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Abstract
We introduce and study a relaxation of differential privacy [3] that accounts for mechanisms that leak
some additional, bounded information about the database. We apply this notion to reason about
two distinct settings where the notion of differential privacy is of limited use. First, we consider
cases, such as in the 2020 US Census [1], in which some information about the database is released
exactly or with small noise. Second, we consider the accumulation of privacy harms for an individual
across studies that may not even include the data of this individual. The tools that we develop for
bounded-leakage differential privacy allow us reason about privacy loss in these settings, and to
show that individuals preserve some meaningful protections.
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1 Introduction and Related Work

Differential privacy [3], a notion of the stability of computations, has emerged as the gold
standard of mathematically rigorous privacy protection for computations on statistical
databases, in part because of its appealing interpretations from the perspective of individuals
in the database. For example, an economic interpretation of differential privacy holds that
individuals’ future utilities will be harmed by at most a small constant factor by providing
their true data, rather than lying, to the mechanism [5]. Also appealing is an interpretation
that shows that an individual’s truthful provision of data to a differentially private mechanism
will not substantially change a Bayesian observer’s posterior beliefs versus the beliefs that
would result if that individual provided false data [10].

One clear advantage of differential privacy over other approaches to defining privacy is
that it is not necessary to reason about auxiliary information in order to give differential
privacy guarantees. Composition attacks [7] leveraging access to such “outside information”
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10:2 Bounded-Leakage Differential Privacy

are a common Achilles’ Heel of ad hoc privacy notions. Differential privacy, as it is a property
of the mechanism, rather than the mechanism’s output, is a guarantee that holds regardless
of the presence of auxiliary information. However, as observed by Dwork and Naor [4]
and Kifer and Machanavajjhala [11, 12], a differentially private release of data against a
background of prior data releases can still result in substantial privacy harms. In particular,
Dwork and Naor show essentially that innocuous information can always be combined with
statistical information to yield a privacy breach. These negative results regarding auxiliary
information are used by Dwork and Naor as justification for differential privacy’s focus on
relative guarantees – harms relative to the harm you would have experienced had you not
participated in the study or lied about your data.

In this work, we return to the question of auxiliary information, which we term “leakage.”
We develop a formal framework in which to study differential privacy in the presence of
leakage and argue about non-trivial properties of such bounded-leakage differential privacy.
Our research is motivated by two applications:

Application: 2020 Census

One context in which auxiliary information has recently gained attention is the 2020 US
Census. The majority of data releases, including synthetic data, for the 2020 US Census, are
slated to be released subject to differential privacy [1, 8]. However, the Census, by agreement
with the Department of Justice, will provide “exact counts,”1 known as invariants, for certain
statistics [8, 9, 2]. As Garfinkel et al. [9] allude to, “there is no well-developed theory for
how differential privacy operates in the presence of such invariants.”

One particularly nefarious problem with auxiliary information emerges if the function
that produced the auxiliary information might share randomness with the differentially
private algorithm. If so, all guarantees of differential privacy might be lost. Our definitions
directly apply to this setting and help clarify the impact of such auxiliary information (and
in particular, the role of such shared randomness).

Application: Big-World Privacy

One of the benefits of differential privacy is that it gives a way to quantify the privacy losses
of individuals whose data were included in a database input into a mechanism, and even
allows quantification of how privacy losses “add up” across multiple mechanisms. In its
most basic form, differential privacy tells us that for every ε-differentially private study an
individual participates in, she incurs an ε privacy loss. However, it is also relevant to ask
whether a study that an individual does not participate in could also degrade that individual’s
privacy. Consider, for example, a study that included everyone in a certain city who had a
particular disease. Then, this would mean that the information that a particular individual
from that city did not participate in the study also tells us that this individual doesn’t have
the disease, and could potentially degrade the individual’s privacy in unexpected ways.

If we cannot necessarily quantify an individual’s overall privacy loss using only the studies
they have participated in, what should we do? One possible solution is to treat all individuals
in the world as belonging to a single huge database D. A differentially private mechanism
M that computes over some subset of the population would be considered instead to be a
composition of two mechanisms: first, a selection function for determining which individuals
to include in the study, and then the subsequent differentially private mechanism. This
concatenated mechanism, however, need not be differentially private if the selection function

1 “Exact counts” are of course not really an exact population count, but reflect many sources of error,
including non-participation and potentially also Census techniques intended to infer missing data.
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is not differentially private. In fact, the selection function could adversarially choose a subset
of the database in order to cause sensitive data about an individual to be encoded into the
likely outputs of the subsequent differentially private mechanism.

Even if the selection of studies that include the data of a particular individual is inde-
pendent for other individuals, then the inclusion or exclusion of the data of individual i in
study j may depend on i’s data. It seems that we cannot avoid the conclusion that the only
bound that differential privacy can give us about i’s privacy loss is the composition of the ε
privacy losses for every ε-differentially private study that has ever occurred, even for studies
in which i did not participate. Our framework allows us to separate the privacy loss into
that which is incurred from exclusion from particular studies and the loss that is incurred
from participation in ε-differentially private studies. Once we acknowledge the leakage of
an upper-bound on the number of studies i participate in, the privacy loss is incurred as a
function of this upper bound rather than as a function of all studies.

Our Contributions

In this paper, we present (Section 2) a definition for bounded-leakage differential privacy, a
relaxed variant of differential privacy that quantifies the privacy that is maintained by a
mechanism despite bounded, additional leakage of information by some “leakage function.”
We investigate (Section 3) the connections between standard differential privacy and this
new variant, and give conditions for when the bounded-leakage privacy of a mechanism can
imply something about its differential privacy, and vice versa.

Differentially private mechanisms are known to satisfy some appealing, simple proper-
ties such as privacy conservation under post-processing and quantifiable privacy loss for
groups. We show that bounded-leakage privacy satisfies the same post-processing results
as standard differential privacy (Theorem 11), and prove an analogous result for the group
privacy of bounded-leakage differentially private pairs of mechanisms and leakage functions
(Theorem 22). Additionally, we show that explicitly “leaking” the value of the leakage
function does not affect the bounded-leakage differential privacy of a mechanism/function
pair (Corollary 14).

There are numerous results about the composition of differentially private mechanisms,
both in a non-adaptive setting where the mechanisms and databases queried are chosen before
execution, and additionally in an adaptive setting where intermediate outputs may affect
the choice of future queries. We define adaptive composition for bounded-leakage privacy
and, using a new reduction technique, we show that any general adaptive or non-adaptive
composition bound that holds for differentially private mechanisms must also hold for the
class of bounded-leakage private mechanism/function pairs, with the same privacy parameters
(Section 4.4).

It is conceivable that leaking additional information about a mechanism could also affect
the utility of its outputs. The exponential mechanism for differentially private mechanisms
presents a way to construct a differentially private mechanism with a high utility guarantee
on its output. We define an analogous mechanism for the bounded-leakage privacy setting,
such that given a leakage function and a utility function, we can construct a bounded-leakage
private mechanism with high utility guarantees for each possible output of the leakage
function (Section E).

Finally, (Section 6) we use the bounded-leakage differential privacy framework to study
the Census and Big-World applications, and show that it is possible to formally bound
privacy harms in these settings.

