
Coordination-Free Byzantine Replication with
Minimal Communication Costs
Jelle Hellings
Exploratory Systems Lab, Department of Computer Science, University of California, Davis,
Davis, CA 95616-8562, USA
jhellings@ucdavis.edu

Mohammad Sadoghi
Exploratory Systems Lab, Department of Computer Science, University of California, Davis,
Davis, CA 95616-8562, USA
msadoghi@ucdavis.edu

Abstract
State-of-the-art fault-tolerant and federated data management systems rely on fully-replicated
designs in which all participants have equivalent roles. Consequently, these systems have only limited
scalability and are ill-suited for high-performance data management. As an alternative, we propose
a hierarchical design in which a Byzantine cluster manages data, while an arbitrary number of
learners can reliable learn these updates and use the corresponding data.

To realize our design, we propose the delayed-replication algorithm, an efficient solution to
the Byzantine learner problem that is central to our design. The delayed-replication algorithm is
coordination-free, scalable, and has minimal communication cost for all participants involved. In
doing so, the delayed-broadcast algorithm opens the door to new high-performance fault-tolerant
and federated data management systems. To illustrate this, we show that the delayed-replication
algorithm is not only useful to support specialized learners, but can also be used to reduce the
overall communication cost of permissioned blockchains and to improve their storage scalability.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Information
systems → Distributed database transactions

Keywords and phrases Byzantine learner, coordination-free checkpoint protocol, delayed-replication,
information dispersal, consensus

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.17

1 Introduction

Recently saw the introduction of several blockchain-inspired database systems and blockchain
fabrics [5, 6, 24, 25, 54, 55]. At the same time, there is also a huge interest from public
and private sectors in blockchain technology (e.g., [7, 11, 13, 16, 18, 27, 29, 34, 35, 40, 41,
52, 55, 61, 62, 65, 73]). In each of these systems and use cases, blockchain technology is
used to provide fault-tolerant and federated data management: systems in which independent
participants (e.g., different companies) together manage a single common database and that
continuously provide reliable services even when some of the participants are compromised.
The interest in fault-tolerant and federated data management is easy explained by the huge
societal and economic impact of recent cyberattacks on data-based services [31, 56, 57, 58, 68],
and on the huge negative economic impact of bad data [23, 39, 64].

Blockchain techniques build upon traditional distributed consensus [38, 53]: both tra-
ditional techniques and their blockchain counterparts provide fault-tolerant and federated
data management via a fully-replicated design in which all participants (replicas) main-
tain a full copy of all data and participate in modifying this data. To do so, traditional
consensus – which are also used in permissioned blockchains in which the identities of all
participants are known – requires vast amounts of communication between all participants

© Jelle Hellings and Mohammad Sadoghi;
licensed under Creative Commons License CC-BY

23rd International Conference on Database Theory (ICDT 2020).
Editors: Carsten Lutz and Jean Christoph Jung; Article No. 17; pp. 17:1–17:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jhellings@ucdavis.edu
mailto:msadoghi@ucdavis.edu
https://doi.org/10.4230/LIPIcs.ICDT.2020.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Coordination-Free Byzantine Replication with Minimal Communication Costs

(e.g., [8, 9, 14, 15, 45, 46, 59, 69, 70]). Consequently, systems using traditional consensus
have difficulty scaling up to hundreds of participants. Techniques used in anonymous per-
missionless blockchains such as Bitcoin can effectively support thousands of participants,
however. Unfortunately, these blockchain techniques incur massive computational costs on all
participants, which has raised questions about the sustainability of the energy consumption
of these systems [21, 72]. Even with these computational costs, the performance of Bitcoin is
abysmal, as Bitcoin can only process 7 transactions per second [61].

We see the necessity of fault-tolerant and federated data management but – as outlined
above – we also believe that the current state-of-the-art techniques are too limited and lack
scalability. To combat these limitations, we believe there is a strong need for the development
of more refined scalable designs that provide fault-tolerant and federated data management.

1.1 Our Vision: Specializing for Read-only Workloads
In many practical distributed database and data processing systems, a distinction is made
between read-only workloads and update-workloads [1, 19, 20, 22, 32, 60, 70]. Typically,
read-only workloads are isolated to a single replica, whereas update-workloads are executed
by all replicas (e.g., via a commit protocol [30, 36, 67]). In most cases this improves scalability
significantly, as the majority of workloads are read-only and can be processed in parallel
by individual replicas. Unfortunately, such read-only single-replica optimizations cannot
be applied to state-of-the-art fault-tolerant and federated data management: fault-tolerant
systems need to assure validity of the result of every read-only query in the presence of
malicious replicas. These systems do so by executing every query at all replicas, after which
the issuer of the query can compare the query outcomes and determine which outcome is
valid (supported by a majority).

In many practical situations, workloads need access to the full history of all the data
managed or to large portions thereof. Examples of such workloads are analytics, data
provenance, machine learning, and data visualization. For data-hungry workloads, it makes
little sense to retrieve all data in an inefficient way via read-only queries. Furthermore,
these workloads are typically computational complex, ruling out their integration within
a fault-tolerant system. To enable these practical workloads, we propose an alternative
hierarchical design. This hierarchical design is sketched in Figure 1.

Read-only workloads

Updates
(e.g., write transactions)









ë

Malicious

2Analytics

2Data Provenance

2Machine Learning

2Visualization

Figure 1 Schematic overview of hierarchical fault-tolerant and federated data management. At
the core is a Byzantine cluster that manages and stores all data in a fault-tolerant manner. Some of
the replicas in this core can crash or be malicious. The managed data is used by many independent
read-only participants, e.g., for analytics, data provenance, machine learning, and visualization. To
do so, these participants do not need to partake in managing and storing the data, they only need
to reliably learn the data.

In our design, we propose that a Byzantine cluster of replicas (e.g., a permissioned
blockchain system) manages the data by coordinating data updates. As the cluster is Byzan-
tine fault-tolerant, it can be used to provide fault-tolerant and federated data management.

J. Hellings and M. Sadoghi 17:3

Dedicated learners, independent of the Byzantine cluster, can register themselves at the
Byzantine cluster to receive all data updates. These learners will receive the stream of
data updates made in the cluster and will receive these updates in an efficient and reliable
manner. On these learners, data-hungry and compute intensive read-only workloads (e.g.,
analytics, data provenance, machine learning, and data visualization) can be performed
efficiently without affecting the Byzantine cluster. Learners can also be deployed in trusted
environments close to end-users and act as read-only proxies. In this read-only proxy capacity,
learners provide end-users with high performance, low latency, read-only access to the data.
In this hierarchical design, learners cannot directly modify the data, but can still forward
data update requests to the Byzantine cluster. The Byzantine cluster can, in turn, assure
reliable processing of such updates.

1.2 The Need for the Byzantine Learner Problem
To enable the hierarchical design proposed in the previous section, we need to develop
techniques to reliably sent the data updates made by a Byzantine cluster to independent
learners – which we refer to as the Byzantine learner problem. In specific, our contributions
are as follows:
1. We formalize the Byzantine learner problem.
2. We demonstrate that the straightforward pull-based solution to this learning problem is

highly inefficient and enables several attacks.
3. To address the Byzantine learner problem, we propose the delayed-replication algorithm,

a coordination-free, push-based, scalable algorithm with minimal communication cost for
both the sending cluster and the receiving learner.

4. We provide three specialized variants of the delayed-replication algorithm, whose char-
acteristics are summarized in Figure 2. The basic variant does not use checksums and
can deal with clusters in which replicas can crash. We also provide a variant that uses
simple checksums to deal with Byzantine replicas that sent corrupted or otherwise invalid
messages. The final variant uses tree checksums to aid learners in discarding corrupted or
otherwise invalid messages with low computational costs. These tree checksums only add
minimal communication costs for all participants involved.

5. To further underline the strengths of the delayed-replication algorithm, we show that
the delayed-replication algorithm can be used to improve the design of permissioned
blockchain systems and other types of Byzantine clusters. First, we show how delayed-
replication techniques enables scalable shared storage designs for permissioned blockchain
systems, allowing them to turn away from wasteful state-of-the-art fully-replicated designs.
Then, we show how the delayed-replication algorithm can be used within permissioned
blockchain systems to reduce the communication complexity of coordinating data updates.

