
Optimal Joins Using Compact Data Structures
Gonzalo Navarro
University of Chile, Santiago, Chile
IMFD, Santiago, Chile

Juan L. Reutter
Pontificia Universidad Católica de Chile, Santiago, Chile
IMFD, Santiago, Chile

Javiel Rojas-Ledesma
University of Chile, Santiago, Chile
IMFD, Santiago, Chile

Abstract
Worst-case optimal join algorithms have gained a lot of attention in the database literature. We
now count with several algorithms that are optimal in the worst case, and many of them have been
implemented and validated in practice. However, the implementation of these algorithms often
requires an enhanced indexing structure: to achieve optimality we either need to build completely new
indexes, or we must populate the database with several instantiations of indexes such as B+-trees.
Either way, this means spending an extra amount of storage space that may be non-negligible.

We show that optimal algorithms can be obtained directly from a representation that regards
the relations as point sets in variable-dimensional grids, without the need of extra storage. Our
representation is a compact quadtree for the static indexes, and a dynamic quadtree sharing subtrees
(which we dub a qdag) for intermediate results. We develop a compositional algorithm to process
full join queries under this representation, and show that the running time of this algorithm is
worst-case optimal in data complexity. Remarkably, we can extend our framework to evaluate more
expressive queries from relational algebra by introducing a lazy version of qdags (lqdags). Once
again, we can show that the running time of our algorithms is worst-case optimal.

2012 ACM Subject Classification Theory of computation → Database query processing and opti-
mization (theory); Theory of computation → Data structures and algorithms for data management

Keywords and phrases Join algorithms, Compact data structures, Quadtrees, AGM bound

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.21

Funding This work was partially funded by Millennium Institute for Foundational Research on Data
(IMFD), and by project CONICYT Fondecyt/Postdoctorado No. 3190550.

1 Introduction

The state of the art in query processing has recently been shaken by a new generation of
join algorithms with strong optimality guarantees based on the AGM bound of queries:
the maximum size of the output of the query over all possible relations with the same
cardinalities [2]. One of the basic principles of these algorithms is to disregard the traditional
notion of a query plan, favoring a strategy that can take further advantage of the structure of
the query, while at the same time taking into account the actual size of the database [14, 16].

Several of these algorithms have been implemented and tested in practice with positive
results [8, 18], especially when handling queries with several joins. Because they differ from
what is considered standard in relational database systems, the implementation of these
algorithms often requires additional data structures, a database that is heavily indexed, or
heuristics to compute the best computation path given the indexes that are present. For
example, algorithms such as Leapfrog [21], Minesweeper [15], or InsideOut [10] must select
a global order on the attributes, and assume that relations are indexed in a way that is
consistent with these attributes [18]. If one wants to use these algorithms with more flexibility

© Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma;
licensed under Creative Commons License CC-BY

23rd International Conference on Database Theory (ICDT 2020).
Editors: Carsten Lutz and Jean Christoph Jung; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2020.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Optimal Joins Using Compact Data Structures

in the way attributes are processed, then one would probably need to instantiate several
combinations of B+ trees or other indexes [8]. On the other hand, more involved algorithms
such as Tetris [9] or Panda [11] require heavier data structures that allow reasoning over
potential tuples in the answer.

Our goal is to develop optimal join algorithms that minimize the storage for additional
indexes while at the same time being independent of a particular ordering of attributes. We
address this issue by resorting to compact data structures: indexes using a nearly-optimal
amount of space while supporting all operations we need to answer join queries.

We show that worst-case optimal algorithms can be obtained when one assumes that
the input data is represented as quadtrees, and stored under a compact representation for
cardinal trees [4]. Quadtrees are geometric structures used to represent data points in grids
of size `× ` (which can be generalized to any dimension). Thus, a relation R with attributes
A1, . . . , Ad can be naturally viewed as a set of points over grids of dimension d, one point per
tuple of R: the value of each attribute Ai is the i-th coordinate of the corresponding point.

To support queries under this representation, our main tool is a new dynamic version of
quadtrees, which we denote qdags, where some nodes may share complete subtrees. Using
qdags, we can reduce the computation of a full join query J = R1 ./ · · · ./ Rn with d

attributes, to an algorithm that first extends the quadtrees for R1, . . . , Rn into qdags of
dimension d, and then intersects them to obtain a quadtree. Our first result shows that such
algorithm is indeed worst-case optimal:

I Theorem 1.1. Let R1(A1), . . . , Rn(An) be n relations with attributes in [0, `− 1], and let
d = |

⋃
iAi|. We can represent the relations using only

∑
i(|Ai|+2+o(1))|Ri| log `+O(n log d)

bits, so that the result of a join query J = R1 ./ · · · ./ Rn over a database instance D, can
be computed in Õ(AGM) time1.

Note that just storing the tuples in any Ri requires |Ai||Ri| log ` bits, thus our representation
adds only a small extra space of (2 + o(1))|Ri| log `+O(n log d) bits (basically, two words
per tuple, plus a negligible amount that only depends on the schema). Instead, any classical
index on the raw data (such as hash tables or B+-trees) would pose a linear extra space,
O(|Ai||Ri| log `) bits, often multiplied by a non-negligible constant (especially if one needs
to store multiple indexes on the data).

Our join algorithm works in a rather different way than the most popular worst-case
algorithms. To illustrate this, consider the triangle query J = R(A,B) ./ S(B,C) ./ T (A,C).
The most common way of processing this query optimally is to follow what Ngo et al. [16]
define as the generic algorithm: select one of the attributes of the query (say A), and iterate
over all elements a ∈ A that could be an answer to this query, that is, all a ∈ πa(R) ∩ πa(T).
Then, for each of these elements, iterate over all b ∈ B such that the tuple (a, b) can be an
answer: all (a, b) in (R ./ πB(S)) ./ πA(T), and so on.

Instead, quadtrees divide the output space, which corresponds to a grid of size `3, into
8 subgrids of size (`/2)3, and for each of these grids it recursively evaluates the query. As
it turns out, this strategy is as good as the generic strategy defined by Ngo et al. [16] to
compute joins, and can even be extended to other relational operations, as we explain next.

Our join algorithm boils down to two simple operations on quadtrees: an Extend
operation that lifts the quadtree representation of a grid to a higher-dimensional grid,
and an And operation that intersects trees. But there are other operations that we can
define and implement. For example, the synchronized Or of two quadtrees gives a compact

1 Õ hides poly-log N factors, for N the total input size, as well as factors that just depend on d and n
(i.e., the query size), which are assumed to be constant. We provide a precise bound in Section 3.3.

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:3

representation of their union, and complementing the quadtree values can be done by a Not
operation. We integrate all these operations in a single framework, and use it to answer more
complex queries given by the combination of these expressions, as in relational algebra.

To support these operations we introduce lazy qdags, or lqdags for short, in which nodes
may be additionally labeled with query expressions. The idea is to be able to delay the
computation of an expression until we know such computation is needed to derive the output.
To analyze our framework we extend the idea of a worst-case optimal algorithm to arbitrary
queries: If a worst-case optimal algorithm to compute the output of a formula F takes time T
over relations R1, . . . , Rn of sizes s1, . . . , sn, respectively, of a database D, then there exists
a database D′ with relations R′1, . . . , R′n of sizes O(s1), . . . , O(sn), respectively, where the
output of F over R′1, . . . , R′n is of size Ω(T). We prove that lqdags allow us to maintain
optimality in the presence of union and negation operators:

I Theorem 1.2. Let Q be a relational algebra query built with joins, union and complement,
and where no relation appears more than once in Q. Then there is an algorithm to evaluate
Q that is worst-case optimal in data complexity.

Consider, for example, the query J ′ = R(A,B) ./ S(B,C) ./ T (A,C), which joins R and
S with the complement T of T . One could think of two ways to compute this query. The
first is just to join R and S and then see which of the resulting tuples are not in T . But if T
is dense (T is small), it may be more efficient to first compute T and then proceed as on the
usual triangle query. Our algorithm is optimal because it can choose locally between both
strategies: by dividing into quadrants one finds dense regions of T in which computing T is
cheaper, while in sparse regions the algorithm first computes the join of R and S.

Our framework is the first in combining worst-case time optimality with the use of
compact data structures. The latter can lead to improved performance in practice, because
relations can be stored in faster memory, higher in the memory hierarchy [13]. This is
especially relevant when the compact representation fits in main memory while a heavily
indexed representation requires resorting to the disk, which is orders of magnitude slower.
Under the recent trend of maintaining the database in the aggregate main memory of a
distributed system, a compact representation leads to using fewer computers, thus reducing
hardware, communication, and energy costs, while improving performance.