Due to space constraints, almost all proofs appear in the appendices.
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Additional Related Work

Kasiviswanathan and Smith [10] also provide a formal treatment of auxiliary information, in
the context of their Bayesian interpretation of differential privacy. [11] explore a notion of
privacy in the context of auxiliary information that is similar to ours, but more limited in the
(deterministic) prior releases they consider. The Pufferfish framework [12] is an extremely
general privacy framework that allows for reasoning about the conclusions drawn by specific
types of attackers. [12] explicitly explores composition of private mechanisms with non-private
mechanisms in their Sections 9 and 10, and gives general statements based on the conditional
probability distribution of one release given the other. This appears to have analogy in the
exploration of independence that we do in Section 3. Given the generality of the Pufferfish
framework, it is likely capable of describing our notion of bounded-leakage differential privacy.
Our notion is focused on the behavior of differential privacy in the presence of auxiliary
information rather than on stronger notions that are resilient to adversaries with auxiliary
information. By focusing on a more specific notion, we are able to build up a richer set of
properties and consequences of the notion.

2 Model

The standard definition of differential privacy promises that the distribution of results of a
randomized mechanism run on any database does not change too much if we change any
particular individual’s data in that database. Formally, we will represent a database that
holds data about n individuals as a tuple from the set Xn where X is a data universe of
possible characteristics. We call two databases x, x′ ∈ Xn neighboring or adjacent if they
differ in the data of one individual, and will denote this as x ∼ x′. Using this notation, the
notion of standard differential is formally defined as follows:

I Definition 1 ((ε, δ)-Differential Privacy (DP) [3]). Let X be some data universe, O an
output space, and R a space of random inputs. Given a mechanism M : Xn ×R→ O, we
say that M is (ε, δ)-differentially private if for all neighboring databases x ∼ x′ ∈ Xn and all
subsets S ⊆ O, we have that

Prr∈R[M(x, r) ∈ S] ≤ eεPrr∈R[M(x′, r) ∈ S] + δ.

Building off of this definition, we introduce a new definition for a variant of differential
privacy that we call bounded-leakage differential privacy. Intuitively, bounded-leakage
differential privacy asserts that, given a database and a mechanism to be run on it, if an
additional piece of information about the database were leaked, then the output of the
mechanism when run on the database would not leak much more information than what was
already leaked.

I Definition 2 ((ε, δ)-Bounded-Leakage Differential Privacy (blDP)). Let X be some data
universe, OM an output space, OP a countable output space, and R a space of random inputs.
Given a mechanism M : Xn ×R→ OM , and a leakage function P : Xn ×R→ OP , we say
that M is (ε, δ)-bounded-leakage differentially private with respect to P if for all neighboring
databases x ∼ x′ ∈ Xn, all S ⊆ OM , and o ∈ OP , we have that either

Prr∈R[P (x′, r) = o] · Prr∈R[P (x, r) = o] = 0

or

Prr∈R[M(x, r) ∈ S|P (x, r) = o] ≤ eεPrr∈R[M(x′, r) ∈ S|P (x′, r) = o] + δ.

For the rest of this paper, given any mechanism-function pair (M,P ), we will by default
denote the output space of M as OM and the output space of P as OP .
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3 The Relationship Between blDP and DP

3.1 When Does blDP Imply DP?
Bounded-leakage differential privacy is clearly a weaker notion than standard differential
privacy due to the fact that the robustness constraint across two neighboring databases
is only required to hold conditioning on the value of the leakage function. The following
example illustrates one scenario in which we can have perfect bounded-leakage differential
privacy, but no meaningful differential privacy.

I Example 3 (perfect blDP does not imply DP for the mechanism). Consider any arbitrary
mechanismM . The pair (M,M) satisfies perfect bounded-leakage differential privacy because
for any databases x ∼ x′, S ⊆ OM , and o ∈ OP such that Prr[M(x, r) = o] · Prr[M(x′, r) =
o] 6= 0, we will always have

Pr
r

[M(x, r) ∈ S|M(x, r) = o] = Pr
r

[M(x′, r) ∈ S|M(x′, r) = o] =
{

1 if o ∈ S
0 otherwise

and so Prr[M(x, r) ∈ S|M(x, r) = o] = Prr[M(x′, r) ∈ S|M(x′, r) = o]. Therefore, (M,M)
satisfies perfect blDP, but M need not have any sort of differential privacy guarantee.

We should note that this example depends on the fact that blDP is defined such that the
privacy mechanism and associated leakage function share the same random input.

However, we can say something about the differential privacy of the mechanism in a blDP
pair if we additionally know that the leakage function is differentially private.

I Theorem 4 (blDP with a DP leakage function). Suppose M : Xn×R→ OM is a mechanism
satisfying (ε1, δ1)-blDP with respect to a leakage function P : Xn ×R→ OP . Additionally,
suppose that P satisfies (ε2, 0)-DP. Then M satisfies (ε1 + ε2, δ1)-DP.

3.2 When Does DP Imply blDP?
In the previous subsection, we noted that intuitively, blDP seems like a weaker notion than
DP. We saw that blDP for a privacy mechanism and leakage function pair does not guarantee
anything about the DP of the privacy mechanism. Following this intuition further, we might
also expect that having a mechanism/function pair where the mechanism is DP should
guarantee that the pair satisfies blDP. However, this is actually not necessarily the case.
Consider the following example where a perfectly DP mechanism loses all blDP when paired
with a particular leakage function:

I Example 5 (perfect DP does not guarantee blDP). Consider the mechanism M : {0, 1}n ×
{0, 1}n → {0, 1}n. Then, for x, r ∈ {0, 1}n, define M to be M(x, r) = x ⊕ r. Under this
definition, M ’s output is uniformly distributed over {0, 1}n, making it perfectly DP.

Now, define the leakage function P : {0, 1}n × {0, 1}n → {0, 1}n to be P (x, r) = r.

Conditioning on P being a particular value means that the randomness used in M will be
fixed. For any x 6= x′, we will always have x⊕ r 6= x′ ⊕ r and therefore M(x, r) 6= M(x′, r).

Thus, (M,P ) does not satisfy blDP for any practical values of ε and δ, despite the fact
that M is perfectly DP.

Why does our intuition fail here? We can identify three properties of the above example
that lead to this unexpected result:
(1) P released information about its random input.
(2) M and P shared the same random input.
(3) The output of M depended on the output of P .

FORC 2020
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In fact, one can show that if the example above were changed such that any of these
three properties did not hold, then we would get the opposite result and the differential
privacy of M would imply bounded-leakage differential privacy for the pair.

Informally, we see that conclusions about the blDP of a pair will depend on how correlated
the mechanism and the leakage function are.

I Definition 6. We call a mechanism-function pair (M,P ) perfectly independent if for any
database x , S ⊆ OM , and output o ∈ OP such that Prr[P (x, r) = o] 6= 0, we have

Pr
r

[M(x, r) ∈ S|P (x, r) = o] = Pr
r

[M(x, r) ∈ S].

In other words, the output of M is completely uncorrelated with the value of P when given
the same database and random input.

