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Preface

The 2nd Workshop on Fog Computing and the IoT is arranged in conjunction with the CPS-
IoT Week in 2020. It is intended as a forum for presenting and discussing recent developments
and trends in Fog/Edge Computing that represent challenges and opportunities for CPS and
IoT researchers and practitioners. Fog/Edge Computing is a novel and multidisciplinary
topic, at the intersection of CPS, IoT and Cloud Computing, and we believe that it benefits
from exposure and inputs from CPS and IoT researchers. However, Cloud Computing
cannot provide the dependability and quality-of-service guarantees required for industrial
applications. Our experience from the “European Training Network on Fog Computing for
Robotics and Industrial Automation” (funding 15 PhD students) and the “Nordic University
Hub on Industrial IoT” (with over 30 affiliated PhD students) is that the expertise of CPS and
IoT researchers is essential to the development of future Fog Computing platforms. This year
the workshop received 13 submissions out of which 10 were accepted for oral presentations.
The topics of the accepted presentations include fog/edge and IoT aspects of scheduling,
system architectures, control analysis, distributed data processing, real-time kernels, node
discovery, telemetry, simulation, and machine learning. In addition the workshop has two
invited presentations.

Anton Cervin
Yang Yang

March 5, 2020

Short biographies
Anton Cervin is an Associate Professor in Automatic Control at Lund University since 2007.
He received the M. S. degree in Computer Science and Engineering and the Ph.D. degree in
Automatic Control from Lund University in 1998 and 2003, respectively. Anton Cervin has
done research in the intersection between automatic control and computer science for the
past twenty years. Developing popular analysis tools such as TrueTime and Jitterbug, he has
investigated the interplay between control performance, resource scheduling, and feedback
mechanisms in real-time systems. The tools have an extensive user base in industry and
academia, the research papers are highly cited, and four of his publications have received
best paper awards. He has held a junior researcher grant and three individual project grants
from the Swedish Research Council.

Yang Yang is a full professor at ShanghaiTech University, China, serving as the Executive
Dean of School of Creativity and Art and the Co-Director of Shanghai Institute of Fog
Computing Technology (SHIFT). Before joining ShanghaiTech University, he has held faculty
positions at the Chinese University of Hong Kong, Brunel University (UK), University
College London (UCL, UK), and SIMIT, CAS (China). His research interests include fog
computing networks, service-oriented collaborative intelligence, wireless sensor networks,
IoT applications, and advanced testbeds and experiments. He has published more than 200
papers in these research areas. He is a General Co-Chair of the IEEE DSP 2018 conference
and a TPC Vice-Chair of the IEEE ICC 2019 conference. Yang is a Fellow of the IEEE.
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Fog and Edge Computing: Challenges and
Emerging Trends
Rodrigo N. Calheiros
School of Computer, Data and Mathematical Sciences, Western Sydney University, Australia
R.Calheiros@westernsydney.edu.au

Abstract
Just as the trend of data and computing consolidation via cloud computing starts to fade out, new
paradigms that can better handle the unique demand of Internet of Things (IoT) and Big Data
emerged in the form of edge and fog computing. Although the literature provides different accounts
for the differences between these emerging paradigms, they both rely on computing and storage
devices that are closer to IoT devices and users than regular cloud data centers. With the advantage
of smaller latencies, they introduce issues such as higher complexity for application development and
deployment. In this talk, I will present the context in which these paradigms developed, challenges
inhibiting their adoption, and emerging approaches to address some of these issues.
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From Vehicular Networks to IoT for Smart Roads:
How a Communication Engineer Can Help Solve
Transportation Problems
Guoqiang Mao
School of Electrical and Data Engineering, University of Technology Sydney, Australia
Guoqiang.Mao@uts.edu.au

Abstract
Intelligent transportation system (ITS) is an important development that applies advanced sensing,
communication, big data analysis and control technologies to ground transportation in order to
improve safety, mobility and efficiency. This talk will begin with a brief introduction to our work
in vehicular networks, which started more than ten years ago. As we delve deeper into vehicular
networks and interact more frequently with transportation stakeholders, we realize that ITS is a
truly cross-disciplinary area, in order for vehicular networks to achieve its desired impact, we need to
think beyond the traditional communication domain, and start to ponder the deeper-level questions
of what fundamental changes can be brought by advanced sensing and communication techniques to
transportation and how the applications of advanced sensing and communication techniques can
help solve crucial transportation problems. To this end, we will introduce our more recent work of
developing advanced IoT technology to transform our roads into smart roads, which in the shorter
term, make our roads safer and more efficient while providing the fine-grained real-time traffic
information for traffic management; in the longer term, provide the much-needed road infrastructure
support for the future booming CAV revolution.
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Quality-Of-Control-Aware Scheduling of
Communication in TSN-Based Fog Computing
Platforms Using Constraint Programming
Mohammadreza Barzegaran1

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
mohba@dtu.dk

Bahram Zarrin
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
baza@dtu.dk

Paul Pop
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
paupo@dtu.dk

Abstract
In this paper we are interested in real-time control applications that are implemented using Fog
Computing Platforms consisting of interconnected heterogeneous Fog Nodes (FNs). Similar to
previous research and ongoing standardization efforts, we assume that the communication between
FNs is achieved via IEEE 802.1 Time Sensitive Networking (TSN). We model the control applications
as a set of real-time streams, and we assume that the messages are transmitted using time-sensitive
traffic that is scheduled using the Gate Control Lists (GCLs) in TSN. Given a network topology and
a set of control applications, we are interested to synthesize the GCLs for messages such that the
quality-of-control of applications is maximized and the deadlines of real-time messages are satisfied.
We have proposed a Constraint Programming-based solution to this problem, and evaluated it on
several test cases.

2012 ACM Subject Classification Networks → Traffic engineering algorithms; Computer systems
organization → Embedded software; Theory of computation → Constraint and logic programming
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1 Introduction

In this paper we focus on Fog Computing Platforms (FCPs) for Industrial Control Applica-
tions, consisting of heterogeneous fog nodes (FNs). We consider that FNs are interconnected
using a deterministic communication solutions such as IEEE 802.1 Time Sensitive Networking
(TSN) [7]. TSN consists of a set of amendments to the IEEE 802.1 Ethernet standard that
introduce real-time and safety critical aspects, e.g., IEEE 802.1Qbv defines a Time-Aware
Shaper (TAS) mechanism that enables the scheduling of messages based on a global schedule
table. The scheduling relies on a clock synchronization mechanism 802.1ASrev [9], which
defines a global notion of time. The configuration of the communication infrastructure in an
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3:2 QoC-Aware Scheduling of Communication in TSN

FCP has an impact on the performance of controllers, which are the main components of
industrial applications. The main focus of this paper is to configure an FCP in terms of the
scheduling of messages on TSN [5] such that the control performance is maximized.

Fog Computing has received a lot of attention recently [11], and several researchers have
proposed the use of TSN in an FCP as a means of achieving deterministic communication
for dependable industrial applications [12]. There has been a lot of work on task scheduling
for control performance [14], including considering Fog-based implementations [1]. Although
researchers have proposed approaches to derive the schedule tables in TSN for Time-Sensitive
(TS) traffic, e.g., via Satisfiability Modulo Theories (SMT) [5] and metaheuristics [13] only
one work so far has addressed the issue of control performance [10] for industrial applications.
[10] focuses on the problem of routing and scheduling of messages to achieve control stability,
but ignores the specifics of scheduling TS traffic in TSN, which does not allow the control of
individual frames. Instead, only the status of the queue gates can be controlled via Gate
Control Lists (GCLs). This may lead to non-determinism of message scheduling, which has
to be carefully considered during the GCL synthesis.

In this paper, we propose a constraint programming (CP)-based GCL synthesis strategy
aiming at maximizing the quality-of-control (QoC) . We employ meta-heuristic search
strategies in CP solvers to reduce the computation time needed to find optimized solutions.

2 System Model

2.1 Architecture Model

We model the system architecture as a graph G = {V, E} and a set of routes R, where V is
a set of vertices that represents nodes, and E is a set of edges, where an edge represents a
physical link between two nodes. A node νi ∈ V is either an end-system, which may be the
source (talker) or the destination (listener) of a stream, or a switch, which forwards messages
to the other nodes. A physical link is a full-duplex bidirectional link εi,j ∈ E (equivalent to
εj,i) that logically links the nodes νi and νj . A logical link εi,j is characterized by the tuple
< s, d,mt > denoting the speed of the port in Mbit/s, the transmission delay of the port
and the time granularity (macrotick) of an event for the port in micro-seconds. According to
IEEE 802.1Qbv [8], we assume 8 queues for each link εi,j which connects the egress port of
the node νi to the ingress port of the node νj .

The transmission delay of a link, εi,j .d, is captured by the function h(c) which gets the
size of a stream’s frame c, as input, and is given for every link. Given that each stream has a
known size and it is forwarded through a port with a known speed, the transmission time
of the stream’s frames can be easily determined. For example, transmitting a maximum
transmission unit (MTU)-sized IEEE 802.1Q Ethernet frame of 1,542 bytes on a 1 Gbit/s
link would take 12.33 µs. The MTU-sized frame is the maximum size of a single data unit
that can be transmitted over a network.

A route ri ∈ R is an ordered list of links, starting with a link originating in a talker end
system, and ending with a link in a listener end system. The number of links in the route ri

is denoted with |ri|. We define the function u : R× N0 → E to capture the jth link of the
route ri. We assume that each stream is associated to only one route but several streams
may share the same route. We also assume that the streams are unicast which impose
that there is only one talker and one listener for a stream. Our model can be extended to
multicast streams.
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2.2 Application Model
We model a control application as a set of streams S. A stream si ∈ S is captured by
the tuple < p, c, t, d, j > denoting the priority, the message size in bytes, the period in
milliseconds, the deadline, i.e., the maximum allowed end-to-end delay, and the maximum
allowed jitter, both in milliseconds. Since, we assume 8 queues for each link, the priority of a
massage is given from 0 to 7. The number of instances for stream si is denoted with |si|, and
is derived from the period of the stream t and the hyperperiod which is the least common
multiple of the periods of all streams. For example, for three streams with the periods of 4, 5
and 3 ms, the hyperperiod would be 60 ms and the streams will have 15, 12 and 20 instances
respectively.

The stream si is transmitted via a route rj which is captured by the function z : S → R
that maps the streams to the routings. We define a frame for each instance 0 ≤ k < |si|
of the stream si and on each link 0 ≤ m < |rj | of the route rj , and denote it with fk

i,m. A
frame fk

i,m is associated with the tuple < φ, l > denoting the start time of the frame (offset φ)
and its duration (length l).

2.3 Time-Sensitive Transmission in TSN
The internal of a TSN switch is depicted in Fig. 1, where the switching fabric receives streams
form ingress ports and forwards each stream to the egress port that is determined in the
internal routing tables. In this paper, we assume all the streams are using the Time-Sensitive
(TS) class for the transmission.

We assume that each of the egress ports has eight priority queues and each priority queue
stores the forwarded stream in First-In-First-Out (FIFO) order. A subset of the queues is
reserved for Scheduled Traffic (ST) according to the Priority Code Point (PCP) defined in
the frame header; and the remaining queues are used for other, less critical, traffic.

According to the 802.1Qbv standard, a gate is associated to each of the queues which
controls the traffic flow by opening and closing that are determined in the predefined Gate
Control List (GCL). An open gate only allows the transition of queued traffic from the
predetermined egress port. When multiple gates are open at the same time on the same
egress port, the highest priority queue blocks other gates until closing.

Figure 1 TSN switch internals.

Fog- IoT 2020



3:4 QoC-Aware Scheduling of Communication in TSN

3 Problem Formulation

We formulate the problem as follows: Given (1) a set of streams S, (2) a network graph G,
and (3) a set of routings R, we want to determine the GCLs such that the streams are
schedulable (their deadlines are satisfied) and the QoC, as defined in Sect. 4, is maximized.
In this paper we assume, similar to [5], that the GCLs are deterministic, i.e., the streams
are isolated from each other: Only the frames of one of the streams are present in a queue
at a time. Hence, the GCL synthesis problem is equivalent to determining (i) the offsets of
frames fk

i,m.φ, and (2) their duration fk
i,m.l. The offset of a frame maps to when the gate

should be open and the duration of the frame maps to how long it should be open.

4 Control Performance

A control application takes input form sensors, processes data, calculates output, and sends
the output to actuators. Various communication links are used to link senors and actuators
to the processing elements where control output is calculated. A control application is
dependent on time, i.e., timing of data sampling from sensors, calculation of control output
and actuation of actuators, which affects the control performance. The control performance
is degraded when the delay between sampling and actuation is more than what the controller
is designed for or when the delay varies in each iteration, see [3] for more details.

In this paper, we consider that the communication between sensors, processing elements
and actuators is based on TSN. We schedule the sensor and actuator messages along with
other messages, and the control performance degrades when the control-related messages
experience jitter, defined in our case as the variation among the end-to-end delays of a message.
We use JitterTime to analyse the Quality-of-Control (QoC), which is used interchangeably
to mean “control performance”. JitterTime simulates a control application using the given
timing for sampling and actuation and calculates the QoC using the given quadratic cost
function, see [4] for details.

For the examples and test cases in the paper, we consider that the control tasks implement
a control application consisting of a dynamical system, and we use a quadratic cost function
for JitterTime, similar to [1]. The sensor samples the plant with the same period as the
control application and sends a message to the node that runs the control application. The
actuator receives a message when the control application produces its output. Fig. 2 shows
an example system model.

5 Constraint Programming

Constraint Programming (CP) is a declarative programming paradigm that has been widely
used to solve a variety of optimization problems such as scheduling, routing, and resource
allocations. With CP, a problem is modeled through a set of variables and a set of constraints.
Each variable has a finite set of values, called domain, that can be assigned to it. Constraints
restrict the variables’ domains by bounding them to a range of values and defining relations
between the domains of different variables. The constraint solver systematically performs
an exhaustive search by exploring all the possibilities of assigning different values to the
variables.

In our future work we will integrate JitterTime with our CP formulation to evaluate each
visited solution during the search w.r.t. its QoC. However, our approach in this paper is to
use the jitter as a proxy for the QoC [4]. Hence, we are looking for solutions such that the
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Figure 2 Example system model. One control application with messages of 6 ms period on a
FCP-based architecture with a sensor, an actuator, two FNs and two switches. The sensor sends a
500 bytes message to ES3 where control output is being calculated and ES3 sends a message of 400
bytes when output is ready. All links have the speed of 100 Mbps. The routing and parameters of
streams are also depicted; coloring distinguishes the different streams.

network and stream constraints defined in Sect. 5.2, are satisfied and the jitter defined in
Sect. 5.3 are minimized. We record all the solutions visited that have the best cost function,
and after the search terminates we use JitterTime to determine their QoC.

In the following sections, we present a CP model for our problem, including the decision
variables, constraints, and the objective function. Additionally, we propose different search
strategies to improve the search speed.

5.1 CP Model
We define decision variables for the offsets and lengths of frames in our CP model, and we
bound them in Eq. (1).

∀si ∈ S,∀m ∈ [0, .., |si|),∀k ∈ [0, .., |rj |), rj = z(si), εv,w = u(rj , k) :

0 ≤ fk
i,m.φ ≤

si.t

εv,w.mt
fk

i,m.l = si.c

εv,w.s× εv,w.mt
(1)

5.2 Constraints
We model the network using five constraints that regulate traffic. A directed physical link
transmits one frame at a time, i.e., two frames can not share a physical link at any time,
which is modeled with the constraint in Eq. (2):

∀si, sj ∈ S, i 6= j,∀m ∈ [0, .., |si|),∀n ∈ [0, .., |sj |),
∀k ∈ [0, .., |ro|), ro = z(si),∀l ∈ [0, .., |rp|), rp = z(sj), εv,w = u(ro, k), εv,w = u(rp, l) :

(fk
i,m.φ+m× si.t

εv,w.mt
≥ f l

j,n.φ+ n× sj .t

εv,w.mt
+ f l

j,n.l)∨

(f l
j,n.φ+ n× sj .t

εv,w.mt
≥ fk

i,m.φ+m× si.t

εv,w.mt
+ fk

i,m.l). (2)

The constraint in Eq. (3) imposes that a stream propagates from the talker to the listener
through the ordered links determined in the mapped routing. It also imposes that the
frame can only be scheduled to be transmitted after it has completely received by the node
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considering the network propagation delay. According to the 802.1AS clock synchronization
mechanism [9], the network precision which is the worst-case difference between the nodes
clock in the network, is defined and denoted with δ:

∀si ∈ S,∀m ∈ [0, .., |si|),∀k ∈ [0, .., (|rj | − 1)),
rj = z(si), εv,w = u(rj , k), εw,x = u(rj , (k + 1)) :
fk+1

i,m .φ× εw,x.mt ≥ (fk
i,m.φ+ fk

i,m.l)× εv,w.mt+ εv,w.d+ δ. (3)

We also isolate streams in different queues of switches to avoid displacement of frames.
The constraint in Eq. (4) imposes that either two frames are not received at the ingress port
of a switch at the same time or have different priorities, i.e, one frame is received after or
before the other one, or has different priority when they are received at the same time, which
enforces their order of transmission in the switch schedule, see [5] for more details:

∀si, sj ∈ S, i 6= j,∀m ∈ [0, .., |si|]),∀n ∈ [0, .., |sj |),
∀k ∈ [1, .., |ro|), ro = z(si),∀l ∈ [1, .., |rp|), rp = z(sj),
εv,w = u(ro, k), εa,b = u(rp, l), εx,v = u(ro, k − 1), εy,a = u(rp, l − 1) :
((fk

i,m.φ× εv,w.mt+m× si.t+ δ ≤ f l−1
j,n .φ× εy,a.mt+ n× sj .t+ εy,a.d)∨

(f l
j,n.φ× εv,w.mt+ n× sj .t+ δ ≤ fk−1

i,m .φ× εx,v.mt+m× si.t+ εx,v.d)) ∨ (si.p 6= sj .p).
(4)

The constraint in Eq. (5) imposes that a stream is received by its listener within its
deadline, i.e., the time interval between the scheduled transmission of a stream from its talker
and the reception of it by the listener is smaller than its deadline:

∀si ∈ S,∀m ∈ [0, .., |si|), rj = z(si), εa,b = u(rj , 0), εy,z = u(rj , (|rj | − 1)) :

f0
i,m.φ× εa,b.mt+ si.d ≥ εy,z.mt× (f (|rj |−1)

i,m .φ+ f
(|rj |−1)
i,m .l). (5)

We also define the constraints for the talkers and listeners in Eq. (6), which imposes that
the jitter of every instance of a stream should be within the defined value, which is denoted
with si.j for the stream si.

∀si ∈ S,∀m,n ∈ [0, .., |si|), rj = z(si), εa,b = u(rj , 0), εy,z = u(rj , (|rj | − 1)) :
|(f0

i,m.φ− f0
i,n.φ)× εa,b.mt+ (m− n)× si.t| ≤ si.j

|(f (|rj |−1)
i,m .φ− f (|rj |−1)

i,n .φ)× εy,z.mt+ (m− n)× si.t| ≤ si.j. (6)

5.3 Objective Function
The CP solver finds the first feasible solution that satisfies the presented constraints and
determines the values of the CP model variables. The CP solver optimizes the solution
concerning the defined objective function. We define an optimization objective to find a
solution which schedules streams such that streams have minimum jitter. Although the
constraint in Eq. 6 imposes that the jitter is bounded, we seek for a minimum-jitter solution.
The proposed optimization objective function Ω accumulates the sending and receiving jitter
for every stream, and defined in Eq. (7):

∀si ∈ S,∀m,n ∈ [0, .., |si|), rj = z(si), εa,b = u(rj , 0), εy,z = u(rj , (|rj | − 1)) :

Ω =
∑
|(f0

i,m.φ− f0
i,n.φ)× εa,b.mt+ (m− n)× si.t|

+ |(f (|rj |−1)
i,m .φ− f (|rj |−1)

i,n .φ)× εy,z.mt+ (m− n)× si.t| (7)
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Figure 3 Optimized GCL for the system in Fig. 2. Messages have the same color as the streams
in Fig. 2.

5.4 Search Strategies
In this work, we use Google OR-Tools [6] as a CP solver to implement the presented CP
model. This CP solver is quite flexible and comes with several extension mechanisms that
allow customizing and combining different search strategies such as systematic search, local
search, and meta-heuristics algorithms. In this paper, we have used two search strategies; a
Systematic, and a Meta-heuristic strategy.

The first strategy finds the optimal solution by systematically exploring all the possibility
of assigning different values to the decision variable. It requires to specify two procedures
for the search algorithm. The first is the order of selecting the variables for assignment.
The other procedure is the order of selecting the values from the domain of a variable for
assignment. Based on our parameter tuning experiments, we choose to use the random order
for both procedures (random-variable and random-value).

The second search strategy does not guarantee optimality. Instead, it aims at finding good
quality solutions in a reasonable time, and hence it is based on Tabu Search meta-heuristic
algorithm [2], which aims to avoid the search process being trapped in a local optimum
by increasing diversification and intensification of the search. We have implemented this
strategy by extending the OR Tools’ implementation of Tabu Search. For intensification, it
will keep certain variables bounded to certain values, and for diversification, we will forbid
some variables to take some values. We specify two sets of variables for keep-tenure and
forbid-tenure. The variables in the first set must keep their values in the next solution, while
the variables in the second set can not use the corresponding values. We also specify the
number of iterations or a certain amount of time to keep these variables in these sets.

We run these search strategies for solving the offset variables fk
i,m.φ as the primary

decision variables since they have a direct impact on our cost function. We solve the length
variables fk

i,m.l as a constraint satisfaction problem by using SolveOnce strategy of the solver
which finds the first feasible assignments for these variables.

6 Evaluation

We have evaluated our proposed CP model with several test cases. Our solution is implemented
in Java using Google OR-Tools [6] and was run on a computer with an i9 CPU at 3.6 Ghz
and 32 GB of RAM, with a time limit of 30 minutes to 5 hours, depending on the size of the
test case.

