Report from Dagstuhl Seminar 19502

Future Automotive HW/SW Platform Design

Edited by

Dirk Ziegenbein!, Selma Saidi?, Xiaobo Sharon Hu?, and
Sebastian Steinhorst?

Robert Bosch GmbH — Stuttgart, DE, dirk.ziegenbein@de.bosch.com
TU Dortmund, DE, selma.saidi@tu-dortmund.de

University of Notre Dame, US, shu@nd.edu

TU Miinchen, DE, sebastian.steinhorst@tum.de

W N =

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 19502 “Future Auto-
motive HW/SW Platform Design”. The goal of this seminar was to gather researchers and prac-

titioners from academia and industry to discuss key industrial challenges, existing solutions and
research directions in the design of future automotive HW/SW platforms, particularly focusing
on predictability of systems regarding extra-functional properties, safe integration of hardware
and software components and programmability and optimization of emerging heterogeneous plat-
forms.

Seminar December 8-11, 2019 — http://www.dagstuhl.de/19502

2012 ACM Subject Classification Computer systems organization — Embedded software, The-
ory of computation — Models of computation, Software and its engineering — Real-time
systems software

Keywords and phrases automotive, hw/sw platforms, real-time systems, systems design auto-
mation

Digital Object Identifier 10.4230/DagRep.9.12.28

Edited in cooperation with Lea Schonberger

1 Executive Summary

Dirk Ziegenbein (Robert Bosch GmbH — Stuttgart, DE)
Selma Saidi (TU Dortmund, DE)

Xiaobo Sharon Hu (University of Notre Dame, US)
Sebastian Steinhorst (TU Miinchen, DE)

License @ Creative Commons BY 3.0 Unported license
© Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

Driven by new functionality and applications (such as automated driving and vehicle-to-X-
connectivity) and fueled by the entry of new players from the IT industry, automotive systems
are currently undergoing a radical shift in the way they are designed, implemented, and
deployed. The trend towards automation and connectivity imposes an increased complexity
and requires unprecedented computing resources, while, at the same time, the demanding
requirements regarding cost-efficiency and dependability still need to be fulfilled. One of the
most visible changes is the integration of formerly separated function domains onto centralized
computing platforms. This leads to a heterogeneous mix of applications with different models
of computation (e.g., control, stream processing, and cognition) on heterogeneous, specialized
hardware platforms (comprising, e.g., application cores, safety cores, GPUs, deep learning
Except where .otherwise noted, content of this report is licensed

37 under a Creative Commons BY 3.0 Unported license
Future Automotive HW/SW Platform Design, Dagstuhl Reports, Vol. 9, Issue 12, pp. 28-66
Editors: Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

\\v pagstunL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/19502
http://dx.doi.org/10.4230/DagRep.9.12.28
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

accelerators) to accommodate advanced functionalities such as automated driving and on-line
optimization of operating strategies for electrified powertrains.

The adoption of these novel heterogeneous platforms raises several challenges. In par-
ticular, many of their components stem from embedded consumer devices and have never
been designed for application in safety-critical real-time systems. Therefore, while their
computational capabilities are well understood, there is an increased need to comprehend
these platforms from the perspective of extra-functional requirements such as predictability,
determinism, and freedom-from-interference. This process deeply impacts the core design
aspects of automotive E/E architectures and heavily challenges established methods and
methodologies in HW/SW automotive design.

The goal of this Dagstuhl Seminar was to gather researchers and practitioners from
academia and industry to discuss key industrial challenges, existing solutions and research
directions in the HW/SW design of future automotive platforms. The seminar focussed, in
particular, on

predictability of systems regarding extra-functional properties,

safe integration of hardware and software components and

programmability and optimization of emerging heterogeneous platforms.

These inter-dependent challenges require the interaction between multiple disciplines,
combining resource-constrained embedded, cyber-physical, and real-time aspects. Another
important aspect of the seminar was to provide insight into novel automotive functionalities
(such as automated driving, online optimization, or over-the-air-update) and their software
architectures and requirements as well as into the HW/SW platforms they are executed on.

The seminar provided a unique opportunity for participants from the automotive industry
to present their challenges and constraints and receive feedback and ideas from academia.
At the same time, it allowed researchers to confront their own ideas and/or solutions with
industrial reality and together identify new research directions in order to make an impact in
the automotive industry.

Organization of the seminar

The seminar took place from 8th to 11th December 2019. The seminar started with an
overview of current trends and challenges in the design of future automotive HW/SW
platforms by the organizers. After that the agenda was structured along the previously
mentioned challenges. Monday’s talk sessions were focused on dependability and predictability
of HW/SW systems. The sessions on Tuesday dealt with the safe integration of heterogeneous
software applications covering aspects of software architectures, networks and cyber-physical
systems in the automotive domain and touched societal issues as well. On Wednesday, the
talks focused on the programmability and optimization of heterogeneous platforms. All talks
were restricted to 15 minutes, leaving ample time for discussions as well as breakout sessions
on the following topics:

Modeling hardware and software dependencies

Weakly hard real-time models

Machine learning in cyber-physical systems

HW/SW architecture exchange

Benchmarking efforts for future HW/SW platforms

Modularizing control systems

Automotive software lifecycle

Programming vs. execution models

More details on breakout sessions are available in a dedicated section of this document,
after the overview of the talks given during the seminar.

29

19502

30

19502 — Future Automotive HW/SW Platform Design

Outcome

The seminar succeeded in bringing together participants from different communities who
were engaged in very intensive, interdisciplinary group discussions. Not surprisingly, many
participants stated that they were able to learn a lot from adjacent fields. As many of the
industrial challenges at hand require interdisplinary approaches, the organizers consider this
a significant success of the seminar. One example that became evident during the course
of the seminar was that terms like execution model are quite differently used in e.g. the
high performance computing domain and in the embedded systems community. A group
formed in one of the breakout sessions intends to write a whitepaper on unifying terminology
and formulating a common understanding of the different layers of models used in designing
automotive HW/SW systems. A first follow-up meeting already took place in February 2020.

Several industrial presentations gave valuable insights in the industrial state-of-the-
practice and outlined challenges for future research. A very good example for this was the
breakout session “HW/SW Architecture Exchange” which discussed current architectural
patterns and open challenges in the context of designing dependable systems and achieving
deterministic behavior on heterogeneous high-performance HW platforms.

Another breakout session provided an overview of current automotive benchmarks and
performance models that can be used as a basis for research activities. This session also
raised the awareness that industry needs to be more active in providing relevant benchmarks
in order to enable researchers to validate the industrial viability of their solutions.

Overall, the feedback of the participants showed that they made a lot of new contacts in
academia and industry and a follow-up seminar in about two years was requested by many
participants. The seminar inspired several new collaborations including contributions to the
Autonomous Systems Design workshop at DATE 2020, ideas for special sessions at DAC 2020
and ESWEEK 2020 and also a student project on automotive HW /SW platform simulation
between a students’ project group and an industrial partner.

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

2 Table of Contents

Executive Summary
Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

Overview of Talks

Towards a Contract Theory for Physical Systems
Bart Besselink

Predictable Heterogeneous Computing for Next-generation Cyber-Physical Systems
Alessandro Biondi e

The Role of Programming Abstractions in Automotive Software
Jeronimo Castrillon-Mazo o e

Mixed Criticality Communication in Future In-Vehicle Architectures
Lulu Chan

Predictable and Reliable Automated Transportation Systems
Thidapat Chantem o e

Specification-driven Design and Analysis for Perception, Decision-Making and
Control in Autonomous Systems
Jyotirmoy Deshmukh Lo

Predictable Low-latency Data Services for Critical Applications — Challenges and
Concepts
Rolf Ernst o o e e

Security and Correctness in the Face of Self-Adaptive Learning Automotive Systems
Sabine Glesner e e

Aggregation and Integration of Next-generation Vehicle Computing and the OS
Technologies
Masaki Gondo e e

Automotive Edge Computing Use-cases Inspired by Societal Problems
Baik Hoh and Seyhan Ucar

Paving the Way Towards Predictable Performance in Multi-heterogeneous SoC,
Industrial Problems and Directions
Ignacio Sartudoo e

Possibilities Using FMI-based Co-simulation for the Validation of Cyber-Physical
Systems
Peter Gorm Larsen

Domain Controllers, Autonomous Driving and Functional Safety, Oh My!
Mark Lawford e e

Formal Verification on Finite-State Machines with Weakly-Hard Fault Models
Chung-Wei Lin 0 e

Sorry Software — Hardware Matters for Dependability
Albrecht Mayer e e e

Safe and Secure Software Platforms for Autonomous Driving
Philipp Mundhenk e e

28

31

19502

32

19502 — Future Automotive HW/SW Platform Design

Design-For-Safety for Automotive IC Design: Challenges And Opportunities
Alessandra Nardi e

Dynamic Aspects of Centralized Automotive Software and System Architectures
Philipp Obergfell

Metric-driven, System-level Testing: Release Autonomous Systems with Confidence
Mazimilian Odendahl

Parallel Programming Models for Critical Real-time Embedded Systems
Fduardo Quinones e e e e e

Automotive System Design: Challenges of the Anthropocene
Sophie Quintono

AnyDSL: A Partial Evaluation Framework for Programming High-Performance
Heterogeneous Systems
Roland Leifia e e

DAPHNE — An Automotive Benchmark Suite for Parallel Programming Models on
Embedded Heterogeneous Platforms
Lukas Sommer

The Role of Synchronized Time for Safe Integration of Heterogeneous Software
Applications
Wilfried Steiner e

Taming Unpredictability: Leveraging Weakly-hard Constraints in Design and
Adaptation
Qi Zhu . . . o e e

Breaking Automotive Traditions
Dirk Ziegenbeino e e e e e e

Working groups

Modeling Hardware Dependencies and Software Dependencies
Jerdnimo Castrillon-Mazo, Lulu Chan, Oliver Kopp, Roland Leifla, Albrecht Mayer,
Philipp Mundhenk, Philipp Obergfell, and Eduardo Quinones

Weakly Hard Real-Time Models
Martina Maggio, Jerénimo Castrillon-Mazo, Lulu Chan, Rolf Ernst, Chung-Wei
Lin, Zhu Qi, Eduardo Quinones, Sophie Quinton, and Selma Saidi

Machine Learning in Cyber-Physical Systems

Frank Mueller, Bart Besselink, Alessandro Biondi, Lulu Chan, Jyotirmoy Deshmukh,
Masaki Gondo, Baik Hoh, Peter Gorm Larsen, Mark Lawford, Martina Maggio,
Albrecht Mayer, Zhu Qi, Lukas Sommer, Wilfried Steiner, and Seyhan Ucar

HW/SW Architecture Exchange
Philipp Mundhenk e e e e

On the Relation between Programming Models, Computational/Execution Models
and Software Platforms in Automotive

Selma Saidi, Alessandro Biondi, Rolf Ernst, Sabine Glesner, Oliver Kopp, Roland
Leif$a, Philipp Mundhenk, Philipp Obergfell, Eduardo Quinones, Lukas Sommer,
and Dirk Ziegembein L e e e e e e

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

Benchmarking Efforts for Future HW/SW Platforms

Lukas Sommer, Bart Besselink, Alessandro Biondi, Jeronimo Castrillon-Mazo, Lulu
Chan, Wanli Chang, Thidapat Chantem, Rolf Ernst, Oliver Kopp, Mark Lawford,
Roland Leifla, Martina Maggio, Philipp Mundhenk, Philipp Obergfell, Eduardo

Quinones, Selma Saidi, Lea Schonberger, and Dirk Ziegenbein 62

Modularizing Control Systems

Dirk Ziegenbein, Bart Besselink, Peter Gorm Larsen, and Mark Lawford 63

SW Lifecycle of Dependable Evolving Systems

Dirk Ziegenbein, Rolf Ernst, Moritz Neukirchner, and Selma Saidi 65
Participants 66

33

19502

34

19502 — Future Automotive HW/SW Platform Design

3 Overview of Talks

3.1 Towards a Contract Theory for Physical Systems
Bart Besselink (University of Groningen, NL)

License) Creative Commons BY 3.0 Unported license
© Bart Besselink
Main reference Bart Besselink, Karl Henrik Johansson, Arjan van der Schaft: “Contracts as specifications for
dynamical systems in driving variable form”, in Proc. of the 18th European Control Conference,
ECC 2019, Naples, Italy, June 25-28, 2019, pp. 263268, IEEE, 2019.
URL http://dx.doi.org/10.23919/ECC.2019.8795736

Cyber-physical systems such as modern intelligent transportation systems generally comprise
a large number of physical components connected through cyber elements for computation
and communication. The large-scale, heterogeneous, and multi-disciplinary nature of these
cyber-physical systems necessitates a theory for analysis, design, and control that is inherently
modular, i.e., that allows for considering components independently. Whereas such theories
exist for cyber elements in the form of contract theories, systematic approaches for physical
components are lacking.

This talk will present some first results on a contract theory for physical systems by
introducing assume/guarantee contracts for differential equation models of dynamical systems.
The use of contracts as component specifications will enable modular design while providing
guarantees on the behavior of the integrated system. The proposed framework is illustrated
by application to an adaptive cruise control system and provides a first step towards a
contract theory for cyber-physical systems.

3.2 Predictable Heterogeneous Computing for Next-generation
Cyber-Physical Systems

Alessandro Biondi (Sant’Anna School of Advanced Studies — Pisa, IT)

License @ Creative Commons BY 3.0 Unported license
© Alessandro Biondi
Joint work of Alessandro Biondi, Marco Pagani, Francesco Restuccia, Giorgiomaria Cicero, Biruk Seyoum,
Mauro Marinoni, Giorgio Buttazzo

Motivated by the increasing demand of high-performance computational capabilities to
implement safety-critical functionality in next-generation automotive systems, this talk
presents a series of research findings to enable predictability on heterogeneous computing
platforms that integrate both asymmetric multiprocessors and hardware accelerators. The talk
makes an opinionated point: FPGA-based system-on-chips are far more prone to predictability
than other heterogeneous platforms. Such platforms have been found to particularly prone
to enable time-predictable hardware acceleration (thanks to limited fluctuations of execution
times and the possibility to control the bus/memory traffic with custom logic) and to design
cost- and resource-efficient systems thanks to FPGA area virtualization. Such platforms are
also sufficiently open to realize SW-based isolation mechanisms for SW tasks running on
multiprocessors.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.23919/ECC.2019.8795736
http://dx.doi.org/10.23919/ECC.2019.8795736
http://dx.doi.org/10.23919/ECC.2019.8795736
http://dx.doi.org/10.23919/ECC.2019.8795736
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

3.3 The Role of Programming Abstractions in Automotive Software

Jerénimo Castrillén-Mazo (TU Dresden, DE)

License @ Creative Commons BY 3.0 Unported license
© Jerénimo Castrillén-Mazo

Digitalization and the new golden age for computer architecture pose great challenges
for automotive software, as ever increasingly complex applications must safely execute on
emerging computing systems. This talk argues for building strong semantics whenever
possible in software platforms in order to keep this complexity under control. This is in
contrast to more mainstream software approaches that, understandingly, focus on quickly
providing functionality in a rather ad-hoc manner without a formal underlying execution
model.

