edge e = {u, v}. Then we can partition
the set of connected subgraphs A(v,G) into those that u and v are directly connected by
some edge, and those that are not. For the former, we can compute the exact number
recursively as CountAll(G − e, v) (recall here that G − e contains no edges between u

and v). For the latter, let w(e) be the number of edges between u and v in G (recall that G
could be a multigraph). Then all connected subgraphs where u and v are directly connected
by some edge can be formed by choosing a non-empty set of edges between u and v (i.e.
2w(e) − 1 many possibilities) plus a connected subgraph from A(e,G/e) where G/e is the set
contraction of e on G (i.e. CountAll(G/e, e) many possibilities). Therefore, we can compute
CountAll(G, v) by recursively computing CountAll(G− e, v) and CountAll(G/e, e).
In both cases, the number of edges or the number of vertices is reduced, and CountAll
will eventually finish.

Although Algorithm 1 is easy to implement, it could take exponential time in the number
of edges. Actually, this is the best that one can hope as we show in the next result. Recall
that #P is the class of counting problems that can be defined as counting the number of
accepting runs of a polynomial-time non-deterministic Turing machine. Further, a counting
problem is #P-complete if it is in #P and all counting problems in #P can be reduced to
it [30]. It is known that a polynomial-time algorithm for solving a #P-complete problem, if
it existed, would imply that P = NP. For this reason, #P-complete is a class of counting
problems considered as hard [2].

I Theorem 19. Count(A) and Count(T ) are #P-complete.

This is a negative result for using all-subgraphs centrality or trees centrality in practice.
Nevertheless, we believe that this should not overshadow the impact that both measures can
have in defining good centrality notions. As we show in Section 5, both notions behaved well
as centrality measures and, although they are difficult to compute, they can still be used,
for example, to guide the definition of new centrality measures or to design new efficient
algorithms for computing the most relevant vertices in a graph.

Given that computing all-subgraphs over any graph is a difficult problem, our next
step is to consider classes of graphs G where Count(F)[G] can be solved efficiently. A
natural class to start here are trees. Indeed, when G is a tree every internal vertex is a
cut-vertex and we can use the ideas of Lemma 3 for computing |A(v,G)| efficiently. More
specific, from Lemma 3 one can show that if v is a cut-vertex of a graph G and G1, . . . , Gn

are subgraphs that partitions G on v (i.e. V (G) = ∪n
i=1V (Gi), E(G) = ∪n

i=1E(Gi), and
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Algorithm 1 All-subgraphs counting.

1: Require: A graph G and vertex v ∈ V (G)
2: procedure CountAll(G, v)
3: if N(v, G) = ∅ then
4: return 1
5: else
6: let u ∈ N(v, G)
7: e← {u, v}
8: return CountAll(G− e, v) +
9: (2w(e) − 1) ·CountAll(G/e, e)

Algorithm 2 All-subgraphs on trees.

1: Require: A tree T and vertex v ∈ V (T )
2: procedure CountTrees(T , v)
3: if N(v, T ) = ∅ then
4: return 1
5: else
6: let u ∈ N(v, T )
7: e← {u, v}
8: return CountTrees(T − e, v) ·
9: (CountTrees(T − e, u) + 1)

V (Gi) ∩ V (Gj) = {v} for i 6= j), then A(v,G) =
∏n

i=1A(v,Gi). We can exploit this in a
tree by considering all subtrees T1, . . . , Tn hanging from v and computing A(v,G) as the
product of A(v, Ti).

In the procedure CountTrees of Algorithm 2 we use the previous idea for computing
|A(v, T )| when T is a tree and v ∈ V (T ). It follows a similar approach to that in Algorithm 1.
First, if v is an isolated vertex (i.e. N(v, T ) = ∅), then it outputs 1. Otherwise, it takes a
vertex u ∈ N(v, T ), defines the edge e = {u, v}, and decompose T in two subtrees by removing
e from the graph. Notice that, if we remove e from T , we create two connected components
Tv and Tu, where Tv and Tu contains v and u, respectively. One can easily check that Tv and
Tu + e partitions T on v and we have |A(v, T )| = |A(v, Tv)| · |A(v, Tu + e)| by the previous
discussion above. Furthermore, it is straightforward to check that |A(v, Tv)| = |A(v, T − e)|
and |A(v, Tu + e)| = |A(u, T − e) + 1|. Thus, we can compute |A(v, T )| by recursively
computing CountTrees(T − e, v) multiplied by CountTrees(T − e, u) + 1.

In contrast to Algorithm 1, the recursion in CountTrees separates the graph in two
disjoint subtrees. This implies that the recursion eventually finishes and, moreover, it takes
linear time in the size of the tree. Interestingly, we can extend this idea to any graph of
bounded tree-width. To formalize the notion of bounded tree-width, we need to introduce
some notation. Given a graph G, a tree decomposition T of G is a tree such that V (T ) are
sets of V (G) (i.e. X ⊆ V (G) for every X ∈ V (T )) and satisfies the following three properties:
(1) V (G) =

⋃
X∈V (T ) X, (2) if v ∈ X ∩ Y for X,Y ∈ V (T ), then v ∈ Z for all Z ∈ V (T )

in the simple path from X to Y in T , and (3) for every e ∈ E(G), there exists X ∈ V (T )
such that e ⊆ X. The width of a tree decomposition T is equal to maxX∈V (T ) |X| − 1 and
the tree-width tw(G) of G is the minimum width among all possible tree decompositions
of G [26]. A class G of graphs has bounded tree width if there exists a uniform bound k
such that tw(G) ≤ k for every G ∈ G. For example, all trees is a class that has tree-width
bounded by 1.

I Theorem 20. If G has bounded tree-width, then Count(A)[G] can be solved in PTime.

The previous result shows that the problem becomes tractable when graphs has bounded
tree-width. Despite that graphs have high tree-width in practice [23], this result gives some
clues on how to tackle the problem of computing the all-subgraphs centrality.

8 Future work

This work arises several research opportunities regarding centrality measures based on
subgraphs, which are briefly discussed here. One of the most important question is whether
all-subgraphs centrality can be approximated efficiently, or even if the rank order given by
this measure can be approximated. Another interesting question is to consider when a family
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of graphs can approximate another family over some particular class of graphs (e.g. plain
graphs). For the sake of simplification, we only considered undirected graphs but another
relevant question is to study how to extend these results to directed graphs or to hypergraphs.
Furthermore, the initial motivation of our approach came from centrality measures for graph
query languages, but in order to incorporate this approach, several properties must be
understood like, for example, how to mix the centrality measures to the output of a query.
Finally, it would be interesting to consider a randomized version of our approach where
not all subgraphs have the same chances to appear. Instead of considering the worst-case
entropy, one could study the entropy of a family given a particular distribution and study
their properties. We leave this and other questions for future work.
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Abstract
In this work, we consider misinformation propagating through a social network and study the
problem of its prevention. In this problem, a “bad” campaign starts propagating from a set of seed
nodes in the network and we use the notion of a limiting (or “good”) campaign to counteract the
effect of misinformation. The goal is to identify a set of k users that need to be convinced to adopt
the limiting campaign so as to minimize the number of people that adopt the “bad” campaign at
the end of both propagation processes.

This work presents RPS (Reverse Prevention Sampling), an algorithm that provides a scalable
solution to the misinformation prevention problem. Our theoretical analysis shows that RPS runs in
O((k+ l)(n+m)( 1

1−γ ) logn/ε2) expected time and returns a (1− 1/e− ε)-approximate solution with
at least 1− n−l probability (where γ is a typically small network parameter and l is a confidence
parameter). The time complexity of RPS substantially improves upon the previously best-known
algorithms that run in time Ω(mnk · POLY (ε−1)). We experimentally evaluate RPS on large
datasets and show that it outperforms the state-of-the-art solution by several orders of magnitude
in terms of running time. This demonstrates that misinformation prevention can be made practical
while still offering strong theoretical guarantees.
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1 Introduction

Social networks allow for widespread distribution of knowledge and information in modern
society as they have rapidly become a place to hear the news and discuss social topics.
Information can spread quickly through the network, eventually reaching a large audience,
especially so for influential users. While the ease of information propagation in social networks
can be beneficial, it can also have disruptive effects. In recent years, the number of high
profile instances of misinformation causing severe real-world effects has risen sharply. These
examples range across a number of social media platforms and topics [9, 23, 11, 13, 29, 1].
Thus, in order for social networks to serve as a reliable platform for disseminating critical
information, it is necessary to have tools to limit the spread of misinformation.
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Budak et al. [4] were among the first to formulate the problem of misinformation prevention
as a combinatorial optimization problem. By building upon the seminal work of Kempe et
al. [16] on influence maximization to a model that can handle multiple campaigns (“bad”
and “good”), they present a greedy approach that provides a (1 − 1/e − ε)-approximate
solution. Unfortunately, the greedy approach of [4] is plagued by the same scaling issues
as [16] when considering large social networks and is further exacerbated by the added
complexity of tracking multiple cascades which requires costly shortest path computations.
This leads us to the motivating question for this paper: Can we find scalable algorithms for
the misinformation prevention problem introduced in [4]?

The scalability hurdle in the single campaign setting was recently resolved by Borgs et
al. [3] when they made a theoretical breakthrough that fundamentally shifts the way in
which we view the influence maximization problem. Their key insight was to reverse the
question of “what subset of the network can a particular user influence” to “who could have
influenced a particular user”. Their sampling method runs in close to linear time and returns
a (1− 1/e− ε)-approximate solution with at least 1− n−l probability. In addition, Tang et
al. [30] presented a significant advance that improved the practical efficiency of Borgs et al.
through a careful theoretical analysis that rids their approach of a large hidden constant in
the runtime guarantee. Borgs et al. [3] leave open the question whether their framework can
be extended to other influence propagation models.

In this work, we resolve the question of [3] for the misinformation prevention problem and
achieve scalability in the multi-campaign model. We complement our theoretical analysis
with extensive experiments which show an improvement of several orders of magnitude over
Budak et al. [4]. Since influence in the single campaign setting corresponds to reachability
in the network, our solution requires mapping the concept of reachability to an analogous
notion in the multi-campaign model for misinformation prevention. Our first contribution is
to show that reachability alone is not sufficient in determining the ability to save a particular
node from the bad campaign. In order to address this challenge, we introduce a crucial
notion of “obstructed” nodes, which are nodes such that all paths leading to them can be
blocked by the bad campaign.

Using our newly defined notion of obstruction, we develop an efficient algorithm for
the misinformation prevention problem that provides much improved scalability over the
existing Monte Carlo-based greedy approach of [4]. A novel component of this algorithm is a
procedure to compute the set of unobstructed nodes that could have saved a particular node
from adopting the misinformation. We obtain theoretical guarantees on the expected runtime
and solution quality for our new approach and show that its expected runtime substantially
improves upon the expected runtime of [4]. Additionally, we rule out sublinear algorithms for
our problem through a lower bound on the time required to obtain a constant approximation.

Finally, from an experimental point of view, we show that our algorithm gives a significant
improvement over the state of the art algorithm and can efficiently handle graphs with more
than 50 million edges. In summary, the contributions of this paper are:
1. We introduce the concept of obstructed nodes that fully captures the necessary conditions

for preventing the adoption of misinformation in the multi-campaign model. In the
process, we close a gap in the work of [4].

2. We design and implement a novel procedure for computing the set of nodes that could
save a particular user from adopting the misinformation.

3. We propose a misinformation prevention approach that returns a (1−1/e−ε)-approximate
solution with high probability in the multi-campaign model and show that its expected
runtime substantially improves upon that of the algorithm of Budak et al. [4].
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4. We give a lower bound of Ω(m+n) on the time required to obtain a constant approximation
for the misinformation prevention problem.

5. Our experiments show that our algorithm gives an improvement of several orders of
magnitude over Budak et al. [4] and can handle graphs with more than 50 million edges.

2 Related Work

There exists a large body of work on the Influence Maximization problem first proposed
by Kempe et al. [16]. The primary focus of the research community has been related to
improving the practical efficiency of the Monte Carlo-based greedy approach under the
Independent Cascade (IC) or Linear Threshold (LT) propagation models. These works fall
into two categories: heuristics that trade efficiency for approximation guarantees [15, 32]
and practical optimizations that speed up the Monte Carlo-based greedy approach while
retaining the approximation guarantees [18, 6, 10]. Despite these advancements, it remains
infeasible to scale the Monte Carlo-based approach to web-scale networks.

Borgs’ et al. [3] brought the first asymptotic runtime improvements while maintaining
the (1− 1/e− ε)-approximation guarantees with their reverse influence sampling technique.
Furthermore, they prove their approach is near-optimal under the IC model. Tang et al.
[30] presented practical and theoretical improvements to the approach and introduced novel
heuristics that result in up to 100-fold improvements to the runtime.