Let us consider the test case in Fig. 2. We schedule the traffic using the Systematic
and Meta-heuristic strategies from Sect. 5.4. Both strategies found the same best solution
depicted in Fig. 3 as Gantt chart, which in this case has zero jitter and all streams are
schedulable. JitterTime reports a QoC value of 1214 for both solutions. We also measured
the run-times of each search strategy, which are 3.67 s for the Systematic strategy and 162
ms for the Meta-heuristic strategy.
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We have also evaluated our solution on progressively larger test cases. The results are
presented in Table 1, which shows the 5 additional test cases; Test case 5 is a realistic
automotive test case which consists of a TSN-based “fog nodes on wheels” implementation
of autonomous driving functions. In the table, the topology of the network is summarized in
columns 3 and 4, where we have the number of end-systems and switches, respectively. The
values in the column 5 are the maximum jitter for all streams. The values in columns 6 and
7 are the run-time of the solution for respectively Systematic and Meta-heuristic strategies.
As we can see, our CP-based approach is able to find schedulable solutions with zero jitter in
all cases. In addition, the Meta-heuristic solution scales well with the problem size, and has
been able to find the same the optimal solutions as the ones found by the Systematic search,
in a much shorter time.

However, the improvement in run-time depends on the test case: the search strategy has
a big impact on run-time of the solver and the proposed Meta-heuristic strategy improves
run-time of the addressed scheduling problem.

Table 1 Evaluation results for five test cases.

# No. No. No. Max. Run-Time Run-time
of of of for for

Streams ESs SWs Jitter Systematic Meta-heuristic
1 10 5 5 0 14:12 min 15.89 s
2 8 5 2 0 2:23 min 3.59 s
3 20 15 15 0 24:44 min 32.2 s
4 20 15 15 0 26:56 min 39.9 s
5 27 20 20 0 42:43 min 2:41 min

7 Conclusions and Future Work

In this paper, we have addressed the problem of real-time communication scheduling on
TSN networks on an FCP, aiming at improving the control performance. We have used the
scheduled traffic class, which sends the messages based on Gate Control Lists. We have
proposed a constraint programming-based solution, modeling the problem constraints as well
as objective function for optimizing the network for control applications. The search uses
jitter as a “proxy” objective function for the control performance, which has been determined
using JitterTime for the best solutions found by the Google OR-Tools solver. As the results
show, employing a metaheuristic search in the solver, we can obtain good quality solutions
in a short time.

In our future work, we plan to (i) integrate JitterTime into the search process of the
CP solver, (ii) integrate task scheduling and message scheduling into a joint QoC-aware CP
formulation, and (iii) evaluate the CP approach on larger test cases.
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Abstract
We study computing solutions that can be used close to the network edge in I2oT systems (Industrial
Internet of Things). As a specific use case, we consider a factory warehouse with AGVs (Automated
Guided Vehicles). The computing services for such systems should be dependable, yield high
performance, and have low latency. For understanding such systems, we have constructed a hybrid
system that consists of a simulator yielding virtual LiDAR sensor data streams in real-time and a
sensor data processor on a real cluster that acts as a fog computing node close to the warehouse.
The processing merges the observations done from the individual sensor streams without using the
vehicle-to-vehicle communication links for the complicated computing. We present our experimental
results, which show the feasibility of the computing solution.
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1 Introduction

In this paper, we address the computing structures that are needed in intelligent traffic
systems for warehouse logistics and in the related research and development work. The
traditional systems rely on central controllers that coordinate the motion of the vehicles.
Recent developments in AI (Artificial Intelligence) are enabling many new approaches
including autonomous driving that relies heavily on rich sensor data collected on the traffic
situations.

The systems need to process large amounts of sensor data in real-time to maintain an
understanding of the ever-changing traffic situation. The computing services for such systems
should be dependable, yield high performance, and have low latency. The traditional terminal
computing devices (e.g., on the vehicles) or cloud computing services based large data centers
are not sufficient. Fog computing solutions are one option to enable such applications (see
[10] and [20] for related approaches).

© Jaakko Harjuhahto, Anton Debner, and Vesa Hirvisalo;
licensed under Creative Commons License CC-BY

2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020).
Editors: Anton Cervin and Yang Yang; Article No. 4; pp. 4:1–4:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaakko.harjuhahto@aalto.fi
mailto:anton.debner@aalto.fi
mailto:vesa.hirvisalo@aalto.fi
https://doi.org/10.4230/OASIcs.Fog-IoT.2020.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 Processing LiDAR Data from a Virtual Logistics Space

The fog computing paradigm addresses the ways of acting between devices and centralized
cloud services, utilizing resources in between them, and thus allowing sufficient resources
close to the devices. Even though some standards exist (e.g., [7]), many aspects of the
problem of communicating and managing resources on the Cloud to Things continuum need
more research. There has been several proposals and studies on the clusters (also mini data
centers, cloudlets, etc.) needed in fog computing solutions [22].

Warehouse AGVs are rather typical mobile robots. Their operation is complex including
localization, motion planning, and control. Traditionally their warehouse environment is
augmented to ease their operation (by using markers, reflectors, etc.). As flexibility is
essential and human presence is often needed, the technology is developing toward natural
navigation. Such navigation solutions are often based on sensors perceiving the environment,
and the development of such systems typically calls for suitable simulators [4].

Our study addresses LiDAR (laser scanner) data processing for AGV coordination. For
efficient coordination of the flow of the traffic inside a warehouse, the LiDAR data of the
participating vehicles is needed. Using the shared data, vehicles can also help each other to
see around corners, and thus, avoid being over-cautious, when there is human presence in a
warehouse. However, constructing a shared real-time view calls for plenty of communication.
Using, e.g., V2V (Vehicle-to-Vehicle) links for computing the shared view can cause massive
use of the wireless communication links.

Our contribution consists of three parts. Firstly, we have built a hybrid setup for research
and development purposes. Our hybrid setup uses a virtual warehouse with virtual AGVs
and a real cluster for their data processing. Secondly, we have implemented LiDAR data
processing that is suitable for control algorithms and does the computing of the shared
view within the cluster. Our approach supports both scalability and fault-tolerance of the
processing. Thirdly, we present performance measurements that show the feasibility of
our approach.

The structure of this paper is as follows. We begin by reviewing AGV systems for
warehouse logistics and describing our warehouse case with the simulation model that
we have made in Section 2. We continue by explaining the designed computation and
communication architecture in Section 3. We describe our hybrid simulation setup and our
LiDAR data processing in Section 4. We present our experimentation with the setup in
Section 5, and discuss our results in Section 6. We end the presentation with our conclusions.

2 AGVs in a Factory Warehouse

We have made a model of a warehouse hall. Our modeling is motivated by the modern factory
warehouses. In this section, we first review modern factory warehouses in Subsection 2.1,
and then, describe our modeling in Subsection 2.2.

2.1 Modern Factory Warehouses
The operation of manufacturing plants depend on logistics. Manufacturing plants typically
have warehouse spaces, through which the goods needed in production flow. The operation
of warehouses calls for careful optimization as everything needed should be available, but
storing excessive amounts of goods should be avoided as the storage costs are usually high. In
addition to speed, flexibility is essential as factories typically have to adjust their operation
frequently.

Warehouse operation in factories is still mostly manual, but automation is entering the
scene. Warehousing in factories of the future can rely on AGVs and integrated systems
for logistics. AGVs typically move goods between locations in a plant environment and
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Figure 1 Overview of our setup. CARLA is first used to run our warehouse simulation and
produce sensor data streams in real-time. These streams are captured with a Python client and
stored in a hierarchical data format (HDF5). The HDF5 files can then be used to replay the real-time
sensor data streams without running the CARLA simulator. The advantage of this approach is full
reproducibility and control over sending data to our data processing cluster.

the warehouse is central for them. The AGV system is usually controlled by a centralized
Warehouse Management System (WMS). Both the navigation of the AGVs in flexible
warehouse environments and their co-operation with humans call for advanced sensing
technology.

Sabattini et al. [19] give a view on advanced sensing technology for AGV systems and the
related warehouse operations. Currently, LiDARs are the typical main sensor for AGVs as
they directly yield distance data. However, obstacles limit the view of LiDARs, and limited
understanding of a traffic situation can cause unnecessary slow-downs or complete stops for
the AGVs. This underlines the need for shared sensing and sensor fusion.

In mobile robotics, understanding of traffic situations is often done by using two-
dimensional occupancy grids [4]. An occupancy grid is an abstract representation of the
physical situation, where each grid cell indicates the state of the corresponding physical place.
Occupancy grids can be used together with robot control algorithms (see, e.g., [14]). The
predictions of movements are important for such algorithms, and the history of observations is
useful for such predictions [15]. The coordination of multiple robots in intersections presents
an important and challenging optimization problem, for which DMPC (Distributed Model
Predictive Control) methods are promising [11]. Our design of data processing has been
impacted by the needs of such algorithms.

2.2 A Model for a Warehouse
Our goal was to create a simple, easily modifiable virtual warehouse. This was achieved by
creating a grid-based structure from modular squares and storage shelf units. Each square
is 5 x 5 m2 in size, leaving a moderately large working space between the storage shelves.
A portion of the resulting warehouse is shown in Figure 2. The modular nature of the
warehouse enabled us to experiment with various sizes, for example, varying the storage area
from 20 x 20 m2 to 50 x 50 m2. As the AGVs sense their surroundings only through LiDARs,
the graphical details of the warehouse are not important. While the shelf-models appear to
be empty in Figure 2, we simplify the scenario by assuming that they are fully populated by
stored objects and therefore preventing LiDARs from seeing through the shelves at all.

3 Computing and Communication Architecture

We consider an AGV system that uses LiDAR sensing for shared environment perception.
As walls limit the sensing, the halls of the whole plant form distinct physical areas, where
shared sensing is the most useful. Thus, in our design we concentrate on sensing inside a
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single hall and assume that the processing of the LiDAR data from the hall is done by a
single fog node (i.e., a computing cluster). A large plant can have multiple fog nodes, each
serving one or more distinct areas.

Our architecture design is inspired by the work of Farkas et al. [5] in many ways. They
describe a rather generic approach for using 5G-TSN systems (5G integrated Time-Sensitive
Networking) for industrial applications. The integration of 5G and TSN is rather complex,
but there exists extensive documentation for both 5G systems and TSN systems (see, e.g.,
[17] for further information). However, from the communication perspective of an application
much of the complexity of a 5G system can be abstracted by a TSN system on top of it.

The architecture as such does not limit the number of the AGVs connected to a fog
node or the number of compute nodes inside the cluster. However, the computation and
communication capacity of a fog node limit these numbers in practice.

Figure 3 describes our design. The AGVs are connected to the fog node using TSN
connections over a wireless 5G network. The whole system runs under central control
(SDN controller), which includes the related CUC (Centralized User Configuration) and
CNC (Centralized Network Configuration) elements. The controller coordinates both the
distributed mini-datacenter (i.e., the fog nodes) and the integrated 5G-TSN system. We
assume the cluster intra-connections to be much faster than the wireless connections through
separate interfacing (IF) toward the AGVs.

The connection in TSN system exists between the TSN end stations (ES). The connections
appear as TSN bridges that are virtualized on top of the underlying 5G system. The 5G
system has TSN translation (TT) functionality for mapping the user and control planes
towards TSN. This mapping is essential in hiding the 5G details from the TSN connections.
In our current design, we use only single PDU (Protocol Data Unit) sessions between the end
points. Inside the 5G system, User Plane Functions (UPF) connect to the AGVs through
the links between the base stations (gNB). From the 5G system viewpoint, the AGVs appear
as UEs (User Equipment). In our current design, we have only one UE within an AGV.

4 Hybrid Processing Setup

Our hybrid setup is based on the CARLA simulator [3] producing virtual sensor data streams
and a real cluster processing these data streams. The setup is illustrated in Figure 1. The
sensor streams produced by the simulator are stored in a dataset file. The details of the
simulation and virtual data streams are described in Subsection 4.1.

Figure 2 Virtual model of a warehouse, where workers can walk freely among autonomous
vehicles.
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Figure 3 The designed architecture for a single fog node and its connections in the system. The
fog nodes can be federated under a single SDN (Software Defined Networking) controller. The AGV
devices (left) implement both the TSN (Time Sensitive Networking) end stations and act as 5G
system UEs. The fog node (right) communicates with the AGVs by using TSN connections over the
wireless 5G network.

The sensor data streams are replayed from the stored dataset file in real-time and processed
by the cluster. In our setup, the replay clients simulate the 5G-TSN communication. The
modeling and simulation of the 5G-TSN communication is described in Subsection 4.2.

The processing cluster implements state sharing by distributing the observations computed
from the LiDAR data streams. The details of the processing cluster and the related experiment
are described in Subsection 4.3.

4.1 Generation of Virtual Sensor Data

Figure 4 An example of the data produced by CARLA with a LiDAR sensor attached to an
AGV. Left: RGB view of the simulation scene. Right: 3D view of the LiDAR data.

As shown on the left side of Figure 1, we used CARLA to simulate AGVs and humans
moving together inside a warehouse. CARLA [3] is an open-source simulator made for
autonomous driving research. Its main features include modern rendering pipeline, animated
pedestrians, fully controllable vehicles, pre-made urban cities and various simulated sensors,
such as cameras and LiDARs. Python clients can be used to control the simulation actors
and process sensor data remotely over TCP.
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Figure 5 On the left side, the simulation of the 5G-TSN system within the hybrid set-up is
shown. The replay client acts as a simulator that communicates with the cluster. On the right side,
details of the TSN connection simulation are shown.

We created a Python client for collecting data from the simulation and storing it in to a
dataset with hierarchical data format (HDF5 [21]). The dataset used in our experiment is
available at [2]. For the work described in this paper, the relevant stored data are LiDAR
point clouds, simulation actor positions and rotations for every time step. Velocities of the
actors and data from all other kinds of sensors can also be included in a dataset on demand,
enabling further development branches for more advanced logistic experiments.

CARLA produces the LiDAR data by performing raycasts from the rotating LiDAR
sensor on each simulation step. Each raycast returns the point of first collision with any
other object along the ray. The resulting data is essentially a set of coordinates in a 3D
space, where the origo is the sensor itself. An example of this data is visualized in Figure 4.
While the LiDAR sensor attempts to imitate its real-life counterparts, it is not completely
realistic in the sense that the measurement are absolute ground truths without any noise or
reflections. Such artefacts can be added to simulate realistic conditions.

4.2 Real-time Simulation
The stored datasets represent situations, where AGVs move and perceive their environment.
As illustrated in Figure 1, these situations are replayed from HDF5 files in real-time. From
the view point of the application, this is identical to a situation, where the CARLA simulator
would be directly connected to the fog system.

The fog system is modeled within the replay client, which acts as a real-time simulator.
The setup is illustrated in Figure 5. The communication between warehouse simulator (i.e.,
a replay based on a CARLA data set) and the fog cluster consists of real data items, but
their motion in the larger communication system is simulated. Real data transmissions
happen between the fog simulator and the computing cluster as the computing cluster is not
virtual but consists of real pieces of hardware. Also, the data transmission within the cluster
are real.

In the simulation of the fog system, we do not simulate the underlying 5G system in detail.
Instead of the detailed simulation, we simulate the TSN bridges on top of the 5G system. In
our setup, their main function is the wireless communication within the AGV system.

Simulating the operation of the TSN connections is illustrated in the Figure 5 (right side).
There can be multiple streams that go over a TSN connection, but we do not model any
hierarchy between the streams. Further, there is no modeling of any complex underlying
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functions (e.g., traffic shaping). The entering streams (Ingress) are buffered into queues that
are scheduled into a time division multiplexer (Mux) before being sent (Egress). Thus, the
simulation model is rather abstract compared to a real TSN system on top of a 5G network,
but it allows for the testing of various real-time scheduling algorithms together with realistic
delay models of the processing and communication steps.

4.3 Intelligent Traffic Coordination with a Cluster
We use a cluster of small compute nodes to maintain the state of the occupancy grid
and process LiDAR point clouds from AGVs. The server software is written in C++ and
communicates with AGVs and peer nodes with TCP sockets. Data is serialized using
FlatBuffers [6]. Every node runs the same software and maintains a copy of the occupancy
grid state to provide redundancy and availability. In case of node failures, AGVs using the
cluster may simply switch to another node.

Each cluster node can receive data from AGVs. Once a node receives a LiDAR point
cloud, it will check if it has local capacity to process the data frame. If a local worker thread
has signaled that it is ready to pull work, the frame is dispatched to that worker. If no local
worker capacity is available, the data frame is forwarded to the peer node with the most
capacity available at the moment. Each node reports on its available worker capacity to the
rest of the cluster. Figure 6 shows the related communication patterns. Once the cluster has
accepted a LiDAR data frame from an AGV, it guarantees processing of that frame, barring
hardware failure.

Node #1

Node #2 Node #3

Observation sharing

Workload sharing

Sensor stream

Worker threads

Figure 6 Processing cluster. The cluster consists of computation nodes, that can share their
workload and observations between each other. Each node has a pool of worker threads. The number
and capabilities of these threads depend on the node’s hardware resources. Each node is capable of
receiving sensor (LiDAR) data from the AGVs. While the ability to share resources enable flexible
setups, in this image each node is receiving a sensor stream from a single AGV.

Processing a set of LiDAR data points is a two-phase process, as shown in Figure 7.
During the first step, we compute which cells the LiDAR rays either hit or pass through
adapting Bresenham’s line algorithm [1] to our occupancy grid. We consider LiDAR ray
hits as having priority. If LiDAR rays have both hit something in a cell and passed through
the cell, we consider the cell occupied. These observations on the states of a subset of all
cells in the occupancy grid are collected and published to every peer node in the cluster.
During the second step, replicated on each node, the observations are committed to the grid
data structure. Finally, the node that received the LiDAR data from an AGV will calculate
the heuristic cell state and return the entire grid to the AGV. This updated occupancy grid
also includes all the observations from other AGVs applied to the compute nodes grid. The
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occupancy grid supports concurrent updates from multiple LiDAR frames by implementing
concurrency controls on the level of individual cells. If multiple updates overlap, all the
observations are recorded to be used as inputs for determining the cell’s current state later on.

LiDAR
point cloud

Compute 
observations

~100
observations

Update grid

~10 000 
measurements

Figure 7 Simplified process view. In our case, each set of LiDAR measurements consists of
a point cloud with over 10 000 points in a 3D coordinate system. These measurements are then
squeezed into a far fewer number of observations. Each observation determines the state of a single
cell in the grid at that point in time. These observations are then combined with the previous
information of the grid, in order to form an updated understanding of the environment.

Our model of an occupancy grid is static and regular. Using a static grid of predetermined
resolution allows all of the compute nodes to use the same coordinates for occupancy grid
cells without necessitating a fully consistent state coherency protocol stemming from the
use of dynamic grids. For each cell in the grid, we store the timestamp of the most recent
observations of each state we track: ’free’, ’occupied’ and ’vehicle’. Cells that have never
been observed are considered as ’unknown’. The category ’vehicle’ cells are derived directly
from the positions reported by of each of the AGVs. We apply an exponential decay term
(P (t) = e−γt) to model diminishing trust in the cell’s state as time progresses, unless new
observations are made, refreshing the timestamps. Suitably chosen constants γ for each state
category allows the AGVs using the occupancy grid for guidance decisions to consider the
reliability of the knowledge on the current state of individual cells. Cells never explicitly
revert back to an ’unknown’ state, but AGVs should consider cells with a low reliability as
effectively unknown. Figure 8 presents an example of a small occupancy grid.

Free
Unknown
Occupied
Vehicle

Figure 8 Distributed occupancy grid. Multiple AGVs collaborate to create a shared understanding
of the surrounding environment. The grid is divided into cells, that represent the latest observations
made from the AGV sensor data.

5 Experimental Results

We validated our design by performing an experiment by using pre-recorded sensor data as
described in Section 4.1 to stream LiDAR point clouds to the cluster. The cluster hardware
is Intel Atom x5-8350 based commodity-off-the-shelf (COTS) computers connected to a
router. The cluster consists of seven compute nodes, all running Ubuntu 18.04 LTS. An
additional workstation computer was used to read the sensor data from HDF5 files and push
data frames to the cluster at regular 100 ms intervals. We used a warehouse model of 50
meters by 50 meters and an occupancy grid of 1 m by 1 m cells.
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Figure 9 Cumulative distribution of end-to-end latencies in milliseconds. On the left, a single
compute node acts as the ingress point for all of the LiDAR data produced by AGVs. On the right,
each AGV connects to a distinct compute node.

0 10 20 30 40 50 60 70

Milliseconds

Store observations

Communication

Compute grid update

Process LiDAR frame

Average total latency

Figure 10 Breakdown of how the individual steps in the end-to-end process, described above,
contribute to the observed average total latency. The values are from averaging the results over all
of the tests.

The simulation consists of one human walking across the entire warehouse, while 2 to 6
robots follow their own predetermined paths between the storage shelves. The data is
collected over a 30 second simulation at 10 samples per second, which matches the 100 ms
replay interval. The LiDARs are rotating around their axis at 10 Hz, which means that each
LiDAR sensor produces a full 360 degree scan of the environment during each sample. Each
LiDAR produced 2500 data points per frame, or 25000 points per second. The dataset is
designed to start and stop in roughly the same state configuration to support looped replay.

In the experiment, we measure the end-to-end latency from the point where LiDAR
data frame passes through the simulated 5G bridge to the cluster to the point in time
when the cluster has returned a new version of the entire occupancy grid over the same
simulated 5G connection. Our simulated network offered 500 Mbit/s of upstream and
downstream bandwidth divided fairly across every active connection. We perform this
latency measurement for 2, 4 and 6 simultaneous AGVs using two strategies for transferring
data frames to and from the cluster. In the first arrangement, a single compute node in the
cluster acts as service endpoint for all of the AGVs, accepting LiDAR frames and routing
these to peer nodes for processing. In the second arrangement, every AGV connects directly
to a distinct compute node so that the nodes have sufficient local capacity to process the
LiDAR frame and share only the computed observations with the rest of the cluster. Data
is collected over 6k LiDAR frames per AGV. Figure 9 presents the cumulative distribution
functions of these latency measurements. Additional, Figure 10 presents a breakdown of the
relative contribution to the total latency by each of the phases in the end-to-end process.