Formal models of computation represent a promising formalism to soundly frame auto-
motive software design. Dataflow [1], for example, is a proven model that has enabled lots
of methodologies for software and hardware synthesis [2]. Recently, methodologies have
been extended to cope with the adaptivity required in embedded systems in general, and in
automotive software in particular. By formalizing the structure of target parallel architectures
and exploiting the semantics and the structure of dataflow programs [3], applications can
be remapped dynamically at runtime while displaying superior time predictability [4]. The
same formal properties of the model enable runtime decision-making to improve the energy
efficiency of the overall system when multiple dataflow applications share resources [5]. All
these methodologies and optimizations are possible only thanks to the properties of the
underlying model of computation.

Adaptive extensions to dataflow methodologies are however not sufficient for automotive
applications. Additional semantics are needed to react to external (sensory) inputs and to
capture the inherent time dimension of cyber physical systems. Reactors [6] is a novel model
that supports both reactive and timed behavior, enabling time determinism in a way similar
to System-level LET [7]. We show how the reactor model can be enforced on top of the
AUTOSAR Adaptive Platform via APIs, while still adhering to the standard. This way, we
remove timing errors in the delivery and processing of frames in a video test application meant
for automatic breaking [8]. In future work, we expect to be able to perform similar analysis
and optimizations to these kinds of applications as done in the past for dataflow applications.
Better language and platform-level support would also improve the programming experience.

Moving forward, extreme heterogeneity in the form of accelerators, novel post-CMOS
fabrics and emerging memories will further complicate the process of mapping applications
to hardware. Formal models and domain specific languages (DSLs) will become even
more important to deal with such future systems, accompanied with software programming
stacks that allow passing information up and down the stack [9, 10]. A tensor expression
language [11], for example, could be used to pass information about required operations and
a runtime resource negotiator could determine whether to provide access to acceleration in
a tensor processing unit. Such tensor abstractions, made popular thanks to the machine
learning boom, have already proven useful to optimize memory layout for emerging memory
architectures in [12].

The golden age of computer architecture brings along a golden age for research on
programming abstractions and software platforms. There is still a lot of work ahead,
including efforts to refine the models to better match real automotive applications, to
seamlessly integrate DSLs, and to improve information exchange within layers of the software
platform.

35

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

36

19502 — Future Automotive HW/SW Platform Design

References

1

10

11

12

J. B. Dennis. First Version of a Data Flow Procedure Language. In Programming Sym-
posium, pages 362-376. Springer, 1974.

J. Castrillon and R. Leupers. Programming Heterogeneous MPSoCs: Tool Flows to Close
the Software Productivity Gap. Springer, 2014.

A. Goens, S. Siccha, and J. Castrillon. Symmetry in Software Synthesis. ACM Transactions
on Architecture and Code Optimization (TACO), 14(2):20:1-20:26, July 2017.

A. Goens, R. Khasanov, M. Héhnel, T. Smejkal, H. Hartig, and J. Castrillon. Tetris:
A Multi-application Run-time System for Predictable Ezecution of Static Mappings. In
Proceedings of the 20th International Workshop on Software and Compilers for Embedded
Systems (SCOPES’17), SCOPES ’17, pages 11-20, New York, NY, USA, June 2017. ACM.
R. Khasanov and J. Castrillon. Energy-efficient Runtime Resource Management for Adapt-
able Multi-application Mapping. In Proceedings of the 2020 Design, Automation and Test
in Europe Conference (DATE), DATE ’20. EDA Consortium, March 2020.

M. Lohstroh, I. Romero, A. Goens, P. Derler, J. Castrillon, E. A. Lee, and A. Sangiovanni-
Vincentelli. Reactors: A Deterministic Model for Composable Reactive Systems. In Proceed-
ings of the 9th Workshop on Design, Modeling and Evaluation of Cyber Physical Systems
(CyPhy 2019) and the Workshop on Embedded and Cyber-Physical Systems Education
(WESE 2019), page 26pp, October 2019.

R. Ernst, L. Ahrendts, and K.-B. Gemlau. System Level LET: Mastering Cause-effect
Chains in Distributed Systems. In ITECON 2018-44th Annual Conference of the IEEE In-
dustrial Electronics Society, pages 4084—-4089. IEEE, 2018.

C. Menard, A. Goens, M. Lohstroh, and J. Castrillon. Achieving Determinism in Adaptive
AUTOSAR. In Proceedings of the 2020 Design, Automation and Test in Europe Conference
(DATE), DATE 20. EDA Consortium, March 2020.

J. Castrillon, M. Lieber, S. Kliippelholz, M. Voélp, N. Asmussen, U. Assmann, F. Baader,
C. Baier, G. Fettweis, J. Frohlich, A. Goens, S. Haas, D. Habich, H. Héartig, M. Hasler, I.
Huismann, T. Karnagel, S. Karol, A. Kumar, W. Lehner, L. Leuschner, S. Ling, S. Méarcker,
C. Menard, J. Mey, W. Nagel, B. Néthen, R. Penaloza, M. Raitza, J. Stiller, A. Ungethiim,
A. Voigt, and S. Wunderlich. A Hardware/Software Stack for Heterogeneous Systems. IEEE
Transactions on Multi-Scale Computing Systems, 4(3):243-259, July 2018.

G. Fettweis, M. Dorpinghaus, J. Castrillon, A. Kumar, C. Baier, K. Bock, F. Ellinger,
A. Fery, F. H. P. Fitzek, H. Hartig, K. Jamshidi, T. Kissinger, W. Lehner, M. Mertig,
W. E. Nagel, G. T. Nguyen, D. Plettemeier, M. Schréter, and T. Strufe. Architecture
and Advanced FElectronics Pathways Towards Highly Adaptive Energy-efficient Computing.
Proceedings of the IEEE, 107(1):204-231, January 2019.

N. A. Rink, I. Huismann, A. Susungi, J. Castrillon, J. Stiller, J. Frohlich, and C. Tadonki.
CFDlang: High-level Code Generation for High-order Methods in Fluid Dynamics. In Pro-
ceedings of the 3rd International Workshop on Real World Domain Specific Languages
(RWDSL 2018), RWDSL2018, pages 5:1-5:10, New York, NY, USA, February 2018. ACM.
A. A. Khan, N. A. Rink, F. Hameed, and J. Castrillon. Optimizing Tensor Contractions
for Embedded Devices with Racetrack Memory Scratch-pads. In Proceedings of the 20th
ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), LCTES 2019, pages 5-18, New York, NY, USA, June
2019. ACM.

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

3.4 Mixed Criticality Communication in Future In-Vehicle
Architectures

Lulu Chan (NXP Semiconductors — Eindhoven, NL)

License @@ Creative Commons BY 3.0 Unported license
© Lulu Chan

The autonomy and connectivity trends in the automotive industry lead to an increase in
the number of functions and the amount of associated data in a vehicle. This talk presents
an overview of the resulting challenges for automotive in-vehicle networks to help address
these industry trends. This overview includes among others different architecture concepts,
function mappings, and sharing of resources. Especially given the latter, there are challenges
regarding how to ensure that the in-vehicle data communication is fast, prioritized, service
oriented, safe and secure.

We review several solution approaches being discussed, such as recent TSN standards
and the adoption of service oriented architectures.

The purpose of this talk is to trigger discussions on what the challenges and current
solutions mean for future research directions.

3.5 Predictable and Reliable Automated Transportation Systems
Thidapat Chantem (Virginia Polytechnic Institute — Arlington, US)

License) Creative Commons BY 3.0 Unported license
© Thidapat Chantem
Joint work of Thidapat Chantem, Ali Al-Hashimi, Pratham Oza, Thidapat Chantem, Ryan Gerdes
Main reference Ali Al-Hashimi, Pratham Oza, Ryan M. Gerdes, Thidapat Chantem: “The Disbanding Attack:
Exploiting Human-in-the-Loop Control in Vehicular Platooning”, in Proc. of the Security and
Privacy in Communication Networks — 15th EAT International Conference, SecureComm 2019,
Orlando, FL, USA, October 23-25, 2019, Proceedings, Part II, Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 305, pp. 163-183,
Springer, 2019.
URL http://dx.doi.org/10.1007/978-3-030-37231-6_9

As self-driving cars are becoming a reality, the dependability and reliability concerns for
such systems lie at the forefront and must be addressed before a large-scale adoption can be
expected. Up to now, we have relied on human operators to act as a “fail-safe” option, i.e.,
using human intervention to make critical decisions, when possible. However, systems have

become so advanced and sophisticated that human intervention may in fact be detrimental.

We will discuss such a case study in this talk, and to brainstorm ideas on design principles
for the realization of safe systems of the future.

37

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-030-37231-6_9
http://dx.doi.org/10.1007/978-3-030-37231-6_9
http://dx.doi.org/10.1007/978-3-030-37231-6_9
http://dx.doi.org/10.1007/978-3-030-37231-6_9
http://dx.doi.org/10.1007/978-3-030-37231-6_9
http://dx.doi.org/10.1007/978-3-030-37231-6_9
http://dx.doi.org/10.1007/978-3-030-37231-6_9

38

19502 — Future Automotive HW/SW Platform Design

3.6 Specification-driven Design and Analysis for Perception,
Decision-Making and Control in Autonomous Systems

Jyotirmoy Deshmukh (USC — Los Angeles, US)

License @ Creative Commons BY 3.0 Unported license
© Jyotirmoy Deshmukh
Joint work of Adel Dokhanchi, Heni Ben Amor, Georgios Fainekos, Anand Balakrishnan, Aniruddh G. Puranic,
Xin Qin

We argue that we can use partial specifications for components in self-driving cars to help
reason about correctness and safety. We review the use of Signal Temporal Logic (STL)
to express control-theoretic properties. We show how STL can be extended to a new logic
called Timed Quality Temporal Logic (TQTL) that allows capturing sanity conditions on the
results of perception. Such sanity conditions essentially encode geometric relations between
objects detected in individual perception frames as well as physics-based laws governing how
the representations of detected objects are temporally related across frames. We show [1, 2]
how we can monitor such conditions on the outputs of state-of-the-art convolutional neural
networks used in self-driving applications and discuss some results showing violations of such
sanity conditions by such object detection CNNs.

References

1 A. Dokhanchi, H. B. Amor, J. V. Deshmukh, and G. Fainekos. Fvaluating perception sys-
tems for autonomous vehicles using quality temporal logic. In International Conference on
Runtime Verification, pp. 409-416. Springer, Cham, 2018.

2 A. Balakrishnan, A. G. Puranic, X. Qin, A. Dokhanchi, J. V. Deshmukh, G. Fainekos,
Specifying and Fvaluating Quality Metrics for Vision-based Perception Systems. In 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1433-1438).
IEEE.

3.7 Predictable Low-latency Data Services for Critical Applications —
Challenges and Concepts

Rolf Ernst (TU Braunschweig, DE)

License @ Creative Commons BY 3.0 Unported license
© Rolf Ernst
Joint work of Rolf Ernst, Leonie Kohler, Mischa Mostl, Kai Gemlau, Jonas Peeck
Main reference Rolf Ernst, Leonie Ahrendts, Kai Bjorn Gemlau: “System Level LET: Mastering Cause-Effect
Chains in Distributed Systems”, in Proc. of the IECON 2018 — 44th Annual Conference of the
IEEE Industrial Electronics Society, Washington, DC, USA, October 21-23, 2018, pp. 4084-4089,
IEEE, 2018.
URL http://dx.doi.org/10.1109/IECON.2018.8591550

Given the recent trend towards service oriented, data centric architectures at higher safety
and real-time requirements, it is about time to re-evaluate the efficiency and appropriateness
of the current in-vehicle communication. Using DDS as an example, the talk will highlight the
upcoming challenges and discuss new concepts which combine all levels of a communication
stack for superior efficiency. It will introduce a timed distributed programming paradigm that
enables low-latency predictable IP communication stacks. The approach can be combined
with application-level error handling to derive protected low latency object communication.
The talk gave results and runtime measurements and outlined possible approaches to worst
case end-to-end response time analysis.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1109/IECON.2018.8591550

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

3.8 Security and Correctness in the Face of Self-Adaptive Learning
Automotive Systems

Sabine Glesner (TU Berlin, DE)

License @@ Creative Commons BY 3.0 Unported license
© Sabine Glesner

Automotive systems have changed in many ways during the last years. Not only their
size has increased dramatically, also their interconnectedness has grown rapidly. Moreover,
learning and adaptive components are finding their way into automotive systems. While it is
well-known that safety is important in the design and implementation of automotive systems,
nowadays also security has become a major issue. Since components are connected with each
other and also with networks outside the car, intruders might find ways to corrupt the correct
functioning of automotive systems. On top of this, learning and adaptive systems might
change the functionality of the overall systems in unexpected ways. It is an open question
what correctness means in the face of self-adaptive learning systems and how security can be
ensured. In this talk, I will discuss these questions.

3.9 Aggregation and Integration of Next-generation Vehicle
Computing and the OS Technologies

Masaki Gondo (eSOL — Tokyo, JP)

License @ Creative Commons BY 3.0 Unported license
© Masaki Gondo

As the C.A.S.E, namely Connected, Autonomous, Sharing/Service, and Electric have become

the driving force of the vehicle design, the E/E architecture design will also inevitably change.

The design shift challenges the current highly distributed vehicle computing architecture, as

the software needs to be aggregated and integrated to the level that is never imagined before.

The software platform such as AUTOSAR or ROS with its underlying OS will be the key

to realize a high-performance but energy-efficient, deterministic, cost-effective safe system.

This talk will provide insights into the software challenges and the role OS plays to tackle
the E/E architecture design shift.

3.10 Automotive Edge Computing Use-cases Inspired by Societal
Problems

Baik Hoh (Toyota Motors North America — Mountain View, US) and Seyhan Ugar (Toyota
Motors North America — Mountain View, US)
License @ Creative Commons BY 3.0 Unported license
© Baik Hoh and Seyhan Ugar
Joint work of Baik Hoh, Seyhan Ucar, K. Oguchi

Main reference Seyhan Ugar, Baik Hoh, K. Oguchi: “Management of Anomalous Driving Behavior”. 2019 IEEE
Vehicular Networking Conference, Los Angeles, USA, December 4-6, 2019.

