
Dynamic Complexity of Document Spanners
Dominik D. Freydenberger
Loughborough University, Loughborough, United Kingdom

Sam M. Thompson
Loughborough University, Loughborough, United Kingdom

Abstract
The present paper investigates the dynamic complexity of document spanners, a formal framework
for information extraction introduced by Fagin, Kimelfeld, Reiss, and Vansummeren (JACM 2015).
We first look at the class of regular spanners and prove that any regular spanner can be maintained
in the dynamic complexity class DynPROP. This result follows from work done previously on the
dynamic complexity of formal languages by Gelade, Marquardt, and Schwentick (TOCL 2012).

To investigate core spanners we use SpLog, a concatenation logic that exactly captures core
spanners. We show that the dynamic complexity class DynCQ is more expressive than SpLog and
therefore can maintain any core spanner. This result is then extended to show that DynFO can
maintain any generalized core spanner and that DynFO is more powerful than SpLog with negation.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Informa-
tion systems → Information extraction

Keywords and phrases Document spanners, information extraction, dynamic complexity, descriptive
complexity, word equations

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.11

Related Version A full version of this paper is avaliable at [9], https://arxiv.org/abs/1909.10869.

Acknowledgements The authors would like to thank the anonymous reviewers as well as Thomas
Schwentick for their helpful comments and suggestions. The authors would also like to thank Thomas
Zeume for clarifying a result from his thesis.

1 Introduction

Document spanners where introduced by Fagin, Kimelfeld, Reiss, and Vansummeren [4]
as a formalization of IBM’s information retrieval language AQL. Essentially, they can be
explained as a formalism of querying text like one would query a relational database.

The universe of document spanners are spans, intervals of positions in a text. For example,
if one searches for a word inside a larger text, every match can be understood as being one
span inside the text. Spanners generalize this by mapping an input text to a table of spans.

More specifically, the process can be described as follows. First, primitive spanners,
so-called extractors, are used to convert the input text into tables of spans. These extractors
can be assumed to be regex formulas, which are regular expressions with variables. The
tables can then be combined using relational algebra. As one might expect, different types
of spanners allow different choices of operators. In this paper, we deal with three types of
spanners that were introduced by Fagin et al. [4]. Regular spanners, currently the most
widely studied in literature, allow the operators ∪ (union), π (projection), and ./ (join).
Core spanners extend regular spanners by allowing the string equality selection operator ξ=,
which allows one to check whether spans describe the same string (but potentially at different
places). Generalized core spanners then extend these with the set difference \.

© Dominik D. Freydenberger and Sam M. Thompson;
licensed under Creative Commons License CC-BY

23rd International Conference on Database Theory (ICDT 2020).
Editors: Carsten Lutz and Jean Christoph Jung; Article No. 11; pp. 11:1–11:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5088-0067
https://orcid.org/0000-0002-3476-6739
https://doi.org/10.4230/LIPIcs.ICDT.2020.11
https://arxiv.org/abs/1909.10869
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Dynamic Complexity of Document Spanners

In the last few years, various aspects of spanners have received considerable attention
(see our related work section). The main focus was on evaluation and enumeration of results.
But very few papers have considered aspects of maintaining the results of spanners under
updates on the input text, and these have only focused on regular spanners.

In this paper, we examine the complexity of this problem from a dynamic complexity point
of view. The classic dynamic complexity setting was independently introduced by Dong, Su,
and Topor [3] and Patnaik and Immerman [16]. The “default setting” of dynamic complexity
assumes a big relational database that is constantly changing (where the updates consist of
adding or removing tuples from relations). The goal is then to maintain a set of auxiliary
relations that can be updated with “little effort”. As this is a descriptive complexity point of
view, little effort is defined as using only first-order formulas. The class of all problems that
can be maintained in this way is called DynFO.

A more restricted setting is DynPROP, where only quantifier-free formulas can be used. As
one might expect, restricting the update formulas leads to various classes between DynPROP
and DynFO. Of particular interest to this paper are DynCQ and DynUCQ, where the update
formulas are conjuctive queries or unions of conjunctive queries. As shown by Zeume and
Schwentick [21], DynCQ = DynUCQ holds; but it is open whether these are proper subclasses
of DynFO (see Zeume [20] for detailed background information).

As document spanners are defined on words, we adapt the dynamic complexity setting
for formal languages by Gelade, Marquardt, and Schwentick [10]. This interprets a word
structure as a linear order (of positions in the word) with unary predicates for every terminal
symbol. To account for the dynamic complexity setting, positions can be undefined, and the
update operations are setting a position to a symbol (an insertion or a symbol change) and
resetting a position to undefined (deleting a symbol).

We show that in this setting, regular spanners can be maintained in DynPROP, core
spanners in DynUCQ (and, hence, by [21] in DynCQ), and generalized core spanners in DynFO.
Here, the second of these results is the main result of the present paper (the third follows
directly from it, and the first almost immediately from [10]). To achieve it, we do not convert
core spanners directly, but use the concatenation logic SpLog as an intermediate model.

SpLog (short for spanner logic) was introduced by Freydenberger [6] and has the same
expressive power as core spanners (under some caveats that we discuss in Section 2.2). An
additional benefit of the main result is that SpLog can be used to simplify proofs that
languages or word relations can be maintained in DynCQ.

Related work. Recently, algorithmic and complexity theoretic aspects of evaluation and
enumeration of spanners have received a considerable amount of attention, see [1, 5, 7, 8,
6, 12, 13, 14, 17, 18]. But these almost exclusively consider spanners in a static setting.
To the authors’ knowledge, the only articles to also examine updates are Losemann [12]
and Amarilli, Bourhis, Mengel, and Niewerth [1]. Both do not take a DynFO point of view;
moreover, both only deal with regular spanners and there is no obvious way to also include
the string equalities that are required for core spanners and generalized core spanners.

Doleschal, Kimelfeld, Martens, Nahshon, and Neven [2] introduce the notion of split-
correctness. Without going into details, this examines spanners for which it is possible to
split the input word into subwords on which the spanner is then evaluated. This can be
viewed as a special case of update, but again was restricted to regular spanners.

D.D. Freydenberger and S.M. Thompson 11:3

Gelade, Marquardt, and Schwentick [10] examined the dynamic complexity of formal
languages. Their result that DynPROP captures the regular languages is the basis for Propo-
sition 3.1 in the current paper. While they also established that every context free language
is in DynFO and that every Dyck-language is in DynQF (DynPROP with auxiliary functions),
they did not examine DynUCQ and DynCQ, which the present paper does.

Muñoz, Vortmeier, and Zeume [15] studied the dynamic complexity in a graph database
setting, namely for conjunctive regular path queries (CRQPs) and extended conjunctive regular
path queries (ECRPQs). In particular, Theorem 14 in [15] states that on acyclic graphs, even
a generalization of ECRPQs can be maintained in DynFO. Fagin et al. [4] established that on
marked paths (a certain type of graph) core spanners have the same expressive powers as a
CRPQs with string equalities (a fragment of ECRPQs). While marked paths are not acyclic
in a strict sense, Section 7 of [6] proposes a variant of this model that could be directly
combined with the construction from [15]. Thus, one could combine these results and observe
that core spanners can be maintained in DynFO. In contrast to this, the present paper allows
us to lower the upper bound to DynCQ. Moreover, if one is satisfied with DynUCQ, the
constructions in the present paper also guarantee that all auxiliary relations only contain
active nodes (nodes which carry a letter) of the word-structure, the only exception being the
special case where the word-structure represents the empty string.

Structure of the paper. Section 2 contains the central definitions. Section 3 establishes
dynamic upper bounds for the three central classes of document spanners (regular, core, and
generalized core spanners), in particular the main result (Theorem 3.13). Section 4 further
examines the relative expressive powers of core spanners and DynCQ. Section 5 concludes the
paper. Some of the longer proofs have been omitted, see the full version for those proofs [9].

2 Preliminaries

Let N := {0, 1, 2 . . . } and let N+ := N \ {0}, where \ denotes set difference. We write |S|
to represent the cardinality of a set S. We use ⊆ for subset and ⊂ for proper subset. We
denote the powerset of S by P(S). Let ∅ be the empty set. If R is a relation of arity 0, then
R is the empty set, or R is the set containing the empty tuple. We define [n] := {1, 2 . . . n}.

Let A be an alphabet1. We write |w| to denote the length of a word w ∈ A∗. The number
of occurrences of some a ∈ A in a word w ∈ A∗ is represented by |w|a. We use ε to denote
the empty word. Given two words u ∈ A∗ and v ∈ A∗, we write u · v, or simply uv for
concatenation. If w = v1uv2 where v1 ∈ A∗ and v2 ∈ A∗, then u is a subword of w. We
use v for subword and @ for the proper subword relation. If u is not a subword of w, we
write u 6v w. Let Σ be a finite alphabet of so-called terminal symbols. Let Ξ be an infinite
set of so-called variables, which is disjoint from Σ. Let L(A) (or L(α)) denote the language
of a nondeterministic finite automaton (NFA) A (or of a regular expression α).

The rest of this section is structured as follows: First, we define various types of document
spanners in Section 2.1 and equivalent logics (Section 2.2). After that, we define dynamic
complexity, with a particular focus on its application to document spanners (Section 2.3).

