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Abstract
In this paper we study the stability and the security of the distributed data structure at the base of
the IOTA protocol, called the Tangle. The contribution of this paper is twofold. First, we present a
simple model to analyze the Tangle and give the first discrete time formal analyzes of the average
number of unconfirmed transactions and the average confirmation time of a transaction.

Then, we define the notion of assiduous honest majority that captures the fact that the honest
nodes have more hashing power than the adversarial nodes and that all this hashing power is
constantly used to create transactions. This notion is important because we prove that it is a
necessary assumption to protect the Tangle against double-spending attacks, and this is true for
any tip selection algorithm (which is a fundamental building block of the protocol) that verifies
some reasonable assumptions. In particular, the same is true with the Markov Chain Monte Carlo
selection tip algorithm currently used in the IOTA protocol.

Our work shows that either all the honest nodes must constantly use all their hashing power to
validate the main chain (similarly to the Bitcoin protocol) or some kind of authority must be provided
to avoid this kind of attack (like in the current version of the IOTA where a coordinator is used).

The work presented here constitute a theoretical analysis and cannot be used to attack the
current IOTA implementation. The goal of this paper is to present a formalization of the protocol
and, as a starting point, to prove that some assumptions are necessary in order to defend the system
again double-spending attacks. We hope that it will be used to improve the current protocol with a
more formal approach.
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1 Introduction

Since the day Satoshi Nakamoto presented the Bitcoin protocol in 2008 [5], the interest
in Blockchain technologies has grown continuously. More generally, this interest concerns
Distributed Ledger Technology, which refers to a distributed data storage protocol. Usually it
involves a number of nodes (or processes, or agents) in a network that are known to each
other or not. Those nodes may not trust each-other so the protocol should ensure that
they reach a consensus on the order of the operations they perform, in addition to other
mechanisms like data replication for instance.

The consensus problem has been studied for a long time [1, 6] providing a number of
fundamental results. But the solvability of the problem was usually given in terms of
proportion of faulty agents over honest agents. In a trustless network, where anyone can
participate, an adversary can simulate an arbitrary number of nodes in the network. To
avoid that, proof systems like Proof of Work (PoW) or Proof of Stake (PoS) are used to
link the importance of an entity with some external properties (processing power in PoW)
or internal properties (the number of owned tokens in PoS) instead of simply the number
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of nodes it controls. The consensus problem is now solvable only if the importance of the
adversary (given in terms of hashing power or in stake) is smaller than the honest one (the
proportion is reduced to 1/3 if the network is asynchronous).

In Bitcoin and in the other blockchain technologies, transactions are stored in a chain of
blocks, and the PoW or PoS is used to elect one node that is responsible for writing data in
the next block. The “random” selection and the incentive for a node to execute honestly
the protocol make the whole system secure, as it was shown by several formal analysis [2, 5].
Usually, there are properties that hold with high probability i.e., with a probability that
tends to one quickly as the time increases. For instance, the order between two transactions
does not change with probability that tends to 1 exponentially fast over the time in the
Bitcoin protocol, if the nodes executing honestly (or rationally) the protocol have more than
a third of the hashing total power.

In this paper we study another distributed ledger protocol called the Tangle, presented
by Serguei Popov [7], that is used in the IOTA cryptocurrency to store transactions. The
Tangle is a Directed Acyclic Graph (DAG) where a vertex, representing a transaction, has
two parents, representing the transactions it confirms.

According to the protocol a PoW Puzzle must be solved to add a transaction to the
Tangle. This PoW prevents an adversary from spamming the network. However, it is not
clear in the definition of the Tangle how this PoW impacts its security.

When a new transaction is appended to the Tangle, it references two previous unconfirmed
transactions, called tips. The algorithm selecting the two tips is called a Tip Selection
Algorithm (TSA). It is a fundamental parts of the protocol as it is used by the participants
to decide, among two conflicting transactions, which one is valid. It is the most important
part in order for the participants to reach a consensus. The TSA currently used in the IOTA
implementation uses the PoW contained in each transaction to select the two tips.

Related Work

Very few academic papers exist on this protocol, and there is no previous work that formally
analyzes its security. The white paper behind the Tangle [7] presents a quick analysis of
the average number of transactions in the continuous time setting. This analysis is done
after assuming that the number of tips converge toward a stationary distribution. The same
paper presents a TSA using Monte Carlo Markov Chain (MCMC) random walks in the DAG
from old transactions toward new ones, to select two unconfirmed transactions. The random
walk is weighted to favor transactions that are confirmed by more transactions. There is
no analysis on how the assigned weight, based on the PoW of each transaction affects the
security of the protocol. This MCMC TSA is currently used by the IOTA cryptocurrency.