2 Formalizing the Byzantine Learner Problem

We model a system as a tuple (R,L), in which R is a Byzantine cluster of replicas that make
update decisions and L is a set of learners that want to learn these update decisions. We
assign each replica r ∈ R a unique identifier id(r) with 0 ≤ id(r) < |R|. We write B ⊆ R

to denote the set of Byzantine replicas that can behave in arbitrary, possibly coordinated
and malicious, manners; we write C ⊆ R to denote the set of crashed replicas that behave
correctly up till some point after which they stop participating; and we write G = R \ (B ∪ C)
to denote the set of non-faulty (good) replicas in R. We assume that non-Byzantine replicas

ICDT 2020

17:4 Coordination-Free Byzantine Replication with Minimal Communication Costs

System Checksum Complexity for the learner
Data sent per replica Data received Decode steps

b = 0 None O(s/g) O(s(n/g)) u/n
b < g Simple O(s/g) O(s(n/g))

(g+b
g

)
(u/n)

b < g Tree O(s/g + (u/n) log(n)) O(s(n/g) + u log(n)) u/n

Figure 2 Overview of delayed-replication algorithms running on a cluster of n replicas, of which
b are Byzantine and g are non-faulty. The first two columns describe the system conditions and the
checksums used. The last three columns provide the complexity to sent a journal with u updates
and storage size s to a learner in terms of the data sent per replica, data received by the learner,
and the worst-case number of decode steps the learner needs to perform.

behave in accordance to the algorithms and are deterministic: on identical inputs, non-faulty
replicas must produce identical outputs. Notice that we do not make any assumptions on
the learners, each learner can be malicious without affecting the operations in R. We write
n = |R|, b = |B|, c = |C|, and g = |G| to denote the number of replicas, Byzantine replicas,
crashed replicas, and non-faulty replicas, respectively. Finally, we assume that g > b, a
minimal condition to distinguish Byzantine and non-Byzantine behavior.

I Definition 2.1. Let (R,L) be a system. The Byzantine learner problem states that each
learner in L will eventually learn of the update decisions made by R.

We will formalize the Byzantine learner problem in terms of learning journal updates.
Let (R,L) be a system. We assume that each replica r ∈ R maintains an append-only
update journal Jr that consists of a sequence of data updates (e.g., write transactions in
a database system). To work with sequences, we introduce the following notations. Let
S = [s0, . . . , sm−1] be a sequence. We write S[i] to denote si, S[i : j] to denote [si, . . . , sj−1],
and |S| to denote the length m of S. Finally, if T is also a sequence, then S is a prefix of
T , denoted S � T , if |S| ≤ |T | and S = T [0 : |S|]. We refer to any subsequence S[i : i+ n],
imod n = 0, as a block.

We assume that the non-Byzantine replicas all make the same update decisions in the same
order (e.g., by utilizing a consensus protocol such as Paxos or Pbft [14, 15, 46, 47]). These
updates are not necessarily registered at each replica at exactly the same time. Consequently,
we can only assume that, for each r,q ∈ (G ∪ C), either Jr � Jq or Jq � Jr. We write JR to
denote the unique journal Jq, q ∈ G, that contains the maximum-length sequence of update
decisions all non-faulty replicas agree on. Hence, JR � Jr for all r ∈ G.

I Example 2.2. Consider a Byzantine cluster R = {r0,r1,r2,b} with

Jr0 = [u0, u1, u2, u3, u4, u5, u6, u7]; Jr1 = [u0, u1, u2, u3, u4, u5, u6];
Jr2 = [u0, u1, u2, u3, u4, u5, u6]; Jb = [u0, u1, u2, u

′
3, u
′
4].

The update journal of replica b diverges from the other replicas and, hence, b must be
Byzantine. The three non-faulty replicas share the update journal JR = [u1, u2, u3, u4, u5, u6].
Currently, the cluster is deciding on the eight update u7. This update is already fully
processed by r0, whereas replicas r1 and r2 are still processing this update.

I Definition 2.3. Let (R,L) be a system and l ∈ L a learner. For every i, 0 ≤ i < |JR|,
the Byzantine learner problem states that l will eventually learn of the i-th update decision
JR[i]. At the same time, no Byzantine replica b ∈ B can convince l that any other update
was the i-th update decision made.

J. Hellings and M. Sadoghi 17:5

Notice that we only specified the data model of replicas. We did not specify how the
learners store data or process data, we only specified that the learners will receive all update
decisions made by the replicas. Indeed, the specifics of what a learner does with the updates
received depend on the workload for which the learner is designed.

I Example 2.4. Consider the Byzantine cluster R from Example 2.2. A learner l will be
able to learn the updates u0, u1, u2, u3, u4, u5, and u6. The learner will not yet be able to
learn u7, as this update is still being processed by some non-faulty replicas in R. Replica
b will never be able to convince the learner that the updates u′3 or u′4 happened, as b is
Byzantine. The learner l can store the updates it learned in a temporal database view that
provides access to historical data, e.g., for in-depth analysis.

As a simple solution to the Byzantine learner problem, consider a system in which each
replica can be queried for their journal content. Any learner l can now determine the i-th
journal update by simply querying different replicas in R. As soon as l receives b+1 identical
responses, it is ensured that at least one of these responses came from a non-Byzantine
replica and, hence, must be the valid i-th journal update. Unfortunately, this simple and
naive solution has several major weaknesses that can be exploited by malicious participants:

I Example 2.5. Firstly, there is the issue of load balancing due to a lack of coordination.
As all learners have to query for journal updates independently, they can all end up querying
the same non-faulty replica r ∈ G. Due to the amount of queries, r has to dedicate most of
its resources to answering these queries. Consequently, r will have fewer resources available
for its other tasks, e.g., for deciding on new data updates. In the worst case, this can reduce
the data update throughput of R. Secondly, the issue of load balancing can be exploited by
the ability of malicious learners to coordinately target some non-faulty replicas, which could
overload these replicas in an attempt to impede the services of R.

Moreover, as learners do not have a reliable way to distinguish between non-faulty replicas
that are slow, crashed replicas, and Byzantine replicas, they have to always query at least
b + c + 1 distinct replicas in R to have a guarantee on an outcome (as b + c replicas could
be Byzantine or have crashed and consequently not respond). Furthermore, an additional b
distinct replicas in R need to be queried to assure that the majority of all received outcomes
come from non-Byzantine replicas (as b replicas could be Byzantine and respond with invalid
or corrupted outcomes). This makes learning an update unnecessary expensive.

In Section 3, we propose the delayed-replication algorithm to provide reliable high-
performance Byzantine learning that does not suffer from the shortcomings of the above
naive simple solution.

In the following, we assume asynchronous reliable communication: all messages send by
non-faulty replicas will eventually arrive at their destination. We also assume authenticated
communication: on receipt of a message m from replica r ∈ R, one can determine that r did
sentm if r /∈ B; and one can only determine thatm was sent by a replica in C∪G if r ∈ (C∪G).
Hence, Byzantine replicas are able to impersonate each other, but are not able to impersonate
non-Byzantine replicas. Authenticated communication is a minimum requirement to deal
with Byzantine behavior and can be implemented using message authentication codes [43, 50].

3 The Delayed-Replication Algorithm

Next, we propose the delayed-replication algorithm, which provides an efficient solution to the
Byzantine learner problem. Our delayed-replication algorithm uses information dispersal [63]
to balance the load among all non-faulty replicas and to minimize overall communication

ICDT 2020

17:6 Coordination-Free Byzantine Replication with Minimal Communication Costs

costs. The delayed-replication algorithm itself consists of two parts: the information dispersal
step, which is executed by the replicas in R, and the information learning step, which is
executed by the learners in L.

3.1 Information Dispersal
We use an information dispersal algorithm that is able to encode any value v with storage
size ‖v‖ into n pieces vi, 0 ≤ i < n, such that v can be decoded from every set of g distinct
pieces. We assume that the information dispersal algorithm is optimal in the sense that
each piece vi has size ‖vi‖ ≤ d‖v‖/ge. Hence, the minimal number of pieces necessary for
recovering v by decoding, g pieces, have a combined storage size of g d‖v‖/ge ≈ ‖v‖. The
information dispersal algorithm (IDA) of Rabin provides these properties [63].

We assume that each non-Byzantine replica r ∈ (C ∪ G) is equipped with IDA. We write
slicer(v), for any value v, to denote the id(r)-th piece vid(r) obtained by encoding v. With
these assumptions and notations, we have ‖slicer(v)‖ ≤ d‖v‖/ge.