We consider two common examples of perfectly independent leakage functions. One
might be where M and/or P are completely deterministic, such as a function that releases
an exact summary statistic. A second interesting case is where P uses “fresh randomness,”
disjoint from M ’s computation. M and P may share the same random input string, but if
the random bits they depend on are completely separate, then their outputs will be perfectly
independent.

If a mechanism-function pair is perfectly independent, then a DP mechanism does imply
blDP for the pair. The following lemma follows immediately from combining the definition
of perfect independence with the definitions of DP and blDP, and its proof is omitted:

I Lemma 7. If (M,P ) is a perfectly independent mechanism-function pair and M satisfies
(ε, δ)-DP, then M must also satisfy (ε, δ)-blDP with respect to P .

Perfectly independent pairs constitute the class of mechanism-function pairs with com-
pletely uncorrelated outputs. On the other end of the spectrum, we have pairs such as the
one presented in Example 5 where the output of M is a deterministic function of the output
of P . However, there are mechanism-function pairs that lie between these two extremes for
which we would also like to derive blDP bounds. Such pairs can be thought of as mechanisms
that are only partially dependent on the output of their associated leakage functions (or vice
versa).

Where might we see partially independent mechanism-function combinations in practical
applications of blDP? One possible scenario is a study that computes its output based on
a random sample of individuals chosen from the provided database. For such a study, the
leakage function may need to depend on the randomness used to pick the sample. This might
be due to space reasons – for example, the study might discard other data after picking
the random sample – or for accuracy reasons. In either case, the result of such a leakage
function will be somewhat correlated with the randomness used to select the sample in the
original study, but may also employ its own randomness as well, giving us a leaked value
that partially depends on the randomness used in the original study.

We can quantify this generalized notion of partial independence as follows:

I Definition 8 ((ε, δ)-independence). Consider a mechanism-function pair (M,P ). We say
that M and P are (ε, δ)-independent if for every database x, subset S ⊆ OM , and output
o ∈ OP such that Prr[P (x, r) = o] 6= 0, we have that

Pr
r

[M(x, r) ∈ S|P (x, r) = o] ≤ eε Pr
r

[M(x, r) ∈ S] + δ

and

Pr
r

[M(x, r) ∈ S] ≤ eε Pr
r

[M(x, r) ∈ S|P (x, r) = o] + δ.
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Note that by this definition, (0, 0)-independent pairs are perfectly independent. Using
this definition of dependence, we can get a more general version of Theorem 7 which wells
us what sort of blDP bounds we can expect from a partially independent pair with a DP
mechanism. This is presented in the following theorem, and we note that by substituting in
ε′ = δ′ = 0, we get the result of Lemma 7 as a corollary.

I Theorem 9. Suppose we have a mechanism-function pair (M,P ) where the outputs of M
and P are (ε′, δ′)-independent of one another. If M satisfies (ε, δ)-DP, then (M,P ) must
satisfy (ε+ 2ε′, (eε′+ε + 1)δ′ + eε

′
δ)-blDP.

4 Properties

We can show that bounded-leakage differential privacy satisfies many of the properties
satisfied by standard differential privacy [3], plus additional desirable properties.

4.1 Post-Processing

We begin by observing that bounded-leakage differential privacy is closed under convex
combination.

I Lemma 10. A convex combination of (ε, δ)-blDP mechanisms with respect to some leakage
function P : Xn ×R→ OP is also an (ε, δ)-blDP mechanism with respect to the same P .

With this observation in hand, it quickly follows that blDP is preserved under post-
processing of the privacy mechanism. The proof is very similar to the proof for post-processing
in the DP setting, and is omitted.

I Theorem 11 (Post-processing). If M : Xn ×R→ OM is an (ε, δ)-blDP mechanism with
respect to P : Xn × R → OP and f : OM → O′ is any arbitrary mapping from OM to an
output space O′, then f ◦M is also an (ε, δ)-blDP mechanism with respect to P .

4.2 Group Privacy

Group privacy is an important property of differential privacy that quantifies how privacy
degrades between databases that differ in the data of more than one individual. In standard
differential privacy, group privacy properties hold due to the fact that given any two databases,
we can construct a “path” of adjacent databases and apply differential privacy properties to
each pair in the path.

Group privacy is a bit more complicated in the case of bounded-leakage differential
privacy due to the fact that we cannot always construct a path between two databases such
that the leakage function maintains the same value between all pairs of databases along
the path. Example 18 shows a situation where bounded-leakage privacy between pairs of
databases cannot imply anything about the group privacy of the same mechanism-function
pair. However, we can still state properties about group blDP when for every output o of P ,
we can find a path between the two databases in question such that for every database x on
the path, we have Pr[P (x, r) = o] > 0; we see this in Definitions 20 and 21, and Theorem 22.

FORC 2020
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4.3 What if the Value of P is Leaked?
The definition of blDP we have presented conditions probability on values of P , but the
value of P is never explicitly revealed or “leaked.” However, intuitively, we would like our
definition to satisfy the property that even if the value of of P is explicitly revealed (that is,
the output of P is included in the mechanism output), the pair retains its bounded-leakage
privacy. The following theorem shows that this property holds.
I Theorem 12 (Value of P leaked). Let M : Xn ×R→ OM be a mechanism that satisfies
(ε, δ)-blDP with respect to the leakage function P : Xn × R → OP . Consider another
mechanism, M ′ : Xn ×R→ OM ×OP such that M ′ returns the output of M concatenated
with the output of P ; that is, M ′(x, r) := M(x, r)||P (x, r). Then M ′ also satisfies (ε, δ)-blDP
with respect to P .
We can combine this theorem with the independence results of Lemma 7 or Theorem 9 to
get Corollaries 13 and 14, respectively
I Corollary 13. Suppose M is an (ε, δ)-DP mechanism and P is a leakage function such
that the outputs of M and P are perfectly independent. Then the concatenation of M and P ,
M ′(x, r) = M(x, r)||P (x, r), satisfies (ε, δ)-blDP with respect to P .
I Corollary 14. Suppose M is an (ε, δ)-DP mechanism and P is a leakage function such
that the outputs of M and P are (ε′, δ′)-independent. Then the concatenation of M and P ,
M ′(x, r) = M(x, r)||P (x, r), satisfies (ε+ 2ε′, (eε′+ε + 1)δ′ + eε

′
δ)-blDP with respect to P .

4.4 Composition
We derive some properties of the composition of multiple blDP mechanism-function pairs.
There are two types of composition that we consider: non-adaptive composition, in which
the sequence of mechanism-function pairs is fixed in advance; and adaptive composition, in
which the choice of future mechanism-function pairs might depend on the results returned
by previous mechanisms.