Incorporating the spread of multiple campaigns is split between two main lines of work:
(1) studying influence maximization in the presence of competing campaigns [2, 20, 24, 19]
and (2) limiting the spread of misinformation and rumours by launching a truth campaign
[4, 14, 7, 22]. In both cases, existing propagation models (such as IC and LT) are augmented
or extended. The work of [4] best captures the idea of preventing the spread of misinformation
in a multi-campaign version of the IC model since they aim to minimize the number of users
that end up adopting the misinformation. Unfortunately, despite the objective function
proving to be monotone and submodular, the Monte Carlo-based greedy solution used in [4]
faces the same challenges surrounding scalability as [16].

Works [20, 8] extend the reverse influence sampling technique of [3] to competing cam-
paigns (such as two competing products in [20] and spreading truth to combat misinformation
in [8]). However, their work differs from ours in an important way: they use a model, different
from ours, where the edge probabilities are campaign oblivious. This alternative model does
not capture the notion of misinformation as well as the model we use, but instead is better
suited for the influence maximization problem when there are multiple competing campaigns
(see [4] for a discussion).

Finally, the misinformation problem has been tackled by a wide range of communities
such as [17, 26, 25, 12, 31, 27].

3 Preliminaries

In this section, we formally define the multi-campaign diffusion model, the eventual influence
limitation problem presented by Budak et al. [4], and present an overview of the state-of-the-
art reverse sampling approach [16, 3, 30] for the influence maximization problem.

Diffusion Model

Let C (for “bad Campaign”) and L (for “Limiting”) denote two influence campaigns. Let
G = (V,E, p) be a social network with node set V and directed edge set E (|V | = n and
|E| = m) where p specifies campaign-specific pairwise influence probabilities (or weights)
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between nodes. That is, p : E × Z → [0, 1] where Z ∈ {C,L}. For convenience, we use pZ(e)
for p(e, Z). Further, let G = (V,E) denote the underlying unweighted directed graph. Given
G, the Multi-Campaign Independent Cascade model (MCIC) of Budak et al. [4] considers a
time-stamped influence propagation process as follows:
1. At timestamp 1, we activate selected sets AC and AL of nodes in G for campaigns C and

L respectively, while setting all other nodes inactive.
2. If a node u is first activated at timestamp i in campaign C (or L), then for each directed

edge e that points from u to an inactive neighbour v in C (or L), u has pC(e) (or pL(e))
probability to activate v at timestamp i+ 1. After timestamp i+ 1, u cannot activate
any node.

3. In the case when two or more nodes from different campaigns are trying to activate v at
a given time step we assume that the “good information” (i.e. campaign L) takes effect.

4. Once a node becomes activated in one campaign, it never becomes inactive or changes
campaigns.

He et al. [14] consider the opposite policy to (3) where the misinformation succeeds in
the case of a tie-break. We note that our algorithms presented in this work are applicable
for both choices of the tie-break policy.

3.1 Formal Problem Statement
A natural objective, as outlined in [4], is “saving” as many nodes as possible. That is, we seek
to minimize the number of nodes that end up adopting campaign C when the propagation
process is complete. This is referred to as the eventual influence limitation problem (EIL).

Let AC and AL be the set of nodes from which campaigns C and L start, respectively.
Let I(AC) be the set of nodes that are activated in campaign C in the absence of L when
the above propagation process converges and π(AL) be the size of the subset of I(AC) that
campaign L prevents from adopting campaign C. We refer to AL and AC as the seed sets,
I(AC) as the influence of campaign C, and π(AL) as the prevention of campaign L. The
nodes that are prevented from adopting campaign C are referred to as saved. Note that
π(AL) is a random variable that depends on the edge probabilities that each node uses in
determining out-neighbors to activate.

Budak et al. [4] present a simplified version of the problem that captures the idea that
it may be much easier to convince a user of the truth. Specifically, the information from
campaign L is accepted by users with probability 1 (pL(e) = 1 if edge e exists and pL(e) = 0
otherwise) referred to as the high effectiveness property. In [4] it is shown that even with these
restrictions EIL with the high effectiveness property is NP-hard. Interestingly, with the high
effectiveness property, the prevention function is submodular and thus a Monte Carlo-based
greedy approach (referred to here as MCGreedy) yields approximation guarantees.

We motivate the high effectiveness property with the following two real-world scenarios:
(1) the phenomenon of “death hoaxes” (where celebrities or other notable figures are claimed
to have died) have a strong corrective measure when the victim, or a close relative, makes an
announcement on their personal account that contradicts the rumour and (2) false reporting
of natural disasters can be countered by trusted news organizations providing coverage of
the location of the purported scene. In both cases, the sharing of links to strong video,
photographic, or text evidence that is also coming from a credible source lends itself to
a scenario following the high effectiveness property. In addition to the scenarios we have
outlined, the model is attractive because this assumption leads to interesting theoretical
guarantees. Budak et al. study and obtain results for EIL with the high effectiveness property
and is the problem that we consider in this work.
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I Problem 1. Given G, seed set AC , and a positive integer k, the eventual influence limitation
(EIL) problem asks for a size-k seed set AL maximizing the value of E[π(AL)] under the
MCIC model with the high effectiveness property.

Possible Worlds Interpretation

To facilitate a better understanding of MCIC, we define a Possible World (PW) model that
provides an equivalent view of the MCIC model and follows a widely used convention when
studying IM and related problems [16, 4, 6, 10, 20, 14, 4, 7, 22]. Given a graph G = (V,E, p)
and the MCIC diffusion model, a possible world X consists of two deterministic graphs, one
for each campaign, sampled from a probability distribution over G. The stochastic diffusion
process under the MCIC model has the following equivalent description: we can interpret
G as a distribution over unweighted directed graphs, where each edge e is independently
realized with probability pC(e) (or pL(e)). Observe, given the high effectivness property, the
deterministic graph that defines the possible world for campaign L is simply the underlying
unweighted graph G. Then, if we realize a graph g according to the probability distribution
given by pC(e), we can associate the set of saved nodes in the original process with the set of
nodes which campaign L reaches before campaign C during a deterministic diffusion process
in g ∼ G by campaign C and in G by campaign L. That is, we can compute the set of saved
nodes with a deterministic cascade in the resulting possible world X = (g,G). The following
theorem from [5] establishes the equivalence between this possible world model and MCIC.
This alternative PW model formulation of the EIL problem under the MCIC model will be
used throughout the paper.

I Theorem 1 ([5]). For any fixed seed sets AC and AL, the joint distributions of the sets
of C-activated nodes and L-activated nodes obtained (i) by running a MCIC diffusion from
AC and AL and (ii) by randomly sampling a possible world X = (g,G) and running a
deterministic cascade from AC in g and AL in G, are the same.

3.2 Reverse Sampling for Influence Maximization
In this section we review the state-of-the-art approach to the well studied influence max-
imization problem (IM). This problem is posed in the popular Independent Cascade model
(IC) which, unlike the MCIC model, only considers a single campaign. The goal here is to
compute a seed set SIM of size k that maximizes the influence of SIM in G. In a small abuse
of notation, this section refers to a possible world as the single deterministic graph g ∼ G
where each edge in G is associated with a single influence probability p(e).

Borgs et al. [3] were the first to propose a novel method for solving the IM problem under
the IC model that avoids the limitations of the original Monte Carlo-based solution [16].
Their approach, which was later refined by Tang et al. [30], is based on the concept of Reverse
Reachable (RR) sets and is orders of magnitude faster than the greedy algorithm with Monte
Carlo simulations, while still providing approximation guarantees with high probability. We
follow the convention of [30] and refer to the method of [3] as Reverse Influence Sampling
(RIS). To explain how RIS works, Tang et al. [30] introduce the following definitions:

I Definition 1 (Reverse Reachable Set). The reverse reachable set for a node v in g ∼ G is
the set of nodes that can reach v. (That is, for each node u in the RR set, there is a directed
path from u to v in g.)

I Definition 2 (Random RR Set). A random RR set is an RR set generated on an instance
of g ∼ G, for a node selected uniformly at random from g.
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Note, a random RR set encapsulates two levels of randomness: (i) a deterministic graph
g ∼ G is sampled where each edge e ∈ E is independently removed with probability (1−p(e)),
and (ii) a “root” node v is randomly chosen from g. The connection between RR sets and
node activation is formalized in the following crucial lemma.

I Lemma 1. [3] For any seed set S and node v, the probability that an influence propagation
process from S can activate v equals the probability that S overlaps an RR set for v.

Based on this result, the RIS algorithm runs in two steps:
1. Generate random RR sets from G until a threshold on the total number of steps taken

has been reached.
2. Consider the maximum coverage problem of selecting k nodes to cover the maximum

number of RR sets generated. Use the standard greedy algorithm for the problem to
derive a (1−1/e)-approximate solution S∗k . Return S∗k as the seed set to use for activation.

The rationale behind RIS is as follows: if a node u appears in a large number of RR
sets it should have a high probability to activate many nodes under the IC model; hence,
u’s expected influence should be large. As such, we can think of the number of RR sets u
appears in as an estimator for u’s expected influence. By the same reasoning, if a size-k node
set S∗k covers most RR sets, then S∗k is likely to have the maximum expected influence among
all size-k node sets in G leading to a good solution to the IM problem. As shown in [30],
Lemma 1 is the key result that underpins the approximation guarantees of RIS. The main
contribution of Borgs et al. is an analysis of their proposed threshold-based approach: RIS
generates RR sets until the total number of nodes and edges examined during the generation
process reaches a pre-defined threshold Γ. Importantly, Γ must be set large enough to ensure
a sufficient number of samples have been generated to provide a good estimator for expected
influence. They show that when Γ is set to Θ((m+ n)k logn/ε2), RIS runs in near-optimal
time O((m + n)k logn/ε2), and it returns a (1 − 1/e − ε)-approximate solution to the IM
problem with at least constant probability.

Due to the more complex dynamics involved in propagation under the MCIC model,
adapting the reverse sampling approach to solve EIL is far from trivial.

4 New Definitions

In this section we introduce new definitions that are crucial to the development of our
approach. In particular, we formalize the notion of obstructed nodes which is required to
capture the necessary conditions for saving a node.

Identifying Saved Nodes

Given set AL of vertices and (unweighted) directed graph g ∼ G, write clg(AL) for the set of
nodes closer to AL in G than to AC in g. That is, a node w ∈ clg(AL) if there exists a node
v such that v ∈ AL and |SPG(v, w)| ≤ |SPg(AC , w)| where SPH(v, w) denotes a shortest
path from node v to w in graph H and SPH(S,w) for a set S denotes the shortest path
from any node v ∈ S to w in graph H. When g is drawn from G this is a necessary, but not
sufficient1, condition for the set of nodes saved by AL. We also require that the nodes in
clg(AL) not be obstructed by the diffusion of campaign C in g.

1 In Budak et al.’s work, the set of nodes closer to AL than AC is established as a necessary and sufficient
condition to save a node in the MCIC model, but we note that this should be revised to include our
obstructed condition due to a gap in the proof of Claim 1 in [4].
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Table 1 Frequently used notation.

Notation Description
G a social network represented as a weighted directed graph G

G, GT
the underlying unweighted graph G and its transpose GT constructed by
reversing the direction of each edge

g
a possible world for campaign C obtained by sampling each edge e ∈ G
independently with probability pC(e)

n, m the number of nodes and edges in G respectively
k the size of the seed set for misinformation prevention

C, L the misinformation campaign C and the limiting campaign L
pC(e), pL(e) the propagation probability on an edge e for campaigns C and L respectively

π(S) the prevention of a node set S in a misinformation propagation process on
G (see Section 4)

ω(R), ωπ(R) the number of edges considered in generating an RRC set and that originate
from nodes in an RRC set R (see Equation 3)

R the set of all RRC sets generated by Algorithm 1
FR(S) the fraction of RRC sets in R that are covered by a node set S
EPT the expected width of a random RRC set
OPTL the maximum π(S) for any size-k seed set S
λ see Equation 4

I Definition 3 (Obstructed Nodes). A node w ∈ clg(AL) is obstructed and cannot be saved
by AL if for every path p from AL to w there exists a node u on p such that |SPg(AC , u)| <
|SPG(AL, u)|.

Let obsg(AL) be the set of obstructed nodes for AL. Conceptually, the nodes in obsg(AL)
are cutoff because some node on the paths from AL is reached by campaign C before L
which stops the diffusion of L.