We measured the CPU utilization of all the compute nodes in the cluster during the
experiment to understand how the system scales in terms of processing data volumes and
how the compute tasks are distributed within the cluster. The results of our utilization
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Figure 11 Cumulative CPU utilization of compute nodes in the cluster. On the left, a single
compute node acts as the ingress point for all of the LiDAR data produced by AGVs. The computer
“node1” acts as the shared ingress point. On the right, each AGV connects to a distinct compute
node.

measurements are presented in Figure 11. The results show that the total compute load is
equivalent for both ingress arrangements, but the compute balance across nodes varies. For
the shared ingress node arrangement, the node acting as the gateway is under significantly
more load than the rest of the cluster. For 6 AGVs, the shared ingress node is under sufficient
load to cause degradation of responsiveness, as is evident in the latency results of Figure 9.

As can be seen from the figures, incoming data streams can be added to the cluster
without significantly affecting the latency. The size of the warehouse is realistic, but even
with a cluster with modest computing power, we are able to get reasonable latencies (on
average 60 ms). It is important to notice that the latencies are about perceiving the overall
situation in the warehouse hall. The individual vehicles may need shorter perception latencies
for their internal control.

A more powerful cluster is needed for handling denser LiDAR streams and more vehicles,
but our solution uses the internal communication links of a cluster to update an occupancy
grid. Using, e.g., vehicle-to-vehicle links for the purpose would be inefficient and slow, as
would be using distant cloud computing capacity.

6 Discussion

Instead of handling LiDAR data locally in the AGVs, our design is based on sending the
LiDAR data to a fog node. Our main motivation is to enable the use of novel computing
intensive methods for shared perception. Recently, methods based on machine learning
have improved significantly and gained attention. Such methods are based on having the
raw data directly available for processing and massive computing capacity for applying the
computationally intensive algorithms (see [18] and [13] for related surveys). We see fog
computing as a good solution for such needs. On one hand, it enables the use of complex
software solutions on computationally powerful hardware. On the other hand, fog computing
nodes can be placed close to the AGVs, which makes short latency times possible.

We have chosen a solution based on 5G-TSN systems as they enable real-time operation
of the communication network. Other options for organizing the communication exist (see,
e.g., [22] for a survey). Such systems are currently under intense research and development
work, but not ready for wide scale experimentation. This has motivated us to use simulation
as the primary method for our studies. However, modeling and understanding the behavior
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of the related complex software is hard. Software layers abstract the details, and there is
the risk that simulation models do not capture the complex dependencies hidden by the
abstraction layers. Therefore, we have used a hybrid approach, where such software parts
of the system are implemented by using real software running on real hardware. Using a
generic fog simulator, e.g. [9], would give a different view into AGV systems.

We have not used computational accelerators in our experimentation. Using computational
accelerators for handling LiDAR point data is common. It is also typical to use accelerators
in machine learning inference systems. Our intention has been to present an overview of
a perception system based on a fog node. Our own prior work [8] indicates that the use
of typical computational accelerators further complicates the operation of the systems. In
the experimentation presented in this paper, we have used small point clouds instead of
having computational accelerators, e.g. GPUs, in the system. Similarly, we have omitted the
detailed features and analysis of TSN operation as we have concentrated on the system level
properties (for detailed features and analysis of TSN operation see, e.g., [12, 16]).

7 Conclusions

In this paper, we presented our hybrid solution for doing research and development work
on intelligent AGV traffic systems. Our solution combines a virtual warehouse with a real
cluster acting as a fog computing node close to the warehouse. Our experimentation shows
that our implementation of the AGV LiDAR sensor data processing on the cluster is feasible
for producing a shared view of the observations done from the sensor data streams.

The occupancy information that we compute on a cluster yields a shared real-time view
of an observed situation. Our design is based on using hard real-time methods, but in the
experimentation we have used simplifications. We see more detailed analysis of the real-time
behavior is an important direction for future research.

By sharing the observations and keeping up history, our design supports fault-tolerance
and offers information on the motion of the parties in the warehouse. Motion information
is typically needed by the traffic control algorithms that coordinate several vehicles. Also
considering the fault-tolerance aspects, there is a need for further research.

To get results on traffic coordination, a shared control algorithm could be implemented
using the shared LiDAR observation data available in the cluster. Also, AI systems could
be added both to the vehicles and to the management system to understand the interplay
between the autonomy of vehicles and coordinated decisions by the traffic controller.
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Abstract
In recent years, the Internet of Things (IoT) has gained a lot of attention due to connecting
various sensor devices with the cloud, in order to enable smart applications such as: smart traffic
management, smart houses, and smart grids, among others. Due to the growing popularity of the
IoT, the number of Internet-connected devices has increased significantly. As a result, these devices
generate a huge amount of network traffic which may lead to bottlenecks, and eventually increase
the communication latency with the cloud. To cope with such issues, a new computing paradigm
has emerged, namely: fog computing. Fog computing enables computing that spans from the cloud
to the edge of the network in order to distribute the computations of the IoT data, and to reduce
the communication latency. However, fog computing is still in its infancy, and there are still related
open problems. In this paper, we focus on the node discovery problem, i.e., how to add new compute
nodes to a fog computing system. Moreover, we discuss how addressing this problem can have a
positive impact on various aspects of fog computing, such as fault tolerance, resource heterogeneity,
proximity awareness, and scalability. Finally, based on the experimental results that we produce by
simulating various distributed compute nodes, we show how addressing the node discovery problem
can improve the fault tolerance of a fog computing system.
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1 Introduction

The IoT paradigm envisions a world in which everyday objects (i.e., wearables, dumpsters,
phones, etc.) connect to the Internet [14]. Such objects may use this connectivity to exchange,
store, and process data in order to sense and to affect the surrounding environment [12].
Since the computational resources of the everyday objects alone may not be sufficient for
handling the required computational efforts to achieve this, the IoT devices commonly make
use of cloud-based computational resources [24].
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Cloud

Fog

IoT

Figure 1 A fog computing system consisting of various compute nodes that span from the cloud
to the edge of the network.

However, despite the aid of the cloud, the traffic from a large number of Internet-connected
devices can still lead to bottlenecks which increase the communication latency, and may even
limit the expansion of the IoT [19]. Moreover, there are concerns related to preserving the
privacy of the aggregated IoT data, and reducing the communication cost [20]. To cope with
such issues, novel computing paradigms have emerged, two of the most popular being fog
computing, and edge computing.

One distinguishing characteristic to separate fog computing from edge computing, is that
the fog envisions a hierarchy of computational resources which span from the cloud to the
edge of the network [3]. For example, Fig. 1 shows a fog computing system that includes
various interconnected cloud and fog compute nodes which spread to the network edge where
the IoT devices reside. Edge computing on the other hand, aims at pushing the computations
towards the edge of the network wherever there are available computational resources (e.g.,
cloudlets or fog nodes) without explicitly including interactions with the cloud [25].

The research efforts applied in the context of these two paradigms have resulted in
architectures, models, and frameworks for performing computations in the proximity of
the IoT devices. Due to such efforts, fog compupting and edge computing systems have
been observed to provide significant benefits for use cases like data stream processing [5],
preserving privacy in the IoT [20], performing analytics of IoT data [1], online storage [21],
and others [17].

To implement such architectures, compute nodes are provisioned at strategic positions
throughout the network in order to distribute the computations, avoid bottlenecks, and
reduce the communication latency [13]. A lot of research has been conducted in this context,
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resulting in multiple computing systems which aim at leveraging the edge of the network in
order to satisfy the application requirements (e.g., regarding latency and bandwidth) and to
improve the user experience [15].

Despite the popularity of fog computing and edge computing in the distributed systems
research community, computing at the edge of the network is still a relatively recent research
topic. For this reason, there are still various important open research problems and challenges,
which require further investigation [22]. In this paper, we focus on the node discovery
problem [4, 23].

Typically, fog computing and edge computing research assumes that compute nodes are
already discovered and integrated in the system [11]. However, this can be a complicated
task because the current node discovery approaches usually used in cloud-based systems,
are not applicable to fog computing since the problem is very different when dealing with
compute nodes at the edge of the network [29]. For instance, fog computing systems are
expected to leverage on the proximity of the compute nodes while also considering compute
nodes with very diverse resource capacities. Such aspects which have not been considered
in the context of cloud computing, make novel node discovery techniques–tailored to fog
computing–necessary. For this reason, in this paper we analyze the node discovery problem
in fog computing, and we discuss the various related aspects that need to be taken into
account. Furthermore, we identify the related research questions which need to be addressed,
in order to tackle this problem efficiently.

The rest of this paper is organized as follows: Section 2 discusses related work from
the literature. Afterwards, in Section 3, we analyze the node discovery problem in fog
computing, and we identify related research questions. Subsequently in Section 4, we present
the preliminary evaluation results that we produce based on simulations which show some of
the benefits of addressing the proposed problem (regarding fault tolerance). Finally, Section 5
concludes this work, and describes our plans for further research on this topic.

2 Related work

The majority of related work, assumes that the various compute nodes of a fog computing
system are already discovered and integrated in the system [11]. Typically, these systems
follow a hierarchical architecture whereby the nodes are organized in layers [26]. For instance,
Bellavista et al. [2] discuss the execution of services on compute nodes at the edge of the
network using a three-layer architecture, and Deng et al. [6] discuss the provisioning of
services in distributed edge nodes. However, none of these approaches discuss how the
compute nodes are discovered and placed in appropriate positions in the hierarchy.

Kolcun et al. [18] present a distributed platform that allows IoT devices from wireless
sensor networks, to send data to cloud and local compute nodes. By shifting the computations
from the cloud to the local nodes, this approach reduces the network traffic. Furthermore,
the authors propose a node discovery algorithm which aids in finding an appropriate compute
node for each IoT device.

Similarly, Tomar and Matam [27] present a framework that allows the data from the
IoT devices to be processed in local compute nodes thereby lowering the dependency on
the cloud. This framework also includes a node discovery algorithm for finding appropriate
compute nodes for the IoT devices.

Finally, Venanzi et al. [31] address the same problem of node discovery for IoT devices
although, the focus of this approach is to prolong the lifespan of these devices by considering
energy efficiency aspects.
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Notably, these approaches focus on the problem of selecting appropriate compute nodes
for processing the IoT data. In contrast, the work at hand focuses on the problem of
discovering new compute nodes that join a fog computing system. Even though these
problems seem similar, they require different solutions. The former problem relies on the
wireless communication of the IoT devices to discover potential compute nodes (i.e. the
compute nodes that reside within wireless range). In the latter problem, which is the problem
we address in our work, the compute nodes that span from the cloud to the edge of the
network may not integrate wireless communication. Therefore, the aforementioned solutions
that address the node discovery problem in the IoT, do not apply to the node discovery
problem in fog computing.

Further related work can be found in approaches that aim at creating fog computing
systems for handling applications related to safety. For instance, Dobrin et al. [8] discuss
safety-critical applications while focusing on the problem of having unexpected failures, and
Desai et al. [7] discuss various safety aspects (with a focus on safety-critical applications)
that need to be considered in fog computing systems.

In our work, we also address fault tolerance. However, these works consider fault
tolerance as an independent problem which makes it hard to cope with. In our work, we
consider fault tolerance at a very early stage, i.e., during the node discovery phase, which
increases our options regarding finding appropriate solutions, and based on this, we present
promising results.

Therefore, the papers discussed so far either briefly mention the node discovery problem
in fog computing, or assume that the compute nodes are already discovered and integrated
in the system. Thus, they do not provide an analysis of the problem, or any concrete ways
to solve it. On the contrary, in our work we analyze different aspects of this problem, we
propose related research questions, and we also present promising results towards addressing
the node discovery problem in fog computing efficiently.

3 The Node Discovery Problem

The node discovery problem refers to the way that new compute nodes are detected by
the system, as well as the process of integrating these nodes (this is also referred to as the
discovery phase). For instance, in Fig. 1 we show a fog computing system consisting of one
cloud compute node, and eight fog compute nodes (e.g., cloudlets, base stations, routers,
etc.), which are organized in three layers. If a new compute node becomes available, how is
this node detected by the system, and with which nodes should the new node communicate?
In other words, where should the new node be placed in the hierarchy. There are several
options because a new node can be placed in each one of the three layers, and connect to
different nodes from the adjacent layers. However, every option has a different impact on the
performance of the system. Since fog computing systems are expected to scale massively [9],
new compute nodes are likely to join the system frequently. Thus, node discovery is an
essential part of fog computing systems.

To address this problem, we analyze the different aspects of a fog computing system that
are affected by the manner whereby nodes are discovered and integrated in the system. To this
end, the following sections discuss the reason that the node discovery problem affects different
aspects of fog computing, and why these aspects are important. Specifically, Section 3.1
discusses fault tolerance, Section 3.2 addresses the potential resource heterogeneity of the
nodes, Section 3.3 discusses the importance of proximity awareness, and Section 3.4 addresses
scalability. Finally, Section 3.5 presents the research questions that need to be answered in
order to address the node discovery problem efficiently.
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3.1 Fault Tolerance

In fog computing, some of the participating compute nodes may be unreliable, and might
fail unexpectedly at any moment, which can divide a fog computing system into disjoint
parts [16], and affect the system’s reliability [32]. For this reason, mechanisms for handling
node failure become essential. However, this can be especially challenging in fog computing
because when a node fails, moving the computations to neighbor nodes or to the cloud, may
affect the performance of the system (e.g., might increase the communication latency) [30].

Nevertheless, it is possible to cope with this problem by integrating efficient mechanisms
for handling potential future node failures, at the discovery phase, i.e., when a new node
joins the system. This can be achieved by having each new node store additional nodes
which may not reside in proximity, and are not necessarily used for processing the IoT data,
but can be used for maintaining connectivity in case the neighbors fail (cf. Section 4).

3.2 Resource Heterogeneity

Fog computing systems consist of various resource-heterogeneous compute nodes [28]. This
means that the participating compute nodes may have very different resource capacities, e.g.,
regarding CPU and memory, but they may also have different capabilities, e.g., regarding
hosted services and applications. This diversity should be taken into account during the
discovery phase, because different nodes need to be treated differently. For example, upon
discovery, a cloud compute node which is able to provide a huge amount of computational
resources should go to the top of the hierarchy. This way, the nodes of lower layers will be
able to send the IoT data to that node (for processing) by forwarding the data upwards the
hierarchy (cf. Fig 1). On the contrary, a compute node at the edge of the network should be
placed close to the IoT devices (cf. Fig 1) in order to leverage on the low communication
latency. Therefore, the resource heterogeneity of the compute nodes needs to be considered
during the discovery phase in order to ensure the efficient operation of a fog computing system.

3.3 Proximity Awareness

Since processing data in nearby compute nodes improves the communication efficiency [9], fog
computing systems leverage on the proximity among the various compute nodes, and the IoT
devices, in order to process the IoT data with low communication latency. Most approaches
assume that the participating compute node are already discovered and integrated in the
system based on proximity (as discussed in Section 1). However, in order to take into account
the proximity among the nodes, new nodes need to take proximity measurements (e.g., using
round-trip time or hop count), and then connect to the neighbors of the closest proximity.

Taking into account the proximity among the nodes during the discovery phase is a
challenging task in fog computing, because proximity measurements may have conflicts
with other aspects, e.g., with the resource heterogeneity aspect (cf. Section 3.2). This can
happen for instance, upon discovery of a new compute node which integrates a big amount
of computational resources, and should be placed in a high layer so that many nodes of lower
layers can use these resources. At the same time, this new node may be in the proximity
of nodes in lower layers. This means that according to proximity, the new node should be
placed in a low layer. Thus, during the discovery phase, there may be conflicts based on the
different goals of the discovery problem.
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3.4 Scalability
As discussed in Section 1, fog computing systems can include compute nodes that span from
the cloud to the edge of the network and thus, they may need to scale to a large degree [9].
This means that during the discovery phase, there can be a huge number of possible positions
for a new node. Examining all the possible options means taking proximity measurements
for a very large number of potential neighbors. However, this may not be possible since this
process generates a considerable amount of network traffic which is part of the overhead of the
discovery phase. Furthermore, more messages need to be exchanged in order to discover and
store additional nodes for fault tolerance, and in order to examine the resource heterogeneity
of the other nodes, as discussed in Sections 3.1 and 3.2. Since generating a significant amount
of overhead can compromise the scalability of the system, the overhead of the discovery
phase needs to be considered, especially because in fog computing new compute nodes may
be discovered at any time [16].

3.5 Research Questions
There are many aspects of fog computing that can be improved by considering the node
discovery problem (cf. Sections 3.1 – 3.4). For this reason, and in order to be able to solve
this problem efficiently, we identify the following research questions (RQ):

RQ1 To what degree can fog computing systems be fault-tolerant, by storing additional
nodes during the discovery phase, which are used in case of node failures?

RQ2 How should the proximity and the resource heterogeneity of the compute nodes, affect
the position of a new node that joins a fog computing system?

RQ3 How to make sure that the overhead from new compute nodes joining, does not
compromise the scalability of a fog computing system?

When we are able to answer these research questions, then we will be in the position to
design efficient discovery mechanisms that aid in improving various aspects of fog computing.

4 Evaluation

In this section, we report the preliminary results of our efforts to tackle the node discovery
problem in fog computing. The setup we use in order to produce these results is described in
Section 4.1. Afterwards in Section 4.2, we perform various experiments which focus on the
fault tolerance aspect of the node discovery problem, and we present our results.

4.1 Evaluation Setup
In order to perform experiments, and examine the fault tolerance of a fog computing system,
we have built a simulator using Java. The reason we do not use a simulator developed in the
scope of related work from the literature (e.g., iFogSim [10]), is that alternative simulators
lack the necessary functionality to address the proposed problem (e.g., compute nodes that
fail or become unavailable temporarily).

By using our simulator, we are able to simulate hierarchical fog computing systems
consisting of compute nodes that span from the cloud to the edge of the network. The
number of the participating compute nodes in these systems is configurable, but the layout
is always hierarchical. In the hierarchy, every parent node selects as neighbors up to three
children nodes, as shown in Fig. 1. For this evaluation, we perform 50 experiments with
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(a) When each compute node stores only nearby
neighbors.

(b) When each compute node stores neighbors and
additional nodes to be used in case of failures.

Figure 2 Fault tolerance of a fog computing system.

100 nodes. The reason we have selected these specific numbers, is that after experimenting
extensively with this simulator, we found these numbers to produce results which can be
considered representative of the general case.

In each one of the 50 experiments, we select various percentages of the participating
compute nodes to become unresponsive, and then we examine the percentage of the responsive
nodes that remain connected. Since node failure can divide a fog computing system into
disjoint parts (as discussed in Section 3.1), with this experiment we aim at measuring the fault
tolerance of the system. The specific nodes that fail are chosen randomly using the uniform
distribution. Using this evaluation setup, we examine two node discovery mechanisms.

In the first mechanism, each new node requests to join from a preexisting node of the
system (i.e., a contact node), and stores only nearby neighbors which are found through the
contact node. In the second, the new node requests to join through the contact node again,
but apart from storing the nearby neighbors, it also stores the neighbors of the contact node.
The neighbors of the contact node may not reside nearby so they might not be suitable for
processing data with low communication latency. However, these nodes are used in case the
other neighbors fail.
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4.2 Evaluation Results
In Fig. 2, we show the results of our experiments. For Fig. 2a, the nodes store only neighbors,
i.e., using the first node discovery mechanism (cf. Section 4.1). In this experiment, we
induce node failure of 10%, 12%, 14%, 16%, 18%, and 20% of the nodes, and we measure
the corresponding percentages of the responsive nodes that remain connected. Each box
plot includes 50 values from the 50 experiments we have conducted. Notably, the average
percentage of responsive compute nodes that remain connected is approximately 53% with
10% node failure, and the fault tolerance of the system decreases, while the percentage of
node failures increases.

For Fig. 2b, we repeat the same experiment, but we change the node discovery mechanism.
Instead of storing only neighbors (as done for Fig. 2a), in this experiment every node stores
additional nodes to be used in case of failures, i.e., the second node discovery mechanism (cf.
Section 4.1). Thus, when a responsive node detects (e.g., using heartbeat messages) that the
neighbors have failed, this node tries to connect to the system using the additional nodes.
Notably, the average percentage of responsive compute nodes that remain connected in this
experiment, is approximately 99% with 10% of node failure. Again, the fault tolerance of
the system decreases, while the node failures increase although, until the node failures reach
20%, the average fault tolerance remains always above 90%.

Based on Fig. 2a, we note that creating a fog computing system whereby each node stores
only its neighbors, is not an efficient approach with regard to fault tolerance. This is claimed
because, when various nodes fail, the percentage of remaining responsive nodes which remain
connected decreases radically.

However, according to Fig. 2b, we note that the fault tolerance of a fog computing system
can be increased significantly, by storing additional nodes during the node discovery phase.
Similarly, we believe that addressing the node discovery problem can aid in improving various
aspects of fog computing systems, as discussed in Section 3.

5 Conclusion

In this paper, we present the node discovery problem in fog computing systems. To this end,
we analyze various aspects of fog computing that can be affected from the way new nodes
are discovered and integrated in the system, such as: fault tolerance, resource heterogeneity,
proximity awareness, and scalability. Furthermore, we identify related research questions
which need to be addressed in order to tackle the proposed problem efficiently. Finally, we
simulate fog computing systems, and we perform experiments with various compute nodes
which integrate a node discovery mechanism that focuses on improving the fault tolerance of
the system. By analyzing the results, we show that when each new node that joins, stores
additional nodes during the discovery phase, the fault tolerance of a fog computing system
improves significantly.

Due to the promising results, in the future we plan to focus on node discovery mechanisms
that improve fog computing systems. Specifically, we plan to design node discovery mechan-
isms tailored to fog computing systems by considering not only the fault tolerance of the
system, but also aspects related to proximity awareness, resource heterogeneity, scalability,
and others.
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Abstract
The ever increasing number of connected devices has lead to a metoric rise in the amount data to
be processed. This has caused computation to be moved to the edge of the cloud increasing the
importance of efficiency in the whole of cloud. The use of this fog computing for time-critical control
applications is on the rise and requires robust guarantees on transmission times of the packets in the
network while reducing total transmission times of the various packets.