1 We use A here as a generic alphabet since we look at both the alphabet of terminal symbols and the
alphabet of variables, and the concepts defined here apply to both.

ICDT 2020

11:4 Dynamic Complexity of Document Spanners

2.1 Document Spanners and Spanner Algebra
In this section, we introduce document spanners and their representations. We begin with
primitive spanners (Section 2.1.1) and then combine these to spanner algebras (Section 2.1.2).

2.1.1 Primitive Spanner Representations
Let w := a1 · a2 · · · an be a word, where n ≥ 0 and a1, . . . , an ∈ Σ. A span of w is an interval
[i, j〉 with 1 ≤ i ≤ j ≤ n + 1 and i, j ≥ 0. Given a span [i, j〉 of a word w, we define the
subword w[i,j〉 as ai · ai+1 · · · aj−1.

I Example 2.1. Consider the word w := banana. As |w| = 6, the spans of w are the [i, j〉
with 1 ≤ i ≤ j ≤ 7. For example, we have w[1,2〉 = b and w[2,4〉 = w[4,6〉 = an. Although
both spans describe the same subword an, the two occurrences are at different locations
(and, thus, at different spans). Analogously, we have w[1,1〉 = w[2,2〉 = · · · = w[7,7〉 = ε, but
[i, i〉 6= [i′, i′〉 for all distinct 1 ≤ i, i′ ≤ 7.

Let V ⊆ Ξ and w ∈ Σ∗. A (V,w)-tuple is a function µ that maps each x ∈ V to a
span µ(x) of w. A set of (V,w)-tuples is called a (V,w)-relation. A spanner P is a function
that maps every w ∈ Σ∗ to a (V,w)-relation P (w). We write SVars (P) to denote the set of
variables V of a spanner P . Two spanners P1 and P2 are equivalent if SVars (P1) = SVars (P2)
and P1(w) = P2(w) holds for all w ∈ Σ∗.

In the usual applications of spans and spanners, the word w is some type of text. Hence,
we can view a spanner P as mapping an input text w to a (V,w)-relation P (w), which can
be understood as a table of spans of w.

To define spanners, we use two types of primitive spanner representations, the so-called
regex formulas and variable-set automata. Both extend classical mechanisms for regular
languages (regular expressions and NFAs, respectively) with variables.

Regex formulas: The syntax of regex formulas is defined by the following α := ∅ | ε | a |
(α ∨ α) | (α · α) | (α)∗ | x{α}, where a ∈ Σ and x ∈ Ξ. We use α+ to denote α · α∗.

Like [6], we define the semantics of regex formulas using two step-semantics with ref-words
(originally introduced by Schmid [19] in a different context). A ref-word is a word over the
extended alphabet (Σ∪Γ) where Γ := {`x,ax | x ∈ Ξ}. The symbols `x and ax represent the
beginning and end of the span for the variable x. The first step in the definition of semantics
is treating each regex formula α as generators of languages of ref-words R(α) ⊆ (Σ ∪ Γ)∗,
which is defined by R(∅) := ∅, R(a) := {a} where a ∈ Σ∪{ε}, R(α1 ∨α2) := R(α1)∪R(α2),
R(α1 · α2) := R(α1) · R(α2), R(α∗) := R(α)∗, and R(x{α}) := `xR(α)ax.

Let SVars (α) be the set of all x ∈ Ξ such that x{} occurs somewhere in α. A ref-word
r ∈ R(α) is valid if for all x ∈ SVars (α), we have that |r|`x = 1. We denote the set of valid
ref-words in R(α) as Ref(α) and say that a regex formula is functional if R(α) = Ref(α).
We write RGX for the set of all functional regex formulas. By definition, for every α ∈ RGX,
every r ∈ Ref(α), and every x ∈ SVars (α), there is a unique factorization r = r1 `x r2 ax r3.

This allows us to define the second step of the semantics, which turns such a factorization
for some variable x into a span µ(x). To this end, we define a morphism clr : (Σ ∪ Γ)∗ → Σ∗
by clr(a) := a for a ∈ Σ and clr(g) = ε for all g ∈ Γ. For a factorization r = r1 `x r2 ax r3,
clr(r1) is the substring of w that appears before µ(x) and clr(r2) is the substring wµ(x).

We use this for the definition of the semantics as follows: For α ∈ RGX and w ∈ Σ∗, let
V := SVars (α) and (more importantly) Ref(α,w) := {r ∈ Ref(α) | clr(r) = w}.

D.D. Freydenberger and S.M. Thompson 11:5

Every r ∈ Ref(α,w) defines a (V,w)-tuple µr in the following way: For every x ∈ SVars (α),
we use the unique factorization r = r1`xr2axr3 to define µr(x) := [|clr(r1)|+1, |clr(r1r2)|+1〉.
The spanner JαK is then defined by JαK(w) := {µr | r ∈ Ref(α,w)} for all w ∈ Σ∗.

Variable-set automata: Variable-set automata (short: vset-automata) are NFAs that may
use variable operations `x and ax as transitions. More formally, let V ⊂ Ξ be a finite set
of variables. A variable-set automaton over Σ with variables V is a tuple A = (Q, q0, qf , δ),
where Q is the set of states, q0 ∈ Q is the initial state, qf ∈ Q is the accepting state, and
δ : Q× (Σ ∪ {ε} ∪ ΓV)→ P(Q) is the transition function with ΓV := {`x,ax | x ∈ V }.

We define the semantics using a two-step approach analogous to the semantic definition
of regex formulas. Firstly, we treat A as an NFA that defines the ref-language defined by
R(A) := {r ∈ (Σ ∪ ΓV)∗ | qf ∈ δ∗(q0, r)}, where the function δ∗ : Q× (Σ ∪ ΓV)→ P(Q) is
defined such that for all p, q ∈ Q and r ∈ (Σ ∪ ΓV)∗, q ∈ δ∗(p, r) if and only if there exists a
path in A from p to q with the label r.

Secondly, let SVars (A) be the set of x ∈ V such that `x or ax appears in A. A ref-word
r ∈ R(A) is valid if for every x ∈ SVars (A), |r|`x = |r|ax = 1, and `x always occurs to the
left of ax. Then Ref(A), Ref(A,w) and JAK are defined analogously to regex formulas. We
denote the set of all vset-automata using VAset. As for regex formulas, a vset-automaton
A ∈ VAset is called functional if R(A) = Ref(A).

I Example 2.2. We define the functional regex formula α := Σ∗ · x{(wine) ∨ (cake)} · Σ∗.
We also define the functional vset-automaton A as follows:

Σ
`x

w

i n
e

c

a k
e

ax

Σ

For all w ∈ Σ∗, we have that JαK(w) = JAK(w) contains exactly those ({x}, w)-tuples µ that
have wµ(x) = wine or wµ(x) = cake.

2.1.2 Spanner Algebra
We now introduce an algebra on spanners in order to construct more complex spanners.

I Definition 2.3. Two spanners P1 and P2 are compatible if SVars (P1) = SVars (P2). We
define the following algebraic operators for all spanners P, P1, P2:

If P1 and P2 are compatible, their union (P1 ∪ P2) and their difference (P1 \ P2) are
defined by (P1 ∪ P2)(w) := P1(w) ∪ P2(w) and (P1 \ P2)(w) := P1(w) \ P2(w).
The projection πY P for Y ⊆ SVars (P) is defined by πY P (w) := P |Y (w), where P |Y (w)
is the restriction of all µ ∈ P (w) to Y .
The natural join P1 ./ P2 is obtained by defining each (P1 ./ P2)(w) as the set of all
(V1 ∪ V2, w)-tuples µ for which there exists µ1 ∈ P1(w) and µ2 ∈ P2(w) with µ|V1(w) =
µ1(w) and µ|V2(w) = µ2(w), where Vi := SVars (Pi) for i ∈ {1, 2}.
For every k-ary relation R ⊆ (Σ∗)k and variables x1, . . . , xk ∈ SVars (P), the selection
ξRx1...xk

P is defined by ξRx1...xk
P (w) := {µ ∈ P (w) | (wµ(x1), . . . , wµ(xk)) ∈ R} for w ∈ Σ∗.

Let SVars (P1 ∪ P2) := SVars (P1 \ P2) := SVars (P1) = SVars (P2), SVars (πY P) := Y ,
SVars (P1 ./ P2) := SVars (P1) ∪ SVars (P2), and SVars

(
ξRx1...xk

)
:= SVars (P).

ICDT 2020

11:6 Dynamic Complexity of Document Spanners

Note that the relations R in the selection are usually infinite; and they are never considered
part of the input.

Let O be a spanner algebra and let C be a class of primitive spanner representations, then
we use CO to denote the set of all spanner representations that can be constructed by repeated
combinations of the symbols for the operators from O with the spanner representation from C.
We denote the closure of JCK under the spanner operators O as JCOK.

I Example 2.4. Let α1 := Σ∗x{Σ∗}Σ∗y{Σ∗}Σ∗ and α2 := Σ∗ ·x{(wine)∨(cake)}·Σ∗ (recall
Example 2.2). We combine the two regex formulas into a core spanner P := πxξ

=
x,y(α1 ./ α2).