I Example 3.1. Consider a cluster R = {r0,r1,r2,b} with B = {b} and C = ∅. Hence,
g = 3 and b = 1. Let v be a piece of data. When using the encode step of IDA, we
obtain pieces v0, v1, v2, v3 with ‖v0‖ = ‖v1‖ = ‖v2‖ = ‖v3‖ = d‖v‖/3e. Consequently,
slicer0(v) = v0, slicer1(v) = v1, slicer2(v) = v2, and, finally, sliceb(v) = v3.

Now consider any learner l ∈ L. Upon obtaining any three valid and distinct pieces, l
can use the decode step of IDA to reconstruct v. As the replicas r0, r1, and r2 are non-faulty,
l will always be able to obtain v0, v1, and v2. Hence, l can reconstruct v. We notice
that ‖v0‖ + ‖v1‖ + ‖v2‖ = 3 d‖v‖/3e ≈ ‖v‖. Hence, the communication required for l to
reconstruct v is minimal (due to IDA being optimal).

3.2 The Information Dispersal Step
In the information dispersal step, every replica r ∈ R is instructed to broadcast the update
decisions appended to their journal after every block B of n appends. The pseudo-code
for the information dispersal step can be found in Figure 3. To minimize communication
costs, replicas will encode the block B using an optimal information dispersal algorithm
(Line 4). To allow learners to validate the correctness of the encoded block, replicas will
include a checksum of B. The exact type of checksum used depends on the type of attacks the
delayed-replication algorithm needs to be able to deal with, and we refer to the information
learning step for details on the types of checksums supported (Section 3.3 and Section 3.4).
After encoding, each replica broadcasts the encoded block and the checksum to all learners
(Line 5). In doing so, the information dispersal step provides reliable replication of sufficient
information among all learners such that each learner can reconstruct any segment of n
update decisions. We refer to Figure 4 for a schematic representation of the interactions
between replicas and a learner due to the information dispersal step.

We notice that the information dispersal step is a push-based algorithm that pushes the
update journal to all learners without any coordination. Additionally, the total communication
cost of the information dispersal step is shared equally among all participating replicas,
independent of the behavior of any faulty replicas. This is in sharp contrast with the simple
and naive pull-based approach of Section 2, which is at the basis of many practical checkpoint
algorithms (see, e.g., Section 4.2). Next, we show that the communication complexity of the
information dispersal step is low.

J. Hellings and M. Sadoghi 17:7

1: event r appends a new decision to Jr do
2: if Jr 6= [] and |Jr|mod n = 0 then
3: B := Jr[|Jr| − n : |Jr|].
4: s, c := slicer(B), checksum(B).
5: Broadcast (|Jr|, s, c) to all learners l ∈ L.

Figure 3 The information dispersal step of the delayed-replication algorithm running at every
non-faulty replica r ∈ G.

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12
Update decision −→

No dispersal First 4 update decisions Second 4 update decisions

Learned
JR[0 : 4]

Learned
JR[4 : 8]

Figure 4 A schematic representation of the interactions between a cluster R = {r0, r1, r2, b}
and a learner l participating in the information dispersal step. The replica b is Byzantine and sends
invalid messages. The other replicas repeatedly send a valid message encoding 4 decisions from their
update journal. After receiving these messages, l is able to reconstruct (learn) the update decisions
made by R. In specific, after the n = 4-th update decision, l will start receiving messages from
which it can reconstruct the first four update decisions.

I Theorem 3.2. Consider the information dispersal step of Figure 3 running at replica
r ∈ G after r appends the ρ-th decision, ρ ≥ 1, to Jr. After this step, r has sent bρ/nc
messages to each learner with a total size of O(c(ρ/n) + ‖Jr‖/g), in which c is the size of a
checksum.

Proof. Notice that r only broadcasts messages after every i-th decision, i ≥ 1 and imod n = 0.
Hence, after the ρ-th decision, r will have broadcasted m = bρ/nc messages. Consider the
messages sent by r to any learner l ∈ L. In these messages, the pieces slicer(Jr[(i−1)n : in]),
1 ≤ i ≤ m, have a non-constant size and we assume that the remainder of each message has
size γ = Θ(c). Hence, in total, the m messages send to l have size σ at most

σ ≤
∑

1≤i≤m

(γ + ‖slicer(Jr[(i− 1)n : in])‖)

≤ γm+
∑

1≤i≤m

⌈
‖Jr[(i− 1)n : in]‖

g

⌉
≤ γm+

∑
1≤i≤m

(
1 + ‖Jr[(i− 1)n : in]‖

g

)
≤ γm+m+ ‖Jr[0 : nm]‖

g ≤ m(γ + 1) + ‖Jr‖
g = O(c(ρ/n) + ‖Jr‖/g). J

Based on Theorem 3.2, it is straightforward to determine the number and size of messages
received by each learner.

ICDT 2020

17:8 Coordination-Free Byzantine Replication with Minimal Communication Costs

I Corollary 3.3. Consider the learner l ∈ L after it has received all messages sent by the
information dispersal steps following the ρ-th decision in JR, ρ ≥ 1. The learner l has
received at most ρ messages with a total size of O(cρ+ ‖JR‖(n/g)), in which c is the size of
a checksum.

To conclude, we notice that the information dispersal step we provide assumes a steady
flow of update decisions. If update decisions are infrequent, then information dispersal can be
delayed arbitrary. To deal with periods of inactivity, the system can always resort to filling
the current block of n updates with null-values (although this will reduce communication
efficiency).

3.3 The Information Learning Step with Simple Checksums
In the previous section, we presented the information dispersal step that will broadcast an
encoded block of journal updates from JR to each learner l ∈ L. In this section, we show how
l can reliable reconstruct these journal updates from the encoded information. To provide
resilience against Byzantine replicas, we will use simple checksums checksum(B) = hash(B),
in which hash(·) is a collision-resistant hash function that maps an arbitrary value v to
a numeric value hash(v) in a bounded range [43, 50]. We assume that it is practically
impossible to find another value v′, v 6= v′, such that hash(v) = hash(v′). These simple
checksums have a constant size independent of n or g.

I Theorem 3.4. Consider the learner l ∈ L after it has received all messages sent by the
information dispersal steps following the ρ-th decision in JR, ρ ≥ 1. If g > b, then, after
receiving these messages, l can reconstruct the first nbρ/nc update decisions made by R

using at most
(g+b

g
)
bρ/nc information dispersal decode steps.

Proof. Let i = nbρ/nc be the last round after which l received update decisions. We assume
that l has already reconstructed the first (i− 1)n update decisions, and we show how l can
reconstruct the block B containing update decisions (i− 1)n, . . . , in− 1, this independent of
the behavior of the Byzantine replicas. To initiate reconstruction of B, l will collect messages
of the form (i, sj , cj), with sj an encoded piece of B and cj a checksum, of distinct replicas
rj with id(rj) = j. Eventually, l will receive g messages from replicas in C ∪ G, as all g
replicas in G will send messages to l. Using these messages, l can reconstruct B by decoding
the pieces contained in the received messages.

Byzantine replicas are able to send corrupted messages, however, which complicates
construction of B from the messages received. Learners do not a-priori know which replicas
are Byzantine. Hence, learners need to verify whether any block reconstructed from g
collected messages is equivalent to B. The first step in this verification process is to determine
the checksum hash(B). Consider the first z > b messages received. We distinguish two cases:
1. At least b + 1 messages have identical checksum c. In this case, at least one such message

must be sent by a non-faulty replica. Hence, we have c = hash(B).
2. At most b messages have identical checksums. In this case, some of the messages received

have been sent by Byzantine replicas. As l will eventually receive g > b messages from
non-faulty replicas, and all these messages will contain the same checksum hash(B), we
can wait until more messages are received to determine the checksum hash(B).

After determining hash(B), l can simply reconstruct B by trying to decode every combination
of g received pieces, this until eventually a block b is constructed with hash(b) = hash(B).
In the worst case, l will have to wait until it receives g + b messages before it receives g
uncorrupted messages and it will have to try to decode

(g+b
g
)
combinations of g pieces before

it finds g pieces sent by non-Byzantine replicas.