To help illustrate the concept of obstructed nodes, consider the graph presented in Figure
1 and the following possible world instance. Assume that the solid lines are live edges that
make up the deterministic graph g ∼ G for campaign C in the influence propagation process.
The dashed lines are edges that were not realized for campaign C. The adversary campaign C
starts from vc while the limiting campaign L starts from v. Recall, the deterministic graph G
for campaign L in this possible world instance is comprised of both the solid and dashed edges
due to the high effectiveness property. Observe that |SPG(v, w)| = 4 and |SPg(AC , w)| = 5.
However, w cannot be saved in the resulting cascade since at timestamp 1 the node u will
adopt campaign C. This intersects the shortest path from v to w and therefore campaign L
will not be able to reach node w since a node never switches campaigns. Thus, we say that
node w is obstructed by C.

Prevention & Saviours

Next, we formally define the prevention, π(AL), which corresponds to the number of nodes
saved by AL. That is, π(AL) = |Rg(AC) ∩ (clg(AL) \ obsg(AL))| where RH(S) is the set
of nodes in graph H that are reachable from set S (a node v in H is reachable from S if
there exists a directed path in H that starts from a node in S and ends at v). We write
E[π(AL)] = Eg∼G [π(AL)] for the expected prevention of AL in G. Finally, let OPTL =
maxS:|S|=k{E[π(S)]} be the maximum expected prevention of a set of k nodes.
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vu

w

vc

Figure 1 An example illustrating the concept of obstructed nodes where the possible world graph
for campaign C is made up of the solid edges and the possible world for campaign L is made up of
both solid and dashed lines.

We refer to the set of nodes that could have saved u as the saviours of u. A node
w is a candidate saviour for u if there is a directed path from w to u in G (i.e. reverse
reachability). Then, w is a saviour for u subject to the additional constraint that w would
not be cutoff by the diffusion of AC in g. That is, a candidate saviour w would be cutoff and
cannot be a saviour for u if for every path p from w to u there exists a node vb such that
|SPg(AC , vb)| < |SPG(w, vb)|. We refer to the set of candidate saviours for u that are cutoff
as τg(u). Thus, we can define the saviours of u as the set RGT (u) \ τg(u). Therefore, we have:

I Definition 4 (Reverse Reachability without Cutoff Set). The reverse reachability without
cutoff (RRC) set for a node v in g ∼ G is the set of saviour nodes of v, i.e. the set of
nodes that can save v. (That is, for each node u in the RRC set, u ∈ RGT (u) \ τg(u).) If
v 6∈ Rg(AC) then we define the corresponding RRC set as empty since v is not eligible to be
saved.

I Definition 5 (Random RRC Set). A random RRC set is an RRC set generated on an
instance of g ∼ G, for a node selected uniformly at random from g.

Closing the Gap

Before presenting our reverse sampling approach, we make the following remark regarding
obstruction in the context of prior work. The key observation that lead to our definition of
obstructed nodes is that the shortest path condition must hold along the entire path. This
observation was missed by [4] in the MCIC model. Instead, a correct recursive definition
was provided for the set of nodes that are saved, but the resulting characterization based on
shortest paths misses the crucial case of nodes that are obstructed.

Importantly, the solution in [4] can be recovered with a modified proof for Claim 1 and
Theorem 4.2. In particular, the statements must include the notion of obstructed nodes in
their inoculation graph definition, but a careful inspection shows that their objective function
remains submodular after this inclusion. As a result, the greedy approach of [4] still provides
the stated approximation guarantees and also allows us to incorporate the ideas of [3] in our
solution (as [3] requires a submodular objective function as well).

5 Reverse Prevention Sampling

This section presents our misinformation prevention method, Reverse Prevention Sampling
(RPS). At a high level, RPS, in the same spirit as RIS, consists of two steps. In the first
step it derives a parameter θ that ensures a solution of high quality will be produced. In the
second step, using the estimate θ from step one, it generates θ RRC sets and then computes
the maximum coverage on the resulting collection. More precisely, the two steps are:
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1. Parameter Estimation. Compute a lower-bound for the maximum expected preven-
tion among all possible size-k seed sets for AL and then use the lower-bound to derive a
parameter θ.

2. Node Selection. Sample θ random RRC sets from G to form a set R and then compute
a size-k seed set S∗k that covers a large number of RRC sets in R. Return S∗k as the final
result.

In the rest of this section, we first tackle the challenging task of correctly generating RRC
sets in the Node Selection step under the MCIC model. Next, we identify the conditions
necessary for the Node Selection of RPS to return a solution of good quality and then
describe how these conditions are achieved in the Parameter Estimation phase. Table 1
provides a reference to some of the frequently used notation. All proofs can be found in the
full version [28].

Node Selection

The pseudocode of RPS ’s Node Selection step is presented in Algorithm 1. Given G, k,
AC , and a constant θ as input, the algorithm stochastically generates θ random RRC sets,
accomplished by repeated invocation of the prevention of misinformation process, and inserts
them into a set R. Next, the algorithm follows a greedy approach for the maximum coverage
problem to select the final seed set. In each iteration, the algorithm selects a node vi that
covers the largest number of RRC sets in R, and then removes all those covered RRC sets
from R. The k selected nodes are put into a set S∗k , which is returned as the final result.

Algorithm 1 NodeSelection(G,k,AC ,θ).

1: R ← ∅
2: Generate θ random RRC sets and insert them into R.
3: Initialize a node set S∗k ← ∅
4: for i = 1,. . . ,k do
5: Identify the node vi that covers the most RRC sets in R
6: Add vi into S∗k
7: Remove from R all RRC sets that are covered by vi
8: return S∗k

Lines 4-8 in Algorithm 1 correspond to a standard greedy approach for a maximum
coverage problem. The problem is equivalent to maximizing a submodular function with
cardinality constraints for which it is well known that a greedy approach returns a (1− 1/e)-
approximate solution in linear time [21].

5.1 RRC set generation
Next, we describe how to generate RRC sets correctly for the EIL problem under the MCIC
model, which is more complicated than generating RR sets for the IC model [30]. The
construction of RRC sets is done according to Definition 4. Recall that in the MCIC model,
whether a node can be saved or not is based on a number of factors such as whether v is
reachable via a path in g ∼ G from AC and the diffusion history of each campaign. Our
algorithms tackle the complex interactions between campaigns by first identifying nodes that
can be influenced by C which reveals important information for generating RRC sets for L.

Line 2 generates R by repeated simulation of the misinformation prevention process. The
generation of each random RRC set is implemented as two breath-first searches (BFS) on G
and GT respectively. The first BFS is a forward labelling process from AC implemented as a
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forward BFS on G that computes the influence set of AC in a possible world. The second
BFS on GT is a novel bounded-depth BFS with pruning that carefully tracks which nodes
will become obstructed and is described in detail below.

Forward BFS with Lazy Sampling

We first describe the forward labelling process. As the forward labeling is unlikely to reach
the whole graph, we simply reveal edge states on demand (“lazy sampling”), based on
the principle of deferred decisions. Given the seed set AC of campaign C, we perform a
randomized BFS starting from AC where each outgoing edge e in G is traversed with pC(e)
probability. The set of nodes traversed in this manner (Rg(AC)) is equivalent to I(AC) for
g ∼ G, due to deferred randomness. Note that in each step of the above BFS we record at
each node w the minimum distance from AC to w, denoted D(w), for use in the second BFS.

Given a randomly selected node u in G, observe that for u to be able to be saved we
require u ∈ Rg(AC). Therefore, if the randomly selected node u 6∈ Rg(AC) then we return an
empty RRC set. On the other hand, if u ∈ Rg(AC), we have D(u) = |SPg(AC , u)| as a result
of the above randomized BFS which indicates the maximum distance from u that candidate
saviour nodes can exist. We run a second BFS from u in GT to depth D(u) to determine the
saviour nodes for u by carefully pruning those nodes that would become obstructed.

Bounded-depth BFS with Pruning

The second BFS on GT , presented in Algorithm 2, takes as input a source node u, the
maximum depth D(u), and a directed graph GT . Algorithm 2 utilizes special indicator
values associated with each node w to account for potential cutoffs from C. Each node w
holds a variable, β(w), which indicates the distance beyond w that the BFS can go before
the diffusion would have been cutoff by C propagating in g. The β value for each node w
is initialized to D(w). In each round, the current node w has an opportunity to update
the β value of each of its successors only if β(w) > 0. For each successor z of w, we assign
β(z) = β(w)−1 if β(z) = null or if β(z) > 0 and β(w)−1 < β(z). In this way, each ancestor
of z will have an opportunity to apply a β value to z to ensure that if any ancestor has a β
value then so will z and furthermore, the β variable for z will be updated with the smallest
β value from its ancestors. We terminate the BFS early if we reach a node w with β(w) = 0.

Figure 2 captures the primary scenarios encountered by Algorithm 2 when initialized at u.
The enclosing dotted line represents the extent of the influence of campaign C for the current
influence propagation process. First, notice that if the BFS moves away from AC = {vc}, as
in the case of node z, that, once we move beyond the influence boundary of C, there will be
no potential for cutoff. As such, the BFS is free to traverse until the maximum depth D(u) is
reached. On the other hand, if the BFS moves towards (or perpendicular to) vc then we must
carefully account for potential cutoff. For example, when the BFS reaches v, we know the
distance from vc to v: D(v) = SPg(vc, v). Therefore, the BFS must track the fact that there
cannot exist saviours at a distance D(v) beyond v. In other words, if we imagine initializing
a misinformation prevention process from a node w such that SPG(v, w) > D(v) then v will
adopt campaign C before campaign L can reach v. Therefore, at each out-neighbour of v
we use the knowledge of D(v) to track the distance beyond v that saviours can exist. This
updating process tracks the smallest such value and is allowed to cross the enclosing influence
boundary of campaign C ensuring that all potential for cutoff is tracked.

Finally, we collect all nodes visited during the process (including u), and use them to
form an RRC set. The runtime of this procedure is precisely the sum of the degrees (in G)
of the nodes in Rg(AC) plus the sum of the degrees of the nodes in RGT (u) \ τ(u).
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I(vc)

Figure 2 An overview of the primary scenarios encountered by Algorithm 2.

We briefly note another key difference between RPS and RIS occurs in the RRC set
generation step. Unlike in the single campaign setting, generating an RRC set is comprised of
two phases instead of just one. First, we are required to simulate the spread of misinformation
since being influenced by campaign C is a pre-condition for being saved. As a result, only a
fraction of the simulation steps of RPS provide signal for the prevention value we are trying
to estimate. This difference is made concrete in the running time analysis to follow.

Algorithm 2 generateRRC(u, D(u), GT ).

1: let R← ∅, Q be a queue and Q.enqueue(u)
2: set u.depth = 0 and label u as discovered
3: while Q is not empty do
4: w ← Q.dequeue(), R← R ∪ {w}
5: if w.depth = D(u) OR β(w) = 0 then
6: continue
7: for all nodes z in GT .adjacentEdges(w) do
8: if β(w) > 0 AND β(z) > 0 then
9: if β(w)− 1 < β(z) then
10: β(z)← β(w)− 1
11: else if β(w) > 0 then
12: β(z)← β(w)− 1
13: if z is not labelled as discovered then
14: set z.depth = w.depth+ 1, label z as discovered and Q.enqueue(z)
15: return R

5.2 Analysis
In this section we focus on two parameters: solution quality and runtime. For Algorithm
1 to return a solution with approximation guarantee, we will provide a lower bound on θ.
Then, we will analyze the running time of the algorithm in terms of θ and a quantity EPT
that captures the expected number of edges traversed when generating a random RRC set.
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Approximation Guarantee

We begin by establishing the crucial connection between RRC sets and the prevention process
on G. That is, the prevention of a set of nodes S is precisely n times the probability that a
node u, chosen uniformly at random, has a saviour from S.

I Lemma 2. For any seed set S and any node v, the probability that a prevention process
from S can save v equals the probability that S overlaps an RRC set for v.

For any node set S, let FR(S) be the fraction of RRC sets in R covered by S. Then,
based on Lemma 2, we can prove that the expected value of n · FR(S) equals the expected
prevention of S in G.