We consider networks in which the transmission times that may vary due to mobility of devices,
congestion and similar artifacts. We assume knowledge of the worst case tranmssion times over
each link and evaluate the typical tranmssion times through exploration. We present the use of
reinforcement learning to find optimal paths through the network while never violating preset
deadlines. We show that with appropriate domain knowledge, using popular reinforcement learning
techniques is a promising prospect even in time-critical applications.
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1 Introduction

Consider a network of devices in a smart factory. Many of the devices are mobile and
communicate with each other on a regular basis. As their proximity to the other devices
change, the communcation delays experienced by the device also change. Using static routing
for such time-critical communications leads to pessimistic delay bounds and underutilization
of network infrastructure.

Recent work [2] proposes an alternate model for representing delays in such time-critical
networks. Each link in a network has delays that can be characterised by a conservative
upper bound on the delay and the typical delay on the link. This dual representation of
delay allows for capturing the communication behavior of different types of devices.

For example, a communication link between two stationary devices can be said to have
equal typical and worst case delays. A device moving on a constant path near another
stationary device can be represented using a truncated normal distribution. Adaptive routing
techniques are capable of achieving smaller typical delays in such scenarios compared to
static routing.
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x y
4,10,15

4 : Typical transmission time, cTxy
10 : Worst case transmission time, cWxy
15 : Worst case time to destination, cxt

Figure 1 Each link with attributes.

The adaptive routing technique described from [2] uses both delay information (typical and
worst case) to construct routing tables. Routing is then accomplished using the tables which
consider typical delays to be deterministic. This is however not the case as described above.

We propose using Reinforcement Learning (RL) [8, 12] for routing packets. RL is a
model-free machine learning algorithm that has found prominence in the field of AI given its
light computation and promising results [5, 9]. RL agents learn by exploring the environment
around them and then obtaining a reward at the end of one iteration denoted one episode.

RL has been proven to be very powerful but it has some inherit drawbacks when considering
its application to time-critical control applications. RL requires running a large number of
epsiodes for an agent to learn. This leads to the possibility of deadline violations during
exploration. Another drawback is the large state-space used for learning in classical RL
methods that leads to complications in storage and search.

In this paper, we augment classical reinforcement learning with safe exploration to
perform safe reinforcement learning. We use a simple (Dijkstras[4]) algorithm to perform
safe exploration and then use the obtained information for safe learning. Using methodology
described in Section 4 we show that safety can be guaranteed during the exploration phase.
Using safe RL also restricts the state-space reducing its size. Our decentralised algorithm
allows each agent/node in the network to make independent decisions further reducing the
state space. Safe reinforcement learning explores the environment to dynamically sample
typical transmission times and then reduce delays for future packet transmissions. Our
Decentralised approach allows each node to make independent and safe routing decisions
irrespective of future delays that might be experienced by the packet.

2 System Architecture

Consider a network of nodes, where each link e : (x→ y) between node x and y is described
by delays as shown in Figure 1.

Worst case delay (cW
xy): The delay that can be guarateed by the network over each

link. This is never violated even under maximum load.
Typical delay (cT

xy): The delay that is encountered when transmitting over the link
and varies for each packet. We assume this information to be hidden from the algorithm
and evaluated by sampling the environment.
Worst case delay to destination (cxt): The delay that can be guaranteed from node
x to destination t. Obatined after the pre-processing described in Section 4.1.

A network of devices and communication links can be simplified as a Directed Acyclic
Graph as shown in Figure 2. The nodes denote the different devices in the network and the
links denote the connections between the different devices. For simplicity we only assume
one-way communication and consider a scenario of transmitting a packet from an edge
device i to a server, t at a location far away from it.
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Figure 2 Example of graph and corresponding state space for the reinforcement learning problem
formulation.

As seen from the graph, many paths exist from the source i to t destination that can be
utilised depending upon the deadline DF of the packet.

The values of cT
xy and cW

xy are shown in blue and red respectively for each link e(x→ y).
We also show the value of cxt in green obtained after the pre-processing stage described in
the following section.

3 Reinforcement Learning

Reinforcement Learning is the area of machine learning dealing with teaching agents to learn
by performing actions to maximise a reward obtained [8] RL generally learns the environment
by performing actions (safe actions) and evaluating the reward obtained at the end of the
episode. We use Temporal-Difference (TD) methods for estimating state values and discover
optimal paths for packet transmission.

We model our problem of transmitting packets from source i to destination t as a Markov
Decision Process (MDP) as is the standard in RL. An MDP is a 4-tuple (S,A, P,R), where
S is a set of finite states, A is a set of actions, P : (s, a, s′) → {p ∈ R | 0 ≤ p ≤ 1} is a
function that encodes the probability of transitioning from state s to state s′ as a result of
an action a, and R : (s, a, s′)→ N is a function that encodes the reward received when the
choice of action a determines a transition from state s to state s′. We use actions to encode
the selection of an outgoing edge from a vertex.
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3.1 TD Learning
TD learning [8] is a popular reinforcement learning algorithm that gained popularity due to
it expert level in playing backgammon [9]. This model-free learning uses both state s and
action a information to perform actions from the state given by the Q-value, Q(s, a). TD
learning is only a method to evaluate the value of being in the particular state. It is generally
coupled with an exploration policy to form the strategy for an agent. We use a special TD
learning called one step TD learning that allows for decentralised learning and allows for
each node to make independent routing decisions. The value update policy is given by

Q(s, a) = Q(s, a) + α · (R+ max(γ Q(s′, a′))−Q(s, a)) (1)

3.2 Exploration Policy
ε-greedy exploration algorithm ensures that the optimal edge is chosen for most of the packet
transmissions while at the same time other edges are explored in search of a path with higher
reward. The chosen action a ∈ A is either one that has the max value V or is a random
action that explores the state space. The policy explores the state space with a probability ε
and the most optimal action is taken with the probability (1− ε). Generally the value of
ε is small such that the algorithm exploits the obtained knowledge for most of the packet
transmissions. To ensure that the deadline DF is never violated, we modify the exploration
phase to ensure safety and perform safe reinforcement learning.

4 Algorithm

We split our algorithm into two distinct phases. A pre-processing phase tha gives us the
initial safe bounds required to perform safe exploraion. A run-time phase then routes packets
through the network.

At each node, the algorithm explores feasible paths. During the inital transmissions
the typical tranmssion times are evaluated after packet transmission. During the following
transmissions, the path with the least delay is chosen more frequently while also exploring
new feasible paths for lower delays. All transmissions using our algorithm are guaranteed to
never violate any deadlines as we use safe exploration.

4.1 Pre-processing Phase
The pre-processing phase determines the safe bound for the worst case delay to destination t
from every edge e : (x → y) in the network. The algorithm used by our algorithm is very
similar to the one in [2]. This is crucial to ensure that there are no deadline violations during
exploration in the run-time phase and is necessary irrespective of the run-time algorithm
used. Dijkstras shortest path algorithm [7, 4] is used to obtain these values as shown in
Algorithm 1.

4.2 Run-time Phase
The run-time algorithm is run at each node on the arrival of a packet. It determines
e : (x→ y) the edge on which the packet is transmitted from the node x to node y. Then
the node y executes the run-time algorithm till the packet reaches the destination.
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Algorithm 1 Pre-Processing.

1: for each node u do
2: for each edge (u→ v) do
3: // Delay bounds as described in Section 4.1
4: cuv = cW

uv + min(cvt)
5: // Initialise the Q values to 0
6: Q(u, v) = 0

Algorithm 2 Node Logic (u).

1: for Every packet do
2: if u = source node i then
3: Du = DF // Initialise the deadline
4: δit = 0 // Initialise total delay for packet = 0
5: for each edge (u→ v) do
6: if cuv > Du then // Edge is infeasible
7: P (u|v) = 0
8: else if Q(u, v) = max(Q(u, a ∈ A)) then
9: P (u|v) = (1− ε)
10: else
11: P (u|v) = ε/(size(F − 1))
12: Choose edge (u→ v) with P
13: Observe δuv

14: δit += δuv

15: Dv = Du − δuv

16: R = Environment Reward Function(v, δit)
17: Q(u, v) = Value iteration from Equation (1)
18: if v = t then
19: DONE

The edge chosen can be one of two actions:
Exploitation action: An action that chooses the path with the least transmission time
out of all known feasible paths. If no information is known on all the edges, then an edge
is chosen at rondom.
Exploration action: An action where a sub-optimal node is chosen to transmit the
packet. This action uses the knowledge about cxy obtained during the pre-prcocesing
phase to ensure that the exploration is safe. This action ensure that the algorithm is
dynamic by ensuring that if there exists a path with lower transmission delay, it will be
explored and chosen more during future transmissions. Exploration also optimises for a
previously congested edge that could be decongested at a later time.

Algorithm 2 shows the pseudo code for the run-time phase. The computation is computa-
tionally light and can be run on mobile IoT devices.

4.3 Environment Reward
The reward R is awarded as shown in Algorithm 3. After each traversal of the edge, the
actual time taken δ is recorded and added to the total time traversed for the packet, δit+ = δ.
The reward is then awarded at the end of each episode and it is equal to the amount of time
saved for the packet, R = DF − δit.
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Algorithm 3 Environment Reward Function(v, δit).

1: Assigns the reward at the end of transmission
2: if v = t then
3: R = DF − δit

4: else
5: R = 0
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Figure 3 Smoothed Total Delay for Experiment with (a) Constant delays and (b) Congestion at
packet 40.

5 Evaluation

In this section, we will evaluate the performance of our algorithm. We apply it to the
network shown in Figure 2. The network is built using Python and the NetworkX package [6]
package. The package allows us to build Directed Acyclic Graphs (DAGs) with custom
delays. Each link e : (x→ y) in the network has the constant worst case link delay cW

xy visible
to the algorithm but the value of cT

xy although present is not visible to our algorithm. The
pre-processing algorithm and calculates the value of cxt. This is done only once initially and
then Algorithms 2 and 3 are run for every packet that is transmitted and records the actual
transmission time δit.

Figure 3 shows the total transmission times when the actual transmission times δ and
typical transmission times cT are equal. We route 500 packets through the network for
deadine DF ∈ (20, 25, 30, 35, 40). For DF = 20, the only safe path is (i→ x→ t) and so has
a constant δit for all packets. For the remaning deadlines, the transmission times vary as
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new paths are taken during exploration. The deadlines are never violated for any packets
irrespective of the deadline. Table 1 shows the optimal paths and the average transmission
times compared to the algorithm from [2].

Figure 3 shows the capability of our algorithm in adapting to congestions in the network.
Congestion is added on the link (i→ x) after the transmission of 40 packets. The tranmission
time over the edge increases from 4 to 10 time units and is kept congested for the rest of
the packet transmissions. The algorithm adapts to the congestion by exploring other paths
that might now have lower total transmission times δit. In all cases other than DF = 20, the
algorithm converges to the path (i→ t) with δit = 12. When DF = 20, (i→ x→ t) is the
only feasible path.

6 Practical Considerations

In this section we will discuss some of the practical aspects when implementing the algorithms
described in Section 4.

6.1 Compuational Overhead
The computational compexity of running our algorithm mainly arises in the pre-processing
stage. This complexity is dependent on the number of nodes in the network. Dijkstras
algorithm has been widely studied and have efficient implementations that reduce computation.
The pre-processing has to be run only once for all networks given that there are no structural
changes.

6.2 Multiple sources
The presence of multiple sources and thus multiple packets on the same link can be seen as
an increase in the typical delays on the link. This holds true given that the worst case delay
cW

xy over each link is properly determined and guaranteed.

6.3 Network changes
Node Addition: During the addition of a new node the pre-processing stage has to
be run in a constrained space. The propagation of new information to the preceeding
nodes is only necessary if it affects the value of cxt over the affected links. The size of the
network affected has to be investigated furthur.
Node Deletion: In the event of node deletion during the presence of a packet at the
deleted node, the packet is lost and leads to deadline violation. However no further
packages will be transmitted over the link as the reward R is 0. Similar to the case of
node addition, the pre-processing algorithm requires furthur investigations.

Table 1 Optimal Path for Different Deadlines.

DF Optimal Path Delays [2] Average Delays (1000 episodes)

15 Infeasible – –
20 {i,x,t} 14 14
25 {i,x,y,t} 10 10.24
30 {i,x,y,t} 10 10.22
35 {i,x,z,t} 6 6.64
40 {i,x,z,t} 6 6.55
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7 Conclusion and Future Work

In this paper we use safe reinforcement learning to routing networks with variable transmission
times. A once used pre-processing algorithm is used to determine safe bounds. Then a safe
reinforcement learning algorithm uses this domain knowledge to route packets in minimal
time with deadline guarantees. We have considered only two scenrios in this paper but we
believe that the algorithm will be able to adapt with highly variable transmission times and
network failures. The use of low complexity RL algorithm makes it suitable for use on small,
mobile platforms.

Although we show stochastic convergence in our results with no deadline violations, our
current work lacks formal guarantees. Recent work has been published trying to address
analytical safety guarantees of safe reinforcement learning algorithms [10, 11]. In [10], the
authors perform safe Bayesian optimization with assumptions on Lipschitz continuity of
function. While [10] estimates the safety of only one function, our algorithm is dependent on
the continuity of multiple functions and requires more investigation.

The network implementation and evaluation using NetworkX in this paper have shown that
using safe RL is a promising technique. An extension of this work would be implementation
on a network emulator. Using network emulators (for example CORE [1], Mininet [3]) would
allow us to evaluate the performance of our algorithm on a full internet protocal stack.
Using an emulator allows for implementation of multiple flows between multiple sources and
destinations.
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Abstract
Container-based virtualization has gained a significant importance in a deployment of software
applications in cloud-based environments. The technology fully relies on operating system features
and does not require a virtualization layer (hypervisor) that introduces a performance degradation.
Container-based virtualization allows to co-locate multiple isolated containers on a single computation
node as well as to decompose an application into multiple containers distributed among several hosts
(e.g., in fog computing layer). Such a technology seems very promising in other domains as well, e.g.,
in industrial automation, automotive, and aviation industry where mixed criticality containerized
applications from various vendors can be co-located on shared resources.

However, such industrial domains often require real-time behavior (i.e, a capability to meet
predefined deadlines). These capabilities are not fully supported by the container-based virtualization
yet. In this work, we provide a systematic literature survey study that summarizes the effort of the
research community on bringing real-time properties in container-based virtualization. We categorize
existing work into main research areas and identify possible immature points of the technology.
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1 Introduction

Fog Computing as well as cloud computing relies extensively on resource virtualization. In this
area, the container-based virtualization is gaining its importance as a lightweight alternative
of hypervisor-based virtualization. The container technology allows to execute applications
and their software dependencies in a virtual environment independently on the software
ecosystem of their hosts. A host can accommodate multiple containers at a time, providing
means for container isolation and resource control for the containers. Container-based
virtualization (sometimes referred as an OS level virtualization) does not require a hypervisor
and therefore it provides near-native performance [13, 25], rapid deployment times and a low
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overhead while still retaining a certain level of resource isolation and resource control. The
containers are a de-facto standard for development of large scale web applications adopted
by a number of companies [7].

The benefits of the container-based virtualization are aligned with the strive of the
companies in other areas such as in industrial and robot control, automotive and aviation.
In these industrial domains, there are strong requirements to (i) consolidate computational
resources (Electronic Control Units, physical controllers) and (ii) provide a flexible environ-
ment for running (real-time) applications. Additionally, container-based virtualization can
enable interruption-free hardware and software maintenance, dynamic system redundancy
change and system redundancy healing [16]. However, in such fields stringent real-time
requirements are often needed. This means that the applications inside of a container should
meet predefined deadlines independently on other co-located containers.

In this survey, we summarize the research carried out in the area of real-time containers
since the introduction of containers in Linux (i.e. 2008 [1]).

The main contributions of this paper include:
Systematic literature survey of the real-time containers.
Overview of the approaches and technology enabling real-time behavior of containers.
Identification of pitfalls, challenges and future research directions for real-time containers.

2 The Review Process

The systematic literature survey is carried out with the guidance in [17]. The research
questions are defined together with search queries and sources of the studies and, subsequently,
we extract the data and answer to the questions. We apply the snowballing [28] method
to identify relevant papers outside the search query. Databases used: Scopus and IEEE.
Only full peer review papers published between 2008-2019 are considered. We search the
databases using the following search queries:

(Real-time OR RT) AND (Containers OR Container)

The search string extracts 1855 articles in Scopus and 609 articles in IEEE. Out of that,
we identify 38 and 23 potentially relevant articles by the title. As the number of articles
is low, we fully screen each potentially relevant paper (abstract and full text) to make the
decision for inclusion/exclusion into this survey. In total, we include 14 papers as seen in
Table 1.

2.1 Question Formalization
In this work, we elaborate the following questions:

RQ1: Why and in which context have real-time containers been used? Answering this
question will give an overview of the motivation behind the use of real-time containers,
expected benefits and areas where real-time containers are used.
RQ2: What approaches are used for enabling real-time behavior of containers? The
answer will give an overview of the approaches and technologies, their combinations and
their usages for the real-time container-based virtualization.
RQ3: What are the pitfalls and weak points of using real-time containers that prevent
full adoption of such technology in industry? The answer for this question will give a list
of research challenges and problems for real-time container computing.
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3 Container-based Virtualization

From the runtime perspective, a container is a set of resource-limited processes that are
isolated from the rest of the system and from other containers. This is achieved by utilizing
two Linux kernel features: (i) Namespaces and (ii) Control groups (cgroups). Namespaces
virtualize global resources (e.g., processes, network, inter-process communication) in the way
that a group of processes can see and use one set of resources while another group can use
different set of resources. Cgroups provide a mechanism for aggregating and partitioning sets
of tasks, and all their future children, into hierarchical groups with specialized behaviour [2].
It allows to organize processes hierarchically and distribute system resources along the
hierarchy.

3.1 Container Platforms
There are several container solutions, all of them rely on cgroups and namespaces. Thus,
all the platforms pose similar options and performance [23]. The philosophy of using the
two most commonly used container platforms LXC and Docker differs. Docker containers
are microservice-based (each container should contain a single application), whereas LXC,
similarly to Virtual Machines, allows to run a complex ecosystem of applications which is
beneficial for emulation of legacy systems.

3.2 Real-Time Containers
The term real-time implies that the correctness of the system depends not only on the results
of the computation but also on the time at which the results are produced [8]. Real-time
systems can be categorized into three groups: hard, firm and soft real-time. Missing a
deadline in a hard real-time system may cause catastrophic consequences, whereas missing
deadline in a firm real-time system leads to the complete loss of the utility of the result.
Missing deadline in a soft real-time system just degrades the utility of the result.

A real-time container is a container that provides resource isolation, resource control
and additionally provides time deterministic and predictable behavior for the containerized
application.

3.3 Real-time Support of Linux
To ensure the time predictable behavior of the containers, the operating systems must provide
such capability. Default (Vanilla) Linux does not give any time guarantees on execution of
tasks and therefore the predictability is low [24]. However, there are several approaches to
improve the predictability: the real-time patch that improves preemptability of the Linux
kernel and co-kernel approaches that run a real-time micro kernel in parallel to the Linux
kernel. Containerized applications are scheduled in the same way as native applications
using the host’s scheduler, the Default Linux kernel provides three schedulers: (i) Completely
Fair Scheduler (CFS): Aims to maximize CPU utilization while also maximizing interactive
performance. It does not give any time guarantees. (ii) Real-Time scheduler (RT): The
scheduler allows to schedule tasks in the fixed priority manner using First In First Out or
Round Robin policies. The tasks run till they yield or are preempted by higher priority
tasks. The Real-Time group scheduling [3] extension allows to divide and allocate CPU
time between real-time and non real-time tasks. (iii) Earliest Deadline First Scheduler
(EDF) Uses Constant Bandwidth Server [6] and allows to associate to each task a budget
and a period.
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4 Survey Results

In this section, we summarise relevant papers. There are four main directions for enabling real-
time behavior of containers: (i) real-time patch based, (ii) co-kernel based, (iii) hierarchical
scheduling based and (iv) custom approach. A short summary is provided in Table: 1.

4.1 Methods Based on PREEMPT_RT Patch

The real-time patch (PREEMPT_RT) improves the kernel’s locking primitives to maximize
preemptible sections. The advantage of the patch is that there is no need for special libraries
or API needed by the application developers.

Moga et al. [22] considers real-time containers in the context of industrial automation
systems that works with real-time data and have real-time deadlines on detection and
response to events. The paper emphasises the need for OS-level virtualization in an industrial
automation and gives examples of timing requirements of industrial applications (e.g. motor
drive typically requires cycle time between 1ms to 250µs) and a need for synchronization
between the containers. The evaluation of the effects of containers on performance of
industrial automation systems is provided in two cases: (i) Cyclic behavior of a containerized
application, (ii) Virtual networking performance for communications between containers.
Cyclic behavior test evaluates the ability to execute application logic at pre-defined intervals,
measures accuracy and jitter. Virtual networking test evaluates the ability to communicate
between co-located containers in a time-bounded manner. The researches see the real-time
container computing as a promising technology, however communication mechanisms between
containers are not clear.

The work in [16] (and previously [15]) addresses a container based architecture for real-
time controllers that allow a flexible function deployment and a support of legacy control
applications. Such architecture is needed to preserve a functionality of legacy control programs
and to reduce maintenance cost of legacy systems (in which the software is often bounded to
a specific hardware and software ecosystem). The researchers investigate the feasibility of
building a real-time capable system (for legacy systems) based on real-time containers, they
target PLCs and automation controllers with the cycle time between 100ms to 1s. They
perform a set of tests under various load scenarios (i) using containerized applications inside
of Docker and (ii) running complete operating system (PowerPC) inside LXC. They conclude
that a containerized execution of control applications can meet requirements of PLCs and
automation controllers.