J. Hellings and M. Sadoghi 17:9

The only way for Byzantine replicas to subvert the learning step is by finding a value w,
w 6= B, with hash(w) = hash(B). As we assumed that hash(·) is a collision-resistant hash
function, it is exceedingly hard for the Byzantine replicas to find such a value w. Furthermore,
as g pieces are used during decoding and g > b, the Byzantine replicas not only need to
find w, but must also find a way to encode w such that it can be reconstructed using pieces
provided by one or more non-faulty replicas. Hence, assuming reasonable limits on the
computational resources, the Byzantine replicas are unable to subvert the learning step.1 J

Notice that if the system has no Byzantine replicas (b = 0), then the checksums can
be omitted entirely, as every set of g pieces will decode to the searched-for block of update
decisions. This strongly reduces the computational costs for the learner. By combining
Theorem 3.2 and Theorem 3.4, we obtain:

I Corollary 3.5. Consider the learner l ∈ L and replica r ∈ G. If g > b, then the
delayed-replication algorithm with simple checksums guarantees
1. l will learn the update journal JR;
2. l will receive at most |JR| messages with a total size of O(‖JR‖(n/g));
3. l will only need worst-case

(g+b
g
)
(|JR|/n) information dispersal decode steps; and

4. r will sent at most |JR|/n messages to l with a total size of O(‖JR‖/g).

To conclude, we notice that Byzantine replicas that send corrupted messages are easily
detectable by the learners. After a learner l ∈ L has decoded g pieces into a valid block B, it
can simply encode this block and determine the exact value of each encoded piece a replica
should have sent to l. Hence, after trying to subvert a learning step of l, Byzantine replicas
can be recognized and be eliminated from future considerations. When the set of Byzantine
replicas is relatively stable over time, we can use this approach towards detecting Byzantine
behavior at l to prevent the worst-case upper bound on the number of information dispersal
decode steps,

(g+b
g
)
, from happening repeatedly.

3.4 The Information Learning Step with Tree Checksums
In the previous section, we have shown how learners can reliably reconstruct JR in the
presence of Byzantine replicas. In theory, this provided approach has a high computational
overhead for the learners due to the worst-case combinatorics involved. In this section, we
explorer a different checksum scheme that allows the learners to discard any invalid messages
with minimal effort, this with only a low communication overhead for the replicas and
learners involved. Consequently, the learners can directly select the appropriate messages
and perform only a single information dispersal decode step. Inspired by the fingerprints of
Alon et al. [2, 3], we base our checksum scheme on Merkle trees [51].

I Definition 3.6. Consider a block of n update decisions B = JR[(j−1)n : jn]. The replica r
with id(r) = i, 0 ≤ i < n, should produce the i-th encoded piece Bi = slicer(B). To simplify
presentation, we assume that the total number of such pieces is a power-of-two (otherwise,
we simply add null-pieces until we have a power-of-two number of pieces). A Merkle tree
build over these pieces is a balanced binary tree constructed as follows:
1. The i-th leaf of the tree has the value hash(Bi).
2. The value of an internal node of which the left-child has value w1 and the right-child has

value w2 is hash([w1, w2]).

1 A theoretical attack of this type can always be detected by the learner: this attack will yield at least
two sets of g pieces that decode to values w and B with w 6= B and hash(w) = hash(B).

ICDT 2020

17:10 Coordination-Free Byzantine Replication with Minimal Communication Costs

h0 = hash(B0) h1 = hash(B1) h2 = hash(B2) h3 = hash(B3) h4 = hash(B4) h5 = hash(B5) h6 = hash(B6) h7 = hash(B7)

h01 = hash([h0, h1]) h23 = hash([h2, h3]) h45 = hash([h4, h5]) h67 = hash([h6, h7])

h0123 = hash([h01, h23]) h4567 = hash([h45, h67])

h01234567 = hash([h0123, h4567])

Figure 5 A Merkle tree over eight data pieces B0, . . . ,B7. The leaf nodes are each labeled with
the hash of a data piece, while every internal node is labeled with the hash of the value of its two
children. The tree checksum for B5 is checksum(B5) = [h01234567, h0123, h67, h4].

Notice that this construction is deterministic. Hence, every non-faulty replica will construct
exactly the same Merkle tree for B. The tree checksum we propose for the i-th piece Bi,
checksum(Bi), consists of the value of the root of the Merkle tree and the values of the sibling
of each node on the path from the root to the i-th leaf.

We illustrate this further in the following example.

I Example 3.7. Assume n = 8 and consider a block B that encodes into pieces B0, . . . ,B7.
The Merkle tree for B can be found in Figure 5. The tree checksum checksum(B5) is
obtained as follows. First, the path from the root of the tree to the 5-th leaf visits the
nodes with values h4567, h45, and h5. The node with value h4567 has the sibling with value
h0123; the node with value h45 has the sibling with value h67; and, finally, the node with
value h5 has the sibling with value h4. The root of the tree has value h01234567. Hence,
checksum(B5) = [h01234567, h0123, h67, h4].

Next, we show that these tree checksums are sufficient to recognize messages corrupted
by Byzantine replicas.

I Theorem 3.8. Consider the learner l ∈ L after it has received all messages sent by the
information dispersal steps following the ρ-th decision in JR, ρ ≥ 1. If g > b, then, after
receiving these messages, l can reconstruct the first nbρ/nc update decisions made by R

using only bρ/nc information dispersal decode steps.

Proof. Let i = nbρ/nc be the last round after which l received update decisions. As in
the proof of Theorem 3.4, we only focus on how l can reconstruct the block B containing
update decisions (i − 1)n, . . . , in − 1, this independent of the behavior of the Byzantine
replicas. Every message sent by non-faulty replicas will include a valid tree checksums. Each
of these checksums is constructed over the same Merkle tree. Consequently, each of these
checksums share the same value for the root of the Merkle tree. Hence, using the reasoning
of Theorem 3.4, l can reliably learn the root value r of the Merkle tree after receiving at
least b + 1 messages with identical root values in their checksum.

Now consider the message (i, sj , cj) received from the replica r with id(r) = j. To
determine whether this message is valid and uncorrupted, we first check whether the root
value in cj matches r. If this check fails, we can already discard the message. Next, we
compute the hash hash(sj) to obtain the value of the j-th leaf in the Merkle tree. We observe
that cj contains the value of the sibling of the j-th leaf. Hence, we can construct the value
of the parent p of the j-th leaf. This can be repeated: for any ancestor of the j-th leaf, cj

also contains the value of the sibling of this ancestor. Hence, one can recompute the value of
every ancestor of the j-th leaf based on the value sj . When done, one will obtain the root
value r when the message is valid and uncorrupted. If any other value is obtained, then the
message must be corrupted and one can discard the message.

J. Hellings and M. Sadoghi 17:11

As with the simple checksums, the only way in which Byzantine replicas can subvert
the learning step is by finding hash collisions. Hence, assuming reasonable limits on the
computational resources, the Byzantine replicas are unable to subvert the learning step. J

To further clarify the verification of messages, we illustrate how the verification process
of the proof of Theorem 3.8 works:

I Example 3.9. Consider the situation of Example 3.7. Let l be a learner that already
determined that the root value is h01234567. At some point, l receives a message containing
B′5 and the checksum checksum(B′5) = [w1, w2, w3, w4] from replica r with id(r) = 5. The
learner checks whether w1 = h01234567, as otherwise the message is discarded. We assume
w1 = h01234567. Next, l computes

h′5 = hash(B′5);
h′45 = hash([w4, h

′
5]);

h′4567 = hash([h′45, w3]);
h′01234567 = hash([w2, h4567]).

If B′5 = B5, w4 = h4, w3 = h67, and w2 = h0123, then h′01234567 = h01234567 and the message
received from r is valid and uncorrupted. In any other case, the resulting value h′01234567
will not match h01234567 and the message is discarded.

In Theorem 3.8, we analyzed the computational complexity of the information learning
step with tree checksums in terms of the number of information dispersal decode steps. As
we show in Example 3.9, one also needs to validate the correctness of each message via its
tree checksum, for which log(n) hashes need to be computed. In practice, the information
dispersal decode steps are much more costly than these validation steps (this is especially
true when using modern processors that provide hardware acceleration for hashing). Hence,
in our analysis, we only focus on the number of information dispersal decode steps.

Notice that, for any block B, we obtain ‖checksum(B)‖ = Θ(log(n)), this independent of
‖B‖. By combining Theorem 3.2 and Theorem 3.8, we obtain:

I Corollary 3.10. Consider the learner l ∈ L and replica r ∈ G. If g > b, then the
delayed-replication algorithm with tree checksums guarantees
1. l will learn the update journal JR;
2. l will receive at most |JR| messages with a total size of O(‖JR‖(n/g) + |JR| log(n));
3. l will only need at most |JR|/n information dispersal decode steps; and
4. r will sent at most |JR|/n messages to l with a total size of O(‖JR‖/g+(|JR|/n) log(n)).