2 Quadtrees

A Region Quadtree [6, 19] is a structure used to store points in two-dimensional grids of `× `.
We focus on the variant called MX-Quadtree [22, 19], which can be described as follows.
Assume for simplicity that ` is a power of 2. If ` = 1, then the grid has only one cell and the
quadtree is an integer 1 (if the cell has a point) or 0 (if not). For ` > 1, if the grid has no
points, then the quadtree is a leaf. Otherwise, the quadtree is an internal node with four
children, each of which is the quadtree of one of the four `/2 × `/2 quadrants of the grid.
(The deepest internal nodes, whose children are 1× 1 grids, store instead four integers in
{0, 1} to encode their cells.)

Assume each data point is described using the binary representation of each of its
coordinates (i.e., as a pair of log `-bit vectors). We order the grid quadrants so that the first
contains all points with coordinates of the form (0 · cx, 0 · cy), for log `− 1 bit vectors cx and
cy, the second contains points (0 · cx, 1 · cy), the third (1 · cx, 0 · cy), and the last quadrant
stores the points (1 · cx, 1 · cy). Fig. 1 shows a grid and its deployment as a quadtree.

ICDT 2020

21:4 Optimal Joins Using Compact Data Structures

1 1 1 0

0 2 4 6 8 10 12 14

1

3

5

7

9

11

13

15

0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0

0 0 1 1 0 1 0 1

B

01

01

10

10

A(a) (b)

0 0

0 0 0

Figure 1 A quadtree representing R(A, B) = {(4, 3), (7, 2), (5, 6), (6, 4), (3, 12), (6, 12), (6, 13),
(7, 12), (7, 13), (8, 5), (14, 1), (15, 0)}. (a) Representation of R(A, B) in a 24 × 24 grid, and representa-
tion of the hierarchical partition defining the quadtree. The black cells correspond to points in R.
(b) The quadtree representing R. The shadowed leaf of the tree corresponds to the point p = (3, 12).
Concatenating the labels in the path down to p yield the bit-string ‘01011010’ which encodes the
first (resp. second) coordinate of p in the bits at odd (resp. even) positions (3 = 0011, 12 = 1100).

Quadtrees can be generalized to higher dimensions. A quadtree of dimension d is a tree
used to represent data points in a d-dimensional grid G of size `d. Here, an empty grid is
represented by a leaf and a nonempty grid corresponds to an internal node with 2d children
representing the 2d subspaces spanning from combining the first bits of each dimension.
Generalizing the case d = 1, the children are ordered using the Morton [12] partitioning of
the grid: a sequence of 2d subgrids of size (`/2)d in which the i-th subgrid of the partition,
represented by the binary encoding bi of i, is defined by all the points (bc1 , . . . , bcd

) in which
the word formed by concatenating the first bit of each string bcj

is precisely the string bi.
A quadtree with p points has at most p log ` nodes (i.e., root-to-leaf paths). A refined

analysis in two dimensions [7, Thm. 1] shows that quadtrees have fewer nodes when the points
are clustered: if the points distribute along c clusters, pi of them inside a subgrid of size
`i× `i, then there are in total O(c log `+

∑
i pi log `i) nodes in the quadtree. The result easily

generalizes to d dimensions: the cells are of size `di and the quadtree has O(c log `+
∑
i pi log `i)

internal nodes, each of which stores 2d pointers to children (or integers, in the last level).
Brisaboa et al. [4] introduced a compact quadtree representation called the kd-tree. They

represent each internal quadtree node as the 2d bits telling which of its quadrants is empty
(0) or nonempty (1). Leaves and single-cell nodes are not represented because their data
is deduced from the corresponding bit of their parent. The kd-tree is simply a bitvector V
obtained by concatenating the 2d bits of every (internal) node in levelwise order. Each node
is identified with its order in this deployment, the root being 1. Navigation on the quadtree
(from a parent to its children, and vice-versa) is simulated in constant time using o(|V |)
additional bits on top of V . On a quadtree in dimension d storing p points, the length of
the bitvector V is |V | ≤ 2dp log `, increasing exponentially with d. This bitvector is sparse,
however, because it has at most p log ` 1s, one per quadtree node. We then resort to a
representation of high-arity cardinal trees introduced by Benoit et al. [3, Thm. 4.3], which
requires only (d+ 2)p log `+ o(p log `) +O(log d) bits, and performs the needed tree traversal
operations in constant time.

I Observation 2.1 (cf. Benoit et al. [3], Thm. 4.3). Let Q be a quadtree storing p points
in d dimensions with integer coordinates in the interval [0, log ` − 1]. Then, there is a
representation of Q which uses (d + 2 + o(1))p log ` + O(log d) bits, can be constructed in
linear expected time, and supports constant time parent-children navigation on the tree.

From now on, by quadtree we refer to this compact representation. Next, we show how
to represent relations using quadtrees and evaluate join queries over this representation.

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:5

3 Multi-way Joins using Qdags

We assume for simplicity that the domain D(A) of an attribute A consists of all binary
strings of length log `, representing the integers in [0, `− 1], and that ` is a power of 2.

A relation R(A) with attributes A = {A1, . . . , Ad} can be naturally represented as a
quadtree: simply interpret each tuple in R(A) as a data point over a d-dimensional grid
with `d cells, and store those points in a d-dimensional quadtree. Thus, using quadtrees
one can represent the relations in a database using compact space. The convenience of this
representation to handle restricted join queries with naive algorithms has been demonstrated
practically on RDF stores [1]. In order to obtain a general algorithm with provable perfor-
mance, we introduce qdags, an enhanced version of quadtrees, together with a new algorithm
to efficiently evaluate join queries over the compressed representations of the relations.

We start with an example to introduce the basics behind our algorithms and argue for
the need of qdags. We then formally define qdags and explore their relation with quadtrees.
Finally, we provide a complete description of the join algorithm and analyze its running time.

3.1 The triangle query: quadtrees vs qdags
Let R(A,B), S(B,C), T (A,C) be relations over the attributes {A,B,C} denote the domains
of A,B and C respectively, and consider the triangle query R(A,B) ./ S(B,C) ./ T (A,C).
The basic idea of the algorithm is as follows: we first compute a quadtree Q∗R that represents
the cross product R(A,B)×All(C), where All(C) is a relation with an attribute C storing
all elements in the domain [0, `−1]. Likewise, we compute Q∗S representing S(B,C)×All(A),
and Q∗T representing T (A,C)×All(B). Note that these quadtrees represent points in the
three-dimensional grid with a cell for every possible value in D(A)×D(B)×D(C), where
we assume that the domains D(·) of the attributes are all [0, `− 1]. Finally, we traverse the
three quadtrees in synchronization building a new quadtree that represents the intersection
of Q∗R, Q∗S and Q∗T . This quadtree represents the desired output because

R(A,B) ./ S(B,C) ./ T (A,C) =
(R(A,B)×All(C)) ∩ (S(B,C)×All(A)) ∩ (T (A,C)×All(B)).

Though this algorithm is correct, it can perform poorly in terms of space and running
time. The size of Q∗R, for instance, can be considerably bigger than that of R, and even than
the size of the output of the query. If, for example, the three relations have n elements each,
the size of the output is bounded by n3/2 [2], while building Q∗R costs Ω(n`) time and space.
This inefficiency stems from the fact that quadtrees are not smart to represent relations of
the form R∗(A) = R(A′)×All(A\A′), where A′ ⊂ A, with respect to the size of a quadtree
representing R(A′). Due to its tree nature, a quadtree does not benefit from the regularities
that appear in the grid representing R∗(A). To remedy this shortcoming, we introduce qdags,
quadtree-based data structures that represent sets of the form R(A′)×All(A\A′) by adding
only constant additional space to the quadtree representing R(A′), for any A′ ⊆ A.

A qdag is an implicit representation of a d-dimensional quadtree Qd (that has certain
regularities) using only a reference to a d′-dimensional quadtree Qd′ , with d′ ≤ d, and an
auxiliary mapping function that defines how to use Qd′ to simulate navigation over Qd.
Qdags can then represent relations of the form R(A′)×All(A \A′) using only a reference to
a quadtree representing R(A′), and a constant-space mapping function.