We use a unified reduction technique to obtain results for both settings.
I Definition 15 (DP reduction mechanism). Given a mechanism M : Xn × R → OM , a
leakage function P : Xn × R → OP , some output o ∈ OP , and two databases x0, x1 ∈ Xn,
we define the DP reduction mechanism for (M,P ), o, x0, x1 to be the mechanism Mx0,x1

P,o :
Xn × (Ro,x0 ×Ro,x1)→ OM ∪ {“null”}, where Ro,xb

is defined as the subset of the random
input space R such that Ro,xb

= {r ∈ R : P (xb, r) = o}. Then, given any x ∈ Xn and
(r0, r1) ∈ Ro,x0 ×Ro,x1 , M

x0,x1
P,o (x, (r0, r1)) is defined as

Mx0,x1
P,o (x, (r0, r1)) =


“null” if Prr[P (x0, r) = o] Prr[P (x1, r) = o] = 0
M(x0, r0) if x = x0

M(x1, r1) otherwise

In order to use this mechanism in our reduction proofs, we need it to satisfy two important
properties. The first (Proposition 23) is that the distribution of Mx0,x1

P,o on inputs x0 and x1
should match the distribution of M conditioned on P outputting o in the blDP setting for
those inputs. The second (Proposition 24) states that if (M,P ) satisfies bounded-leakage
privacy and x0 and x1 are neighboring databases, Mx0,x1

P,o must be differentially private.
In Section C, we show how to use this reduction to translate results on non-adaptive

composition of differentially private mechanisms to results for blDP. Section D shows the
analogous reduction for adaptive composition, yielding the following theorem:
I Theorem 16. For all ε, δ, δ′ ≥ 0, the class of (ε, δ)-blDP mechanisms satisfies (ε′, kδ + δ′)-
blDP under k-fold adaptive composition for ε′ = ε

√
2k ln(1/δ′) + kε(eε−1).
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5 Tools for Achieving blDP

Our Lemma 7 and Theorem 9 give tools for understanding when existing differentially
private algorithms can be used to achieve guarantees of blDP. In addition, in Section E, we
establish a blDP variant of the exponential mechanism [13]. The exponential mechanism is a
foundational differentially private algorithm that performs exponentially weighted sampling
from a space of outcomes with weights chosen according to a utility function over databases
and outputs. The standard exponential mechanism cannot be directly applied to the blDP
scenario because we have no guarantees about how a particular utility function will depend
on the additional leaked function P . As an example, if P is the standard deviation of entries
in the database and we are seeking to output a result that is close to the average of the
database, the value of P will affect the distribution of how “useful” particular outputs are
based on their distance from the true mean. To address this, we introduce a notion of a
coupled utility function, and show that an analogous mechanism enjoys blDP.

6 Applications

Now that we have presented a definition of bounded-leakage privacy and explored some of
its properties, we consider some applications of this definition.

6.1 2020 Census: Releasing Additional Information About a Dataset

In some situations where a differentially private study is run, there may be additional releases
of information about the underlying private dataset. This could happen unintentionally via
a leak or some sort of adversarial attack, or it could be intentional if those running the study
choose to release select pieces of information without noise (or with lower noise levels), such
as releasing the number of outliers, or a summary statistic such as the standard deviation or
average of the data surveyed.

In this situation, we would like to understand what sort of privacy is maintained after
such a leak, and whether the release of such information combined with the results of a
differentially private study could degrade the participants’ privacy in unexpected ways.

If the leaked information is a deterministic function that depends only on the database or
a randomized function that uses independent randomness from that used in the differentially
private mechanism, then the differentially private mechanism and this additional function
will be perfectly independent. Applying Theorem 7 tells us that releasing this additional
information guarantees bounded-leakage privacy with the same bounds as the DP mechanism
in the original study, and so other than revealing that the database used in the study was
such that it produced the additional statistic in question, the privacy of the results of the
original study does not degrade further. This gives a formal language for reasoning about,
for example, the privacy properties of the 2020 US Census, where some statistics will be
revealed without any noise, and other computations will be subject to differential privacy [9].

6.2 Big World Privacy: Controlling Privacy Degradation due to
Absence from Studies

Recall the Big World Privacy problem from the Introduction. Bounded-leakage differential
privacy can aid in reasoning about how privacy degrades across many studies, some of which
an individual may not have participated in.

FORC 2020
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Suppose that a sequence of k studies has been run on various subsets of the entire
population D. In the Introduction, we discussed modeling each study as the composition of
two mechanisms, one being a standard differential-privacy mechanism M (j), and the other
a participation function, which we will denote f (j)

par. Using this definition, the result of the
jth study is computed by first getting the output of f (j)

par(D, r(j)
par) = D(j), which will be a

subset of D containing only the data of those chosen to participate. After getting D(j), we
compute M (j)(D(j), r(j)) to get the final result of study j. We will assume that each M (j)

satisfies ε-DP.
When the participation function is arbitrary, then no level of privacy can be maintained.

For example, for a particular study of average height, we can either choose a group of NBA
players or a group of toddlers. If this decision is based on a sensitive property of individual i,
this property will be completely revealed. We will therefore make the simplifying assumption
that the participation of an individual i is independent of all other individuals. Our results
will hold in more general settings as well, but as the above example demonstrates, some
assumption of this sort needs to be made.

With this assumption we are guaranteed that if a mechanism is (ε, δ)-DP, then each
pair of databases with different i values but the same participation in other individuals is a
pair of neighboring databases, and therefore satisfies (ε, δ)-DP. The study will be a convex
combination of the results of the privacy mechanism on such pairs, and so must also satisfy
(ε, δ)-DP.

Now, suppose that we would like to reason about the privacy loss of a particular individual
i if some of her participation data is leaked. Consider a leakage function Pi(D, rpar(i), rp)
that takes in the giant database D, the randomness used to decide i’s participation in each
study, rpar(i), and some additional randomness rp. We define this function such that it
outputs some t ∈ Z, with 0 ≤ t ≤ k, such that t is an upper bound on the total number of
studies that our individual i participated in. There are numerous real-world situations where
such a bound might be released, such as the observation that “i only participated in studies
conducted in the U.S.” or that some number of the studies were conducted before i was born.

Let M(D, rpar, r) denote the concatenation of all k studies. Conditioning on this leakage
function, we can show that the following result holds:

I Theorem 17. For any t ≤ k, subset S ⊆ OM , and database Di that differs from D only
in i’s data, we have that

Pr
rpar,r

[M(D, rpar, r) ∈ S|Pi(D, rpar(i), rp) = t]

≤ e2tε Pr
rpar,r

[M(Di, rpar, r) ∈ S|Pi(Di, rpar(i), rp) = t] + 2tδ.

This bound arises from the standard additive bound (Theorem 32) for the composition of
2t (ε, δ)-DP mechanisms, but any existing composition bound for the same setting could
be substituted in to get an analogous result. It should be noted that this result is a bit
different from our standard definition of blDP due to the fact that the resulting privacy
bound (2tε) depends on the value of the leakage function (t). We include the proof of this
result in Appendix F. As previously noted, standard differential privacy only tells us that i
incurs an ε privacy loss for every single study in M . However, considering the same question
in the bounded-leakage differential privacy setting allows us to conclude that the privacy
loss of i is bounded by the number of studies she may have participated in.
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7 Future Directions

We hope that the notion of bounded-leakage differential privacy will aid in the rigorous
analysis of privacy guarantees in settings where differential privacy does not hold. This
initial exploration suggests many additional avenues to pursue. It would be interesting to
develop additional mechanisms that enjoy blDP, and to apply the notion in new domains.
Additionally, one might consider variations on the definition of blDP, for example a variant
that allows weakened privacy if the probability of the function P attaining a particular set
of values is very small.
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A Missing Proofs from Section 3

Proof of Theorem 4. Consider any neighboring databases x ∼ x′ and a subset S ⊆ OM .
Let O′ = {o ∈ OP : Prr[P (x, r) = o] Prr[P (x′, r) = o] 6= 0}.