Automotive HW /SW platform will soon undergo a radical shift to support future mobility
trends, being connected, shared, electrified, and automated. Specifically, automakers have
put an attention on connected cars for a sizable amount of time but surprisingly its definition

39

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Seyhan U�ar, Baik Hoh, K. Oguchi: ``Management of Anomalous Driving Behavior''. 2019 IEEE Vehicular Networking Conference, Los Angeles, USA, December 4-6, 2019.
Seyhan U�ar, Baik Hoh, K. Oguchi: ``Management of Anomalous Driving Behavior''. 2019 IEEE Vehicular Networking Conference, Los Angeles, USA, December 4-6, 2019.

40

19502 — Future Automotive HW/SW Platform Design

still remains vague. Customers simply put CarPlay (or Android Auto) to a connected car
while automotive industry engineers have struggled in realizing vehicles being connected to
nearby vehicles, roadside unit, cloud, and nowadays edge. What makes it even worse is that
every stakeholder perceives “edge” in a different way.

All these confusions must have been avoided if not a very product-oriented mindset (i.e.,
what technology can do) but a customer-centric approach (i.e., what future mobility and
urban dwellers would need) called upon a connectivity and edge computing. Being motivated
by key societal problems in urban mobility, Dr. Hoh and Dr. Ugar will share a few compelling
use cases and insights in the first half. The second half will highlight the roles of emerging
edge components to support the use cases. The industry inspired use case presentation would
justify why vehicles should be connected to edge components. Also, the presented novel
automotive functionalities would motivate an academic research community to include the
emerging edge components in the equation of system verification and validation.

3.11 Paving the Way Towards Predictable Performance in
Multi-heterogeneous SoC, Industrial Problems and Directions

Ignacio Sanudo (University of Modena, IT)

License) Creative Commons BY 3.0 Unported license
© Ignacio Safiudo
Joint work of Ignacio Sanudo, Marco Solieri, Micaela Verucchi, Marko Bertogna

Modern embedded platforms designed for automotive applications feature high-performance
multi-core CPUs tightly integrated with compute accelerators. The spectrum of variety for
such accelerators ranges from re-configurable devices and Graphic Processor Units for general
purpose computing to Application Specific Integrated Circuits.

Many challenges have emerged with the integration of such technologies in the automotive
domain. In this talk, novel solutions for improving the predictability of the future automotive
hardware and software have been provided. For instance: (i) obscure scheduling mechanisms
employed on GPUs impede deriving a proper timing analysis for applications. Understanding
the scheduling decisions of modern GPUs is necessary to allow real-time engineers to safely
model the performance of these accelerators — (paper under revision process) -. (ii) shared
resources (such as caches and system RAM) allow latency depends on contention. Accurate
memory-centric scheduling mechanisms for guaranteeing prioritized memory accesses to
Real-Time components of the system might be a plausible solution to solve such problem
[1]. (iii) engine heterogeneity brings another degree of complexity in the task partitioning
problem. The Directed Acyclic Graph (DAG) model is appropriate to express the complexity
and the parallelism of these tasks. Different aspects can be considered to convert a multi-rate
DAG task-set with timing constraints into a single-rate DAG that optimizes schedulability,
age and reaction latency, by inserting suitable synchronization constructs — (paper under
revision process) —.

References

1 T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic
Memory Hierarchy and Virtualization for Modern Multi-Core Embedded Systems. In 2019
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

3.12 Possibilities Using FMI-based Co-simulation for the Validation of
Cyber-Physical Systems

Peter Gorm Larsen (Aarhus University, DK)

License @@ Creative Commons BY 3.0 Unported license
© Peter Gorm Larsen
Joint work of Peter Gorm Larsen, John Fitzgerald
Main reference Claudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, Hans Vangheluwe:
“Co-Simulation: A Survey”, ACM Comput. Surv., Vol. 51(3), pp. 49:1-49:33, 2018.
URL http://dx.doi.org/10.1145/3179993
Main reference John S. Fitzgerald, Peter Gorm Larsen, Ken G. Pierce: “Multi-modelling and Co-simulation in the
Engineering of Cyber-Physical Systems: Towards the Digital Twin”, in Proc. of the From Software
Engineering to Formal Methods and Tools, and Back — Essays Dedicated to Stefania Gnesi on the
Occasion of Her 65th Birthday, Lecture Notes in Computer Science, Vol. 11865, pp. 40-55,
Springer, 2019.
URL http://dx.doi.org/10.1007/978-3-030-30985-5_ 4
Main reference Casper Thule, Kenneth Lausdahl, Cldudio Gomes, Gerd Meisl, Peter Gorm Larsen: “Maestro: The
INTO-CPS co-simulation framework”, Simul. Model. Pract. Theory, Vol. 92, pp. 45-61, 2019.
URL http://dx.doi.org/10.1016/j.simpat.2018.12.005

The Functional Mockup Interface (FMI) has been invented in order to enable an open way to
combine the simulation of different independent simulation units (FMUs) representing both
cyber as well as physical parts of a Cyber-Physical System (CPS). The kay characteristics is
that FMUs can be used in a black-box context such that suppliers are not revealing the IP
captured in the model such FMUs are generated from. This presentation will demonstrate
an open FMI-based tool chain called INTO-CPS that currently is supporting version 2.0
of the FMI standard, but where the team behind this also are heavily involved in the new
version(s) of FMI attempting to ensure an even better support in the future.

3.13 Domain Controllers, Autonomous Driving and Functional Safety,
Oh My!

Mark Lawford (McMaster University — Hamilton, CA)

License) Creative Commons BY 3.0 Unported license
© Mark Lawford
Joint work of Victor Bandur, Vera Pantelic, Gehan Selim, Zinoviy Diskin, Nick Annable, Aalan Wassyng, Tom
Maibaum, Asim Shah, and Spencer Deevy

With the advent of hybrid electric drive trains, advanced driver assistance (ADAS) and
autonomous driving features being enabled by software, there was been a proliferation of
Electronic Control Units and their software in modern vehicles. These new features together
with existing automotive requirements for extensive product lines and regional requirements
has resulted in an unsustainable growth of software development and safety costs [1]. We
have seen in our research that OEMs are at the point where software development groups
are required to produce a new release almost every workday to meet these needs.

How could this have happened? Let’s consider a contrived example. In a hybrid electric
vehicle you might currently have multiple Electronic Control Units (ECUs) connected via
a Controller Area Network bus (CANbus) to implement the hybrid electric drive train
functionality: the Engine Controller for the internal combustion engine, the Transmission
Controller, possibly multiple (electric) motor controllers, a battery starter generator, a
battery management unit, the body controller providing driver interfacing and a hybrid
controller that orchestrates and optimizes the functioning of the power train. In the United
States there is a regulatory requirement that the vehicle shall not roll away when keyed off

41

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3179993
http://dx.doi.org/10.1145/3179993
http://dx.doi.org/10.1145/3179993
http://dx.doi.org/10.1007/978-3-030-30985-5_4
http://dx.doi.org/10.1007/978-3-030-30985-5_4
http://dx.doi.org/10.1007/978-3-030-30985-5_4
http://dx.doi.org/10.1007/978-3-030-30985-5_4
http://dx.doi.org/10.1007/978-3-030-30985-5_4
http://dx.doi.org/10.1007/978-3-030-30985-5_4
http://dx.doi.org/10.1016/j.simpat.2018.12.005
http://dx.doi.org/10.1016/j.simpat.2018.12.005
http://dx.doi.org/10.1016/j.simpat.2018.12.005
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

42

19502 — Future Automotive HW/SW Platform Design

and requiring the brake to be depressed before being able to move the vehicle out of park [2].
An OEM has a hybrid electric vehicle that meets this standard but now wants to sell the
vehicle in South Korea where there a automated parking garages when unattended vehicles
are moved around by automation so perhaps there is a market requirement that vehicle
can be shut off and the keyed remove when in neutral so that the vehicle can be rolled for
parking garages. Which ECUs require software change for our South Korean variant of the
hybrid powertrain? Most likely the body control module that deals with the shifter and
key interface and perhaps the transmission controller. We might also have some follow on
functional safety change to the battery management unit to allow the car to be charged when
the transmission is in neutral. There may also be some changes to software for the electric
motor controls or battery starter generator. Thus a simple requirements change possibly
requires 3 or more software releases (one for each affected controller).

One solution to this release proliferation problem is to go to a centralized architecture
with new high speed networking technologies. In this case the hybrid controller implements
the main power train functionality and the other systems effectively become smart actuators
that respond to commands from the hybrid controller (eg. “up shift now” to the transmission
controller, “provide this much torque” to electric motor controller. The hope is that when
there is a requirements change only the hybrid controller as the power train domain controller
would require a software update while the smart actuator ECUs would be left untouched.

Such a change in the electrical and electronic architecture of the vehicle raises some
interesting questions:

What are the functional safety implications of moving to a centralized architecture?

How might the development and safety processes change to deal with them?

What research problems must be solved to make these systems safe and cost effective,

especially when the systems integrate machine learning components?

How can virtualization be used to meet the requirements of running mixed criticallity

software on a single powerful ECU?

In [3] we provide a survey of centralized automotive architecture research and development
and discuss these research questions.

A large part of the cost of software intensive automotive system development is the effort
required for functional safety and safety of the intended function. With so many vehicle
variants across at typical OEM’s product line it is impossible to create a separate complete
safety case for each version of a vehicle. Improper reuse of safety related design artifacts
can result in a vehicle recall so safety engineers currently are faced with the difficult and
labour intensive task of determining what design artifacts need to be revised for a new vehicle
design. Preliminary work on the use of model management techniques on explicit safety
cases [4] has been proposed as a a way to help automate this process. The downfall of this
technique is that assurance case formalisms such as Goal Structured Notation (GSN) lack
sufficient detail of the dependencies of the evidence and how it is generated. In [5] and [6]
we propose explicit modeling of the development and safety processes to provide fine grained
traceability of safety artifacts that can allow model based incremental safety analysis that
takes into account not only the safety artifacts but how they are produced. Some sort of
rigorous, tool supported model based incremental safety analysis is going to be required for
safe cost effective software development as systems become more complex and incorporate
autonomous driving features. In addition standardized safety case templates for a given
system is going to be required.

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

Autonomous vehicle architectures have typically implemented some form of the sense-

plan-do framework with safety elements often integrated into the main architecture (e.g. [7]).
While there have been works advocating for separation of safety and control [8], such works
have not utilized well accepted safety patterns such as the 3-level safety of the eGas standard
for throttle by wire [9]. We discuss our exploration of implementing this design pattern in

autonomous vehicle safety architecture in [10], and in [11] provides a detailed exploration of

safety architectures and associated assurance case templates for Level 5 autonomous vehicle.

References

1

10

11

R. Lancot. Software is eating the auto industry. Strategy CI Blog, Strategy Analyt-
ics, August 17, 2017. https: / /www.strategyanalytics.com/strategy-analytics/blogs/devices/
strategic-ci/infotainment-telematics/2017/08/25 /software-is-eating- the-auto-industry
NHTSA. Federal Motor Vehicle Safety Standard No. 114, Theft Protection and Rollaway
Prevention, 74 FR 42837, National Highway Traffic Safety Administration, 2009.

V. Bandur, V. Pantelic, G. Selim, M. Lawford. Towards Centralized E/E Vehicular Archi-
tectures. Technical Report, McMaster Centre for Software Certification, (In preparation.).
S. Kokaly, R. Salay, M. Chechik, M. Lawford, and T. Maibaum. Safety Case Impact
Assessment in Automotive Software Systems: An Improved Model-based Approach. In In-
ternational Conference on Computer Safety, Reliability, and Security, pp. 69-85. Springer,
Cham, 2017.

Z. Diskin, T. Maibaum, A. Wassyng, S. Wynn-Williams, and M. Lawford. Assurance via
Model Transformations and Their Hierarchical Refinement. In Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineering Languages and Sys-
tems, pages 426-436, ACM, 2018.

Z. Diskin, N. Annable, A. Wassyng, and M. Lawford. Assurance via Workflow+ Modelling
and Conformance. arXiv preprint arXiv:1912.09912, 2019.

K. P. Divakarla, A. Emadi, and S. Razavi. A Cognitive Advanced Driver Assistance Sys-
tems Architecture for Autonomous-capable Electrified Vehicles. In IEEE Transactions on
Transportation Electrification 5(1), pages 48-58, Mar. 2019.

C. B. Santos Tancredi Molina et al. Assuring Fully Autonomous Vehicles Safety by Design:
The Autonomous Vehicle Control (AVC) Module Strategy. In 2017 47th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks Workshops (DSN-W).
Denver, CO, USA, pages 16-21, June 2017.

E-GAS Workgroup. Standardized E-Gas Monitoring Concept for Gasoline and Diesel En-
gine Control Units. Tech. rep. Version 6.0. July 2015.

S. A. Shah. Safe-AV: A Fault Tolerant Safety Architecture for Autonomous Vehicles,
M.A.Sc. Thesis, Department of Computing and Software, McMaster University, Hamilton,
ON, Canada, 2019.

S. Deevy. Sentinel: Fault-Tolerant Software Architecture for Safe Artificial Intelligence in
SAE J3016 Level 5 Autonomous Vehicles, M.A.Sc. Thesis, Department of Computing and
Software, McMaster, 2019.

43

19502

https://www.strategyanalytics.com/strategy-analytics/blogs/devices/strategic-ci/infotainment-telematics/2017/08/25/software-is-eating-the-auto-industry
https://www.strategyanalytics.com/strategy-analytics/blogs/devices/strategic-ci/infotainment-telematics/2017/08/25/software-is-eating-the-auto-industry

44

19502 — Future Automotive HW/SW Platform Design

3.14 Formal Verification on Finite-State Machines with Weakly-Hard
Fault Models

Chung-Wei Lin (National Taiwan University — Taipei, TW)

License @ Creative Commons BY 3.0 Unported license
© Chung-Wei Lin
Joint work of Chung-Wei Lin, Kai-Chieh Chang, Chao Huang, Shih-Lun Wu, and Qi Zhu

A weakly-hard fault model can be captured by an (m, k) constraint, where 0 < m < k,
meaning that there are at most m bad events (faults) among any k consecutive events. We
use a weakly-hard fault model to constrain the occurrences of faults. Given a constant K, we
verify the system safety for all possible pairs of (m, k), where k < K, in an exact and efficient
manner. By verifying all possible pairs of (m, k), we can analyze the optimal strategy to
maximize resource saving (for system designers) or minimize attacking cost (for attackers).
We believe that this is just an initial step, and many open problems will follow.