I Corollary 1. E[n · FR(S)] = E[π(S)]

Corollary 1 implies that we can estimate E[π(S)] by estimating the fraction of RRC sets
in R covered by S. The number of sets covered by a node v in R is precisely the number of
times we observed that v was a saviour for a randomly selected node u. We can therefore
think of n · FR(S) as an estimator for E[π(S)]. Our primary task is to show that it is a good
estimator. Using Chernoff bounds, we show that n · FR(S) is an accurate estimator of any
node set S’s expected prevention, when θ is sufficiently large:

I Lemma 3. Suppose that θ satisfies

θ ≥ (8 + 2ε)n ·
l logn+ log

(
n
k

)
+ log 2

OPTL · ε2
(1)

Then, for any set S of at most k nodes, the following inequality holds with at least
1− n−l/

(
n
k

)
probability:∣∣∣n · FR(S)− E[π(S)]

∣∣∣ < ε

2 ·OPTL (2)

Based on Lemma 3, we prove that if Eqn. 1 holds, Algorithm 1 returns a (1− 1/e− ε)-
approximate solution with high probability by a simple application of Chernoff bounds.

I Theorem 2. Given a θ that satisfies Equation 1, Algorithm 1 returns a (1 − 1/e − ε)-
approximate solution with at least 1− n−l probability.

Runtime

First, we will define EPT which captures the expected number of edges traversed when
generating a random RRC set. After that, we define the expected runtime of RPS in terms
of EPT and the parameter θ.

Let MR be the instance of Rg(AC) used in computing an RRC set R. Then, we define
the width of an RRC set R, denoted as ω(R), as the number of edges in G that point to
nodes in R plus the number of edges in G that originate from nodes in MR. That is

ω(R) =
∑
u∈MR

outdegreeG(u) +
∑
v∈R

indegreeG(v) (3)

Let EPT be the expected width of a random RRC set, where the expectation is taken
over the randomness in R and MR, and observe that Algorithm 1 has an expected runtime
of O(θ ·EPT ). This can be observed by noting that EPT captures the expected number of
edge traversals required to generate a random RRC set since an edge is only considered in
the propagation process (either of the two BFS’s) if it points to a node in R or originates
from a node in MR.
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An important consideration is that, since OPTL is unknown, we cannot set θ directly
from Equation 1. For simplicity, we define

λ = (8 + 2ε)n ·
(
l logn+ log

(
n

k

)
+ log 2

)
· ε−2 (4)

and rewrite Equation 1 as θ ≥ λ/OPTL. In the parameter estimation step we employ
the techniques of [30] to derive a θ value for RPS that is above the threshold but also allows
for practical efficiency.

5.3 Parameter Estimation
Our objective in this section is to identify a θ that makes θ · EPT reasonably small, while
still ensuring θ ≥ λ/OPTL. We begin with some definitions. Let V∗ be a probability
distribution over the nodes in G, such that the probability mass for each node is proportional
to its indegree in G. Let v∗ be a random variable following V∗ and recall that MR is a
random instance of Rg(AC) that is equivalent to the influence I(AC) for a possible world g.
Furthermore, define ω(MR), the number of edges in G that originate from nodes in MR, as
ω(MR) =

∑
u∈MR

outdegreeG(u). Then we prove the following.

I Lemma 4. m
n · E[π({v∗})] = EPT − E[ω(MR)], where the expectation of π({v∗}) and

ω(MR) is taken over the randomness in v∗ and the prevention process.

Lemma 4 shows that if we randomly sample a node from V∗ and calculate its expected
prevention p, then on average we have p = n

m (EPT − E[ω(MR)]). This implies that
n
m (EPT − E[ω(MR)]) ≤ OPTL, since OPTL is the maximum expected prevention of any
size-k node set.

Recall that the expected runtime complexity of Algorithm 1 is O(θ ·EPT ). Now, suppose
we are able to identify a parameter t such that t = Ω( nm (EPT − E[ω(MR)])) and t ≤ OPTL.
Then, by setting θ = λ/t, we can guarantee that Algorithm 1 is correct, since θ ≥ λ/OPTL,
and has an expected runtime complexity of

O(θ · EPT ) = O
(λ
t
· EPT

)
= O

(
λ · EPT

n
m (EPT − E[ω(MR)])

)
(5)

Furthermore, if we define a ratio γ ∈ (0, 1) which captures the relationship between
E[ω(MR)] and EPT by writing E[ω(MR)] = γEPT , we can rewrite Equation 5 as

O
(m
n

( 1
1− γ

)
λ
)

= O((k + l)(m+ n)(1/(1− γ)) logn/ε2) (6)

Note that γ is a data-dependent approximation factor not present in [30], but arises from
the MCIC model. In particular, the RRC set generation relies crucially on first computing
the spread of misinformation from campaign C in order to determine the set of nodes that
can be saved. See Section 6 for a detailed discussion of γ.

Computing t

We postpone the details of how to derive t = Ω( nm (EPT −E[ω(MR)])), a lower bound for the
optimal prevention value, to the full version of the paper [28]. Briefly, we mimic the adaptive
sampling approach of [30], which estimates a lower bound LB by dynamically adjusting the
number of measurements based on the observed values of LB. The runtime required for the
lower bound estimation is linear in Equation 6.
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Wrapping Up

As a result, by Equation 6, RPS runs in O((k+ l)(m+ n)(1/(1− γ)) logn/ε2) expected time.
Furthermore, by Theorem 2 and the lower bound estimation, RPS returns a (1− 1/e− ε)-
approximate solution with at least 1− 3n−l probability and the success probability can be
increased to 1− n−l by scaling l up by a factor of 1 + log 3/ logn.

Finally, we note that the time complexity of RPS is near-optimal up to the instance-
specific factor γ under the MCIC model, as it is only a ( 1

1−γ ) logn factor larger than the
Ω(m+ n) lower-bound proved in Section 6 (for fixed k, l, and ε).

6 Lower Bounds

Comparison with MCGreedy

MCGreedy runs in O(kmnr) time, where r is the number of Monte Carlo samples used to
estimate the expected prevention of each node set. Budak et al. do not provide a detailed
analysis related to how r should be set to achieve a (1 − 1/e − ε)-approximation ratio in
the MCIC model, only pointing out that when each estimation of expected prevention has ε
relative error, MCGreedy returns a (1 − 1/e − ε′)-approximate solution for a particular ε′
[4]. In the following lemma, we present a more precise characterization of the relationship
between r and MCGreedy’s approximation ratio in the MCIC model.

I Lemma 5. MCGreedy returns a (1− 1/e− ε)-approximate solution with at least 1− n−l
probability, if

r ≥ (8k2 + 2kε) · n · (l + 1) logn+ log k
ε2 ·OPTL

(7)

Assume that we know OPTL in advance and set r to the smallest value satisfying the
above inequality, in MCGreedy’s favour. In that case, the time complexity of MCGreedy is
O(k3lmn2ε−2 logn/OPTL). Towards comparing MCGreedy to RPS, we show the following
upper bound on the value of γ.

I Claim 1. γ ≤ n
n+1

Claim 1 shows that the expected runtime for RPS is at most O((k + l)mnε−2 logn). As
a consequence, given that OPTL ≤ n, the expected runtime of MCGreedy is always more
than the expected runtime of RPS. In practice, we observe that for typical social networks
OPTL � n and 1

1−γ � n+ 1 resulting in superior scalability of RPS compared to MCGreedy.

A Lower Bound for EIL

In the theorem below, we provide a lower bound on the time it takes for any algorithm
to compute a β-approximation for the EIL problem given uniform node sampling and an
adjacency list representation. Thus, we rule out the possibility of a sublinear time algorithm
for the EIL problem for an arbitrary β.

I Theorem 3. Let 0 < ε < 1
10e , β ≤ 1 be given. Any randomized algorithm for EIL that

returns a set of seed nodes with approximation ratio β, with probability at least 1 − 1
e − ε,

must have a runtime of at least β(m+n)
24 min{k,1/β} .
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7 Generalization to the Multi-Campaign Triggering Model

The triggering model is an influence propagation model that generalizes the IC and LT
models. It assumes that each node v is associated with a triggering distribution T (v) over the
power set of v’s incoming neighbors. An influence propagation process under the triggering
model works as follows: (1) for each node v, take a sample from T (v) and define the sample
as the triggering set of v, then (2) at timestep 1 activate the seed set S, and (3) in subsequent
timesteps, if an active node appears in the triggering set of v, then v becomes active. The
propagation terminates when no more nodes can be activated.

We can define a multi-campaign version of the triggering model (MCT) that generalizes
the MCIC model by associating each node with a campaign-specific triggering distribution
TZ(v) where Z ∈ {C,L}. The propagation process under MCT proceeds exactly as under
MCIC with the exception that activation between rounds (step 2) is determined by TC(v)
and TL(v). To the best of our knowledge, we are the first to formally define a multi-campaign
version of the triggering model.

The key aspect of the MCIC model that enabled the existence of obstructed nodes is that
the two campaigns are allowed to propagate along different sets of edges in a possible world
X. This is exactly the intuition captured by the example in Figure 1 and is caused by L
and C having separate propagation probabilities in G. As a result, the campaigns traverse
potentially unique graphs in X and results in the possibility of the obstruction of L by C.
This observation holds under the more general setting of MCT due to the campaign-specific
triggering sets and so the obstruction phenomenon exists under the MCT model.

Following the observations made in [30], our solutions can be easily extended to operate
under the multi-campaign triggering (MCT) model with a modified high effectiveness property.
Under MCT, the high effectiveness property asserts that TL(v) = in(v) where in(v) is the
set of in-neighbours of v in G. Observe that Algorithm 1 does not rely on anything specific
to the MCIC model, except a subroutine to generate random RRC sets. Thus, we can revise
the definition of RRC sets to accommodate the MCT model.

Due to space constraints, we delay the details showing that this revised solution retains
the performance guarantees of RPS under the MCT model to the full version of the paper.
However, we note that all of the theoretical analysis of RPS is based on the Chernoff bounds
and Lemma 2, without relying on any other results specific to the MCIC model. Therefore,
once we establish an equivalent to Lemma 2, it is straightforward to combine it with the
Chernoff bounds to show that, under the MCT model, RPS provides the same performance
guarantees as in the case of the MCIC model. Thus, we have the following theorem:

I Theorem 4. Under MCT, RPS runs in O((k + l)(m + n)(1/(1 − γ)) logn/ε2) expected
time, and returns a (1− 1/e− ε)-approximate solution with at least 1− 3n−l probability.

8 Summary of Experiments

The focus of our experiments is algorithm efficiency measured in runtime where our goal
is to demonstrate the superior performance of RPS compared to MCGreedy. We observe
that RPS provides a significant improvement of several orders of magnitude over MCGreedy.
Further, we confirm that 1

1−γ � n+ 1 on our small datasets which is strong evidence that
RPS will outperform MCGreedy on typical social networks. Finally, we observe that the vast
majority of the computation time is spent on generating the RRC sets for R. A detailed
experimental analysis and discussion is provided in the full version [28].
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9 Conclusion & Future Work

In this work we presented RPS, a novel and scalable approach to the EIL problem. We
showed the correctness and a detailed running-time analysis of our approach. Furthermore,
we provided two lower bound results: one on the running-time requirement for any approach
to solve the EIL problem and another on the number of Monte Carlo simulations required
by MCGreedy to return a correct solution with high probability. As a result, the expected
runtime of RPS is always less than the expected runtime of MCGreedy. Finally, we describe
how our approach can be generalized to a multi-campaign triggering model. In future work
we plan to investigate how to adapt our approach to a scenario where the source of the
misinformation is only partially known.
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Abstract
In PODS’17, Ketsman and Suciu gave an algorithm in the MPC model for computing the result of
any natural join where every input relation has two attributes. Achieving an optimal load O(m/p1/ρ)
– where m is the total size of the input relations, p the number of machines, and ρ the fractional
edge covering number of the join – their algorithm requires 7 rounds to finish. This paper presents a
simpler algorithm that ensures the same load with 3 rounds (in fact, the second round incurs only
a load of O(p2) to transmit certain statistics to assist machine allocation in the last round). Our
algorithm is made possible by a new theorem that provides fresh insight on the structure of the
problem, and brings us closer to understanding the intrinsic reason why joins on binary relations
can be settled with load O(m/p1/ρ).
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1 Introduction

Understanding the computational hardness of joins has always been a central topic in database
theory. Traditionally, research efforts (see [1, 4, 8, 11, 12, 14, 15] and the references therein)
have focused on discovering fast algorithms for processing joins in the random access machine
(RAM) model. Nowadays, massively parallel systems such as Hadoop [6] and Spark [2]
(https://spark.apache.org) have become the mainstream computing architecture for
performing analytical tasks on gigantic volumes of data, where direct implementation of
RAM join algorithms rarely gives satisfactory performance. A main reason behind this
phenomenon is that, while a RAM algorithm is designed to reduce the CPU time, in systems
like Hadoop and Spark it is much more important to minimize the amount of communication
across the participating machines, because the overhead of delivering all the necessary
messages typically overwhelms the cost of CPU calculation. This has motivated a line of
research – which also includes this work – that aims to understand the communication
complexities of join problems.

