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Abstract
Deep learning has unleashed the great potential in many fields and now is the most significant
facilitator for video analytics owing to its capability to providing more intelligent services in a complex
scenario. Meanwhile, the emergence of fog computing has brought unprecedented opportunities to
provision intelligence services in infrastructure-less environments like remote national parks and rural
farms. However, most of the deep learning algorithms are computationally intensive and impossible
to be executed in such environments due to the needed supports from the cloud. In this paper,
we develop a video analytic framework, which is tailored particularly for the fog devices to realize
video analytic service in a rapid manner. Also, the convolution neural networks are used as the core
processing unit in the framework to facilitate the image analysing process.
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1 Introduction

The rapid development of artificial intelligence, especially deep learning, has shown superior
performance in many fields like visual recognition, big data analysis, and natural language
processing over the last decade [8]. The convolution neural network (CNN), one of the most
preferred deep learning structure, stands out owing to its outstanding performance in data
filtering and recognising processes [5]. However, the increasing need for the computational
resources for CNN is accompanied by the growing demand for infrastructure support. Spe-
cifically, starting at the early LeNet-5 model up to the state-of-the-art InceptionV4 model,
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the accuracy of CNN in image recognition has been improved steadily, yet the computational
cost in running the model has also been witnessed a significant increase. Therefore, the
use of cloud data-center to execute the CNN model is often considered as the most reliable
option in order to tame the complex CNN model.

Alternatively, fog computing, introduced by Cisco and widely used in the edge computing
context, is expected to provide the architectural support for various Internet of Things
(IoT) services while alleviating the excessive dependence on the cloud [2]. The capability
of bringing computation, storage and networking function in the proximity of users thus
attracted attention for researchers and industrial practitioners who wish to provision time-
sensitive services to the end-users in the IoT environment. Recently, many works have
focused on utilizing the fog nodes to implement deep learning for some data-driven services.
For instance, Li et al. [6] proposed an approach to offload the first few layers of CNN on the
fog nodes for reducing the network traffic from end devices to cloud servers. On the other
hand, Ran et al. [12] proposed a framework based on the service requirements to cope with
deep learning tasks in either local fog nodes or the remote cloud. Specifically, fog normally
plays a cooperative and complementary role with the cloud instead of as a substitute, which
means many deep learning approaches still need to be cloud-assisted. However, the cloud is
unavailable to cover all deployment scenarios, like the infrastructure-less environment where
disrupted or even no electrical grids and cellular networks are the norms.

Taking the national park scenarios in Australia as an example, as the national parks
and agrarian business occupy 5.77% and 51% of the Australia land separately [9, 10] while
the number is continuing to grow, but only 31% of Australia land has Internet coverage [4]
not to mention any form of connection to the electrical grids. The new challenges are then
interpreted as the infrastructure-less environments, and it is impractical to continue relying
on the cloud due to the unreliable internet connection and unsustainable power supply.
Affected by the environmental limit, the implementation of any lightweight application is
difficult, not to mention a system that is capable of providing complex video analytic services.
Under this condition, infrastructure-less environments urgently need a framework to perform
an intelligence video analytic service for protecting the environment, animals and human
properties. Therefore, if the service can be realized, a long-term environment preserving
strategy could be rolled out by analyzing the relevant information such as the classes of
species being recorded or the environmental impact on wildlife.

In short, the contributions of this paper are as follows:
We identify four key factors that have significant impacts on offloading video analytic
services from the cloud to independent fog nodes.
We propose a fog-based video analytic framework in infrastructure-less environments.
The framework achieves a fast running speed by effectively reducing the number of frames
to be processed without adversely impacting the accuracy of the results.
We utilize the Siamese network structure to design a decision approach that is able to
process the real-time continuous images based on the similarity efficiently. Consequently,
the required computing capability of fog nodes is largely reduced when execution video
analytic services.