By the definition of O′ and the fact that P satisfies (ε2, 0)-DP, we have that

Pr
r

[M(x, r) ∈ S, P (x, r) ∈ OP \O′] = 0

and therefore

Pr
r

[M(x, r) ∈ S] =
∑
o∈O′

Pr
r

[M(x, r) ∈ S|P (x, r) = o] Pr
r

[P (x, r) = o]

≤ eε1

(∑
o∈O′

Pr
r

[M(x′, r) ∈ S|P (x′, r) = o] Pr
r

[P (x, r) = o]
)

+ δ1

≤ eε1+ε2 Pr
r

[M(x′, r) ∈ S] + δ1.

So M satisfies (ε1 + ε2, δ1)-DP. J

I Remark. One can extend this theorem to account for a non-zero δ2 value, at a cost of an
additional (1 + |O′|)δ2 in the δ.

Proof of Theorem 9. Consider any subset S ⊆ OM , neighboring databases x ∼ x′, and
output o ∈ OP such that Prr[P (x, r) = o] Prr[P (x′, r) = o] 6= 0. Combining the definitions
of (ε′, δ′)-independence and (ε, δ)-DP gives us

Pr
r

[M(x, r) ∈ S|P (x, r) = o] ≤ eε
′
Pr
r

[M(x, r) ∈ S] + δ′

≤ eε+ε
′
Pr
r

[M(x′, r) ∈ S] + eε
′
δ + δ′

≤ eε+2ε′
Pr
r

[M(x′, r) ∈ S|P (x′, r) = o] + (eε
′+ε + 1)δ′ + eε

′
δ

and therefore (M,P ) satisfies (ε+ 2ε′, (eε′+ε + 1)δ′ + eε
′
δ)-blDP. J

B Some Missing Proofs from Section 4

Proof of Lemma 10. Suppose we have some mechanismM : Xn×R→ OM that is a convex
combination of the mechanisms M1, ...,Mk : Xn ×R→ OM such that for each 1 ≤ i ≤ k, we
have Prr[M = Mi] = ai for some a1, ..., ak ≥ 0 such that

∑k
i=1 ai = 1. Suppose that each

Mi satisfies (ε, δ)-blDP with respect to a function P : Xn ×R→ OP .
Now, consider any neighboring databases x ∼ x′, S ⊆ O, and o ∈ OP such that

Prr[P (x, r) = o] Prr[P (x′, r) = o] 6= 0. Then we have that

Pr
r

[M(x, r) ∈ S|P (x, r) = o] =
k∑
i=1

Pr[M = Mi] Pr
r

[Mi(x, r) ∈ S|P (x, r) = o]

≤
k∑
i=1

ai(eε Pr
r

[Mi(x′, r) ∈ S|P (x′, r) = o] + δ)

= eε

(
k∑
i=1

ai Pr
r

[Mi(x′, r) ∈ S|P (x′, r) = o]
)

+ δ

(
k∑
i=1

ai

)
= eε Pr

r
[M(x′, r) ∈ S|P (x′, r) = o] + δ,

and so M satisfies (ε, δ)-blDP with respect to P . J
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I Example 18 (A blDP mechanism that fails group privacy). The parity function paired with
any arbitrary privacy mechanism acts as a simple example of how a mechanism/function
pair can fail to satisfy any sort of group privacy guarantee. If we think of the database as
being represented as a vector in {0, 1}n, and choose the leakage function to be the parity
of that vector, then any neighboring databases will have different parity. So, any arbitrary
mechanism trivially satisfies perfect blDP with respect to the parity function. However, we
can make no guarantees about non-neighboring databases that may share the same parity,
and so can make no guarantees about group blDP for the same mechanism/function pair.

I Remark 19. The above is also an example of how certain leakage functions can cause
blDP to be trivially satisfied when the probability that neighboring databases will leak the
same output is zero. If the leakage function has even a small amount of noise, guaranteeing
that neighboring databases always have non-zero probability to agree on the leakage (such
as in an ε- DP with large ε), then blDP is guaranteed to be non-trivial. We also note
that an alternative definition of blDP could restrict the behavior of the mechanism across
any two databases inducing the same result under the leakage function, while scaling the
corresponding constraint on probabilities according to the Hamming distance between the
databases. This strictly stronger definition is worthy of further investigation.

I Definition 20. Given a database universe Xn, a path of length n between databases x
and x′ is a sequence of n + 1 databases from Xn, x = x0, x1, ..., xn = x′, such that for all
i ∈ {0, ..., n− 1}, the databases xi and xi+1 are adjacent.

I Definition 21. Given a function P : Xn × R → OP , a path P = (x0, ..., xn) is non-zero
for an output o ∈ OP if for all i ∈ {0, ..., n}, we have Prr[P (xi, r) = o] > 0.

I Theorem 22 (Group privacy). Consider a mechanism M that satisfies (ε, δ)-blDP with
respect to a function P , and two databases x and x′. If for a particular output o ∈ OP there
exists a non-zero path of length k between x and x′, then for any S ⊆ OM , we have

Pr
r

[M(x, r) ∈ S|P (x, r) = o] ≤ ekε Pr
r

[M(x′, r) ∈ S|P (x′, r) = o] + δ

(
ekε − 1
eε − 1

)
.

The proof of this theorem follows the same approach as the proof of group privacy in the
standard DP setting, and is omitted here.

Proof of Theorem 12. Consider two neighboring databases x sin x′, a subset S ⊆ OM ×OP ,
and an output o ∈ OP such that Prr[P (x, r) = o] Prr[P (x′, r) = o] 6= 0. Then,

Pr
r

[M ′(x, r) ∈ S|P (x, r) = o] = Pr
r

[M(x, r) ∈ So|P (x, r) = o]

where So = {y ∈ OM : (y, o) ∈ S}, with the same holding true when x is replaced with x′.
Therefore, combining the blDP properties of (M,P ) and the above equalities gives

Pr
r

[M ′(x, r) ∈ S|P (x, r) = o] ≤ eε Pr
r

[M ′(x′, r) ∈ S|P (x′, r) = o] + δ

and thus M ′ satisfies (ε, δ)-blDP with respect to P . J

I Proposition 23. Consider any mechanism M , leakage function P , output o of P , and
databases x0 and x1 such that Prr[P (x0, r) = o] · Pr[P (x1, r) = o] 6= 0. Then for any subset
S ⊆ OM and b ∈ {0, 1}, we have that

Pr
r∈(Ro,x0×Ro,x1 )

[Mx0,x1
P,o (xb, r) ∈ S] = Pr

r∈R
[M(xb, r) ∈ S|P (xb, r) = o].
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I Proposition 24. Suppose that a mechanism M satisfies (ε, δ)-blDP with respect to a leakage
function P . Then, for any o ∈ OP and neighboring databases x0 ∼ x1, the DP reduction
mechanism Mx0,x1

P,o satisfies (ε, δ)-DP.