1.1 Problem Definition
In this subsection, we will first give a formal definition of natural join – the type of joins
studied in this paper – and then elaborate on the computation model assumed.

Natural Joins. Let att be a countably infinite set where each element is called an attribute.
Let dom be another countably infinite set. A tuple over a set U ⊆ att is a function
u : U → dom. Given a subset V of U , define u[V ] as the tuple v over V such that
v(X) = u(X) for every X ∈ V . We say that u[V ] is the projection of u on V .

A relation is defined to be a set R of tuples over the same set U of attributes. We say that
R is over U , and that the scheme of R is U , represented with the notation scheme(R) = U .
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The arity of R, denoted as arity(R), equals |scheme(R)|. R is unary if arity(R) = 1, and
binary if arity(R) = 2.

A join query is defined as a set Q of relations. If we let attset(Q) =
⋃
R∈Q scheme(R),

the result of the query, denoted as Join(Q), is the following relation over attset(Q){
tuple u over attset(Q)

∣∣ ∀R ∈ Q, u[scheme(R)] ∈ R
}
.

If Q has only two relations R and S, we may also use R ./ S as an alternative representation
of Join(Q). The integer m =

∑
R∈Q |R| is the input size of the query. Concentrating on data

complexity, we will assume that both |Q| and |attset(Q)| are constants.
A join query Q is
scheme-clean if no distinct R,S ∈ Q satisfy scheme(R) = scheme(S);
simple if (i) Q is scheme-clean, and (ii) every R ∈ Q is binary.

The primary goal of this paper is to design parallel algorithms for processing simple queries
efficiently.

Computation Model. We will assume the massively parallel computation (MPC) model
which has been widely accepted as a reasonable abstraction of the massively parallel systems
that exist today. In this model, there are p machines such that at the beginning the input
elements are evenly distributed across these machines. For a join query, this means that each
machine stores Θ(m/p) tuples from the input relations.

An algorithm is executed in rounds, each of which has two phases:
In the first phase, each machine does computation on the data of its local storage.
In the second phase, the machines communicate by sending messages to each other.

It is important to note that all the messages sent out in the second phase must have already
been prepared in the first phase. This prevents a machine from, for example, sending
information based on what has been received during the second phase. Another round is
launched only if the problem has not been solved by the current round. In our context,
solving a join query means that every tuple in the join result has been produced on at least
one machine.

The load of a round is defined by the largest number of words that is received by a machine
in this round, that is, if machine i ∈ [1, p] receives xi words, then the load is maxpi=1 xi. The
performance of an algorithm is measured by two metrics: (i) the number of rounds, and (ii)
the load of the algorithm, defined to be the largest load incurred by a round, among all the
rounds. CPU computation, which takes place in the first phase of each round, is for free.

The number p of machines is assumed to be significantly less than m, which in this paper
means p3 ≤ m specifically. All the algorithms to be mentioned, including those reviewed in
the next subsection and the ones we propose, are randomized. Their loads are all bounded
in a “high probability manner”. Henceforth, whenever we say that an algorithm has load at
most L, we mean that its load is bounded by L with probability at least 1− 1/p2. Finally,
we consider that every value in dom can be encoded in a single word.

1.2 Previous Results
Afrati and Ullman [3] showed that any join query can be solved in a single round with
load Õ(m/p1/min{k,|Q|}) where k = |attset(Q)|, and the notation Õ hides polylogarithmic
factors. Improving upon the earlier work [5], Koutris, Beame, and Suciu [10] presented
another single-round algorithm that solves a join query with load Õ(m/p1/ψ) where ψ is the
fractional quasi-packing number of the query. They also proved that Ω(m/p1/ψ) is a lower
bound on the load of any one-round algorithm, under certain restrictions on the statistics
that the algorithm knows about the input relations.
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For algorithms that perform more than one, but still O(1), rounds, Ω(m/p1/ρ) has been
shown [10] to be a lower bound on the load, where ρ is the factional edge covering number
of the query. The value of ρ never exceeds, but can be strictly smaller than, ψ, which
implies that multi-round algorithms may achieve significantly lower loads than one-round
counterparts, thus providing strong motivation for studying the former.

Though matching the lower bound of Ω(m/p1/ρ) algorithmically still remains open for
arbitrary join queries, this has been achieved for several special query classes [3, 7, 9, 10].
In particular, Ketsman and Suciu [9] gave an algorithm, henceforth referred to as “the KS
algorithm”, that solves a simple query in 7 rounds with load Õ(m/p1/ρ). The class of simple
queries bears unique significance due to their relevance to subgraph enumeration, which is
the problem of finding all occurrences of a subgraph G′ = (V ′, E′) in a graph G = (V,E).
Regarding E as a relation of two attributes, i.e., source vertex and destination vertex, we
can convert subgraph enumeration to a join query on |E′| copies of the “relation” E, and
renaming the attributes in each relation to reflect how the vertices of V ′ are connected in G′;
see [12] for an example where G′ is a clique of 3 vertices.

1.3 Our Contributions
Our main result is that any simple join query can be solved in the MPC model with the
optimal load Õ(m/p1/ρ) using 3 rounds. Our algorithm is in fact similar to a subroutine
deployed in the KS algorithm, which, however, also demands several other subroutines that
entail a larger number of rounds, and are proved to be unnecessary by our solution. The
improvement owes to a new theorem that reveals an intrinsic property of the problem, which
will be explained shortly with an example. In retrospect, the algorithm of Kestman and
Suciu [9] can be regarded as using sophisticated graph-theoretic ideas to compensate for not
knowing that property. It is not surprising that their algorithm can be simplified substantially
once our understanding on the structure of the problem has been strengthened.

To gain an overview of our techniques, let us consider the join query Q illustrated by the
graph in Figure 1a. An edge connecting vertices X and Y represents a relation R{X,Y } with
scheme(R{X,Y }) = {X,Y }. Q is defined by the set of relations represented by the 18 edges
in Figure 1a. Notice that attset(Q) = {A, B, ..., L} has a size of 12.

We adopt an idea that is behind nearly all the join algorithms in the MPC model [7,9,10],
namely, to divide the join result based on “heavy hitters”. Let λ be an integer parameter
whose choice will be clarified later. A value x ∈ dom is heavy if an input relation R ∈ Q
has at least m/λ tuples carrying this value on an attribute X ∈ scheme(R). The number of
heavy values is O(λ). A value x ∈ dom is light if x appears in at least one relation R ∈ Q
but is not heavy. A tuple in the join result may take a heavy or light value on each of the
12 attributes A, ..., K. As there are at most O(λ) choices on each attribute (namely, light
value or one of the O(λ) heavy values), there are O(λ12) “combinations” of choices from all
attributes; we will refer to each combination as a configuration. If we manage to design an
algorithm to find the result tuples under each configuration, executing this algorithm for all
configurations solves the query.

Figure 1b illustrates what happens in one of the possible configurations where we constrain
attributes D, E, F, and K to take heavy values d, e, f, and k respectively, and the other
attributes to take light values. Accordingly, vertices D, E, F, and K are colored black in the
figure. This configuration gives rise to a residue query Q′ whose input relations are decided
as follows:

For each edge {X,Y } with two white vertices, Q′ has a relation R′{X,Y } that contains
only the tuples in R{X,Y } ∈ Q using light values on both X and Y ;
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Figure 1 Processing a join by constraining heavy values.

For each edge {X,Y } with a white vertex X and a black vertex Y , Q′ has a relation
R′{X,Y } that contains only the tuples in R{X,Y } ∈ Q each of which uses a light value on
X and the constrained heavy value on Y ;
For each edge {X,Y } with two black vertices, Q′ has a relation R′{X,Y } with only one
tuple that takes the constrained heavy values on X and Y , respectively.

For example, in R′{A,B}, a tuple must use light values on both A and B; in R′{D,G}, a tuple
must use value d on D and a light value on G; R′{D,K} has only a single tuple with value d on
D and k on K. Finding all result tuples for Q under the designated configuration amounts to
evaluating the residue query Q′.

Since the black attributes have had their values fixed in the configuration, they can
be deleted from the residue query, after which some relations in Q′ become unary or even
disappear. Relation R′{A,D} ∈ Q′, for example, is now regarded as a unary relation over {A},
with the understanding that every tuple is “piggybacked” the value d on D. Let us denote
this unary relation as R′{A}|d, which is illustrated in Figure 1c with a dotted edge extending
from vertex A and carrying the label d. The deletion of D, E, F, and K results in 13 unary
relations (e.g., two of them are over {A}, namely, R′{A}|d and R′{A}|e). Attributes G, H, and L
now become isolated because they are not connected to any other vertices by solid edges.
Relations R′{A,B}, R′{A,C}, R′{B,C}, and R′{I,J} still have arity 2 because their schemes do not
have black attributes. R′{D,K}, on the other hand, has disappeared.

Our algorithm solves the residue query Q′ of Figure 1c in two steps:
1. Perform a semi-join reduction which involves two substeps:

For every vertex X in Figure 1c, intersect all the unary relations over {X} – if any –
into a single list R′′{X}. For example, the two unary relations R′{A}|d and R′{A}|e of A
are intersected on A to produce R′′{A}. Note that only the values in R′′{A} can appear in
the final join result.
For every non-isolated attribute X in Figure 1c, use R′′{X} to shrink each non-unary
relation R′{X,Y }, for all relevant Y , to kick out those tuples whose X-values do not
appear in R′′{X}. This reduces R′{X,Y } to a subset R′′{X,Y }. For example, after the
shrinking, every tuple in R′′{A,B} uses a value in R′′{A} on attribute A, and a value in
R′′{B} on attribute B.

2. Perform a cartesian product. To see how, first observe that the residue query Q′ can now
be further simplified into a join query Q′′ which includes:

The relation R′′{X} for each isolated attribute X;
The relation R′′{X,Y } for each solid edge in Figure 1c.

Figure 1d gives a neater view of Q′′, from which it is easy to see that Join(Q′′) equals the
cartesian product of (i) three unary relations R′′{G}, R′′{H}, and R′′{L}, (ii) a binary relation
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R′′{I,J}, and (iii) the result of the “triangle join” {R′′{A,B}, R′′{A,C}, R′′{B,C}}. This cartesian
product can be generated in one round using the hypercube algorithm of [3], leveraging
the fact that only light values are present in these relations. An optimal load can be
achieved by setting λ = Θ(p1/(2ρ)).

The KS algorithm deploys a similar procedure to deal with a primitive type of configura-
tions (see Lemma 14 of [9]). The main difference, however, is that while the KS algorithm
resorts to more sophisticated and round-intensive procedures to tackle other configurations
(e.g., the one in Figure 1b), we proceed in the same manner for all configurations anyway.
This simplification is the side product of a theorem established in this paper, which shows
that the cartesian product of all the unary relations R′′{X} – one for each isolated attribute
X (in our example, R′′{G}, R′′{H}, and R′′{L}) – is not too large on average, over all the possible
configurations. This property allows us to duplicate such cartesian products onto a large
number of machines, which in turn is the key reason why the hypercube algorithm can be
invoked to finish Step 2 in one round. In fact, handling those unary relations has been the
main challenge in all the algorithms [7, 9, 10] applying the “decomposition by heavy-hitters”
idea, because the binary relations obtained from the decomposition are so-called “skew-free”,
and hence, easy to process. In light of this, our theorem provides deeper insight into the
reason why simple join queries can be processed with the optimal load.

It is worth mentioning that while our algorithm performs 3 rounds, the second round,
which transmits certain statistics to assist machine allocation in the last round, incurs only a
small load that is a polynomial of p and does not depend on m. In other words, the algorithm
performs only 2 rounds whose loads are sensitive to m. This brings us very close to finally
settling the problem with the optimal load using genuinely only 2 rounds, and leaves open
the question: is the transmission of those statistics absolutely necessary?

2 Preliminaries

2.1 Hypergraphs
We define a hypergraph G as a pair (V, E) where:
V is a finite set, where each element is called a vertex;
E is a set of non-empty subsets of V, where each subset is called a hyperedge.

Given a vertex X ∈ V and a hyperedge e ∈ E , we say that X and e are incident to each
other if X ∈ e. A vertex X ∈ V is dangling if it is not incident on any hyperedge in E . In
this paper, we consider only hypergraphs where there are no dangling vertices.