3.15 Sorry Software — Hardware Matters for Dependability
Albrecht Mayer (Infineon Technologies — Miinchen, DE)

License @ Creative Commons BY 3.0 Unported license
© Albrecht Mayer

Automated driving demands new levels of dependability (e.g. fail operational) and compute
performance. Software complexity is traditionally addressed with approaches resulting in more
memory and performance demands. But many software transparent hardware performance
features contradict with predictability, dependability, security and hard real-time. High
performance and high dependability at the same time can only be achieved with a carefully
chosen system architecture, considering hardware failure rates, detection rates and recovery
capabilities. The same is true for software which is usually even dominant in terms of failure
rates. In this talk different compute components and system architectures will be assessed
concerning their capabilities to deliver high dependable performance for hard real time
systems.

3.16 Safe and Secure Software Platforms for Autonomous Driving
Philipp Mundhenk (Autonomous Intelligent Driving GmbH — Miinchen, DE)

License @ Creative Commons BY 3.0 Unported license
© Philipp Mundhenk
URL http://www.aid-driving.eu

The vastly increasing amount of software in vehicles, its variability, as well as the compu-
tational requirements, especially for those built with autonomous driving in mind, require
new approaches to the structure and integration of software. The traditional approaches of
single-purpose embedded devices with integrated software are no longer a suitable choice.
New architectures introduce general purpose compute devices, capable of high-performance
computation, as well as high variability of software. Managing the increasing complexity,
also at runtime, in a safe and secure manner, are open challenges. Solving these challenges
is a high-complexity development and integration effort requiring design-time and runtime

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.aid-driving.eu

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

configuration, approaches to communication middleware, operating system configuration,
such as task scheduling, monitoring, tight integration of security and safety, and, especially in
the case of autonomous driving, concepts for dynamic adaption of the system to the situation,
e.g., fail-operational concepts.

3.17 Design-For-Safety for Automotive IC Design: Challenges And
Opportunities

Alessandra Nardi (Cadence — San Jose, US)

License @@ Creative Commons BY 3.0 Unported license
© Alessandra Nardi

The autonomous driving revolution is introducing a whole new level of complexity in semi-
conductor design, not only in terms of computational/feature requirements but also because
safety critical applications have very stringent demands on Functional Safety. However, the
full automation supported in EDA (Electronic Design Automation) tools for traditional
metrics has not yet reached maturity for the new safety metrics and is a green field of innov-
ation. Additionally, the methodology and the criteria accepted for safety sign-off are still in
evolution and in discussion in the industry. Even the language for capturing and exchanging
the safety intent is yet to be fully defined. In this talk, we discuss some requirements to
Design-For-Safety and some of the challenges and opportunities for flow automation that are
presented to the semiconductor/systems community.

3.18 Dynamic Aspects of Centralized Automotive Software and
System Architectures

Philipp Obergfell (BMW AG — Miinchen, DE)

License @@ Creative Commons BY 3.0 Unported license
© Philipp Obergfell
Joint work of Philipp Obergfell, Jiirgen Becker, Florian Ozwald, and Florian Sax
Main reference Simon Fiirst, Markus Bechter: “AUTOSAR for Connected and Autonomous Vehicles: The
AUTOSAR Adaptive Platform”, in Proc. of the 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, DSN Workshops 2016, Toulouse, France, June
28 — July 1, 2016, pp. 215-217, IEEE Computer Society, 2016.
URL http://dx.doi.org/10.1109/DSN-W.2016.24

Today’s cars offer various control applications that may include the powertrain, the driving
dynamics, or the characteristics of its body. Each of these control applications is realized by

a series of electronic control units (ECUs) that interact on the basis of exchanged signals.

Although these signals might be only relevant to the application layer of the ECU’s software
stack, also the low-level software needs to be defined statically whenever a new signal has to
be either sent or received by an application.

From the perspective of OEMs, this development paradigm is no longer considered as
reasonable. The main arguments in this respect are the increased set of signals (15.000
interactions among approximately 100 distributed ECUs) as well as the architecture’s static
definition which lacks in the support of light-weight updates.

One possible solution to overcome the mentioned disadvantages in current architectures
are computing platforms which pursue three main goals: (1) The centralization of software
applications from different existing ECUs, (2) the separation of applications and the low-level
software by virtualization concepts, (3) and the interaction between applications on the basis
of services.

45

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/DSN-W.2016.24
http://dx.doi.org/10.1109/DSN-W.2016.24
http://dx.doi.org/10.1109/DSN-W.2016.24
http://dx.doi.org/10.1109/DSN-W.2016.24
http://dx.doi.org/10.1109/DSN-W.2016.24

46

19502 — Future Automotive HW/SW Platform Design

As one precondition for their rollout, we consider two innovative modeling and model
assessment methods. Both of them are related to the execution of software applications on
component and system level and wrapped by the following questions:

1. How does the transition from statically defined software tasks in line with the AUTOSAR

Classic Platform to POSIX processes and threads affect the design of computing platforms?
2. Which impact is illustrated by network paths between distributed software applications

that are dynamically generated in line with the concept of runtime reconfiguration?

References

1 F. Oszwald, J. Becker, P. Obergfell, and M. Traub. Dynamic Reconfiguration for Real-Time
Automotive Embedded Systems in Fail-Operational Context. IEEE International Parallel and
Distributed Processing Symposium Workshops. 2018.

2 F. Oszwald, P. Obergfell, M. Traub, and J. Becker. Using Simulation Techniques within the
Design of a Reconfigurable Architecture for Fail-Operational Real-Time Automotive Embed-
ded Systems. IEEE International Symposium on Systems Engineering. 2018.

3 F. Oszwald,P. Obergfell, M. Traub, and J. Becker. Reliable Fuail-Operational Automot-
ive E/E-Architectures by Dynamic Redundancy and Reconfiguration. IEEE International
System-on-Chip Conference. 2019.

4 P. Obergfell, S. Kugele, and E. Sax. Model-Based Resource Analysis and Synthesis of
Service-Oriented Automotive Software Architectures. ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems. 2019.

5 P. Obergfell, F. Oszwald, M. Traub, and E. Sax. Viewpoint-Based Methodology for Adaption
of Automotive E/E-Architectures. IEEE International Conference on Software Architecture
Companion, ICSA Companion. 2018.

3.19 Metric-driven, System-level Testing: Release Autonomous
Systems with Confidence

Magzimilian Odendahl (Silexica — Koln, DE)

License @ Creative Commons BY 3.0 Unported license
© Maximilian Odendahl

At Silexica, we're passionate about complex software solutions and solving the challenges
associated with developing such systems. Today, we see that it is more and more difficult
to keep the quality of the software stacks running. In the future, software complexity will
continue to increase. Especially if you look at mobile systems like automated driving or
robotics which have a high likelihood of doing harm, it is paramount that the software stacks
within such systems are developed with rigor and thoroughness. Nobody wants to ship faulty
products, right?

After investigating how modern software systems are developed and tested it became
clear to us that there’s a gap that needs filling. With the inherent complexity of today’s
software systems (and future systems even more so) traditional approaches of debugging
and testing are not adequate to capture all defects. There are so many software components
involved that when an error occurs, developers often spend several days or even weeks to
figure out the root cause. Further, there is often no overview available which shows the
complete system state including relevant metrics so that you can draw conclusions about
where the root-cause might lie or determine if there’s a new defect forming in the system.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

With SLX Analytics, Silexica has created a new disruptive testing and integration
platform that helps solving those challenges by providing automated testing of non-functional
system-level metrics. It offers mult-level insights into all relevant Software Layers at once
(from application, through middleware down to OS layer), allowing you to drill-down into the
system state at the failing point in time. This helps to minimize the time spent on root-cause
analysis and to detect (hidden) system defects in your products.

3.20 Parallel Programming Models for Critical Real-time Embedded
Systems

Eduardo Quinones (Barcelona Supercomputing Center, ES)

License @ Creative Commons BY 3.0 Unported license
© Eduardo Quinones
Joint work of Eduardo Quinones, Sara Royuela, Maria A. Serrano

There is a visible trend in industry to adopt low-power hardware architectures with increas-
ingly parallel execution capabilities supported by a variety of heterogeneous acceleration
devices such as many-cores, and DSP fabrics, GPUs, SoC FPGAs. These architectures
require the use of advanced parallel programming models for an efficient exploitation of
their parallel capabilities. Parallel programming models however, cannot preclude the use
of model-driven engineering, a very common practice in the software design as it facilitates
the cyber/physical interaction description, abstracts the software/hardware architecture
complexity and allows for early verification and validation performed on the models. This is
the case of AUTOSAR, which is based on the concept of platform hardware independence,
i.e., components are developed independently from their placement in the targeted processor
architecture. Therefore, there is a need to bridge this gap by developing tools capable of
generating parallel source code optimized for parallel heterogeneous platform, and run-time
frameworks capable of respecting the guarantees devised at analysis time, while dynamically
optimising the parallel execution to changing execution conditions.

3.21 Automotive System Design: Challenges of the Anthropocene
Sophie Quinton (INRIA — Grenoble, FR)

License @@ Creative Commons BY 3.0 Unported license
© Sophie Quinton

The current trend in the automotive industry towards automation and connectivity is raising
a number of challenges in terms of cost-efficiency and dependability. At the same time, the
conversation around the ongoing environmental crisis (in particular the climate emergency)
makes it clear that we must either dramatically reduce our global resource consumption and
pollution now, or face dire consequences in the near future. How do these two visions of the
future relate?

The International Panel on Climate Change (IPCC) declared in 2018 that we must cut
our CO2 emissions by 50% by 2030, reaching net zero around 2050, if we wanted to keep the
global temperature in 2100 within 1.5°C over pre-industrial levels [1]. “Business as usual”
scenarios (which we have followed since) lead to a temperature increase that could reach 5°C

47

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

48

19502 — Future Automotive HW/SW Platform Design

or even more by the end of the century!. In comparison, the average global temperature
around 21,000 years ago (during the last glacial period) was 6°C colder than today’s, and at
the time a large part of Northern Europe was covered by several kilometers of ice [3, 4]. The
impact on nature of such a huge change in a such a short time is hard to anticipate, and the
situation is unprecedented.

Beyond climate change, the Earth is a complex system with many interdependent feedback
loops [5]. For example, the devastating fires in Australia at the end of 2019, which have
been caused by a severe drought, have released an estimated 250 million tons of CO2 in the
atmosphere [6], which will in turn contribute to global warming. A number of planetary
boundaries [5] have already been transgressed (e.g., those related to biodiversity and the
cycle of nitrogen), meaning that non-linear, abrupt changes at the continental or planetary
level cannot be excluded anymore (and this, independently from the direct impact of human
activity) because tipping points may have been reached [7]. In addition, some changes are
already unavoidable due to the latency in some natural phenomena such as the rising level of
oceans [8]. Whether we choose to act or not, we will have to deal with increasingly degrading
conditions, the scale of which partly depends on our actions.

In this context, the drivers for action at all levels of society (individuals, companies, etc.)
are of different natures. First, the fact that parts of the world will become uninhabitable [9]
provides a powerful ethical motivation. A second, more personal reason would be the
understanding that climate change will impact the entire population, either directly (e.g.
hydric stress and an increased frequency and intensity of extreme meteorological episodes [1])
and indirectly (massive migrations are expected?). Finally, a practical reason for companies
to address the environmental crisis is the fact that there is a good chance that drastic
regulations will come into place — and, given the situation, we should all welcome and prepare
for such measures?.

So, what role does the automotive industry play in this? If we focus on greenhouse gas
(GHG) emissions, it appears that about 14% of GHG emissions were directly due to the
transportation sector in 2010, a major part of it due to cars [13]. Besides, electricity/heat
production itself represents about 25% of all emissions. This underlines that the challenge for
the automotive industry cannot be reduced to the shift from fossil fuel propulsion to electric
propulsion: electricity itself is not “clean”. Whether it is possible to decarbonize energy
production is an open problem because of the enormous amount of mineral resources we would
need to extract for this (based on current technology for renewable energy production) [14].

Dramatically reducing the overall energy consumption of the automotive sector is therefore
an urgent necessity. Autonomous driving is often seen as a potential enabler for this reduction,
as it increases driving efficiency and could help reducing traffic congestion. For example,
the following claim can be found on the website of Synopsys [15]: “The real promise of
autonomous cars is the potential for dramatically lowering CO2 emissions. In a recent study,
experts identified three trends that, if adopted concurrently, would unleash the full potential
of autonomous cars: vehicle automation, vehicle electrification, and ridesharing.”

Interestingly, the quoted study [16] also states that “Ride-sharing and renewable energy
sources [are] critical to its success.” Further [17]: “Our central finding is that while vehicle
electrification and automation may produce potentially important benefits, without a corres-
ponding shift toward shared mobility and greater use of transit and active transport, these

L More recent publications are even more pessimistic [2].
2 The most widely accepted figure is 200 million climate migrants by 2050 [11].
3 Interestingly, carmakers are among key opponents of climate action [12].

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

two revolutions could significantly increase congestion and urban sprawl, while also increasing
the likelihood of missing climate change targets.” The reason for that is the so-called rebound
effect [18]: The energy benefits of increased driving efficiency offered by autonomous cars
would be offset by the steep increase in their use because of the much lower time costs they
enable (possibility to work in the car, no need to park, etc.). Such effects are substantial
even for ridesharing where modal shifts from public transit and active modes to private cars,
longer traveling distances, and increase of urban sprawl are also expected [19].

In conclusion, scenarios in which autonomous driving does not lead to an increase in
global CO2 emissions are based on very strong assumptions. In other words, the risk of
backfire (i.e., the introduction of autonomous driving actually increases CO2 emissions) is
high. Moreover, the contribution of autonomous driving in successful scenarios appears
to be limited compared to simple measures such as vehicle right-sizing or de-emphasized
performance. Finally, the entire lifecycle of the vehicules (production, usage, end of life)
should be covered, with issues arising related to batteries and reparability.

The one thing for which a consensus seems to exist is that we need to rethink the role of
cars in our societies — that may be the largest challenge faced by the automotive industry.