4 Use Case: Improving Permissioned Blockchains

In this paper, we introduced the Byzantine learner problem and the delayed-replication
algorithm, this to support the hierarchical architecture for fault-tolerant and federated data
management systems that we envisioned in Section 1.1. Our hierarchical architecture relies on
a Byzantine cluster to manage the data. Typically, such Byzantine clusters are implemented
by permissioned fully-replicated blockchains that use traditional consensus techniques. Next,
we illustrate how the delayed-replication algorithm can be generalized to improve on such
permissioned blockchains by introducing scalable shared storage instead of full replication
and by reducing the cost of update decision making. Consequently, our techniques also
improves the applicability of permissioned blockchains to extend database systems towards
fault-tolerant and federated data management.

ICDT 2020

17:12 Coordination-Free Byzantine Replication with Minimal Communication Costs

4.1 Towards Scalable Shared Storage
As noted in the Introduction, state-of-the-art systems use fully replicated designs in which
every replica in a cluster R maintains the full update journal JR. Replicas r ∈ R typically
only need the current view V of the data to make update decisions, however, and do not
need access to the full history of all updates stored in JR. Hence, a fully replicated design
is unnecessary costly and limits scalability. Fortunately, the delayed-replication algorithm
already showed that full replication of JR is unnecessary to guarantee the ability to recover
and learn JR. Instead of storing all of JR at each r, each replica r can simply processes each
block B of n journal updates, compute slicer(B), and only keep this encoded piece around.
This lowers the storage cost for JR from ‖JR‖ per replica to ‖JR‖/g per replica, which makes
the storage capacity of R scalable with the number of non-faulty replicas without hampering
the availability of JR for replica recovery and for external learners.

I Example 4.1. Consider a federated inventory management system (R,L) used by several
companies to keep track of their inventories and of transactions between them. To decide
upon the updates on the data, replicas in R only need to be able to validate updates: e.g., a
transfer of ownership from company A to company B of a product is only a valid update if A
originally owned the product. Hence, for validation, it is not necessary that replicas in R

maintain full copies of the journal JR, they only need the status of the current inventory, a
much smaller dataset. Other tasks such as periodic analytics and data provenance will need
read-only access to the full history of the data, which they can obtain as learners via the
delayed-replication algorithm.

To further illustrate the necessity of storage scalability in blockchains, we only have to
look at the permissionless Bitcoin blockchain. The size of the Bitcoin ledger, which represents
a fully-replicated journal of financial transactions, is currently exceeding 256 GB and has
grown with 59 GB over the last year. As noted in the introduction, Bitcoin is only able
to process 7 transactions per second whereas Visa already processes 2000 transactions per
second on average [61]. The permissioned blockchains our work focusses on can easily process
hundreds to thousands transactions per second, as already exemplified by the BFS system
in 2002 [14, 15]. Hence, the size of the journal maintained by permissioned blockchains can
grow even more rapidly. We conclude:

I Proposition 4.2. Let R be a Byzantine cluster with update journal JR, current data
view V, and in which only V is necessary to make update decisions. If g > b, then the
delayed-replication algorithm can provide storage scalability with these guarantees:
1. If simple checksums are used, then the storage cost per replica r ∈ R is reduced from
O(‖JR‖+ ‖V‖) to O(‖JR‖/g + ‖V‖).

2. If tree checksums are used, then the storage cost per replica r ∈ R is reduced from
O(‖JR‖+ ‖V‖) to O(‖JR‖/g + (|JR|/n) log(n) + ‖V‖).

Proof. These results follow directly from Corollaries 3.5 and 3.10. J

4.2 Improved Checkpoints in Byzantine Consensus
Next, we will show how the delayed-replication algorithm can be used internally in Byzantine
clusters to reduce the cost of decision making. Typical permissioned blockchains use consensus
protocols to coordinate making update decisions [4, 8, 9, 10, 14, 15, 17, 28, 34, 42, 44, 45, 48,
69, 71]. Most practical consensus protocols can be traced back to the influential design of
the Practical Byzantine Fault Tolerance protocol (Pbft) of Castro et al. [14, 15].

J. Hellings and M. Sadoghi 17:13

Update NoUpdateReceived

ë 



Malicious

p r

q

Update

Update

NoUpdateReceived

 ë



Malicious

p r

q

Figure 6 Two cases of possible malicious behavior. On the left, the primary p is malicious. On
the right, the replica r is malicious. Unfortunately, the non-faulty replica q receives the same set of
messages in both cases and, hence, cannot determine which replica is malicious in which case.

In Pbft, a replica is elected primary and is in charge of coordinating update decision
making among all replicas. To allow other replicas to determine whether the primary,
which could be Byzantine, is coordinating correctly, Pbft employs two phases of broadcast-
based communication among all replicas before any update decision is committed. This
communication ensures that update decisions are only committed if a majority of all non-
faulty replicas are aware of these decisions. Unfortunately, a malicious primary can keep some
non-faulty replicas in the dark by not sending them any update decisions. The remaining
Byzantine replicas can cover for this malicious behavior by acting as non-faulty replicas. Such
an attack cannot be reliably detected by the other replicas in the system, as the following
example illustrates.

I Example 4.3. Let R be a Byzantine cluster with n = 3b + 1. Let p ∈ R be the elected
primary, let r ∈ R be another replica, and let q ∈ G be a non-faulty replica. Assume that a
correct primary will send the same updates to all replicas. Consider the following two cases:
1. We have r ∈ G and p ∈ B. The primary sends updates via Update messages, except that

it excludes r. The replica r detects this, as it does not receive any messages, and notifies
q that the primary is malicious via a NoUpdateReceived message.

2. We have r ∈ B and p ∈ G. Independent of the actions of the primary, r notifies q that
the primary is malicious via a NoUpdateReceived message.

We have sketched these two cases in Figure 6. In both cases, q receives exactly the same
set of messages from p and r. Consequently, q cannot determine which of the replicas is
malicious and which of the replicas is non-faulty.

The issue of replicas being left in the dark is faced by not only Pbft, but also by
many other practical primary-backup protocols. The typical way to assure that all replicas
eventually learn the update decisions made, even when the primary is malicious, is by
using periodical checkpoints. Unfortunately, the usual checkpoint protocols employed use
broadcast-based primitives with very high communication complexity. Moreover, checkpoint
protocols typically have a pull-based component, which makes them vulnerable to the attacks
illustrated in Example 2.5. Fortunately, we can employ the push-based delayed-replication
algorithm to provide checkpoints with low costs for all replicas involved. To do so, we model
any replica left in the dark by a malicious primary as crashed. In the worst case, Pbft allows
for a situation in which g = b+1 and c = b (the maximum number of non-Byzantine replicas
a malicious primary can keep in the dark without being detected), making n ≥ 3b+1. Hence,
in all situations our delayed-replication algorithm can be employed as a checkpoint protocol
by making all replicas in R listeners. We conclude:

ICDT 2020

17:14 Coordination-Free Byzantine Replication with Minimal Communication Costs

I Proposition 4.4. Let R be a Byzantine cluster running Pbft. If g > b, then the delayed-
replication algorithm can provide Pbft-style checkpoints with these guarantees:
1. If simple checksums are used, then every replica r ∈ R will be able to learn JR and will

send and receive at most |JR| messages with a combined size of O(‖JR‖).
2. If tree checksums are used, then every replica r ∈ R will be able to learn JR and will

send and receive at most |JR| messages with a combined size of O(‖JR‖+ |JR| log(n)).

Proof. We choose L = R and we use the delayed-replication algorithm with c = b and, as
R is running Pbft, n > 3b. Hence, g = n− c− b = n− 2b ≥ b + 1 non-faulty replicas will
be senders in the delayed-replication algorithm, guaranteeing success.