Then JP K(w) contains all ({x}, w)-tuples µ such that wµ(x) is an occurrence of wine or cake
in w that is followed by another occurrence of the same word.

Like Fagin et al. [4], we are mostly concerned with string equality selections ξ=. Follow-
ing [4, 18], we focus on the class of regular spanners JRGXregK, the class of core spanners2
JRGXcoreK and the class of generalized core spanners JRGXcore∪{\}K, where reg := {π,∪, ./}
and core := {π, ξ=,∪, ./}. As shown in [4], we have

JRGXregK = JVAreg
set K = JVAsetK ⊂ JRGXcoreK = JVAcore

set K ⊂ JRGXcore∪{\}K = JVAcore∪{\}
set K.

In other words, there is a proper hierarchy of regular, core, and generalized core spanners;
and for each of the classes, we can choose regex formulas or vset-automata as primitive
spanner representations. As shown in [6], functional vset-automata have the same expressive
power as vset-automata in general. The size difference can be exponential, but this does not
matter for the purpose of the present paper.

2.2 Spanner Logic
In this section, we define SpLog (spanner logic) and relate it to spanners. SpLog is a fragment
of ECreg, the existential theory of concatenation with regular constraints (a logic that is built
around the concatenation operator). It was introduced by Freydenberger [6] and has the
same expressive power as core spanners; and conversions between both models are possible
in polynomial time. To define SpLog, we first introduce word equations.

A pattern α is a word from (Σ ∪ Ξ)∗. In other words, patterns may contain variables and
terminal symbol. A word equation is a pair of patterns (ηL, ηR), which are called the left and
right side of the equation, respectively. We usually write a word equation as ηL =̇ ηR. The
set of all variables in a pattern α is denoted by var(α). This is extended to word equations
η = (ηL, ηR) by var(η) := var(ηL) ∪ var(ηR).

A pattern substitution is a morphism σ : (Σ ∪ Ξ)∗ → Σ∗ such that σ(a) = a holds for all
a ∈ Σ. As every substitution σ is a morphism, we have σ(α1 · α2) = σ(α1) · σ(α2) for all
patterns α1 and α2. Hence, to define σ, it suffices to define σ(x) ∈ Σ∗ for all x ∈ Ξ.

The main idea of SpLog is choosing a special main variable W that shall correspond to
the input string of a spanner. SpLog is then an existential-positive logic over words, where
the atoms are regular predicates or word equations of the form W =̇ ηR. Formally, we define
syntax and semantics as follows:

I Definition 2.5. Let W ∈ Ξ. Then SpLog(W), the set of all SpLog-formulas with main
variable W, is defined recursively as containing the following formulas:
B1. (W =̇ ηR) for every ηR ∈ (Ξ ∪ Σ)∗.

2 As this class captures the core functionality of SystemT.

D.D. Freydenberger and S.M. Thompson 11:7

R1. (ϕ1 ∧ ϕ2) for all ϕ1, ϕ2 ∈ SpLog(W).
R2. (ϕ1 ∨ ϕ2) for all ϕ1, ϕ2 ∈ SpLog(W) with free(ϕ1) = free(ϕ2).
R3. ∃x : ϕ for all ϕ ∈ SpLog(W) and x ∈ free(ϕ) \ {W}.
R4. (ϕ ∧ CA(x)) for every ϕ ∈ SpLog(W), every x ∈ free(ϕ), and every NFA A.

Let free(ϕ) be free(η) := var(η), free(ϕ1 ∧ ϕ2) := free(ϕ1 ∨ ϕ2) := free(ϕ1) ∪ free(ϕ2),
free(∃x : ϕ) := free(ϕ) \ {x}, and free(ϕ ∧ CA(x)) := free(ϕ).

For every pattern substitution σ and every ϕ ∈ SpLog(W), we define σ |= ϕ as follows:
σ |= (W =̇ ηR) if σ(W) = σ(ηR),
σ |= (ϕ1 ∧ ϕ2) if σ |= ϕ1 and σ |= ϕ2; and σ |= (ϕ1 ∨ ϕ2) is defined analogously,
σ |= ∃x : ϕ if σ x

w
|= ϕ for some w ∈ Σ∗, where σ x

w
(x) := w and σ x

w
(y) = σ(y) if y 6= x,

σ |= (ϕ ∧ CA(x)) if σ |= ϕ and σ(x) ∈ L(A).

Let SpLog be the union of all SpLog(W) with W ∈ Ξ. We add and omit parentheses, as
long as the meaning remains unambiguous. We also allow constraints of the form Cα(x),
where α is a regular expression. For readability, we use ϕ(W;x1, x2 . . . xk) to express that the
SpLog-formula ϕ has the main variable W and free variables {x1, x2 . . . xk}. As a convention,
assume that no word equation (W =̇ ηR) has the main variable W occur in the right side;
that is, that |ηR|W = 0 holds.

I Example 2.6. For the SpLog-formula ϕ(W) := ∃x :
(
(W =̇ xxx)∧Cab∗(x)

)
, we have σ |= ϕ

if and only if σ(W) = www for some w ∈ ab∗.

We also extend the definition of SpLog to SpLog¬, which we call SpLog with negation.

I Definition 2.7. Let W ∈ Ξ. Then SpLog¬(W), the set of SpLog¬-formulas with the
main variable W, is defined by extending Definition 2.5 with the additional rule that if
ϕ ∈ SpLog¬(W), then (¬ϕ) ∈ SpLog¬(W), with free(ϕ) = free(¬ϕ). We define σ |= ¬ϕ as:

σ(x) v σ(W) for all x ∈ free(ϕ), and
σ |= ϕ does not hold.

To compare the expressive power of SpLog and document spanners, we need to overcome
the difficulty that the former reasons about words, while the latter reason over positions in an
input word. To this end, we use the following notion that was introduced by Freydenberger
and Holldack [7] in the context of ECreg.

I Definition 2.8. Let ϕ ∈ SpLog with free(ϕ) := {W} ∪ {xp, xc | x ∈ SVars (P)}. Let P be
a spanner. Let JϕK(w) denote the set of all σ such that σ |= ϕ and σ(W) = w. We then say
that ϕ realizes P if for all w ∈ Σ∗, we have σ ∈ JϕK(w) if and only if µ ∈ P (w) where for
each x ∈ SVars (P) and [i, j〉 := µ(x), both σ(xp) = w[1,i〉 and σ(xc) = w[i,j〉.

Intuitively, this definition uses two main ideas: Firstly, the spanner’s input word w is
represented by the main variable W. Secondly, every spanner variable x is represented by
two SpLog-variables xp and xc, such that in each (V,w)-tuple µ, we have that xc contains
the actual content wµ(x) and xp contains the prefix of w before the start of µ(x).

As shown in Section 4.1 of [6], under this lens, SpLog has exactly the same expressive
power as JRGXcoreK (the core spanners), and SpLog¬ exactly the same as JRGXcore∪{\}K
(the generalized core spanners).

One of the central questions in [4, 6] is which relations R can be added to spanners or
SpLog without increasing the expressive power (using ξR or a new constraint symbol for R,
respectively). This is reflected in the notion of selectable relations. A relation R ⊆ (Σ∗)k
is called SpLog-selectable if for every ϕ ∈ SpLog(W) and every sequence ~x = (x1, . . . , xk) of

ICDT 2020

11:8 Dynamic Complexity of Document Spanners

variables with x1, . . . , xk ∈ free(ϕ)\{W}, there is a SpLog-formula ϕR~x with free(ϕ) = free(ϕR~x),
and σ |= ϕR~x if and only if σ |= ϕ and (σ(x1), . . . , σ(xk)) ∈ R. This is equivalent to the
analogously defined notion of core spanner selectable relations, see Section 5.1 of [6] for
details. We shall use selectability both in the way to our main result (namely, in Lemma 3.12)
and for further observations in Section 4.

2.3 Dynamic Complexity
Our definitions of dynamic complexity are based on the setting of dynamic formal languages
as described by Gelade, Marquardt, and Schwentick [10]. In this setting, strings are modeled
by a relational structure. Insertions and deletions of symbols can be performed on this
structure and (auxiliary) relations are maintained by logic formulas, called update formulas.
We extend this with a predetermined relation which is maintained to hold the result of
some spanner performed on the current word. The idea of dynamic complexity, which was
introduced by Patnaik and Immerman [16], is to have dynamic descriptive complexity classes
based upon the logic needed to maintain a relation, or in our case a spanner. We now
formally define these concepts.

Let Σ be a fixed and finite alphabet of terminal symbols. We represent words using a
word-structure. A word-structure has a fixed and finite set known as the domain D := [n+ 1]
as well as a 2-ary order relation < on D. We use the shorthands x ≤ y for (x < y) ∨ (x =̇ y).
We have in our word-structure the constant $ which is interpreted by the element n+ 1, the
<-maximal element of D. This <-maximal element marks the end of the word structure
and is required for dynamic spanners, which are defined later. For each symbol ζ ∈ Σ the
word-structure has a unary relation Rζ(i) and there is at most one ζ ∈ Σ such that Rζ(i) for
i ∈ [n]. If we have Rζ(i) then we write w(i) = ζ, otherwise we write w(i) = ε. If w(i) 6= ε for
some i ∈ D, then we call i a symbol-element.