It is shown in [8] that choosing the default TSA is a Nash equilibrium. Participants are
encouraged to use the MCMC TSA, because using another TSA (e.g. a lazy one that confirms
only already confirmed transactions) may increase the chances of seeing their transactions
unconfirmed.

Finally, the tangle has also been analyzed by simulation [3] using a discrete time model,
where transactions are issued every round following a Poisson distribution of parameter λ.
Like in the continuous time model, the average number of unconfirmed transactions (called
tips) seems to grow linearly with the value of λ, but a little bit slower (≈ 1.26λ compared to
2λ in the continuous time setting).
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Contributions

The contribution of our paper is twofold. First, we analyze formally the number of tips in
the discrete time setting, depending on the value of λ by seeing it as a Markov chain where
at each round, there is a given probability to obtain a given number of tips. Unlike previous
work, we here prove the convergence of the system toward a stationary distribution. This
allows us to prove the previous results found by simulations [3] that the average number of
tips is stationary and converge towards a fixed value.

Second, we prove that if the TSA depends only on the PoW, then the weight of the honest
transactions should exceed the hashing power of the adversary to prevent a double-spending
attack. This means that honest nodes should constantly use their hashing power and issue
new transactions, otherwise an adversary can attack the protocol even with a small fraction
of the total hashing power. Our result is interesting because it is true for any tip selection
algorithm i.e., the protocol cannot be more secure by simply using a more complex TSA.

The remaining of the paper is organized as follow. Section 2 presents our model and the
Tangle. In Section 3 we analyze the average confirmation time and the average number of
unconfirmed transactions. In Section 4 we prove our main theorem by presenting a simple
double-spending attack.

2 Model

2.1 The Network
We consider a set N of processes, called nodes, that are fully connected. Each node can send
a message to all the other nodes (the network topology is a complete graph).

We assume nodes are activated synchronously. The time is discrete and at each time
instant, called round, a node reads the messages sent by the other nodes in the previous
round, executes the protocol and, if needed, broadcast a message to all the other nodes.
When a node broadcasts a message, all the other nodes receive it in the next round. Those
assumptions are deliberately strong as they make an attack more difficult to perform, which
is useful when studying necessary assumptions.

2.2 The DAG
In this paper, we consider a particular kind of distributed ledger called the Tangle, which
is a Direct Acyclic Graph (DAG). Each node u stores at a given round r a local DAG Gur
(or simply Gr or G if the node or the round are clear from the context), where each vertex,
called site, represents a transaction. Each site has two parents (possibly the same) in the
DAG. We say a site directly confirms its two parents. All sites that are confirmed by the
parents of another site are also said to be confirmed (or indirectly confirmed) by it i.e., there
is a path from a site to all the sites it confirms in the DAG (see Figure 1). A site that is not
yet confirmed is called a tip. There is a unique site called genesis that does not have parents
and is confirmed by all the other sites. For simplicity we identify a DAG simply by a set of
sites G = (si)i∈I

Two sites may be conflicting. This definition is application-dependent so we assume that
there exists a function areConflicting(a, b) that answer whether two sites are conflicting or not.

If the Tangle is used to store the balance of a given currency (like the IOTA cryptocur-
rency), then a site represents a transaction moving funds from a sender address to a receiver
address and two sites are conflicting if they try to move the same funds to two different
receivers i.e., if both executing transactions results in a negative balance for the sender. The
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Figure 1 An example of a Tangle where each site has a weight of 1. In each site, the first number
is its score and the second is its cumulative weight. The two tips (with dashed border) are not
confirmed yet and have cumulative weight of 1.

details of this example are outside the scope of this paper, but we may use this terminology
in the remaining of the paper. In this case, signing a transaction means generating a site,
and broadcasting a transaction means sending it to the other nodes so that they can include
it to their local Tangle.

At each round, each node may sign one or more transactions. For each transaction, the
node selects two parents. The signed transaction becomes a site in the DAG. Then, the node
broadcasts the site to all the other nodes.

DAG extension

I Definition 1. Let G be a DAG and A a set of sites, disjoint from G. If each site of
A has its parents in A or in the tips of G, then we say that A is an extension of G and
G ∪A denotes the DAG composed by the union of sites from G and A. We also say that A
extends G.

One can observe that if A extends G, then the tips of G form a cut of G ∪A.