To illustrate how a qdag works, consider a relation S(B,C), and let Q∗S be a quadtree
representing S∗(A,B,C) = All(A)× S(B,C). Since Q∗S stores points in the `3 cube, each
node in Q∗S has 8 children. As All(A) contains all ` elements, for each original point (b, c) in

ICDT 2020

21:6 Optimal Joins Using Compact Data Structures

0 0 1 0 1 1 1 1

0 0 0

C 0 1 1 1 1 1

0 0 0 0 0 0

0 0

(a) (b)

0 2 4 6

1

3

5

7
B

B

A

0 2 4 6

1

3

5

7

C
2
4 6

0 0 0 1 1 1 1

0 0

0 0 0 0 0 0

0 0

0 0

0 0 0

101

010

010

1

Figure 2 An illustration of a qdag for S∗({A, B, C}) = All(A) × S(B, C), with S(B, C) =
{(3, 4), (6, 4), (6, 5), (7, 4), (7, 5)}. a) A geometric representation of S(B, C) (left), and S∗({A, B, C})
(right). b) A quadtree QS for S(B, C) (left), and the directed acyclic graph induced by the qdag
(QS , M = [0, 1, 2, 3, 0, 1, 2, 3]), which represents S∗({A, B, C}). The red cell in (a) corresponds to the
point p = (4, 3, 4). The leaf representing p in the qdag can be reached following the path highlighted
in (b). Note the relation between the binary representation (100,010,100) of p, and the Morton
codes 101, 010, 010 of the nodes in the path from the root to the leaf for p.

S, S∗ contains ` points corresponding to elements (0, b, c), . . . , (`− 1, b, c). We can think of
this as extending each point in S to a box of dimension `× 1× 1. With respect to Q∗S , this
implies that, among the 8 children of a node, the last 4 children will always be identical to
the first 4, and their values will in turn be identical to those of the corresponding nodes in
the quadtree QS representing S. In other words, each of the four subgrids 1a1a2 is identical
to the subgrid 0a1a2, and these in turn are identical to the subgrid a1a2 in S (see Fig. 2 for
an example). Thus, we can implicitly represent Q∗S by the pair (QS ,M = [0, 1, 2, 3, 0, 1, 2, 3]):
the root of Q∗S is the root of QS , and the i-child of the root of Q∗S is represented by the pair
(C,M), where C is the M [i]-th child of the root of QS .

3.2 Qdags for relational data
We now introduce a formal definition of the qdags, and describe the algorithms which allow
the evaluation of multijoin queries in worst-case optimal time.

I Definition 3.1 (qdag). Let Qd′ be a quadtree representing a relation with d′ attributes.
A qdag Qd, for d ≥ d′, is a pair (Qd′ ,M), with M : [0, 2d − 1] → [0, 2d′ − 1]. This qdag
represents a quadtree Q, which is called the completion of Qd, as follows:
1. If Qd′ represents a single cell, then Q represents a single cell with the same value.
2. If Qd′ represents a d′-dimensional grid empty of points, then Q represents a d-dimensional

grid empty of points.
3. Otherwise, the roots of both Qd′ and Q are internal nodes, and for all 0 ≤ i < 2d, the

i-th child of Q is the quadtree represented by the qdag (C(Qd′ ,M [i]),M), where C(Qd′ , j)
denotes the j-th child of the root node of quadtree Qd′ .

We say that a qdag represents the same relation R represented by its completion. Note
that, for any d-dimensional quadtree Q, one can generate a qdag whose completion is Q
simply as the pair (Q,M), where M is the identity mapping M [i] = i, for all 0 ≤ i < 2d.
We can then describe all our operations over qdags. Note, in particular, that we can use
mappings to represent any reordering of the attributes.

In terms of representation, the references to quadtree nodes consist of the identifier of the
quadtree and the index of the node in level-wise order. This suffices to access the node in
constant time from its compact representation. For a qdag Q′ = (Q,M), we denote by |Q′|
the number of internal nodes in the base quadtree Q, and by ||Q′|| the number of internal
nodes in the completion of Q′.

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:7

Algorithm 1 Value.
Require: qdag (Q, M) with grid side `.
Ensure: The integer 1 if the grid is a single point,

0 if the grid is empty, and ½ otherwise.
1: if ` = 1 then return the integer Q

2: if Q is a leaf then return 0
3: return ½

Algorithm 2 ChildAt.
Require: qdag (Q, M) on a grid of dimension d and

side `, and a child number 0 ≤ i < 2d. Assumes
Q is not a leaf or an integer.

Ensure: A qdag (Q′, M) corresponding to the i-th
child of (Q, M).

1: return (C(Q, M [i]), M)

Algorithm 3 Extend.
Require: A qdag (Q, M ′) representing a relation R(A′), and a set A such that A′ ⊆ A.
Ensure: A qdag (Q, M) whose completion represents the relation R(A′)×All(A \ A′).
1: create array M [0, 2d − 1]
2: d← |A|, d′ ← |A′|
3: for i← 0, . . . , 2d − 1 do
4: md ← the d-bits binary representation of i
5: md′ ← the projection of md to the positions in which the attributes of A′ appear in A
6: i′ ← the value in [0, 2d′ − 1] corresponding to md′

7: M [i]←M ′[i′]
8: return (Q, M)

Algorithms 1 and 2, based on Definition 3.1, will be useful for the navigation of qdags.
Operation Value yields a 0 iff the subgrid represented by the qdag is empty (thus the qdag
is a leaf); a 1 if the qdag is a full single cell, and ½ if it is an internal node. Operation
ChildAt lets us descend by a given child from internal nodes representing nonempty grids.
The operations “integer Q”, “Q is a leaf”, and “C(Q, j)” are implemented in constant time
on the compact representation of Q.

Operation Extend. We introduce an operation to obtain, from the qdag representing a
relation R, a new qdag representing the relation R extended with new attributes.

I Definition 3.2. Let A′ ⊆ A be sets of attributes, let R(A′) be a relation over A′, and let
QR = (Q,M) be a qdag that represents R(A′). The operation Extend(QR,A) returns a
qdag Q∗R = (Q,M ′) that represents the relation R×All(A \ A′).

To provide intuition on its implementation, let A′ be the set of attributes {A,B,D} and
let A = {A,B,C,D}, and consider R(A′), QR and Q∗R from Definition 3.2. Each node of QR
has 8 children, while each node of Q∗R has 16 children. Consider the child at position i = 12
of Q∗R. This node represents the grid with Morton code m4=‘1100’ (i.e., 12 in binary), and
contains the tuples whose coordinates in binary start with 1 in attributes A,B and with 0 in
attributes C,D. This child has elements if and only if the child with Morton code m3=‘110’
of QR (i.e., its child at position j = 6) has elements; this child is in turn the M [6]-th child of
Q. Note that m3 results from projecting m4 to the positions 0,1,3 in which the attributes
A,B,D appear in {A,B,C,D}. Since the Morton code 1110’ (i.e., 14 in binary) also projects
to m3, it holds that M ′[12] = M ′[14] = M [6]. We provide an implementation of the Extend
operation for the general case in Algorithm 3. The following lemma states the time and
space complexity of our implementation of Extend. For simplicity, we count the space in
terms of computer words used to store references to the quadtrees and values of the mapping
function M .

I Lemma 3.3. Let |A| = d in Definition 3.2. Then, the operation Extend(QR,A) can be
supported in time O(2d) and its output takes O(2d) words of space.

ICDT 2020

21:8 Optimal Joins Using Compact Data Structures

Algorithm 4 MultiJoin.
Require: Relations R1, . . . , Rn,

stored as qdags Q1, . . . , Qn; each
relation Ri is over attributes Ai

and A =
⋃
Ai.

Ensure: A quadtree representing the
output of J = R1 .// Rn.

1: for i← 1, . . . , n do
2: Q∗i ← Extend(Ri,A)

3: return And(Q∗1, . . . , Q∗n)

Algorithm 5 And.
Require: n qdags Q1, Q2, . . . ,Qn representing relations

R1(A), R2(A), . . . , Rn(A).
Ensure: A quadtree representing the relation

⋂n

i=1 Ri(A).
1: m← min{Value(Q1), . . . , Value(Qn)}
2: if ` = 1 then return the integer m

3: if m = 0 then return a leaf
4: for i← 0, . . . , 2d − 1 do
5: Ci ← And(ChildAt(Q1, i), . . . , ChildAt(Qn, i))
6: if max{Value(C0), . . . , Value(C2d−1)} = 0 then return

a leaf
7: return a quadtree with children C0, . . . , C2d−1

Proof. We show that Algorithm 3 meets the conditions of the lemma. The computations
of md and i′ are immaterial (they just interpret a bitvector as a number or vice versa).
The computation of m′d is done with a constant table (that depends only on the database
dimension d) of size O(23d):2 The argument A is given as a bitvector of size d telling which
attributes are in A, the qdag on A′ stores a bitvector of size d telling which attributes are in
A′, and the table receives both bitvectors and md and returns m′d. J

3.3 Join algorithm
Now that we can efficiently represent relations of the form R(A′)×All(A \ A′), for A′ ⊆ A,
we describe a worst-case optimal implementation of joins over the qdag representations
of the relations. Our algorithm follows the idea discussed for the triangle query: we first
extend every qdag to all the attributes that appear in the query, so that they all have the
same dimension and attributes. Then we compute their intersection, building a quadtree
representing the output of the query. The implementation of this algorithm is surprisingly
simple (see Algorithms 4 and 5), yet worst-case optimal, as we prove later on. Using qdags
is key for this result; this algorithm would not be at all optimal if computed over relational
instances stored using standard representations such as B+ trees. First, we describe how to
compute the intersection of several qdags, and then analyze the running time of the join.