Given a word-structure W, the word that W represents is denoted by word(W) and this
is defined as word(W) := w(1) ·w(2) · · ·w(n). Since for some j ∈ D it could be that w(j) = ε,
it follows that the length of the word word(W) is likely to be less than n. Let w := word(W),
we write w[i, j] to represent the subword w[i, j] := w(i) ·w(i+ 1) · · ·w(j) where i, j ∈ D such
that i < j.

We now define the set of abstract updates ∆ := {insζ | ζ ∈ Σ}∪{reset}. A concrete update
is insζ(i) or reset(i), for some i ∈ D \{$} and ζ ∈ Σ. The difference between abstract updates
and concrete updates is that concrete updates can be performed on a word-structure. Given
a word-structure with a domain of size n, we use ∆n to represent the set of possible concrete
updates. For some ∂ ∈ ∆n, we denote the word-structure W after an update is performed
by ∂(W) and this is defined as:

If ∂ = insζ(i), then Rζ(i) is true and Rζ′(i) is false for all ζ ′ ∈ Σ where ζ 6= ζ ′.
If ∂ = reset(i) then Rζ(i) is false for all ζ ∈ Σ.

All other elements keep the symbol they had before the update. For k ≥ 1, let
∂∗ := ∂1, ∂2, . . . ∂k be a sequence of updates. We use ∂∗(W) as a short hand to repre-
sent ∂k(. . . (∂2(∂1(W))) . . .). We place the restriction that updates must change the string.
We do not allow reset(i) if w(i) = ε and we do not allow insζ(i) if w(i) = ζ.

I Example 2.9. Given a word-structure W over the alphabet Σ := {a, b} with domain
D = [6], where 6 = $. If we have that Ra = {2, 4} and Rb := {5}, it follows that
word(W) = aab. Performing the operation insb(1) would give us an updated word of baab.
Say if we then perform reset(4) on our new word structure, we would have the word bab.

D.D. Freydenberger and S.M. Thompson 11:9

We define the auxiliary structure Waux as a set of relations over the domain of W. A
program state S := (W,Waux) is a word-structure and an auxiliary structure. An update
program ~P is a finite set of update formulas, which are of the form φRop(y;x1, . . . , xk). We have
an update formula for each R ∈ Waux and op ∈ ∆. An update, op(i), performed on S yields
S ′ = (∂(W),W ′aux) where all relations R′ ∈ W ′aux are defined by R′ := {~j | S̄ |= φRop(i;~j)},
where ~j is a k-tuple (where k is the arity of R) and where S̄ := (∂(W),Waux).

We use w to denote word(W) for some word structure W and we use w′ for word(∂(W))
where ∂ ∈ ∆n is some update performed on W.

Given some x ∈ D where w(x) 6= ε, we write that posw(x) = 1 if for all x′ ∈ D where
x′ < x we have that w(x′) = ε. Let z, y be elements from the domain such that z < y and
w(z) 6= ε and w(y) 6= ε. If for all x ∈ D where z < x < y we have that w(x) = ε then
posw(y) = posw(z) + 1. We write x w y if and only if posw(y) = posw(x) + 1. If it is not
the case that x w y then we write x 6 w y.

For every spanner P with SVars (P) := {x1, x2 . . . xk} and every word-structure W,
the spanner relation RP is a 2k-ary relation over D where each spanner variable xi is
represented by two components xoi and xci . We obtain RP on W by converting each
µ ∈ P (w) into a 2k-tuple (xo1, xc1, xo2, xc2 . . . xok, xck), where for each i ∈ [k], we have µ(xi) =
[posw(xoi), posw(xci)〉. The only exception is if µ(xi) = [j, k〉 and k > |w| then xci = $ for such
a tuple (xo1, xc1, xo2, xc2 . . . xok, xck). In Example 2.11 we give a spanner represented by a regex
formula and show the corresponding spanner-relation on a word-structure.

I Definition 2.10. A dynamic program is a triple, containing:
~P - an update program over (W,Waux).
INIT - a first-order initialization program.
RP ∈ Waux - a designated spanner-relation.

For each R ∈ Waux, we have some ψR(~j) ∈ INIT which defines the initial tuples of R
(before any updates to the input structure occur). Note that ~j is a k-tuple where the arity of
R is k. For our work ψR is a first-order logic formula.

A dynamic program maintains a spanner P if we have that RP ∈ Waux always corresponds
to P (∂∗(W)). We can then extend this to saying that we maintain a relation if there is
a designated R ∈ Waux which is always equivalent to some relation where the relation is
defined in terms of the input word.

I Example 2.11. Consider the regex formula α := Σ∗ ·x{a · b} ·Σ∗ where a, b ∈ Σ and x ∈ Ξ.
Now consider the following word-structure:

1 2 3 4 5 6 $
a ε b ε a ε ε

Note that the top row is the elements of the domain in order, and the bottom row is the
corresponding symbols. If we maintain the spanner relation of α, given the word-structure
above, we have the relation RP ∈ Waux such that RP := {(1, 5)}. Now assume we perform
the update insb(6). The word-structure is now in the following state:

1 2 3 4 5 6 $
a ε b ε a b ε

It must be that φRPinsb
(6;x, y) updates the relation RP to {(1, 5), (5, $)} for us to correctly

maintain the spanner.

ICDT 2020

11:10 Dynamic Complexity of Document Spanners

I Definition 2.12. DynFO is the class of all relations which can be maintained by update
formulas which are defined using first-order logic. DynPROP is a subclass of DynFO where
all the update formulas are quantifier-free.

A first-order formula is a conjunctive query, or CQ for short, if it is built up from atomic
formulae, conjunction and existential quantification. We also have unions of conjunctive
queries, or UCQ for short, which allows for the finite disjunction of conjunctive queries.
We therefore have the classes DynCQ and DynUCQ which use conjunctive queries and unions
of conjunctive queries as update formulas respectively.

For this work, we assume that the input structure is initially empty and that every
auxiliary relation is initialized by some first-order initialization. This is to allow us to use the
result from Zeume and Schwentick [21] that DynUCQ = DynCQ. However, in our work we
only require a very weak form of initialization and hence if DynUCQ is sufficient, one could
define the precise class needed for the precomputation. We do not do this as the dynamic
complexity class needed to maintain a spanner is the main focus of this work3.

For the proofs in the present paper, one could change the setting by allowing the insertion
of unmarked nodes at any point of the word-structure (with an update to the <-relation),
given that the word is non-empty. The auxiliary relations in our proofs do not operate on
unmarked nodes and do not need to be updated after this. In the same way, we can remove
unmarked nodes. However, the present paper does not look at this setting.

3 Core Spanners are in DynCQ

In this section, we first look at the dynamic complexity of regular spanners. We show that
any regular spanner can be maintained by a DynPROP program. We then turn our attention
to the main result of this paper, that any core spanner can be maintained by a DynCQ
program. In doing so, we also show that DynCQ is at least as expressive as SpLog. We then
extend this result to show that DynFO is at least as powerful as SpLog with negation, and
therefore any generalized core spanner can be maintained in DynFO.

I Proposition 3.1. Regular spanners can be maintained in DynPROP.

Proof. Due to the work done by Fagin et al. [4] we can assume that our vset-automaton
is a so called vset-path union. We define a vset-path as an ordered sequence of regular
deterministic finite automata A1, A2, . . .An for some n ∈ N. Each automaton Ai is of the
form (Q, qo, F, δ) where Q is the set of states, q0 ∈ Q is the initial state, F is the set of
accepting states, and δ is the transition function of the form δ : Q×Σ→ Q. We have the extra
assumption that each f ∈ F only has incoming transitions. All automata, A1, A2, . . . An
share the same set of input symbols Σ.

Let A be a vset-path. In A, each automata Ai where 1 < i ≤ n, the initial state for Ai
has incoming transitions from each accepting state from the automaton Ai−1. These extra
transitions between the sequence of automata are labeled, `x or ax where x ∈ SVars (A). We
treat the vset-path as a regular vset-automaton and all semantics follow from the definitions
in Section 2.1.1. We can assume that A is functional [6].

Any vset-automaton can be represented as a union of vset-paths [4]. Therefore to prove
that any regular spanner can be maintained in DynPROP, it is sufficient to prove that we can
maintain a spanner represented by a vset-path, since union can be simulated via disjunction.

3 As helpfully pointed out by one of the anonymous reviewers of this paper.

D.D. Freydenberger and S.M. Thompson 11:11

Let A be a vset-path. From Gelade et al. [10], we know that the following relations can
be maintained in DynPROP:

For any pair of states p, q ∈ Q, Rp,q := {(i, j) | i < j and δ∗(p, w[i+ 1, j − 1]) = q}.
For each state q, RIq := {i | δ∗(q0, w[1, j − 1]) = q}.
For each state p, RFp := {j | δ∗(p, [i+ 1, n]) ∈ F}.