From the latency point of view, Masek et al. [21] performed a literature review on
sandboxed real-time software on the example of self-driving vehicles. The researchers were
interested in the question: How does the execution environment influence the scheduling
precision and input/output performance of a given application? The result shows that docker
does not impose additional overhead (similarly to [19]) for scheduling and input/output
performance. However, selecting the correct kernel has a greater impact on the scheduling
precision and input/output performance of containers.

Mao et al. [20] uses real-time containers to enable software-based RAN (Radio Access
Network) in order to avoid high capital and operating expenditures during deployment of
new standards. However, the software based RAN has strict deadlines to satisfy (1ms). The
researchers use real-time patch to decrease the latency, interestingly they improve the latency
13.9 times by applying the patch in comparison to the vanilla Kernel.
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Table 1 Summary of studies elaborating on real-time containers.

Study Main focus Approach & Technology Communication aspects
Cinque et al. [9, 10] Architecture defini-

tion
Faulty tasks monitor-
ing
Implementation de-
tails

RTAI
Docker
Fixed priority
scheduling

–

Cucinotta et al. [5, 11, 12] Temporal Inter-
ference between con-
tainers

Hierarchical Schedul-
ing

–

Tasci et al. [26] Architecture defini-
tion
Real-time communic-
ation between con-
tainers

Combination of
Real-Time patch and
Xenomai
Docker

Design of messaging
system based on
ZeroMQ.

Moga et al. [22] Feasability study
Communication
between containers
Communication over-
heads

Docker
Real-Time patch

Network performance
and overhead measure-
ments between contain-
ers using default Docker
Linux NAT Bridge.

Hofer et al. [18] Experimental com-
parison between
Real-Time patch,
Xenomai,
Vanilla Linux

Real-Time patch
Xenomai
Vanilla Linux

–

Goldschmidt et al. [15, 16] Architecture defini-
tion
Feasibility study

Real-Time patch
Legacy systems emu-
lation in real-time
containers

–

Telschig et al. [27] Model-based architec-
ture and analysis
Dependable real-time
container computing.

LXC –

Mao et al. [20] Minimizing latencies
in software-based Ra-
dio Access Networks

Docker
Real-Time patch

Application of fast packet
processing
using Intel Data Plane
Development Kit.

Masek et al. [21] Systematic evalu-
ation of sandboxed
software

Real-Time patch –

Wu et al. [29] Dynamic CPU
allocation for mixed-
criticality real-time
systems

Custom scheduling
mechanism
Docker

–
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4.2 Methods based on Real-time Co-Kernel
In this approach, a real-time micro-kernel runs in parallel to Linux kernel. The real-time
co-kernel handles time critical activities (e.g., handling interrupts and scheduling real-time
threads), standard Linux kernel runs only when the co-kernel is idle. In comparison to
the real-time patch, the co-kernel approach offers lower latencies and lower jitter. On the
other hand, it requires special APIs, tools and libraries for the application development.
Additionally, there are impediments with scaling co-kernel solutions on large platforms
(e.g., many cores platforms). There are two co-kernel alternatives: Real Time Application
Interface (RTAI) and Xenomai.

RTAI aims to minimize latencies to the lowest technically possible values. Real-time tasks
are compiled as kernel modules and ran in the kernel space. Xenomai [14] is a fork of RTAI.
Its mission is to enable real-time tasks in the user space. It consists of an emulation layer
that is capable of reusing code from other RTOSes.

Tasci et al. [26] elaborates on modularization of real-time control applications into real-
time containers. Such modular architecture needs two essential parts: (i) Computational
part, enabled by a real-time operating system (combination of Xenomai and real-time patch),
and (ii) Messaging part that allows passing messages between containers in a real-time
manner. Traditional monolithic architectures communicate through function calls and shared
memory, the containers do not make the assumption if they are running on the same host or
in a distributed environment (they communicate through standard OS networking stack),
therefore direct passing messages through shared memory is not directly supported. Hence,
the researchers provide a design and implementation of a custom made real-time messaging
system for containers based on ZeroMQ [4].

Hofer et al. [18] use the real-time containers in the context of control applications. The
paper presents comparison between type 1 hypervisor, Vanilla Linux, Xenomai co-kernel and
Linux with real-time patch for various idle and stress scenarios.

4.3 Method Based on Hierarchical Scheduling Of Containers
Inspired by a similar concept in the hypervisor-based virtualization where a global scheduler
assigns CPU time for the virtual machines, the second layer scheduler schedules the individual
tasks of the VM.

Cucinotta, Abeni et al. [5, 11, 12] proposed the use of real-time containers on the field
of Network Function Virtualization (NFV), where the functionality of traditional physical
network devices (e.g., firewalls) is transformed into software components (in containers)
that are consolidated in a single computing device. NFV has critical latency requirements
inducted by the need of time critical per-packet processing. The researchers modified the
Linux scheduling mechanism to provide two levels hierarchical scheduling. First level Earliest
Deadline First scheduler selects the container to be scheduled on each CPU. Subsequently
the second level Fixed Priority scheduler selects a task in the container. CPU reservation
(runtime quota and period) is assigned to each of the containers.

4.4 Custom Methods
Wu et al. [29] proposed the Flexible Deferrable Scheduler for containerized mixed-criticality
real-time systems that consist of real-time and non real-time containers. The scheduler
guarantees the allocated CPU capacity to real-time containers and dynamically distributes
the unused capacity to non real-time containers. The work supplements Completely Fair
Scheduler with a Workload Adjustment Module that collects CPU utilization by containers
and Dynamic Adjustment Module that allocates CPU to the container.



V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos 7:7

Cinque et al. [10] (previously [9]) implemented real-time containers using Linux patched
with real-time co-kernel (RTAI) and utilizing custom made monitoring and policy enforcing
modules. Their solution allows to co-habit containers with different criticality levels and
to prevent fixed-priority hard real-time periodic tasks inside of the containers to affect
the temporal guarantees of other containers. The temporal guarantees are provided by
two mechanisms: (i) proper tasks priority assignments to tasks inside the containers and
(ii) monitoring and enforcing temporal protection policies. The former ensures that tasks
inside of the high-criticality containers are assigned higher priorities than tasks in the
lower-criticality containers and thus they are never preempted by tasks of lower criticality
containers. The latter monitors the tasks and, in case of overruns or overtimes, it enforces
one of the temporal protection policy (i.e., kill or suspend the faulty task, suspend the task
until the next period).

5 Challenges of Real-time Container-based Virtualization

In the reviewed papers, we identified shortcomings and immature aspects of real-time
container virtualization that prevents the expansion of the technology. Below, we listed them
categorized in three groups: (i) tools support, (ii) real-time communication support, and
(iii) miscellaneous.

Lack of tools for real-time container management. The reviewed papers emphasises a
need for supporting tools for real-time containers. Tools that enable deployment on containers
taking into account real-time requirements of containers and properties of computational
nodes.

The need for an orchestration tool that can schedule real-time containers based on
pre-configured capabilities [18].
Middleware that is aware of both communication needs as well as run-time and perform-
ance isolation needs [22].
Framework to expose the runtime requirements of real-time application running inside
containers and to enforce an optimal allocation of containers to resources [22].

Communication between real-time containers. Real-time communication between a con-
tainer and its environment has to be further researched. Currently, the reviewed papers
emphasize the following issues:

Need for a real-time communication among containers [22].
Further investigation on container security restricted container access and intra-container
communication [18].
A research on data management shared across containers [15].

Miscellaneous. In addition to generic issues that may harm the real-time behaviour (e.g.,
shared caches, memory and I/O), the studies reviewed highlight the following points and
questions:

Lack of safety, security analysis of real-time containers and vulnerability management for
the acceptance in industry [15,27].
Lack of latency and performance tests of recent releases of a patched Linux Kernel. As
well as a proper analysis of configuration of the Linux kernel parameters that may improve
overall task determinism. [18].
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The measurements of memory overhead of the container solution and is it acceptable for
real world applications [15].
Processes in different containers may use the same resources in the same way because of
their independent views of the system (i.e., processes are not aware of a resource-limited
isolated environment co-located with other containers). This results in poor resource
utilization as well as a potential violation of the real-time execution assumptions [22].
Container approaches are a new technology. Will this create problems due to its possible
immaturity [15]?

6 Conclusion

Container-based virtualization has become popular as a lightweight alternative of hypervisor-
based virtualization. The technology has proven its viability in large cloud-based systems, it
has been adopted by a number of enterprise companies and it is supported by a large scale
of tools (e.g., container orchestration and monitoring tools).

However, in industrial domains where the real-time behavior is required, the container-
based virtualization seems not to be mature enough. In this paper, we summarize the
research carried out in the field of real-time containers. We show in what contexts, what
approaches and technologies are used, and what are the possible immaturity points of the
real-time container-based virtualization.

References
1 Notes from a container. URL: https://lwn.net/Articles/256389/.
2 The Linux Kernel Archives. URL: https://www.kernel.org/doc/Documentation/cgroup-v1/

cgroups.txt.
3 The Linux Kernel Archives. URL: https://www.kernel.org/doc/Documentation/scheduler/

sched-rt-group.txt.
4 Zero MQ. URL: https://zeromq.org/.
5 Luca Abeni, Alessio Balsini, and Tommaso Cucinotta. Container-based real-time scheduling

in the linux kernel. SIGBED Rev., 2019.
6 Luca Abeni, Giuseppe Lipari, and Juri Lelli. Constant bandwidth server revisited. Acm Sigbed

Review, 2015.
7 Thanh Bui. Analysis of docker security. ArXiv, abs/1501.02967, 2015. arXiv:1501.02967.
8 Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and

applications. Springer Science & Business Media, 2011.
9 Marcello Cinque and Domenico Cotroneo. Towards lightweight temporal and fault isolation

in mixed-criticality systems with real-time containers. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE,
2018.

10 Marcello Cinque, Raffaele Della Corte, Antonio Eliso, and Antonio Pecchia. Rt-cases:
Container-based virtualization for temporally separated mixed-criticality task sets. In 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019), 2019.

11 Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Alessio Balsini, and Carlo Vitucci. Virtual
network functions as real-time containers in private clouds. In IEEE CLOUD, 2018.

12 Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Alessio Balsini, and Carlo Vitucci.
Reducing temporal interference in private clouds through real-time containers. In 2019
IEEE International Conference on Edge Computing (EDGE), pages 124–131, 2019. doi:
10.1109/EDGE.2019.00036.

https://lwn.net/Articles/256389/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://zeromq.org/
http://arxiv.org/abs/1501.02967
https://doi.org/10.1109/EDGE.2019.00036
https://doi.org/10.1109/EDGE.2019.00036


V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos 7:9

13 W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison of
virtual machines and linux containers. In 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2015.

14 Philippe Gerum. Xenomai-implementing a rtos emulation framework on gnu/linux. White
Paper, Xenomai, pages 1–12, 2004.

15 Thomas Goldschmidt and Stefan Hauck-Stattelmann. Software containers for industrial control.
In 2016 42th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2016.

16 Thomas Goldschmidt, Stefan Hauck-Stattelmann, Somayeh Malakuti, and Sten Grüner.
Container-based architecture for flexible industrial control applications. Journal of Systems
Architecture, 84:28 – 36, 2018. URL: http://www.sciencedirect.com/science/article/pii/
S1383762117304988, doi:https://doi.org/10.1016/j.sysarc.2018.03.002.

17 Jo Hannay, Dag Sjøberg, and Tore Dybå. A systematic review of theory use in software
engineering experiments. Software Engineering, IEEE Transactions on, 2007.

18 Florian Hofer, Martin Sehr, Antonio Iannopollo, Ines Ugalde, Alberto Sangiovanni-Vincentelli,
and Barbara Russo. Industrial control via application containers: Migrating from bare-metal
to iaas. In 2019 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pages 62–69, 2019. doi:10.1109/CloudCom.2019.00021.

19 A. Krylovskiy. Internet of things gateways meet linux containers: Performance evaluation and
discussion. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015.

20 C. Mao, M. Huang, S. Padhy, S. Wang, W. Chung, Y. Chung, and C. Hsu. Minimizing latency
of real-time container cloud for software radio access networks. In 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom), 2015.

21 Philip Masek, Magnus Thulin, Hugo Andrade, Christian Berger, and Ola Benderius. Sys-
tematic evaluation of sandboxed software deployment for real-time software on the example
of a self-driving heavy vehicle. In 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), 2016.

22 Alexandru Moga, Thanikesavan Sivanthi, and Carsten Franke. Os-level virtualization for
industrial automation systems: are we there yet? In SAC ’16, 2016.

23 Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs. lightweight virtualiza-
tion: a performance comparison. In 2015 IEEE International Conference on Cloud Engineering,
2015.

24 Claudio Scordino and Giuseppe Lipari. Linux and real-time: Current approaches and future
opportunities. In IEEE Internafional Congress ANIPLA, 2006.

25 Cristian Spoiala, Alin Calinciuc, Cornel Turcu, and Constantin Filote. Performance comparison
of a webrtc server on docker versus virtual machine. 13th International Conference on
DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 19-21, 2016,
2016.

26 Timur Tasci, Jan Melcher, and Alexander Verl. A container-based architecture for real-time
control applications. In 2018 IEEE International Conference on Engineering, Technology and
Innovation (ICE/ITMC). IEEE, 2018.

27 Kilian Telschig, Andreas Schonberger, and Alexander Knapp. A real-time container architecture
for dependable distributed embedded applications. 2018 IEEE 14th International Conference
on Automation Science and Engineering (CASE), pages 1367–1374, 2018.

28 Claes Wohlin. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’14, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2601248.2601268.

29 J. Wu and T. Yang. Dynamic cpu allocation for docker containerized mixed-criticality real-time
systems. In 2018 IEEE International Conference on Applied System Invention (ICASI), 2018.

Fog- IoT 2020

http://www.sciencedirect.com/science/article/pii/S1383762117304988
http://www.sciencedirect.com/science/article/pii/S1383762117304988
https://doi.org/https://doi.org/10.1016/j.sysarc.2018.03.002
https://doi.org/10.1109/CloudCom.2019.00021
https://doi.org/10.1145/2601248.2601268




Evaluation of Burst Failure Robustness of Control
Systems in the Fog
Nils Vreman
Department of Automatic Control, Lund University, Sweden
nils.vreman@control.lth.se

Claudio Mandrioli
Department of Automatic Control, Lund University, Sweden
claudio.mandrioli@control.lth.se

Abstract
This paper investigates the robustness of control systems when a controller is run in a Fog environment.
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1 Introduction

In recent years there has been a trend to move towards decentralized and distributed software
infrastructure in industry [1]. This interest rises from the advantages of decoupling the control
of the plant from the physical location and allowing for easier software update patches, lower
maintenance costs, easier integration and optimization of individual components, among
multiple others. This shift in paradigms is based on the emerging 5G-network with low
latency, higher bandwidth, lower cost, and more reliable communication channels [4, 9].
However, neither the 5G-network nor the Fog that follows, are exempt from faults [5,12]. The
wireless and distributed nature of the Fog introduces different faults from the ones addressed
in classical control theory [13].

In real-time control systems, where reliability and timing constraints are of utmost
importance, the faults need to be analyzed thoroughly [10]. Recently, [11] showed that it
is possible for a control system to run in a Fog setting. The authors managed to control a
plant in real-time whilst migrating a controller from the near vicinity of the plant to two
datacenters, located at vastly different places. This result shows that it is possible to use the
Fog as a platform for distributed control but at the same time poses questions on its general
limitations and applicability. There is therefore need to develop methodologies for the study
of reliability and robustness of a control system in the Fog environment.
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The general set-up, where controller and plant are connected through a network, has been
studied under the name of networked control systems [7]. We propose an extension of the
work on networked control systems based on types and patterns of faults, characteristic to
the Fog environment. In this environment, faults can happen in the computation, actuation,
or sensing nodes as well as in the transmission between these nodes. Faults may appear in
the computation node due to overloads generated by other running tasks. Communication
faults might instead appear due to signal disturbances or channel overloads created by other
IoT-devices. In both cases the faults are likely to appear in bursts, meaning that the fault
appears at an arbitrary point in time and persists for some time before disappearing.

Control systems seem to guarantee an intrinsic robustness toward these faults but its
boundaries are yet to be explored. We perform a preliminary investigation of the topic by
discussing the possible faults as well as simulating their possible outcomes. Namely, the main
contributions of this paper are:
(i) a discussion on the specific faults introduced by a distributed Fog environment,
(ii) an investigation on the effect of bursts of faults on a control system,
(iii) a simulation based stability region for a particular case study.

The rest of the paper is structured as follows: Section 2 introduces control systems in the
Fog and discusses the potential faults that can appear. Section 3 presents and discusses the
case study of a MinSeg. Finally Section 4 summarizes the paper and outlines future research
directions.

2 System Model

2.1 Control Systems
The purpose of a control system is to make a process behave according to some given
requirements. Control systems are generally composed of a physical process and a controller.
The controller is implemented as a software that receives measurements from the process,
elaborates them, and decides accordingly how to steer the actuators of the process. Within
this work we study the specific (but still common) case in which the controller implementation
is split in two different components: a state observer and a control law. This is often needed
due to the states of the system differing from what we can measure. A representation of
these components and their interaction is shown in the block diagram of Figure 1.

For capturing the behaviour of the process, the most common class of models used are
the so-called time-invariant state-space models [2]. State-space models take the form

ẋ =f(x, u),
y =g(x, u)

(1)

where u is a vector of actuation variables decided by the control law (also called the inputs of
the process), y is a vector of measured variables (also called the outputs of the process), and
x is a vector of states of the process. Therefore, the first equation describes how the system
evolves given the current state and input, whilst the second equation instead describes how
the measurements are connected to the actual state of the system.

The purpose of the observer is to estimate x given the known input u and measured
output y. The most common state observer is called the Luenberger observer [2]. This
observer is based on running a simulation of the process according to Equation (1) and
correcting it given the discrepancy between the expected measurement from the simulation
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and the true measurement. In this way, the information contained in the model is merged
with the measurements of the process. By calling the estimated state x̂ and expected output
ŷ the Luenberger observer is implemented with the following equation:

ŷ =g(x̂, u),
˙̂x =f(x̂, u) +K(y − ŷ)

(2)

where the constant K (also called the observer gain) can be chosen using different techniques
(e.g. pole placement or Kalman filtering) [2]. Intuitively a high value of K represents that
the observer will rely more on the measurements and a low value will make the observer rely
more on the simulated model of the process.

The estimated state x̂ is then used by the controller, together with the desired behaviour
r to compute the control action u. The most common class of controllers are linear controllers
which can be written as

u = L (r − x̂) , (3)

where L is called the control gain and can be designed using standard techniques from control
theory – e.g. pole-placement or LQG control [2].

The mentioned design methodologies provide formal guarantees on the stability and
performance of the control system. Stability is the most fundamental property required
in a control system and states that the system variables x, x̂, u, and y over time will not
diverge but instead converge to some finite value. Intuitively these guarantees depend on
the accuracy of the available model. In a control system, the capability of satisfying the
requirements in presence of modelling errors, disturbances, and component faults is called
robustness. In this work we analyze the robustness to the Fog faults in terms of stability
guarantees. Specifically, in the Fog context, we want to evaluate how tolerant a control
system is to faults.

2.2 Control Systems in the Fog
In traditional control systems, the control software is executed by an embedded device
that is attached to the physical process. Leveraging the emerging Fog network, it becomes
natural to move the controller into the Fog. This allows the control system to access higher
computational power, ease software updates, synchronize with other IoT-devices as well as
alter the hardware during runtime.

When the controller is run in the Fog, it interacts with the plant through wireless
channels, whilst sharing the computational power with other processes. Therefore, both
the communication channel and the computation platform are subject to the interference of
other IoT-devices. These phenomena introduce new and specific disturbances different from
the ones seen in traditional control systems. Evaluating the performance of control systems
in their presence is critical for the safe and optimal implementation of a control system in
the Fog.

In Figure 1, where the block diagram of the control system is shown, the dashed boxes
highlight that the controller (both state observer and control law) is executed in the Fog
and that the process is placed in a different physical location. This shows that the desired
behaviour r, the control actuation u, and the measurement y are the signals traveling on
wireless communication channels.1

1 Different set-ups could be considered, for example the state observer and the control law could be run
in different IoT nodes. In this work we limit our study to this case being it the closest to the traditional
set-up.
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Physical world

Controller in the Fog

Control
Law

Physical
Process

State
Observer

r u y

CF DF UF

MF

Figure 1 A control system in the Fog context. The purple dashed block illustrates all the
components located in the Fog, whilst the green dashed block represents the physical process we are
trying to control. Transmission channels are represented by black arrows and red crosses are used to
indicate a transmission fault.

2.3 Fog Faults and Control Systems

Given the Fog-IoT set-up described in the previous section, faults could be introduced when
communicating the signals r, u, and y as well as when executing the controller. Among these
we exclude faults in the communication of r, since this signal is set by an external operator
and not affected by the control system.

In this work we discuss the following scenarios (shown in Figure 1 as red-crosses in the
control system block diagram):

Computation Faults [CF]: the IoT computation node does not manage to execute the
controller within the real-time constraints of the control system. Therefore, the actuator
does not receive any actuation command and the controller does not update. This could
happen, for example, if the node was suddenly overloaded by other computations.

Detected Actuation Transmission Faults [DF]: the communication channel fails
in transmitting the actuation signal u but the control software detects it and can take
counteraction. The actuator does not receive any command and the controller updates
accordingly. This could for example happen if the communication channel is kept busy
by other IoT devices.

Undetected Actuation Transmission Faults [UF]: the communication channel fails
in transmitting the actuation signal u and the control software is not aware of this and can
therefore not take any counteraction. The actuator does not receive any command and the
controller updates normally. This could happen, for example, if the controller get access
to the communication channel but the channel itself does not succeed in transmitting the
signal.

Measurement Transmission Faults [MF]: the communication channel fails in trans-
mitting the measurement signal y. The control software does not receive it and can
therefore take counteraction. This could for example happen if the communication channel
is either busy or simply fails to transmit the signal.
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Figure 2 Time series of the MinSeg leaning
angle under regular conditions.
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Figure 3 Time series of the MinSeg leaning
angle in the presence of a burst of computation
faults starting at t0 = 0.5 with a duration of
∆t = 0.5.