Operation And. We introduce an operation And, which computes the intersection of several
relations represented as qdags.

I Definition 3.4. Let Q1, . . . , Qn be qdags representing relations R1, . . . , Rn, all over the
attribute set A. Operation And(Q1, . . . , Qn) returns a quadtree Q that represents the relation
R1 ∩ . . . ∩Rn.

We implement this operation by simulating a synchronized traversal among the comple-
tions C1, . . . , Cn of Q1, . . . , Qn, respectively, obtaining the quadtree Q that stores the cells
that are present in all the quadtrees Ci (see Algorithm 5).We proceed as follows. If ` = 1,
then all Ci are integers with values 0 or 1, and Q is an integer equal to the minimum of the n
values. Otherwise, if any Qi represents an empty subgrid, then Q is also a leaf representing
an empty subgrid. Otherwise, every Ci is rooted by a node vi with 2d children, and so is Q,
where the j-th child of its root v is the result of the And operation of the j-th children of the

2 They can be reduced to two tables of size O(22d), but we omit the details for simplicity.

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:9

nodes v1, . . . , vn. However, we need a final pruning step to restore the quadtree invariants
(line 6 of Algorithm 5): if Value(vi) = 0 for all the resulting children of v, then v must
become a leaf and the children be discarded. Note that once the quadtree is computed, we
can represent it succinctly in linear expected time so that, for instance, it can be cached for
future queries involving the output represented by Q3.

Analysis of the algorithm. We compute the output Q of And(Q1, . . . , Qn) in time O(2d ·
(||Q1||+ · · ·+ ||Qn||)). More precisely, the time is bounded by O(2d · |Q+|), where Q+ is the
quadtree that would result from Algorithm 5 if we remove the pruning step of line 6. We
name this quadtree Q+ as the non-pruned version of Q. Although the size of the actual
output Q can be much smaller than that of Q+,we can still prove that our time is optimal in
the worst case. We start with a technical result.

I Lemma 3.5. The And operation can be supported in time O(M · 2dn log `), where M is
the maximum number of nodes in a level of Q+.

Proof. We show that Algorithm 5 meets the conditions of the lemma. Let mj be the number
of nodes of depth j in Q+, and then M = max0≤j<log `mj . The number of steps performed
by Algorithm 5 is bounded by n · (

∑
0≤j<log `mj · 2d) ≤ n ·M · log ` · 2d: In each depth we

continue traversing all qdags Q1, . . . , Qn as long as they are all nonempty, and we generate
the corresponding nodes in Q+ (even if at the end some nodes will disappear in Q). J

All we need to prove (data) optimality is to show that |Q+| is bounded by the size of the
real output of the query. Recall that, for a join query J on a database D, we use 2ρ∗(J,D) to
denote the AGM bound [2] of the query J over D, that is, the maximum size of the output
of J over any relational database having the same number of tuples as D in each relation.

I Theorem 3.6. Let J = R1 .// Rn be a full join query, and D a database over
schema {R1, . . . , Rn}, with d attributes in total, and where the domains of the relations are
in [0, `− 1]. Let Ai be the set of attributes of Ri, for all 1 ≤ i ≤ n and N =

∑
i |Ri| be the

total amount of tuples in the database. The relations R1, . . . , Rn can then be stored within∑
i(|Ai|+ 2 + o(1))|Ri| log `+O(n log d) bits, so that the output for J can be computed in

time O(2ρ∗(J,D) · 2dn log min(`,N)) = Õ(2ρ∗(J,D)).

Proof. The space usage is a simple consequence of Observation 2.1. As for the time, to
solve the join query J we simply encapsulate the quadtrees representing R1, . . . , Rn in qdags
Q1, . . . , Qn, and use Algorithm 4 to compute the result of the query. We now show that
Algorithm 4 runs in time within the bound of the theorem. First, assume that log ` is
O(logN). Let each relation Ri be over attributes Ai, and A =

⋃
Ai with d = |A|. Let

Q∗i = Extend(Qi,A), Q = And(Q∗1, . . . , Q∗n), and Q+ be the non-pruned version of Q. The
cost of the Extend operations is only O(2dn), according to Lemma 3.3, so the main cost
owes to the And operation.

If the maximumM of Lemma 3.5 is reached at the lowest level of the decomposition, where
we store integers 0 or 1, then we are done: each 1 at a leaf of Q+ exists in Q as well because
that single tuple is present in all the relations R1, . . . , Rn. Therefore, M is bounded by the
AGM bound of J and the time of the And operation is bounded by O(2ρ∗(J,D) · 2dn log `).

Assume instead that M is the number of internal nodes at depth 0 < j < log ` of Q+ (if
M is reached at depth 0 thenM = 1). Intuitively, we will take the relations at the granularity
of level j, and show that there exists a database D′ where such a (2j)d relation arises in the
last level and thus the answer has those M tuples.

3 This consumes linear expected time due to the use of perfect hashing in the compact representation [3].

ICDT 2020

21:10 Optimal Joins Using Compact Data Structures

We then construct the following database D′ with relations R′i: For a binary string c, let
pre(c, j) denote the first j bits of c. Then, for each relation Ri and each tuple (c1, . . . , cdi

)
in Ri, where di = |Ai|, let R′i contain the tuples (0log `−jpre(c1, j), 0log `−jpre(c2, j) . . . ,
0log `−jpre(cdi , j)), corresponding to taking the first j bits of each coordinate and prepending
them with a string of log `− j 0s. While this operation may send two tuples in a relation
in D to a single tuple in D′, we still have that each relation R′i in D′ contains at most as
many tuples as relation Ri in D. Moreover, if we again store every R′i as a qdag and process
their join as in Algorithm 4, then by construction we have in this case that the leaves of the
tree resulting from the And operation contain exactly M nodes with 1, and that this is the
maximum number of nodes in a level of this tree. Since the leaves represent tuples in the
answer, we have that M ≤ 2ρ∗(J,D′) ≤ 2ρ∗(J,D), which completes the proof for the case when
log ` is O(logN).

Finally, when logN is o(log `), we can convertO(log `) toO(logN) in the time complexities
by storing R1, . . . , Rn using quadtrees, with a slight variation. We store the values of the
attributes appearing in any relation in an auxiliary data structure (e.g., an array), and
associate an O(logN)-bits identifier to each different value in [0, `−1] that appears in D (e.g.,
the index of the corresponding value in the array). In this case, we represent the relations in
quadtrees, but using the identifiers of the attribute values instead of the values themselves.
This representation requires at most dN log ` bits for the representation of the distinct
attribute values and O(dN logN) bits for the representation of the quadtrees. Thus, in total
it requires dN log `+O(dN logN) = dN log `(1+O(logN/ log `)) = dN log `(1+o(1)), which
is within the stated bound. Note that in both cases, the height of the quadtrees representing
the relations is O(logN), and this is the multiplying factor in the time complexities. J

4 Extending Worst-Case Optimality to More General Queries

In this section we turn to design worst-case optimal algorithms for more expressive queries.
At this point it should be clear that we can deal with set operations: we already studied the
intersection (which corresponds to operation And over the qdags), and will show that union
(operation Or) and complement (operation Not) can be solved optimally as well. What
is most intriguing, however, is whether we can obtain worst-case optimality on combined
relational formulas. We introduce a worst-case optimal algorithm to evaluate formulas
expressed as combinations of join, union, and complement operations (which we refer to
as JUC-queries; note that intersection is a particular case of join). We do not study other
operations like selection and projection because these are easily solved in time essentially
proportional to the size of the output, but refer to Appendix A for more details on how
projection interplays with the rest of our framework.

The key ingredient of our algorithm is to deal with these operations in a lazy form,
allowing unknown intermediate results so that all components of a formula are evaluated
simultaneously. To do this we introduce lazy qdags (or lqdags), an alternative to qdags that
can navigate over the quadtree representing the output of a formula without the need to
entirely evaluate the formula. We then give a worst-case optimal algorithm to compute the
completion of an lqdag, that is, the quadtree of the grid represented by the lqdag.

4.1 Lqdags for relational formulas
To support worst-case optimal evaluation of relational formulas we introduce two new ideas:
we add “full leaves” to the quadtree representation to denote subgrids full of 1s, and we
introduce lqdags to represent the result of a formula as an implicit quadtree that can be
navigated without fully evaluating the formula.