Two distinct vertices X,Y ∈ V are adjacent to each other if there is an e ∈ E containing
both X and Y . An edge e is unary if |e| = 1, or binary if |e| = 2. A binary hypergraph is
one that has only binary edges. Given a subset V ′ of V, we define the subgraph induced by
V ′ as (V ′, E ′) where E ′ = {V ′ ∩ e

∣∣ e ∈ E ∧ V ′ ∩ e 6= ∅}.
2.2 Fractional Edge Coverings and Packings
Let G = (V, E) be a hypergraph, and W a function mapping E to real values in [0, 1]. We call
W (e) the weight of the hyperedge e, and

∑
e∈EW (e) the total weight of W . Given a vertex

X ∈ V , we refer to
∑
e∈E:X∈eW (e), which is the sum of the weights of the edges incident to

X, as the weight of X.
W is a fractional edge covering of G if the weight of every vertex X ∈ V is at least 1.

The fractional edge covering number of G, which is denoted as ρ(G), equals the smallest total
weight of all the fractional edge coverings. W is a fractional edge packing if the weight of
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every vertex X ∈ V is at most 1. The fractional edge packing number of G, which is denoted
as τ(G), equals the largest total weight of all the fractional edge packings. A fractional
edge packing W is tight if it is simultaneously also a fractional edge covering. Likewise, a
fractional edge covering W is tight if it is simultaneously also a fractional edge packing. Note
that in both cases it must hold that the weight of every vertex X ∈ V is exactly 1.

The lemma below lists several useful properties of binary hypergraphs:

I Lemma 1. If G is binary, then:
ρ(G) + τ(G) = |V| and ρ(G) ≥ τ(G), where the two equalities hold if and only if G admits
a tight fractional edge packing (or covering).
G admits a fractional edge packing W of total weight τ(G) such that
1. The weight of every vertex X ∈ V is either 0 or 1.
2. If Z is the set of vertices in V with weight 0, then ρ(G)− τ(G) = |Z|.

Proof. The first bullet is proved in Theorem 2.2.7 of [13]. The fractional edge packing W in
Theorem 2.1.5 of [13] satisfies Condition 1 of the second bullet. This W also fulfills Condition
2, as is proved in Lemma 16 of [9]. J

Example. Suppose that G is the binary hypergraph in Figure 1a. It has a fractional edge
covering number ρ(G) = 6.5, as is achieved by the function W1 that maps {G, F}, {D, K},
{I, J}, {E, H}, and {E, L} to 1, {A, B}, {A, C}, and {B, C} to 1/2, and the other edges to 0.
Its fractional edge packing number is τ(G) = 5.5, achieved by the function W2 which is the
same as W1 except that W2 maps {E, L} to 0. W2 also satisfies both conditions of the second
bullet (notice that Z = {L}). J

2.3 Hypergraph of a Join Query and the AGM Bound
Every join query Q defines a hypergraph G = (V, E) where V = attset(Q) and E =
{scheme(R)

∣∣ R ∈ Q}. When Q is scheme-clean, for each hyperedge e ∈ E we denote
by Re the input relation R ∈ Q with e = scheme(R). Note also that G must be binary if Q
is simple. The following result is known as the AGM bound:

I Lemma 2 ( [4]). Let Q be a scheme-clean join query, and W be a fractional edge covering
of the hypergraph G = (V, E) defined by Q. Then, |Join(Q)| ≤

∏
e∈E |Re|W (e).

2.4 MPC Building Blocks
Cartesian Products. Suppose that R and S are relations with disjoint schemes. Their
cartesian product, denoted as R × S, is a relation over scheme(R) ∪ scheme(S) which con-
sists of all the tuples u over scheme(R) ∪ scheme(S) such that u[scheme(R)] ∈ R and
u[scheme(S)] ∈ S. Sometimes, we need to compute the cartesian product of a set of relations
Q = {R1, R2, ..., Rt} (t ≥ 2) with mutually disjoint schemes. For convenience, define CP(Q)
as a short form for R1 ×R2 × ...×Rt. Note that CP(Q) can also be regarded as the result
Join(Q) of the join query Q.

Two results regarding cartesian products will be useful:

I Lemma 3 ( [3]). Given Q = {R1, R2, ..., Rt}, we can compute CP(Q) in one round with
load Õ(|CP(Q)| 1t /p 1

t ) using p machines.
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I Lemma 4 ( [9]). Let Q1 and Q2 be two join queries that have input sizes at most m,
and satisfy the condition that attset(Q1) ∩ attset(Q2) = ∅. Suppose that Join(Q1) can be
computed in one round with load Õ(m/p1/t1

1 ) using p1 machines, and similarly, Join(Q1) can
be computed in one round with load Õ(m/p1/t2

2 ) using p2 machines. Then Join(Q1)×Join(Q2)
can be computed in one round with load Õ(m/min{p1/t1 , p1/t2}) using p1p2 machines.

Skew-Free Queries. Let Q be a join query on binary relations. Regardless of whether Q is
simple, it can be solved in a single round with a small load if no value appears too often in
its input relations. Denote by m the input size of Q. Set k = |attset(Q)|, and list out the
attributes in attset(Q) as X1, ..., Xk. Let pi be a positive integer, i ∈ [1, k], which is referred
to as the share of Xi. A relation R ∈ Q with scheme {Xi, Xj} is skew-free if every value
x ∈ dom fulfills both conditions below:

R has O(m/pi) tuples u with u(Xi) = x;
R has O(m/pj) tuples u with u(Xj) = x.

Define share(R) = pi · pj . If every R ∈ Q is skew-free, Q is skew-free, and can be solved with
the following guarantee:

I Lemma 5 ( [5]). A skew-free query Q can be answered in one round with load
Õ(m/minR∈Q share(R)) using

∏k
i=1 pi machines.

One-Attribute Reduction. Let X ∈ att be an attribute. We have a ≥ 1 unary relations
R1, ..., Ra over {X}, and b ≥ 1 binary relations S1, ..., Sb such that Si (1 ≤ i ≤ b) is a
relation over {X,Yi} where Yi is an attribute in att different from X. Here, both a and b
are constants. Our objective is to compute S#

i which includes all tuples u ∈ Si satisfying the
condition that u(X) ∈

⋂a
j=1Rj . We will refer to this operation as one-attribute reduction.

Let n =
∑a
j=1 |Ri|+

∑b
i=1 |Si|. A value x ∈ dom is a heavy-hitter if at least n/p tuples in

some Si (1 ≤ i ≤ b) use x as their X-values, where p is the number of machines assigned to
the operation.

I Lemma 6. One-attribute reduction can be performed in one round with load Õ(p+ n/p)
using p machines, provided that each machine knows all the heavy-hitters.

Proof. See Appendix A. J

It is worth mentioning that the above lemma is an extension of a result in [10]. The p
term in the load can actually be eliminated, if the machine knows also additional statistics
of the heavy-hitters. We do not need to be bothered with such details because the term is
affordable for our purposes.

3 A Taxonomy of the Join Result

Recall that Section 1 outlined a method to partition the join result based on heavy and light
values. In this section, we formalize this method and establish some fundamental properties.
Denote by Q a simple join query, by G = (V, E) the hypergraph defined by Q, by m the
input size of Q, and by k the number of attributes in attset(Q).
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Heavy and Light Values. Fix an arbitrary integer λ ∈ [1,m]. A value x ∈ dom is
heavy if there exists a relation R ∈ Q and some attribute X ∈ scheme(R) such that
|{u ∈ R

∣∣ u(X) = x}| ≥ m/λ;
light if x is not heavy, but appears in at least one relation R ∈ Q.

Since each relation has O(1) attributes, the number of heavy values is O(λ).

Configurations. LetH be an arbitrary (possibly empty) subset of attset(Q). A configuration
of H is a tuple η over H such that η(X) is heavy for every X ∈ H. Obviously, each
H ⊆ attset(Q) has at most O(λ|H|) configurations.

Residue Relations and Residue Queries. Now, let us fix a configuration η of H, and aim
to produce all the result tuples u ∈ Join(Q) consistent with the configuration, namely, u
satisfies
u(X) = η(X) for every X ∈ H, and
u(X) is light for every X ∈ attset(Q) \ H.

We will take a few steps to define what is the residue query under η, which is denoted as
Q′η, whose result is precisely the set of all the qualifying u.

Let e be a hyperedge in E that is not subsumed by H, i.e., e has at least one attribute
outside H. This hyperedge is said to be active on η. Define e′ = e \ H, namely, the set of
attributes in e that are outside H. The relation Re ∈ Q defines a residue relation under η
which

is over e′ and
consists of every tuple v that is the projection of some tuple w ∈ Re “consistent” with η,
namely: (i) w(X) = η(X) for every X ∈ e ∩H, (ii) w(Y ) is light for every Y ∈ e′, and
(iii) v = w[e′].

The residue relation is denoted as R′e′|η[e\e′], where η[e \ e′] is the projection of η on e \ e′,
as was introduced in Section 1.1.

We can now define the residue query as

Q′η =
{
Re′|η[e\e′]

∣∣ e ∈ E , e active on η
}
.

Example. Suppose that Q is the query discussed in Section 1.3 with its hypergraph G given
in Figure 1a. Consider the configuration η of H = {D, E, F, K} where η[D] = d, η[E] = e,
η[F] = f, and η[K] = k. If e is the edge {A, D}, then e′ = {A} and η[e \ e′] = η[{D}] = d, such
that R′e′|η[e\e′] is the relation R′{A}|d mentioned in Section 1.3. If e is the edge {A, B}, on the
other hand, then e′ = {A, B} and η[e \ e′] = ∅, so that R′e′|η[e\e′] can be written as R′{A,B}|∅,
and is the relation R′{A,B} in Section 1.3. The residue query Q′η is precisely the query Q′
described in Section 1.3. (to be continued)N

It is rudimentary to verify

Join(Q) =
⋃
H

( ⋃
config. η of H

Join(Q′η)× {η}
)
. (1)

Denote by mη the input size of Q′η. The next proposition says that total input size of all
the residue queries is not too large:

I Proposition 7. If Q is simple,
∑

config. η of Hmη = O(m · λk−2) holds for every H ⊆
attset(Q).

Proof. See Appendix B. J
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Figure 2 Subgraph induced by L.

4 A Join Computation Framework

Given a simple join query Q, we will concentrate on an arbitrary subset H of attset(Q) in
this section. In Sections 4.1-4.2, we will generalize the strategy illustrated in Section 1.3 into
a formal framework for producing⋃

config. η of H
Join(Q′η). (2)

Section 4.3 will then establish a theorem on this framework, which is the core of the techniques
proposed in this paper.

4.1 Removing the Attributes in H
We will refer to each attribute in H as a heavy attribute. Define L = scheme(Q) \ H, where
each attribute is called a light attribute. Denote by G = (V, E) the hypergraph defined by Q.
An edge e ∈ E is (i) a light edge if e contains two light attributes, or (ii) a cross edge if e
contains a heavy attribute and a light attribute. A light attribute X ∈ L is a border attribute
if it appears in at least one cross edge e of G; note that this implies e \ H = {X}. Denote by
G′ = (L, E ′) the subgraph of G induced by L. A vertex X ∈ L is isolated if {X} is the only
edge in E ′ incident to X. Define I to be the set of isolated vertices in G′.

Example (cont.). As before, let Q be the join query whose hypergraph G is shown in
Figure 1a, and set H = {D, E, F, K}. L includes all the white vertices in Figure 1b. {A, B} is a
light edge, {A, D} is a cross edge, while {D, K} is neither a light edge nor a cross edge. All the
vertices in L except J are border vertices. Figure 2 shows the subgraph of G induced by L,
where a unary edge is represented by a box and a binary edge by a segment. Notice that no
unary edge covers J. Vertices G, H, and L are the only isolated vertices. (to be continued)N

4.2 Semi-Join Reduction
Recall that every configuration η of H gives rise to a residue query Q′η. Next, we will
transform Q′η into an alternative join query Q′′η which, as shown in the next section, can be
processed in a single round in the MPC model.

First of all, observe that the hypergraph defined by Q′η is always G′ = (L, E ′), regardless
of η. Consider a border attribute X ∈ L, and a cross edge e of G = (V, E) incident to
X. As explained in Section 3, the input relation Re ∈ Q defines a unary residue relation
R′e′|η[e\e′] ∈ Q

′
η where e′ = e \ H. Since e′ = {X}, we can as well write the relation as

R′{X}|η[e\{X}]. Now that every such relation has the same scheme {X}, we can define:

R′′{X}|η =
⋂

cross edge e containing X
R′{X}|η[e\{X}]. (3)
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Example (cont.). Let H and η be the same as in the earlier description of this example.
Set X to the border attribute A. If e is the cross edge {A, D}, the example in Section 3 has
shown that R′e′|η[e\e′] is the relation R′{A}|d obtained in Section 1.3. Similarly, if e is the cross
edge {A, E}, R′e′|η[e\e′] is the relation R′{A}|e obtained in Section 1.3. As A is contained only
in these two cross edges, R′′{A}|η is the intersection of R′{A}|d and R′{A}|e, and corresponds to
the relation R′′{A} given in Section 1.3. (to be continued)N

Consider a light edge e = {X,Y } in G. Recall that Re defines a residue relation
R′e′|η[e\e′] ∈ Q

′
η, which can be written as R′e|∅ because e′ = e \ H = e. We define R′′e|η as a

relation over e which consists of every tuple u ∈ R′e|∅ satisfying both conditions below:
(applicable only if X is a border attribute) u(X) ∈ R′′X|η;
(applicable only if Y is a border attribute) u(Y ) ∈ R′′Y |η.