Next, we consider the number of messages sent and received. First, consider the case
using simple checksums. Let r ∈ G be a non-faulty replica that is not left in the dark.
Applying the results of Corollaries 3.5, we learn that replica r sends at most |JR|/n messages
to each replica with a total size of O(‖JR‖/g). As n = |R|, r will send n(|JR|/n) = |JR|
messages with a total size of at most dn(‖JR‖/g), for some constant d. We have n > 3b
and g = n − 2b. Hence, n = 3b + j and g = n − 2b = b + j for some j, j ≥ 1. We have
n/g = (3b + j)/(b + j) = 1 + 2b/(b + j). As j ≥ 1, we have 0 ≤ 2b/(b + j) < 2 and
n/g ≤ 3. We conclude that the total size of all messages send by r is upper bounded by
3d‖JR‖ = O(‖JR‖). In a similar manner, we can derive the same upper bounds on the
number and size of the messages received by r. For the case using tree checksums, we apply
the results of Corollary 3.10 to the above reasoning, which leads to only adding a cost of
O(log(n)) to each message sent and received. J

Since the introduction of Pbft, many improvements on its design have been proposed.
Recently, there has been a surge in protocols that aim at bringing down the communication
cost of the normal-case operations of Pbft from a quadratic amount per update decision
to a linear amount, which vastly improves the scalability of consensus. Examples include
HotStuff [75], LinBFT [74], and SBFT [33]. These examples all use threshold signatures [66]
to summarize confirmation of any decision by the majority of all replicas in a constant-sized
signature – which eliminates the need for broadcast-based quadratic communication among
all replicas. None of the current approaches satisfactory deal with recovery of replicas that
are left in the dark, however. Hence, we believe that our highly-efficient delayed-replication
algorithm can fill in the checkpoint gap in such linear designs.

5 Related Work

There is an abundant literature on distributed systems, distributed scalable storage (e.g., via
information dispersal), and on fault-tolerant fully-replicated systems (e.g. [12, 60, 69, 70]). In
this paper, we primarily focused on bridging the gap between, on the one hand, fault-tolerant
systems and, on the other hand, scalable distributed systems.

Learners in fault-tolerant systems. Paxos, a consensus protocol that can be used to make
reliable update decisions in a cluster with only crash failures, and several Paxos-like protocols
have a concept of learners [46, 47, 49]. As the name suggests, these Paxos-learners will learn
all update decisions made by the cluster, not unlike the learners we propose. In Paxos, these
learners are also crucial to determine whether consensus is reached, are deeply involved
in the consensus protocol, cannot be arbitrarily selected, and perform significant amounts
of communication, however. This makes the architecture of Paxos incomparable with the
hierarchical architecture we propose.

J. Hellings and M. Sadoghi 17:15

Most other consensus protocols, especially those based on the Practical Byzantine Fault
Tolerance protocol (Pbft) of Castro et al. [14, 15], do not distinguish between the roles of
replicas in a Byzantine cluster. In Pbft, some read-only optimizations are considered, but
even these optimizations require participation of all replicas involved. Hence, the approach of
Pbft towards read-only data processing is non-scalable, whereas our hierarchical architecture
benefits from the addition of non-faulty replicas to the Byzantine cluster.

The HyperLedger permissioned blockchain fabric does utilize a hierarchical design similar
to what we propose [6]. HyperLedger distinguishes between, on the one hand, endorsers and
orderers that coordinate data updates, and, on the other hand, peers that only learn of data
updates. Currently, HyperLedger relies on Apache Kafka [26] to provide only crash-tolerant
ordering and to broadcast updates to peers. The approach we propose – by using the
delayed-replication algorithm – is not only able to tolerate an arbitrary number of crashes,
but also addresses Byzantine behavior. Furthermore, our approach is highly scalable and
requires only a minimum of communication. Finally, our approach enables a way towards
permissioned blockchains with scalable storage, which is not provided by HyperLedger.

Finally, the Byzantine learner problem we study in this paper differs from the cluster-
sending problem of Hellings et al. [37]. On the one hand, we provide in this work techniques
to stream sequences of data updates from a single Byzantine cluster to learners, this with
minimal communication costs in terms of the data exchanged. On the other hand, the
cluster-sending problem of Hellings et al. [37] focusses on the problem of sending a single
value between two Byzantine clusters with minimal communication costs in terms of the
number of messages exchanged.

Information dispersal and scalable storage. IDA, the information dispersal algorithm we
utilize in the delayed-replication algorithm, was proposed by Rabin [63] to provide reliable
load-balanced storage and communication in a distributed setting. Alon et al. [2, 3] expanded
IDA towards recovery of failures by adapting the scheme used in IDA towards recognizing
faulty encoded pieces. Unfortunately, the methods employed by Alon et al. always introduce
a space overhead per participant. We build upon these information dispersal techniques by
using them to solve the Byzantine learner problem and we showed how these techniques can
be used to resolve current issues in state-of-the-art permissioned blockchains that provide
fault-tolerant and federated data management. Moreover, our results structurally improve
on the results of Rabin and Alon et al. via the delayed-replication algorithm with simple
checksums, which enables Byzantine fault-tolerant communication and storage without any
space overhead.

6 Conclusions and Future Work

In this paper, we studied the Byzantine learner problem – the problem of efficiently distributing
a sequence of data updates made by replicas in a Byzantine cluster to an arbitrary number
of learners. As our main result, we proposed the delayed-replication algorithm to address
this Byzantine learner problem. Our algorithm is coordination-free, equally distributes
communication costs among all replicas, and leverages information dispersal to achieve
Byzantine learning with minimal communication costs. Our delayed-replication algorithm
opens the door to hierarchical fault-tolerant and federated database systems that can
effectively deal with big read-only workloads, e.g., by running complex data processing
tasks on individual specialized learners and by providing trusted read-only proxies close
to end-users for fast query answering. Moreover, we showed that the delayed-replication

ICDT 2020

17:16 Coordination-Free Byzantine Replication with Minimal Communication Costs

algorithm and its underlying techniques open the door for the development of new high-
performance fault-tolerant database systems by improving the design of existing permissioned
blockchain-based database systems.

Our techniques are only a first step toward developing fault-tolerant, reliable, scalable,
and high-performance database systems and permissioned blockchains. To further these
developments, we need not only support big read-only workloads and storage scalability,
but also improve on other areas. To do so, we see several avenues of future research and
development:
1. Our techniques can be used to improve fault-tolerant and federated data management by

reducing the cost of read-only workloads and by introducing scalable shared storage. We
did not yet address the scalability of decision making (e.g., write workloads), however.
To improve decision making, we are interested in the development of efficient decision
making techniques in Byzantine settings that – for performance reasons – provides less
strict guarantees than traditional consensus-based techniques. To further aid scalability of
decision making, we are also interested in developing further non-fully-replicated designs,
e.g., by incorporating fault-tolerant sharding.

2. Our design is primarily intended to reduce the cost of read-only workloads that require
access to the full history of changes. Examples of such workloads include analytics,
data provenance, machine learning, visualization, and read-only proxies. Besides these
workloads, there are also many smaller read-only workloads, e.g., one-off relational
querying. Current fault-tolerant approaches toward such workloads remain non-scalable,
as they require the independent execution of such queries by all replicas in the Byzantine
cluster. We are interested in the development of techniques that can lift this burden on
scalability.

References

1 2ndQuadrant. Postgres-XL: Open source scalable SQL database cluster. URL: https://www.
postgres-xl.org/.

2 Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and Julien Stern. Scalable
Secure Storage When Half the System Is Faulty. Information and Computation, 174(2):203–213,
2002. doi:10.1006/inco.2002.3148.

3 Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and Julien Stern. Addendum
to “Scalable secure storage when half the system is faulty”. Information and Computation,
205(7):1114–1116, 2007. doi:10.1016/j.ic.2006.02.007.

4 Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru,
Josh Olsen, and David Zage. Steward: Scaling Byzantine Fault-Tolerant Replication to Wide
Area Networks. IEEE Transactions on Dependable and Secure Computing, 7(1):80–93, 2010.
doi:10.1109/TDSC.2008.53.

5 Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. CAPER: A cross-
application permissioned blockchain. Proceedings of the VLDB Endowment, 12(11):1385–1398,
2019. doi:10.14778/3342263.3342275.

6 Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco,
and Jason Yellick. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In Proceedings of the Thirteenth EuroSys Conference, pages 30:1–30:15. ACM,
2018. doi:10.1145/3190508.3190538.

https://www.postgres-xl.org/
https://www.postgres-xl.org/
https://doi.org/10.1006/inco.2002.3148
https://doi.org/10.1016/j.ic.2006.02.007
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.14778/3342263.3342275
https://doi.org/10.1145/3190508.3190538

J. Hellings and M. Sadoghi 17:17

7 GSM Association. Blockchain for Development: Emerging Opportunities for Mobile, Identity
and Aid, 2017. URL: https://www.gsma.com/mobilefordevelopment/wp-content/uploads/
2017/12/Blockchain-for-Development.pdf.

8 Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić.
The Next 700 BFT Protocols. ACM Transactions on Computer Systems, 32(4):12:1–12:45,
2015. doi:10.1145/2658994.