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:11

Algorithm 6 Value on extended qdags.
Require: qdag (Q, M) with grid side `.
Ensure: Value 0 or 1 if the grid represented by Q is totally empty or full, respectively, otherwise ½.
1: if Q is a leaf then return the integer 0 or 1 associated with Q

2: return ½

While quadtree leaves representing a single cell store the cell value, 0 or 1, quadtree leaves
at higher levels always represent subgrids full of 0s. We now generalize the representation, so
that quadtree leaves at any level store an integer, 0 or 1, which is the value of all the cells
in the subgrid represented by the leaf. The generalization impacts on the way to compute
Value, depicted in Algorithm 6. We will not use qdags in this section, however; the lqdags
build directly on quadtrees. In terms of the compact representation, this generalization is
implemented by resorting to an impossible quadtree configuration: an internal node with all
zero children [5]. Note that replacing a full subgrid with this configuration can only decrease
the size of the representation.

The second novelty, the lqdags, are defined as follows.

I Definition 4.1 (lqdag). An lqdag L is a pair (f, o), where f is a functor and o is a list of
operands. The completion of L is the quadtree QR = QR(A) representing relation R(A) if L
is as follows:
1. (QTREE, QR), where the lqdag just represents QR;
2. (NOT, QR), where QR is the quadtree representing the complement of QR;
3. (AND, L1, L2), where L1 and L2 are lqdags and QR represents the intersection of their

completions;
4. (OR, L1, L2), where L1 and L2 are lqdags and QR represents the union of their completions;
5. (EXTEND, L1,A), where lqdag L1 represents R′(A′), A′ ⊆ A, and QR represents R(A) =

R′(A′)×All(A \ A′).

Note that, for a quadtree QR representing a relation R(A′), and a set of attributes A,
the qdag Q∗R = (QR,MA) that represents the relation R×All(A \ A′) can be expressed as
the lqdag (EXTEND, (QTREE, QR),A). In this sense, lqdags are extensions of qdags. To further
illustrate the definition of lqdags, consider the triangle query R(A,B) ./ S(B,C) ./ T (A,C),
with A = {A,B,C} and the relations represented by quadtrees QR, QS , and QT . This query
can then be represented as the lqdag

(AND, (AND, (EXTEND, (QTREE, QR),A), (EXTEND, (QTREE, QS),A)), (EXTEND, (QTREE, QT),A)).

It is apparent that one can define other operations, like JOIN and DIFF, by combining the
operations defined above:

(JOIN, L1(A1), L2(A2)) = (AND, (EXTEND, L1,A1 ∪ A2), (EXTEND, L2,A1 ∪ A2))
(DIFF, L1, L2) = (AND, L1, (NOT, L2))

Note that in the definition of the lqdag for NOT, the operand is a quadtree instead of an
lqdag, and then, for example, L2 should be a quadtree in the definition of DIFF, in principle.
However, we can easily get around that restriction by pushing down the NOT operators until
the operand is a quadtree or the NOT is cancelled with another NOT. For instance, a NOT
over an lqdag (AND, Q1, Q2) is equivalent to (OR, (NOT, Q1), (NOT, Q2)), and analogously with
the other functors. The restriction, however, does limit the types of formulas for which we
achieve worst-case optimality, as shown later.

ICDT 2020

21:12 Optimal Joins Using Compact Data Structures

Algorithm 7 Value function for NOT.
Require: A Quadtree Q.
Ensure: Value of the root of (NOT, Q).

1: return 1−Value(Q)

Algorithm 8 ChildAt function for NOT.
Require: A Quadtree Q in dimension d, and an integer

0 ≤ i < 2d.
Ensure: An lqdag for the i-th child of (NOT, Q).
1: return (NOT, ChildAt(Q, i))

Algorithm 9 Value function for AND.
Require: Lqdags L1 and L2.
Ensure: The value of the root of (AND, L1, L2).
1: if Value(L1) = 0 or Value(L2) = 0 then

return 0
2: if Value(L1) = 1 then return Value(L2)
3: if Value(L2) = 1 then return Value(L1)
4: return ♦

Algorithm 10 ChildAt function for AND.
Require: Lqdags L1 and L2 in dimension d, integer

0 ≤ i < 2d.
Ensure: An lqdag for the i-th child of (AND, L1, L2).
1: if Value(L1) = 1 then return ChildAt(L2, i)
2: if Value(L2) = 1 then return ChildAt(L1, i)

3: return (AND, ChildAt(L1, i), ChildAt(L2, i))

To understand why we call lqdags lazy, consider the operation Q1 And Q2 over quadtrees
Q1, Q2. If any of the values at the roots of Q1 or Q2 is 0, then the result of the operation is
for sure a leaf with value 0. If any of the values is 1, then the result of the operation is the
other. However, if both values are ½, one cannot be sure of the value of the root until the
And between the children of Q1 and Q2 has been evaluated. Solving this dependency eagerly
would go against worst-case optimality: it forces us to fully evaluate parts of the formula
without considering it as a whole. To avoid this, we allow the Value of a node represented
by an lqdag to be, apart from 0, 1, and ½, the special value ♦. This indicates that one
cannot determine the value of the node without computing the values of its children.

As we did for qdags, in order to simulate the navigation over the completion Q of
an lqdag L we need to describe how to obtain the value of the root of Q, and how to
obtain an lqdag whose completion is the i-th child of Q, for any given i. We implement
those operations in Algorithms 7–14, all constant-time. Note that ChildAt can only be
invoked when Value = ½ or ♦. The base case is Value(QTREE, Q) = Value(Q) and
ChildAt((QTREE, Q), i) = ChildAt(Q, i), where we enter the quadtree and resort to the
algorithms based on the compact representation of Q. We will assume that Value(Q) returns
½ for internal nodes, and thus the implementation of Value for EXTEND is trivial (compare
Algorithms 6 and 13 under this assumption).

Note that the recursive calls of Algorithms 7-14 traverse the nodes of the relational formula
(fnodes, for short), and terminate immediately upon reaching an fnode of the form (QTREE, Q).
Therefore, their time complexity depends only on the size of the formula represented by the
lqdag. We show next how, using these implementations of Value and ChildAt, one can
efficiently evaluate a relational formula using lqdags.

4.2 Evaluating JUC queries
To evaluate a formula F represented as an lqdag LF , we compute the completion QF of LF ,
that is, the quadtree QF representing the output of F .

To implement this we introduce the idea of super-completion of an lqdag. The super-
completion Q+

F of LF is the quadtree induced by navigating LF , and interpreting the values
♦ as ½ (see Algorithm 15). Note that, by interpreting values ♦ as ½, we are disregarding
the possibility of pruning resulting subgrids full of 0s or 1s and replacing them by single
leaves with values 0 or 1 in QF . Therefore, Q+

F is a non-pruned quadtree (just as Q+ in

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:13

Algorithm 11 Value function for OR.
Require: Lqdags L1 and L2.
Ensure: The value of the root of (OR, L1, L2).
1: if Value(L1) = 1 or Value(L2) = 1 then

return 1
2: if Value(L1) = 0 then return Value(L2)
3: if Value(L2) = 0 then return Value(L1)
4: return ♦

Algorithm 12 ChildAt function for OR.
Require: Lqdags L1 and L2 in dimension d, integer

0 ≤ i < 2d.
Ensure: An lqdag for the i-th child of (OR, L1, L2).
1: if Value(L1) = 0 then return ChildAt(L2, i)
2: if Value(L2) = 0 then return ChildAt(L1, i)

3: return (OR, ChildAt(L1, i), ChildAt(L2, i))

Algorithm 13 Value function for EXTEND.

Require:
Lqdag L1(A′), set A ⊇ A′.

Ensure:
Value of the root of (EXTEND, L1,A).

1: return Value(L1)

Algorithm 14 ChildAt function for EXTEND.
Require:

Lqdag L1(A′), set A ⊇ A′, integer 0 ≤ i < 2|A|.
Ensure: An lqdag for the i-th child of (EXTEND, L1,A).
1: d← |A|, d′ ← |A′|
2: md ← the d-bits binary representation of i
3: md′ ← the projection of md to the positions in

which the attributes of A′ appear in A
4: i′ ← the value in [0, 2d′ − 1] corresponding to md′

5: return (EXTEND, ChildAt(L1, i′),A)

Section 3.3) that nevertheless represents the same points of QF . Moreover, Q+
F shares with

QF a key property: all its nodes with value 1, including the last-level leaves representing
individual cells, correspond to actual tuples in the output of F .

To see how lqdags are evaluated, let us consider the query F = R(A,B) ./ S(B,C) ./
T (A,C). This corresponds to an lqdag QF :

(AND, (AND, (EXTEND, (QTREE, QR),A), (EXTEND, (QTREE, QS),A)), (EXTEND, (NOT, QT),A)).