I Definition 2. Let A be a set of sites extending a DAG G. We say A completely extends G
(or A is a complete extension of G) if all the tips of G∪A are in A. In other word, the sites
of A confirm all the tips of G.

I Definition 3. A DAG of a node may contain conflicting sites. If so, the DAG is said to
be forked (or conflicting). A conflict-free sub-DAG is a sub-DAG that contains no conflicting
sites.

Weight and Hashing Power

When a transaction is signed, a small proof of work (PoW) has to be solved to include it in
the DAG. The difficulty of this PoW is called the weight of the site. Initially, this PoW has
been added to the protocol to prevent a node from spamming a huge number of transactions.
In order to issue a site of weight w a processing power (or hashing power) proportional to w
needs to be consumed.

With the PoW, spamming requires a large amount of processing power, which increases
its cost and reduces its utility. It was shown [7] that sites should have bounded weight and
for simplicity, one can assume that the weight of each site is 1.

Then, this notion is also used to compute the cumulative weight of a site, which is the
amount of work that has been done to deploy this site and all sites that confirm it. Similarly,
the score of a site is the sum of all weight of sites confirmed by it i.e., the amount of work that
has been done to generate the sub-DAG confirmed by it (see Figure 1 for an illustration).
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2.3 Tip Selection Algorithm
When signing a transaction s, a node u has to select two parents i.e., two previous sites in its
own version of the DAG. According to the protocol, this is done by executing an algorithm
called the tip selection algorithm (TSA). The protocol says that the choice of the parents
must be done among the sites that have not been confirmed yet i.e., among tips. Also, the
two selected parents must not confirm, either directly or indirectly, conflicting sites.

We denote by T the TSA, which can depend on the implementation of the protocol. For
simplicity, we assume all the honest nodes use the same algorithm T . As pointed by previous
work [7], the TSA is a fundamental factor of the security and the stability of the Tangle.

For our analysis, we assume T depends only on the topology of the DAG, on the weight
of each site in the DAG and on a random source. With those assumptions, we say the TSA
is stateless. If it also depends on previous output of the TSA it is said to be stateful.

The output of T depends on the current version of the DAG and on a random source
(that is assumed distinct for two different nodes). The random source is used to prevent
different nodes that has the same view from selecting the same parents when adding a site to
the DAG at the same time. However, this is not deterministic and there are not guaranties
i.e., it is possible that two distinct nodes issue two sites with the same parents.

Local Main DAG

The local DAG of a node u may contain conflicting sites. For consistency, a node u can keep
track of a conflict-free sub-DAG mainu(G) that it considers to be its local main DAG. If
there are two conflicting sites a and ā in the DAG G, the local main DAG contains at most
one of them.

The main DAG of a node is used as a reference for its own view of the world, for instance
to calculate the balance associated with each address. Of course, this view may change over
the time. When new transactions are issued, a node can change its main DAG, updating its
view accordingly (exactly like in the Bitcoin protocol, when a fork is resolved due to new
blocks being mined). When changing its main DAG, a local node may discard a sub-DAG in
favor of another sub-DAG. In this case, several sites may be discarded. This is something we
want to avoid or at least ensure that the probability for a site to be discarded tends quickly
to zero with time.

The tip selection algorithm decides what are the tips to confirm when adding a new site.
Implicitly, this means that the TSA decides what sub-DAG is the main DAG. In more detail,
the main DAG of a node at round r is the sub-DAG confirmed by the two sites output by
the TSA. Thus, a node can run the TSA just to know what its main DAG is, even if no site
has to be included to the DAG.

One can observe that, to reach consensus, the TSA should ensure that the main DAG
of all the nodes contain a common prefix of increasing size that represents the transactions
everyone agree on.

2.4 Adversary Model
Among the nodes, some are honest i.e., they follow the protocol, and some are byzantine and
behave arbitrarily. For simplicity, we can assume that only one node is byzantine and we
call this node the adversary. The adversary is connected to the network and receive all the
transactions like any other honest node. He can behave according to the protocol but he can
also create (and sign) transactions without broadcasting them, called hidden transaction (or
hidden sites).

Tokenomics 2019
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When an honest node issues a new site, the two sites the T outputs must be two tips,
at least in the local DAG of the node. Thus, one parent p1 cannot confirm indirectly the
other p2, because in this case the node is aware of p2 having a child and not being a tip.
Also, a node cannot select the same site as parent for two different site, thus the number
of honest children cannot exceed the number of nodes in the network. This implies the
following property.