2.4 Fault Patterns

In this work we consider fault patterns of the burst type, meaning that a given fault happens
sporadically and continuously for a relatively short time. The reason for considering this
type of faults is that Fog-IoT components are expected to incur temporary overload periods
that will result in temporary unavailability.

We define burst faults as a sequence of consecutive component faults that happens at
an arbitrary point in time and does not repeat. Therefore, a burst fault of a given type is
defined by two quantities: an initial time t0 and a duration ∆t. A graphical representation of
a burst fault and the corresponding process is shown in Figure 3, as opposed to the system
response in regular conditions shown in Figure 2. In Figure 3, the system experiences a burst
of computation faults at time t0 = 0.5 with length ∆t = 0.5. The red zig-zag line (in the
x-axis) shows the interval in which the fault occurs and the plot shows the time series of the
leaning angle of the MinSeg.

When the actuator does not receive an updated control signal, we implemented a zeroing
strategy [8]. This means that the variable u is set to zero in the presence of computation
faults (CF), detected (DF), and undetected actuation transmission faults (UF). We chose
a zeroing strategy over the alternative of re-applying the previous control signal. In fact,
in many control systems, after the computation of the control signal, additional steps are
performed, for example to transform the control signal between different coordinate spaces
(e.g., dynamic coordinate systems). The presence of faults would render this additional
computation (and holding the previously computed signal) infeasible, therefore justifying our
choice.

3 Results and Discussion

We will in this section evaluate a model of a real control system through simulations. From
the simulation results, we discuss the system robustness to the transmission disturbances
presented in Section 2. The real-world process that we chose to analyze is a MinSeg [6]
controlled via bluetooth technology. Due to the fact that the MinSeg is inherently unstable,
with fast dynamics, it is a relevant process for our experiments. The performance degradation
of the control system is therefore clearly exposed when computation and transmission errors
are introduced.
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Figure 4 Stability region for simulations using
computation faults [CF].
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Figure 5 Stability region for simulations using
detected actuation transmission faults [DF].
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Figure 6 Stability region for simulations using
undetected actuation transmission faults [UF].
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Figure 7 Stability region for simulations using
measurement transmission faults [MF].

We ran the simulations using Matlab2. In particular we simulated the timing interactions
between the network components and the control system using the research tool called
TrueTime [3]3. TrueTime is a Matlab multi-purpose toolbox primarily used for analyzing
the complex timing properties of real-time, networked control systems.

We injected the burst disturbances (as described in Section 2.4) into the control system
during a transient. A transient is when the process moves from an arbitrary state to an
equilibrium. An equilibrium is a state from which the system will not diverge unless in
presence of some external input or disturbance. This is a standard, however not exhaustive,
way to evaluate the performance of a control system.

We ran simulations for each type of fault with one burst each. We considered bursts of
different length ∆t, starting at different points t0 of the transient, as discussed in Section 2.4.
The stability results from the combinations of t0 and ∆t values are then plotted together. We
define a simulation stable when the angle of the MinSeg does not exceed a given threshold α
for the entire duration of the simulation. Consequently, when the threshold is exceeded, the
simulation is marked as unstable. In fact, exceeding this threshold implies that the angle
of the process is too large for the control system to be able to bring the MinSeg back to
an upright position. Figures 4, 5, 6, and 7 show the stability regions for each of the faults
defined in Section 2.3 given different configurations of ∆t and t0. Each point (x, y) in the
plot represents a simulation using a specific (∆t, t0) combination. Unstable simulations are
marked with white and stable simulations are marked with gray.

2 https://se.mathworks.com/products/matlab.html
3 http://www.control.lth.se/research/tools-and-software/truetime/

https://se.mathworks.com/products/matlab.html
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As we can see in Figure 2, for values of t0 < 0.75s, the burst happens while the system
is still in a transient state. Conversely, for values of t0 > 0.75s the system has reached its
equilibrium, and the simulations are not changing anymore. For all the faults, this provides
the intuition that in an equilibrium state the robustness to burst for a control system could
be quantified. Still, there are differences between the specific faults.

Figure 5 shows the results of the simulations in presence of detectable actuation trans-
mission faults. The behaviour of the system appears similar to the case of computation
faults (Figure 4). Intuitively, in both cases, the system is not actuated. However, the
difference between the two faults is the fact that the state observer is not updated during the
computation faults burst. According to the simulations, the difference does not affect the
robustness of the system. In the future we plan to investigate the generality of this finding.

Figure 6 shows the results of the simulations in presence of undetectable actuation
transmission faults. The system shows less robustness with respect to the previous two cases.
This can be attributed to the state observer being updated with the wrong control signal and
therefore diverging from the actual state of the system. Despite this, the general behaviour
of the stability region shows a similar trend to the two faults considered previously. In
general, from the comparison of Figure 5 and 6, undetectable actuation transmission faults
can be more harmful than detectable ones. This should be taken into account when the Fog
infrastructure is implemented, e.g. by implementing detection algorithms for transmission
faults.

Figure 7 shows the results of the simulations in presence of measurement transmission
fault. Most of the simulations expose a stable behaviour. This is due to the perfect coherence
between the model used in the observer and the model used to simulate the process. Since
the two models are the same, despite the lack of feedback, the estimated states do not diverge
from the actual states of the process. This will not be true for a real implementation of
the system due to modeling errors and disturbances. The unstable simulations, that appear
for small values of t0, are due to the observer not having enough time to start tracking the
states of the process.

4 Conclusions

This paper presents preliminary work investigating the robustness to computation and
communication faults of control systems in the Fog. The simulations show that a control
system has an intrinsic robustness to the faults characteristic of this environment. Further
investigations should be based on a formal analysis of the system properties. The relevance
of the state observer, in the presence of the discussed faults, has been emphasized through
simulations. In future work we plan to evaluate solutions that handle burst faults.
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Abstract

In the last few years, we have been able to see how terms like Mobile Edge Computing, Cloudlets, and
Fog computing have arisen as concepts that reach a level of popularity to express computing towards
network Edge. Shifting some processing tasks from the Cloud to the Edge brings challenges to the
table that might have been non-considered before in next-generation Software-Defined Networking
(SDN). Efficient routing mechanisms, Edge Computing, and SDN applications are challenging to
deploy as controllers are expected to have different distributions. In particular, with the advances of
SDN and the P4 language, there are new opportunities and challenges that next-generation SDN
has for Fog computing. The development of new pipelines along with the progress regarding control-
to-data plane programming protocols can also promote data and control plane function offloading.
We propose a new mechanism of deploying SDN control planes both locally and remotely to attend
different challenges. We encourage researchers to develop new ways to functionally deploying Fog
and Cloud control planes that let cross-layer planes interact by deploying specific control and data
plane applications. With our proposal, the control and data plane distribution can provide a lower
response time for locally deployed applications (local control plane). Besides, it can still be beneficial
for a centralized and remotely placed control plane, for applications such as path computation within
the same network and between separated networks (remote control plane).
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1 Introduction

The concept of Cloud Computing has turned into a revolution for computer science engineering,
becoming essential when designing modern communication networks. With the advances in
computational architectures and distributed computing, other approaches like Mobile Edge
Computing, Fog Computing, and Cloudlet have arisen as relevant terms to describe new
data processing procedures that bring computation closer to the clients.

The next-generation requirements created by offloading processing to the Edge need
a way to be addressed. In recent years, Software-Defined Networking (SDN) has seen an
evolution to develop full network programmability. The requirements imposed by Edge-based
data processing can be addressed by SDN. We can see in Figure 2 how SDN networks have
evolved, starting from traditional forwarding devices, to OpenFlow-based network and then
to next-generation SDN networks based on P4 (data plane programming language) [2] [3]
and P4Runtime (runtime protocol to control P4-defined switches) [4].

In particular, P4 is a language to define the data plane behavior for forwarding devices.
As we can see in Figure 1, we can define how packets are parsed (custom headers), how
packets are treated (custom tables and actions at ingress or egress stages of a pipeline) and
how packets are sent again into the network (custom deparser, add or remove headers). We
can also define how to count for packets/bytes, define network meters or be able to program
our third-party external functions (also known as externs) that can be integrated into the
data plane. Depending on the P4 programmable hardware, packets can also be treated
differently in queues, being able to assign a particular priority.

Figure 1 P4 switch pipeline definition by V1model architecture.

Thanks to the advent of data plane programming in the last few years, we can extend
the functionality of networking devices. For instance, they are capable of performing
computational operations in the data plane, at line speed. This concept is known as in-
network computing, and it has several classes of applications such as network functions,
caching or data aggregation. This computational approach yields new control-to-data plane
protocols (e.g. P4Runtime), which opens new opportunities to define the control plane of
next-generation SDN networks. Fog networks can especially benefit from these as control
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planes can work both locally and remotely at the same time for the same data planes.
Therefore, this paper describes several novel approaches to locally and remotely deploy SDN
control to benefit Fog computing networks. For instance, a local control plane can address
requests that require quick responses (e.g. Edge Computation), while a remote controller
is responsible for making decisions that demand a global view of the network (e.g. path
computation).

Figure 2 Evolution of SDN from traditional and unified control and data plane devices towards
first generation OpenFlow-enabled SDN and current full programmable control and data planes.

Apart from the details we have offered about SDN and P4, we offer further details
about the related work in Section II. We also provide further details on how exactly P4
and P4Runtime can be beneficial for Fog computing in Section III. Section IV describes a
novel paradigm in which SDN network devices can be used for edge computing, specifically
accounting for distributed control planes that are integrated in a cross-layer way. Finally,
Section V offers a conclusion for the content explained in this paper.

2 Related Work

In this section, we will try to offer a variety of work-related to SDN and Fog computing. We
have tried to focus on different use cases using SDN although most of the work done in the
past years focuses on surveys that relate SDN to Edge/Fog computing [1] [10] [8]. There is
not as much work in the practical and implementation side done with SDN and Edge/Fog
compared to surveys, however, this section addresses a variety of topics inside Edge/Fog in
which SDN has been interesting for.

The work we followed in [1] offers a wide variety of use cases for SDN within edge computing.
The authors mention several of the key areas where SDN can benefit Edge networks using
some of the key papers of the work. As they only briefly mention P4, we can demonstrate that
the main areas of the paper have not deeply considered P4 or P4Runtime. However, some
of the main areas are Service-Centric Implementation, Adaptability, Interoperability, High
Resolution, and Effective control, etc. The role of SDN in these areas encompasses several
control plane applications support, runtime service reconfiguration or mobility management
support. The authors still point out that future research is going in the direction of improving
network virtualization, enhancing north and southbound protocols to support future services
and improve scalability and reliability.

Authors in [10] also briefly go through some of the key areas for SDN controllers in Fog
computing. Authors mention that controllers should perform actions within data traffic
management, resilience, and Fog orchestration. Time sensitivity is also mentioned as a key
area for SDN controllers to manage when dealing proactively or reactively with table entries.

Fog- IoT 2020
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As mentioned in [6], authors show how to integrate SDN and Cloud-RAN within 5G to
globally allocate resources for VANETs. The goal for SDN within the Fog network remains
unclear but authors seem to integrate SDN controllers hierarchically on top of Fog computing
BBU controllers to manage Fog orchestration and resources apart from doing regular network
management tasks.

Specifically focusing on P4, authors in [9] explain how to integrate P4 into a multi-layer
edge scenario. The authors propose 3 cases in which dynamic Traffic Engineering (TE) is
covered and also cybersecurity which is addressed through P4-based solutions. The authors
test their ideas in virtual switches like BMv2 and physical switches like the NetFGPA.
Their tests report successful dynamic TE and cybersecurity mitigation without controller
intervention. However, the authors still do not look into the same topics as we do in this
paper for cross-layer multi-SDN control planes.

3 P4 and P4Runtime as a tool for fog computing

Figure 3 Local and remote control planes managing the data plane from Fog network and Core
network based programmable data planes.

In 2008 an article describing a protocol called OpenFlow (OF) [7] gained enormous
traction. The authors describe a protocol to encourage self-programmed control planes to
program switches’ forwarding tables. Switches would support a set of protocols (Ethernet,
IPv4, TCP, etc.) and forward traffic depending on rules installed by SDN controllers. The
supported matching engine has evolved to support new header fields (i.e. more protocols)
as OpenFlow versions got developed. For instance, the OpenFlow version 1.5.1 supports
over 41 fields. However, the researchers decided to develop new data and control plane
programmability approaches. In 2014, the P4 language emerged to overcome some of the
limitations that OpenFlow could have imposed. P4 encourages protocol evolution, enables
faster design and better development cycle and provides new data plane monitoring techniques.
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With P4, developers can define which headers a switch can understand, how to parse packets
and customize matching criteria and actions. Moreover, as P4 is a programming language to
describe the behaviour of the data plane, the entire processing takes place in the ASIC.

The limitations found in legacy SDN do not only refer to the data plane. The use of
OpenFlow also imposes specific architectures that controllers need to follow. For instance, two
different controllers can not control the same OpenFlow data plane, unless a layer between
control and data plane is included [11]. Therefore, the support for multiple controllers over
the same pipeline is not natively included in OpenFlow while it is in P4Runtime. This is
further explained in the next sections.

While Fog computing has not been the main field for SDN study we believe that P4 and
P4Runtime have strong arguments to be included at the Edge too. This section aims to
strengthen the use of P4 within 5 main areas that make it relevant to be considered as the
driver for Edge/Fog computing:

Customized protocols: Within the core use case of P4 it is the definition of standardized
and custom protocols. The definition of the headers, tables, and actions in P4 provides
the means to build custom protocols.

Protocol translation: As a consequence of being able to program which headers are parsed
and which actions are executed, the pipeline can also enable and disable headers on
demand (e.g. Tunneling packets between from Fog/Edge environments and also towards
core).

Monitoring: Having a custom data plane enables new telemetry protocols (e.g. In-
band telemetry (INT)) to monitor the behavior and performance of packets within
P4-programmable devices. Besides being able to create, modify and forward telemetry
packets, the devices need to be able to monitor the data plane at the edge. To support
this use case, data planes generally offer information via metadata available while packets
traverse the data plane. This can be a beneficial use case to monitor packets at the edge,
exporting information to network managers.

Data plane partition: Being able to create tables (define maximum entry size, keys to
match, actions and parameters, etc.) also brings new ways to distribute data plane
functionality. Custom data planes can bring new ways of dealing with packets within the
pipeline. For instance, one table can be used to learn new hosts and prevent spoofing
while other tables can perform L2/L3 forwarding. This concept is tightly related to
controller partition, explained in the next section.

Edge cache: One of the areas with the biggest potential is using programmable switches
as network caches. This functionality has already been studied in other publications [5]
and its potential has already been demonstrated.

Packet aggregation/disaggregation: Ongoing researcher explores the possibilities to
accumulate data between a large number of devices (e.g. IoT devices [12]) and aggregate
data to send it to the Cloud (and then back). The process followed here encourages the
functional split between Edge and Cloud, by offloading some tasks at switches before
forwarding traffic data to the Cloud.

Control plane localization: With P4runtime the control plane for networks at the Edge
and networks towards core networks can share the same controller. Indeed, they can also
hold local controllers for fast tasks that independently work from centralized controllers.
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Figure 4 Local and remote control planes managing different match-action parts of a P4 pipeline.

4 A novel paradigm for Fog Computing

In this part of the paper, we will review how new SDN paradigm controllers can be beneficial
for Edge/Fog networks. The controllers can be organized in particular ways to bring some
functionalities closer to the Edge and offload others to controllers that are centralized in the
Cloud. Edge caching for SDN networks (e.g. answering queries withing control plane within
P4 switches) is a particularly interesting use case. Other functions like applications that
deal with traffic forwarding can work centralized in the network to provide a better path
computation calculation. In this section, we address two of the aforementioned areas that
are data/control plane partition and Edge caching. In the next paragraphs, we explain how
next-generation SDN control planes can be integrated and organized.

In Figure 3 we can observe how we integrate multi-layer SDN control planes. We focus
on integrating SDN control planes within the SDN data plane that belongs closest to the
network Edge. In this way, we can be sure that locally deployed control planes can manage
any functionality that needs faster processing. As shown in Figure 3, we can observe both
locally and remotely deployed control planes that are managing P4-based data planes both
at the Edge and towards transport networks. With this approach, we enable both locally
deployed control plane attend a few functionalities. The same switches also support remotely
deployed primary and fallback control planes to attend actions that are delay tolerant but
can benefit from a centralized control plane.

While Figure 3 shows how SDN controllers are organized within different network layers,
we also want to show how different applications attend functionalities within the same switch.
Figure 4 shows how locally and remotely deployed control planes manage their resources
(match action units). For instance, as Figure 4 shows, SDN controllers generally act as
ARP/NDP proxies, which requires the controller to answer the particular messages. In our
example, we decide to move this app to a locally deployed control plane and let it answer
messages as requested. Latest OpenFlow-based data planes (e.g. version 1.3 and on) can
hold table rules that answer ARP messages too. However, centralized control planes need to
attend new ARP requests and prepare the table entries. This now is expected to improve
as locally deployed control planes deal with these requests instead of forwarding them to
centralized control planes. On the other side, network-wide intents benefit from centralized
control planes. To enhance traffic optimization, path computation algorithms benefit from
network-wide information instead of locally deployed control planes that exchange routing
information.
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5 Conclusion

In this paper, we focus on bringing SDN but specifically P4/P4Runtime to Fog networks.
While bringing processing to the Edge has many advantages, the challenges that arise need
to be considered. To address some of the network challenges, we believe that P4 as a data
plane programming language and P4Runtime as a control-to-data plane protocol can benefit
next-generation network requirements. Particularly, we propose a new way of deploying SDN
control planes that manage both SDN data planes that belong to Fog networks and also
SDN data planes that are integrated close to the core network. In this way, SDN controllers
can manage cross-layer SDN data planes to offload some functionalities to the Edge (e.g.
proxying, caching, small scale auditing, etc.) and also delay tolerant application (e.g. path
computation, network wide monitoring etc.). We propose this data plane programming
model to serve as the first step into future work to evaluate how next-generation SDN data
planes can be distributed and organized to maximize workload for full programmability of
next-generation SDN networks. We can demonstrate that this new cross-layer SDN network
management is new to Edge/Fog networks and that it can enable a performance improvement
of upcoming networks.
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Abstract
In the Internet of Things (IoT) networks, the data traffic would be very bursty and unpredictable.
It is therefore very difficult to analyze and guarantee the delay performance for delay-sensitive
IoT applications in fog networks, such as emergency monitoring, intelligent manufacturing, and
autonomous driving. To address this challenging problem, a Bursty Elastic Task Scheduling (BETS)
algorithm is developed to best accommodate bursty task arrivals and various requirements in IoT
networks, thus optimizing service experience for delay-sensitive applications with only limited com-
munication resources in time-varying and competing environments. To better describe the stability
and consistence of Quality of Service (QoS) in realistic scenarios, a new performance metric “Bursty
Service Experience Index (BSEI)” is defined and quantified as delay jitter normalized by the average
delay. Finally, the numeral results shows that the performance of BETS is fully evaluated, which can
achieve 5 − 10 times lower BSEI than traditional task scheduling algorithms, e.g. Proportional Fair
(PF) and the Max Carrier-to-Interference ratio (MCI), under bursty traffic conditions. These results
demonstrate that BETS can effectively smooth down the bursty characteristics in IoT networks,
and provide much predictable and acceptable QoS for delay-sensitive applications.
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1 Introduction

In future Internet of Things (IoT) networks, billions or even trillions of heterogeneous
machines and devices are connected by multiple advanced technologies including the Wireless
Sensor Networks (WSN), Radio Frequency Identification (RFID), cloud-edge/fog caching
and computing [3, 10] and etc. With the acceleration of 5G commercial deployment, a
large proportion of the IoT applications is delay-sensitive, such as emergency monitoring,
intelligent manufacturing, disaster relief, online games and autonomous driving. The internet
traffic of these delay-sensitive applications is bursty and unpredictable at different time scales
[8]. For example, some delay-sensitive applications like interactive multiplayer online games,
the event-driven applications, intelligent manufacturing and autonomous driving require
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stable delay performance with low delay jitter. In such cases, multipath signals need to be
received simultaneously in order to make the next-step control decisions. It is obvious to
observe that the QoS of IoT applications depends greatly on the delay performance of the
traffic data, which will reflect in the economic benefits of different service providers [11].

However, the wireless communication and computing resources in mobile networks are
highly limited, which make difficult to meet the fast growing demands of the booming
IoT applications with heterogeneous delay requirements. Therefore, efficient management
of network resources and flexible task scheduling algorithms play important roles in both
academic researches and industrial applications, especially with bursty task arrivals, dynamic
network topologies [2] and unpredictable terminal behaviors [1], in order to guarantee the
performance in both the average delay and the delay jitter.

To overcome the severe contradiction between the high delay requirements of the massive
traffic generated in the IoT networks and the scarce communication resources, the first thing
is to understand the busty characteristics of the data traffic, wherein terminal tasks arrive
randomly at the terminal buffers with different arrival rate and task sizes. To take full
advantage of the varying characteristic of the wireless channel state in time domain, frequency
domain, code domain, etc., plentiful researches are carried out in 5G and IoT networks
focusing on the system indexes including the mobility [12, 5], packet delay, and the high
frequency transmission [6]. Traditional scheduling algorithms like Proportional Fair (PF) and
Max Carrier-to-Interference ratio (MCI) just try to achieve satisfactory bit-level throughput
performance [5, 7]. Therefore, novel task scheduling algorithms need to be proposed in order
to guarantee the heterogeneous requirements of various delay-sensitive IoT applications with
bursty traffic load and dynamic network environments.

The rest of this paper is organized as follows. The system model for terminal task delay
are provided in Section 2. Section 3 gives the solution of probability distribution of task
delay. The BETS algorithm is proposed in Section 4. Numerical validations are performed
in Section 5. Finally, Section 6 concludes this paper.