Assuming some of the trees involved have internal nodes, the super-completion Q+
F first

produces 8 children. Suppose the grid of T is full of 1s in the first quadrant (00). Then
the first child (00) of QT has value 1, which becomes value 0 in (NOT, QT). This implies
that (EXTEND, (NOT, QT)) also yields value 0 in octants 000 and 010. Thus, when function
ChildAt is called on child 000 of QF , our 0 is immediately propagated and ChildAt returns
0, meaning that there are no answers for F on this octant, without ever consulting the
quadtrees QR and QS (see Figure 3 for an illustration). On the other hand, if the value
of the child 11 of T is 0, then (EXTEND, (NOT, QT)) will return value 1 in octants 101 and
111. This means that the result on this octant corresponds to the result of joining R and S;
indeed ChildAt towards 101 in QF returns

(AND,ChildAt((EXTEND, (QTREE, QR),A), 101),ChildAt((EXTEND, (QTREE, QS),A), 101)).

If ChildAt((EXTEND, (QTREE, QR),A), 101) and ChildAt((EXTEND, (QTREE, QS),A), 101) are
trees with internal nodes, the resulting AND can be either an internal node or a leaf with
value 0 (if the intersection is empty), though not a leaf with value 1. Thus, for now, the
Value of this node is unknown, a ♦. See Figure 3 for an illustration.

Note that the running time of Algorithm 15 is O(|Q+
F |). One can then compact Q+

F to
obtain QF , in time O(|Q+

F |) as well, with a simple bottom-up traversal. Thus, bounding |Q+
F |

yields a bound for the running time of evaluating F . While |Q+
F | can be considerably larger

than the actual size |QF | of the output, we show that |Q+
F | is bounded by the worst-case

output size of formula F for a database with relations of approximately the same size. To
prove this, the introduction of values ♦ plays a key role.4

4 In an implementation, we could simply use ½ instead of ♦, without indicating that we are not yet sure

ICDT 2020

21:14 Optimal Joins Using Compact Data Structures

AND

EXTENDAND

QT

{A,B,C}
EXTEND
{A,B,C}

EXTEND
{A,B,C}

QR

QTREE
QS

00 01 10 11

QTREE NOT

1

1

0

0

0 0

0

Q+
F

000 010

0

0

1

1�

�

101 111

�

00 01 10 11

1

00 01 10 11

1 1

F

1
2

1
2

1
2

1
2

Figure 3 Illustration of the syntax tree of an lqdag for the formula (R(A, B) ./ S(B, C)) ./

T (A, C). The quadtrees QR, QS , QT represent the relations R, S, T , respectively. We show the top
values of Q+

F on top and of QT on the bottom. The gray upward arrows show how the value 1 in
the quadrant 00 of QT becomes 0s in octants 000 and 010 of Q+

F without accessing QR or QS . The
red upward arrows show how the value 0 in the quadrant 11 of QT makes the quadrants 101 and
111 of Q+

F depend only on their left child (and, assuming their value is ½, becomes a ♦ in Q+
F).

Algorithm 15 SCompletion.
Require: An lqdag LF whose completion represents a formula F over relations with d attributes.
Ensure: The super-completion Q+

F of LF .
1: if Value(LF) ∈ {0, 1} then return a leaf with value Value(LF)
2: return an internal node with children

.
(

SCompletion
(
ChildAt(LF , 0)

)
, . . . , SCompletion

(
ChildAt(LF , 2d − 1)

))

The power of the ♦ values. Consider again Algorithm 15. The lowest places in LF where
♦ values are introduced are the Value of AND and OR lqdags where both operands have
Value = ½. We must then set the Value to ♦ instead of ½ because, depending on the
evaluation of the children of the operands, the Value can turn out to be actually 0 for AND
or 1 for OR. Once produced, a value ♦ is inherited by the ancestors in the formula unless the
other value is 0 (for AND) or 1 (for OR).

Imagine that a formula F involves n relations R1, . . . , Rn represented as quadtrees in
dimension d, including no negations. Suppose that we trim the quadtrees of R1, . . . , Rn by
removing all the levels at depth higher than some j (thus making the j-th level the last
one) and assuming that the internal nodes at level j become leaves with value 1. We do
not attempt to compact the resulting quadtrees, so their nodes at levels up to j − 1 stay
identical and with the same Value. If we now compute Q+

F over those (possibly non-pruned)
quadtrees, the computation will be identical up to level j − 1, and in level j every internal
node in the original Q+

F , which had value ½, will now operate over all 1s, and thus will
evaluate to 1 because And and Or are monotonic.

that the value is ½: we build Q+
F assuming it is, and only make sure later, when we compact it into QF .

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:15

Thus, these nodes belong to the output of F over the relations R′1, . . . , R′n induced by the
trimmed quadtrees (on smaller domains of size `′ = 2j), with sizes |R1|′ ≤ |R1|, . . . ,|Rn|′ ≤
|Rn|. This would imply, just as in the proof of Theorem 3.6, a bound on the maximum
number of nodes in a level of Q+

F , thus proving the worst-case optimality of the size of Q+
F (up

to logmin(`,N)-factors, and factors depending on the query size), and thus the worst-case
optimality of Algorithm 15 in data complexity.

However, this reasoning fails when one trims at the j-th level a quadtree Q that appears
in an lqdag L = (NOT, Q), because the value 1 of the nodes at the j-th level of Q after the
trimming changes to 0 in L. So, to prove that our algorithm is worst-case optimal we cannot
rely only on relations obtained by trimming those that appear in the formula. We need to
generate new quadtrees for those relations under a NOT operation that preserve the values of
the completion of NOT after the trimming. Next we formalize how to do this.

Analysis of the algorithm. Let LF be an lqdag for a formula F . The syntax tree of F is
the directed tree formed by the fnodes in F , with an edge from fnode L to fnode L′ if L′ is
an operand of L. The leaves of this tree are always atomic expressions, that is, the fnodes,
with functors QTREE and NOT, that operate on one quadtree (see Figure 3 again). We say
that two atomic expressions L1 and L2 are equal if both their functors and operands are
equal. For example, in the formula

F = (OR, (AND, (QTREE, QR), (QTREE, QS)), (AND, (QTREE, QR), (QTREE, QT)))

there are three different atomic expressions, (QTREE, QR), (QTREE, QS), and (QTREE, QT),
while in F ′ = (AND, (QTREE, QR), (NOT, QR)) there are two atomic expressions. Notice that in
formulas like F ′, where a relation appears both negated and not negated, the two occurrences
are seen as different atomic expressions. We return later to the consequences of this definition.

The following lemma is key to bound the running time of Algorithm 15 while evaluating
a formula F .

I Lemma 4.2. Let F be a relational formula represented by an lqdag LF in dimension d, and
let Q+

F be the super-completion of F . Let Q1, . . . , Qn be the quadtree operands of the different
atomic expressions of F , and R1(A1), . . . , Rn(An) be the (not necessarily different) relations
represented by these quadtrees, respectively. Let M be the maximum number of nodes in a
level of Q+

F . Then, there is a database with relations R′1(A1), . . . , R′n(An) of respective sizes
O(2d|Q1|), . . . , O(2d|Qn|), such that the output of F evaluated over it has size Ω(M/2d).

Proof. Let ml be the number of nodes in level l of Q+
F and j be a level where M = mj is

maximum. We assume that j > 1, otherwise M = O(1) and the result is trivial. We first
bound the number of nodes with value ½ at the (j − 1)-th level. By hypothesis, mj ≥ mj−1,
and since a node in Q+

F is present at level j only if its parent at level j − 1 has value ½, in
the (j − 1)-th level there are at least mj/2d nodes with value ½.

Now, let A1, . . . , An be the atomic expressions of F , and let Q′1, . . . , Q′n be the quadtrees
that result from trimming the levels at depths higher than j−1 from Q1, . . . , Qn, respectively.
Consider the completion A∗i of Ai evaluated over Qi, and the completion A∗i ′ of Ai evaluated
over (the possibly non-pruned) Q′i, for all 1 ≤ i ≤ n. If it is always the case that the first
j − 1 levels of A∗i are respectively equal to the j − 1 levels of A∗i ′ then we are done. To see
why, let Q+

F

′ be the super-completion of F when evaluated over Q′1, . . . , Q′n. The first j − 2
levels of Q+

F will be the same as those of Q+
F

′ because the same results of the operations
are propagated up from the leaves of the syntax tree of F before and after the trimming.

ICDT 2020

21:16 Optimal Joins Using Compact Data Structures

Moreover, in the (j − 1)-th level Q+
F

′ (its last level) the nodes with value 1 are precisely the
nodes with value 1 or ½ in Q+

F , where we note that: (i) there are at least mj/2d of them; and
(2) they belong to the output of F over the relations R′1, . . . , R′n represented by Q′1, . . . , Q′n.