9 Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. RBFT: Redundant byzantine
fault tolerance. In 2013 IEEE 33rd International Conference on Distributed Computing
Systems, pages 297–306. IEEE, 2013. doi:10.1109/ICDCS.2013.53.

10 Christian Berger and Hans P. Reiser. Scaling Byzantine Consensus: A Broad Analysis. In
Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed
Ledgers, SERIAL’18, pages 13–18. ACM, 2018. doi:10.1145/3284764.3284767.

11 Burkhard Blechschmidt. Blockchain in Europe: Closing the Strategy Gap. Technical report,
Cognizant Consulting, 2018. URL: https://www.cognizant.com/whitepapers/blockchain-
in-europe-closing-the-strategy-gap-codex3320.pdf.

12 Christian Cachin and Marko Vukolic. Blockchain Consensus Protocols in the Wild (Keynote
Talk). In 31st International Symposium on Distributed Computing, volume 91 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 1:1–1:16. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.DISC.2017.1.

13 Michael Casey, Jonah Crane, Gary Gensler, Simon Johnson, and Neha Narula. The Impact of
Blockchain Technology on Finance: A Catalyst for Change. Technical report, International
Center for Monetary and Banking Studies, 2018. URL: https://www.cimb.ch/uploads/1/1/
5/4/115414161/geneva21_1.pdf.

14 Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, pages 173–186. USENIX
Association, 1999.

15 Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and Proactive Recovery.
ACM Transactions on Computer Systems, 20(4):398–461, 2002. doi:10.1145/571637.571640.

16 Christie’s. Major Collection of the Fall Auction Season to be Recorded with Blockchain
Technology, 2018. URL: https://www.christies.com/presscenter/pdf/9160/RELEASE_
ChristiesxArtoryxEbsworth_9160_1.pdf.

17 Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti. Making
Byzantine Fault Tolerant Systems Tolerate Byzantine Faults. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation, pages 153–168.
USENIX Association, 2009.

18 Cindy Compert, Maurizio Luinetti, and Bertrand Portier. Blockchain and GDPR:
How blockchain could address five areas associated with GDPR compliance. Techni-
cal report, IBM Security, 2018. URL: https://public.dhe.ibm.com/common/ssi/ecm/
61/en/61014461usen/security-ibm-security-solutions-wg-white-paper-external-
61014461usen-20180319.pdf.

19 Oracle Corporation. Maximize Availability with Oracle Database 18c. URL:
https://www.oracle.com/technetwork/database/availability/maximum-availability-
wp-18c-4403435.pdf.

20 Oracle Corporation. MySQL - MySQL 8.0 reference manual: 17 replication. URL: https:
//dev.mysql.com/doc/refman/8.0/en/replication.html.

21 Alex de Vries. Bitcoin’s Growing Energy Problem. Joule, 2(5):801–805, 2018. doi:10.1016/j.
joule.2018.04.016.

22 Microsoft Docs. SQL Server replication. URL: https://docs.microsoft.com/en-us/sql/
relational-databases/replication/sql-server-replication.

23 Wayne W. Eckerson. Data quality and the bottom line: Achieving Business Success through
a Commitment to High Quality Data. Technical report, The Data Warehousing Institute,
101communications LLC., 2002.

ICDT 2020

https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2017/12/Blockchain-for-Development.pdf
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2017/12/Blockchain-for-Development.pdf
https://doi.org/10.1145/2658994
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1145/3284764.3284767
https://www.cognizant.com/whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf
https://www.cognizant.com/whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://doi.org/10.1145/571637.571640
https://www.christies.com/presscenter/pdf/9160/RELEASE_ChristiesxArtoryxEbsworth_9160_1.pdf
https://www.christies.com/presscenter/pdf/9160/RELEASE_ChristiesxArtoryxEbsworth_9160_1.pdf
https://public.dhe.ibm.com/common/ssi/ecm/61/en/61014461usen/security-ibm-security-solutions-wg-white-paper-external-61014461usen-20180319.pdf
https://public.dhe.ibm.com/common/ssi/ecm/61/en/61014461usen/security-ibm-security-solutions-wg-white-paper-external-61014461usen-20180319.pdf
https://public.dhe.ibm.com/common/ssi/ecm/61/en/61014461usen/security-ibm-security-solutions-wg-white-paper-external-61014461usen-20180319.pdf
https://www.oracle.com/technetwork/database/availability/maximum-availability-wp-18c-4403435.pdf
https://www.oracle.com/technetwork/database/availability/maximum-availability-wp-18c-4403435.pdf
https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://doi.org/10.1016/j.joule.2018.04.016
https://doi.org/10.1016/j.joule.2018.04.016
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication

17:18 Coordination-Free Byzantine Replication with Minimal Communication Costs

24 Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and Ravi Ra-
mamurthy. BlockchainDB: A shared database on blockchains. Proceedings of the VLDB
Endowment, 12(11):1597–1609, 2019. doi:10.14778/3342263.3342636.

25 Muhammad El-Hindi, Martin Heyden, Carsten Binnig, Ravi Ramamurthy, Arvind Arasu, and
Donald Kossmann. BlockchainDB – towards a shared database on blockchains. In Proceedings
of the 2019 International Conference on Management of Data, pages 1905–1908. ACM, 2019.
doi:10.1145/3299869.3320237.

26 The Apache Software Foundation. Apache Kafka: A distributed streaming platform. URL:
https://kafka.apache.org/.

27 Lan Ge, Christopher Brewster, Jacco Spek, Anton Smeenk, and Jan Top. Blockchain
for agriculture and food: Findings from the pilot study. Technical report, Wageningen
University, 2017. URL: https://www.wur.nl/nl/Publicatie-details.htm?publicationId=
publication-way-353330323634.

28 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling Byzantine Agreements for Cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68. ACM, 2017. doi:10.1145/3132747.3132757.

29 William J. Gordon and Christian Catalini. Blockchain Technology for Healthcare: Facilitating
the Transition to Patient-Driven Interoperability. Computational and Structural Biotechnology
Journal, 16:224–230, 2018. doi:10.1016/j.csbj.2018.06.003.

30 Jim Gray. Notes on Data Base Operating Systems. In Operating Systems, An Advanced
Course, pages 393–481. Springer-Verlag, 1978. doi:10.1007/3-540-08755-9_9.

31 Andy Greenberg. The Untold Story of NotPetya, the Most Devastating Cyberattack in History,
2018. URL: https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-
crashed-the-world/.

32 The PostgreSQL Global Development Group. PostgreSQL documentation: Chapter 26.
high availability, load balancing, and replication. URL: https://www.postgresql.org/docs/
current/static/high-availability.html.

33 Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K.
Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: a scalable and
decentralized trust infrastructure, 2019. URL: https://arxiv.org/abs/1804.01626.

34 Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. Brief Announcement: Revisiting
Consensus Protocols through Wait-Free Parallelization. In 33rd International Symposium
on Distributed Computing (DISC 2019), volume 146 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 44:1–44:3. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019. doi:10.4230/LIPIcs.DISC.2019.44.

35 Suyash Gupta and Mohammad Sadoghi. Blockchain Transaction Processing, pages 1–11.
Springer International Publishing, 2018. doi:10.1007/978-3-319-63962-8_333-1.

36 Suyash Gupta and Mohammad Sadoghi. EasyCommit: A non-blocking two-phase commit
protocol. In Proceedings of the 21st International Conference on Extending Database Technology.
Open Proceedings, 2018. doi:10.5441/002/edbt.2018.15.

37 Jelle Hellings and Mohammad Sadoghi. Brief Announcement: The Fault-Tolerant Cluster-
Sending Problem. In 33rd International Symposium on Distributed Computing (DISC 2019),
volume 146 of Leibniz International Proceedings in Informatics (LIPIcs), pages 45:1–45:3.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. doi:10.4230/LIPIcs.DISC.2019.
45.

38 Maurice Herlihy. Blockchains from a Distributed Computing Perspective. Communications of
the ACM, 62(2):78–85, 2019. doi:10.1145/3209623.

39 Thomas N. Herzog, Fritz J. Scheuren, and William E. Winkler. Data Quality and Record
Linkage Techniques. Springer New York, 2007. doi:10.1007/0-387-69505-2.