2 Service Requirements

Recently, some researchers have committed to finding a suitable energy-sustainable fog system
that can operate stably for a long period of time while providing valuable information to
users in this challenging environment [16]. It is inspiring to provide time-sensitive services
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in infrastructure-less environments, but the deep learning-based intelligent services are not
provided due to the limitation of the computing capability of fog node. Specifically, video
analysing, as one of the widely used fields of deep learning, is considered critical in terms of
delivering intelligent services in cases like remote national parks and rural farms in order to
achieve the automatic collection and analysis of surrounding information.

Currently, You Only Look Once(Yolo) and Single Shot MultiBox Detector(SSD) are two
of the most popular choices to achieve analysing services in most cases. Specifically, Yolo
is a framework mostly used for real-time video streaming and demonstrates an excellent
performance on boundary detection and object recognition [13]. Meanwhile, SSD plays a
significant role in the video analytic area [7]. The essence of these two methods is using
bounding boxes to capture many small pieces from the original picture, and then produce
feature maps of different sizes through convolution. Finally, each map can be used to predict
the targets whose center points are in the small square, which can obtain high recognition
accuracy in most working scenarios. These approaches demonstrate a substantial reduction
in the calculations compared with window sliding. However, even the light version of Yolo,
namely Yolo-tiny, is still considered unworkable on fog nodes without additional hardware
support.

Thus, there are four main goals that need to be taken into account so as to realize video
analytic services on fog nodes.

Extract Key Frames

Generally speaking, video data can be treated as a sequence of images with increasing
timestamps during real-time processing. The surveillance equipment’s output consists of
24-30 frames per second, meaning that a large amount of video data will be transmitted to
the computing devices and brings in an unbearable burden to these devices. Hence, the first
goal is to reduce the number of output frames to the fog node reasonably and ensure the
stability of the fog platform.

Filter Unnecessary Pixels

In order to guarantee the framing range and fidelity of video surveillance, the output is
configured to be either 720p or 1080p. However, the input size in deep learning brings undue
influence on the fog system, which means that a larger data volume is often accompanied
by a much higher requirement in the computation amount. Thus, to ensure the framework
having a higher processing rate, the key information on a single image needs to be accurately
extracted and appropriately compressed to shrink the input size in the classification neural
network.

Acquire Accuracy Results

Using an overly simple neural network structure may enhance multi-frame processing cap-
abilities to a large extent, but it is noticeable that if the video analytic framework cannot
provide precise information, gaining higher processing speeds will become meaningless, espe-
cially when there is no results correction service provided by the cloud in infrastructure-less
environments. For example, early neural network models such as LeNet-5 only consist of a
small number of simple convolutional layers. Although the required computational resources
required to run the LeNet-5 are moderate, the classification accuracy is unsatisfactory due to
the insufficient structure depth. In contrast, state-of-the-art models such as Inceptionv4 are
also inappropriate in infrastructure-less environments. These models always concentrated on
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Figure 1 The overall architecture of video analytic framework for fog system.

achieving a superior classification without the concerns about the computational resources.
In order to ensure the reliability of the classification result, it is thus necessary to adopt the
most suitable model that can be afforded by fog devices to extract the key information.

Guarantee Overall Flexibility

To achieve the video analytic service in the fog-based infrastructure-less environments, a
framework is designed to handle this complex situation. The ever-changing residue of
computing capability is the most common problem, which is mainly affected by two aspects,
one is the number of users allowed to access the fog node services, and the other is the
remaining power of the battery. The former will reduce the available computing power in fog
nodes, and the impact is still acceptable. The latter will cause severe problems like the power
supply shortage of fog nodes or system breakdown. For instance, one common deployment
scenario for the fog-based video analytic framework is for wildlife monitoring. As many wild
animals are nocturnal animals, the framework thus needs to perform well at night and expects
to execute at the lowest working state of the CPU to reduce the consumption of stored
electricity. Therefore, the video analytic framework should adapt to different computing
capabilities to retain satisfactory services in different working scenarios.