Post-scriptum. There was a breakout session on “Cars and Climate Change” at the Dagstuhl
seminar following this presentation. Ten people participated. Discussions centered around
regulations coming into effect in various countries and their blind spots, e.g. regarding
the impact of production and the need to tackle the rebound effect. Questions about the
reparability of autonomous cars and a possibility of software obsolescence were also raised.

References

1 Special report of the Intergovernmental Panel on Climate Change (IPCC) on global warm-
ing of 1.5°C. https://www.ipcc.ch/sr15/

2 Two French Climate Models Consistently Predict a Pronounced Global Warming. CNRS
Press release. September 2019.

3 https://en.wikipedia.org/wiki/Last_ Glacial Period

4 https://en.wikipedia.org/wiki/Quaternary_glaciation

5 W. Steffen et al. Planetary Boundaries: Guiding Human Development on a Changing
Planet. Science Vol. 347, Issue 6223, 1259855.

6 Australia’s Bushfires Have Emitted 250m Tonnes of CO2, Almost Half of Country’s Annual
Emissions. The Guardian, 13 December 2019.

7 T. M. Lenton, J. Rockstrém, O. Gaffney, S. Rahmstorf, K. Richardson, W. Steffen, and H.
J. Schellnhuber. Climate Tipping Points — Too Risky to Bet Against. Nature 575, 592-595
(2019).

8 Special report of the IPCC on the ocean and cryosphere in a changing climate. https:
//www.ipcc.ch/srocc/

9 C. Mora et al. Global Risk of Deadly Heat. Nature Climate Change volume 7, pages 501-506
(2017).

10 Why Does Europe Need to Limit Climate Change and Adapt to Its Impacts?
European Environment Agency, February 2020. https://www.eea.europa.eu/highlights/
why-does-europe-need-to

11 Migration and Climate Change. International Organization for Migration (IOM). IOM
Migration Research Series, vol. 31.

12 Carmakers Among Key Opponents of Climate Action. The Guardian, 10 October 2019.

13 https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Sector

14 0. Vidal, B. Goffé, and N. Arndt. Metals for a Low-carbon Society. Nature Geoscience
volume 6, pages 894-896 (2013).

49

19502

https://www.ipcc.ch/sr15/
https://www.cnrs.fr/en/two-french-climate-models-consistently-predict-pronounced-global-warming
https://en.wikipedia.org/wiki/Last_Glacial_Period
https://en.wikipedia.org/wiki/Quaternary_glaciation
https://science.sciencemag.org/content/347/6223/1259855
https://www.theguardian.com/environment/2019/dec/13/australias-bushfires-have-emitted-250m-tonnes-of-co2-almost-half-of-countrys-annual-emissions
https://www.nature.com/articles/d41586-019-03595-0?fbclid=IwAR2ydaK3hzx91OxReb37kMHc03AxkfaxYv0TZ0_DLFY6dBbXHjl4vsJv1Sc
https://www.nature.com/articles/d41586-019-03595-0?fbclid=IwAR2ydaK3hzx91OxReb37kMHc03AxkfaxYv0TZ0_DLFY6dBbXHjl4vsJv1Sc
https://www.ipcc.ch/srocc/
https://www.ipcc.ch/srocc/
https://www.nature.com/articles/nclimate3322/
https://www.eea.europa.eu/highlights/why-does-europe-need-to
https://www.eea.europa.eu/highlights/why-does-europe-need-to
https://publications.iom.int/fr/books/mrs-ndeg31-migration-and-climate-change
https://www.theguardian.com/environment/2019/oct/10/exclusive-carmakers-opponents-climate-action-us-europe-emissions
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Sector
https://www.nature.com/articles/ngeo1993

50

19502 — Future Automotive HW/SW Platform Design

15 https://www.synopsys.com/automotive/what-is-autonomous-car.html

16 https://www.itdp.org/2017/05/03/3rs-in-urban-transport/

17 L. Fulton, J. Mason, and D. Meroux. Three Revolutions in Urban Transportation. ITDP
and UC Davis research report.

18 M. Taiebat, S. Stolper and M. Xu. Forecasting the Impact of Connected and Automated
Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound.
Applied Energy Volume 247, 1 August 2019, Pages 297-308. https://doi.org/10.1016/j.
apenergy.2019.03.174

19 N. Coulombel, V. Boutueila, L. Liu , V. Viguié and B. Yind. Substantial Rebound Effects in
Urban Ridesharing: Simulating Travel Decisions in Paris, France. Transportation Research
Part D: Transport and Environment Volume 71, June 2019, Pages 110-126. https://www.
sciencedirect.com/science/article/pii/S1361920918303201

3.22 AnyDSL: A Partial Evaluation Framework for Programming
High-Performance Heterogeneous Systems

Roland Leifia (Universitit des Saarlandes — Saarbricken, DE)

License @ Creative Commons BY 3.0 Unported license
© Roland Leifa
Joint work of Roland Leifla, Klaas Boesche, Sebastian Hack, Arséne Pérard-Gayot, Richard Membarth, Philipp

Slusallek, André Miiller, Bertil Schmidt

Main reference Roland Leila, Klaas Boesche, Sebastian Hack, Arséne Pérard-Gayot, Richard Membarth, Philipp
Slusallek, André Miiller, Bertil Schmidt: “AnyDSL: a partial evaluation framework for
programming high-performance libraries”, PACMPL, Vol. 2(OOPSLA), pp. 119:1-119:30, 2018.

URL http://dx.doi.org/10.1145/3276489

AnyDSL advocates programming high-performance code using partial evaluation. We present
a clean-slate programming system with a simple, filter-based, online partial evaluator that
operates on a CPS intermediate representation. Our system exposes code generation for
accelerators (vectorization/parallelization for CPUs, GPUs, and FPGAs) via compiler-
known higher-order functions that can be subjected to partial evaluation. This way, generic
implementations can be instantiated with target-specific code at compile time.

In our experimental evaluation we present three extensive case studies from image
processing, ray tracing, and genome sequence alignment. We demonstrate that using partial
evaluation, we obtain high-performance implementations for CPUs and GPUs from one
language and one code base in a generic way. The performance of our codes is mostly within
10%, often closer to the performance of multi man-year, industry-grade, manually-optimized
expert codes that are considered to be among the top contenders in their fields.

https ://www.synopsys.com/automotive/what-is-autonomous-car.html
https://www.itdp.org/2017/05/03/3rs-in-urban-transport/
https://www.itdp.org/publication/3rs-in-urban-transport/
https://doi.org/10.1016/j.apenergy.2019.03.174
https://doi.org/10.1016/j.apenergy.2019.03.174
https://www.sciencedirect.com/science/article/pii/S1361920918303201
https://www.sciencedirect.com/science/article/pii/S1361920918303201
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3276489
http://dx.doi.org/10.1145/3276489
http://dx.doi.org/10.1145/3276489
http://dx.doi.org/10.1145/3276489

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst 51

3.23 DAPHNE - An Automotive Benchmark Suite for Parallel
Programming Models on Embedded Heterogeneous Platforms

Lukas Sommer (TU Darmstadt, DE)

License @@ Creative Commons BY 3.0 Unported license
© Lukas Sommer
Joint work of Lukas Sommer, Florian Stock, Leonardo Solis-Vasquez, Andreas Koch
Main reference Lukas Sommer, Florian Stock, Leonardo Solis-Vasquez, Andreas Koch: “DAPHNE — An
automotive benchmark suite for parallel programming models on embedded heterogeneous
platforms: work-in-progress”, in Proc. of the International Conference on Embedded Software
Companion, New York, NY, USA, October 13-18, 2019, p. 4, ACM, 2019.
URL http://dx.doi.org/10.1145/3349568.3351547

Due to the ever-increasing computational demand of automotive applications, and in particular
autonomous driving functionalities, the automotive industry and supply vendors are starting
to adopt parallel and heterogeneous embedded platforms for their products.

However, C and C++, the currently dominating programming languages in this industry,
do not provide sufficient mechanisms to target such platforms efficiently. Established parallel
programming models such as OpenMP and OpenCL on the other hand are tailored towards
HPC systems.

To assess the applicability of established parallel programming models to automotive
workloads on heterogeneous platforms, we present the DAPHNE benchmark suite [1]. The
suite contains typical automotive workloads extracted from the open-source framework
Autoware and implementations for each kernel in OpenCL, CUDA and OpenMP. Next to
details on the benchmark suite, we share lessons learned during the implementation in [2], also
with regard to non-functional aspects such as programmer productivity and maintainability,
and give an outlook on potentially interesting developments.

References

1 L. Sommer, F. Stock, L. Solis-Vasquez, and A. Koch. Daphne — An Automotive Benchmark
Suite for Parallel Programming Models on Embedded Heterogeneous Platforms: Work-in-
progress in Proceedings of the International Conference on Embedded Software Companion,
ser. EMSOFT ’19. New York, NY, USA: Association for Computing Machinery, 2019. [On-
line]. Available: https://doi.org/10.1145/3349568.3351547.

2 L. Sommer, F. Stock, L. Solis-Vasquez, and A. Koch, FAT-Schriftenreihe 317 — EPHoS:
Evaluation of Programming-Models for Heterogeneous Systems, Tech. Rep., 2019. [Online].
Available: https://www.vda.de/de/services/Publikationen/fat-schriftenreihe-317.html.

3.24 The Role of Synchronized Time for Safe Integration of
Heterogeneous Software Applications

Wilfried Steiner (TTTech Computertechnik — Wien, AT)

License @@ Creative Commons BY 3.0 Unported license
© Wilfried Steiner

The use of synchronized time to establish system-wide real-time and safety properties becomes
more and more mainstream. Today, we find this basic idea in the form of “time-aware shaping’
[1] as part of the IEEE 802.1 TSN standards, as “time-coordinated computing” as technology
brand from a large semiconductor vendor, as well as the “time-triggered architecture” [2] in

i

the academic literature. Indeed, synchronized time combined with offline task and message
scheduling is also the core paradigm of the safe execution platform MotionWise that is

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3349568.3351547
http://dx.doi.org/10.1145/3349568.3351547
http://dx.doi.org/10.1145/3349568.3351547
http://dx.doi.org/10.1145/3349568.3351547
http://dx.doi.org/10.1145/3349568.3351547
https://doi.org/10.1145/3349568.3351547
https://www.vda.de/de/services/Publikationen/fat-schriftenreihe-317.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

52

19502 — Future Automotive HW/SW Platform Design

deployed in automotive series production. In this talk I will review the core concepts of time
synchronization and offline scheduling and give a quick overview of MotionWise. Furthermore,
I will discuss current developments and potential research challenges in this domain.

References

1 W. Steiner, S. Craciunas, and R. Serna Oliver. Traffic planning for time-sensitive commu-
nication. IEEE Communications Standards Magazin, vol. 2, no. 2, pp. 42-47, 2018.

2 H. Kopetz and G. Bauer, The Time-Triggered Architecture. Proceedings of the IEEE, vol.
91, no. 1, pp. 112-126, 2003.

3.25 Taming Unpredictability: Leveraging Weakly-hard Constraints in
Design and Adaptation

Qi Zhu (Northwestern University — Evanston, US)

License) Creative Commons BY 3.0 Unported license
© Qi Zhu
Joint work of Qi Zhu, Rolf Ernst, Chung-Wei Lin, Wenchao Li, Samarjit Chakraborty, Hyoseung Kim
Main reference Chao Huang, Wenchao Li, Qi Zhu: “Formal verification of weakly-hard systems”, in Proc. of the
22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2019,
Montreal, QC, Canada, April 16-18, 2019, pp. 197-207, ACM, 2019.
URL http://dx.doi.org/10.1145/3302504.3311811
Main reference Hengyi Liang, Zhilu Wang, Debayan Roy, Soumyajit Dey, Samarjit Chakraborty, Qi Zhu:
“Security-Driven Codesign with Weakly-Hard Constraints for Real-Time Embedded Systems”, in
Proc. of the 37th IEEE International Conference on Computer Design, ICCD 2019, Abu Dhabi,
United Arab Emirates, November 17-20, 2019, pp. 217-226, IEEE, 2019.
URL http://dx.doi.org/10.1109/ICCD46524.2019.00035
Main reference Chao Huang, Kacper Wardega, Wenchao Li, Qi Zhu: “Exploring weakly-hard paradigm for
networked systems”, in Proc. of the Workshop on Design Automation for CPS and IoT,
DESTION@CPSIoTWeek 2019, Montreal, QC, Canada, April 15, 2019, pp. 51-59, ACM, 2019.
URL http://dx.doi.org/10.1145/3313151.3313165
Main reference Hyunjong Choi, Hyoseung Kim, Qi Zhu: “Job-Class-Level Fixed Priority Scheduling of
Weakly-Hard Real-Time Systems”, in Proc. of the 25th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2019, Montreal, QC, Canada, April 16-18, 2019,
pp. 241-253, IEEE, 2019.
URL http://dx.doi.org/10.1109/RTAS.2019.00028

In automotive systems, limited resources and hard timing constraints often make it difficult
to apply design changes for adding new functionality or correcting existing ones, and to adapt
the systems under changing and challenging environment. In this talk, I will present some
of our initial thoughts in leveraging weakly-hard timing constraints, where operations are
allowed to occasionally miss deadlines in a bounded manner, to improve systems’ capability
in accommodating changes at design-time and runtime. I will introduce our preliminary
works in 1) formally verifying the safety of control functions under weakly-hard constraints
at the functional layer, 2) exploring the addition of security monitoring tasks under given
weakly-hard constraints at the software layer, and 3) setting weakly-hard constraints cross
functional and software layers to facilitate system retrofitting and adaptation.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3302504.3311811
http://dx.doi.org/10.1145/3302504.3311811
http://dx.doi.org/10.1145/3302504.3311811
http://dx.doi.org/10.1145/3302504.3311811
http://dx.doi.org/10.1109/ICCD46524.2019.00035
http://dx.doi.org/10.1109/ICCD46524.2019.00035
http://dx.doi.org/10.1109/ICCD46524.2019.00035
http://dx.doi.org/10.1109/ICCD46524.2019.00035
http://dx.doi.org/10.1109/ICCD46524.2019.00035
http://dx.doi.org/10.1145/3313151.3313165
http://dx.doi.org/10.1145/3313151.3313165
http://dx.doi.org/10.1145/3313151.3313165
http://dx.doi.org/10.1145/3313151.3313165
http://dx.doi.org/10.1109/RTAS.2019.00028
http://dx.doi.org/10.1109/RTAS.2019.00028
http://dx.doi.org/10.1109/RTAS.2019.00028
http://dx.doi.org/10.1109/RTAS.2019.00028
http://dx.doi.org/10.1109/RTAS.2019.00028

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

3.26 Breaking Automotive Traditions
Dirk Ziegenbein (Robert Bosch GmbH — Stuttgart, DE)

License @ Creative Commons BY 3.0 Unported license
© Dirk Ziegenbein
Joint work of Selma Saidi, Sebastian Steinhorst, Arne Hamann, Dirk Ziegenbein
Main reference Selma Saidi, Sebastian Steinhorst, Arne Hamann, Dirk Ziegenbein, Marko Wolf: “Future
automotive systems design: research challenges and opportunities: special session”, in Proc. of the
International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS
2018, part of ESWEEK 2018, Torino, Italy, September 30 — October 5, 2018, p. 2, IEEE / ACM,
2018.
URL http://dx.doi.org/10.1109/CODESISSS.2018.8525873

The landscape in the automotive industry is rapidly changing, driven by new automotive
functionalities and applications such as autonomous driving and fueled by the entry of new
players from the IT industry. Consequently, we witness the emergence of new trends in the
automotive field imposing new challenges at the hardware and software level and at the way
future automotive systems will be designed and developed. This includes the integration
of formerly separated function domains onto centralized computing platforms, leading to a
heterogeneous mix of applications with different models of computation, and the diversification
and specialization of hardware platforms (comprising e.g., application cores, safety cores,

deep learning accelerators, issued across several control units and connected by networks).