We maintain these relations for the vset-path. Some work is needed to deal with the
transitions labeled `x and ax. Let Ai and Ai+1 be two sub-automata such that 1 ≤ i < n,
where n is the number of sub-automata. Let si and si+1 be the starting states for automata
Ai and Ai+1 respectively. Likewise, let Fi and Fi+1 be the sets of accepting states of Ai and
Ai+1 respectively. The intuition is that if Rp,fi(x, y) where fi ∈ Fi holds, then so should
Rp,si+1(x, y) since the transition from an accepting state of Ai to the starting state of Ai+1
is `x or ax. To achieve this, we have the following update formula for Rp,si+1

φ
Rp,si+1
∂ (u;x, y) :=

∨
f∈Fi

φ
Rp,f
∂ (u;x, y).

We do the analogous for RIq and RFp . If RIfi(x) holds for any fi ∈ Fi, then so should
RIsi+1

(x). Similarly, if RFsi+1
(x) holds, then so should RFfi(x) for all fi ∈ Fi. To achieve this,

we proceed analogously to what was done for φRp,si+1
∂ (u;x, y). We also maintain the 0-ary

relation ACC to say whether the word-structure is a member of the language of the vset-path.
We will now give two useful subformulas

ψk
′

:=
∧

1≤i≤k′

(∨
ζ∈Σ

(
Rζ(xoi) ∧R′

I
si(x

o
i) ∧

∨
p∈Q,

δ(si,ζ)=p

(
R′p,si+1

(xoi , xci) ∧
∨
ζ2∈Σ

Rζ2(xci)
)))

and

ψ$:=
∨
ζ∈Σ

(
Rζ(xok) ∧R′Isk(xok) ∧R′IFk(xck) ∧ (xck =̇ $)

)
.

We now give the update formula to maintain a vset-path spanner A with variables
SVars (A) := {x1, x2, . . . , xk}

φR
A

∂ (u;xo1, xc1, . . . , xok, xck) := φACC
∂ (u) ∧

(
ψk ∨ (ψk−1 ∧ ψ$)

)
.

Note that, without loss of generality, R′p,q(x, y) is used as a shorthand for φRp,q∂ (u;x, y). J

Since Gelade et al. [10] proved that DynPROP maintains exactly the regular languages,
it is somewhat unsurprising that we can extend that result to regular spanners. Some work
is needed in order to maintain the relation of the spanner, which is why a formal proof
of Proposition 3.1 is given.

I Definition 3.2. The next symbol relation is defined as RNext := {(x, y) ∈ D2 | x w y}.

As stated in Section 2.3, it is known that DynCQ = DynUCQ and therefore to show that
a relation can be maintained in DynCQ, it is sufficient to show that the relation can be
maintained with UCQ update formulas. We use this to prove many of our results.

I Lemma 3.3. The next symbol relation can be maintained in DynCQ.

ICDT 2020

11:12 Dynamic Complexity of Document Spanners

To prove Lemma 3.3, we maintain the relations Rfirst := {x ∈ D | posw(x) = 1} and
Rlast := {x ∈ D | posw(y) = |w|}. Note that these relations would be undefined for an empty
input structure (because posw(x) is undefined). Hence we have that if |w| = 0 then x ∈ Rfirst
if and only if x = $, and y ∈ Rlast if and only if y is the <-minimal element. This requires
the initialization of Rfirst := {$} and Rlast := {1}. This is the only initialization required
in our work, however the stated first-order initialization of auxiliary relations is needed to
ensure DynUCQ = DynCQ.

I Example 3.4. Consider the following word-structure:

1 2 3 4 5 6 $
ε a b ε b ε ε

We have that Rfirst = {2} and Rlast = {5} and RNext = {(2, 3), (3, 5)}.

We will now give an idea for the proof of Lemma 3.3. Let u be the node which is being
updated. For insertion, if x w y and x < u < y then x w′ u w′ y. If Rfirst(x) and u < x,
then R′first(u) and u w′ x. The analogous is done if Rlast(x) and u > x. For deletion, if
x w u w y then x w′ y. The full proof also looks at when x w y and x w′ y (for
example when u < x or when u > y). See the full version of the paper for the proof [9].

I Definition 3.5. The equal substring relation, Req, is the set of 4-tuples (xo, xc, yo, yc) such
that w[xo, xc] = w[yo, yc], xc < yo, and w[z] 6= ε for all z ∈ {xo, xc, yo, yc}.

Less formally, we have that if (xo, xc, yo, yc) ∈ Req then the word w[xo, xc] is equal to the
word w[yo, yc]. For our uses, we do not want these subwords to overlap, hence the constraint
xc < yo. The reason for this will become clear later on when we look at maintaining pattern
languages. We also wish that each tuple represents a unique pair of subwords, therefore we
have that xo, xc, yo, and yc each have symbols associated to them.

I Example 3.6. Consider the following word-structure:

1 2 3 4 5 6 7 8 9 10 $
a ε ε b a ε b ε a b ε

The equal substring relation for this structure is Req = {(1, 1, 5, 5), (1, 1, 9, 9), (4, 4, 7, 7),
(4, 4, 10, 10), (5, 5, 9, 9), (7, 7, 10, 10), (1, 4, 5, 7), (1, 4, 9, 10), (4, 5, 7, 9), (5, 7, 9, 10)}.

Although w[3, 5] = w[7, 9], this does not imply (3, 5, 7, 9) ∈ Req because w[3] = ε. We
also do not have (9, 10, 5, 7) ∈ Req because 10 > 5.

I Lemma 3.7. The equal substring relation can be maintained in DynCQ.

We now give a proof idea for Lemma 3.7. There are four main cases for the tuple (x1, y1, x2, y2)
we examine in the full proof.

Case 1: w[x1, y1] = w[x2, y2] and w′[x1, y1] 6= w′[x2, y2].
Case 2: w[x1, y1] = w[x2, y2] and w′[x1, y1] = w′[x2, y2].
Case 3: w[x1, y1] 6= w[x2, y2] and w′[x1, y1] = w′[x2, y2].
Case 4: w[x1, y1] 6= w[x2, y2] and w′[x1, y1] 6= w′[x2, y2].

Where we assume that y1 < x2. One can see that the main case out of these four is
Case 3. One of the interesting sub-cases of Case 3 is illustrated in Figure 1. Here, one can
think of the new symbol at node u as a “bridge” between the two equal substrings w[x1, v1]
and w[x2, v3] (which are the word w1) and the equal substrings w[v2, y1] and w[v4, y2] (which
are the word w2). Hence, after the update we have that w′[x1, y1] = w′[x2, y2] even though

D.D. Freydenberger and S.M. Thompson 11:13

u

aw1 w2

x1 y1 v

aw1 w2

x2 y2v1 v2 v3 v4

Figure 1 Word after the insertion of the symbol a at node u..

w[x1, y1] 6= w[x2, y2] (under the assumptions that w(v) = a, v1 w′ u w′ v2 and that
v3 w′ v w′ v4). After examining a case like this, one would need to write an update
formula to realize it.

The proof of Lemma 3.7 looks through all the cases and produces a UCQ update formula
for each. These subformulae are joined together by disjunction to give us an update formula
φ
Req
∂ (u) which is in DynUCQ, and hence we have proven that we can maintain the equal

substring relation in DynCQ. See the full version for the proof [9].
Lemma 3.7 is a central part of the proof of our main result, and some may consider

maintaining this relation also to be the most technical aspect of the present paper. This
relation will be the main feature of a construction to maintain so-called pattern languages,
which we then extend with regular constraints to maintain any relations selectable by SpLog.

Given a pattern α ∈ (Σ ∪ Ξ)+, we define the non-erasing language it generates as
LNE,Σ(α) := {σ(α) | σ : (Σ∪Ξ)+ → Σ+ where σ is a substitution}. Given the same pattern α,
we have LE,Σ(α) := {σ(α) | σ : (Σ∪Ξ)+ → Σ∗ where σ is a substitution} which is the erasing
language α generates. Pattern languages are not only used as a part of word equations but
also as language generators (see [7] for more details, in particular regarding their relation to
document spanners).

I Example 3.8. Consider α := axxb where a, b ∈ Σ and x ∈ Ξ. Then ab ∈ LE,Σ(α) with
σ(x) = ε, but ab /∈ LNE,Σ(α). We can also see that ababab ∈ LNE,Σ(α) and ababab ∈ LE,Σ(α)
using σ(x) = ba.

We take the definition of maintaining a language from [10]. We can maintain a language
L if a dynamic program maintains a 0-ary relation which is true if and only if word(W) ∈ L.

I Lemma 3.9. Every non-erasing pattern language can be maintained in DynCQ.

Proof. To prove this lemma, we give a way to symbolically construct an update formula
to maintain a 0-ary relation P which updates to true if and only if w′ ∈ LNE,Σ(α) for any
specified α ∈ (Σ ∪ Ξ)+. Let |α| be the length of the pattern α. Let αi denote the ith symbol
(from Ξ or Σ) of the pattern α where 1 ≤ i ≤ |α|. We give the construction in Algorithm 1.

Note that occurrences of R′Next and R′eq in Algorithm 1 are the relations correct after the
update. To achieve this, we can replace occurrences of R′Next(. . .) with φRNext

∂ (. . .), where ∂ is
the update for which the update formula of P is being constructed. The equivalent is done
for Req. J

I Example 3.10. Let α := axbx be a pattern such that a, b ∈ Σ and x ∈ Ξ. As stated, we
wish to maintain a 0-ary relation P such that P is true if and only if w′ ∈ LNE,Σ(α) where
w′ is our word after some update.