3 Video Analytic Framework

In order to address the aforementioned issues and provide video analytic services in the
infrastructure-less environment, we proposed a framework to splits a video processing process
into multiple parts and optimizes them separately. As shown in Fig. 1, the framework consists
of three main parts, including key information extraction, information filtering, and final
classification.

3.1 Key Information Extraction
Due to the lack of computation power in fog nodes, the first priority is extracting the key
images from the video stream so that the total amount of images that needed to be processed
remains low. In infrastructure-less environments, the animals might appear in the captured
image and stay for a short period. Thus, the frame difference method is considered as the
most suitable approach to obtain several key frames from a series of video frames in which
the animals appear. Specifically, the frame difference method is to subtract the pixel values
of two images in two adjacent frames or a few frames apart in the video stream to extract the
moving area in the image [15]. The benefits of this approach mainly from two aspects: Firstly,
because of the sensitivity to moving objects, the appearance and movement of animals can
be accurately captured while the frame in the stationary state can be ignored automatically.
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Figure 2 A customized 4-layer Siamese neural network structure.

Compared with other background extraction algorithms, the frame difference method has
a better balance between the processing performance and computing consumption in the
animal detection scenario. Secondly, it has high tunability, the time between two frames can
be adjusted dynamically based on the computation resource of fog nodes to acquire optimize
processing speed and avoid excessive battery drain.

However, in actual tests, we found that the information obtained by the frame difference
method is not always accurate, which is often caused by the movement of only a part of the
animal’s body, like feet or tails. In order to solve this problem, we empirically enlarged the
size of the acquisition area when generating small-scale image changes to ensure the integrity
of the image as much as possible. After that, the video data is then able to be converted to
a series of clear animal pictures, and all pictures can be quickly scaled down to the same
resolution (224*224) for further processing.

3.2 Information Filtering
In most cases, extracting key information from the video stream can solve the problem of
insufficient computing power due to the significant reduction of images that need to be
processed, but it is far from enough in infrastructure-less environments. Through the analysis
of the obtained pictures, we found that the pictures have a high degree of similarity because
it contains the same animals with various behaviors in a short time. If the pictures containing
the same animal with different actions can be distinguished clearly, it can further decrease
the number of pending pictures waiting to be processed and maximally save computing
resources. Therefore, we introduced a neural network structure serving for picture filtering,
called Siamese neural network.

The idea of the Siamese neural network is to learn a function that differentiates two
similar inputs through two neural networks with shared parameters [3]. Different from the
traditional neural network in image classification, the Siamese neural network only infers
whether two input objects belong to the same type, and the output is “same” or “different”
instead of the class.

Fog- IoT 2020
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Figure 3 The number of critical frames obtained after each extraction step.

As shown in Fig. 2, we implemented a 4-layer Siamese neural network structure and
use L1 distance to measure the similarity. Since the image resolution obtained from the
first step is 224 * 224, we need to compress it to 56 * 56 before sending it to the Siamese
neural network. At the same time, we adjusted the structure of the traditional Siamese
neural network. From the system’s perspective, the pictures received from the first step are
time-continuous, and we do not need to submit two frames at the same time for similarity
comparison. If it is determined that the two inputs belong to the same animal, the Siamese
neural network will abandon the first frame and retain the operation result of the second
frame, then output the classification result of the first frame. Conversely, if the two frames
are different animals, the network will upload the second frame to the next step to obtain the
classification result. In order to verify the performance, we generated 30,000 pairs of training
data and 6,000 pairs of verification data using pictures of 5 different birds obtained from the
bird observation video to complete the module training that the accuracy could reach up
to 99.4%. The trained model has achieved the highest possible accuracy on the specified
training and testing data sets, but this result is limited to the five bird species used in the
data sets due to the similarity of these two data sets. Therefore, the images of other animal
species that have not been contained in the data sets are suitable to verify the robustness of
the Siamese network model. To this end, 1757 consecutive pictures of pet dog activity are
gained by the key information extraction from a 4-minute video, and then are submitted to
the model for acquiring decision results. The Siamese network model successfully achieves
more than 75% accuracy on untrained animal classes, which shows an exceptional potential
in information filtering.