Such platforms are required to meet the tremendous increase of computing power enforced
by functionalities such as automated driving or on-line optimization of operating strategies
for electrified powertrains. Furthermore, there is an increase of the connectivity beyond
vehicle boundaries, such as vehicle-to-vehicle and vehicle-to-infrastructure communication
(V2X) leading to systems-of-systems integration problems including function deployment
from control unit over edge to cloud infrastructure as well as questions of how to guarantee
sufficient availability of communication links and security on these connections.

These new trends constitute a real paradigm shift in the way classical automotive systems
are viewed, thereby heavily challenging established methods and methodologies in automotive
systems design. This provides a great opportunity for practitioners from both academia and
industry to rethink the design of future automotive systems in order to accommodate high
efficiency, safety and security requirements.

This talk first discusses the main trends that are currently driving innovation in the
automotive industry. Then an overview of the emerging challenges and application constraints
necessary to comply with the increased requirements with respect to cost, variability, support
of legacy software and dependability is given. The goal is to raise awareness about emerging
needs and application constraints in automotive.

53

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/CODESISSS.2018.8525873
http://dx.doi.org/10.1109/CODESISSS.2018.8525873
http://dx.doi.org/10.1109/CODESISSS.2018.8525873
http://dx.doi.org/10.1109/CODESISSS.2018.8525873
http://dx.doi.org/10.1109/CODESISSS.2018.8525873
http://dx.doi.org/10.1109/CODESISSS.2018.8525873

54

19502 — Future Automotive HW/SW Platform Design

4 Working groups

4.1 Modeling Hardware Dependencies and Software Dependencies

Jerénimo Castrillén-Mazo (TU Dresden, DE), Lulu Chan (NXP Semiconductors — Eindhoven,
NL), Oliver Kopp (Mercedes Benz AG — Stuttgart, DE), Roland Leiffa (Universitit des
Saarlandes — Saarbriicken, DE), Albrecht Mayer (Infineon Technologies — Minchen, DE),
Philipp Mundhenk (Autonomous Intelligent Driving GmbH — Miinchen, DE), Philipp Obergfell
(BMW AG - Miinchen, DE), and Eduardo Quinones (Barcelona Supercomputing Center,
ES)

License) Creative Commons BY 3.0 Unported license

© Jer6nimo Castrillon-Mazo, Lulu Chan, Oliver Kopp, Roland Leia, Albrecht Mayer, Philipp
Mundhenk, Philipp Obergfell, and Eduardo Quinones

4.1.1 Introduction

This discussion group covered the topics of capturing components and their dependencies.
For instance, software A may run on electronic control unit (ECU) E only, whereas software
B “just” requires CPU architecture M and operating system O [1].
We saw following aspects in the context of dependencies:
Dependencies between software components
Dependencies from software to hardware (platforms), for instance “high performance”/
accelerators, CPU, GPU, timing constraints, i.e., requirements of software to hardware
Describing hardware capabilities (both in terms of dependencies as required by software,
or as assignable resource for allocation)
Type system of described data
Non-functional requirements of software & hardware components and communicated data
Deployment of software to hardware components

We identified function developers, application developers, and system integrators as roles.
A function developer delivers functionalities of ECUs.

An application developer delivers applications usable by customers.

An application developer uses functions delivered by function developers.

A system integrator combines functionality and application into a system.

We identified the following scenarios involving the aspects of HW/SW dependencies and
the roles described above:

S1: Developers need to describe their required environment.
S2: Developers need to be aware of the provided environment. It may be the case that
developers are unaware of certain properties of their environment. These properties need
to be made explicit.
S3: A system integrator can use information such as timing constraints or timing
boundaries for developing the final distribution of software. In some instances, domain-
specific knowledge is required for an optimal placement of functionalities. For example,
the assignment of accelerated code is not straight-forward.
S4: Leveraging the information available during runtime to, (for instance, triggering
adoption of configuration, movement of execution, redeployment of functionalities)
S5: Deduction of execution times based on the function in software, its mapping to
hardware, and available/used resources
S6: Configure system from a high-level API, e.g.:

a) Middleware configures underlying TSN-layer (based on offered options).

b) Migrate from ECU to HPU (accelerators)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

4.1.2 Possible Solutions

We briefly discussed possible solutions to capture the HW/SW dependencies:
High-level programming models, where an abstract model of and estimations (in terms of
latency and energy consumption) for the application can be passed to the runtime. This
can enable model-based runtime decision making according to available resources and
requirements (cf. [5, 6]).
Architecture description languages such as UML (cf. [4]).
Languages supporting the description of composite cloud applications. In that field,
dependencies and resource management are also a discussed topic ([3, 2]).
With respect to the hardware description for software tools the IEEE standard 2804-
2019[7] is a promising standard.

Potentially, a single solution is insufficient, if a large number of developers and engineers
from different backgrounds are to use the system to work together (e.g., embedded SW
development vs. high-performance SW development vs. system integration). Different users
might have different requirements in terms of representation of data. Translations between
formats or different representations would be required.

4.1.3 Next Steps

In the group discussion, we identified the following next steps: First, we are going to use the
above scenarios to deduct concrete requirements. Second, we craft end-to-end application
scenarios to enable evaluations.

References

1 M. Staron, Automotive Software Architectures — An Introduction. Springer Internantional
Publishing AG, doi:10.1007/978-3-319-58610-6, 2017.

2 U. Breitenbiicher, C. Endres, K. Képes, O. Kopp, F. Leymann, S. Wagner, J. Wettinger,
and M. Zimmermann. The OpenTOSCA Ecosystem — Concepts & Tools. European Space
project on Smart Systems, Big Data, Future Internet — Towards Serving the Grand Societal
Challenges, Volume 1: EPS Rome, SciTePress, 2016.

3 OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA). https:
//www.oasis-open.org/committees/tc__home.php?wg_abbrev=tosca, 2020.

4 P. Obergfell, S. Kugele, and E. Sax. Model-Based Resource Analysis and Synthesis of
Service-Oriented Automotive Software Architectures, 22" International Conference on
Model Driven Engineering Languages and Systems, IEEE/ACM, 2019.

5 A. Goens, R. Khasanov, M. Hahnel, T. Smejkal, H. Hartig, and J. Castrillon. TETRIS:
a Multi-Application Run-Time System for Predictable Execution of Static Mappings. Pro-
ceedings of the 20*" International Workshop on Software and Compilers for Embedded
Systems, ACM, doi:10.1145/3078659.3078663, 2017.

6 R. Khasanov and J. Castrillon. Energy-efficient Runtime Resource Management for Adapt-
able Multi-application Mapping. Proceedings of the 2020 Design, Automation and Test in
Europe Conference, Grenoble, 2020.

7 IEEE. 2804-2019 — IEEE Standard for Software-Hardware Interface for Multi-Many-Core.
2020.

55

19502

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

56

19502 — Future Automotive HW/SW Platform Design

4.2 Weakly Hard Real-Time Models

Martina Maggio (Lund University, SE), Jerénimo Castrillén-Mazo (TU Dresden, DE), Lulu
Chan (NXP Semiconductors — FEindhoven, NL), Rolf Ernst (TU Braunschweig, DE), Chung-
Wei Lin (National Taiwan University — Taipei, TW), Zhu Qi (Northwestern University —
Evanston, US), Eduardo Quinones (Barcelona Supercomputing Center, ES), Sophie Quinton
(INRIA - Grenoble, FR), and Selma Saidi (TU Dortmund, DE)

License) Creative Commons BY 3.0 Unported license

© Martina Maggio, Jerénimo Castrillon-Mazo, Lulu Chan, Rolf Ernst, Chung-Wei Lin, Zhu Qi,
Eduardo Quinones, Sophie Quinton, and Selma Saidi

We discussed the weakly hard model, its application domains, and what can be achieved
using it. We concluded that the model itself is useful when, for example, safety-critical
functions are executed on systems that are resource-constrained and evolve over time. For
example, when an update or upgrade happens, functionalities are added and this can disrupt
the behavior of the real-time systems as it was designed in the first place. Another important
use of the model is handling faults and identifying risky situations. A system that can
withstand two deadline misses in a window of four could be put in an alarm state after one
deadline miss occurs, monitors can be activated, and countermeasures can be taken to ensure
the correct behavior despite misses.

Application domains that were identified include: (1) security attacks, (2) control tasks
and robotics, (3) image transmission. For security attacks, we talked about protocols in
which a given sequence of messages has to be delivered and disrupting the transmission of
some of these messages could lead to damage and problems. One of the main application
domains would be vehicle to vehicle communication with wireless communication. For control
tasks, there is a lot of research in trying to connect weakly hard guarantees and functional
properties (e.g., despite missing deadlines, the control system is still stable and has good
performance in terms of speed of convergence to the objective and integral of the squared
error). We discussed if this is the right model to use for this case, without any conclusive
result. It seems that the weakly hard model is a good match for performance handling,
but less good for stability analysis, i.e., the analysis is mathematically involved and it is
hard to make it scale and generalize it. For image transmission, we discussed cases in which
images composed of multiple pixels have to be transmitted in a way such that the content is
recognizable despite some pixels not being transmitted correctly.

Generally speaking, these different application models would have very different m-K
parameters. For control systems, m and K would be close to one another, while for image
transmission m and K would be quite far from each other (an image has very many pixels,
thus a large K, and only a few of them can be erroneous, thus m is small). We then briefly
discussed how to obtain these parameters. One example is using truncated probability
distributions and estimating the parameters from previous runs of the applications. We noted
that it might be quite difficult to derive the parameters and also to analyze the corresponding
models.

Another point that we addressed is what to do with these models. Two ideas emerged:
the first one is to understand when it is important to switch to some safety mode; while
the second one is to determine how to handle slack time reclamation (if two tasks can be
given some additional time to execute, maybe it is better to prioritize based on how many
deadlines can they miss in their future executions based on their window sizes, rather than
looking at one single instance of the task execution).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

4.3 Machine Learning in Cyber-Physical Systems

Frank Mueller (North Carolina State University — Raleigh, US), Bart Besselink (University
of Groningen, NL), Alessandro Biondi (Sant’Anna School of Advanced Studies — Pisa,
IT), Lulu Chan (NXP Semiconductors — Eindhoven, NL), Jyotirmoy Deshmukh (USC —
Los Angeles, US), Masaki Gondo (eSOL — Tokyo, JP), Baik Hoh (Toyota Motors North
America — Mountain View, US), Peter Gorm Larsen (Aarhus University, DK), Mark Lawford
(McMaster University — Hamilton, CA), Martina Maggio (Lund University, SE), Albrecht
Mayer (Infineon Technologies — Minchen, DE), Zhu Qi (Northwestern University — Evanston,
US), Lukas Sommer (TU Darmstadt, DE), Wilfried Steiner (TTTech Computertechnik —
Wien, AT), and Seyhan Ugar (Toyota Motors North America — Mountain View, US)
License @@ Creative Commons BY 3.0 Unported license
© Frank Mueller, Bart Besselink, Alessandro Biondi, Lulu Chan, Jyotirmoy Deshmukh, Masaki

Gondo, Baik Hoh, Peter Gorm Larsen, Mark Lawford, Martina Maggio, Albrecht Mayer, Zhu Qi,
Lukas Sommer, Wilfried Steiner, and Seyhan Ucar

This is the recording of a working group on machine learning for cyber-physical systems, in
which more people than recorded participated.

We started the discussion with a challenging example. Suppose that a machine learning
system, used for vision and object recognition in an autonomous car, is not able to detect
a stop sign. Using some ground truth information (e.g., information received with other
sensors), the stop sign is identified, and the learning system is able to rewind and go back
to the frame where the stop sign could have been detected. This enables for continuous
on-vehicle learning. We asked ourselves how is this possible to achieve. Some aspect of
this problem involve the cloud and the ability to “learn from mistakes”, autonomously, and
possibly cooperatively (with other vehicles).

Generally speaking we moved the discussion on the topics of how it is possible to detect
and recognize bad situations, and how it is possible to avoid overfitting in these cases. We
discussed the need for going back to supervised learning for these cases and what the update
of the learning procedures will mean. However, we noted many open problems, like the
presence of dynamically moving objects. We need to analyze the root cause for the error
(the missed detection) and to understand how to correct it on the fly.

We then started talking about uncertainty and the guarantees that can be provided either
with machine learning or with other techniques, linking this to model order reduction to
reduce the complexity of the models that are used for control (e.g., trajectory planning). We
had a brief discussion on the relation between optimal control and reinforcement learning.
We noted that a recently published paper by Benjamin Recht tries to link the two [1].

References
1 B. Recht. A Tour of Reinforcement Learning: The View from Continuous Control. Annual
Review of Control, Robotics, and Autonomous Systems, 2(1): 253-279, 2019

57

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

58

19502 — Future Automotive HW/SW Platform Design

4.4 HW/SW Architecture Exchange
Philipp Mundhenk (Autonomous Intelligent Driving GmbH — Miinchen, DE)

License @ Creative Commons BY 3.0 Unported license
© Philipp Mundhenk
Joint work of all participants of Dagstuhl Seminar 19502

The breakout session was set up as an interactive session to identify upcoming trends in
automotive architectures and to discuss which of the challenges are already being addressed
by which solutions. The majority of participants of Dagstuhl Seminar 19502 took part in
this session.