I Property 1. In a DAG constructed by n honest nodes using a TSA, a site cannot have
one parent that confirms the other one. Moreover, the number of children of each site is
bounded by the number n of nodes in the network.

The first property should be preserved by an adversary as it is easy for the honest nodes
to check and discard a site that does not verify it. However the adversary can issue multiple
sites that directly confirm the same site and the honest nodes have no way to know which
sites are honest.

Assiduous Honest Majority Assumption

The cumulative weight and the score can be used by a node to select its main DAG. However,
even if it is true that a heavy sub-DAG is harder to generate than a light one, there is no
relation yet in the protocol between the weight of sites and the hashing power capacity of
honest nodes.

We define the assiduous honest majority assumption as the fact that the hashing power
of honest nodes is constantly used to generate sites and that it is strictly greater than the
hashing power of the adversary. In fact, without this assumption, it is not relevant to look at
the hashing power of the honest nodes if they do not constantly use it to generates new sites.

Thus, under this assumption, the cumulative weight of the honest DAG grows according
to the hashing power of the honest nodes, and the probability that an adversary generates
more sites than the honest nodes in a given period of time tends to 0 as the duration of the
period tends to infinity. Conversely, without this assumption, an adversary may be able to
generates more sites than the honest nodes, even with less available hashing power.

3 Average Number of Tips and Confirmation Time

In this section we study the average number of tips depending on the rate of arrival of new
sites. In this section, like in previous analysis [7], we assume that tip selection algorithm is
the simple uniform random tip selection that selects two tips uniformly at random.

We denote by N(t) the number of tips at time t and λ(t) the number of sites issued at
time t. Like previously, we assume λ(t) follows a Poisson distribution of parameter λ. Each
new site confirms two tips and we denote by C(t) the number of tips confirmed at time t.
We have:

N(t) = N(t− 1) + λ(t)− C(t).

We say we are in state N ≤ 1 if there are N tips at time t. Then, the number of tips at
each round is a Markov chain (N(t))t≥0 with an infinite number of states [1,∞). To find
the probability of transition between two states (given in Lemma 5) we first calculate the
probability of transition when the number of new site is known.
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I Lemma 4. If the number of tips is N and k new sites are issued, then the probability
P
N
k→N ′

of having N ′ tips in the next round is:

P
N
k→N ′

= N !
N2k(N ′ − k)!

{
2k

N −N ′ + k

}
where

{
a
b

}
denotes the Stirling number of the second kind S(a, b).

Proof. If k new sites are issued, then there are up to 2k sites that are confirmed. This can
be seen as a “balls into bins” problem [4] with 2k balls thrown into N bins, and the goal is
to see how many bins are not empty i.e. how many unique sites are confirmed.

First, there are N2k possible outcome for this experience so the probability of a particular
configuration is 1

N2k . The number of ways we can obtain exactly C = N −N ′ + k non empty
bins, or confirmed transaction (so that there are exactly N ′ tips afterward) is the number of
ways we can partition a set of 2k elements into C parts times the number of ways we can
select C bins, in a given order, to receive those C parts (also known as the C-permutations
of 2k).

The first number is called the Stirling number of the second kind and is denoted by{ 2k
N−N ′+k

}
. The second number is N !

(N ′−k)! . J

Then, the probability of transition is a direct consequence of the previous lemma

I Lemma 5. The probability of transition from N to N ′ is

PN→N ′ =
N ′∑

k=|N ′−N |

P(Λ = k)P
N
k→N ′

=
N ′∑

k=|N ′−N |

N !λke−λ

N2k(N ′ − k)!k!

{
2k

N −N ′ + k

}
.

Proof. We just have to observe that the probability of transition from N to N ′ is null if the
number of new sites is smaller than N −N ′ (because each new site can decrease the number
of tips by at most one), smaller than N ′ −N (because each site can increase the number of
tips by at most one), or greater than N ′ (because each new site is a tip). J

I Lemma 6. The Markov chain (N(t))t≥0 has a positive stationary distribution π.

Proof. First, it is clear that (N(t))t≥0 is aperiodic and irreducible because for any state
N > 0, resp. N > 1, there is a non-null probability to move to state N + 1, resp. to state
N − 1. Since it is irreducible, we only have to find one state that is positive recurrent (i.e.,
that the expectation of the hitting time is finite) to prove that there is a unique positive
stationary state.