The proofs of Propositions 23 and 24 are omitted here for space reasons, but are easily
verified.
I Remark 25. Another simpler construction can be used to prove a reduction in the reverse
direction, reducing DP composition to the blDP setting.

C Details on Non-Adaptive Composition

The following theorem shows how to translate a non-adaptive composition theorem for
differential privacy into one for blDP.

I Theorem 26. For some k ≥ 1, suppose that the following implication were to hold: if
for any choice of k mechanisms L1, ..., Lk such that each Li satisfies (εi, δi)-DP, then the
composition of these mechanisms,

L(x, (r1, ..., rk)) := L1(x, r1)||L2(x, r2)||...||Lk(x, rk),

(where each ri is chosen independently at random) would satisfy (ε′, δ′)-DP. Then, for
any choice of k mechanism function pairs (M1, P1), ..., (Mk, Pk) such that each Mi satisfies
(εi, δi)-blDP with respect to Pi, if we define the composed functions

M(x, (r1, ..., rk)) := M1(x, r1)||...||M(x, rk) and P (x, (r1, ..., rk)) := P1(x, r1)||...||Pk(x, rk),

then M must also satisfy (ε′, δ′)-blDP with respect to P .

Proof. Consider any neighboring databases x0 ∼ x1, some subset S ⊆ OM , and some
o = (o1, ..., ok) ∈ OP such that Prr[P (x0, r) = o] Prr[P (x1, r) = o] 6= 0. We note that this
requirement implies that Prr[Pi(x0, r) = oi] Prr[Pi(x1, r) = oi] 6= 0 for all i. Then, consider
the k DP reduction functions, (M1)x0,x1

P1,o1
, ..., (Mk)x0,x1

Pk,ok
, defined in terms of each (Mi, Pi). By

Proposition 24, each (Mi)x0,x1
Pi,oi

must satisfy (εi, δi)-DP.
Therefore, by our assumption, the composition

M ′(x, (r1, ..., rk)) = (M1)x0,x1
P1,o1

(x, r1)||...||(Mk)x0,x1
Pk,ok

(x, rk)

must satisfy (ε′, δ′)-DP.
We can express any subset S as the sum of disjoint rectangles, so it suffices to assume

that S is a rectangle. So, S = S1 × S2 × ...× Sk where each Si ⊆ OMi . Then because each
ri is chosen independently, we know that for any b ∈ {0, 1},

Pr[M ′(xb, (r1, ..., rk)) ∈ S] =
k∏
i=1

Pr
r

[Mi(xb, r) ∈ Si|Pi(xb, r) = oi],

where because each Pi uses independent randomness as well,
k∏
i=1

Pr
r

[Mi(xb, r) ∈ Si|Pi(xb, r) = oi] = Pr
r

[M(xb, r) ∈ S|P (xb, r) = o].

Combining the DP guarantee for M ′ and the above equality gives us

Pr
r

[M(x0, r) ∈ S|P (x0, r) = o] ≤ eε
′
Pr
r

[M(x1, r) ∈ S|P (x1, r) = o] + δ′

Therefore the composed mechanism M must satisfy (ε′, δ′)-blDP with respect to P . J
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This result tells us that any nonadaptive composition bounds for the DP setting can be
extended to the blDP setting. In particular, we present a corollary below that is reached by
applying this statement to a well-known composition theorem for DP.

We first recall the following theorem:

I Theorem 27 ([5]). Suppose M1, ...,Mk are mechanisms such that Mi satisfies (εi, δi)-DP.
Then the composition of these mechanisms, M(x, (r1, ..., rk)) := M1(x, r1)||...||Mk(x, rk),
satisfies (

∑k
i=1 εi,

∑k
i=1 δi)-DP.

The following corollary is a direct result of combining this theorem with Theorem 26:

I Corollary 28. Suppose (M1, P1), ..., (Mk, Pk) are mechanism-function pairs such that each
Mi satisfies (εi, δi)-blDP with respect to Pi. Then the composition of these mechanisms,

M(x, (r1, ..., rk)) := M1(x, r1)||...||Mk(x, rk)

satisfies (
∑k
i=1 εi,

∑k
i=1 δi)-blDP with respect to the composition of the Pis,

P (x, (r1, ..., rk)) := P1(x, r1)||...||Pk(x, rk).

Therefore, we can conclude that, like for differential privacy, the rate of bounded-leakage
privacy loss as we increase the number of queries to the database, is at most linear.

D Adaptive Composition

It is also important to consider how bounded-leakage-privacy can be affected if the composed
mechanisms are chosen adaptively based on the outputs of the previously chosen mechanisms.
We analyze how this form of composition affects privacy via an experiment/adversary model.
We define two experiments: Experiment 0 and Experiment 1, as follows:

Algorithm 1 Experiment b: blDP of Adaptive k-Fold Composition.

Input: a family of mechanism-function pairs F = {(M1, P1), (M2, P2), ...}, and a
probabilistic adversary A.

Repeat k times:
A outputs some query ((x0, x1), (Mi, Pi), oi) where (x0, x1) is a pair of adjacent
databases, (Mi, Pi) ∈ F , and oi is some member of the output space of Pi.

if Pr[Pi(x0, r) = oi] · Pr[Pi(x1, r) = oi] = 0 then A receives “null”.
else A receives Mi(xb, r) for some random r ∈ R such that Pi(xb, r) = oi.

Intuitively, the definition of bounded-leakage privacy states that if a mechanism-function
pair has good bounded-leakage privacy, it should be hard to differentiate the outputs of
the mechanism on two adjacent databases for some fixed function output. Extending this
to the composition setting, it should still be difficult to distinguish which database was
used even if we are able to get more information with multiple queries. Connecting this to
the experiments, the adversary should have difficulty distinguishing between the outputs of
Experiments 0 and 1 if our family of mechanisms and functions has good bounded-leakage
privacy.

To formalize this, we define the “view” of the adversary in a particular experiment to be
everything that the adversary sees or knows after the experiment, i.e. the contents of all the
adversary’s k queries and the responses to those queries. It should be noted that this will not
include the random coin flips used to generate the responses to each query, nor whether b = 0

FORC 2020



10:16 Bounded-Leakage Differential Privacy

or 1. An adversary’s view can be denoted by the values of all the queries and their responses,
i.e., a “transcript” of the experiment, or just the values of the random coin flips that the
adversary used and all of the responses. These are equivalent representations because an
adversary’s queries can always be reconstructed from the randomness that the adversary
used and the responses that it received, and so we will use these two representations of the
view interchangeably throughout.

Now that we have formalized this notion of an adversary’s view, we can use our model to
define bounded-leakage privacy under adaptive composition as follows:

I Definition 29. We say that a family F of mechanism-function pairs satisfies (ε, δ)-blDP un-
der k-fold adaptive composition if for every adversary A, random variables V b corresponding
to the view of A in Experiment b, and subset of possible views V , we have that

Pr[V0 ∈ V ] ≤ eε Pr[V1 ∈ V ] + δ

This definition is designed to parallel the definition for adaptive composition of DP mechanisms
given by Dwork and Roth [5]. We include the DP version here so that the two can be easily
compared:

Algorithm 2 Experiment b: DP of Adaptive k-Fold Composition [5].