3.3 Final Classification

Through these two processing tasks, the video stream data is converted to a small group
of distinguished pictures, and the final task is to choose an appropriate neural network
model for the classification based on the computing capability of fog nodes. In order to
ensure the reliability of the classification results and the deployability on fog nodes, we
choose MobileNetV2 as the model to complete the image classification task. Specifically,
MobileNetV2 is tailored for mobile and resource-constrained environments, which retain the
same accuracy with a significant decrease of numbers of operations and memory needed [14].
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Figure 4 The processing frame rate in different working conditions.

We train the model with an open dataset from Kaggle, which contains 25,000 dog and
cat images. For reducing the training time and testing the generalization ability of the
model, we firstly use the transfer learning technique to freeze all convolution layers based
on the pre-trained Imagenet model and only train the full connection layers. MobileNetV2
unsurprisingly achieved a high accuracy rate that around 96.07%.

4 Experimental Results

In this section, we completed a series of experiments on Raspberry Pi 3B+ (RPI) to
demonstrate the framework performance in infrastructure-less environments.

OpenCV, as a lightweight and efficient cross-platform computer vision library [11], has
been installed in RPI to implement the frame difference method, and the interval between
two frames is controlled to adjust the occupied computing resource. Besides, the Siamese
neural network and MobileNetV2 are established by Tensorflow, which is an open-source
software library to fulfill different machine learning tasks [1]. Afterward, we downloaded
animal videos from YouTube, which were collected by fixed-position cameras. In order to
make the experimental results in line with the actual environment, we pre-processed the
resolution and frame number of the video to obtain the same parameter settings as the
surveillance camera, 720p and 25fps.

Fig. 3 demonstrates the number of critical frames obtained after each extraction step. It
can be observed that the total number of frames has decreased significantly, and only a few
pictures need to be processed on MobilNetV2. Furthermore, the initial frame resolution in
the video stream is 1280*720, and the output images from OpenCV are compressed to be
224*224 that only contains critical information. For evaluating the performance, we used
6 videos with a total duration of 1,827 seconds and the total frame number of the video is
45,675 frames. Since 25 frames per second have greatly exceeded the processing capacity of
OpenCV on RPI, the frame difference method will jump 2 frames in order to guarantee the
stability of the framework. In other words, it will execute every 4 frames at each timestamp.
In the experimental video, OpenCV has executed 11,326 times and identified 3,898 frames
containing moving animals. After the similarity judgment, only 953 frames that occupy
2.08% in the total video frames need to be passed from the Siamese neural network to the
MobileNetV2 for acquiring all classification results in the video.

Fog- IoT 2020
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At the same time, to provide long-term operation in infrastructure-less environments, the
performance of the framework under different power consumption states should be evaluated.
Fig. 4 shows the maximum processing speed can be achieved when the framework realizes
real-time services under different working states of the CPU. Obviously, the performance of
the framework is satisfactory even operates with minimal CPU power, and the processing
frame rate is much better than deploying Yolo-tiny.

5 Conclusion

In this paper, we propose a fog-based framework in infrastructure-less environments to
achieve the video analytic service. By utilizing the frame difference method and the Siamese
neural network to extract the key information in the video, the video analytic framework
successfully converts the huge amount of video data that fog nodes cannot afford into a small
amount of critical image. Specifically, the framework overcomes the computation limitation
in fog nodes to obtain classification results and minimizes the usage of computing-intensive
CNN. Additionally, the experimental results clearly show a good performance of our proposed
video analytic framework and its capability to deal with emergencies by distributing tasks to
other fog nodes due to the shrink of input data size. Our next phase of research will focus
on developing the communication strategy to decide the assignment of tasks among nodes in
real-time to obtain better processing capabilities.
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