For that we can observe that the probability to transition from state N to N ′ > N tends
to 0 when N tends to infinity. Indeed, for a fixed k, we even have that the probability to
decrease the number of tips by k tends to 1:

P
N
k→N−k

= N !
N2k(N − 2k)! = (1− 1

N
)(1− 2

N
) . . . (1− 2k + 1

N
) (1)

lim
N→∞

P
N
k→N−k

= 1 (2)

so that for any ε > 0 there exists a kε such that P(Λ ≥ kε) < ε/2 and from (2) an Nε such
that ∀k < kε, P

N
k→N−k

< ε
2kε . So we obtain:

Tokenomics 2019
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ANε =
∑

N ′>N≥Nε

PN→N ′ = P(N(i+ 1) > N(i+ 1) | N(i) ≥ N) (3)

< P(Λ ≥ kε) +
∑
k<kε

P
N
k→N−k

(4)

< ε (5)

so that the probability AN to “move away” from states [1, N ] tends to 0 when N tends
to infinity. In fact, it is sufficient to observe that there is a number N1/2 such that the
probability to “move away” from states [1, N1/2] is strictly smaller than 1/2. Indeed, this is
a sufficient condition to have a state in [1, N1/2] that is positive recurrent (one can see this
by looking at a simple random walk in one dimension with a mirror at 0 and a probability
p < 1/2 to move away from 0 by one and (1 − p) to move closer to 0 by 1). From the
irreducibility of (N(t))t≥0, all the states are positive recurrent and the Markov chain admit
a unique stationary distribution π. J

The stationary distribution

The stationary distribution π verifies the formula πN =
∑
i≥1 πiPi→N , which we can use to

approximate it with arbitrary precision. The stationary distribution, for several values of λ
is shown in Figure 2.

When the stationary distribution is known, the average number of tips can be calculated
Navg =

∑
i>0 iπi, and with it the average confirmation time Conf of a tip is simply given

by the fact that, at each round, a proportion λ/Navg of tips are confirmed in average. So
Conf = Navg/λ rounds are expected before a given tip is confirmed. The value of Conf
depending on λ is shown in Figure 3.

With this, we show that Conf converges toward a constant when λ tends to infinity. In
fact, for a large λ, the average confirmation time is approximately 1.26, equivalently, the
average number of tips Navg is 1.26λ. For smaller values of λ, intuitively the time before
first confirmation diverges to infinity and Navg converges to 1.

When λ tends to infinity

When λ tends to infinity, we can compute the exact average expected confirmation time.
When λ is great enough, one can assume the number of tips is well concentrated around its
expectation so that we can do the analysis considering only the expected values. Assume
that λ ∈ N sites are being issued and that there are N tips. Each new site confirms
uniformly at random 2 tips. If tn is the average number of tips confirmed after n sites
have been chosen among the N previous tips, one can prove the following recursive formula
tn = tn−1(1− 1/N) + 1. Thus, in average the λ new sites confirms

t2λ =
2λ−1∑
i=0

(
1− 1

N

)i
= N

(
1−

(
1− 1

N

)2λ
)
.

As we said, in average, every round λ tips should be confirmed, hence t2λ = λ. Which gives
us asymptotically when λ (and N) tends to infinity

exp
(
−2λ
N

)
= 1− λ

N
.
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By using the Lambert function W , the solution to this equation is

N

λ
= 2
W (−2e−2) + 2 ≈ 1.2550009749159754.

Figure 2 Stationary distribution of the number of tips, for different values of λ. For each value
of λ, one can see that the number of tips is really well centered around the average.

Figure 3 Expected number of round before the first confirmation, depending on the arrival rate
of transaction. We see that it tends to 1.26 with λ. Recall that Conf = Navg/λ where Navg refers
to the average number of tips in the stationary state.

4 A Necessary Condition for the Security of the Tangle

A simple attack in any distributed ledger technology is the double spending attack. The
adversary signs and broadcast a transaction to transfer some funds to a seller to buy a good
or a service, and when the seller gives the good (he consider that the transaction is finalized),
the adversary broadcast a transaction that conflicts the first one and broadcast other new
transactions in order to discard the first transaction. When the first transaction is discarded,
the seller is not paid anymore and the funds can be reused by the adversary.

Tokenomics 2019
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The original description of our attack of the Tangle is as follow: after the initial transaction
to the seller, the adversary generates the same sites as the honest nodes, forming a sub-DAG
with the same topology as the honest sub-DAG (but including the conflicting transaction).
Having no way to tell the difference between the honest sub-DAG and the adversarial sub-
DAG, the latter will be selected by the honest nodes at some point. This approach may not
work with latency in the network, because the sub-DAG of the adversary is always shorter
than the honest sub-DAG, which is potentially detected by the honest nodes. To counter
this, the adversary can generate a sub-DAG that has not exactly the same topology, but
that has the best possible topology for the tip selection algorithm. The adversary can then
use all its available hashing power to generate this conflicting sub-DAG that will at some
point be selected by the honest nodes.