α1 = a: therefore α1 ∈ Σ and hence we have ω1 := Ra(t1) ∧R′first(t1).
α2 = x: therefore α2 ∈ Ξ therefore we have ω2 := R′Next(t1, x2) ∧ (x2 ≤ t2) ∧ ω1.
α3 = b: therefore α3 ∈ Σ and hence we have ω3 := Rb(t3) ∧R′Next(t2, t3) ∧ ω2.
α4 = x and α4 = α2: therefore ω4 := R′Next(t3, x4) ∧ (x4 ≤ t4) ∧R′eq(x2, t2, x4, t4) ∧ ω3.

ICDT 2020

11:14 Dynamic Complexity of Document Spanners

Algorithm 1 Pattern Language Update Formula Construction.

Input: A pattern α ∈ (Σ ∪X)+.
Output: Update formulas φPinsζ (u) and φPreset(u).
If α1 ∈ Σ then ω1 := Rα1(t1) ∧R′first(t1);
If α1 ∈ Ξ then ω1 := (x1 ≤ t1) ∧R′first(x1);
for i := 2 to |α| do

if αi ∈ Σ then
ωi := Rαi(ti) ∧R′Next(ti−1, ti) ∧ ωi−1;

if αi ∈ Ξ then
if there exists j ∈ N where j < i such that αi = αj then

jmax := Largest j value such that j < i and αi = αj ;
ωi := R′Next(ti−1, xi) ∧ (xi ≤ ti) ∧R′eq(xjmax , tjmax , xi, ti) ∧ ωi−1;

else
ωi := R′Next(ti−1, xi) ∧ (xi ≤ ti) ∧ ωi−1;

ω :=
(
ω|α| ∧R′last(t|α|)

)
;

For every occurrence of some ti in ω, where i ≤ |α|, add ∃ti to the front of ω;
For every occurrence of some xi in ω add ∃xi to the front of ω;
φPinsζ (u) := ω; φPreset(u) := ω;

We rearrange the atoms in ω to help with readability, giving us:

ω := R′first(t1) ∧Ra(t1) ∧R′Next(t1, x2) ∧ (x2 ≤ t2) ∧R′Next(t2, t3) ∧Rb(t3)
∧ R′Next(t3, x4) ∧ (x4 ≤ t4) ∧ R′eq(x2, t2, x4, t4) ∧ R′last(t4).

Hence φP∂ (u) := ∃t1, t2, t3, t4, x2, x4 : (ω) which holds for a word-structure of the form:

. . . t1 x2 . . . t2 t3 x4 . . . t4 . . .

ε a . . . b . . . ε

We have that x2, t2, x4, t4 are in bold to demonstrate the fact that it must be that
w′[x2, t2] = w′[x4, t4] for φP∂ (u) to hold. Note that t1 may not be < −minimal and t4 may
not be < −maximal, but because R′first(t1) and R′last(t4) must hold, t1 and t4 are the first
and last symbol-elements respectively.

One side effect of Lemma 3.9 is that we get the dynamic complexity upper bounds of a
class of languages, the pattern languages. Pattern languages were not looked at in [10] and
hence this result extends what is known about the dynamic complexity of formal languages.

I Corollary 3.11. Every erasing pattern language can be maintained in DynCQ.

Proof. From Jiang et al. [11] it is known that every erasing pattern language is the finite
union of non-erasing pattern languages. Therefore, we can create 0-ary relations for each
non-erasing pattern language and join them with a disjunction. There is the case where
ε ∈ LE,Σ(α) which we can deal with using the following: ∃x : (Rfirst(x) ∧ (x =̇ $)). We can do
this because Rfirst = {$} whenever w = ε. J

Since we are able to maintain any erasing pattern language in DynCQ, we can extend
this result to word-equations in SpLog-formulas. Using this along with the fact that regular
languages can be maintained in DynPROP, we can conclude the following:

D.D. Freydenberger and S.M. Thompson 11:15

I Lemma 3.12. Any relation selectable in SpLog can be maintained in DynCQ.

Proof. We prove this lemma using structural induction with the recursive definition of a
SpLog formula, given in Definition 2.5.

B1. (W=̇ηR) for every ηR ∈ (Ξ∪Σ)∗: Since we are assuming that σ(W) ∈ Σ∗ and that ηR
does not contain W, we have that W =̇ ηR is equivalent to σ(W) ∈ LE,Σ(ηR). We have proven
in Corollary 3.11, that we can maintain a 0-ary relation which is true if and only if, given some
pattern α ∈ (Ξ∪Σ)∗, the word structure is currently a member of LE,Σ(α). According to the
construction which we gave in Lemma 3.9, given a variable x ∈ Ξ, where x = αi, we have
two variables xi, ti ∈ D such that the word w[xi, ti] represents σ(x) for some substitution σ.
Removing the existential quantifiers for xi and ti allows us to maintain the relation defined
by α.

R1. (ψ1 ∧ ψ2) for all ψ1, ψ2 ∈ SpLog(W): Under the assumption that we have update
formulas φψ1

∂ (u; ~v1) and φψ2
∂ (u; ~v2) for SpLog formulas ψ1 and ψ2 respectively, the update

formula for φψ1∧ψ2
∂ (u; ~v1 ∪ ~v2) is φψ1

∂ (u; ~v1) ∧ φψ2
∂ (u; ~v2).

R2. (ψ1 ∨ ψ2) for all ψ1, ψ2 ∈ SpLog(W) with free(ψ1) = free(ψ2): Assuming we have
update formulas φψ1

∂ (u;~v) and φψ2
∂ (u;~v) for SpLog formulas ψ1 and ψ2 respectively, the

update formula for φ(ψ1∨ψ2)
∂ (u;~v) is φψ1

∂ (u;~v) ∨ φψ2
∂ (u;~v).

R3. ∃x : ψ for all ψ ∈ SpLog(W) and x ∈ free(ψ)\{W}: If a variable x ∈ Ξ is existentially
quantified within the SpLog formula, then we existentially quantify the variables xi, ti ∈ D
where w[xi, ti] represents σ(x) for some substitution σ.

R4. (ψ ∧ CA(x)) for every ψ ∈ SpLog(W), every x ∈ free(ψ), and every NFA A: let
A := (Q, δ, s, F) be an NFA. We have that Q is a finite set of states, δ : Q× Σ→ Q is the
transition function, s is the initial state and F ⊆ Q is the set of accepting states. We denote
the reflexive and transitive closure of δ as δ∗ : Q × Σ∗ → Q. For regular constraints, we
maintain the relation RA := {(i, j) ∈ D2 | w[i, j] ∈ L(A)}

From Proposition 3.3 in Gelade, Marquardt, and Schwentick [10], we know that the
following relations can be maintained in DynPROP, and from [20] (Theorem 3.1.5, part b)
we know that DynPROP is a strict subclass of DynCQ. Hence we can maintain the following
in DynCQ:

Rp,q :={(i, j) ∈ D2 | i < j and δ∗(p, w[i+ 1, j − 1]) = q},
Iq :={j ∈ D | δ∗(s, w[1, j − 1]) = q},
Fp :={i ∈ D | δ∗(p, w[i+ 1, n] ∈ F}.

Where p, q ∈ Q. We also know, from [10], that we can maintain the 0-ary relation ACC,
which is true if and only if w′ ∈ L(A).

We maintain RA with φRA∂ (u;x, y) := ψRA1 ∨ ψRA2 ∨ ψRA3 ∨ ψRA4 where each ψRAi is a
subformula which we now define for separate cases. Note that R′(~x) is shorthand for φR∂ (u; ~x).
We define ψRA1 as

ψRA1 := ∃x2, y2 :
(
R′Next(x2, x) ∧R′Next(y, y1) ∧

∨
f∈F

(R′s,f (x2, y2)
)
.

Since Rp,q(x, y) refers to the substring from position x+1 to y−1, and we wish to examine
the string from position x to y, we look at R′s,f (x2, y2) where x2 w′ x and y w′ y2. If it
is indeed the case that x2 w′ x and y w′ y2 then w′[x2 + 1, y2 − 1] = w[x, y]. Therefore
R′s,f (x2, y2), for f ∈ F , is true for such x2 and y2 if and only if δ∗(s, w[x, y]) ∈ F which is
the desired behavior for this case. Note that ψRA1 fails if there doesn’t exist x2 such that

ICDT 2020

11:16 Dynamic Complexity of Document Spanners

x2 w′ x or there doesn’t exists y2 such that y w′ y2. This is dealt with using ψRA2 , ψRA3
and ψRA4 , which we explore next.

If R′last(y) then w′[x, y] = w′[x, n] where n = |D|. Therefore, we can use F ′s(x2) for some
x2 ∈ D where x2 w′ x and s is the initial state of the NFA, to see whether δ∗(s, w′[x, n]) ∈ F
and hence whether δ∗(s, w′[x, y]) ∈ F . To realize this behavior, we define ψRA2 as

ψRA2 := ∃x2 :
(
R′Next(x2, x) ∧R′last(y) ∧ F ′s(x2)

)
.