Input: A family F of mechanisms and a probabilistic adversary A.
Repeat k times:
A outputs the query ((x0, x1),Mi) where (x0, x1) is a pair of adjacent databases
and Mi ∈ F .
A recieves Mi(xb, r) for some random r ∈ R.

I Definition 30 ([5]). We say that the family of mechanisms F satisfies (ε, δ)-DP under
k-fold adaptive composition if for every adversary A, we have Dδ

∞(V0||V1) ≤ ε, where Vb
denotes the view of A in the DP composition experiment, and Dδ

∞(V0||V1) is the δ-approximate
max divergence between V0 and V1, defined as

Dδ
∞(V0||V1) = max

S⊆Supp(V0):Pr[V0∈V ]≥δ

[
ln Pr[V0 ∈ S]− δ

Pr[V1 ∈ S]

]
.

We note that this max-divergence definition is equivalent to requiring that for all adversaries
and subsets of views of the DP experiment, V , we have Pr[V0 ∈ V ] ≤ eε Pr[V1 ∈ V ] + δ,

which puts the definition in a more familiar form.
We will now connect this model to the standard DP setting. The following theorem states

that any bounds for adaptive composition that can be shown to hold in the DP setting must
also hold in the blDP setting:

I Theorem 31. If a class of (ε, δ)-DP mechanism-function pairs satisfies (ε′, δ′)-DP under
k-fold adaptive composition, then that class of (ε, δ)-blDP mechanisms satisfies (ε′, δ′)-blDP
under k-fold adaptive composition.

Similar to our nonadaptive composition result, the proof of this theorem uses the strategy
of reducing the blDP setting to the DP setting by converting any arbitrary blDP adversary
to an adversary in the DP setting with the same distribution of views. We can then argue
that therefore the original blDP adversary must be constrained by the same bounds as the
DP adversary.
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Proof of Theorem 31. For the purposes of this proof, we will consider the views of the
adversary in both the DP and blDP adaptive composition experiments to contain only the
value of the adversary’s random bits and the responses it receives for each query so that we
can easily compare the views in the DP and blDP settings.

First, assume that the class of (ε, δ)-DP mechanisms satisfies (ε′, δ′)-DP under k-fold
adaptive composition. Now, consider some adversary AblDP for the blDP composition
experiments for the class of (ε, δ)-blDP mechanism-function pairs.

Using AblDP , we construct an adversary for the DP composition experiment on (ε, δ)-DP
mechanisms as follows: whenever AblDP would output the query ((x0, x1), (M,P ), o) given
the current view of the experiment, ADP outputs ((x0, x1),Mx0,x1

P,o ), where Mx0,x1
P,o is the DP

reduction mechanism for (x0, x1), o, and P .
By Proposition 24, Mx0,x1

P,o ) satisfies (ε, δ)-DP and therefore ADP is a valid adversary for
the class of (ε, δ)-DP mechanisms.

Now, we want to show that given this definition ofADP , if V DPb is a random variable for the
view of ADP in the DP composition Experiment b and V blDPb is a random variable for the view
of AblDP in the blDP composition Experiment b, then we have dist(V DPb ) = dist(V blDPb ).

We split both views into their component random variables corresponding to the random-
ness of the adversaries and the responses in the experiment such that

V DPb = (RDP , SDP1 , ..., SDPk ) and V blDPb = (RblDP , SblDP1 , ..., SblDPk ),

where RDP and RblDP are random variables corresponding to the random bits of the
adversaries, and each Si is the response received for the ith query in the experiment.

We will use induction on the number of outputs to show that these distributions must
be equal. First, because ADP uses no additional randomness apart from the randomness of
AblDP , we clearly have dist(RDP ) = dist(RblDP ). This forms our base case.

Now, suppose that for some i with 1 ≤ i ≤ k, we have

dist((RDP , SDP1 , ..., SDPi−1)) = dist((RblDP , SblDP1 , ..., SblDPi−1 )).

Then, for any partial view (r, s1, ..., si), we can rewrite Pr[(RDP , ..., SDPi ) = (r, ..., si)] as

Pr[(RDP , ..., SDPi−1) = (r, ..., si−1)] Pr[SDPi = si|(RDP , ..., SDPi−1) = (r, ..., si−1)],

where by fixing (r, s1, ..., si−1), the ith query from ADP is deterministically fixed to be some
((x0, x1), (Mi, Pi), oi), and therefore the ith query of ADP is fixed to be ((x0, x1), (Mi)x0,x1

Pi,oi
).

By Proposition 23, if Prr[Pi(x0, r) = oi] Prr[Pi(x1, r) = oi] = 0, then (Mi)x0,x1
Pi,oi

(xb, r) will
output “null” with probability one. Otherwise, we have that

distr((Mi)x0,x1
Pi,oi

(xb, r)) = distr:P (xb,r)=oi
(Mi(xb, r))

and therefore in either case,

dist(SDPi |(RDP , ..., SDPi−1) = (r, ..., si−1)) = distr((Mi)x0,x1
Pi,oi

(xb, r))

= dist(SblDPi |(RblDP , ..., SblDPi−1 ) = (r, ..., si−1))

By our inductive assumption, dist((RblDP , ..., SblDPi−1 )) = dist((RDP , ..., SDPi−1)). Putting
these together, we must have dist((RblDP , ..., SblDPi )) = dist((RDP , ..., SDPi )). This completes
our inductive step, and therefore it follows by induction that

dist(V blDPb ) = dist((RblDP , ..., SblDPk )) = dist((RDP , ..., SDPk )) = dist(V DPb )

dist(V blDPb ) = dist(V DPb ).

FORC 2020
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Because by our initial assumption the class of (ε, δ)-DP mechanisms satisfies (ε′, δ′)-DP
under k-fold adaptive composition, we must also have that for any subset of views V , we have

Pr[V blDP0 ∈ V ] = Pr[V DP0 ∈ V ] ≤ eε
′
Pr[V DP1 ∈ V ] + δ′ = eε

′
Pr[V blDP1 ∈ V ] + δ′

Pr[V blDP0 ∈ V ] ≤ eε
′
Pr[V blDP1 ∈ V ] + δ′

Therefore the class of (ε, δ)-blDP mechanisms must also satisfy (ε′, δ′)-blDP under k-fold
adaptive composition. J

Theorem 31 allows us to apply existing bounds for the adaptive composition of DP mechanisms
to the blDP context. Recall the following composition bound for DP mechanisms:

I Theorem 32 ([6]). For all ε, δ, δ′ ≥ 0, the class of (ε, δ)-DP mechanisms satisfies (ε′, kδ+δ′)-
DP under k-fold adaptive composition for:

ε′ = ε
√

2k ln(1/δ′) + kε(eε−1).

Combining the results of Theorem 31 and Theorem 32 gives us Theorem 16 as a corollary.