We know that |R′1| ≤ |R1|, . . . , |R′n| ≤ |Rn|. However, the values of R′1, . . . , R′n correspond
to a smaller universe. This can be remedied by simply appending (log ` − j) 0’s at the
beginning of the binary representation of these values. This would yield the desired result:
we have n relations over the same set of attributes as the original ones, with same respective
cardinality, and such that when F is evaluated over them the output size is Ω(mj/2d).

However, for atomic expressions of the type Ai = (NOT, Qi) it is not the case that the
first j − 1 levels of A∗i coincide with the j − 1 levels of A∗i ′. Anyway, we can deal with this
case: their first j − 2 levels will coincide, and in the last level, the value of a node present in
A∗i is the negation of the value of the homologous node in A∗i ′. Thus, instead of choosing the
quadtree Q′i that results from trimming Qi, we choose the quadtree Q′′i in which the first
j − 2 levels are the same as Q′i, and the (j − 1)-th level results from negating the value of
every node in Q′i. Note that if we let now A∗i

′ be the completion of Ai evaluated over Q′′i ,
then the first j − 1 levels of A∗i will be exactly same as the j − 1 levels of A∗i ′. Finally, note
that the size of the relation represented by Q′′i cannot be larger than 2d|Qi|. The result of
the lemma follows. J

Using the same reasoning as before we can bound the time needed to compute the super-
completion Q+

F of an lqdag LF in dimension d involving quadtrees representing R1, . . . , Rn.
Since M is the maximum number of nodes in a level of Q+

F , the number of nodes in Q+
F

is at most M log `. Now, each node in Q+
F results from the application of |F | operations

on each of the 2d children being generated, all of which take constant time. Thus the
super-completion can be computed in time O(M · 2d|F | log `). If we use F (D)∗ to denote
the size of the maximum output of the query F over instances with relations R1, . . . , Rn of
respective sizes O(2d|Q1|), . . . , O(2d|Qn|), then by Lemma 4.2 the query F can be computed
in time O(F (D)∗ · 22d|F | log `). This means that the algorithm is indeed worst-case optimal.

The requirement of different atomic expressions is because we need to consider R and
Not R as different relations. To see this, consider again our example formula F ′ =
(AND, (QTREE, QR), (NOT, QR)). We clearly have that the answer of this query is always empty,
and therefore |QF ′ | = 0. However, here |Q+

F ′ | = Θ(|R|) for every R, and thus our algorithm
is worst-case optimal only if we consider the possible output size of a more general formula,
F ′′ = (AND, (QTREE, QR), (NOT, Q′R)). This impacts in other operations of the relational
algebra. We can write all of them as lqdags, but for some of them we will not ensure their
optimal evaluation. For instance, the expression QR And (Not (QR And QS)), which
expresses the antijoin between R and S, is not optimal because both QR and Not QR
appear in the formula. A way to ensure that our result applies is to require that the atomic
expressions (once the NOT operations are pushed down) refer all to different relations.

I Theorem 4.3. Let F be a relational formula represented by an lqdag LF . If the number
of different relations involved in F equals the number of different atomic expressions, then
Algorithm 15 evaluates F in worst-case optimal time in data complexity.

Note that this result generalizes Theorem 3.6. Moreover, it does not matter how we write
our formula F to achieve worst-case optimal evaluation. For example, our algorithms behave
identically on ((R ./ S) ./ T) and on (R ./ (S ./ T)).

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:17

5 Final Remarks

The evaluation of join queries using qdags provides a competitive alternative to current
worst-case optimal algorithms [9, 11, 15, 17, 21]. When compared to them, we find the
following time-space tradeoffs.

Regarding space, qdags require only just a few extra words per tuple, which is generally
much less than what standard database indexes require, and definitely less than those required
by current worst-case optimal algorithms (e.g. [9, 17, 21]). Moreover, in both NPRR [17] and
leapfrog [21], the required index structure only works for a specific ordering of the attributes.
Thus, in order to efficiently evaluate any possible query using these two algorithms, a separate
index is required for every possible attribute order (i.e., d! indexes). In contrast, all we need
to store is one quadtree per relation, and that works for any query. Even if we resort to the
(simpler) kd-tree representation by Brisaboa et al. [4], the extra space increases by a factor
of 2d bits, which is still considerably less than the alternative of d! standard indexes for any
order of variables (e.g., for d = 10, 2d = 1024, while d! = 3628800, i.e., ≈ 3500 times bigger).

Regarding time, the first comparison that stands aside is the log(N) factor, present in
our solution but not in others like NPRR [17] and leapfrog [21]. Note, however, that NPRR
assumes to be able to compute a join of two relations R and S in time O(|R|+ |S|+ |R ./ S|),
which is only possible when using a hash table and when time is computed in an amortized
way or in expectation [17, footnote 3]. This was also noted for leapfrog [21, Section 5], where
they state that their own log(N) factor can be avoided by using hashes instead of tries, but
they leave open whether this is actually better in practice. More involved algorithms such as
PANDA [11] build upon algorithms to compute joins of two relations, and therefore the same
log(N) factor appears if one avoids hashes or amortized running time bounds. Our algorithm
incurs in an additional 2d factor in time when compared to NPRR or leapfrog, similarly to
other worst-case optimal solutions based on geometric data structures [9, 15]. This is, as far
as we are aware, unavoidable: it is the price to pay for using so little space. Note, however,
that this factor does not depend on the data, and that it can be compensated by the fact
that our native indexes are compressed, and thus might fit entirely in faster memory.

One important benefit of our framework is that answers to queries can be delivered in
their compact representation. As such, we can iterate over them, or store them, or use them
as materialized views, either built eagerly, as quadtrees, or in lazy form, as lqdags. One
could even cache the top half of the (uncompacted) tree containing the answer, and leave the
bottom half in the form of lqdags. The upper half, which is used the most, is cached, and the
bottom half is computed on demand. Our framework also permits sharing lqdags as common
subexpressions that are computed only once. Additionally, we envision two main uses for
the techniques presented in this paper. On one hand, one could take advantage of the low
storage cost of these indexes, and add them as a companion to a more traditional database
setting. Smaller joins and selections could be handled by the database, while multijoins
could be processed faster because they would be computed over the quadtrees. On the other
hand, we could use lqdags instead, so as to evaluate more expressive queries over quadtrees.
Even if some operations are not optimal, what is lost in optimality may be gained again
because these data structures allow operating in faster memory levels.

There are several directions for future work. For instance, we are trying to improve
our structures to achieve good bounds for acyclic queries (see Appendix A), and we see an
opportunity to apply quadtrees in the setting of parallel computation (see, e.g., Suciu [20]).
We also comment in Appendix A on bounds for clustered databases, another topic deserving
further study.

ICDT 2020

21:18 Optimal Joins Using Compact Data Structures

References

1 S. Álvarez-García, N. Brisaboa, J. Fernández, M. Martínez-Prieto, and G. Navarro. Compressed
vertical partitioning for efficient RDF management. Knowledge and Information Systems,
44(2):439–474, 2015.

2 A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. SIAM
Journal on Computing, 42(4):1737–1767, 2013.

3 D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing
Trees of Higher Degree. Algorithmica, 43(4):275–292, 2005.

4 N. R. Brisaboa, S. Ladra, and G. Navarro. Compact representation of Web graphs with
extended functionality. Information Systems, 39(1):152–174, 2014.

5 G. de Bernardo, S. Alvarez-García, N. Brisaboa, G. Navarro, and O. Pedreira. Compact
Querieable Representations of Raster Data. In Proc. 20th International Symposium on String
Processing and Information Retrieval (SPIRE), pages 96–108, 2013", !SERIES = "LNCS 8214.

6 R. A. Finkel and J. L. Bentley. Quad Trees: A data structure for retrieval on composite keys.
Acta Informatica, 4:1–9, 1974.

7 T. Gagie, J. González-Nova, S. Ladra, G. Navarro, and D. Seco. Faster compressed quadtrees.
In Proc. 25th Data Compression Conference (DCC), pages 93–102, 2015.

8 A. Hogan, C. Riveros, C. Rojas, and A. Soto. Extending SPARQL engines with multiway
joins. In Proc. 18th International Semantic Web Conference (ISWC), 2019. To appear.

9 M. A. Khamis, H. Q. Ngo, C. Ré, and A. Rudra. Joins via geometric resolutions: Worst case
and beyond. ACM Transactions on Database Systems, 41(4):22, 2016.

10 M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: Questions asked frequently. In Proc. 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pages
13–28, 2016.

11 M. A. Khamis, H. Q. Ngo, and D. Suciu. What do Shannon-type Inequalities, Submodular
Width, and Disjunctive Datalog have to do with one another? In Proc. 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pages 429–444,
2017.

12 G. M. Morton. A computer oriented geodetic data base; and a new technique in file sequencing.
Technical report, IBM Ltd., 1966.

13 G. Navarro. Compact Data Structures – A practical approach. Cambridge University Press,
2016.

14 H. Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open problems. In
Proc. 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS), pages 111–124, 2018.