If R′first(x) then w′[1, y] = w′[x, y]. Therefore, we can use I ′f (y2) for some y2 ∈ D where
y w′ y2 and f ∈ F , to see whether δ∗(s, w′[1, y]) ∈ F and hence whether δ∗(s, w′[x, y]) ∈ F .
To realize this behavior, we define ψRA3 as

ψRA3 := ∃y2 :
(
R′Next(y, y2) ∧R′first(x) ∧

∨
f∈F

(I ′f (y2))
)
.

If R′first(x) and R′last(y) then w′[x, y] = w′ and therefore it follows that w′[x, y] ∈ L(A) if
and only if w′ ∈ L(A). We only need to see if ACC′ is true for this case. We realize this
behavior by defining ψRA4 as

ψRA4 := R′first(x) ∧R′last(y) ∧ ACC′.

To simulate (ψ ∧ CA(x)) for every ψ ∈ SpLog(W), every x ∈ free(ψ), and every NFA A

within DynCQ, we do the following; let φψ∂ (u;~v) be an update formula for ψ ∈ SpLog and
since for some σ(x), where x ∈ free(ψ), has xi, ti ∈ D associated with it, we can use
φψ∂ (u;~v) ∧ φRA∂ (u;xi, ti) which is true if and only if w′[xi, ti] ∈ L(A). J

Most of the work for this proof follows from Lemma 3.9 and Corollary 3.11. Extra work
is done in order to simulate regular constraints, although this follows on from the fact that
DynPROP maintains the regular languages [10].

I Theorem 3.13. Core spanners can be maintained in DynCQ.

Proof. Although maintaining the SpLog relation that realizes a spanner is not the same as
maintaining the spanner relation as defined in Section 2.3, the changes we need to make are
trivial. Let P be a spanner and let ψP be a SpLog formula that realizes P . We know that
free(ψP) = {xp, xc | x ∈ SVars (P)}, and for every x ∈ SVars (P) where [i, j〉 := µ(x), we have
both σ(xp) = w[1,i〉 and σ(xc) = w[i,j〉. Let RP be a relation that maintains the spanner P .
The only difference between update formulas that maintain P and update formulas that
maintain the relation SpLog selects which realizes P is that the two elements xop, xcp ∈ D that
are used to represent the SpLog variable xp ∈ Ξ are existentially quantified whereas the two
variables xoc , xcc ∈ D which represent xc ∈ Ξ are not. J

Theorem 3.13 shows us that DynCQ is at least as expressive as SpLog. We will use this
along with Proposition 4.1 to show that DynCQ is more expressive than core spanners. Given
that we can maintain any relation selectable in SpLog using DynCQ, it is no big surprise that
adding negation allows us to maintain SpLog¬ in DynFO.

I Lemma 3.14. Any relation selectable in SpLog¬ can be maintained in DynFO.

Proof. Let ψ ∈ SpLog(W) and let Rψ be the relation maintaining ψ where the update
formulas for Rψ are in CQ. The extra recursive rule allowing for (¬ψ) ∈ SpLog¬(W) can be
maintained by φR¬ψ∂ (u; ~x) = ¬φRψ∂ (u; ~x). J

D.D. Freydenberger and S.M. Thompson 11:17

As with Theorem 3.13, we can use the result from Lemma 3.14 along with Corollary 4.2
to show that DynFO is more expressive than SpLog¬.

I Theorem 3.15. Generalized core spanners can be maintained in DynFO.

Since SpLog¬ captures the generalized core spanners, it follows from Lemma 3.14 that any
generalized core spanner can be maintained in DynFO. In Section 4 we show that DynFO
is more expressive than SpLog¬, it therefore follows that DynFO is more expressive than
generalized core spanners.

4 Relations in SpLog and DynCQ

In this section, we examine the comparative expressive power of SpLog and DynCQ. Recall
that we defined the notion of SpLog-selectable relations at the end of Section 2.2. We now
define an analogous concept for DynCQ. For a relation R ⊆ (Σ∗)k, we define the corresponding
relation in the dynamic setting R̄ as the 2k-ary relation of all (x1, y1, . . . , xk, yk) ∈ D2k

such that (w[x1, y1], . . . , w[xk, yk]) ∈ R. We say that R is selectable in DynCQ if R̄ can be
maintained in DynCQ.

For example, the equal length relation is defined as Rlen := {(w1, w2) | |w1| = |w2|}. From
Fagin et al. [4] it is known that this relation is not selectable with core spanners. This
relation in the dynamic setting is R̄len = {(u1, u2, v1, v1) ∈ D4 | |w[u1, u2]| = |w[v1, v2]|}.

I Proposition 4.1. The equal length relation is selectable in DynCQ.

Proof. To maintain the equal length relation, we take the update formulas from Lemma 3.7
and omit any atoms relating to the symbol of an element of the domain D. We also remove
the constraint that the first subword must appear before the second. We also use R̄len in any
update formula, rather than Req. The only exception to omitting all atoms relating to the
symbol of an element, is to ensure that w[u1] 6= ε, w[u2] 6= ε, w[v1] 6= ε, and w[v2] 6= ε. J

While this allows us to separate the languages that are definable in SpLog from the ones
that can be maintained in DynCQ, we consider the following more wide-ranging example:

I Lemma 4.2. The language {w ∈ Σ∗ | |w| = 2n, n ≥ 0} is maintainable in DynCQ.

Proof. Let P be a 2-ary relation such that P (x, y) holds if and only if |w[x, y]| = 2n for
some n ∈ N. This can be maintained by having that P (x, y) holds if |w[x, y]| = 1 or if
there exists z1, z2 ∈ D such that P (x, z1), P (z2, y), R′Next(z1, z2) and that R̄len(x, z1, z2, y).
If we assume that |w[x, z1]| = 2n for some n ∈ N, which we do because we have the base
case of w[x, y] = a, and that |w[x, z1]| = |w[z2, y]|, then it follows that if R′Next(z1, z2) then
w[x, y] = w[x, z1] · w[z2, y] and therefore |w[x, y]| = 2|w[x, z1]| and hence |w[x, y]| = 2n+1.
We then have that |w| = 2n if ∃x, y :

(
R′first(x) ∧R′last(y) ∧ P ′(x, y)

)
. J

For every choice of Σ, this language is not expressible in SpLog¬ (and, hence, not in
SpLog). This is easily seen by considering the case that Σ is unary4. As shown in [7] for core
spanners and then in [18] for generalized core spanners, both classes collapse to exactly the
class of regular languages if |Σ| = 1. As the language of all words a2n is not regular, this
shows that even DynCQ can define languages that are not expressible in SpLog¬.

4 Larger alphabets then follow by observing that the class of SpLog¬-languages is trivially closed under
intersection with regular languages.

ICDT 2020

11:18 Dynamic Complexity of Document Spanners

Combining this with Theorem 3.13 and Theorem 3.15, we respectively conclude that
DynCQ is strictly more expressive than core spanners and that DynFO is strictly more
expressive than generalized core spanners.

As explained in Section 6 of [6], there are few inexpressibility results for SpLog that
generalize to non-unary alphabets (and basically none for SpLog¬), apart from straightforward
complexity observations that are not particularly illuminating. Nonetheless, Proposition 6.7
in [6] establishes that none of the following relations is SpLog-selectable:

I Proposition 4.3. The following relations are DynCQ-selectable but not SpLog-selectable:

Rnum(a) := {(w1, w2) | |w1|a = |w2|a} for a ∈ Σ,
Rperm := {(w1, w2) | |w1|a = |w2|a for all a ∈ Σ},
Rrev := {(w1, w2) | w2 = wR1 }, where wR1 is the reversal of w1,
R< := {(w1, w2) | |w1| < |w2|},

Rscatt := {(w1, w2) | w1 is a scattered subword of w2},

where w1 is a scattered subword of w2 if, for some n ≥ 1, there exist s1, . . . , sn, s̄0, . . . , s̄n ∈ Σ∗
such that w1 = s1 · · · sn and w2 = s̄0s1s̄1 · · · sns̄n.

Proof. The relations Rscatt, Rnum(a), and Rrev have case distinctions equivalent to the proof
of Lemma 3.7, therefore we give the overarching idea of the proof but without exploring
every case. See [9] for a full proof of Lemma 3.7.

Maintaining Rscatt: For insertion, we give three steps for this proof; inheritance, base case,
and an inductive step.
We have that if w[u1, u2] is a scattered subword of w[v1, v2] and u is outside of the
interval [u1, u2], then w′[u1, u2] remains a scattered subword of w′[v1, v2] and therefore
R′scatt(u1, u2, v1, v2) should hold. We call this step inheritance.
The base case is that given the update insζ(u) for some u ∈ D, if there exists v ∈ D such
that v1 ≤ v ≤ v2 and w(v) = w(u) = ζ, then it follows that w(u) is a scattered subword
of w[v1, v2] and therefore R′scatt(u, u, v1, v2) should hold.
For the inductive step, given that we have some update insζ(u), if w[u1, x1] is a scattered
subword of w[v1, x2] and w[x3, u2] is a scattered subword of w[x4, v2], it follows that
w[u1, u2] is a scattered subword of w[v1, v2] if x1 w′ u w′ x3 and w(u) is a scattered
subword of w[x2, x4]. Deletion is dealt with analogously, although without the base case.