Note that if neither X nor Y is a border attribute, then R′′e|η = R′e|∅.

Example (cont.). Let us concentrate the light edge e = {A, B}. The example in Section 3
has explained that R′e′|η[e\e′] = R′{A,B}|∅ is the relation R′{A,B} obtained in Section 1.3. As A
and B are both border attributes, R′′{A,B}|η includes all the tuples in R′{A,B} that take a value
in R′′{A}|η on attribute A and a value in R′′{B}|η on attribute B. Note that R′′{A,B}|η corresponds
to the relation R′′{A,B} given in Section 1.3. (to be continued)N

Every vertex X ∈ I must be a border attribute, and thus must have R′′X|η defined.
Therefore, we can legally define:

Q′′light|η = {R′′e|η
∣∣ light edge e ∈ E}

Q′′I|η = {R′′{X}|η
∣∣ X ∈ I}

Q′′η = Q′′light|η ∪Q
′′
I|η.

Notice that the join queries Q′′I|η, Q′′light|η, and Q′′η are all scheme-clean.

Example (cont.). Q′′light|η consists of R′′{A,B}, R′′{A,C}, R{B,C}, and R{I,J}, and Q′′I|η consists
of R′′{G}, R′′{H}, and R′′{L}, where all the relation names follow those given in Section 1.3. J

I Proposition 8. Join(Q′η) = Join(Q′′η) = CP(Q′′I|η)× Join(Q′′light|η).

Proof. See Appendix C. J

We will refer to the above process of converting Q′η to Q′′η as semi-join reduction, and
call Q′′η the reduced query of η.

4.3 The Isolated Cartesian Product Theorem
We are ready to present the first main result of this paper:

I Theorem 9 (The Isolated Cartesian Product Theorem).∑
config. η of H

∣∣∣CP(Q′′I|η)
∣∣∣ = O

(
λ2(ρ−|I|)−|L\I| ·m|I|

)
(4)

where ρ is the fractional edge covering number of Q.

The rest of the section serves as a proof of the above theorem. To start with, define F to
be the set of attributes in H that are adjacent to at least one isolated vertex in G. The left
hand side of (4) can be bounded by looking at only the configurations of F :
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I Lemma 10.
∑

config. η of H

∣∣∣CP(Q′′I|η)
∣∣∣ = O

(
λ|H|−|F|

)
·
∑

config. η′ of F

∣∣∣CP(Q′′I|η′)
∣∣∣.

Proof. See Appendix D. J

Now, let us take a fractional edge packing W of the hypergraph G = (V, E) that obeys
the second bullet of Lemma 1. Denote by τ the total weight of W which, by definition of W ,
is the fractional edge packing number of G. Define:

Z =
{
X ∈ V

∣∣ ∑
e∈E:X∈e

W (e) = 0
}

that is, Z is the set of vertices with weight 0 under W . Set I0 = I ∩ Z and I1 = I \ I0.
Since W satisfies Condition 1 of the second bullet in Lemma 1, we know that every vertex in
I1 has weight 1, while every vertex in I0 has weight 0.

Example. Let G be the hypergraph in Figure 1a. As explained by the example in Section 2.2,
the fractional edge packing number τ of G is achieved by the function W that maps {G,
F}, {D, K}, {I, J}, and {E, H} to 1, {A, B}, {A, C}, and {B, C} to 1/2, and the other edges
to 0; Z contains a single vertex L. Setting H = {D, E, F, K} yields I = {G, H, L}, I0 = {L},
and I1 = {G, H}. F = {D, E, F}, noticing that K is not adjacent to any isolated vertex.

(to be continued)N

We now present a crucial lemma which is in fact a stronger version of Theorem 9:

I Lemma 11.
∑

config. η′ of F

∣∣∣CP(Q′′I|η′)
∣∣∣ = O

(
λ|F|−|I1| ·m|I|

)
.

Before proving the above lemma, let us first see how it can be used to complete the proof
of Theorem 9. By combining Lemmas 10 and 11, we know that the left hand side of (4) is
O(λ|H|−|I1| ·m|I|). Hence, it suffices to prove

|H| − |I1| ≤ 2(ρ− |I|)− |L \ I| ⇔
|H|+ |L \ I|+ |I|+ |I| − |I1| ≤ 2ρ ⇔

|V| − ρ+ |I0| ≤ ρ (note: |V| = |H|+ |L \ I|+ |I|)⇔
τ + |I0| ≤ ρ (note: ρ+ τ = |V| by Lemma 1)

which is true because ρ − τ = |Z| by Condition 2 of the second bullet in Lemma 1, and
I0 ⊆ Z.

Proof of Lemma 11. Our idea is to construct a set Q∗ of relations such that Join(Q∗) has
a result size at least the left hand side of the inequality in Lemma 11. Then, we will prove
that the hypergraph of Q∗ has a certain fractional edge covering which, together with the
AGM bound, yields an upper bound on |Join(Q∗)| which happens to be the right hand side
of the inequality.

We construct Q∗ as follows. Initially, set Q∗ to ∅. For every cross edge e ∈ E incident to
an isolated vertex, add to Q∗ a relation R∗e = Re. For every X ∈ F , add a unary relation
R∗{X} to Q∗ which consists of all the heavy values on attribute X. Note that R∗{X} has O(λ)
tuples. Finally, for every Y ∈ I0, add a unary relation R∗{Y } to Q∗ which contains all the
heavy and light values on attribute Y .

Define G∗ = (V∗, E∗) as the hypergraph defined by Q∗. Note that V∗ = I ∪ F , while E∗
consists of all the cross edges in G, |F| unary edges {X} for every X ∈ F , and |I0| unary
edges {Y } for every Y ∈ I0.
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Figure 3 Illustration of Q∗.

Example (cont.). Figure 3 shows the hypergraph of the Q∗ constructed, where as before a
box and a segment represent a unary and a binary edge, respectively. (to be continued)N

I Lemma 12.
∑

config. η′ of F

∣∣∣CP(Q′′I|η′)
∣∣∣ ≤ |Join(Q∗)|.

Proof. See Appendix E. J

I Lemma 13. G∗ admits a tight fractional edge covering W∗ satisfying
∑
X∈F W

∗({X}) =
|F| − |I1|.

Proof. Recall that our proof of Theorem 9 began with a fractional edge packing W of G.
We construct a desired function W ∗ from W as follows. First, for every cross edge e ∈ E , set
W ∗(e) = W (e). Observe that every edge in E incident to Y ∈ I must be a cross edge. Hence,∑

binary e∈E∗:Y ∈eW
∗(e) is precisely the weight of Y under W . By definition of W , we thus

have ensured
∑

binary e∈E∗:Y ∈eW
∗(e) = 1 for each Y ∈ I1, and

∑
binary e∈E∗:Y ∈eW

∗(e) = 0
for each Y ∈ I0. As a second step, we set W ∗({Y }) = 1 for each Y ∈ I0 so that the edges in
E∗ containing Y have a total weight of 1.

It remains to make sure that each attribute X ∈ F has a weight 1 under W ∗. Since W is
a fractional edge packing of G, it must hold that

∑
binary e∈E∗:X∈eW (e) ≤ 1. This permits

us to assign the following weight to the unary edge {X}:

W ∗({X}) = 1−
∑

binary e∈E∗:X∈e
W (e).

This finishes the design of W ∗ which is now a tight fractional edge covering of G∗. Clearly:

∑
X∈F

W ∗({X}) = |F| −
∑
X∈F

∑
binary e∈E∗:X∈e

W (e). (5)

Every binary edge e ∈ E∗ contains a vertex in F and a vertex in I. Therefore:

∑
X∈F

∑
binary e∈E∗:X∈e

W (e) =
∑
Y ∈I

∑
binary e∈E∗:Y ∈e

W (e) = |I1|.

Putting together the above equation with (5) completes the proof. J
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Example (cont.). For the G∗ in Figure 3, a fractional edge covering in Lemma 13 is given
by the function W ∗ that maps {G, F}, {E, H}, {D}, and {L} to 1, and the other edges to 0.
Note that

∑
X∈F W

∗({X}) = W ∗({D}) = 1, same as |F| − |I1| = 3− 2 = 1. J

The AGM bound in Lemma 2 tells us that

Join(Q∗) ≤
∏
e∈E∗
|R∗e |W

∗(e) =
( ∏
X∈F

|R∗{X}|
W∗({X})

)( ∏
Y ∈I

∏
e∈E∗:Y ∈e

|R∗e |W
∗(e)
)

=
( ∏
X∈F

(O(λ))W
∗({X})

)( ∏
Y ∈I

∏
e∈E∗:Y ∈e

mW∗(e)
)

(by Lemma 13) = O(λ|F|−|I1|) ·m|I|

which completes the proof of Lemma 11.

5 A 5-Round MPC Algorithm

We now proceed to implement the strategy discussed in the previous section under the MPC
model. Our objective in this section is to explain how the isolated cartesian product theorem
can be utilized to answer a simple join query Q with the optimal load O(m/p1/ρ) in a rather
straightforward manner. Hence, we intentionally leave out the optimization tricks to reduce
the number of rounds, but even so, our algorithm finishes in only 5 rounds. Those tricks are
the topic of the next section.

A statistical record is defined as a tuple (R,X, x, cnt), where R is a relation in Q, X
an attribute in scheme(R), x a value in dom, and cnt the number of tuples u ∈ R with
u(X) = x. Specially, (R, ∅,nil, cnt) is also regarded as a statistical record where cnt gives
the number of tuples in R that use only light values. A histogram is defined as the set of
statistical records for all possible R, X, and x satisfying (i) cnt = Ω(m/p1/ρ), or (ii) X = ∅
(and, hence x = nil); note that there are only O(p1/ρ) such records. We assume that every
machine has a local copy of the histogram. It is worth mentioning that all existing join
algorithms [5,9], which strive to finish in a specifically small – rather than just asymptotically
constant – number of rounds, demand that each machine should be preloaded with pO(1)

statistical records.
Henceforth, the value of λ will be fixed to Θ(p1/(2ρ)). We focus on explaining how to

compute (2) for an arbitrary subset H of attset(Q). Set k = |attset(Q)|. As attset(Q) has
2k = O(1) subsets, processing all of them in parallel increases the load only by a constant
factor, and definitely discovers the entire Join(Q), as is guaranteed by (1). Our algorithm
produces (2) in three steps:
1. Generate the input relations of the residue query Q′η of every configuration η of H.
2. Generate the input relations of the reduced query Q′′η of every η.
3. Evaluate Q′′η for every η.
The number of configurations of H is O(λ|H|) = O(λk) = O(pk/(2ρ)), which is O(p) because
ρ ≥ k/2 by the first bullet of Lemma 1. Next, we elaborate on the details of each step.

Step 1. Proposition 7 tells us that the input relations of all the residue queries have
O(m · λk−2) tuples in total. We allocate p′η = dp · mη

Θ(m·λk−2)e machines to store the relations
of Q′η, so that each machine assigned to Q′η keeps on average O(mη/p

′
η) = O(m · λk−2/p) =

O(m/p1/ρ) tuples, where the last equality used ρ ≥ k/2. Since each machine i ∈ [1, p] can
use the histogram to calculate mη precisely for each η, it can compute locally the id range of
the mη machines responsible for Q′η. If a tuple u in the local storage of machine i belongs
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to Q′η, the machine sends u to a random machine within that id range. Standard analysis
shows that each of the mη machines receives roughly the same number of tuples, such that
this step can be done in a single round with load Õ(m/p1/ρ).

Step 2. Now that all the input relations of each Q′η have been stored on p′η machines, the
semi-join reduction that converts Q′η to Q′′η becomes a standard process [9] that can be
accomplished in 2 rounds with load Õ(mη/p

′
η) = Õ(m/p1/ρ).