For this attack we use the fact that a TSA selects two tips that are likely to be selected
by the same algorithm thereafter. For simplicity we captured this with a stronger property:
the existence of a maximal deterministic TSA.

I Definition 7 (maximal deterministic tip selection algorithm). A given TSA T has a maximal
deterministic TSA Tdet if Tdet is a deterministic TSA and for any DAG G, there exists
NG ∈ N such that for all n ∈ N the following property holds:

Let Adet be the extension of G obtained with NG + n executions of Tdet. Let A be an
arbitrary extension of G generated with T of size at most n, conflicting with Adet, and let
G′ = G ∪A ∪Adet. We have:

P(T (G′) ∈ Adet) ≥ 1/2.

Intuitively this means that executing the maximal deterministic TSA generates an extension
this is more likely to be selected by the honest nodes, provided that it contains more sites
than the other extensions. When the assiduous honest majority assumption is not verified,
the adversary can use this maximal deterministic TSA at his advantage.

I Theorem 8. Without the assiduous honest majority assumption, and if the TSA has a
maximal deterministic tip selection, the adversary can discard a transaction that has an
arbitrary cumulative weight and achieve double spending.

Proof. Without the assiduous honest majority assumption, we assume that the adversary can
generate strictly more sites than the honest nodes. Let W be an arbitrary weight. One can
see W has the necessary cumulative weigh a given site should have in order to be considered
final. Let G0 be the common local main DAG of all node at a given round r0. At this round
our adversary can generate two conflicting sites confirming the same pair of parents. One
site a is sent to the honest nodes and the other ā is kept hidden.

The adversary can use Tdet the maximal deterministic TSA of T to generate continuously
(using all its hashing power) sites extending G∪{ā}. While doing so, the honest nodes extend
G ∪ {a} using the standard TSA T . After rW rounds, it can broadcast all the generated
sites to the honest nodes. The adversary can choose rW so that (i) the probability that it
has generated NG more sites than the honest nodes is sufficiently high, and (ii) transaction
a has the target cumulative weight W .

After receiving the adversarial extension, by definition 7, honest nodes will extend the
adversarial sub-DAG with probability greater than 1/2. In expectation, half of the honest
nodes start to consider the adversarial sub-DAG as their main DAG, thus the honest nodes
will naturally converge until they all chose the adversarial sub-DAG as their main DAG,
which discard the transaction a.
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G
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increase the weight
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Figure 4 A and Adet are two possible extensions of G. The rectangle site conflicts with all site
in Adet so that when executing the TSA on G ∪ A ∪ Adet, tips either from A or from Adet are
selected. The strategy to construct Adet can be either to increase the number of children of Gtips or
to increase their weight ; both ways are presented here.

If the bandwidth of each channel is limited, then the adversary can start broadcasting
the sites of its conflicting sub-DAG at round rW , at a rate two times greater than the honest
nodes. This avoids congestion, and at round rW + rW /2 all the adversarial sub-DAG is
successfully received by the honest nodes. Due to this additional latency, the number of sites
in the honest sub-DAG might still be greater than the number of sites in the adversarial sub-
DAG, so the adversary continues to generate and to broadcast sites extending its conflicting
sub-DAG and at round at most 2rW , the adversarial extension of G received by the honest
nodes has a higher number of sites than the honest extension.

So the same property is true while avoiding the congestion problem. J

Now that we have our main theorem, we show that any TSA defined in previous work
(especially in the Tangle white paper [7]) has a corresponding maximal deterministic TSA.
To do so we can see that to increase the probability for the adversarial sub-DAG to be
selected, the extension of a DAG G obtained by the maximal deterministic TSA should either
increase the weight or the number of direct children of the tips of G as shown in Figure 4.
We now prove that the three TSA presented in the Tangle white paper [7], (i) the random tip
selection, (ii) the MCMC algorithm and (iii) the Logarithmic MCMC algorithm, all have a
maximal deterministic TSA, which implies that the assiduous honest majority assumption is
necessary when using them (recall that we do not study the sufficiency of this assumption).

4.1 The Uniform Random Tip Selection Algorithm
The uniform random tip selection algorithm is the simplest to implement and the easiest to
attack. Since it chooses the two tips uniformly at random, an attacker just have to generate
more tips than the honest nodes in order to increase the probability to have one of its
tips selected.