E The Exponential Mechanism

I Definition 33. Given a set of outputs OM and a set of outputs OP , a coupled utility
function for OM and OP is some function uM,P : Xn × OM × OP → R that maps triples
containing a database, an element of OM , and an element of OP to a real-valued score.

We define this coupled utility function with the intent of defining OM to be the output
space of a particular mechanism, and OP to be the output space of some associated function.
This definition would allow us to define utility functions in the bounded-leakage setting
that are inherently stronger than just considering a standard utility function conditioned
on a particular output of the leaked function, because here we can have the utility function
depend on the output of the associated function even if it is randomized.

We also want to define an analogous notion of utility sensitivity for coupled utilities.

I Definition 34. Given a coupled utility function uM,P : Xn ×OM ×OP × R, we define a
function corresponding to the sensitivity of uM,P conditioned on a particular element of OP ,
∆uM,P : OP → R, such that for any o ∈ OP ,

∆uM,P (o) = max
y∈OM

max
x∼x′

|uM,P (x, y, o)− uM,P (x′, y, o)|

This quantifies the sensitivity for our coupled utility given a particular value for the
output of P .

Using this new concept of a coupled utility function, we can define a version of the
exponential mechanism for blDP as follows:

IDefinition 35 (The Exponential Mechanism for blDP). Given a set of outputs, OM , a function
P : Xn ×R → OP , and a coupled utility function uM,P : Xn ×OM ×OP → R, the bounded-
leakage exponential mechanism ME,P (x, uM,P , OM , r) is defined such that if P (x, r) = o,
then for any y ∈ OM , the probability that the mechanism outputs y is proportional to

exp
(
εuM,P (x, y, o)
2∆uM,P (o)

)
.
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We can now show that in the same way that the standard exponential mechanism
guarantees (ε, 0)-DP, this version of the mechanism guarantees (ε, 0)-blDP.

I Theorem 36. The exponential mechanism for blDP satisfies (ε, 0)-blDP with respect to its
associated function P .

Proof. Consider any two neighboring databases x ∼ x′, some output o of P such that
Prr[P (x, r) = o] ·Prr[P (x′, r) = o] 6= 0, and some output s ∈ OM . Applying the definition of
the mechanism and utility sensitivity, we have that

Prr[ME,P (x, uM,P , OM , r) = s|P (x, r) = o]
Prr[ME,P (x′, uM,P , OM , r) = s|P (x′, r) = o]

is at most

exp
(
ε∆uM,P (o
2∆uM,P (o)

) ∑
y∈OM

exp
(
ε(uM,P (x,y,o)+∆uM,P (o))

2∆uM,P (o)

)
∑
y∈OM

exp
(
εuM,P (x,y,o)
2∆uM,P (o)

) = exp(ε)

Therefore, for any subset S ⊆ OM , we have

Pr
r

[ME,P (x, uM,P , OM , r) ∈ S|P (x, r) = o]

≤
∑
s∈S

eε Pr
r

[ME,P (x′, uM,P , OM , r) = s|P (x′, r) = o]

= eε Pr
r

[ME,P (x′, uM,P , OM , r) ∈ S|P (x′, r) = o],

and so ME,P satisfies (ε, 0)-blDP with respect to P . J

As in the case of the standard exponential mechanism, we also want to show that our
mechanism for the bounded-leakage case can give us some guarantee of “good” utility. In
the case of the standard exponential mechanism, we recall the following theorem:

I Theorem 37 ([13]). Let ME be the standard exponential mechanism for a set of outputs
S and utility function u. For any database x, let OPTu(x) = maxy∈S u(x, y), and SOPT =
{y ∈ OM : u(x, y) = OPTu(x). Then, for any t ∈ R, we have that

Pr
r

[u(ME(x, u, S, r)) ≤ OPTu(x)− 2∆u
ε

(
ln
(
|S|
|SOPT |

)
+ t

)
] ≤ e−t

By the properties of our exponential mechanism for bounded-leakage privacy, we can
conclude the following analogous theorem in the blDP setting:

I Theorem 38. Let ME,P be the standard bounded-leakage exponential mechanism for a set
of outputs S, function P , and utility function uS,P . For any database x and output o of P ,
let OPTuS,P

(x, o) = maxy∈S uS,P (x, y, o), and SOPT = {y ∈ OM : uS,P (x, y, o) = OPTu(x).
Then, for any t ∈ R, database x, and output o of P , we have that

Pr
r:P (x,r)=o

[uS,P (ME,P (x, uS,P , S, r)) ≤ OPTuS,P (x, o)− 2∆uS,P (o)
ε

(
ln
(
|S|
|SOPT |

)
+ t

)
] ≤ e−t.

Proof. This result follows immediately from combining Theorem 37 and the observation
that once the output of P is set, ME,P behaves like the standard exponential mechanism for
output space S and utility u(x, y) = uS,P (x, y, o). J
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F Additional Details on the BigWorld Application of blDP

In this section, we provide a proof for the result stated in Theorem 17. To begin, we have
the following lemma:

I Lemma 39. Let Vi be a leakage function that releases the exact number of studies that i
participated in. Then, for any S ⊆ OM , t ≤ k, and D ∼ Di such that Di differs from D only
in i’s data, we have that

Pr
r,rpar

[M(D, rpar, r) ∈ S|Vi(D, rpar) = t] ≤ e2tε Pr
r,rpar

[M(Di, rpar, r) ∈ S|Vi(Di, rpar) = t] + 2tδ

Proof. We first note that because of our assumption that the participation of i is independent
of the participation of all other individuals in D, we can consider the distribution of a
particular study M (j)’s output to be a convex combination of neighboring databases differing
only in i’s data.

If i does not participate in study j in either case, then neither mechanism can depend on
i, so the distributions of possible results conditioned on v and v′ will be equal. Otherwise,
we apply the (ε, δ)-DP to conclude that

Pr
r,rpar

[M (j)(f (j)
par(D, rpar), r) ∈ Sj |Vi(D, rpar) = t]

≤ eε Pr
r,rpar

[M (j)(f (j)
par(Di, rpar), r) ∈ Sj |Vi(Di, rpar) = t] + δ

By the definition of our leakage function, the maximum number of j such that i participates
in at least one of the two versions of each study is 2t. So, M can be viewed as the composition
of at most 2t (ε, δ)-blDP mechanisms, all with respect to Vi. Meanwhile all other mechanisms
are perfectly blDP. Therefore, using the standard composition bound for blDP mechanisms
(Corollary 28) we get the desired inequality. J

Proof of Theorem 17. With this result in hand, we can now consider our original leakage
function Pi, which leaks an upper bound for the magnitude of the participation vector.

For any particular t, we will have that Prr,rpar
[M(D, rpar, r) ∈ S|Pi(D, rpar) = t] is a

convex combination of the set of probabilities{
Pr

r,rpar

[M(D, rpar, r) ∈ S|Vi(D, rpar) = j]
}

0≤j≤t
.

By Lemma 39, each of these satisfies (2tε, 2tδ)-blDP, and so applying Lemma 10 gives
the desired inequality. J

We should note that we applied the simplest composition bound for (ε, δ)-DP or blDP
mechanisms in this case, but any bound could be substituted for an analogous result.
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