Maintaining Rnum(a): We again give three steps; inheritance, the base case(s), and an
inductive step.
We have that if |w[u1, u2]|a = |w[v1, v2]|a and u is outside of the interval [u1, u2], then
|w′[u1, u2]|a = |w′[v1, v2]|a and therefore R′num(a)(u1, u2, v1, v2) should hold. We call this
step inheritance. We have that (u1, u2, v1, v2) is not inherited if u ∈ [u1, u2] or u ∈ [v1, v2],
but this should be dealt with by the inductive step.
To maintain Rnum(a), we have two base cases. Given the update insa(u), we have that
|w′(u)|a = |w′(v)|a if w′(v) = a.
For the inductive step, we have that if |w[u1, x1]|a = |w[v1, x2]|a and |w(u)|a = |w(v)|a
and |w[x3, u2]|a = |w[x4, v2]|a where x1 w′ u w′ x3 and x2 w′ v w′ x4, then
|w′[u1, u2]|a = |w′[v1, v2]|a. Dealing with deletion is analogous to insertion but without
the base case.

Maintaining Rrev: We can maintain this with a simple variation of the update formula which
maintains Req. Firstly, we remove the constraint that the first subword must appear
before the second. Then, whenever Req(·) is used as a subformula, one would need to

D.D. Freydenberger and S.M. Thompson 11:19

use Rrev(·) instead. The more involved aspect of altering the update formulas would be
to reverse the ordering of certain indices. Informally, check y w x instead of x w y

where necessary.
Maintaining Rperm: φRperm

∂ (u;u1, u2, v1, v2) :=
∧
ζ∈Σ

(
φ
Rnum(ζ)
∂ (u;u1, u2, v1, v2)

)
.

Maintaining R<:

φR<∂ (u;u1, u2, v1, v2) := ∃x1∃x2 :
(
Rlen(u1, u2, x1, x2)

∧ (x1 < v1) ∧ (v1 ≤ v2) ∧ (v2 < x2)
)
.

J

By Lemma 5.1 in [6], a k-ary relation R is SpLog-selectable if and only there is some SpLog-
formula ϕ(W;x1, . . . , xk) such that for all σ that satisfy σ(xi) v σ(W) for all i ∈ [k], we have
σ |= ϕ if and only if (σ(x1), . . . , σ(xk)) ∈ R. One can show with little effort that relations like
string inequality, the substring relation, or equality modulo a bounded Levenshtein-distance
are all SpLog-selectable (see Section 5.1 of [6]). By Lemma 3.12, we can directly use these
relations in constructions for DynCQ-definable languages and DynCQ-selectable relations.

I Example 4.4. For k ≥ 1 and w1, w2 ∈ Σ∗, we say that w1 is a k-scattered subword of w2 if
there exist s1, . . . , sk, s̄0, . . . , s̄k ∈ Σ∗ such that w1 = s1 · · · sk and w2 = s̄0s1s̄1 · · · sks̄k. This
relation is SpLog-selectable5, as demonstrated by the following SpLog-formula which uses
syntactic sugar from Section 5.1 of [6]:

ϕ(W;w1, w2) := ∃s1, . . . , sk, s̄0, . . . , s̄k :
(

(w1 =̇ s1 · · · sk) ∧ (w2 =̇ s̄0s1s̄1 · · · sks̄k)
)
.

Although one could show directly that the k-scattered subword relation is DynCQ-selectable,
using SpLog and Lemma 3.12 can avoid hand-waving.

We can even generalize this approach beyond SpLog. In the proof of Lemma 3.12, we use
the fact the every regular language is in DynCQ to maintain regular constraints for SpLog.
Analogously, we can extend SpLog with relation symbols for any DynCQ-sectable relation
and use the resulting logic for DynCQ. Of course, all this applies to SpLog¬ and DynFO.

5 Conclusions

From a document spanner point of view, the present paper establishes upper bounds for
maintaining the three most commonly examined classes of document spanners, namely
DynPROP for regular spanners, DynCQ for core spanners, and DynFO for generalized core
spanners. While the bounds for regular spanners and generalized core spanners are what one
might expect from related work, the DynCQ-bound for core spanners might be considered
surprising low (keeping in mind, of course, that it is still open whether DynCQ is less
expressive than DynFO).

By analyzing the proof of Lemma 3.12, the central construction of this main result, it
seems that the most important part of maintaining core spanners is updating the string
equality relation and the regular constraints. One big question for future work is whether
this might have any practical use for the evaluation of core spanners. Although some may
consider this unlikely, there is at least some possibility that some techniques might be useful.

5 Unlike a relation for unbounded scattered subword.

ICDT 2020

11:20 Dynamic Complexity of Document Spanners

In the present paper, we only examine updates that affect single letters. At least as far
as the main result is concerned, it should be possible to generalize this to cut and paste
operations, as they are commonly found in text editors. These other operations beyond
single letters are promising directions for further work.

From a dynamic complexity point of view, Section 4 describes how SpLog can be used as
a convenient tool that allows shorter proofs that languages can be maintained in DynCQ. One
consequence of this is that a large class of regular expressions with backreference operators
(see Section 5.3 of [6]) are in fact DynCQ-languages.

References
1 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-Delay

Enumeration for Nondeterministic Document Spanners. In Proceedings of ICDT 2019, pages
22:1–22:19, 2019.

2 Johannes Doleschal, Benny Kimelfeld, Wim Martens, Yoav Nahshon, and Frank Neven.
Split-Correctness in Information Extraction. In Proceedings of PODS 2019, pages 149–163,
2019.

3 Guozhu Dong, Jianwen Su, and Rodney Topor. Nonrecursive incremental evaluation of datalog
queries. Annals of Mathematics and Artificial Intelligence, 14(2-4):187–223, 1995.

4 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document Spanners:
A Formal Approach to Information Extraction. Journal of the ACM, 62(2):12, 2015.

5 Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and Domagoj
Vrgoc. Constant Delay Algorithms for Regular Document Spanners. In Proceedings of
PODS 2018, pages 165–177, 2018.

6 Dominik D. Freydenberger. A Logic for Document Spanners. Theory of Computing Systems,
63(7):1679–1754, 2019.

7 Dominik D. Freydenberger and Mario Holldack. Document Spanners: From Expressive Power
to Decision Problems. Theory of Computing Systems, 62(4):854–898, 2018.

8 Dominik D. Freydenberger, Benny Kimelfeld, and Liat Peterfreund. Joining Extractions of
Regular Expressions. In Proceedings of PODS 2018, pages 137–149, 2018.

9 Dominik D. Freydenberger and Sam M. Thompson. Dynamic Complexity of Document
Spanners, 2019. arXiv:1909.10869.

10 Wouter Gelade, Marcel Marquardt, and Thomas Schwentick. The dynamic complexity of
formal languages. ACM Transactions on Computational Logic, 13(3):19:1–19:36, 2012.

11 Tao Jiang, Efim Kinber, Arto Salomaa, Kai Salomaa, and Sheng Yu. Pattern languages with
and without erasing. International Journal of Computer Mathematics, 50(3-4):147–163, 1994.

12 Katja Losemann. Foundations of Regular Languages for Processing RDF and XML. PhD
thesis, University of Bayreuth, 2015. URL: https://epub.uni-bayreuth.de/2536/.

13 Francisco Maturana, Cristian Riveros, and Domagoj Vrgoc. Document Spanners for Extracting
Incomplete Information: Expressiveness and Complexity. In Proceedings of PODS 2018, pages
125–136, 2018.

14 Andrea Morciano, Martin Ugarte, and Stijn Vansummeren. Automata-Based Evaluation of
AQL queries. Technical report, Université Libre de Bruxelles, 2016.

15 Pablo Muñoz, Nils Vortmeier, and Thomas Zeume. Dynamic Graph Queries. In Proceedings
of ICDT 2016, pages 14:1–14:18, 2016.

16 Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic complexity class. Journal
of Computer and System Sciences, 55(2):199–209, 1997.

17 Liat Peterfreund, Dominik D. Freydenberger, Benny Kimelfeld, and Markus Kröll. Complexity
Bounds for Relational Algebra over Document Spanners. In Proceedings of PODS 2019, pages
320–334, 2019.

18 Liat Peterfreund, Balder ten Cate, Ronald Fagin, and Benny Kimelfeld. Recursive Programs
for Document Spanners. In Proceedings of ICDT 2019, pages 13:1–13:18, 2019.

http://arxiv.org/abs/1909.10869
https://epub.uni-bayreuth.de/2536/

D.D. Freydenberger and S.M. Thompson 11:21

19 Markus L. Schmid. Characterising REGEX Languages by Regular Languages Equipped with
Factor-Referencing. Information and Computation, 249:1–17, 2016.

20 Thomas Zeume. Small dynamic complexity classes. Springer, 2017.
21 Thomas Zeume and Thomas Schwentick. Dynamic conjunctive queries. Journal of Computer

and System Sciences, 88:3–26, 2017.

ICDT 2020

	Introduction
	Preliminaries
	Document Spanners and Spanner Algebra
	Primitive Spanner Representations
	Spanner Algebra

	Spanner Logic
	Dynamic Complexity

	Core Spanners are in DynCQ
	Relations in SpLog and DynCQ
	Conclusions