Step 3. This step starts by letting each machine know about the value of |CP(Q′′I|η)| for
every η. For this purpose, each machine can broadcast to all machines how many tuples it
has in R′′{X}|η for every X ∈ I and every η. Since there are O(p) different η, at most O(p)
numbers are broadcast by each machine, such that the load of this round is O(p2). With all
these numbers, each machine can figure out independently the values of all |CP(Q′′I|η)|. We
will call this round the statistical round henceforth.

We allocate

p′′η =
⌈
p ·

|CP(Q′′I|η)|
Θ(λ2(ρ−|I|)−|L\I| ·m|I|)

⌉
(6)

machines to computing Q′′η. Theorem 9 guarantees that the total number of machines needed
by all the configurations is at most p. We complete the algorithm with the lemma below:

I Lemma 14. Q′′η can be answered in one round with load O(m/p1/ρ) using p′′η machines.

Proof. Join(Q′′η) is the cartesian product of CP(Q′′I|η) and Join(Q′′light|η), as shown Propos-
ition 8. By Lemma 3, if we deploy p′′η/λL\I machines to compute CP(Q′′I|η) in one round,
the load is

Õ

CP(Q′′I|η)1/|I|(
p′′η
λL\I

)1/|I|

 = Õ

(
m · λ

2(ρ−|I|)
|I|

p1/|I|

)
= Õ

(
m · p

2(ρ−|I|)
2ρ|I|

p1/|I|

)
= Õ

(
m

p1/ρ

)
.

Regarding Q′′light|η, first verify that attset(Q′′light|η) = L\I. Recall that the input relations
of Q′′light|η contain only light values. Hence, this join query is skew-free if we assign a share
of λ to each attribute in L \ I. By Lemma 5, we can solve it in one round with load
Õ(m/λ2) = Õ(m/p1/ρ) using λ|L\I| machines.

Lemma 4 now tells us that Join(Q′′η) can be computed in one round with load Õ(m/p1/ρ)
using (p′′η/λ|L\I|) · λ|L\I| = p′′η machines. J

6 A 3-Round MPC Algorithm

Next, we will improve the algorithm in Section 5 by reducing the number of rounds to 3.

6.1 A New Approach to Handle Light Edges
Let G = (V, E) be the hypergraph defined by the simple join query Q given. Fix an arbitrary
subset H of attset(Q). Recall that, for every light edge e ∈ E , our 5-round algorithm
needed to generate R′′e|η for every configuration η of H. Next, we will describe an alternative
approach to perform the join without explicitly computing R′′e|η, which is crucial for obtaining
a 3-round algorithm (to be presented in the next subsection).

Fix a configuration η of H. Consider a light edge e of G, and an attribute X ∈ e. Define
R#X
e|η as follows:
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if X is not a border attribute, R#X
e|η = R′e|∅;

otherwise, R#X
e|η is a relation over e that consists of every tuple u ∈ R′e|∅ satisfying

u(X) ∈ R′′X|η.

I Proposition 15. R′′e|η = R#X
e|η ./ R#Y

e|η .

Proof. See Appendix F. J

Example. Returning to the query Q in Figure 1a, consider again H = {D, E, F, K}, and the
configuration η of H with η(D) = d, η(E) = e, η(F) = f, and η(K) = k. We will illustrate the
above definitions by showing how to avoid explicitly computing R′′{A,B}|η and R′′{I,J}|η (namely,
R′′{A,B} and R′′{I,J} in the description of Section 1.3). We will generate R#A

{A,B}|η, R
#B
{A,B}|η,

R#I
{I,J}|η, and R#J

{I,J}|η such that R′′{A,B}|η = R#A
{A,B}|η ./ R#B

{A,B}|η and R′′{I,J}|η = R#I
{I,J}|η ./

R#J
{I,J}|η.
Among the four relations to compute, R#J

{I,J}|η is the simplest because J is not a border
attribute; hence, R#J

{I,J}|η equals R′{I,J}|∅ (i.e., R′{I,J} in Section 1.3). Regarding the other
three relations, we will elaborate only on the generation of R#A

{A,B} because the same ideas
apply to R#B

{A,B} and R
#I
{I,J}.

Under η, there are two unary residue relations defined over {A}, namely, R′{A}|d and
R′{A}|e. The intersection of those two relations yields the unary relation R′′{A}|η (i.e., R′′{A}
in Section 1.3). Then, R#A

{A,B} consists of every tuple u in the residue relation R′{A,B}|∅ (i.e.,
R′{A,B} in Section 1.3) whose u(A) appears in R′′{A}|η. J

Define:

Q#
light|η = {R#X

e|η
∣∣ every light edge e ∈ E , every attribute X ∈ e}

Q#
η = Q#

light|η ∪Q
′′
I|η.

Proposition 15 immediately implies Join(Q′′η) = Join(Q#
η ) = CP(Q′′I|η)× Join(Q#

light|η).

6.2 The Algorithm
We are now ready to clarify how to solve Q in 3 rounds, concentrating on a specific subset H
of attset(Q) (set k = |attset(Q)|):

Round 1: Generate the input relations of Q#
η for every configuration η of H.

Round 2: Same as the statistical round in Section 5.
Round 3: Evaluate Q#

η for every η.
It remains to elaborate on the details of Round 1 and 3.

Round 1. Allocate p′η = dp · mη

Θ(m·λk−2)e machines to computing the relations of Q#
η . Let

us focus on a specific configuration η. To generate the relations in Q#
light|η, we carry out

one-attribute reduction (see Section 2.4) for every border attribute X ∈ L. Specifically, this
operation is performed on

the unary relations R′{X}|η[e\{X}] for all cross edges e of G incident to X, and
the binary relations R′e|∅ for all light edges e of G incident to X.

ICDT 2020
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It generates the R#X
e|η for every light edge e incident to X. Note that a value x ∈ dom is

a heavy-hitter for this operation only if x appears in some input relation of Q mη/p
′
η =

Ω(m·λ
k−2

p ) = Ω(m/p1/ρ) times. Therefore, every machine can independently figure out
the heavy-hitters from its histogram, and send each tuple in its local storage directly to
the corresponding machines where the tuple is needed to perform one-attribute reductions.
By Lemma 6, all the one-attribute reductions entail an overall load of Õ(p + mη/p

′
η) =

Õ(p+m/p1/ρ).
The relations in Q′′I|η can be easily produced by set intersection. Specifically, for every

isolated attribute X ∈ I, we obtain R′′{X}|η as the intersection of all the unary relations
R′{X}|η[e\{X}], where e ranges over all cross edges of G incident to X. This can be done by
standard hashing in one round with load Õ(mη/p

′
η) = Õ(m/p1/ρ).

Round 3. Allocating p′′η, as is given in (6), machines to each configuration η of H, we
compute Q#

η in exactly the same way Lemma 14 computes Q′′η. In fact, the statement of
Lemma 14, as well as the proof, holds verbatim by replacing every Q′′η with Q#

η and every
Q′′light|η with Q#

light|η.
We thus have obtained a 3-round algorithm for answering a simple join query with load

Õ(p2 + m/p1/ρ) which is Õ(m/p1/ρ) under our assumption m ≥ p3. This establishes the
second main result of this paper:

I Theorem 16. Given a simple join query with input size m and a fractional edge
covering number ρ, we can answer it in the MPC model using p machines in two rounds
with load O(m/p1/ρ), assuming that m ≥ p3, and that each machine has been preloaded
with a histogram as is prescribed in Section 5.

It is worth mentioning that Round 2 of our algorithm (i.e., the statistical round) has a
load of O(p2) such that only the first and third rounds of the algorithm entail a load sensitive
to m.
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A Proof of Lemma 6

For each i ∈ [1, b], divide Si into (i) S1
i , which includes the tuples of u ∈ Si where u(X) is a

heavy-hitter, and (ii) S2
i = Si \ S1

i . Accordingly, divide S
#
i into (i) S#1

i , which includes the
tuples of u ∈ S#

i where u(X) is a heavy-hitter, and (ii) S#2
i = S#

i \ S
#1
i . We will compute

S#1
i and S#2

i , separately.
The computation of S#1

1 , ..., S#1
b is trivial. Since there are at most p heavy-hitters, each

machine storing a heavy-hitter x in some Rj (j ∈ [1, a]) simply broadcasts the pair (x, j)
to all machines. This takes one round with load O(p). A machine holding a tuple u with
u(X) = x in some Si (i ∈ [1, a]) adds u to S#1

i only if it has received (x, j) for all j ∈ [1, a].
S#2

1 , ..., S#2
b , on the other hand, can be produced using Lemma 5. Assign a share of p to X

and a share of 1 to every other attribute. By definition, the join query {R1, ..., Ra, S
2
1 , ..., S

2
b }

is skew-free, and therefore, can be solved in round round with load Õ(n/p). For each i ∈ [1, b],
S#2
i can then be easily obtained from the result of this query.

B Proof of Proposition 7

Let us first introduce a definition. Suppose that S is a subset ofH. We say that a configuration
ηH of H extends a configuration ηS of S if ηS = ηH[S]. O(λ|H|−|S|) configurations ηH of H
can extend ηS , because every attribute in H \ S has O(λ) heavy values.

Returning to the proof of the proposition, Let η be an arbitrary configuration of H, and
e ∈ E an arbitrary hyperedge that is active on η. Define H′ = e ∩ H and e′ = e \ H. A
tuple u ∈ Re belongs to Re|η[e\e′] only if η extends the configuration u[H′] of H′. There
are O(λ|H|−|H′|) such η. As |E| = O(1), u can contribute O(1) to the term mη for at most
O(λ|H|−|H′|) different η.

It remains to prove that |H| − |H′| ≤ k − 2. Observe that |H| − |H′| is the number of
attributes in H that do not belong to e. This number is at most k − 2 because e has two
attributes.

ICDT 2020



25:18 A Simple Parallel Algorithm for Natural Joins on Binary Relations

C Proof of Proposition 8

The second equality follows directly from the fact that the scheme of each relation in Q′′I|η
is disjoint with the scheme of any other relation in Q′′η. Next we focus on proving the first
equality.

We first show Join(Q′η) ⊆ Join(Q′′η). Consider an arbitrary tuple u ∈ Join(Q′η). For
any attribute X ∈ L and any cross edge e of G containing X, since u(X) ∈ R{X}|η[e\{X}],
it must hold that u(X) ∈ R′′{X}|η. For any light edge e = {X,Y } ∈ E , since u[e] ∈ R′e|∅, it
must hold that u[e] ∈ R′′e|η. It thus follows that u ∈ Join(Q′′η).

Next, we show Join(Q′′η) ⊆ Join(Q′η). Consider an arbitrary tuple u ∈ Join(Q′′η). For
any attribute X ∈ L, since u(X) ∈ R′′{X}|η, it must hold that u(X) ∈ R{X}|η[e\{X}] for any
cross edge e of G containing X. For any light edge e = {X,Y } ∈ E , since u[e] ∈ R′′e|η, it
must hold that u[e] ∈ R′e|∅. It thus follows that u ∈ Join(Q′η).

D Proof of Lemma 10

Consider any R′′{X}|η ∈ Q′′I|η. Observe that the content of R′′{X}|η does not depend on η(Y )
for any Y ∈ H \ F . In other words, if we set η′ = η[F ], then R′′{X}|η is precisely the same
as R′′{X}|η′ . Notice that η′ is a configuration of F that is extended by η (see the proof
of Proposition 7 for the definition of extension). The lemma follows from the fact that a
configuration η′ of F can be extended by O(λ|H|−|F|) configurations η of H.

E Proof of Lemma 12

We will prove⋃
config. η′ of F

CP(Q′′I|η′)× {η′} ⊆ Join(Q∗). (7)

from which the lemma follows.
Take a tuple u from the left hand side of (7), and set η′ = u[F ]. Based on the definition

of Q′′I|η′ , it is easy to verify that u[e] ∈ Re for every cross edge e ∈ E , and hence, u[e] ∈ R∗e .
Furthermore, u(X) ∈ R∗{X} for every X ∈ F because u(X) = η′(X) is a heavy value. Finally,
obviously u(Y ) ∈ R∗{Y } for every Y ∈ I0. All these facts together ensure that u ∈ Join(Q∗).

F Proof of Proposition 15

Consider first the case where X and Y are both border attributes. We have

R′′e|η = R′′X|η ./ R
′
e|∅ ./ R

′′
Y |η

= (R′′X|η ./ R′e|∅) ./ (R′e|∅ ./ R′′Y |η)

= R#X
e|η ./ R#Y

e|η .

If X is a border attribute but Y is not, then:

R′′e|η = R′′X|η ./ R
′
e|∅

= (R′′X|η ./ R′e|∅) ./ R′e|∅
= R#X

e|η ./ R#Y
e|η .

If neither X nor Y is a border attribute, the proposition is trivial.
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