I Lemma 9. The Random TSA has a maximal deterministic TSA.

Proof. For a given DAG G the maximal deterministic Tdet always chooses as parents one of
the l tips of G. So that, after n+ l newly added sites Adet, the tips of G ∪Adet are exactly
Adet and no other extension of G of size n can produce more than n + l tips so that the
probability that the random TSA select a tip from Adet is at least 1/2. J

Tokenomics 2019



8:12 The Stability and the Security of the Tangle

I Corollary 10. Without the assiduous honest majority assumption, the Tangle with the
Random TSA is susceptible to double-spending attack.

4.2 The MCMC Algorithm

The MCMC algorithm is more complex than the random TSA. It starts by initially putting
a fixed number of walkers on the local DAG. Each walker performs a random walk towards
the tips of the DAG with a probabilistic transition function that depends on the cumulative
weight of the site it is located to and its children. In more details, a walker at a site v has a
probability pv,u to move to a child u with

pv,u = exp(−α(w(v)− w(u)))∑
c∈Cv exp(−α(w(v)− w(c)) (6)

where the set Cv is the children of v, and α > 0 is a parameter of the algorithm.
The question to answer in order to find the maximal deterministic TSA of MCMC

algorithm is: what is the best way to extend a site v to maximize the probability that the
MCMC walker chooses our sites instead of another site. The following Lemma shows that
the number of children is an important factor. This number depends on the value α. Indeed
the following lemma states that if a site v has constant number Cα of children of weight n,
then an MCMC walker at v has a probability at least 1/2 to move to one of those children,
even if we add n other sites to the tangle.

I Lemma 11. There exists a constant Cα such that, if an MCMC walker is at an arbitrary
site v that has Cα children of weight n, then, when extending v with an arbitrary set of sites
H of size n, the probability that the walker moves to H is at most 1/2.

Proof. When extending v with n sites, one can choose the number h of direct children, and
then how the other sites extends those children. There are several ways to extends those
children which changes their weights w1, w2, . . . , wh. The probability pH for a MCMC walker
to move to H is calculated in the following way:

SH =
h∑
1
exp(−α(W − wi))

SH = Cαexp(−α(W − n))
S = SH + SH

pH = SH/S.

The greater the weight the greater the probability pH . Adding more children, might
reduce their weights (since H contains only n sites). For a given number of children h, there
are several way to extends those children, but we can arrange them so that each weight is at
least n − h + 1 by forming a chain of length n − h and by connecting the children to the
chain with a perfect binary tree. The height li of a children i gives it more weight. So that
we have wi = n− h+ li. A property of a perfect binary tree is that

∑h
1 2li = 1. We will show

there is a constant Cα such that for any h and any l1, . . . , lh, with
∑h

1 2li = 1, we have
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SH ≥ SH

Cα exp(−α(W − n)) ≥
h∑
i=1

exp(−α(W − wi))

Cα ≥
h∑
i=1

exp(−α(h− li)). (7)

Surprisingly, one can observe that our inequality does not depend on n, so that the same is
true when we arrange the sites when extending a site v in order to increase the probability
for the walker to select our sites.

Let fh : (l1, . . . , lh) 7→ e−αh
∑h

1 exp(αli). So the goal is to find an upper bound for the
function fh that depends only on α.

The function fh is convex (as a sum of convex functions), so the maximum is on the
boundary of the domain, which is either

(l1, . . . , lh) = (1, 2, . . . , h)

or

(l1, . . . , lh) = (dlog(h)e, . . . , dlog(h)e, blog(h)c, . . . , blog(h)c).

For simplicity, let assume that h is a power of two so that the second case is just ∀i, li = log(h).
In the first case we have

fh(1, . . . , h) = exp(−αh)exp(α(h+ 1))− exp(−α)
exp(−α)− 1 = exp(α)− exp(−α(h+ 1))

exp(−α)− 1

which tends to 0 when h tends infinity, so it admits a maximum C1
α.

In the second case, we have

fh(1, . . . , h) = exp(−αh)h exp(α log(h))

which again tends to 0 when h tends infinity, so it admits a maximum C2
α By choosing

Cα = max(C1
α, C

2
α) we have the inequality (7) for any value of h. J

I Lemma 12. The MCMC tip selection has a maximal deterministic TSA.

Proof. Let G be a conflict-free DAG with tips Gtips.
Let T be the number of tips times the number Cα defined in Lemma 11. The T first

executions of Tdet select a site from Gtips (as both parents) until each site from Gtips has
exactly Cα children.