2 System Model

2.1 System Overview
In the traffic layer, an IoT cluster with delay sensitive applications is considered. As shown
in Fig. 1, N terminals are randomly distributed in the coverage area of the central server. In
the MAC layer, each Time Slot (TS) with duration time of ∆t, and the entire system radio
resources are divided into M orthogonal parts, i.e. M Resource Blocks (RBs). At the start
of each TS, the central scheduler allocates these M RBs to the terminals according to the
metric Hjm defined by a certain task scheduling algorithm, and the RB will be allocated to
the terminal who has the highest scheduling metric on it, which can be formulated as

(j∗,m∗) = arg max
j,m

Hjm. (1)

The task delay in this layer is mainly reflected by the sensing and allocation of the ratio
resources.

In the physical layer, the instantaneous data rate of terminal j on RB m, i.e. rjm, is set
to be Gaussian distributed denoted by N(E[rjm], σ2

jm), according to the research on capacity
approximation in a Rayleigh fading environment. The data rates of the same terminal on
different RBs are assumed to be i.i.d distributed, and the distribution parameters are related
to the terminal’s position in this cluster [4]. The Probability Distribution Function (PDF) of
rjm is frjm

(x). The task delay in this layer is mainly reflected by the transmission delay of
the terminal data.
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Figure 1 Task scheduling in an IoT cluster with bursty traffic load. The randomly generated
terminal tasks are offloaded to the central server through wireless link.

The tasks generated at terminal j follow a Poisson arrival process with arrival rate λj

and random task size Sj , which arrive at the terminal buffer and need to be offloaded to the
central server to be processed. processing delays in the terminal device and the cloud server.

In order to obtain the statistical result of terminal task delay, the offloading processes
of the two consecutive tasks of the same terminal and the related parameters are modeled
in Fig. 2, where the blue and red lines represent the bustsy timelines of the previous and
current tasks respectively. The current task has to wait in the buffer before the delivery
of the previous task. The busty nature of the traffic and the varying channel state bring
challenge to the analysis, which has to take all the traffic layer, MAC layer and physical
layer into consideration.

Taking the discreteness of the scheduling process in each TS into consideration and
omitting the terminal mark, the time durations in Fig. 2 are defined as follows:

ta = na ·∆t: the arrival interval, i.e. the time duration between the arrivals of this two
tasks;
tw= nw ·∆t: the waiting time, i.e. the time duration between the current task’s arrival
and its start of transmission;
tt = nt ·∆t: the communication delay, i.e. the time duration between the current task’s
start of transmission and its delivery;
td = nd ·∆t: the task delay of the current task, i.e. the time duration between the arrival
and the delivery of the task;
t′d = n′d ·∆t: the task delay of the previous task.

The time durations described above are all discrete, and the parameters with the form of “n?”
are nonnegative integers which represent the TS amounts of corresponding time durations.
In real systems, the task delay cannot be infinitely large. Thus a threshold nd,max is defined
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Figure 2 The offloading processes of two consecutive tasks of a same terminal.

for nd, and the probability Pr(nd > nd,max) is small enough to be neglected. Therefore, the
ranges of these integers are 1 ≤ nd, n

′
d ≤ nd,max, 0 ≤ nw ≤ (nd,max − 1), 1 ≤ nt ≤ nd,max,

and na ≥ 0. It is obvious that the probability of the time duration t? is equivalent to the
probability distribution of the corresponding TS amount n?. Thus we concentrate on the
PDF of the delay TS amount nd when carrying out latter analyses.

3 Problem Solution

To obtain the probability distribution of task delay is equivalent to solving the equation set
proposed in the following theorem.

I Theorem 1. The theoretical task offloading delay distribution can be calculated through
the following equation set.

V
nd,max×1
d =And,max×nd,max

t A
nd,max×nd,max
a V

nd,max×1
d (2a)

[1 1 · · · 1]nd,max×1
V

nd,max×1
d = 1. (2b)

In the above expressions, Vd with dimension nd,max×1 is the probability distribution vector for
the task delay TS amount nd. At and Aa with dimension nd,max × nd,max are the parameter
arrays, whose elements are the probability that the task delay is td = nd ·∆t on condition that
the task waiting time is tw = nw ·∆t, i.e. Pr(nd|nw), and the probability that the task waiting
time is tw = nw ·∆t on condition that the task delay of the previous task is t′d = n′d ·∆t, i.e.
Pr(nw|n′d), respectively.

Proof. By using the law of total probability twice, the probability for terminal task delay to
be nd TSs, i.e. Pr(nd), can be expanded as

Pr(nd) =
nd,max−1∑

nw=0
Pr(nd|nw) · Pr(nw)

=
nd,max−1∑

nw=0
Pr(nd|nw) ·

nd,max∑
n′

d=1

Pr(nw|n′d) · Pr(n′d),

nd = 1, 2, · · · , nd,max. (3)

We also have

Pr(nd) = Pr(n′d), nd = n′d = 1, 2, · · · , nd,max, (4)

which comes from the fact that for the same terminal, the task delays of all the tasks follow
the same statistical probability distribution. For the probability distribution of task delay,
i.e. Pr(nd), the normalized constraint shown below also needs to be satisfied.
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nd,max∑
nd=1

Pr(nd) = 1. (5)

The vectorial and array representation of the formulas (3) (4) is the formula (2a), and the
vectorial representation of the formula (5) is the formula (2b). This completes the proof of
the Theorem 1. J

4 BETS Algorithm

The traffic load of the terminal in IoT networks is normally a series of tasks, which have
dynamic task sizes and randomly generated at the transmitter [9]. The traditional algorithm
like PF scheduling tries to pursue satisfactory bit-level throughput, while the QoS of delay
sensitive IoT applications draws more concern. All these new features call for newly designed
task scheduling policies, which should take into the following considerations.

Task delay rather than the terminal throughput should become the main scheduling
purpose.
The bursty and heterogeneous characteristics of different applications should be smoothed
to provide consistent terminal experience.

Therefore, we introduce the Bursty Elastic Task Scheduling (BETS) algorithm to cope
with the bursty nature of IoT traffic.

In a system adopting the BETS algorithm, scheduling decisions are made for all the RBs
at the start of TS n. The scheduling metric of terminal j on RB m is defined as

Hjm = rjm

Rj/Sj
, (6)

where Rj is the historical average throughput of terminal j. The detailed execution steps of
BETS are described in Algorithm 1, and (9) is the updating formula of Rj . The parameter
k in the update formula (9) is the average window length, and R′j is the updated historical
average throughput of terminal j. Ijm is the indicator variable, the function of Ijm is
defined as

Ijm =
{

1, if RB m is allocated to terminal j,
0, otherwise. (7)

In the scheduling metric of BETS algorithm 1, the terminal with larger task size will
have a higher scheduling metric and vice versa, thus a smaller delay jitter can be obtained
through BETS. Besides, the BETS is equivalent to the PF scheduling algorithm in the cases
that all terminals have the same task size. For comparison, the scheduling metric of PF
scheduling algorithm is defined as

Hjm = rjm

Rj
. (10)

As for the MCI scheduling algorithm, it directly takes the instantaneous data rate rjm as
the scheduling metric and always tries to maximize the system throughput. The execution
steps of PF and MCI scheduling algorithms are similar to that of BETS algorithm except for
the calculation of the scheduling metric matrix H.
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Algorithm 1 BETS Algorithm.

1: At the start of each TS, calculate the scheduling metric matrix H with element Hjm in
row j and column m as

Hjm = rjm

Rj/Sj
;

The rows corresponding to the terminals with empty buffers are set to be 0;
2: while there are nonzero elements in H, do
3: Find the maximum value in the scheduling metric matrix H as

(j∗,m∗) = arg max
j,m

Hjm; (8)

4: Allocate RB m∗ to terminal j∗;
5: Set the elements in column m∗ to be 0;
6: if Terminal j∗ has got enough radio resource to clear its buffer, then
7: Set the elements in row j∗ to be 0;
8: end if
9: Update the historical average throughput of each terminal as

R′j =
(

1− 1
k

)
Rj + 1

k

M∑
m=1

Ijm × rjm; (9)

10: end while
11: return the scheduling results;

5 Numerical Validations

In this section, the delay performances of BETS, PF, and MCI scheduling algorithms with
varying task size among terminals are investigated in an IoT cluster. In each TS with duration
time of 0.1 ms, there are 50 orthogonal RBs to be allocated to multiple terminals according
to certain task scheduling algorithms including not only the proposed BETS algorithm, but
also the traditional PF and MCI scheduling algorithms. The mean values of the Gaussian
distributed instantaneous data rates of the system terminals range from 500 kbps to 1500
kbps as results of the terminals’ different positions in the IoT cluster. The average window
length of the BETS and PF scheduling algorithms is 500. A total duration of 4 s is set for
the simulation process.

In the cases that the task size of the terminals follows Pareto or exponential distributions
with mean value of 1 bits, the mean task delays for different task sizes are provided in Fig. 3.

As shown from the numerical results, the BETS achieves a higher fairness for delay
performance with varying task size among terminals than those achieved by PF and MCI
scheduling algorithms.

For IoT applications with varying task size, it’s important to achieve an equalizing
delay performance for different task sizes. In the following definition, the the bursty service
experience index (BSEI) is introduced to evaluate the delay experience among the system
terminals.
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Figure 3 Terminal mean task delay for varying task size. The theoretical estimation errors are
also provided.
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Figure 4 Delay jitter comparisons of the three task scheduling algorithms.

I Definition 2. The BSEI of task delay is represented by the following performance index.

Qd = σ(td)
E(td) , (11)

where σ(td) and E(td) are the standard deviation and average value of the task delay respect-
ively.

The standard deviation σ(td) and the BSEI Qd represent the absolute and relative jitters
of the task delay respectively. A smaller Qd indicates lower jitter and better BSEI for task
delay in the system.

The jitter and the BSEI of terminal task delay are shown in Fig. 4 and Fig. 5, respectively,
and the BSEI is the ratio of the delay jitter and the average delay as shown in (11). The
results in these two figures further validate the superiority of BETS algorithm for achieving
better SE and a more consistent performance for terminal task delay, while the other two
algorithms achieves much large delay jitter and thus a poor experience for delay-sensitive
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Figure 5 BSEI comparisons of the three task scheduling algorithms.

tasks. As shown in Fig. 5, the proposed BETS algorithm can significantly reduce the BSEI,
e.g. at a typical task arrival rate of 500, BETS can achieve about 5 times and 10 times
more consistant service experience than MCI and PF, respectively, for delay sensitive IoT
applications. It’s because the introducing of the task size Sj to the scheduling metric of
the BETS algorithm. Terminals with higher traffic load have higher scheduling metric as
shown in (6).

6 Conclusions

In this paper, the problem of theoretical performance analysis of terminal task delay in IoT
networks was investigated. In order to cope with the bursty nature of the traffic statistics in
various IoT applications, a novel traffic scheduling algorithm named BETS was introduced,
which takes the terminal task size into consideration when making scheduling decisions.
Moreover, a new performance metric “Bursty Service Experience Index (BSEI)” is defined
and quantified as delay jitter normalized by the average delay to better describe the stability
and consistence of Quality of Service (QoS) in realistic scenarios. The numeral results show
that the task delay performance of BETS is better than PF and MCI scheduling algorithms.
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Abstract
Deep learning has unleashed the great potential in many fields and now is the most significant
facilitator for video analytics owing to its capability to providing more intelligent services in a complex
scenario. Meanwhile, the emergence of fog computing has brought unprecedented opportunities to
provision intelligence services in infrastructure-less environments like remote national parks and rural
farms. However, most of the deep learning algorithms are computationally intensive and impossible
to be executed in such environments due to the needed supports from the cloud. In this paper,
we develop a video analytic framework, which is tailored particularly for the fog devices to realize
video analytic service in a rapid manner. Also, the convolution neural networks are used as the core
processing unit in the framework to facilitate the image analysing process.
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1 Introduction

The rapid development of artificial intelligence, especially deep learning, has shown superior
performance in many fields like visual recognition, big data analysis, and natural language
processing over the last decade [8]. The convolution neural network (CNN), one of the most
preferred deep learning structure, stands out owing to its outstanding performance in data
filtering and recognising processes [5]. However, the increasing need for the computational
resources for CNN is accompanied by the growing demand for infrastructure support. Spe-
cifically, starting at the early LeNet-5 model up to the state-of-the-art InceptionV4 model,

© Qiushi Zheng, Jiong Jin, Tiehua Zhang, Longxiang Gao, and Yong Xiang;
licensed under Creative Commons License CC-BY

2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020).
Editors: Anton Cervin and Yang Yang; Article No. 11; pp. 11:1–11:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5831-8378
mailto:qiushizheng@swin.edu.au
https://orcid.org/0000-0002-0306-2691
mailto:jiongjin@swin.edu.au
https://orcid.org/0000-0002-7195-4472
mailto:tiehuazhang@swin.edu.au
https://orcid.org/0000-0002-3026-7537
mailto:longxiang.gao@deakin.edu.au
https://orcid.org/0000-0003-3545-7863
mailto:yong.xiang@deakin.edu.au
https://doi.org/10.4230/OASIcs.Fog-IoT.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


11:2 Realizing Video Analytic Service in the Fog-Based Infrastructure-Less Environments

the accuracy of CNN in image recognition has been improved steadily, yet the computational
cost in running the model has also been witnessed a significant increase. Therefore, the
use of cloud data-center to execute the CNN model is often considered as the most reliable
option in order to tame the complex CNN model.

Alternatively, fog computing, introduced by Cisco and widely used in the edge computing
context, is expected to provide the architectural support for various Internet of Things
(IoT) services while alleviating the excessive dependence on the cloud [2]. The capability
of bringing computation, storage and networking function in the proximity of users thus
attracted attention for researchers and industrial practitioners who wish to provision time-
sensitive services to the end-users in the IoT environment. Recently, many works have
focused on utilizing the fog nodes to implement deep learning for some data-driven services.
For instance, Li et al. [6] proposed an approach to offload the first few layers of CNN on the
fog nodes for reducing the network traffic from end devices to cloud servers. On the other
hand, Ran et al. [12] proposed a framework based on the service requirements to cope with
deep learning tasks in either local fog nodes or the remote cloud. Specifically, fog normally
plays a cooperative and complementary role with the cloud instead of as a substitute, which
means many deep learning approaches still need to be cloud-assisted. However, the cloud is
unavailable to cover all deployment scenarios, like the infrastructure-less environment where
disrupted or even no electrical grids and cellular networks are the norms.

Taking the national park scenarios in Australia as an example, as the national parks
and agrarian business occupy 5.77% and 51% of the Australia land separately [9, 10] while
the number is continuing to grow, but only 31% of Australia land has Internet coverage [4]
not to mention any form of connection to the electrical grids. The new challenges are then
interpreted as the infrastructure-less environments, and it is impractical to continue relying
on the cloud due to the unreliable internet connection and unsustainable power supply.
Affected by the environmental limit, the implementation of any lightweight application is
difficult, not to mention a system that is capable of providing complex video analytic services.
Under this condition, infrastructure-less environments urgently need a framework to perform
an intelligence video analytic service for protecting the environment, animals and human
properties. Therefore, if the service can be realized, a long-term environment preserving
strategy could be rolled out by analyzing the relevant information such as the classes of
species being recorded or the environmental impact on wildlife.

In short, the contributions of this paper are as follows:
We identify four key factors that have significant impacts on offloading video analytic
services from the cloud to independent fog nodes.
We propose a fog-based video analytic framework in infrastructure-less environments.
The framework achieves a fast running speed by effectively reducing the number of frames
to be processed without adversely impacting the accuracy of the results.
We utilize the Siamese network structure to design a decision approach that is able to
process the real-time continuous images based on the similarity efficiently. Consequently,
the required computing capability of fog nodes is largely reduced when execution video
analytic services.

2 Service Requirements

Recently, some researchers have committed to finding a suitable energy-sustainable fog system
that can operate stably for a long period of time while providing valuable information to
users in this challenging environment [16]. It is inspiring to provide time-sensitive services
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in infrastructure-less environments, but the deep learning-based intelligent services are not
provided due to the limitation of the computing capability of fog node. Specifically, video
analysing, as one of the widely used fields of deep learning, is considered critical in terms of
delivering intelligent services in cases like remote national parks and rural farms in order to
achieve the automatic collection and analysis of surrounding information.

Currently, You Only Look Once(Yolo) and Single Shot MultiBox Detector(SSD) are two
of the most popular choices to achieve analysing services in most cases. Specifically, Yolo
is a framework mostly used for real-time video streaming and demonstrates an excellent
performance on boundary detection and object recognition [13]. Meanwhile, SSD plays a
significant role in the video analytic area [7]. The essence of these two methods is using
bounding boxes to capture many small pieces from the original picture, and then produce
feature maps of different sizes through convolution. Finally, each map can be used to predict
the targets whose center points are in the small square, which can obtain high recognition
accuracy in most working scenarios. These approaches demonstrate a substantial reduction
in the calculations compared with window sliding. However, even the light version of Yolo,
namely Yolo-tiny, is still considered unworkable on fog nodes without additional hardware
support.

Thus, there are four main goals that need to be taken into account so as to realize video
analytic services on fog nodes.

Extract Key Frames

Generally speaking, video data can be treated as a sequence of images with increasing
timestamps during real-time processing. The surveillance equipment’s output consists of
24-30 frames per second, meaning that a large amount of video data will be transmitted to
the computing devices and brings in an unbearable burden to these devices. Hence, the first
goal is to reduce the number of output frames to the fog node reasonably and ensure the
stability of the fog platform.

Filter Unnecessary Pixels

In order to guarantee the framing range and fidelity of video surveillance, the output is
configured to be either 720p or 1080p. However, the input size in deep learning brings undue
influence on the fog system, which means that a larger data volume is often accompanied
by a much higher requirement in the computation amount. Thus, to ensure the framework
having a higher processing rate, the key information on a single image needs to be accurately
extracted and appropriately compressed to shrink the input size in the classification neural
network.

Acquire Accuracy Results

Using an overly simple neural network structure may enhance multi-frame processing cap-
abilities to a large extent, but it is noticeable that if the video analytic framework cannot
provide precise information, gaining higher processing speeds will become meaningless, espe-
cially when there is no results correction service provided by the cloud in infrastructure-less
environments. For example, early neural network models such as LeNet-5 only consist of a
small number of simple convolutional layers. Although the required computational resources
required to run the LeNet-5 are moderate, the classification accuracy is unsatisfactory due to
the insufficient structure depth. In contrast, state-of-the-art models such as Inceptionv4 are
also inappropriate in infrastructure-less environments. These models always concentrated on
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Figure 1 The overall architecture of video analytic framework for fog system.

achieving a superior classification without the concerns about the computational resources.
In order to ensure the reliability of the classification result, it is thus necessary to adopt the
most suitable model that can be afforded by fog devices to extract the key information.

Guarantee Overall Flexibility

To achieve the video analytic service in the fog-based infrastructure-less environments, a
framework is designed to handle this complex situation. The ever-changing residue of
computing capability is the most common problem, which is mainly affected by two aspects,
one is the number of users allowed to access the fog node services, and the other is the
remaining power of the battery. The former will reduce the available computing power in fog
nodes, and the impact is still acceptable. The latter will cause severe problems like the power
supply shortage of fog nodes or system breakdown. For instance, one common deployment
scenario for the fog-based video analytic framework is for wildlife monitoring. As many wild
animals are nocturnal animals, the framework thus needs to perform well at night and expects
to execute at the lowest working state of the CPU to reduce the consumption of stored
electricity. Therefore, the video analytic framework should adapt to different computing
capabilities to retain satisfactory services in different working scenarios.

3 Video Analytic Framework

In order to address the aforementioned issues and provide video analytic services in the
infrastructure-less environment, we proposed a framework to splits a video processing process
into multiple parts and optimizes them separately. As shown in Fig. 1, the framework consists
of three main parts, including key information extraction, information filtering, and final
classification.

3.1 Key Information Extraction
Due to the lack of computation power in fog nodes, the first priority is extracting the key
images from the video stream so that the total amount of images that needed to be processed
remains low. In infrastructure-less environments, the animals might appear in the captured
image and stay for a short period. Thus, the frame difference method is considered as the
most suitable approach to obtain several key frames from a series of video frames in which
the animals appear. Specifically, the frame difference method is to subtract the pixel values
of two images in two adjacent frames or a few frames apart in the video stream to extract the
moving area in the image [15]. The benefits of this approach mainly from two aspects: Firstly,
because of the sensitivity to moving objects, the appearance and movement of animals can
be accurately captured while the frame in the stationary state can be ignored automatically.
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Figure 2 A customized 4-layer Siamese neural network structure.

Compared with other background extraction algorithms, the frame difference method has
a better balance between the processing performance and computing consumption in the
animal detection scenario. Secondly, it has high tunability, the time between two frames can
be adjusted dynamically based on the computation resource of fog nodes to acquire optimize
processing speed and avoid excessive battery drain.

However, in actual tests, we found that the information obtained by the frame difference
method is not always accurate, which is often caused by the movement of only a part of the
animal’s body, like feet or tails. In order to solve this problem, we empirically enlarged the
size of the acquisition area when generating small-scale image changes to ensure the integrity
of the image as much as possible. After that, the video data is then able to be converted to
a series of clear animal pictures, and all pictures can be quickly scaled down to the same
resolution (224*224) for further processing.

3.2 Information Filtering
In most cases, extracting key information from the video stream can solve the problem of
insufficient computing power due to the significant reduction of images that need to be
processed, but it is far from enough in infrastructure-less environments. Through the analysis
of the obtained pictures, we found that the pictures have a high degree of similarity because
it contains the same animals with various behaviors in a short time. If the pictures containing
the same animal with different actions can be distinguished clearly, it can further decrease
the number of pending pictures waiting to be processed and maximally save computing
resources. Therefore, we introduced a neural network structure serving for picture filtering,
called Siamese neural network.

The idea of the Siamese neural network is to learn a function that differentiates two
similar inputs through two neural networks with shared parameters [3]. Different from the
traditional neural network in image classification, the Siamese neural network only infers
whether two input objects belong to the same type, and the output is “same” or “different”
instead of the class.
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Figure 3 The number of critical frames obtained after each extraction step.