The focus of the session was interactively set on determinism for new architectures.
Ensuring such determinism is non-trivial with the emergence of new technologies in safety-
critical systems, such as Ethernet-based, service-oriented communication, microprocessors,
and additional abstraction layers in software, adding complexity [2].

4.4.1 Background

New software platforms add additional layers, supporting developers, simplifying application
development and increasing speed of innovation [1]. However, each layer being introduced
into a system adds complexity and variability. Ensuring correct and deterministic behavior
in such a system is not trivial. For example, scheduling problems arise, e.g., spatial or
time-based scheduling of computation on hardware accelerators. Often, this is made worse
due to the proprietary nature of many of the hardware components, especially accelerators,
such as GPUs. Typically, not much information is known about these, making achieving
determinism more difficult. Another example is the mapping of scheduling algorithms and
schedulable units on the layer of software platform, operating system, hypervisor, device, etc.

4.4.2 Approaches

Due to the large nature of the problem there is no single solution. Different approaches
need to be combined. The following approaches, addressing parts of the problem, have been
discussed in this breakout session:
Limiting every layer in its potentially unlimited freedom could help reduce the overall
uncertainty in the system. E.g., timing restrictions can be imposed on the hypervisor,
the operating system, etc., and not just on the level of application. The same goes for
memory bounds, etc.
Design time checks will be required wherever possible. The developers and integrators
should not be allowed to perform certain actions, if these are already known to be breaking
the system. E.g., logically connecting an ASIL-D input of one component to an ASIL-A
output of another component can already be detected at design time, even if the system
uses service-oriented communication and sets up connections at runtime only.
The behavior defined at design time needs to be enforced at runtime. E.g., through
configuration of the operating system, or the software platform. Furthermore, the correct
behavior needs to be monitored at runtime, such that failure reactions can be triggered
when abnormal behavior, compared to the design time specification, is detected.
The execution behavior of microprocessors today is inherently nondeterministic. Due to
the use of multi-level caches, virtual memory, etc. it is not reasonably possible to achieve
deterministic behavior on microprocessors. This might, however, not hold forever. Chip

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst 59

designers are working on making their processors more predictable. This would be a
long-term approach and not an immediate solution.

Another layer of protection can be achieved through introduction of a parallel computation
path with plausibility computations. These parallel paths do not need to perform the full
set of computations, but can be more lightweight, e.g., computing boundaries, and can
be implemented on a more deterministic system, such as a microcontroller.

Such a reliable path, if computation is accurate enough, could also be used as a fallback
path, in case the main path fails during operation.

In case a redundant, deterministic path has less computational performance, the environ-
ment of the autonomous system can also be adapted. E.g., the speed of a vehicle could
be reduced, allowing longer reaction times, thus allowing computation to be slower and
less powerful computation units to be sufficient.

4.4.3 Open Challenges

Despite the numerous approaches discussed in this session, a number of open challenges have
been identified, e.g.,:
Is achieving reliability of the complete system, including microprocessor, GPU, hardware
accelerators, operating system, middleware, etc. a realistic goal in the long-term? There
is no definitive answer to this question, yet.
How exactly can redundant paths be designed? Is a reliable path always required? Or
could e.g., an unreliable path, plus reliable plausibility checkers be sufficient? Could
multiple unreliable paths and reliable voters be used? Are there other approaches?
When using design time checks, how is illicit behavior defined? How can it be ensured
that the complete set of illicit behavior is covered? How can this be integrated into the
many different approaches (e.g., development frameworks, continuous integration systems,
etc.) at design time? How to enforce this correct behavior at runtime in an efficient and
reliable manner?
When using partial checks in the individual layers of the system, how can these be
enforced? What are reasonable checks and bounds (e.g., for the number of obstacles
detected)? How can the boundaries be monitored in an efficient manner?

19502

60

19502 — Future Automotive HW/SW Platform Design

When adapting to the environment, e.g., through slowing down the vehicle, it needs
to be ensured that the adjustment is sufficient. Depending on the available reliable
compute performance and the complexity of required computation, it might e.g., still not
be sufficient to slow down the vehicle, even to walking speed.

How to deal with input to the system that is inherently indeterministic? The interpretation
of sensor inputs e.g., will likely always introduce indeterminism to the system. How
can such input, which is essential to the functionality of the system, be processed in a
deterministic system?

4.4.4 Conclusion

This session identified a large number of challenges to and a number of solutions for depend-
ability in the area of highly complex mixed-criticality systems on heterogeneous architectures.
A large amount of research is required on all aspects of the system, from hardware over
different software layers to processes and legislation in order to address these challenges.

References

1 P. Mundhenk, E. Parodi, and R. Schabenberger. Fusion: A Safe and Secure Software
Platform for Autonomous Driving. In Proceedings of the 2nd Workshop on Autonomous
Systems Design (ASD 2020). Grenoble, France, 2020.

2 L. Bauer, M. Damschen, D. Ziegenbein, A. Hamann, A. Biondi, G. Buttazzo, and J. Henkel.
Analyses and Architectures for Mixed-critical Systems: Industry Trends and Research Per-
spective. In Proceedings of the International Conference on Embedded Software Companion
(EMSOFT ’19). New York, USA, Article 13, 1-2.

4.5 On the Relation between Programming Models,
Computational /Execution Models and Software Platforms in
Automotive

Selma Saidi (TU Dortmund, DE), Alessandro Biondi (Sant’Anna School of Advanced Studies —
Pisa, IT), Rolf Ernst (TU Braunschweig, DE), Sabine Glesner (TU Berlin, DE), Oliver Kopp
(Mercedes Benz AG — Stuttgart, DE), Roland Leifia (Universitit des Saarlandes — Saarbriicken,
DE), Philipp Mundhenk (Autonomous Intelligent Driving GmbH — Miinchen, DE), Philipp
Obergfell (BMW AG — Miinchen, DE), Eduardo Quinones (Barcelona Supercomputing Center,
ES), Lukas Sommer (TU Darmstadt, DE), and Dirk Ziegenbein (Robert Bosch GmbH —
Stuttgart, DE)
License) Creative Commons BY 3.0 Unported license

© Selma Saidi, Alessandro Biondi, Rolf Ernst, Sabine Glesner, Oliver Kopp, Roland Leifla, Philipp
Mundhenk, Philipp Obergfell, Eduardo Quinones, Lukas Sommer, and Dirk Ziegenbein

The breakout session discussed the relationship between (parallel) programming models,
software platforms and models of execution.

Software platforms in automotive integrate multiple software components including
applications, middleware, operating systems, from different software providers and are
executed on a heterogeneous collection of hardware including microcontrollers, CPUs and
GPUs. Pthread is often used as an execution model (e.g., in AUTOSAR Adaptive) to control
multiple workflows that overlap over time.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

With the adoption of high-performance platforms in automotive, parallel programming
models are becoming prevalent, targeting heterogenous hardware platforms composed often
of a combination of CPUs and GPUs. Several programming models like CUDA and OpenMP,
implement different models of execution (i.e., execution semantics) in terms of data com-
munication (e.g. shared memory or message passing) and synchronization (e.g., implicit or
explicit). Unlike HPC systems, automotive systems have different /additional requirements in
terms of heterogeneity, timing predictability, data versioning, etc. Therefore, a computational
model (can also be referred to as System Execution Model) is further needed to coordinate
the execution of different software components. The role of computational models is to
guarantee the integration of different software layers and orchestrate their “correct” execution.
Correct execution requires predictable or defined execution and communication timings,
data consistency, data versioning, etc. The Logical Execution Time (LET) Model is an
example of computational models. Therefore, the programming model is different from the
computational model and this latter is often much more complicated as it must as well
guarantee non-functional properties and a seamless integration between software layers.

(During the discussion at Dagstuhl, the term execution model was interchangeably used
to designate programming models, execution semantics and system-level computational
execution models. However, a clear distinction between the two is needed).

It remains however unclear how programming models, used by software programmers to
implement a given function, interface with computational models, used by system integrators
to guarantee a system-level correct execution. Physical timing (e.g. period, timing constraints,
end-to-end latencies) for instance define properties of the software and should be part of the
programming model. These properties are later further propagated from the programming
model to the computational model responsible for their implementation by structuring the
execution and synchronization in the software architecture. It seems that a clear unified
software platform view integrating both programming models and computational models
is missing. How can the programming model and computational model be integrated in
the automotive software stack? Regarding hardware resources allocation, are all hardware
resources allocated by the computational model? What’s the role/requirements derived from
the programming model regarding tasks partitioning, resources allocation and scheduling?
Which level of abstraction should be used for scheduling, communication and synchronization?
These are all important open questions to be addressed.

61

19502

62

19502 — Future Automotive HW/SW Platform Design

4.6 Benchmarking Efforts for Future HW/SW Platforms

Lukas Sommer (TU Darmstadt, DE), Bart Besselink (University of Groningen, NL), Aless-
andro Biondi (Sant’Anna School of Advanced Studies — Pisa, IT), Jerénimo Castrillon-Mazo
(TU Dresden, DE), Lulu Chan (NXP Semiconductors — Findhoven, NL), Wanli Chang
(University of York, GB), Thidapat Chantem (Virginia Polytechnic Institute — Arlington,
US), Rolf Ernst (TU Braunschweig, DE), Oliver Kopp (Mercedes Benz AG — Stuttgart,
DE), Mark Lawford (McMaster University — Hamilton, CA), Roland Leifja (Universitit des
Saarlandes — Saarbricken, DE), Martina Maggio (Lund University, SE), Philipp Mundhenk
(Autonomous Intelligent Driving GmbH — Minchen, DE), Philipp Obergfell (BMW AG -
Miinchen, DE), Eduardo Quinones (Barcelona Supercomputing Center, ES), Selma Saidi
(TU Dortmund, DE), Lea Schinberger (TU Dortmund, DE), and Dirk Ziegenbein (Robert
Bosch GmbH — Stuttgart, DE)

License) Creative Commons BY 3.0 Unported license
© Lukas Sommer, Bart Besselink, Alessandro Biondi, Jerénimo Castrillén-Mazo, Lulu Chan,
Wanli Chang, Thidapat Chantem, Rolf Ernst, Oliver Kopp, Mark Lawford, Roland Leila, Martina
Maggio, Philipp Mundhenk, Philipp Obergfell, Eduardo Quinones, Selma Saidi, Lea Schonberger,
and Dirk Ziegenbein

The closing session of the seminar also saw a discussion about benchmarking efforts for
future automotive HW/SW platforms. The participants agreed that the availability of
representative benchmarks is critical for the development of central components, such as
programming models, compilers, runtime systems and the evaluation of hardware platforms.
Therefore, academia and industry should collaborate to provide open benchmarks for use in
research and development.

One such approach is the open-source DAPHNE benchmark suite [4], which was created
with the intent to provide a number of representative automotive workloads under the
permissive Apache v2 license. The suite contains typical automotive workloads extracted
from the open-source framework Autoware and implementations for each kernel in OpenCL,
CUDA and OpenMP.

In order to extend this open benchmark suite, the original authors of the benchmark
seek for contributions to the benchmark. The form of the contribution can be manifold, for
example:

Hints to relevant algorithms used in real-world automotive applications to be implemented

as benchmark kernel.

Implementations of automotive algorithms in any programming language to be added to

the benchmark and ported to the different programming models.

Representative data-sets, e.g. as captured by sensors and cameras, for use with the

benchmark algorithms.

We invite everyone to contribute to this open benchmarking approach through the
Github-page of the DAPHNE project [5] or via e-mail to sommer@esa.tu-darmstadt.de

Another source for benchmarks is the community forum of the WATERS workshop [1]
where the models of the WATERS industrial challenges are stored. The purpose of these
challenge is to share ideas, experiences and solutions to concrete timing verification problems
issued from real industrial case studies. It also aims at promoting discussions, closer
interactions, cross fertilization of ideas and synergies across the breadth of the real-time
research community as well as industrial practitioners from different domains. Here the
focus is on non-functional performance models of real-world systems, ranging from engine
control [2] to automated driving [3].

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

References

1 WATERS @ ECRTS Community Forum. Industrial Challenge Models.
https://www.ecrts.org/forum/ .

2 S. Kramer, D. Ziegenbein, and A. Hamann. Real World Automotive Benchmarks For Free.
WATERS 2019, Lund, 2019, https://www.ecrts.org/forum/download/file.php?id=9&sid=
d5f57b4d87108f919fd0a366b31bab49.

3 F. Rehm, D. Dasari et al. System Performance Modelling of Heterogenecous HW Platforms:
An Automated Driving Case Study. 22nd Euromicro Conference on Digital System Design
(DSD), Dubrovnik, 2019. https://doi.org/10.1109/DSD.2019.00060.

4 L. Sommer, F. Stock, L. Solis-Vasquez, and A. Koch, “Daphne — An Automotive Benchmark
Suite for Parallel Programming Models on Embedded Heterogeneous Platforms: Work-in-

progress,” in Proceedings of the International Conference on Embedded Software Compan-

ion, ser. EMSOFT ’19. New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3349568.3351547.

5 L. Sommer, F. Stock, L. Solis-Vasquez, and A. Koch, “Darmstadt Automotive Paral-
lel HeterogeNEous (DAPHNE) Benchmark-Suite,” https://github.com/esa-tu-darmstadt/
daphne-benchmark, 2019.

4.7 Modularizing Control Systems

Dirk Ziegenbein (Robert Bosch GmbH — Stuttgart, DE), Bart Besselink (University of
Groningen, NL), Peter Gorm Larsen (Aarhus University, DK), and Mark Lawford (McMaster
University — Hamilton, CA)

License @@ Creative Commons BY 3.0 Unported license
© Dirk Ziegenbein, Bart Besselink, Peter Gorm Larsen, and Mark Lawford

Control systems are defined by their input-output behavior and their end-to-end cause and
effect chains. A typical way of decomposing control software is however according to functional
subsystems, which is also reflected in the predominant modeling style which typically features
hierarchical dataflow and control flow blocks as, e.g., in Simulink. When maintaining and
extending such models, changes or additional features usually require modifications to more
than one of these subsystems and thus the respective software modules need to be changed
in order to implement them. These modifications of multiple subsystems to handle different
cases often results in a multitude of distributed “balconies” (nested if-then-else structures)
often with state feedback through unit delays effectively resulting in distributed implicit
state machines which are hard to understand and maintain.

In this breakout session, the participants discussed whether there are better ways to
structure control systems in order to improve encapsulation and information hiding principles
from classical software engineering [6] in control systems models. Finding such modularization
approaches are of great importance considering the current automotive trends of increasing
integration complexity as well as the update of vehicle functions after the vehicle’s start of
production (feature-over-the-air-update). Two approaches were discussed in more detail.