The next executions of Tdet selects two arbitrary tips (different if possible). After T
executions, only one tip remains and the newly added sites form a chain.

Let NG = 2T . NG is a constant that depends only on α and on G. After NG + n added
sites, each site in Gtips has a Cα children with weight at least n. Thus, by Lemma 11, a
MCMC walker located at a site v ∈ Gtips moves to our extension with probability at least
1/2. Since this is true for all sites in Gtips and Gtips is a cut. All MCMC walker will end up
in Adet with probability at least 1/2. J
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One can argue that this is not optimal and we could have improved the construction
of the extension to reduce the number of sites, but we are mostly interested here in the
existence of such a construction. Indeed, in practice, the probability for a walker to move to
our extension would be higher as the honest sub-DAG A is not arbitrary, but generated with
the TSA. Our analysis shows that even in the worst configuration, the adversary can still
generate an extension with a good probability of being selected.

I Corollary 13. Without the assiduous honest majority assumption, the Tangle with the
MCMC TSA is susceptible to double-spending attack.

4.3 The Logarithmic MCMC Algorithm
In the Tangle white paper, it is suggested that the MCMC probabilistic transition function
can be defined with the function h 7→ h−α = exp(−α ln(h)). In more details, a walker at a
site v has a probability pv,u to move to a child u with

pv,u = (w(v)− w(u))−α∑
c∈Cv (w(v)− w(c))−α (8)

where the set Cv is the children of v, and α > 0 is a parameter of the algorithm. The IOTA
implementation currently uses this function with α = 3.

With this transition function, the number of children is more important than their weight.

I Lemma 14. The logarithmic MCMC tip selection has a maximal deterministic TSA.

Proof. Let G be a conflict-free DAG with tips Gtips and T be the number of tips. We
construct Tdet in the following way. Tdet always selects two sites from Gtips in a round-robin
manner. After kT executions (k ∈ N), each site from Gtips has 2k children.

Let n be the number of sites generated with Tdet. Let v ∈ Gtips. We have that the
number of children of v generated by Tdet is Cdet = 2n/T (for simplicity we assume that T
divides 2n). Let A be an arbitrary extension of G of size n and Cv be the number of children
of v that are in A.

With w(v) the weight of v and u = argmaxx∈Aw(x) the child in A with maximum weight,
we have that w(v) ≤ 2n and Cdet ≤ w(v) − w(u). Let p be the probability that a walker
located at v chooses a site generated by Tdet. We have

p ≥ Cdet(w(v)− 1)−α

Cv(w(v)− w(u))−α + Cdet(w(v)− 1)−α = 1
Cv(w(v)−w(u))−α
Cdet(w(v)−1)−α + 1

.

Then

Cv(w(v)− w(u))−α

Cdet(w(v)− 1)−α ≤ Cv(Cdet)−α

Cdet(2n)−α = CvT
α

Cdet
= Cv

2nT 1−α .

With T a constant and Cv bounded (by Property 1), we have that the last fraction tends to
0, and thus p tends to 1, as n tends to infinity. This is true for each site of Gtips, so after a
given number of generated site NG, the probability that a LMCMC walker located at any
site of Gtips moves to a site generated by by Tdet is greater than 1/2. J

I Corollary 15. Without the assiduous honest majority assumption, the Tangle with the
Logarithmic MCMC TSA is susceptible to double-spending attack.
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5 Conclusion

We presented a model to analyze the Tangle and we used it to study the average confirmation
time and the average number of unconfirmed transactions over the time.

Then, we defined the notion of assiduous honest majority that captures the fact that the
honest nodes have more hashing power than the adversarial nodes and that all this hashing
power is constantly used to create transactions. We proved that for any tip selection algorithm
that has a maximal deterministic tip selection (which is the case for all currently known
TSA), the assiduous honest majority assumption is necessary to prevent a double-spending
attack on the Tangle.

Our analysis shows that honest nodes cannot stay at rest, and should be continuously
signing transactions (even empty ones) to increase the weight of their local main sub-DAG.
If not, their available hashing power cannot be used to measure the security of the protocol,
like we see for the Bitcoin protocol. Indeed, having a huge number of honest nodes with a
very large amount of hashing power cannot prevent an adversary from attacking the Tangle
if the honest nodes are not using this hashing power. This conclusion may seem intuitive,
but the fact that it is true for all tip selection algorithms (that have a deterministic maximal
TSA) is something new that has not been proved before.
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