As shown in Fig. 2, we implemented a 4-layer Siamese neural network structure and
use L1 distance to measure the similarity. Since the image resolution obtained from the
first step is 224 * 224, we need to compress it to 56 * 56 before sending it to the Siamese
neural network. At the same time, we adjusted the structure of the traditional Siamese
neural network. From the system’s perspective, the pictures received from the first step are
time-continuous, and we do not need to submit two frames at the same time for similarity
comparison. If it is determined that the two inputs belong to the same animal, the Siamese
neural network will abandon the first frame and retain the operation result of the second
frame, then output the classification result of the first frame. Conversely, if the two frames
are different animals, the network will upload the second frame to the next step to obtain the
classification result. In order to verify the performance, we generated 30,000 pairs of training
data and 6,000 pairs of verification data using pictures of 5 different birds obtained from the
bird observation video to complete the module training that the accuracy could reach up
to 99.4%. The trained model has achieved the highest possible accuracy on the specified
training and testing data sets, but this result is limited to the five bird species used in the
data sets due to the similarity of these two data sets. Therefore, the images of other animal
species that have not been contained in the data sets are suitable to verify the robustness of
the Siamese network model. To this end, 1757 consecutive pictures of pet dog activity are
gained by the key information extraction from a 4-minute video, and then are submitted to
the model for acquiring decision results. The Siamese network model successfully achieves
more than 75% accuracy on untrained animal classes, which shows an exceptional potential
in information filtering.

3.3 Final Classification

Through these two processing tasks, the video stream data is converted to a small group
of distinguished pictures, and the final task is to choose an appropriate neural network
model for the classification based on the computing capability of fog nodes. In order to
ensure the reliability of the classification results and the deployability on fog nodes, we
choose MobileNetV2 as the model to complete the image classification task. Specifically,
MobileNetV2 is tailored for mobile and resource-constrained environments, which retain the
same accuracy with a significant decrease of numbers of operations and memory needed [14].



Q. Zheng, J. Jin, T. Zhang, L. Gao, and Y. Xiang 11:7

Figure 4 The processing frame rate in different working conditions.

We train the model with an open dataset from Kaggle, which contains 25,000 dog and
cat images. For reducing the training time and testing the generalization ability of the
model, we firstly use the transfer learning technique to freeze all convolution layers based
on the pre-trained Imagenet model and only train the full connection layers. MobileNetV2
unsurprisingly achieved a high accuracy rate that around 96.07%.

4 Experimental Results

In this section, we completed a series of experiments on Raspberry Pi 3B+ (RPI) to
demonstrate the framework performance in infrastructure-less environments.

OpenCV, as a lightweight and efficient cross-platform computer vision library [11], has
been installed in RPI to implement the frame difference method, and the interval between
two frames is controlled to adjust the occupied computing resource. Besides, the Siamese
neural network and MobileNetV2 are established by Tensorflow, which is an open-source
software library to fulfill different machine learning tasks [1]. Afterward, we downloaded
animal videos from YouTube, which were collected by fixed-position cameras. In order to
make the experimental results in line with the actual environment, we pre-processed the
resolution and frame number of the video to obtain the same parameter settings as the
surveillance camera, 720p and 25fps.

Fig. 3 demonstrates the number of critical frames obtained after each extraction step. It
can be observed that the total number of frames has decreased significantly, and only a few
pictures need to be processed on MobilNetV2. Furthermore, the initial frame resolution in
the video stream is 1280*720, and the output images from OpenCV are compressed to be
224*224 that only contains critical information. For evaluating the performance, we used
6 videos with a total duration of 1,827 seconds and the total frame number of the video is
45,675 frames. Since 25 frames per second have greatly exceeded the processing capacity of
OpenCV on RPI, the frame difference method will jump 2 frames in order to guarantee the
stability of the framework. In other words, it will execute every 4 frames at each timestamp.
In the experimental video, OpenCV has executed 11,326 times and identified 3,898 frames
containing moving animals. After the similarity judgment, only 953 frames that occupy
2.08% in the total video frames need to be passed from the Siamese neural network to the
MobileNetV2 for acquiring all classification results in the video.
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At the same time, to provide long-term operation in infrastructure-less environments, the
performance of the framework under different power consumption states should be evaluated.
Fig. 4 shows the maximum processing speed can be achieved when the framework realizes
real-time services under different working states of the CPU. Obviously, the performance of
the framework is satisfactory even operates with minimal CPU power, and the processing
frame rate is much better than deploying Yolo-tiny.

5 Conclusion

In this paper, we propose a fog-based framework in infrastructure-less environments to
achieve the video analytic service. By utilizing the frame difference method and the Siamese
neural network to extract the key information in the video, the video analytic framework
successfully converts the huge amount of video data that fog nodes cannot afford into a small
amount of critical image. Specifically, the framework overcomes the computation limitation
in fog nodes to obtain classification results and minimizes the usage of computing-intensive
CNN. Additionally, the experimental results clearly show a good performance of our proposed
video analytic framework and its capability to deal with emergencies by distributing tasks to
other fog nodes due to the shrink of input data size. Our next phase of research will focus
on developing the communication strategy to decide the assignment of tasks among nodes in
real-time to obtain better processing capabilities.
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Abstract
Fog computing has been introduced to deliver Cloud-based services to the Internet of Things (IoT)
devices. It locates geographically closer to IoT devices than Cloud networks and aims at offering
latency-critical computation and storage to end-user applications. To leverage Fog computing
for computational offloading from end-users, it is important to optimize resources in the Fog
nodes dynamically. Provisioning requires knowledge of the current network state, thus, monitoring
mechanisms play a significant role to conduct resource management in the network. To keep track
of the state of devices, we use P4, a data-plane programming language, to describe data-plane
abstraction of Fog network devices and collect telemetry without the intervention of the control plane
or adding a big amount of overhead. In this paper, we propose a software-defined architecture with
a programmable data plane for data telemetry detection that can be integrated into Fog network
resource management. After the implementation of detecting data telemetry based on In-Band
Network Telemetry (INT) within a Mininet simulation, we show the available features and preliminary
Fog resource management based on the collected data telemetry and future telemetry-based traffic
engineering possibilities.
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1 Introduction

Transmission latency for IoT applications such as health monitoring and emergency response
has become crucial in providing reliable and efficient performance. However, due to the
distributed location of IoT devices, some may be far from the core and Cloud networks.
Considering that the latency of data communication is significantly impacted by the distance,
IoT data can experience long propagation delays to reach the Cloud [3]. Besides, the
centralized Cloud data centers often store and process a large amount of data from billions
of IoT devices, the heavy workload can also cause a long processing delay for IoT data. Fog
computing enables the distribution of Cloud services to the edge network, with a closer
location to the devices. Therefore, the round trip latency from devices to the Fog and back
to the devices is shorter. Fog networks are usually lightweight, and several Fog nodes could
be placed at the edge network separately, the possibility of network congestion is lower, by
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distributing data to these Fog nodes. Last but not least, regarding the energy needed to
transmit a byte of data from IoT devices to computing nodes, processing applications expect
that Fog Computing can also reduce the energy consumption in the network [11].

To maintain a high availability and performance of Fog computing, resource provisioning
plays an essential part in network management. These decisions are usually made based
on specific metrics to distribute workload optimally. Factors such as time, energy, user-
application context, etc., have been mentioned in the literature of Fog computing. Since
latency-critical applications have specified a tolerant maximum delay for finishing time, it is
straightforward to provide service and resources according to network delay, i.e. the whole
time for completing a task should be ahead of the deadline of the application. Unlike Cloud
computing where most of the nodes are closely located in the data center, Fog nodes are often
dispersed over the access network, which adds an extra transmission delay among Fog nodes,
and that makes it more difficult for Fog nodes to make offloading decisions. Accordingly, to
fulfill the transmission of Fog data, workload distribution has to take the offloading delay
into consideration, which can be collected by the application of data plane programming
when all nodes are time synchronized.

Integrating a centralized controller into a distributed Fog architecture further facilitates
network management. Given the data telemetry of the Fog network, the controller sends
real-time workload distributing instructions to linked nodes. The implementation of a
centralized control plane assesses all delay factors and with the ultimate goal to fulfill
transmission requirements, avoiding a lack of status information due to an isolated location
in Fog networks.

In the existing literature, the research community has proposed several studies on the delay
analysis of Fog computing, but there are not many discussions on detecting and monitoring
the Fog network state in practice. In [10], mathematical formulas of computation and
transmission delay in Fog computing and one offloading mechanism to optimize the resource
allocation were introduced. Another mathematical model of latency in Fog architecture for
5G cellular networks was proposed in [4]. In [13], a software-defined embedded system for
Fog computing optimization was presented. In [6], the authors proposed a delay-aware path
finding algorithm based on a Software-Defined Network (SDN) framework and OpenFlow
protocol to optimize network routing/rerouting performance.

Following the motivations and the existing research, we propose an architecture using
programmable data planes to collect data telemetry and conduct workload balance, moreover,
with a SDN controller to perform centralized management of the Fog network. We use
queuing delay as the metric for resource management in the architecture. Finally, we create a
simulation of the network monitoring and load balancing in Mininet [8] for a proof of concept.
The rest of the paper is organized as follows: Section 2 explains the data plane monitoring
and the proposed architecture. Section 3 includes the implementation of the simulation in
Mininet and the topology used for the simulation. In Section 4, we present the results of
the collected data telemetry, and finally, in Section 5 we conclude the paper and discuss the
future work.

2 Software-defined managing architecture

In this section, we briefly describe the architecture for data telemetry detection and Fog
resource management. To keep track of the network state, a few protocols have been
used to request and present the real-time state of the network devices, e.g. Simple Network
Management Protocol (SNMP) [12]. In this proposal, we leverage the data plane programming
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language P4 [1] for the devices used in Fog networks (i.e. gateways, switches, and Fog
computing devices, etc.). P4 programs are used to define the pipeline behavior for packet
processing in all the P4 programmable devices and the control plane can manage the data
plane via a control-to-data runtime protocol (P4runtime).

By using P4 programs in Fog networks, specific network telemetry can be collected via
data-plane operations. This is achieved via P4 programming and In-band Network Telemetry
(INT) [7]. The devices create metadata of each packet within the pipeline, therefore, it is
possible to collect internal timestamps when entering and leaving the queues of the pipeline.
Meanwhile, the queue depth metadata changes along receiving and sending packets, which
indicates the current workload of the device.

INT was derived from the Tiny Packet Program (TPP) that embeds programs into
network packets from end hosts to query the state of network switches [5]. Similarly, INT
headers that contain INT instructions and description of the header are added to normal
network packets.

As shown in Figure 1, we define the INT domain which contains all the P4 programmed
INT-capable devices. The process is initiated by the first node in the domain, so-called INT
source, which adds the INT header and the required data telemetry to a particular packet
passing being forwarded. The header can be encapsulated as a payload after several network
protocols (e.g. after TCP or UDP and before payload, etc). The following devices on the
path interpret the instruction contained in the INT header and then add an extra layer of
telemetry data per device with the corresponding state information to the telemetry data
within the packet. After the last device in the INT domain (i.e. the INT sink), the generates
an INT report by encapsulating the packet that has just traversed the network. When the
packet has been cloned in the switch pipeline, the INT sink also removes the telemetry
headers and data to recover the original network packet from and sends it to the receiver.
Therefore the INT sink generates 2 packets, one for the original traffic endpoint (without any
telemetry data attached) and the other as an INT report packet for the telemetry collector.

Figure 1 Illustrating of data telemetry collection in INT-capable P4 devices.
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As mentioned in the previous paragraph, the destination address in the outer network
headers of the INT report refers to the collector where all the INT packets are sent to. The
collector is an endpoint that decodes all the INT header stacks and, in our proposal, stores
delay information and tracks the real-time changes. Furthermore, the collector can make
decisions to distribute the workload among Fog nodes based on the delay information. Thus,
it requires several modules and interaction among different tasks to assemble the collector,
and in this architecture, we use a Software-Defined Network (SDN) controller that integrates
all the modules and comes with the following benefits:

Centralized Fog management: the control plane is separated from the data plane in
Fog networks, the abstraction and control of the network are managed by the controller.
Real-time network management: implementing the SDN controller and a program-
mable data plane in Fog networks enables controllers to modify flow tables in the devices
at runtime.
Flexible application: controller’s network abstraction and shared control-plane software
modules make it easier to program network applications such as routing algorithms and
load balancers in the Fog network.

Figure 2 depicts the abstraction of an example Fog network with the architecture. As
mentioned above, we used a P4 program for the data plane of the devices used in the
Fog network. All of the devices are physically connected with the controller, thus the
controller has direct access to modify the data plane actions of the devices. Historically,
communication between the controller and the devices is achieved by a well-defined application
programming interface (API), OpenFlow [9]. However, in our example, we use P4Runtime
as the protocol between the centralized controller and switches. Using P4Runtime allows
controller configurations to stay both centralized for various switches or work locally within
a single switch (which can not be done using OpenFlow-enabled switches). Having control
planes that can work independently within the same switch and pipeline can help in developing
future applications for data plane telemetry and traffic steering. For instance, a local control
plane can be in charge of small scale monitoring while a centralized control plane can be in
charge of computing new paths using a centralized network view. The tasks can be properly
organized among different controller configurations to achieve better performance.

By sending INT instructions from the controller, the edge gateway a can initiate the
INT process, and the last-hop switch, e.g. top-of-rack (TOR) switch, to the Fog node, will
generate the INT report or vice versa. To follow our future goals of using telemetry data,
the queuing in both directions, as well as processing delay (within the pipeline) in the Fog
nodes, are exposed to the controller, then it can improve traffic forwarding paths following a
path optimization using telemetry data.

To collect the network state, monitoring protocols either create special probe packets
(postcard mode) or add extra headers (integrated into traffic), both methods increase the
overhead of the network. On the other hand, the precision of the detection is dependant on
the frequency of collecting of network state, but frequent detection usually generates more
overhead. In this architecture, we set the INT frequency adjustable considering the trade-off
with overhead, thus, not all the network packets carry the INT header and the results can
describe the network state. Only packets that match specific rules on a table at the beginning
of the pipeline will ever be monitored, leaving the rest of the traffic not tracked.

In this architecture, data telemetry in the network is detected by the centralized accumu-
lator, hence, the SDN controller could also distribute computational resources according to
the real-time network state. Since the INT packets only traverse within the INT domain and
through data plane, end devices and applications in the Fog nodes are unaware of the whole
detecting process.
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Figure 2 All devices in the Fog computing domain are connected to the controller, and all the
INT reports are sent to the controller, thus the controller has the abstraction of the network and
the state of each link and device.

3 Simulation

In this section of the paper, we have tried to demonstrate, within the Mininet simulation
environment, the telemetry capabilities of INT and P4 programmable devices. In Mininet
we set up virtual hosts as nodes that generate and receive packets. P4-compatible BMv2 [2]
software switches are used as programmable switches in the simulations.

In these tests, we have set up 4 switches in between one Fog node (Host 2) and an
end-user (Host 1) to test the time that packets spend in switches’ queues. The first test
shows attempts with continuous ICMP traffic exchange so we can observe a specific period of
the time that packets spend in queues. In the second test, we conduct the same simulation
but test with UDP traffic exchange using iperf. We try to load the switches with a relatively
higher demand for traffic (1 Mbit/s of bandwidth, 1000 bytes per packet) and present the
performance of the switches from queuing delay telemetry. We have to lower the maximum
packet size in the generated UDP stream in order to be able to attach telemetry data to the
network packets (without surpassing maximum Ethernet packet size).

In the last test, we demonstrate the preliminary redirecting of network flow in the
simulation when one switch on the path starts to show poor performance. During the whole
simulation period, Host 1 keeps sending ICMP traffic to Host 2 through the default path:
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Figure 3 Simulation topology to monitor traffic between edge switch and end user. This telemetry
data can be reused to update the traffic forwarding at runtime.

switch 1 – switch 2 – switch 3. Then we create the scenario when switch 2 has a descent
of performance by sending interfering traffic from Host 3 to Host 4 through switch 2. The
queuing delay is monitored along with the simulation and after reaching a certain threshold,
i.e. bad telemetry, switch 1 will redirect the ICMP flow to switch n, hence offloading from
switch 2.

As seen in Figure 3, we have used the Mininet emulator to create a virtual network that
connects virtual hosts (Edge/Fog devices) with virtual P4 programmable switches. This
enables us to create custom topologies and test traffic between hosts with a custom network
pipeline. In this way, we have been able to customize the pipeline and track which network
flows we want to monitor. In this case, we have both tracked the ICMP requests from Host 1
(IP=10.0.1.1) to Host 2 (IP=10.0.2.2) and also the specific iperf generated UDP traffic from
Host 1 (iperf client) towards port 4444 on the server. In order to monitor these flows, we
program the tables of the pipeline by defining which parameters of the flows we monitor.
Specifically, fields of IPv4, ICMP and UDP headers.

When we detect a packet from a type of traffic that we have to monitor, we add the
telemetry headers and extract them at the end of the path, sending the whole packet and
telemetry headers to a collector. The data stored by the collector is the preferred data needed
by the controller to, possibly, change traffic flows at runtime.

4 Results

In this part of the paper, we focus on bringing simulation and results for INT monitoring.
As we have set up the environment to monitor the state of P4 programmable switches, now
we present the statistics of telemetry to demonstrate how we can visualize the internal state
of forwarding devices to possibly further use it with traffic engineering purposes.

In Figures 4 and 5, giving the results when the ICMP request packets circulating over S1
and S2 from Host 1 to Host 2, different behavior of both switches are shown. In Figure 4 we
can observe 3 outlining spikes that define a long time of packets within the switch but overall
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Figure 4 Time that packets spent in the queue on Switch 1 for ICMP traffic exchange. Represents
ICMP requests from Host 1 to Host 2.

Figure 5 Time that packets spent in the queue on Switch 2 for ICMP traffic exchange. Represents
ICMP requests from Host 1 to Host 2.

good behavior considering the rest of the data. The switch shows 3 spiking queue delays over
2 ms but an overall correct queue delay. We have a similar result in Figure 5, but this time,
there is an outlining spike at the beginning of the figure and then a few less well-performing
spikes exist in the rest of the figure. ICMP packets are not very demanding for switches so
packets spend a very short time in queues, graphs show an average time of 117 and 187 µs,
respectively. Seeing these average results and Figures 4 and 5 we can observe that S1 has
performed slightly better than S2. As we have not stress-tested the switches, the spikes on
S1 and S2 only refer to the unexpected bad performance that software switches could have.

Looking into Figures 6 and 7, we can demonstrate the ability to monitor and signalize
badly performing moments of the switches. For instance, Figure 6 shows 2 specific moments
when packets experience relatively long queuing time in the switch. The peek in the result
gives a worst-case queuing time for over 2 seconds, which can result in a poor experience for
a realistic latency-critical application that might be harmful. Due to the amount of traffic,
switches need to perform tasks quicker and faster than in the previous case, having specific
bad performing moments.

Similar problems appear in Figure 7, where the worst-case results show a few cases of
1.5 seconds queuing time. Because the BMv2 switch is a virtual switch, it shares some
capabilities with the virtual machine (VM) that hosts the testing process. We can expect a
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Figure 6 Time that packets spent in the queue on Switch 1 for UDP traffic exchange. Represents
packets from Host 1 (iperf client) to Host 2 (iperf server).

Figure 7 Time that packets spent in the queue on Switch 2 for UDP traffic exchange. Represents
packets from Host 1 (iperf client) to Host 2 (iperf server).

few cases that the host VM might affect the switch performance in the simulation process,
like the highest peaks shown in Figures 6 and 7, whereas learning from most other packets,
switches have performed correctly. Besides having a higher amount of traffic compared to
Figures 4 and 5 shows an expected worse performance in Figures 6 and 7.

Figure 8 illustrates the queuing delay from switch 1 in the flow redirecting scenario. As
we can see, ICMP flow sent by Host 1 gets received in the queue of switch 1 at around time
17:44:40. The spikes in the queuing delay of switch 1 are mainly caused by the instability of
the software switch used in the simulation. The ICMP flow shows up at switch 2 right after
the moment it leaves switch 1, as given in Figure 9. From time 17:45:20, Host 4 starts the
transmission of interfering flow to switch 2, and the queuing delay shows three significant
increases due to each time the burst of interference. After the last spike at time 17:46:10,
the redirecting threshold is reached and the ICMP flow no longer appears in the queue of
switch 2. Instead, as shown in Figure 10, since time 17:46:10, the flow is redirected to switch
n, indicating the workload has been distributed from switch 2 at runtime.

These tests demonstrate the ability to monitor the switches’ performance in a per-packet
way (in any pipeline we have programmed) and the fundamental workload-distributing ability
based on the collected telemetry. The ultimate goal is to demonstrate how P4 devices and
software-defined management can accelerate data exchange between end-users and Edge/Fog
nodes by monitoring per-flow performance.



Z. Zhou, E. O. Zaballa, M. S. Berger, and Y. Yan 12:9

Figure 8 Time that packets spent in the queue of switch 1 for traffic redirecting.

5 Conclusion

In this paper, we have shown how data telemetry detection using data plane programming
works, and how can software-defined managing architectures fit into Fog computing. Although
SDN technologies have not primarily been focused on Edge/Fog networks, we have seen
more and more researches working in this area. The fact that the SDN data plane has
evolved from the typical OpenFlow switches to P4 programmable ones creates a huge space
for new protocols, data plane telemetry measurement, and network management. We have
also demonstrated how INT-capable P4 switches work within networks, and how to collect
telemetry data, demonstrating with simulations on how to collect per-packet queuing delay.
Furthermore, a preliminary workload distribution based on the collected data telemetry
illustrates how data plane programming can be used in network resource management.
We propose the network managing architecture of this paper to utilize data telemetry for
optimization of Fog network, because we strongly believe that the data-plane operation will
conform to the distributing nature of Fog network. This also enables new traffic engineering
ways of distributing computational resources at runtime. We believe that our work will
lead to new methods that achieve a lower network latency, by altering traffic forwarding

Figure 9 Time that packets spent in the queue of switch 2 for traffic redirecting.
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Figure 10 Time that packets spent in the queue of switch n for traffic redirecting.

paths based on real-time network state. Furthermore, this method can offer third party
applications (Inter-SDN controller communication, Time-Sensitive Networks, etc.) to benefit
from it.
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