Simulink is widely used to develop control systems software in the automotive domain
but the engineers using it often focus solely on the dataflow aspects of the problem which has
been shown in general software engineering to result in systems with poor modularization
[6]. While Simulink constructs such subsystems, libraries and model references can all be
used to help structure Simulink models, all of these constructs have limitations when trying
to perform system modularization based upon Parnas’ information hiding principles [3].
Recently Mathworks has added a new language construct, Simulink functions, which can be
used to help implement modular Simulink designs on an information hiding basis similar to

63

19502

https://www.ecrts.org/forum/download/file.php?id=9&sid=d5f57b4d87f08f919fd0a366b31bab49
https://www.ecrts.org/forum/download/file.php?id=9&sid=d5f57b4d87f08f919fd0a366b31bab49
https://doi.org/10.1145/3349568.3351547
https://github.com/esa-tu-darmstadt/daphne-benchmark
https://github.com/esa-tu-darmstadt/daphne-benchmark
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

64

19502 — Future Automotive HW/SW Platform Design

modules in the C programming language [3]. Further study is needed to see if structuring
Simulink models using the proposed information hiding principles leads to designs that are
easier to maintain and comprehensible by the control domain engineers.

At Bosch, a method called SCODE (System Co-Design) Essential Analysis [2] has been
developed which decomposes a control system in terms of discrete situations in the system
context, the so-called functional invariants or modes. In these functional invariants the
control system shows a coherent input-output behavior. The SCODE Essential Analysis is
based on the Essential Systems Analysis [4], developed by McMenamin and Palmer originally
for IT systems, and extends and modifies it to enable application for physically dominated
systems.

The analysis follows a three-step-approach. In the first step, the problem space of the
control system is defined by a Zwicky-Box in terms of input and output dimensions (aspects of
the system or its context that cause or represent different system behaviors) and alternatives
(possible values or value ranges of a dimension). In the second step, the problem space is
partitioned into valid and invalid input and output sets, and modes are defined by assigning
input sets to output sets. In the third step, the mode transitions are defined, i.e. it is
specified which context changes cause a transition between system modes. The analysis is
supported by a tool [5], which encodes the problem space as binary decision diagrams and
supports the developer by guiding the analysis (e.g., to discover not yet covered parts of
the problem space) and to guarantee properties of the system design (e.g. consistency and
completeness of mode specifications as well as uniqueness and liveliness of mode transitions).
Based on the analysis results, mode switching logic (in, e.g., Simulink, ASCET or C), test
cases as well as documentation and reports can be generated automatically.

In related work, [1] attempts to simplify mode switching logic implemented in Simulink
truth tables by identifying common behaviors and merging the resulting modes. Still within
the Simulink setting, [7] discusses how Simulink models implicitly encoding state machines
can be converted into StateFlow models effectively making the mode switching logic in data
flow models explicit.

Given the above related works it seems that mode switching logic oriented functions
are primary candidates for refactoring and alternative modularizations in order to improve
control software designs.

References

1 M. Bialy, M. Lawford, V. Pantelic, and A. Wassyng. A methodology for the simplification
of tabular designs in model-based development. In 2015 IEEE/ACM 3rd FME Workshop
on Formal Methods in Software Engineering, pp. 47-53. IEEE, 2015.

2 M. Bitzer, M. Herrmann, and E. Mayer-John. System Co-Design (SCODE): Meth-
odology for the Analysis of Hybrid Systems. at-Automatisierungstechnik, 67(9), 2019,
https://doi.org/10.1515/auto-2019-0003.

3 M. Jaskolka. A Comparison of Componentization Constructs for Supporting Modularity in
Simulink, SAE WCX 2020 World Congress Experience, April 2020.

4 S. McMenamin and J. Palmer. Essential Systems Analysis. Prentice-Hall, 1984, ht-
tps://archive.org/details/essentialsystemsOOmcme.

5 ETAS GmbH. SCODE Essential Analysis — Describe and Verify Complex Control Systems.
Whitepaper, 2016, https://www.etas.com/en/downloadcenter/24029.php.

6 Da. L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules (PDF).
Communications of the ACM. 15 (12): 1053-1058, 1972, doi:10.1145/361598.361623.

7 S. Wynn-Williams, Z. Diskin, V. Pantelic, M. Lawford, G. Selim, C. Milo, M. Diab, and F.
Weslati. SL2SF: Refactoring Simulink to Stateflow. In International Conference on Funda-
mental Approaches to Software Engineering, pp. 264-281. Springer, Cham, 2019.

Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst

4.8 SW Lifecycle of Dependable Evolving Systems

Dirk Ziegenbein (Robert Bosch GmbH — Stuttgart, DE), Rolf Ernst (TU Braunschweig, DE),
Moritz Neukirchner (Elektrobit Automotive — Erlangen, DE), and Selma Saidi (TU Dortmund,
DE)

License @ Creative Commons BY 3.0 Unported license
© Dirk Ziegenbein, Rolf Ernst, Moritz Neukirchner, and Selma Saidi

Traditionally, automotive software was developed, tested and shipped bundled together
with the hardware as an electronic control unit to the customer. Updates due to planned
maintenance or bug removal were rather an exception and were performed by (re-)flashing
the complete electronic control unit in the repair shop. Due to the increasing over-the-air
connectivity beyond vehicle boundaries which has shown to create a new security attack
surface which mandates fast fixing of security issues as well as to emerging business models
of selling feature updates during the vehicle lifecycle, the frequency of such updates will
increase significantly in the foreseeable future. Furthermore, due to the integration of
several functionalities on so-called vehicle integration platforms, the updates will also become
modular, exchanging or adding only parts of the software at a time. These two trends and
the challenges they are causing were discussed in this breakout session.

With the increased frequency of updates, the whole release process will need to be highly
automated. Note that the release process comprises not just the test and verification but
also the fulfillment of all legal requirements and norms, like homologation or the proof of
functional safety. While the test automation is already well on its way (even though the
automated regression testing of cyber-physical systems still has a lot of challenges), the
latter procedures are still dominated by a lot of manual work. Here, being able to achieve
modularity, in the sense, that local changes in the system will also only have a clearly
identifiable local impact on e.g. the safety case, is seen as a huge advantage over the current
state-of-practice. In fact, the automotive standard for functional safety ISO 26262 is very
inconclusive about requirements for maintenance such that more work is needed here.

The fact that maintenance will have to be offered over the whole vehicle life cycle poses
additional challenges. The typical support and production cycles for microprocessors is much
lower than the vehicle life cycle. Thus, one has to assume that during the end of the vehicle
life cycle, the software might even need to be ported to new hardware generations as part of
the maintenance process (a prominent example is Tesla, which is already offering upgrades
to new vehicle computer generations to its customers). Similarly, the rapid development of
automotive software platforms such as AUTOSAR Adaptive will lead to questions of whether
keeping a system on its original SW platform version or continuously updating the platform
version. Both strategies have their specific advantages and disadvantages. While keeping the
platform version stable limits changes and reduces risks, it also requires the SW platform
vendor to fix issues in all versions that are in the field. This long-term maintenance needs to
be considered in the business model right from project start as it tremendously influences
the cost of updates. Here, the automotive industry might look e.g. at consumer electronics
and the update/maintenance models of SW platforms such as Android or iOS.

The participants of this breakout session agreed that this SW lifcycle topic for dependable
evolving systems should be investigated in more detail. The organization of a special session
at a top embedded systems conference is envisioned.

65

19502

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

66

19502 — Future Automotive HW/SW Platform Design

Participants

= Bart Besselink

University of Groningen, NL

= Alessandro Biondi
Sant’Anna School of Advanced
Studies — Pisa, IT

= Jerénimo Castrillén-Mazo
TU Dresden, DE

= Lulu Chan

NXP Semiconductors —
Eindhoven, NL

= Wanli Chang

University of York, GB

= Thidapat Chantem

Virginia Polytechnic Institute —
Arlington, US

= Jyotirmoy Deshmukh

USC — Los Angeles, US

= Rolf Ernst

TU Braunschweig, DE

= Sabine Glesner

TU Berlin, DE

= Masaki Gondo

eSOL — Tokyo, JP

- Baik Hoh

Toyota Motors North America —
Mountain View, US

= Oliver Kopp

Mercedes Benz AG —
Stuttgart, DE

= Peter Gorm Larsen

Aarhus University, DK

= Mark Lawford

McMaster University —
Hamilton, CA

= Roland Leifla

Universitdt des Saarlandes —
Saarbriicken, DE

= Chung-Wei Lin

National Taiwan University —
Taipei, TW

= Martina Maggio

Lund University, SE

= Albrecht Mayer

Infineon Technologies —
Minchen, DE

= Frank Mueller

North Carolina State University —
Raleigh, US

= Philipp Mundhenk
Autonomous Intelligent Driving
GmbH — Miinchen, DE

= Alessandra Nardi
Cadence — San Jose, US

= Moritz Neukirchner
Elektrobit Automotive —
Erlangen, DE

= Philipp Obergfell

BMW AG - Miinchen, DE

= Maximilian Odendahl
Silexica — Kéln, DE

= Zhu Qi
Northwestern University —
Evanston, US

= Eduardo Quinones
Barcelona Supercomputing
Center, ES

= Sophie Quinton
INRIA — Grenoble, FR

= Selma Saidi
TU Dortmund, DE

= Ignacio Safiudo Olmedo
University of Modena, IT

= Lea Schoénberger
TU Dortmund, DE

= Lukas Sommer
TU Darmstadt, DE

= Wilfried Steiner
TTTech Computertechnik —
Wien, AT

= Seyhan Ugar
Toyota Motors North America —
Mountain View, US

= Dirk Ziegenbein
Robert Bosch GmbH —
Stuttgart, DE

	Executive Summary Dirk Ziegenbein, Selma Saidi, Xiaobo Sharon Hu, and Sebastian Steinhorst
	Table of Contents
	Overview of Talks
	Towards a Contract Theory for Physical Systems Bart Besselink
	Predictable Heterogeneous Computing for Next-generation Cyber-Physical Systems Alessandro Biondi
	The Role of Programming Abstractions in Automotive Software Jerónimo Castrillón-Mazo
	Mixed Criticality Communication in Future In-Vehicle Architectures Lulu Chan
	Predictable and Reliable Automated Transportation Systems Thidapat Chantem
	Specification-driven Design and Analysis for Perception, Decision-Making and Control in Autonomous Systems Jyotirmoy Deshmukh
	Predictable Low-latency Data Services for Critical Applications – Challenges and Concepts Rolf Ernst
	Security and Correctness in the Face of Self-Adaptive Learning Automotive Systems Sabine Glesner
	Aggregation and Integration of Next-generation Vehicle Computing and the OS Technologies Masaki Gondo
	Automotive Edge Computing Use-cases Inspired by Societal Problems Baik Hoh and Seyhan Uçar
	Paving the Way Towards Predictable Performance in Multi-heterogeneous SoC, Industrial Problems and Directions Ignacio Sañudo
	Possibilities Using FMI-based Co-simulation for the Validation of Cyber-Physical Systems Peter Gorm Larsen
	Domain Controllers, Autonomous Driving and Functional Safety, Oh My! Mark Lawford
	Formal Verification on Finite-State Machines with Weakly-Hard Fault Models Chung-Wei Lin
	Sorry Software – Hardware Matters for Dependability Albrecht Mayer
	Safe and Secure Software Platforms for Autonomous Driving Philipp Mundhenk
	Design-For-Safety for Automotive IC Design: Challenges And Opportunities Alessandra Nardi
	Dynamic Aspects of Centralized Automotive Software and System Architectures Philipp Obergfell
	Metric-driven, System-level Testing: Release Autonomous Systems with Confidence Maximilian Odendahl
	Parallel Programming Models for Critical Real-time Embedded Systems Eduardo Quinones
	Automotive System Design: Challenges of the Anthropocene Sophie Quinton
	AnyDSL: A Partial Evaluation Framework for Programming High-Performance Heterogeneous Systems Roland Leißa
	DAPHNE – An Automotive Benchmark Suite for Parallel Programming Models on Embedded Heterogeneous Platforms Lukas Sommer
	The Role of Synchronized Time for Safe Integration of Heterogeneous Software Applications Wilfried Steiner
	Taming Unpredictability: Leveraging Weakly-hard Constraints in Design and Adaptation Qi Zhu
	Breaking Automotive Traditions Dirk Ziegenbein

	Working groups
	Modeling Hardware Dependencies and Software Dependencies Jerónimo Castrillón-Mazo, Lulu Chan, Oliver Kopp, Roland Leißa, Albrecht Mayer, Philipp Mundhenk, Philipp Obergfell, and Eduardo Quinones
	Weakly Hard Real-Time Models Martina Maggio, Jerónimo Castrillón-Mazo, Lulu Chan, Rolf Ernst, Chung-Wei Lin, Zhu Qi, Eduardo Quinones, Sophie Quinton, and Selma Saidi
	Machine Learning in Cyber-Physical Systems Frank Mueller, Bart Besselink, Alessandro Biondi, Lulu Chan, Jyotirmoy Deshmukh, Masaki Gondo, Baik Hoh, Peter Gorm Larsen, Mark Lawford, Martina Maggio, Albrecht Mayer, Zhu Qi, Lukas Sommer, Wilfried Steiner, and Seyhan Uçar
	HW/SW Architecture Exchange Philipp Mundhenk
	On the Relation between Programming Models, Computational/Execution Models and Software Platforms in Automotive Selma Saidi, Alessandro Biondi, Rolf Ernst, Sabine Glesner, Oliver Kopp, Roland Leißa, Philipp Mundhenk, Philipp Obergfell, Eduardo Quinones, Lukas Sommer, and Dirk Ziegenbein
	Benchmarking Efforts for Future HW/SW Platforms Lukas Sommer, Bart Besselink, Alessandro Biondi, Jerónimo Castrillón-Mazo, Lulu Chan, Wanli Chang, Thidapat Chantem, Rolf Ernst, Oliver Kopp, Mark Lawford, Roland Leißa, Martina Maggio, Philipp Mundhenk, Philipp Obergfell, Eduardo Quinones, Selma Saidi, Lea Schönberger, and Dirk Ziegenbein
	Modularizing Control Systems Dirk Ziegenbein, Bart Besselink, Peter Gorm Larsen, and Mark Lawford
	SW Lifecycle of Dependable Evolving Systems Dirk Ziegenbein, Rolf Ernst, Moritz Neukirchner, and Selma Saidi

	Participants