40 Matt Higginson, Johannes-Tobias Lorenz, Björn Münstermann, and Peter Braad
Olesen. The promise of blockchain. Technical report, McKinsey&Company,

https://doi.org/10.14778/3342263.3342636
https://doi.org/10.1145/3299869.3320237
https://kafka.apache.org/
https://www.wur.nl/nl/Publicatie-details.htm?publicationId=publication-way-353330323634
https://www.wur.nl/nl/Publicatie-details.htm?publicationId=publication-way-353330323634
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1016/j.csbj.2018.06.003
https://doi.org/10.1007/3-540-08755-9_9
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.postgresql.org/docs/current/static/high-availability.html
https://www.postgresql.org/docs/current/static/high-availability.html
https://arxiv.org/abs/1804.01626
https://doi.org/10.4230/LIPIcs.DISC.2019.44
https://doi.org/10.1007/978-3-319-63962-8_333-1
https://doi.org/10.5441/002/edbt.2018.15
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.1145/3209623
https://doi.org/10.1007/0-387-69505-2

J. Hellings and M. Sadoghi 17:19

2017. URL: https://www.mckinsey.com/industries/financial-services/our-insights/
the-promise-of-blockchain.

41 Maged N. Kamel Boulos, James T. Wilson, and Kevin A. Clauson. Geospatial blockchain:
promises, challenges, and scenarios in health and healthcare. International Journal of Health
Geographics, 17(1):1211–1220, 2018. doi:10.1186/s12942-018-0144-x.

42 Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid
Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel. CheapBFT: Resource-efficient
byzantine fault tolerance. In Proceedings of the 7th ACM European Conference on Computer
Systems, pages 295–308. ACM, 2012. doi:10.1145/2168836.2168866.

43 Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC, 2nd edition, 2014.

44 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative byzantine fault tolerance. In Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, pages 45–58. ACM, 2007. doi:10.1145/1294261.1294267.

45 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative byzantine fault tolerance. ACM Transactions on Computer Systems, 27(4):7:1–7:39,
2009. doi:10.1145/1658357.1658358.

46 Leslie Lamport. The implementation of reliable distributed multiprocess systems. Computer
Networks (1976), 2(2):95–114, 1978. doi:10.1016/0376-5075(78)90045-4.

47 Leslie Lamport. Paxos Made Simple. ACM SIGACT News, Distributed Computing Column 5,
32(4):51–58, 2001. doi:10.1145/568425.568433.

48 Jian Liu, Wenting Li, Ghassan O. Karame, and N. Asokan. Scalable Byzantine Consensus via
Hardware-Assisted Secret Sharing. IEEE Transactions on Computers, 68(1):139–151, 2019.
doi:10.1109/TC.2018.2860009.

49 Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine Consensus. IEEE Transactions on
Dependable and Secure Computing, 3(3):202–215, 2006. doi:10.1109/TDSC.2006.35.

50 Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., 1st edition, 1996.

51 Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In
Advances in Cryptology — CRYPTO ’87, pages 369–378. Springer Berlin Heidelberg, 1988.
doi:10.1007/3-540-48184-2_32.

52 Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. URL: https://bitcoin.
org/en/bitcoin-paper.

53 Arvind Narayanan and Jeremy Clark. Bitcoin’s Academic Pedigree. Communications of the
ACM, 60(12):36–45, 2017. doi:10.1145/3132259.

54 Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen Jay-
achandran. Blockchain Meets Database: Design and Implementation of a Blockchain Re-
lational Database. Proceedings of the VLDB Endowment, 12(11):1539–1552, 2019. doi:
10.14778/3342263.3342632.

55 Faisal Nawab and Mohammad Sadoghi. Blockplane: A Global-Scale Byzantizing Middleware.
In 35th International Conference on Data Engineering (ICDE), pages 124–135. IEEE, 2019.
doi:10.1109/ICDE.2019.00020.

56 Dick O’Brie. Internet Security Threat Report: Ransomware 2017, An ISTR Special Re-
port. Technical report, Symantec, 2017. URL: https://www.symantec.com/content/dam/
symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf.

57 The Council of Economic Advisers. The Cost of Malicious Cyber Activity to the U.S.
Economy. Technical report, Executive Office of the President of the United States,
2018. URL: https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-
Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf.

58 National Audit Office. Investigation: WannaCry cyber attack and the NHS, 2018. URL:
https://www.nao.org.uk/report/investigation-wannacry-cyber-attack-and-the-nhs/.

ICDT 2020

https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://doi.org/10.1186/s12942-018-0144-x
https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1145/1294261.1294267
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1016/0376-5075(78)90045-4
https://doi.org/10.1145/568425.568433
https://doi.org/10.1109/TC.2018.2860009
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1007/3-540-48184-2_32
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1145/3132259
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1109/ICDE.2019.00020
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.nao.org.uk/report/investigation-wannacry-cyber-attack-and-the-nhs/

17:20 Coordination-Free Byzantine Replication with Minimal Communication Costs

59 Michael Okun. Byzantine Agreement, pages 255–259. Springer New York, 2016. doi:
10.1007/978-1-4939-2864-4_60.

60 M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems. Springer
New York, 3th edition, 2011.

61 Michael Pisa and Matt Juden. Blockchain and Economic Development: Hype vs. Reality.
Technical report, Center for Global Development, 2017. URL: https://www.cgdev.org/
publication/blockchain-and-economic-development-hype-vs-reality.

62 PwC. Blockchain – an opportunity for energy producers and consumers?,
2016. URL: https://www.pwc.com/gx/en/industries/energy-utilities-resources/
publications/opportunity-for-energy-producers.html.

63 Michael O. Rabin. Efficient Dispersal of Information for Security, Load Balancing, and Fault
Tolerance. Journal of the ACM, 36(2):335–348, 1989. doi:10.1145/62044.62050.

64 Thomas C. Redman. The Impact of Poor Data Quality on the Typical Enterprise. Communi-
cations of the ACM, 41(2):79–82, 1998. doi:10.1145/269012.269025.

65 Scott Ruoti, Ben Kaiser, Arkady Yerukhimovich, Jeremy Clark, and Robert Cunningham.
Blockchain Technology: What is It Good For? Communications of the ACM, 63(1):46—-53,
2019. doi:10.1145/3369752.

66 Victor Shoup. Practical Threshold Signatures. In Advances in Cryptology — EUROCRYPT
2000, pages 207–220. Springer Berlin Heidelberg, 2000. doi:10.1007/3-540-45539-6_15.

67 Dale Skeen. A Quorum-Based Commit Protocol. Technical report, Cornell University, 1982.
68 Symantec. Internet Security Threat Report, Volume 32, 2018. URL: https://www.symantec.

com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf.
69 Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2nd edition,

2001.
70 Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. Maarten van Steen, 3th

edition, 2017. URL: https://www.distributed-systems.net/.
71 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and

Paulo Verissimo. Efficient Byzantine Fault-Tolerance. IEEE Transactions on Computers,
62(1):16–30, 2013. doi:10.1109/TC.2011.221.

72 Harald Vranken. Sustainability of bitcoin and blockchains. Current Opinion in Environmental
Sustainability, 28:1–9, 2017. doi:10.1016/j.cosust.2017.04.011.

73 Gavin Wood. Ethereum: a secure decentralised generalised transaction ledger. EIP-150
revision. URL: https://gavwood.com/paper.pdf.

74 Yin Yang. LinBFT: Linear-communication byzantine fault tolerance for public blockchains,
2018. URL: https://arxiv.org/abs/1807.01829.

75 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham.
HotStuff: BFT consensus with linearity and responsiveness. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, pages 347–356. ACM, 2019. doi:
10.1145/3293611.3331591.

https://doi.org/10.1007/978-1-4939-2864-4_60
https://doi.org/10.1007/978-1-4939-2864-4_60
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.pwc.com/gx/en/industries/energy-utilities-resources/publications/opportunity-for-energy-producers.html
https://www.pwc.com/gx/en/industries/energy-utilities-resources/publications/opportunity-for-energy-producers.html
https://doi.org/10.1145/62044.62050
https://doi.org/10.1145/269012.269025
https://doi.org/10.1145/3369752
https://doi.org/10.1007/3-540-45539-6_15
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.distributed-systems.net/
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1016/j.cosust.2017.04.011
https://gavwood.com/paper.pdf
https://arxiv.org/abs/1807.01829
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591

	Introduction
	Our Vision: Specializing for Read-only Workloads
	The Need for the Byzantine Learner Problem

	Formalizing the Byzantine Learner Problem
	The Delayed-Replication Algorithm
	Information Dispersal
	The Information Dispersal Step
	The Information Learning Step with Simple Checksums
	The Information Learning Step with Tree Checksums

	Use Case: Improving Permissioned Blockchains
	Towards Scalable Shared Storage
	Improved Checkpoints in Byzantine Consensus

	Related Work
	Conclusions and Future Work