15 H. Q. Ngo, D. T. Nguyen, C. Re, and A. Rudra. Beyond worst-case analysis for joins with
Minesweeper. In Proc. 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pages 234–245, 2014.

16 H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: New developments in the theory of join
algorithms. ACM SIGMOD Record, 42(4):5–16, 2014.

17 Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms. In
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database
Systems, pages 37–48. ACM, 2012.

18 D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré, and A. Rudra. Join
processing for graph patterns: An old dog with new tricks. In Proc. 3rd International Workshop
on Graph Data Management Experiences and Systems (GRADES), pages 2:1–2:8, 2015.

19 H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann,
2006.

20 D. Suciu. Communication cost in parallel query evaluation: A tutorial. In Proc. 36th ACM
Symposium on Principles of Database Systems (PODS), pages 319–319, 2017.

21 T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proc. 17th
International Conference on Database Theory (ICDT), pages 96–106, 2014.

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:19

22 D. S. Wise and J. Franco. Costs of quadtree representation of nondense matrices. Journal of
Parallel and Distributed Computing, 9(3):282–296, 1990.

23 M. Yannakakis. Algorithms for acyclic database schemes. In Proc. 7th International Conference
on Very Large Databases (VLDB), pages 82–94, 1981.

A Appendix

A.1 Additional comments on Projections

Including projection in our framework is not difficult: in a quadtree Q storing a relation R
with attributes A, one can compute the projection πA′(R), for A′ ⊆ A as follows. Assume
that |A| = d and |A′| = d′. Then the projection is the quadtree defined inductively as follows.
If Value(Q) is 0 or 1 then the projection is a leaf with the same value. Otherwise Q has 2d
children. The quadtree for πA′(R) has instead 2d′ children, where the i-th child is defined as
the Or of all children j of Q such that the projection of the d-bit representation of j to the
positions in which attributes in A′ appear in A is precisely the d′-bit representation of i. For
example, computing πA1,A2R(A1, A2, A3) means creating a tree with four children, resulting
of the Or of children 0 and 1, 2 and 3, 4 and 5 and 6 and 7, respectively.

Having defined the projection, a natural question is whether one can use it to obtain finer
bounds for acyclic queries or for queries with bounded treewidth. For example, even though
the AGM bound for R(A,B) ./ S(B,C) is quadratic, one can use Yannakakis’ algorithm [23]
to compute it in time O(|R|+ |S|+ |R ./ S|). This is commonly achieved by first computing
πB(R) and πB(S), joining them, and then using this join to filter out R and S. Unfortunately,
adopting this strategy in our lqdag framework would still give us a quadratic algorithm, even
for queries with small output, because after the projection we would need to extend the
result again. The same holds for the general Yannakakis’ algorithm when computing the
final join after performing all necessary semijoins.

More generally, this also rules out the possibility to achieve optimal bounds for queries
with bounded treewidth or similar measures. Of course, this is not much of a limitation
because one can always compute the most complex queries with our compact representation
and then carry out Yannakakis’ algorithms on top of these results with standard database
techniques, but it would be better to resolve all within our framework. We are currently
looking at improving our data structures in this regard.

A.2 Geometric representation and finer analysis

As quadtrees have a direct geometric interpretation, it is natural to compare them to the
algorithm based on gap boxes proposed by Khamis et al. [9]. In a nutshell, this algorithm
uses a data structure that stores relations as a set of multidimensional cubes that contain no
data points, which the authors call gap boxes. Under this framework, a data point is in the
answer of the join query R1 ./ · · · ./ Rn if the point is not part of a gap box in any of the
relations Ri. The authors then compute the answers of these queries using an algorithm that
finds and merges appropriate gap boxes covering all cells not in the answer of the query, until
no more gap boxes can be found and we are left with a covering that misses exactly those
points in the answer of the query. Perhaps more interestingly, the algorithm is subject of a
finer analysis: the runtime of queries can be shown to be bounded by a function of the size
of a certificate of the instance (and not its size). The certificate in their case is simply the
minimum amount of gap boxes from the input relations that is needed to cover all the gaps

ICDT 2020

21:20 Optimal Joins Using Compact Data Structures

in the answer of the query. Finding such a minimal cover is NP-hard, but a slightly restricted
notion of gap boxes maintains the bounds within an O(logd `) approximation factor.

While any index structure can be thought of as providing a set of gap boxes [9], quadtrees
provide a particularly natural and compact representation. Each node valued 0 in a quadtree
signals that there are no points in its subgrid, and can therefore be understood as a d-
dimensional gap box. We can understand qdags as a set of gap boxes as well: precisely those
in its completion. Now let J = R1 ./ · · · ./ Rn be a join query over d attributes, and let
R∗1, . . . , R

∗
n denote the extension of each Ri with the attributes of J that are not in Ri. As in

Khamis et al. [9], a quadtree certificate for J is a set of gap boxes (i.e., empty d-dimensional
grids obtained from any of the R∗i s) such that every coordinate not in the answer of J is
covered by at least one of these boxes. Let CJ,D denote a certificate for J of minimum size.

I Proposition A.1. Given query J and database D, Algorithm 4 runs in time O((|CJ,D|+
|J(D)|) · 2dn log `), where J(D) is the output of the query J over D.

Now, one can easily construct instances and queries such that the minimal certificate CJ,D
is comparable to 2ρ∗(J,D). So this will not give us optimality results, as discovered [9, 15]
for acyclic queries or queries with bounded treewidth. This is a consequence of increasing
the dimensionality of the relations. Nevertheless, the bound does yield a good running
time when we know that CJ,D is small. It is also worth mentioning that our algorithms
directly computes the only possible representation of the output as gap boxes (because its
boxes come directly from the representation of the relations). This means that there is a
direct connection between instances that give small certificates and instances for which the
representation of the output is small.

A.3 Better runtime on clustered databases
Quadtrees have been shown to work well in applications such as RDF stores or web graphs,
where data points are distributed in clusters [4, 1]. It turns out that combining the analysis
described in Section 2 for clustered grids with the technique we used to show that joins are
worst-case optimal, results in a better bound for the running time of our algorithms, and a
small refinement of the AGM bound itself.

Consider again the triangle query R(A,B) ./ S(B,C) ./ T (A,C), and assume the points
in each relation are distributed in c clusters, each of them of size at most s× s, and with
p points in total. Then, at depth log(`/s), the quadtrees of T , R, and S have at most 2d
internal nodes per cluster (where we are in dimension d = 3): at this level one can think of the
trimmed quadtree as representing a coarser grid of cells of size sd, and therefore each cluster
can intersect at most two of these coarser cells per dimension. Thus, letting Q′R, Q′S , and Q′T
be the quadtrees for R, S and T trimmed up to level log(`/s) (and where internal nodes take
value 1), then the proof of Theorem 3.6 yields a bound for the number of internal nodes at
level log(`/s) of the quadtree Q+ of the output before the compaction step (or, equivalently,
of the super-completion of the lqdag of the triangle query): this number must be bounded by
the AGM bound of the instances given by Q′R, Q′S and Q′T , which is at most (c ·2d)3/2. Going
back to the data for the quadtree Q+, the bound on the number of internal nodes means
that the points of the output are distributed in at most (c · 2d)3/2 clusters of size at most sd.
In turn, the maximal number of 1s in the answer is bounded by the AGM bound itself, which
here is p3/2. This means that the size of Q+ is bounded by O((c · 2d)3/2 log `+ p3/2 log s),
and therefore the running time of the algorithm is O

(
((c · 2d)3/2 log `+ p3/2 log s) · 2d

)
. This

is an important reduction in running time if the number c of clusters and their width s are
small, as we now multiply the number of answers by log s instead of log `.

G. Navarro, J. L. Reutter, and J. Rojas-Ledesma 21:21

To generalize, let us use Dc,d as the database “trimmed” to c · 2d points. The discussion
above can be extended to prove the following.

I Proposition A.2. Let J = R1 ./ · · · ./ Rn be a full join query, and D a database over
schema {R1, . . . , Rn}, with d attributes in total, where the domains of the relations are in
[0, `− 1], and where the points in each relation are distributed in c clusters of width s. Then
Algorithm 4 works in time O

(
(2ρ∗(J,Dc,d) log `+ 2ρ∗(J,D) log s) · 2dn).

ICDT 2020

	Introduction
	Quadtrees
	Multi-way Joins using Qdags
	The triangle query: quadtrees vs qdags
	Qdags for relational data
	Join algorithm

	Extending Worst-Case Optimality to More General Queries
	Lqdags for relational formulas
	Evaluating JUC queries

	Final Remarks
	Appendix
	Additional comments on Projections
	Geometric representation and finer analysis
	Better runtime on clustered databases

